On the Reliability)
of Computing-in-Memory Accelerators oo
for Deep Neural Networks

Zheyu Yan, Xiaobo Sharon Hu, and Yiyu Shi

Abstract Computing-in-memory with emerging non-volatile memory (nvCiM) is
shown to be a promising candidate for accelerating deep neural networks (DNNs)
with high energy efficiency. However, most non-volatile memory (NVM) devices
suffer from reliability issues, resulting in a difference between actual data involved
in the nvCiM computation and the weight value trained in the data center. Thus,
models actually deployed on nvCiM platforms achieve lower accuracy than their
counterparts trained on the conventional hardware (e.g., GPUs). In this chapter, we
first offer a brief introduction to the opportunities and challenges of nvCiM DNN
accelerators and then show the properties of different types of NVM devices. We
then introduce the general architecture of nvCiM DNN accelerators. After that, we
discuss the source of unreliability and how to efficiently model their impact. Finally,
we introduce representative works that mitigate the impact of device variations.

Keywords Compute-in-memory (CIM) - Device variations * Deep neural
networks (DNN)

1 Introduction

Deep Neural Networks (DNNs) have excelled human performance in various crucial
tasks (e.g., image classification, object detection, and speech recognition) and have
become a popular solution for them. Thus, edge devices such as automobiles, smart-
phones, and smart sensors that depend on these tasks are ideal platforms to be empow-
ered by DNNs. However, due to the constrained computation resource and limited

Z.Yan - X. S. Hu - Y. Shi (X))
University of Notre Dame, Notre Dame, IN, USA
e-mail: yshi4@nd.edu

Z. Yan
e-mail: zyan2 @nd.edu

X. S. Hu
e-mail: shu@nd.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 167
L. Wang et al. (eds.), System Dependability and Analytics, Springer Series in Reliability
Engineering, https://doi.org/10.1007/978-3-031-02063-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02063-6_9&domain=pdf
mailto:yshi4@nd.edu
mailto:zyan2@nd.edu
mailto:shu@nd.edu
https://doi.org/10.1007/978-3-031-02063-6_9

168 Z. Yan et al.

power budget of edge devices, direct implementation of computational intensive
DNNs on edge devices is a significant challenge.

A majority of the works addressing this challenge use application-specific inte-
grated circuits (ASICs) or field-programmable gate arrays (FPGAs) for DNN accel-
eration. These conventional special-purpose edge DNN accelerators typically use a
group of on-chip process elements (PEs) to handle computation and utilize off-chip
non-volatile (NV) storage (e.g., flash) to store the model information (i.e., DNN archi-
tecture and model weights) [8]. Between the static random-access memory (SRAM)
in the PEs used for temporary data caching and off-chip non-volatile storage used
for power-off data preservation, there is also a complex memory hierarchy, generally
consisting of several levels of dynamic random access memory (DRAM)-based on-
chip memories. Because of this separation of data and computation, which is a key
limitation of the conventional von-Neumann architecture, these DNN edge acceler-
ators face energy efficiency and computing latency challenges. Specifically, PEs of
this kind of architecture generates a large volume of intermediate data. These inter-
mediate data need to be moved between different levels of the memory hierarchy so
that they can be used by different process elements. Data movements across different
levels of memory hierarchy induce a great time and energy consumption overhead,
especially when accessing the lower level of the memory hierarchy. This challenge
is also called the memory wall.

Non-volatile Computing-in-Memory (nvCiM) DNN accelerators [21] offer a great
opportunity to break the memory wall by utilizing their special architectural advan-
tages. nvCiM architectures reduce data movement with an in-situ weight data access
scheme [42]. Emerging NVM devices (e.g., RRAMs, STT-RAMS, and FeFETs) are
utilized so that nvCiM platforms can achieve higher energy efficiency and memory
density compared with traditional MOSFET [39] based designs. More specifically,
nvCiM can achieve low latency and high energy efficiency because, (1) the CiM
structure avoids the long latency for moving data across multi-level memory hierar-
chies to retrieve the intermediate data and/or DNN weights; (2) analog computing
engine performs dot-product in a compact manner, thus reducing the amount of
intermediate data (i.e., partial sums) generated in multiply-and-accumulate (MAC)
operations; (3) the crossbar structured matrix-vector multiplication (VMM) engine
offers high parallelism that can perform VMM in one CiM cycle, thus shortening the
latency of DNN operations.

However, such accelerators suffer greatly from design limitations. Firstly, because
of emerging NVM devices tend to have low precision (14 bits) of (i.e., single NVM
device can only represent 1 to 4-bit data and more than one device is needed to
represent data in higher precision) and the limit of chip area, weight precision of
neural networks mapped to nvCiM accelerators is limited. Secondly, most nvCiM
accelerators require digital-to-analog converters (DACs) to convert the digital input
data to analog signals so that it can be processed in crossbars and also analog-to-
digital converters (ADCs) to convert the computation results back to digital signal
for other neural network operations (e.g., activation and normalization). The preci-
sion of intermediate activation data is limited by the precision of DACs and ADCs.
Thirdly, NVM devices, ADCs, and DACs suffer from device-to-device variations

On the Reliability of Computing-in-Memory Accelerators for ... 169

due to manufacture and programming defects and cycle-to-cycle variations due to
the computational environment difference. Compared with their digital counterparts
that can tolerate such noises, because of the analog nature of nvCiM accelerators,
the calculations performed in these platforms are not noise-free. The noisy nature
of the computations leads to performance degradation that (1) models deployed on
nvCiMs typically gets lower accuracy than their ideal counterparts trained in the data
centers and (2) developers will not be able to know the exact accuracy of a model
before it is deployed on a certain copy of the nvCiM product.

This reliability issue and its impact on DNN performance have been studied
from different levels of design, including behavioral level explorations [15, 50],
architecture level analysis [49], and device-level observations [56]. Cross-layer co-
design efforts that simultaneously explore DNN model and hardware design pairs that
can together achieve both high perception task performance and desirable hardware
reliability are the current direction of this field [23].

In this chapter, we focus on design efforts targeting crossbar-based nvCiM DNN
accelerators. We first introduce three typical emerging NVM devices including resis-
tive random access memory (RRAM), ferroelectric field-effect transistor (FeFET),
and Spintronics (STT) Devices. We then describe typical nvCiM DNN accelerator
designs, their key components, and their benefits. After that, we discuss the limi-
tations of nvCiM DNN accelerators and some key findings for these limitations.
Finally, we introduce methods proposed to address the unreliability issue of nvCiM
DNN accelerators from three aspects, encoding, DNN model training, and DNN
architecture selection.

2 Non-volatile Devices

2.1 RRAM

Resistive random access memory (RRAM) is a two-terminal device that can be
programmed into different levels of resistance value by using programming voltages
in different magnitudes and duration.

As shown in Fig. 1a, the major component of RRAMs is a metal-insulator-metal
(MIM) stack, where a dielectric layer is stacked in the middle of two electrode layers.
When provided a programming voltage, a filamentary path, also called conductive
filament (CF) [19], is created by soft electrical breakdown or forming in the electrode
layers. In this filamentary path, a large concentration of defects, e.g., oxygen vacan-
cies in metal oxides [4] or metallic ions injected from the electrodes [32], are then
driven by field-induced migration and diffusion. Application of a positive voltage
to the top electrode, where the defects are concentrated, induces defect migration
towards the bottom electrode, thus causing the transition to the low-resistance state
(LRS), because conduction is enhanced at defect sites. Application of a negative
voltage, to the contrary, induces defect migration back to the top electrode, thus

170 Z. Yan et al.

Free
layer
Tunnel
layer

Top

Top
electrode electrode

Dielectric layer
Conductive
filament

Ferroelectric
layer

Pinned Bottom
Bottom
electrode layer electrode
(b)
Current Resistance Polarization
Crystallization Reset state
+P,
Set
transition
Veese / AN
Amorphization K 4 7
! Veer Voltage P Ve +Ve Voltage
\ ' Set state
Reset\ ./ LRS h P,
transition V.,

(d) (e) (f)

Fig. 1 Illustrations for key structures of different emerging NVM devices and their characteris-
tics [8]. a RRAMs, b MRAMs and ¢ FeFETs. The actual devices are more complex then these
illustrations. d—f Are their characteristics, respectively

causing the transition to the high-resistance state (HRS) due to the disconnection of
the CF. These transitions can be seen in the idealized current—voltage (I-V) charac-
teristic in Fig. 1d, where the transition to the LRS (set operation) and the transition to
the HRS (reset operation) occur at opposite voltages. Similar to the bipolar RRAM
concept shown in Fig. 1d, unipolar RRAMs have also been presented, where the
set and reset processes both occur under the same voltage polarity because of the
dominant role of Joule heating in creating and dissolving the CF [24, 51]. All of
these devices rely on the diffusion and migration of defects and will be referred to
as RRAM throughout this chapter.

RRAM is a promising technology for in-memory computing thanks to the key
features discussed below. First, its resistance ratio between HRS and LRS (on/off
ratio) is generally greater than ten, which allows a clear distinction between digital ‘0’
and ‘1°. This feature can be further exploited by dividing this gap between HRS and
LRS in anon-binary manner, i.e., into multiple levels, resulting in a multi-level device
that can represent multiple bits of data. This helps RRAM to offer a high-density
storage scheme. Secondly, RRAM can operate at a moderately high switching speed
(typically below 100 ns and some devices can achieve even in the sub-ns regime
[11, 34]). Thus, RRAMs can operate in platforms with high clock speeds. Finally,
RRAM is more durable compared to conventional flash storage devices [28]. This
makes training DNNs on RRAM-based platforms possible.

On the Reliability of Computing-in-Memory Accelerators for ... 171

2.2 Spintronics Devices

The spintronics devices are two or three-terminal devices equipped with a magnetic
tunnel junction (MTJ) that stores information using magnetization direction of its
recording layer and utilizes tunnel magnetoresistance (TMR) effect for reading where
the resistance of the MTJ changes according to the stored information. In this section,
we introduce the two-terminal version of this device, named spin-transfer torque
(STT) device. When used as a programmable memory, this kind of device is also
called Spin-transfer torque magnetic RAM (STT-MRAM).

Figure 1b shows a magnetic tunnel junction (MTJ), which is the major building
block for most Spintronics Devices. The MTJ consists of a MIM structure where
two ferromagnetic metal layers are divided by a thin tunnel oxide. An example
of ferromagnetic metal materials used in MTJs is the CoFeB alloy, and an example
material for the tunnel oxide is MgO. For the two ferromagnetic layers, one is referred
to as the pinned layer and the other as the free layer. The magnetic polarization of the
pinned layer is structurally fixed so that it can act as a reference point. On the other
hand, the magnetic polarization of the free layer can be modified by a programming
procedure.

Depending on the state of the free layer, the two ferromagnetic polarization can
thus be either to the same direction (parallel) or to the opposite direction (antipar-
allel). Parallel polarization of the two layers puts the device into a low resistance
state (LRS), and antiparallel means a high resistance state (HRS) due to the tunnel
magnetoresistive effect [7]. Researchers are working on finding efficient ways to
flip the state of the MTJ and the spin-transfer torque (STT) is one of the newer and
more competitive candidates to offer a scalable and low-efficient flip [33]. In the
STT procedure, transition to the parallel state takes place directly by conduction
electrons, which are first spin-polarized by the pinned layer, then rotate the magnetic
polarization of the free layer by magnetic momentum conservation [41]. Similarly,
the free layer magnetization can be rotated to the antiparallel state by applying an
opposite voltage (hence opposite current direction). The relative difference in resis-
tance of the LRS and HRS, also called the magnetoresistance ratio when referring to
spintronics devices, is typically around 200% [53]. STT-based devices are also fast,
with a switching speed typically lower than 1 ns, and durable, with an endurance
above 104 [6].

In STT devices, STT induced magnetization switching [5, 41] is used to store
data in to the device (write process). Its primitive cell has one cell transistor and one
MTJ (1TIMTI), which can achieve a relatively small cell size of ideally 6F2, where
F is the feature size of the MTJ layer. The write current passes through the tunnel
barrier, as is also the case with the read current. Accordingly, the read current should
be small enough so that the write event, i.e., magnetization switching, does not take
place, and the write current should be small enough that it does not give rise to a
barrier breakdown.

172 Z. Yan et al.

2.3 FeFET

A ferroelectric transistor (FeFET) is a three-terminal device equipped with a layer
of ferroelectric (FE) material. It can either be configured to a steep switching mode
to serve as an efficient FET or a non-volatile (NV) mode to serve as a programmable
switch.

The structure of a FeFET is similar to a regular bulk MOSFET or FinFET, except
that in its gate stack, there is an additional layer of ferroelectric (FE) material. Besides
this FE material, a metal layer between the FE and dielectric may or may not be
included [2]. Designs of FE transistor structures with [29] and without [40] this layer
both demonstrate state-of-the-art efficiencies. It is worth noting that although some
FE materials (e.g., hafnium zirconium oxide (HZO)) are both efficient and highly
compatible with CMOS processes and can thus be realized on the industrial scale,
other FE materials (e.g., lead zirconium titanate (PZT) [3]) may be incompatible
with CMOS processes.

As discussed above, FeFETs can operate in two different modes: an NV mode
or a steep switching mode. Basic structures of FeFETs in these two modes are the
same, except that in different configurations (e.g., material thickness, gate length, and
width), the relative capacitance of the FE material and the underlying FET changes,
resulting in different modes of operation. In this chapter, we discuss the properties
of FeFETs in the NV mode because FeFETSs used in nvCiM DNN accelerators are
majorly in this mode.

NV mode of FeFETs are discovered later than its steep switching counterpart at the
emergence of HZO-based FeFETs [31]. The non-volatile property results from the
hysteretic polarization (P) versus voltage of the FE material (V pg) shown in Fig. 1f.
When the FE material is placed in series with the gate of a transistor, the hysteretic
window of P versus Vs is reduced because the MOS structure of the FET and
the associated depolarization fields imposes a capacitance and the total capacitance
between gate and source changes [44]. Nevertheless, a sufficiently thick FE broadens
the hysteretic window so that the hysteretic behavior is preserved and can be observed
in the Ip — Vg transfer characteristics of this device Fig. 1f. This corresponds to
the non-volatile, hysteretic mode of FeFETs. In this mode of operation, at Vs =
0V (i.e., when the supply voltage is turned off), the FeFET exhibits two stable states
which correspond to positive or negative polarization retention in the FE layer. For
an n-type FeFET, the device exhibits high resistance states (HRS) when P < 0 and
low resistance states (LRS) when P > 0. For a p-type FeFET, it is in HRS when P >
0 and LRS when P < 0. Thus, when the FE layer is sufficiently thick, non-volatility
can be embedded inside a transistor, i.e., FeFET can operate as an NV memory and
a transistor switch at the same time.

On the Reliability of Computing-in-Memory Accelerators for ... 173

3 CiM DNN Accelerators
3.1 Computing-in-Memory

Conventional von-Neumann architecture is not efficient because the cost of data
movements between memory and processing units is high. This issue is called the
memory wall. More seriously, the technologies for logic units are growing faster
than memory cells, causing a significant gap between computation and memory
access. Thus, various efforts have been made to break the memory wall by moving
the computations closer to memory. The integration of memory and computation is
an evolving concept and is developing along with technological advances [16]. We
first introduce an earlier concept which is now considered near memory computing
(NMCO). Researchers embed processing cores into dynamic random-access memory
(DRAM) modules [12, 35, 37] so that data can be processed in the DRAM module.
This avoids sending data from DRAM to CPUs across the complex memory hier-
archy. However, integrating DRAMSs and processing units on the same chip is not
beneficial if the communication cost between memory and processing units is not
reduced. The concept of 3D stacking is adopted to address this issue. By stacking
multiple silicons on top of each other and utilizing through-silicon-vias (TSVs) to
handle inter-silicon layer communications, 3D stacking allows the processing unit
to be integrated as additional layers of the stacked chip and can provide higher
bandwidth compared with putting memory and logic in different chips [13, 18, 55].
However, these methods do not actually use memory modules for data processing
and are still sending data from memory to logic.

A step further from NMC is computing-in-memory (CiM), where processing
is directly performed inside the memory array. The latency and energy efficiency
requirements of edge devices greatly inspired researches in this field. The integration
of processing and memory units can be done in different levels of granularity. The
extremest design of CiM is that each of the memory cells is able to perform logic
operations [26]. This is referred to as fine-grained CiM. There is also a spectrum
of designs between fine-grained CiM and NMC. A typical design is to empower
memory arrays (of SRAM or DRAM) with processing abilities so that data can be
processed inside operations inside and between memory arrays. This can be achieved
by modifying the peripheral circuitry of these memory arrays. This approach is
referred to as coarse-grained CiM.

The CiM concept is further evolved with the help of new advances in emerging
NVM device technologies. Specifically, NVM devices including RRAMs, STT-
MRAMs, and FeFET-based RAMs can offer high density, good scalability, and
high power efficiency. Thus, these devices are natural replacements for SRAMs
or DRAMs in CiM architectures. Various recent efforts utilize CiM-capable NVM
devices instead of SRAMs or DRAMs as building blocks of either cache or main
memory. One direction of research is to use NVM simultaneously as storage and
logic devices by re-designing sense amplifiers so that NVM arrays can perform a
subset of logic and arithmetic operations [22, 30, 38]. Another direction is to use

174 Z. Yan et al.

NVMs to build content-addressable memories (CAMs). CAMs can perform searches
in a parallel manner, thus reducing the search time significantly. Moreover, search in
CAMs requires little data movement, which leads to low energy consumption. The
third direction is to use NVM devices to build DNN accelerators. These accelerators
can directly execute matrix-vector multiplication inside the memory array. This saves
the cost of data movements. The advances of NVM-based CiM DNN accelerators
are discussed in detail in the following sections.

3.2 Crossbar-Based Vector-Matrix Multiplication Engine

Crossbar array is the key component of nvCiM DNN accelerators. As shown in
Fig. 2, a crossbar array can be considered as a processing element for matrix-vector
multiplication where matrix value (i.e., weights for DNNs) are stored at the cross
point of each vertical and horizontal line with resistive NVM devices such as RRAMs
and FeFETs, and each vector value is propagated through horizontal data lines. In
this work, we mainly introduce an RRAM-based design. Designs using other kinds
of NVM devices are with similar structures. The calculation in crossbar array is
performed in the analog domain but additional peripheral digital circuits are needed
for other key DNN operations (e.g., non-linear activation and pooling), so DAC and
ADCs are adopted between different components.

As is demonstrated in Fig. 2, every bitline (vertical) is connected to every word-
line (horizontal) via NVM cells [39]. Assume that the cells in the first column are

Fig. 2 Illustration of Synapse

crossbar array architecture. — DAC i 7 = = \
The input is fed horizontally [;

and multiplied by weights \LL\ | \H\) \H\
stored in the NVM devices at i 1 =

each cross point. The — DAC) < -

multiplication results are EI\ \h\ ‘II\

summed up vertically and
the sum serves as an output I |

— DAC <

— DAC 2

L
A

ADC ADC ADC

On the Reliability of Computing-in-Memory Accelerators for ... 175

programmed to resistances 7y, 3, ..., 'y, Where n is the number of rows. The conduc-
tances of these cells, g1, g2, ..., g, are the inverses of their resistances (g; = 1/r;).
If voltages V4, V», ..., V, are applied to each row 2, cell i generates current V;/R;,

which is equivalent to V; x g;, into the bitline, based on Kirchoff’s Law. The total
current accumulated on the bitline is the sum of currents passed by each cell in the
column, ie., I = _, V; x g. This current / represents the value of a dot product
operation, where one vector is the set of input voltages at each row V and the second
vector is the set of cell conductances g in a column, i.e.,/ =V - g.

As shown in Fig. 2 V is applied to all columns in parallel. The currents emerging
from each bitline can therefore represent multiple vector-vector dot product, which
is then a vector-matrix multiplication. VMM is the key operation of DNNs. In a fully
connected layer, for example, there are multiple neurons and each neuron is fed with
the same input vector, but each of the neurons has a different set of synaptic weights.
This operation can be represented by O = V G where V is the input, G is the weight
matrix for neurons and O is its output. The crossbar array shown in Fig. 2 represents
an n x m crossbar array that performs dot products on n-entry input vectors for m
different outputs in a single CiM cycle.

Note that the result of the VMM operation would also need to be applied a
bias value and passed through a non-linear activation function. This is done off
the crossbar array. Thus, peripheral circuits are needed to perform these operations.
Moreover, crossbar arrays handle VMM operations in the analog domain while other
peripheral circuits are digital. DACs and ADCs are needed to transform data to and
from the analogy domain. Generally, for each row of the crossbar array, there is a
dedicated DAC to serve this wordline. However, ADCs are large in area and power-
hungry. Thus, multiple bitlines need to share one ADC and this is achieved by the
sense-and-hold circuits along with the MUX selector.

3.3 General Architecture of nvCiM DNN Accelerators

Various accelerator architectures have been proposed to utilize the nvCiM crossbar
arrays for more efficient DNN acceleration. There are generally two fashions of
acceleration, one only accelerates the inference path of DNN models and the other
also considers DNN training acceleration. In this chapter, we focus on DNN inference
acceleration and we introduce two well-known architecture level designs, ISAAC
[39] and PRIME [10] for this scheme.

The first design, In-Situ Analog Arithmetic in Crossbars (ISAAC) [39] uses cross-
bar arrays for both DNN weight storage and processing elements for VMM operations
[54]. As shown in Fig. 3, ISAAC is implemented with a hierarchical-structured archi-
tecture whose major component is “tile”. Each tile consists of multiple in-situ MAC
units (IMA), eDRAM buffers, and key DNN circuitries including shift-and-add (SA),
sigmoid, and max-pooling units. Thus, a tile can perform DNN operations individu-
ally. Each IMA unit is equipped with a few crossbar arrays and ADCs connected by
a shared bus. Different from traditional SRAM-based designs, writing NVM devices

176 Z. Yan et al.

Tile m Tile H Tile H Tile Shift & _‘
Add
Tile HH Tile H+ Tile HH Tile eDRAM Output
Buffer Register
Tile = Tile 1 Tile H7 Tie
IMA IMA IMA IMA
L I I |
Tie HH Tie HH Tile HH Tile
IMA IMA IMA IMA
[External IO Interface]
Chip (Node) Tile

Fig. 3 Illustration of ISAAC architecture. ISSAC is composed of a group of tiles and each tile
consists of multiple crossbar-based IMAs, buffers, and peripheral circuits for other key DNN
operations

is expensive (both in terms of time and energy consumption), so re-configuring
crossbars in runtime are not feasible and thus crossbar arrays cannot be reused and
each array is dedicated to only one CNN layer. The outputs of a former layer are
temporarily preserved in the eDRAM buffer so that they can be used as the input of
the next layer. Note that, except for the structure inside a “tile”, the architecture of
ISAAC is very similar to its digital DNN accelerator counterpart DaDianNao [9],
which is a state-of-the-art architecture when ISAAC is proposed. After tape out, the
researchers show that, with a 16-chip configuration, ISAAC achieves 14.8 x higher
throughput while consuming 5.5x lower energy than DaDianNao. This means (1)
ISAAC can achieve higher energy efficiency than state-of-the-art and (2) crossbar
array-based design is a key contributor to this efficient design.

Different from ISAAC that never re-configures NVMs, the PRIME architecture
[10] uses a scheme where a portion of the NVM arrays can alternate between storage
and compute units during runtime. As shown in Fig. 4, the authors modify the stan-
dard wordline decoder and drivers (WDD), column multiplexers, and sense ampli-
fiers so that they can better suit the RRAM-based crossbar arrays, and configure
the storage banks into three different function units, memory subarrays (MS), full-
function subarrays (FFS), and buffer subarrays (BS). The FFS is the key component
that can alternate from memory to computational units. In the computation mode,
FFS can perform VMM for DNNs, and in the storage mode, FFS buffers the inter-
mediate data generated by VMMs. Similarly, the BS also acts as storage when FFS
is not in computation mode. The sense amplifier is reconfigured to detect the higher
precision analog value for computation compared to storage requirements so that
matrix multiplication can be performed. The modified column multiplexer executed

On the Reliability of Computing-in-Memory Accelerators for ... 177

) Global Word Line -
[1
: :
WL Crossbar 1 NextFFs |
| driver& i i
—1 | decoder | >] or
J v " i Memory 1
Column ! Subarray |
Multiplexer i i
E l S :
S v
8 Sense Global Data
é Amplifier Line
© g 1 g
sl re—-s—————— 1
O —!:Next FFS or MemorySubarray 1
— —| Buffer Subarray |
1
 Controller | [GloballORowBuffer |
Single MemoryBank

Fig. 4 Illustration of the prime memory bank. Each FFS can operate in two modes, one is compu-
tation mode for MAC operation of DNNs, and the other is storage mode buffering and data
preservation

analog substractions and nonlinear threshold functions. Although their implemen-
tation exerted a 60% area overhead, the computation energy was saved by 94% by
reducing external memory accesses.

4 Device and Circuit Non-idealities

Although nvCiM can offer low latency and high energy efficiency, there are two
major limitations of nvCiM, low data precision, and low device reliability. For the
first issue, due to the limitation of the area and power budget, both the weight stored
in the NVM devices and intermediate activation data can not be represented in a
high precision manner. nvCiM DNN accelerators generally use data representations
of four to eight bits [10, 39]. This problem is similar to the quantization problem of
the traditional digital DNN accelerators and has been sufficiently discussed [17, 45].
However, the origin, simulation method, and mitigation approach of the reliability
issue of nvCiM DNN accelerators are still open questions and are still receiving
heated discussions. In this section, we introduce the origin of the reliability issue of
nvCiM DNN accelerators with an example of RRAM devices. For STT and FeFET

178 Z. Yan et al.

devices, the source of unreliability is similar but the significance and specific behavior
of these noise sources are slightly different.

Various research about developing fault models for RRAM and other emerging
NVM devices has been established. In this section, we focus on five noise sources
that are directly related to the unreliability of nvCiM DNN accelerators: thermal
noise, shot noise, random telegraph noise (RTN), programming errors, and endurance
failures [14].

4.1 Thermal Noise

Thermal noise is also known as Johnson-Nyquist noise. It is electronic noise caused
by the thermal agitation of carriers and is a property of all passive devices. It happens
regardless of whether a voltage is applied to the device. A well-established model for
thermal noise is by placing a current source in parallel with the ideal target device.
The current source is also known as the noise current and its magnitude is modeled

by a Gaussian distribution with zero mean and a standard deviation of ,/ %,

where Kp is the Boltzmann constant (=~ 1.38 x 10723 J/K), T is the temperature
in Kelvins, §f is the bandwidth of the signal measured, and R is the resistance of
the ideal target device. Thermal noise is a fundamental property of resistive circuit
elements. From the model, we can observe that the only way to reduce thermal noise
is to reduce the device temperature. To handle this source of noise, noise resilient
architectures that can operate under thermal noise need to be devised.

4.2 Shot Noise

Shot noise is also a fundamental source of noise caused by the physical nature of
electronic devices. This source of noise is called Poisson noise because it can be
modeled by a Poisson process. The key cause of shot noise is the discrete nature of
currents where electric currents actually consist of flows of discrete charges (e.g.,
electrons). When the number of electrons flowing through the device at a certain point
of time fluctuates, a fluctuation of current through a device can be observed. This can
affect the measurement accuracy when a detector is sensing the current flowing into
it. Although shot noise is easy to be averaged out provided enough measurement time,
devices working in high frequencies (e.g., nvCiM DNN accelerators) still suffer from
such noise. As discussed above, a Poisson process is a more precise way of modeling
shot noise, but this noise model is too complex when embedded in other models. A
simpler model is a zero-mean Gaussian noise with a standard deviation of /2gI Af,
where g is the charge of an electron (~ 1.6 x 107'° C), I is the current flowing
through the ideal target device, and Af is the bandwidth of the signal measured.

On the Reliability of Computing-in-Memory Accelerators for ... 179

4.3 Random Telegraph Noise

Random telegraph noise (RTN) exists in both CMOS and emerging NVM device
circuits but is considered as a major cause of faults of emerging NVM devices [20].
RTN is also called burst noise and is caused by the charge carriers that are temporarily
trapped inside the device, thus changing the effective resistance of the device. The
resultis a temporary and unexpected reduction in the resistance of a device at runtime.
The trapping and untrapping of the charge carrier is modeled mathematically by
means of the telegraph process, which is a Markovian continuous-time stochastic
process that jumps discontinuously between two distinct values.

4.4 Programming Errors

Programming errors refer to the difference between the actual device resistance
and the target resistance due to the non-ideal configuration of the device. This is
generally caused by both the process variations and temporal variations of each
device. Affected by the former noise, when applied the programming voltage of the
same magnitude and duration, the resistance of different instances of emerging NVM
devices can be different. The latter leads to the fact even when applied to identical
programming pulses, an NVM device can be programmed to different values in
different trials of programming. A complex but effective way to mitigate this issue is
to use a scheme called write-and-verify [1, 36, 47]. The key operation is to iteratively
apply a series of short pulses (write) and then check the difference between current
and target resistance (verify), converging progressively on the target resistance. In
deploying accelerators for Neural Network inference, this time-consuming progress
is tolerable because once programmed, no more modifications to the resistance are
needed during the entire life span of the accelerator. This scheme pulls down the
programming error to less than 1%. This 1% of error can be modeled by a zero-mean
Gaussian noise where the standard deviation is determined by the error upper bound
of the write-and-verify process.

4.5 Endurance and Retention

Endurance Failure is about the device being able to preserve their property after
multiple times of write operations or and retention is about being able to read the
desired data at a long period of time after programming. The endurance of emerging
NVM devices varies widely based on the material properties and write mechanisms.
The typical endurance for CMOS-based SRAM is 10'® which means typically, after
this amount of write, the device would be stuck at a certain value, and writing it
would be infeasible. The typical endurance for STT-MRAM is 103, for FeFET is

180 Z. Yan et al.

10° and for RRAM is 107 [14]. On the other hand, being able to read out the correct
information when it is a long period of time after the device is programmed is also an
important subject. This is called the retention issue. For simple CiM implementations
like Memristive Boltzmann Machine, a typical worst-case lifetime is 1.5 years, but
for nvCiM DNN accelerators, the system is more complex and the lifetime is shorter.
To mitigate the effect of the endurance issue, researchers proposed a fault-tolerant
online training method [46] that maps the weight matrices stored in crossbars for
computation around faults or endurance failures through a combination of neural
network pruning and data remapping. This scheme increases the life of the neural
network accelerator, allowing it to be used for training.

5 Impact of Device Variation on DNN Acceleration

5.1 Model of Device Variation

The source of device variations and their behaviors are introduced in Sect. 4, but
modeling such device characteristics is not a simple task. A straightforward way
is to abstract the behavior of different devices into circuit-level models [56] and
utilize circuit-level simulation tools (e.g., SPICE) to investigate the behavior of
certain nvCiM DNN accelerators. However, because of the complexity of both
neural network typologies and DNN accelerator architectures, building circuit-level
models for nvCiM accelerators requires great human effort and needs to be modified
each time a new type of accelerator architecture is proposed. Moreover, circuit-level
models are computationally intensive. Using such models to simulate complex DNN
accelerators requires considerable evaluation time and is not suitable during design
phase explorations. Thus, a simple and effective model for the impact of device
variations is needed.

One of the effective modeling methods is to model the device variation as a whole
and use a Gaussian distribution to represent it [14, 15, 23, 50]. Here we introduce
one representative modeling method [15] using Gaussian variables.

The NVM device electrical property, e.g., conductance, is subject to the combined
effect of different variation sources as in Sect. 4. The actual conductance values g
considering variations on n devices of a crossbar array can be written as:

8 = Qonx1 + Age + F(onxtr ~ Zonx1 + [(80nx1.T)) (1)

where go,x1 = gonx1 + Ag, With go ,x1 denoting the expected conductance and
Ag, denoting the global conductance variation as a constant for all the devices on
the same die; r models the underlying spatially correlated and dynamic variations;
f(go.nx1,T) is a function describing the dependence of variations on the expected
conductance and can be approximated by f(go..x1,) due to the relatively small
value of variations w.r.t. the nominal values [11].

On the Reliability of Computing-in-Memory Accelerators for ... 181

Since the mapped weights w are linearly related to conductance asw = c¢; X g+co,
where ¢ and ¢(are two constants, each weight w; represented by multiple devices
can be modelled as a Gaussian variable:

w; = N(Mo,i, ‘I’(Mo,i)2> 2

=N(61g01,+00,01 201) (ZA +)‘i2,n>> 3)

5.2 Impact of Device Variation on DNN QOutputs

After finishing modeling the device variations, we can then investigate the impact of
device variations on nvCiM DNN accelerators. A typical study is to evaluate such
impact on an accelerator targeting image classification tasks [49]. In this section, we
introduce the findings of the authors of [49].

A starting point is understanding the effect of device variations on the output of
a DNN model. The forward path of a DNN model can be viewed as a function of
the input and the weight value of the model. Formally speaking, a DNN inference
process can be defined as:

0=FW,I “)

where F' is the DNN architecture, W is the DNN weights, I is the input vector, and
O is the output vector.

In classification tasks, the output vector O for each input (not batched) is a 1-D
vector whose size is the number of possible classes. Each element of this vector
represents the model’s confidence that the input images should be classified into a
certain class. Thus, the class with maximum value in O is what the model predicts to
be the best choice for classification. During training, O is passed through a Softmax
function so that the confidence for each class is between 0 and 1 and the sum of
confidences among different classes is 1. However, Softmax is not necessary during
DNN inference because it does not change the order of the values in O. The final
predicted class of I is calculated by argmax (O), which is the index of the item in
O that has the maximum value. As we focus on inference, the vanilla version of O
before Softmax is the key.

Taking device variation into account, a model deployed on nvCiM DNN
accelerators can be represented as:

ODep = F(WDep’ 1) = F(N(WExpa 0), 1) &)

182 Z. Yan et al.

where Wp,, is the weight actually deployed on the accelerator and according to Eq. 2,
it can be modeled as a Gaussian variable whose mean is Wg,,, which is the trained
value of the neural network to be deployed, and the standard deviation is o, which
can be calculated using Eq. 2. Op,, is the affected output.

One indicator of the effect of device variations on nvCiM accelerators is the
difference in output. Formally speaking, we can define output change as the difference
between the output without device variation and the output value under the impact
of device variation:

OChange = F(WExps I — F(N(WExps o), 1) (6)

Note that Ocpange is also a random variable.

In order to get a glance at the statistical behavior of Ocpange, according to the
workflow introduced in Sect. 5.2, the authors train a LeNet model for the MNIST
dataset [27] to state-of-the-art accuracy. The authors then randomly choose one input
image in the test dataset and sampled 10k different instances of noise. With this setup,
the authors gathered 10k different Ocyange Vectors.

For MNIST, Ocpang. is a vector of 10, with each element representing the confi-
dence of classifying the input image into one certain number digit. Because a high-
dimensional vector is not a good choice for analytical study and visualization, each
element of these vectors is visualized independently, so 10 instances of distribution
data are collected.

Each element of Ocpange follows Gaussian distribution. To visualize this finding,
the authors plot the histogram of the distribution of each element of O¢pange vector
and the corresponding Gaussian distribution that fits it. The visualization result for
the first element of Ocyange is shown in Fig. 5. Itis obvious that the visualized variable
is Gaussian.

This observation generalizes in various networks in various datasets. For the
MNIST dataset, three models are analyzed: (1) LeNet and two-layer-multilayer
perceptrons (2-layer-MLP) using (2) ReLU and (3) Sigmoid activation. For the

Fig. 5 Ocpange distribution 07
of LeNet for MNIST. 10k

Ochange vectors are gathered 0.6
from one trained LeNet

model affected by 10k > 0.5
different instances of weight G 04
values from o = 0.04. This =
figure shows the distribution .% 03
of the first item of the

gathered Ocpange vectors. It 929
is obvious that the visualized 014
variable is Gaussian

0.0
-20 -15 -10 -05 0.0 0.5 1.0 1.5 2.0

Value change

On the Reliability of Computing-in-Memory Accelerators for ... 183

CIFAR-10 dataset [25], the authors of [49] test four models: (1) a conventional
floating-point CNN, (2) a quantized CNN, and two ResNets, (3) ResNet-56 and (4)
ResNet-110. For each model, three different initializations are used to train three
different sets of weights.

The authors of [49] collect all O¢pange variables and find the closest Gaussian
variable that fits each of them. To measure the similarity of O¢pange and its Gaussian
counterpart, two widely used standards: mean square error (MSE) and Chi-square
(x?) test are used. For variables with one element, MSE can be described as:

1 & 5
MSE = 5 Z (0; — E;) (7

i=l

and x? test can be depicted as:
N 2
2 (Oi - Ei)
- St T 8
X ;:1 E ®)

where O; and E; are the observed (Ocpange) and estimated (Gaussian) value of,
normalized in the form of probability density, and N is a user-defined granularity.
Here N = 1001is used because it is precise enough when there is a total of 10k instances
of Ocpange data. The similarity of a vector is averaged out among all of its elements
and the final similarity is also averaged out among all different initializations.

The similarity of Ocpang distribution and its Gaussian fit for different models are
shown in Table 1. For each model tested, the average x? test results among different
initializations are all below 0.1 and MSE are all below 103, which indicates we can
have high confidence that Ocpgnge distribution is Gaussian. Moreover, this observa-
tion is scalable because, for both extremely shallow (e.g., 2-layer MLP) and very
deep (RestNet-110) candidates, both errors do not increase. Thus this observation
generalizes across different DNN models targeting classification tasks. With this

Table 1 The similarity of Model Dataset x2(1072) | MSE (104

Ochange distribution and its

Gaussian fit for different MLP-ReLU MNIST 5.22 3.20

models MLP-Sigmoid | MNIST 5.81 2.20
LeNet MNIST 4.59 2.67
Float-Conv CIFAR-10 | 7.01 3.03
Fixed-Conv CIFAR-10 | 6.79 2.74
ResNet-56 CIFAR-10 |4.56 1.79
ResNet-110 CIFAR-10 | 4.81 2.01

The x2 test result and MSE between the Ocpange and its Gaussian
fit counterpart is presented. Both tests show that the Ocpange is a
multi-dimensional Gaussian variable w.r.t. different instances of
noise

184 Z. Yan et al.

conclusion, the authors of [49] claim that, with any independent and identically
distributed Gaussian noise on weight, the output vector of the same input image
follows a multi-dimensional Gaussian distribution' over different samples of
noise.

This claim is very strong and there is only empirical support for it. However, it is
not counter-intuitive. The output of the first convolution layer is the summation of the
multiplication result of deterministic inputs and Gaussianly distributed weights and
is thus a summation of Gaussian distributions. The summation of Gaussian variables
is also a Gaussian variable, so the output of the first layer is a Gaussian variable. After
activation, the input of the second layer is a transformed Gaussian variable. After
propagating through this layer, each output value is the sum of multiple multiplication
results, and operands for each multiplication are both Gaussian variables. It is also
worth noticing that, for the same layer, the standard deviation o for each noisy
weight is the same. So the results of each multiplication are close to IID and with
enough number of operands for this summation, the accumulated variable can be
approximated by Gaussian variables. Thus, although the final output may not strictly
be a Gaussian variable, a Gaussian approximation can be observed.

6 Dealing with Device Non-idealities

The majority of noise sources of nvCiM DNN accelerators are random noise that is
difficult to eliminate during device production. Fortunately, there are opportunities
from the accelerator architecture, DNN topology design, and DNN training aspects
that can help to mitigate the effect of device variations. In this section, the authors
introduce four different efforts from these three aspects.

6.1 Error Correction

As discussed in Sect. 3.3, nvCiM accelerators process DNN models in a layer by
layer manner and devise nvCiM processing units that consist of crossbar arrays and
other peripheral digital blocks to perform matrix-vector multiplication and other key
DNN operations including non-linear activation and pooling. From the accelerator
architecture design aspect, it is a straightforward idea to equip nvCiM platforms with
error correction abilities so that they can mitigate the effect of device variations.

In this section, we introduce one representative work [14] that uses error correction
code to assist nvCiM computation. The authors use a group of arithmetic codes,
named AN-codes [43] for error correction. Arithmetic codes are a class of error
correction codes (ECCs) that can preserve the result of arithmetic operations with
noisy operands. AN-codes are a set of arithmetic codes that apply arithmetic weight

I Note that each element of the output are deeply co-related, not independent.

On the Reliability of Computing-in-Memory Accelerators for ... 185

Fig. 6 AIllustr.ati(.)n of error Sum = / @ / gecoded
correction unit circuitry. This utput
is a lookup table styled % % .
design A = B—> Valid?
0
1
2
-16 —
4
-1

Correction Table

to each operand so that it can maximize the arithmetic distance between codewords.
An example of AN codes that utilizes residues is, for a given integer K and operands
A and B, KA + KB = K(A + B) and (KA 4+ KB)% K = 0. The ECC units can detect
and correct the error according to the residue.

The error correction unit (ECU) in [43] has three major components: two
divide/residual units for the residual computation of A and B (one each), and a correc-
tion table that maps each residual to a syndrome. The output of the first divide/residual
unit computes the integer division of the input by A and outputs the residual along
with the quotient. The residual is used to index into the correction table, and the
value read from the correction table is added to the result. This value is then fed into
the second divide/residual unit where it is divided by B. The output of this unit is
the final output of the error correction system and includes a flag indicating if the
computation was in error. An illustration of ECU is shown in Fig. 6.

6.2 Identifying Robust Neural Architectures

Some DNN topologies (neural architectures) are more robust than others against
device variations. Finding these neural architectures is a viable way of mitigating
the effect of device variations. Meanwhile, different neural architectures require
different amounts of computation power and are thus with different inference latency
and power consumption. Handcrafting a neural architecture that meets all design
requirements is a challenging task. Fortunately, neural architecture search (NAS)
[48, 52, 57] is proposed to automatically find an optimal neural architecture in a
designated design space using reinforcement learning-based algorithms.

In this section, we introduce NACIM [23], a device-circuit-architecture co-
exploration framework that can automatically identify the best CiM neural accel-
erators from a design space including the device type, circuit topology, and neural
architecture hyper-parameters. NACIM framework iteratively conducts explorations
based on a reward function, which is suitable for reinforcement learning approaches

186 Z. Yan et al.

or evolutionary algorithms. By configuring the parameters of the framework,
designers can customize the optimization goals in terms of their demands. The authors
model the effect of device variation by modeling the shot noise as a stuck-at-low or
stuck-at-high fault, and the other noise sources as a whole to be a zero-mean addi-
tional Gaussian noise extracted from widely adopted models [56] on the weight
value. Experimental results show that the proposed NACIM framework can find the
robust neural network with only 0.45% accuracy loss in the presence of device varia-
tion, compare with a 76.44% loss from the state-of-the-art NAS without considering
device variation.

6.3 Training Robust DNNs

DNN models with the same neural architecture but different weights can have very
similar accuracy in ideal conditions but very different accuracy in the existence
of device variations. Thus, finding proper weights that are robust against device
variations in the training process is a desirable approach.

A straightforward way to find robust weights is to simulate the noisy forward
path in the training process, i.e., in each iteration of training, the algorithm sample
an instance of noise and add it to the weight in the forward and backpropagation path
to calculate the gradient, then remove the noise when updating the weights.

This method is used in NACIM [23] which is introduced before. For implemen-
tations in MNIST dataset [27], noise injection training can reduce the accuracy drop
between the ideal model and model with device variations from 6 to 0.5%, and in
CIFAR-10 dataset [25], noise injection training can reduce the accuracy drop from
76.44 t0 0.45%.

A more advanced way to find robust weights is to seek help from Bayesian Neural
Networks (BNN). Bayesian neural network is known for a stochastic gradient varia-
tional Bayes framework applied to approximate posterior distributions over network
parameters. By employing a prior distribution over the weight space, BNN allows
us to introduce variation to the learning process to better fit the observations [15].

A recent work [15] uses BNN to improve the robustness of nvCiM accelera-
tors. BNN requires a priori distribution and uses an estimated posterior to fit this
distribution. The priori can be obtained from device variation models. These models
are inferred from expert knowledge with the help of measurement, simulation, and
historical data. The authors also use KL divergence as the regularization term to
enforce the memristor variation structural characteristics.

Although the priori used in most recent works are carefully designed, they can
still be imprecise or uncertain because of the measurement imperfectness and the
ever-going evolution of emerging devices. To address this issue, the authors of [15]
propose a variance-adaptive priori to weigh the value of prior knowledge. The author
modify the optimization objective of BNNs so that weights with larger values are
more regularized by the priori, i.e., it allows placing heavier priorities on those
critical weights (with higher magnitude) on crossbar arrays that are prone to receive

On the Reliability of Computing-in-Memory Accelerators for ... 187

more impact from device variations, thereby reducing oscillations in convergence for
more efficient training. Finally, to prevent the over-amplification of variation during
training, the authors add an additional regularization term using L2 norm loss. In
CIFAR-10 dataset, this proposed method is able to reduce the accuracy drop from
45.7 t0 0.3%.

Although these two methods are effective in terms of mitigating the effect of
device variations on nvCiM accelerators, they require much more training iterations
to converge compared with traditional training methods. In the MNIST dataset, both
methods require at least 10x more iterations of training to reach a similar accuracy
as the traditional training method [23].

7 Conclusions

Computing-in-memory with emerging non-volatile devices (nvCiM) is a great candi-
date for efficient DNN acceleration because of its unique architecture that breaks the
memory wall. However, it suffers from unreliability issues, especially the device
variation issues of emerging NV devices. Understanding the property of emerging
NV devices and the general architecture of nvCiM DNN accelerators helps to better
model the effect of device unreliability circuit and application level. The modeling of
unreliability also helps in mitigating the impact of device variations. The representa-
tive ways of mitigation include the adoption of ECC in the architecture and finding
neural network topologies and training DNN weights that are more robust against
device variations.

References

1. Alibart F, Gao L, Hoskins BD, Strukov DB (2012) High precision tuning of state for memristive
devices by adaptable variation-tolerant algorithm. Nanotechnology 23(7):075201

2. Aziz A, Breyer ET, Chen A, Chen X, Datta S, Gupta SK, Hoffmann M, Hu XS, Ionescu A, Jerry
M et al (2018) Computing with ferroelectric FETs: devices, models, systems, and applications.
In: 2018 Design, automation & test in Europe conference & exhibition (DATE). IEEE, pp
1289-1298

3. Aziz A, Ghosh S, Datta S, Gupta SK (2016) Physics-based circuit-compatible spice model for
ferroelectric transistors. IEEE Electron Device Lett 37(6):805-808

4. Beck A, Bednorz J, Gerber C, Rossel C, Widmer D (2000) Reproducible switching effect in
thin oxide films for memory applications. Appl Phys Lett 77(1):139-141

5. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys
Rev B 54(13):9353

6. Carboni R, Ambrogio S, Chen W, Siddik M, Harms J, Lyle A, Kula W, Sandhu G, Ielmini
D (2016) Understanding cycling endurance in perpendicular spin-transfer torque (p-STT)
magnetic memory. In: 2016 IEEE International electron devices meeting IEDM). IEEE, pp
21-6

7. Chappert C, Fert A, Van Dau FN (2010) The emergence of spin electronics in data storage.
Nanosci Technol Collect Rev Nat J 147-157

188

8.

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.

29.

Z. Yan et al.

Chen WH, Dou C, Li KX, Lin WY, Li PY, Huang JH, Wang JH, Wei WC, Xue CX, Chiu
YC et al (2019) CMOS-integrated memristive non-volatile computing-in-memory for Al edge
processors. Nat Electron 2(9):420-428

. ChenY,LuoT,LiuS,Zhang S,He L, WangJ,LiL, Chen T, XuZ, Sun N et al (2014) DaDianNao:

amachine-learning supercomputer. In: 2014 47th Annual IEEE/ACM international symposium
on microarchitecture. IEEE, pp 609-622

ChiP,LiS, XuC, Zhang T, Zhao J, Liu Y, Wang Y, Xie Y (2016) PRIME: a novel processing-in-
memory architecture for neural network computation in ReRAM-based main memory. ACM
SIGARCH Comput Architect News 44(3):27-39

Choi BJ, Torrezan AC, Strachan JP, Kotula P, Lohn A, Marinella MJ, Li Z, Williams RS, Yang
11 (2016) High-speed and low-energy nitride memristors. Adv Funct Mater 26(29):5290-5296
Draper J, Chame J, Hall M, Steele C, Barrett T, LaCoss J, Granacki J, Shin J, Chen C, Kang
CW et al (2002) The architecture of the diva processing-in-memory chip. In: Proceedings of
the 16th international conference on supercomputing, pp 14-25

. Farmahini-Farahani A, Ahn JH, Morrow K, Kim NS (2015) NDA: near-dram acceleration

architecture leveraging commodity dram devices and standard memory modules. In: 2015 IEEE
21st International symposium on high performance computer architecture (HPCA). IEEE, pp
283-295

Feinberg B, Wang S, Ipek E (2018) Making memristive neural network accelerators reliable.
In: 2018 IEEE International symposium on high performance computer architecture (HPCA).
IEEE, pp 52-65

Gao D, Huang Q, Zhang L, Yin X, Li B, Schlichtmann U, Zhuo C (2021) Bayesian inference
based robust computing on memristor crossbar. In: 2021 56th ACM/IEEE Design automation
conference (DAC). IEEE, pp 1-6

Gao D, Reis D, Hu XS, Zhuo C (2019) Eva-CiM: a system-level energy evaluation framework
for computing-in-memory architectures. arXiv preprint arXiv:1901.09348

Han S, Mao H, Dally WJ (2015) Deep compression: compressing deep neural networks with
pruning, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149

Hsieh K, Khan S, Vijaykumar N, Chang KK, Boroumand A, Ghose S, Mutlu O (2016) Accel-
erating pointer chasing in 3d-stacked memory: challenges, mechanisms, evaluation. In: 2016
IEEE 34th International conference on computer design (ICCD). IEEE, pp 25-32

Ielmini D (2011) Modeling the universal set/reset characteristics of bipolar RRAM by field-and
temperature-driven filament growth. IEEE Trans Electron Devices 58(12):4309-4317

Ielmini D, Nardi F, Cagli C (2010) Resistance-dependent amplitude of random telegraph-signal
noise in resistive switching memories. Appl Phys Lett 96(5):053503

Ielmini D, Wong HSP (2018) In-memory computing with resistive switching devices. Nat
Electron 1(6):333-343

Jain S, Ranjan A, Roy K, Raghunathan A (2017) Computing in memory with spin-transfer
torque magnetic ram. IEEE Trans Very Large Scale Integr (VLSI) Syst 26(3):470-483

Jiang W, Lou Q, Yan Z, Yang L, Hu J, Hu XS, Shi Y (2020) Device-circuit-architecture
co-exploration for computing-in-memory neural accelerators. IEEE Trans Comput

Kim KM, Jeong DS, Hwang CS (2011) Nanofilamentary resistive switching in binary oxide
system; a review on the present status and outlook. Nanotechnology 22(25):254002
Krizhevsky A et al (2009) Learning multiple layers of features from tiny images

Kvatinsky S, Belousov D, Liman S, Satat G, Wald N, Friedman EG, Kolodny A, Weiser UC
(2014) Magic—memristor-aided logic. IEEE Trans Circ Syst I Express Briefs 61(11):895-899
LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document
recognition. Proc IEEE 86(11):2278-2324

Lee MJ, Lee CB, Lee D, Lee SR, Chang M, Hur JH, Kim YB, Kim CJ, Seo DH, Seo S et al
(2011) A fast, high-endurance and scalable non-volatile memory device made from asymmetric
TapOs5_x/TaO;, _ bilayer structures. Nat Mater 10(8):625-630

Li KS, Chen PG, Lai TY, Lin CH, Cheng CC, Chen CC, Wei YJ, Hou YF, Liao MH, Lee MH
et al (2015) Sub-60 mV-swing negative-capacitance FinFET without hysteresis. In: 2015 IEEE
International electron devices meeting (IEDM). IEEE, pp 22-6

http://arxiv.org/abs/1901.09348
http://arxiv.org/abs/1510.00149

On the Reliability of Computing-in-Memory Accelerators for ... 189

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

LiS, XuC,Zou Q,Zhao J,Lu Y, Xie Y (2016) Pinatubo: a processing-in-memory architecture
for bulk bitwise operations in emerging non-volatile memories. In: Proceedings of the 53rd
annual design automation conference, pp 1-6

Li X, Sampson J, Khan A, Ma K, George S, Aziz A, Gupta SK, Salahuddin S, Chang MF, Datta
S et al (2017) Enabling energy-efficient nonvolatile computing with negative capacitance FET.
IEEE Trans Electron Devices 64(8):3452-3458

LiuQ,SunJ,LvH,LongS, YinK, Wan N, Li Y, Sun L, Liu M (2012) Real-time observation on
dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv
Mater 24(14):1844-1849

Locatelli N, Cros V, Grollier J (2014) Spin-torque building blocks. Nat Mater 13(1):11-20
Loke D, Lee T, Wang W, Shi L, Zhao R, Yeo Y, Chong T, Elliott S (2012) Breaking the speed
limits of phase-change memory. Science 336(6088):1566—1569

Mai K, Paaske T, Jayasena N, Ho R., Dally WJ, Horowitz M (2000) Smart memories: a modular
reconfigurable architecture. In: Proceedings of 27th international symposium on computer
architecture (IEEE Cat. No. RS00201). IEEE, pp 161-171

NiuD, Xiao Y, Xie Y (2012) Low power memristor-based ReRAM design with error correcting
code. In: 17th Asia and South Pacific design automation conference. IEEE, pp 79-84

Oskin M, Chong FT, Sherwood T (1998) Active pages: a computation model for intelligent
memory. In: Proceedings of the 25th annual international symposium on computer architecture
(Cat. No. 98CB36235). IEEE, pp 192-203

Reis D, Niemier M, Hu XS (2018) Computing in memory with FeFETs. In: Proceedings of the
international symposium on low power electronics and design, pp 1-6

Shafiee A, Nag A, Muralimanohar N, Balasubramonian R, Strachan JP, Hu M, Williams
RS, Srikumar V (2016) Isaac: a convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. ACM SIGARCH Comput Architect News 44(3):14-26

Sharma P, Tapily K, Saha A, Zhang J, Shaughnessy A, Aziz A, Snider G, Gupta S, Clark R,
Datta S (2017) Impact of total and partial dipole switching on the switching slope of gate-last
negative capacitance FETs with ferroelectric hafnium zirconium oxide gate stack. In: 2017
Symposium on VLSI technology. IEEE, pp T154-T155

Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater
159(1-2):L1-L7

Sze V, Chen YH, Yang TJ, Emer JS (2017) Efficient processing of deep neural networks: a
tutorial and survey. Proc IEEE 105(12):2295-2329

Van Lint J, van der Geer G (2012) Introduction to coding theory and algebraic geometry, vol
12. Birkhduser

Wang D, George S, Aziz A, Datta S, Narayanan V, Gupta SK (2016) Ferroelectric transistor
based non-volatile flip-flop. In: Proceedings of the 2016 international symposium on low power
electronics and design, pp 10-15

Wang K, LiuZ, Lin Y, Lin J, Han S (2019) HAQ: hardware-aware automated quantization with
mixed precision. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp 8612-8620

Xia L, Liu M, Ning X, Chakrabarty K, Wang Y (2017) Fault-tolerant training with on-line
fault detection for RRAM-based neural computing systems. In: Proceedings of the 54th annual
design automation conference 2017, pp 1-6

Xu C, Niu D, Muralimanohar N, Jouppi NP, Xie Y (2013) Understanding the trade-offs in
multi-level cell ReRAM memory design. In: 2013 50th ACM/EDAC/IEEE Design automation
conference (DAC). IEEE, pp 1-6

Yan Z, Jiang W, Hu XS, Shi Y (2021) Radars: memory efficient reinforcement learning aided
differentiable neural architecture search. arXiv preprint arXiv:2109.05691

Yan Z, Juan DC, Hu XS, Shi Y (2021) Uncertainty modeling of emerging device based
computing-in-memory neural accelerators with application to neural architecture search. In:
2021 26th Asia and South Pacific design automation conference (ASP-DAC). IEEE, pp 859-864
Yan Z, Shi Y, Liao W, Hashimoto M, Zhou X, Zhuo C (2020) When single event upset meets
deep neural networks: observations, explorations, and remedies. In: 2020 25th Asia and South
Pacific design automation conference (ASP-DAC). IEEE, pp 163-168

http://arxiv.org/abs/2109.05691

190

51.

52.

53.

54.

55.

56.

57.

Z. Yan et al.

Yang JJ, Strukov DB, Stewart DR (2013) Memiristive devices for computing. Nat Nanotechnol
8(1):13-24

Yang L, Yan Z, Li M, Kwon H, Lai L, Krishna T, Chandra V, Jiang W, Shi Y (2020) Co-
exploration of neural architectures and heterogeneous ASIC accelerator designs targeting
multiple tasks. In: 2020 57th ACM/IEEE Design automation conference (DAC). IEEE, pp
1-6

Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Giant room-temperature magne-
toresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater 3(12):868-871
Zaman KS, Reaz MBI, Ali SHM, Bakar AAA, Chowdhury MEH (2021) Custom hardware
architectures for deep learning on portable devices: a review. IEEE Trans Neural Networks
Learn Syst

Zhang D, Jayasena N, Lyashevsky A, Greathouse JL, Xu L, Ignatowski M (2014) TOP-
PIM: throughput-oriented programmable processing in memory. In: Proceedings of the 23rd
international symposium on high-performance parallel and distributed computing, pp 85-98
Zhao M, Wu H, Gao B, Zhang Q, Wu W, Wang S, Xi Y, Wu D, Deng N, Yu S et al (2017)
Investigation of statistical retention of filamentary analog RRAM for neuromorphic computing.
In: 2017 IEEE International electron devices meeting (IEDM). IEEE, pp 394

Zoph B, Le QV (2017) Neural architecture search with reinforcement learning. In: International
conference on learning representations (ICLR)

	 On the Reliability of Computing-in-Memory Accelerators for Deep Neural Networks
	1 Introduction
	2 Non-volatile Devices
	2.1 RRAM
	2.2 Spintronics Devices
	2.3 FeFET

	3 CiM DNN Accelerators
	3.1 Computing-in-Memory
	3.2 Crossbar-Based Vector-Matrix Multiplication Engine
	3.3 General Architecture of nvCiM DNN Accelerators

	4 Device and Circuit Non-idealities
	4.1 Thermal Noise
	4.2 Shot Noise
	4.3 Random Telegraph Noise
	4.4 Programming Errors
	4.5 Endurance and Retention

	5 Impact of Device Variation on DNN Acceleration
	5.1 Model of Device Variation
	5.2 Impact of Device Variation on DNN Outputs

	6 Dealing with Device Non-idealities
	6.1 Error Correction
	6.2 Identifying Robust Neural Architectures
	6.3 Training Robust DNNs

	7 Conclusions
	References

