
From Dependability to Security—A Path
in the Trustworthy Computing Research

Shuo Chen

Abstract The societal importance of trustworthy computing has become more and
more obvious. It has two distinguishable yet related aspects: dependability and secu-
rity. In this chapter, I will explain the commonality and difference of the two, and use
my own experience as an example to show how a researcher grows his/her expertise
through the dependability research and the security research.

1 About Trustworthiness

A fundamental question in computing is how to establish trustworthiness of computa-
tional results produced by a real-world system.When discussing the concept of trust-
worthiness, wemust consider the adversary model. The adversary can be phenomena
in the nature (e.g., hardware transient errors, communication disruptions and human
errors) or intentional human attackers. The former is often considered as the adver-
sary model for dependability, and the latter is for security. From the perspective of
the system designers, implementers and operators, trustworthiness means that the
system should be able to withstand these adversaries.

Although the two adversary models are distinguishable, the insights from depend-
ability research and security research are coherent. For example, bit-flip is a basic
adversarymodel, originally in the context of dependability. However, people’s under-
standing about bit-flip has been evolving over a long time. It is now a topic frequently
studied in the security community. In addition to the adversary model, formal veri-
fication and distributed consensus are also topics evolving from dependability to
security. In the rest of this chapter, I provide my perspective in these areas.

S. Chen (B)
Microsoft Research Asia, Beijing, China
e-mail: shuochen@microsoft.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Wang et al. (eds.), System Dependability and Analytics, Springer Series in Reliability
Engineering, https://doi.org/10.1007/978-3-031-02063-6_4

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02063-6_4&domain=pdf
mailto:shuochen@microsoft.com
https://doi.org/10.1007/978-3-031-02063-6_4

56 S. Chen

2 The Evolution of the Bit-Flip Adversary Model

A useful methodology to evaluate system dependability is fault injection. A fault
injector simulates faults that the target system may encounter when it is deployed in
the real world. Fault injectors often implement the bit-flip functionality. The func-
tionality targets registers, data memory or code memory. During a test execution
of a program, a bit is chosen to be flipped based on a pre-determined distribu-
tion. The execution is then resumed. There are two scenarios with high probabil-
ities. The first is that the execution finishes with a correct result. This scenario is
often referred to as “fault not manifested”. The second high probability scenario is
when the execution results in a crash or other exceptions. This is often referred to
as “fail silence”. Usually, “fault not manifested” and “fail silence” are considered
the expected outcome without serious bad consequences. However, there is a non-
negligible probability that the execution finishes but produces an incorrect result.
This is often referred to as “fail-silence violation”. It is the most interesting scenario
for investigation.

2.1 Security Consequences Caused by Bit-Flips

My initial knowledge about the security consequences of randombit-flip faults comes
from Boneh et al.’s paper in Eurocrypt’97 [1]. The paper shows that several cryp-
tographic systems will be broken if bit-flips can be intentionally introduced during
certain phases of the cryptographic computations. For example, an implementation
of RSA is based on the Chinese Remainder Theorem (CRT). Boneh et al. show that
if the attacker can introduce a bit-flip fault to cause the RSA algorithm to produce
an erroneous signature of a message, and repeat the algorithm without the fault to
produce the correct signature of the same message, then the secret signing key will
be recovered.

My first two papers, published in 2001 and 2002, investigated the security conse-
quences of bit-flips target Internet server programs (e.g., FTP and SSH) [2] and
firewall programs (e.g., IPChains and Netfiler) [3]. My co-authors and I conducted
fault injection experiments to show the existence of non-negligible probabilities of
fail-silence violations resulting in security consequences. For example, injected faults
could cause firewall programs to skip packet-filtering rules, or cause FTP’s authenti-
cation to be bypassed. While these consequences are not surprising, the fact that the
probabilities are non-negligible is.

From Dependability to Security—A Path in the Trustworthy … 57

Temperature: 80 – 100 °C

Fig. 1 Using a spotlight to introduce memory errors to JVM

2.2 Fault Injection as a Weapon

The papers mentioned above investigate the security consequences with the presence
of injected faults, but do not discuss how the faults can be injected in the real-world
settings. In this sense, the weaknesses discussed in these papers are not end-to-end
exploitable security vulnerabilities.

Our work motivated Govindavajhala et al. to conduct a really surprising exper-
iment in 2003 to show that memory faults can be intentionally injected by heating
the PC with a spotlight in a close proximity [4]. (Note that the cover of the PC
is removed, so the spotlight is more effective in raising the temperature of the PC’s
components.) The experiment shows that when the temperature is in the range of 80–
100 °C, isolated and intermittent memory errors occur. The authors use this effect
to target Java VM (JVM), of which the security assurance crucially depends on type
safety. With the presence of memory errors, type safety no longer holds. This means
that when the attacker’s Java program runs on the JVM, the attacker can take control
of the JVM, thus execute arbitrary native code on the victim machine. It is estimated
that a single-bit-flip can give a 70% probability for the attack to succeed (Fig. 1).

2.3 Software Memory Bugs as a Weapon

The aforementioned research studies give an important insight for amore comprehen-
sive understanding about memory bugs. Before 2005, the attacks exploiting software
memory bugs, such as stack overflow, format string vulnerability and heap corruption,
focus on the control flow: they use the bugs to rewrite important data that determine
the victim program’s control flow, e.g., return addresses and function pointers, so
that the control flow jumps to an arbitrary binary code supplied by the attacker. They

58 S. Chen

Table 1 Source code of getdatasock()
FILE * getdatasock(…) {
...
seteuid(0);
setsockopt(...);
...
seteuid(pw->pw_uid);
...
}

are referred to as the control-data attacks. In response to this attack pattern, many
defensive techniques are proposed against them in the research community. Some
protect return addresses, such as StackGuard [5] andLibsafe [6]; some rely on control
flow integrity for security, such as system call based intrusion detection techniques
[7–13], control data protection techniques [14–16], and enforcement mechanisms
for non-executable memory [17, 18].

Despite the research community’s familiarity of the control-data attack, it is
reasonable to askwhether the dominance of control-data attacks is due to an attacker’s
inability to construct non-control-data attacks, i.e., attacks that do not alter any
control-data but still cause security consequences as serious as the control-data
attacks. My co-authors and I understood from our previous research that, given a
real-world program, its built-in code logic is already susceptible under the bit-flip
adversary. In other words, we understood that even if the victim program’s control
flow is intact, when the code runs on the data slightly corrupted, the consequence
can be devastating. This insight might be natural to the dependability community,
but was fairly surprising in the security community.

In 2005, we published a paper with the title “Non-Control-Data Attacks Are Real-
istic Threats” [19]. The paper shows that many types of data, other than control-data,
are also crucial to security, including configuration data, user input, user identity data
and decision-making data. For example, Table 1 shows the source code of a func-
tion in WU-FTPD, which is one of the most widely used FTP servers. WU-FTPD
has a format string vulnerability that can be triggered when receiving a “Site Exec”
command. Like most other format string vulnerabilities, this vulnerability allows
the attacker to overwrite the value of an arbitrary memory location specified by the
attacker. Essentially, this vulnerability is a memory fault injector. The function in
Table 1 is named getdatasock.What it does is to temporarily set the effectiveUID
of the process to the root UID. This is fulfilled by calling seteuid(0). Then, the
code does certain operations with the root privilege, such as calling setsockopt.
In the end, the code restores the effective UID of the process to the user’s UID,
which is stored in pw->pw_uid on the heap. Now, consider what can happen
when a format string vulnerability exists. The attacker can exploit the vulnerability
to overwrite pw->pw_uid to 0, then call function getdatasock. The conse-
quence is that seteuid(pw->pw_uid) does not restore the process’s effective
UID, so the attack stays at the root privilege level. All files in the filesystem can be
overwritten, including the crucial ones for user authentication, such as / etc/passwd

From Dependability to Security—A Path in the Trustworthy … 59

Table 2 Code of servconnection()
int serveconnection(int
sockfd) {
char *ptr;//pointer to the
URL.
// ESI is allocated
// to this variable.
...
1: if (strstr(ptr,”/..”))

reject the request;
2: log(...);
3: if (strstr(ptr,”cgi-bin”))
4: Handle CGI request
...
}

and / etc/shadow. This means that the attack obtains the total control of the victim
machine.

Another example is about the buffer overflow vulnerability in an HTTP server
called GHTTPD. Buffer overflow is also like a memory fault injector, which can
overwrite data on the stack. The vulnerable code is shown in Table 2. Function
servconnection() calls another function log(), which contains a buffer over-
flow bug. A pointer variable ptr is on the stack, so it can be overwritten by the
attacker because of the bug. Now the question is how the attacker can take control
of the victim machine. Although the source code of servconnection()is very
long, we show two important states in line 1 and line 3. Line 1 rejects any URL
that contains a “/..” substring. Line 3 implements the CGI functionality of the
HTTP server, which allows an HTTP request to invoke an executable on the server.
For the security reason, all the invocable executables are stored in a specific path,
e.g. /usr/local /ghttpd/cgi-bin. An HTTP request http://foo.com/cgi-
bin/bar will invoke the executable /usr/local/ghttpd/cgi-bin/bar. The
checking in line 1 is crucial for the CGI functionality. Suppose a request http://foo.
com/cgi-bin/../../../../bin/sh is not rejected, the executable /bin/sh will be executed,
giving the user a command shell. The attacker hence gets the same privilege as the
HTTP server. To carry out the attack, the attacker sends a long HTTP request in
which the first part is to exploit the buffer overflow bug in order to overwrite the
value of ptr to be the address of the second part of the request. The second part is
the string containing “/../../../../bin/sh”. This accomplishes the attack.

Our paper [19] investigates other memory bugs in real-world programs. It gives
a substantial amount of evidence to show that, when a memory bug allows data
corruption, the victim program’s existing semantics are usually sufficient to let the
attacker get a total control.

http://foo.com/cgi-bin/bar
http://foo.com/cgi-bin/../../../../bin/sh

60 S. Chen

2.4 Rowhammer—A Bit-Flip Security Threat in DRAM

Since 2014, the security threat caused by bit-flips in DRAM has become an exten-
sively researched topic. The threat and the corresponding exploits are referred to
as Rowhammer. The root cause of Rowhammer is the scaling-down of the DRAM
process technology. DRAM cells become increasingly likely to charge and discharge
between each other, thus have a non-negligible probability to result in bit-flips.
This phenomenon was initially described by several patent disclosures by Intel, then
studied by the research community. Authors of reference [20] study specificallyDDR
SDRAM. Figure 2 illustrate the rows of memory cells in the DRAM. One of the rows
is the victim row that the attack wants to introduce bit-flips into. It is sandwiched
between two adjacent rows. The study demonstrates that the bit-flip probability of
the victim row can be substantially increased if the attacker frequently activates the
two adjacent rows. Therefore, suppose the attacker can know sufficiently the data
contents in these three rows, purposeful bit-flips can be introduced.

There are several follow-up studies based on reference [20]. For example, people
understand that ECC (error correcting code) is a technique to mitigate bit-flips,
so it is natural to ask whether the Rowhammer threat exists in ECC-protected
DRAM.Cojocar et al. conduct a study to reverse-engineer the ECCmechanism. They
construct a new Rowhammer attack which can succeed in certain ECC-protected
DRAMs [21]. In the separate study, Cojocar et al. develop a methodology to evaluate
how cloud servers are vulnerable to the Rowhammer threat [22].

Fig. 2 An illustration about
the Rowhammer attack

Ad
dr

es
s

de
co

de
r

Address decoder

Row buffer

VicƟm row, sandwiched
between two adjacent rows

From Dependability to Security—A Path in the Trustworthy … 61

3 Formal Methods

Formal methods are an important rigorous approach to enhance correctness of a
system.My initial knowledge about formal methods was from the reliability context.
For example, Rosu et al. developed a formal approach to check the measurement
unit (e.g., imperial vs. metric) safety policies for mission-critical programs, such as
those written by NASA JPL (Jet Propulsion Laboratory) [23]. This type of safety
violations (e.g., an imperial quantity is added to a metric quantity) can hide deeply
in a complex program developed by many teams. It is impossible to exhaustively
test all the execution paths of the program. Formal methods provide a unique power
to statically examine the program to expose bugs with a level of completeness with
respect to a given abstraction.

A good example of formal methods for software reliability is the Static Driver
Verifier (a.k.a. the SLAM technology) for Windows [24]. Windows needs to accom-
modate a huge number of device drivers, which run in the kernel space. In the past,
Microsoft did not have a quality control mechanism to ensure that the drivers were
reliable, so the kernel panic (a.k.a. “blue screen”) frequently occurred. Static Driver
Verifier enabled Microsoft to implement a Windows driver certification program—a
driver succeeding in the verification would be digitally signed by Microsoft, and
users were strongly discouraged to install unsigned drivers.

3.1 Formal Methods for Browser Security

Fascinated by the rigorousness of formal methods, I have worked on several security
projects that applied formal methods to real-world systems. The first project was
about examining Internet Explorer (IE) browser’s graphic interface (GUI) logic for
security bugs [25].We studied theGUI code and built a formalmodel to describe how
a user (potentially an attacker) could use Javascript andHTML to spoof the browser’s
address bar and the status bar. For example, Fig. 3 shows the consequences of two
bugs that we discovered. The status bar spoofing bug allowed the attacker to construct
a hyperlink in an email. When the user examined the target URL of the hyperlink,
the status bar showed https://www.paypal.com, the actual target was the attacker’s
website. The address bar spoofing bug allowed the attacker to construct a page which
could make the address bar and the content window out of sync, so that the address
bar (including the SSL certificate) showed https://www.paypal.com, but the content
window displayed the attacker’s website. Obviously, the combination of status bar
spoofing and address bar spoofing would make a powerful phishing attack.

In this work, we used the Maude rewriting logic system [26] to model IE’s GUI
logic, including the mouse event handling logic and the address update logic during
navigation. In the end, we discovered thirteen GUI spoofing bugs in IE 6, eleven of
which were fixed when IE 7 was released.

https://www.paypal.com
https://www.paypal.com

62 S. Chen

Fig. 3 Browser’s GUI
security bugs

(a) Status bar spoofing

(b) address bar spoofing

3.2 Formal Methods for Authentication Protocols

Formal verification was the core technology in my research project that explicated
the security assumptions of authentication SDKs. Major cloud providers, such as
Facebook, Google, and Microsoft, provide single-sign-on authentication services
(SSO) for website developers to integrate. With SSO, a website does not need to
implement its own authentication infrastructure, but only needs to call an SSO service
that it trusts. The SSO service is called the identity provider, or IdP. The website is
called the relying party, or RP. The security goal is for the RP to authenticate the
client as “Alice”, if the client is able to authenticate to the IdP as “Alice”.

Identity provider companies release SSO SDKs, and publish developer’s guides
to show the sequence of steps to integrate them into website code. However, an
important question remains: if developers follow the guides in reasonable ways, will
the resulting applications be secure? Our study shows that the answer today is “No”.
Many apps built using the SDKs we studied have serious security flaws. This is

From Dependability to Security—A Path in the Trustworthy … 63

not due to direct vulnerabilities in the SDK, but rather because achieving desired
security properties by using an SDK depends on many implicit assumptions that
are not readily apparent to app developers. These assumptions are not documented
anywhere in the SDK or its developer documentation. In several cases, even the SDK
providers are unaware of the assumptions.

The goal of our work [27] is to systematically identify the assumptions to use
an SDK to produce secure applications. Our approach involves a combination of
manual effort and automated formal verification. Any counterexample found by
the verification tool indicates either (1) that our system models are not accurate, in
which case we revisit the real systems to correct the model; or (2) that our models are
correct, but additional assumptions need to be captured in the model and followed by
application developers. The explication process is an iteration of the above steps so
that we document, examine and refine our understanding of the underlying systems
for an SDK. In the end, we get a set of formally captured assumptions and a semantic
model that allow us to make meaningful assurances about the SDK: an application
constructed using the SDK following the documented assumptions satisfies desired
security properties.

The formal language we used in this study is Boogie [28]. It is an imperative
language, so translating SDK code in a web language (e.g., PHP or C#) to Boogie
is straightforward. Figure 4 shows an example PHP function translated into Boogie.
The Boogie language allows the programmer to add assertions and invariants. The
Boogie verifier will then statically verify whether the assertions and invariants hold
in all circumstances.

Fig. 4 Example of a PHP function and its Boogie model

64 S. Chen

4 Distributed Consensus

Another important topic that are originated in the dependability community and later
plays an important role in security is distributed consensus. A legendary paper about
this topic is the paper titled “The Byzantine General Problem” [29] by Lamport,
Shostak and Pease. Despite the interesting title, the core problem studied in this
paper is first presented in an earlier paper by the same set of authors. The earlier
paper is titled “Reaching Agreement in the Presence of Faults” [30], which is clearly
set in the fault tolerance context. The protocols proposed in reference [29] and later
papers establish a well-known area in dependability and distributed systems, namely
BFT (or Byzantine Fault Tolerance).

The fault tolerance capability of BFT comes from the redundancy of the nodes.
However, it is different fromother redundancy-based fault tolerancemechanisms. For
example, triple modular redundancy (TMR) runs three replicas for a computation,
and uses the majority voting to decide the output. TMR tolerates one faulty replica.
However, TMR needs to have a component to do the voting. Although it can be
substantially simpler than every replica, it can be faulty itself. Unfortunately, TMR
cannot tolerate the faults of the voting component. BFT, on the other hand, does not
assume any component to be reliable. Instead, the assumption of BFT is about the
total number of the faulty components.

From fault tolerance to security. BFT and other distributed consensus protocols
play an important role to ensure reliability of cloud platforms. However, it was some-
what unexpected that decentralized computing became the big wave of technological
innovations. In this wave, consensus protocols are no longer a reliability mechanism,
but form the foundation of decentralized trust.

Computing with decentralized trust enables scenarios that were hard to imagine
before. For example, it was surprising that this new computing paradigm could be
deployed in the global scale, enabling the worldwide community to issue a new
currency (e.g., Bitcoin) without trusting any central bank. It was evenmore surprising
that the new paradigm supported general purpose computing (e.g., by smart contracts
on Ethereum). Decentralized trust enables many exciting possibilities, but its core
mechanism is distributed consensus.

Consensus protocols can be categorized into two categories. The first is suit-
able for communities with open membership, which allow everyone to join. The
Bitcoin network and the public Ethereum network are such communities. The second
category is suitable for consortiums,which are formedbyentitieswith clear identities.

Proof-of-Work (PoW) [31] is a representative consensus protocol in the first cate-
gory. The goal of the protocol is to ensure that no member can dominate community.
However, the open membership makes it impossible to base the protocol on identi-
ties, because a member can create an arbitrary number of identities. The core idea of
PoW is to base the consensus on every member’s actual computational power, which
cannot be arbitrarily created. The PoW mechanism in Bitcoin is illustrated in Fig. 5.
Each block contains the SHA256 hash value of its previous block, as well as the
transactions contained in the current block. In addition, there is a nonce value, which

From Dependability to Security—A Path in the Trustworthy … 65

Fig. 5 Proof of work in
Bitcoin

is crucial to the PoWmechanism. Any member who wants to construct a valid block
to be accepted by the community (i.e., to represent the community consensus) needs
to find such a nonce value that makes the hash of the current block begin with a pre-
determined number of zero bits. Because there is no known algorithm to calculate
such a value efficiently, the only way to obtain it is to repeatedly try different value
and calculate SHA256. This means that the probability for a member to represent
the consensus is proportional to its actual computational power.

Besides the community with open membership, the other type of community is
consortium, which consists of members with well-known identities. For example,
government agencies, companies, and international organizations can form consor-
tiums. In the consortium setting, traditional consensus protocols are valid. Xiao et al.
provide a survey about blockchain consensus protocols, including those used in the
consortium settings [32]. The survey covers Byzantine fault tolerant (BFT) proto-
cols and crash fault tolerant (CFT) protocols. It categorizes protocols by different
synchrony assumptions. Popular protocols include Raft [33], PBFT [34] and a few
others. In 2019, Facebook announced the project to build a consortium blockchain
called Libra. The consensus protocol, namely HotStuff [35], is derived from BFT.

5 Summary

Dependability (fault tolerance) is an important aspect of trustworthy computing. It is
about investigating adversarial circumstances of a systemand designing amechanism
for a system to be robust despite these circumstances. It is often distinguishable from
security, for which the adversarial circumstances are intentionally created or control-
lable by a human attacker. For this reason, the adversary assumptions for security
research often appear to be more direct and imminent. They are often deterministic,
while the assumptions for dependability research are often probabilistic.

66 S. Chen

However, both research areas are fundamentally about quality of programming,
thoroughness of testing, and good redundancies in design. My research career began
in the dependability community. Then I worked on projects about security conse-
quences of faults, later focused on security research. I realize that it is important for
researchers to appreciate the commonality of the two disciplines. Among the three
areas described in this chapter, the strong relevance of the bit-flip adversary and
the distributed consensus was not foreseeable when I was initially exposed to the
concepts. Therewas a decades-long researchhistory of each topic in the dependability
community, but the research value was revived stronger than before in the security
community in the last 5 years. Regarding formalmethods, I was not surprised by their
values in security. It was reasonable to anticipate that logic-proof-based approaches
would be needed to complement traditional software testing approaches. However, it
is still very impressive to see a great amount of new formal techniques indeed make
concrete contributions in many security domains.

References

1. Boneh D, DeMillo RA, Lipton RJ (1997) On the importance of eliminating errors in
cryptographic computations. In: Proceedings of advances in cryptology: Eurocrypt’97, pp
37–51

2. Xu J, Chen S, Kalbarczyk Z, Iyer RK (2001) An experimental study of security vulnerabilities
caused by errors. In: IEEE international conference on dependable systems and networks
(DSN), Göteborg, Sweden

3. Chen S, Xu J, Iyer RK, Whisnant K (2002) Modeling and analyzing the security threat of
firewall data corruption caused by instruction transient errors. In: IEEE international conference
on dependable systems and networks (DSN), Washington DC

4. Govindavajhala S, Appel AW (2003) Using memory errors to attack a virtual machine. In:
Proceedings of the IEEE symposium on security and privacy

5. Cowan C, Pu C, Maier D, Hinton H, Walpole J, Bakke P, Beattie S, Grier A, Wagle P, Zhang Q
(1998) Automatic detection and prevention of buffer-overflow attacks. In: Proceedings of the
7th USENIX security symposium, San Antonio, TX

6. BaratlooA, Tsai T, SinghN (2000) Transparent runtime defense against stack smashing attacks.
In: Proceedings of USENIX annual technical conference

7. Feng H, Giffin J, Huang Y, Jha S, Lee W, Miller B (2004) Formalizing sensitivity in static
analysis for intrusion detection. In: Proceedings of the 2004 IEEE symposium on security and
privacy

8. Forrest S, Hofmeyr S, Somayaji A, Longsta T (1996) A sense of self for Unix processes. In:
Proceedings of the IEEE symposium on security and privacy

9. Feng H, Kolesnikov O, Fogla P, Lee W, Gong W (2003) Anomaly detection using call stack
information. In: Proceedings of the IEEE symposium on security and privacy

10. GaoD,ReiterM,SongD(2004)Gray-box extractionof executiongraphs for anomalydetection.
In: Proceedings of the 11th ACM conference on computer and communication security

11. Giffin J, Jha S, Miller B (2004) Efficient context sensitive intrusion detection. In: Proceedings
of the symposium on network and distributed system security

12. Hofmeyr SA, Forrest S, Somayaji A (1998) Intrusion detection using sequences of system
calls. J Comput Secur 6(3)

13. SekarR,BendreM,DhurjatiD,Bollineni P (2001)A fast automaton-basedmethod for detecting
anomalous program behaviors. In: Proceedings of the IEEE symposium on security and privacy

From Dependability to Security—A Path in the Trustworthy … 67

14. Crandall JR, Chong FT (2004) Minos: control data attack prevention orthogonal to memory
model. In: Proceedings of the 37th international symposium on microarchitecture

15. Smirnov A, Chiueh T (2005) DIRA: automatic detection, identification and repair of control-
data attacks. In: Proceedings of the 12th network and distributed system security symposium
(NDSS), San Diego, CA

16. Suh G, Lee J, Devadas S (2004) Secure program execution via dynamic information flow
tracking. In: Proceedings of the 11th international conference on architectural support for
programming languages and operating systems. Boston, MA

17. Andersen S, Abella V, Data execution prevention. Changes to functionality in Microsoft
Windows XP service pack 2, part 3: memory protection technologies. http://www.microsoft.
com/technet/prodtechnol/winxppro/maintain/sp2mempr.mspx

18. Otachi E. What is data execution prevention in Windows 10. https://helpdeskgeek.com/win
dows-10/what-is-data-execution-prevention-in-windows-10/

19. Chen S,Xu J, Sezer EC,Gauriar P, Iyer RK (2005)Non-control-data attacks are realistic threats.
In: Proceedings of USENIX security symposium

20. Kim Y, Daly R, Kim J, Fallin C, Lee JH, Lee D, Wilkerson C, Lai K, Mutlu O (2014) Flipping
bits in memory without accessing them: an experimental study of DRAM disturbance errors.
In: Proceedings of the international symposium on computer architecture (ISCA)

21. Cojocar L, Razavi K, Giuffrida C, Bos H (2019) Exploiting correcting codes: on the effective-
ness of ECC memory against Rowhammer attacks. In: Proceedings of the IEEE symposium
on security and privacy

22. Cojocar L, Kim J, Patel M, Tsai L, Saroiu S, Wolman A, Mutlu O (2020) Are we susceptible
to Rowhammer? An end-to-end methodology for cloud providers. In: Proceedings of the IEEE
symposium on security and privacy

23. Rosu G, Chen F (2003) Certifying measurement unit safety policy. In: Proceedings of the IEEE
international conference on automated software engineering (ASE)

24. Ball T, Cook B, Levin V, Rajamani SK, SLAM and static driver verifier: technology transfer
of formal methods inside Microsoft. Microsoft Research Technical Report MSR-TR-2004-08

25. Chen S, Meseguer J, Sasse R, Wang HJ, Wang Y-M (2007) A systematic approach to uncover
security flaws in GUI Logic. In: Proceedings of the IEEE symposium on security and privacy

26. Clavel M, Durán F, Eker S, Lincoln P, Martí-Oliet N et al (2002) Maude: specification and
programming in rewriting logic. Theor Comput Sci 285(2):2002

27. Wang R, Zhou Y, Chen S, Qadeer S, Evans D, Gurevich Y (2013) Explicating SDKs: uncov-
ering assumptions underlying secure authentication and authorization. In: Proceedings of the
USENIX security symposium

28. Boogie: an intermediate verification language. http://research.microsoft.com/en-us/projects/
boogie/

29. Lamport L, Shostak R, Pease M (1982) The Byzantine generals problem. ACM transactions
on programming languages and systems

30. Pease M, Shostak R, Lamport L (1980) Reaching agreement in the presence of faults. J ACM
31. Nakamoto S, Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf
32. Xiao Y, Zhang N, Lou W, Thomas Hou Y (2020) A survey of distributed consensus protocols

for Blockchain networks. In: IEEE communications surveys & tutorials, vol 22
33. Ongaro D, Ousterhout J (2014) In search of an understandable consensus algorithm. In: 2014

USENIX annual technical conference (USENIX ATC 14), pp 305–319
34. Castro M, Liskov B (1999) Practical byzantine fault tolerance. In: Proceedings of symposium

on operating systems design and implementation (OSDI)
35. Yin M, Malkhi D, Reiter MK, Gueta GG, Abraham I, HotStuff: BFT consensus in the lens of

Blockchain. [arXiv:1803.05069] https://arxiv.org/pdf/1803.05069.pdf

http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/sp2mempr.mspx
https://helpdeskgeek.com/windows-10/what-is-data-execution-prevention-in-windows-10/
http://research.microsoft.com/en-us/projects/boogie/
https://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1803.05069
https://arxiv.org/pdf/1803.05069.pdf

	 From Dependability to Security—A Path in the Trustworthy Computing Research
	1 About Trustworthiness
	2 The Evolution of the Bit-Flip Adversary Model
	2.1 Security Consequences Caused by Bit-Flips
	2.2 Fault Injection as a Weapon
	2.3 Software Memory Bugs as a Weapon
	2.4 Rowhammer—A Bit-Flip Security Threat in DRAM

	3 Formal Methods
	3.1 Formal Methods for Browser Security
	3.2 Formal Methods for Authentication Protocols

	4 Distributed Consensus
	5 Summary
	References

