
Multi-layered Monitoring for Virtual
Machines

Cuong Pham

Abstract This chapter describes monitoring methods to achieve both security and
reliability in virtualized computer systems. We show how to perform continuous
monitoring and leverage information across different layers of a virtualized computer
system to detect malicious attacks and accidental failures.

1 Motivation

When a system is deployed at scale, the efficient automation of monitoring is
key to achieving resilience against accidental failures and malicious attacks. This
chapter specifically focuses on monitoring virtualized computer systems, which is
an enabling technology of modern data centers.

Why monitoring? Computer systems fail regardless of how carefully they are
constructed. A failure is either a reliability incident or a security incident. While
reliability incidents are primarily caused by the increasing complexity of computer
systems, security threats increase as data stored and processed by computers carry
greater value.

It is a well-established design principle to treat reliability and security incidents
as the norm, rather than the exception [1]. A system operates under the assumption
that it can accidentally fail or be attacked at any point in time. Therefore, to produce
steady and useful progress, the systemneeds to bemonitored so that adverse incidents
are detected and mitigated as quickly as possible. This is the principle that embraces
high-fidelity monitoring as essential to achieve resiliency in computer systems.

Our research shares the same core proposition with this design principle: using
monitoring as the main vehicle to cope with attacks and failures. We focus on the
design and construction of efficientmonitoringmethods that can capture high-fidelity
views of target systems.

C. Pham (B)
2 Nguyen Van Tuong street, district 7, Ho Chi Minh city, Vietnam
e-mail: phammanhcuong@gmail.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Wang et al. (eds.), System Dependability and Analytics, Springer Series in Reliability
Engineering, https://doi.org/10.1007/978-3-031-02063-6_6

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02063-6_6&domain=pdf
mailto:phammanhcuong@gmail.com
https://doi.org/10.1007/978-3-031-02063-6_6

100 C. Pham

Why virtualized computer systems? Virtualization is the means to enable sharing
and to achieve high utilization in modern data centers. In 2012, 51% of ×86 servers
were virtualized, a 13% increase from 2011 [2]. In addition to virtualized servers
being more prevalent than non-virtualized ones, the density of VMs on each server
is also increasing [3].

The primary driving force of this trend is cloud computing, which leverages
virtualization on commodity hardware as the core technology to facilitate sharing.
Not unlike other types of utilities, cloud computing benefits from the economies of
sharing and scaling. This is because sharing greatly decreases the cost of computing
resources, which in turn attracts more users and providers to join the flow.

Given the abundance of VMs, an improvement in the security and reliability of
this technology will have a large impact.

2 Target System Model

In this chapter, the target of monitoring is a virtualized system as depicted in Fig. 1.
The bottom layers, including Hardware, Firmware/Bios, and Hypervisor/OS, consti-
tute the hostmachine. The layers on the top, includingApplication andOS, constitute
the virtual machines. The host machine can accommodate multiple VMs running at
the same time. From user perspectives, VMs operate independently of each other.

We use the term VM monitoring to indicate any monitoring method that has the
protection target (or target for short) in a layer of the virtualization software stack,
including software running on a VM and the hypervisor.When the context is unclear,

Fig. 1 A typical virtualized computer system. The virtualization software stack is the target of our
monitoring

Multi-layered Monitoring for Virtual Machines 101

we use a more descriptive term to indicate the target of monitoring. Specifically, we
use guest operating system monitoring, or guest application monitoring to indicate
that monitoring targets are an operating system (OS) and applications running inside
VMs, respectively. Similarly,we use hypervisormonitoring to indicate that the hyper-
visor is the target ofmonitoring. In addition,we use out-of-VMmonitoring to indicate
monitoring techniques deployed outside of target VMs to monitor software running
inside VMs (e.g., monitoring is done from the hypervisor or from other VMs).

In the designs of ourmonitoring,we assume thatHardwareAssistedVirtualization
(HAV), such as Intel VT-x [4] or AMD-V [5]), is an integral component of the
system, and is utilized by hypervisors to implement virtualization. At the moment,
all server-grade×86 processors on themarket support HAV. Furthermore, all popular
hypervisor implementations, such as theVMWare hypervisor family, KVM [6], XEN
[7], and Virtual Box, can utilize HAV to execute VMs.

With regard to security monitoring, our threat model assumes that VM share the
attack surface of the target virtualized system. This assumption is derived from the
model of data centers that rely on virtualization to serve users and process workloads.
Infrastructure as a Service (IaaS) in cloud computing is a typical example of this
model. In such a system, a user can execute arbitrary software, from user applications
to their own OSs, inside VMs. Meanwhile, they do not have direct access to the host
machine, except via the VM-hypervisor interface provided byHAV. Furthermore, we
explicitly trust the underlying hardware. We also do not consider physical tampering
and inside attackers (e.g., malicious administrators who already have remote access
to the host machine).

In this threat model, we consider two broad scenarios: attacking a VM and
attacking a hypervisor. The first scenario refers to attacks that aim at compromising
software running inside a VM. Since in a typical data center setup most VMs must
expose some remote access via the Internet to be used, they are constantly at risk
of being targeted by attackers. The second scenario assumes the attacker has full
access to a VM and exploits the VM-hypervisor interface to launch attacks against
the underlying hypervisor (and other co-located VMs). For example, a public IaaS
cloud allows any user to launch their own VMs at a very small cost. Those VMs can
be used as an attack entry point to the hypervisor. Or a successful attack described in
the previous scenario may grant the attacker administrative access to the exploited
VM, which in turn can lead to an attack against the hypervisor.

3 Limitations of State-of-the-Art VMMonitoring

Despite significant research effort that has been invested, state-of-the-art VM moni-
toring techniques still experience some fundamental limitations that dwarf their prac-
ticality. Those are limitations that leave critical gaps for failures and attacks to escape
detection. Herewe present limitations in regard to security and reliabilitymonitoring.

102 C. Pham

3.1 Polling-and-Scanning Monitoring Paradigm

Most VM monitoring techniques, e.g., [8–12], follow the polling-and-scanning
paradigm. In this paradigm, monitoring is done by scanning the target system at
a specific polling interval. This paradigm is also known as passive monitoring [13].

There are two major limitations of the polling-and-scanning method. First, it
leaves vulnerable time gaps between consecutive polling intervals. During those
temporal gaps, a transient attack, which completely removes its footprint after
completing, cannot be detected. We have demonstrated in [14, 15] that transient
attacks can be crafted to evade VM monitors with a high chance of success. Next,
this monitoring method can only scan the static state of the target system, e.g., the
state that is stored in SRAM or persistent storage. What it misses is operational data
about the activities of the target system, which is necessary to enforce many security
and reliability monitoring policies.

3.2 Untrustworthy Input

The goal of monitoring is to capture and present a trusted view of target systems.
This view is used at a later phase in a system’s operational pipeline, e.g., enforcing a
security or reliability policy. Thus, the input of monitoring must be carefully selected
to faithfully represent the target system. This requirement is particularly imperative
in the context of security monitoring, because attackers always proactively seek
opportunities like this, which let them manipulate input to falsify monitoring views.

However, many out-of-VM monitoring techniques [8–12] fail to satisfy this
requirement, as they rely on untrustworthy input. Thesemonitoring techniques exclu-
sively rely on data structures maintained by software inside a target VM to derive
views of the VM itself. It has been demonstrated that if the guest software is compro-
mised, those data structures can be manipulated by attackers to circumvent such
out-of-VM monitors [16, 17].

3.3 Inflexible Monitor Placement

Target systems and attacks are both moving targets. For example, the target system
can be reconfigured or updated, or a newvulnerability or bug can be discovered.Many
of these events require a corresponding update in the monitoring system. In addition,
attacks are often carried out in multiple stages [18], with each stage requiring a
different set of monitors to fully cover the trace of the attack.

For these reasons, monitoring systems need to be made ready for changes. More-
over, changes in a monitoring system should not be a source of downtime to target

Multi-layered Monitoring for Virtual Machines 103

systems. This is however not the case for existing VMmonitoring techniques, which
requiremonitoring setup and configuration as a part of the target system boot process.

3.4 Incompatible Reliability and Security Monitoring

Reliability and security tend to be treated separately because they appear orthogonal:
reliability focuses on accidental failures, security on intentional attacks. Because of
the apparent dissimilarity between the two, tools to detect and recover from the
different classes of failures and attacks are usually designed and implemented differ-
ently. So, integrating support for reliability and security in a single framework is a
significant challenge.

Current VM monitoring techniques are no exception. While there is a substantial
body of VM monitoring research dedicated to security monitoring, and some work
dedicated to reliability, we are not aware of any previous effort toward combining
these two subjects of monitoring.

The above four identified issues in VMmonitoring hinder its adoption in produc-
tion systems.Our research aims at (i) raising the awareness of those issues via demon-
strations of real attacks and failures, and (ii) exploring new monitoring paradigms
and methods that can resolve all of the four issues.

4 HyperTap: Virtual Machine Monitoring Using Hardware
Architectural Invariants

Reliability and security (RnS) are two essential aspects of modern highly connected
computing systems. Traditionally, reliability and security tend to be treated sepa-
rately because of their orthogonal nature: while reliability deals with accidental
failures, security copes with intentional attacks against a system. As a result, mech-
anisms/algorithms addressing the two problems are designed independently, and it
is difficult to integrate them under a common monitoring framework.

In this section, we identify the commonalities between reliability and security
monitoring to guide the development of suitable frameworks for combining both
uses of monitoring.

We apply our observations in the design and implementation of the HyperTap
framework for virtualization environments.

104 C. Pham

4.1 Monitoring Principles

A monitoring process can be divided into two tightly coupled phases: logging and
auditing [41]. In the logging phase, relevant system events (e.g., a system call) and
state (e.g., system call parameters) are captured. In the auditing phase, these events
and states are analyzed, based on a set of policies that classify the state of the system,
e.g., normal or faulty. Based on that model, we observe that although Reliability and
security monitors may apply different policies during the auditing phase, they can
utilize the same event- and state-logging capability. This observation suggests that
the logging phases of multiple reliability and security monitors need to be combined
into a common framework. Unification of logging phases brings further benefits,
namely, it avoids potential conflict between different monitors that track the same
event or state, and reduces the overall performance overhead of monitoring.

4.1.1 Unified Logging

It is not uncommon for co-deployed logging mechanisms to conflict. For instance,
twomonitors relying on a certain counter that only allows exclusive access cannot use
it simultaneously. A concrete example would be to deploy both the failure detection
technique proposed in [43] and the malware detection technique proposed in [44] in
the same system, as they both use hardware performance counters. In addition, one
monitor may become a source of noise for other monitors. For example, intrusive
logging could generate an excessive number of events.

The problem can be solved by unifying logging for co-located monitors. Unified
logging is responsible for (i) retrieving common target system events and states, and
then (ii) streaming them in a timely manner to customizable auditors, which enforce
RnS policies.

Aside from avoiding potential conflicts, the combination of logging phases yields
additional benefits. It can reduce the overall performance overhead of combined
monitors. To ensure the consistency of captured states and events, logging is often
a blocking operation. Once the event and state have been logged, an audit can be
performed in parallel with execution of the target system. Therefore, combining
blocking logging phases boosts performance, even in cases where the captured states
differ. Furthermore, this approach inherits other benefits of the well-known divide-
and-conquer strategy: it allows one to focus on hardening the core logging engine,
and enables incremental development and deployment of auditing policies.

4.1.2 Achieving Isolation via Architectural Invariants

AnOS invariant is a property defined and enforced by the design and implementation
of a specific OS, so that the software stack above it, e.g., user programs and device
drivers, can operate correctly. In the context of VMI, OS invariants allow the internal

Multi-layered Monitoring for Virtual Machines 105

state of aVMto bemonitored from the outside by decoding theVM’smemory [8–12].
No user inside a VM can interfere with the execution of outside monitoring tools.
However, monitoring tools still share input, e.g., a VMs’ memory, with the other
software inside VMs. Therefore, those monitoring tools are vulnerable to attacks at
the guest system level, as demonstrated in [16, 17, 45].

An architectural invariant is a property defined and enforced by the hardware
architecture, so that the entire software stack, e.g., hypervisors, OSes, and user appli-
cations, can operate correctly. For example, the ×86 architecture requires that the
CR3 and TR registers always point to the running process’s Page Directory Base
Address (PDBA) and Task State Segment (TSS), respectively. Hardware invariants
and HAV features have been studied in the context of security monitoring [28] and
offline malware analysis [33].

Wefind that architectural invariants, particularly the ones defined byHAV, provide
an outside view with desirable features for VM reliability and security monitoring.
The behaviors enforced by HAV involve primitive building blocks of essential OS
operations, such as context switches, privilege level (or ring) transfers, and interrupt
delivery. Furthermore, strong isolation between VMs and the physical hardware
ensures the integrity of architectural invariants against attacks inside VMs. Software
inside VMs cannot tamper with the hardware as it can with the OS. In this study, we
explore the full potential of HAV for online enforcement of RnS policies.

However, relying solely on architectural invariants and ignoring OS invariants
would widen the semantic gap separating the target VM and the hypervisor. The
reason is that many OS concepts, such as user management (e.g., processes owned
by different users), are not defined at the architectural level. In this study, we propose
to use architectural invariants as the root of trustwhen derivingOS state. For example,
the thread info data structure in the Linux kernel containing thread-level information
can be derived from the TSS data structure, a data structure defined by the ×86
architecture.

In order to circumvent the OS state derivation, an attack would need to change the
layout of OS-defined data structures (e.g., by adding fields to an existing structure
that point to tainted data). Changing data structure layout, as opposed to changing
values, is difficult for attackers, because (i) it involves significant changes to the
kernel code that references the altered fields, and (ii) it would need to relocate all
relevant kernel data objects. Not only are those attacks difficult to perform on-the-fly,
but since malware always tries to minimize its footprint, our approach significantly
impedes would-be attackers.

4.1.3 Robust Active Monitoring

Passive monitoring is suitable for persistent failures and attacks, because it assumes
the corrupted or compromised state remains in the system sufficiently longer than
the polling interval. That assumption does not hold in many RnS problems. For
example, the majority of crash and hang failures in Linux systems have short failure
latencies (the time for faults to manifest into failures) [46]. An unnecessarily long

106 C. Pham

detection latency, e.g., caused by polling monitoring, would result in subsequent
failure propagation or inefficient recovery (e.g., multiple roll-backs).

As we demonstrate in Sect. 4.3.2, a transient attack can be combined with other
techniques to create a stealthy attack that can defeat passive monitoring. Active
monitoring, or event-driven monitoring, on the other hand, possesses many attractive
features. Since it is event-driven, there is no time dependence that can be exploited.
Furthermore, activemonitoring can capture system activities in addition to the system
state, which passive monitoring provides. System activities are the operations that
transition a system from one state to another. Invoking a system call is an example
of a system activity. In many cases, information about system activities is crucial to
enforcing RnS policies.

Active monitoring is not foolproof, as it can suffer from event bypass attacks. If an
attack can prevent or avoid generation of events that trigger logging, it can bypass the
monitor. To make active monitoring robust, we propose to use hardware invariants,
specifically the VM Exit feature provided by HAV, to generate events.

4.2 Framework and Implementation

4.2.1 Scope and Assumptions

HyperTap integrates with existing hypervisors to safeguard VMs against failures and
attacks. It aims to make this protection transparent to VMs by utilizing existing hard-
ware features. Thus, HyperTap does not require modification of either the existing
hardware or the guest OS’s software stack.

HyperTap’s implementation assumes that the underlying hardware and hypervisor
are trusted. Although extra validation and protection for the hardware and hypervisor
could address concerns about the robustness of different hypervisors against failures
and attacks, these issues are addressed by the proposed monitors in hShield (Sect. 6).

4.2.2 Monitoring Workflow

Figure 2 depicts the overall workflow of HyperTap. The left side of the figure illus-
trates how the shared event logging mechanism works and the right side describes
the auditing phase.

HyperTap utilizes HAV to intercept the desired guest OS operations through VM
Exit events generated by corresponding hardware operations. Since the HAV VM
Exit mechanism is not designed to intercept all desired operations, e.g., system calls,

HyperTap supports a wide range of events, from coarse-grained events, such as
process context switches, to finer-grained events, such as system calls, and very fine-
grained events, such as instruction execution and memory accesses. That variable
granularity ensures that HyperTap can be adopted for a broad range of RnS policies.

Multi-layered Monitoring for Virtual Machines 107

Fig. 2 Implementation of HyperTap in the KVMhypervisor. The hypervisor is modified to forward
VM Exit events to the Event Multiplexer (EM), which is implemented as a separate kernel module.
The EM forwards events to registered auditors running as user processes inside auditing containers.
The Remote Health Checker (RHC) monitors the hypervisor’s liveness

HyperTap delivers captured events to registered auditors, which implement
specific monitoring policies. An auditor starts by registering for a set of events
needed to enforce its policy. Upon the arrival of each event, the auditor analyzes
the state information associated with the event. Auditors are associated with VMs
and each VM can have multiple auditors.

HyperTap also provides an interface that allows auditors to control target VMs.
For example, the auditing phase is non-blocking by default, but an auditor may pause
its target VM during analysis in order to stop the VM during an attack, or roll-back
the VM when it detects a non-recoverable failure.

4.2.3 Implementation

This subsection presents the integration of HyperTap with KVM [6], hypervisor built
with HAV as a Linux kernel module. Figure 2 depicts the deployment of HyperTap’s
components.

HyperTap’s unified logging channel is implemented through two components: an
Event Forwarder (EF) and an Event Multiplexer (EM). The EF is integrated into the
KVMmodule, and forwards VM Exit events and relevant guest hardware state to the
EM. By default, events are sent non-blocking to minimize overhead. The EM, which
is implemented as another Linux kernel module in the host OS, buffers input events
from the EF and delivers them to the appropriate auditors.

108 C. Pham

The EM is also responsible for sampling VMExit events that are sent to a Remote
Health Checker (RHC) running in a separate machine. The RHC server acts as a
heartbeat server to measure the intervals between received events. If no events are
received after a certain amount of time, it raises an alert about the liveness of the
monitoring system.

Auditors are implemented as user processes inside auditing containers 4 running
on the host OS. Compared to the dedicated auditing VM used in previous work [11,
11], this approach offers multiple benefits. First, it provides lightweight attack and
failure isolation among different VMs’ auditors, and between auditors and the host
OS. Second, it simplifies implementation and reduces the performance overhead of
event delivery from the EMmodule. Finally, it allows the integration of auditors into
existing systems, since containers are robust and compatible with most current Linux
distributions.

We needed to add less than 100 lines of code to KVM to implement the EF
component and export Helper APIs.

4.3 Performance Evaluation

We conducted experiments to measure the performance overhead of individual
HyperTap auditors as well as the combined overhead of running multiple auditors.
Wemeasured the runtime of the UnixBench 3 performance benchmark when (i) each
auditor was enabled, and (ii) all three auditors were enabled. The target VM was a
SUSE 11 Linux VMwith 2 vCPUs and 1GiB of RAM. The host computer ran SUSE
11 Linux and the KVM hypervisor, with an 8 core Intel i5 3.07 GHz processor and
8 GiB of RAM.

The results were illustrated in Fig. 3. The baseline is the execution time when
running the workloads in the VM without HyperTap integrated, and the reported
numbers are the average of five runs of the workloads.

In most cases, the performance overhead of running all three auditors simultane-
ously was (i) only slightly higher than that of running the slowest auditor, HT-Ninja,
individually, and (ii) substantially lower than the summation of the individual over-
heads of all auditors. That result demonstrates the benefits of HyperTap’s unified
logging mechanism.

For theDisk I/OandCPU intensiveworkloads, all three auditors together produced
less than 5% and 2% performance losses, respectively. The Disk I/O intensive work-
loads appear to have incurred more overhead than CPU intensive workloads because
they generated more VM Exit events, at which point some monitoring code was
triggered.

For the context switching and system call micro-benchmarks, all three auditors
together induced about 10% (or less) and 19% performance losses, respectively.
It is important to note that those micro-benchmarks were designed to measure the
performance of individual specific operations without any useful processing; they
do not necessarily represent the performance overhead of general applications. The

Multi-layered Monitoring for Virtual Machines 109

Fig. 3 Measured performance overhead of HyperTap sample monitors. The workloads are run
with three different configurations: (1) both HRKD and HT-Ninja, (2) only HT-Ninja, and (3) only
HRKD. Error bars indicate one standard deviation

relatively high overhead was caused by the HyperTap routines enabled for logging
those benchmarked operations. Since only HT-Ninja needs to log system calls, it was
the primary source of the overhead in the system call micro-benchmark case.

5 Hprobes: Dynamic Virtual Machine Monitoring Using
Hypervisor Probes

This section introduces Hprobe, a framework that allows one to dynamically monitor
applications and operating systems inside a VM. The Hprobe framework does not
require any changes to the guest OS, which avoids the tight coupling of monitoring
with its target.

110 C. Pham

Furthermore, the monitors can be customized and enabled/disabled while the VM
is running.

5.1 Introduction

The HyperTap framework introduced in the previous chapters provides an efficient
andhard-to-bypass event-drivenmonitoringmechanism.ThekeydesignofHyperTap
is the reliance on a fixed set of hardware architectural invariants to capture guest
OS’s activities. While we have shown that this monitoring capability is effective to
support an important set of reliability and security monitoring policies (see Chap. 4
for examples of the evaluated policies), there are still many cases in which monitors
requires a more flexible means to place monitoring points, or hooks, to capture
specific guest OS and applications’ operational activities.

One class of active monitoring systems is a hook based system, where the monitor
places hooks inside the target application or OS [13]. A hook is a mechanism used to
generate an event when the target executes a particular instruction. When the target’s
execution reaches the hook, control is transferred to the monitoring system where it
can record the event and/or inspect the system’s state. Once the monitor has finished
processing the event, it returns control to the target system and execution continues
until the next event. Hook based techniques are robust against failures and attacks
inside the target when the monitoring system is properly isolated from the target
system.

We find dynamic hook-based systems attractive for dependability monitoring as
they can be easily adapted: once the hook delivery mechanism is functional, imple-
menting a new monitor involves adding a hook location and deciding how to process
the event. In this case, dynamic refers to the ability to add and remove hooks without
disrupting the control flow of the target. This is particularly important in real-world
use, where monitoring needs to be configured for multiple applications and opera-
tional environments. In addition to supporting a variety of environments, monitoring
must also be responsive to changes in those environments.

In this section, we present the Hprobe framework, a dynamic hook-based VM
reliability and security monitoring solution. The key contributions of the Hprobe
framework are that it: is loosely coupled from the target VM, can inspect both the
OS and user applications, and it supports runtime insertion/removal of hooks. All
of these aspects result in a VM monitoring solution that is suitable for running
on an actual production system. We have built a prototype implementation using
Hardware-Assisted Virtualization that is integrated with the KVM hypervisor [6].
From our experiments, the overhead for an individual probe (the time between hook
invocation andwhen control is returned to theVM) is 2.6µs on amodern server-class
CPU. To demonstrate monitoring using the Hprobe framework, we have constructed
an emergency security vulnerability detector, a heartbeat detector, and an infinite
loop detector. While our prototype framework shares some similarities and builds on
previous monitoring systems, these detectors could not have been implemented on

Multi-layered Monitoring for Virtual Machines 111

any existing platform. All of these detectors were tested using real applications and
exhibit low overhead (≤5).

5.2 Design

5.2.1 Hook-Based Monitoring

An illustration of a hook-based monitoring system adapted from the formal model
presented in Lares [13] is shown in Fig. 4. Hook basedmonitoring involves a monitor
taking control of the target after the target reaches a hook. In the case of hypervisor-
based VM monitoring, the target is a virtual machine and the monitor can run in
either the hypervisor [10], in a separate security VM [13], or in the same VM [30].
Regardless of the separation mechanism used, one must ensure that the monitor
is resilient to tampering from within the target VM and the monitor has access to
all relevant states of that VM (e.g., hardware, memory, etc.). Furthermore, a VM
monitoring system should be able to trigger on the execution of any instruction, be
it in the guest OS or in an application.

If a monitoring system can capture all relevant events, it also follows that the
monitoring system should be dynamic. This is important in the fast-changing land-
scape of IT security and reliability. As new vulnerabilities and bugs are discovered,
one will inevitably need to account for them.

The value of a static monitoring system decreases drastically over time unless
periodic software updates are issued. However, in many VM monitoring solutions
[8, 13, 14, 30], such software updates would require a hypervisor reboot or at the
very least a guest OS reboot. These reboots result in system downtime whenever
the monitor needs to be adapted. In many production systems, this additional down-
time is unacceptable, particularly when the schedule is unpredictable (e.g., security
vulnerabilities). Dynamic monitors can also provide performance improvement over

Fig. 4 Hook-based
monitoring. A hook triggers
based on event e and control
is transferred to the monitor
through notification N. The
monitor processes e with a
behavior B and returns
control to the target with a
response R

112 C. Pham

statically configuredmonitoring: one canmonitor only events of interest vs. a general
class of events (e.g., a single system call versus all system calls). Furthermore, it is
possible to construct dynamic detectors that change during execution (e.g., a hook
can be used to add or remove other hooks). Static monitoring systems also present
a subtle design flaw: a configuration change in the monitoring system can affect the
control flow of the target system (e.g., by requiring a restart).

In line with dynamism and loose coupling with the target system, the detector
must also be simple in its implementation. If a system is overly complex and diffi-
cult to extend, the value of that system is drastically reduced as much effort needs
to be expended to use that system. In fact, such a system will simply not be used.
DNSSEC1 and SELinux2 can serve as instructive examples: while they provide valu-
able security features (e.g., authentication and access control), both of these systems
were released around the year 2000 and to this day are still disabled in many environ-
ments. Furthermore, a simpler implementation should yield a smaller attack surface
[58].

5.2.2 Design Principles

In light of the observation made in the previous section, we set the following design
principles for a dynamic VM active monitoring system:

• Protection: Monitoring should be impervious to attacks (e.g., hook circumven-
tion) inside the VM. The authors of Lares [13] outline a formal model with poten-
tial attacks and security requirements for a hook-based monitoring system. Those
requirements using the notation in Fig. 5 are: the notification N should only be
triggered on legitimate events, the state of the target should not change during
monitoring, an attacker cannot modify the behavior B of the monitor, and the
response R cannot be avoided by the target.

• Simplicity: The monitoring system should be simple to implement and extend.
In order to ease adoption and support cloud environments, it should not require
any modification of the guest OS.

• Dynamism: Themonitoring system should be loosely coupledwith the target. The
target itself should be protected from changes in the monitoring system: recon-
figuration can be expected to affect execution time, but it should not disrupt the
control flow of the target (e.g., require a reboot or application restart). Further-
more, it should be possible to insert the hooks into both the target OS and its
applications.

• Performance: The monitoring system should have acceptable overhead for use
in a production system.

We use these requirements as a guide to design a hook-based hypervisor moni-
toring framework that we call hypervisor probes or hprobes. The hypervisor provides

1 https://tools.ietf.org/html/rfc2535.
2 https://www.nsa.gov/publicinfo/pressroom/2001/se-linux.shtml.

https://tools.ietf.org/html/rfc2535
https://www.nsa.gov/publicinfo/pressroom/2001/se-linux.shtml

Multi-layered Monitoring for Virtual Machines 113

Fig. 5 Hprobes integrated with the KVM hypervisor. The Event Forwarder has been added to
KVM and communicates with a separate kernel agent through Helper APIs. Detectors can either be
implemented as kernel modules in the Host OS or in user space by communicating with the kernel
agent through ioctl functions

a convenient interface for isolating monitoring from the VM while maintaining full
access to the target VM. The proposed framework allows one to insert and remove
hooks into arbitrary locations inside the guest’s memory (i.e., both the guest OS and
user applications) at runtime. To demonstrate the effectiveness of our framework,
we built a prototype and three monitors. Two of the monitors implement reliability
techniques, and the third illustrates the simplicity of using hprobes to rapidly produce
a monitor that protects against a security vulnerability.

5.3 Prototype Implementation

5.3.1 Review Debugging with Software Interrupt Int3

The ×86 architecture offers multiple methods for inserting breakpoints, which are
used in our prototype framework.We focus on the int3 instruction as it is flexible and
is not limited in the number of breakpoints that can be set. The int3 instruction is a
single byte opcode (0×cc) that raises a breakpoint exception (#BP). A debugger uses
OS provided functionality (e.g., a system call like ptrace() [59] in Linux) to control
and inspect the process being debugged. In order to insert a breakpoint, a debugger
overwrites the instruction at the desired location with int3, and then saves the original
instruction. When the breakpoint is hit and the #BP exception is generated, the OS
catches the exception and notifies the debugger. At this point, the debugger has
control of the process and can inspect the process’s memory or control its execution,
e.g., by single-stepping over subsequent instructions.

114 C. Pham

5.3.2 Integration with KVM

The hprobe prototype was inspired by the Linux kernel profiling feature kprobes
[60], which has been used for real-time system analysis [61]. The operating prin-
ciple behind our prototype is to use VMExits to trap the VM’s execution and transfer
control to monitoring functionality in the hypervisor. This implementation leverages
Hardware-Assisted Virtualization (HAV), and the prototype framework is built on
the KVM hypervisor [6]. The prototype’s architecture is shown in Fig. 6. The modi-
fications to KVM itself make up the Event Forwarder, which is a set of callbacks
inserted into KVM’s VM Exit handlers. The Event Forwarder communicates with
a separate hprobe kernel agent using Helper APIs. The hprobe kernel agent is a
loadable kernel module that is the workhorse of the framework. The kernel agent
provides an interface to detectors for inserting and removing probes. This interface
is accessible by kernel modules through a kernel API in the host OS (which is also
the hypervisor since KVM itself is a kernel module) or by user programs via an ioctl
interface.

The execution of an hprobe based detector is illustrated in Figs. 6 and 7. A probe
is added by rewriting the instruction in memory at the target address with int3, saving
the original instruction, and adding the target address to a doubly-linked list of active
probes. This process happens at runtime and requires no application or guest OS
restart. As explained in Sect. 5.3.1, the int3 instruction generates an exception when
executed. With HAV properly configured, this exception generates a VM Exit event,

Fig. 6 Aprobe hit in the hprobe protoype. Right-facing arrows are VMExits and left-facing arrows
are VM Entries. When int3 is executed, the hypervisor takes control. The hypervisor optionally
executes a probe handler (probefunc()) and places the CPU into single-step mode. It then executes
the original instruction and does a VMEntry to resume the VM.After the guest executes the original
instruction, it traps back into the hypervisor and the hypervisor will write the int3 before allowing
the VM to continue as usual

Multi-layered Monitoring for Virtual Machines 115

Fig. 7 Assembly pseudocode demonstrating what an hprobe looks like in the VM’smemory before
adding a probe (left frame) and during a probe hit (right three frames). The dashed box indicates
the VM’s current instruction

at which point the hypervisor intervenes (Step 1). The hypervisor uses the Event
Forwarder to pass the exception to the hprobe kernel agent, which traverses the list
of active probes and verifies that the int3 was generated by an hprobe. If so, the
hprobe kernel agent reports the event and optionally calls an hprobe handler function
that can be associated with the probe. If the exception does not belong to an hprobe
(e.g., it was generated by running gdb or kprobes inside the VM), the int3 is passed
back to KVM to be handled as usual. Each hprobe handler performs a user-defined
monitoring function and runs in the Host OS. When the handler returns (a deferred
work mechanism can also be used to support non-blocking probes, if desired), the
hypervisor replaces the int3 instruction with the original opcode and puts the CPU
in single-step mode. Once the original instruction executes, a single-step (#DB)
exception is generated, causing another VM Exit event [4] (Step 2). At this point, the
hprobe kernel agent rewrites the int3, performs a VM Entry, and the VM resumes its
execution (Step 3). This single-step and instruction rewrite process ensures that the
probe is always caught. If one wishes to protect the probes from being overwritten
by the guest, the page containing the probe can be write-protected. Although this
prototype was implemented using KVM, the concept will extend to any hypervisor
that can trap on similar exceptions. Note that instead of int3, we could use any other
instruction that generates VM Exits (e.g., hypercall, illegal instruction, etc.). We
chose int3 since it is well supported and has a single-byte opcode.

5.3.3 Building Detectors

Asmentioned in the previous section, hprobes can be controlled via an ioctl interface
or a kernel API. Both interfaces distinguish between probes that are inserted into
guest kernel space and guest user space. That is because while the OS always maps
the kernel space pages at the same address for all virtual address spaces, each user
program has its own set of pages. User space probes require the Page Directory
Base Address (from the CR3 register on ×86) to translate a guest virtual address
into a guest physical address. Once we know the guest physical address, we can
overwrite the instruction at that address and insert probes into the address space of
a particular process. However, the mapping of an OS-level construct like a running
process to hardware paging structures is not readily available from the hypervisor

116 C. Pham

due to the semantic gap between the VM and the hypervisor. Therefore, we use
libVMI to obtain the value of the CR3 register corresponding to the target process’s
virtual address space [62]. This allows us to translate the virtual address of a probe
location (which can be obtained from dynamic/static analysis, or by inspecting the
application’s symbol table) to a guest physical address that can be used to add a
probe.

If onewishes to insert a probe into a user application, however, there exists another
challenge. Unlike the guest OS, the pages of a running application’s code may not be
resident in memory at all times. That is, during an application’s lifetime, some of its
code may reside on disk. When execution reaches a page that is not resident, the OS
will bring that page into memory. This means that the hypervisor may not be able
to insert probes directly into all locations of the program at all times (i.e., it would
have to wait for the OS to bring certain pages into memory). This situation arises
particularly during application startup. In this case, the OS uses a demand paging
mechanism in which the pages belonging to the application reside on disk until the
application attempts to access one of those pages. Therefore, if the page containing
the target location for a probe has not yet been accessed, a translation for guest
physical address to guest virtual address will not exist. In order to support probes
for user programs, this situation must be resolved so that the hprobe framework can
guarantee that once a probe has been added through the APIs, it will get called on
the next invocation of the instruction at the probe’s desired location.

One approach to solving the problem of having target code paged out is to wait
until the OS naturally brings the necessary page into memory. As mentioned in
Sect. 2.2, recent versions of ×86 Hardware Assisted Virtualization (HAV) use two-
dimensional page tables, and do not require VM Exits for all page table updates.
Therefore, in order to trap a page table update when using EPT, one must remove
access permissions from EPT entries to induce an EPT VIOLATIONVMExit event.
In this case,we removewrite permissions from the guest physical page corresponding
to the guest page table entry that refers to the guest virtual page for the intended probe
location. We remind the reader that in this case the page itself is not yet present in
the guest OS, and therefore a translation from guest virtual address to guest physical
address does not exist in the guest OS paging structures. When an EPT violation
corresponding to our protected guest page table entry occurs (indicating that the
page containing the probe location is now in memory), we put the CPU into single-
step mode. After the instruction writing to the guest page table executes, we can
insert the probe by performing the usual translations and traversing the guest paging
structures. This process of using page protection to insert probes into non-resident
locations is described in Fig. 8. Note that we could improve performance slightly by
avoiding the single-step and decoding the trapped instruction that caused the EPT
VIOLATION. In practice, however, this paged-out situation only occurs once during
the lifetime of the program (unless a page is swapped out, in which case disk latency
would dominate VM Exit latency) and the performance gain would be negligible.

Oftentimes when monitoring, it is necessary to not only be aware of events in the
VM (e.g., an instruction at a particular address was executed), but also the state of the
VM (e.g., registers, flags, etc.). When inserting an hprobe fromwithin the hypervisor

Multi-layered Monitoring for Virtual Machines 117

Fig. 8 How a user space probe is added. A guest virtual address (GVA) for the probe’s location
must be translated into a guest physical address (GPA). If the translation fails because the page
is not present, we write protect the EPT page containing the guest page table entry (PTE) for that
GVA.When the guest OS attempts to update the guest page table, the hprobe kernel agent is notified
via an EPT violation and sets single step mode. After the single-step, the translation succeeds, and
the probe is added

(i.e., using a kernel module in the Host OS), the hprobe kernel agent passes a pointer
to a structure containing vCPU state to the hprobe handler. These privileged probe
handlers can use this structure to decode additional information or possibly modify
the state of the VM to mitigate a failure or vulnerability.

5.3.4 Discussion

Our use of int3 to generate an exception utilizes hardware enforcement of event
generation: there is no dependence on any functionality inside the guest OS. This
allows the hprobe hooking mechanism to be used on any guest OS supported by
the hypervisor. Since the majority of the work is done outside of the hypervisor
modifications (i.e., all of the heavy lifting is done inside of the kernel agent), the
system can be ported to other hypervisors that support trapping on int3.

When reflecting on the requirements set forth in Sect. 5.2, we observe that the
hprobe framework satisfies those requirements:

• Protection: By using an out-of-VM approach that is enforced by HAV, our hooks
cannot be circumvented. Furthermore,we can usememory protection in the hyper-
visor to prevent probes from being modified (or hide them by read protecting
them).

• Simplicity: Modifications to introduce the Event Forwarder and Helper APIs to
KVM add only 117 source-lines-of-code (SLOC) and the kernel agent is 703

118 C. Pham

SLOC. The simple API allows monitors to be developed quickly and most detec-
tors can be based on a common template (e.g., build one detector by reusing a
majority of the code from a previous one). As an anecdotal example, most of the
example detectors presented in Sect. 5.4 required only two hours of programming
to be fully functional. Hprobes can be used on an unmodified guest OS.

• Dynamism: Our API allows for the insertion and removal of probes at runtime
without disrupting the control flowof the targetVM. Furthermore, unique to hook-
based VM monitoring systems, we support application level monitoring through
user space probes.

• Performance: While we require multiple VM Exits, we find that for our test
applications and use cases, the performance is acceptable and worth the value
added in the previous two dimensions.

This prototype satisfies the protection requirements adapted from Lares [13] in
Sect. 5.2.2. The notification N is only delivered if events occur legitimately (spurious
int3 s are ignored by the kernel agent). The context information of the event (theVM’s
state at event e) cannot be modified during hprobe processing since the hypervisor is
in control. The security application (e.g., a probefunc()) runs inside the hypervisor
and therefore, its behavior B cannot be altered by the VM. Additionally, the effects
of any response R from the hypervisor are enforced since the hypervisor has full
control over the target VM. Since hprobes configure VM Exits to occur on int3, one
could imagine a Denial-of-Service (DOS) attack based on causing VM Exits using
spurious int3 instructions. We note that hprobes do not present a new DOS threat and
that if an attacker were interested in such an attack, he or she can perform it using
existing functionality (e.g., using the vmcall instruction).

While using the hprobe framework does require modifications to the hypervisor,
these modifications are small and robust across multiple versions of KVM and the
Linux kernel. During the course of this project, we used the diff-match-patch libraries
3 to migrate the Event Forwarder and Helper APIs between KVM versions. We
have tested hprobes on OpenSUSE 11.2, CENTOS7, Gentoo with kernel version
3.18.7, Ubuntu 12.04, and Ubuntu 14.04. The hprobe kernel agent is written to be
version agnostic (e.g., with #ifdef macros for kernel version specific constructs like
unlocked_ioctl).

5.3.5 Limitations

This prototype is useful for a large class of monitoring use cases, however it does
have a few limitations. Namely,

• Hprobes only trigger on instruction execution. If one is interested in monitoring
data access events (e.g., trigger every time a particular address is read from/written
to), hprobes do not provide a clean way to do so. One would need to place a
probe at every instruction that modifies the data (potentially every instruction
that modifies any data if addresses are affected by user input). More cleanly, one
could use an hprobe at the beginning and end of a critical section to turn on and

Multi-layered Monitoring for Virtual Machines 119

off page protection for data relevant to that critical section, capturing the events
in a manner similar to livewire [8], but with the flexibility of hprobes. We are
considering this in future work.

• Hprobes leverage VM Exits, resulting in non-optimal performance. This tradeoff
is worth the simpler, more robust implementation with its trust rooted in HAV.

• Probes cannot be fully hidden from the VM. Even with clever EPT tricks to hide
the existence of a probe when reading from its location, a timing side channel
would still exist since an attacker could observe that the probed instruction takes
longer than expected to complete.

6 hShield: Monitoring Hypervisor Integrity

6.1 Introduction

HyperTap and HProbes, introduced in the previous chapters, rely on the trustworthy
of the underlying hypervisor to deploy their monitoring mechanisms. In this chapter,
we turn the table around and validate this assumption. Particularly, we investigated
VM-escape attacks, which are attacks that compromise hypervisor executions via
the VM-hypervisor interface provided by Hardware Assisted Virtualization (HAV).
Based on the analysis of this threat model, we introduce a new monitoring technique
that detects VM-escape attacks.

In a virtualized system, the hypervisor is a single-point-of-failure. It is the central-
ized component that manages interactions between VMs and the underlying physical
resources, such as computing, networking, and storage. Most components in hyper-
visor are granted high-privilege to permit access to the shared resources. If one of
those components is compromised, the entire virtualized system, including physical
resources and other co-located VMs, is potentially compromised as well. When an
attack works on one instance of hypervisor, the attack might be extended to affect
other instances, which have the same version as the exploited hypervisor.

In order to detect VM-escape attacks, we introduce a monitoring framework
called hShield. The core of hShield is the incorporation of an efficient Control-
Flow Integrity (CFI) enforcement method, which is specifically designed based on
our analysis of HAV-based hypervisors. In addition, our CFI method addresses two
fundamental limitations of state-of-the-art CFI techniques [76, 77], namely impre-
cise Control-Flow Graph (CFG) construction and the overhead of runtime CFI
enforcement.

The design of hShield aims to provide the following features to hypervisor security
monitoring:

120 C. Pham

• Resistance to VM escape attacks that subvirt the control-flow of the hyper-
visor. Many of the attacks in this class can be classified into a zero-day attack—
attackers exploit an undiscovered vulnerability in the implementation of a hyper-
visor, which allows them to execute malicious codes together with the normal
execution of the hypervisor. hShield aims at detecting this class of attacks when
they are being executed without knowing the vulnerability in advance.

• Negligible performance penalty in attack-free executions. Similar toHyperTap
and HProbes, hShield employs the principle of event-driven monitoring, which
is effective in detecting both transient and persistent attacks. Additionally, we
analyzed the hypervisor execution model to extract events that hShield can effi-
ciently monitor without incurring noticeable performance overhead when the
system is in an attack-free state.

In order to evaluate hShield, we compared the result of our CFI technique with
that of BinCFI [77], a state-of-the-art CFI implementation. Our experiments show
that the CFG constructed using our method is more precise, thus, more secure in
terms of CFI enforcement. More specifically, we showed that the approximation of
BinCFI’s static analysis leaves dangerous paths in CFGs that can be exploited by
attacks to perform a VM-escape. In addition, we showed that hShield can detect a
real VM-escape attack that we crafted from a published vulnerability.

6.2 Assumptions and Threat Model

6.2.1 Assumptions

Our design targets at hypervisors that utilize Hardware Virtualization (e.g., Intel VT-
x and AMDSVM) to manage VMs’ executions. Wemake the following assumptions
about the system.

The underlying hardware virtualization is implemented correctly, meaning that
the only way to change from the VM privilege into the hypervisor privilege is to
going through the VM-exit interface, as described in Sect. 2.2. We do not handle
attacks that exploit hardware vulnerabilities.

The target host system is secured fromphysical tampering (e.g., secured in a server
room) and there is no insider-attacker (e.g., malicious administrators who already
have remote access to the host system).

The host system itself has limited direct open access from the outside world.
Preventing misuse of administrative credentials, e.g., through social engineering
methods to illegally obtain an administrative credential and use it against the host
system, is out of the scope of this work.

The target host system is equipped with a trusted boot technology, such as Trusted
Platform Module (TPM) [78], or Intel Trusted eXecution Technology (TXT) [79],
which ensures the integrity of the host system, including the hypervisor, at load-time.
Note that, we focus on ensuring the integrity of the hypervisor at runtime, given the

Multi-layered Monitoring for Virtual Machines 121

Fig. 9 hShield protects hypervisor during execution. It assumes the integrity of the platform is
guaranteed at load-time by a Trusted Platform, such as TPM or Intel

integrity at load-time is guaranteed. Figure 9 shows how hShield works in tandem
with trusted platform technologies.

6.2.2 Threat Model

Virtualization creates an isolated environment for each VM, so that multiple VMs
can share common physical resources. The isolation is enforced so that a VM cannot
access resources of the host system, or other co-located VMs.

The primary threat model that we consider is classified as VM escape attacks. A
VM escape attack is an attack that breaks the isolation wall created by hypervisor to
allow programs running inside a VM to violate the integrity (i.e., alter the execution)
of the hypervisor. In particular, an attacker originally has full control over a VM.
During the execution of the VM, the attacker is able to exploit unknown or unpatched
vulnerabilities of the hypervisor software in an attempt to compromise the hypervisor.
The exploit allows the attacker to redirect control flow to execute malicious code.
The malicious code can be either injected by the attacker or salvaged from existing
code, e.g., through a return-oriented attack. The malicious code is executed at the
privilege of the hypervisor, thus it has permissions to interfere and/or access secrets
stored in the hypervisor and other co-located VMs. This is a powerful class of attack.
Figure 10 demonstrates the VM escape attack via VM-exit interface.

The assumption about attackers having full control over aVM is based on practical
settings of virtualized computing platforms. In a public IaaS environment, such as
Amazon AWS EC2, Microsoft Azure, or IBM SmartCloud, users can create a VM
to run custom software with very small cost. In other virtualized environments, in
which users have no direct access to aVM, attackersmay gain access to aVM through
exploiting vulnerabilities in the VM’s software (e.g., database or web service). Once
having full control over a VM, an attacker can use the VM as an entry point to start
attacking the underlying hypervisor.

We further breakdown VM escape attacks into transient attacks and permanent
attacks. Transient attacks are attacks that occur stealthy fast in order to bypass peri-
odic integrity measurements [80]. Meanwhile, permanent attacks once performed

122 C. Pham

Fig. 10 Illustration of aVMescape attack in a hardware virtualization-based hypervisor. The attack
entry point is the interface the hypervisor created to handle VM-exit events. The attack diverts the
execution of the hypervisor (represented by the red box) from the normal execution

stay persistently in the target system. Majority of integrity measurement techniques
are designed to cope with persistent attacks, leaving a gap for transient attacks to
exploit [80]. Previous work [14, 15] has demonstrated the high effectiveness of
transient attacks against periodic, or polling-based, monitoring. Our threat model
includes both transient and permanent VM escape attacks.

6.3 hShield Approach Overview

This section describes the approach of our system, called hShield, to achieve the
goals established in the previous section.

6.3.1 Limitations of Existing Control Flow Integrity Monitoring

CFI enforcement [76] is a common method used to prevent attacks relying on
subverting executions of target systems (e.g., via exploiting buffer overflow vulner-
abilities). In this method, valid execution paths of a program are represented as a
Control-Flow Graph (CFG). The CFI runtime enforcement ensures that the target
program must follow a valid path in a predetermined CFG.

A CFG is a directed graph, in which a node represents a basic block3 in the
program, and a directed edge represents a transfer in the control-flow (e.g., a jump,
call, or return instruction) from a source node, where the transfer is invoked, to the
target node, where the transfer lands at. Figure 9 is an example of a CFG.

3 A basic block a consecutive sequence of instruction with no jump target except the entry and no
jump source except the exit.

Multi-layered Monitoring for Virtual Machines 123

Runtime enforcing CFI aims at protecting target programs against unknown
attacks based on the validity of CFG. A predetermined CFG is essentially a white-list
of valid execution paths that are allowed to be executed. Hence, this white-list-based
monitoring approach can detect attacks that divert the target program to execute
an invalid path according to the determined CFG. As opposed to a black-list-based
monitoring approach which can only detect previously identified attacks.

The first challenge of CFI enforcement is to obtain a precise CFG of the target
program. The existing approach to CFG construction is to use static analysis [76,
77]—analyzing the source code or binary of target programs.However, static analysis
cannot determine indirect control flow transfer—the control-flow targets that are
computed at runtime, e.g., function pointers or return addresses. In order to address
this limitation, current CFI techniques employ approximations to statically determine
such dynamic targets [77].

This imprecision is a potential source for attack to by-pass CFI security runtime
enforcement. For example, an attacker can use a jump-to-libc attack to invoke
functions that are dynamically-incorrect, but statically-approximated.

The second challenge of CFI enforcement is to minimize the runtime overhead
caused by runtime validation. The approach used by state-of-the-art CFI techniques
is to perform target validation, e.g., validate whether the current jump follows a valid
edge in the CFG, at the end of every basic block. Themain challenge of this approach
is to keep the performance overhead of the validation small due to the high frequency
of basic block jumps.

6.3.2 hShield CFG Construction

hShield addresses the approximated CFG issuementioned above by combining static
analysis and profiling to construct a CFG. More specifically, we use static analysis
to construct an initial CFG, which contains basic blocks (nodes in the CFG) and
direct jumps (edges in the CFG), extracted from the target program binary. To derive
indirect control flow information, we analyze the profiled traces of the target program
execution under a set of representative workloads.

A trace records sequences of basic blocks visited during the execution of the
target program. The order of basic blocks in a trace can be used to construct a CFG.
For instance, two consecutive basic blocks B1 and B2 in a trace indicates that there
is an edge from node B1 to node B2 in the CFG. A CFG constructed based on
profiled traces contains both direct and indirect control flow information. However,
the constructed CFG may not cover all possible valid paths that the target program
may execute. The path coverage of the CFG is determined by the workloads used to
execute and record the traces of the target program. All the collected traces are used
to construct a CFG.

The initial CFG constructed using static analysis is merged with the CFG
constructed based on profiled execution traces to produce a single CFG. That CFG
contains both direct and indirect control flow information. This approach combines
the advantages of both methods: static analysis can extract direct control flows,

124 C. Pham

and execution traces contain indirect control flows which can only be accurately
determined at runtime.

For the purpose of detecting VM escape attacks, the constructed CFG of a hyper-
visor needs to cover all valid execution paths from a VM Exit to the corresponding
VMEntry.According to our threatmodel, this is the only attack vector that an attacker
inside a VM can penetrate the hypervisor.

Figures 11 and 12 show the result of the CFG construction for the KVM-QEMU
hypervisor. Figure 11 indicates that IO INSTRUCTIONs are the most frequent type
of VMExits: 82%ofVMExits triggered during the execution of aVMunder CentOS
booting and the set of utilities in the UnixBench benchmark are IO-related events.

Figure 12 shows the detailed CFG construction results for QEMU using various
types of workloads. In a KVM-QEMU hypervisor, all IO-related VM Exits are
handled by QEMU, thus the collected events presented in the graph are IO-related
events. The CFG was incrementally constructed using the traces collected by
executing the workloads in order listed in the x-axis.

Each of the workloads was run three times. The graph shows that neither new
nodes nor edges were discovered after the PostMark benchmark, meaning that the
CFG constructed by a subset of benchmarks is able to cover all paths to execute all
the selected benchmarks.

Fig. 11 The distribution of VM Exit reasons profiled during the execution of a VM under CentOS
Linux booting and UnixBench workloads

Multi-layered Monitoring for Virtual Machines 125

Fig. 12 Profiling QEMU (IO and MMIO exits only) under different VM workloads

6.3.3 hShield Runtime Enforcement

hShield proposes a novel technique to improve the performance overhead of CFI
runtime enforcement. This technique is particularly designed for the HAV-based
hypervisor execution model. Existing CFI enforcement performs validation at every
control flow transfer. This validation is the major source of performance degradation
occurring while executing protected programs. hShield’s solution to this issue is to
reduce the validation frequency by delaying it until a VM Entry is about to execute.
Per our measurement, on average the frequency of executing a VM Entry is three
orders of magnitude smaller than the frequency of a control flow transfer in the
KVM-QEMU hypervisor.

hShield implements a hardware counter to compute a hashed value of hyper-
visor execution on-the-fly. Figure 13 describes how a hash is computed for each
VM Exit handling. At the end of a VM Exit handling, triggered by a VM Entry
event, hShield compared the computed hash against a pre-constructed HashSet. The
pre-constructed HashSet represents the constructed CFG of the hypervisor. In other

Fig. 13 HashSet construction

126 C. Pham

words, the HashSet is a white-list of valid hypervisor execution paths. If an execution
path is not listed in this white-list, hShield flags it as an offended execution.

This approach of delaying CFI validation to the end of each VM Exit handling
makes an important trade-off comparing the existing CFI enforcement: reducing
performance overhead with the cost of longer detection latency. Since current tech-
niques check for CFI at every control flow transfer, a CFI violation can be detected
right before the execution of a malicious code. In hShield, the detection happens at
the end of the violated VM Exit handling.

Section 6.4 details the hash function that hShield uses, and Sect. 6.5 describes the
architectural support to hShield.

6.4 Execution Hashing

The function of execution hashing is to map an arbitrarily long execution pattern
input to a fixed length output hash value. An execution pattern is a stream of machine
instructions executed by the processor.

6.4.1 Requirements

The hash function needs to be collision resistant. This property is to ensure that it
is computationally infeasible to find a collision—an outside execution pattern that
has the same hash as one of the white-listing members. Most standard cryptographic
functions, such as MD5 or the SHA family, have this property.

The hardware implementation poses several extra constraints. First, the function
needs to be interactive, that is a hash can be continuously evaluated at runtime as
input instructions coming, instead of storing the whole history of instructions and
perform calculation at the end.

In addition, the hash function needs to facilitate the implementation of loop
rerolling. hShield’s loop rerolling involves frequent comparisons of basic blocks.
Thus, hashing individual basic blocks should be an intermediate operation of the
entire hashing scheme. Furthermore, loop rerolling requires re-evaluation of the
final hashing output at runtime. For example, the hashing output changes when a
loop iteration is removed. The ability to efficiently re-evaluate outputs at runtime is a
necessity to enable hShield to cope with various issues, such as ones caused by hard-
ware speculative executions. With speculative execution, a conditional branch may
be predictively evaluated in advance, and unrolled and re-executed if the prediction
was wrong.

Multi-layered Monitoring for Virtual Machines 127

6.4.2 Incremental Collision-Free Hashing

The hashing function we select is a variation of the MuHASH function in the family
of incremental collision-free hashing functions proposed in [81]. The key property
which makes this family of hashing functions suitable to our usage is incremental.
This property allows a hash value to be updatedwhen a portion of the input is changed
without caching or re-computing the value from scratch. We leverage this feature to
facilitate loop rerolling implementation and cope with speculative execution.

This family of hashing functions splits hashing into two phases: randomize and
combine. Each input is broken into a sequence of blocks, and each block is random-
ized independently using a standard hashing function (e.g., a SHA function). The
output of randomization is combined using an inexpensive commutative operation,
e.g., modular multiplication in the case of MuHASH. Thanks to the communicative
property of the combining operation, a hashed value can be updated by re-evaluating
the randomized value of the modified input block.

Besides incrementality,MuHASHoffers other properties that is suitable to hShield
requirements:

• Collision-resistance: Based on an assumed-perfect standard hashing function
(e.g., a SHA function), the security strength—the hardness of finding a collision—
of theMuHASH is proven to be equivalent to the hardness of the discrete logarithm
problem [81].

• Parallel construction: The randomization phase can be performed in parallel
for each block. Note that property is stronger than interactive construction. We
leverage this property to perform randomization per basic block with a small
memory footprint.

• Efficiency: The construction uses only standard hashing function and inexpensive
modular operation (as opposed to using exponentiation). The efficiency of this
hashing function family is the same as using a standard hashing function on the
entire input [81].

6.4.3 Runtime Construction

Essentially, the counter operates as a hash function f:

f : Exe × Salts → Range

The hash function f maps from the space of finite variable-length instruction
streams Exe and a space of salt values Salts to the space of fixed length output
value Range.

An execution E ∈ Exe is a finite length stream of basic block B1B2…Bn, each
basic block is a sequence of instructions I1I2…Im . Each instruction Ii is a valid ×
86 instruction represented in its binary form.

A salt salt ∈ Salts is a unique value for each system, thus it individualizes each
system’s counter table. A salt value is generated for a counter table when the profiling

128 C. Pham

mode is executed. Note that for a salt to be effective, it does not need to be random.
Thanks to the uniqueness property of salts, the work of crafting exploit code must
be redone for each every system.

A hashing session starts on a VM-exit event, and ends on the corresponding VM-
entry event. The continuous construction of the hash function during a session is as
follows:

• Step 1: Session starts with resetting basic block counter to i = 1:
• Step 2: For each incoming basic block Bi, concatenate a 32-bit binary encoding
<i> of the basic block counter, and the salt value:

B ′
i = 〈i〉 · 〈salt〉 · Bi

• Step 3: (Randomization) Compute a hash value for the incoming basic block:

hi = shal
(
B ′
i

)

• Step 4: (Combination) Combine h i using a combining operation current hash
value of the execution chunk:

fi =
{
h1, i = 1
fi−1 � hi , i > 1

As recommended by [81], we use the arithmetic operation multiplication
modulo for combining operator to achieve collision-resistance.

• Step 5: Continue going back to step 2 until the session is ended.

Assuming that there are n basic blocks in the evaluated execution chunk E, the
final construction can be summarized in Fig. 14, and as the equation follows:

f (E, salt) = �n
i=1sha1(〈i〉 · 〈 salt 〉 · Bi)

6.5 hShield Architectural Design

hShield is a security assisted hardware extension to the existing HAV to perform
whitelist-based continuous monitoring of hypervisor executions. This section
describes an example architectural design of hShield (Fig. 15).

6.5.1 hShield Components

Each physical host is equipped with one hShield unit. An hShield unit consists of
multiple per-core hShield Counters and one per-host hShield Auditor. Each hShield

Multi-layered Monitoring for Virtual Machines 129

Fig. 14 The construction of
the incremental hashing
function

Fig. 15 hShield architecture. Each CPU core has its own hShield counter to measure hypervisor
execution at runtime. After a measurement is complete, the result is sent to the hShield core, which
is a dedicated core per host system, to verify the measurement.

130 C. Pham

counter is built-in into a processor core, called the counter’s host core. Each counter
independently carries out the measurement of VM-exit handler executing on its host
core. At the end of eachmeasurement, the result, i.e., the hash represents the VM-exit
handler execution, is sent to the auditor for whitelist member checking. The hShield
auditor, implemented as a dedicated co-processor in this design, is responsible for
securely loading and storing thewhitelist, and efficiently executingwhitelist updating
and membership checking. Figure 15 illustrates this architecture.

hShield is designed to facilitate both whitelist construction and runtime checking.
hShield auditor has two operational modes: profiling and checking. The profiling
mode is used to support whitelist construction. In this mode, the auditor records
hashes sent by counters to its hash tables. Meanwhile, the checking mode is used
to validate hypervisor’s executions during regular runs (e.g., with arbitrary clients’
VMs). In this mode, the auditor validates an execution by comparing the hash sent
by a counter against in the whitelist loaded in its hash tables.

hShield architectural design follows the separation of concerns principle. After
being the initialized by the centralized auditor, the operation of each counter are inde-
pendent from each other, and also independent from the auditor. An hShield counter
operates the same way whether the auditor is in the profiling or checking mode. The
only component that stores the whitelist is the auditor. During runtime, there is only
one type of unidirectional interaction between a counter and the auditor, which is
sending-receiving a hash. There is no other interface that can leak information about
the whitelist from the auditor to any of the processing cores.

Table 1 shows the interface of hShield Counters and hShield Auditor via the
commands they process. The next subsections describe in details hShield counters
and auditors.

6.5.2 hShield Counters

Figure 16 depicts the finite state machine (FSM) of an hShield counter’s operation.
Each node of the FSM represents an operational state of a counter, and each edge
represents an event that triggers a state transition.Note that theFSMcanbe terminated
when it is in any state, and the “End” state is not shown in the figure for readability
purposes. Besides the “End” state, an hShield counter can be in one of the following
operational states:

“Init”: At boot time, all hShield counters are initialized by the hShield auditor.
Particularly, the hShield auditor instructs each of the hShield counters to load two
common salt and proof values. When the initialization is done, represented by the
“Done initialization” edge, the hShield counter transits to the “Ready” state.

“Ready”:When an hShield counter is in this state, the processor is executing either
in the guest mode (i.e., a VM is executing), or other tasks that do not belong to the
hypervisor. Upon a “VM-exit” event, the counter transits to the “Reset counter” state.
Meanwhile, upon an event that indicates “Hypervisor resumed” (e.g., a task switch
event that the to-be-executed task belongs to the hypervisor), the counter transits to
the “Reload counter” state.

Multi-layered Monitoring for Virtual Machines 131

Fig. 16 Finite state machine of an hShield counter operation. A node is a state of the counter, an
edge is an event that triggers a state transition. All state can transit to the “End” state, which is not
shown in this figure

Fig. 17 The number of unique paths per each type of exit

“Reset counter”: An hShield counter in this state is to respond to a VM-exit event
issued by its host core. In this state, the counter resets all its internal state, e.g., the
basic block counter, to get ready for a new hashing session. Upon completing the
resetting, the counter transits to the “Count” state.

“Reload counter”: In this state, the hShield counter loads an on-going hashing
session context from memory to its internal state. The counter only loads the context
which was properly signed using its hShield Proof. Upon completing the loading,
the counter transits to the “Counter” state.

132 C. Pham

“Count”: When an hShield counter is in this state, the host core is executing
a hypervisor task that handles a VM-exit. In this state, the counter executes a
hashing session, which implements the execution inference techniques and incre-
mental hashing scheme. In the event of a task switching, the counter suspends the
on-going hashing session, and then moves to the “Save counter” state. In the event
of an VM-entry, which signifies the end of the on-going hashing session, the counter
compute the final hash of the hypervisor execution, and then transits to the “Send
Hash” state.

“Save counter”: In this state, the hShield counters save the context of the on-going
hashing session to main memory. The saved data is signed with the hShield Proof
to prevent tampering. Upon completing the saving, the counter transits back to the
“Ready” state.

“Send Hash”: This state marks the end of a hashing session by sending its result
to the hShield auditor. Upon completing the sending, the counter transits back to the
“Ready” state.

6.5.3 hShield Auditor

An hShield Auditor is a centralized component that manages the whitelist for a
host system. An hShield Auditor operates in either of the two modes: profiling and
checking. Settingwhichmode hShieldAuditor operates on is done through theBIOS.

Profiling Mode

The profiling mode is used to facilitate the construction of the target hypervisor
whitelist. This mode is also considered the unsafe mode of hShield Auditor, because
its whitelist can be read and updated. Thus, the profiling mode must be run in a
strictly controlled environment with known-good VM workloads. In this mode, an
hShield Auditor performs the following tasks.

At boot time, the following tasks are performed in a sequence:

1. Generates a new salt value.
2. Generates a new proof value.
3. Broadcasts theHS_COUNTER_INIT command together with the salt and proof

values to all hShield Counters in the host to trigger their initialization process.

During runtime, the following tasks are performed in response to specific events:

• Upon receiving a hash from a Counter, the Auditor updates its hashing tables.
• Upon receiving a HS_WL_COUNT instruction, the Auditor returns the number of

whitelist members.
• Upon receiving a HS_WL_READ instruction, the Auditor returns the hash

corresponding to the specified whitelist member.

Multi-layered Monitoring for Virtual Machines 133

• Upon receiving a HS_SALT_READ instruction, the Auditor returns the value of
the generated salt.

The HS_WL_READ and HS_SALT_READ instructions are used at the end of the
profiling process to fetch the whitelist from the hShield Auditor to persist to the
host’s storage.

Checking Mode

The checking mode is used for runtime monitoring of the target hypervisor, given
that the whitelist has been properly constructed. In this mode, an hShield Auditor
performs the following tasks.

At boot time, after the integrity of the host system is verified, e.g., by TPM and
Intel TXT, the following task are performed in a sequence:

1. Load the whitelist and salt from the host persistent storage.
2. Generates a new proof value.
3. Broadcasts theHS_COUNTER_INIT command together with the salt and proof

values to all hShield Counters in the host to trigger their initialization process.

During runtime:

• Upon receiving a hash from a Counter, the Auditor verifies the membership of
the hash.

Regardless of the hShieldAuditor’s operationalmode, the operation of the hShield
Counters in the same host is not affected: upon each VM-entry, the corresponding
hShield Counter sends a hash to the centralized Auditor.

Hash Tables

Hash tables are hShield Counters internal storage to keep the whitelist. An hShield
Counter contains two hash tables: hot and warm. The two tables function in the same
way, except the following differences: The hot table’s size is smaller than the warm
table’s; the hot table stores the top popular whitelist members, in the meanwhile, the
warm table stores the less popular whitelist members; a membership check operation
is performed in the hot table first, it there is no hit in the hot table, the operation is
then performed on the warm table.

The hot-warm hash table design is to take advantage of the observed distribution
of the frequency of the hit rate of whitelist members. The hot table is smaller, but
stores the most frequently hit whitelist members.

134 C. Pham

7 Conclusion

This chapter proposes three new continuous monitoring methods that address both
VM attack and hypervisor attack scenarios mentioned in Sect. 2. Figure 18 summa-
rizes our contributions organized in relation to the layers in the target system (y-axis)
and system operational phase (x-axis).

7.1 Continuous Monitoring of Guest OS and Applications

For monitoring software running inside VMs, we introduce HyperTap and Hprobes,
which are out-of-VM monitoring frameworks that facilitate detection of security
and reliability incidents occurring inside a VM. These two frameworks can work
in tandem to provide desirable monitoring features. HyperTap primarily focuses on
monitoring theguestOS,whileHprobes adds guest applicationmonitoring capability.
On the one hand, HyperTap relies on fixed and well-defined hardware invariants to
achieve robust and strong isolation with target VMs; on the other hand, Hprobes
provides a mechanism for dynamic and flexible deployment of monitoring in the
target VMs.

Both HyperTap and Hprobes employ the event-driven monitoring paradigm,
which allows monitors to reactively respond to events of interest. In contrast to
polling-and-scanning, event-driven monitoring exposes no temporal gap for fail-
ures and attacks to exploit. In addition, the event-driven monitoring mechanisms
employed by these frameworks can capture target VMs’ operational activities at

Fig. 18 An illustration of our techniques to monitor a virtualized system at runtime (e.g., during
execution). The y-axis represents the system layers from hardware at the bottom to user applications
in a VM at the top. The techniques are positioned at the layers where they provide monitoring:
Hprobe monitors the VM’s user applications, HyperTap monitors the VM’s operating system, and
hShield monitors the hypervisor

Multi-layered Monitoring for Virtual Machines 135

various granularities, e.g., system call invocations and process/task-switching events.
This provides a basis of support for a broad range of security and reliability
enforcement policies.

To demonstrate the capabilities of HyperTap and Hprobes in supporting secu-
rity and reliability monitoring, we introduced a set of low-cost and high-coverage
monitors:

HyperTap Guest OS Hang Detection (GOSHD). GOSHD detected 99.8% of
injected hang failures in a guest OS. GOSHD is also able to identify partial hangs, a
new failure mode in multi-processor systems.

HyperTap Hidden-Rootkit Detection (HRKD). Rootkits are malicious computer
programs that hide other programs from system administrators and security-
monitoring tools. HRKD guarantees discovery of hidden processes and threads
regardless of their hiding techniques.

We verify the claim by testing HRKD against nine real-world rootkits in both
Linux and Windows environments, with various types of hiding mechanisms.

HyperTap Privilege Escalation Detection (PED). In a privilege escalation attack,
a process gains higher privileges than originally assigned to it in order to obtain
unauthorized access to system resources. We demonstrate that PED can detect this
class of attacks, including attacks that successfully bypassed Ninja [19], a real-world
monitor, by exploiting temporal gaps created by polling-and-scanning monitoring.

Hprobes Emergency Exploit Detectors (EED). Often, a security vulnerability is
discovered. After the vulnerability is made public, a patch takes time to be devel-
oped and must be put through a QA cycle. During this time, the target system is at
risk of being attacked at the known vulnerability. We show that Hprobes can solve
this practical problem by developing EED, a class of detectors that can prevent the
exploitation of newly discovered vulnerabilities without patching the target system.

Hprobes Application Heartbeat Detector (AHD). One of the most basic reliability
techniques used to monitor computing system liveness is a heartbeat detector. Using
Hprobes, we constructed AHD, a monitor that directly measures the application’s
execution. That is, since probes are triggered by the application execution itself, they
can be viewed as a mechanism for direct validation that the application is functioning
correctly.

Hprobes Infinite Loop Detector (ILD). Infinite loops are a common failure that can
cause process hangs. We demonstrated ILD, a monitor that uses Hprobes dynamic
hook placement mechanism to measure the worst case execution time (WCET) [20]
of a loop. The measure WCET is used to effectively detect infinite loops.

136 C. Pham

Table 1 hShield counter and auditor commands

Command Calleea Callerb Modec Parameters Return

HS_COUNTER_INIT Counter Auditor () void

HS_WL_COUNT Auditor Software Profiling () Number of
members

HS_WL_READ Auditor Software Profiling (s, e) Whitelist
members
indexed
from s to
e

HS_SALT_READ Auditor Software Profiling () salt

HS_HASH Auditor Counter Profiling/checking hash void

aCallee is the either a Counter or Auditor, which processes the commands
bCaller is the component that can invoke the command. When a caller is “Software”, that means
this command is an instruction available for a software to use
cMode is applicable for Auditor (as a callee) only. Mode specifies in which Auditor’s mode
(“Profiling”, “Checking”, or both) the command is available

7.2 Continuous Monitoring of Hypervisor

HyperTap and Hprobes rely on the trustworthiness of the underlying hypervisor
to deploy their monitoring mechanisms. We demonstrate that this assumption can
be violated by VM-escape attacks, which are attacks that compromise hypervisor
executions via VM-exits, the VM-hypervisor interface provided by HAV. Based on
the analysis of this threat model, we introduce hShield, which implements a novel
Control-Flow Integrity (CFI) enforcement method to detect VM-escape attacks.

hShield continuously measures the CFI of every VM-exit handler, the basic block
of hypervisor execution that handles VMs’ privilege operations. The measurement is
compared against a preconstructed Control-Flow Graph (CFG) to validate whether
a valid path is executed. In hShield, a CFG is constructed using dynamic analysis,
as opposed to the static analysis used by state-of-the-art techniques, to enhance the
precision. We show that attacks can exploit the approximation of static analysis in
building CFG to execute insecure paths, while our precise CFG cannot be exploited
in this way.

In addition to demonstrating the strength of the constructedCFG,we show that our
prototype of hShield is able to detect attacks crafted using a high-profile vulnerability
in QEMU [21].

References

1. Ghemawat S, Gobioff H, Leung S-T (2003) The google file system. ACM SIGOPS Oper Syst
Rev 37:29–43. ACM

Multi-layered Monitoring for Virtual Machines 137

2. 451 Research (2013) Theinfopro servers and virtualization study. https://451research.com/the
infopro-commentator/servers-and-virtualization

3. Al Gillen, Eastwood M, Feng I, Stolarski K, Scaramella J, Chen G (2013) Worldwide virtual
machine 2013–2017 forecast: virtualization buildout continues strong. IDC report

4. Intel Corporation (2014) Intel R 64 and IA-32 architectures software developer’s manual
volume 3 (3A, 3B & 3C): system programming guide, September 2014

5. Advanced Micro Devices Inc (2013) AMD64 architecture programmer’s manual volume 2:
system programming, May 2013

6. Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) KVM: the Linux virtual machine
monitor. In: Proceedings of the Linux symposium, vol 1, pp 225–230

7. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A
(2003) Xen and the art of virtualization. ACM SIGOPS Oper Syst Rev 37:164–177. ACM

8. Garfinkel T, RosenblumM (2003) A virtual machine introspection based architecture for intru-
sion detection. In: Proceedings of network and distributed systems security symposium, pp
191–206

9. Jiang X, Wang X, Xu D (2010) Stealthy malware detection and monitoring through VMM-
based out-of-the-box semantic view reconstruction, vol 13, March 2010. ACM, NewYork, NY,
USA, pp 12:1–12:28. https://doi.org/10.1145/1698750.1698752.

10. Payne BD, de CarboneMDP, LeeW (2007) Secure and flexiblemonitoring of virtual machines.
In: Twenty-third annual computer security applications conference (ACSAC). IEEE, pp 385–
397

11. Dolan-Gavitt B, Leek T, Zhivich M, Giffin J, Lee W (2011) Virtuoso: narrowing the semantic
gap in virtual machine introspection. In: 2011 IEEE symposium on security and privacy (SP).
IEEE, pp 297–312

12. Hofmann S, Dunn AM, Kim S, Roy I, Witchel E (2011) Ensuring operating system kernel
integrity with osck. In: Proceedings of the sixteenth international conference on architectural
support for programming languages and operating systems, ASPLOS XVI. ACM, New York,
NY, USA, pp 279–290. ISBN 978-1-4503-0266-1. https://doi.org/10.1145/1950365.1950398.

13. Payne B, Carbone M, Sharif M, Lee W (2008) Lares: an architecture for secure active moni-
toring using virtualization. In: 2008 IEEE symposium on security and privacy (SP). IEEE, pp
233–247

14. Pham C, Estrada Z, Cao P, Kalbarczyk Z, Iyer RK (2014) Reliability and security monitoring
of virtual machines using hardware architectural invariants. In: 2014 44th annual IEEE/IFIP
international conference on dependable systems and networks (DSN), pp 13–24, June 2014.
https://doi.org/10.1109/DSN.2014.19

15. Wang G, Estrada ZJ, Pham C, Kalbarczyk Z, Iyer RK (2015) Hypervisor introspection: a tech-
nique for evading passive virtual machine monitoring. In: 9th USENIX workshop on offensive
technologies (WOOT15),Washington,D.C.,August 2015.USENIXAssociation. https://www.
usenix.org/conference/woot15/workshop-program/presentation/wang

16. Bahram S, Jiang X, Wang Z, Grace M, Li J, Srinivasan D, Rhee J, Xu D (2010) DKSM:
subverting virtual machine introspection for fun and profit. In: 29th IEEE symposium on
reliable distributed systems, pp 82–91

17. Hund R, Holz T, Freiling FC (2009) Return-oriented rootkits: bypassing kernel code integrity
protection mechanisms. In: Proceedings of the 18th USENIX security symposium, pp 383–398

18. Cao P, Badger E, Kalbarczyk Z, Iyer R, Slagell A (2015) Preemptive intrusion detection:
theoretical framework and real-world measurements. In: Proceedings of the 2015 symposium
and Bootcamp on the science of security, p 5

19. Flo TR (2005) Ninja: privilege escalation detection system for GNU/Linux. Ubuntu Manual,
http://manpages.ubuntu.com/manpages/lucid/man8/ninja.8.html

20. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand
C, Heckmann R, Mitra T et al (2008) The worst-case execution-time problem—overview of
methods and survey of tools. ACM Trans Embedded Comput Syst (TECS) 7(3):36

21. NIST (2015)Vulnerability summary for cve-2015-3456.Online. https://web.nvd.nist.gov/view/
vuln/detail?vulnId=CVE-2015-3456

https://451research.com/theinfopro-commentator/servers-and-virtualization
https://doi.org/10.1145/1698750.1698752
https://doi.org/10.1145/1950365.1950398
https://doi.org/10.1109/DSN.2014.19
https://www.usenix.org/conference/woot15/workshop-program/presentation/wang
http://manpages.ubuntu.com/manpages/lucid/man8/ninja.8.html
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-3456

138 C. Pham

22. Garfinkel S (1999) Architects of the information society: 35 years of the Laboratory for
Computer Science at MIT. Mit Press

23. Spiceworks (2014) Start of SMB it report. Spiceworks report. http://www.spiceworks.com/mar
keting/state-of-smb-it

24. Bartels A, Rymer JR, Staten J, Kark K, Clark J, Whittaker D (2014) The public cloud
market is now in hypergrowth: sizing the public cloud market, 2014 to 2020. Forrester
report. https://www.forrester.com/The+Public+Cloud+Market+Is+Now+In+Hypergrowth/ful
ltext/-/E-RES113365?intcmp=blog:forrlink

25. Popek GJ, Goldberg RP (1973) Formal requirements for virtualizable third generation
architectures, p 121. https://doi.org/10.1145/800009.808061

26. Bhatia N (2009) Performance evaluation of Intel ept hardware assist. VMware, Inc
27. Fu Y, Lin Z (2012) Space traveling across vm: automatically bridging the semantic gap in

virtual machine introspection via online kernel data redirection. In: 2012 IEEE symposium on
security and privacy (SP). IEEE, pp 586–600

28. Jones ST, Arpaci-Dusseau AC, Arpaci-Dusseau RH (2006) Antfarm: tracking processes in a
virtual machine environment. In: Proceedings of the USENIX annual technical conference, pp
1–14

29. Jones ST, Arpaci-Dusseau AC, Arpaci-Dusseau RH (2008) Vmm-based hidden process detec-
tion and identification using lycosid. In: Proceedings of the Fourth ACM SIGPLAN/SIGOPS
international conference on virtual execution environments, VEE ’08. ACM, New York, NY,
USA, pp 91–100. ISBN 978-1-59593-796-4. https://doi.org/10.1145/1346256.1346269

30. Sharif MI, Lee W, Cui W, Lanzi A (2009) Secure in-vm monitoring using hardware virtualiza-
tion. In: Proceedings of the 16th ACM conference on computer and communications security,
CCS ’09. ACM, New York, NY, USA, pp 477–487. ISBN 978-1-60558-894-0. https://doi.org/
10.1145/1653662.1653720.

31. Liu Q, Weng C, Li M, Luo Y (2010) An in-vm measuring framework for increasing virtual
machine security in clouds. IEEE Sec Privacy 8(6):56–62

32. Dolan-Gavitt B, Leek T, Hodosh J, Lee W (2013) Tappan zee (north) bridge: mining memory
accesses for introspection. In: Proceedings of the 2013ACMSIGSAC conference on Computer
and communications security, CCS ’13. ACM, New York, NY, USA, pp 839–850. ISBN 978-
1-4503-2477-9. https://doi.org/10.1145/2508859.2516697

33. Dinaburg A, Royal P, Sharif M, LeeW (2008) Ether: malware analysis via hardware virtualiza-
tion extensions. In: Proceedings of the 15thACMconference on computer and communications
security, CCS ’08. ACM, New York, NY, USA, pp 51–62. ISBN 978-1-59593-810-7. https://
doi.org/10.1145/1455770.1455779

34. Pfoh J, Schneider C, Eckert C (2011) Nitro: hardware-based system call tracing for virtual
machines. In: Advances in information and computer security. Springer, pp 96–112

35. Liu Y, Xia Y, Guan H, Zang B, Chen H (2014) Concurrent and consistent virtual machine intro-
spection with hardware transactional memory. In: 2014 IEEE 20th international symposium
on high performance computer architecture (HPCA), February 2014, pp 416–427. https://doi.
org/10.1109/HPCA.2014.6835951

36. Estrada ZJ, Pham C, Deng F, Yan L, Kalbarczyk Z, Iyer RK (2015) Dynamic vm dependability
monitoring using hypervisor probes. In: European dependable computing conference (EDCC)

37. Petroni Jr NL, Hicks M (2007) Automated detection of persistent kernel control-flow attacks.
In: Proceedings of the 14th ACM conference on computer and communications security, CCS
’07. ACM, New York, NY, USA, pp 103–115. ISBN 978-1-59593-703-2. https://doi.org/10.
1145/1315245.1315260

38. Nergal (2001) The advanced return-into-lib(c) exploits: Pax case study. Phrack #58, Article 4.
http://www.phrack.org/issues.html?issue=58&id=4

39. Zhang F, Leach K, Sun K, Stavrou A (2013) Spectre: a dependable introspection framework
via system management mode. In: Proceedings of the 43rd annual IEEE/IFIP international
conference on dependable systems and networks (DSN’13), June 2013

40. Pelleg D, Ben-Yehuda M, Harper R, Spainhower L, Adeshiyan T (2008) Vigilant–out-of-band
detection of failures in virtual machines. Oper Syst Rev 42(1):26

http://www.spiceworks.com/marketing/state-of-smb-it
https://www.forrester.com/The+Public+Cloud+Market+Is+Now+In+Hypergrowth/fulltext/-/E-RES113365?intcmp=blog:forrlink
https://doi.org/10.1145/800009.808061
https://doi.org/10.1145/1346256.1346269
https://doi.org/10.1145/1653662.1653720
https://doi.org/10.1145/2508859.2516697
https://doi.org/10.1145/1455770.1455779
https://doi.org/10.1109/HPCA.2014.6835951
https://doi.org/10.1145/1315245.1315260
http://www.phrack.org/issues.html?issue=58&id=4

Multi-layered Monitoring for Virtual Machines 139

41. Bishop M (1989) A model of security monitoring. In: Fifth annual computer security
applications conference. IEEE, pp 46–52

42. Moon H, Lee H, Lee J, Kim K, Paek Y, Kang BB (2012) Vigilare: toward snoop-based kernel
integrity monitor. In: Proceedings of the 2012 ACM conference on computer and communi-
cations security, CCS ’12. ACM, New York, NY, USA, pp 28–37. ISBN 978-1-4503-1651-4.
https://doi.org/10.1145/2382196.2382202

43. WangL,KalbarczykZ,GuW, IyerRK (2006)An os-level framework for providing application-
aware reliability. In: PRDC’06. 12th Pacific Rim international symposium on dependable
computing. IEEE, pp 55–62

44. Demme J, Maycock M, Schmitz J, Tang A, Waksman A, Sethumadhavan S, Stolfo S (2013)
On the feasibility of online malware detection with performance counters. SIGARCH Comput
Archit News 41(3):559–570. ISSN 0163-5964. https://doi.org/10.1145/2508148.2485970

45. Rhee J, Riley R, Xu D, Jiang X (2009) Defeating dynamic data kernel rootkit attacks via vmm-
based guest-transparent monitoring. In: International conference on availability, reliability and
security (ARES). IEEE, pp 74–81

46. Yim KS, Kalbarczyk ZT, Iyer RK (2009) Quantitative analysis of long-latency failures in
system software. In: PRDC’09. 15th IEEE Pacific Rim international symposium on dependable
computing. IEEE, pp 23–30

47. Cotroneo D, Natella R, Russo S (2009) Assessment and improvement of hang detection in
the linux operating system. In: SRDS’09. 28th IEEE international symposium on reliable
distributed systems. IEEE, pp 288–294

48. Butler J, Hoglund G (2004) Vice–catch the hookers. Black Hat USA, p 61
49. Devik Sd. (2001) Linux on-the-fly kernel patchingwithout LKM.PhrackMagazine #58,Article

7. http://www.phrack.org/issues.html?id=7&issue=58
50. Ormandy T (2010) The GNU C library dynamic linker expands $ORIGIN in setuid library

search path. http://seclists.org/fulldisclosure/2010/Oct/257. [Online]. Accessed 29-April-2013
51. SecurityFocus (2013) Linux kernel cve-2013-1763 local privilege escalation vulnerability.

http://www.securityfocus.com/bid/58137/info. [Online]. Accessed 29-April-2013
52. Jana S, Shmatikov V (2012) Memento: learning secrets from process footprints. In: 2012 IEEE

symposium on security and privacy (SP), pp 143–157. https://doi.org/10.1109/SP.2012.19
53. Garfinkel T (2003) Traps and pitfalls: practical problems in system call interposition based

security tools. In: Proceedings of the network and distributed systems security symposium, vol
33

54. Provos N (2003) Improving host security with system call policies. In: Proceedings of the 12th
USENIX security symposium, vol 1. Washington, DC, p 10

55. Kosoresow AP, Hofmeyer SA (1997) Intrusion detection via system call traces. IEEE Softw
14(5):35–42

56. Criswell J, Geoffray N, Adve VS (2009) Memory safety for low-level software/hardware
interactions. In: USENIX security symposium, pp 83–100

57. Criswell J, Lenharth A, Dhurjati D, Adve V (2007) Secure virtual architecture: a safe execution
environment for commodity operating systems. In: Proceedings of twenty-first ACM SIGOPS
symposium on operating systems principles, SOSP ’07. ACM, New York, NY, USA, pp 351–
366. ISBN 978-1-59593-591-5. https://doi.org/10.1145/1294261.1294295

58. Manadhata PK, Wing JM (2011) An attack surface metric. IEEE Trans Softw Eng 37(3):371–
386

59. Padala P (2002) Playing with ptrace, part 1. Linux J (103). http://www.linuxjournal.com/art
icle/6100

60. Krishnakumar R (2005) Kernel korner: kprobes-a kernel debugger. Linux J 2005(133):11
61. Feng W, Vishwanath V, Leigh J, Gardner M (2007) High-fidelity monitoring in virtual

computing environments. In: Proceedings of the international conference on the virtual
computing initiative

62. Payne BD (2012) Simplifying virtual machine introspection using libvmi. Sandia report
63. NIST (2008)Vulnerability summary for cve-2008-0600.Online. https://web.nvd.nist.gov/view/

vuln/detail?vulnId=CVE-2008-0600

https://doi.org/10.1145/2382196.2382202
https://doi.org/10.1145/2508148.2485970
http://www.phrack.org/issues.html?id=7&issue=58
http://seclists.org/fulldisclosure/2010/Oct/257
http://www.securityfocus.com/bid/58137/info
https://doi.org/10.1109/SP.2012.19
https://doi.org/10.1145/1294261.1294295
http://www.linuxjournal.com/article/6100
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-0600

140 C. Pham

64. Corbet J (2008) vmsplice(): the making of a local root exploit. Online. http://lwn.net/Articles/
268783/

65. Arnold J, Kaashoek MF (2009) Ksplice: automatic rebootless kernel updates. In: Proceedings
of the 4th ACM European conference on computer systems. ACM, pp 187–198

66. Vaughan-Nichols SJ (2015) No reboot patching comes to linux 4.0. Online. http://www.zdnet.
com/article/no-reboot-patching-comes-to-linux-4-0/

67. Bovet DP, Cesati M (2005) Understanding the Linux kernel. O’Reilly Media, Inc
68. Spinellis D (1994) Trace: a tool for logging operating system call transactions. ACM SIGOPS

Oper Syst Rev 28(4):56–63
69. Gilbert MJ, Shumway J (2009) Probing quantum coherent states in bilayer graphene. J Comput

Electron 8(2):51–59
70. Ernst MD, Perkins JH, Guo PJ, McCamant S, Pacheco C, Tschantz MS, Xiao C (2007) The

daikon system for dynamic detection of likely invariants. Sci Comput Program 69(1):35–45
71. Pattabiraman K, Saggese GP, Chen D, Kalbarczyk Z, Iyer R (2011) Automated derivation of

application-specific error detectors using dynamic analysis. IEEE Trans Depend Sec Comput
8(5):640–655

72. Carbin M, Misailovic S, Kling M, Rinard MC (2011) Detecting and escaping infinite loops
with jolt. In: ECOOP 2011–object-oriented programming. Springer, pp 609–633

73. Agesen O, Mattson J, Rugina R, Sheldon J (2012) Software techniques for avoiding hardware
virtualization exits. In: USENIX annual technical conference, pp 373–385

74. Wagner J, Kuznetsov V, Candea G, Kinder J (2015) High system-code security with low
overhead. In: 36th IEEE symposium on security and privacy, number EPFL-CONF-205055

75. Larson SM, Snow CD, Shirts M et al (2022) Folding@home and genome@home: using
distributed computing to tackle previously intractable problems in computational biology

76. AbadiM,BudiuM,ErlingssonU,Ligatti J. Control-flow in-tegrity principles, implementations,
and applications.ACMTrans Inf Syst Secur 13(1):4:1–4:40,November 2009. ISSN1094-9224.
https://doi.org/10.1145/1609956.1609960

77. Zhang M, Sekar R (2013) Control flow integrity for cots binaries. Presented as part of the 22nd
USENIX security symposium (USENIX Security 13), Washington, D.C. USENIX, pp 337–
352. . ISBN 978-1-931971-03-4. https://www.usenix.org/conference/usenixsecurity13/techni
cal-sessions/presentation/Zhang

78. Trusted Computing Group (2015) Trusted computing group: trusted platform module. http://
www.trustedcomputinggroup.org/developers/trusted_platform_module

79. Intel Corporation (2015) Trusted compute pools with intel(r) trusted execution technology.
http://www.intel.com/txt

80. Azab AM, Ning P, Wang Z, Jiang Z, Zhang X, Skalsky NC (2010) Hypersentry: enabling
stealthy in-context measurement of hypervisor integrity. In: Proceedings of the 17th ACM
conference on computer and communications security, CCS ’10. ACM, New York, NY, USA,
pp 38–49. ISBN 978-1-4503-0245-6. https://doi.org/10.1145/1866307.1866313

81. Bellare M, Micciancio D (1997) A new paradigm for collision-free hashing: incrementality at
reduced cost. In: Advances in cryptology—EUROCRYPT’97. Springer, pp 163–192

82. Weaver VM, Terpstra D,Moore S (2013) Non-determinism and overcount onmodern hardware
performance counter implementations. In: 2013 IEEE international symposiumonperformance
analysis of systems and software (ISPASS), pp 215–224, April 2013. https://doi.org/10.1109/
ISPASS.2013.6557172

http://lwn.net/Articles/268783/
http://www.zdnet.com/article/no-reboot-patching-comes-to-linux-4-0/
https://doi.org/10.1145/1609956.1609960
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.intel.com/txt
https://doi.org/10.1145/1866307.1866313
https://doi.org/10.1109/ISPASS.2013.6557172

	 Multi-layered Monitoring for Virtual Machines
	1 Motivation
	2 Target System Model
	3 Limitations of State-of-the-Art VM Monitoring
	3.1 Polling-and-Scanning Monitoring Paradigm
	3.2 Untrustworthy Input
	3.3 Inflexible Monitor Placement
	3.4 Incompatible Reliability and Security Monitoring

	4 HyperTap: Virtual Machine Monitoring Using Hardware Architectural Invariants
	4.1 Monitoring Principles
	4.2 Framework and Implementation
	4.3 Performance Evaluation

	5 Hprobes: Dynamic Virtual Machine Monitoring Using Hypervisor Probes
	5.1 Introduction
	5.2 Design
	5.3 Prototype Implementation

	6 hShield: Monitoring Hypervisor Integrity
	6.1 Introduction
	6.2 Assumptions and Threat Model
	6.3 hShield Approach Overview
	6.4 Execution Hashing
	6.5 hShield Architectural Design

	7 Conclusion
	7.1 Continuous Monitoring of Guest OS and Applications
	7.2 Continuous Monitoring of Hypervisor

	References

