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Abstract The higher-grade theory with flexomagneticity and micro-inertia effects
is used to provide a theoretical framework for studying the propagation of Love
wave along the free surface of semi-infinite piezoelectric substrate covered with a
nano-thin guiding flexomagnetic layer. The phase velocity of Lovewave is calculated
for the magneto-electrically open boundary conditions. For tetragonal piezoelectric
materials of point group 4mm, the influence of piezoelectricity, flexomagneticity and
micro-inertia characteristic length on phase velocity of Love wave is investigated.
The effect of waveguide layer thickness on the dispersion curves is evaluated as well.
It is found that the profile of dispersion curves depends on the material properties
of the layer and substrate, the waveguide layer thickness, and the ratio between
the values of flexomagnetic coefficients and the micro-inertia characteristic length.
The obtained results can be useful in the design of nano-size sensors, actuators and
acoustic devices where the high-frequency surface waves occur.

Keywords Love wave propagation · Strain gradient theory · Micro-inertia effect ·
Piezoelectricity · Flexomagneticity · Dispersion relation

1 Introduction

Within the framework of the classical theory, piezoelectricity and piezomagneticity
describe the linear coupling effects arising in elastic solids under the action of
external electromagnetic field and/ormechanical loading. Then, the electro/magneto-
mechanical coupling between the electric/magnetic polarization and the uniform
strain occurs only in noncentrosymmetric crystals. On the other hand, it is known
that the nonuniform strain field (finite value of strain gradients) can induce an electric
polarization in crystalline dielectrics (even in centrosymmetric ones). The electric
polarization induced by the strain gradient is referred to as flexoelectricity [30, 34].
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The dependence between strain gradient and magnetic polarization is known as flex-
omagneticity [8, 9, 20]. Nowadays, due to the useful properties, the flexoelectric
and flexomagnetic materials are widely used in sensors, actuators, filters, delay line
resonators and other acoustic devices where the high-frequency surface waves may
occur. In the recent decade, researches have paid special attention to the Love-type
wave propagation in layered structures. The Love wave is a transverse surface wave
having one component of mechanical displacement, which is parallel to the guiding
layer surface and perpendicular to the direction of the wave propagation. Such kind
of a surface wave in an isotropic layer deposited on isotropic substrate was originally
studied by Love in 1911 [19]. The Love-wave problems in electro-magneto-elastic
layered structures arewidely investigated in recent studies, but the literature ismostly
focused on the piezoelectric crystals [4, 7, 18, 35] and piezomagnetic or piezoelec-
tromagnetic materials [1, 3, 5, 6, 10, 31]. The mentioned investigations were based
on the postulates of the classical theory. However, to consider the effect of flexoelec-
tricity/flexomagneticity on the surface wave propagation, the non-classical theories
should be used.

To take into account the microscopic aspects of material structure and interatomic
interactions, the generalizedmathematicalmodelwith polarization gradientwas used
to investigate the Love wave propagation in centrosymmetric, isotropic, dielectric
layer attached to an isotropic half-space [21].Making use of non-classical theorywith
surface effects, the behavior of Love waves in an electrically-shorted piezoelectric
nanofilmon an elastic substratewas studied byZhangwith co-workers [37].Recently,
the strain gradient theory of electroelastic media with flexoelectricity has been used
to study the existence of Love wave in structure consisting of a flexoelectric layer
rigidly linked to an elastic substrate [33]. In the above paper, in addition to the strain
gradient, the effect of the high-order electric quadrupoles was considered as well.
The results showed that the dispersion curves of Love waves are strongly dependent
on the guiding layer thickness if its thickness reduces to nanometers. It was also
derived that if the flexoelectricity is taken into account, the real part of the phase
velocity can exceed the shear bulk wave velocity in the substrate and thus the ‘cut-
off wave numbers’ can emerge [13, 33]. Using the governing equations of the strain
gradient piezoelectricity, Singhal et al. [26, 27] analytically investigated the Love-
type wave vibrations in a piezoelectric thin film overlying the pre-stressed elastic
plate and studied the flexoelectricity effect in distinct piezoelectric materials (PZT-2,
PZT-4, PZT-5H, LiNbO3, BaTiO3). These investigations proved that the flexoelectric
effect is pronounced for sufficiently large wave numbers. On the other hand, series
of studies [11, 12, 14, 15, 24, 25, 32] revealed that for high-frequency waves, it is
very important to consider the micro-inertia effect. Using the strain gradient theory, a
combined influence of the flexoelectric coefficients and micro-inertia characteristic
length on electromechanical behavior of Love wave has been considered in [13].
It was found that flexoelectricity increases the phase velocity of Love wave while
the micro-inertia effect decreases its value. The authors concluded that both the
flexoelectricity and micro-inertia effect signifficantly influence the phase velocity of
short-length waves and could not be omitted in layered structures with nano-scale
dimensions.
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Although the Love wave propagation with consideration of the flexoelectric effect
has been investigated in several papers [13, 26, 27, 33], there are no studies using the
mathematical models for Love waves in piezo-/flexo-magnetic structures. It should
be noted that up to now, some results regarding the flexomagnetic effect in solids have
been published (see for example, [8, 9, 20, 22, 36]). However, studies on the flexo-
magnetic effect are very seldom in literature. Since Love waves in magneto-electro-
elastic materials have a practical importance, in this paper we study the influence
of piezo-/flexo-magnetic effect combined with micro-inertia effect on Love wave
propagation in a nano-sized wave-guiding piezomagnetic layer rigidly bonded to a
piezoelectric substance. In order to separate the influence of the electric andmagnetic
effects on the Love waves, the piezo- and flexo-electric properties are omitted in the
layer.

The paper structure is as follows. The linear equations of magneto-electro-elastic
anisotropic media with flexomagneticity and micro-inertia effect are summarized in
Sect. 2.1. Equations that describe the Love wave propagation (anti-plane motion)
in piezoelectric and flexomagnetic ceramics are presented in Sects. 2.2 and 2.3,
respectively. Section 2.4 contains the equations and general solution to the boundary
problem in vacuum. Boundary conditions and dispersion relation are obtained in
Sect. 2.5. Numerical results for the following material combination ‘flexomagnetic
ceramic CoFe2O4 and piezoelectric ceramic BaTiO3’ are presented in Sect. 3. The
conclusions are drawn in final Sect. 4.

2 Formulation and Theoretical Treatment of the Problem

2.1 Basic Relations

Based on the results presented inworks [5, 8, 17, 28], the free energy density function
F of a magneto-electro-elastic continuum with piezo-/flexo-magnetic and piezo-
electric effects can be generalized as:

F =1

2
ci jklεi jεkl − 1

2
μi j Hi Hj − 1

2
ai j Ei E j + 1

2
g jklmniη jklηmni

− dkjiεi j Hk − ek jiεi j Ek − qi j Ei Hj − ξi jkl Hiη jkl .

Here, εi j , Ei , and Hi are the strain, electric field, and magnetic field components,
respectively; ηmni is the component of strain-gradient tensor; ci jkl , ei jk , di jk , ai j ,
μi j and qi j represent the elastic, piezoelectric, piezomagnetic, electric permittivity,
magnetic permeability and magneto-electric constants, respectively; g jklmni is the
higher order elastic coefficient representing the strain-gradient elasticity, and ξi jkl is
the flexomagnetic coefficient.

For an anisotropic piezoelectric/piezomagnetic media with flexomagneticity, the
linear coupled constitutive equations can be expressed as follows:
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σi j = ∂F

∂εi j
= ci jklεkl − eki j Ek − dki j Hk, (1)

τ jkl = ∂F

∂η jkl
= −ξi jkl Hi + g jklmniηmni , (2)

Di = − ∂F

∂Ei
= ei jkε jk + ai j E j + qi j Hj , (3)

Bi = − ∂F

∂Hi
= di jkε jk + qi j E j + μi j Hj + ξi jklη jkl . (4)

Here, symbols σi j , τi jk , Di and Bi are used to denote the stress tensor, higher-order
stress, electric displacement and magnetic induction tensors, respectively. Note that
the last terms in Eqs. (2) and (4) are the contribution from the strain gradients.

The linear strain–displacement relations and expressions for the strain-gradient
tensor are defined as:

εi j = 1

2

(
ui, j + u j,i

)
, ηi jk = εi j,k = 1

2

(
ui, jk + u j,ik

)
, (5)

where ui is the component of the displacement vector, and comma stands for partial
differentiation with respect to the indicated space coordinate.

Within the quasi-static approximation, the equations, which relate the electric
field and magnetic field vectors to electric potential ϕe and magnetic potential ψm ,
are:

E j = −ϕe, j , Hj = −ψm, j . (6)

When the micro-inertia effect is taken into account, the motion equation can be
written as follows [2, 29]:

σi j, j − τi jk, jk = ρ
(
1 − l21∇2

)
üi , (7)

where ρ is the mass density, l1 is used to denote the micro-inertia characteristic
length, ∇ is nabla operator and the dot over the vector component ui refers to the
time derivative. Note that the micro-inertia characteristic length l1 is linked to the
microstructure of the material [2].

For the electrostatics, in media without free electric charges, the electric and
magnetic fields are governed by the Gauss-Coulomb and the Gauss–Faraday laws
and are given by [16]:

Dk,k = 0, Bk,k = 0. (8)
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Fig. 1 Schema of the layered structure and choice of the coordinate system

Field equations (7), (8), constitutive and kinematic relations (1)–(6) are needed
for a unique set of equations of linear strain gradient theory of piezo-flexomagnetic
continua with micro-inertia effect.

Let us obtain the differential equations describing the Love wave propagation
in a layered structure formed by a piezoelectric transversely isotropic semi-infinite
substrate and a thin piezo/-flexo-magnetic guiding layer. The medium above the
layer is air. A Cartesian coordinate system (x, y, z) is chosen in such a way that the
x-axis is vertical to the substrate surface (see Fig. 1). Assume that the surface wave
propagates in the y-direction and its amplitude decays with depth along the x-axis.
We suppose that the upper surface of the piezo/-flexo-magnetic layer (x = −h) is
traction free with open-circuit conditions for the electric and magnetic fields. Note
that constitutive relations (1)–(4) take on a different form in the guiding layer and in
the substrate because of the different material properties.

2.2 Piezoelectric Substrate (Domain x > 0)

The substrate is considered as a piezoelectric material. Because of huge dimensions
of the substrate, the flexo-electric/magnetic and micro-inertia effects are supposed
to be negligible. In this case, constitutive relations (1)–(4) can be written as:

σ h
i j = chi jklε

h
kl − ehki j E

h
k , (9)

Dh
i = ehi jkε

h
jk + ahi j E

h
j + qh

i j H
h
j , (10)

Bh
i = qh

i j E
h
j + μh

i j H
h
j . (11)

Note that here and in what follows, all quantities related to the half-space are
indicated by superscript ‘h’.
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In the current work, the tetragonal crystal of the point group 4 mm is considered.

Hence, by using Voigt notation, the fourth-rank tensor ch =
{
chi jkl

}
, the third-rank

tensor eh =
{
ehki j

}
, the second-rank tensors ah =

{
ahi j

}
,µh =

{
μh
i j

}
andqh =

{
qh
i j

}

can be represented in the matrix form as follows [23]:

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

ch11 c
h
12 c

h
13 0 0 0

ch12 c
h
11 c

h
13 0 0 0

ch13 c
h
13 c

h
33 0 0 0

0 0 0 ch44 0 0
0 0 0 0 ch44 0
0 0 0 0 0 ch66

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

,

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

0 0 eh31
0 0 eh31
0 0 eh33
0 eh15 0
eh15 0 0
0 0 0

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

,

⎡

⎣
bh11 0 0
0 bh11 0
0 0 bh33

⎤

⎦,

where the notation bhi j ∈
{
ahi j , μ

h
i j , q

h
i j

}
is used.

The quantities that characterize the wave propagation within the substrate are:

uh = (
0, 0, uh3(x, y, t

)
, Eh = (

Eh
1 (x, y, t), E

h
2 (x, y, t), 0

)

Bh = (
Bh
1 (x, y, t), Bh

2 (x, y, t), 0
)
,

ϕh
e = ϕh

e (x, y, t), ψh
m = ψh

m(x, y, t).

The non-vanishing strain and stress tensors components and electromagnetic field
vectors can be given as:

εh13 = 1

2

∂uh3
∂x

, εh32 = 1

2

∂uh3
∂y

, (12)

Eh
1 = −∂ϕh

e

∂x
, Eh

2 = −∂ϕh
e

∂y
, Bh

1 = −∂ψh
m

∂x
, Bh

2 = −∂ψh
m

∂y
, (13)

σ h
31 = 2ch44ε

h
31 − eh15E

h
1 , σ h

32 = 2ch44ε
h
32 − eh15E

h
2 , (14)

Dh
1 = ah11E

h
1 + qh

11H
h
1 + 2eh15ε

h
13, Dh

2 = ah11E
h
2 + qh

11H
h
2 + 2eh15ε

h
32, (15)

Bh
1 = qh

11E
h
1 + μh

11H
h
1 , Bh

2 = qh
11E

h
2 + μh

11H
h
2 . (16)

The general solution for waves spreading in y-direction of the infinite half-space
can be obtained by the method of separation of variables as follows:

uh3(x, y, t) = uh(x)eik(y−ct), ϕh
e (x, y, t) = ϕh(x)eik(y−ct), ψh

m(x, y, t) =
ψh(x)eik(y−ct).

Here, uh(x), ϕh(x) and ψh(x) are unknown functions which represent the ampli-
tudes of the mechanical displacement, electric potential and magnetic potential in
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half-space; k denotes the wave number, c is the phase velocity, and i is the imaginary
unit defined by formula i = √−1.

Hence, for deformable half-space without micro-inertia effect, the governing set
of differential equations reduces to:

ch44
d2uh

dx2
− (

ch44 − ρhc2
)
k2uh + eh15

(
d2ϕh

dx2
− k2ϕh

)
= 0, (17)

d2ϕh

dx2
− k2ϕh = eh15

ah11

(
d2uh

dx2
− k2uh

)
, (18)

d2ψh

dx2
− k2ψh = − qh

11e
h
15

μh
11a

h
11

(
d2uh

dx2
− k2uh

)
. (19)

Here, ρh denotes the mass density of substrate, and ah11 =
ah11

[
1 − (

qh
11

)2/
ah11μ

h
11

]
.

Since the displacement, electric and magnetic potentials in the substrate should
tend to zero far away from the interface (that is, uh3 → 0, ϕh

e → 0, ψh
m → 0 as

x → +∞), a general solution to Eqs. (17)–(19) can be found as:

uh3(x, y, t) = C1e
−βkxeik(y−ct), (20)

ϕh
e (x, y, t) =

(
eh15
ah11

C1e
−βkx + C2e

−kx

)
eik(y−ct), (21)

ψh
m(x, y, t) =

(
− qh

11e
h
15

μh
11a

h
11

C1e
−βkx + C3e

−kx

)
eik(y−ct). (22)

Here, C1, C2, and C3 are unknown constants, β =
√
1 − c2/(chpe)

2, and chpe =
√
c̄h44/ρ

h is the velocity of the shear wave in piezoelectric substrate where ch44 is given

by ch44 = ch44 + (
eh15

)2/
ah11.

2.3 Flexomagnetic Wave-Guide Layer (Domain −h < x < 0)

Studying the Love waves in a guiding layer, the displacement vector has an
axial component u3 only, that is u = (0, 0, u3(x, y, t). The electric field vector,
magnetic field vector, electric potential and magnetic potential are assumed to
be as follows: E = (E1(x, y, t), E2(x, y, t), 0), B = (B1(x, y, t), B2(x, y, t), 0),
ϕe = ϕe(x, y, t), ψm = ψm(x, y, t). The kinematic relations are:
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ε31 = 1

2

∂u3
∂x

, ε32 = 1

2

∂u3
∂y

, (23)

η131 = η311 = 1

2

∂2u3
∂x2

, η232 = η322 = 1

2

∂2u3
∂y2

,

η231 = η321 = η132 = η312 = 1

2

∂2u3
∂x∂y

,

(24)

E1 = −∂ϕe

∂x
, E2 = −∂ϕe

∂y
, (25)

H1 = −∂ψm

∂x
, H2 = −∂ψm

∂y
. (26)

For flexomagnetic ceramic, constitutive equations (1)–(4) can be rewritten as:

σ31 = 2c44ε31 − d15H1, σ32 = 2c44ε32 − d15H2, (27)

τ311 = ξ52H2, τ321 = −ξ41H1, τ321 = −ξ41H1, τ322 = ξ41H2, (28)

D1 = a11E1 + q11H1, D2 = a11E2 + q11H2, (29)

B1 = 2d15ε31 + q11E1 + μ11H1 + 2(ξ41 + ξ52)η321, (30)

B2 = 2d15ε32 + q11E2 + μ11H2 − 2ξ52η311 − 2ξ41η322. (31)

The following notation is adopted here for the flexomagnetic coefficients ξ2311 =
ξ2131 = −ξ52, ξ1312 = ξ1132 = ξ52, ξ1231 = ξ1321 = ξ41, ξ2232 = ξ2322 = −ξ41
Following Yang et al. [33], the effect of strain gradient terms is neglected in the
formulae (28), i.e. g jklmni = 0.

Substitution of constitutive equations (27)–(31) and kinematic relations (23)–(26)
into balance equations (7) and (8) yields:

c44

(
∂2u3
∂x2

+ ∂2u3
∂y2

)
+ d15

(
∂2ψm

∂x2
+ ∂2ψm

∂y2

)
+ ξ41

(
∂3ψm

∂y3
− ∂3ψm

∂x2∂y

)

= ρ

[
∂u3
∂t2

− l21

(
∂4u3

∂t2∂x2
+ ∂4u3

∂t2∂y2

)]
,

(32)

(
∂2ϕe

∂x2
+ ∂2ϕe

∂y2

)
= −q11

a11

(
∂2ψm

∂x2
+ ∂2ψm

∂y2

)
(33)

−q11

(
∂2ϕe

∂x2
+ ∂2ϕe

∂y2

)
− μ11

(
∂2ψm

∂x2
+ ∂2ψm

∂y2

)
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+d15

(
∂2u3
∂x2

+ ∂2u3
∂y2

)
+ ξ41

(
∂3u3

∂x2∂y
− ∂3u3

∂y3

)
= 0. (34)

Governing set of equations (32)–(34) describes the propagation of the surface
acoustic wave and its associated electromagnetic field in the piezo-/flexo-magnetic
wave-guide layer. Comparing to the classical theory for piezo-magneticity, addi-
tional terms proportional to the flexomagnetic coefficient ξ41 and micro-inertia
characteristic length l1 appeared in governing equations (32) and (34).

The displacement component, electric and magnetic potentials are assumed as:

u3(x, y, t) = u(x)eik(y−ct), (35)

ϕe(x, y, t) = ϕ(x)eik(y−ct), (36)

ψm(x, y, t) = ψ(x)eik(y−ct). (37)

where u(x), ϕ(x) and ψ(x) are the amplitudes of the mechanical displacement,
electric and magnetic potentials in a wave-guide layer.

Substitution of expressions (35)–(37) into governing equations (32)–(34) yields
system of ordinary differential equations:

(
c44 − ρl21k

2c2
)d2u

dx2
+ [

ρc2
(
1 + l21k

2
) − c44

]
k2u

+(d15 − ikξ41)
d2ψ

dx2
− (d15 + ikξ41)k

2ψ = 0, (38)

(
d2ϕ

dx2
− k2ϕ

)
= −q11

a11

(
d2ψ

dx2
− k2ψ

)
, (39)

q11

(
d2ϕ

dx2
− k2ϕ

)
+ μ11

(
d2ψ

dx2
− k2ψ

)
− (d15 + ikξ41)

d2u

dx2

+(d15 − ikξ41)k
2u = 0.

(40)

The general solution to equations (38)–(40) can be written as follows:

u(x) = S1
(
N1e

k�1x + N2e
−k�1x

) + S2
(
N3e

k�2x + N4e
−k�2x

)
, (41)

ϕ(x) =N5e
kx + N6e

−kx

− q11
a11

(
N1e

k�1x + N2e
−k�1x + N3e

k�2x + N4e
−k�2x

)
, (42)
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ψ(x) = N1e
k�1x + N2e

−k�1x + N3e
k�2x + N4e

−k�2x . (43)

Here, N j ( j = 1, ..., 6) are unknown constants to be determined and the following
notations are used:

�2
1 = 2c2m − c2 − 2l21c

2k2 − 2k2d2
ξ + √

D

2
(
c2m − l21k

2c2 + k2d2
ξ

) ,

�2
2 = 2c2m − c2 − 2l21c

2k2 − 2k2d2
ξ − √

D

2
(
c2m − l21k

2c2 + k2d2
ξ

) ,

S1 = − d15
(
�2

1 − 1
) − iξ41k

(
�2

1 + 1
)

(
c44 − l21ρc

2k2
)(

�2
1 − 1

) + ρc2
,

S2 = − d15
(
�2

2 − 1
) − iξ41k

(
�2

2 + 1
)

(
c44 − l21ρk

2c2
)(

�2
2 − 1

) + ρc2
,

D = c4 + 8d2
ξ c

2k2
(
1 + 2l21k

2) − 16c2md
2
ξ k

2,

d2
ξ = ξ 2

41

ρμ11
, c2m = c44

ρ
, c44 = c44 + d2

15

μ11
, μ11 = μ11

(
1 − q2

11

a11μ11

)
.

2.4 The Air (Domain x < −h)

Since the layer is made of the piezomagnetic ceramic, we take the electromagnetic
field in the air (domain x < −h) into account. We consider the air as a vacuum. Both
the electric and magnetic potentials in the vacuum satisfy the Laplace equations,
i.e., ∇2ϕv

e = 0 and ∇2ψv
m = 0. Here, ∇2 is the two-dimensional Laplac operator,

and superscript ‘v’ indicates the electric and magnetic potentials in the vacuum. The
potentials tend to zero far away from the surface x = −h along the negative x-
direction, i.e., ϕv

e → 0 and ψv
e → 0 as x → −∞. Therefore, the electromagnetic

field above the layer is given by the expressions:

ϕv
e (x, y, t) = C4e

kxeik(y−ct), ψv
m(x, y, t) = C5e

kxeik(y−ct), (44)

where C4 and C5 are the unknown constants. The electric displacement Dv
i = a0Ev

i
and magnetic induction Bv

i = μ0H v
i in the air (x < −h) are as follows:

Dv
1 = −a0

∂ϕv
e

∂x
= −kC4a0e

kxeik(y−ct), Dv
2 = −a0

∂ϕv
e

∂y
= −ikC4a0e

kxeik(y−ct),

(45)
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Bv
1 = −μ0

∂ψv
m

∂x
= −kC5μ0e

kxeik(y−ct), Bv
2 = −μ0

∂ψv
m

∂y
= −ikC5μ0e

kxeik(y−ct).

(46)

Here, a0 andμ0 are the electric permittivity andmagnetic permeability of vacuum,
respectively.

2.5 Boundary Conditions and Dispersion Equation

The eleven unknown constants N j ( j = 1 − 6) and Cl (l = 1 − 5) are determined
by the boundary conditions at surfaces x = −h and x = 0.

In case of the electrical and magnetic open-circuit conditions, we require the flux
of electric displacements, magnetic inductions, as well as the electric and magnetic
potentials to be continuous across the surface x = −h. Thus, for traction-free inter-
faces and continuity of displacements, we consider the complete boundary conditions
as:

On the surface x = −h:

((
σ31 − τ311,1 − τ312,2

) − τ321,2 + ρl21
∂ ü3
∂x

)∣∣∣∣
x=−h

= 0, (47)

ϕe|x=−h = ϕv
e

∣∣
x=−h, D1|x=−h = Dv

1

∣∣
x=−h,

ψm |x=−h = ψv
m

∣∣
x=−h, B1|x=−h = Bv

1

∣∣
x=−h .

(48)

On the interface between the layer and half-space x = 0:

u3|x=0 = uh3
∣∣
x=0,

((
σ31 − τ311,1 − τ312,2

) − τ321,2 + ρl21
∂ ü3
∂x

)∣∣∣∣
x=0

= σ h
31

∣∣
x=0,

(49)

ϕe|x=0 = ϕh
e

∣∣
x=0, D1|x=0 = Dh

1

∣∣
x=0, ψm |x=0 = ψh

m

∣∣
x=0, B1|x=0 = Bh

1

∣∣
x=0.

(50)

Here, τ31 = (
σ31 − τ311,1 − τ312,2

) − τ321,2 + ρl21
∂ ü3
∂x is the z-component of

generalized tractions on the surface x = const, y, z ∈ (−∞, ∞).
Thus, the propagation problem of the Love wave in the layered structure turns

into the solution of (20)–(22), (35)–(37), (41)–(43) and (44)–(46) under boundary
conditions (47)–(50).

Substitution of the general solutions into boundary conditions (47)–(50) produces
eleven homogeneous algebraic linear equations to find unknown constants N j ( j =
1− 6) and Cl (l = 1− 5). Eliminating Cl (l = 1− 5), N5 and N6 from the obtained
set of equations we get four equations with respect to N j ( j = 1− 4) which can be
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written in a matrix form as follows:MN = 0, where NT = [
N1 N2 N3 N4

]
, andM

is a 4 × 4 coefficient matrix. The elements of matrix M are given by formulae:
m11 = b1e−kh�1 , m12 = −b1ekh�1 , m13 = b2e−kh�2 , m14 = −b2ekh�2 ,

m21 = (n1 + μ0)e−kh�1 , m22 = −(n1 − μ0)ekh�1 ,

m23 = (n2 + μ0)e−kh�2 , m24 = −(n2 − μ0)ekh�2 ,

m31 =
[
b1 + (

chpe
)2

βρh S1
]

− (n−1)
(n+1)

a11
ah11

(
b1 − bρh S1

)
,

m32 = −
[
b1 − (

chpe
)2

βρh S1
]

+ (n−1)
(n+1)

a11
ah11

(
b1 + bρh S1

)
,

m33 =
[
b2 + (

chpe
)2

βρh S2
]

− (n−1)
(n+1)

a11
ah11

(
b2 − bρh S2

)
,

m34 = −
[
b2 − (

chpe
)2

βρh S2
]

+ (n−1)
(n+1)

a11
ah11

(
b2 + bρh S2

)
,

m41 = n1 − μh
11, m42 = −(

n1 + μh
11

)
, m43 = n2 − μh

11, m44 = −(
n2 + μh

11

)
.

Note that in the above formulae, for simplicity the terms with magneto-electric
constants qh

11 and q11 are neglected and the following notations are adopted:
b1 = [(

c44 − ρl21k
2c2

)
S1 + d15 − ikξ41

]
�1,

b2 = [(
c44 − ρl21k

2c2
)
S2 + d15 − ikξ41

]
�2,

n1 = [d15S1 − μ11 + ik(ξ41 + ξ52)S1]�1,

n2 = [d15S2 − μ11 + ik(ξ41 + ξ52)S2]�2,

b =
(
eh15e

h
15

ρhah11
− (

chpe
)2

β
)
, n = (a11−a0)

(a11+a0)
e−2kh .

From the above equations one can observe that the flexomagneticity-related terms
are dependent on the wave number k, while the micro-inertia-related terms are
dependent on k2.

Non-trivial solution to the boundary-value problem can be obtained if the deter-
minant ofmatrixM is equal to zero. This condition leads to the transcendental disper-
sion equation det[M(c, k)] = 0, which determines the dependence of the Love-wave
phase velocity c on the wave numbers k, i.e., c = c(k). Since for the guiding layer,
the influence of flexo-/piezo-magnetic and micro-inertia effects is taken into account
and due to the consideration of piezoelectric properties of the substrate, the disper-
sion relation becomes very complicated and numerical methods should be used to
solve it.

3 Numerical Results

Note that the Love wave exhibits a multimode character. Since the first mode is
characterized by the largest amplitude, in currentwork, the attention has been focused
on the electro-magneto-mechanical properties of this mode only. Following [33], we
assume the wave number to be positive real quantity while the phase velocity of Love
wave is considered as a complex one, c = c1 + ic2. The imaginary part of velocity c2
characterizes the wave attenuation. The negative value of c2 means that the modified
wave amplitude (wave amplitude ×e−ic2t ) drops, whereas the positive value of c2
implies that the modified wave amplitude grows with increasing time.
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In this section, the numerical results regarding the dispersion relation of Love
wave are provided for a layered structure with the following material properties
‘flexomagnetic ceramic CoFe2O4 and piezoelectric ceramic BaTiO3’. The material
coefficients for barium titanate and cobalt ferrite are chosen as follows [5, 6, 28]:

ρh = 5.8 × 103 kg/m3, ch44 = 4.3 × 1010 N
/
m2, eh15 = 11.6 C

/
m

ah11 = 1.12 × 10−8 F
/
m, μh

11 = 0.5 × 10−5 Ns2
/
C2

ρ = 5.3 × 103 kg/m3, c44 = 4.53 × 1010 N
/
m2

d15 = 550 N
/
Am, a11 = 0.8 × 10−10 F

/
m, μ11 = 5.9 × 10−4 Ns2

/
C2.

For air, the electric permittivity and magnetic permeability coefficients are a0 =
8.85×10−12 F

/
mandμ0 = 4π ×10−7 H/m. In numerical calculations, it is assumed

that flexomagnetic coefficients ξ41 and ξ52 are equal to each other, i.e., ξ41 = ξ52 ≡ ξ ,
and their order increases from10–6 to 10–5 [8, 28]. Usually, the dynamic characteristic
length l1 is set to be proportional to the material lattice parameter [32]. In this study,
we assume l1 to range from 0.4 Å to 6 Å. In calculations, it is also assumed that the
thickness of the guiding layer is equal to 40 nm.

Figure 2 illustrate the influence of micro-inertia characteristic length on Love
wave phase velocity when the flexomagneticity is neglected, i.e., ξ41 = ξ52 = 0. To
study the influence of micro-inertia characteristic length on the dispersion curve,
we assume that the above parameter ranges from 0.4 Å to 1.2 Å (Fig. 2a) or
1 Å to 3 Å (Fig. 2b). In this case, the imaginary part of phase velocity is equal
to zero. In Fig. 2, the classical electro-magneto-elasticity solution (l1 = 0) is also
shown for comparison (see the solid line). It can be seen that for sufficiently large
wave numbers, the micro-inertia characteristic length parameter has an effect on
the phase velocity of the wave. Increasing the micro-inertia length parameter from
0.4 Å to 3 Å, the wave velocity decreases. The effect becomes more pronounced for
larger values of micro-inertia characteristic length (Fig. 2b). The numerical investi-
gations also showed that when the dynamic characteristic length l1 does not exceed

Fig. 2 The phase velocity of Lovewave versuswave number k for the guiding layer thickness 40 nm
and various micro-inertia characteristic lengths. The influence of flexomagneticity is neglected (i.e.,
ξ41 = ξ52 = 0)
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Fig. 3 Real and imaginary parts of phase velocity of Love wave versus wave number k for the
guiding layer thickness 40 nm and various values of the flexomagnetic coefficients. The influence
of micro-inertia terms is neglected (i.e., l1 = 0)

0.1÷ 0.2Å, the dispersion curve coincideswith the results obtained from the classical
theory. In that case, the influence of micro-inertia effect can be neglected.

The effect of flexomagnetic properties of the guiding layer on the wave velocity
is illustrated in Fig. 3, where the influence of micro-inertia effect is not considered,
i.e., it is assumed that l1 = 0. Grey solid lines present the corresponding classical
solution for piezomagnetic layer on a piezoelectric substrate. Within the classical
theory, the phase velocity of Love wave is a monotonously decreasing function with
the wave number. The presence of flexomagneticity leads to a complex function of
phase velocity with negative imaginary part. In this case, from Fig. 3 it is observed
that the real part of phase velocity first decreases for lower values of the wave
number, reaches the minimum and then begins to rise. For a sufficiently large wave
number, the phase velocity is higher than the one predicted by the classical theory. The
imaginary part of the wave velocity, imag(c), displays the same trends, that is, it first
declines and then begins to increase. The minimum of imaginary part of phase wave
velocity decreases if the flexomagnetic coefficients ξ41 and ξ52 grow. This means that
better wave attenuation is for larger values of the flexomagnetic coefficients. When
flexomagnetic constant ξ is equal to 2.1× 10−6Tm, 4.6× 10−6Tm and 10−5Tm, the
real part of the phase velocity can exceed the shear wave velocity in the substrate
and, therefore, the so-called ‘cut-off regions’ can appear in the considered layered
structure (see dashed, dotted and dash-dotted lines). In these regions, the Love wave
is not capable of propagating.

Next, the micro-inertial effect is considered. Figures 4, 5 and 6 illustrate the
coupled effect of the flexomagneticity and micro-inertia characteristic length on the
profile of the dispersion curves. In Fig. 4, the solid, dashed, dotted and dash-dotted
lines are plotted for the values of flexomagnetic coefficients 10−6 Tm, 2.1×10−6 Tm,
4.6×10−6 Tm and 10−5 Tm, respectively. In the calculations, the micro-inertia char-
acteristic length is assumed to be 4 Å. A solid grey line presents the result obtained
from the classical theory of elastic electromagnetic media without flexomagneticity
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Fig. 4 Real and imaginary parts of phase velocity of Love wave versus wave number k for the
guiding layer thickness 40 nm, l1 = 0.4 nm and various values of the flexomagnetic coefficients

Fig. 5 Real and imaginary parts of phase velocity of Love wave versus wave number k for the
guiding layer thickness 40 nm, ξ41 = ξ52 = 10−6Tm and various values of the micro-inertia
characteristic length

and micro-inertia effect. We found that the profile of the dispersion curves changes
significantly if flexomagnetic andmicro-inertia effects are considered.As can be seen
from Fig. 4, due to combining influence of flexomagneticity and micro-inertia effect,
for large wave numbers, the real part of phase velocity increases with the increase
of the flexomagnetic coefficient ξ if ξ = 2.1 × 10−6 Tm, 4.6 × 10−6 Tm and 10−5

Tm. However, if ξ = 10−6 Tm, the influence of micro-inertia terms becomes domi-
nant and the real part of the phase velocity is smaller than the ones predicted by the
classical theory. We also found that if the micro-inertia effect is taken into account,
the cut-off regions do not occur when the ξ = 2.1 × 10−6 Tm. This means that the
profile of dispersion curve significantly depends on the ratio of the flexomagnetic
coefficients and micro-inertia characteristic length.

Figure 5 gives profiles of dispersion curves for flexomagnetic coefficient 10–6 Tm
and values of the micro-inertia characteristic length 2 Å, 4 Å and 6 Å. From Fig. 5
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Fig. 6 The effect of the guiding layer thickness on the real and imaginary parts of phase velocity
for flexomagnetic coefficients ξ41 = ξ52 = 10−6 Tm, l1 = 0 (figure a) and l1 = 0.2 nm (figure b)

it is observed that micro-inertia terms have a significant influence on the real part of
phase velocity c. This effect is stronger for high wave number (short wavelengths).
When the wave number k is small, the imaginary parts of phase velocity calculated
from various values of the micro-inertia characteristic length are close to each other.
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Decreasing distinctions in dispersion curves for imag(c) can be observed only at
large wave numbers.

Figure 6 shows the dispersion curves for the values of the guiding layer thickness
20 nm, 30 nm, 40 nm and 50 nm. The result obtained from the generalized theory
of flexomagnetic media without micro-inertia effect is presented in Fig. 6a. The
dispersion curves in Fig. 6b are plotted with the assumption that characteristic length
is equal to 2 Å. As can be seen from the curves, the effect of the layer thickness is
more pronounced for narrower layers. Theminimum of real(c) decreases whereas the
minimum of imag(c) increases if the guiding layer thickness increases. Reducing the
layer thickness, the wave attenuation reaches its maximum at higher wave numbers
k. From Fig. 6a, b one can also observe that the influence of micro-inertia terms
becomes important for sufficiently high wave numbers.

4 Conclusions

The classical theories are not capable of appropriately describe the magneto-electro-
mechanical behavior of Love waves in a nano-scale flexo-piezomagnetic layer over-
lying the piezoelectric half-space. The influence of flexomagneticity and micro-
inertia effect should be considered in this case. In this study, the behavior of
magneto-electro-elastic surface Love waves in a structure consisting of piezoelec-
tric substrate of crystal class 4 mm and flexo-piezomagnetic elastic layer is studied.
Mathematical model of a substrate takes the piezoelectric properties of the material
into account while the relations for a nano-thin layer accommodate the influence
of flexomagneticity and micro-inertia effect. A solution to dispersion relation is
found for magneto-electrically open boundary conditions. The dependence of phase
wave velocity on the wave number is numerically studied in detail for piezomag-
netic ceramics CoFe2O4 and piezoelectric ceramics BaTiO3 for various values of
flexomagnetic coefficients and micro-inertia characteristic length.

The study proved that both flexomagnetic andmicro-inertia effects play an impor-
tant role in layered structures at the micro-/nano-scales and can significantly affect
the profiles of dispersion curves. Numerical investigations showed that growing
flexomagnetic coefficient increases the Love wave phase velocity, while its value
decreases with increasing the micro-inertia length parameter. The influence of flexo-
magnetic and micro-inertia effects is remarkable for sufficiently high wave numbers.
This influence is more pronounced for a smaller thickness of wave-guide layer as
well as for larger values of micro-inertia characteristic lengths and flexomagnetic
coefficients. Contrary to the prediction of the classical theories, if the flexomagnetic
properties of a layer are taken into account, the cut-off regions can occur in the
considered layered structure in case of large values of flexomagnetic coefficients and
a small micro-inertia characteristic length. The profile of dispersion curves and the
presence or absence of cut-off regions in these curves, depend on the guiding layer
thickness, and on the ratio between the values of flexomagnetic coefficients and the
micro-inertia characteristic length.
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The obtained results can be helpful in mathematical modelling and engineering
applications of new small-scale acoustic devices made of smart piezoelectric and
piezomagnetic materials.
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