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Abstract We give a self-contained introduction to (quasi-)Banach modulation
spaces of ultradistributions, and review results on boundedness for multiplications
and convolutions for elements in such spaces. Furthermore, we use these results to
study the Gabor product. As an example, we show how it appears in a phase-space
formulation of the nonlinear cubic Schrödinger equation.
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1 Introduction

Modulation spaces were introduced in Feichtinger’s seminal technical report [17],
and prove themselves as useful family of Banach spaces of tempered distributions
in time-frequency analysis, [4, 10, 28]. The main purpose of this survey article is to
enlighten some properties of modulation spaces in a rather self-contained manner.
In contrast to the most common situation, our analysis includes both quasi-Banach
and Banach modulation spaces within the framework of ultradifferentiable functions
and ultradistributions of Gelfand–Shilov type. For that reason we collect necessary
background material in a rather detailed preliminary section.

Motivated by recent applications of modulation spaces in the context of nonlinear
harmonic analysis and its applications, cf. [4–6, 14, 22, 38, 39, 47, 54] we focus our
attention to boundedness for multiplications and convolutions for elements in such
spaces. The basic results in that direction go back to the original contribution [17],
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and were thereafter reconsidered by many authors in different contexts. Let us give
a brief, and unavoidably incomplete account on the related results.

In Sect. 3 we formulate in Theorems 3.5 and 3.7 bilinear versions of more
general multiplication and convolution results in [54, Section 3]. The contents of
Theorems 3.5 and 3.7 in the unweighted case for modulation spaces Mp,q can be
summarized as follows.

Proposition 1.1 Let pj , qj ∈ (0,∞], j = 0, 1, 2,

θ1 = max

(
1,

1

p0
,

1

q1
,

1

q2

)
and θ2 = max

(
1,

1

p1
,

1

p2

)
.

Then

Mp1,q1 · Mp2,q2 ⊆ Mp0,q0,
1

p1
+ 1

p2
= 1

p0
,

1

q1
+ 1

q2
= θ1 + 1

q0
,

Mp1,q1 ∗ Mp2,q2 ⊆ Mp0,q0,
1

p1
+ 1

p2
= θ2 + 1

p0
,

1

q1
+ 1

q2
= 1

q0
.

The general multiplication and convolution properties in Sect. 3 also overlap with
results by Bastianoni, Cordero and Nicola in [2], by Bastianoni and Teofanov in [1],
and by Guo et al. in [32].

The multiplication relation in Proposition 1.1 for pj , qj ≥ 1 was obtained
already in [17] by Feichtinger. It is also obvious that the convolution relation was
well-known since then (though a first formal proof of this relation seems to be given
first in [48]). In general, these convolution and multiplication properties follow the
rules

�p1 ∗ �p2 ⊆ �p0, �q1 · �q2 ⊆ �q0 ⇒ Mp1,q1 ∗ Mp2,q2 ⊆ Mp0,q0

and

�p1 · �p2 ⊆ �p0, �q1 ∗ �q2 ⊆ �q0 ⇒ Mp1,q1 · Mp2,q2 ⊆ Mp0,q0,

which goes back to [17] in the Banach space case and to [25] in the quasi-Banach
case. See also [19] and [42] for extensions of these relations to more general Banach
function spaces and quasi-Banach function spaces, respectively.

In Sect. 3 we basically review some results from [54]. To make this survey self-
contained we give the proof of Theorem 3.7 in unweighted case. In contrast to [32],
we do not deduce any sharpness for our results.

To show Proposition 1.1 in the quasi-Banach setting, apart from the usual use of
Hölder’s and Young’s inequalities, additional arguments are needed. In our situation
we discretize the situations in similar ways as in [2] by using Gabor analysis for
modulation spaces, and then apply some further arguments, valid in non-convex
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analysis. This approach is slightly different compared to what is used in [32] which
follows the discretization technique introduced in [55], and which has some traces
of Gabor analysis.

We refer to [54] for a detailed discussion on the uniqueness of multiplications
and convolutions in Proposition 1.1.

In Sect. 4 we apply the results from previous parts in the framework of the so
called Gabor product. It is introduced in [14] in order to derive a phase space
analogue to the usual convolution identity for the Fourier transform. The main
motivation is to use such kind of products in a phase-space formulation of certain
nonlinear equations. As noticed in [14], among other interesting characteristics
of phase-space representations, the initial value problem in phase-space may be
well-posed for more general initial distributions. This means that the phase-space
formulation could contain solutions other than the standard ones. We refer to [11–
13], where the phase-space extensions are explored in different contexts. Here we
illustrate this approach by considering the nonlinear cubic Schrödinger equation,
which appear for example in Bose-Einstein condensate theory [35]. We also refer to
[4, Chapter 7] for an overview of results related to well-posedness of the nonlinear
Schrödinger equations in the framework of modulation spaces, see also [3, 38, 39].

2 Preliminaries

In this section we give an exposition of background material related to the
definition and basic properties of modulation spaces. Thus we recall some facts
on the short-time Fourier transform and related projections, the (Fourier invariant)
Gelfand-Shilov spaces, weight functions, and mixed-norm spaces of Lebesgue type.
We also recall convolution and multiplication in weighted Lebesgue sequence
spaces.

2.1 The Short-Time Fourier Transform

In what follows we let F be the Fourier transform which takes the form

(Ff )(ξ) = f̂ (ξ) ≡ (2π)−
d
2

∫
Rd

f (x)e−i〈x,ξ 〉 dx

when f ∈ L1(Rd). Here 〈 · , · 〉 denotes the usual scalar product on R
d . The same

notation is used for the usual dual form between test functions and corresponding
(ultra-)distributions. We recall that map F extends uniquely to a homeomorphism
on the space of tempered distributions S ′(Rd), to a unitary operator on L2(Rd) and
restricts to a homeomorphism on the Schwartz space of smooth rapidly decreasing
functionsS (Rd), cf. (29). We also observe with our choice of the Fourier transform,
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the usual convolution identity for the Fourier transform takes the forms

F (f · g) = (2π)−
d
2 f̂ ∗ ĝ and F (f ∗ g) = (2π)

d
2 f̂ · ĝ (1)

when f, g ∈ S (Rd).
In several situations it is convenient to use a localized version of the Fourier

transform, called the short-time Fourier transform, STFT for short. The short-time
Fourier transform of f ∈ S ′(Rd) with respect to the fixed window function φ ∈
S (Rd) is defined by

(Vφf )(x, ξ) ≡ (2π)−
d
2 (f, φ( · − x)ei〈 · ,ξ 〉)L2 . (2)

Here ( · , · )L2 denotes the unique continuous extension of the inner product on
L2(Rd) restricted to S (Rd) into a continuous map from S ′(Rd) × S (Rd) to C.

We observe that using certain properties for tensor products of distributions,

(Vφf )(x, ξ) = F (f · φ( · − x))(ξ). (2)′

(cf. [33, 52]). If in addition f ∈ Lp(Rd) for some p ∈ [1,∞], then

(Vφf )(x, ξ) = (2π)−
d
2

∫
Rd

f (y)φ(y − x)e−i〈y,ξ 〉 dy. (2)′′

We observe that the domain of Vφ is S ′(Rd ). The images are contained in
C∞(R2d), the set of smooth functions defined on the phase space Rd × R

d � R
2d .

The short-time Fourier transform appears in different contexts and under dif-
ferent names. In quantum mechanics it is rather common to call it the coherent
state transform (see e.g. [37]). It is also closely related to the so-called Wigner
distribution or radar ambiguity function (see e.g. [36]). In time-frequency analysis,
it is also sometimes called the Voice transform.

The main idea with the design of short-time Fourier transform is to get the
Fourier content, or the frequency resolution of localized functions and distributions.
Roughly speaking, short-time Fourier transforms give a simultaneous information
both on functions or distributions themselves as well as their Fourier transforms in
the sense that the map

x → Vφf (x, ξ)

resembles on f (x), while the map

ξ → Vφf (x, ξ)

resembles on f̂ (ξ).
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As for the ordinary Fourier transform, there are several mapping properties which
hold true for the short-time Fourier transform. As an elegant way to approach such
properties in the framework of distributions, we may follow ideas given in [24] by
Folland.

In fact, let T be the semi-conjugated tensor map

T (f, φ) = f ⊗ φ, (3)

U be the linear pullback

(UF)(x, y) = U(y, y − x) (4)

and F2 be the partial Fourier transform given by

(F2F)(x, ξ) = (2π)−
d
2

∫
Rd

F (x, y)e−i〈y,ξ 〉 dy. (5)

Then

Vφf = (F2 ◦ U ◦ T )(f, φ), (6)

when f, φ ∈ S (Rd ).
We observe that the mappings

T : S (Rd) × S (Rd) → S (R2d), U,F2 : S (R2d) → S (R2d) (7)

are continuous and uniquely extendable to continuous mappings

T : S ′(Rd ) × S ′(Rd) → S ′(R2d), U,F2 : S ′(R2d) → S ′(R2d), (8)

which in turn restricts to isometric mappings

T : L2(Rd) × L2(Rd) → L2(R2d), U,F2 : L2(R2d) → L2(R2d). (9)

Here that T is isometric means that

‖T (f, φ)‖L2(R2d) = ‖f ‖L2(Rd)‖φ‖L2(Rd).

It is now natural to define Vφf as the right-hand side of (6) when f, φ ∈ S ′(Rd),
in which Vφf is well-defined as an element in S ′(R2d).
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Proposition 2.1 The map

(f, φ) → Vφf :S (Rd) × S (Rd ) → S (R2d) (10)

is continuous, which extends uniquely to a continuous map

(f, φ) → Vφf :S ′(Rd ) × S ′(Rd) → S ′(R2d), (11)

which in turn restricts to an isometric map

(f, φ) → Vφf : L2(Rd) × L2(Rd ) → L2(R2d). (12)

If φ ∈ S (Rd ) and f ∈ S ′(Rd ), then (11) shows that Vφf ∈ S ′(R2d). On the
other hand, it is easy to see that the right-hand side of (2) defines a smooth function.
Consequently beside (11) and (10), we also have the continuous map

(f, φ) → Vφf : S ′(Rd) × S (Rd) → S ′(R2d) ∩ C∞(R2d). (13)

For short-time Fourier transform, the Parseval identity is replaced by the so-
called Moyal identity, also known as the orthogonality relation given by

(Vφf, Vψg)L2(R2d) = (ψ, φ)L2(Rd)(f, g)L2(Rd), (14)

when f, g, φ,ψ ∈ S (Rd ). The identity (14) is obtained by rewriting the short-time
Fourier transforms by (2)′ and then applying the Parseval identity in suitable ways.
We observe that the right-hand side makes sense also when f , g, φ and ψ belong to
other spaces than S (Rd ). For example we may let

(f, g, φ,ψ) ∈ S ′(Rd) × S (Rd) × S (Rd ) × S ′(Rd),

(f, g, φ,ψ) ∈ S (Rd) × S ′(Rd) × S ′(Rd ) × S (Rd),

(f, g, φ,ψ) ∈ S ′(Rd) × S (Rd) × Lq(Rd) × Lq ′
(Rd)

or (f, g, φ,ψ) ∈ Lp(Rd) × Lp′
(Rd) × Lq(Rd) × Lq ′

(Rd),

(15)

when p,p′, q, q ′ ∈ [1,∞] satisfy

1

p
+ 1

p′ = 1

q
+ 1

q ′ = 1.
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By Moyal’s identity (14) it follows that if φ ∈ S (Rd ) \ {0}, then the identity
operator on S ′(Rd) is given by

Id =
(
‖φ‖−2

L2

)
· V ∗

φ ◦ Vφ, (16)

provided suitable mapping properties of the (L2-)adjoint V ∗
φ of Vφ can be estab-

lished. Obviously, V ∗
φ fullfils

(V ∗
φ F, g)L2(Rd) = (F, Vφg)L2(R2d) (17)

when F ∈ S (R2d) and g ∈ S (Rd).
By expressing the scalar product and the short-time Fourier transform in terms of

integrals in (17), it follows by straight-forward manipulations that the adjoint in (17)
is given by

(V ∗
φ F )(x) = (2π)−

d
2

∫∫
R2d

F (y, η)φ(x − y)ei〈x,η〉 dydη, (18)

when F ∈ S (R2d). We may now use mapping properties like (11)–(12) to extend
the definition of V ∗

φ F when F and φ belong to various classes of function and
distribution spaces. For example, by (11), (10) and (12), it follows that the map

(F, g) → (F, Vφg)L2(R2d)

defines a sesqui-linear form on S (R2d) × S ′(Rd), S ′(R2d) × S (Rd) and
on L2(R2d) × L2(Rd). This implies that if φ ∈ S (Rd), then V ∗

φ in (17) is

continuous from S (R2d) to S (Rd) which is uniquely extendable to a continuous
map S ′(R2d) to S ′(Rd), and to L2(R2d) to L2(Rd). That is, the mappings

V ∗
φ : S (R2d) → S (Rd ), V ∗

φ :S ′(R2d) → S ′(Rd )

and V ∗
φ : L2(R2d) → L2(Rd)

(19)

are continuous.

2.2 STFT Projections and a Suitable Twisted Convolution

If φ ∈ S (Rd) satisfies ‖φ‖L2 = 1, then (16) shows that V ∗
φ ◦ Vφ is the identity

operator on S ′(Rd). If we swap the order of this composition we get certain types
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of projections. In fact, for any φ ∈ S (Rd) \ {0}, let Pφ be the operator given by

Pφ ≡ ‖φ‖−2
L2 · Vφ ◦ V ∗

φ . (20)

We observe that Pφ is continuous on S (R2d), L2(R2d) and S ′(R2d) due to the
mapping properties for Vφ and V ∗

φ above.
It is clear that P ∗

φ = Pφ , i.e. Pφ is self-adjoint. Furthermore, Pφ is an projection:

P 2
φ = ‖φ‖−2

L2 · Vφ ◦
(
‖φ‖−2

L2 · V ∗
φ ◦ Vφ︸ ︷︷ ︸

The identity operator

)
◦ V ∗

φ = ‖φ‖−2
L2 · Vφ ◦ V ∗

φ = Pφ.

Hence,

P ∗
φ = Pφ and P 2

φ = Pφ, (21)

which shows that Pφ is an orthonormal projection.
The ranks of Pφ are given by

Pφ(S (R2d)) = Vφ(S (Rd )), Pφ(L2(R2d)) = Vφ(L2(Rd )),

and Pφ(S ′(R2d)) = Vφ(S ′(Rd )).

(22)

In fact, if F ∈ S ′(R2d), then

PφF = Vφf,

where f = ‖φ‖−2
L2 V ∗

φ F ∈ S ′(Rd ). This shows that Pφ(S ′(R2d)) ⊆ Vφ(S ′(Rd)).

On the other hand, if f ∈ S ′(Rd) and F = Vφf , then

PφF =
(
Vφ ◦

(
‖φ‖−2

L2 · V ∗
φ ◦ Vφ

))
f = Vφf,

which shows that any element in Vφ(S ′(Rd)) equals an element in Pφ(S ′(R2d)),
i.e. Pφ(S ′(R2d)) = Vφ(S ′(Rd )). This gives the last identity in (22). In the same
way, the first two identities are obtained.

Remark 2.2 Let F ∈ S ′(R2d). Then it follows from the last identity in (22) that
F = Vφf for some f ∈ S ′(Rd ), if and only if

F = PφF. (23)

Furthermore, if (23) holds, then F = Vφf with

f = (‖φ‖−2
L2 ) · V ∗

φ F. (24)
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There is a twisted convolution which is linked to the projection in (20). In fact, if
F ∈ S (R2d) and φ ∈ S (Rd) \ {0}, then it follows by expanding the integrals for
Vφ and V ∗

φ in (20), and performing some straight-forward manipulations that

PφF = ‖φ‖−2
L2 · Vφφ ∗V F, F ∈ S ′(R2d), (25)

where the twisted convolution ∗V is defined by

(F ∗V G)(x, ξ) = (2π)−
d
2

∫∫
R2d

F (x − y, ξ − η)G(y, η)e−i〈y,ξ−η〉 dydη.

= (2π)−
d
2

∫∫
R2d

F (y, η)G(x − y, ξ − η)e−i〈x−y,η〉 dydη,

(26)

when F,G ∈ S (R2d). We observe that the definition of ∗V is uniquely extendable
in different ways. For example, Young’s inequality for ordinary convolution also
holds for the twisted convolution. Moreover, the map (F,G) → F ∗V G extends
uniquely to continuous mappings from S (R2d) ×S ′(R2d) or S ′(R2d) ×S (R2d)

to S ′(R2d). By straight-forward computations it follows that

(F ∗V G) ∗V H = F ∗V (G ∗V H), (27)

when F,H ∈ S (R2d) and G ∈ S ′(R2d), or F,H ∈ S ′(R2d) and G ∈ S (R2d).
Let f ∈ S ′(Rd) and φj ∈ S (Rd ), j = 1, 2, 3. By straight-forward applications

of Parseval’s formula it follows that

(
(Vφ2φ3) ∗V (Vφ1f )

)
(x, ξ) = (φ3, φ1)L2 · (Vφ2f )(x, ξ), (28)

which is some sort of reproducing kernel of short-time Fourier transforms in the
background of ∗V .

2.3 Gelfand-Shilov Spaces

Before defining the Gelfand-Shilov spaces, we recall that the Schwartz space
S (Rd) consists of all (complex-valued) smooth functions f ∈ C∞(Rd) such that

sup
x∈Rd

(|xβ∂αf (x)|) ≤ Cα,β , (29)

for some constants Cα,β > 0, which only depend on the multi-indices α, β ∈ N
d .

The Schwartz space possess several convenient properties, and is heavily used in
mathematics, science and technology. For example, the Schwartz space is invariant
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under Fourier transformation. By duality the same holds true for its (L2-)dual
S ′(Rd), the set of tempered distributions on R

d .
On the other hand, we observe that there are no conditions on the growths of

the constants Cα,β with respect to α, β ∈ N
d . This implies that in the context of

the spaces S (Rd) and S ′(Rd), it is almost impossible to investigate important
properties like analyticity or related regularity properties which are stronger than
pure smoothness. For investigating such stronger regularity properties, we need to
modify S (Rd ) and the estimate (29) by imposing suitable growth conditions on the
constants Cα,β . This leads to the definition of Gelfand-Shilov spaces, [26, 40].

We only discuss Fourier invariant Gelfand-Shilov spaces and their properties.
Let 0 < s ∈ R be fixed. We have two different types of Gelfand-Shilov spaces. The
Gelfand-Shilov space Ss(R

d ) of Roumieu type with parameter s > 0 consists of all
f ∈ C∞(Rd) such that

sup
x∈Rd

(|xβ∂αf (x)|) ≤ Ch|α+β|(α!β!)s , (30)

for some constants C, h > 0. In the same way, the Gelfand-Shilov space �s(R
d) of

Beurling type with parameter s > 0 consists of all f ∈ C∞(Rd ) such that for every
h > 0, there is a constant C = Ch > 0 such that (30) holds. Hence, in comparison
with the definition of Schwartz functions, we have limited ourself to constants Cα,β

in (29) which are not allowed to grow faster than those of the form

Ch|α+β|(α!β!)s

when dealing with Gelfand-Shilov spaces.
It can be proved that Ss (R

d) and �t(R
d) are dense in S (Rd) when s ≥ 1

2 and
t > 1

2 . We call such s and t admissible. On the other hand, for the other choices of
s and t we have

Ss (R
d) = �t(R

d) = {0}, when s <
1

2
, t ≤ 1

2
.

One has that S1(R
d) consists of real analytic functions, and that �1(R

d) consists
of smooth functions on R

d which are extendable to entire functions on C
d . The

topologies of Ss (R
d ) and �s(R

d) are defined by the semi-norms

‖f ‖Ss,h
≡ sup

|xβ∂αf (x)|
h|α+β|(α!β!)s . (31)

Here the supremum should be taken over all α, β ∈ N
d and x ∈ R

d . We equip
Ss (R

d) and �s(R
d ) by the canonical inductive limit topology and projective limit

topology, respectively, with respect to h > 0, which are induced by the semi-norms
in (31).
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Let Ss,h(R
d ) be the Banach space which consists of all f ∈ C∞(Rd) such that

‖f ‖Ss,h
in (31) is finite, and let S ′

s,h(R
d) be the (L2-)dual of Ss,h(R

d). If s ≥ 1
2 ,

then the Gelfand-Shilov distribution space S ′
s (R

d) of Roumieu type is the projective
limit of S ′

s,h(R
d) with respect to h > 0. If instead s > 1

2 , then the Gelfand-Shilov

distribution space �′
s (R

d) of Beurling type is the inductive limit of S ′
s,h(R

d) with
respect to h > 0. Consequently, for admissible s we have

S ′
s (R

d) =
⋂
h>0

S ′
s,h(R

d) and �′
s (R

d) =
⋃
h>0

S ′
s,h(R

d).

It can be proved that S ′
s (R

d) and �′
s (R

d) are the (strong) duals to Ss (R
d) and

�s(R
d), respectively.

We have the following embeddings and density properties for Gelfand-Shilov
and Schwartz spaces

Ss (R
d) ↪→�t(R

d) ↪→St (R
d) ↪→ S (Rd ),

S ′(Rd) ↪→S ′
t (R

d) ↪→�′
t (R

d) ↪→ S ′
s (R

d), t > s ≥ 1

2
,

(32)

with dense embeddings. Here A ↪→ B means that the topological spaces A and B

satisfy A ⊆ B with continuous embeddings.
The Fourier transform possess convenient mapping properties on Gelfand-Shilov

spaces and their distribution spaces. In fact, the Fourier transform extends uniquely
to homeomorphisms on S ′

s (R
d) and on �′

s (R
d) for admissible s. Furthermore, F

restricts to homeomorphisms on Ss (R
d) and on �s(R

d ).
One of the most important characterizations of Gelfand-Shilov spaces is per-

formed in terms of estimates of the functions and their Fourier transforms. More
precisely, in [8, 15] it is proved that if f ∈ S ′(Rd) and s > 0, then f ∈ Ss(R

d )

(f ∈ �s(R
d )), if and only if

|f (x)| � e−r |x| 1
s and |f̂ (ξ)| � e−r |ξ | 1

s
, (33)

for some r > 0 (for every r > 0). Here g1 � g2 means that g1(θ) ≤ c · g2(θ) holds
uniformly for all θ in the intersection of the domains of g1 and g2 and for some
constant c > 0, and we write g1 � g2 when g1 � g2 � g1.

The analysis in [8, 15] can also be applied on the Schwartz space, from which it
follows that an element f ∈ S ′(Rd) belongs to S (Rd), if and only if

|f (x)| � 〈x〉−N and |f̂ (ξ)| � 〈ξ〉−N , (34)

for every N ≥ 0. Here and in what follows we let

〈x〉 = (1 + |x|2) 1
2 .
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Remark 2.3 Several properties in Sects. 2.1–2.3 in the background of S (Rd) and
S ′(Rd) also hold for the Gelfand-Shilov spaces and their distribution spaces. Let
s ≥ 1

2 . By similar arguments which lead to Proposition 2.1 and (13), it follows that

(f, φ) → Vφf :Ss (R
d) × Ss (R

d) → Ss (R
2d) (35)

is continuous, which extends uniquely to continuous mappings

(f, φ) → Vφf :S ′
s (R

d) × Ss (R
d) → S ′

s (R
2d) ∩ C∞(R2d) (36)

and

(f, φ) → Vφf :S ′
s (R

d) × S ′
s (R

d) → S ′
s (R

2d). (37)

It follows that (14) makes sense after each S in (15) are replaced by Ss . Let
φ ∈ Ss (R

d ) \ {0} be fixed. Then by similar arguments which lead to (19) give that
the mappings

V ∗
φ : Ss (R

2d) → Ss (R
d), V ∗

φ : S ′
s (R

2d) → S ′
s (R

d) (19)′

are continuous. For Pφ in (20) we have that (21) still holds true and that (22) can be
completed with

Pφ(Ss(R
2d)) = Vφ(Ss(R

d )) and Pφ(S ′
s(R

2d)) = Vφ(S ′
s(R

d )). (38)

We also have that the twisted convolution in (26) is continuous from Ss (R
2d) ×

Ss (R
2d) to Ss (R

2d) and uniquely extendable to a continuous map Ss(R
2d) ×

S ′
s (R

2d) or S ′
s (R

2d) × Ss(R
2d) to S ′

s(R
2d), and that the formulae (25)–(28) still

hold true after each S is replaced by Ss in the attached assumptions.
If instead s > 1

2 , then similar facts hold true with �s in place of Ss above, at
each occurrence.

Remark 2.4 In similar ways as characterizing Gelfand-Shilov spaces in terms of
Fourier estimates (see (33)), we may also use the short-time Fourier transform to
perform similar characterizations. Moreover, the short-time Fourier transform can
in addition be used to characterize spaces of Gelfand-Shilov distributions.

In fact, let φ ∈ Ss (R
d) \ {0} (φ ∈ �s(R

d) \ {0}) be fixed and let f be a Gelfand-
Shilov distribution on R

d . Then the following is true:

1. f ∈ Ss (R
d ) (f ∈ �s(R

d)), if and only if

|Vφf (x, ξ)| � e−r(|x| 1
s +|ξ | 1

s ) (39)

for some r > 0 (for every r > 0);
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2. f ∈ S ′
s (R

d ) (f ∈ �′
s (R

d)), if and only if

|Vφf (x, ξ)| � er(|x| 1
s +|ξ | 1

s ) (40)

for every r > 0 (for some r > 0).

We refer to [31, Theorem 2.7] for the characterization 1. concerning Gelfand-
Shilov functions and to [51, Proposition 2.2]) for the characterization 2. concerning
Gelfand-Shilov distributions.

2.4 Weight Functions

A weight or weight function on R
d is a positive function ω ∈ L∞

loc(R
d ) such that

1/ω ∈ L∞
loc(R

d ). The weight ω is called moderate, if there is a positive weight v on
R

d and a constant C ≥ 1 such that

ω(x + y) ≤ Cω(x)v(y), x, y ∈ R
d . (41)

If ω and v are weights on R
d such that (41) holds, then ω is also called v-moderate.

We note that (41) implies that ω fulfills the estimates

C−1v(−x)−1 ≤ ω(x) ≤ Cv(x), x ∈ R
d . (42)

We let PE(Rd) be the set of all moderate weights on R
d .

We say that v is submultiplicative if

v(x + y) ≤ v(x)v(y) and v(−x) = v(x), x, y ∈ R
d . (43)

We observe that if v ∈ PE(Rd) is even and satisfies

v(x + y) ≤ Cv(x)v(y), x, y ∈ R
d, (44)

for some constant C > 0, then for v0 = C1/2v, one has that v0 ∈ PE(Rd ) is
submultiplicative and v � v0 (see e.g. [17, 19, 28]).

We also recall from [29] that if v is positive and locally bounded and satis-
fies (44), then v(x) ≤ C0e

r0|x| for some positive constants C0 and r0. In fact, if
x ∈ R

d ,

r = sup
|x|≤1

log v(x), c = log C
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and n is an integer such that n − 1 ≤ |x| ≤ n, then (44) gives

v(x) = v(n · (x/n)) ≤ Cnv(x/n)n ≤ Cnern = e(r+c)n ≤ e(r+c)(|x|+1),

which gives the statement.
Therefore, if v is a submultiplicative weight, then

v(x) � er |x|, x ∈ R
d , (45)

for some r ≥ 0. Hence, if ω ∈ PE(Rd ), then (41) and (45) imply

ω(x + y) � ω(x)er |y|, x, y ∈ R
d (46)

for some r > 0. In particular, (42) shows that for any ω0 ∈ PE(Rd ), there is a
constant r > 0 such that

e−r |x| � ω0(x) � er |x|, x ∈ R
d .

If (41) holds, then there is a smallest positive even function v0 such that (41)
holds with C = 1. We remark that this v0 is given by

v0(x) = sup
y∈Rd

(
ω(x + y)

ω(y)
,
ω(−x + y)

ω(y)

)
,

and is submultiplicative (see e.g. [19, 27, 49]). Consequently, if ω is a moderate
weight, then it is also moderated by a submultiplicative weight. In the sequel, v and
vj for j ≥ 0, always stand for submultiplicative weights if nothing else is stated.

We also remark that in the literature it is common to define submultiplicative
weights as (43) should hold, without the condition v(−x) = v(x), i.e. that v does
not have to be even (cf. e.g. [17, 19, 25, 28]). However, in the sequel it is convenient
for us to include this property in the definition.

There are several subclasses of PE(Rd) which are interesting for different
reasons. Though our results later on are formulated in background of weights
in PE(Rd), we here mention some subclasses which especially appear in time-
frequency analysis. First we observe the class P0

E(Rd ), which consists of all
ω ∈ PE(Rd) such that (46) holds for every r > 0.

The class P0
E(Rd) is important when dealing with spectral invariance for

matrix or convolution operators on �2(Zd ) (see e.g. [30]). If v ∈ PE(Rd) is
submultiplicative, then v ∈ P0

E(Rd ), if and only if

lim
n→∞ v(nx)

1
n = 1 (47)
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(see e.g. [23]). The condition (47) is equivalent to

lim
n→∞

log(v(nx))

n
= 0, (47)′

and is usually called the GRS condition, or Gelfand-Raikov-Shilov condition.
A more restrictive condition on v compared to (47)′ is given by the Beurling-

Domar condition

∞∑
n=1

log(v(nx))

n2
< ∞. (48)

This condition is strongly linked to non quasi-analytic classes which contain
non-trivial compactly supported elements (see e.g. [29]). Any subexponential
submultiplicative weight satisfies the Beurling-Domar condition. That is, suppose
that θ ∈ (0, 1) and that v(x) = er |x|θ , x ∈ R

d , then (48) is fulfilled. We let PBD(Rd )

be the set of all weights which are moderated by submultiplicative weights which
satisfy the Beurling-Domar condition.

Finally we let P(Rd) be the set of all weights on R
d which are moderated by

polynomially bounded functions. That is, ω ∈ P(Rd), if and only if there are
positive constants r and C such that

ω(x + y) ≤ Cω(x)(1 + |y|)r , x, y ∈ R
d .

Here we observe that v(x) = (1 + |x|)r is submultiplicative.
Among these weight classes we have

P(Rd ) � PBD(Rd) � P0
E(Rd) � PE(Rd). (49)

In fact, it is clear that the ordering in (49) holds. On the other hand, if r > 0 and
θ ∈ (0, 1), then due to

er |x|θ ∈ PBD(Rd ) \ P(Rd),

er |x|/ log(e+|x|) ∈ P0
E(Rd ) \ PBD(Rd),

and er |x| ∈ PE(Rd ) \ P0
E(Rd),

(50)

it also follows that the inclusions in (49) are strict.
We refer to [16, 28, 29, 49] for more facts about weights in time-frequency

analysis.
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2.5 Mixed Norm Spaces of Lebesgue Type

For every p, q ∈ (0,∞] and weight ω on R
2d , we set

‖F‖L
p,q

(ω)
(R2d) ≡ ‖GF,ω,p‖Lq(Rd), where GF,ω,p(ξ) = ‖F( · , ξ)ω( · , ξ)‖Lp(Rd)

and

‖F‖
L

p,q

∗,(ω)(R
2d)

≡ ‖HF,ω,q‖Lp(Rd), where HF,ω,q (x) = ‖F(x, · )ω(x, · )‖Lq(Rd),

when F is (complex-valued) measurable function on R
2d . Then L

p,q

(ω) (R
2d)

(Lp,q

∗,(ω)(R
2d)) consists of all measurable functions F such that ‖F‖L

p,q

(ω)
< ∞

(‖F‖L
p,q

∗,(ω)
< ∞).

In similar ways, let �1,�2 be discrete sets, ω be a positive function on
�1 × �2 and �′

0(�1 × �2) be the set of all formal (complex-valued) sequences
c = {c(j, k)}j∈�1,k∈�2 . Then the discrete Lebesgue spaces, i.e. the Lebesgue
sequence spaces

�
p,q

(ω)
(�1 × �2) and �

p,q

∗,(ω)
(�1 × �2)

of mixed (quasi-)norm types consist of all c ∈ �′
0(�1 × �2) such that

‖c‖�
p,q

(ω)
(�1×�2) < ∞ respectively ‖c‖�

p,q

∗,(ω)
(�1×�2)

< ∞. Here

‖c‖�
p,q

(ω) (�1×�2) ≡ ‖Gc,ω,p‖�q (�2), where Gc,ω,p(k) = ‖F( · , k)ω( · , k)‖�p(�1)

and

‖c‖�
p,q

∗,(ω)
(�1×�2)

≡ ‖Hc,ω,q‖�p(�1), where Hc,ω,q (j) = ‖c(j, · )ω(j, · )‖�q(�2),

when c ∈ �′
0(�1 × �2).

2.6 Convolutions and Multiplications for Discrete Lebesgue
Spaces

Next we discuss extended Hölder and Young relations for multiplications and
convolutions on discrete Lebesgue spaces. The Hölder and Young conditions on
Lebesgue exponent are then

1

q0
≤ 1

q1
+ 1

q2
, (51)
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respectively

1

p0
≤ 1

p1
+ 1

p2
− max

(
1,

1

p1
,

1

p2

)
. (52)

Notice that, when p1, p2 ∈ (0, 1), then (52) becomes p0 ≥ max{p1, p2}, while
for p1, p2 ≥ 1 it reduces to the common Young condition

1 + 1

p0
≤ 1

p1
+ 1

p2
.

The conditions on the weight functions are

ω0(j) ≤ ω1(j)ω2(j), j ∈ �, (53)

respectively

ω0(j1 + j2) ≤ ω1(j1)ω2(j2), j1, j2 ∈ �, (54)

where � is a lattice of the form

� = { n1e1 + · · · + nded ; (n1, . . . , nd) ∈ Z
d },

where e1, . . . ed is a basis for Rd .

Proposition 2.5 Let pj , qj ∈ (0,∞], j = 0, 1, 2, be such that (51) and (52) hold,
let � ⊆ R

d be a lattice and let ωj be weights on �, j = 0, 1, 2. Then the following
is true:

1. if (53) holds, then the map (a1, a2) → a1 · a2 from �0(�) × �0(�) to �0(�)

extends uniquely to a continuous map from �
q1
(ω1)

(�) × �
q2
(ω2)

(�) to �
q0
(ω0)

(�), and

‖a1 · a2‖�
q0
(ω0)

≤ ‖a1‖�
q1
(ω1)

‖a2‖�
q2
(ω2)

, aj ∈ �
qj

(ωj )(�), j = 1, 2; (55)

2. if (54) holds, then the map (a1, a2) → a1 ∗ a2 from �0(�) × �0(�) to �0(�)

extends uniquely to a continuous map from �
p1
(ω1)

(�) × �
p2
(ω2)

(�) to �
p0
(ω0)

(�), and

‖a1 ∗ a2‖�
p0
(ω0)

≤ ‖a1‖�
p1
(ω1)

‖a2‖�
p2
(ω2)

, aj ∈ �
pj

(ωj )(�), j = 1, 2. (56)

The assertion 1. in Proposition 2.5 is the standard Hölder’s inequality for discrete
Lebesgue spaces. The assertion 2. in that proposition is the usual Young’s inequality
for Lebesgue spaces on lattices in the case when p0, p1, p2 ∈ [1,∞]. A proof of
Proposition 2.5 is given in Appendix A in [54].
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3 Modulation Spaces, Multiplications and Convolutions

In this section we introduce modulation spaces, and recall their basic properties,
in particular in the context of Gelfand-Shilov spaces. Notice that we permit
the Lebesgue exponents to belong to the full interval (0,∞] instead of the
most common choice [1,∞], and general moderate weights which may have a
(sub)exponential growth. Here we also recall some facts on Gabor expansions for
modulation spaces.

Then we deduce multiplication and convolution estimates on modulation spaces.
There are several approaches to multiplication and convolution in the case when the
involved Lebesgue exponents belong to [1,∞] (see [9, 17, 19, 32, 43, 48]). Here we
consider the case when these exponents belong to (0,∞) (see also [1, 2, 25, 41, 42,
50]). In addition, and in order to keep the survey style of our exposition, we focus
on the bilinear case, and refer to [54] for extension of these results to multi-linear
products.

3.1 Modulation Spaces

The (classical) modulation spaces, essentially introduced in [17] by Feichtinger are
given in the following. (See e.g. [18] for definition of more general modulation
spaces.)

Definition 3.1 Let p, q ∈ (0,∞], ω ∈ PE(R2d) and φ ∈ �1(R
d ) \ {0}.

1. The modulation space M
p,q

(ω) (Rd) consists of all f ∈ �′
1(R

d) such that

‖f ‖M
p,q
(ω)

≡ ‖Vφf ‖L
p,q
(ω)

is finite. The topology of M
p,q

(ω)
(Rd) is defined by the (quasi-)norm ‖ · ‖M

p,q
(ω)

;

2. The modulation space (of Wiener amalgam type) W
p,q

(ω) (Rd) consists of all f ∈
�′

1(R
d ) such that

‖f ‖W
p,q

(ω)
≡ ‖Vφf ‖L

p,q

∗,(ω)

is finite. The topology of W
p,q

(ω) (Rd ) is defined by the (quasi-)norm ‖ · ‖W
p,q

(ω)
.

For convenience we set Mp,q = M
p,q

(ω) and Wp,q = W
p,q

(ω) when the weight ω is

trivial, i.e. when ω(x, ξ) = 1 for every x, ξ ∈ R
d . We also set

M
p

(ω)
≡ M

p,p

(ω)
( = W

p,p

(ω)
) and Mp ≡ Mp,p ( = Wp,p ).
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Remark 3.2 Modulation spaces possess several convenient properties. Let p, q ∈
(0,∞], ω ∈ PE(R2d) and φ ∈ �1(R

d) \ {0}. Then the following is true (see
[17–20, 25, 28] and their analyses for verifications):

• the definitions of M
p,q

(ω) (Rd) and W
p,q

(ω) (Rd ) are independent of the choices of

φ ∈ �1(R
d) \ {0}, and different choices give rise to equivalent quasi-norms;

• the spaces M
p,q

(ω) (Rd) and W
p,q

(ω) (Rd ) are quasi-Banach spaces which increase
with p and q , and decrease with ω. If in addition p, q ≥ 1, then they are Banach
spaces;

• If p, q ≥ 1, then the L2(Rd ) scalar product, ( · , · )L2(Rd), on �1(R
d) ×

�1(R
d ) is uniquely extendable to dualities between M

p,q

(ω) (Rd) and M
p′,q ′
(1/ω)(R

d),

and between W
p,q

(ω) (Rd) and W
p′,q ′
(1/ω)(R

d ). If in addition p, q < ∞, then the

dual spaces of M
p,q

(ω) (Rd ) and W
p,q

(ω) (Rd) can be identified with M
p′,q ′
(1/ω)(R

d )

respectively W
p′,q ′
(1/ω)(R

d ), through the form ( · , · )L2(Rd);

• if ω0(x, ξ) = ω(−ξ, x), then F on �′
1(R

d ) restricts to a homeomorphism from
M

p,q

(ω) (Rd) to W
q,p

(ω0)(R
d ).

• The inclusions

�1(R
d) ⊆M

p,q

(ω) (Rd),W
p,q

(ω) (Rd) ⊆ �′
1(R

d) when ω ∈ PE(R2d), (57)

S1(R
d) ⊆M

p,q

(ω) (Rd),W
p,q

(ω) (Rd) ⊆ S ′
1(R

d) when ω ∈ P0
E(R2d) (58)

and

S (Rd) ⊆M
p,q

(ω) (Rd),W
p,q

(ω) (Rd) ⊆S ′(Rd) when ω ∈ P(R2d) (59)

are continuous. If in addition p, q < ∞, then these inclusions are dense.

We recall from [49] that the embeddings (57)–(59), are essentially special cases of
certain characterizations of the Schwartz space, Gelfand-Shilov spaces and their
distribution spaces in terms of suitable unions and intersections of modulation
spaces. In fact, let p, q ∈ (0,∞] and s ≥ 1 be fixed and set

vr,t (x, ξ) =
⎧⎨
⎩

er(|x| 1
t +|ξ | 1

t )), t ∈ R+

(1 + |x| + |ξ |)r , t = ∞,

(60)

where r > 0. Then

�s(R
d ) =

⋂
r>0

M
p,q

(vr,s )
(Rd) =

⋂
r>0

W
p,q

(vr,s )
(Rd), (61)

Ss (R
d ) =

⋃
r>0

M
p,q

(vr,s )
(Rd) =

⋃
r>0

W
p,q

(vr,s )
(Rd), (62)
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S (Rd ) =
⋂
r>0

M
p,q

(vr,∞)(R
d) =

⋂
r>0

W
p,q

(vr,∞)(R
d ), (63)

S ′(Rd ) =
⋃
r>0

M
p,q

(1/vr,∞)(R
d ) =

⋃
r>0

W
p,q

(1/vr,∞)(R
d), (64)

S ′
s (R

d ) =
⋂
r>0

M
p,q

(1/vr,s)
(Rd) =

⋂
r>0

W
p,q

(1/vr,s)
(Rd) (65)

and

�′
s (R

d ) =
⋃
r>0

M
p,q

(1/vr,s)
(Rd) =

⋃
r>0

W
p,q

(1/vr,s)
(Rd). (66)

The topologies of the spaces on the left-hand sides of (61)–(66) are obtained by
replacing each intersection by projective limit with respect to r > 0 and each union
with inductive limit with respect to r > 0.

The relations (61)–(66) are essentially special cases of [49, Theorem 3.9], see
also [31, 45, 46]. In order to be self-contained we here give a proof of (62).

Proof of (62) Since

M∞
(v2r,s )

(Rd) ⊆ M
p,q

(vr,s )
(Rd ),W

p,q

(vr,s )
(Rd ) ⊆ M∞

(vr,s )
(Rd ),

it suffices to prove the result for p = q = ∞. Let φ ∈ �1(R
d) \ {0} be fixed. First

suppose that

f ∈ M∞
(vr,s )

(Rd) = W∞
(vr,s )

(Rd ).

Then it follows from the definition of modulation space norm that (39) holds for
some r > 0. By Remark 2.4 it follows that f ∈ Ss (R

d), and we have proved

⋃
r>0

M∞
(vr,s )

(Rd ) ⊆ Ss (R
d). (67)

Suppose instead that f ∈ Ss (R
d). Then (39) holds for some r > 0, giving that

f ∈ M∞
(vr,s )

(Rd). Hence (67) holds with reversed inclusion, and the result follows.
��

Example 3.3 Let p = q = 1 and ω = 1. Then M
1,1
(ω)(R

d ) = M1(Rd ) is the
Feichtinger algebra, probably the most prominent example of a modulation space.
We refer to a recent survey [34] for a detailed account on M1(Rd), and to [14,
Lemma 11] for a list of its basic properties.
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Familiar examples arise when p = q = 2 and ω = 1. Then M
2,2
(ω)(R

d) =
M2(Rd ) = L2(Rd ), and

M
2,2
(ωs)

(Rd) = Hs(Rd), s ∈ R,

where ωs(ξ) = 〈ξ〉s , and Hs(Rd ) is the Sobolev space (also known as the Bessel
potential space) of distributions f ∈ S ′(Rd) such that

‖f ‖2
Hs :=

∫
Rd

〈ξ〉2s |f̂ (ξ)|2dξ < ∞,

cf. [28, Proposition 11.3.1]. Furthermore, if vs(x, ξ) = 〈(x, ξ)〉s , then M
2,2
(vs)

(Rd ) =
Qs(R

d), s ∈ R, [7, Lemma 2.3]. Here Qs denotes the Shubin-Sobolev space, [44].

Finally we remark that modulation spaces can be conveniently discretized in
terms of Gabor expansions. In order for explaining some basic issues on this, in
a similar way as in Subsection 1.5 in [54], we limit ourself to the case when the
involved weights are moderated by subexponential functions. That is, we suppose
that ω in M

p,q

(ω) (Rd) satisfies

ω(x + y, ξ + η) � ω(x, ξ)er(|x| 1
s +|ξ | 1

s ), (68)

for some s > 1 and r > 0. We observe that this implies that

�s(R
d) ⊆ M

p,q

(ω) (Rd) ⊆ �′
s (R

d), (69)

in vew of (42), (61) and (66). For more general approaches we refer to [19, 27, 28,
42, 50].

Since s > 1, it follows from Sections 1.3 and 1.4 in [33] that there are φ,ψ ∈
�s(R

d) with values in [0, 1] such that

supp φ ⊆
[

− 3

4
,

3

4

]d

, φ(x) = 1 when x ∈
[

− 1

4
,

1

4

]d

(70)

supp ψ ⊆ [−1, 1]d, ψ(x) = 1 when x ∈
[

− 3

4
,

3

4

]d

(71)

and

∑
j∈Zd

φ( · − j) = 1. (72)
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Let f ∈ �′
s(R

d ). Then x → f (x)φ(x − j) belongs to �′
s (R

d) and is supported in
j + [− 3

4 , 3
4 ]d . Hence, by periodization it follows from Fourier analysis that

f (x)φ(x − j) =
∑

ι∈πZd

c(j, ι)ei〈x,ι〉, x ∈ j + [−1, 1]d, (73)

where

c(j, ι) = 2−d(f, φ( · − j)ei〈 · ,ι〉) =
(π

2

) d
2
Vφf (j, ι), j ∈ Z

d, ι ∈ πZd .

Since ψ = 1 on the support of φ, (73) gives

f (x)φ(x − j) =
(π

2

) d
2

∑
ι∈πZd

Vφf (j, ι)ψ(x − j)ei〈x,ι〉, x ∈ R
d , (73)′

By (72) it now follows that

f (x) =
(π

2

) d
2

∑
(j,ι)∈�

Vφf (j, ι)ψ(x − j)ei〈x,ι〉, x ∈ R
d , (74)

where

� = Z
d × (πZd ), (75)

which is the Gabor expansion of f with respect to the Gabor pair (φ,ψ) and lattice
�, i.e. with respect to the Gabor atom φ and the dual Gabor atomψ . Here the series
converges in �′

s (R
d). By duality and the fact that compactly supported elements in

�s(R
d) are dense in �′

s (R
d) we also have

f (x) =
(π

2

) d
2

∑
(j,ι)∈�

Vψf (j, ι)φ(x − j)ei〈x,ι〉, x ∈ R
d , (76)

with convergence in �′
s(R

d ).
Let T be a linear continuous operator from �s(R

d ) to �′
s(R

d ) and let f ∈
�s(R

d). Then it follows from (74) that

(Tf )(x) =
(π

2

) d
2

∑
(j,ι)∈�

Vφf (j, ι)T (ψ( · − j)ei〈 · ,ι〉)(x)
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and

T (ψ( · − j)ei〈 · ,ι〉)(x) =
(π

2

) d
2

∑
(k,κ)∈�

(Vφ(T (ψ( · − j)ei〈 · ,ι〉)))(k, κ)ψ(x − k)ei〈x,κ〉.

A combination of these expansions show that

(Tf )(x) =
(π

2

) d
2

∑
(j,ι)∈�

(A · Vφf )(j, ι)ψ(x − j)ei〈x,ι〉, (77)

where A = (a(j , k))j ,k∈� is the � × �-matrix, given by

a(j , k) =
(π

2

) d
2
(T (ψ( · − j)ei〈 · ,ι〉), φ( · − k)ei〈 · ,κ〉)L2(Rd)

when j = (j, ι) and k = (k, κ). (78)

By the Gabor analysis for modulation spaces we get the following restatement of
[54, Proposition 1.8]. We refer to [17, 19–21, 25, 27, 28, 50] for details.

Proposition 3.4 Let s > 1, p, q ∈ (0,∞], ω ∈ PE(R2d) be such that (68) holds
for some r > 0, φ,ψ ∈ �s(R

d ) with values in [0, 1] be such that (70), (71) and (72)
hold true, and let f ∈ �′

s(R
d ). Then the following is true:

1. f ∈ M
p,q

(ω) (Rd), if and only if ‖Vφf ‖�
p,q

(ω) (Z
d×πZd ) < ∞;

2. f ∈ M
p,q

(ω) (Rd), if and only if ‖Vψf ‖�
p,q

(ω)
(Zd×πZd ) < ∞;

3. the quasi-norms

f → ‖Vφf ‖�
p,q

(ω) (Z
d×πZd ) and f → ‖Vψf ‖�

p,q

(ω) (Z
d×πZd )

are equivalent to ‖ · ‖M
p,q

(ω)
.

The same holds true with W
p,q

(ω) and �
p,q

∗,(ω) in place of M
p,q

(ω) respectively �
p,q

(ω) at each
occurrence.

3.2 Multiplications and Convolutions in Modulation Spaces

As a first step for approaching multiplications and convolutions for elements in
modulation spaces, we reformulate such products in terms of short-time Fourier
transforms. Let φ0, φ1, φ2 ∈ �1(R

d) be fixed such that

φ0 = (2π)−
d
2 φ1φ2 (79)
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and let f1, f2 ∈ �1(R
d ). Then the multiplication f0 = f1f2 can be expressed by

F0(x, ξ) = (
F1(x, · ) ∗ F2(x, · ))(ξ). (80)

where

Fj = Vφj fj , j = 0, 1, 2. (81)

In fact, by Fourier’s inversion formula we get

(
(Vφ1f1)(x, · ) ∗ (Vφ2f2)(x, · ))(ξ)

= (2π)−d

∫∫∫
f1(y1)φ1(y1 − x)f2(y2)φ2(y2 − x)e−i〈y1,ξ−η〉e−i〈y2,η〉 dy1dy2dη

=
∫

f1(y)φ1(y − x)f2(y)φ2(y − x)e−i〈y,ξ 〉 dy = (2π)
d
2 (Vφ1φ2(f1f2))(x, ξ).

We also observe that we may extract f0 = f1f2 by the formula

f0 = (‖φ0‖L2)−1V ∗
φ0

F0, (82)

provided φ0 is not trivially equal to 0.
In the same way, let φ0, φ1, φ2 ∈ �1(R

d) be fixed such that

φ0 = (2π)
d
2 φ1 ∗ φ2, (83)

and let f1, f2, g ∈ �1(R
d ). Then the convolution f0 = f1 ∗ f2 can be expressed by

F0(x, ξ) = (
F1( · , ξ) ∗ F2( · , ξ)

)
(x). (84)

where Fj are given by (81), and that we may extract f0 = f1 ∗ f2 from (82).
Next we discuss convolutions and multiplications for modulation spaces, and

start with the following convolution result for modulation spaces. For multiplica-
tions of elements in modulation spaces we need to swap the conditions for the
involved Lebesgue exponents compared to (51) and (52). That is, these conditions
become

1

p0
≤ 1

p1
+ 1

p2
,

1

q0
≤ 1

q1
+ 1

q2
− max

(
1,

1

p0
,

1

q1
,

1

q2

)
, (85)

or

1

p0
≤ 1

p1
+ 1

p2
,

1

q0
≤ 1

q1
+ 1

q2
− max

(
1,

1

q1
,

1

q2

)
. (86)
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The conditions on the weight functions are

ω0(x, ξ1 + ξ2) ≤ ω1(x, ξ1)ω2(x, ξ2), x, ξ1, ξ2 ∈ R
d , (87)

respectively

ω0(x1 + x2, ξ) ≤ ω1(x1, ξ)ω2(x2, ξ), x1, x2, ξ ∈ R
d . (88)

Theorem 3.5 Let pj , qj ∈ (0,∞) and ωj ∈ PE(R2d), j = 0, 1, 2, be such
that (85) and (87) hold. Then (f1, f2) → f1f2 from �1(R

d ) × �1(R
d) to �1(R

d )

is uniquely extendable to a continuous map from M
p1,q1
(ω1)

(Rd) × M
p2,q2
(ω2)

(Rd) to

M
p0,q0
(ω0)

(Rd ), and

‖f1f2‖M
p0,q0
(ω0)

� ‖f1‖M
p1 ,q1
(ω1)

‖f2‖M
p2,q2
(ω2)

, fj ∈ M
pj ,qj

(ωj ) (Rd), j = 1, 2. (89)

Theorem 3.6 Let pj , qj ∈ (0,∞) and ωj ∈ PE(R2d), j = 0, 1, 2, be such
that (86) and (87) hold. Then (f1, f2) → f1f2 from �1(R

d ) × �1(R
d) to �1(R

d )

is uniquely extendable to a continuous map from W
p1,q1
(ω1) (Rd) × W

p2,q2
(ω2) (Rd) to

W
p0,q0
(ω0)

(Rd ), and

‖f1f2‖W
p0,q0
(ω0)

� ‖f1‖W
p1 ,q1
(ω1)

‖f2‖W
p2,q2
(ω2)

, fj ∈ W
pj ,qj

(ωj ) (Rd), j = 1, 2. (90)

The corresponding results for convolutions are the following. Here the conditions
on the involved Lebesgue exponents are swapped as

1

p0
≤ 1

p1
+ 1

p2
− max

(
1,

1

q0
,

1

p1
,

1

p2

)
,

1

q0
≤ 1

q1
+ 1

q2
(91)

or

1

p0
≤ 1

p1
+ 1

p2
− max

(
1,

1

p1
,

1

p2

)
,

1

q0
≤ 1

q1
+ 1

q2
(92)

Theorem 3.7 Let pj , qj ∈ (0,∞) and ωj ∈ PE(R2d), j = 0, 1, 2, be such
that (88) and (92) hold. Then (f1, f2) → f1 ∗ f2 from �1(R

d) × �1(R
d) to

�1(R
d) is uniquely extendable to a continuous map from M

p1,q1
(ω1)

(Rd)×M
p2,q2
(ω2)

(Rd )

to M
p0,q0
(ω0)

(Rd), and

‖f1 ∗ f2‖M
p0,q0
(ω0)

� ‖f1‖M
p1 ,q1
(ω1)

‖f2‖M
p2,q2
(ω2)

, fj ∈ M
pj ,qj

(ωj ) (Rd), j = 1, 2. (93)
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Theorem 3.8 Let pj , qj ∈ (0,∞) and ωj ∈ PE(R2d), j = 0, 1, 2, be such
that (88) and (91) hold. Then (f1, f2) → f1 ∗ f2 from �1(R

d) × �1(R
d) to

�1(R
d) is uniquely extendable to a continuous map from W

p1,q1
(ω1)

(Rd)×W
p2,q2
(ω2)

(Rd )

to W
p0,q0
(ω0) (Rd), and

‖f1 ∗ f2‖W
p0,q0
(ω0)

� ‖f1‖W
p1 ,q1
(ω1)

‖f2‖W
p2,q2
(ω2)

, fj ∈ W
pj ,qj

(ωj ) (Rd), j = 1, 2. (94)

We observe that Theorems 3.2–3.5 in [54] are multi-linear versions of the
previous results. In particular, Theorems 3.5 and 3.6 are Fourier transformations
of Theorems 3.7 and 3.8. Hence it suffices to prove the last two theorems, cf. [54].
To shed some ideas of the arguments, we give a proof in the unweighted case of
Theorem 3.7. We will use Proposition A.1 from Appendix A, which is a special
case of [54, Proposition 3.6].

Proof of Theorem 3.7 Suppose fj ∈ S (Rd), φj ∈ S (Rd), j = 0, 1, 2 be such
that

f0 = f1 ∗ f2 and φ0 = (2π)
d
2 φ1 ∗ φ2 �= 0,

and let Fj be the same as in (81). Then

F0(x, ξ) = (Vφ1f1( · , ξ) ∗ Vφ2f2( · , ξ))(x),

in view of (84).
We have

0 ≤ χk1+Q ∗ χk2+Q ≤ χk1+k2+Qd,2, k1, k2 ∈ Z
d ,

where Qd,r is the cube

Qd,r = [0, r]d and Q = Qd,1 = [0, 1]d,

and χE is the characteristic function with respect to the set E.
Set

G(x, ξ) = (|Vφ1f1( · , ξ)| ∗ |Vφ2f2( · , ξ)|)(x),

aj (k, κ) = ‖Vφj fj‖L∞((k,κ)+Q2d,1), j = 1, 2,

and

b(k, κ) = ‖G‖L∞((k,κ)+Q2d,1)
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Then

‖V ∗
φ0

F0‖Mp0 ,q0 � ‖Pφ0 F0‖W(�p0,q0 ) � ‖F0‖W(�p0,q0 )

≤ ‖G‖W(�p0,q0 ) � ‖b‖�p0,q0 , (95)

and

‖fj‖M
pj ,qj � ‖aj‖�

pj ,qj (96)

in view of (A.5) and Proposition A.1 in Appendix A (see also [25, Theorem 3.3])).
By (84) we have

G(x, λ) ≤
∑

k1,k2∈Zd

a1(k1, λ)a2(k2, λ)(χk1+Q ∗ χk2+Q)(x)

≤
∑

k1,k2∈Zd

a1(k1, λ)a2(k2, λ)χk1+k2+Qd,2(x).

(97)

We observe that

χk1+k2+Qd,2(x) = 0 when x /∈ l + Qd, (k1, k2) /∈ �l,

where

�l = { (k1, k2) ∈ Z
2d ; lj − 2 ≤ k1,j + k2,j ≤ lj + 1 },

and

kj = (kj,1, . . . , kj,d ) ∈ Z
d , j = 1, 2, and l = (l1, . . . , ld ) ∈ Z

d .

Hence, if x = l in (97), we get

b(l, λ) ≤
∑

(k1,k2)∈�l

a1(k1, λ)a2(k2, λ)

≤
∑
m∈I

(a1( · , λ) ∗ a2( · , λ))(l − 2e0 + m), (98)

where e0 = (1, . . . , 1) ∈ Z
d and I = {0, 1, 2, 3}d .
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If we apply the �p0 quasi-norm on (98) with respect to the l variable, then
Proposition 2.5 (2) and the fact that I is finite set give

‖b( · , λ)‖�p0 ≤
∥∥∥∥∥
∑
m∈I

(a1( · , λ) ∗ a2( · , λ))( · − 2e0 + m)

∥∥∥∥∥ �p0

≤
∑
m∈I

‖(a1( · , λ) ∗ a2( · , λ))( · − 2e0 + m)‖�p0

� ‖a1( · , λ) ∗ a2( · , λ)‖�p0

≤ ‖a1( · , λ)‖�p1 ‖a2( · , λ)‖�p2 .

By applying the �q0 quasi-norm and using Proposition 2.5 (1) we now get

‖b‖�p0,q0 � ‖a1‖�p1,q1 ‖a2‖�p2,q2 .

This is the same as

‖G‖Lp0,q0 � ‖F1‖Lp1,q1 ‖F2‖Lp2,q2 .

A combination of this estimate with (95) and (96) gives that f1 ∗ f2 is well-defined
and that (93) holds.

The uniqueness now follows from that (93) holds for f1, f2 ∈ S (Rd), and that
S (Rd) is dense in Mp,q(Rd) when p, q < ∞. ��

4 Gabor Products and Modulation Spaces

In this section we give an illustration how the multiplication properties for modula-
tion spaces can be used when treating certain nonlinear problems. We consider the
Gabor product which is connected to such multiplication properties. It is introduced
in [14] in order to derive a phase space analogue to the usual convolution identity
for the Fourier transform. We will prove a formula related to (80), and then use
results from previous section to extend the Gabor product initially defined on
M1(R2d)×M1(R2d) to some other spaces. Finally, we show how the Gabor product
gives rise to a phase-space formulation of the qubic Schrödinger equation.

Definition 4.1 Let φ ∈ M1(Rd ) \ {0}, and let F1, F2 ∈ M1(R2d). Then the Gabor
product �φ is given by

(
F1�φ F2

)
(x, ξ)

= (2π)−de−i〈x,ξ 〉
∫∫∫

R3d

φ̂ (ζ − ξ)ei〈x,ζ 〉F1(y, η)F2(y, ζ − η) dydηdζ. (99)
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In the proof of [14, Lemma 13] it is justified that the Gabor product in (99) is
well-defined, and that

�φ : M1(R2d) × M1(R2d) → M1(R2d)

is a continuous map.
The Gabor product is particularly well-suited in the context of the STFT.

Theorem 4.2 Let φ, φ1, φ2 ∈ M1(Rd )\ {0}. Then

(φ2, φ1)L2(Rd)Vφ(f1 · f2) = (Vφ1f1)�φ(Vφ2
f2), f1, f2 ∈ M1(Rd). (100)

Moreover, Vφ(f1 · f2) ∈ M1(R2d).

Proof We have

((Vφ1f1)�φ(Vφ2
f2))(x, ξ) (101)

= (2π)−de−i〈x,ξ 〉
∫∫

R2d

φ̂(ζ − ξ)ei〈x,ζ 〉G(y, ζ ) dydζ, (102)

where

G(y, ζ ) =
∫
Rd

(Vφ1f1)(y, η)(Vφ2
f2)(y, ζ − η) dη.

By Parseval’s formula we get

G(y, ζ ) =
∫
Rd

(Vφ1f1)(y, η)(Vφ2
f2)(y, ζ − η) dη

=
∫
Rd

F (f1φ1( · − y))(η)F (f2φ2( · − y))(ζ − η) dη

= (F (f1φ1( · − y)) , F (f2 φ2( · − y)ei〈 · ,ζ 〉))L2(Rd)

= (f1φ1( · − y) , f2 φ2( · − y)ei〈 · ,ζ 〉)L2(Rd)

=
∫
Rd

f1(z)φ1(z − y)f2(z)φ2(z − y)e−i〈z,ζ 〉 dz.
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By inserting this into (102) and using Fubini’s theorem we get

((Vφ1f1)�φ(Vφ2
f2))(x, ξ)

= (2π)−de−i〈x,ξ 〉
∫∫

R2d

φ̂(ζ − ξ)e−i〈z−x,ζ 〉f1(z)f2(z)H(z) dzdζ,

where

H(z) =
∫
Rd

φ2(z − y)φ1(z − y) dy = (φ2, φ1)L2 .

Hence, by evaluating the integral with respect to ζ , and using Fourier’s inversion
formula, we get

((Vφ1f1)�φ((Vφ2
f2)))(x, ξ)

= (2π)−
d
2 e−i〈x,ξ 〉(φ2, φ1)L2

∫
Rd

φ(z − x)ei〈x−z,ξ 〉f1(z)f2(z) dz

= (φ2, φ1)L2Vφ(f1f2)(x, ξ),

which gives (100), and the result follows. ��
The formula (100) is closely related to (80). In fact, the windows φj ∈ �1(R

d),
j = 0, 1, 2, in (80) should satisfy the condition (79), while (100) is valid for
arbitrary non-zero elements from M1(Rd). For example, when φ = φ1 = φ2 and
‖φ‖L2(Rd) = 1, then (100) reduces to

Vφ(f1 · f2) = (Vφf1)�φ(Vφf2), f1, f2 ∈ M1(Rd ), (103)

while (80) does not allow such choice of windows.
One of the main goals of [14] are extensions of the Gabor product to some

function spaces Fj (R
2d), j = 0, 1, 2, so that �φ maps F1 × F2 into F0, with:

‖F1�φF2‖F0 ≤ C‖F1‖F1‖F2‖F2 . (104)

This can be considered as a phase space form of the Young convolution inequality.
Next we discuss continuity of the Gabor product on certain spaces involving

superpositions of short-time Fourier transforms. In the end we deduce properties
similar to [14, Theorem 29]. Instead of modulation spaces of the form M

p,q

(ω) (Rd),

p, q ∈ [1,∞), ω ∈ PE(R2d), here we consider modulation spaces of Wiener
amalgam types W

p,q

(ω) (Rd), and allow the “quasi-Banach” choice for Lebesgue
parameters, i.e. p and q are allowed to be smaller than one.
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Thus, in what follows we assume that p, q ∈ (0,∞), ω ∈ PE(R2d) is v-
moderate, and consider L

p,q

∗,(ω)(R
2d) spaces rather than L

p,q

(ω) (R
2d) which are treated

in [14].
We need some additional notation. Let s > 1, N ∈ N be given, and let

G = {
φn = φn ; n ∈ N

} ⊆ �s(R
d),

be an orthonormal basis of L2(Rd). Then let V (N),p,q

G ,ω
(R2d) be the closure of

V (N)

G (R2d) =
{

N∑
n=1

Vφnfn ; fn ∈ �1(R
d )

}
(105)

with respect to the L
p,q

∗,(ω)(R
2d) norm. In particular, if N = 1, φ = φ1 and p, q ≥ 1,

then this reduces to the closure

Pφ(L
p,q

∗,(ω)(R
2d)) = Vφ(W

p,q

(ω) (Rd ))

of

Pφ(�1(R
2d)) = Vφ(�1(R

d))

with respect to the L
p,q

∗,(ω)(R
2d) norm.

By [14, Theorem 26], it follows that for every F ∈ V (N),p,q

G ,ω
(R2d) there exist

fn ∈ W
p,q

(ω) (Rd), n = 1, 2, . . . , N , and such that

F =
N∑

n=1

Vφnfn . (106)

Theorem 4.3 Let pj , qj ∈ (0,∞) and ωj ∈ PE(R2d) be vj–moderate, j =
0, 1, 2, and such that (86) and (87) hold, and let φ ∈ �s(R

d ), s > 1. Then the
Gabor product �φ from V (N)

G

(
R

2d
) × V (N)

G

(
R

2d
)
to W

1,1
(v) (R2d), extends uniquely

to a continuous map from V (N),p1,q1
G ,ω1

(R2d) × V (N),p2,q2
G ,ω2

(R2d) to the closure of

Pφ(L
p0,q0
∗,(ω0)

(R2d)), and

‖F1�φF2‖L
p0,q0
∗,(ω0)

� ‖F1‖L
p1,q1∗,(ω1)

‖F2‖L
p2,q2∗,(ω2)

, (107)

for all Fj ∈ V (N),pj ,qj

G ,ωj
(R2d), j = 1, 2.

In particular, if Fj = Vφfj , j = 1, 2, and ‖φ‖L2 = 1, then (107) reduces to

‖Vφf1�φVφf2‖L
p0,q0
∗,(ω0)

= ‖f1f2‖W
p0,q0
(ω0)

� ‖f1‖W
p1 ,q1
(ω1)

‖f2‖W
p2,q2
(ω2)

. (108)
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We omit the proof which is a slight modification of the proof of Theorem 29 in
[14].

We end the paper by formally demonstrating how the Gabor product arises
in a phase space version of the cubic Schrödinger equation. Consider the elliptic
nonlinear Schrödinger equation (NLSE) given by

i
∂ψ

∂t
+ �ψ + λ|ψ|2ψ = 0, (109)

subject to the initial condition:

ψ(x, 0) = ϕ(x).

Here λ = ±1 stands for an attracting (λ = +1) or repulsive (λ = −1) power-law
nonlinearity, and the Laplacian is given by

� =
d∑

j=1

∂2

∂x2
j

.

Thus we consider ψ = φ(x, t) with x ∈ R
d, and t in an open interval I ⊆ R.

Using the following intertwining relations

Vφ(xjψ) = −Dξj Vφψ, Vφ(Dxj ψ) = (
ξj + Dxj

)
Vφψ,

j = 1, · · · , d , and assuming that φ is a real-valued window, we obtain upon
application of the STFT Vφ to (109) that

i
∂F

∂t
−

d∑
j=1

(
ξj + Dxj

)2
F + λF̃ �φF�φF = 0. (110)

Here, Dxj = −i ∂
∂xj

,

F(x, ξ, t) = Vφ(ψ( · , t))(x, ξ)

= (2π)−
d
2

∫
Rd

ψ(y, t)φ(y − x)e−i〈y,ξ 〉 dy, x, ξ ∈ R
d, t ∈ R,

and F̃ is given by

F̃ (x, ξ) = F(x,−ξ). (111)

By considering (110) the phase-space formulation of the initial value problem
may be well-posed for more general initial distributions. This means that the phase-
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space formulation “contains” the solutions of the standard NLSE, but it is richer,
as it admits other solutions. We refer to [11–13], where phase-space extensions are
explored in several different contexts.

Let us conclude by noticing that (110) contains the triple product. Thus, its
qualitative analysis calls for a multilinear extension of Theorems 3.6 and 4.3. Then
the conditions (86) and (87) become more involved, see [54]. Such analysis demands
a more technical tools and arguments and goes beyond the scope of this survey
article.

Appendix A: Some Properties of Wiener Amalgam Spaces

There are convenient characterizations of modulation spaces in the framework of
Gabor analysis.

Let ω0 ∈ PE(Rd ), ω ∈ PE(R2d), p, q, r ∈ (0,∞], Qd = [0, 1]d be the unit
cube, and set for measurable f on R

d ,

‖f ‖Wr (ω0,�p) ≡ ‖a0‖�p(Zd ) (A.1)

when

a0(j) ≡ ‖f · ω0‖Lr(j+Qd), j ∈ Z
d ,

and for measurable F on R
2d ,

‖F‖Wr (ω,�p,q ) ≡ ‖a‖�p,q(Z2d ) and ‖F‖W(ω,�
p,q∗ ) ≡ ‖a‖�

p,q∗ (Z2d) (A.2)

when

a(j, ι) ≡ ‖F · ω‖Lr((j,ι)+Q2d), j, ι ∈ Z
d .

The Wiener amalgam space

Wr (ω0, �
p) = Wr (ω0, �

p(Zd))

consists of all measurable f ∈ Lr
loc(R

d) such that ‖F‖Wr (ω0,�p) is finite, and the
Wiener amalgam spaces

Wr (ω, �p,q ) = Wr (ω, �p,q (Z2d)) and Wr (ω, �
p,q∗ ) = Wr (ω, �

p,q∗ (Z2d))

consist of all measurable F ∈ Lr
loc(R

2d) such that ‖F‖Wr (ω,�p,q ) respectively
‖F‖Wr (ω,�

p,q∗ ) are finite. We observe that Wr (ω0, �
p) is often denoted by

W(Lr , �
p

(ω)
) in the literature (see e. e. [17, 19, 25, 41]).
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The topologies are defined through their corresponding quasi-norms in (A.1)
and (A.2). For conveniency we set

W(ω, �p,q ) = W∞(ω, �p,q ) and W(ω, �
p,q∗ ) = W∞(ω, �

p,q∗ ),

and if in addition ω = 1, we set

W(�p,q) = W(ω, �p,q ) and W(�
p,q∗ ) = W(ω, �

p,q∗ ).

Obviously, Wr (ω0, �
p) and Wr (ω, �p,q ) increase with p, q , decrease with r , and

W(ω, �p,q ) ↪→ L
p,q

(ω) (R
2d) ∩ �′

1(R
2d) ↪→ L

p,q

(ω) (R
2d) ↪→ Wr (ω, �p,q )

(A.3)

and

‖ · ‖Wr (ω,�p,q ) ≤ ‖ · ‖L
p,q

(ω)
≤ ‖ · ‖W(ω,�p,q), r ≤ min(1, p, q). (A.4)

On the other hand, for modulation spaces we have

f ∈ M
p,q

(ω) (Rd) ⇔ Vφf ∈ L
p,q

(ω) (R
2d) ⇔ Vφf ∈ Wr (ω, �p,q ) (A.5)

with

‖f ‖M
p,q

(ω)
= ‖Vφf ‖L

p,q

(ω)
� ‖Vφf ‖Wr (ω,�p,q). (A.6)

The same holds true with W
p,q

(ω) , L
p,q

∗,(ω) and W(ω, �
p,q∗ ) in place of M

p,q

(ω) , L
p,q

(ω)

and W(ω, �p,q ), respectively, at each occurrence. (For r = ∞ , see [28] when
p, q ∈ [1,∞], [25, 50] when p, q ∈ (0,∞], and for r ∈ (0,∞], see [53].)

We have now the following result on the projection operator Pφ in (20) when
acting on Wiener amalgam spaces.

Proposition A.1 Let p, q ∈ (0,∞] and φ ∈ S (Rd) \ {0}. Then Pφ from S ′(R2d)

toS ′(R2d), and V ∗
φ from S ′(R2d) toS ′(Rd) restrict to continuous mappings

Pφ : W(�p,q(Z2d)) → Vφ(Mp,q(Rd )), (A.7)

Pφ : W(�
p,q∗ (Z2d)) → Vφ(Wp,q(Rd )), (A.8)

V ∗
φ : W(�p,q(Z2d)) → Mp,q(Rd) (A.9)

and

V ∗
φ : W(�

p,q∗ (Z2d)) → Wp,q(Rd). (A.10)
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We refer to [54, Proposition 3.6] for the proof of Proposition A.1 and to [19, 21,
28, 41, 42, 54] for some facts about the operators Pφ and V ∗

φ ,
For p, q ≥ 1, i.e. the case when all spaces are Banach spaces, proofs of

Proposition A.1 can be found in e.g. [28] as well as in abstract forms in [19]. In the
general case when p, q > 0, we refer to [25, 42], since proofs of Proposition A.1
are essentially given there.
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