Security for Software on Tiny Devices m

Check for
updates

Saurabh Bagchi

1 Introduction

Atover 9 billion embedded processors in use today, the number of embedded devices
has surpassed the number of humans. With the rise of the “Internet of Things”
(IoT), the number of embedded devices, their complexity, and their connectivity is
exploding. These smart “things” include fitness trackers, smart light bulbs, smart
thermostats, Amazon’s Dash Button, utility smart meters, smart locks, and smart
TVs. Microcontrollers executing bare-metal software have been embedded deeply
into larger systems. These embedded microcontrollers are often overlooked but they
control vital components of our systems, e.g., network cards, wireless controllers,
hard drive controllers, SD memory cards, or near field communication in cellphones.
Many of these devices (or components in devices) are low cost with software running
directly on the hardware, known as “bare-metal systems.” In such systems, the appli-
cation runs as privileged low-level software with direct access to all processor regis-
ters, the entire available memory, and all peripherals. This is in contrast to systems
with an operating system that provides isolation and manages access to security-
sensitive resources. These bare-metal systems must satisfy strict execution timing
guarantees, while running on constrained hardware platforms with power and dollar
constraints.

Society relies on these systems to provide secure and reliable computation,
communication, and data storage. Yet, they are built with security paradigms that
have been obsolete for several decades. Embedded systems are generally deployed
without any active defenses or mitigations and do not follow common design criteria
to enforce least privileges and restricted access. Defenses that are well known for

This article summarizes work done jointly with Mathias Payer (ETH Zurich) and also reflects further
discussions with Stephen Checkoway (Oberlin College) and Mathias.

S. Bagchi (<)
Purdue University, West Lafayette, Indiana, USA
e-mail: sbagchi @purdue.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 141
L. Wang et al. (eds.), System Dependability and Analytics, Springer Series in Reliability
Engineering, https://doi.org/10.1007/978-3-031-02063-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02063-6_7&domain=pdf
mailto:sbagchi@purdue.edu
https://doi.org/10.1007/978-3-031-02063-6_7

142 S. Bagchi

desktops to protect against code injection, control-flow hijacking, or data corruption
attacks are missing on embedded systems.

1.1 Ravi’s Contributions on This Topic

Ravi has made some fundamental contributions on this topic. These have come more
recently in the problem areas of security for teleoperated surgical robots [8, 11] and
customized malware (and its countermeasure) for cyber-physical systems [10], with
expanded focus on autonomous vehicular systems [4, 17] and the smart grid [13,
19]. We have learned of some design elements from these works and the community
has adopted many principles and techniques for rigorous evaluation from them.

1.2 Why can’t We “just” Adopt Defenses from the Server
World to the Embedded World?

Protecting embedded devices in the presence of vulnerabilities poses unique chal-
lenges that are fundamentally different from desktop or server systems. Therefore,
simply porting existing defenses is not an option. First, embedded systems often
run directly on the hardware without an intermediate operating system or virtualiza-
tion layer. The program itself is responsible for mediating access to all resources,
including security-critical ones, among all the tasks. Second, due to the lack of a
Memory Management Unit (MMU), embedded systems have a single flat address
space where all memory locations (e.g., the locations of I/O ports) are static. Third,
embedded systems are custom tailored to a specific purpose. Each type of system
may have a specific hardware configuration where some I/O ports are security sensi-
tive while others are not. Orthogonally, note that desktop defenses are incomplete
and cannot defend against all code reuse attacks or information leaks, as shown
through any recent attack that bypasses all existing defenses [23, 25]. Leveraging
buffer overflows, use-after-free bugs, integer overflow, or type confusion vulnerabil-
ities, adversaries can leak information and compromise software running on desktop
systems despite all currently used defenses.

Protecting software against control-flow hijacking, code reuse attacks, and infor-
mation disclosure is challenging for embedded systems. However, the embedded
system environment also provides some unique opportunities that enable strong,
novel defenses. First, whole program analysis on these systems is feasible. Due to
cost, power, and environmental constraints, the software code base running on these
systems is usually kept small. Best coding practices result in limited stack depth,
restricted use of indirect control-flow, limited use of recursion, and fixed memory
allocation. These bound the exploration space so that static analysis can be applied to
entire programs. Second, the source code of each component is generally available

Security for Software on Tiny Devices 143

to the developers as all components are developed by the same company. Even when
libraries are used, all code is compiled to a monolithic binary and combined through
Link Time Optimization (LTO). Third, both the software running on an embedded
system and the underlying hardware are single purpose, further simplifying the anal-
ysis. The software running on embedded systems has limited functionality, often with
a single purpose—compared to desktop systems with hundreds of parallel processes.
Similarly for the hardware, each hardware unit is dedicated to a single executing
process, whereas on desktop systems, the device is shared among multiple processes.
The combination of these opportunities enables us to scale static and dynamic anal-
ysis techniques to full embedded systems and to devise strong protection mechanisms
that respect the above-mentioned domain-specific constraints.

Our solution approach: RESIN. In our prior and ongoing work, we seek to
solve the problem of protecting embedded systems against a wide variety of attacks,
without the need to rearchitect the entire application. Our approach has 3 inter-
dependent high-level tasks. We show a schematic of our overall system in Fig. 1.
The parts where the user/developer need to provide input are shown in the salmon
colored boxes according to the legend.

1. TaskI: Guided IoT exploration. In this task, we develop targeted static analysis
to identify the control and the data flow in the program. This is augmented with an

/ \ Legend

User Input

P
rogram #Staticl\nalysis #

Control Flow Graph _ Data Flow Graph

Emulator Refinement
Inputs.

Runtime
Enforcement

vsk 1: Guided loT Exploration CFG’ DFG’

Task lll: Evaluation Framework

Evaluation F
Scripts
f—

Evaluation
Dimensions

Metric
thresholds

Benchmark
Applications

Performance
Monitor

k EmbeddedBoard gk I1: Runtime Enforcem_ept}

Fig.1 Overview of the main components and their placement in the overall system RESIN

144

S. Bagchi

IoT emulator which emulates the runtime behavior under fuzzed and controlled
inputs to discover information that is outside the scope of static analysis.

Task II: Runtime enforcement. Here we develop runtime enforcement tech-
niques for enforcing the principle of least-privilege execution, which is consid-
ered standard security practice, but is absent in embedded system execution. We
will operate with feedback provided by the constraints of the hardware and the
performance impact due to the isolation of multiple compartments of code and
data.

Task III: Evaluation framework. We develop a rich set of bare-metal system
applications to stress different functionalities in representative use cases. We
develop these benchmarks for a set of embedded boards that provide different
hardware capabilities (e.g., access to different sensors) and develop scripts for
evaluating different aspects of security and performance. The security and
performance metrics combine the domain-agnostic as well as the domain-
specific ones. The latter includes an understanding that performance needs to
be deterministic for our target domain.

Target domains. We demonstrate the benefits of RESIN through realistic
applications developed in five security-critical, target domains on real hardware.

1.

Smart homes. Devices such as the Amazon Dash button, smart light bulbs,
smart door locks, and per-room temperature sensors increase convenience in an
modern home but, in the hands of an adversary, can result in safety and privacy
hazards.

Wearables. We are increasingly tracking different aspects of our lives through
heart rate monitors, activity trackers, smart shoes, or smart watches. These
devices have access to highly personal data and may need to communicate
urgent and critical health indicators.

Smart cities. Modern cities are increasingly connected with smart, battery-
powered sensors placed in side walks and streets to detect pedestrians, bikes,
and cars. These devices are low-powered, embedded, run real time, and
communicate wirelessly. Protecting these devices is crucial for roadside safety.
Connected transportation and infrastructure. A modern car contains dozens
of safety—critical, connected embedded devices that communicate over shared
buses as well as over a variety of wireless interfaces including Bluetooth and
4G LTE. Vehicle-to-vehicle and vehicle-to-infrastructure communications are
starting to be built and deployed.

Industrial control systems. Physical processes in industrial settings are
computer-controlled. These safety—critical systems can be exploited to cause
great harm.

Our work focuses on the sort of low-powered, embedded devices that are
ubiquitous in these domains.

Security for Software on Tiny Devices 145

2 Background and Related Work

2.1 Embedded System Development

An embedded system is often meant to perform a dedicated function in contrast to a
general purpose computer. Frequently this is a component within some larger system.
In a vehicle, for example, there are multiple dedicated embedded computing systems,
e.g., to control the anti-lock brakes, to monitor and control the vehicle’s emissions,
or to display information on the dashboard. The number of embedded systems has
risen rapidly and today, less than 2 percent of microcontrollers manufactured are
used in general-purpose computers [5]. An important sub-class of embedded systems
have real-time requirements and therefore security mechanisms proposed by us or
others, cannot afford to perturb the timing of the software to any significant extent.
Importantly, for such systems, it is crucial to guarantee the timing properties and
thus our security mechanisms must also minimize the variance in the timing that
they introduce.

Certain common hardware constraints on embedded development are: (i)
processing power—these devices are typically 16-or 32-bit, running at up to a few
hundred MHz-s, driven by requirement of low dollar cost and low power consump-
tion (say, | mW/MIPS to 10 mW/MIPS); (ii) memory—the RAM is typically up to
a few 100 s of kBs and the flash which contains the program is typically up to a few
MBEs; (iii) slow buses—such as SPI or I?C, which are relatively slow compared to
the processor. Overall, our target class, the bare-metal embedded system, is a highly
cost-conscious segment of the market. There are typically one or more peripherals
attached to an embedded board. These provide functionality such as USB or sensing
and they are typically accessed through a Hardware Abstraction Layer (HAL), which
eases the programming by abstracting away low-level control signals and other details
needed to access the peripherals. For specificity, let us consider one device that fits
within our target domain. Figure 2 shows ARM’s memory model for the ARMv7-M

Fig. 2 ARM’s memory 0xFFFFFFFF
model for ARMv7-M Vendor Mem.(511MB)
devices Private Periph. Bus (IMB)
0xE0000000
External Ram/
Devices
2GB
0x6000000
Peripherals
512MB
0x4000000
Data
512MB
0x2000000
Code
512MB
0x0000000

146 S. Bagchi

architecture. It breaks a 32-bit (4 GB) memory space into several different regions.
It is a memory-mapped architecture, meaning that all I/O is directly mapped into its
memory space (peripherals, and external devices). While the architecture reserves
large amounts of space for each area, actual devices only use a small portion of it.
For example, the Cortex-M4 (STM32F479I) device we use in our evaluation has
2 MB of flash in the code area, 384 kB of RAM, and uses only a small portion of the
peripheral space.

Embedded software development has traditionally been done mostly in C, with
some limited use of assembly code. Low-level coding often requires close interaction
with the hardware platform, even though the HAL does abstract away the lowest
levels of hardware detail. Because of the hardware resource constraints, embedded
software often is very compact, at the cost of readability and generalizability (to
different hardware platforms). Software is usually written assuming any memory or
peripheral can be accessed any time and from any region of the code. Further, the
preferred mode of programming is event-driven programming, whereby the software
reacts to external stimuli such as a sensor providing a value sensed from the physical
world after running it through its analog-to-digital converter. There are expectations
from embedded software that it will run unattended for long periods of time (say,
months) and the end user will have limited ability (if at all) of programming the system
“in the field.” The vendor of the embedded board usually provides the compiler and
linker tool chain to convert the C program to executable code. There has been robust
development of LLVM-based toolchains for various target embedded platforms. We
will leverage this trend by building our toolchain on top of LLVM as additional
passes or modifications to existing passes.

Certain software design patterns frequently occur in embedded software. First,
the software statically allocates all the memory that it will require, rather than relying
on dynamically allocating memory. The second is the careful and parsimonious use
of memory, such as fitting multiple, possibly unconnected, variables into a single
register. Third, debugging tools in embedded development are more limited. At the
powerful end of the spectrum is a JTAG-based debugger, often called an in-circuit
emulator (ICE). In fact, in a 2015 survey of embedded developers, debugging was
found to be the single greatest challenge [30].

A commonly found piece of hardware in our target class of devices is the Memory
Protection Unit (MPU). It enables setting privileges on regions of memory, which
control read, write, and execute permissions for both privileged and unprivileged
execution modes. On the ARMv7-M architecture for example, the MPU can define
up to eight regions, numbered 0—7. Each region is defined by setting a starting
address, size, and permissions. We assume, at the high end, machines with an MPU
but without a Memory Management Unit (MMU), such as Cortex ARM MO to M4.
These machines generally run in a 32-bit address space. Machines with an MMU are
out of scope. The cost for adding an MMU to embedded systems is seen as prohibitive
and does not fit current software design patterns where code runs bare-metal or with
only a thin operating system layer. At the low end, we assume 8051-style or Atmel
AVR-style Harvard-like machines without MPU or MMU. These machines generally

Security for Software on Tiny Devices 147

run with a 16-bit address space, sometimes with multiple 16-bit address spaces, e.g.,
for ROM and RAM.

2.2 Threat Model

IoT devices are heavily connected and susceptible to different forms of attacks. For
the research proposed here, we assume that the software running on the devices
contains software flaws (bugs) that are reachable through potentially adversary-
controlled outside input. Input, including malicious input, to the device can be local
or remote. Local input is any input that requires close physical proximity to the IoT
device such as a connection through local I/O, a serial port, or near field communica-
tion such as Bluetooth or ZigBee. An example of local input is data access through a
diagnostic port. Remote input is something that can be sent over a network interface,
such as WiFi. All IoT devices communicate with the cloud in some form. Remote
input requires an internet connection. If the IoT device runs any services, any internet
device can connect to those services. An example would be a listening telnet server.

Any data attack where an adversary connects to the device, intercepts a connec-
tion from the device, or uses an I/O port to communicate with the device is in scope.
We assume that the software running on the IoT device has flaws that are reachable
through adversary-controlled input. Our threat model includes both data confiden-
tiality and data integrity attacks during the runtime of the device. Verifying the
integrity of the device at boot time is out of scope. Cryptographic attacks that break
encrypted communication with the cloud are out of scope but implementation bugs
in cryptographic protocols remain in scope. Physical attacks—for example, flashing
a new firmware onto the device—are out of scope.

2.3 Lack of Defenses on Embedded Systems

Due to hardware resource and development constraints, current [oT systems lack any
mitigations against memory safety violations that people have become accustomed
to for desktop and server systems. Full scale operating systems leverage virtual
memory to isolate processes from each other. Best programming practices ensure that
each process runs with least privileges and only communicates with other processes
through a well defined API. Operating systems restrict access based on fine-grained
permissions and capabilities along access control lists. Inside the process, the MMU
ensures the separation between code and data (DEP) and allows segments to be placed
at random locations whenever a process is started (ASLR). Additional mitigations
such as stack canaries or control-flow integrity (CFI) [7, 29] may be added on a
per-process basis as part of the compiler toolchain.

Compared to full hardware support and regular operating systems, embedded
systems are much more constrained. First, the hardware is highly constrained and

148 S. Bagchi

storage or memory overhead are hard to justify due to the additional cost. The
embedded devices we target also do not have an MMU and, at best, use an MPU
to overlay privileges on a flat physical address space. The lack of an MMU makes
defenses such as ASLR impossible as they require a virtual address space. Second,
embedded operating systems generally do not enforce isolation between the oper-
ating system kernel and the individual processes or even among processes—the
memory structure is comparable to a set of threads that run in the same address space
together with privileged software. The lack of separation between privileged code
(kernel code) and unprivileged code (the applications) prohibits defenses such as
DEP as all privileged memory and peripherals are directly reachable from unprivi-
leged code. Third, the rigid compiler toolchain and development environment with
lack of good debugging facilities hinders compiler innovation and prohibits the use of
modern compiler-based defenses such as stack canaries or CFI. While these mitiga-
tions would have to be adapted for embedded systems to fit their unique constraints,
there is no fundamental reason why they should not be used.

3 Guided IoT Exploration

IoT software is fundamentally different from desktop or server software. Both desk-
tops and servers run multiple applications at different privileges (e.g., different users,
separation between kernel and user-space, or virtualization). Low-end IoT devices
are highly resource constrained. IoT devices have limited CPU, memory, power, and
communication abilities and software is generally highly adapted to these devices.
Due to this customization, existing software analysis techniques do not apply to IoT
systems. In this task we develop static and dynamic analysis techniques that infer
information about IoT applications. This information is then leveraged in task II
to enforce strong security policies such as per-task compartmentalization, targeted
memory safety to protect against control-flow hijacking and data-only attacks, and
event-aware state protection. Note that all policies are geared towards the special
circumstances [oT systems run in.

Advantages of [oT software are that application source code is generally available,
the amount of code is manageable, and frameworks such as the ARM Mbed IoT
platform [2] generalize common tasks such as access to peripherals. Unfortunately,
these advantages are offset by several challenges to security in low-end embedded
systems: (i) many embedded systems engineers have little or no security experience
resulting in code that does not follow security best practices, (ii) programmers face the
complexity of cross cutting concerns across all layers of the stack: from low-end I/O
and pin management to high-end application concerns such as communicating with
a backend server in the cloud, (iii) applications are developed in an ad hoc manner on
stale tool chains (i.e., the compiler is rarely updated due to the complexity of setting
up a cross-compilation tool chain), and (iv) lack of defense mechanisms, mitigations,
and analysis methods (e.g., static analysis or fuzzing) that are used ubiquitously on
desktop and server software.

Security for Software on Tiny Devices 149

Preliminary work. We have broad experience in protecting different forms of
embedded systems and in developing sanitizers and mitigations to find a wide variety
of vulnerabilities. Our most recent work to protect bare-metal embedded devices is
EPOXY [12]. EPOXY is an LLVM-based mitigation that enforces a light privilege
overlay, dropping privileges for all instructions and selectively raising privileges for
a few privileged operations such as writing to I/O registers. Based on this privilege
overlay, we enforce data execution prevention to prevent code injection, a safe stack
[18] to protect against return oriented programming, and diversification to protect
against data-only attacks.

Earlier, we have developed a more holistic defensive approach that enforces full
memory safety for tiny embedded systems through nesCheck [20]. This work lever-
ages a CCured-like [21] pointer analysis that classifies pointers as safe, sequence, or
dynamic, allowing different instrumentation depending on the type of the pointer. The
overheads for nesCheck are higher than for an EPOXY-based approach. Both EPOXY
and nesCheck protect different classes of embedded systems against wide types of
attack vectors at low overhead, adhering to performance and power constraints of
embedded devices.

Orthogonally, we have developed a wide set of sanitizers that enforce security
policies for regular software systems such as Desktops or servers. We have worked
on Control-Flow Integrity [7,9, 14, 22, 29], a mitigation that protects against control-
flow hijacking by checking that the target of control-flows observed at runtime
belongs to the set of valid targets. As an extension to CFI, we have explored a
mechanism that keeps state for variadic function calls [6], allowing us to make the
relationship between caller and callee explicit and to check argument types when-
ever they are used. The arguments of variadic functions (e.g., printf) depend on an
implicit contract between caller and callee and cannot be checked statically by the
compiler. Our mechanism enforces a dynamic runtime integrity check to ensure that
the arguments pushed by the caller are correctly used by the callee.

Type confusion [15, 16] is another attack vector that enables memory corruption
as a secondary effect. Type confusion abuses differences between object sizes to
compromise systems. Our mechanisms track type information of all live objects to
ensure type integrity for all type conversions and type checks.

Approach. To address the lack of defenses, we require detailed information
about individual IoT applications to automatically employ defenses given the sparse
resources available on IoT platforms. In a first step, we therefore propose novel static
and dynamic analysis methods to recover necessary information about the IoT appli-
cations. We address the diversity of the IoT environment by developing a hardware
abstraction language that encapsulates the differences between individual instruction
set architectures, resource configurations, and availability of sensors and actuators in
a portable manner. Second, we develop an event-aware static analysis that decodes
event loops of embedded devices. As a proof of concept defense, we develop an
event-aware version of CFI for IoT devices. Third, we develop an emulator to simu-
late different IoT configurations and software. IoT applications are often event-based,
so we need precise knowledge of different program paths and interactions with the

150 S. Bagchi

underlying hardware (such as sensors and actuators), based on a hardware configu-
ration. Indirect control-flow transfers remain challenging for any static analysis due
to the aliasing problem. We use emulator-based tracing to handle the limitations of
static analysis in handling indirection. We leverage the fact that IoT applications often
have constrained control paths that they execute. This will allow the community to
test their IoT software for security weaknesses, allowing precise bug discovery and
targeted patches for vulnerable software.

4 Runtime Enforcement Techniques

In Task I, we create accurate control and data flow graphs using both static analysis
and fuzzed data inputs. In this task, we take this information and automatically, in a
policy-driven manner, create containers of code, data and peripherals, which serves
as fault containment domains. Here we develop graph theoretic algorithms on the
above-mentioned graphs to enforce the principle of least privilege (Task II.1) and
then we enforce isolation through compartments, which are realized through available
hardware resources, however scarce they may be (Task I1.2). We then monitor the
execution of the application with the initial degree of compartmentalization and
incrementally change it if the performance impact is unacceptable (Task I1.3).

Preliminary work. We have used the MPU, commonly available in embedded
devices, in pre-liminary work [12] to create a proof-of-concept called EPOXY with
simply two privilege levels of software. This provides the foundation on which code
integrity, adapted control-flow hijacking defenses, and protections for sensitive I/O
can be applied, by building on the “two privilege level” idea. We have evaluated
the performance of our combined defense mechanisms for a suite of 75 benchmarks
and 3 real-world IoT applications. Our results for the application case studies show
that EPOXY has, on average, a 1.8% increase in execution time and a 0.5% increase
in energy usage; however, the worst-case execution overheads will make the tech-
nique unusable for many applications. There are some specific technical constraints
imposed by each generation of MPU, such as, for the MPU on the ARMv7-M archi-
tecture, each region must be a power of two in size, greater than 32 and start at a
multiple of its size (e.g., if the size is 1 kB then valid starting addresses are multi-
ples of 1 kB). Regions can overlap with the high numbered region’s permissions
taking effect. The MPU’s hardware restrictions significantly constrain the design of
compartments. For example, of all the MPU registers available (only 8 to start off
with), several are used for enforcing basic protections such as making the code region
not writable. The number of compartments available at any point in the execution is
restricted to those that are remaining.

The use of MPUs to create isolation boundaries has been proposed and developed
by ARM in its mBedOS platform, through a software module called pVisor [3].
Using this, the ARM development environment allows a developer, but does not
provide any automation support, to create multiple “boxes.” Each box gets its own
memory region, including stack, and interactions among boxes are monitored and

Security for Software on Tiny Devices 151

allowed/disallowed by trusted code called “gateways.” The usability challenge with
the current concept is daunting. In our work, we fundamentally reduce this usability
barrier by providing novel techniques to automatically infer data and control flow,
and from that and the policies for security enforcement, automatically create the
isolated containers.

4.1 Task I1.1: Automatic Least Privilege Separation

In this task, we take the control flow and data flow graph created in Task I and create
compartments out of them to achieve the desired goal of least privilege execution.
The graph nodes are partitioned into disjoint compartments with the invariant that at
any point of time in the execution, only a single code region belonging to the currently
active compartment is executing. Further, that code region only has access to the data
regions and peripherals that are within that compartment. The graph algorithms will
have the goal of creating the appropriate-sized compartments, balancing the needs of
the performance overhead and hardware resources used versus the level of privilege
separation achieved. To expand on this, if there are fewer compartments, then there
is less performance overhead and hardware resources (such as, MPU regions) used,
but there is a higher degree of privilege to more code regions, thus reducing security.

We develop the graph algorithms using both static and dynamic information (from
Task I). The static information contains the graph structure—the nodes and the edges,
while the dynamic information annotates the edges with the frequency and nature
of interactions. The latter can include for example the amount of data being passed
among the compartments. We design and develop three variants of graph algorithms
of progressive complexity. In all of these, we use the insight that the graphs for
embedded software are likely to be much smaller than for general-purpose software
and are relatively sparse in terms of indegree and outdegree.

1. No code or data motion: This will operate without a feedback loop and create
compartments in one shot. Thus, this will not take into account the possibility
of moving code or data to create more compact compartments.

2. Automatic code or data motion: This will run in multiple passes (we anticipate
2-3) where each pass will indicate the quality of compartmentalization and this
will trigger some movement of code regions or data regions to create more
compact compartments. The necessity of multiple passes arises because there
is a coupling of the two steps—the creation of the compartments and the layout
of code and data in memory.

3. Programmer annotation: This will be driven by an objective function where the
amount of exposed code at any point in the execution needs to be minimized
subject to the hardware and the performance constraints. The exact performance
impact may not be known at the outset and will be fed back as input from
Task IL.3. If this objective function does not reach a certain specified value,
which practically speaking is likely to be specified as an improvement over the

152 S. Bagchi

baseline, then the programmer will be requested for annotation about criticality
of code regions. Alternately, the criticality can be inferred by doing some form of
scalable taint tracking [32] to determine which code regions are more susceptible
to unvalidated user input.

4.2 Task I1.2: Enforcing Isolation Among Compartments

The goal of this task is to put in place the embedded software to enforce isolation
among compartments for control and data. A compartment may access data only
within its own compartment or some data that is explicitly marked as shareable.
Control flow can go from one compartment to another compartment with the medi-
ation of some privileged code, which will validate that the transition is allowed,
as determined by one or more of static analysis, paths learned through fuzzing, or
developer annotation. Such privileged code will form part of the trusted computing
base for our system RESIN and will thus have to be minimized.

The way we envisage this task working is that the embedded program will be
instrumented to trigger the privileged code whenever the code region within compart-
ment A invokes the code region in compartment B. For example, if the code gran-
ularity is simply a function, then the call and the return instructions can be instru-
mented. The privileged code enforces the appropriate check, namely, that a control
flow transfer is allowed here. This can be inferred from the static analysis, augmented
with the trace-based emulation. If there are further violations detected at runtime,
then this will be stored in a trace, for further offline, post-mortem debugging. We
expect that such a trace will be highly compressible, drawing from our prior insights
from deterministic record and replay in such embedded platforms [28]. The insight
here is from the regular pattern of embedded application executions, as introduced
in subsection 2.1.

We use MPU permissions to enforce the compartment-specific constraints. An
MPU register can designate a contiguous region of memory to be read/write/execute,
for privileged or unprivileged code. However, the number of registers is limited
(8 in current ARMv7-M architecture, 16 in the next generation). Therefore some
compartments have to be merged. This can be achieved by a mix of code and data
motion and increasing the range of addresses accessible to some code regions. In
general, the more interconnected the CFG and DFG are, the more challenging it
will be to move all the relevant code and data regions into the same compartment.
Our initial examination of baremetal applications (as in [12, 20]) has shown that
the graphs have a bi-modal characteristic—some parts are sparse (where the code
accesses a few libraries and no other code region is dependent on it), while some
parts are dense (code regions in the hardware abstraction layer which are accessed
by multiple higher-level code regions).

A broader design space that we need to consider is isolation versus resource
requirements, e.g., separate stack for each compartment versus shared stack. If it is
a shared stack, then portions of the stack will have to be protected, such as, only

Security for Software on Tiny Devices 153

some parts of the caller’s stack should be accessible from the callee. This results in a
greater requirement for MPU registers. But if the caller and the callee stacks are kept
separate, then this has higher overhead in terms of the memory usage and the runtime
overhead of switching between the stacks of the different compartments. Note that
mBedOS, the open source embedded operating system from ARM that runs on the
Cortex-M microcontroller, requires separate stacks for each compartment (“box” in
their terminology).

5 Evaluating Security

Building defenses for embedded systems is only worthwhile if the defenses stop
attacks without compromising correctness, performance, or energy usage. In essence,
we need an objective method to measure the characteristics of interest before and
after applying the defense.

5.1 IoT Metrics

Meaningful metrics are an essential component of any evaluation methodology. We
would like to be able to say that Approach A provides more security than Approach B
with respect to Attacker C. Unfortunately, good qualitative and quantitative metrics
for security have thus-far proved elusive. The difficulty of constructing useful metrics
is, in some respects, intrinsic to security. As an illustration of this difficulty, consider
hardware-enforced, per-page memory protections with a write-xor-execute (W X)
policy where no page of memory can be both writable and executable. Computer
systems where this policy is strictly enforced (e.g., in Apple’s iOS) appear to be
more secure than computer systems without such a policy-enforcement because the
policy prevents attackers from injecting and executing new code as well as modi-
fying existing code. More advanced exploitation techniques, such as return-oriented
programming, may still allow attackers to exploit vulnerabilities in the system. It is
thus difficult to say that W X enforcement leads to increased security compared to
no enforcement. In essence, it is difficult to quantify security gains from a defense
mechanism, even if that mechanism rules out entire classes of attack techniques.

Despite the difficulty, several approaches to measuring the security of control-
flow hijacking defenses have been previously proposed. The first is a tool-based
approach wherein a tool like ROPgadget [24] is run over a binary to determine the
number of return-oriented programming gadgets existing before and after a defense is
applied. The second approach tries to quantify how much an indirect control transfer
instruction’s target set size has been reduced [31]. Both approaches were the best
metrics at the time of their introduction; however, they are flawed and do not provide
a sufficient notion of security.

154 S. Bagchi

Instead, we will develop qualitative and quantitative metrics for IoT security
building on our preliminary work [7]. Qualitatively, we consider the defensive mech-
anisms’ strengths in terms of the classes of attacks mitigated by the mechanism. For
example, a defense mechanism can be evaluated in one dimension by considering
whether it allows attacker-controlled memory writes to memory-mapped I/O registers
or not. Whereas [7] uses the sets of instructions that can be targeted by control-flow
instructions, we will use our analyses from Task I to abstract the notion of target sets
to sets of input constraints for transferring control to those instructions. Similarly, we
will abstract sets of memory locations that can be written by memory-storing instruc-
tions to sets of constraints on writing to those locations. Based on these constraints
and the privileged and unprivileged compartments as described in Tasks I and II, we
will construct quantitative security metrics. The input constraints are a refinement
of target sets. As a result, our metrics will be more precise and better capture the
security properties of the system under test.

Since introducing security mechanisms invariably involve trade-offs, we will also
measure performance (both raw performance as well as any performance variation
due to the mechanisms); resource utilization such as memory, flash-storage (e.g., for
code size increases), or power; and reliance on hardware capabilities (such as the
number of MPU registers required).

Undoubtedly, the impact on security, performance, and resource utilization of
some defense mechanisms will be “tunable.” For example, using more MPU regis-
ters to increase the number of compartments will likely lead to greater security at the
expense of runtime and resource use. An important question to answer is how does the
mechanism scale? For example, is there a break-down point where small increases in
security come with large performance penalties? Similarly, how portable is the mech-
anism? Does it rely on specialized hardware not present on other embedded systems?
Answers to these questions are essential for evaluating defense mechanisms. We can
study this tradeoff by varying the resource description in the emulator, described in
Task 1.2.

5.2 IoT Benchmarks

Workloads for IoT or other embedded devices look very different from workloads for
desktop, server, and mobile applications. As a result, existing benchmarks for these
domains do not adequately measure IoT systems. For example, the well-known SPEC
CPU suite of benchmarks are focused on “measuring and comparing compute inten-
sive performances” [26]. In particular, SPEC CPU is concerned with the performance
of a single task consisting of integer or floating point computations. An IoT device,
by contrast, may spend most of its time in a low-power mode waiting for an event
such as a timer firing or receiving input from a sensor or network. Once the event
occurs, the device switches into a higher-power mode and executes a short task, often
involving interaction with the physical world by means of attached peripherals, and
then returning to the low-power mode.

Security for Software on Tiny Devices 155

Requirements. Benchmarks for IoT devices must meet several criteria. First, the
applications must be realistic and mimic the application characteristics discussed
above. While an individual benchmark need not satisfy all characteristics, the set
of benchmarks in a suite must cover all characteristics. This ensures security and
performance concerns with real applications are also present in the benchmarks.
IoT devices are diverse, therefore the benchmarks should also be diverse and cover
a range of factors, such as code complexity, types of peripherals used, and being
built with or without an OS. Finally, network interactions must be included in the
benchmarks.

Second, benchmarks must facilitate repeatable measurements. For IoT applica-
tions, the incorporation of peripherals, dependence on physical environment, and
external communication make this a challenging criterion to meet. For example,
if an application waits for a sensed value to exceed a threshold before sending a
communication, the time for one cycle of the application will be highly variable.
Similarly, the network characteristics tend to be quite variable and can affect the
timing measurements. The IoT devices benchmarks must be designed to both allow
external interactions while enabling repeatable measurements.

A third criterion is the measurement of a variety of metrics relevant to IoT applica-
tions. These include performance metrics (e.g. total runtime cycles), resource usage
metrics (local resources like memory and stable storage, and energy resources), and
domain-specific metrics (e.g. fraction of the cycle time the device spends in low-
power sleep mode). An important goal of our effort is to enable benchmarking of
IoT security solutions and hence the benchmarks must enable measurement of secu-
rity properties of interest. There are of course several security metrics very specific to
the defense mechanism but many measures of general interest can also be identified,
such as the fraction of execution cycles with elevated privilege (“root mode”) and
number of Return-Oriented Programming (ROP) gadgets.

5.3 BenchloT: Our Contribution

We have developed BenchloT, a benchmark suite and evaluation framework that
fulfills all the above criteria for evaluating IoT devices [1]. Our benchmark suite
comprises of five realistic benchmarks, which stress one or more of the three funda-
mental task characteristics of IoT applications: sense, process, and actuate. They also
have the characteristics of IoT applications introduced above. The BenchloT bench-
marks enable deterministic execution of external events and utilize network send
and receive. BenchloT targets 32-bit IoT devices implemented using the popular
ARMV7-M architecture. Each BenchloT benchmark is developed in C/C + + and
compiles both for bare-metal IoT devices (i.e. without an OS), and for the ARM
Mbed Operating System (Mbed-OS). Our use of the Mbed API (which is orthogonal
to the Mbed-OS) enables realistic development of the benchmarks since it comes
with important features for IoT devices such an embedded file system.

156 S. Bagchi

BenchloT enables repeatable experiments while including sensor and actuator
interactions. It uses a software-based approach to trigger such events. The software-
based approach enables us to precisely control when and how the event is delivered
to the rest of the software. This approach has been used in the past in embedded
systems for achieving repeatability as a means to automated debugging [27, 28]. We
can also control for the exact content of the events, which again enables the goal of
repeatability of external events such as sensors and actuators without relying on the
physical environment.

BenchloT’s evaluation framework enables automatic collection of 14 metrics
covering four categories: (1) Security; (2) Performance; (3) Resource usage, and
(4) Energy consumption Fig. 5. The evaluation framework is a combination of a
runtime library and automated scripts. It is extensible to include additional metrics
to fit the use of the developer and can be ported to other applications that use the
ARMV7-M architecture. An overview of BenchloT and the evaluation framework is
shown in Fig. 3. The workflow of running any benchmark in BenchloT is as follows:

(1) The user compiles and statically links the benchmark with a runtime library,
which we refer to as the metric collector library, to enable collecting the dynamic
metrics @; (2) The user provides the desired configurations for the evaluation (e.g.
number of repetitions, timing of the interrupts, sensor values to use) @; (3) To begin
the evaluation, the user starts the script that automates the process of running the
benchmarks to collect both the dynamic ® and static @ metrics; (4) Finally, the
benchmark script produces a result file for each benchmark with all its measurements
0.

Evaluation Framework
@ Run benchmarks on Collect
the targeted hardware dynamic metrics

(4]

User
configuration
files

Benchmark

bi Statically analyze the Collect
inary benchmark binary static metrics

Results file

Compile
&
Link H Metric collector
runtime library K

I0T2 Benchmarks

Fig. 3 An overview of the evaluation workflow in BenchloT. BenchloT provides five realistic IoT
benchmarks spanning one or more of the key functionalities of sense, process, and actuate. BenchloT
measures four types of metrics: security, performance, resource usage, and energy consumption

Security for Software on Tiny Devices 157

Fig. 4 Illustration of
software layers and APIs
used in developing BenchloT
benchmarks. BenchloT
provides portable
benchmarks by relying on
the Mbed platform

ToT? Benchmark

|
Portable API and coversperipherals ﬁ Mbed

HAL Library

Board dependent (API not portable) —<I e A)

Mbed RTOS

Microcontroller Hardware

To implement the benchmarks and demonstrate rich and complex IoT devices
applications, BenchloT targets 32-bit IoT devices using the ARM Cortex-M (3, 4,
7) uCs, which are based on the ARMvV7-M architecture. ARM Cortex-M is the most
popular ;£ C for 32-bit £ Cs with over 70% market share. This enables the benchmarks
to be directly applicable to many IoT devices being built today. As shown in Fig. 4,
hardware vendors use different HAL APIs depending on the underlying board. Since
ARM supplies an ARM Mbed API for the various hardware boards, we rely on that
for portability of BenchloT to all ARMv7-M boards. In addition, for applications
requiring an OS, we couple those with Mbed’s integrated RTOS—which is referred
to as Mbed-OS. Mbed-OS allows additional functionality such as scheduling, and
network stack management. To target other ©Cs, we will have to find a corresponding
common layer or build one ourselves—the latter is a significant engineering task and
open research challenge due to the underlying differences between architectures.

Benchmark Applications

Table 1 shows the list of BenchloT benchmarks with the task type and peripherals it is
intended to stress. While the bare-metal benchmarks perform the same functionality,
their internal implementation is different as they lack OS features and use a different
TCP/IP stack. For the bare-metal applications, the TCP/TP stack operates in polling
mode and uses a different code base. As a result the runtime of bare-metal and OS
benchmarks are different.

6 Conclusion

It is upon us to significantly and promptly improve the security for bare-metal
embedded and IoT systems. This has become imperative as they form the fabric,
sometime hidden, of many critical systems, ranging from industrial control systems,
public use equipment (like elevators and escalators), autonomous transportation facil-
ities, personal IoT devices (smart devices and home assistants), to the innards of
high-end computing equipment (like disk drives) or mobile equipment (like base-
band processors on mobile phones). A high-level direction that we and other members
of the community are pursuing is to restrict the privileges and capabilities of different

158 S. Bagchi

‘@ swic (Security "\ (Performance) /~ Memory

i . Total &
O Dynamic ' privileged cycles
Privileged
thread cycles

Energy

Total
Flash usage

Total
runtime cycles

Stack + Heap
usage

Total
RAM usage

Energy
consumption

DEP
of ROP gadgets Sleep cycles

of indirect calls
N VAN 2N\)/

Fig. 5 A summary of the BenchloT metrics. A white box indicates a dynamic metric, and a black
box indicate a static metric

Table 1 A summary of BenchloT benchmarks and their categorization with respect to task type,
and peripherals

Benchmark Task type Peripherals
Sense Process Actuate

Smart light v v v Low-power timer, GPIO, real-time
clock

Smart thermostat v v v Analog-to-digital converter (ADC),
GPIO, uSD card Smart

Lock v v Serial (UART/USART), display, uSD
card, real-time clock

Firmware updater v v Flash in-application programming

Connected display v v Display, 1SD card

regions of the application to the lowest necessary to perform intended operations.
This is ideally done without needing application modification and with limited user
annotations, to indicate what denotes security-critical operations, thus easing the
application of the solution to legacy embedded applications. In this article, we have
identified three interactive thrusts to achieve this solution:

(i) New static and dynamic analyses to identify security and functionality charac-
teristics of each part of the application; (ii) New runtime techniques that enforce

Security for Software on Tiny Devices 159

the desired security properties while minimizing the performance impact; and (iii)
New security metrics and benchmarks that accurately measure the security and
performance impacts of defense mechanisms for embedded systems.

References

w

10.

11.

12.

13.

14.

15.

. Almakhdhub NS, Clements AA, Payer M, Saurabh Bagchi B (2019) A security benchmark for

the internet of things. In: 2019 49th annual IEEE/IFIP international conference on dependable
systems and networks (DSN). IEEE, 234-246

ARM (2017) mbed IoT platform. https://www.mbed.com/en/platform/

ARM Inc. Mbed uVisor, 2017

Banerjee SS, Jha S, CyriacJ, Kalbarczyk ZT, Iyer RK (2018) Hands off the wheel in autonomous
vehicles?: A systems perspective on over a million miles of field data. In: 2018 48th annual
IEEE/IFIP international conference on dependable systems and networks (DSN). IEEE, pp
586-597

Barr Michael, Massa A (2006) Programming embedded systems: with C and GNU development
tools. O’Reilly Media, Inc.

Biswas P, Di Federico A, Carr SA, Rajasekaran P, Volckaert S, Na Y, Franz M, Payer M (2017)
Venerable Variadic Vulnerabilities Vanquished. In: SEC: USENIX security symposium
Burow N, Carr SA, Nash J, Larsen P, Franz M, Brunthaler S, Payer M (2017) Control-flow
integrity: precision, security, and performance. ACM Comput Surv 50(1)

Cao PM, Wu Y, Banerjee SS, Azoff J, Withers A, Kalbarczyk ZT, Iyer RK (2019) CAUDIT
: continuous auditing of SSH servers to mitigate brute-force attacks. In: 16th USENIX
symposium on networked systems design and implementation (NSDI 19), pp 667-682
Carlini N, Barresi A, Payer M, Wagner D, Gross TR (2015) Control-flow bending: on the
effectiveness of control-flow integrity. In: SEC: USENIX security symposium

Chung K, Kalbarczyk ZT, Iyer RK (2019) Availability attacks on computing systems through
alteration of environmental control: smart malware approach. In: Proceedings of the 10th
ACM/IEEE international conference on cyber-physical systems, pp 1-12

Chung K, Li X, Tang P, Zhu Z, Kalbarczyk ZT, Iyer RK, Kesavadas T (2019) Smart malware
that uses leaked control data of robotic applications: the case of raven-ii surgical robots. In:
22nd International symposium on research in attacks, intrusions and defenses (RAID 2019),
pp 337-351

Clements AA, Almakhdub NS, Saab K, Srivastava P, Koo J, Bagchi S, Payer M (2017)
Protecting bare-metal embedded systems with privilege overlays. In: IEEE symposium on
security and privacy (Oakland), pp 289-303

Esiner E, Mashima D, Chen B, Kalbarczyk Z, Nicol D (2019) F-pro: a fast and flexible
provenance-aware message authentication scheme for smart grid. In: 2019 IEEE interna-
tional conference on communications, control, and computing technologies for smart grids
(SmartGridComm). IEEE, pp 1-7

Ge X, Talele N, Payer M, Jaeger T (2016) Fine-grained control-flow integrity for kernel
software. In: EuroSP: IEEE European symposium on security and privacy

Haller I, Jeon Y, Peng H, Payer M, Bos H, Giuffrida C, van der Kouwe E (2016) Type sanitizer:
practical type confusion detection. In: CCS: ACM conference on computer and communication
security

. Jeon Y, Biswas P, Carr SA, Lee B, Payer M (2017) HexType: efficient detection of type

confusion errors for C++. In: CCS: ACM conference on computer and communication security

. Jha S, Cui S, Banerjee S, Cyriac J, Tsai T, Kalbarczyk Z, Iyer RK (2020) Ml-driven malware

that targets av safety. In: 2020 50th annual IEEE/IFIP international conference on dependable
systems and networks (DSN). IEEE, pp 113-124

https://www.mbed.com/en/platform/

160 S. Bagchi

18. Kuzentsov V, Payer M, Szekeres L, Candea G, Song D, Sekar R, Code pointer integrity. In:
OSDI: symp. on operating systems design and implementation, vol 214

19. Lou X, Tran C, Tan R, Yau DKY, Kalbarczyk ZT (2019) Assessing and mitigating impact of
time delay attack: a case study for power grid frequency control. In: Proceedings of the 10th
ACMV/IEEE international conference on cyber-physical systems, pp 207-216

20. Midi D, Payer M, Bertino E (2017) Memory safety for embedded devices with nes check. In:
AsiaCCS: ACM symposium on information, computer and communications security

21. Necula GC, Condit J, Harren M, McPeak S, Weimer W (2005) CCured: type-safe retrofitting
of legacy code. Trans. Prog. Lang. Syst. 27(3):477-526

22. Payer M, Barresi A, Gross TR (2015) Fine-grained control-flow integrity through binary
hardening. In: DIMVA: conference on detection of intrusions and malware and vulnerability
assessment

23. Rudd R, Skowyra R, Bigelow D, Dedhia V, Hobson T, Crane S, Liebchen C, Larsen P, Davi L,
Franz M, Sadeghi A-R, Okhravi H (2017) Address-oblivious code reuse: on the effectiveness
of leakage-resilient diversity. In: Proc Netw Distribut Syst Secur Symp (NDSS 17), pp 1-15,
2017

24. Salwan J (2011) ROPgadget—Gadgets finder and auto-roper

25. Schuster F, Tendyck T, Liebchen C, Davi L, Sadeghi A-R, Holz T (2015) Counterfeit object-
oriented programming: on the difficulty of preventing code reuse attacks in C++ applications.
In: Security and privacy (SP), 2015 IEEE symposium on. IEEE, pp 745-762

26. Standard Performance Evaluation Corporation (2017) SPEC CPU®2017. Online: https://www.
spec.org/cpu2017/

27. Tancreti M, Hossain MS, Bagchi S, Raghunathan V (2011) Aveksha: a hardware-software
approach for non-intrusive tracing and profiling of wireless embedded systems. In: Proceedings
of the 9th ACM conference on embedded networked sensor systems, pp 288-301

28. Tancreti M, Sundaram V, Bagchi S, Eugster P (2015) Tardis: software-only system-level record
and replay in wireless sensor networks. In: Proceedings of the 14th international conference
on information processing in sensor networks (IPSN). ACM, pp 286-297

29. Tice C, Roeder T, Collingbourne P, Checkoway S, Erlingsson U, Lozano L, Pike G (2014)
Enforcing forward-edge control-flow integrity in GCC & LLVM. In: Fu K (ed) Proceedings of
USENIX Security 2014. USENIX

30. UBM Canon (2015) 2015 embedded markets study

31. Zhang M, Sekar R (2013) Control flow integrity for COTS binaries. In: Proceedings of USENIX
security 2013. USENIX

32. Zhu DY, Jung J, Song D, Kohno T, Wetherall D (2011) Tainteraser: protecting sensitive data
leaks using application-level taint tracking. ACM SIGOPS Oper Syst Rev 45(1):142-154

https://www.spec.org/cpu2017/

	 Security for Software on Tiny Devices
	1 Introduction
	1.1 Ravi’s Contributions on This Topic
	1.2 Why can’t We “just” Adopt Defenses from the Server World to the Embedded World?

	2 Background and Related Work
	2.1 Embedded System Development
	2.2 Threat Model
	2.3 Lack of Defenses on Embedded Systems

	3 Guided IoT Exploration
	4 Runtime Enforcement Techniques
	4.1 Task II.1: Automatic Least Privilege Separation
	4.2 Task II.2: Enforcing Isolation Among Compartments

	5 Evaluating Security
	5.1 IoT Metrics
	5.2 IoT Benchmarks
	5.3 BenchIoT: Our Contribution

	6 Conclusion
	References

