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Introduction

The idea of this book was born at the end of 2019, when we celebrated Professor
Ravishankar K. Iyer’s 70-year-old birthday. Professor Ravishankar K. Iyer is
George and Ann Fisher Distinguished Professor in the Department of Electrical
and Computer Engineering at University of Illinois at Urbana-Champaign (UIUC),
Urbana, Illinois, USA. He has been our Ph.D. or Postdoctoral Advisor, and
importantly, a lifelong mentor to us.

Professor Iyer has made seminal contributions to multiple sub-areas within the
area of computing systemdependability spanning his over 40-year career. And inspir-
ingly, he is continuing tomakemore path-defining contributions. Therefore, this book
took shape as reviewing some of the most important technical achievements in four
dominant themes in dependability, namely software dependability, large-scale
systems and data analytics, healthcare and cyber-physical systems, and depend-
ability assessment. Each section is both a look back and a look forward. The look
back describes the important milestones, several from the authors of the chapters,
as well as detours on the way to the milestones. The look forward defines impor-
tant open challenges, which are both relevant and technically challenging, needing
concerted efforts from the community. Hopefully, this book will serve as a “call to
arms” to the community to pick up some of these problems and to solve them.

Fittingly, we have a section with personal reflections from colleagues who have
known Prof. Iyer well. The fact that they happen to be towering researchers in their
own right adds more weight to these reflections. These reflections offer a view rarely
seen in public documents and will, we hope, serve to inspire a fresh generation of
researchers in the field of dependability and beyond.

Each section begins with a chapter, written by one of us, introducing the rest of
the chapters in that section, and providing a broad perspective on the theme profiled
in that section. These introductory chapters can serve as a guidepost for the reader
wishing to selectively navigate through the chapters in the book.

v



vi Introduction

Topic of Dependable Computing Systems

Dependability has long been studied in computer science and engineering—our
premier conference, IEEE/IFIP Dependable Systems and Networks, or DSN,
had its start in 1970. The importance of this area is understandable since human
safety and well-being have long depended on computing and engineered systems.
Research on computer system dependability has led to innumerable successes in
fields as varied as follows: aviation and space (NASA was one of the early organi-
zations that emphasized dependable computing), supercomputing clusters, banking
and finance, electric power, transportation, and distributed computing clusters. As
dependability earned more successes, we ventured into the construction of more
complex large systems such as cloud platforms, big autonomous IT infrastructures,
and the Internet of Things (IoT).

This book is titled System Dependability and Analytics to emphasize its focus on
system dependability, rather than only of its component pieces, as well as its intersec-
tion with data-driven analytics and machine learning. This latter aspect is becoming
increasingly important at a rapid pace. The impetus is coming from large amounts
of data being generated by our systems, which are being analyzed for understanding
dependability weaknesses and for mitigating effects of dependability failures. The
field is growing, and we expect many foundational as well as applied advances to
come in the next few years. This book is an early attempt to chart that course, though
doubtless, there is a good deal of speculation involved in our charting activity.

Staging of Dependability Topics

In the early stage of his research career, Prof. Iyer worked on analysis of depend-
ability data and building of dependability models from the data. Subsequently, he
worked on the design of dependability technologies and measurement of system
dependability. In the recent decade or so, his research focus hasmoved onto analytics-
driven approaches to dependability, including a prominent focus on dependability
in genomics and autonomous transportation. Correspondingly, this book features
the four sections that approximately cover these themes. It also makes sense that
Prof. Iyer’s dependability research started with modeling and measurement and then
steered toward application to use cases, as the models and measurement techniques
gained maturity. Thus, his career exemplifies the synergistic relationship that should
ideally exist between theory and practice. In terms of the target systems for the
dependability techniques, Ravi’s work spans a long arc. Correspondingly, this book
follows such an arc covering dependability of mainframes (early era) to that of super-
computers and software systems, to analytics of healthcare systems, and now to CPS
and autonomous systems.
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We start off with the theme of software dependability where we look at software
that goes in small to large devices. Then, we move to the dependability of large-
scale systems and the aspect of data analytics introduced above. Next, we delve into
the impact of dependability on healthcare and cyber-physical systems (CPS), two
relatively recent but already highly impactful sub-areas. We then come to the topic
of how to assess if our dependability design meets its goals or not. We end the book
with personal reflections on Ravi from three of his colleagues at the University of
Illinois at Urbana-Champaign.

Goals

By reading this book, the readerwill obtain an understanding of leading-edge depend-
ability techniques in the diverse areas of software, large-scale systems and data
analytics, healthcare and CPS, and dependability assessment techniques. These are
grouped into four corresponding sections of the book. The book does not aim for
completeness of the coverage of these topics. Rather, it provides influential tech-
niques that have strong theoretical foundations and, in many cases, have proven to
be of practical value in real-world systems.

The contributors of this book are active researchers and practitioners in leading
universities and research laboratories. They conduct research and build real-world
systems, services, and technologies in the areas covered in this book. In the book,
they bring forward their deep insights and provide their contemporary views and
visions on dependability. Thus, researchers, professional practitioners, and graduate
students will all obtain a clear-eyed view of the state of the art of the research and
real-world practice of system dependability and analytics.

Biographical Note on Prof. Ravishankar K. Iyer

Professor Ravishankar K. Iyer is ACM Fellow, IEEE Fellow, AAAS Fellow, and
served as Interim Vice Chancellor of UIUC for research during 2008–2011. He
has received several awards, including the IEEE Emanuel R. Piore Award, and the
2011 ACM Outstanding Contributions award. He has supervised about 40 Ph.D.
dissertations over his distinguished career.
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Introduction: Software Dependability

Long Wang

Abstract This is the introduction of the 6 chapters in this “software dependability”
section. Threats to software dependability are getting aggravated as more complex
software and systems are being used and hardware devices with thinner MOSFET
channel lengths are being used. This section presents 6 state-of-the-art work that
demonstrate a few trends in software dependability research: popular use of data-
driven AI, blurring limits between software dependability and security, and software
dependability and security in emerging computing environments. The audience will
get an up-to-date view of the software dependability research, especially its ongoing
trends, after reading this section.

Keywords Dependability · Security · Blurring limit

Information technology (IT) is rapidly expanding its application scope and spreading
into more critical domains such as electric power management, transportation traffic
regulation and public health, in addition to the traditional domains of scientific
computing, office business, finance and telecommunication, etc. Large computing
platforms such as cloud systems and artificial intelligence (AI) platforms, and large
networks such as internet-of-things (IoT) network are emerging as key computing
infrastructures that host IT services. As a result, the complexities of software running
on these modern computing systems have been increasing by a lot.

The rapid spread of software into broader critical domains and the increasing
complexities of software demand high dependability of software. Moreover, hard-
ware devices underlying computing systems are using MOSFET (or similar tech-
nologies) devices with very thin channel length (5 nm, or thinner expected in near
future), which give rise to a much larger amount of soft errors in computing systems.
This issue further aggravates the software dependability problem, and demands more
focus be placed on software dependability in modern computing systems. However,
the rapid progress of IT technologies also brings new capabilities of improving
software dependability.

L. Wang (B)
Tsinghua University, Beijing, China
e-mail: longwang@tsinghua.edu.cn
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4 L. Wang

This section presents a select set of state-of-the-art work that demonstrate a
few trends in software dependability research now. (i) One recent principal thrust
addressing software dependability is through data-driven AI, including machine
learning based on deep neural network, data analytics, and various classification
techniques. (ii) Another trend is the blurring limits between software dependability
and software security. Specifically, a number of technologies originally proposed
and traditionally applied for software dependability are recently applied for soft-
ware security and have demonstrated their significance in addressing security issues.
Examples include bit flip injection, fuzzing (exploration of various inputs for tests),
formal method, distributed consensus and monitoring technologies. As the limits
between software dependability and security get blurring a new gate is open, and a
number of technology advancements are being proposed and then employed in prac-
tice. (iii) Software dependability and security in emerging computing environments
such as cloud systems and IoT environments are also hot topics recently.

The first two articles of this section demonstrate two good examples on how
data-driven AI is adopted for addressing software dependability issues. Intelligent
Software Engineering for Reliable Cloud Operations, authored by Prof. Lyu and
Prof. Su, describes an AIOps (Artificial Intelligence for IT Operations) framework
that employs AI technologies for anomaly detection in cloud systems. The frame-
work leverages existing monitoring data of a cloud, particularly Key Performance
Indicators (KPIs) data such as CPU usages of VMs, packet loss rates, packet error
rates, etc., and applies neural network models to do anomaly detection and generate
system incidents. Then the framework applies Graph Representative Learning algo-
rithms to cluster and aggregate the incidents for failure diagnosis and root cause
analysis. Hanmer and Prof. Mendiratta’s Data Analytics: Predicting Software Bugs
in Industrial Products presents a survey of software bug prediction techniques and
a case study that employs source code complexity metrics, such as percent branch
statements, block depth, line number of deepest block, statements at block level 0,
to do bug prediction. The proposed technique in the case study uses Random Forest
for the prediction. The two articles show that AI has demonstrated its super powerful
capabilities in identifying patterns in complicated data, and such capabilities greatly
help with anomaly detection, failure diagnosis, and error prediction.

The following three articles are examples that show blurring limits between soft-
ware dependability and software security. Dr. Chen’s From dependability to secu-
rity—a path in the trustworthy computing research provides enlightenments on the
relationships between dependability and security, between faults and attacks, by
virtue of the author’s own experience. Dependability and security are discussed in
context of a common adversarymodel. Particularly, “bit flips”, “formalmethods” and
“distributed consensus” are discussed as the main instruments used for both depend-
ability and security (actually most of them, if not all, were proposed and applied
first for dependability, and then repurposed for security). Assessment of Security
Defense of Native Programs Against Software Faults by Dr. Yim studies security
defense of C/C++ programs against faults. Faults and attacks, though they are two
distinct adversaries of programs, are related in that faults, e.g. bit flips, may cause
consequences of security breaches. This article conducts experimental studies of
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“exploitable software faults”, the software faults that can be exploited to result in
security breaches, and shows both the capability of the fuzzing technology in finding
exploitable software faults and the built-in security defense capability of programs
against exploitable software faults. The article exposes interesting insights on how
security-oriented exploitation and reliability faults are related. Multi-layered Moni-
toring for Virtual Machines by Dr. Pham describes a solution of VM monitoring for
both reliability and security purposes. The solution covers all layers from hardware
and hypervisor up to applications. It provides a quite comprehensive description of
VMmonitoring technologies. The audience will understand the challenges, pros and
cons of VM monitoring technologies after reading this article. The three articles are
part of the ongoing efforts that combine dependability research and security research.

The last article in this section, Prof. Bagchi’s Security for Software on Tiny
Devices, presents research challenges and potential approaches for providing security
to software running on IoT devices. This is a very good introduction on software secu-
rity on IoT devices. The unique challenges are clearly stated, and the discussions in
the article span analysis techniques and algorithms, the enforcement of IoT software
security that implements the analysis techniques and algorithms, and measurements,
metrics and evaluations of IoT software security. The audience will obtain a clear
view of state-of-the-art of the IoT software security from the article.

In summary, this section focuses on software dependability and presents a select
set of state-of-the-art work on it. The audience of the section will get an up-to-
date view of the software dependability research, especially its ongoing trends. This
view is very important today as software dependability is gaining an unprecedented
demand while undergoing a drastic change. Both are brought about by the wide and
rapid adoption of technology advancements in cloud computing, AI, and other areas:
IT services (and software) are growingly supporting more applications and scenarios
including many in the critical domains such as public health, transportation traffic
regulation and driving of vehicles, where traditionally IT technologies were not
largely involved; at the same time, the technology advancements give rise to new
approaches, many drastically different from traditional ones, to addressing software
dependability issues.



Intelligent Software Engineering
for Reliable Cloud Operations

Michael R. Lyu and Yuxin Su

Abstract ReliableCloudoperations are vital to our daily lives becausemanypopular
modern software systems are deployed in cloud systems. In this chapter, we discuss
our experience in developing an AIOps (Artificial Intelligence for IT Operations)
framework to improve the reliability of large-scale cloud systems with intelligence
software engineering techniques. The comprehensive AIOps framework includes
anomaly detection of key performance indicators, service dependency mining for
failure diagnosis, and system incident aggregation for root cause analysis from var-
ious information sources like meter data, topology, alert, and incident tickets. We
also conduct extensive experiments with production data collected from large-scale
Huawei Cloud systems to demonstrate the effectiveness of intelligent software engi-
neering techniques for reliable cloud operations.

1 Introduction

Modern software systems provide convenient services to our daily lives. In particular,
IT enterprises start to deploy their applications and services on cloud computing
platforms, such as search engines, instant messaging apps, and online shopping.
Worldwide public cloud service revenue enjoys an impressive growth, as predicted
by Gartner to reach 364 billion US dollars by 2022 [13].

Cloud services are large-scale distributed applications running across thousands
of servers within datacenters. The most critical infrastructure of cloud computing is
the data centers around the world. Data centers are massive hardware and software
systems containing millions of servers, with high-speed interconnection networks.
Each server is composed of hardware devices like CPU and memory, which runs an
OS or virtual machine on top to manage the hardware resources. Software systems
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The Chinese University of Hong Kong, Hong Kong, Hong Kong
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as cloud services are large-scale distributed applications running across thousands
of servers within data centers.

As modern software systems have grown to an unprecedented scale, the tremen-
dous complexity, scaling, and stringent performance of datacenter operations bring
significant reliability challenges. Any cloud outage or breakdown will cause signifi-
cant revenue loss, and harmcustomer trust and company reputation to cloud providers
and service providers [6, 16]. According to Lloyd’s report [21], a major failure that
brings cloud outage for 3–6d could result in a total loss of 19 billion US dollars
revenue, most of which is not be covered by insurance. Worst of all, in a society
highly dependent on IT infrastructure, cloud outages can affect everybody’s life just
like power outages. To this end, cloud resilience is of paramount importance.

Unfortunately, cloud failures leading to performance degradation or service inter-
ruptions have often occurred to major cloud operators. Cloud reliability issues are
mainly due to the fact that tough cloud failures take a long time to mitigate manu-
ally. Cloud systems are actively undergoing continuous feature upgrades and system
evolution by DevOps [9] paradigm, complex service dependency, load balance, and
recovery procedures such as backup and restore; therefore, the statistical properties
of system monitoring data may change from time to time. On-call engineers from
different sectors equipped with multi-location, multi-source and multi-layer compo-
nents have their specific responsibilities. Overall, the real root cause of cloud failures
is hard to locate.

Traditionally, Software Reliability Engineering (SRE) aims to solve software reli-
ability challenges by providing reliability models to track software failures. The
tracked failure rates enable engineers to predict software reliability with analyti-
cal models using two or three parameters. The Handbook of Software Reliability
Engineering [22] examined this process, and introduced the techniques to improve
software reliability, including fault avoidance, fault removal, fault tolerance, and
fault prediction.

This traditional analytical approach is not enough for today’s complicated cloud
software systems since modern cloud systems generate more complex and massive
amounts of data concerning software reliability issues. To serve various users, cloud
provides flexible infrastructure containing threemajor layers: application layer, plat-
form layer, and infrastructure layer, displayed in Fig. 1. On-call engineers inspect the
status of cloud from application and system logs, meter data generated frommultiple
components, and alerts triggered by rule-based monitor. Besides, top cloud systems
provide customer service to collect most incidents, outages, or dissatisfaction from
users. Customer service transfers feedback to on-call engineers. In order to obtain
a comprehensive understanding of failures, on-call engineers from different sectors
establish a war-room to discuss the problem and try to find possible solutions. This
process generates incident tickets.

However, humans are not good at solving complex failure diagnosis problems
associated with big data generated from large-scale cloud systems. But Artificial
Intelligent (AI) algorithms have the opportunity to solve the complicated problems
because AI algorithms are superior to human in big data analysis. For example, the
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Fig. 1 Cloud systems generate a variety of data

Fig. 2 The overall framework of resilient cloud systems with AIOps

Key Performance Indicator (KPI) “packet number” monitoring the cloud network
may suddenly decrease because of anomalies happening in some network services.
This may indicate a serious failure in the network. We would like to determine what
failures are caused by the anomalies underneath, which is generally indicated by
the sudden increase and drop of KPIs. Human maintainers generally assign different
importance of system performance to distinct KPIs in the cloud. Generally, when
diagnosing failures for large-scale cloud systems, an automated detectionmodel with
flexible importance assignment is more precise and quicker to signify the potential
root cause than human maintainers.

In this chapter,wedescribe our experience on the development ofAIOps (Artificial
Intelligence for IT Operations) framework to tackle several reliability challenges
commonly seen in industrial cloud systems.We provide a general end-to-end pipeline
of intelligent software engineering illustrated in Fig. 2 to conduct anomaly detection,
failure diagnosis, and root cause analysis with multiple sources of heterogeneous
information such as meter data, topology, alert and incident ticket. Specifically, the
root cause analysis in cloud systems differs from the traditional definition in software
reliability engineering that aiming to identify the exact fault of a particular failure. In
cloud systems, it is more practical to narrow down the scope of system components
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associated with a failure. We also conduct extensive experiments with real-world
large-scale cloud systems fromHuawei to demonstrate the effectiveness of intelligent
software engineering techniques for reliable cloud operations.

2 Anomaly Detection of Key Performance Indicators

2.1 Background

Key Performance Indicators (KPIs) are the most important data in the cloud, which
are leveraged to monitor the health status of a machine, like network traffic, response
delay and CPU usage. Anomaly detection over the KPIs is a critical tool to ensure the
reliability and availability of the system, which aims to discover unexpected events
or rare items in data. Different system components (e.g., microservices, servers) are
tightly coupled, and cloud failures usually trigger anomaly performance in multiple
KPIs. For example, a problematic load balance server is often accompanied by a
burst on both round-trip delay and in-bound traffic rate, which will further increase
CPU utilization.

Recent studies tackle this problem by constructing an m × m KPI inner-product
matrix [36] or a complete graph [37] for m different KPIs to capture the pairwise
KPI interaction, both of which yield anO(m2) computation complexity. A real-world
example is provided in Fig. 3, which is from a public dataset released by [31]. CPU
LOAD and ETH INFLOW are highly correlated as their curves exhibit a very similar

Fig. 3 Multivariate KPIs snippet from server machine dataset
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trend. The correlated relationship provides an overall picture of the systems’ health
status. For example, in the segment marked as Normal A, we can see a clear spike in
MEMORY USAGE, which would be flagged as an anomaly without a glance at the
other three KPIs. Similar situation happens to segmentNormal B, where boots can be
clearly seen in both CPU LOAD and ETH INFLOW. Therefore, we need to consider
the full set of multivariate KPIs to pursue an accurate anomaly detection, as shown
in segment Anomaly A and Anomaly B. Besides the dependency between KPIs, we
can also leverage historical KPI patterns to reduce false positives. Specifically, in
Fig. 3, all KPIs have witnessed some abnormal spikes in history. However, they do
not necessarily indicate the occurrence of failures.

In industrial systems, hundreds or even thousands of KPIs are being monitored.
The dependencies among KPIs are very sparse, i.e., most KPIs are not or weakly
dependent on other KPIs. Therefore, how to automatically learn the dependencies
among different KPIs is critical towards efficient multivariate KPI anomaly detec-
tion. In the literature, many studies have shifted to anomaly detection on multivariate
KPIs, which mainly resorts to different neural network models. For example, Omni-
Anomaly [31] proposes to learn the normal patterns of multivariate time series by
modeling data distribution through stochastic latent variables. Anomalies are then
determined by reconstruction probabilities. Similarly, Malhotra et al. [24] used an
LSTM-based (long short-termmemory-base) encoder-decoder network to learn time
series’s normal patterns and Zhang et al. [36] used an attention-based convolutional
LSTM network for the learning purpose. Although tremendous progress has been
made, we still observe two major limitations of existing approaches: (1) the inter-
actions among KPIs are not explicitly modeled, and (2) the efficiency falls behind
industrial needs. Specifically, previous approaches [28, 31] detect anomalies onmul-
tivariate KPIs mainly by stacking different types of KPIs into a feature matrix and
feeding it to sophisticated neural network models. Different from previous work, we
argue that by properly modeling the interactions of KPIs along with feature and tem-
poral dimensions, cost-effective neural networkmodels can be leveraged for anomaly
detection.

To overcome the aforementioned limitations, we introduce CMAnomaly illus-
trated in Fig. 4, which is an efficient unsupervised model for anomaly detection over
multivariate KPIs. CMAnomaly consists of four phases, i.e., data preprocessing,
collaborative machine, model training, and anomaly detection. The first phase pre-
processes the data by applying normalization and window sliding. Particularly, the
input types of KPIs can vary depending on the application scenario. In the next phase,
the preprocessed data are fed to the proposed collaborative machine, which is the
core component of CMAnomaly. The collaborativemachine can properly capture the
interactions among multivariate KPIs along with both feature and temporal dimen-
sions. In the third phase, we train a forecasting-based anomaly detection model [10,
18], which detects anomalies based on prediction errors. Finally, the trained model
will be applied to detect anomalies for new observations.
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Fig. 4 Overall framework of CMAnomaly

2.2 Preprocessing

The input of multivariate KPIs is denoted as X ∈ R
n×m , where n is the number of

differentKPIs andm is the number of observations. The t-th rowof X , denoted as xt =
[x1t , x2t , . . . , xmt ], is an m-dimensional vector containing the observation of each KPI
at timestamp t . Similarly, the k-th column of X , denoted as xk = [xk1 , xk2 , . . . , xkn ], is
an n-dimensional vector containing the observations of the k-th KPI. Particularly, we
denote xki : j = [xki , xki+1, . . . , x

k
j ] as a consecutive sequence of xk from timestamp i to

j . The objective of anomaly detection formultivariateKPIs is to determinewhether or
not a given xt is anomalous, i.e., whether the entity is in abnormal status at timestamp
t . For each timestamp t , our model calculates an anomaly score st ∈ [0, 1], which
represents the probability of xt being anomalous. If st is larger than a pre-defined
threshold θ , xt will be predicted as an anomaly. The ground truth y ∈ R

n is an
n-dimensional vector consisting 0 and 1, where 0 indicates a normal point, and 1
indicates an anomalous one.

Different KPIsmay have distinct scales, for example, theKPImonitoring the CPU
execution, i.e., CPU USAGE, is in the range of 0% to 100%. However, the KPI mon-
itoring the network traffic, i.e., INBOUND PACKAGE RATE can range from zero to
millions of kilobytes. Therefore, data normalization is performed for each individual
KPI to ensure the robustness of our model. We apply max-min normalization to each
individual KPI, i.e., xk , as follows:

xknorm = xk − min(xk)

max(xk) − min(xk)
, (1)

where the values of max(xk) and min(xk) are computed in the training data, which
will then be used for test data normalization. For simplicity, we omit the “norm”
subscript in the following elaboration. The sliding window is to partition KPIs along
the temporal dimension. Particularly, it consists of two attributes, i.e., window size
ω and stride τ . The stride indicates the forwarding distance of the window along the
time axis to generate multivariate KPI windows. As the stride is often smaller than
the window size, there exists overlapping between two consecutive windows. We
denote the s-th sliding window as:.

Xs = [xsτ , xsτ+1, . . . , xsτ+ω−1] (2)
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where s ∈ [0, 1, 2, . . .]. Xs togetherwith the observations at the next timestampof the
window, i.e., x̂s = xsτ+ω, constitute a pair (Xs, x̂s), where Xs ∈ R

ω×m and x̂s ∈ R
m .

2.3 Multivariate KPIs Interactions

As shown in Fig. 3, historical patterns of KPIs provide important clues for anomaly
detection on multivariate KPIs accurately. To explicitly capture the dependency
between multivariate KPIs and their historical patterns, for each sliding window,
denoted as Xs ∈ R

ω×m , we calculate the pairwise inner product of all KPI feature vec-
tors, i.e., xksτ,sτ+ω−1, k ∈ [1,m], and temporal vectors, i.e., xt , t ∈ [sτ, sτ + ω − 1].

h f = b0 +
m∑

i=1

wi x
i +

m∑

i=1

m∑

j=i+1

〈
xi , x j

〉
viv j (3)

ht = b̂0 +
ω∑

i=1

ŵi xi +
ω∑

i=1

ω∑

j=i+1

〈
xi , x j

〉
v̂i v̂ j (4)

The cross-feature and cross-time KPI interactions, denoted as h f and ht , are formu-
lated as Eqs. 3 and 4, respectively. In Eq.3, b0, wi , v j , v j ∈ R are trainable parame-
ters, xi , x j ∈ R

ω are the i-th and j-th column of Xs with each column representing
all the observations of a KPI in the corresponding window, and < ·, · > is the oper-
ation of inner product. These equations are composed of three terms: the first term
is a trainable bias, the second term is a weighted sum of all KPIs without explicit
interaction, and the third term is the core part of the proposed collaborative machine,
which models the pairwise KPI interactions.

2.4 Collaborative Machine for Anomaly Detection

The last two phases of CMAnomaly are model training and anomaly detection. In the
detection phase, the well-trained model predicts the next KPI values given preceding
observations. In the trainingphase, asmostmultivariateKPIswould reflect the normal
status of an entity, the model will learn the normal patterns of KPIs, i.e., what the
next observations would be given previous ones. Although there could be anomalies
in the training data, they tend to be forgotten by the model as they rarely appear.
Consequently, in the detection phase, the model will predict “normal” KPI values
based on the learned patterns. If the real observations deviate from the predicted ones
by a significant margin, an anomaly may happen, i.e., the entity is not in its normal
status. Therefore, such deviation measures the likelihood of the occurrence of the
anomaly.
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Our framework supports various types of neural network models for anomaly
detection. The anomaly detection model can be formulated as follows:

h̃i+1 = σ(h̃i X̃i + b̃i ), i = 0, 1, . . . , L − 1, (5)

where L is the number of layers of the Multilayer Perceptron (MLP) model, W̃i , b̃i
are trainable parameters with customized size, and σ(x) = max(0, x) is the ReLU
activation function. We simultaneously consider the cross-feature and cross-time
KPI interactions by concatenating h f and ht , which is the input to the model, i.e.,
h̃0 = concat (h f , ht ). ŷ = h̃L ∈ R

m is the prediction result produced by the last
layer of the MLP model, which contains the predicted values for all KPIs at the next
timestamp.

Anomaly detection model is optimized by minimizing the following mean square
error (MSE) loss L between the predictions and the ground truth observations:

L =
N∑

i=1

∥∥ŷi − x̂i
∥∥
2 , (6)

where N is the number of training sliding windows. ŷi ∈ R
m and x̂i = xiτ+ω ∈ R

m

are the predicted and ground truth observations for the i-th window, respectively.
With the minimization of loss L during training, CMAnomaly can learn from the

normal patterns in the training data by updating all trainable parameters, e.g., viv j

denoting the interaction weights. After the model is trained, we compute an anomaly
score for each window Xi in the testing data. Then, we first calculate the MSE
between the predicted and ground truth observations, and then apply the sigmoid
function to rescale the score to the range [0, 1], which represents the probability of
the occurrence of an anomaly:

si = φ

(
1

m

∥∥ŷi − x̂i
∥∥
2

)
(7)

where φ(x) = 1
1+e−x is the sigmoid function. To determine whether an anomaly has

happened, a threshold θ should be defined for the anomaly score. The timestamps
with a large anomaly score, i.e., si ≥ θ , should be regarded as anomalous points.

In reality, the threshold can be set by on-site engineers based on their experience.A
large threshold imposes a strict anomaly detection policy, which may miss important
system failures, i.e., low recall. However, a small threshold increases the sensitivity
to KPI changes, resulting in false alarms, i.e., low precision.
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Table 1 Accuracy comparison on Huawei Cloud dataset

Methods Precision Recall F1

OmniAnomaly 0.6639 0.8382 0.7283

LSTM-VAE 0.8273 0.7436 0.7560

CMAnomlay 0.9179 0.8202 0.8368

2.5 Experiments

In this part, we evaluate CMAnomaly using both public data and industrial data.
We collected real-world KPIs from Huawei Cloud to conduct a more comprehensive
evaluation. Huawei Cloud contains a large number of nodes supporting tens of mil-
lions of users worldwide. Therefore, to provide a stable 24 × 7 service, the status of
each component of the network is closely monitored with KPIs. The engineers can
fix problematic components timely if the anomalies of KPIs can be automatically
detected and reported in real-time. To evaluate our method in a practical scenario,
we collected a 30-day-long KPIs dataset with 13 network components within Jan.
2021. Each of the network components has 70∼200 different types of KPIs. We use
the first 20d of KPIs as the training data and the rest as the testing data. Then, several
experienced engineers were invited to manually label the anomalous points in the
testing data.

To study the effectiveness of CMAnomaly, we compare its performance with two
most effective open-source anomaly detection methods, i.e., LSTM-VAE [28] and
OmniAnomaly [31] on the dataset collected from Huawei Cloud.

The experimental results are shown inTable1. In particular, the precision ofOmni-
Anomaly is the lowest, but the recall is the highest because the complex architecture of
OmniAnomaly incurs more trainable parameters, which makes it easier to overfit the
training data. Therefore, OmniAnomaly is more sensitive to capture more anomalies
but has the most false positive alarms. LSTM-VAE has a more light-weight design
than OmniAnomaly, so LSTM-VAE suffers less overfitting. As a result, LSTM-VAE
only raises the anomaly score when the new observation deviates more from the pre-
diction. In this case, although higher precision is achieved, LSTM-VAEhas the lowest
recall because it cannot effectively find all possible anomalies. CMAnomaly can bal-
ance precision and recall better and achieves the best F1 score, ∼0.08 higher than
the second-best one achieved by LSTM-VAE. The collaborative machine facilitates
CMAnomaly to capture the dependency of the training KPIs effectively. Therefore,
CMAnomaly avoids overfitting the noisy points existing in the training data, e.g.,
usual spikes as shown in Fig. 3. CMAnomaly reports a higher anomaly score only
when the dependent KPIs are anomalous, thus achieving the highest precision.More-
over, CMAnomaly keeps the sensitivity to detect more true positive samples thanks
to its ability to capturing the dependency.
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3 Service Dependency Mining for Failure Diagnosis

3.1 Background

Service reliability is one of the key challenges that cloud providers have to deal with.
The common practice nowadays is developing and deploying small, independent,
and loosely coupled cloud microservices that collectively serve users’ requests. The
microservices communicate with each other through well-defined APIs. Under this
architecture, microservice management frameworks like Kubernetes will be respon-
sible for managing the life cycles of microservices. Developers can focus on the
application logic instead of the bothering tasks of resource management and fail-
ure recovery. It enables agile development and supports polyglot programming, i.e.,
microservices developedunder different technical stacks canwork together smoothly.

However, the loosely coupled nature of microservices makes it difficult for engi-
neers to conduct systemmaintenance.Differentmicroservices in a large cloud system
are usually developed and managed by separate teams. Each team only has access
to their own services as well as services that are closely related, which means they
only have a local view of the whole system [32]. As a result, failure diagnosis, fault
localization, and performance debugging in a large cloud system become more com-
plex than ever [12, 33]. Despite various fault tolerance mechanisms introduced by
modern cloud systems, it is still possible for minor anomalies tomagnify their impact
and escalate into system outages.

Although microservice management frameworks provide automatic mechanisms
for failure recovery, unplanned service failures may still cause severe cascading
effects. For example, failures of critical services that provide basic request routing
functions will impact the invocation of cloud services, slow down request processing,
and deteriorate customer satisfaction. Therefore, evaluating the impact of service
failures rapidly and accurately is critical to the operation and maintenance of cloud
systems. Knowing the scope of the impact, reliability engineers can emphasis on
services that have more significant impacts on others.

3.2 Tracing Analysis

For commercial cloud providers, it is crucial to troubleshoot and fix failures in a
timely manner because massive user applications may be affected even by a small
service failure [4]. In large-scale cloud systems, a request is usually handled by
multiple chained service invocations. As clues to defective services are hidden in the
intricate network of services, it is difficult for even knowledgeable SRE personnel
to keep track of how a request is processed in the cloud system. All the services and
dependencies in a cloud system collectively construct a directed graph of services,
which is also called a dependency graph. The dependency graph of a cloud system
can be very complicated.
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Fig. 5 A span generated by
the train-ticket benchmark

Distributed tracing provides an approach to monitor the execution path of each
request in a dependency graph. For chained service invocations, e.g., service A
invokes service B and service B invokes service C, it is important to know the status of
each service invocation, including the result, the duration of execution, etc. By adding
hooks to the services and microservices of the cloud system, a distributed tracing
system [11] can record the contextual information of each service invocation. Such
records are called span logs, abbreviated as spans. A span represents a logical unit
of execution that is handled by a microservice in a cloud system. All the spans that
serve for the same request collectively form a directed graph of spans. Such directed
graph of spans generated by request is called a piece of trace log, abbreviated as a
trace. With a trace, engineers can track how the request propagates through the
cloud system. Collectively analyzing the traces of the entire cloud system can help
engineers obtain in-depth latency reports that could assist failure diagnosis, fault
localization, and surface performance degradation in the cloud system.

Although the actual implementation of distributed tracing system varies a lot,
the types of information they record are similar. For clarity, we formally describe
the attributes of spans as follows. Suppose we have a trace T composed of spans
{s1, s2, . . . , sn}, a span si ∈ T contains the following attributes.

sidi The ID of span si ,
s pidi The ID of the parent span of si ,
stidi The ID of the trace that si belongs to,
sname
i The name of service/microservice corresponding to si ,
stsi The time stamp of si ,
sdi The duration of execution of si , and
sri The result of execution of si .

Figure5 illustrates a span generated by the train-ticket benchmark [38]. It means
that service ts-preserve-service was invoked at 04:58 on April 17, 2020.
The duration of execution is 1126 μs and the execution result is SUCCESS.
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Fig. 6 The statuses of service A, B and C. A invokes B and C but B has a greater effect on A

3.3 Intensity of Service Dependency

Existing tools treat the dependency as a binary relation, i.e., if the caller service
invokes the callee service then the caller is dependent on the callee. We suggest that
this binary dependency metric is not fine-grained enough for cloud maintenance.
Figure6 shows the statuses of three services1 A, B, and C in Huawei Cloud. Service
A invokes both service B and service C. Service B encountered failures. The x-axis
represents time inminute. The y-axes represent the number of invocations perminute,
the average duration of invocations per minute, and the error rate per minute of A,
B, and C. Although service A invokes service B and service C, it is obvious that the
statuses of B and C influence the status of A in different degrees.

The reason is that the functionalities provided by service A and B are creating vir-
tual machines, and allocating block storage, respectively. Creating a virtual machine
requires allocating one ormore block storage. Thus, the failure of serviceB inevitably
affects service A. On the contrary, due to the fault tolerance mechanism of service
A, the failure of service C will not affect service A significantly.

1 For confidentiality reasons, we cannot reveal the names of the related services.
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Thus, it is more accurate to say that the intensity of dependency between service A
and serviceB is higher than the intensity of dependency between serviceA and service
C. Ideally, if the development team of every cloud microservice accurately provide
the intensity of dependencies for every dependent service, the failure diagnosis could
be accelerated. On-call engineers (OCEs) can prioritize the services that exhibit the
higher intensity of dependency instead of inspecting all the dependent services if
they have accurate intensity information. However, due to the complexity and the fast
evolving nature of cloud systems [2], manuallymaintaining the dependency relations
with intensity is very difficult. As a result, OCEs often struggle in diagnosing failures
due to the lack of intensities.

3.4 Dependency Strength Mining

In order to relieve the pressure on OCEs, we introduce a framework called AID [35]
to predict the Aggregated Intensity of service Dependency in large-scale cloud sys-
tems. The intuition is that direct service invocation incurs direct dependency to some
degree. To properly capture service dependency, AID consists of three steps: can-
didate selection, status generation, and intensity prediction. We will introduce the
details in the following parts:

3.4.1 Candidate Selection

Given the raw traces, AID first generates a set of candidate service pairs (P,C)

where service P directly invokes service C. In general, direct service invocations
can be divided into two categories, i.e., synchronous invocations and asynchronous
invocations. Modern tracing mechanisms can keep track of both synchronous and
asynchronous invocations [27]. Given all the raw traces of a cloud system, in this
step, we generate a candidate dependency set Cand. The candidate dependency set
Cand contains service invocation pairs (P1,C1), (P2,C2), · · · , (Pn,Cn). Each pair
(Pi ,Ci ) in the candidate dependency set denotes that the service named Pi invokes
the service namedCi at least once. Therefore, service Pi depends on serviceCi . This
step is to shrink the search space of possible dependent pairs because the service
invocations indicate direct dependencies.

3.4.2 Service Status Generation

The status of one service is composed of three aspects of dependency, i.e., number
of invocations, duration of invocations, and error of invocations. Each aspect of the
service’s status contains one or more KPIs, depending on the actual implementation
of the distributed tracing system. As service invocations occur repeatedly, the three
statuses of service invocations can derive three aspects of service dependency:
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Number of Invocations The number of invocations from the caller to the callee.
Duration of Invocations The duration of invocations.
Error of Invocations The number of successful invocations from the caller to

the callee.

Inspired by the common practice in cloud monitoring [1], we distribute the spans
of one service into many bins according to the spans’ timestamps. Each bin accepts
spans whose timestamp is in a short, fixed-length period. We denote the length of
the short period as τ . For example, the span shown in Fig. 5 will be put in the bin
of ts-preserve-service at time 04:58, 17 April 2020. We can then represent
the status of a cloud service in a short period by the statistical indicators of all the
spans in the corresponding bin. Formally, given all the spans in the cloud system
over a long period T , we first initiateM × N empty bins of the predefined size τ .M
is the number of microservices. N, determined by T

τ
, is the number of bins. Then we

distribute all spans into different bins according to their timestamp sts and service
name sname. After that, we can calculate the following three types of indicators as
the KPIs for each bin.

invomt Total number of invocations (spans) in the bin;
errmt Error rate of the bin, i.e., the number of errors divided by the number of

invocations;
durmt Averaged duration of all spans in the bin;

where t is the time of the bin and m is the service name of the bin. If a service is
not invoked in a particular bin (i.e., the corresponding bin is empty), all the KPIs
will be zero. In this scenario, we obtain the KPIs of every service S at every period
t . Ordering the bins by t , we get three time series of KPIs for each cloud service,
denoted as invoS , err S , and dur S as the status of each cloud service.

3.4.3 Intensity Prediction

The intensity prediction steps quantitatively predict the intensity of dependency by
measuring the similarity between two service’s statuses. The similarity between
two service’s statuses is a normalized and weighted average of the similarity of all
the KPIs of the two services. We calculate the similarity between two KPIs by a
dynamic time warping algorithm (DTW) [19] and aggregate all the similarities to
get the overall similarity.

DTW automatically warps the time in chronological order to make the two status
series as similar as possible and get the similarity by summing the cost of warping. It
utilizes dynamic programming to calculate an optimal matching between two status
series. Given two services P , C , and their status series invoP , invoC , err P , errC ,
dur P , and durC , the warping from the callee C to the caller P is specially designed
for the cloud environment.

For all (Pi ,Ci ) ∈ Cand, we calculate similarities between their status series,
denoted as d(Pi ,Ci )

invo , d(Pi ,Ci )
err , and d(Pi ,Ci )

dur . We normalize the similarity across the
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whole candidate set with a min-max normalization with Eq.8, where status ∈
{invo, err, dur}.

d(Pi ,Ci )
status = d(Pi ,Ci )

status − min(d(P,C)
status)

max(d(P,C)
status) − min(d(P,C)

status)
(8)

The intensity of dependency between Pi and Ci is the average similarity of all
three similarities between their status series.

I (Pi ,Ci ) = 1

3

∑

status∈S
d(Pi ,Ci )
status , S = {invo, err, dur} (9)

Finally, we can build the dependency graph with intensity from the candidate set
and the corresponding intensity values.

3.5 Experiments

In this part, we evaluate AID on both simulated dataset and industrial dataset from
Huawei Cloud system. For the simulated dataset, we deploy train-ticket [38], an
open-source microservice benchmark, for data collection. Apart from the simulated
dataset, we also collected a 7-day-long trace dataset with 192 microservices in April
2021 from a region of Huawei Cloud to evaluate AID. Table2 displays the detailed
information about these two datasets.

Since there is no existing work that measures the intensity of service dependency,
we employ Pearson correlation coefficient, Spearman correlation coefficient, and
Kendall Rank correlation coefficient as the baseline. Particularly, we calculate corre-
lation on the status series of a candidate dependency pair (P,C). For the baselines,
we directly use the implementation fromPython packagescipy.2 Wemap the corre-
lation to [0, 1] with the function f (x) = (x + 1)/2. The intensities of dependencies
are then produced in the same way as Eq.9.

We employ Cross Entropy (CE), Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE), as calculated in Eq.10 to evaluate the effectiveness of AID
in predicting the intensity of dependency. Specifically, cross entropy calculates the
difference between the probability distributions of the label and the prediction. Mean
absolute error and root mean squared error measure the absolute and squared error.
Lower CE, MAE, and RMSE values indicate a better prediction.

2 https://www.scipy.org/.

https://www.scipy.org/
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Table 2 Dataset statistics

Dataset Train-ticket Huawei cloud

# Microservices 25 192

# Spans 17,471,024 About 1.0e10

# Strong 18 67

# Weak 1 8

Table 3 Performance comparison of different methods on two datasets

Dataset Method CE MAE RMSE

Train-Ticket Pearson 0.6872 0.3305 0.4388

Spearman 0.7512 0.3735 0.4697

Kendall 0.6464 0.3749 0.4577

AID 0.4562 0.3435 0.3859

Huawei Cloud Pearson 0.6076 0.4524 0.4563

Spearman 0.6030 0.4501 0.4537

Kendall 0.6258 0.4636 0.4656

AID 0.3270 0.1751 0.3044

CE = 1

N

N∑

i=1

−[yi · log(pi ) + (1 − yi ) · log(1 − pi )]

MAE =
∑N

i=1 |yi − pi |
n

RMSE =
√∑N

i=1(yi − pi )2

N

(10)

The overall performance is shown in Table3, where we mark the smallest loss for
each loss metric and dataset. AID achieves the best performance on Huawei Cloud
dataset and reduces the loss by 45.8%, 61.1%, and 33.2% in terms of cross entropy,
mean absolute error, and root mean squared error respectively. On the simulated
dataset, AID achieves the best performance in terms of cross entropy and root mean
squared error. The improvement of AID on the simulated dataset is smaller than
that on the industrial dataset. This is because the benchmark for simulation did
incorporate very few fault tolerance mechanisms, making most of the dependencies
strong. Moreover, since the service invocations of the Train-Ticket benchmark are
very fast, the statuses of Train-Ticket’s services are relatively similar, making simple
baselines work as well as our approach.

Themost time-consuming operations are the candidate selection and service status
generation steps because we have to iterate over all the spans in the cloud system.
Theoretically, the time complexities of the candidate selection and service status
generation steps are O(S), where S is the number of spans to process in the cloud
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system. For the intensity prediction step, the time complexity is O(kN 2), where N =
T
τ
is the number of bins and k is proportional to the warping window w. In practice,

the intensity prediction step takes 155 seconds on average to process two status series
both with 1440 bins on a laptop. Since the similarity calculations of different (P,C)

pairs are independent, we could easily parallelize the intensity prediction step to
further improve the time efficiency.

4 Incident Aggregation for Root Cause Analysis

4.1 Background

In general, cloud systems employ a hierarchical topology, i.e., the stack of application
layer, platform layer, and infrastructure layer. Each service embodies the integration
of code and data required to execute a complete and discrete functionality. Different
services communicate with each other through virtual networks using protocols such
as Hypertext Transfer Protocol (HTTP) and Remote Procedure Call (RPC). Such
communications among services constitute the complex topology of the large-scale
cloud system.

In large-scale cloud systems, failures are inevitable, which may lead to perfor-
mance degradation or service unavailability. When a failure happens, system mon-
itors will render a large number of incidents to capture different failure symptoms,
which can help engineers quickly obtain a big picture of the failure and pinpoint the
root cause. For example, “Special instance cannot be migrated” is a critical network
failure in the VPC (Virtual Private Cloud) service and the incident “Tunnel bear-
ing network pack loss” is a signal for this network failure, which is caused by the
breakdown of a physical network card on the tunnel path.

With the complex topology, a failure occurring to one service tends to have a
cascading effect across the entire system. Representative service failures include
slow response, request timeout, service unavailability, etc., which could be caused by
capacity issues, configuration errors, software bugs, hardware faults, etc. To quickly
understand failure symptoms, a large number of monitors are configured to monitor
the states of different services in a cloud system [6]. Amonitor will render an incident
when certain predefined conditions (e.g., “CPU utilization rate exceeds 80%”) are
met. Typical configurations ofmonitors include setting thresholds for specificmetrics
(e.g., RPC latency, error counter), checking service/device availability or status, etc.

Due to the large scale and complexity of cloud systems, the number of incidents
is overwhelming in existing incident management systems [5, 6]. These incidents
are triggered by the same root cause and describe the failure from different aspects.
Thus, they can be aggregated to help engineers understand and diagnose the failure.
When a service failure occurs, aggregating related incidents can greatly reduce the
number of incidents that need to be investigated and accelerate the process of root
cause analysis. An example is presented in Table4, where items in the first five rows
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Table 4 Examples of incident aggregation. Incidents in group 1 are related to a network failure;
incidents in group 2 are caused by a hardware problem (disk error)

No. Incident Title Time Pod       Severity

1

In
ci

de
nt

gr
ou

p
1 Abnormal running state of virtual machine 2020/10/09 19:40 pod01 Low

2 Virtual network interface receive lost ratio over 20% 2020/10/09 19:40 pod02 High

3 Traffic burst seen in Nginx node 2020/10/09 19:40 pod02 Low

4 Traffic burst seen in LVS (Linux Virtual Server) node 2020/10/09 19:41 pod09 Medium

5 OSPF (Open Shortest Path First) protocol state change 2020/10/09 19:41 pod04 Medium

6

In
ci

de
nt

gr
ou

p
2 Excessive I/O delay of storage disk 2020/10/12 14:34 pod09 Medium

7 Component failure 2020/10/12 14:34 pod05 High

8 Hard disk failure 2020/10/12 14:34 pod09 Medium

9 Database account login error 2020/10/12 14:34 pod18 Medium
10 Monitor detected customer impacting incident for Storage in [AZ1] 2020/10/12 14:35 pod10 Medium

and the bottom five rows belong to two groups of aggregated incidents, respectively.
Particularly, the first group shows a virtual network failure. Note that only No.3
and No.4 incidents have similar words, while the others do not. Meanwhile, the
second group describes a hardware failure, and more specifically, a storage disk
error. Engineers can benefit from such incident aggregation as the problem scope
is narrowed down to each incident cluster. Without automated incident aggregation,
engineers may need to go through each incident to discover the existence of such a
problem and then collect all related incidents to understand the problem.

To identify correlated incidents, one straightforward way is to measure the text
similarity between two incident reports [8]. For example, incidents that share a sim-
ilar title are likely to be related. Besides textual similarity, system topology (e.g.,
service dependency, network IP routing) is also an important feature to resort to for
incident aggregation. Due to the dependencies among online services, failures often
impose a cascading effect on other inter-dependent services. Service dependency
graph can help track related incidents caused by such an effect. However, more often
than not, the impact of a failure does not manifest itself completely over the system
topology. This issue is ubiquitous in production systems, which has not yet been
properly addressed in existing work. Moreover, the patterns of incidents are collec-
tively influenced by different factors such as their topological and temporal locality.
Existing investigations [8] combine them by a simple weighted summation, which
may not be able to reveal the latent correlations among incidents.

4.2 Root Cause Analysis of System Incident

Although related incidents are indeed generated around the same time, many other
cloud components are also constantly rendering incidents. These incidents aremostly
trivial issues and therefore become background noise. Incident aggregation based on
temporal similarity would suffer from a high rate of false positives. In production
environments, some simple incidents are constantly being reported, e.g., “High CPU
utilization rate”. These incidents will appear in many transactions (a collection of
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Fig. 7 The overall framework of GRLIA

items that appear together). Text (e.g., incident title and summary) similarity is an
important metric for incident correlation, which has been widely used in existing
work [8]. However, in reality, related incidents, including the critical ones, do not
necessarily have similar titles.Unrelated incidentsmight be put into the same frequent
item set due to sharing such incidents. Particularly, these simple incidents cannot be
trivially removed as they provide necessary information about a system and a burst of
such incidents could also indicate serious problems. Failing to correlate such critical
incidents greatly hinders root cause diagnosis. To accurately correlate incidents, we
need to estimate the impact graph of service failures. Incidents alone are insufficient
to completely reflect the impact of failures on the entire system. Therefore, we need
to utilize more fine-grained information on the failures.

In this part, we introduceGRLIA [7] (standing for GraphRepresentation Learning
based Incident Aggregation), which is an incident aggregation framework to assist
engineers in failure understanding and diagnosis. The main motivation is to capture
the co-occurrences among incidents by learning from historical failures. In online
scenarios, such correlations can be leveraged to distinguish correlated incidents that
are generated in a streaming manner. The overall framework of GRLIA is illustrated
in Fig. 7, which consists of four phases, i.e., service failure detection, failure-impact
graph completion, graph representation learning, and online incident aggregation.

The first phase tries to identify the occurrence of service failures and retrieves
different types of monitoring data including incidents, KPI time series, and service
system topology. In the secondphase,we try to identify the incidents that are triggered
by each individual failure detected above. More often than not, it is hard to precisely
identify the impact scope of failures, which hinders the learning of incidents’ corre-
lations. Therefore, we utilize the trends observed in KPI curves to auto-complete the
failure-impact graph. After obtaining the set of incidents associatedwith each failure,
in the third phase, an embedding vector is learned for different types of incidents
by leveraging existing graph representation learning models [15, 39]. Such repre-
sentation encodes not only the temporal locality of incidents, but also the network
topology. Finally, the learned incident representation will be employed for online
incident aggregation by considering their cosine similarity and topological distance.
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4.2.1 Incident Similarity

In the first phase, the number of incidents per minute is calculated and incident bursts
are regarded as the occurrence of service failures. For each failure, the incidents
collected from the entire system are not necessarily related to it. This is because: (1)
while some services are suffering from the failure, others may continuously report
incidents (could be trivial and unrelated issues); and (2) multiple service failures
could happen simultaneously. Therefore, we need to identify the set of incidents for
each individual failures that are generated due to the cascading effect.

To this end, the concept of community detection is exploited. Community detec-
tion algorithms aim to group the vertices of a graph into distinct sets, or communities,
such that there exist dense connections within a community and sparse connections
between communities. Each community represents a collection of incidents gener-
ated due to a common service failure, in which the correlation among incidents can
be explored. A comparative review of different community detection algorithms is
available in [34]. In this work, we employ the well-known Louvain algorithm [3],
which is based upon modularity maximization. The modularity of a graph parti-
tion measures the density of links inside communities as compared to links between
communities. For weighted graphs, the modularity can be calculated as follows [3]:

M = 1

2m

∑

i, j

[Wi, j − ki k j

2m
]δ(ci , c j ) (11)

where Wi j is the weight of the link between node i and j , ki = ∑
j Wi j sums the

weights of the links associated with node i , ci is the community to which node i is
assigned to, m = 1

2

∑
i j Wi j , and the δ(u, v) = 1 if u = v and 0 otherwise.

To better understand the identification of failure-impact graph using community
detection, an illustrating example is depicted in Fig. 7 (phase two). In this case, except
for node B and F , other nodes all report incidents. By conducting community detec-
tion, we obtain two communities: {A, B,C} and {D, E, F,G}, which are regarded
as the complete impact graph of their respective failure. The weight between nodes is
provided with their link. We can see that intra-community links all have a relatively
large weight. Such partition can achieve the best modularity score for this example.
Particularly, node H is excluded from the second community due to the small weight
of its connection to node F .

To apply community detection, the weight between two nodes should be defined.
Inspired by [20], we combine fine-grained signals, i.e., KPIs, with incidents to cal-
culate the similarity between two nodes and use the similarity value as the weight.
Specifically, the weight is composed of two parts, i.e., incident similarity and KPI
trend similarity.

The incident similarity is to compare the incidents reported by two nodes. Typi-
cally, if two nodes encounter similar errors, theywill render similar types of incidents.
Jaccard index is employed to quantify such similarity, which is defined as the size
of the intersection divided by the size of the union of two incident sets:
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Fig. 8 CPU usage curve of four servers

Jaccard(i, j) = |inc(i) ∩ inc( j)|
|inc(i) ∪ inc( j)| (12)

where inc(i) is the incidents reported by node i . In particular, we allow duplicate
types of incidents in each set by assigning them a unique number. This is because
the distribution of incident types also characterizes failure symptoms.

4.2.2 KPI Trend Similarity

Some servicesmay remain silent when failures happen, which hinders the tracking of
related incidents. To bridge this gap, we resort to KPIs, which are more sophisticated
monitoring signals. Intuitively, the KPI trend similarity measures the underlying
consistency of cloud components’ abnormal behaviors, which cannot be captured by
incidents alone. An example is shown in Fig. 8, which records the CPU utilization
of four servers. Clearly, the curve of the first three servers exhibits a highly similar
trend, while such a trend cannot be observed in server four.

The implication is that the first three servers are likely to be suffering from the
same issue, and thus should belong to the same community. We adopt dynamic time
warping (DTW) [19] to measure the similarity between two temporal sequences
with varying speeds. We observe the issue of temporal drift between two time series.
This is common as different cloud components may not be affected by a failure
simultaneously during its propagation. Therefore, DTW fits our scenario.

The final problem is which KPIs should be utilized for similarity evaluation.
Normal KPIs which record the system’s normal status should be excluded as they
provide trivial and noisy information. Therefore, anomalies in each KPI is detected
by a tool called Extreme Value Theory (EVT) [30], which is a popular statistical
tool to identify data points with extreme deviations from the median of a probability
distribution. Only abnormal KPIs shared by two connected cloud components will
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be compared. Particularly, when there exists more than one type of abnormal KPIs,
we use the average similarity score calculated as follows:

DTW (i, j) = 1

K

K∑

k=1

dtw(t ik, t
j
k ) (13)

where K is the number of KPIs to compare for node i and j , t ik is the kth KPI of
node i , and dtw(u, v) measures the DTW similarity between two KPI time series u
and v, which is normalized for path length. The weight Wi j between node i and j is
computed by taking the weighted summation of two similarities as follows:

Wi j = α × Jaccard(i, j) + (1 − α) × DTW (i, j) (14)

where the balance weight α is a hyper-parameter. In our experiments, if two nodes
both report incidents, we set it as 0.5; otherwise, it is set to be 0, i.e., only the KPI
trend similarity is considered.

Finally, for each discovered community, the incidents inside it form a complete
impact graph of the service failure. Note that in online scenarios, we cannot directly
adopt the techniques introduced in this phase for incident aggregation. This is because
they involve a comparison between different KPIs, which are not complete until
the failures fully manifest themselves. Thus, the comparison is often delayed and
inefficient. Moreover, it could be error-prone without fully considering the historical
cases.

4.2.3 Cascading Effect of System Incident

In this part, we model the set of incidents triggered by a failure as the impact graph
of the failure (or failure-impact graph), as illustrated by Fig. 9. Specifically, service
A encounters a failure and the impact propagates to other services along with the
system topology. The circled area indicates the impact graph of the failure, where
irrelevant incidents in service D andG (in a different color) are excluded. In general,
the system topology can have many different forms such as the dependencies of
services [23], the configured IP routing of cloud network [26], etc. Intuitively, it
might seem that the impact graph can be easily constructed by tracing incidents
along the system topology. However, our industrial practices reveal that they are
usually incomplete. An example is given in Fig. 10, where service B occasionally
fails to report any incident. Previous work may perceive it as two separate failures,
which is undesirable.

We have identified the following main reason for the missing incidents: System
monitors that report incidents are configured with rules predefined by engineers. Due
to the diversity of cloud services and conditions, the impact of a failure may not meet
the rules of some monitors. For example, if a server generates incidents when its
CPU usage exceeds 80%, then any value below the threshold will be unqualified.
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Fig. 9 An illustration of cloud failures’ cascading effect. The irregular circle in the third subfigure
shows the failure-impact graph

Fig. 10 An example of incomplete failure-impact graph

As a consequence, the monitors will not report any incident and thus the tracking of
failure’s impact is blocked.

To ensure the continuity of online services, cloud systems are designed to include
a certain fault tolerance capability. In this case, some abnormal conditions can be
borne by service systems and thus no incidentswill be reported. Therefore, the impact
of a failure may not manifest itself completely over the system topology.

Recent studies on incident management [6, 17] have demonstrated the incom-
pleteness and imperfection of monitor design and distribution in cloud systems.
Thus, along the service dependency chain, a service in the middle may remain silent,
which impedes the tracking of a failure’s cascading effect. Therefore, although there
are many incidents generated by cloud systems, they are often scattered.

4.2.4 Graph Representation Learning for Incident Aggregation

In cloud systems, resources (e.g., microservices and devices) are naturally structured
in a graph form such as service dependency and network IP routing. Thus, graph
representation learning [15] can be an ideal solution to deal with the above issues.
Graph representation learning is an important and ubiquitous task with applications
ranging from drug design to friendship recommendation in social networks. It aims
to find a representation for graph structure that preserves the semantics of the graph.

A typical graph representation learning algorithm learns an embedding vector
for all nodes of a graph. For example, Chen et al. [8] employed node2vec [14]
to learn a feature representation for cloud components. Different from them, we
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propose to learn a representation for each unique type of incident, which could
appear in multiple places of the graph. In our framework, we employ DeepWalk [29]
because of its simplicity and superior performance. DeepWalk belongs to the class
of shallow embedding approaches that learn the node embeddings based on random
walk statistics. The basic idea is to learn an embedding ϑi for node vi in graph G
such that:

EMB(ϑi , ϑ j ) � eϑi ·ϑ j

∑
vk∈V eϑi ·ϑk

≈ pG,T (v j |vi ), (15)

where V is the set of nodes in the graph and pG,T (v j |vi ) is the probability of visiting
v j within T hops of distance starting at vi . The loss function to maximize such
probability is:

L =
∑

(vi ,v j )∈D
−log(EMB(ϑi , ϑ j )), (16)

whereD is the training data generated by sampling random walks starting from each
node.

For each failure-impact graph, incident sequences are generated through random
walk starting from every node inside the graph. In reality, each node usually gener-
ates more than one incident when failures happen. Our tailored randomwalk strategy
therefore contains two hierarchical steps. In the first step, a node is chosen by per-
forming random walks on the node level; in the second step, an incident will be
randomly selected from those reported by the chosen node. If a node contains dupli-
cate types of incidents, these types will be kept because the frequency is an important
feature of incidents (it impacts the probability of being selected).

Following the original setting of [14], we set the walk length as 40, i.e., each
incident sequence will contain 40 samples. Finally, the incident sequences will be
fed into a Word2Vec model [25] for embedding vector generation. The Word2Vec
model has two important hyper-parameters: the window size and the dimension of
an embedding vector. We set the window size as ten by following [14] and set the
dimension as 128. In particular, by considering the topological distance between
incidents, we can alleviate the problem of background noise. This is because as the
distance increases, the impact of noisy incidents gradually weakens.

For time series data, anomalies often manifest themselves as having a large mag-
nitude of upward/downward changes. We utilize EVT to predict unusual events by
finding the law of extreme values which usually reside at the tail of a distribution.
Moreover, it requires no hand-set thresholds and makes no assumptions on data dis-
tribution. We follow [30] to detect bursts in the time series of the number of incidents
per minute. The bursts are regarded as the occurrence of service failures. This algo-
rithm can automatically learn the normality of the data in a dynamic environment
and adapt the detection method accordingly.

With the learned incident representation from the last phase, we can conduct
incident aggregation in a production environment, where the incidents come in a
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streaming manner. Each group of aggregated incidents represents a specific type of
cloud issue, such as hardware issue, network traffic issue, network interface down,
etc. TheEVT-basedmethod also plays a role in this phase by continuouslymonitoring
the number of incidents per minute. If a failure is alerted, online incident aggregation
will be triggered.

When two incidents, say i and j , appear consecutively, GRLIA measures their
similarity. If the similarity score is greater than a predefined threshold, they will be
grouped together immediately. In particular, the similarity score consists of two parts,
i.e., historical closeness (HC) and topological rescaling (TR), which are defined as
follows:

HC(i, j) = ϑi · ϑ j

‖ϑi‖ × ‖ϑ j‖
T R(i, j) = 1

max(1, d(i, j) − T )

(17)

where ϑi and ϑ j are the embedding vectors of incident i and j , respectively; d(i, j)
is the topological distance between i and j , which is the number of hops along their
shortest path in the failure-impact graph; and T is the threshold for considering the
penalty of long distance. That is, the topological rescaling becomes effective (i.e.,
<1) only if their distance is larger than T .

In our experiments,T is set as 4.A very largeT would learn incorrect correlations;
while a very small T would miss important correlations. Our experiments show
similar performance when T is in [3, 21]. Cosine similarity is adopted for calculating
the historical closeness, which is related to the co-occurrences of two incidents in the
past. Finally, the similarity between i and j can be obtained by taking the product of
T R(i, j) and HC(i, j):

sim(i, j) = T R(i, j) × HC(i, j)

= 1

max(1, d(i, j) − T )
× ϑi · ϑ j

‖ϑi‖ × ‖ϑ j‖
(18)

We set an aggregation threshold λ for sim(i, j) to consider whether or not two
incidents are correlated:

cor(i, j) =
{
1, i f sim(i, j) ≥ λ;
0, otherwise.

(19)

In our experiments,λ is empirically set as 0.7. In particular, the distance of an incident
to a group of incidents is defined as the largest value obtained through element-wise
comparison.
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Table 5 Dataset statistics

Dataset Training period Evaluation month #Incidents #Failures
Dataset1 2020 May - 2020 July 2020 Aug. ~18k/~8k 105/46
Dataset2 2020 May - 2020 Aug. 2020 Sept. ~26k/~10k 151/52
Dataset3 2020 May - 2020 Sept. 2020 Oct. ~36k/~8k 203/38

4.3 Experimental Results on Root Cause Analysis

Incident aggregation is a typical problem across different cloud systems. In this part,
we collect real-world incidents from a large-scale Huawei Cloud system to evaluate
the proposed framework.

In particular, the service system comprises a large and complex topological struc-
ture. In the layer of infrastructure, platform, and software, it has multiple instances
of virtual machines, containers, and applications, respectively. In each layer, their
dependencies form a topology graph. The cross-layer topology is mainly constructed
by their placement relationships, i.e., the mappings between applications, containers,
and virtual machines. Like other cloud enterprises, the resources of Huawei Cloud
are hosted in multiple regions and endpoints worldwide. Each region is composed
of several availability zones (isolated locations within regions from which public
online services originate and operate) for service reliability assurance. The incident
management of Networking Service is also conducted in such a multi-region way
with each region having relatively isolated issues. In our experiments, we collect
incidents generated between May 2020 and November 2020, during which the Net-
working Service reported a large number of incidents from the largest ten availability
zones, which are composed of thousands of nodes on average.

The number of distinct incident types is more than 3000. Particularly, we conduct
three groups of experiments using incidents reported in the first four months, the
first five months, and all months, respectively. In all periods, incident aggregation
is applied to the failures happened in the last month based on the incident repre-
sentations learned from previous months. Table5 summarizes the dataset. For the
column #Incidents (resp. #Failures), the first figure calculates the incidents (resp.
failures) generated during the training period, while the second figure shows that
of the evaluation month. Particularly, some failures are of small scale and can be
quickly mitigated; while some are cross-region and become an expensive drain on
company’s revenue. We can see each failure is associated with roughly 200 inci-
dents, demonstrating a strong need for incident aggregation. Although we conducted
evaluation on a single online service system, we believe the framework can be easily
applied to other cloud systems and bring them benefits.

To evaluate the effectiveness of GRLIA, experienced domain engineers manu-
ally labeled the related incidents. Thanks to the well-designed incident management
system with user-friendly interfaces, the engineers can quickly perform the labeling.
Note that the manual labels are only required for evaluating the effectiveness of our
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Table 6 Experimental results of service failure detection using thresholding and GRLIA

Datasets Metric Thresholding GRLIA

Dataset1 Precision 0.711 0.917

Recall 0.913 0.957

F1 Score 0.799 0.937

Dataset2 Precision 0.831 0.944

Recall 0.942 0.981

F1 Score 0.883 0.962

Dataset3 Precision 0.648 0.925

Recall 0.921 0.974

F1 Score 0.761 0.949

framework, which is unsupervised. To calculate the KPI trend similarity, we adopt
the following five KPIs, which are suggested by the engineers:

CPU utilization refers to the amount of processing resources
used by a computing device.

Round-trip delay records the amount of time it takes to send a
data packet plus the time it takes to receive
an acknowledgement of that data packet.

Port in-bound/out-bound traffic rate refers to the average amount of data coming-
in to/going-out of the port.

In-bound package error rate calculates the error rate of the package that a
network interface receives.

Out-bound package lost rate calculates the lost rate of the package that a
network interface sends.

These KPIs are representative ones that characterize the basic states of the Net-
working Service system. In particular, CPU utilization is monitored for each network
device such as switch, router, and server, while the remaining KPIs are monitored
for all interfaces of each device. Each KPI is calculated or sampled every minute.
We select data with a time span of two hours for time series comparison. Note that
the set of KPIs can be tailored for different systems. For example, a database service
may also care about the number of failed database connection attempts, the number
of SQL queries, etc.

In the experiments, we employ precision, recall, and F1 scores to evaluate
the binary classification problem of whether a given incident is the root cause.
Specifically, precision measures the percentage of incident bursts that are suc-
cessfully identified as service failures over all the incident bursts that are pre-
dicted as failures: Precision = T P

T P+FP . Recall calculates the portion of service
failures that are successfully identified by GRLIA over all the actual service failures:
Recall = T P

T P+FN . Finally, F1 score is the harmonic mean of precision and recall:
F1 Score = 2×Precision×Recall

Precision+Recall . T P is the number of service failures that are correctly
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discovered by GRLIA; FP is the number of trivial incident bursts (i.e., no failure
is actually happening) that are wrongly predicted as service failures by GRLIA; and
FN is the number of service failures that GRLIA fails to discover.

We compare GRLIA with the simple thresholding based method on three datasets
and report precision, recall, and F1 score. Since both approaches require no parameter
training, we use them to detect failures for both the training data and the evaluation
data. Particularly, the threshold of the baseline method is #incidents/min>50, which
is recommended by field engineers. Moreover, the ground truth is obtained directly
from the historical failure tickets, which are stored in the incident management
system.

The results are shown in Table6, where GRLIA outperforms simple thresholding
in all datasets and metrics. In particular, GRLIA achieves F1 scores of more than
0.93 in different datasets, demonstrating its effectiveness in service failure detection.
Indeed, we observe that some failures may not always incur a large number of
incidents at the beginning. However, if ignored, they could become worse and end
up yielding more severe impacts across multiple services. Simple thresholding does
not possess the merit of threshold adaptation based on the context, and thus produces
many false positives. GRLIA outperforms the simple thresholding method as it is
able to automatically set the threshold.

5 Conclusions

This chapter introduces an anomaly detection method designed to tackle the anoma-
lous status in keyperformance indicators, a failure diagnosis frameworkwith the anal-
ysis of the intensity of service dependency, and root cause analysis techniques froman
incident aggregation perspective to identify the fault system incidents. CMAnomaly
can learn the pairwise cross-feature and cross-time interactions between KPIs with
linear time complexity to quickly obtain a big picture of a system’s health status
for anomaly detection. AID predicts the intensity of dependencies between cloud
microservices to construct an accurate dependency graph. In cloud incident manage-
ment, GRLIA is a practical root cause analysis tool to capture the interaction with
other incidents in temporal and topological dimensions.

Besides, we have discussed some practical experience to improve the reliability
of large-scale Huawei Cloud systems and reported several significant improvements
in anomaly detection, failure understanding and diagnosis, and root cause analysis.
We believe our end-to-end pipeline of the integrated intelligent software engineering
framework is a meaningful choice to assist engineers in reliable cloud operations.
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Data Analytics: Predicting Software Bugs
in Industrial Products

Robert Hanmer and Veena Mendiratta

Abstract Achieving high software reliability in products is a costly process. Faults
found late in the development cycle are the costliest to fix. Defect prediction models
are developed prior to and during various stages of testing to predict the faults
remaining or to predict which software modules are more prone to failures. Increas-
ingly machine learning models are used for this purpose, using various code metrics
and defect data. In this paper we will review the need for targeted testing and various
machine learning approaches for defect prediction. Additionally, we will present a
new methodology for improving software reliability during product development
based on the results from the analytics models, which we demonstrate with a small
case study.

1 Introduction

It is costly to achieve high software reliability in large-scale products. The most
cost-effective means is to find and remove defects early. More effort and expense
is involved to fix the defects found late in the cycle than those found early in
development.

The typical methodology for achieving highly reliable software involves using
some type of model to predict the faults remaining during various stages of testing
(software reliability growth models), or predict which software modules are more
prone to failures with an analytics model (using metrics data and machine learning
algorithms). Both of these methods allow test plans to be made based on the model
predictions to focus testing effort on those areas most needing it.
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1.1 The Problem

Much of the software development in industry involves adding code—new features or
bug fixes—to existing systems for a new release, andmaintaining the reliability of the
software across releases. This results in a continuous cycle of analysis, prediction and
modifying the code to improve its reliability.We propose here a newmethodology for
improving software reliability based on the results from analytics models which we
demonstratewith a small experimental case study. The context inwhichwe examined
the analytics models is that of large telecommunication systems. We believe the
findings will be relevant to any large-scale industrial system.

1.2 Our Contributions

We will present a focused review of machine learning applications in software relia-
bility, in particular, in the context of code metrics data and defect data from lab tests
as well from field operations. We discuss complexity metrics that are used to assess
the relative risk within different programming modules. Their use lets us predict
the most dynamic modules which are likely to be the most buggy. We describe the
complexity metrics used in our case study and the enhancements we tried.

We will show our methodology, the model results from a production software
system including several experiments with the data and the insights gained, the
potential gains from using this methodology, and the future work areas to further
explore the methods.

The goal of this work is to reduce the risk of new faults while testing a new release
of the system in the most efficient manner possible.

2 Review of ML Applications

In this section our goal is to provide an overview of research in ML applications of
software reliability engineering with an emphasis on software defect prediction and
a focus on more on recent work (as there are many reviews of earlier work).

In an industrial setting, the type of software reliability model developed depends
on the phase of the software development process for which the model is used. In the
context ofmachine learningmodels, Shafiqet al. [25] present a useful taxonomyof the
application ofML approaches for software engineering during different phases of the
software development life cycle from a research perspective. The phases listed are:
requirements engineering, architecture and design, implementation, quality assur-
ance and analytics, andmaintenance.Our reviewof the literature is focused on aspects
of the quality assurance phase, along with a few examples from the maintenance
phase.
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Some of the early work on applying ML methods in reliability modeling focused
primarily on the pre-testing phase where the model outputs were used to guide the
software testing effort. Gokhale et al. [6] and Ma et al. [17] used software metrics
to predict fault-proneness by software module. While the work of Khoshgoftaar
et al. [11–13] applied alternative estimation techniques for nonlinear regression with
software metrics as explanatory variables in order to predict the number of faults in
a program module.

There is a considerable body of more recent work on the application of ML tech-
niques for software defect prediction, and there are several survey papers that review
this work. Pandey et al. [21] present an extensive review of various studies applying
machine learning for software fault prediction citing over 200 research articles in the
period 1990–2019, and also compared the performance between machine learning
and statistical techniques. Their study found that the prediction ability of machine
learning techniques for classifying class/module as fault/non-fault prone is better
than classical statistical models. Li et al. [16] present a systematic literature review of
unsupervised machine learning techniques for software defect prediction published
between January 2000 andMarch 2018. Theirmeta-analysis shows that unsupervised
models are comparable with supervised models for both within-project and cross-
project prediction. Xu et al. [29] present a comparative study of clustering-based
unsupervised defect prediction models using an open-source dataset including 27
project versions with 3 types of features. They found that: different clustering-based
models have significant performance differences and the performance of models in
the instance-violation-score-based clustering family is superior to that of models in
hierarchy-based, density-based, grid-based, sequence-based, and hybrid-based clus-
tering families. Further, the impacts of feature types on the performance of themodels
are related to the indicators used, and the clustering-based unsupervised models do
not always achieve better performance on defect data with the combination of the 3
types of features.

Recentwork has also investigated changemetrics in conjunctionwith codemetrics
to improve the performance of fault prediction models [2, 23]. Other recent work
researches defect prediction based on code features, where the goal is to determine
if a piece of code contains bugs. For instance, Wang et al. [28] defined an approach
that learns semantic features for defect prediction. The approach takes tokens from
the source code of the training and test datasets as input, and generates semantic
features, which are then used to build and evaluate the models for predicting defects.
Shippey et al. [26] proposed a defects prediction approach based on learning features
from N-grams extracted from Abstract Syntax Trees.

Maddipati and Srinivas [18] apply principal component analysis (PCA) to iden-
tify the most relevant attributes in identifying defective prone modules. Further, to
address the issue of class imbalanced learning they propose a cost sensitive adaptive
fuzzy inference system for constructing the classifier to predict software defects. To
address the issue of the imbalanced data distribution of training datasets for defect
prediction, Ding and Xing [4], present a software defect prediction method using
pruned histogram-based (which deals with the convergence issue) isolation forest.
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With respect to software testing, Durelli et al. [5] review the state-of-the-art of
how ML has been applied to automate and streamline software testing.

In the operational phase ML applications typically include: anomaly detection—
find undesired patterns in the data; root cause analysis—investigate what caused the
anomalous behavior; failure prediction—monitor metrics to predict failures based
on knowledge of abnormal patterns and their causes; and preventive maintenance—
prevent failures before they occur based on predictions. The specific techniques
used depend on the type of data that is available, common types being: system logs
which provide a rich source of data for anomaly detection and prediction and root
cause analysis where supervised, unsupervised, and reinforcement learning methods
are used; and increasingly, data from automated smart sensors is used for preventive
maintenance, and coupled with log data, can be used for root cause analysis. Candido
et al. [1] present a survey on different log analysis techniques using machine learning
for anomaly detection and prediction and root cause analysis.An evaluation of several
supervised and unsupervised ML methods for anomaly detection using log data is
presented by He et al. [8]. Their findings include: supervised anomaly detection
methods present higher accuracy when compared to unsupervised methods; the use
of sliding windows (instead of a fixed window) can increase the accuracy of the
methods; and the methods scale linearly with the log size. In practice, the data
available for analysis is often unlabeled or weakly labeled, thereby precluding the
use of supervised learning techniques.

An important ML application in the operational phase is preventive maintenance;
in addition there are domain specific applications and techniques, in particular for root
cause analysis. There is considerable work in the optical networking space usingML
techniques for preventive maintenance. Several tutorial papers are available on the
topic [19, 22] that introduce automated methods for failure detection and prediction;
and localization and identification (root cause analysis). Typically, these methods
cover both hardware and software failures and errors. Kim et al. [14] present an
approach for anomaly detection and root cause analysis in mobile networks using
unsupervised ML techniques and finite state machines respectively.

3 Review of Software Testing

In a project with hundreds or thousands of modules not every one can be tested
extensively in each release. Choosing the right modules to focus test is an important
part of testing in addition to designing the tests.Module here refers to a collection of
code that does one thing and that may include more than one method/function/file.
A collection of module changes are delivered together as a release.

Some of the coding changes in a release will be trivial. Somewill be more compli-
cated and involve several modules. The complicated ones might be because the new
addition is itself complicated or itmight be because it is a change in an overly complex
module or across modules. The complexity makes it easier to make amistake, adding
a defect into the code.
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A study by Huang [9] of the Hadoop open source package looked at 4218 issue
reports spanning almost six years. The issues examined were all valid issues (i.e.
where a fix actually corrected the problem). They found that most of the issues
(more than 79%) are not closely related to issues in other subsystems. Identifying
those modules that, by themselves, are most dynamic can help target testing. They
also found that between 26 and 33% of issues had causes similar to other issues
within the same subsystem. Looking at modules with similar characteristics in terms
of their dynamic nature or complexity metrics can help identify modules that should
have targeted testing. They also found that correlated issues required almost twice
the effort to fix as uncorrelated issues. This can cause the issue correction to span
several releases or to delay the delivery of a release.

3.1 Dynamic Modules

Testing the modules that are directly changed in a release is an obvious starting point
when preparing the testing plan. These are the most dynamic modules, where it is
most likely that a human has introduced a defect. Some modules in an application
are more active than other modules. For simplicity we limit discussion to 3 kinds of
activity: new enhancements, fault corrections (fixes) and fixes to those fixes (“fix on
fix”).

Knowing which modules are more active can guide the testing effort. Systems
used to track the introduction of new features into software modules provide insight
into where the new enhancements are being made. Those actual locations (files)
in the module receiving the change may need to be refined by examining the code
repositories. Entries there will reflect both the new enhancements and defect remedi-
ation. Systems that track the identified defects the defect tracking systems are another
source of information and are needed to identify which code changes were the result
of fixing defects or introducing new features.

3.2 The “fix on fix” Problem

Sometimes when changes/fixes are made to software they contain new defects. Fixes
are then created to fix these previous fixes. This has been problem for a long time.
In 1989 Levendel [15] studying a large telecommunications system reported the
following: “A model simulation was conducted, and it was found that one defect
is reintroduced for every three defect repairs. In the long run, this means that 50%
of the original defects are reintroduced due to imperfect repairs. These defects are
introduced later in the process and are subjected to a similarly long time to detection.
Also, they may elude detection since a large amount of the test program has already
been executed.”
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Huang et al. [9] found that about 10.5% of the issues arose due to fixes on fixes
in Hadoop.

3.3 Complexity Metrics

Complexity metrics have long been used to identify modules that are more likely to
contain defects.

In [22] the authors review various software metrics and assess their applicability
for software fault prediction. They found that the traditional metrics related to size
and complexity were less successful in predicting faults than metrics that are related
to object-oriented constructs or those derived from the software construction process.
Traditional metrics include lines of code and McCabe’s complexity measure. One
conclusion from this paper is thatmetrics should be studied in large industrial contexts
to determine the best context-specific metrics.

The context that this chapter reflects is that of large, long-lived telecommuni-
cations systems. Previous studies have looked at which metrics are best in this
context.

Levendel’s [15] primary focus was the reliability of the system, obtained through
metrics of the number of defects in the system. The way defects flow through the
system, being first introduced by developers then being corrected and then maybe
being corrected again (fix on fix as discussed above) was studied.

Ohlsson [20] looked at a different telecommunications system. The goal in this
study was to predict the number of faults that will be present in a module before the
module is written. A key parameter they used was the number of signals between
modules. They comparedmeasures that can be directly computed based on the design,
such as McCabe’s Cyclomatic Complexity, as well of measures obtained by exami-
nation, such as the number of objects in the functions and subroutines. From these,
additional metrics were computed. The study did not draw any conclusions that can
be generalized to select which variables to use for a specific modeling exercise, but
they found that simple measures findable by examination were as useful as more
complicated measures.

Graves [7] looked at software aging and latent defects by taking a snapshot of the
system’s metrics and then analyzing the incidence of trouble reports over the next
two years. They found that the simple metrics such as lines of code were not effective
at predicting the presence of defects.

The most effective predictor that Graves identified was a weighted time damp
model that used the accumulation of all past module changes to predict the potential
for faults in the module along with a defect removal rate. Using the number of
changes in a module in combination with the module’s age was identified as the
most generalizeable linear model in their study. Factoring in measurable quantities
such as the number of lines of code by combining them arithmetically with other
metrics did not improve the predictive ability.



Data Analytics: Predicting Software Bugs in Industrial Products 45

Among Graves other finding is that the number of developers in a file, the “too
many cooks” effect, was not a predictor of error rates. Neither was the frequencywith
which multiple modules are changed simultaneously (“in tandem”) a good predictor
of the presence of being defects in the modules.

3.3.1 Traditional Metrics

For illustrative purposes several metrics will be highlighted. These will be used in
the case study presented in Sect. 4.2.

The first metric is the McCabe complexity metric which measures the number
of execution paths through a function or method. Each function or method has a
complexity of one plus one for each branch statement such as if, else, for, foreach,
or while. A complexity count is added for each logical combination (“and” or “or”)
in the logic within if, for, while or similar conditional statements.

The median methods implemented per class is the median of the number of
methods (functions) defined for the classes within the module.

The average statements per method and mean lines are computed simply by
looking at the number of lines in each method (or function) within a module. mean
lines is the overall size of the entire module.

Another of the metrics is Maximum Block Depth. This metric looks at the depth
of nested blocks of code. While nesting can be used alone in most languages, nested
blocks are almost always introduced with execution control statements such as “if”,
“case” and “while”. As the depth grows, the code gets harder to read and understand
because with each new nested depth level, more conditions must be evaluated if you
want to know when the code will be executed. Average block depth is the weighted
average of the block depth of all statements in a file or module.

For blocks at levels zero and one (i.e. only one or no level of nesting) two metrics
Statements and Block Level 0 or 1 are also easily computable.

The Line Number of Deepest Block metric is also related to the Maximum Block
Depth. It is an indication of howmuch processing occurs within a module before that
deepest block is enter. This can be a sign that the how much preparation is needed
before that deepest module is entered.

The Percent Branch Statements is the number of statements that cause a break
in sequential execution. These statments that break the flow are: if, else, for, while,
goto, break, continue, switch, case, default, and return.

Reducing Complexity. Complexity can be reduce by a number mechanisms. The
changes might add to the overall number of simple metrics such as total lines, but
will reduce the average complexity of the overall module.

• Amethod or function can be refactored by breaking a routine into smaller routines.
While the total (sum) complexitywill be little changed themaximum in any routine
will be reduced.

• Specialized refactoring can be done to the code to pull most commonly executed
parts out into efficient, less complex parts; this differs from the previous suggestion
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in that it looks at code and focuses on the most likely to be encountered parts of
the code.

• Since the code is not new (i.e. release N, N > 3) complexity can be reduced by
pruning legs of code that are now known to not be executed.

3.3.2 Microservice Metrics

The computing industry is moving towards architectures made up of microservices.
Microservices involvemany differentmodules by definition.While the term ismicro-
services, not all the services will be small. But since the services tend to be modules
providing a single well-defined functionality, just about any fix to a module could be
a fix on fix.

In the microservices world the “traditional” metrics of software complexity are
not generally discussed. A new language has taken over to discuss the quantity and
rapidity of making changes within an application built of microservices.

One metric that is commonly discussed in the context of microservices is that of
technical debt. “Shipping first time code is like going into debt. A little debt speeds
development so long as it is paid back promptly with a rewrite. The danger occurs
when the debt is not repaid. Every minute spent on not-quite-right code counts as
interest on that debt” [3].

The other use of metrics in microservices is used during the conversion of a
legacy application to a microservice architecture. These metrics compare the legacy
application with a possible microservice implementation. In [24] a new complexity
metric for a microservice implementation is created. As a monolith is decomposed
into microservices, the complexities of the decomposed functionalities are assessed
and combined into this newmetricwhich is comparedwith the legacymonolithwhich
has a presumed value of zero. Competingmicroservice architectural implementations
can then be compared against each other, with the implementation with the lowest
metric value being considered the best.

The errors caused by faults in microservice architectures are mitigated in running
systems differently than in non-microservice systems. The nature of microservice
architectures provides potentially massive redundancy which can hide individual
errors. This might be a reason predicting the faults in individual microservices has
not been perceived as necessary;modeling at the application level ismore appropriate
in this case. To this end, Jagadeesan and Mendiratta [10] present a modeling frame-
work for the reliability of microservice-based applications (with a service mesh), in
which applications may operate in a degraded mode if non-critical microservices are
considered to have failed. Themodeling framework includes amicro-level of detailed
operational behavior of small sets of microservices communicating with one another
via a servicemeshwhich can be useful for iterative system design. At themacro-level
the reliability framework is suitable for typical application deployments comprised
of thousands of service meshed microservices.

The usefulness of traditional complexity measures on the design and construction
of microservice based systems is a topic for future research.
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4 Case Study

Analytics models for predicting software defects are run in the pre-testing phase, and
a typical model (run by software module) works as follows:

• a model is trained using code metrics and fault data from an existing release
(Release N), and

• code metrics from the new release (Release N+1) are input to the trained model
to predict software faults for the new release.

If a classification model is used the modules are classified in terms of fault-
proneness. If a regression model is used the model predicts the expected number of
faults. Another output of these models is Variable Importance which is a ranking of
the code metrics in terms of their contribution to the model fault prediction.

Our approach, shown in Fig. 1, is to work with fault data and code metrics to
examine how these metrics could be modified to improve software reliability.

To test the validity of this approach we train a model with Release N data. We
then run the model (score the data) for Release N+1 code metrics and obtain the
Variable Importance charts. Based on these charts the code metrics in Release N+1
are modified and the model rerun with the modified data and the fault prediction
results compared. This type of approach falls in the area of model explainability and
research in this area is gaining traction in other contexts.

The work in [27] presents research on counterfactual explanations, a class of
explanation that provides a link between what could have happened had the inputs to
a model been changed in a particular way. Such explanations can help the MLmodel
developers identify, detect, and fix issues in the system under study and improve
the performance. In the Sect. (4.2) we describe how this approach in used in our
modeling.

Fig. 1 Proposed approach
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Fig. 2 Defects per service and release

4.1 Data Collection and Processing

Various code metrics were extracted with the use of open source software tools. The
metrics were extracted per service, e.g., calling type, etc. where the metrics or a
given service are computed over each program file. Services are generally realized
through several modules of many files each. The data was pre-processed to aggregate
file-level metrics into service-level metrics, i.e., compute min, max, mean, median
across file-level metrics to create model features (variables). A snapshot of the defect
data is shown in Fig. 2. Note from Fig. 2 that for Release N, 20 of 82 services have
non-zero defects while for Release N+1, 15 out of 79 services have non-zero defects,
indicating that less than 25% of the services have defects in a given release.

4.2 Models

A regression model was used to predict the number of defects by service where, the
target variable is the number of defects, and the predictive variables are created from
the code metrics.

The Random Forest algorithm, which uses an ensemble of regression trees to
boost predictive power and accuracy, was used for defect prediction. The algorithm
constructs a succession of unpruned trees (independently) using a different bootstrap
sample of the data. In constructing the tree, each node is split using the best among a
subset of randomly chosen variables. The defect prediction averages the prediction
of all the trees. Model evaluation is based on a comparison of predicted and observed
defects.
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In addition to the prediction of the number of defects, the random forest algorithm
provide another set of outputs, namely the variable importancewhich identifieswhich
variables are important for the prediction.

The variable importance measures are calculated in two ways.

1. Percentage increase in Mean Square Error (MSE) is based upon the mean
decrease of accuracy in predictions on the OOB (out-of-bag) samples when
a given variable is excluded from the model. It is computed by permuting the
values of the OOB samples: for each tree, the prediction error (MSE) on the
out-of-bag portion of the data is recorded. Then the same is done after permuting
each predictor variable. The difference between the two are averaged over all
trees, and normalized by the standard deviation of the differences.

2. Increase in node purity is analogous to Gini-based importance, and is calculated
based on the reduction in sum of squared errors whenever a variable is chosen
to split. It is a measure of the total decrease in node impurity that results from
splits over that variable, averaged over all trees. In the case of regression trees,
the node impurity is measured by the training RSS (residual sum of squares).

In both cases, the higher a variable is on the chart—that is, a higher value of
the percentage increase in MSE or total increase in node purity—the higher is the
importance of the variable in the model.

In Fig. 3 we present the variable importance plots using the two measures defined
above for a run of the defect prediction model.

Based on these results, and as described in Sect. 3.3.1, for illustrative purposes,
the following 6 variables are modified and the models rerun to determine the impact
on the number of predicted defects: complexity, percent branch statements, block
depth, line number of deepest block, statements at block level 0, and statements at

Fig. 3 Variable importance with original metrics



50 R. Hanmer and V. Mendiratta

block level 1. The approach used was to modify the above variables (1 variable per
model run) in the appropriate direction and observe the impact on model results.

The modified value was determined by: if value > median, value = median; else
value = value.

Figure 4 shows the variable importance charts with the complexity variable
modified. Note from the figure that no complexity related variables appear in the
chart—this is due to the complexity metric being modified, i.e. lowered.

The model predictions (normalized) based on the 6 modified variables are shown
in Table 1. For each variable the results (normalized) show the predicted defects
based on a regression tree model and the random forest model; and are compared
with the observed data. Modifying the first three metrics shows a decrease in the
number of predicted defects as compared to the observed defects. Modification of
the latter three metrics does not exhibit a similar change which confirms the results

Fig. 4 Variable importance with modified metrics

Table 1 Observed and
predicted defects based on
modified metrics

Variable Observed Regression tree Random forest

Complexity 100 87 96

Block depth 100 90 92

% Branch
statements

100 99 95

Line number
deepest block

100 99 99

Statements at
block level 0

100 100 100

Statements at
block level 1

100 100 100
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of Graves et al. [7] that simple metrics (like statements at a level) have less impact
on the predictive ability of the models.

The purpose of this case study was to explore the idea of reducing defects by
changing the variables that are ranked high in importance in the appropriate direction
through programming changes without impacting functionality and performance.
Initial results show that it is possible. However, we worked with a small dataset
which can impact the quality of the results; to gain confidence in this approach it is
necessary to test the method with larger and more varied data sets.

5 Learnings, Thoughts, Musings

Based on our experience with architecting and modeling high reliability software
systems we summarize our learnings as applied to data analytics and metrics for
modeling in this section.

In a given release many services have no faults, possibly because those services
were not changed and hence not tested in that release; this skews the data. It is
recommended to only use the data for services that are modified in the release. Use
information about the age of individual software units, e.g. maturity of the code,
number of releases the service existed, number of times the service was tested, the
number of tests performed, etc. The works of [15, 7] both confirm that this should be
useful in the prediction of defect-prone modules. Introduce information about which
services have been extensively tested for each release. This may require that new
metrics of prior testing be recorded and made available.

A number of steps can be taken to validate and further improve the classifiers and
build more accurate defect prediction models. These steps include collecting metrics
and defect data from additional releases. The longer term studies cited earlier [7,
9, 15] all show the benefits of watching the defect removal evolve over time. The
analysis and refinement can continue with larger datasets and additional metrics. Our
exploratory case study looked at a small part of a large system. We picked just a few
metrics to enhance in our case study. Future work can explore additional metrics and
combinations of metrics. An additional source of defect data is failure data from the
field.

Our method produces a large set of data and indicators that can help understand
future releases and not just narrow guidance as provided by traditional Software
Reliability Growth methods. These indicators (variable importance) can be used to
guide software refactoring to improve software reliability.
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From Dependability to Security—A Path
in the Trustworthy Computing Research

Shuo Chen

Abstract The societal importance of trustworthy computing has become more and
more obvious. It has two distinguishable yet related aspects: dependability and secu-
rity. In this chapter, I will explain the commonality and difference of the two, and use
my own experience as an example to show how a researcher grows his/her expertise
through the dependability research and the security research.

1 About Trustworthiness

A fundamental question in computing is how to establish trustworthiness of computa-
tional results produced by a real-world system.When discussing the concept of trust-
worthiness, wemust consider the adversary model. The adversary can be phenomena
in the nature (e.g., hardware transient errors, communication disruptions and human
errors) or intentional human attackers. The former is often considered as the adver-
sary model for dependability, and the latter is for security. From the perspective of
the system designers, implementers and operators, trustworthiness means that the
system should be able to withstand these adversaries.

Although the two adversary models are distinguishable, the insights from depend-
ability research and security research are coherent. For example, bit-flip is a basic
adversarymodel, originally in the context of dependability. However, people’s under-
standing about bit-flip has been evolving over a long time. It is now a topic frequently
studied in the security community. In addition to the adversary model, formal veri-
fication and distributed consensus are also topics evolving from dependability to
security. In the rest of this chapter, I provide my perspective in these areas.
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2 The Evolution of the Bit-Flip Adversary Model

A useful methodology to evaluate system dependability is fault injection. A fault
injector simulates faults that the target system may encounter when it is deployed in
the real world. Fault injectors often implement the bit-flip functionality. The func-
tionality targets registers, data memory or code memory. During a test execution
of a program, a bit is chosen to be flipped based on a pre-determined distribu-
tion. The execution is then resumed. There are two scenarios with high probabil-
ities. The first is that the execution finishes with a correct result. This scenario is
often referred to as “fault not manifested”. The second high probability scenario is
when the execution results in a crash or other exceptions. This is often referred to
as “fail silence”. Usually, “fault not manifested” and “fail silence” are considered
the expected outcome without serious bad consequences. However, there is a non-
negligible probability that the execution finishes but produces an incorrect result.
This is often referred to as “fail-silence violation”. It is the most interesting scenario
for investigation.

2.1 Security Consequences Caused by Bit-Flips

My initial knowledge about the security consequences of randombit-flip faults comes
from Boneh et al.’s paper in Eurocrypt’97 [1]. The paper shows that several cryp-
tographic systems will be broken if bit-flips can be intentionally introduced during
certain phases of the cryptographic computations. For example, an implementation
of RSA is based on the Chinese Remainder Theorem (CRT). Boneh et al. show that
if the attacker can introduce a bit-flip fault to cause the RSA algorithm to produce
an erroneous signature of a message, and repeat the algorithm without the fault to
produce the correct signature of the same message, then the secret signing key will
be recovered.

My first two papers, published in 2001 and 2002, investigated the security conse-
quences of bit-flips target Internet server programs (e.g., FTP and SSH) [2] and
firewall programs (e.g., IPChains and Netfiler) [3]. My co-authors and I conducted
fault injection experiments to show the existence of non-negligible probabilities of
fail-silence violations resulting in security consequences. For example, injected faults
could cause firewall programs to skip packet-filtering rules, or cause FTP’s authenti-
cation to be bypassed. While these consequences are not surprising, the fact that the
probabilities are non-negligible is.
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Temperature: 80 – 100 °C

Fig. 1 Using a spotlight to introduce memory errors to JVM

2.2 Fault Injection as a Weapon

The papers mentioned above investigate the security consequences with the presence
of injected faults, but do not discuss how the faults can be injected in the real-world
settings. In this sense, the weaknesses discussed in these papers are not end-to-end
exploitable security vulnerabilities.

Our work motivated Govindavajhala et al. to conduct a really surprising exper-
iment in 2003 to show that memory faults can be intentionally injected by heating
the PC with a spotlight in a close proximity [4]. (Note that the cover of the PC
is removed, so the spotlight is more effective in raising the temperature of the PC’s
components.) The experiment shows that when the temperature is in the range of 80–
100 °C, isolated and intermittent memory errors occur. The authors use this effect
to target Java VM (JVM), of which the security assurance crucially depends on type
safety. With the presence of memory errors, type safety no longer holds. This means
that when the attacker’s Java program runs on the JVM, the attacker can take control
of the JVM, thus execute arbitrary native code on the victim machine. It is estimated
that a single-bit-flip can give a 70% probability for the attack to succeed (Fig. 1).

2.3 Software Memory Bugs as a Weapon

The aforementioned research studies give an important insight for amore comprehen-
sive understanding about memory bugs. Before 2005, the attacks exploiting software
memory bugs, such as stack overflow, format string vulnerability and heap corruption,
focus on the control flow: they use the bugs to rewrite important data that determine
the victim program’s control flow, e.g., return addresses and function pointers, so
that the control flow jumps to an arbitrary binary code supplied by the attacker. They
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Table 1 Source code of getdatasock()
FILE * getdatasock( … ) {
...
seteuid(0);
setsockopt( ... );
...
seteuid(pw->pw_uid);
...
}

are referred to as the control-data attacks. In response to this attack pattern, many
defensive techniques are proposed against them in the research community. Some
protect return addresses, such as StackGuard [5] andLibsafe [6]; some rely on control
flow integrity for security, such as system call based intrusion detection techniques
[7–13], control data protection techniques [14–16], and enforcement mechanisms
for non-executable memory [17, 18].

Despite the research community’s familiarity of the control-data attack, it is
reasonable to askwhether the dominance of control-data attacks is due to an attacker’s
inability to construct non-control-data attacks, i.e., attacks that do not alter any
control-data but still cause security consequences as serious as the control-data
attacks. My co-authors and I understood from our previous research that, given a
real-world program, its built-in code logic is already susceptible under the bit-flip
adversary. In other words, we understood that even if the victim program’s control
flow is intact, when the code runs on the data slightly corrupted, the consequence
can be devastating. This insight might be natural to the dependability community,
but was fairly surprising in the security community.

In 2005, we published a paper with the title “Non-Control-Data Attacks Are Real-
istic Threats” [19]. The paper shows that many types of data, other than control-data,
are also crucial to security, including configuration data, user input, user identity data
and decision-making data. For example, Table 1 shows the source code of a func-
tion in WU-FTPD, which is one of the most widely used FTP servers. WU-FTPD
has a format string vulnerability that can be triggered when receiving a “Site Exec”
command. Like most other format string vulnerabilities, this vulnerability allows
the attacker to overwrite the value of an arbitrary memory location specified by the
attacker. Essentially, this vulnerability is a memory fault injector. The function in
Table 1 is named getdatasock.What it does is to temporarily set the effectiveUID
of the process to the root UID. This is fulfilled by calling seteuid(0). Then, the
code does certain operations with the root privilege, such as calling setsockopt.
In the end, the code restores the effective UID of the process to the user’s UID,
which is stored in pw->pw_uid on the heap. Now, consider what can happen
when a format string vulnerability exists. The attacker can exploit the vulnerability
to overwrite pw->pw_uid to 0, then call function getdatasock. The conse-
quence is that seteuid(pw->pw_uid) does not restore the process’s effective
UID, so the attack stays at the root privilege level. All files in the filesystem can be
overwritten, including the crucial ones for user authentication, such as / etc/passwd
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Table 2 Code of servconnection()
int serveconnection(int 
sockfd) {
char *ptr;//pointer to the 
URL.
// ESI is allocated
// to this variable.
...
1: if (strstr(ptr,”/..”))

reject the request;
2: log(...);
3: if (strstr(ptr,”cgi-bin”))
4: Handle CGI request
...
}

and / etc/shadow. This means that the attack obtains the total control of the victim
machine.

Another example is about the buffer overflow vulnerability in an HTTP server
called GHTTPD. Buffer overflow is also like a memory fault injector, which can
overwrite data on the stack. The vulnerable code is shown in Table 2. Function
servconnection() calls another function log(), which contains a buffer over-
flow bug. A pointer variable ptr is on the stack, so it can be overwritten by the
attacker because of the bug. Now the question is how the attacker can take control
of the victim machine. Although the source code of servconnection()is very
long, we show two important states in line 1 and line 3. Line 1 rejects any URL
that contains a “/..” substring. Line 3 implements the CGI functionality of the
HTTP server, which allows an HTTP request to invoke an executable on the server.
For the security reason, all the invocable executables are stored in a specific path,
e.g. /usr/local /ghttpd/cgi-bin. An HTTP request http://foo.com/cgi-
bin/bar will invoke the executable /usr/local/ghttpd/cgi-bin/bar. The
checking in line 1 is crucial for the CGI functionality. Suppose a request http://foo.
com/cgi-bin/../../../../bin/sh is not rejected, the executable /bin/sh will be executed,
giving the user a command shell. The attacker hence gets the same privilege as the
HTTP server. To carry out the attack, the attacker sends a long HTTP request in
which the first part is to exploit the buffer overflow bug in order to overwrite the
value of ptr to be the address of the second part of the request. The second part is
the string containing “/../../../../bin/sh”. This accomplishes the attack.

Our paper [19] investigates other memory bugs in real-world programs. It gives
a substantial amount of evidence to show that, when a memory bug allows data
corruption, the victim program’s existing semantics are usually sufficient to let the
attacker get a total control.

http://foo.com/cgi-bin/bar
http://foo.com/cgi-bin/../../../../bin/sh
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2.4 Rowhammer—A Bit-Flip Security Threat in DRAM

Since 2014, the security threat caused by bit-flips in DRAM has become an exten-
sively researched topic. The threat and the corresponding exploits are referred to
as Rowhammer. The root cause of Rowhammer is the scaling-down of the DRAM
process technology. DRAM cells become increasingly likely to charge and discharge
between each other, thus have a non-negligible probability to result in bit-flips.
This phenomenon was initially described by several patent disclosures by Intel, then
studied by the research community. Authors of reference [20] study specificallyDDR
SDRAM. Figure 2 illustrate the rows of memory cells in the DRAM. One of the rows
is the victim row that the attack wants to introduce bit-flips into. It is sandwiched
between two adjacent rows. The study demonstrates that the bit-flip probability of
the victim row can be substantially increased if the attacker frequently activates the
two adjacent rows. Therefore, suppose the attacker can know sufficiently the data
contents in these three rows, purposeful bit-flips can be introduced.

There are several follow-up studies based on reference [20]. For example, people
understand that ECC (error correcting code) is a technique to mitigate bit-flips,
so it is natural to ask whether the Rowhammer threat exists in ECC-protected
DRAM.Cojocar et al. conduct a study to reverse-engineer the ECCmechanism. They
construct a new Rowhammer attack which can succeed in certain ECC-protected
DRAMs [21]. In the separate study, Cojocar et al. develop a methodology to evaluate
how cloud servers are vulnerable to the Rowhammer threat [22].

Fig. 2 An illustration about
the Rowhammer attack
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3 Formal Methods

Formal methods are an important rigorous approach to enhance correctness of a
system.My initial knowledge about formal methods was from the reliability context.
For example, Rosu et al. developed a formal approach to check the measurement
unit (e.g., imperial vs. metric) safety policies for mission-critical programs, such as
those written by NASA JPL (Jet Propulsion Laboratory) [23]. This type of safety
violations (e.g., an imperial quantity is added to a metric quantity) can hide deeply
in a complex program developed by many teams. It is impossible to exhaustively
test all the execution paths of the program. Formal methods provide a unique power
to statically examine the program to expose bugs with a level of completeness with
respect to a given abstraction.

A good example of formal methods for software reliability is the Static Driver
Verifier (a.k.a. the SLAM technology) for Windows [24]. Windows needs to accom-
modate a huge number of device drivers, which run in the kernel space. In the past,
Microsoft did not have a quality control mechanism to ensure that the drivers were
reliable, so the kernel panic (a.k.a. “blue screen”) frequently occurred. Static Driver
Verifier enabled Microsoft to implement a Windows driver certification program—a
driver succeeding in the verification would be digitally signed by Microsoft, and
users were strongly discouraged to install unsigned drivers.

3.1 Formal Methods for Browser Security

Fascinated by the rigorousness of formal methods, I have worked on several security
projects that applied formal methods to real-world systems. The first project was
about examining Internet Explorer (IE) browser’s graphic interface (GUI) logic for
security bugs [25].We studied theGUI code and built a formalmodel to describe how
a user (potentially an attacker) could use Javascript andHTML to spoof the browser’s
address bar and the status bar. For example, Fig. 3 shows the consequences of two
bugs that we discovered. The status bar spoofing bug allowed the attacker to construct
a hyperlink in an email. When the user examined the target URL of the hyperlink,
the status bar showed https://www.paypal.com, the actual target was the attacker’s
website. The address bar spoofing bug allowed the attacker to construct a page which
could make the address bar and the content window out of sync, so that the address
bar (including the SSL certificate) showed https://www.paypal.com, but the content
window displayed the attacker’s website. Obviously, the combination of status bar
spoofing and address bar spoofing would make a powerful phishing attack.

In this work, we used the Maude rewriting logic system [26] to model IE’s GUI
logic, including the mouse event handling logic and the address update logic during
navigation. In the end, we discovered thirteen GUI spoofing bugs in IE 6, eleven of
which were fixed when IE 7 was released.

https://www.paypal.com
https://www.paypal.com
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Fig. 3 Browser’s GUI
security bugs

(a) Status bar spoofing 

(b) address bar spoofing 

3.2 Formal Methods for Authentication Protocols

Formal verification was the core technology in my research project that explicated
the security assumptions of authentication SDKs. Major cloud providers, such as
Facebook, Google, and Microsoft, provide single-sign-on authentication services
(SSO) for website developers to integrate. With SSO, a website does not need to
implement its own authentication infrastructure, but only needs to call an SSO service
that it trusts. The SSO service is called the identity provider, or IdP. The website is
called the relying party, or RP. The security goal is for the RP to authenticate the
client as “Alice”, if the client is able to authenticate to the IdP as “Alice”.

Identity provider companies release SSO SDKs, and publish developer’s guides
to show the sequence of steps to integrate them into website code. However, an
important question remains: if developers follow the guides in reasonable ways, will
the resulting applications be secure? Our study shows that the answer today is “No”.
Many apps built using the SDKs we studied have serious security flaws. This is



From Dependability to Security—A Path in the Trustworthy … 63

not due to direct vulnerabilities in the SDK, but rather because achieving desired
security properties by using an SDK depends on many implicit assumptions that
are not readily apparent to app developers. These assumptions are not documented
anywhere in the SDK or its developer documentation. In several cases, even the SDK
providers are unaware of the assumptions.

The goal of our work [27] is to systematically identify the assumptions to use
an SDK to produce secure applications. Our approach involves a combination of
manual effort and automated formal verification. Any counterexample found by
the verification tool indicates either (1) that our system models are not accurate, in
which case we revisit the real systems to correct the model; or (2) that our models are
correct, but additional assumptions need to be captured in the model and followed by
application developers. The explication process is an iteration of the above steps so
that we document, examine and refine our understanding of the underlying systems
for an SDK. In the end, we get a set of formally captured assumptions and a semantic
model that allow us to make meaningful assurances about the SDK: an application
constructed using the SDK following the documented assumptions satisfies desired
security properties.

The formal language we used in this study is Boogie [28]. It is an imperative
language, so translating SDK code in a web language (e.g., PHP or C#) to Boogie
is straightforward. Figure 4 shows an example PHP function translated into Boogie.
The Boogie language allows the programmer to add assertions and invariants. The
Boogie verifier will then statically verify whether the assertions and invariants hold
in all circumstances.

Fig. 4 Example of a PHP function and its Boogie model
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4 Distributed Consensus

Another important topic that are originated in the dependability community and later
plays an important role in security is distributed consensus. A legendary paper about
this topic is the paper titled “The Byzantine General Problem” [29] by Lamport,
Shostak and Pease. Despite the interesting title, the core problem studied in this
paper is first presented in an earlier paper by the same set of authors. The earlier
paper is titled “Reaching Agreement in the Presence of Faults” [30], which is clearly
set in the fault tolerance context. The protocols proposed in reference [29] and later
papers establish a well-known area in dependability and distributed systems, namely
BFT (or Byzantine Fault Tolerance).

The fault tolerance capability of BFT comes from the redundancy of the nodes.
However, it is different fromother redundancy-based fault tolerancemechanisms. For
example, triple modular redundancy (TMR) runs three replicas for a computation,
and uses the majority voting to decide the output. TMR tolerates one faulty replica.
However, TMR needs to have a component to do the voting. Although it can be
substantially simpler than every replica, it can be faulty itself. Unfortunately, TMR
cannot tolerate the faults of the voting component. BFT, on the other hand, does not
assume any component to be reliable. Instead, the assumption of BFT is about the
total number of the faulty components.

From fault tolerance to security. BFT and other distributed consensus protocols
play an important role to ensure reliability of cloud platforms. However, it was some-
what unexpected that decentralized computing became the big wave of technological
innovations. In this wave, consensus protocols are no longer a reliability mechanism,
but form the foundation of decentralized trust.

Computing with decentralized trust enables scenarios that were hard to imagine
before. For example, it was surprising that this new computing paradigm could be
deployed in the global scale, enabling the worldwide community to issue a new
currency (e.g., Bitcoin) without trusting any central bank. It was evenmore surprising
that the new paradigm supported general purpose computing (e.g., by smart contracts
on Ethereum). Decentralized trust enables many exciting possibilities, but its core
mechanism is distributed consensus.

Consensus protocols can be categorized into two categories. The first is suit-
able for communities with open membership, which allow everyone to join. The
Bitcoin network and the public Ethereum network are such communities. The second
category is suitable for consortiums,which are formedbyentitieswith clear identities.

Proof-of-Work (PoW) [31] is a representative consensus protocol in the first cate-
gory. The goal of the protocol is to ensure that no member can dominate community.
However, the open membership makes it impossible to base the protocol on identi-
ties, because a member can create an arbitrary number of identities. The core idea of
PoW is to base the consensus on every member’s actual computational power, which
cannot be arbitrarily created. The PoW mechanism in Bitcoin is illustrated in Fig. 5.
Each block contains the SHA256 hash value of its previous block, as well as the
transactions contained in the current block. In addition, there is a nonce value, which
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Fig. 5 Proof of work in
Bitcoin

is crucial to the PoWmechanism. Any member who wants to construct a valid block
to be accepted by the community (i.e., to represent the community consensus) needs
to find such a nonce value that makes the hash of the current block begin with a pre-
determined number of zero bits. Because there is no known algorithm to calculate
such a value efficiently, the only way to obtain it is to repeatedly try different value
and calculate SHA256. This means that the probability for a member to represent
the consensus is proportional to its actual computational power.

Besides the community with open membership, the other type of community is
consortium, which consists of members with well-known identities. For example,
government agencies, companies, and international organizations can form consor-
tiums. In the consortium setting, traditional consensus protocols are valid. Xiao et al.
provide a survey about blockchain consensus protocols, including those used in the
consortium settings [32]. The survey covers Byzantine fault tolerant (BFT) proto-
cols and crash fault tolerant (CFT) protocols. It categorizes protocols by different
synchrony assumptions. Popular protocols include Raft [33], PBFT [34] and a few
others. In 2019, Facebook announced the project to build a consortium blockchain
called Libra. The consensus protocol, namely HotStuff [35], is derived from BFT.

5 Summary

Dependability (fault tolerance) is an important aspect of trustworthy computing. It is
about investigating adversarial circumstances of a systemand designing amechanism
for a system to be robust despite these circumstances. It is often distinguishable from
security, for which the adversarial circumstances are intentionally created or control-
lable by a human attacker. For this reason, the adversary assumptions for security
research often appear to be more direct and imminent. They are often deterministic,
while the assumptions for dependability research are often probabilistic.



66 S. Chen

However, both research areas are fundamentally about quality of programming,
thoroughness of testing, and good redundancies in design. My research career began
in the dependability community. Then I worked on projects about security conse-
quences of faults, later focused on security research. I realize that it is important for
researchers to appreciate the commonality of the two disciplines. Among the three
areas described in this chapter, the strong relevance of the bit-flip adversary and
the distributed consensus was not foreseeable when I was initially exposed to the
concepts. Therewas a decades-long researchhistory of each topic in the dependability
community, but the research value was revived stronger than before in the security
community in the last 5 years. Regarding formalmethods, I was not surprised by their
values in security. It was reasonable to anticipate that logic-proof-based approaches
would be needed to complement traditional software testing approaches. However, it
is still very impressive to see a great amount of new formal techniques indeed make
concrete contributions in many security domains.
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Assessment of Security Defense of Native
Programs Against Software Faults

Keun Soo Yim

Abstract This chapter explores the possibility of building a unified assessment
methodology for software reliability and security. The fault injection methodology
originally designed for reliability assessment is extended to quantify and charac-
terize the security defense aspect of native applications. Native application refers
to system software written in C/C++ programming language. Specifically, software
fault injection is used to measure the portion of injected software faults caught by the
built-in error detection mechanisms of a target program (e.g., the detection coverage
of assertions). To automatically activate asmany injected faults as possible, a gray box
fuzzing technique is used. Using dynamic analyzers during fuzzing further helps us
catch the critical error propagation paths of injected (but undetected) faults, and iden-
tify code fragments as targets for security hardening. Because conducting software
fault injection experiments for fuzzing is an expensive process, a novel, locality-
based fault selection algorithm is presented. The presented algorithm increases the
fuzzing failure ratios by 3–19 times, accelerating the speed of experiment. The case
studies use all the above experimental techniques in order to compare the effective-
ness of fuzzing and testing, and consequently assess the security defense of native
benchmark programs.

1 Introduction

We, dependable computing and fault tolerance community, have long wanted to
establish a unified methodology for quantitative assessment of software reliability
and security [1–5]. To this end, this study extends a quantitative reliability anal-
ysis methodology (i.e., fault injection [6]) for software security analysis. Specifi-
cally, it demonstrates how an augmented fault injection methodology presented in
this study is used to analyze and evaluate the security defense aspects of C/C++
programs. Here, C/C++ programs are used as targets because those are essential
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building blocks of computer systems (e.g., system software and performance critical
user space services).

In mobile cloud computing platforms, various C/C++ application programs and
libraries are run using high system privileges. Such privileged, user-space C/C++
programs directly access the application programming interfaces (APIs) of an under-
lying operating system (OS) kernel and device drivers so as to provide essential
services (such as multimedia, networking, database, and general utilities) to other
application programs. A critical vulnerability (e.g., a buffer overflow) in a privi-
leged C/C++ program, however, enables attackers to subvert the program and use
the obtained system privilege. Because at the time of writing many such C/C++
programs are developed and maintained by third party entities (e.g., as open source
software projects), many mobile cloud computing platforms are directly exposed to
vulnerabilities introduced in the code bases of upstream open source projects. Thus,
before taking any upstream code releases, characterizing and understanding the secu-
rity defense aspects of the code are one of the key capabilities needed to protect the
security of the downstream, integratedmobile cloud software platforms. For example,
with a trustworthy security characterization technique, one can select more secure
implementations than the other implementations, and also identify certain parts of a
given implementation where extra security protection (i.e., hardening) is needed.

This study specifically focuses on characterizing the software security
exploitability. By the definition used in this study, security exploitability of a program
has both the vulnerability metric aspect (e.g., the probability of containing vulner-
abilities) and the defense metric aspect (e.g., attack surface size) that are described
in [7]. Here, the vulnerability metric is inversely proportional to the security testing
coverage. For example, if a program is well tested, then the program is less likely
to have vulnerabilities especially when the testing well covers common security
defects. Based on this observation, the first research objective of this study (RO1) is
to quantitatively evaluate the effectiveness of fuzzing and structural testing in finding
exploitable software faults. Here, exploitable software fault refers to a software bug
or defect that any users can exploit by only altering the input values of a program or
the environments that any non-privileged users can control. While gray box fuzzing
is generally regarded as an effective technique for finding vulnerabilities and bugs,
it was unclear how much vulnerability detection coverage a given set of fuzz tests
provide for a target C/C++ program. Structural tests written by domain experts have
the same assessment challenge. That is, it is unclear how much extra security testing
coverage is provided by given structural tests over gray box fuzzing, and vice versa.
Thus, this study presents an assessment technique that can be used for RO1. The
technique is useful for guiding the selection, execution, and maintenance of fuzzing
and structural testing.

Software faults uncaught by fuzzing and testing are then shipped to users as part
of a program binary. Since fail-fast or fail-stop is a desired system dependability
property (e.g., to prevent malfunctioning), privileged C/C++ programs often have
built-in error detectors (e.g., assertions) in their production binaries. Such built-in
error detectors can preemptively detect certain attempts to exploit vulnerabilities.
Thus, the second research objective (RO2) of this study is to assess the security
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defense of a target program against vulnerability exploitation attempts. More specif-
ically, this study quantifies the probability of the built-in error detectors of a target
program catching systematic attempts to exploit software faults introduced as a result
of classical (e.g., common types of) coding mistakes. This study further shows how
to use the measured security defense coverage data of a target program in order to
guide the design and extension of the built-in error protection mechanisms of the
target program.

This chapter presents an experimental assessment methodology that can be used
to analyze and evaluate the security exploitability of a given C/C++ program. The
methodology can be used to quantitatively evaluate the effectiveness of fuzzing and
testing, and the coverage of runtime error detectors of a target program. That is,
the methodology allows us to measure two kinds of conditional probabilities: (a)
the conditional probability of common software faults (i.e., injected via software
fault injection) leading to symptoms of successful exploitations of vulnerabilities
(e.g., memory corruption errors); and (b) the conditional probability of exploitable
software faults [i.e., a result of (a)] being caught by a built-in error detectors of a target
program. These two conditional probabilities are measured by using the following
three key techniques:

• Software Fault Injection with Gray Box Fuzzing. In this study, a software fault
injection technique is used to inject classical software faults and evaluate the detec-
tion coverage of fuzzing. If an injected software fault is caught by fuzzing, then
the software fault is exploitable (i.e., showing some characteristics of a vulnera-
bility). Tomaximize the chances of activating the injected faults, a state-of-the-art,
code coverage guided gray box fuzzing technique is used. To further increase the
chance of detecting activated faults, dynamic analyzers (e.g., for out-of-bound
memory access detection) are used that help us identify a subset of activated soft-
ware faults that are potentially harmful for the system security. Based on those
two sub-techniques, the exploitable software fault count is derived from a given
set of generated classical software faults. Then the same experiment process is
followed one more time after turning on the built-in error detectors. That is to
derive the numerator and denominator of a formula that captures the conditional
probability associated with the detection coverage of the built-in error detectors.

• Insights fromQuantitative Comparison.The first technique helps us quantify the
coverages of both fuzzing and structural testing for any target C/C++ program.
For example, one can run fuzzing (or structural testing) and count how many
of the exploitable software faults lead to any fuzzing (or testing) failures. By
comparing the coverages of those two, one can assess the relative effectiveness
of each technique and consequently direct associated security test engineering
works. Furthermore, using the error propagation paths of exploitable software
faults caught during fuzzing, one can further characterize the security defense
aspects of a target program and develop deep source code level insights.

• Fault Selection Algorithm to Speedup. In practice, using software fault injec-
tion for fuzzing and structural testing takes a long time. The experiment time
depends on the examined software fault count and total test execution time. For
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example, if 10,000 fault samples are studied and the test takes on average 1 hour,
then the experiment can take ~10,000 machine hours (=417 machine days). If
3% of the injected software faults are activated, then it means 97% of the exper-
iment resources is wasted. To avoid such large computing resource wastes and
accelerate the experiment process, this study also presents a fault selection algo-
rithm that is designed to select faults that are likely exploitable. The presented
algorithm captures and uses fault locality properties by using an iterative fault
selection process. The evaluation result shows that the algorithm improves the
fault manifestation ratio by 3–19 times over a random sampling technique, and
consequently improves the efficiency of software fault injection experiments.

The rest of this chapter is organized as follows. Section 2 reviews the related
works. Section 3 describes the presented methodology. Section 4 describes the
presented fault selection algorithm. Section 5 describes the experimental setup.
Section 6 analyzes the experimental results. Section 7 discusses the implications
before concluding this chapter in Sect. 8.

2 Related Work

This section reviews the existing software fault injection techniques that form the
basis of the presented methodology. Fault injection is an experimental methodology
originally designed to validate and characterize error detection and recovery tech-
niques ofmission-critical or high availability computing systems. Initially, hardware-
implemented fault injection techniques (e.g., hardware pin-level instrumentation
tools [8–10] using beam radiations [11, 12], light lamp [13], and supply power
voltage disturbances [14]; and circuit-level simulations [15, 16]) are used to vali-
date, characterize, and evaluate various kinds of building blocks of computer systems
(such as microprocessor, cache, and main memory). Software fault injection tech-
niques are then developed to emulate various kinds of errors in software states.
Since this study focuses on software techniques, let us further classify software
fault injection techniques into three sub-types: emulating hardware faults in software
states; emulating software faults (e.g., classical software bugs) directly in program
source code, program artifacts (e.g., program binaries), or program runtime states;
and emulating security attacks.

Emulating Hardware Faults. Techniques emulating hardware-induced errors
(e.g., using N-bit flip or stuck-at fault models) in computer architectural states
(e.g., registers) or software states are traditionally called SoftWare-Implemented
Fault Injection (SWIFI). SWIFI naturally uses fault injection framework soft-
ware.1 Some SWIFI frameworks implement memory corruption techniques (FIAT

1 UIUC DEPEND research group founded by Professor Ravishankar K. Iyer (Fellow of AAAS,
ACM, and IEEE) has been one of the leading academic research groups in this field. Many SWIFI
tools reviewed in this section were built by the DEPEND research group.
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[17], Hauberk [18]) or hardware breakpoint-based techniques (NFTAPE [19], Xcep-
tion [20], and MAFALDA [21]). Some other SWIFI frameworks use WIFI frame-
works use ptrace() debugging APIs (FERRARI [22]), a binary rewriting tech-
nique (DOCTOR [23]), a symbolic execution technique (SymPLFIED [24]), a
stochastic activity network (SAN) model [25], or multiple mixed techniques (FINE
[26], DEFINE [27], and FTAPE [28]). Among these existing framework tech-
niques, breakpoint-based ones are the most widely used especially for the purpose
of validating system software.

Emulating Software Faults. As software reliability gained interests in the infor-
mation technology (IT) industry, Chillarege2 and his fellow IBM researchers defined
a software fault model, namely ODC (Orthogonal Defect Classification) [29]. ODC
has multiple classification axes. One of the axes is for the following five types of
software faults: assignment, checking, interface, algorithm, and function. ODC was
built based on their two field measurement studies: using IBM DBMS (database
management system) running on a particular OS [30] and a Tandem Unix OS [31].

Some studies [32, 33] showed that SWIFI can be used to emulate not only bit
flips but also software interface faults. However, [34] showed that the SWIFI results
of a software interface fault model is not exactly same as the fault injection results
of an ODC-based fault model (e.g., in terms of the failure type distributions). That is
partly because software interface faults are not exactly the same as software design
faults that are modeled by ODC. The ODC fault model thus enables us to study
various types of software design faults. Other studies [35, 36] further evaluated such
fault models and showed how to setup the experimental environments for SWIFI or
ODC-based fault models, showing the conditions when to use SWIFI or ODC.

We note that in general ODC fault model is useful to gain insights into an analyzed
software engineering process. It can, for example, help us improve the software
engineering process by classifying the identified software defects and analyzing the
statistical causation relationships. Based on the distribution of the software faults
in each ODC fault type, one can assess the development stage and identify part of
the engineering process that heavily influenced any identified process issues or any
observed probability distributions.

TheODCfaultmodel is later extended byDurães andMadeira [37, 38]. Theirwork
considered the fault nature (i.e., missing construct, wrong construct, and extraneous
construct) that is added to the ODC classification system as an additional axis. Their
field studies show that a large portion of software faults seen in the real world are due
to omissions (i.e., missing construct) or wrong constructs. Based on that observation,
[39] refines the software fault model for fault injection applications. The selected
fault types (e.g., omission faults) are relatively straightforward to emulate by using
a binary translation technique (e.g., by skipping some instructions). A software fault
injector that implements this extended fault model is G-SWFIT [37, 40]. G-SWFIT is
a post-link-time binary translator that looks for specific instruction sequence patterns
(e.g., procedure callswithout return value), checks specific conditions (e.g., identified

2 Ph.D. alumni of UIUC DEPEND group and IEEE Fellow for the contributions on software
reliability.
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call is not the only statement of the caller function), and finally rewrites the binary
to inject a modeled software fault.

There are other software defectmodels used formutation testing [41] and software
engineering studies. FAUST [42] used the control flow, array boundary, computa-
tional, and post/pre increment/decrement software fault types.3 Reference [43] used
the unaligned pointer, aligned bridging pointer, aligned looping pointer, memory
leak, and blocked thread fault types. References [44, 45] used other common soft-
ware fault types in order to evaluate the specific dependability aspects of file system
cache andDBMS, respectively.Reference [46] changed single instructions to emulate
various programming errors (e.g., uninitialized local variables), while [47] used a
null pointer fault, which is backed by the common bug analysis. Because those defect
types were empirically chosen but sometimes lack statistical evidences, this study
uses afore described extended ODC fault model.

Emulating Security Attacks. Attack injection approach can be used to assess
the protection coverage of security techniques of target software systems [48]. For
example, in [49], the coverage of intrusiondetection system (IDS) forweb serverswas
studied by injecting realistic vulnerabilities in web applications and then emulating
attacks that can exploit the injected vulnerabilities. In that study, its vulnerability
model is described in the application-level, making it easy to understand and use the
model. It, on the other hand, limits its application scope to specific application attack
types on a particular application program type (e.g., SQL injection and cross-site
scripting attacks [50] against web services). That study is designed to evaluate the
coverage of a separate protection system (e.g., IDS) and thus is not for direct evalu-
ation of the security of a target software itself (e.g., web application) or associated
tests.

DBench [51] provides well-defined availability, feedback, and stability bench-
marking procedures for various kinds of software. It injects faults into nearby compo-
nents (such as hardware, OS, middleware, or applications) that are interacting with
a system under benchmark (SUB) which can be a native application program in
the context of this study. The presented assessment methodology is different from
attack injection and DBench because this study directly injects software faults into
the SUB. A key benefit of the presented methodology is that it helps us quantify
specific security aspects of the SUB without having to use any benchmark targets
(BTs).

Fault Selection Strategies. Let us then classify fault injection techniques as a
function of the fault selection strategy. Typical SWIFI experiments select a subset
of faults by using random sampling or other statistical sampling techniques (such as
stress or path-based selection techniques [52]) because SWIFI can derive a numerous
number of software faults. On the other hand, fault injection experiments using a
software fault model (e.g., G-SWFIT) can examine all the generated software faults.
In practice, when a large number of software faults are generated (e.g., because
the program binary size is large) or there is a constraint in the experiment time

3 In other words, mutant types.
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or resources, G-SWFIT experiments can also examine only part of the generated
software faults by using some sampling techniques (e.g., a random sampling).

Because many generated software faults are caught by existing test cases, [40]
presented two machine learning (ML) techniques in order to select software faults
that are unlikely covered by available test cases. Because the presented method-
ology benefits from the maximized fault manifestation ratios (e.g., faults that can be
caught by fuzzing but not testing) and the reduced fault injection experiment time
and resources, this study further presents the locality-based software fault selection
algorithm.

3 Design

This section presents the novel coverage assessmentmethodology of security defense
mechanisms of C/C++ programs. Figure 1 gives an overview of the methodology.

3.1 Software Fault Injection to Assess Fuzzing Coverage

In the past, fuzzing was typically used to find unknown vulnerabilities in target
software and consequently estimate the target software security level. While fuzzing
can discover many critical vulnerabilities, it generally takes a long time to find all or
most of the vulnerabilities. As a result, in practice only part of the vulnerabilities is
identified by fuzzing, resulting in providing insufficient sample data for large-scale
security assessment studies. Because of this tradeoff, the cost of running fuzzing
against a target program is often unacceptably high, especially when the purpose

Fig. 1 Overview of the presented assessment approach. Software faults injected into the source
code of a target native application programare triggered by tests and fuzzing anddetected bymultiple
error detection mechanisms. The ratio of detected software faults and total injected software faults
reveals the strength of the security defense mechanisms of a target application program
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is security assessment. That is, assessment approach trying to find all the hidden
software defects is costly from a practical usage point of view.

Instead, the presented methodology assesses the detection coverages of secu-
rity defense techniques (e.g., fuzzing) and uses that to assess the level of security
defense of a target program. Specifically, this study uses a software fault injec-
tion technique and injects realistic software faults into the target program source
code. The software fault injection technique uses an extended ODC software fault
model. The used fault types are: MFC (Missing Function Call), MVIV (Missing
Variable Initialization using a Value), MVAV (Missing Variable Assignment using a
Value), MVAE (Missing Variable Assignment using an Expression), MIA (Missing
If construct Around Statements), MIFS (Missing If construct plusss Statements),
MIEB (Missing If construct plus statements plus Else Before statements), MLAC
(Missing Logical AND Clause in branch condition), MLOC (Missing Logical OR
Clause in branch condition), MLPA (Missing small, Localized Part of the Algo-
rithm),WVAV (Wrong Value Assigned to Variable), WPFV (Wrong Variable used in
Parameter of Function call), andWAEP (Wrong Arithmetic Expression in Parameter
of Function Call) fault types [38].

The presentedmethodology then uses a gray box fuzzing technique to uncover the
injected software faults. In this way, any experimenter can quantitatively evaluate the
coverage of fuzzing that is used for a target program (e.g., the detected software fault
count over the injected fault count). All the baseline fault types (i.e., the extended
ODC faultmodel summarized in Sect. 2) are used to further characterize the detection
coverage as a function of fault type. While software fault injection and fuzzing are
both common, to the best knowledge of the author of this chapter, this study is the
first work that uses software fault injection for the assessment of fuzzing coverage.

To maximize the chance of activating the injected software fault, the presented
methodology employs LLVM libFuzzer4 fuzzing framework, which uses
Sancov (Sanitizer Coverage) to measure the code coverage of a target program
during fuzzing, realizing code coverage-guided gray box fuzzing. Sancov, for
example, can instrument a target program binary so that at the edge of each
basic block, the instrumentation code can update an in-memory bitmap table (per
segment) and accurately track the execution count of each basic block. Based on
this, libFuzzer library generates an input data that is a variable-length string (or
uses a provided corpus as initial seed data) and feeds the generated string to a user-
written fuzzing logic function, which converts the input string to function calls. The
libFuzzer library measures the code coverage of each input data and generates a
next input data set by using a genetic algorithm variant (e.g., crossover and mutation
operations). That procedure is repeated until a software failure is seen or a certain
limit (e.g., timeout) is reached.

4 libFuzzer, https://llvm.org/docs/LibFuzzer.html.

https://llvm.org/docs/LibFuzzer.html
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3.2 Classification of Fuzzing Failure Types

During fuzzting, as shown in Fig. 1, any error propagated as a result of the activation
of an injected software fault can be caught by: (a) built-in error detectors of a target
program, (b) underlying system-level error detectors (e.g., segfault by MMU sent as
a signal), or (c) dynamic analyzers (e.g., AddressSanitizer and LeakSanitizer [53])
used as part of the fuzzing framework.

Because software faults detected by (a) built-in error detectors or (b) system-level
error detectors are detected by the target program, those faults do not easily lead to
a successful security attack at runtime even if there is an attempt to exploit them.
Software faults detected by (c) dynamic analyzers indicate critical error propagation
paths. Thus, that can be used to assess the fail-stop property of a target program
(e.g., denial-of-service attacks) and identify unprotected control or data flows that
can be suggested as extra protection targets. The presentedmethodology uses various
available dynamic analyzers (e.g., for out-of-bound memory access or memory leak
detection) that are implemented by instrumenting a target programbinary. As a result,
this helps us identify a subset of the injected software faults that are uncaught by the
built-in protection mechanisms of a target program but still potentially harmful for
system security.

In order to particularly improve the failure type classification accuracy of
exploitable software faults, dynamic analyzers are used. The employed dynamic
analysis technique (e.g., AddressSanitizer) preemptively detects various types of
runtime errors regardless of whether those errors are eventually caught by the built-in
error detectors. For example, in each of the built binaries, a dynamic analyzer places
instrumentation routines before every load or store instruction. That is to check the
address operand and detect various kinds of memory overflow and underflow errors.
A software fault is classified as an exploitable fault if its failure type (i.e., the type
of a dynamic analyzer that detects its error) is under a certain category known as
a typical milestone or symptom of a successful vulnerability exploitation attempts.
Such failure types include: memory leak error, corruption of amemory copy function
parameter, free of a non-allocated memory block, segmentation fault, stack overflow,
heap overflow, and buffer overflow of a global variable. For example, let us assume
a software fault causing an out-of-bound memory access error up on an activation.
Attackers can exploit the software fault to: conduct a memory corruption attack;
indirectly change the control (e.g., return address or stack pointer) or non-control
data of a target program; and eventually subvert the program. Here, we note that the
buffer overflow error is a key milestone of a successful vulnerability exploitation.

A large portion of injected software faults is benign and thus does not lead to
any meaningful steps (e.g., memory corruption) towards a successful attack. Thus,
this study focuses on analyzing the portion of software faults caught by the built-in
error detectors, system-level error detectors, dynamic analyzers of fuzzing, and test
verification mechanisms of testing. The presented methodology uses the measured
failure type distribution to derive the numerators and denominators of formulas that
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capture the coverage of the security defense mechanisms that a target program is
equipped with.

3.3 Quantitative Evaluation

For a target program, the presented methodology assesses the coverages of both
fuzzing and structural testing (i.e., unit, component, and integration tests written
by domain experts). It then compares the coverages of those two types of defense
techniques in order to build deep insights and increase the assessment confidence.
While both fuzzing and structural testing are imperfect and their coverages depend
on various factors (such as the amount of efforts put), quantitatively comparing both
helps us assess the relative strength and effectiveness of each technique, and guide
where to direct future security test engineering effort.

Figure 2 shows the overall flow of the presented quantitative evaluation process.
The main input is the source code of a target program. The software fault injector (or
mutator) is used to generate various software fault patches. It uses the fault selector
module to select a subset of software faults for experiments. The target program is
then patched by each of the selected software fault patches and compiled into a set
of program binaries. Two kinds of binaries are generated: one for structural testing
(i.e., mutated binaries where each binary has a selected software fault) and the other
for fuzzing (i.e., mutated fuzzer binaries where each binary has a selected software
fault, the fuzzing logic, the fuzzing library, and the instrumentation code needed for
fuzzing).

Fig. 2 Quantitative evaluation flows of two kinds of security defense mechanisms (i.e., testing and
fuzzing)



Assessment of Security Defense of Native Programs … 79

Fig. 3 The presented software fault classification process

The presented methodology runs the testing and fuzzing binaries and collects the
testing and fuzzing results. It compares and analyzes the results in tandem. Figure 3
shows how an experiment result is classified. If all tests pass, then it means that the
injected software fault is a benign software fault or there is a weakness in the tests.
If a software fault breaks a test, the software fault is not representative [40] so the
software fault is simply skipped. Another case is for an exploitable software fault
that passes all the tests but is detected by the fuzzing.

3.4 Framework

The fault injector used in this study is a source-to-source translator where the input
and output data is C/C++ program source code. Figure 4 shows the high-level flow of
the fault injector where input data is the path of a source file. The fault injector reads
and parses a given source file and other files that are directly or indirectly included in
the given source file. It then runs the C/C++ preprocessor to generate a preprocessed
source file that has the source code of all the included files. The fault injector then
reads the preprocessed file and builds an abstract syntax tree (AST), which is used to
search for patterns of each of the modeled fault types. For each of the identified fault
injection target locations, the fault injection tool mutates the constructed AST and
generates the mutated source code in the form of a source code patch (that contains
only the information about how to update the original input file). Because the tool

Fig. 4 Overview of the used software fault injector where IR stands for intermediate representation
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identifies various fault locations from the source code, it generates various kinds of
patches.We note that in its implementation, the tool is designed to generate patches in
such a way that avoids compiler warnings, while correctly emulating every modeled
software fault type.

4 Optimization

This section describes the presented locality-based fault selection algorithm. The
algorithm is designed to accelerate software fault injection experiment by increasing
the fault severity and fault activation ratio. To this end, this study defines and uses
the two kinds of fault locality properties:

• Spatial Locality in Fault Sensitivity. If a software fault is activated and leads to a
testing failure, some other faults injected into a nearby program entity are likely
to manifest. The granularity of a nearby entity can be the entire code of the same
function, all contents of the same source file, or all source code files in the same
directory. The optimal granularity depends on a target program. By default, the
function granularity is used in this study.

• Temporal Locality in Fault Sensitivity. If a software fault is activated and leads
to a testing failure, the same fault is likely to manifest again even if the target
program is changed or updated (e.g., new release versions).

We note that the software fault locality defined and used in this study directly deals
with the fault sensitivity, while the definitions in [54] capture many other parameters
(e.g., defect birth rate). Based on those two fault locality properties, a locality-based
fault selection algorithm is designed as an iterative process. In every iteration, the
algorithm selects N software faults from the software fault set S f ault that initially
keeps all the generated software faults. Let us assume that in i-th iteration, ki faults
are manifested and causes testing failures where 0 ≤ ki ≤ N . The algorithm reads
the location information (i.e., source file path and function name) Li of each of the
k software faults. It then removes the examined faults (Fi) from S f ault .

Then the algorithm selects faults (Fi+1) for the next iteration, (i + 1)-th. A user-
provided parameter (r) is used to specify the percentage of faults (i.e., rN) to select
from S f ault . The specified percentage of faults is selected from the software faults
that are close to at least one location kept in Li. That means that the rest (1 – r)N
software faults are selected from the other part of S f ault where the locations of
the software faults are not close to any of the locations kept in Li. This process is
repeated until S f ault becomes empty or the experimenter wants to stop. In this way,
the algorithm guarantees that from the second iteration, r × 100% of the examined
faults are selected based on the locality.

There can be many variants of this algorithm. For example, one can use a ranking
scheme or a weight metric in such a way that more popular functions can be selected



Assessment of Security Defense of Native Programs … 81

more frequently. Here, the popular functions may mean frequently executed func-
tions, according to performance profiling data. Alternatively, one can alter this algo-
rithm so that F(ki) can keep the entire history (e.g., F(ki+1) includes F(k) and the
new software faults). ThenF(ki) always keeps all the selected, manifested faults seen
until the (i – 1)-th iteration. As a result, when selecting faults for the next iteration,
it considers the locations of all previously selected software faults (not just the ones
selected and manifested in the last iteration).

5 Experimental Methodology

This section describes the experimental setup.

1. libarchive, a library to read and write streaming archives in a variety of formats
2. libpng, a reference library for supporting the PNG (Portable Network Graphics)

format
3. openssl, a general-purpose cryptography library specialized in TLS (Transport

Layer Security) and SSL (Secure Sockets Layer) protocols
4. sqlite, a database engine library for SQL (Structured Query Language)

Benchmark Programs. Table 1 lists the four selected native application programs:
Initially these four programs were compiled with their built-in error detectors. For

example, because sqlite uses assert() defined in assert.h file, its compilation flags are
configured in such a way that undefines NDEBUG macro and enables the assertions.
For each benchmark program, all or part of its source code is selected as the fault
injection targets. Selected SLOC (Source Lines of Code) column of Table 1 shows
the number of selected source code lines per program. For libarchive, all the .c and
.h files in libarchive sub directory that keeps the core libarchive engine are selected.
For libpng, all the top-level .c and .h files are selected. The remaining unselected files
are in contrib, projects, and scripts sub directories. For openssl, all the .c and .h files
in ssl sub directory are selected because that keeps the core SSL code. Finally for
sqlite, the entire program is selected because there are only two large files (sqlite3.c
and sqlite3.h).

Table 2 shows howmany software faults are then generated for the selected portion
of the source code of each benchmark program (see T columns in the table). As a
baseline, between 40 and 200 software fault samples are randomly selected per fault

Table 1 Benchmark programs used for evaluation

Program Source repository Version Selected SLOC

libarchive http://www.libarchive.org v3.0.4 113,930

libpng http://sourceforge.net/projects/libpng 1.2.59 28,562

openssl http://github.com/openssl/openssl.git 1.0.2 m 66,391

sqlite http://www.sqlite.org 2016-11-14 209,806

http://www.libarchive.org
http://sourceforge.net/projects/libpng
http://github.com/openssl/openssl.git
http://www.sqlite.org
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Table 2 Random fault sampling data (S: selected fault count, T: total generated fault count)

Fault type libarchive libpng openssl sqliıe

S T S T S T S T

MFC 96 150 185 890 94 1409 191 3865

MIA 38 96 84 825 75 1757 200 3956

MIEB 7 20 45 290 46 369 200 1055

MIFS 78 95 190 752 192 1816 200 3728

MLAC 59 80 100 421 101 618 200 1987

MLOC 32 36 102 250 140 481 200 948

MLPA 142 798 169 3388 155 3843 200 16,843

MVAE 95 187 190 715 177 1558 200 5615

MVAV 58 80 164 600 122 1280 200 2025

MVIV 50 70 72 75 166 209 200 1002

WAEP 102 135 148 534 56 1049 46 3813

WPFV 81 103 186 1419 163 2949 105 25,810

WVAV 123 144 136 891 122 1600 135 2857

Total 961 1994 1771 11,050 1609 18,938 2277 73,504

type per program (see S columns in the table). In case when the generated software
fault count is less than 40, at least 5 software faults are selected. For sqlite, up to
200 software faults are randomly selected for each omission fault type because about
40% of the omission faults led to no fuzzing failures in the initial experiment.

Fuzzing and Structural Testing. As summarized in Table 3, fuzzing is used
for all the four benchmark programs, while structural testing is used for the
three programs (libarchive, libpng, and openssl).5 Every used fuzzing defines
a LLVMFuzzerTestOneInput() function that converts input byte strings
provided by the libFuzzer library to target program API calls. The used fuzzing
code has 58 source code lines for libarchive, 131 for libpng, 37 for openssl, and
85 for sqlite. The used structural tests are mostly end-to-end functional tests. For
libarchive, all of its tests invoked by make check command are used. For libpng,
its pngtest binary is used to run the tests while using a .png file as input data.
For openssl, util/selftest.pl script is used to run all the contained tests in
sequence and generate test reports. The test reports are used to check the test results
(e.g., pass or fail).

To build fuzzer binaries, clang v5.0.0 and gcc v5.4.0 were used. The
used compiler flags include: ‘-fsanitize=address’ for address sanitizer and ‘-
fsanitizecoverage=trace-pc-guard,trace-cmp,trace-gep,trace-div’ that enables gray
box fuzzing. For each fuzzing run, the experiment framework waits up to

5 The used structural testswere contained in the benchmark programs. For the fuzzing, ones available
at https://github.com/google/fuzzer-test-suite were used that were developed by a fuzzing team at
Google.

https://github.com/google/fuzzer-test-suite
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Table 3 Characterization of fuzzing and structural testing of benchmark programs

Program Testing Fuzzing Seeds Dictionaries

libarchive Evaluated Evaluated Used in fuzzing Unavailable

libpng Evaluated Evaluated Used in fuzzing Used in fuzzing

openssl Evaluated Evaluated Used in fuzzing Unavailable

sqlite Unavailable Evaluated Used in fuzzing Used in fuzzing

1,000 seconds and stores the stdout and stderr messages to two separate files.
Later, the framework analyzes the stderr log files in order to check whether each
of the fuzzing runs has found any errors or failures. Initially, the framework executes
the same fuzzing against the original programs for a sufficiently long time. That is
to confirm that the fuzzing does not find any software defects or errors in the used
benchmark program versions as long as no software fault is injected.

In order tomaximize the fuzzing coverage, either seeds (i.e., initial byte strings) or
dictionaries (i.e., input language keywords or magic values) supported by libFuzzer
and American Fuzzy Lop6 are used. Specifically, seeds are used for all four
benchmark programs, while dictionaries are used for libpng and sqlite.7

In terms of the execution environment, high-performance Linux v4.10.0machines
on a public cloud data center are used for all fuzzing and testing experiments. Another
version of a Linux machine is used to generate all the software fault patches.

6 Result

The experimental results summarized in this section demonstrate how the presented
assessment methodology is successfully used to: assess the coverage and effective-
ness of fuzzing and structural testing (Sect. 6.1); assess the built-in error detectors
of target programs (Sect. 6.2); characterize the injected software faults and observed
failures as a function of fault type (Sect. 6.3); and evaluate the key benefits of the
presented fault selection algorithm (Sect. 6.4).

6.1 Effectiveness of Fuzzing and Testing

The randomly sampled software faults (see Table 2) are used to evaluate the effec-
tiveness of fuzzing and structural testing. It shows that quantitative comparison of
the two helps us build deeper insights than assessing only one (fuzzing or testing).

6 American Fuzzy Lop (AFL), http://lcamtuf.coredump.cx/afl/.
7 The seeds and dictionaries available at https://github.com/mirrorer/afl/ and https://github.com/
google/fuzzer-test-suite were used. Otherwise, seeds were generated by running fuzzing for a
sufficiently long period of time (e.g., for sqliıe).

http://lcamtuf.coredump.cx/afl/
https://github.com/mirrorer/afl/
https://github.com/google/fuzzer-test-suite
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Table 4 Injected faults caught by fuzzing with (w/) and without (w/o) using seeds and dictionaries

Fault type libarchive libpng openssl sqlite

w/ (%) w/o (%) w/ (%) w/o (%) w/ (%) w/o (%) w/ (%) w/o (%)

MFC 35.4 26.0 1.6 6.0 0 0 14.1 5.2

MIA 50.0 23.7 2.4 6.0 2.7 2.7 13.0 1.5

MIEB 42.9 57.1 0 6.7 8.7 8.7 14.0 0.5

MIFS 42.3 14.1 1.6 4.2 5.8 4.7 9.0 2.0

MLAC 35.6 11.9 1.0 2.0 1.0 1.0 10.0 2.5

MLOC 50.0 12.5 1.0 4.9 0.7 0.7 4.5 0

MLPA 31.7 17.6 1.8 4.1 1.9 1.9 25.0 2.5

MVAE 40.0 25.3 3.7 3.2 5.1 5.1 25.5 1.5

MVAV 44.8 27.6 5.5 3.0 2.5 2.5 17.5 0.5

MVIV 52.0 44.0 4.2 0 2.4 3.0 9.0 1.0

WAEP 40.2 24.5 6.8 2.0 3.6 3.6 0 0

WPFV 46.9 22.2 2.2 1.1 2.5 3.1 7.5 1.9

WVAV 22.8 11.4 7.4 7.4 2.5 2.5 6.8 1.5

Total 38.3 24.5 3.2 3.8 2.9 3.0 14.8 1.6

Fuzzing. Table 4 shows the percentages of injected software faults that are caught
by the fuzzing (i.e., caused fuzzing failures) with and without using the seeds and
dictionaries. The data shows that the effectiveness of fuzzing depends heavily on the
following three parameters: sssss

Program Complexity. The fault detection ratio of fuzzing has large variations and
heavily depends on the benchmark program. The used fuzzing was highly effective
in libarchive that showed 23–52% detection ratios with the seeds and dictionaries
and 11–57%without them. The fuzzing is still relatively effective in sqlite that shows
~14.8% average detection ratio with the seeds and dictionaries. On the other hand,
less than 10% of the injected software faults is detected during the fuzzing in the two
other programs, libpng and openssl.

To understand the underlying correlations, the following two program complexity
parameters are further analyzed:

1. Target program size. The total SLOC is 199,177 lines for libarchive, 39,223
for libpng, 424,216 for openssl, and 209,806 for sqlite. Even though libarchive
and openssl are medium size programs among the four benchmark programs,
their fuzz tests were more effective than libpng that is the smallest program. It
shows that the total SLOC alone is not a good metric to estimate the difficulty
of finding software faults and evaluate the effectiveness of fuzzing.

2. Portion of code selected as fault injection targets. The ratio of selectedSLOCand
the total SLOC is 57.2% for libarchive, 72.8% for libpng, 15.7% for openssl, and
100% for sqlite. When a larger portion of the code is selected for examination
(e.g., libarchive and sqlite), it sometimes shows higher fault detection ratios
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especially when seeds and dictionaries are used. We however note that such
correlation is not always true (i.e., not a sufficient condition) because libpng has
a small detection ratio.

Fuzzing Logic. Even though a target program may have a significant implementa-
tion complexity and relatively small part of the target program is examined, if its fuzz
test is thorough, then it can still achieve a high fault detection ratio. Basically faults
injected into a function are detectable by fuzzing if there is call flow path from the
used fuzzing logic to that target function. Conversely, faults injected into a function
are undetectable or hard to detect if there is no call flow path from the used fuzzing
logic to that target function. That shows that those two parameters (i.e., implemen-
tation complexity and fuzzing logic thoroughness) both matter. For example, in case
of libarchive, its fuzzing logic is designed to call only 6 common API functions of
libarchive. However, because the fuzzing logic targets the most common use case
and covers large part of libarchive core code where the software faults are injected,
the fault detection ratios are high.

The experiments using the seeds and dictionaries showed that carefully tuning
fuzzing improves the fault detection ratio. With the valid seeds and dictionaries,
sqlite shows a significant coverage improvement (i.e., from 1.6 to 14.8%). On the
other hand, it is also observed that using the seeds and dictionaries sometimes can
reduce the fault detection ratios for certain fault types (e.g., MFC, MIA, MIEB,
MIFS, MLAC, MOLC, MLPA fault types of libpng).

Fault Type. The impact of fault type on fault detection ratio is then analyzed.
Although it depends on the benchmark program, specific fault types show relatively
low fault detection ratios. For example, in libarchive, MLAC and WVAV fault types
show the lowest detection ratios. Also certain fault types showed relatively low fault
detection ratios in the other benchmark programs (i.e., MLAC in libpng; MLAC and
WVAV in openssl; and WVAV in sqlite). However, no specific fault type is found
that always has higher than the average fault detection ratio in all the four benchmark
programs. That implies that specific fault types can be either harder to detect or less
likely to manifest than some other fault types, while the opposite is not always true.

In this experiment, the random fault sampling technique was used. That is, soft-
ware faults are uniformly injected into the entire source code of a selected module of
each target program. That is to remove two variables in the experiment. Specifically,
one of the removed variables is the correlation between what is targeted by fuzzing
and where many non-benign software faults are injected into. Because the used soft-
ware faults are randomly sampled from all the generated software faults (i.e., the
same as all the possible fault locations for each fault type), it further removes the
fault density parameter from the experiment.

Fuzzing versus Testing. In order to compare the effectiveness of fuzzing and
testing, the testing coverage is first evaluated. The tested three programs, libarchive,
libpng, and openssl contains some automated tests in their source code repositories.
Using each of the selected software faults, the framework builds a program binary
and then runs the entire tests against each of the built binaries. The framework then
analyzed the stdout and stderr logs and decided whether the tests are passed. Rarely,
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some test runs do not finish (i.e., hang failure) that is detected by using a constant
timer set in the framework.

Figure 5 shows the fault detection ratios of testing, fuzzing, and both combined.

Fig. 5 Fault detection ratios by fuzzing and testing in libpng and openssl with (w/) and without
(w/o) using the seeds and dictionaries
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In libarchive, in total 17.3% of the software faults was detected by both fuzzing and
testing, 30.9%was detected by testing only, and 20.1%was detected by fuzzing only
(using the seeds). It shows that fuzzing and testing target different software faults
(e.g., in terms of fault location and type), showing the importance of using both for
software security and quality. For example, the tests provided 100% coverage for the
injected MIEB software faults, while only the fuzzing detected some of the injected
MVIV software faults. Although the exact ratios depend on the used software fault
samples (see the fault counts in Table 2), this experiment evidences a practical case
where the human-written tests and automated gray box fuzzing naturally targeted
different kinds of software faults and become a complementary technique to each
other.

The average detection ratios of fuzzing were similar in libpng and openssl (i.e.,
3.2% for libpng and 2.9% for openssl with the seeds and dictionaries). When the
seeds and dictionaries were not used, those two programs still showed the similar
fault detection ratios, though sometimes slightly lower or slightly higher than the
other program. On the other hand, testing openssl led to the higher fault detection
ratio (i.e., 37.1% on average) than testing libpng (i.e., 10% on average). One may
argue that openssl may have a high test coverage because its tests might be written
rigorously or because it may have a low implementation complexity (e.g., in terms
of cyclomatic complexity not the total SLOC) that can make the testing effective.
It was found that the latter is not the case. Specifically, in the experiment, fuzzing
openssl did not provide a significant fault detection coverage gain (i.e., 0.27% gain
on average across all fault types and at most 1.7% gain forMVAE fault type) over the
testing. That means that the program complexity of openssl was not sufficiently low
for the fuzzing to provide a notable fault detection coverage gain over the testing.
In fact, the openssl tests were relatively well-written and consisted of at least 1567
lines of C/C++ code, and 1980 lines of perl script code.

In libpng, without the seeds and dictionaries, the fuzzing provided the average
fault detection coverage gain of 3% over the testing. That 3% gain is 10 times higher
than the 0.3% fuzzing coverage gain seen in openssl. It implies that the fuzzing
used in libpng is thus more effective than the one used in openssl. Moreover, we
note that 3% average coverage gain is equivalent to 78% of the total software faults
(3.9%) found by the fuzzing. That means the tests were, on the other hand, not highly
effective because the tests were able to find only 22% of the software faults found
by the fuzzing in libpng.

Implications. These experiments demonstrated how to use the presented method-
ology to quantitatively evaluate the effectiveness of fuzzing and conventional testing.
The presented methodology can be used to not only show what kind of validation
method (e.g., fuzzing or testing) is more effective for a given native program but also
to guide users to prioritize one validation method over the other. For example, in the
case of openssl, a user can decide to run the testing more frequently, while running
the fuzzing only occasionally by considering the relatively high cost of fuzzing.
Conversely, a user can decide to run the fuzzing more frequently in case of libpng
because the fuzzing in libpng provided a notable extra fault detection coverage gain.
For libpng, a user can also decide to write more test cases by considering the fact
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that large part of software faults was only detected by the fuzzing. That is because
those software faults detected by the fuzzing are usually exploitable in the field (e.g.,
buffer overflows), while testing is a cost-effective technique in terms of the time and
computing resources required.

6.2 Coverages of Error Detectors

The presented methodology was used to evaluate the error detection mechanisms
embedded in the benchmark programs. To this end, the fuzzing failures are classified
into the nine types by using the dynamic analyzers of the fuzzing framework and the
built-in error detectors of the target benchmark programs. The nine fuzzing failure
types are:

1. Assert, when an error is caught by a built-in error detector (e.g., assertion) of a
target program

2. OOM (Out-of-Memory), when a target program and the fuzzer library combined
uses the memory space more than a specified threshold (i.e., 2 GB per process
in the experiment)

3. LSan (LeakSanitizer), when a memory leak is detected
4. ASan (AddressSanitizer): Memcpy Param Error, when a memcpy() parameter

value corruption is detected
5. ASan: Free non-allocated, when there is an attempt to free a non-allocated

memory address
6. ASan: GBO (Global Buffer Overflow), when a global variable has a buffer

overflow
7. ASan: SBO (Stack BO), when there is a stack buffer overflow
8. ASan HBO (Heap BO), when there is a heap buffer overflow
9. ASan: SEGV, when there is a memory segmentation fault

Variations Between Target Programs. Figure 6 (top) shows the breakdown of
the observed fuzzing failure types as a function of the benchmark program. The
breakdown had significant variations between the programs. For example, in openssl
and sqlite, 34% and 36.8%, respectively, of the injected faults was detected by the
built-in error detectors (in other words assertions, see Assert part) without the seeds
and dictionaries. However, the other two programs did not have strong assertions that
were measurable in the experiment. Only libpng detected 1.5% of the faults by using
its built-in error detectors. That means that one can add more security error detection
techniques to those two programs and increase the coverages. We note that the bar
graph for the label sqlite (n.a.) is for when sqlitewas compiled without its assertions
and the random fault sampling (total fault count: 1286) was used for the examination.
The last bar graph shows the importance of keeping assertions in production code
for better error detection.

In production, all or most of such dynamic analyzers are unavailable and only the
built-in error detectors can be enabled and used. Thus, any bugs that are undetected by
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Fig. 6 Fuzzing failure type versus benchmark program or fault type (with and without the seeds
and dictionaries) where n.a. means a version compiled with no built-in error detectors

the built-in error detectors but detected by the dynamic analyzers can be considered
as realistic vulnerabilities. We note that it is also possible that some built-in detectors
can detect such errors later if the sanitizers were not enabled. However, the chance of
such cases is typically low (i.e., considering thewell-known error latency distribution
data [55]), and an attacker can successfully exploit such vulnerabilities and change
the program control flow in order to not execute the built-in error detectors.

An injected software fault caught by a sanitizer (e.g., ASan andLSan failure types)
typically reveals part of the error propagation path of at least one potential security
attack. At a minimum, it emulates a key milestone or symptom of a potential security
attack (e.g., a buffer overflow or memory corruption). While the real locations of
any future vulnerabilities would be different from where the generated software
faults were injected into, it is possible that when a software defect is activated in
some specific ways, it can exercise part of the error propagation paths revealed
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in experiments using the presented methodology. Repeating the experiments for
many software fault samples thus increases the chances of emulating many realistic
vulnerabilities. Thus, there is a value in finding software faults that cause such fuzzing
failures and then hardening the target programs so as to preemptively check the
identified error propagation paths.

Variations Between Fault Types. Figure 6 (bottom) shows the fuzzing failure type
distribution as a function of the fault type. In general, using the seeds and dictionaries
increased the Assert fuzzing failure type ratios much more than not using them. That
holds in all fault types, except for the MIFS fault type where the ratio dropped
negligibly from 12.5 to 12.3%. Another observation is that there was no prominent
patterns other than the fact that most of the fault types can emulate and discover
various failure scenarios and types.

6.3 Detection Latency of Injected Faults

This experiment measures the fuzzing failure detection latency that is defined in this
study as the number of input data sets tested as part of the fuzzing before it found
a fuzzing failure. Figure 7 shows the latencies as a function of the fault type (upper
figure) and the fuzzing failure type (lower figure). The data was collected when
the seeds and dictionaries are unused. Specific failure types took longer (e.g., all
the failures in ASan: SBO, ASan: GBO, ASan: Free non-allocated, ASan: Memcpy
Param, and Assert typically required 50k–100k input sets) than the rest. In general,
using the seeds and dictionaries reduces the detection latency because the searching
becomes more effective than without using them.

Similarly, the upper figure identifies specific fault types that were generally harder
to discover during the fuzzing. For example, the MLOC fault type took longer to
discover than the MLAC fault type because missing an OR clause is typically less
severe than missing an AND clause (in terms of the probability of changing the
execution behavior of a program). Without the seeds and dictionaries, the WVAV
fault type probabilistically took shorter to discover than the MVAV and MVIV fault
types because wrong value assignments generally have a more severe impact than
missing value assignments or initializations.

Such knowledge can be used for various purposes. For example, it can be used
to estimate the difficulty of finding a specific type of software bugs (e.g., leading
to a specific failure type). By comparing the measured latency distribution and the
reference latency distribution of the same kinds of software faults, one can decide to
conduct more extensive fuzzing studies in order to findmuch deeper software defects
than what were previously found in the field or during testing and fuzzing until the
measured distribution becomes statistically equivalent to the reference distribution.
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Fig. 7 Portion of injected, non-benign faults detected after exercising a specific number of input
data sets (legend)

6.4 Evaluation of Fault Selection Algorithm

This experiment evaluates the efficiency of the presented fault selection algorithm.
For this experiment, sqlitewas used that had on average only 14.8% (or ~1.6%) fault
detection ratio with (or without) using the seeds and dictionaries by its fuzzing when
the random fault sampling techniquewas used (in Sects. 5 and 6.1). Table 5 shows the
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Table 5 Injected faults caught by fuzzing when the presented fault selection is used with (w/) and
without (w/o) using the seeds and dictionaries (for sqlite)

Fault type Sample Count Detected Fault ratio

(w/) (w/o) (w/) (%)

MFC 46 47 32.6 ± 13.5 23.4 ± 12.1

MIA 23 23 43.5 ± 20.3 30.4 ± 18.8

MIEB 14 14 21.4 ± 21.5 7.1 ± 13.5

MIFS 33 34 27.3 ± 15.2 17.6 ± 12.8

MLAC 12 12 58.3 ± 27.9 41.7 ± 27.9

MLOC 12 12 16.7 ± 21.1 16.7 ± 21.1

MLPA 116 116 52.6 ± 9.1 42.2 ± 9.0

MVAE 29 29 41.4 ± 17.9 20.7 ± 14.7

MVAV 19 19 94.7 ± 10.0 10.5 ± 13.8

MVIV 5 5 40.0 ± 42.9 40.0 ± 42.9

WAEP 8 8 37.5 ± 33.5 37.5 ± 33.5

WPFV 35 35 54.3 ± 16.5 28.6 ± 15.0

WVAV 20 21 50.0 ± 21.9 33.4 ± 20.2

Total 372 375 46.0 ± 5.1 29.6 ± 5.1

result with the 95% confidence intervals. On average, 46% (or 29.6%) of the software
faults selected by the presented locality-based algorithm led to fuzzing failures with
(or without) using the seeds and dictionaries, which is ~3.1–18.7 times higher than
the random fault sampling result. Such high fault activation or manifestation ratios
are highly effective in reducing the time required to identify critical error propagation
paths and security hardening targets because the cost of fuzzing is generally high.

7 Discussion

This section discusses the implications for software security hardening. The error
propagation paths identified as part of the fore described experiments can be used to
guide the security hardening process of a target native program. As a case study, let
us select the fuzzing failures that were uncaught by the built-in error detectors, and
analyze their error propagation paths. All those examples can be classified into the
following four common cases. Figure 8 exemplifies the four cases where a software
fault is injected into Function 2. Failures can be seen when the program executes
Function 1, 2, 3, or 4 where Function 1 directly calls Function 2, which then calls
Function 3.

Postcondition Checks for Libraries. If a software fault is injected into Function
2, its caller, Function 1, can experience a failure. This is typically due to a corrupted
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Fig. 8 The four identified cases of secure software hardening

return value of Function 2 whose return values include call-by-pointer or call-by-
reference arguments of Function 2. In that case, adding postcondition checks to
Function 2 (see Hardening 1 in Fig. 8) can detect the induced error and gracefully
handle the error (e.g., fail-stop). Without placing such postcondition checks in Func-
tion 2, the software fault can cause a memory corruption or other equivalent errors
which can become a strong attack vector if the attacker can control specific properties
associated with the error (e.g., its location and occurrence time).

Backtracking Control and Data Flows. In Fig. 8, the injected fault can cause a
failure at Function 2. While it is possible to add assertions to ensure the integrity
of data around the corrupted state, it would be also debatable whether adding such
assertions makes sense in practice. Typical such discussions would consider various
factors such as the considered software fault or attack models and the required level
of security in their target programs. (a) Attack model. The original intent of injecting
software faults was to capture part of the critical error propagation paths. Although
the triggering part is undecided, we note that some attackmodels can directly emulate
the impact of an injected fault (e.g., as a register or memory value corruption at a
right moment). For example, rowhammer attacks [5, 56] can corrupt a critical state
of an object instance of a target software system although that relies on rowhammer
vulnerabilities in the underlying kernel or middleware, and thus cannot easily target
an arbitrary code location of a native program even when the hardware has such
defects.

One of the practical security attack approaches is to find the backward dataflow
from the corrupted state to an input value of a target program. There are many tech-
niques (e.g., based on constraint solver generating concrete input values for a given
call flow path [57]) that can assist such backward dataflow tracking process. Using
the states corrupted as a result of the activation of an identified software fault (e.g.,
a fault leading to a buffer overflow without being detected by the tests and built-in
error detectors) can reduce the search space of such automatic test input generation
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techniques (e.g., [58]) and consequently improve their scalability when the tech-
niques are practically used. If one can successfully identify such backward dataflow
to an input value, the recommendation is to add sanity checks for the identified input
value or to add checks to other derived values used before the input value propagates
towards the identified corrupted state within the target program.

Precondition Checks for Libraries. Another case is when the injected software
fault causes a failure at Function 3 (see Fig. 8). This is typically due to passing of a
corrupted argument value from Function 2 to Function 3 and thus can be detected
by adding some precondition checks to Function 3.

An example in the experimentwasWAEP fault #18 of openssl. The following code
fragment shows that fault which changes the line−8 to+8 to corrupt a pointer argu-
ment value. When do_ssl3_write() called memcpy() using as alias of the corrupted
pointer, memcpy() caused a stack buffer overflow that was caught by the address
sanitizer.

This can be detected by adding precondition checks to do_ssl3_write() so as to
ensure that all buffers passed to it are pointing to valid memory objects. Many similar
cases were observed where classifying the allocated memory objects by their type
and keeping a list of allocated objects of each type help build such sanity checks in
an effective way.

Sanity Checks for In-Memory Data Structure. In openssl, MIFS fault #18
injected into ssl/ssl_ciph.c file removed the iƒ-statement at line 5 and 6. Later,
when ssl_cipher_collect_aliases() called by ssl_create_cipher_list() was run, it
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caused a heap buffer overflow failure that was detected by the address sanitizer. We
note that ssl_create_cipher_list() can call ssl_cipher_apply_rule(), which can then
call ll_append_head(). However, there is no legitimate, direct call flow between
where the fault is injected, ll_append_head(), and where the failure is detected,
ssl_cipher_collect_aliases(). Thus the error propagated via the doubly- linked list
data structure. Clearly, adding a sanity check for that data structure can detect such
errors in advance before the error propagates to manifest as a heap buffer overflow
failure.

Similar to the used sqlite benchmark program, in other systems (such as file
system and database) fail-stop or fail-fast property is critical for their operational
missions. Part of the critical error propagation paths identified as a result of using
the presented methodology can be thus used to assess such fail-stop property of a
target program under various kinds of software faults [45] and to identify hardening
targets. In that case, hardening gains more practical sense than the other use cases
because the product owners want to continue running the applications even if there
is a detected error. Thus, the applicability of the error propagation analysis explained
in this case study depends also on the requirements of a target program [51].

8 Conclusion

Common security assessment approaches tried to measure or find as many vulner-
abilities as possible from a target program. Such approaches are costly and their
efficiency depends on the amount of effort put into finding critical vulnerabilities.
As the frequency of updating software becomes higher and higher, such previous
assessment approaches become less and less practical and can mainly be kept as a
retrospective measurement technique. In order to overcome such technical hurdle,
this study presented a novel methodology that can proactively assess the security
defense of native programs by extracting the relevant conditional probabilities. The
measured conditional probabilities show: (1) the capability of fuzzing in finding
exploitable software faults in the injected classical software faults and (2) the capabil-
ities of built-in security protection mechanisms and tests of a target program against
the exploitable software faults. This, for example, helps us understand what portion
of non-benign software faults can be caught by the built-in protection mechanisms of
a target program and the error detection mechanisms of the underlying software and
hardware platforms. By combining the derived conditional probabilities with actual
measurement data (e.g., the number of recently found and fixed vulnerabilities), one
can further estimate how many non-benign software faults are still hidden in a target
program.8

8 This work is rooted in the fault injection methodology and demonstrates a new application area
of fault injection in software security evaluation. Since the author joined Google, there have been
other works done to improve the dependability and security ofmobile cloud computing applications.



96 K. S. Yim

References

1. Chen S, Xu J, Kalbarczyk Z, Iyer R, Whisnant K (2004) Modeling and evaluating the security
threats of transient errors in firewall software. Perform Eval 56(1):53–72

2. NakkaN,KalbarczykZ, IyerR,Xu J (2004)Anarchitectural framework for providing reliability
and security support. In: Proceedings of the IEEE/IFIP international conference on dependable
systems and networks (DSN), pp 585–594

3. Pham C, Estrada Z, Cao P, Kalbarczyk Z, Iyer RK (2014) Reliability and security monitoring
of virtual machines using hardware architectural invariants. In: Proceedings of the IEEE/IFIP
international conference on dependable systems and networks (DSN), pp 13–24

4. Sanders WH (2014) Quantitative security metrics: Unattainable holy grail or a vital break-
through within our reach? IEEE Secur Priv 12(2):67–69

5. YimKS (2016) The rowhammer attack injection methodology. In: 2016 IEEE 35th symposium
on reliable distributed systems (SRDS), pp 1–10

6. Iyer R, Nakka N, Gu W, Kalbarczyk Z (2010) Fault injection. In: Encyclopedia of software
engineering, pp 287–299

7. Pendleton M, Garcia-Lebron R, Cho J-H, Xu S (2017) A survey on systems security metrics.
ACM Comput Surv 49(4):1–35

8. Arlat J, Aguera M, Amat L, Crouzet Y, Fabre JC, Laprie JC, Martins E, Powell D (1990)
Fault injection for dependability validation: a methodology and some applications. IEEE Trans
Softw Eng 16(2):166–182

9. Madeira H, Silva JG (1994) Experimental evaluation of the fail-silent behavior in computers
without error masking. In: Proceedings of IEEE 24th international symposium on fault-tolerant
computing, pp 350–359

10. Madeira H, RelaM,Moreira F, Silva JG (1994) Rifle: a general purpose pin-level fault injector.
In: Echtle K, Hammer D, Powell D (eds) Dependable computing—EDCC-1. Springer, Berlin,
pp 197–216d

11. Karlsson J, Liden P, Dahlgren P, Johansson R, Gunneflo U (1994) Using heavy-ion radiation
to validate fault-handling mechanisms. IEEE Micro 14(1):8–23

12. Ando H, Kan R, Tosaka Y, Takahisa K, Hatanaka K (2008) Validation of hardware error
recoverymechanisms for the sparc64 vmicroprocessor. In: 2008 IEEE international conference
on dependable systems and networks with FTCS and DCC (DSN), pp 62–69

13. Govindavajhala S, Appel AW (2003) Using memory errors to attack a virtual machine. In:
2003 symposium on security and privacy, pp 154–165

14. Miremadi G, Harlsson J, Gunneflo U, Torin J (1992) Two software techniques for on-line error
detection. In: [1992] digest of papers. FTCS-22: the twenty-second international symposium
on fault-tolerant computing, pp 328–335

15. Choi GS, Iyer RK (1992) Focus: an experimental environment for fault sensitivity analysis.
IEEE Trans Comput 41(12):1515–1526

16. Jenn E, Arlat J, Rimen M, Ohlsson J, Karlsson J (1994) Fault injection into vhdl models:
the mefisto tool. In: Proceedings of IEEE 24th international symposium on fault-tolerant
computing, pp 66–75

17. Segall Z, Vrsalovic D, Siewiorek D, Yaskin D, Kownacki J, Barton J, Dancey R, Robinson
A, Lin T (1988) Fiat-fault injection based automated testing environment. In: [1988] The
eighteenth international symposium on fault-tolerant computing. Digest of papers, pp 102–107

18. Yim KS, Pham C, Saleheen M, Kalbarczyk Z, Iyer R (2011) Hauberk: Lightweight silent
data corruption error detector for gpgpu. In: Proceedings of the IEEE international parallel
distributed processing symposium (IPDPS), pp 287–300

19. Stott DT, FloeringB,BurkeD,KalbarczpkZ, Iyer RK (2000)Nftape: a framework for assessing
dependability in distributed systems with lightweight fault injectors. In: Proceedings IEEE
international computer performance and dependability symposium. IPDS 2000, pp 91–100

Interested readers are referred to [59] for big data service monitoring, [60] for big data software
release, [5] for cloud virtualization platform security, and [61] Android platform ecosystem security.



Assessment of Security Defense of Native Programs … 97

20. Carreira J, Madeira H, Silva JG (1998) Xception: a technique for the experimental evaluation
of dependability in modern computers. IEEE Trans Softw Eng 24(2):125–136

21. Arlat J, Fabre JC, RodriguezM (2002) Dependability of cots microkernel-based systems. IEEE
Trans Comput 51(2):138–163

22. Kanawati GA, Kanawati NA, Abraham JA (1995) Ferrari: a flexible software-based fault and
error injection system. IEEE Trans Comput 44(2):248–260

23. Han S, Shin KG, Rosenberg HA (1995) Doctor: an integrated software fault injection environ-
ment for distributed real-time systems. In: Proceedings of 1995 IEEE international computer
performance and dependability symposium, pp 204–213

24. Pattabiraman K, Nakka NM, Kalbarczyk ZT, Iyer RK (2013) Symplfied: symbolic program-
level fault injection and error detection framework. IEEE Trans Comput 62(11):2292–2307

25. Jacques-SilvaG,KalbarczykZ,GedikB,AndradeH,WuK-L, IyerRK (2011)Modeling stream
processing applications for dependability evaluation. In: 2011 IEEE/IFIP 41st international
conference on dependable systems networks (DSN), pp 430–441

26. KaoWI, Iyer RK, Tang D (1993) Fine: a fault injection and monitoring environment for tracing
the Unix system behavior under faults. IEEE Trans Softw Eng 19(11):1105–1118

27. KaoW-L, Iyer RK (1994) Define: a distributed fault injection and monitoring environment. In:
Proceedings of IEEE workshop on fault-tolerant parallel and distributed systems, pp 252–259

28. Tsai TK, Iyer RK, Jewitt D (1996) An approach towards benchmarking of fault-tolerant
commercial systems. In: Proceedings of annual symposium on fault tolerant computing, pp
314–323

29. Chillarege R, Bhandari IS, Chaar JK, Halliday MJ, Moebus DS, Ray BK, Wong MY (1992)
Orthogonal defect classification-a concept for in-process measurements. IEEE Trans Softw
Eng 18(11):943–956

30. Sullivan M, Chillarege R (1991) Software defects and their impact on system availability-
a study of field failures in operating systems. In: [1991] digest of papers. Fault-tolerant
computing: the twenty-first international symposium, pp 2–9

31. Thakur A, Iyer RK, Young L, Lee I (1995) Analysis of failures in the tandem nonstop-ux
operating system. In: Proceedings of the sixth international symposium on software reliability
engineering, pp 40–50

32. Herder JN, BosH,Gras B, Homburg P, TanenbaumAS (2009) Fault isolation for device drivers.
IEEE/IFIP international conference on dependable systems networks 2009:33–42

33. Herder JN, Bos H, Gras B, Homburg P, Tanenbaum AS (2007) Failure resilience for device
drivers. In: Proceedings of the IEEE/IFIP international conference on dependable systems and
networks (DSN), pp 41–50

34. Moraes R, Barbosa R, Durães J, Mendes N, Martins E, Madeira H (2006) Injection of faults at
component interfaces and inside the component code: are they equivalent? In: Proceedings of
the European dependable computing conference, pp 53–64

35. Johansson A, Suri N, Murphy B (2007) On the selection of error model(s) for os robustness
evaluation. In: 37th annual IEEE/IFIP international conference on dependable systems and
networks (DSN’07), pp 502–511

36. Winter S, Sarbu C, Suri N,Murphy B (2011) The impact of fault models on software robustness
evaluations. In: 2011 33rd international conference on software engineering (ICSE), pp 51–60

37. Durães J, Madeira H (2002) Emulation of software faults by educated mutations at machine-
code level. In: Proceedings of 13th international symposiumon software reliability engineering,
pp 329–340

38. Durães JA, Madeira HS (2006) Emulation of software faults: a field data study and a practical
approach. IEEE Trans Softw Eng 32(11):849–867

39. Durães J, Madeira H (2003) Definition of software fault emulation operators: a field data study.
In: Proceedings of 2003 international conference on dependable systems and networks, pp
105–114

40. Natella R, Cotroneo D, Duraes JA, Madeira HS (2013) On fault representativeness of software
fault injection. IEEE Trans Softw Eng 39(1):80–96



98 K. S. Yim

41. Jia Y, Harman M (2011) An analysis and survey of the development of mutation testing. IEEE
Trans Softw Eng 37(5):649–678

42. Hudak JJ, Suh BH, Siewiorek DP, Segall Z (1993) Evaluation and comparison of fault-tolerant
software techniques. IEEE Trans Reliab 42(2):190–204

43. Bondavalli A, Chiaradonna S, Cotroneo D, Romano L (2004) Effective fault treatment for
improving the dependability of cots and legacy-based applications. IEEE Trans Dependable
Secure Comput 1(4):223–237

44. NgWT, Chen PM (2001) The design and verification of the rio file cache. IEEE Trans Comput
50(4):322–337

45. Chandra S, Chen PM (1998) How fail-stop are faulty programs? In: Digest of papers. Twenty-
eighth annual international symposium on fault-tolerant computing (Cat. No.98CB36224), pp
240–249

46. Swift MM, Bershad BN, Levy HM (2003) Improving the reliability of commodity operating
systems. In: Proceedings of the nineteenth ACM symposium on operating systems principles,
ser. SOSP ’03. ACM, New York, pp 207–222

47. Swift MM, Annamalai M, Bershad BN, Levy HM (2006) Recovering device drivers. ACM
Trans Comput Syst 24(4):333–360

48. Neves N, Antunes J, Correia M, Verissimo P, Neves R (2006) Using attack injection to
discover new vulnerabilities. In: International conference on dependable systems and networks
(DSN’06), pp 457–466

49. Antunes J, Neves N, Correia M, Verissimo P, Neves R (2010) Vulnerability discovery with
attack injection. IEEE Trans Softw Eng 36(3):357–370

50. Fonseca J, Vieira M, Madeira H (2014) Evaluation of web security mechanisms using
vulnerability attack injection. IEEE Trans Dependable Secure Comput 11(5):440–453

51. Kanoun K, Spainhower L (2008) Dependability benchmarking for computer systems. Wiley,
IEEE Computer Society Pr

52. Tsai TK, Hsueh M-C, Zhao H, Kalbarczyk Z, Iyer RK (1999) Stress-based and path-based
fault injection. IEEE Trans Comput 48(11):1183–1201

53. Serebryany K, Bruening D, Potapenko A, Vyukov D (2012) Addresssanitizer: a fast address
sanity checker. In: 2012 USENIX annual technical conference (USENIX ATC 12). USENIX
Association, Boston, pp 309–318. [Online]. Available: https://www.usenix.org/conference/
atc12/technical-sessions/presentation/serebryany

54. Kim S, Zimmermann T, Jr EJW, Zeller A (2007) Predicting faults from cached history. In:
Proceedings of the international conference on software engineering (ICSE), pp 489–498

55. YimKS,KalbarczykZT, IyerRK (2009)Quantitative analysis of long-latency failures in system
software. In: 2009 15th IEEE Pacific rim international symposium on dependable computing,
pp 23–30

56. Razavi K, Gras B, Bosman E, Preneel B, Giuffrida C, Bos H (2016) Flip feng shui: Hammering
a needle in the software stack. In: 25th USENIX security symposium (USENIX Security 16).
USENIX Association, Austin, pp 1–18

57. Cadar C, Ganesh V, Pawlowski PM, Dill DL, Engler DR (2008) Exe: automatically generating
inputs of death. ACM Trans Inf Syst Secur 12(2):10:1–10:38

58. Cadar C, Dunbar D, Engler D (2008) Klee: unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Proceedings of the 8th USENIX confer-
ence on operating systems design and implementation, ser. OSDI’08. USENIX Association,
Berkeley, pp 209–224

59. Yim KS (2016) Evaluation metrics of service-level reliability monitoring rules of a big data
service. In: 2016 IEEE 27th international symposium on software reliability engineering
(ISSRE), pp 376–387

60. YimKS (2014)Norming to performing: Failure analysis and deployment automation of big data
software developed by highly iterative models. In: 2014 IEEE 25th international symposium
on software reliability engineering, pp 144–155

61. Yim KS, Malchev I, Hsieh A, Burke D (2019) Treble: fast software updates by creating an
equilibrium in an active software ecosystem of globally distributed stakeholders. ACM Trans
Embed Comput Syst 18(5s). [Online]. Available: https://doi.org/10.1145/3358237

https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1145/3358237


Multi-layered Monitoring for Virtual
Machines

Cuong Pham

Abstract This chapter describes monitoring methods to achieve both security and
reliability in virtualized computer systems. We show how to perform continuous
monitoring and leverage information across different layers of a virtualized computer
system to detect malicious attacks and accidental failures.

1 Motivation

When a system is deployed at scale, the efficient automation of monitoring is
key to achieving resilience against accidental failures and malicious attacks. This
chapter specifically focuses on monitoring virtualized computer systems, which is
an enabling technology of modern data centers.

Why monitoring? Computer systems fail regardless of how carefully they are
constructed. A failure is either a reliability incident or a security incident. While
reliability incidents are primarily caused by the increasing complexity of computer
systems, security threats increase as data stored and processed by computers carry
greater value.

It is a well-established design principle to treat reliability and security incidents
as the norm, rather than the exception [1]. A system operates under the assumption
that it can accidentally fail or be attacked at any point in time. Therefore, to produce
steady and useful progress, the systemneeds to bemonitored so that adverse incidents
are detected and mitigated as quickly as possible. This is the principle that embraces
high-fidelity monitoring as essential to achieve resiliency in computer systems.

Our research shares the same core proposition with this design principle: using
monitoring as the main vehicle to cope with attacks and failures. We focus on the
design and construction of efficientmonitoringmethods that can capture high-fidelity
views of target systems.
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Why virtualized computer systems? Virtualization is the means to enable sharing
and to achieve high utilization in modern data centers. In 2012, 51% of ×86 servers
were virtualized, a 13% increase from 2011 [2]. In addition to virtualized servers
being more prevalent than non-virtualized ones, the density of VMs on each server
is also increasing [3].

The primary driving force of this trend is cloud computing, which leverages
virtualization on commodity hardware as the core technology to facilitate sharing.
Not unlike other types of utilities, cloud computing benefits from the economies of
sharing and scaling. This is because sharing greatly decreases the cost of computing
resources, which in turn attracts more users and providers to join the flow.

Given the abundance of VMs, an improvement in the security and reliability of
this technology will have a large impact.

2 Target System Model

In this chapter, the target of monitoring is a virtualized system as depicted in Fig. 1.
The bottom layers, including Hardware, Firmware/Bios, and Hypervisor/OS, consti-
tute the hostmachine. The layers on the top, includingApplication andOS, constitute
the virtual machines. The host machine can accommodate multiple VMs running at
the same time. From user perspectives, VMs operate independently of each other.

We use the term VM monitoring to indicate any monitoring method that has the
protection target (or target for short) in a layer of the virtualization software stack,
including software running on a VM and the hypervisor.When the context is unclear,

Fig. 1 A typical virtualized computer system. The virtualization software stack is the target of our
monitoring
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we use a more descriptive term to indicate the target of monitoring. Specifically, we
use guest operating system monitoring, or guest application monitoring to indicate
that monitoring targets are an operating system (OS) and applications running inside
VMs, respectively. Similarly,we use hypervisormonitoring to indicate that the hyper-
visor is the target ofmonitoring. In addition,we use out-of-VMmonitoring to indicate
monitoring techniques deployed outside of target VMs to monitor software running
inside VMs (e.g., monitoring is done from the hypervisor or from other VMs).

In the designs of ourmonitoring,we assume thatHardwareAssistedVirtualization
(HAV), such as Intel VT-x [4] or AMD-V [5]), is an integral component of the
system, and is utilized by hypervisors to implement virtualization. At the moment,
all server-grade×86 processors on themarket support HAV. Furthermore, all popular
hypervisor implementations, such as theVMWare hypervisor family, KVM [6], XEN
[7], and Virtual Box, can utilize HAV to execute VMs.

With regard to security monitoring, our threat model assumes that VM share the
attack surface of the target virtualized system. This assumption is derived from the
model of data centers that rely on virtualization to serve users and process workloads.
Infrastructure as a Service (IaaS) in cloud computing is a typical example of this
model. In such a system, a user can execute arbitrary software, from user applications
to their own OSs, inside VMs. Meanwhile, they do not have direct access to the host
machine, except via the VM-hypervisor interface provided byHAV. Furthermore, we
explicitly trust the underlying hardware. We also do not consider physical tampering
and inside attackers (e.g., malicious administrators who already have remote access
to the host machine).

In this threat model, we consider two broad scenarios: attacking a VM and
attacking a hypervisor. The first scenario refers to attacks that aim at compromising
software running inside a VM. Since in a typical data center setup most VMs must
expose some remote access via the Internet to be used, they are constantly at risk
of being targeted by attackers. The second scenario assumes the attacker has full
access to a VM and exploits the VM-hypervisor interface to launch attacks against
the underlying hypervisor (and other co-located VMs). For example, a public IaaS
cloud allows any user to launch their own VMs at a very small cost. Those VMs can
be used as an attack entry point to the hypervisor. Or a successful attack described in
the previous scenario may grant the attacker administrative access to the exploited
VM, which in turn can lead to an attack against the hypervisor.

3 Limitations of State-of-the-Art VMMonitoring

Despite significant research effort that has been invested, state-of-the-art VM moni-
toring techniques still experience some fundamental limitations that dwarf their prac-
ticality. Those are limitations that leave critical gaps for failures and attacks to escape
detection. Herewe present limitations in regard to security and reliabilitymonitoring.



102 C. Pham

3.1 Polling-and-Scanning Monitoring Paradigm

Most VM monitoring techniques, e.g., [8–12], follow the polling-and-scanning
paradigm. In this paradigm, monitoring is done by scanning the target system at
a specific polling interval. This paradigm is also known as passive monitoring [13].

There are two major limitations of the polling-and-scanning method. First, it
leaves vulnerable time gaps between consecutive polling intervals. During those
temporal gaps, a transient attack, which completely removes its footprint after
completing, cannot be detected. We have demonstrated in [14, 15] that transient
attacks can be crafted to evade VM monitors with a high chance of success. Next,
this monitoring method can only scan the static state of the target system, e.g., the
state that is stored in SRAM or persistent storage. What it misses is operational data
about the activities of the target system, which is necessary to enforce many security
and reliability monitoring policies.

3.2 Untrustworthy Input

The goal of monitoring is to capture and present a trusted view of target systems.
This view is used at a later phase in a system’s operational pipeline, e.g., enforcing a
security or reliability policy. Thus, the input of monitoring must be carefully selected
to faithfully represent the target system. This requirement is particularly imperative
in the context of security monitoring, because attackers always proactively seek
opportunities like this, which let them manipulate input to falsify monitoring views.

However, many out-of-VM monitoring techniques [8–12] fail to satisfy this
requirement, as they rely on untrustworthy input. Thesemonitoring techniques exclu-
sively rely on data structures maintained by software inside a target VM to derive
views of the VM itself. It has been demonstrated that if the guest software is compro-
mised, those data structures can be manipulated by attackers to circumvent such
out-of-VM monitors [16, 17].

3.3 Inflexible Monitor Placement

Target systems and attacks are both moving targets. For example, the target system
can be reconfigured or updated, or a newvulnerability or bug can be discovered.Many
of these events require a corresponding update in the monitoring system. In addition,
attacks are often carried out in multiple stages [18], with each stage requiring a
different set of monitors to fully cover the trace of the attack.

For these reasons, monitoring systems need to be made ready for changes. More-
over, changes in a monitoring system should not be a source of downtime to target
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systems. This is however not the case for existing VMmonitoring techniques, which
requiremonitoring setup and configuration as a part of the target system boot process.

3.4 Incompatible Reliability and Security Monitoring

Reliability and security tend to be treated separately because they appear orthogonal:
reliability focuses on accidental failures, security on intentional attacks. Because of
the apparent dissimilarity between the two, tools to detect and recover from the
different classes of failures and attacks are usually designed and implemented differ-
ently. So, integrating support for reliability and security in a single framework is a
significant challenge.

Current VM monitoring techniques are no exception. While there is a substantial
body of VM monitoring research dedicated to security monitoring, and some work
dedicated to reliability, we are not aware of any previous effort toward combining
these two subjects of monitoring.

The above four identified issues in VMmonitoring hinder its adoption in produc-
tion systems.Our research aims at (i) raising the awareness of those issues via demon-
strations of real attacks and failures, and (ii) exploring new monitoring paradigms
and methods that can resolve all of the four issues.

4 HyperTap: Virtual Machine Monitoring Using Hardware
Architectural Invariants

Reliability and security (RnS) are two essential aspects of modern highly connected
computing systems. Traditionally, reliability and security tend to be treated sepa-
rately because of their orthogonal nature: while reliability deals with accidental
failures, security copes with intentional attacks against a system. As a result, mech-
anisms/algorithms addressing the two problems are designed independently, and it
is difficult to integrate them under a common monitoring framework.

In this section, we identify the commonalities between reliability and security
monitoring to guide the development of suitable frameworks for combining both
uses of monitoring.

We apply our observations in the design and implementation of the HyperTap
framework for virtualization environments.
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4.1 Monitoring Principles

A monitoring process can be divided into two tightly coupled phases: logging and
auditing [41]. In the logging phase, relevant system events (e.g., a system call) and
state (e.g., system call parameters) are captured. In the auditing phase, these events
and states are analyzed, based on a set of policies that classify the state of the system,
e.g., normal or faulty. Based on that model, we observe that although Reliability and
security monitors may apply different policies during the auditing phase, they can
utilize the same event- and state-logging capability. This observation suggests that
the logging phases of multiple reliability and security monitors need to be combined
into a common framework. Unification of logging phases brings further benefits,
namely, it avoids potential conflict between different monitors that track the same
event or state, and reduces the overall performance overhead of monitoring.

4.1.1 Unified Logging

It is not uncommon for co-deployed logging mechanisms to conflict. For instance,
twomonitors relying on a certain counter that only allows exclusive access cannot use
it simultaneously. A concrete example would be to deploy both the failure detection
technique proposed in [43] and the malware detection technique proposed in [44] in
the same system, as they both use hardware performance counters. In addition, one
monitor may become a source of noise for other monitors. For example, intrusive
logging could generate an excessive number of events.

The problem can be solved by unifying logging for co-located monitors. Unified
logging is responsible for (i) retrieving common target system events and states, and
then (ii) streaming them in a timely manner to customizable auditors, which enforce
RnS policies.

Aside from avoiding potential conflicts, the combination of logging phases yields
additional benefits. It can reduce the overall performance overhead of combined
monitors. To ensure the consistency of captured states and events, logging is often
a blocking operation. Once the event and state have been logged, an audit can be
performed in parallel with execution of the target system. Therefore, combining
blocking logging phases boosts performance, even in cases where the captured states
differ. Furthermore, this approach inherits other benefits of the well-known divide-
and-conquer strategy: it allows one to focus on hardening the core logging engine,
and enables incremental development and deployment of auditing policies.

4.1.2 Achieving Isolation via Architectural Invariants

AnOS invariant is a property defined and enforced by the design and implementation
of a specific OS, so that the software stack above it, e.g., user programs and device
drivers, can operate correctly. In the context of VMI, OS invariants allow the internal
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state of aVMto bemonitored from the outside by decoding theVM’smemory [8–12].
No user inside a VM can interfere with the execution of outside monitoring tools.
However, monitoring tools still share input, e.g., a VMs’ memory, with the other
software inside VMs. Therefore, those monitoring tools are vulnerable to attacks at
the guest system level, as demonstrated in [16, 17, 45].

An architectural invariant is a property defined and enforced by the hardware
architecture, so that the entire software stack, e.g., hypervisors, OSes, and user appli-
cations, can operate correctly. For example, the ×86 architecture requires that the
CR3 and TR registers always point to the running process’s Page Directory Base
Address (PDBA) and Task State Segment (TSS), respectively. Hardware invariants
and HAV features have been studied in the context of security monitoring [28] and
offline malware analysis [33].

Wefind that architectural invariants, particularly the ones defined byHAV, provide
an outside view with desirable features for VM reliability and security monitoring.
The behaviors enforced by HAV involve primitive building blocks of essential OS
operations, such as context switches, privilege level (or ring) transfers, and interrupt
delivery. Furthermore, strong isolation between VMs and the physical hardware
ensures the integrity of architectural invariants against attacks inside VMs. Software
inside VMs cannot tamper with the hardware as it can with the OS. In this study, we
explore the full potential of HAV for online enforcement of RnS policies.

However, relying solely on architectural invariants and ignoring OS invariants
would widen the semantic gap separating the target VM and the hypervisor. The
reason is that many OS concepts, such as user management (e.g., processes owned
by different users), are not defined at the architectural level. In this study, we propose
to use architectural invariants as the root of trustwhen derivingOS state. For example,
the thread info data structure in the Linux kernel containing thread-level information
can be derived from the TSS data structure, a data structure defined by the ×86
architecture.

In order to circumvent the OS state derivation, an attack would need to change the
layout of OS-defined data structures (e.g., by adding fields to an existing structure
that point to tainted data). Changing data structure layout, as opposed to changing
values, is difficult for attackers, because (i) it involves significant changes to the
kernel code that references the altered fields, and (ii) it would need to relocate all
relevant kernel data objects. Not only are those attacks difficult to perform on-the-fly,
but since malware always tries to minimize its footprint, our approach significantly
impedes would-be attackers.

4.1.3 Robust Active Monitoring

Passive monitoring is suitable for persistent failures and attacks, because it assumes
the corrupted or compromised state remains in the system sufficiently longer than
the polling interval. That assumption does not hold in many RnS problems. For
example, the majority of crash and hang failures in Linux systems have short failure
latencies (the time for faults to manifest into failures) [46]. An unnecessarily long
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detection latency, e.g., caused by polling monitoring, would result in subsequent
failure propagation or inefficient recovery (e.g., multiple roll-backs).

As we demonstrate in Sect. 4.3.2, a transient attack can be combined with other
techniques to create a stealthy attack that can defeat passive monitoring. Active
monitoring, or event-driven monitoring, on the other hand, possesses many attractive
features. Since it is event-driven, there is no time dependence that can be exploited.
Furthermore, activemonitoring can capture system activities in addition to the system
state, which passive monitoring provides. System activities are the operations that
transition a system from one state to another. Invoking a system call is an example
of a system activity. In many cases, information about system activities is crucial to
enforcing RnS policies.

Active monitoring is not foolproof, as it can suffer from event bypass attacks. If an
attack can prevent or avoid generation of events that trigger logging, it can bypass the
monitor. To make active monitoring robust, we propose to use hardware invariants,
specifically the VM Exit feature provided by HAV, to generate events.

4.2 Framework and Implementation

4.2.1 Scope and Assumptions

HyperTap integrates with existing hypervisors to safeguard VMs against failures and
attacks. It aims to make this protection transparent to VMs by utilizing existing hard-
ware features. Thus, HyperTap does not require modification of either the existing
hardware or the guest OS’s software stack.

HyperTap’s implementation assumes that the underlying hardware and hypervisor
are trusted. Although extra validation and protection for the hardware and hypervisor
could address concerns about the robustness of different hypervisors against failures
and attacks, these issues are addressed by the proposed monitors in hShield (Sect. 6).

4.2.2 Monitoring Workflow

Figure 2 depicts the overall workflow of HyperTap. The left side of the figure illus-
trates how the shared event logging mechanism works and the right side describes
the auditing phase.

HyperTap utilizes HAV to intercept the desired guest OS operations through VM
Exit events generated by corresponding hardware operations. Since the HAV VM
Exit mechanism is not designed to intercept all desired operations, e.g., system calls,

HyperTap supports a wide range of events, from coarse-grained events, such as
process context switches, to finer-grained events, such as system calls, and very fine-
grained events, such as instruction execution and memory accesses. That variable
granularity ensures that HyperTap can be adopted for a broad range of RnS policies.
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Fig. 2 Implementation of HyperTap in the KVMhypervisor. The hypervisor is modified to forward
VM Exit events to the Event Multiplexer (EM), which is implemented as a separate kernel module.
The EM forwards events to registered auditors running as user processes inside auditing containers.
The Remote Health Checker (RHC) monitors the hypervisor’s liveness

HyperTap delivers captured events to registered auditors, which implement
specific monitoring policies. An auditor starts by registering for a set of events
needed to enforce its policy. Upon the arrival of each event, the auditor analyzes
the state information associated with the event. Auditors are associated with VMs
and each VM can have multiple auditors.

HyperTap also provides an interface that allows auditors to control target VMs.
For example, the auditing phase is non-blocking by default, but an auditor may pause
its target VM during analysis in order to stop the VM during an attack, or roll-back
the VM when it detects a non-recoverable failure.

4.2.3 Implementation

This subsection presents the integration of HyperTap with KVM [6], hypervisor built
with HAV as a Linux kernel module. Figure 2 depicts the deployment of HyperTap’s
components.

HyperTap’s unified logging channel is implemented through two components: an
Event Forwarder (EF) and an Event Multiplexer (EM). The EF is integrated into the
KVMmodule, and forwards VM Exit events and relevant guest hardware state to the
EM. By default, events are sent non-blocking to minimize overhead. The EM, which
is implemented as another Linux kernel module in the host OS, buffers input events
from the EF and delivers them to the appropriate auditors.
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The EM is also responsible for sampling VMExit events that are sent to a Remote
Health Checker (RHC) running in a separate machine. The RHC server acts as a
heartbeat server to measure the intervals between received events. If no events are
received after a certain amount of time, it raises an alert about the liveness of the
monitoring system.

Auditors are implemented as user processes inside auditing containers 4 running
on the host OS. Compared to the dedicated auditing VM used in previous work [11,
11], this approach offers multiple benefits. First, it provides lightweight attack and
failure isolation among different VMs’ auditors, and between auditors and the host
OS. Second, it simplifies implementation and reduces the performance overhead of
event delivery from the EMmodule. Finally, it allows the integration of auditors into
existing systems, since containers are robust and compatible with most current Linux
distributions.

We needed to add less than 100 lines of code to KVM to implement the EF
component and export Helper APIs.

4.3 Performance Evaluation

We conducted experiments to measure the performance overhead of individual
HyperTap auditors as well as the combined overhead of running multiple auditors.
Wemeasured the runtime of the UnixBench 3 performance benchmark when (i) each
auditor was enabled, and (ii) all three auditors were enabled. The target VM was a
SUSE 11 Linux VMwith 2 vCPUs and 1GiB of RAM. The host computer ran SUSE
11 Linux and the KVM hypervisor, with an 8 core Intel i5 3.07 GHz processor and
8 GiB of RAM.

The results were illustrated in Fig. 3. The baseline is the execution time when
running the workloads in the VM without HyperTap integrated, and the reported
numbers are the average of five runs of the workloads.

In most cases, the performance overhead of running all three auditors simultane-
ously was (i) only slightly higher than that of running the slowest auditor, HT-Ninja,
individually, and (ii) substantially lower than the summation of the individual over-
heads of all auditors. That result demonstrates the benefits of HyperTap’s unified
logging mechanism.

For theDisk I/OandCPU intensiveworkloads, all three auditors together produced
less than 5% and 2% performance losses, respectively. The Disk I/O intensive work-
loads appear to have incurred more overhead than CPU intensive workloads because
they generated more VM Exit events, at which point some monitoring code was
triggered.

For the context switching and system call micro-benchmarks, all three auditors
together induced about 10% (or less) and 19% performance losses, respectively.
It is important to note that those micro-benchmarks were designed to measure the
performance of individual specific operations without any useful processing; they
do not necessarily represent the performance overhead of general applications. The
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Fig. 3 Measured performance overhead of HyperTap sample monitors. The workloads are run
with three different configurations: (1) both HRKD and HT-Ninja, (2) only HT-Ninja, and (3) only
HRKD. Error bars indicate one standard deviation

relatively high overhead was caused by the HyperTap routines enabled for logging
those benchmarked operations. Since only HT-Ninja needs to log system calls, it was
the primary source of the overhead in the system call micro-benchmark case.

5 Hprobes: Dynamic Virtual Machine Monitoring Using
Hypervisor Probes

This section introduces Hprobe, a framework that allows one to dynamically monitor
applications and operating systems inside a VM. The Hprobe framework does not
require any changes to the guest OS, which avoids the tight coupling of monitoring
with its target.
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Furthermore, the monitors can be customized and enabled/disabled while the VM
is running.

5.1 Introduction

The HyperTap framework introduced in the previous chapters provides an efficient
andhard-to-bypass event-drivenmonitoringmechanism.ThekeydesignofHyperTap
is the reliance on a fixed set of hardware architectural invariants to capture guest
OS’s activities. While we have shown that this monitoring capability is effective to
support an important set of reliability and security monitoring policies (see Chap. 4
for examples of the evaluated policies), there are still many cases in which monitors
requires a more flexible means to place monitoring points, or hooks, to capture
specific guest OS and applications’ operational activities.

One class of active monitoring systems is a hook based system, where the monitor
places hooks inside the target application or OS [13]. A hook is a mechanism used to
generate an event when the target executes a particular instruction. When the target’s
execution reaches the hook, control is transferred to the monitoring system where it
can record the event and/or inspect the system’s state. Once the monitor has finished
processing the event, it returns control to the target system and execution continues
until the next event. Hook based techniques are robust against failures and attacks
inside the target when the monitoring system is properly isolated from the target
system.

We find dynamic hook-based systems attractive for dependability monitoring as
they can be easily adapted: once the hook delivery mechanism is functional, imple-
menting a new monitor involves adding a hook location and deciding how to process
the event. In this case, dynamic refers to the ability to add and remove hooks without
disrupting the control flow of the target. This is particularly important in real-world
use, where monitoring needs to be configured for multiple applications and opera-
tional environments. In addition to supporting a variety of environments, monitoring
must also be responsive to changes in those environments.

In this section, we present the Hprobe framework, a dynamic hook-based VM
reliability and security monitoring solution. The key contributions of the Hprobe
framework are that it: is loosely coupled from the target VM, can inspect both the
OS and user applications, and it supports runtime insertion/removal of hooks. All
of these aspects result in a VM monitoring solution that is suitable for running
on an actual production system. We have built a prototype implementation using
Hardware-Assisted Virtualization that is integrated with the KVM hypervisor [6].
From our experiments, the overhead for an individual probe (the time between hook
invocation andwhen control is returned to theVM) is 2.6µs on amodern server-class
CPU. To demonstrate monitoring using the Hprobe framework, we have constructed
an emergency security vulnerability detector, a heartbeat detector, and an infinite
loop detector. While our prototype framework shares some similarities and builds on
previous monitoring systems, these detectors could not have been implemented on
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any existing platform. All of these detectors were tested using real applications and
exhibit low overhead (≤5).

5.2 Design

5.2.1 Hook-Based Monitoring

An illustration of a hook-based monitoring system adapted from the formal model
presented in Lares [13] is shown in Fig. 4. Hook basedmonitoring involves a monitor
taking control of the target after the target reaches a hook. In the case of hypervisor-
based VM monitoring, the target is a virtual machine and the monitor can run in
either the hypervisor [10], in a separate security VM [13], or in the same VM [30].
Regardless of the separation mechanism used, one must ensure that the monitor
is resilient to tampering from within the target VM and the monitor has access to
all relevant states of that VM (e.g., hardware, memory, etc.). Furthermore, a VM
monitoring system should be able to trigger on the execution of any instruction, be
it in the guest OS or in an application.

If a monitoring system can capture all relevant events, it also follows that the
monitoring system should be dynamic. This is important in the fast-changing land-
scape of IT security and reliability. As new vulnerabilities and bugs are discovered,
one will inevitably need to account for them.

The value of a static monitoring system decreases drastically over time unless
periodic software updates are issued. However, in many VM monitoring solutions
[8, 13, 14, 30], such software updates would require a hypervisor reboot or at the
very least a guest OS reboot. These reboots result in system downtime whenever
the monitor needs to be adapted. In many production systems, this additional down-
time is unacceptable, particularly when the schedule is unpredictable (e.g., security
vulnerabilities). Dynamic monitors can also provide performance improvement over

Fig. 4 Hook-based
monitoring. A hook triggers
based on event e and control
is transferred to the monitor
through notification N. The
monitor processes e with a
behavior B and returns
control to the target with a
response R
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statically configuredmonitoring: one canmonitor only events of interest vs. a general
class of events (e.g., a single system call versus all system calls). Furthermore, it is
possible to construct dynamic detectors that change during execution (e.g., a hook
can be used to add or remove other hooks). Static monitoring systems also present
a subtle design flaw: a configuration change in the monitoring system can affect the
control flow of the target system (e.g., by requiring a restart).

In line with dynamism and loose coupling with the target system, the detector
must also be simple in its implementation. If a system is overly complex and diffi-
cult to extend, the value of that system is drastically reduced as much effort needs
to be expended to use that system. In fact, such a system will simply not be used.
DNSSEC1 and SELinux2 can serve as instructive examples: while they provide valu-
able security features (e.g., authentication and access control), both of these systems
were released around the year 2000 and to this day are still disabled in many environ-
ments. Furthermore, a simpler implementation should yield a smaller attack surface
[58].

5.2.2 Design Principles

In light of the observation made in the previous section, we set the following design
principles for a dynamic VM active monitoring system:

• Protection: Monitoring should be impervious to attacks (e.g., hook circumven-
tion) inside the VM. The authors of Lares [13] outline a formal model with poten-
tial attacks and security requirements for a hook-based monitoring system. Those
requirements using the notation in Fig. 5 are: the notification N should only be
triggered on legitimate events, the state of the target should not change during
monitoring, an attacker cannot modify the behavior B of the monitor, and the
response R cannot be avoided by the target.

• Simplicity: The monitoring system should be simple to implement and extend.
In order to ease adoption and support cloud environments, it should not require
any modification of the guest OS.

• Dynamism: Themonitoring system should be loosely coupledwith the target. The
target itself should be protected from changes in the monitoring system: recon-
figuration can be expected to affect execution time, but it should not disrupt the
control flow of the target (e.g., require a reboot or application restart). Further-
more, it should be possible to insert the hooks into both the target OS and its
applications.

• Performance: The monitoring system should have acceptable overhead for use
in a production system.

We use these requirements as a guide to design a hook-based hypervisor moni-
toring framework that we call hypervisor probes or hprobes. The hypervisor provides

1 https://tools.ietf.org/html/rfc2535.
2 https://www.nsa.gov/publicinfo/pressroom/2001/se-linux.shtml.

https://tools.ietf.org/html/rfc2535
https://www.nsa.gov/publicinfo/pressroom/2001/se-linux.shtml
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Fig. 5 Hprobes integrated with the KVM hypervisor. The Event Forwarder has been added to
KVM and communicates with a separate kernel agent through Helper APIs. Detectors can either be
implemented as kernel modules in the Host OS or in user space by communicating with the kernel
agent through ioctl functions

a convenient interface for isolating monitoring from the VM while maintaining full
access to the target VM. The proposed framework allows one to insert and remove
hooks into arbitrary locations inside the guest’s memory (i.e., both the guest OS and
user applications) at runtime. To demonstrate the effectiveness of our framework,
we built a prototype and three monitors. Two of the monitors implement reliability
techniques, and the third illustrates the simplicity of using hprobes to rapidly produce
a monitor that protects against a security vulnerability.

5.3 Prototype Implementation

5.3.1 Review Debugging with Software Interrupt Int3

The ×86 architecture offers multiple methods for inserting breakpoints, which are
used in our prototype framework.We focus on the int3 instruction as it is flexible and
is not limited in the number of breakpoints that can be set. The int3 instruction is a
single byte opcode (0×cc) that raises a breakpoint exception (#BP). A debugger uses
OS provided functionality (e.g., a system call like ptrace() [59] in Linux) to control
and inspect the process being debugged. In order to insert a breakpoint, a debugger
overwrites the instruction at the desired location with int3, and then saves the original
instruction. When the breakpoint is hit and the #BP exception is generated, the OS
catches the exception and notifies the debugger. At this point, the debugger has
control of the process and can inspect the process’s memory or control its execution,
e.g., by single-stepping over subsequent instructions.
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5.3.2 Integration with KVM

The hprobe prototype was inspired by the Linux kernel profiling feature kprobes
[60], which has been used for real-time system analysis [61]. The operating prin-
ciple behind our prototype is to use VMExits to trap the VM’s execution and transfer
control to monitoring functionality in the hypervisor. This implementation leverages
Hardware-Assisted Virtualization (HAV), and the prototype framework is built on
the KVM hypervisor [6]. The prototype’s architecture is shown in Fig. 6. The modi-
fications to KVM itself make up the Event Forwarder, which is a set of callbacks
inserted into KVM’s VM Exit handlers. The Event Forwarder communicates with
a separate hprobe kernel agent using Helper APIs. The hprobe kernel agent is a
loadable kernel module that is the workhorse of the framework. The kernel agent
provides an interface to detectors for inserting and removing probes. This interface
is accessible by kernel modules through a kernel API in the host OS (which is also
the hypervisor since KVM itself is a kernel module) or by user programs via an ioctl
interface.

The execution of an hprobe based detector is illustrated in Figs. 6 and 7. A probe
is added by rewriting the instruction in memory at the target address with int3, saving
the original instruction, and adding the target address to a doubly-linked list of active
probes. This process happens at runtime and requires no application or guest OS
restart. As explained in Sect. 5.3.1, the int3 instruction generates an exception when
executed. With HAV properly configured, this exception generates a VM Exit event,

Fig. 6 Aprobe hit in the hprobe protoype. Right-facing arrows are VMExits and left-facing arrows
are VM Entries. When int3 is executed, the hypervisor takes control. The hypervisor optionally
executes a probe handler (probefunc()) and places the CPU into single-step mode. It then executes
the original instruction and does a VMEntry to resume the VM.After the guest executes the original
instruction, it traps back into the hypervisor and the hypervisor will write the int3 before allowing
the VM to continue as usual
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Fig. 7 Assembly pseudocode demonstrating what an hprobe looks like in the VM’smemory before
adding a probe (left frame) and during a probe hit (right three frames). The dashed box indicates
the VM’s current instruction

at which point the hypervisor intervenes (Step 1). The hypervisor uses the Event
Forwarder to pass the exception to the hprobe kernel agent, which traverses the list
of active probes and verifies that the int3 was generated by an hprobe. If so, the
hprobe kernel agent reports the event and optionally calls an hprobe handler function
that can be associated with the probe. If the exception does not belong to an hprobe
(e.g., it was generated by running gdb or kprobes inside the VM), the int3 is passed
back to KVM to be handled as usual. Each hprobe handler performs a user-defined
monitoring function and runs in the Host OS. When the handler returns (a deferred
work mechanism can also be used to support non-blocking probes, if desired), the
hypervisor replaces the int3 instruction with the original opcode and puts the CPU
in single-step mode. Once the original instruction executes, a single-step (#DB)
exception is generated, causing another VM Exit event [4] (Step 2). At this point, the
hprobe kernel agent rewrites the int3, performs a VM Entry, and the VM resumes its
execution (Step 3). This single-step and instruction rewrite process ensures that the
probe is always caught. If one wishes to protect the probes from being overwritten
by the guest, the page containing the probe can be write-protected. Although this
prototype was implemented using KVM, the concept will extend to any hypervisor
that can trap on similar exceptions. Note that instead of int3, we could use any other
instruction that generates VM Exits (e.g., hypercall, illegal instruction, etc.). We
chose int3 since it is well supported and has a single-byte opcode.

5.3.3 Building Detectors

Asmentioned in the previous section, hprobes can be controlled via an ioctl interface
or a kernel API. Both interfaces distinguish between probes that are inserted into
guest kernel space and guest user space. That is because while the OS always maps
the kernel space pages at the same address for all virtual address spaces, each user
program has its own set of pages. User space probes require the Page Directory
Base Address (from the CR3 register on ×86) to translate a guest virtual address
into a guest physical address. Once we know the guest physical address, we can
overwrite the instruction at that address and insert probes into the address space of
a particular process. However, the mapping of an OS-level construct like a running
process to hardware paging structures is not readily available from the hypervisor
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due to the semantic gap between the VM and the hypervisor. Therefore, we use
libVMI to obtain the value of the CR3 register corresponding to the target process’s
virtual address space [62]. This allows us to translate the virtual address of a probe
location (which can be obtained from dynamic/static analysis, or by inspecting the
application’s symbol table) to a guest physical address that can be used to add a
probe.

If onewishes to insert a probe into a user application, however, there exists another
challenge. Unlike the guest OS, the pages of a running application’s code may not be
resident in memory at all times. That is, during an application’s lifetime, some of its
code may reside on disk. When execution reaches a page that is not resident, the OS
will bring that page into memory. This means that the hypervisor may not be able
to insert probes directly into all locations of the program at all times (i.e., it would
have to wait for the OS to bring certain pages into memory). This situation arises
particularly during application startup. In this case, the OS uses a demand paging
mechanism in which the pages belonging to the application reside on disk until the
application attempts to access one of those pages. Therefore, if the page containing
the target location for a probe has not yet been accessed, a translation for guest
physical address to guest virtual address will not exist. In order to support probes
for user programs, this situation must be resolved so that the hprobe framework can
guarantee that once a probe has been added through the APIs, it will get called on
the next invocation of the instruction at the probe’s desired location.

One approach to solving the problem of having target code paged out is to wait
until the OS naturally brings the necessary page into memory. As mentioned in
Sect. 2.2, recent versions of ×86 Hardware Assisted Virtualization (HAV) use two-
dimensional page tables, and do not require VM Exits for all page table updates.
Therefore, in order to trap a page table update when using EPT, one must remove
access permissions from EPT entries to induce an EPT VIOLATIONVMExit event.
In this case,we removewrite permissions from the guest physical page corresponding
to the guest page table entry that refers to the guest virtual page for the intended probe
location. We remind the reader that in this case the page itself is not yet present in
the guest OS, and therefore a translation from guest virtual address to guest physical
address does not exist in the guest OS paging structures. When an EPT violation
corresponding to our protected guest page table entry occurs (indicating that the
page containing the probe location is now in memory), we put the CPU into single-
step mode. After the instruction writing to the guest page table executes, we can
insert the probe by performing the usual translations and traversing the guest paging
structures. This process of using page protection to insert probes into non-resident
locations is described in Fig. 8. Note that we could improve performance slightly by
avoiding the single-step and decoding the trapped instruction that caused the EPT
VIOLATION. In practice, however, this paged-out situation only occurs once during
the lifetime of the program (unless a page is swapped out, in which case disk latency
would dominate VM Exit latency) and the performance gain would be negligible.

Oftentimes when monitoring, it is necessary to not only be aware of events in the
VM (e.g., an instruction at a particular address was executed), but also the state of the
VM (e.g., registers, flags, etc.). When inserting an hprobe fromwithin the hypervisor
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Fig. 8 How a user space probe is added. A guest virtual address (GVA) for the probe’s location
must be translated into a guest physical address (GPA). If the translation fails because the page
is not present, we write protect the EPT page containing the guest page table entry (PTE) for that
GVA.When the guest OS attempts to update the guest page table, the hprobe kernel agent is notified
via an EPT violation and sets single step mode. After the single-step, the translation succeeds, and
the probe is added

(i.e., using a kernel module in the Host OS), the hprobe kernel agent passes a pointer
to a structure containing vCPU state to the hprobe handler. These privileged probe
handlers can use this structure to decode additional information or possibly modify
the state of the VM to mitigate a failure or vulnerability.

5.3.4 Discussion

Our use of int3 to generate an exception utilizes hardware enforcement of event
generation: there is no dependence on any functionality inside the guest OS. This
allows the hprobe hooking mechanism to be used on any guest OS supported by
the hypervisor. Since the majority of the work is done outside of the hypervisor
modifications (i.e., all of the heavy lifting is done inside of the kernel agent), the
system can be ported to other hypervisors that support trapping on int3.

When reflecting on the requirements set forth in Sect. 5.2, we observe that the
hprobe framework satisfies those requirements:

• Protection: By using an out-of-VM approach that is enforced by HAV, our hooks
cannot be circumvented. Furthermore,we can usememory protection in the hyper-
visor to prevent probes from being modified (or hide them by read protecting
them).

• Simplicity: Modifications to introduce the Event Forwarder and Helper APIs to
KVM add only 117 source-lines-of-code (SLOC) and the kernel agent is 703
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SLOC. The simple API allows monitors to be developed quickly and most detec-
tors can be based on a common template (e.g., build one detector by reusing a
majority of the code from a previous one). As an anecdotal example, most of the
example detectors presented in Sect. 5.4 required only two hours of programming
to be fully functional. Hprobes can be used on an unmodified guest OS.

• Dynamism: Our API allows for the insertion and removal of probes at runtime
without disrupting the control flowof the targetVM. Furthermore, unique to hook-
based VM monitoring systems, we support application level monitoring through
user space probes.

• Performance: While we require multiple VM Exits, we find that for our test
applications and use cases, the performance is acceptable and worth the value
added in the previous two dimensions.

This prototype satisfies the protection requirements adapted from Lares [13] in
Sect. 5.2.2. The notification N is only delivered if events occur legitimately (spurious
int3 s are ignored by the kernel agent). The context information of the event (theVM’s
state at event e) cannot be modified during hprobe processing since the hypervisor is
in control. The security application (e.g., a probefunc()) runs inside the hypervisor
and therefore, its behavior B cannot be altered by the VM. Additionally, the effects
of any response R from the hypervisor are enforced since the hypervisor has full
control over the target VM. Since hprobes configure VM Exits to occur on int3, one
could imagine a Denial-of-Service (DOS) attack based on causing VM Exits using
spurious int3 instructions. We note that hprobes do not present a new DOS threat and
that if an attacker were interested in such an attack, he or she can perform it using
existing functionality (e.g., using the vmcall instruction).

While using the hprobe framework does require modifications to the hypervisor,
these modifications are small and robust across multiple versions of KVM and the
Linux kernel. During the course of this project, we used the diff-match-patch libraries
3 to migrate the Event Forwarder and Helper APIs between KVM versions. We
have tested hprobes on OpenSUSE 11.2, CENTOS7, Gentoo with kernel version
3.18.7, Ubuntu 12.04, and Ubuntu 14.04. The hprobe kernel agent is written to be
version agnostic (e.g., with #ifdef macros for kernel version specific constructs like
unlocked_ioctl).

5.3.5 Limitations

This prototype is useful for a large class of monitoring use cases, however it does
have a few limitations. Namely,

• Hprobes only trigger on instruction execution. If one is interested in monitoring
data access events (e.g., trigger every time a particular address is read from/written
to), hprobes do not provide a clean way to do so. One would need to place a
probe at every instruction that modifies the data (potentially every instruction
that modifies any data if addresses are affected by user input). More cleanly, one
could use an hprobe at the beginning and end of a critical section to turn on and



Multi-layered Monitoring for Virtual Machines 119

off page protection for data relevant to that critical section, capturing the events
in a manner similar to livewire [8], but with the flexibility of hprobes. We are
considering this in future work.

• Hprobes leverage VM Exits, resulting in non-optimal performance. This tradeoff
is worth the simpler, more robust implementation with its trust rooted in HAV.

• Probes cannot be fully hidden from the VM. Even with clever EPT tricks to hide
the existence of a probe when reading from its location, a timing side channel
would still exist since an attacker could observe that the probed instruction takes
longer than expected to complete.

6 hShield: Monitoring Hypervisor Integrity

6.1 Introduction

HyperTap and HProbes, introduced in the previous chapters, rely on the trustworthy
of the underlying hypervisor to deploy their monitoring mechanisms. In this chapter,
we turn the table around and validate this assumption. Particularly, we investigated
VM-escape attacks, which are attacks that compromise hypervisor executions via
the VM-hypervisor interface provided by Hardware Assisted Virtualization (HAV).
Based on the analysis of this threat model, we introduce a new monitoring technique
that detects VM-escape attacks.

In a virtualized system, the hypervisor is a single-point-of-failure. It is the central-
ized component that manages interactions between VMs and the underlying physical
resources, such as computing, networking, and storage. Most components in hyper-
visor are granted high-privilege to permit access to the shared resources. If one of
those components is compromised, the entire virtualized system, including physical
resources and other co-located VMs, is potentially compromised as well. When an
attack works on one instance of hypervisor, the attack might be extended to affect
other instances, which have the same version as the exploited hypervisor.

In order to detect VM-escape attacks, we introduce a monitoring framework
called hShield. The core of hShield is the incorporation of an efficient Control-
Flow Integrity (CFI) enforcement method, which is specifically designed based on
our analysis of HAV-based hypervisors. In addition, our CFI method addresses two
fundamental limitations of state-of-the-art CFI techniques [76, 77], namely impre-
cise Control-Flow Graph (CFG) construction and the overhead of runtime CFI
enforcement.

The design of hShield aims to provide the following features to hypervisor security
monitoring:
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• Resistance to VM escape attacks that subvirt the control-flow of the hyper-
visor. Many of the attacks in this class can be classified into a zero-day attack—
attackers exploit an undiscovered vulnerability in the implementation of a hyper-
visor, which allows them to execute malicious codes together with the normal
execution of the hypervisor. hShield aims at detecting this class of attacks when
they are being executed without knowing the vulnerability in advance.

• Negligible performance penalty in attack-free executions. Similar toHyperTap
and HProbes, hShield employs the principle of event-driven monitoring, which
is effective in detecting both transient and persistent attacks. Additionally, we
analyzed the hypervisor execution model to extract events that hShield can effi-
ciently monitor without incurring noticeable performance overhead when the
system is in an attack-free state.

In order to evaluate hShield, we compared the result of our CFI technique with
that of BinCFI [77], a state-of-the-art CFI implementation. Our experiments show
that the CFG constructed using our method is more precise, thus, more secure in
terms of CFI enforcement. More specifically, we showed that the approximation of
BinCFI’s static analysis leaves dangerous paths in CFGs that can be exploited by
attacks to perform a VM-escape. In addition, we showed that hShield can detect a
real VM-escape attack that we crafted from a published vulnerability.

6.2 Assumptions and Threat Model

6.2.1 Assumptions

Our design targets at hypervisors that utilize Hardware Virtualization (e.g., Intel VT-
x and AMDSVM) to manage VMs’ executions. Wemake the following assumptions
about the system.

The underlying hardware virtualization is implemented correctly, meaning that
the only way to change from the VM privilege into the hypervisor privilege is to
going through the VM-exit interface, as described in Sect. 2.2. We do not handle
attacks that exploit hardware vulnerabilities.

The target host system is secured fromphysical tampering (e.g., secured in a server
room) and there is no insider-attacker (e.g., malicious administrators who already
have remote access to the host system).

The host system itself has limited direct open access from the outside world.
Preventing misuse of administrative credentials, e.g., through social engineering
methods to illegally obtain an administrative credential and use it against the host
system, is out of the scope of this work.

The target host system is equipped with a trusted boot technology, such as Trusted
Platform Module (TPM) [78], or Intel Trusted eXecution Technology (TXT) [79],
which ensures the integrity of the host system, including the hypervisor, at load-time.
Note that, we focus on ensuring the integrity of the hypervisor at runtime, given the
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Fig. 9 hShield protects hypervisor during execution. It assumes the integrity of the platform is
guaranteed at load-time by a Trusted Platform, such as TPM or Intel

integrity at load-time is guaranteed. Figure 9 shows how hShield works in tandem
with trusted platform technologies.

6.2.2 Threat Model

Virtualization creates an isolated environment for each VM, so that multiple VMs
can share common physical resources. The isolation is enforced so that a VM cannot
access resources of the host system, or other co-located VMs.

The primary threat model that we consider is classified as VM escape attacks. A
VM escape attack is an attack that breaks the isolation wall created by hypervisor to
allow programs running inside a VM to violate the integrity (i.e., alter the execution)
of the hypervisor. In particular, an attacker originally has full control over a VM.
During the execution of the VM, the attacker is able to exploit unknown or unpatched
vulnerabilities of the hypervisor software in an attempt to compromise the hypervisor.
The exploit allows the attacker to redirect control flow to execute malicious code.
The malicious code can be either injected by the attacker or salvaged from existing
code, e.g., through a return-oriented attack. The malicious code is executed at the
privilege of the hypervisor, thus it has permissions to interfere and/or access secrets
stored in the hypervisor and other co-located VMs. This is a powerful class of attack.
Figure 10 demonstrates the VM escape attack via VM-exit interface.

The assumption about attackers having full control over aVM is based on practical
settings of virtualized computing platforms. In a public IaaS environment, such as
Amazon AWS EC2, Microsoft Azure, or IBM SmartCloud, users can create a VM
to run custom software with very small cost. In other virtualized environments, in
which users have no direct access to aVM, attackersmay gain access to aVM through
exploiting vulnerabilities in the VM’s software (e.g., database or web service). Once
having full control over a VM, an attacker can use the VM as an entry point to start
attacking the underlying hypervisor.

We further breakdown VM escape attacks into transient attacks and permanent
attacks. Transient attacks are attacks that occur stealthy fast in order to bypass peri-
odic integrity measurements [80]. Meanwhile, permanent attacks once performed
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Fig. 10 Illustration of aVMescape attack in a hardware virtualization-based hypervisor. The attack
entry point is the interface the hypervisor created to handle VM-exit events. The attack diverts the
execution of the hypervisor (represented by the red box) from the normal execution

stay persistently in the target system. Majority of integrity measurement techniques
are designed to cope with persistent attacks, leaving a gap for transient attacks to
exploit [80]. Previous work [14, 15] has demonstrated the high effectiveness of
transient attacks against periodic, or polling-based, monitoring. Our threat model
includes both transient and permanent VM escape attacks.

6.3 hShield Approach Overview

This section describes the approach of our system, called hShield, to achieve the
goals established in the previous section.

6.3.1 Limitations of Existing Control Flow Integrity Monitoring

CFI enforcement [76] is a common method used to prevent attacks relying on
subverting executions of target systems (e.g., via exploiting buffer overflow vulner-
abilities). In this method, valid execution paths of a program are represented as a
Control-Flow Graph (CFG). The CFI runtime enforcement ensures that the target
program must follow a valid path in a predetermined CFG.

A CFG is a directed graph, in which a node represents a basic block3 in the
program, and a directed edge represents a transfer in the control-flow (e.g., a jump,
call, or return instruction) from a source node, where the transfer is invoked, to the
target node, where the transfer lands at. Figure 9 is an example of a CFG.

3 A basic block a consecutive sequence of instruction with no jump target except the entry and no
jump source except the exit.
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Runtime enforcing CFI aims at protecting target programs against unknown
attacks based on the validity of CFG. A predetermined CFG is essentially a white-list
of valid execution paths that are allowed to be executed. Hence, this white-list-based
monitoring approach can detect attacks that divert the target program to execute
an invalid path according to the determined CFG. As opposed to a black-list-based
monitoring approach which can only detect previously identified attacks.

The first challenge of CFI enforcement is to obtain a precise CFG of the target
program. The existing approach to CFG construction is to use static analysis [76,
77]—analyzing the source code or binary of target programs.However, static analysis
cannot determine indirect control flow transfer—the control-flow targets that are
computed at runtime, e.g., function pointers or return addresses. In order to address
this limitation, current CFI techniques employ approximations to statically determine
such dynamic targets [77].

This imprecision is a potential source for attack to by-pass CFI security runtime
enforcement. For example, an attacker can use a jump-to-libc attack to invoke
functions that are dynamically-incorrect, but statically-approximated.

The second challenge of CFI enforcement is to minimize the runtime overhead
caused by runtime validation. The approach used by state-of-the-art CFI techniques
is to perform target validation, e.g., validate whether the current jump follows a valid
edge in the CFG, at the end of every basic block. Themain challenge of this approach
is to keep the performance overhead of the validation small due to the high frequency
of basic block jumps.

6.3.2 hShield CFG Construction

hShield addresses the approximated CFG issuementioned above by combining static
analysis and profiling to construct a CFG. More specifically, we use static analysis
to construct an initial CFG, which contains basic blocks (nodes in the CFG) and
direct jumps (edges in the CFG), extracted from the target program binary. To derive
indirect control flow information, we analyze the profiled traces of the target program
execution under a set of representative workloads.

A trace records sequences of basic blocks visited during the execution of the
target program. The order of basic blocks in a trace can be used to construct a CFG.
For instance, two consecutive basic blocks B1 and B2 in a trace indicates that there
is an edge from node B1 to node B2 in the CFG. A CFG constructed based on
profiled traces contains both direct and indirect control flow information. However,
the constructed CFG may not cover all possible valid paths that the target program
may execute. The path coverage of the CFG is determined by the workloads used to
execute and record the traces of the target program. All the collected traces are used
to construct a CFG.

The initial CFG constructed using static analysis is merged with the CFG
constructed based on profiled execution traces to produce a single CFG. That CFG
contains both direct and indirect control flow information. This approach combines
the advantages of both methods: static analysis can extract direct control flows,
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and execution traces contain indirect control flows which can only be accurately
determined at runtime.

For the purpose of detecting VM escape attacks, the constructed CFG of a hyper-
visor needs to cover all valid execution paths from a VM Exit to the corresponding
VMEntry.According to our threatmodel, this is the only attack vector that an attacker
inside a VM can penetrate the hypervisor.

Figures 11 and 12 show the result of the CFG construction for the KVM-QEMU
hypervisor. Figure 11 indicates that IO INSTRUCTIONs are the most frequent type
of VMExits: 82%ofVMExits triggered during the execution of aVMunder CentOS
booting and the set of utilities in the UnixBench benchmark are IO-related events.

Figure 12 shows the detailed CFG construction results for QEMU using various
types of workloads. In a KVM-QEMU hypervisor, all IO-related VM Exits are
handled by QEMU, thus the collected events presented in the graph are IO-related
events. The CFG was incrementally constructed using the traces collected by
executing the workloads in order listed in the x-axis.

Each of the workloads was run three times. The graph shows that neither new
nodes nor edges were discovered after the PostMark benchmark, meaning that the
CFG constructed by a subset of benchmarks is able to cover all paths to execute all
the selected benchmarks.

Fig. 11 The distribution of VM Exit reasons profiled during the execution of a VM under CentOS
Linux booting and UnixBench workloads
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Fig. 12 Profiling QEMU (IO and MMIO exits only) under different VM workloads

6.3.3 hShield Runtime Enforcement

hShield proposes a novel technique to improve the performance overhead of CFI
runtime enforcement. This technique is particularly designed for the HAV-based
hypervisor execution model. Existing CFI enforcement performs validation at every
control flow transfer. This validation is the major source of performance degradation
occurring while executing protected programs. hShield’s solution to this issue is to
reduce the validation frequency by delaying it until a VM Entry is about to execute.
Per our measurement, on average the frequency of executing a VM Entry is three
orders of magnitude smaller than the frequency of a control flow transfer in the
KVM-QEMU hypervisor.

hShield implements a hardware counter to compute a hashed value of hyper-
visor execution on-the-fly. Figure 13 describes how a hash is computed for each
VM Exit handling. At the end of a VM Exit handling, triggered by a VM Entry
event, hShield compared the computed hash against a pre-constructed HashSet. The
pre-constructed HashSet represents the constructed CFG of the hypervisor. In other

Fig. 13 HashSet construction
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words, the HashSet is a white-list of valid hypervisor execution paths. If an execution
path is not listed in this white-list, hShield flags it as an offended execution.

This approach of delaying CFI validation to the end of each VM Exit handling
makes an important trade-off comparing the existing CFI enforcement: reducing
performance overhead with the cost of longer detection latency. Since current tech-
niques check for CFI at every control flow transfer, a CFI violation can be detected
right before the execution of a malicious code. In hShield, the detection happens at
the end of the violated VM Exit handling.

Section 6.4 details the hash function that hShield uses, and Sect. 6.5 describes the
architectural support to hShield.

6.4 Execution Hashing

The function of execution hashing is to map an arbitrarily long execution pattern
input to a fixed length output hash value. An execution pattern is a stream of machine
instructions executed by the processor.

6.4.1 Requirements

The hash function needs to be collision resistant. This property is to ensure that it
is computationally infeasible to find a collision—an outside execution pattern that
has the same hash as one of the white-listing members. Most standard cryptographic
functions, such as MD5 or the SHA family, have this property.

The hardware implementation poses several extra constraints. First, the function
needs to be interactive, that is a hash can be continuously evaluated at runtime as
input instructions coming, instead of storing the whole history of instructions and
perform calculation at the end.

In addition, the hash function needs to facilitate the implementation of loop
rerolling. hShield’s loop rerolling involves frequent comparisons of basic blocks.
Thus, hashing individual basic blocks should be an intermediate operation of the
entire hashing scheme. Furthermore, loop rerolling requires re-evaluation of the
final hashing output at runtime. For example, the hashing output changes when a
loop iteration is removed. The ability to efficiently re-evaluate outputs at runtime is a
necessity to enable hShield to cope with various issues, such as ones caused by hard-
ware speculative executions. With speculative execution, a conditional branch may
be predictively evaluated in advance, and unrolled and re-executed if the prediction
was wrong.
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6.4.2 Incremental Collision-Free Hashing

The hashing function we select is a variation of the MuHASH function in the family
of incremental collision-free hashing functions proposed in [81]. The key property
which makes this family of hashing functions suitable to our usage is incremental.
This property allows a hash value to be updatedwhen a portion of the input is changed
without caching or re-computing the value from scratch. We leverage this feature to
facilitate loop rerolling implementation and cope with speculative execution.

This family of hashing functions splits hashing into two phases: randomize and
combine. Each input is broken into a sequence of blocks, and each block is random-
ized independently using a standard hashing function (e.g., a SHA function). The
output of randomization is combined using an inexpensive commutative operation,
e.g., modular multiplication in the case of MuHASH. Thanks to the communicative
property of the combining operation, a hashed value can be updated by re-evaluating
the randomized value of the modified input block.

Besides incrementality,MuHASHoffers other properties that is suitable to hShield
requirements:

• Collision-resistance: Based on an assumed-perfect standard hashing function
(e.g., a SHA function), the security strength—the hardness of finding a collision—
of theMuHASH is proven to be equivalent to the hardness of the discrete logarithm
problem [81].

• Parallel construction: The randomization phase can be performed in parallel
for each block. Note that property is stronger than interactive construction. We
leverage this property to perform randomization per basic block with a small
memory footprint.

• Efficiency: The construction uses only standard hashing function and inexpensive
modular operation (as opposed to using exponentiation). The efficiency of this
hashing function family is the same as using a standard hashing function on the
entire input [81].

6.4.3 Runtime Construction

Essentially, the counter operates as a hash function f:

f : Exe × Salts → Range

The hash function f maps from the space of finite variable-length instruction
streams Exe and a space of salt values Salts to the space of fixed length output
value Range.

An execution E ∈ Exe is a finite length stream of basic block B1B2…Bn, each
basic block is a sequence of instructions I1I2…Im . Each instruction Ii is a valid ×
86 instruction represented in its binary form.

A salt salt ∈ Salts is a unique value for each system, thus it individualizes each
system’s counter table. A salt value is generated for a counter table when the profiling
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mode is executed. Note that for a salt to be effective, it does not need to be random.
Thanks to the uniqueness property of salts, the work of crafting exploit code must
be redone for each every system.

A hashing session starts on a VM-exit event, and ends on the corresponding VM-
entry event. The continuous construction of the hash function during a session is as
follows:

• Step 1: Session starts with resetting basic block counter to i = 1:
• Step 2: For each incoming basic block Bi, concatenate a 32-bit binary encoding
<i> of the basic block counter, and the salt value:

B ′
i = 〈i〉 · 〈salt〉 · Bi

• Step 3: (Randomization) Compute a hash value for the incoming basic block:

hi = shal
(
B ′
i

)

• Step 4: (Combination) Combine h i using a combining operation current hash
value of the execution chunk:

fi =
{
h1, i = 1
fi−1 � hi , i > 1

As recommended by [81], we use the arithmetic operation multiplication
modulo for combining operator to achieve collision-resistance.

• Step 5: Continue going back to step 2 until the session is ended.

Assuming that there are n basic blocks in the evaluated execution chunk E, the
final construction can be summarized in Fig. 14, and as the equation follows:

f (E, salt) = �n
i=1sha1(〈i〉 · 〈 salt 〉 · Bi )

6.5 hShield Architectural Design

hShield is a security assisted hardware extension to the existing HAV to perform
whitelist-based continuous monitoring of hypervisor executions. This section
describes an example architectural design of hShield (Fig. 15).

6.5.1 hShield Components

Each physical host is equipped with one hShield unit. An hShield unit consists of
multiple per-core hShield Counters and one per-host hShield Auditor. Each hShield
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Fig. 14 The construction of
the incremental hashing
function

Fig. 15 hShield architecture. Each CPU core has its own hShield counter to measure hypervisor
execution at runtime. After a measurement is complete, the result is sent to the hShield core, which
is a dedicated core per host system, to verify the measurement.
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counter is built-in into a processor core, called the counter’s host core. Each counter
independently carries out the measurement of VM-exit handler executing on its host
core. At the end of eachmeasurement, the result, i.e., the hash represents the VM-exit
handler execution, is sent to the auditor for whitelist member checking. The hShield
auditor, implemented as a dedicated co-processor in this design, is responsible for
securely loading and storing thewhitelist, and efficiently executingwhitelist updating
and membership checking. Figure 15 illustrates this architecture.

hShield is designed to facilitate both whitelist construction and runtime checking.
hShield auditor has two operational modes: profiling and checking. The profiling
mode is used to support whitelist construction. In this mode, the auditor records
hashes sent by counters to its hash tables. Meanwhile, the checking mode is used
to validate hypervisor’s executions during regular runs (e.g., with arbitrary clients’
VMs). In this mode, the auditor validates an execution by comparing the hash sent
by a counter against in the whitelist loaded in its hash tables.

hShield architectural design follows the separation of concerns principle. After
being the initialized by the centralized auditor, the operation of each counter are inde-
pendent from each other, and also independent from the auditor. An hShield counter
operates the same way whether the auditor is in the profiling or checking mode. The
only component that stores the whitelist is the auditor. During runtime, there is only
one type of unidirectional interaction between a counter and the auditor, which is
sending-receiving a hash. There is no other interface that can leak information about
the whitelist from the auditor to any of the processing cores.

Table 1 shows the interface of hShield Counters and hShield Auditor via the
commands they process. The next subsections describe in details hShield counters
and auditors.

6.5.2 hShield Counters

Figure 16 depicts the finite state machine (FSM) of an hShield counter’s operation.
Each node of the FSM represents an operational state of a counter, and each edge
represents an event that triggers a state transition.Note that theFSMcanbe terminated
when it is in any state, and the “End” state is not shown in the figure for readability
purposes. Besides the “End” state, an hShield counter can be in one of the following
operational states:

“Init”: At boot time, all hShield counters are initialized by the hShield auditor.
Particularly, the hShield auditor instructs each of the hShield counters to load two
common salt and proof values. When the initialization is done, represented by the
“Done initialization” edge, the hShield counter transits to the “Ready” state.

“Ready”:When an hShield counter is in this state, the processor is executing either
in the guest mode (i.e., a VM is executing), or other tasks that do not belong to the
hypervisor. Upon a “VM-exit” event, the counter transits to the “Reset counter” state.
Meanwhile, upon an event that indicates “Hypervisor resumed” (e.g., a task switch
event that the to-be-executed task belongs to the hypervisor), the counter transits to
the “Reload counter” state.
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Fig. 16 Finite state machine of an hShield counter operation. A node is a state of the counter, an
edge is an event that triggers a state transition. All state can transit to the “End” state, which is not
shown in this figure

Fig. 17 The number of unique paths per each type of exit

“Reset counter”: An hShield counter in this state is to respond to a VM-exit event
issued by its host core. In this state, the counter resets all its internal state, e.g., the
basic block counter, to get ready for a new hashing session. Upon completing the
resetting, the counter transits to the “Count” state.

“Reload counter”: In this state, the hShield counter loads an on-going hashing
session context from memory to its internal state. The counter only loads the context
which was properly signed using its hShield Proof. Upon completing the loading,
the counter transits to the “Counter” state.
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“Count”: When an hShield counter is in this state, the host core is executing
a hypervisor task that handles a VM-exit. In this state, the counter executes a
hashing session, which implements the execution inference techniques and incre-
mental hashing scheme. In the event of a task switching, the counter suspends the
on-going hashing session, and then moves to the “Save counter” state. In the event
of an VM-entry, which signifies the end of the on-going hashing session, the counter
compute the final hash of the hypervisor execution, and then transits to the “Send
Hash” state.

“Save counter”: In this state, the hShield counters save the context of the on-going
hashing session to main memory. The saved data is signed with the hShield Proof
to prevent tampering. Upon completing the saving, the counter transits back to the
“Ready” state.

“Send Hash”: This state marks the end of a hashing session by sending its result
to the hShield auditor. Upon completing the sending, the counter transits back to the
“Ready” state.

6.5.3 hShield Auditor

An hShield Auditor is a centralized component that manages the whitelist for a
host system. An hShield Auditor operates in either of the two modes: profiling and
checking. Settingwhichmode hShieldAuditor operates on is done through theBIOS.

Profiling Mode

The profiling mode is used to facilitate the construction of the target hypervisor
whitelist. This mode is also considered the unsafe mode of hShield Auditor, because
its whitelist can be read and updated. Thus, the profiling mode must be run in a
strictly controlled environment with known-good VM workloads. In this mode, an
hShield Auditor performs the following tasks.

At boot time, the following tasks are performed in a sequence:

1. Generates a new salt value.
2. Generates a new proof value.
3. Broadcasts theHS_COUNTER_INIT command together with the salt and proof

values to all hShield Counters in the host to trigger their initialization process.

During runtime, the following tasks are performed in response to specific events:

• Upon receiving a hash from a Counter, the Auditor updates its hashing tables.
• Upon receiving a HS_WL_COUNT instruction, the Auditor returns the number of

whitelist members.
• Upon receiving a HS_WL_READ instruction, the Auditor returns the hash

corresponding to the specified whitelist member.
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• Upon receiving a HS_SALT_READ instruction, the Auditor returns the value of
the generated salt.

The HS_WL_READ and HS_SALT_READ instructions are used at the end of the
profiling process to fetch the whitelist from the hShield Auditor to persist to the
host’s storage.

Checking Mode

The checking mode is used for runtime monitoring of the target hypervisor, given
that the whitelist has been properly constructed. In this mode, an hShield Auditor
performs the following tasks.

At boot time, after the integrity of the host system is verified, e.g., by TPM and
Intel TXT, the following task are performed in a sequence:

1. Load the whitelist and salt from the host persistent storage.
2. Generates a new proof value.
3. Broadcasts theHS_COUNTER_INIT command together with the salt and proof

values to all hShield Counters in the host to trigger their initialization process.

During runtime:

• Upon receiving a hash from a Counter, the Auditor verifies the membership of
the hash.

Regardless of the hShieldAuditor’s operationalmode, the operation of the hShield
Counters in the same host is not affected: upon each VM-entry, the corresponding
hShield Counter sends a hash to the centralized Auditor.

Hash Tables

Hash tables are hShield Counters internal storage to keep the whitelist. An hShield
Counter contains two hash tables: hot and warm. The two tables function in the same
way, except the following differences: The hot table’s size is smaller than the warm
table’s; the hot table stores the top popular whitelist members, in the meanwhile, the
warm table stores the less popular whitelist members; a membership check operation
is performed in the hot table first, it there is no hit in the hot table, the operation is
then performed on the warm table.

The hot-warm hash table design is to take advantage of the observed distribution
of the frequency of the hit rate of whitelist members. The hot table is smaller, but
stores the most frequently hit whitelist members.
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7 Conclusion

This chapter proposes three new continuous monitoring methods that address both
VM attack and hypervisor attack scenarios mentioned in Sect. 2. Figure 18 summa-
rizes our contributions organized in relation to the layers in the target system (y-axis)
and system operational phase (x-axis).

7.1 Continuous Monitoring of Guest OS and Applications

For monitoring software running inside VMs, we introduce HyperTap and Hprobes,
which are out-of-VM monitoring frameworks that facilitate detection of security
and reliability incidents occurring inside a VM. These two frameworks can work
in tandem to provide desirable monitoring features. HyperTap primarily focuses on
monitoring theguestOS,whileHprobes adds guest applicationmonitoring capability.
On the one hand, HyperTap relies on fixed and well-defined hardware invariants to
achieve robust and strong isolation with target VMs; on the other hand, Hprobes
provides a mechanism for dynamic and flexible deployment of monitoring in the
target VMs.

Both HyperTap and Hprobes employ the event-driven monitoring paradigm,
which allows monitors to reactively respond to events of interest. In contrast to
polling-and-scanning, event-driven monitoring exposes no temporal gap for fail-
ures and attacks to exploit. In addition, the event-driven monitoring mechanisms
employed by these frameworks can capture target VMs’ operational activities at

Fig. 18 An illustration of our techniques to monitor a virtualized system at runtime (e.g., during
execution). The y-axis represents the system layers from hardware at the bottom to user applications
in a VM at the top. The techniques are positioned at the layers where they provide monitoring:
Hprobe monitors the VM’s user applications, HyperTap monitors the VM’s operating system, and
hShield monitors the hypervisor
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various granularities, e.g., system call invocations and process/task-switching events.
This provides a basis of support for a broad range of security and reliability
enforcement policies.

To demonstrate the capabilities of HyperTap and Hprobes in supporting secu-
rity and reliability monitoring, we introduced a set of low-cost and high-coverage
monitors:

HyperTap Guest OS Hang Detection (GOSHD). GOSHD detected 99.8% of
injected hang failures in a guest OS. GOSHD is also able to identify partial hangs, a
new failure mode in multi-processor systems.

HyperTap Hidden-Rootkit Detection (HRKD). Rootkits are malicious computer
programs that hide other programs from system administrators and security-
monitoring tools. HRKD guarantees discovery of hidden processes and threads
regardless of their hiding techniques.

We verify the claim by testing HRKD against nine real-world rootkits in both
Linux and Windows environments, with various types of hiding mechanisms.

HyperTap Privilege Escalation Detection (PED). In a privilege escalation attack,
a process gains higher privileges than originally assigned to it in order to obtain
unauthorized access to system resources. We demonstrate that PED can detect this
class of attacks, including attacks that successfully bypassed Ninja [19], a real-world
monitor, by exploiting temporal gaps created by polling-and-scanning monitoring.

Hprobes Emergency Exploit Detectors (EED). Often, a security vulnerability is
discovered. After the vulnerability is made public, a patch takes time to be devel-
oped and must be put through a QA cycle. During this time, the target system is at
risk of being attacked at the known vulnerability. We show that Hprobes can solve
this practical problem by developing EED, a class of detectors that can prevent the
exploitation of newly discovered vulnerabilities without patching the target system.

Hprobes Application Heartbeat Detector (AHD). One of the most basic reliability
techniques used to monitor computing system liveness is a heartbeat detector. Using
Hprobes, we constructed AHD, a monitor that directly measures the application’s
execution. That is, since probes are triggered by the application execution itself, they
can be viewed as a mechanism for direct validation that the application is functioning
correctly.

Hprobes Infinite Loop Detector (ILD). Infinite loops are a common failure that can
cause process hangs. We demonstrated ILD, a monitor that uses Hprobes dynamic
hook placement mechanism to measure the worst case execution time (WCET) [20]
of a loop. The measure WCET is used to effectively detect infinite loops.
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Table 1 hShield counter and auditor commands

Command Calleea Callerb Modec Parameters Return

HS_COUNTER_INIT Counter Auditor () void

HS_WL_COUNT Auditor Software Profiling () Number of
members

HS_WL_READ Auditor Software Profiling (s, e) Whitelist
members
indexed
from s to
e

HS_SALT_READ Auditor Software Profiling () salt

HS_HASH Auditor Counter Profiling/checking hash void

aCallee is the either a Counter or Auditor, which processes the commands
bCaller is the component that can invoke the command. When a caller is “Software”, that means
this command is an instruction available for a software to use
cMode is applicable for Auditor (as a callee) only. Mode specifies in which Auditor’s mode
(“Profiling”, “Checking”, or both) the command is available

7.2 Continuous Monitoring of Hypervisor

HyperTap and Hprobes rely on the trustworthiness of the underlying hypervisor
to deploy their monitoring mechanisms. We demonstrate that this assumption can
be violated by VM-escape attacks, which are attacks that compromise hypervisor
executions via VM-exits, the VM-hypervisor interface provided by HAV. Based on
the analysis of this threat model, we introduce hShield, which implements a novel
Control-Flow Integrity (CFI) enforcement method to detect VM-escape attacks.

hShield continuously measures the CFI of every VM-exit handler, the basic block
of hypervisor execution that handles VMs’ privilege operations. The measurement is
compared against a preconstructed Control-Flow Graph (CFG) to validate whether
a valid path is executed. In hShield, a CFG is constructed using dynamic analysis,
as opposed to the static analysis used by state-of-the-art techniques, to enhance the
precision. We show that attacks can exploit the approximation of static analysis in
building CFG to execute insecure paths, while our precise CFG cannot be exploited
in this way.

In addition to demonstrating the strength of the constructedCFG,we show that our
prototype of hShield is able to detect attacks crafted using a high-profile vulnerability
in QEMU [21].
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Security for Software on Tiny Devices

Saurabh Bagchi

1 Introduction

At over 9 billion embedded processors in use today, the number of embedded devices
has surpassed the number of humans. With the rise of the “Internet of Things”
(IoT), the number of embedded devices, their complexity, and their connectivity is
exploding. These smart “things” include fitness trackers, smart light bulbs, smart
thermostats, Amazon’s Dash Button, utility smart meters, smart locks, and smart
TVs. Microcontrollers executing bare-metal software have been embedded deeply
into larger systems. These embedded microcontrollers are often overlooked but they
control vital components of our systems, e.g., network cards, wireless controllers,
hard drive controllers, SDmemory cards, or near field communication in cellphones.
Many of these devices (or components in devices) are low cost with software running
directly on the hardware, known as “bare-metal systems.” In such systems, the appli-
cation runs as privileged low-level software with direct access to all processor regis-
ters, the entire available memory, and all peripherals. This is in contrast to systems
with an operating system that provides isolation and manages access to security-
sensitive resources. These bare-metal systems must satisfy strict execution timing
guarantees, while running on constrained hardware platforms with power and dollar
constraints.

Society relies on these systems to provide secure and reliable computation,
communication, and data storage. Yet, they are built with security paradigms that
have been obsolete for several decades. Embedded systems are generally deployed
without any active defenses or mitigations and do not follow common design criteria
to enforce least privileges and restricted access. Defenses that are well known for
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desktops to protect against code injection, control-flow hijacking, or data corruption
attacks are missing on embedded systems.

1.1 Ravi’s Contributions on This Topic

Ravi has made some fundamental contributions on this topic. These have come more
recently in the problem areas of security for teleoperated surgical robots [8, 11] and
customized malware (and its countermeasure) for cyber-physical systems [10], with
expanded focus on autonomous vehicular systems [4, 17] and the smart grid [13,
19]. We have learned of some design elements from these works and the community
has adopted many principles and techniques for rigorous evaluation from them.

1.2 Why can’t We “just” Adopt Defenses from the Server
World to the Embedded World?

Protecting embedded devices in the presence of vulnerabilities poses unique chal-
lenges that are fundamentally different from desktop or server systems. Therefore,
simply porting existing defenses is not an option. First, embedded systems often
run directly on the hardware without an intermediate operating system or virtualiza-
tion layer. The program itself is responsible for mediating access to all resources,
including security-critical ones, among all the tasks. Second, due to the lack of a
Memory Management Unit (MMU), embedded systems have a single flat address
space where all memory locations (e.g., the locations of I/O ports) are static. Third,
embedded systems are custom tailored to a specific purpose. Each type of system
may have a specific hardware configuration where some I/O ports are security sensi-
tive while others are not. Orthogonally, note that desktop defenses are incomplete
and cannot defend against all code reuse attacks or information leaks, as shown
through any recent attack that bypasses all existing defenses [23, 25]. Leveraging
buffer overflows, use-after-free bugs, integer overflow, or type confusion vulnerabil-
ities, adversaries can leak information and compromise software running on desktop
systems despite all currently used defenses.

Protecting software against control-flow hijacking, code reuse attacks, and infor-
mation disclosure is challenging for embedded systems. However, the embedded
system environment also provides some unique opportunities that enable strong,
novel defenses. First, whole program analysis on these systems is feasible. Due to
cost, power, and environmental constraints, the software code base running on these
systems is usually kept small. Best coding practices result in limited stack depth,
restricted use of indirect control-flow, limited use of recursion, and fixed memory
allocation. These bound the exploration space so that static analysis can be applied to
entire programs. Second, the source code of each component is generally available
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to the developers as all components are developed by the same company. Even when
libraries are used, all code is compiled to a monolithic binary and combined through
Link Time Optimization (LTO). Third, both the software running on an embedded
system and the underlying hardware are single purpose, further simplifying the anal-
ysis. The software running on embedded systems has limited functionality, oftenwith
a single purpose—compared to desktop systems with hundreds of parallel processes.
Similarly for the hardware, each hardware unit is dedicated to a single executing
process, whereas on desktop systems, the device is shared amongmultiple processes.
The combination of these opportunities enables us to scale static and dynamic anal-
ysis techniques to full embedded systems and to devise strong protectionmechanisms
that respect the above-mentioned domain-specific constraints.

Our solution approach: RESIN. In our prior and ongoing work, we seek to
solve the problem of protecting embedded systems against a wide variety of attacks,
without the need to rearchitect the entire application. Our approach has 3 inter-
dependent high-level tasks. We show a schematic of our overall system in Fig. 1.
The parts where the user/developer need to provide input are shown in the salmon
colored boxes according to the legend.

1. Task I:Guided IoTexploration. In this task,we develop targeted static analysis
to identify the control and thedataflow in theprogram.This is augmentedwith an

Fig. 1 Overview of the main components and their placement in the overall system RESIN
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IoT emulator which emulates the runtime behavior under fuzzed and controlled
inputs to discover information that is outside the scope of static analysis.

2. Task II: Runtime enforcement. Here we develop runtime enforcement tech-
niques for enforcing the principle of least-privilege execution, which is consid-
ered standard security practice, but is absent in embedded system execution.We
will operate with feedback provided by the constraints of the hardware and the
performance impact due to the isolation of multiple compartments of code and
data.

3. Task III: Evaluation framework. We develop a rich set of bare-metal system
applications to stress different functionalities in representative use cases. We
develop these benchmarks for a set of embedded boards that provide different
hardware capabilities (e.g., access to different sensors) and develop scripts for
evaluating different aspects of security and performance. The security and
performance metrics combine the domain-agnostic as well as the domain-
specific ones. The latter includes an understanding that performance needs to
be deterministic for our target domain.

Target domains. We demonstrate the benefits of RESIN through realistic
applications developed in five security-critical, target domains on real hardware.

1. Smart homes. Devices such as the Amazon Dash button, smart light bulbs,
smart door locks, and per-room temperature sensors increase convenience in an
modern home but, in the hands of an adversary, can result in safety and privacy
hazards.

2. Wearables. We are increasingly tracking different aspects of our lives through
heart rate monitors, activity trackers, smart shoes, or smart watches. These
devices have access to highly personal data and may need to communicate
urgent and critical health indicators.

3. Smart cities. Modern cities are increasingly connected with smart, battery-
powered sensors placed in side walks and streets to detect pedestrians, bikes,
and cars. These devices are low-powered, embedded, run real time, and
communicate wirelessly. Protecting these devices is crucial for roadside safety.

4. Connected transportation and infrastructure. A modern car contains dozens
of safety–critical, connected embedded devices that communicate over shared
buses as well as over a variety of wireless interfaces including Bluetooth and
4G LTE. Vehicle-to-vehicle and vehicle-to-infrastructure communications are
starting to be built and deployed.

5. Industrial control systems. Physical processes in industrial settings are
computer-controlled. These safety–critical systems can be exploited to cause
great harm.

Our work focuses on the sort of low-powered, embedded devices that are
ubiquitous in these domains.
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2 Background and Related Work

2.1 Embedded System Development

An embedded system is often meant to perform a dedicated function in contrast to a
general purpose computer. Frequently this is a component within some larger system.
In a vehicle, for example, there aremultiple dedicated embedded computing systems,
e.g., to control the anti-lock brakes, to monitor and control the vehicle’s emissions,
or to display information on the dashboard. The number of embedded systems has
risen rapidly and today, less than 2 percent of microcontrollers manufactured are
used in general-purpose computers [5]. An important sub-class of embedded systems
have real-time requirements and therefore security mechanisms proposed by us or
others, cannot afford to perturb the timing of the software to any significant extent.
Importantly, for such systems, it is crucial to guarantee the timing properties and
thus our security mechanisms must also minimize the variance in the timing that
they introduce.

Certain common hardware constraints on embedded development are: (i)
processing power—these devices are typically 16-or 32-bit, running at up to a few
hundred MHz-s, driven by requirement of low dollar cost and low power consump-
tion (say, 1 mW/MIPS to 10 mW/MIPS); (ii) memory—the RAM is typically up to
a few 100 s of kBs and the flash which contains the program is typically up to a few
MBs; (iii) slow buses—such as SPI or I2C, which are relatively slow compared to
the processor. Overall, our target class, the bare-metal embedded system, is a highly
cost-conscious segment of the market. There are typically one or more peripherals
attached to an embedded board. These provide functionality such as USB or sensing
and they are typically accessed through a Hardware Abstraction Layer (HAL), which
eases the programmingby abstracting away low-level control signals andother details
needed to access the peripherals. For specificity, let us consider one device that fits
within our target domain. Figure 2 shows ARM’s memory model for the ARMv7-M

Fig. 2 ARM’s memory
model for ARMv7-M
devices
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architecture. It breaks a 32-bit (4 GB) memory space into several different regions.
It is a memory-mapped architecture, meaning that all I/O is directly mapped into its
memory space (peripherals, and external devices). While the architecture reserves
large amounts of space for each area, actual devices only use a small portion of it.
For example, the Cortex-M4 (STM32F479I) device we use in our evaluation has
2 MB of flash in the code area, 384 kB of RAM, and uses only a small portion of the
peripheral space.

Embedded software development has traditionally been done mostly in C, with
some limited use of assembly code. Low-level coding often requires close interaction
with the hardware platform, even though the HAL does abstract away the lowest
levels of hardware detail. Because of the hardware resource constraints, embedded
software often is very compact, at the cost of readability and generalizability (to
different hardware platforms). Software is usually written assuming any memory or
peripheral can be accessed any time and from any region of the code. Further, the
preferred mode of programming is event-driven programming, whereby the software
reacts to external stimuli such as a sensor providing a value sensed from the physical
world after running it through its analog-to-digital converter. There are expectations
from embedded software that it will run unattended for long periods of time (say,
months) and the enduserwill have limited ability (if at all) of programming the system
“in the field.” The vendor of the embedded board usually provides the compiler and
linker tool chain to convert the C program to executable code. There has been robust
development of LLVM-based toolchains for various target embedded platforms. We
will leverage this trend by building our toolchain on top of LLVM as additional
passes or modifications to existing passes.

Certain software design patterns frequently occur in embedded software. First,
the software statically allocates all the memory that it will require, rather than relying
on dynamically allocating memory. The second is the careful and parsimonious use
of memory, such as fitting multiple, possibly unconnected, variables into a single
register. Third, debugging tools in embedded development are more limited. At the
powerful end of the spectrum is a JTAG-based debugger, often called an in-circuit
emulator (ICE). In fact, in a 2015 survey of embedded developers, debugging was
found to be the single greatest challenge [30].

A commonly found piece of hardware in our target class of devices is theMemory
Protection Unit (MPU). It enables setting privileges on regions of memory, which
control read, write, and execute permissions for both privileged and unprivileged
execution modes. On the ARMv7-M architecture for example, the MPU can define
up to eight regions, numbered 0–7. Each region is defined by setting a starting
address, size, and permissions. We assume, at the high end, machines with an MPU
but without a Memory Management Unit (MMU), such as Cortex ARM M0 to M4.
These machines generally run in a 32-bit address space. Machines with an MMU are
out of scope. The cost for adding anMMU to embedded systems is seen as prohibitive
and does not fit current software design patterns where code runs bare-metal or with
only a thin operating system layer. At the low end, we assume 8051-style or Atmel
AVR-style Harvard-likemachines withoutMPUorMMU. Thesemachines generally
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run with a 16-bit address space, sometimes with multiple 16-bit address spaces, e.g.,
for ROM and RAM.

2.2 Threat Model

IoT devices are heavily connected and susceptible to different forms of attacks. For
the research proposed here, we assume that the software running on the devices
contains software flaws (bugs) that are reachable through potentially adversary-
controlled outside input. Input, including malicious input, to the device can be local
or remote. Local input is any input that requires close physical proximity to the IoT
device such as a connection through local I/O, a serial port, or near field communica-
tion such as Bluetooth or ZigBee. An example of local input is data access through a
diagnostic port. Remote input is something that can be sent over a network interface,
such as WiFi. All IoT devices communicate with the cloud in some form. Remote
input requires an internet connection. If the IoT device runs any services, any internet
device can connect to those services. An example would be a listening telnet server.

Any data attack where an adversary connects to the device, intercepts a connec-
tion from the device, or uses an I/O port to communicate with the device is in scope.
We assume that the software running on the IoT device has flaws that are reachable
through adversary-controlled input. Our threat model includes both data confiden-
tiality and data integrity attacks during the runtime of the device. Verifying the
integrity of the device at boot time is out of scope. Cryptographic attacks that break
encrypted communication with the cloud are out of scope but implementation bugs
in cryptographic protocols remain in scope. Physical attacks—for example, flashing
a new firmware onto the device—are out of scope.

2.3 Lack of Defenses on Embedded Systems

Due to hardware resource and development constraints, current IoT systems lack any
mitigations against memory safety violations that people have become accustomed
to for desktop and server systems. Full scale operating systems leverage virtual
memory to isolate processes from each other. Best programming practices ensure that
each process runs with least privileges and only communicates with other processes
through a well defined API. Operating systems restrict access based on fine-grained
permissions and capabilities along access control lists. Inside the process, the MMU
ensures the separation between code and data (DEP) and allows segments to be placed
at random locations whenever a process is started (ASLR). Additional mitigations
such as stack canaries or control-flow integrity (CFI) [7, 29] may be added on a
per-process basis as part of the compiler toolchain.

Compared to full hardware support and regular operating systems, embedded
systems are much more constrained. First, the hardware is highly constrained and
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storage or memory overhead are hard to justify due to the additional cost. The
embedded devices we target also do not have an MMU and, at best, use an MPU
to overlay privileges on a flat physical address space. The lack of an MMU makes
defenses such as ASLR impossible as they require a virtual address space. Second,
embedded operating systems generally do not enforce isolation between the oper-
ating system kernel and the individual processes or even among processes—the
memory structure is comparable to a set of threads that run in the same address space
together with privileged software. The lack of separation between privileged code
(kernel code) and unprivileged code (the applications) prohibits defenses such as
DEP as all privileged memory and peripherals are directly reachable from unprivi-
leged code. Third, the rigid compiler toolchain and development environment with
lack of good debugging facilities hinders compiler innovation and prohibits the use of
modern compiler-based defenses such as stack canaries or CFI. While these mitiga-
tions would have to be adapted for embedded systems to fit their unique constraints,
there is no fundamental reason why they should not be used.

3 Guided IoT Exploration

IoT software is fundamentally different from desktop or server software. Both desk-
tops and servers run multiple applications at different privileges (e.g., different users,
separation between kernel and user-space, or virtualization). Low-end IoT devices
are highly resource constrained. IoT devices have limited CPU, memory, power, and
communication abilities and software is generally highly adapted to these devices.
Due to this customization, existing software analysis techniques do not apply to IoT
systems. In this task we develop static and dynamic analysis techniques that infer
information about IoT applications. This information is then leveraged in task II
to enforce strong security policies such as per-task compartmentalization, targeted
memory safety to protect against control-flow hijacking and data-only attacks, and
event-aware state protection. Note that all policies are geared towards the special
circumstances IoT systems run in.

Advantages of IoT software are that application source code is generally available,
the amount of code is manageable, and frameworks such as the ARM Mbed IoT
platform [2] generalize common tasks such as access to peripherals. Unfortunately,
these advantages are offset by several challenges to security in low-end embedded
systems: (i) many embedded systems engineers have little or no security experience
resulting in code that does not follow security best practices, (ii) programmers face the
complexity of cross cutting concerns across all layers of the stack: from low-end I/O
and pin management to high-end application concerns such as communicating with
a backend server in the cloud, (iii) applications are developed in an ad hoc manner on
stale tool chains (i.e., the compiler is rarely updated due to the complexity of setting
up a cross-compilation tool chain), and (iv) lack of defense mechanisms, mitigations,
and analysis methods (e.g., static analysis or fuzzing) that are used ubiquitously on
desktop and server software.
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Preliminary work. We have broad experience in protecting different forms of
embedded systems and in developing sanitizers andmitigations to find a wide variety
of vulnerabilities. Our most recent work to protect bare-metal embedded devices is
EPOXY [12]. EPOXY is an LLVM-based mitigation that enforces a light privilege
overlay, dropping privileges for all instructions and selectively raising privileges for
a few privileged operations such as writing to I/O registers. Based on this privilege
overlay, we enforce data execution prevention to prevent code injection, a safe stack
[18] to protect against return oriented programming, and diversification to protect
against data-only attacks.

Earlier, we have developed a more holistic defensive approach that enforces full
memory safety for tiny embedded systems through nesCheck [20]. This work lever-
ages a CCured-like [21] pointer analysis that classifies pointers as safe, sequence, or
dynamic, allowing different instrumentation depending on the type of the pointer. The
overheads for nesCheck are higher than for anEPOXY-based approach.BothEPOXY
and nesCheck protect different classes of embedded systems against wide types of
attack vectors at low overhead, adhering to performance and power constraints of
embedded devices.

Orthogonally, we have developed a wide set of sanitizers that enforce security
policies for regular software systems such as Desktops or servers. We have worked
on Control-Flow Integrity [7, 9, 14, 22, 29], a mitigation that protects against control-
flow hijacking by checking that the target of control-flows observed at runtime
belongs to the set of valid targets. As an extension to CFI, we have explored a
mechanism that keeps state for variadic function calls [6], allowing us to make the
relationship between caller and callee explicit and to check argument types when-
ever they are used. The arguments of variadic functions (e.g., printf) depend on an
implicit contract between caller and callee and cannot be checked statically by the
compiler. Our mechanism enforces a dynamic runtime integrity check to ensure that
the arguments pushed by the caller are correctly used by the callee.

Type confusion [15, 16] is another attack vector that enables memory corruption
as a secondary effect. Type confusion abuses differences between object sizes to
compromise systems. Our mechanisms track type information of all live objects to
ensure type integrity for all type conversions and type checks.

Approach. To address the lack of defenses, we require detailed information
about individual IoT applications to automatically employ defenses given the sparse
resources available on IoT platforms. In a first step, we therefore propose novel static
and dynamic analysis methods to recover necessary information about the IoT appli-
cations. We address the diversity of the IoT environment by developing a hardware
abstraction language that encapsulates the differences between individual instruction
set architectures, resource configurations, and availability of sensors and actuators in
a portable manner. Second, we develop an event-aware static analysis that decodes
event loops of embedded devices. As a proof of concept defense, we develop an
event-aware version of CFI for IoT devices. Third, we develop an emulator to simu-
late different IoT configurations and software. IoT applications are often event-based,
so we need precise knowledge of different program paths and interactions with the
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underlying hardware (such as sensors and actuators), based on a hardware configu-
ration. Indirect control-flow transfers remain challenging for any static analysis due
to the aliasing problem. We use emulator-based tracing to handle the limitations of
static analysis in handling indirection.We leverage the fact that IoT applications often
have constrained control paths that they execute. This will allow the community to
test their IoT software for security weaknesses, allowing precise bug discovery and
targeted patches for vulnerable software.

4 Runtime Enforcement Techniques

In Task I, we create accurate control and data flow graphs using both static analysis
and fuzzed data inputs. In this task, we take this information and automatically, in a
policy-driven manner, create containers of code, data and peripherals, which serves
as fault containment domains. Here we develop graph theoretic algorithms on the
above-mentioned graphs to enforce the principle of least privilege (Task II.1) and
thenweenforce isolation through compartments,which are realized through available
hardware resources, however scarce they may be (Task II.2). We then monitor the
execution of the application with the initial degree of compartmentalization and
incrementally change it if the performance impact is unacceptable (Task II.3).

Preliminary work. We have used the MPU, commonly available in embedded
devices, in pre-liminary work [12] to create a proof-of-concept called EPOXY with
simply two privilege levels of software. This provides the foundation on which code
integrity, adapted control-flow hijacking defenses, and protections for sensitive I/O
can be applied, by building on the “two privilege level” idea. We have evaluated
the performance of our combined defense mechanisms for a suite of 75 benchmarks
and 3 real-world IoT applications. Our results for the application case studies show
that EPOXY has, on average, a 1.8% increase in execution time and a 0.5% increase
in energy usage; however, the worst-case execution overheads will make the tech-
nique unusable for many applications. There are some specific technical constraints
imposed by each generation of MPU, such as, for the MPU on the ARMv7-M archi-
tecture, each region must be a power of two in size, greater than 32 and start at a
multiple of its size (e.g., if the size is 1 kB then valid starting addresses are multi-
ples of 1 kB). Regions can overlap with the high numbered region’s permissions
taking effect. The MPU’s hardware restrictions significantly constrain the design of
compartments. For example, of all the MPU registers available (only 8 to start off
with), several are used for enforcing basic protections such asmaking the code region
not writable. The number of compartments available at any point in the execution is
restricted to those that are remaining.

The use of MPUs to create isolation boundaries has been proposed and developed
by ARM in its mBedOS platform, through a software module called µVisor [3].
Using this, the ARM development environment allows a developer, but does not
provide any automation support, to create multiple “boxes.” Each box gets its own
memory region, including stack, and interactions among boxes are monitored and
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allowed/disallowed by trusted code called “gateways.” The usability challenge with
the current concept is daunting. In our work, we fundamentally reduce this usability
barrier by providing novel techniques to automatically infer data and control flow,
and from that and the policies for security enforcement, automatically create the
isolated containers.

4.1 Task II.1: Automatic Least Privilege Separation

In this task, we take the control flow and data flow graph created in Task I and create
compartments out of them to achieve the desired goal of least privilege execution.
The graph nodes are partitioned into disjoint compartments with the invariant that at
any point of time in the execution, only a single code region belonging to the currently
active compartment is executing. Further, that code region only has access to the data
regions and peripherals that are within that compartment. The graph algorithms will
have the goal of creating the appropriate-sized compartments, balancing the needs of
the performance overhead and hardware resources used versus the level of privilege
separation achieved. To expand on this, if there are fewer compartments, then there
is less performance overhead and hardware resources (such as, MPU regions) used,
but there is a higher degree of privilege to more code regions, thus reducing security.

We develop the graph algorithms using both static and dynamic information (from
Task I). The static information contains the graph structure—the nodes and the edges,
while the dynamic information annotates the edges with the frequency and nature
of interactions. The latter can include for example the amount of data being passed
among the compartments. We design and develop three variants of graph algorithms
of progressive complexity. In all of these, we use the insight that the graphs for
embedded software are likely to be much smaller than for general-purpose software
and are relatively sparse in terms of indegree and outdegree.

1. No code or data motion: This will operate without a feedback loop and create
compartments in one shot. Thus, this will not take into account the possibility
of moving code or data to create more compact compartments.

2. Automatic code or data motion: This will run in multiple passes (we anticipate
2–3) where each pass will indicate the quality of compartmentalization and this
will trigger some movement of code regions or data regions to create more
compact compartments. The necessity of multiple passes arises because there
is a coupling of the two steps—the creation of the compartments and the layout
of code and data in memory.

3. Programmer annotation: This will be driven by an objective function where the
amount of exposed code at any point in the execution needs to be minimized
subject to the hardware and the performance constraints. The exact performance
impact may not be known at the outset and will be fed back as input from
Task II.3. If this objective function does not reach a certain specified value,
which practically speaking is likely to be specified as an improvement over the
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baseline, then the programmer will be requested for annotation about criticality
of code regions.Alternately, the criticality can be inferred by doing some formof
scalable taint tracking [32] to determinewhich code regions aremore susceptible
to unvalidated user input.

4.2 Task II.2: Enforcing Isolation Among Compartments

The goal of this task is to put in place the embedded software to enforce isolation
among compartments for control and data. A compartment may access data only
within its own compartment or some data that is explicitly marked as shareable.
Control flow can go from one compartment to another compartment with the medi-
ation of some privileged code, which will validate that the transition is allowed,
as determined by one or more of static analysis, paths learned through fuzzing, or
developer annotation. Such privileged code will form part of the trusted computing
base for our system RESIN and will thus have to be minimized.

The way we envisage this task working is that the embedded program will be
instrumented to trigger the privileged codewhenever the code regionwithin compart-
ment A invokes the code region in compartment B. For example, if the code gran-
ularity is simply a function, then the call and the return instructions can be instru-
mented. The privileged code enforces the appropriate check, namely, that a control
flow transfer is allowed here. This can be inferred from the static analysis, augmented
with the trace-based emulation. If there are further violations detected at runtime,
then this will be stored in a trace, for further offline, post-mortem debugging. We
expect that such a trace will be highly compressible, drawing from our prior insights
from deterministic record and replay in such embedded platforms [28]. The insight
here is from the regular pattern of embedded application executions, as introduced
in subsection 2.1.

We use MPU permissions to enforce the compartment-specific constraints. An
MPU register can designate a contiguous region of memory to be read/write/execute,
for privileged or unprivileged code. However, the number of registers is limited
(8 in current ARMv7-M architecture, 16 in the next generation). Therefore some
compartments have to be merged. This can be achieved by a mix of code and data
motion and increasing the range of addresses accessible to some code regions. In
general, the more interconnected the CFG and DFG are, the more challenging it
will be to move all the relevant code and data regions into the same compartment.
Our initial examination of baremetal applications (as in [12, 20]) has shown that
the graphs have a bi-modal characteristic—some parts are sparse (where the code
accesses a few libraries and no other code region is dependent on it), while some
parts are dense (code regions in the hardware abstraction layer which are accessed
by multiple higher-level code regions).

A broader design space that we need to consider is isolation versus resource
requirements, e.g., separate stack for each compartment versus shared stack. If it is
a shared stack, then portions of the stack will have to be protected, such as, only
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some parts of the caller’s stack should be accessible from the callee. This results in a
greater requirement for MPU registers. But if the caller and the callee stacks are kept
separate, then this has higher overhead in terms of the memory usage and the runtime
overhead of switching between the stacks of the different compartments. Note that
mBedOS, the open source embedded operating system from ARM that runs on the
Cortex-M microcontroller, requires separate stacks for each compartment (“box” in
their terminology).

5 Evaluating Security

Building defenses for embedded systems is only worthwhile if the defenses stop
attackswithout compromising correctness, performance, or energy usage. In essence,
we need an objective method to measure the characteristics of interest before and
after applying the defense.

5.1 IoT Metrics

Meaningful metrics are an essential component of any evaluation methodology. We
would like to be able to say that ApproachA provides more security thanApproach B
with respect to Attacker C. Unfortunately, good qualitative and quantitative metrics
for security have thus-far proved elusive. The difficulty of constructing usefulmetrics
is, in some respects, intrinsic to security. As an illustration of this difficulty, consider
hardware-enforced, per-page memory protections with a write-xor-execute (W X)
policy where no page of memory can be both writable and executable. Computer
systems where this policy is strictly enforced (e.g., in Apple’s iOS) appear to be
more secure than computer systems without such a policy-enforcement because the
policy prevents attackers from injecting and executing new code as well as modi-
fying existing code. More advanced exploitation techniques, such as return-oriented
programming, may still allow attackers to exploit vulnerabilities in the system. It is
thus difficult to say that W X enforcement leads to increased security compared to
no enforcement. In essence, it is difficult to quantify security gains from a defense
mechanism, even if that mechanism rules out entire classes of attack techniques.

Despite the difficulty, several approaches to measuring the security of control-
flow hijacking defenses have been previously proposed. The first is a tool-based
approach wherein a tool like ROPgadget [24] is run over a binary to determine the
number of return-oriented programming gadgets existing before and after a defense is
applied. The second approach tries to quantify howmuch an indirect control transfer
instruction’s target set size has been reduced [31]. Both approaches were the best
metrics at the time of their introduction; however, they are flawed and do not provide
a sufficient notion of security.
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Instead, we will develop qualitative and quantitative metrics for IoT security
building on our preliminary work [7]. Qualitatively, we consider the defensive mech-
anisms’ strengths in terms of the classes of attacks mitigated by the mechanism. For
example, a defense mechanism can be evaluated in one dimension by considering
whether it allows attacker-controlledmemorywrites tomemory-mapped I/O registers
or not. Whereas [7] uses the sets of instructions that can be targeted by control-flow
instructions, we will use our analyses from Task I to abstract the notion of target sets
to sets of input constraints for transferring control to those instructions. Similarly, we
will abstract sets of memory locations that can be written bymemory-storing instruc-
tions to sets of constraints on writing to those locations. Based on these constraints
and the privileged and unprivileged compartments as described in Tasks I and II, we
will construct quantitative security metrics. The input constraints are a refinement
of target sets. As a result, our metrics will be more precise and better capture the
security properties of the system under test.

Since introducing security mechanisms invariably involve trade-offs, we will also
measure performance (both raw performance as well as any performance variation
due to the mechanisms); resource utilization such as memory, flash-storage (e.g., for
code size increases), or power; and reliance on hardware capabilities (such as the
number of MPU registers required).

Undoubtedly, the impact on security, performance, and resource utilization of
some defense mechanisms will be “tunable.” For example, using more MPU regis-
ters to increase the number of compartments will likely lead to greater security at the
expense of runtime and resource use.An important question to answer is howdoes the
mechanism scale? For example, is there a break-down point where small increases in
security comewith large performance penalties? Similarly, how portable is themech-
anism?Does it rely on specialized hardware not present on other embedded systems?
Answers to these questions are essential for evaluating defense mechanisms. We can
study this tradeoff by varying the resource description in the emulator, described in
Task I.2.

5.2 IoT Benchmarks

Workloads for IoT or other embedded devices look very different fromworkloads for
desktop, server, and mobile applications. As a result, existing benchmarks for these
domains do not adequatelymeasure IoT systems. For example, thewell-knownSPEC
CPU suite of benchmarks are focused on “measuring and comparing compute inten-
sive performances” [26]. In particular, SPECCPU is concernedwith the performance
of a single task consisting of integer or floating point computations. An IoT device,
by contrast, may spend most of its time in a low-power mode waiting for an event
such as a timer firing or receiving input from a sensor or network. Once the event
occurs, the device switches into a higher-power mode and executes a short task, often
involving interaction with the physical world by means of attached peripherals, and
then returning to the low-power mode.
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Requirements. Benchmarks for IoT devices must meet several criteria. First, the
applications must be realistic and mimic the application characteristics discussed
above. While an individual benchmark need not satisfy all characteristics, the set
of benchmarks in a suite must cover all characteristics. This ensures security and
performance concerns with real applications are also present in the benchmarks.
IoT devices are diverse, therefore the benchmarks should also be diverse and cover
a range of factors, such as code complexity, types of peripherals used, and being
built with or without an OS. Finally, network interactions must be included in the
benchmarks.

Second, benchmarks must facilitate repeatable measurements. For IoT applica-
tions, the incorporation of peripherals, dependence on physical environment, and
external communication make this a challenging criterion to meet. For example,
if an application waits for a sensed value to exceed a threshold before sending a
communication, the time for one cycle of the application will be highly variable.
Similarly, the network characteristics tend to be quite variable and can affect the
timing measurements. The IoT devices benchmarks must be designed to both allow
external interactions while enabling repeatable measurements.

A third criterion is themeasurement of a variety ofmetrics relevant to IoT applica-
tions. These include performance metrics (e.g. total runtime cycles), resource usage
metrics (local resources like memory and stable storage, and energy resources), and
domain-specific metrics (e.g. fraction of the cycle time the device spends in low-
power sleep mode). An important goal of our effort is to enable benchmarking of
IoT security solutions and hence the benchmarks must enable measurement of secu-
rity properties of interest. There are of course several security metrics very specific to
the defense mechanism but many measures of general interest can also be identified,
such as the fraction of execution cycles with elevated privilege (“root mode”) and
number of Return-Oriented Programming (ROP) gadgets.

5.3 BenchIoT: Our Contribution

We have developed BenchIoT, a benchmark suite and evaluation framework that
fulfills all the above criteria for evaluating IoT devices [1]. Our benchmark suite
comprises of five realistic benchmarks, which stress one or more of the three funda-
mental task characteristics of IoT applications: sense, process, and actuate. They also
have the characteristics of IoT applications introduced above. The BenchIoT bench-
marks enable deterministic execution of external events and utilize network send
and receive. BenchIoT targets 32-bit IoT devices implemented using the popular
ARMv7-M architecture. Each BenchIoT benchmark is developed in C/C + + and
compiles both for bare-metal IoT devices (i.e. without an OS), and for the ARM
Mbed Operating System (Mbed-OS). Our use of the Mbed API (which is orthogonal
to the Mbed-OS) enables realistic development of the benchmarks since it comes
with important features for IoT devices such an embedded file system.
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BenchIoT enables repeatable experiments while including sensor and actuator
interactions. It uses a software-based approach to trigger such events. The software-
based approach enables us to precisely control when and how the event is delivered
to the rest of the software. This approach has been used in the past in embedded
systems for achieving repeatability as a means to automated debugging [27, 28]. We
can also control for the exact content of the events, which again enables the goal of
repeatability of external events such as sensors and actuators without relying on the
physical environment.

BenchIoT’s evaluation framework enables automatic collection of 14 metrics
covering four categories: (1) Security; (2) Performance; (3) Resource usage, and
(4) Energy consumption Fig. 5. The evaluation framework is a combination of a
runtime library and automated scripts. It is extensible to include additional metrics
to fit the use of the developer and can be ported to other applications that use the
ARMv7-M architecture. An overview of BenchIoT and the evaluation framework is
shown in Fig. 3. The workflow of running any benchmark in BenchIoT is as follows:

(1) The user compiles and statically links the benchmark with a runtime library,
which we refer to as the metric collector library, to enable collecting the dynamic
metrics ➊; (2) The user provides the desired configurations for the evaluation (e.g.
number of repetitions, timing of the interrupts, sensor values to use) ➋; (3) To begin
the evaluation, the user starts the script that automates the process of running the
benchmarks to collect both the dynamic ➌ and static ➍ metrics; (4) Finally, the
benchmark script produces a result file for each benchmark with all its measurements
➎.

Fig. 3 An overview of the evaluation workflow in BenchIoT. BenchIoT provides five realistic IoT
benchmarks spanning one ormore of the key functionalities of sense, process, and actuate. BenchIoT
measures four types of metrics: security, performance, resource usage, and energy consumption



Security for Software on Tiny Devices 157

Fig. 4 Illustration of
software layers and APIs
used in developing BenchIoT
benchmarks. BenchIoT
provides portable
benchmarks by relying on
the Mbed platform
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(Hardware Abstraction Layer) 
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To implement the benchmarks and demonstrate rich and complex IoT devices
applications, BenchIoT targets 32-bit IoT devices using the ARM Cortex-M (3, 4,
7) µCs, which are based on the ARMv7-M architecture. ARM Cortex-M is the most
popularµC for 32-bitµCswith over 70%market share. This enables the benchmarks
to be directly applicable to many IoT devices being built today. As shown in Fig. 4,
hardware vendors use different HALAPIs depending on the underlying board. Since
ARM supplies an ARMMbed API for the various hardware boards, we rely on that
for portability of BenchIoT to all ARMv7-M boards. In addition, for applications
requiring an OS, we couple those with Mbed’s integrated RTOS—which is referred
to as Mbed-OS. Mbed-OS allows additional functionality such as scheduling, and
network stackmanagement. To target otherµCs, wewill have to find a corresponding
common layer or build one ourselves—the latter is a significant engineering task and
open research challenge due to the underlying differences between architectures.

Benchmark Applications

Table 1 shows the list of BenchIoT benchmarks with the task type and peripherals it is
intended to stress. While the bare-metal benchmarks perform the same functionality,
their internal implementation is different as they lack OS features and use a different
TCP/IP stack. For the bare-metal applications, the TCP/TP stack operates in polling
mode and uses a different code base. As a result the runtime of bare-metal and OS
benchmarks are different.

6 Conclusion

It is upon us to significantly and promptly improve the security for bare-metal
embedded and IoT systems. This has become imperative as they form the fabric,
sometime hidden, of many critical systems, ranging from industrial control systems,
public use equipment (like elevators and escalators), autonomous transportation facil-
ities, personal IoT devices (smart devices and home assistants), to the innards of
high-end computing equipment (like disk drives) or mobile equipment (like base-
band processors onmobile phones).Ahigh-level direction thatwe and othermembers
of the community are pursuing is to restrict the privileges and capabilities of different
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Fig. 5 A summary of the BenchIoT metrics. A white box indicates a dynamic metric, and a black
box indicate a static metric

Table 1 A summary of BenchIoT benchmarks and their categorization with respect to task type,
and peripherals

Benchmark Task type Peripherals

Sense Process Actuate

Smart light ✓ ✓ ✓ Low-power timer, GPIO, real-time
clock

Smart thermostat ✓ ✓ ✓ Analog-to-digital converter (ADC),
GPIO, µSD card Smart

Lock ✓ ✓ Serial (UART/USART), display, µSD
card, real-time clock

Firmware updater ✓ ✓ Flash in-application programming

Connected display ✓ ✓ Display, µSD card

regions of the application to the lowest necessary to perform intended operations.
This is ideally done without needing application modification and with limited user
annotations, to indicate what denotes security-critical operations, thus easing the
application of the solution to legacy embedded applications. In this article, we have
identified three interactive thrusts to achieve this solution:

(i) New static and dynamic analyses to identify security and functionality charac-
teristics of each part of the application; (ii) New runtime techniques that enforce
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the desired security properties while minimizing the performance impact; and (iii)
New security metrics and benchmarks that accurately measure the security and
performance impacts of defense mechanisms for embedded systems.
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Introduction: Large-Scale Systems
and Data Analytics

Saurabh Bagchi

Dependability has become a critical requisite property of computer systems as society
begins to rely on computer systems in evermoreways and in ever expanding domains.
Whether it is in conducting our business or in leading our personal lives, we rely
on computer systems delivering correct results in a timely manner, even while they
execute on awide variety of hardware platforms and arewritten in a babel of program-
ming languages. And more often than not, computer systems meet our expecta-
tions—large data centers serve up content at blinding speeds, stock trading happens
correctly at millisecond latencies, processing on large genomics databases correctly
unearth our predispositions to different medical conditions, and our favorite online
movie portal goes down only rarely. However, the progress can bemade even faster if
researchersworking on dependability challenges can be exposed to problems through
quantitative data. Theories in the labs and small demonstrations in prototypes can
be transitioned to the demanding realities of large computer systems if they could
validate their inventions with real system usage and failure data. Unfortunately, even
though our field has reached a certain stage of maturity, there is an astonishing lack
of such publicly available data for researchers.

Acomparisonmay fruitfully bedrawn to thewideuseof benchmarks and reference
data sets in performance analysis of computer systems, such as, those put out bySPEC
(Standard Performance Evaluation Corporation) or TPC (Transaction Processing
Performance Council). However, the systems and the dependability communities
have been sorely lacking in open datasets that can be used to motivate compelling
research problems and to validate developed solutions. The five chapters in this
section address various aspects of what are the reliability weakspots of large-scale
systems and how collection and analytics of data from these systems can be used to
mitigate the weakspots.
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1 Rise of Data Analytics for System Dependability

The rise of data analytics has taken the technology world by storm and has brought
about tectonic shifts in the technology landscape. The field of system dependability
has also benefited from these advances in data analytics. The benefits have been seen
in a multitude of ways. A course I teach, and available on a MOOC platform, titled
“Big data for reliability and security” explores these developments in detail. In brief,
the topics within system dependability that have seen significant impact from data
analytics include:

1. Identification of interactions among system components. Most large-scale
systems are composed out of many components. To understand the reliability
weak spots, it is a necessary step to understand (at some level) the interactions
among these components. Techniques from topics like causality theory have
been used to make advances in this theme.

2. Predicting failures. Some component or system failures are predictable, such as,
due to memory or other resource leaks. Data analytics techniques have fruitfully
been used to build models that can predict if and when such failures will happen.
Mitigation actions can then be initiated, either manually or through software
means.

3. Identifying root causes of failures. This has been a topic of inquiry and advance-
ments for several decades—how to automatically identify the root cause of a
failure, which can then lead to replacement or other recovery mechanism. Due
to the huge volumes of interactions among the components and complexity
of these interactions, it is not possible to manually analyze them. Hence data
analytics techniques have been brought to bear on this problem. This has seen
some success, albeit in tightly specified computing systems.

4. Regularization and sanitization of data. An almost universal feature of data
from large-scale systems is that it is noisy and incomplete. In order to extract
insights from such data that will improve the dependability, we use big data
techniques. This includes processing like regularization, feature engineering,
dimensionality reduction, etc.

5. Data analytics for security. Some of the earliest compelling applications of big
data techniques were security problems. These included applications such as
spam detection and credit card fraud detection. Many newer applications of
security have led to rapid advancements in data analytics techniques. These
include detecting security attacks against data in motion (such as, when data
is being exchanged between an IoT device and a server), ensuring the privacy
of data on our personal devices (such as, wearables), and security of cross-
organizational interactions (such as, service level contracts between multiple
corporations).
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2 Preview of Articles in This Section

This section brings together a diversemixof contributions, allwith the unifying theme
of dealingwith large-scale systems and some formof data analytics for dependability.

The article by Zheyu Yan, Xiaobo Sharon Hu, and Yiyu Shi looks at the relia-
bility of Non-volatile Compute-in-Memory (nvCiM) DNN accelerators. Such accel-
erators offer a great opportunity to break the memory wall by reducing data move-
ment. Emerging NV devices offer greater energy efficiency and memory density
than MOSFETs. However the calculation is noisy due to lack of precision of analog-
to-digital conversion and device to device variation. This article focuses on design
efforts to mitigate these problems in crossbar-based nvCiM DNN accelerators.

The article by Long Wang provides a systematic overview of security compli-
ance techniques in academia and industry. It first introduces the life-cycle of critical
computing systems from a compliance perspective, and then provides a reference
architecture for compliance validation or enforcement. It then introduces the four
stages of security compliance, and finally surveys the techniques in each of these
four stages.

The article by Karthik Pattabiraman is a personalized and insightful reflection
of the author on his time in Ravi’s research group as a PhD student. In this article,
Karthik traces the development of the hugely influential Trusted Illiac machine. This
was a 256 node Linux cluster with machines providing customized checking for
reliability and security to applications, and was inaugurated in 2013 at the University
of Illinois. A reader, even one who is not interested in the details of the Trusted Illiac
experience, will find of value the lessons that Karthik draws for successful research
projects.

The article by Marcello Cinque, Domenico Cotroneo, and Antony Pecchia
gives an authoritative viewof the use of system logs for analyzing production failures,
i.e., failures in systems that are in operation. The authors have done seminal work on
this topic and draw on that rich experience to systematize the knowledge in the field.
The systematization includes how to use logging APIs and data collection protocols,
how to infer failure data from the logs, what are some high-value applications of log
analysis, and finally the shortcomings of the topic. The shortcomings may well lead
to productive lines of work in future years.

The final article in this section is by Luigi Coppolino, Salvatore D’Antonio,
Giovanni Mazzeo, and Luigi Romano. This presents a comprehensive description
of the state-of-the-art in SIEM (Security Information andEventMonitoring) systems.
Combining security information management (SIM) and security event management
(SEM), SIEM systems offer real-time monitoring and analysis of events as well as
tracking and logging of security data for compliance or auditing purposes. They are
an important product category in corporate IT spend. This article focuses on SIEM for
critical infrastructure protection and presents an architecture for dependable security
monitoring. It then gives a practical instantiation of this architecture in three diverse
and compelling application areas.
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Overall, I believe that this section will help the reader understand where we have
arrived in the topic of large-scale system dependability and the role of data analytics
in it. It will also help the reader appreciate the foci of the ongoing research activity on
this topic, and there is significant amount of such activity. Importantly, the chapters
lay out the problems that ongoing research and development is tackling, in the near
to mid term.



On the Reliability
of Computing-in-Memory Accelerators
for Deep Neural Networks

Zheyu Yan, Xiaobo Sharon Hu, and Yiyu Shi

Abstract Computing-in-memory with emerging non-volatile memory (nvCiM) is
shown to be a promising candidate for accelerating deep neural networks (DNNs)
with high energy efficiency. However, most non-volatile memory (NVM) devices
suffer from reliability issues, resulting in a difference between actual data involved
in the nvCiM computation and the weight value trained in the data center. Thus,
models actually deployed on nvCiM platforms achieve lower accuracy than their
counterparts trained on the conventional hardware (e.g., GPUs). In this chapter, we
first offer a brief introduction to the opportunities and challenges of nvCiM DNN
accelerators and then show the properties of different types of NVM devices. We
then introduce the general architecture of nvCiM DNN accelerators. After that, we
discuss the source of unreliability and how to efficiently model their impact. Finally,
we introduce representative works that mitigate the impact of device variations.

Keywords Compute-in-memory (CIM) · Device variations · Deep neural
networks (DNN)

1 Introduction

Deep Neural Networks (DNNs) have excelled human performance in various crucial
tasks (e.g., image classification, object detection, and speech recognition) and have
become a popular solution for them. Thus, edge devices such as automobiles, smart-
phones, and smart sensors that depend on these tasks are ideal platforms to be empow-
ered by DNNs. However, due to the constrained computation resource and limited
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power budget of edge devices, direct implementation of computational intensive
DNNs on edge devices is a significant challenge.

A majority of the works addressing this challenge use application-specific inte-
grated circuits (ASICs) or field-programmable gate arrays (FPGAs) for DNN accel-
eration. These conventional special-purpose edge DNN accelerators typically use a
group of on-chip process elements (PEs) to handle computation and utilize off-chip
non-volatile (NV) storage (e.g., flash) to store themodel information (i.e.,DNNarchi-
tecture and model weights) [8]. Between the static random-access memory (SRAM)
in the PEs used for temporary data caching and off-chip non-volatile storage used
for power-off data preservation, there is also a complex memory hierarchy, generally
consisting of several levels of dynamic random access memory (DRAM)-based on-
chip memories. Because of this separation of data and computation, which is a key
limitation of the conventional von-Neumann architecture, these DNN edge acceler-
ators face energy efficiency and computing latency challenges. Specifically, PEs of
this kind of architecture generates a large volume of intermediate data. These inter-
mediate data need to be moved between different levels of the memory hierarchy so
that they can be used by different process elements. Data movements across different
levels of memory hierarchy induce a great time and energy consumption overhead,
especially when accessing the lower level of the memory hierarchy. This challenge
is also called the memory wall.

Non-volatileComputing-in-Memory (nvCiM)DNNaccelerators [21] offer a great
opportunity to break the memory wall by utilizing their special architectural advan-
tages. nvCiM architectures reduce data movement with an in-situ weight data access
scheme [42]. Emerging NVM devices (e.g., RRAMs, STT-RAMS, and FeFETs) are
utilized so that nvCiM platforms can achieve higher energy efficiency and memory
density compared with traditional MOSFET [39] based designs. More specifically,
nvCiM can achieve low latency and high energy efficiency because, (1) the CiM
structure avoids the long latency for moving data across multi-level memory hierar-
chies to retrieve the intermediate data and/or DNN weights; (2) analog computing
engine performs dot-product in a compact manner, thus reducing the amount of
intermediate data (i.e., partial sums) generated in multiply-and-accumulate (MAC)
operations; (3) the crossbar structured matrix-vector multiplication (VMM) engine
offers high parallelism that can perform VMM in one CiM cycle, thus shortening the
latency of DNN operations.

However, such accelerators suffer greatly from design limitations. Firstly, because
of emerging NVM devices tend to have low precision (1–4 bits) of (i.e., single NVM
device can only represent 1 to 4-bit data and more than one device is needed to
represent data in higher precision) and the limit of chip area, weight precision of
neural networks mapped to nvCiM accelerators is limited. Secondly, most nvCiM
accelerators require digital-to-analog converters (DACs) to convert the digital input
data to analog signals so that it can be processed in crossbars and also analog-to-
digital converters (ADCs) to convert the computation results back to digital signal
for other neural network operations (e.g., activation and normalization). The preci-
sion of intermediate activation data is limited by the precision of DACs and ADCs.
Thirdly, NVM devices, ADCs, and DACs suffer from device-to-device variations
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due to manufacture and programming defects and cycle-to-cycle variations due to
the computational environment difference. Compared with their digital counterparts
that can tolerate such noises, because of the analog nature of nvCiM accelerators,
the calculations performed in these platforms are not noise-free. The noisy nature
of the computations leads to performance degradation that (1) models deployed on
nvCiMs typically gets lower accuracy than their ideal counterparts trained in the data
centers and (2) developers will not be able to know the exact accuracy of a model
before it is deployed on a certain copy of the nvCiM product.

This reliability issue and its impact on DNN performance have been studied
from different levels of design, including behavioral level explorations [15, 50],
architecture level analysis [49], and device-level observations [56]. Cross-layer co-
design efforts that simultaneously exploreDNNmodel and hardware design pairs that
can together achieve both high perception task performance and desirable hardware
reliability are the current direction of this field [23].

In this chapter, we focus on design efforts targeting crossbar-based nvCiM DNN
accelerators. We first introduce three typical emerging NVMdevices including resis-
tive random access memory (RRAM), ferroelectric field-effect transistor (FeFET),
and Spintronics (STT) Devices. We then describe typical nvCiM DNN accelerator
designs, their key components, and their benefits. After that, we discuss the limi-
tations of nvCiM DNN accelerators and some key findings for these limitations.
Finally, we introduce methods proposed to address the unreliability issue of nvCiM
DNN accelerators from three aspects, encoding, DNN model training, and DNN
architecture selection.

2 Non-volatile Devices

2.1 RRAM

Resistive random access memory (RRAM) is a two-terminal device that can be
programmed into different levels of resistance value by using programming voltages
in different magnitudes and duration.

As shown in Fig. 1a, the major component of RRAMs is a metal-insulator-metal
(MIM) stack, where a dielectric layer is stacked in themiddle of two electrode layers.
When provided a programming voltage, a filamentary path, also called conductive
filament (CF) [19], is created by soft electrical breakdown or forming in the electrode
layers. In this filamentary path, a large concentration of defects, e.g., oxygen vacan-
cies in metal oxides [4] or metallic ions injected from the electrodes [32], are then
driven by field-induced migration and diffusion. Application of a positive voltage
to the top electrode, where the defects are concentrated, induces defect migration
towards the bottom electrode, thus causing the transition to the low-resistance state
(LRS), because conduction is enhanced at defect sites. Application of a negative
voltage, to the contrary, induces defect migration back to the top electrode, thus
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Fig. 1 Illustrations for key structures of different emerging NVM devices and their characteris-
tics [8]. a RRAMs, b MRAMs and c FeFETs. The actual devices are more complex then these
illustrations. d–f Are their characteristics, respectively

causing the transition to the high-resistance state (HRS) due to the disconnection of
the CF. These transitions can be seen in the idealized current–voltage (I–V) charac-
teristic in Fig. 1d, where the transition to the LRS (set operation) and the transition to
the HRS (reset operation) occur at opposite voltages. Similar to the bipolar RRAM
concept shown in Fig. 1d, unipolar RRAMs have also been presented, where the
set and reset processes both occur under the same voltage polarity because of the
dominant role of Joule heating in creating and dissolving the CF [24, 51]. All of
these devices rely on the diffusion and migration of defects and will be referred to
as RRAM throughout this chapter.

RRAM is a promising technology for in-memory computing thanks to the key
features discussed below. First, its resistance ratio between HRS and LRS (on/off
ratio) is generally greater than ten,which allows a clear distinction between digital ‘0’
and ‘1’. This feature can be further exploited by dividing this gap between HRS and
LRS in a non-binarymanner, i.e., intomultiple levels, resulting in amulti-level device
that can represent multiple bits of data. This helps RRAM to offer a high-density
storage scheme. Secondly, RRAM can operate at a moderately high switching speed
(typically below 100 ns and some devices can achieve even in the sub-ns regime
[11, 34]). Thus, RRAMs can operate in platforms with high clock speeds. Finally,
RRAM is more durable compared to conventional flash storage devices [28]. This
makes training DNNs on RRAM-based platforms possible.
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2.2 Spintronics Devices

The spintronics devices are two or three-terminal devices equipped with a magnetic
tunnel junction (MTJ) that stores information using magnetization direction of its
recording layer and utilizes tunnelmagnetoresistance (TMR) effect for readingwhere
the resistance of theMTJ changes according to the stored information. In this section,
we introduce the two-terminal version of this device, named spin-transfer torque
(STT) device. When used as a programmable memory, this kind of device is also
called Spin-transfer torque magnetic RAM (STT-MRAM).

Figure 1b shows a magnetic tunnel junction (MTJ), which is the major building
block for most Spintronics Devices. The MTJ consists of a MIM structure where
two ferromagnetic metal layers are divided by a thin tunnel oxide. An example
of ferromagnetic metal materials used in MTJs is the CoFeB alloy, and an example
material for the tunnel oxide isMgO. For the two ferromagnetic layers, one is referred
to as the pinned layer and the other as the free layer. The magnetic polarization of the
pinned layer is structurally fixed so that it can act as a reference point. On the other
hand, the magnetic polarization of the free layer can be modified by a programming
procedure.

Depending on the state of the free layer, the two ferromagnetic polarization can
thus be either to the same direction (parallel) or to the opposite direction (antipar-
allel). Parallel polarization of the two layers puts the device into a low resistance
state (LRS), and antiparallel means a high resistance state (HRS) due to the tunnel
magnetoresistive effect [7]. Researchers are working on finding efficient ways to
flip the state of the MTJ and the spin-transfer torque (STT) is one of the newer and
more competitive candidates to offer a scalable and low-efficient flip [33]. In the
STT procedure, transition to the parallel state takes place directly by conduction
electrons, which are first spin-polarized by the pinned layer, then rotate the magnetic
polarization of the free layer by magnetic momentum conservation [41]. Similarly,
the free layer magnetization can be rotated to the antiparallel state by applying an
opposite voltage (hence opposite current direction). The relative difference in resis-
tance of the LRS and HRS, also called the magnetoresistance ratio when referring to
spintronics devices, is typically around 200% [53]. STT-based devices are also fast,
with a switching speed typically lower than 1 ns, and durable, with an endurance
above 1014 [6].

In STT devices, STT induced magnetization switching [5, 41] is used to store
data in to the device (write process). Its primitive cell has one cell transistor and one
MTJ (1T1MTJ), which can achieve a relatively small cell size of ideally 6F2, where
F is the feature size of the MTJ layer. The write current passes through the tunnel
barrier, as is also the case with the read current. Accordingly, the read current should
be small enough so that the write event, i.e., magnetization switching, does not take
place, and the write current should be small enough that it does not give rise to a
barrier breakdown.
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2.3 FeFET

A ferroelectric transistor (FeFET) is a three-terminal device equipped with a layer
of ferroelectric (FE) material. It can either be configured to a steep switching mode
to serve as an efficient FET or a non-volatile (NV) mode to serve as a programmable
switch.

The structure of a FeFET is similar to a regular bulk MOSFET or FinFET, except
that in its gate stack, there is an additional layer of ferroelectric (FE)material. Besides
this FE material, a metal layer between the FE and dielectric may or may not be
included [2]. Designs of FE transistor structures with [29] and without [40] this layer
both demonstrate state-of-the-art efficiencies. It is worth noting that although some
FE materials (e.g., hafnium zirconium oxide (HZO)) are both efficient and highly
compatible with CMOS processes and can thus be realized on the industrial scale,
other FE materials (e.g., lead zirconium titanate (PZT) [3]) may be incompatible
with CMOS processes.

As discussed above, FeFETs can operate in two different modes: an NV mode
or a steep switching mode. Basic structures of FeFETs in these two modes are the
same, except that in different configurations (e.g., material thickness, gate length, and
width), the relative capacitance of the FE material and the underlying FET changes,
resulting in different modes of operation. In this chapter, we discuss the properties
of FeFETs in the NV mode because FeFETs used in nvCiM DNN accelerators are
majorly in this mode.

NVmode of FeFETs are discovered later than its steep switching counterpart at the
emergence of HZO-based FeFETs [31]. The non-volatile property results from the
hysteretic polarization (P) versus voltage of the FE material (VFE) shown in Fig. 1f.
When the FE material is placed in series with the gate of a transistor, the hysteretic
window of P versus VGS is reduced because the MOS structure of the FET and
the associated depolarization fields imposes a capacitance and the total capacitance
between gate and source changes [44]. Nevertheless, a sufficiently thick FE broadens
the hystereticwindow so that the hysteretic behavior is preserved and can be observed
in the ID − VGS transfer characteristics of this device Fig. 1f. This corresponds to
the non-volatile, hysteretic mode of FeFETs. In this mode of operation, at VGS =
0V (i.e., when the supply voltage is turned off), the FeFET exhibits two stable states
which correspond to positive or negative polarization retention in the FE layer. For
an n-type FeFET, the device exhibits high resistance states (HRS) when P < 0 and
low resistance states (LRS) when P > 0. For a p-type FeFET, it is in HRS when P >
0 and LRS when P < 0. Thus, when the FE layer is sufficiently thick, non-volatility
can be embedded inside a transistor, i.e., FeFET can operate as an NV memory and
a transistor switch at the same time.
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3 CiM DNN Accelerators

3.1 Computing-in-Memory

Conventional von-Neumann architecture is not efficient because the cost of data
movements between memory and processing units is high. This issue is called the
memory wall. More seriously, the technologies for logic units are growing faster
than memory cells, causing a significant gap between computation and memory
access. Thus, various efforts have been made to break the memory wall by moving
the computations closer to memory. The integration of memory and computation is
an evolving concept and is developing along with technological advances [16]. We
first introduce an earlier concept which is now considered near memory computing
(NMC). Researchers embed processing cores into dynamic random-access memory
(DRAM) modules [12, 35, 37] so that data can be processed in the DRAM module.
This avoids sending data from DRAM to CPUs across the complex memory hier-
archy. However, integrating DRAMs and processing units on the same chip is not
beneficial if the communication cost between memory and processing units is not
reduced. The concept of 3D stacking is adopted to address this issue. By stacking
multiple silicons on top of each other and utilizing through-silicon-vias (TSVs) to
handle inter-silicon layer communications, 3D stacking allows the processing unit
to be integrated as additional layers of the stacked chip and can provide higher
bandwidth compared with putting memory and logic in different chips [13, 18, 55].
However, these methods do not actually use memory modules for data processing
and are still sending data from memory to logic.

A step further from NMC is computing-in-memory (CiM), where processing
is directly performed inside the memory array. The latency and energy efficiency
requirements of edge devices greatly inspired researches in this field. The integration
of processing and memory units can be done in different levels of granularity. The
extremest design of CiM is that each of the memory cells is able to perform logic
operations [26]. This is referred to as fine-grained CiM. There is also a spectrum
of designs between fine-grained CiM and NMC. A typical design is to empower
memory arrays (of SRAM or DRAM) with processing abilities so that data can be
processed inside operations inside and betweenmemory arrays. This can be achieved
by modifying the peripheral circuitry of these memory arrays. This approach is
referred to as coarse-grained CiM.

The CiM concept is further evolved with the help of new advances in emerging
NVM device technologies. Specifically, NVM devices including RRAMs, STT-
MRAMs, and FeFET-based RAMs can offer high density, good scalability, and
high power efficiency. Thus, these devices are natural replacements for SRAMs
or DRAMs in CiM architectures. Various recent efforts utilize CiM-capable NVM
devices instead of SRAMs or DRAMs as building blocks of either cache or main
memory. One direction of research is to use NVM simultaneously as storage and
logic devices by re-designing sense amplifiers so that NVM arrays can perform a
subset of logic and arithmetic operations [22, 30, 38]. Another direction is to use
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NVMs to build content-addressable memories (CAMs). CAMs can perform searches
in a parallel manner, thus reducing the search time significantly. Moreover, search in
CAMs requires little data movement, which leads to low energy consumption. The
third direction is to use NVM devices to build DNN accelerators. These accelerators
can directly executematrix-vectormultiplication inside thememory array. This saves
the cost of data movements. The advances of NVM-based CiM DNN accelerators
are discussed in detail in the following sections.

3.2 Crossbar-Based Vector-Matrix Multiplication Engine

Crossbar array is the key component of nvCiM DNN accelerators. As shown in
Fig. 2, a crossbar array can be considered as a processing element for matrix-vector
multiplication where matrix value (i.e., weights for DNNs) are stored at the cross
point of each vertical and horizontal linewith resistiveNVMdevices such as RRAMs
and FeFETs, and each vector value is propagated through horizontal data lines. In
this work, we mainly introduce an RRAM-based design. Designs using other kinds
of NVM devices are with similar structures. The calculation in crossbar array is
performed in the analog domain but additional peripheral digital circuits are needed
for other key DNN operations (e.g., non-linear activation and pooling), so DAC and
ADCs are adopted between different components.

As is demonstrated in Fig. 2, every bitline (vertical) is connected to every word-
line (horizontal) via NVM cells [39]. Assume that the cells in the first column are

Fig. 2 Illustration of
crossbar array architecture.
The input is fed horizontally
and multiplied by weights
stored in the NVM devices at
each cross point. The
multiplication results are
summed up vertically and
the sum serves as an output
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programmed to resistances r1, r2,…, rn, where n is the number of rows. The conduc-
tances of these cells, g1, g2, …, gn, are the inverses of their resistances (gi = 1/ri).
If voltages V 1, V 2, …, Vn are applied to each row 2, cell i generates current Vi/Ri,
which is equivalent to Vi × gi, into the bitline, based on Kirchoff’s Law. The total
current accumulated on the bitline is the sum of currents passed by each cell in the
column, i.e., I = ∑n

i=1 Vi × gi . This current I represents the value of a dot product
operation, where one vector is the set of input voltages at each rowV and the second
vector is the set of cell conductances g in a column, i.e., I = V · g.

As shown in Fig. 2 V is applied to all columns in parallel. The currents emerging
from each bitline can therefore represent multiple vector-vector dot product, which
is then a vector-matrix multiplication. VMM is the key operation of DNNs. In a fully
connected layer, for example, there are multiple neurons and each neuron is fed with
the same input vector, but each of the neurons has a different set of synaptic weights.
This operation can be represented byO = V G where V is the input,G is the weight
matrix for neurons and O is its output. The crossbar array shown in Fig. 2 represents
an n × m crossbar array that performs dot products on n-entry input vectors for m
different outputs in a single CiM cycle.

Note that the result of the VMM operation would also need to be applied a
bias value and passed through a non-linear activation function. This is done off
the crossbar array. Thus, peripheral circuits are needed to perform these operations.
Moreover, crossbar arrays handle VMMoperations in the analog domain while other
peripheral circuits are digital. DACs and ADCs are needed to transform data to and
from the analogy domain. Generally, for each row of the crossbar array, there is a
dedicated DAC to serve this wordline. However, ADCs are large in area and power-
hungry. Thus, multiple bitlines need to share one ADC and this is achieved by the
sense-and-hold circuits along with the MUX selector.

3.3 General Architecture of nvCiM DNN Accelerators

Various accelerator architectures have been proposed to utilize the nvCiM crossbar
arrays for more efficient DNN acceleration. There are generally two fashions of
acceleration, one only accelerates the inference path of DNN models and the other
also considersDNN training acceleration. In this chapter, we focus onDNN inference
acceleration and we introduce two well-known architecture level designs, ISAAC
[39] and PRIME [10] for this scheme.

The first design, In-Situ AnalogArithmetic in Crossbars (ISAAC) [39] uses cross-
bar arrays for bothDNNweight storage andprocessing elements forVMMoperations
[54]. As shown in Fig. 3, ISAAC is implemented with a hierarchical-structured archi-
tecture whose major component is “tile”. Each tile consists of multiple in-situ MAC
units (IMA), eDRAMbuffers, and keyDNNcircuitries including shift-and-add (SA),
sigmoid, and max-pooling units. Thus, a tile can perform DNN operations individu-
ally. Each IMA unit is equipped with a few crossbar arrays and ADCs connected by
a shared bus. Different from traditional SRAM-based designs, writing NVM devices
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Fig. 3 Illustration of ISAAC architecture. ISSAC is composed of a group of tiles and each tile
consists of multiple crossbar-based IMAs, buffers, and peripheral circuits for other key DNN
operations

is expensive (both in terms of time and energy consumption), so re-configuring
crossbars in runtime are not feasible and thus crossbar arrays cannot be reused and
each array is dedicated to only one CNN layer. The outputs of a former layer are
temporarily preserved in the eDRAM buffer so that they can be used as the input of
the next layer. Note that, except for the structure inside a “tile”, the architecture of
ISAAC is very similar to its digital DNN accelerator counterpart DaDianNao [9],
which is a state-of-the-art architecture when ISAAC is proposed. After tape out, the
researchers show that, with a 16-chip configuration, ISAAC achieves 14.8× higher
throughput while consuming 5.5× lower energy than DaDianNao. This means (1)
ISAAC can achieve higher energy efficiency than state-of-the-art and (2) crossbar
array-based design is a key contributor to this efficient design.

Different from ISAAC that never re-configures NVMs, the PRIME architecture
[10] uses a scheme where a portion of the NVM arrays can alternate between storage
and compute units during runtime. As shown in Fig. 4, the authors modify the stan-
dard wordline decoder and drivers (WDD), column multiplexers, and sense ampli-
fiers so that they can better suit the RRAM-based crossbar arrays, and configure
the storage banks into three different function units, memory subarrays (MS), full-
function subarrays (FFS), and buffer subarrays (BS). The FFS is the key component
that can alternate from memory to computational units. In the computation mode,
FFS can perform VMM for DNNs, and in the storage mode, FFS buffers the inter-
mediate data generated by VMMs. Similarly, the BS also acts as storage when FFS
is not in computation mode. The sense amplifier is reconfigured to detect the higher
precision analog value for computation compared to storage requirements so that
matrix multiplication can be performed. The modified column multiplexer executed
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analog substractions and nonlinear threshold functions. Although their implemen-
tation exerted a 60% area overhead, the computation energy was saved by 94% by
reducing external memory accesses.

4 Device and Circuit Non-idealities

Although nvCiM can offer low latency and high energy efficiency, there are two
major limitations of nvCiM, low data precision, and low device reliability. For the
first issue, due to the limitation of the area and power budget, both the weight stored
in the NVM devices and intermediate activation data can not be represented in a
high precision manner. nvCiM DNN accelerators generally use data representations
of four to eight bits [10, 39]. This problem is similar to the quantization problem of
the traditional digital DNN accelerators and has been sufficiently discussed [17, 45].
However, the origin, simulation method, and mitigation approach of the reliability
issue of nvCiM DNN accelerators are still open questions and are still receiving
heated discussions. In this section, we introduce the origin of the reliability issue of
nvCiM DNN accelerators with an example of RRAM devices. For STT and FeFET
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devices, the source of unreliability is similar but the significance and specific behavior
of these noise sources are slightly different.

Various research about developing fault models for RRAM and other emerging
NVM devices has been established. In this section, we focus on five noise sources
that are directly related to the unreliability of nvCiM DNN accelerators: thermal
noise, shot noise, random telegraph noise (RTN), programming errors, and endurance
failures [14].

4.1 Thermal Noise

Thermal noise is also known as Johnson-Nyquist noise. It is electronic noise caused
by the thermal agitation of carriers and is a property of all passive devices. It happens
regardless of whether a voltage is applied to the device. A well-established model for
thermal noise is by placing a current source in parallel with the ideal target device.
The current source is also known as the noise current and its magnitude is modeled

by a Gaussian distribution with zero mean and a standard deviation of
√

4KBT� f
R ,

where KB is the Boltzmann constant (≈ 1.38 × 10−23 J/K), T is the temperature
in Kelvins, δf is the bandwidth of the signal measured, and R is the resistance of
the ideal target device. Thermal noise is a fundamental property of resistive circuit
elements. From the model, we can observe that the only way to reduce thermal noise
is to reduce the device temperature. To handle this source of noise, noise resilient
architectures that can operate under thermal noise need to be devised.

4.2 Shot Noise

Shot noise is also a fundamental source of noise caused by the physical nature of
electronic devices. This source of noise is called Poisson noise because it can be
modeled by a Poisson process. The key cause of shot noise is the discrete nature of
currents where electric currents actually consist of flows of discrete charges (e.g.,
electrons).When the number of electrons flowing through the device at a certain point
of time fluctuates, a fluctuation of current through a device can be observed. This can
affect the measurement accuracy when a detector is sensing the current flowing into
it. Although shot noise is easy to be averaged out provided enoughmeasurement time,
devices working in high frequencies (e.g., nvCiMDNN accelerators) still suffer from
such noise. As discussed above, a Poisson process is a more precise way of modeling
shot noise, but this noise model is too complex when embedded in other models. A
simpler model is a zero-mean Gaussian noise with a standard deviation of

√
2q I� f ,

where q is the charge of an electron (≈ 1.6 × 10−19 C), I is the current flowing
through the ideal target device, and �f is the bandwidth of the signal measured.
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4.3 Random Telegraph Noise

Random telegraph noise (RTN) exists in both CMOS and emerging NVM device
circuits but is considered as a major cause of faults of emerging NVM devices [20].
RTN is also called burst noise and is caused by the charge carriers that are temporarily
trapped inside the device, thus changing the effective resistance of the device. The
result is a temporary and unexpected reduction in the resistance of a device at runtime.
The trapping and untrapping of the charge carrier is modeled mathematically by
means of the telegraph process, which is a Markovian continuous-time stochastic
process that jumps discontinuously between two distinct values.

4.4 Programming Errors

Programming errors refer to the difference between the actual device resistance
and the target resistance due to the non-ideal configuration of the device. This is
generally caused by both the process variations and temporal variations of each
device. Affected by the former noise, when applied the programming voltage of the
samemagnitude and duration, the resistance of different instances of emerging NVM
devices can be different. The latter leads to the fact even when applied to identical
programming pulses, an NVM device can be programmed to different values in
different trials of programming. A complex but effective way to mitigate this issue is
to use a scheme called write-and-verify [1, 36, 47]. The key operation is to iteratively
apply a series of short pulses (write) and then check the difference between current
and target resistance (verify), converging progressively on the target resistance. In
deploying accelerators for Neural Network inference, this time-consuming progress
is tolerable because once programmed, no more modifications to the resistance are
needed during the entire life span of the accelerator. This scheme pulls down the
programming error to less than 1%. This 1% of error can be modeled by a zero-mean
Gaussian noise where the standard deviation is determined by the error upper bound
of the write-and-verify process.

4.5 Endurance and Retention

Endurance Failure is about the device being able to preserve their property after
multiple times of write operations or and retention is about being able to read the
desired data at a long period of time after programming. The endurance of emerging
NVM devices varies widely based on the material properties and write mechanisms.
The typical endurance for CMOS-based SRAM is 1016 which means typically, after
this amount of write, the device would be stuck at a certain value, and writing it
would be infeasible. The typical endurance for STT-MRAM is 1015, for FeFET is
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105 and for RRAM is 107 [14]. On the other hand, being able to read out the correct
information when it is a long period of time after the device is programmed is also an
important subject. This is called the retention issue. For simple CiM implementations
like Memristive Boltzmann Machine, a typical worst-case lifetime is 1.5 years, but
for nvCiMDNN accelerators, the system is more complex and the lifetime is shorter.
To mitigate the effect of the endurance issue, researchers proposed a fault-tolerant
online training method [46] that maps the weight matrices stored in crossbars for
computation around faults or endurance failures through a combination of neural
network pruning and data remapping. This scheme increases the life of the neural
network accelerator, allowing it to be used for training.

5 Impact of Device Variation on DNN Acceleration

5.1 Model of Device Variation

The source of device variations and their behaviors are introduced in Sect. 4, but
modeling such device characteristics is not a simple task. A straightforward way
is to abstract the behavior of different devices into circuit-level models [56] and
utilize circuit-level simulation tools (e.g., SPICE) to investigate the behavior of
certain nvCiM DNN accelerators. However, because of the complexity of both
neural network typologies and DNN accelerator architectures, building circuit-level
models for nvCiM accelerators requires great human effort and needs to be modified
each time a new type of accelerator architecture is proposed. Moreover, circuit-level
models are computationally intensive. Using such models to simulate complex DNN
accelerators requires considerable evaluation time and is not suitable during design
phase explorations. Thus, a simple and effective model for the impact of device
variations is needed.

One of the effective modeling methods is to model the device variation as a whole
and use a Gaussian distribution to represent it [14, 15, 23, 50]. Here we introduce
one representative modeling method [15] using Gaussian variables.

The NVMdevice electrical property, e.g., conductance, is subject to the combined
effect of different variation sources as in Sect. 4. The actual conductance values g
considering variations on n devices of a crossbar array can be written as:

g = g0,n×1 + �gg + F
(
g0,n×1,r ≈ g0,n×1 + f

(
g0,n×1, r

))
(1)

where g0,n×1 = g0,n×1 + �gg with g0,n×1 denoting the expected conductance and
�gg denoting the global conductance variation as a constant for all the devices on
the same die; r models the underlying spatially correlated and dynamic variations;
f (g0,n×1, r) is a function describing the dependence of variations on the expected
conductance and can be approximated by f (g0,n×1, r) due to the relatively small
value of variations w.r.t. the nominal values [11].
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Since themappedweightsw are linearly related to conductance asw = c1×g+c0,
where c1 and c0 are two constants, each weight wi represented by multiple devices
can be modelled as a Gaussian variable:

wi = N
(
u0,i , �

(
u0,i

)2
)

(2)

= N
(

c1g0,i ,+c0, c
2
1 f

(
g0,i

)2
(

m∑

k=1

λ2
i,k + λ2

i,n

))

(3)

5.2 Impact of Device Variation on DNN Outputs

After finishing modeling the device variations, we can then investigate the impact of
device variations on nvCiM DNN accelerators. A typical study is to evaluate such
impact on an accelerator targeting image classification tasks [49]. In this section, we
introduce the findings of the authors of [49].

A starting point is understanding the effect of device variations on the output of
a DNN model. The forward path of a DNN model can be viewed as a function of
the input and the weight value of the model. Formally speaking, a DNN inference
process can be defined as:

O = F(W, I) (4)

where F is the DNN architecture, W is the DNN weights, I is the input vector, and
O is the output vector.

In classification tasks, the output vector O for each input (not batched) is a 1-D
vector whose size is the number of possible classes. Each element of this vector
represents the model’s confidence that the input images should be classified into a
certain class. Thus, the class with maximum value inO is what the model predicts to
be the best choice for classification. During training, O is passed through a Softmax
function so that the confidence for each class is between 0 and 1 and the sum of
confidences among different classes is 1. However, Softmax is not necessary during
DNN inference because it does not change the order of the values in O. The final
predicted class of I is calculated by argmax (O), which is the index of the item in
O that has the maximum value. As we focus on inference, the vanilla version of O
before Softmax is the key.

Taking device variation into account, a model deployed on nvCiM DNN
accelerators can be represented as:

ODep = F(WDep, I ) = F(N (WExp, σ ), I ) (5)
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whereWDep is theweight actually deployed on the accelerator and according to Eq. 2,
it can be modeled as a Gaussian variable whose mean is WExp, which is the trained
value of the neural network to be deployed, and the standard deviation is σ , which
can be calculated using Eq. 2. ODep is the affected output.

One indicator of the effect of device variations on nvCiM accelerators is the
difference in output. Formally speaking,we candefineoutput change as the difference
between the output without device variation and the output value under the impact
of device variation:

OChange = F(WExp, I ) − F(N (WExp, σ ), I ) (6)

Note that OChange is also a random variable.
In order to get a glance at the statistical behavior of OChange, according to the

workflow introduced in Sect. 5.2, the authors train a LeNet model for the MNIST
dataset [27] to state-of-the-art accuracy. The authors then randomly choose one input
image in the test dataset and sampled 10k different instances of noise.With this setup,
the authors gathered 10k different OChange vectors.

For MNIST, OChange is a vector of 10, with each element representing the confi-
dence of classifying the input image into one certain number digit. Because a high-
dimensional vector is not a good choice for analytical study and visualization, each
element of these vectors is visualized independently, so 10 instances of distribution
data are collected.

Each element of OChange follows Gaussian distribution. To visualize this finding,
the authors plot the histogram of the distribution of each element of OChange vector
and the corresponding Gaussian distribution that fits it. The visualization result for
the first element of OChange is shown in Fig. 5. It is obvious that the visualized variable
is Gaussian.

This observation generalizes in various networks in various datasets. For the
MNIST dataset, three models are analyzed: (1) LeNet and two-layer-multilayer
perceptrons (2-layer-MLP) using (2) ReLU and (3) Sigmoid activation. For the

Fig. 5 OChange distribution
of LeNet for MNIST. 10k
OChange vectors are gathered
from one trained LeNet
model affected by 10k
different instances of weight
values from σ = 0.04. This
figure shows the distribution
of the first item of the
gathered OChange vectors. It
is obvious that the visualized
variable is Gaussian
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CIFAR-10 dataset [25], the authors of [49] test four models: (1) a conventional
floating-point CNN, (2) a quantized CNN, and two ResNets, (3) ResNet-56 and (4)
ResNet-110. For each model, three different initializations are used to train three
different sets of weights.

The authors of [49] collect all OChange variables and find the closest Gaussian
variable that fits each of them. To measure the similarity of OChange and its Gaussian
counterpart, two widely used standards: mean square error (MSE) and Chi-square
(χ2) test are used. For variables with one element, MSE can be described as:

MSE = 1

N

N∑

i=1

(Oi − Ei )
2 (7)

and χ2 test can be depicted as:

χ2 =
N∑

i=1

(Oi − Ei )
2

Ei
(8)

where Oi and Ei are the observed (OChange) and estimated (Gaussian) value of,
normalized in the form of probability density, and N is a user-defined granularity.
HereN =100 is usedbecause it is precise enoughwhen there is a total of 10k instances
of OChange data. The similarity of a vector is averaged out among all of its elements
and the final similarity is also averaged out among all different initializations.

The similarity of OChange distribution and its Gaussian fit for different models are
shown in Table 1. For each model tested, the average χ2 test results among different
initializations are all below 0.1 and MSE are all below 10−3, which indicates we can
have high confidence that OChange distribution is Gaussian. Moreover, this observa-
tion is scalable because, for both extremely shallow (e.g., 2-layer MLP) and very
deep (RestNet-110) candidates, both errors do not increase. Thus this observation
generalizes across different DNN models targeting classification tasks. With this

Table 1 The similarity of
OChange distribution and its
Gaussian fit for different
models

Model Dataset χ2 (10−2) MSE (10−4)

MLP-ReLU MNIST 5.22 3.20

MLP-Sigmoid MNIST 5.81 2.20

LeNet MNIST 4.59 2.67

Float-Conv CIFAR-10 7.01 3.03

Fixed-Conv CIFAR-10 6.79 2.74

ResNet-56 CIFAR-10 4.56 1.79

ResNet-110 CIFAR-10 4.81 2.01

The χ2 test result and MSE between the OChange and its Gaussian
fit counterpart is presented. Both tests show that the OChange is a
multi-dimensional Gaussian variable w.r.t. different instances of
noise
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conclusion, the authors of [49] claim that, with any independent and identically
distributed Gaussian noise on weight, the output vector of the same input image
follows a multi-dimensional Gaussian distribution1 over different samples of
noise.

This claim is very strong and there is only empirical support for it. However, it is
not counter-intuitive. The output of the first convolution layer is the summation of the
multiplication result of deterministic inputs and Gaussianly distributed weights and
is thus a summation of Gaussian distributions. The summation of Gaussian variables
is also a Gaussian variable, so the output of the first layer is a Gaussian variable. After
activation, the input of the second layer is a transformed Gaussian variable. After
propagating through this layer, each output value is the sumofmultiplemultiplication
results, and operands for each multiplication are both Gaussian variables. It is also
worth noticing that, for the same layer, the standard deviation σ for each noisy
weight is the same. So the results of each multiplication are close to IID and with
enough number of operands for this summation, the accumulated variable can be
approximated by Gaussian variables. Thus, although the final output may not strictly
be a Gaussian variable, a Gaussian approximation can be observed.

6 Dealing with Device Non-idealities

The majority of noise sources of nvCiM DNN accelerators are random noise that is
difficult to eliminate during device production. Fortunately, there are opportunities
from the accelerator architecture, DNN topology design, and DNN training aspects
that can help to mitigate the effect of device variations. In this section, the authors
introduce four different efforts from these three aspects.

6.1 Error Correction

As discussed in Sect. 3.3, nvCiM accelerators process DNN models in a layer by
layer manner and devise nvCiM processing units that consist of crossbar arrays and
other peripheral digital blocks to perform matrix-vector multiplication and other key
DNN operations including non-linear activation and pooling. From the accelerator
architecture design aspect, it is a straightforward idea to equip nvCiM platforms with
error correction abilities so that they can mitigate the effect of device variations.

In this section,we introduce one representativework [14] that uses error correction
code to assist nvCiM computation. The authors use a group of arithmetic codes,
named AN-codes [43] for error correction. Arithmetic codes are a class of error
correction codes (ECCs) that can preserve the result of arithmetic operations with
noisy operands. AN-codes are a set of arithmetic codes that apply arithmetic weight

1 Note that each element of the output are deeply co-related, not independent.
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Fig. 6 Illustration of error
correction unit circuitry. This
is a lookup table styled
design
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to each operand so that it can maximize the arithmetic distance between codewords.
An example of AN codes that utilizes residues is, for a given integer K and operands
A and B, KA + KB = K(A + B) and (KA + KB)% K ≡ 0. The ECC units can detect
and correct the error according to the residue.

The error correction unit (ECU) in [43] has three major components: two
divide/residual units for the residual computation ofA andB (one each), and a correc-
tion table thatmaps each residual to a syndrome. The output of the first divide/residual
unit computes the integer division of the input by A and outputs the residual along
with the quotient. The residual is used to index into the correction table, and the
value read from the correction table is added to the result. This value is then fed into
the second divide/residual unit where it is divided by B. The output of this unit is
the final output of the error correction system and includes a flag indicating if the
computation was in error. An illustration of ECU is shown in Fig. 6.

6.2 Identifying Robust Neural Architectures

Some DNN topologies (neural architectures) are more robust than others against
device variations. Finding these neural architectures is a viable way of mitigating
the effect of device variations. Meanwhile, different neural architectures require
different amounts of computation power and are thus with different inference latency
and power consumption. Handcrafting a neural architecture that meets all design
requirements is a challenging task. Fortunately, neural architecture search (NAS)
[48, 52, 57] is proposed to automatically find an optimal neural architecture in a
designated design space using reinforcement learning-based algorithms.

In this section, we introduce NACIM [23], a device-circuit-architecture co-
exploration framework that can automatically identify the best CiM neural accel-
erators from a design space including the device type, circuit topology, and neural
architecture hyper-parameters. NACIM framework iteratively conducts explorations
based on a reward function, which is suitable for reinforcement learning approaches
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or evolutionary algorithms. By configuring the parameters of the framework,
designers can customize the optimizationgoals in termsof their demands.The authors
model the effect of device variation by modeling the shot noise as a stuck-at-low or
stuck-at-high fault, and the other noise sources as a whole to be a zero-mean addi-
tional Gaussian noise extracted from widely adopted models [56] on the weight
value. Experimental results show that the proposed NACIM framework can find the
robust neural network with only 0.45% accuracy loss in the presence of device varia-
tion, compare with a 76.44% loss from the state-of-the-art NAS without considering
device variation.

6.3 Training Robust DNNs

DNN models with the same neural architecture but different weights can have very
similar accuracy in ideal conditions but very different accuracy in the existence
of device variations. Thus, finding proper weights that are robust against device
variations in the training process is a desirable approach.

A straightforward way to find robust weights is to simulate the noisy forward
path in the training process, i.e., in each iteration of training, the algorithm sample
an instance of noise and add it to the weight in the forward and backpropagation path
to calculate the gradient, then remove the noise when updating the weights.

This method is used in NACIM [23] which is introduced before. For implemen-
tations in MNIST dataset [27], noise injection training can reduce the accuracy drop
between the ideal model and model with device variations from 6 to 0.5%, and in
CIFAR-10 dataset [25], noise injection training can reduce the accuracy drop from
76.44 to 0.45%.

Amore advanced way to find robust weights is to seek help from Bayesian Neural
Networks (BNN). Bayesian neural network is known for a stochastic gradient varia-
tional Bayes framework applied to approximate posterior distributions over network
parameters. By employing a prior distribution over the weight space, BNN allows
us to introduce variation to the learning process to better fit the observations [15].

A recent work [15] uses BNN to improve the robustness of nvCiM accelera-
tors. BNN requires a priori distribution and uses an estimated posterior to fit this
distribution. The priori can be obtained from device variation models. These models
are inferred from expert knowledge with the help of measurement, simulation, and
historical data. The authors also use KL divergence as the regularization term to
enforce the memristor variation structural characteristics.

Although the priori used in most recent works are carefully designed, they can
still be imprecise or uncertain because of the measurement imperfectness and the
ever-going evolution of emerging devices. To address this issue, the authors of [15]
propose a variance-adaptive priori to weigh the value of prior knowledge. The author
modify the optimization objective of BNNs so that weights with larger values are
more regularized by the priori, i.e., it allows placing heavier priorities on those
critical weights (with higher magnitude) on crossbar arrays that are prone to receive
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more impact from device variations, thereby reducing oscillations in convergence for
more efficient training. Finally, to prevent the over-amplification of variation during
training, the authors add an additional regularization term using L2 norm loss. In
CIFAR-10 dataset, this proposed method is able to reduce the accuracy drop from
45.7 to 0.3%.

Although these two methods are effective in terms of mitigating the effect of
device variations on nvCiM accelerators, they require much more training iterations
to converge compared with traditional training methods. In the MNIST dataset, both
methods require at least 10× more iterations of training to reach a similar accuracy
as the traditional training method [23].

7 Conclusions

Computing-in-memory with emerging non-volatile devices (nvCiM) is a great candi-
date for efficient DNN acceleration because of its unique architecture that breaks the
memory wall. However, it suffers from unreliability issues, especially the device
variation issues of emerging NV devices. Understanding the property of emerging
NV devices and the general architecture of nvCiM DNN accelerators helps to better
model the effect of device unreliability circuit and application level. The modeling of
unreliability also helps in mitigating the impact of device variations. The representa-
tive ways of mitigation include the adoption of ECC in the architecture and finding
neural network topologies and training DNN weights that are more robust against
device variations.
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Providing Compliance in Critical
Computing Systems

Long Wang

Abstract Critical services such as health care, finance, power, public utility, are
being hosted in critical computing systems like cloud, big data and AI platforms.
Compliance is one of the main instruments governments exert on such computing
systems for regulating security and reliability so that governments and the public
can obtain the assurance that no severe unacceptable impacts or incidents may
occur. This article gives a comprehensive discussion on the compliance problem
in critical computing systems, and describes state-of-the-art technologies and prac-
tices of compliance validation/enforcement. This article is very helpful for those
professionals working on critical computing systems and services.

1 Introduction

Cloud computing and artificial intelligence are growingly adopted for supporting
services and applications, including those ones critical to human’s living, survival,
and even human’s life, such as health care andmedication, finance, education, power,
public utility, telecommunication, etc. These critical services and applications are
hosted on cloud systems, big data analytics systems, and traditional data centers,
which are called critical computing systems in this chapter. These critical computing
systems are demanded to be highly reliable/dependable and highly secure, as service
unavailability, data corruption, information leaking, or security breach on the systems
may result in severe impacts on human’s living or human’s life.

To regulate the behaviors of the computing systems and their hosted critical
services, and particularly, to eliminate severe unacceptable impacts of system fail-
ures, security breaches or human errors onto hosted services, critical computing
systems are usually required by governments, legislation, or industry standards, to
comply with certain rules, which is called the security compliance of the computing
systems. Though there is not a standard definition of security compliance, a widely
accepted definition is given by Julisch [1]: “security compliance, in IT systems, is
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the state of conformance with externally imposed functional security requirements
and of providing evidence/assurance thereof.” Intuitively, security compliancemeans
the behavior of the computing system and/or the business process conforms to what
is specified in the text of rules set forth by governments, legislation, or industry
standards.

Compliance is one of the main instruments adopted in real-world practices for
regulating security and reliability of critical computing systems, and is the major
requirement for these systems to provide security assurance. This article presents the
state of the art on providing compliance in critical computing systems.

2 Compliance in Critical Computing Systems

Compliance is an important property and requirement for computing systems that
host critical services [2], such as cloud systems, big data analytics systems, and AI
platforms. Compliance is the key instrument for governments and legislation to regu-
late the behavior of the computing systems with regards to dependability, security,
privacy, auditability, etc. Violation of compliance usually leads to severe penalties
onto the computing systems and/or their owners and operators, e.g. the computing
services may be forced to get offline, or even the operator may get imprisoned [3].

Services hosted on critical computing systems spanmultiple domains like finance,
health and medication, telecommunication, and so on. In each of these domains there
are compliance rule sets (acts, regulations, directives, decisions, standards, guide-
lines, etc.), e.g. there areHIPAA [4] andGxP [5] in the health andmedication domain,
and there is Finance Service Compliance [6] in the finance domain. Different coun-
tries may have different compliance rule sets, e.g. GDPR (General Data Protection
Regulations) [7] in Europe has the compliance rules on computing systems’ manip-
ulation of data, including health data, while HIPAA is the compliance on computing
systems’ manipulation of health data in United States.

Cloud systems are popular platforms now for hosting services and applications. So
commercial cloud systems usually conform to a number of compliance rule sets. For
example, Amazon Web Services (AWS) cloud observes tens of compliance rule sets
including CSA, ISO9001, HIPAA, PHIPA, etc. [8]; IBMCloud observes the compli-
ance rule sets of CIS, CSA STAR, ISO9001, ISO20243, SOC2, etc. [9]; Microsoft
Azure cloud andGoogle cloud also observe a number of compliance rule sets [10, 10].

2.1 High-Level Studies on Compliance

Before we describe detailed technologies of providing compliance in Sects. 3 and
4, here are a number of high-level studies on security compliance. Al-Aqrabi et al.
analyzed the difficulties and challenges brought by security compliance [12], and
listed compliance as one of the top three problems during the migration of services
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and applications from proprietary systems to cloud platforms. Gudivada et al. [13]
stated certain support at the computing system architecture required by compliance.
Ragan [14] classified compliance into multiple levels, and described the compli-
ance requirements at each level. In 2008 Julisch [1] pointed that the major focus
of computing system security in industrial practice is compliance and the academia
should pay more attention onto this problem. Yimam and Fernandez presented a
survey on security compliance in the context of cloud computing in 2016 [15]. Von
Solms differentiated two different types of compliance, one for information regula-
tion and the other for business regulation [16]. Tianfield [17] and Hashizume et al.
[18] also did similar analysis and reported compliance as one of the major challenges
in cloud security. Ardagna et al. [19] reported the same conclusion in the context of
big data analytics platforms.

There are also studies that focused on specific compliance acts or regulations. For
example, Kibbe [20] describes the 10 high-level steps of achieving HIPAA compli-
ance, Artnak and Benson [21] depict multiple aspects of HIPAA compliance, and
the report [22] explains how Microsoft Corporation supports the Sarbanes–Oxley
(SOX) compliance [23].

Besides the high-level discussion and presentation of security compliance above,
Ullah et al. gave a reference framework for compliance in cloud systems [24],Mather
et al. discussed certain standards of compliance in cloud systems [25], and the survey
[15] also proposed an abstract reference architecture of compliance in Software-as-
a-Service (SaaS) cloud systems. In addition, there are studies on specific compliance
problems. Beautement et al. [26] and Kilbridge [27] studied the cost of a number
of specific compliance standards; Kalaiprasath et al. [28] and Hendre and Joshi [29]
discussed the compliance requirements in specific aspects including key manage-
ment, privacy, and incident response. Furthermore, they discussed how to select the
best cloud platforms when given requirements in these aspects. In particular, they
built matrixes that list how (to what extent and in what details) different cloud plat-
forms provide support to the compliance in these aspects. Then their algorithms
search the matrixes when clients supplied certain compliance requirements in these
aspects and find the best cloud platforms for the clients.

2.2 Compliance Rules

Here we use HIPAA as an example to illustrate what a compliance rule set typically
looks like. HIPAA, or Health Insurance Portability and Accountability Act, was
released in 1996 to protect the privacy and security of health and medical data in
United States. Compliance rules are typically organized in multiple categories, as
the HIPAA fragments in Fig. 1 show. The right snapshot in Fig. 1 shows specific
compliance rules (e.g. “assign a unique name and/or number for identifying and
tracking user identity”), and the other two snapshots show the categories of the
compliance rules.
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Fig. 1 Fragments of HIPAA compliance regulation rules [30]

As Fig. 1 shows, the HIPAA compliance rules have multiple categories: physical
rules, technical rules, and administrative rules. Physical rules specify the controls of
the facility/building access, workstation use, use of USB storage or other media, and
so on. Technical rules specify the controls for the technical parts of the computing
systems, e.g. what levels of cryptography should be used, and what mechanisms
should be implemented for authentication and authorization. Administrative rules
specify the controls on staff management, responsibilitymanagement, business oper-
ations, etc., e.g. the security official responsible for certain policies and procedures
must be identified, andpolicies for authorizing access toProtectedHealth Information
(PHI) must be defined and implemented.

Besides the physical, technical and administrative categories which are created
from the nature of the rules, compliance rules can also be categorized in other perspec-
tives, e.g. rules enforced during the development stage, the test stage and the operation
stage, respectively.

2.3 Compliance Audit

Figure 2 illustrates the life cycle of critical computing systems from the compli-
ance perspective. It has four phases: development, audit, release, and system opera-
tion/compliance enforcement. Agents from the government or a third-party company
will do the audit against given compliance rules after the development completes.
After the audit passes, the computing system is then released to serve real-world
workloads, and the system and its hosted applications are in operation while the
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Fig. 2 Life cycle of critical computing systems from compliance perspective

compliance enforcement goes on.Note that this life cycle picture considers operation-
stage compliance only, which is usually the main part of compliance rules for
computing systems, and does not take development-stage or test-stage rules into
account.

When a new release of the system is to be built, the new release starts its own cycle
by entering the development phase while the current release continues to stay in the
“system operation/compliance enforcement” phase. After the new release completes
the audit and release procedures the new release replaces the current release and
becomes in operation. The compliance rules are then checked against the new current
release of the system in the “system operation/compliance enforcement” phase.

The common practice of audit now is based on a Quality Management System
(QMS) approach as specified in the ISO9001:2015 standard [31]. The QMS is an
approach that documents a system’s implementation of a given compliance rule
set in the form of, from top down to bottom, policies, designs, procedures, work
instructions, and records and forms. The documents are reviewed, approved and
signed by relevant experts and/or executives, and then are deposited into a QMS
document management system. All the compliance-regulated behavior of the system
should be based on the documents in the QMS system.

Currently the audit of a computing system is typically carried out as outlined in
Fig. 3. The audit agents and the development staff work together during the audit
to validate and verify if the system behavior conforms to those specified in the
compliance rule text and the QMS documents. Particularly, for each compliance rule
the audit agents ask the development staff for specific evidence that demonstrates
the implementation of and the conformance to the rule according to the agents’
understandings of the rule. Then the development staff collect the relevant execution
data, logs, system specifications andQMSdocuments, and put them in a storage place
called “system execution data” in Fig. 3. The audit agents look into the collected
execution data, compare the execution data against relevant QMS documents, and
validate that the execution data supply evidence that the system’s execution conforms
to the text of the compliance rule. For example, a compliance rule states that data
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Fig. 3 Diagram of current computing system audit

transmission must be encrypted using cryptography with specified strength. Then
the system design in a QMS document stipulates that data must be transmitted with
the TLS protocol that uses 256-bit AES encryption. The audit agents will ask the
development staff to provide the configuration of data transmission, the log of the
transmission and relevant network operations, and the relevant output/screenshot.
The development staff collect these data as evidence, and the agents validate if the
data really show that TLS protocol with 256-bit AES is used for data transmission.

3 Reference Architecture for Compliance
Validation/Enforcement

Figure 4 depicts the reference architecture of compliance validation/enforcement
during the audit procedure and the system operation. The reference architecture
is based on our years of research work and professional practice on the compli-
ance of IBM Watson Cloud/Platform for Health [32], and covers the major proce-
dures and modules of compliance validation/enforcement as far as we know.
The reference architecture presents a comprehensive image of the compliance
validation/enforcement.

Currently the audit procedure is conducted manually, with aid of certain scripts
developed for helping with evidence collection and validation. However, a number
of advanced technologies and state-of-the-art practices have been innovated in the
recent decade for automating certain procedures ormodules of compliance validation
and enforcement. So before describing the details of these technologies and practices,
here we give a brief introduction of the procedures/modules illustrated in Fig. 4.

(1) Compliance Text Analysis
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Fig. 4 Reference architecture for compliance validation during the audit and compliance enforce-
ment during system operation

One important step in validating or enforcing compliance in a critical
computing system is to understand and analyze the compliance rules. The
compliance rules are from law acts, articles of standards, or government regu-
lations. Their texts are written in languages and terms close to humans’ under-
standing of involved services, i.e. natural languages, and should be analyzed
or transformed into a form that can be more easily exploited for computers
to understand or execute in order to approach the objective of automating the
compliance validation.

(2) Behavior Capturing and Analysis
System execution data are collected for compliance validation/enforcement.

Such data are collected through the “behavior capturing and analysis” module
of the reference architecture. There are four major types of approaches for
behavior capturing and analysis: monitoring and measurement, recording and
logging, modeling of system behavior, and analysis of system specification,
software source code and QMS documents. The rule specification may be
needed for what behavior needs to be captured.

(3) Evidence Collection and Extraction
The evidence used for validating a compliance rule is extracted from the

collected system execution data. In this step only those data involved in the
validation of this rule are identified and used as evidence.

(4) Compliance Validation
This final step validates the compliance rule by comparing the evidence

data of the system execution with the evidence data that specify the expected
behavior (extracted from the analysis outcome of the system specification or
QMS documents), or by checking the evidence data of the system execution
against the rule specification.



198 L. Wang

4 Technologies and Practices for Compliance
Validation/Enforcement

Here we give details of the state-of-the-art technologies and practices for compliance
validation and enforcement.

4.1 Compliance Text Analysis

Traditionally the analysis of the text of compliance articles is conducted manually as
part of the manual audit process. Experts that understand the particular compliance
articles and have experience of audit on the compliance articles, e.g. IT experts and
domain experts (such as medication experts for HIPAA related compliance text)
together, do the analysis.

Recently there are researchwork that try to extract technical rules fromcompliance
text directly. Brandic et al. [33] proposed to design languages that describe and
specify compliance rules in cloud computing, including those describing compliance
requirements of computing systems, those specifying domain relevant terms and
contents, and those specifying to what extent the compliance requirement should be
enforced.

A major improvement in compliance text analysis was made by Adam et al. [34]
in IBM Research. They leveraged the standard terminology of technology defined
by National Institute of Standards and Technology of US (NIST), applied Natural
Language Processing and grammar analysis techniques to understand compliance
text and extract rules from it, and then used text classification techniques to translate
the compliance text into rules and specifications in NIST terminology.

Another thrust in automating compliance text analysis is [35]. This joint work by
UIUC and IBM defined a taxonomy framework related to their target compliance
text, and then applied machine learning and modeling technologies to process the
natural language of the compliance text, particularly resolving the vagueness and
ambiguities in the text, by means of the taxonomy framework. The result of their
processing is the accurate and definite compliance rules in terms of the concepts
defined in the taxonomy framework without vagueness or ambiguity.

4.2 Behavior Capturing and Analysis

Execution behavior of computing systems should be collected for purposes of
compliance validation/enforcement. Modern critical computing systems such as
cloud systems, big data analytics platforms and AI platforms usually provide many
monitoring and measurement capabilities (e.g. Bro [36] and Zeek [37] for moni-
toring network events, and Software Defined Network popular in such systems also
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enables certain monitoring capabilities), which can be exploited for capturing certain
execution behavior. Here we describe several state-of-the-art techniques of behavior
capturing and analysis for the compliance purpose.

Burg et al. [38] invented a license tracing technique for compliance validation.
They intercepted system calls to trace the entire building process of a software from
the source code form to the executable code form and its deployment. The tracing
technique monitors the files of the software all the time. When part of the software
is updated, rebuilt and re-deployed into the computing system the technique checks
all steps of the process. Therefore, the license tracing technique ensures there is no
license violation in all software components of the computing system and the system
conforms to license compliance.

Brandic et al. [33] proposed a technique of application-aware compliance support
in a cloud system. The technique requires the applications in the cloud system be
aware of certain compliance rules and the cloud system provide APIs for these
applications to interact with the system’s compliance service for invoking relevant
operations and exchange relevant information. The APIs allow the applications or
the system administrators to specify what data should be collected for a certain appli-
cation, what compliance requirements need to be satisfied for certain components of
the system, etc. A specification language was designed in the work to support the
API-based communications among the applications, the system’s compliance service
and the administrators.

As the reference architecture in Fig. 4 shows, system execution logs can also
be used for analysis of the system/application behavior because such logs, e.g. the
syslog of the Linux system, logs of certain services and monitoring tools, and certain
database logs, bear important system execution information that are very helpful
for compliance validation. In one example technique [39] the authors performed
continuous compliance audit using transaction logs of databases.

Models of computing systems or applications can also be devised to help with
compliance validation/enforcement. Here are some of such works. Majumdar et al.
[40] designed a dependency model of the components of an OpenStack-based cloud
system and a relevant threatmodelmanually. Then based on thesemodels they identi-
fied the crucial steps of different cloud operations’ workflows, launched attacks onto
these critical steps of the operation workflows, and checked whether the responses
of the cloud system agree with the responses specified in relevant compliance rules.
Esayas [41] employed the CORAS tool [42] tomodel the threats and risks in business
processes and to validate the compliance with the models. Governatori and Rotolo
[43] manually built models in a formal language for describing business processes
and workflows as well as validating the compliance.

Certain compliance requirements can be checked or validated by means of
analyzing configuration files, software source code or QMS documents, as illus-
trated by the “analysis” oval in the reference architecture of Fig. 4. For example, a
cloud systemmay be required by compliance to only use AES for symmetric encryp-
tion and the AES key should be 256 bits or longer. During validation the relevant
configuration files specifying the encryption method and the key length are fetched
and checked.
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4.2.1 REPTrace for Capturing Request Processing Behavior

Here we present our technology REPTrace [44] that captures the behavior of request
processing in a cloud platform or a big data analytics platform. The processing of a
service request in such a platform is typically executed by multiple components, and
a request execution path provides the holistic view of the platform’s processing of
the request. In particular, Request Execution Path (REP) is the complete end-to-end
execution path of processing an individual request among all involved components
of the platform. The REPTrace technology provides a common and transparent way
to obtain the REP by means of intercepting relevant library calls and system calls,
generating events, identifying the causality or temporal order of these events, and
stitching these events together into an integral unseparated view of the processing of
the request.

The REPTrace technology is built on a comprehensive analysis of the execution of
service request processing. Specifically, we found that there are 7 execution scenarios
of request processing based on our years of experience in research, development, and
operation on real-world cloud platforms and big data platforms. The 7 scenarios are
illustrated in Fig. 5, and are briefly outlined below (the bullets a, b, …, g correspond
to the labels in the figure):

(a) Continuous execution within a thread;
(b) The current thread creates another thread and passes the handling of the request

to the new thread. The current thread may stop processing (e.g. sleep), or
continue processing this request;

(c) The current process forks a process, and passes the handling of the request
to the new process. The current process may stop or continue processing this
request;

(d) The current process/thread sends a message to another process/thread, which
may be on the same machine or a different machine. Then the latter
process/thread begins the processing of the request. Network communication
and other similar mechanisms, like pipe, are covered in this scenario. The
current process/thread may stop or continue processing this request;

Fig. 5 7 execution scenarios of service request processing
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(e) The current process/thread synchronizes the processing of the request with
another existing process/thread using certain IPC (Inter-Process Communi-
cation) mechanism such as process wait, thread join, signal, lock/unlock,
semaphore, etc.;

(f) The current process/thread saves the request (or its intermediate state) in a
message queue. Then a different process/thread picks up the request (or the
intermediate state) from the message queue and begins processing;

(g) The current process/thread passes the handling of the request to another existing
process/thread using shared memory, shared variables, or mapped device.

Architecture. The REPTrace architecture consists of multiple agents (REPA-
gents) and a single central unit (REPGenerator). A REPAgent is installed in each
compute node (virtual machine, container, or physical machine) that intercepts
certain library and system calls in the compute node and sends a corresponding trace
event to the central REPGenerator. Trace events contain node information, process
information, thread information, function call information, and so on. REPGenerator
collects these trace events from each node, identifies causal/temporal relationships
between them, and links them into a REP (a directed acyclic graph).

REPTrace introduces two IDs for the identification of causal/temporal relation-
ships between trace events:

• MSG_ID is the unique ID of each networkmessage. Those trace events associated
with network messages, e.g. sending or receiving of messages, are marked with
the message’s MSG_ID. REPGenerator links the sending event and the receiving
event of the same message by matching the MSG_ID of the two events.

• MSG_CTX_ID is introduced to group those local events within a thread that
are related to the same individual message; i.e., all those events generated within
a thread during the thread’s processing of one individual network message are
marked with the same MSG_CTX_ID. REPGenerator links the trace events with
the same MSG_CTX_ID according to their timestamps.

These two IDs are properly employed by REPGenerator to stitch all events of
one request’s processing into a complete REP (algorithm details available in [45]).
The REP can be then used for analyzing the request processing behavior of a cloud
platform or a big data analytics platform [46].

4.3 Evidence Collection and Extraction

Those relevant data of system execution, which were obtained from the behavior
capturing and analysis, are collected as evidence during audit and post-release
compliance validation/enforcement (see the life cycle in Fig. 2). Current practice of
audit is manually performed by audit experts and developer experts, and the evidence
collection and extraction during audit is also done manually.
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However, the evidence collection and extraction during the post-release valida-
tion can be automated or semi-automated by providing scripts that automate corre-
sponding manual operations during the audit process. Such automation or semi-
automation is possible because mostly the evidence data for a specific compliance
rule are kind of same, i.e. the evidence data used in a post-release validation and
those used in the previous audit for the same rule are the “same” data which were
just generated on different dates. They may be files placed in the same directory
with different filenames (date information being part of the filename), or tuples in
the same database table with different date information. So, scripts that automate the
manual evidence collections during the audit may be developed for the automated
post-release compliance validation.

4.4 Compliance Validation

Compliance validation is the process that checks the evidence data against the compli-
ance rules or compares the evidence data with the behavior specified in QMS docu-
ments or configuration files. Similar to the evidence collection and extraction, the
validation process during the audit is mainly manual, and the validation process
during the post-release compliance enforcement can be automated or semi-automated
by means of scripts capturing what were manually performed during the audit.

The compliance validation is tightly coupled with the compliance text analysis
and the generated compliance rules (please refer to Fig. 4) because the validation is
essentially the operation that implements what the rules specify. So those techniques
applied for compliance text analysis may be extended for compliance validation.
For example, in addition to translating natural-language compliance text into terms
in NIST terminology, the technique [34] we introduced in Sect. 4.1 also developed
scripts and programs as primitive functions for the NIST terms used in the result
rules and specifications from the translation. The primitive functions perform query,
collection or manipulation operations of IBM cloud resources and data, so executing
a rule in natural language for compliance validation is automated as invoking these
primitives according to the result rule in the NIST terms. Unlike the straightforward
scripting of what was done during the audit process, this type of automated compli-
ance validation does not require a manual audit process as prerequisite. Considering
the generality of the NIST terminology, the technique has the potential of being
applied for other cloud systems similar to IBM cloud.

4.4.1 Validating Consistency of Data Stores in a Big Data Analytics
Cloud

As a case study, here is our experience of validating consistency of data stores in IBM
Watson Cloud/Platform for Health. The IBM Watson Cloud for Health is a big data
analytics cloud hosting life science and medication applications. The target clients
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Fig. 6 High-level architecture of IBM Watson Cloud for Health (FHIR is the acronym of Fast
Healthcare Interoperability Resources, a draft standard describing data formats and elements for
electronic health data)

of the cloud are drug manufactures, medical device companies, hospitals and clinics,
doctors and patients, and medical schools, institutions and researchers.

The high-level architecture of IBMWatsonCloud forHealth is illustrated in Fig. 6.
It is a Platform-as-a-Service cloud for health data, which provides the services of
the acquisition, curation, validation, storage, management and governance of health
data, and allows clients to develop and execute analytics applications over the health
data.

There are multiple data stores in this system including FHIR Data Repository,
Patient Data Warehouse, Data Lake, Data Reservoir, Data Marts, etc. According to
the regulatory controls such as HIPAA andGxP (CFRPart 11 in the diagram, or Code
of Federal Regulations Title 21 Part 11), the health data must be consistent among
these data stores. Please refer to [47] for in-depth discussions on the consistency of
data stores in IBM Watson Cloud for Health.

A simple example consistency rule is here: if a database in Data Lake contains
records of a patient’s visit to a doctor, then the patient’s profile must be present in a
database in Patient Data Warehouse, and the doctor’s profile must also be present in
another database in Data Lake.

Approach to Consistency Validation. All the data in the cloud system must be
auditable.We designed the audit service of the cloud that maintains a set of databases
for storing audit information for the data in the system.

We used these audit databases as the calibration reference for the consistency of
the data stores. All the data records in the system’s data storesmust be consistent with
the records in the audit databases. Fields associated with records in audit databases
were added to the tables and databases of the data stores, and logging steps were
added to operations that manipulate records of the data stores. The logging steps
record the operation in the audit databases and do the bookkeeping of the associated
fields in corresponding data stores.
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Then we developed a data consistency validation tool based on the audit databases
to continuously check all data stores and provide proof for the audit service. The
tool examines the data in the data stores against tens of consistency rules, which,
in our experience, were created manually by domain experts and audit experts. If
inconsistencies are found, the tool changes the contents of the data stores properly to
make them consistentwithwhat are in the audit databases. The approach is best-effort
validation that covers important consistency rules in the cloud system.

5 Conclusions

With the popularity of cloud platforms, big data platforms and AI platforms for
hosting critical services and applications, such critical computing platforms and
the critical services/applications are subject to compliance regulations imposed by
governments, legislation or industry community. The compliance is the key for the
governments and the public to trust these computing platforms and their hosted
services, and to ensure there will be no severe unacceptable impacts of system
failures, security breaches or human errors.

This article discusses the problem of providing compliance in critical computing
systems, including the descriptions of compliance rules and the compliance
audit process, and proposes a reference architecture for compliance valida-
tion/enforcement. Then we present state-of-the-art technologies and practices of
compliance validation/enforcement. We believe this article is very helpful for those
professionals and practitionerswhowork on critical computing systems and services.
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Application-Aware Reliability
and Security: The Trusted Illiac
Experience

Karthik Pattabiraman

Abstract This chapter is about the author’s time at the University of Illinois as a
PhD student in Ravi’s group working on the Trusted Illiac project at the University
of Illinois (UIUC) from 2004 to 2009. The author starts by narrating his initial
involvement in the project, and how it grew as time progressed. He then reflects
on the lessons he learned from the project, and how the project has influenced his
subsequent research career.

1 Introduction

This chapter chronicles the time from the start of 2004 to the end of 2008, when I was
a PhD student at the University of Illinois in Prof. Ravishankar (Ravi) Iyer’s group.
The start of this period coincided with the start of what later became the Trusted
Illiac project at Illinois, which was completed around the end of 2013. While I have
attempted to stay true to the historical facts and timeline, many of these are based
on my recollection, and are hence my biased views. Further, in the interest of space,
I have focused on the most pertinent facts that led to the development of the ideas
and implementation of the Trusted Illiac, even if at the time it was difficult to discern
what these were (as is typical of research). Finally, though I have written this in the
first person singular, the Trusted Illiac project was the collective effort of a great
many people—however, I have used the pronoun ‘I’ rather than ‘we’ in most places,
as this is primarily based on my personal experience.

2 Background and Beginnings

The Trusted Illiac, a 256 node Linux cluster with each node having 2 processors
and onboard FPGA (Field Programmable Gate Array) boards to provide customized
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checking for reliability and security to applications, was inaugurated in 2013 at
the University of Illinois [1]. However, the main ideas behind it originated almost
a decade ago in 2003, with the publication of the Reliability and Security Engine
(RSE) [2], by Nithin Nakka and others at the DSN 2004 conference. The RSEwas an
architectural framework for providing reliability and security support to applications,
in a separate module that was decoupled from the main processor’s pipeline.1 The
RSE was supposed to interact with the main processor through a special instruction
called CHECK, which was an extension of the processor’s Instruction Set Architec-
ture (ISA). The CHECK instruction was supposed to be inserted by the compiler or
the programmer, and would be invoked at runtime by the RSE module. The RSE
paper demonstrated the feasibility and practicality of this idea, by implementing it
in a microprocessor simulator (Simplescalar [7]), and showing that the overheads
were low. However, the authors of the RSE paper had hand annotated the application
binaries with CHECK instructions to demonstrate it.

When I joined Ravi’s group in January 2004, I started working on an automated
tool for inserting CHECK instructions into application binaries to interface with the
RSE. My original thinking was that this would be a “starter” project for 6 months
to a year, before I would move on to the actual research. I cringe today when I look
back at how naive I was back then !

The starter project ended up forming the basis of my PhD thesis, and even some
of the early research I did as a tenure-track faculty member later. This project also
spawned many PhD dissertations, including my own [3], and those of some of my
students. With the benefit of hindsight (and perhaps a little hubris even), I would
even state that this problem was one of the most challenging pieces of the puzzle
that needed to be solved for the Trusted Illiac project. Of course, at the time I started
working on this, I did not know this, which was perhaps a good thing as I may have
not worked on it, if I had known !

I have divided the remaining part of this chapter into three broad sections, each
roughly corresponding to the three phases of the research. However, the grouping
is more thematic than chronological—some aspects of the problem became clearer
only when the other pieces fell into place, which necessitated multiple iterations of
the three phases. Further, some of the missteps I took led me to revisit the earlier
phases later. I then distill some of the key lessons learned, and the aftermath of the
project in terms of its impact on my later research.

3 Early Years (Detector Placement)

As mentioned, when I started working on the project, the goal was to insert CHECK
instructions at the “appropriate” places in the application binaries in order to allow the

1 The original implementation of the RSE assumed a single core, out-of-order superscalar processor,
which was the standard at that time. It did not originally involve an FPGA or any reconfigurable
hardware.
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RSE module to check the application’s properties that were indicative of reliability
and/or security violations. A natural first step was to try to decouple the two aspects,
namely the placement of the detectors (we used the term detectors as it is more
generic than CHECK instruction) and the actual contents of the detectors. The first
problem is related to detector placement, and the second to detector derivation.

To tackle the first problem of detector placement, I initially conceptualized an
“ideal” detector, or one thatwould have 100%coverage of faults thatwould propagate
to it. This idea had been pioneered by Propane [4]. A simple way to implement an
ideal detector is to record a complete “golden” trace of all the values in the program’s
dynamic execution and to compare itwith the original program.However, thismethod
has two disadvantages. First, it leads to a significant amount of data that needs to
be recorded and processed, even for moderate sized programs (recall that this was
in 2004 when computers were much less powerful than they are today). Second,
and more importantly perhaps, even if one could record all the data, it would be
infeasible to directly compare the faulty execution with the results from the golden
run due to potential deviations in the program’s control flow due to the injected fault.
Therefore, it became clear that we needed a more robust approach to implement an
ideal detector.

In the program analysis literature, there is the notion of a Dynamic Dependence
Graph (DDG) proposed by Agrawal et al. [5], which captures the dependencies
among the instructions in a dynamic execution trace of the program. I realized that
one can leverage the DDG to trace error propagation in the program (admittedly, this
idea is not novel [6], though I did not know it at that time). The DDG provided a
convenient abstraction to trace a program’s execution and compare the golden trace
with the faulty trace without worrying about differences in the control-flow due to
the fault.

However, there remained the question of how to construct the DDG of a program
(efficiently). I explored different approaches to this problem, including using program
analysis tools at the source code level, but unfortunately, they either proved to be
rather brittle to use, or did not capture many of the dependencies that could lead
to error propagation. Therefore, I decided to build my own tool for error propaga-
tion analysis based on the DDG. Because the RSE had been implemented in the
Simplescalar simulator, I had some degree of familiarity with the simulator code,
and decided to implement my DDG construction tool using Simplescalar itself. In
retrospect, perhaps this was not the best choice, but it was very fast and scalable, and
it allowed me to analyze the DDG even for moderately sized programs.

I do not wish to bore the reader with the laborious details of building the tool, but
I would like to point out two things. The simplescalar simulator is a very well engi-
neered piece of software, but there were certain aspects of it that were not realistic.
In particular, its behavior when faults were injected was not necessarily faithful to
how modern memory segmentation worked in programs (as that was not its main
purpose). Therefore, I had to implement this in the simulator in order to use it to
track error propagation in a somewhat realistic manner (this involved modeling the
memory segmentation). Second, as mentioned, computers were much slower back
then, and I chose to write much of the high-level trace processing in Python, a rather
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new language at that time (my excuse being that I wanted to learn it). However,
the default garbage collector in Python was not very sophisticated, which led to
my program running out of memory, and thus crashing ! I had to tweak the Python
garbage collector (i.e., its parameters) to free up memory more aggressively in order
to get my program to run adequately to collect large traces.

After the tool was built, I attempted to use it to inject faults and identify the
locations where (ideal) detectors should be inserted to detect faults with the highest
coverage. Unfortunately, this task proved to be quite challenging as well as what
worked well for one program did not for another program. I remember spending
many endless nights with various statistical packages attempting to find correlations
in the data that may reveal uniform properties of locations where the detectors should
be placed.Raviwas very supportive of this effort and shared his experiencewith doing
failure data analysis with similar packages. Finally, we arrived at the breakthrough
result, which identified the characteristics of variables for detector placement, and
was published at PRDC’05 [8]. This was my first paper in this area, and it formed
the basis of my PhD thesis.

The main insight underlying this work is that the instructions that resulted in
high fanout values were most likely to propagate the faulty values, and would be the
places where detectors should be placed to prevent error propagation. While perhaps
obvious in retrospect, this result was surprising at that time (I believe) as fanouts
performed much better than more sophisticated metrics. This result has since been
confirmed by other studies [9], although there are some caveats in how it works as
they have pointed out. More importantly, this result established for the first time
that there is a correlation between the properties of a program in terms of its data-
dependencies and how errors propagate in it. Though this has been established as
conventional wisdom now, it was not the case then. I owe it to Ravi who believed
so much in this result that he made it a point to highlight it in all his talks, and
popularized it despite its unconventional nature. This work has formed the basis of
later work done by my students at UBC as well [10].

4 Middle Years (Detector Derivation)

Once I had identified the locations for placement of detectors based on the program’s
DDG and heuristics such as fanouts, the next problemwas to determine how to derive
the detectors. Recall that I had considered ideal detectors in the earlier phase, though
in the real world, there is no such thing as an ideal detector. Therefore, the question
was how to come up with detectors for the locations identified as the placement
points.

To approach this problem, I initially profiled the values of the locations in
the detector placement points using the same infrastructure I had built based on
Simplescalar. To my surprise, I found that many of the values in these locations
exhibited regular patterns that could be described by simple rules of the form “The
values are consecutive numbers in the sequence [x, y] (x and y are integers), or are
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zero”. I found that there were six patterns or rules that could be used to describe
more than 95% of the values at these locations, and that these rules can be checked
efficiently at runtime. This led to the second paper of my PhD, and was published at
EDCC 2006 [11].

Though the rules for describing the detectors were straightforward to derive by
humans, I wanted to automate this process to reduce the burden on programmers.
However, though most of the rules were quite simple, there were tricky corner cases
that needed to be handled. Taking inspiration from work on dynamic invariant detec-
tion [12, 13] in the software engineering literature, I built another tool (using Python
again) to efficiently learn the rules and the exceptions to the rules for the different
detector types. I used fault injection to evaluate the detectors derived, and found that
the detectors achieved both high coverage and low false-positives across a large set
of program inputs.

Together with other colleagues in the group, I then worked on coming up with an
efficient hardware implementation of the above dynamic detectors. We implemented
the rule templates on an FPGA board that was running in conjunction with the main
processor. This was one of the first hardware prototyping efforts we did in the group,
and the first work to use FPGAs for error detection (to the best of my knowledge).
Though we used the RSE concept for integrating the detectors with the processor,
our implementation was distinct from it.

The paper [11] was the first to use dynamic analysis for automatically deriving
detectors, and has spurred many follow-up efforts from both industry [14] and
academia [15]. However, there were two main issues with this approach. First, it
needed a significant number of representative program inputs in order to keep the
false-positive rate low (i.e., detectors raise an error when there is none). However, in
practice it is difficult to obtain such large input corpuses. Second, there is a saturation
in the coverage provided by the detectors as a result of overlap among detectors in
terms of the faults covered. Thus, though our technique was better than the state of
the art at that time, it was still not amenable to be deployed in a large-scale system
such as the Trusted Illiac (though we had not finalized the details, the broad contours
of the system were in place then).

With Ravi’s encouragement, I therefore began to work on an alternative technique
to derive the detectors with no false-positives, and one that could scale to large
systems. The idea was to use static analysis via the compiler to extract the salient
properties of the application to be used as detectors. Because static analysis is sound,
the detectors will hold for all legitimate code paths in the application, and will
hence have no false positives. Unfortunately, the state-of-the-art compilation tools at
that time were either very heavyweight or required intimate knowledge of compiler
internals, which I did not have. However, I had taken a compilers class taught by
Prof. Vikram Adve in which we used the LLVM compiler developed by his group.
Back then, LLVM was still a research project [16], but I remember being impressed
by its modularity and ease of modification. Therefore, I decided to implement my
static analysis approach using the LLVM compiler.

Thus began one of the most intense but enjoyable periods of my PhD, where
I would immerse myself in intricate details of the LLVM infrastructure, and learn
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to appreciate deep compiler concepts such as Static Single Assignment (SSA) form
[17]. This was both exhilarating and frustrating, as I had to come upwith the program
property that I was going to use for error detection, while at the same time imple-
menting it in LLVM. After much experimentation, I decided to use the backward
slice of an instruction to be checked as the detector, but in an optimized fashion.
The idea was to isolate the backward slice in a separate basic block, and let the
LLVM compiler apply its optimizations to it. It also specialized the block for each
path through the program, and dynamically chose the detector based on the path
executed at runtime (via program instrumentation) [18]. This idea was inspired by
trace scheduling in compilers [19].

While the above idea was simple in theory, its implementation in LLVM proved
to be very complex, and it was non-trivial to get it to work for even small programs.
Again, Ravi’s encouragementwas an important reason I stuck to this task even though
I did notmakemuch progress formanyweeks. It was his ability to see the end product
and its benefits that inspired me to carry on. When I finally got it to work, it was
really exciting to see that many of Ravi’s predictions about its benefits came true.
The technique proved to obtain high coverage without having any false-positives,
across a broad range of programs. Furthermore, because it was implemented in a
compiler, it could be easily integrated into a programmer’s workflow and scale to
large systems.

The paper describing the above project was published in IOLTS 2007, a hardware
testing venue [18]. Though we had initially targeted dependability venues, the paper
had been rejected despite getting good reviews, and I was getting nervous about its
publication. Ravi convinced me that it was better to get the work published, even if
not at dependability venues, and so we repositioned the paper accordingly. I believe
that this was the correct decision, as this paper later came to be cited by many other
papers.

Before concluding this section, I wanted to reflect on some of the lessons I learned
from Ravi in the above endeavors. First, I learned to never “settle” for good enough,
as though the dynamic detectors were better than the state of the art at that time, Ravi
saw that they would not be scalable in the long term. It was better thus to start with
a clean slate, and come up with the static analysis approach to derive the detectors.
Second, it is important to visualize the final product and the benefits it will bring,
even when one is buried in the details of the research. This is important for evaluating
whether the research effort is “worth it”. These are two lessons that have stuck with
me ever since, and I have attempted to pass them on to my own students in my
research career.

5 Later Years (Detector Implementation and Validation)

The detectors derived via static analysis were primarily implemented in software, and
hence entailed high performance overhead. Therefore, together with my colleagues,
I decided to implement them on FPGA hardware, similar to the dynamically derived
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detectors. However, there were three challenges in the same. First, because the imple-
mentation of the statically derived detectors was in LLVM, we needed the ability to
run LLVM on the target platform (a Leon3 core [20]). Unfortunately, the LLVM
compiler at that time did not support the target platform. Second, we needed a mech-
anism to translate the software-based checks into a generic format that could be
implemented on an FGPA. Finally, we needed a mechanism to efficiently track the
control paths executed by the program, as this was done via software instrumentation.

To address the first challenge, namely the lack of support for the target platform,
I used tools in the LLVM compiler to translate the Intermediate Representation (IR)
to C code, after the checks had been inserted by my static analysis passes. This C
code could then be cross-compiled to the Leon3 platform by a custom C compiler
for that platform.

To address the second challenge, I built a generic three-address representation
for the checks and my colleagues wrote an automated translator to convert these
to Verilog code. For the third challenge, I converted the path-tracking code to a
set of finite state machines, which could be programmed into the FPGA board and
tracked at runtime.We prototyped the system on an FPGAboardwith the Leon3 core,
and measured the performance and power overheads. This paper was published at
DSN’09 [21].

In the process of implementing the detectors in hardware, another issue came
up. This was related to the different layers of compilation (and cross-compilation)
before the detectors were executed. At each stage, the compiler could either remove
the detectors, or introduce program states that would not be subject to the error
detection. This raised an important question: “how effective were the detectors after
implementation”.

To answer this question, I initially built a fault injection framework at the LLVM
IR code level that could inject different types of faults and trace their propagation in
the code. This framework allowed me to debug the corner cases of errors that were
missed by the detectors, and determine whether and how to augment the detectors.
The core of this frameworkwas later developed bymy graduate students and released
as the LLFI fault injector, which has since become widely used in both academia
and industry [22].

However, this fault injection framework still did not allow me to study what
happened to the detectors after they had been transformed into assembly code via
the compiler. To analyze these faults, I needed to build error propagation analysis
tools at the assembly language level. At this time, I came across some work in the
programming languages community on using type-safety at the assembly language
level for reasoning about fault tolerance mechanisms [23]. Inspired by this approach,
I decided to build a similar tool for reasoning about the detectors. I had also taken a
class on formal methods at Illinois that used the Maude framework [24], and I was
impressed by its ease-of-use. Therefore, I decided to use Maude to build a formal
tool for error propagation analysis.

The formal tool for analyzing the error propagation analysis later came to be
known as SymPLFIED (Symbolic ProgramLevel Fault Injection and ErrorDetection
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framework). This SymPLFIEDpaper [25]won theWilliamCarter award atDSN’08.2

More importantly, the tool was the first to integrate formal methods (i.e., model
checking) with error detector validation.

I will not repeat the details of the SymPLFIED paper [25], except to say that the
tool formalized the semantics of assembly language instructions (in Simplescalar
assembly) and error detection, so that it was possible to run formal analysis (i.e.,
model checking). However, I wish to point out two things that are perhaps surprising
in retrospect, at least to me. First, the entire process of building the tool from concep-
tion to evaluation and paper writing was less than four months (from mid-August to
mid-December, 2007). This suggests that it was possible to get a working implemen-
tation, and paper written to a top conference like DSN if the idea behind it was clear.
Admittedly, this four month period involved a significant number of long working
days, but I was enjoying the act of building something from scratch and learning a
new technology in the process, that I did not mind the long days. Second, the main
result in the paper, that we found a potential violation in a safety–critical application
such as tcas, an aircraft collision avoidance system [26] using SymPLFIED, did not
materialize until the last couple of weeks before the paper deadline. I have to give
credit to my colleague and co-author Nithin Nakka for this effort as he incessantly
tried to use the tool on different programs despite its bugs.

I also want to acknowledge Ravi’s encouragement and suggestion that I consider
using formal methods in my thesis, in order to expand its scope beyond empirical
methods. It was at his insistence that I took the formal methods class at Illinois, and
persisted with it despite lacking the requisite mathematical background. If it had not
been for that, I would not have been able to build SymPLFIED, and win the Carter
award.

6 Other Directions

I have focused this narrative on reliability, as this was my primary focus. However,
the Trusted Illiac project also involved security, and I was able to contribute a little
to that as well [27, 28]. Unfortunately, some of this work did not get published, and
I did not persist with it. Further, while I have covered the period till the end of 2008,
the year I left Illinois, the Trusted Illiac project continued with other students for
a few years. I was gratified to learn that some of them used the tools I had built to
prototype their ideas [29, 30], though I was not directly involved. Finally, in 2013,
the Trusted Illiac project was inaugurated by the Chancellor of Illinois [1].

2 Prior to 2015 when the award was renamed as the William Carter PhD dissertation award, the
award was given to a DSN paper by a PhD student that has made a fundamental contribution to
dependability.
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7 Lessons Learned

I have tried to distill some of the main lessons learned from the Trusted Illiac expe-
rience, which I believe apply more broadly than the specifics of the project. There
are four lessons as follows.

Lesson 1: It is important to have a big-picture vision to anchor the project.

I think this was an important aspect of the Trusted Illiac project, namely providing
reliability and security services in the hardware in an application-aware manner.
Though the original vision did not incorporate reconfigurable hardware, the idea of
deriving detectors in an application-aware manner was a direct result of the overall
vision of the project. Even when we ran into some technical difficulties during the
execution of the project, it was clear what needed to be done. This was an important
anchor point as it allowed us to make tradeoffs in service of the vision.

Lesson 2: Don’t be afraid to change or pivot in the vision if warranted.

A second lesson was that while the overall vision is important, it is all right to pivot
or make changes in the vision depending on the results and changes in technology.
For example, when the Trusted Illiac project was conceived, FPGA boards were not
very powerful and were thought to be more as prototyping devices. When the project
was completed a decade later, FPGA boards were being integrated into mainline
processor boards by leading manufacturers. Through the course of the project, it
became clear that this was how the wind was blowing, and so we quickly pivoted to
using FPGA boards in conjunction with regular processors.

A similar lesson was learned regarding the use of compilers in the project. Initially,
it was thought that the detectors would be written either by hand or by custom tools
developed for this purpose. However, during the project, we realized that integrating
the detectors with a industry-standard compiler infrastructure such as LLVMallowed
us to leverage state-of-the-art code optimization techniques to obtain high perfor-
mance, without expending significant effort. Further, as LLVM expanded, it grew to
support many different hardware platforms, thereby allowing us to run our tools on
these platforms with minimal effort.

Lesson 3: Build reusable tools and infrastructure rather than one-off solutions.

The third important lesson I learned is that it is very important to build reusable
tools and infrastructure to support them, rather than one-off solutions. Though the
latter have their value in some situations, building reusable tools allows multiple
stakeholders to rapidly build on the existing infrastructure rather than rolling their
own. It also allowed new students who joined the project to start contributing right
away, without reinventing the wheel and building tools. Personally, I benefited from
building such tools as it also allowedme toworkwith a large number of undergraduate
and Masters’ students on the project, and leverage their skills.
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Lesson 4: Use tried and tested solutions for the most part, rather than inventing your
own.

I believe the above three lessons contributed to the success of the project. However,
there were some missteps I took, which in the end turned out to be dead ends. For
example, I spent a lot of time learning new languages and tools just to try them out,
rather than use tried and tested solutions for some of the tools I built. While this was
a good learning experience for me, it did little to advance the aims of the project, nor
did it add much research value to the project.

In the end, I believe that the Trusted Illiac project was a success as not only did it
result in the usual dissertations and papers, it also led to a real working hardware used
in production settings, which was unusual ! More importantly, it shaped the career
trajectories of many of the people who worked on it, including myself. I elaborate
more on this in the next section.

8 Aftermath: How Trusted Illiac Shaped My Subsequent
Research

The Trusted Illiac project and its ideas ended up having a profound influence on
my subsequent research career. After I graduated from Illinois, I joined Microsoft
Research as a post-doctoral researcher, and then started a tenure track position at the
University of British Columbia (UBC). Many of my research directions have been
inspired by the Trusted Illiac project, as follows.

1. Hardware-Software Integrated Fault Diagnosis
Soon after I joined UBC, my student and I started working on extending the

results for error detection in my PhD thesis to error diagnosis of intermittent
faults [31]. Our work in this area was directly inspired by the Trusted Illiac
project, and involved hardware-software co-design of the diagnosis mechanism
[32]. In a nutshell, the hardware logs the execution of the program in terms of the
instructions it executed, while the software post-processes the traces to diagnose
the fault—this is similar to the path-tracking and error detection mechanism in
the static detectors.

2. Detector Placement and Selective Protection
As mentioned earlier, I continued the line of work of detector placement by

expanding both the scope and types of detectors, as well as the applications. In
Blockwatch [33], my student and I proposed a technique to derive detectors for
data parallel programs, and protect them from soft errors. With another student,
I also built a program analysis technique for identifying detector placement
points in approximate computing applications [10]. Finally, a third student and
I worked on a machine-learning based approach to identify detector placement
points for selective protection in programs [34]. All of these efforts were also
inspired by the Trusted Illiac project.
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3. Fault Injection at the LLVM IR level
My group has also built and released the LLFI fault injector, which operates

at the LLVM IR level, and is capable of injecting a wide-range of both hardware
and software faults [22]. The core ofLLFI is basedon the fault injection tool I had
built to evaluate the static error detectors. We have demonstrated the accuracy
of LLFI [35] with respect to fault injections at the assembly code level, and have
expanded LLFI to Graphic Processing Units (GPUs) as well [36].

4. Error Propagation Analysis and Modeling
Finally, the work I did on error propagation modeling and analysis in the

Trusted Illiac project has shaped many of the tools and frameworks my students
and I built over the years. For example, both ePVF [37] and Trident [38] were
based on the idea of modeling error propagation at the program level, as well
as their offshoots, vTrident [39] and GPU-Trident [40]. Though the work has
considerably evolved since then, the foundations are based on the Trusted Illiac
project.

In summary, the ideas developed in the Trusted Illiac project have profoundly
shapedmy research, and continue to do so to this day. I, therefore, owe a considerable
debt of gratitude to it, and to Ravi for initiating the project and involving me in it !
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Mining Dependability Properties from
System Logs: What We Learned in the
Last 40 Years

Marcello Cinque, Domenico Cotroneo, and Antonio Pecchia

Abstract System logs have been extensively used over the past decades to gain
insight about dependability properties of computer systems. Log files contain textual
information about regular and anomalous events detected by a system under real
workload conditions. Bymining the information contained in the logs it is possible to
characterize the real failure behavior of the system.By real,wemean considering only
the failures that manifest naturally, during system operation. This chapter provides
an overview of the main tools and techniques for log-based failure analysis, which
have been proposed in the last four decades. By surveying the relevant work in the
area, the chapter highlights the main objectives, research trends and applications,
and it also discusses the main limitations and recent proposals to improve log-based
failure analysis.

Keywords Event logs · Log processing · Failure analysis · Dependability
evaluation

1 Introduction

Failure analysis is the process that aims to determine and to analyze the causes of
system failure. It consists in collecting and analyzing failure-related data during
system operation, i.e., data generated by a computer system under real workload
conditions. This approach allows us to evaluate the dependability properties and
the failure modes of a system in a precise way. Event logs, or simply logs, are
an important source of failure data [25, 43] because they store textual information
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Fig. 1 Example of entries in the event log

about regular and anomalous events detected by a systemduring execution. Logs have
been successfully used by industry and academia for failure analysis in a variety of
application domains. A non-exhaustive list includes, for example, operating systems
[42, 54], control systems and mobile devices [8, 31], supercomputers [33, 46], and
large-scale applications [44, 51].

Accuracy of log-based failure analysis is intertwined with the ability of inferring
meaningful information from raw logs, which is a challenging task. Logs usually
contain large volumes of data consisting of sequences of text entries, i.e., lines,
produced by a variety of computing entities (e.g., operating system modules and
daemons, middleware supports, application components). Figure1 reports an exam-
ple of entries taken froma real event log. Entries provide a timestamp, i.e., the time the
event has been logged, and a text message describing the event. Entries may contain
further data, such as the source (e.g., the generating process) and the severity (i.e.,
the criticality of the notification). Example shows that logs have a subjective [29]
and unstructured [34] nature. More importantly, logs contain (i) many entries that
are not useful for failure analysis, (ii) redundant notifications caused by error propa-
gation phenomena [22], and (iii) different formats for similar notifications produced
by different components. Overall these issues make log analysis a hard process.

Log-based failure analysis usually encompasses three steps, i.e., Log collec-
tion and selection, Pre-processing, and Analysis. Each of the steps is important to
the objective of obtaining accurate dependability measures [2, 27]. Figure2 depicts
the overall process. This chapter describes well-established techniques supporting
each of the mentioned steps, and it discusses main applications of log-based failure
analysis (e.g., error/failure classification, evaluation of dependability attributes, error
propagation, improvement of the logging practice and applications to security analy-
sis) by surveying relevant work in the area. Discussion reveals benefits and potential
of logs for the quantitative evaluation of complex systems. Moreover, it provides
system engineers and dependability analysts with a concrete workflow to conduct
log-based failure analysis campaigns.

The rest of the chapter is organized as follows. Section2 describes main data
collection protocols and tools. Section3 presents manipulation strategies that are
commonly adopted to infer the failure data from the log. Section4 discusses analysis
and relevant applications of event logs, whereas Sect. 5 concludes the chapter with
final remarks and discussion on limitations of log analysis.
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2 Overview of Data Collection Tools and Products

Modern organizations rely on a variety of data sources—such as, system and applica-
tion event logs, resourcemonitoring, network audit and intrusion detection systems—
to develop situational awareness. Runtime data from production systems represent a
goldmine of information to detect errors, failures and incidents, to understand their
impact, and to gain insights for improving resiliency and countermeasures. In the
following we present some examples of relevant tools and products for data collec-
tion.

As said, the use of event logs has been known since the early days of computers.
Logs consist of semi structured text lines generated at run-time by specific instruc-
tions intertwined with the business code; lines in the logs account for dump of key
variables and data structures, execution tracing and event reporting. The placement of
the logging code is an empirical procedure [48]; logging code is based on generic out-
put functions, proprietary supports or standard logging library. For example, UNIX
syslog [36] defines a log format and collection protocol that has become a de facto
standard over the years. A “syslog” log line is characterized by severity and facility
(i.e., the indication of the source of the event, such as kernel or the security sub-
system.) that can be combined to define the priority of the message. Severity varies
in the interval {0, . . . , 7}, with 0 representing an emergency-level entry, down to
7, reporting a debug entry. A configuration file, namely, /etc./syslog.conf,
allows specifying how to manage the events. Microsoft Event Log1 protocol is
another example of a log-collection system. Each Windows machine runs an Event
Log provider that is accessible by means of system calls. Once an event is logged,
it can be stored in a log file and forwarded to a remote machine. Another popular
framework is Apache Software Foundation’s log4x.2 The framework is available for
C++, PHP, Java and .NET applications, and it can be configured in terms of syntax
of log messages, e.g., to support automatic parsing of the entries, and destination.

Event logs gathered in production environments are typically supplemented by
measurements and traces generated by specialized monitoring tools. At the time
being, there exist a wide and increasing range of monitoring products. For exam-
ple. Sysdig3 allows collecting resource usage, network statistics, as well as tracing
applications. Ganglia4 is a scalable distributed system monitoring tool for high-
performance computing systems such as clusters and grids. It supports remote visu-
alizations and live statistics, such as CPU or network load.Nagios5 is an open source
software to monitor network services and resources of a given set of nodes. The key
advantage of Nagios are per node data collection and convenient graphical inter-
faces. More recently, there has been a growing interest in Application Performance
Management (APM); for example, Dynatrace, AppDynamics, CA andNewRelic are

1 https://docs.microsoft.com/en-us/windows/win32/eventlog/event-logging.
2 http://logging.apache.org/.
3 https://sysdig.com/opensource/.
4 http://ganglia.sourceforge.net/.
5 https://www.nagios.org/.
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https://www.nagios.org/


224 M. Cinque et al.

Fig. 2 The Log-based failure analysis process

well-known commercial tools that leverage source code instrumentation for moni-
toring purposes. Zipkin6 is the open-source distributed tracer developed by Twitter
in the context of microservices.

With the increasing spread and sophistication of security attacks, intrusion detec-
tion systems (IDS) are extensively used to collect data and alerts pertaining to sus-
picious activities. For example, Snort7 is an open-source network-based intrusion
detection and prevention system. It performs real-time analysis of network traffic
and relies on a database of signatures of known attacks. Suricata8 is another open-
source real- time signature and rule-based intrusion detection and prevention system.
OSSEC9 is an open source data monitoring solution that allows configuring inci-
dents that administrators wish to be alerted on. It mixes security aspects ranging from
intrusion detection to log monitoring and provides built-in alerting for a variety of
well-established data sources and protocols.

Due to the number of independent tools available within large-scale organiza-
tions, Security Information and Event Management (SIEM) is regarded as the
state-of-the-practice to address the complexity underlying the collection and nor-
malization of diverse data sources. SIEM products centralize to a single component
real-time monitoring, correlation of events and alerting, long-term storage and anal-
ysis and compliance to regulations. There are commercial SIEM systems, such as
IBM’s QRadar, Splunk, LogRhythm and AlienVault Unified Security Management.
In spite of the advances brought by SIEM at coping with the technical facets of
collection, normalization and monitoring, data analysis still depends on many cog-
nitive processes, such as to develop accurate alerting rules and for manual forensics
activities.

6 https://github.com/openzipkin/zipkin.
7 https://www.snort.org/.
8 https://suricata.io/.
9 https://www.ossec.net/.
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Fig. 3 Example of failure notification in the log

3 Log Selection and Pre-processing

The first step in log-based failure analysis is represented by the selection and collec-
tion of log sources. Log Selection is the process where log relevant to the analysis
task are retrieved from system components. Log data collection refers to those tech-
niques to retrieve and to integrate data in specif nodes in charge of storing log data
for the subsequent manipulation steps.

3.1 Log Pre-processing

Log pre-processing encompasses all the techniques that aim to transform the raw logs
in auseful and efficient data format.As an example. logs reportmanynon-error entries
(such as lines 1, 2 in Fig. 1) that have to be excluded from the log before the analysis
[22]. Several techniques are adopted to identify and remove irrelevant log entries. To
this aim, well known filtering techniques can be used. For example, analysts might
select entries of interest based on the severity field or focus on the entries containing
error-specific keywords (e.g., pinpointed by means of regular expressions [59]). At
a finer grain, filtering can be conducted with de-parameterization, which allows
replacing variable fields in the text entries (e.g., usernames, IP andmemory addresses,
folders) with generic tokens. For example, the entries “new connection from
192.168.0.184” and “new connection from 221.145.31.27”would
appear the same once the IP addresses are replaced with a generic “IP-ADDR”
token. De-parameterization significantly reduces the number of distinct messages to
scrutinize with the aim of identifying entries of interest. For examples, authors in
[46] show that around 200million entries in the log of a supercomputing systemwere
generated by only 1124 distinct messages. De-parameterization can be supplemented
by statistical approaches to faster the identification of the subset of entries that are
useful to the analysis. Authors in [34] apply the Leveinshtein distance to cluster
similar log messages. The work [60] presents a clustering algorithm and a tool for
mining line patterns from the log.
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Fig. 4 Tuple heuristic: grouping condition (a); sensitivity analysis (b)

3.2 Coalescence

In practice, faults generate multiple errors (because of error propagation phenomena
and the workload, which may trigger the same fault many times) and, consequently,
multiple notifications in the log [22]. More in general, entries in the log that are
correlated could belong to the same manifestation. Coalescence is one of the most
used technique that groups different entries into the same failure point. Example
reported in Fig. 3 shows that a single PCI card failure in a supercomputer log produced
218entries.Coalescing related error entries is crucial to obtain realisticmeasurements
[2, 27]. One of the most adopted coalescence strategies is the tuple heuristic. The
intuition underlying the approach is that two entries in the log, if related to the same
fault activation, are likely to occur close in time. Consequently, if the time distance of
the entries is smaller than apredetermined threshold, i.e., the coalescencewindow (W),
they are placed in the same group (called tuple). Figure4a clarifies the concept. The
value of the coalescence window is critical, because the number of tuples provides
an approximation of the actual number of failures occurred at runtime. When W is
too small, the risk is to put entries related to same problem into different tuples
(truncation); viceversa, if W is too large, entries related to different problemmight be
placed in the same tuple (collision). A sensitivity analysis is conducted to investigate
how the number of tuples (tuple count) varies when W varies. Figure4b reports a
generic plot to clarifying the output of such an analysis. Experimental studies assume
that a good choice for the coalescence window is the value right after the “knee” of
the curve, where the tuple count sharply flattens [22].

Several techniques have been proposed to improve the results of the tuple heuristic,
i.e., to reduce the number of accidental collisions and truncations. For instance, in
[58] two coalescence windows are adopted to improve grouping. A recent solution
adopts spherical covariance estimates for the grouping of events in coalitions of
clusters [17]. According to this scheme, two events of the same type are grouped if
they fall within the typical time to recover. A different methodological improvement
of the tuple heuristic is represented by the concept of spatial coalescence [33, 43]:
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errors can propagate among the nodes of the system, and notifications related to
the same fault manifestation might be spatially distributed as a result. Authors in
[46] combine the temporal information of the entries with a statistical indicator
to identify independent errors that occur close in time, reducing the incidence of
accidental collisions. A rather different approach is content-based coalescence: in
this case, events in the log are grouped based on the content of the text entries. For
example, authors in [54] use a perl algorithm to identify OS reboots based on the
sequential parsing of the log.

4 Analysis and Relevant Applications

In this section we discuss relevant applications and research trends in the area of log-
based failure analysis. Works are grouped based on their main research objectives,
such as event classification, failure modeling, event correlation, logging practice
improvements and the use of logs for cybersecurity.

4.1 Error and Failure Classification

One of the primary outputs of a log-based failure analysis is the classification of
error and failure modes, as they happen naturally, during system operation. Classifi-
cation allows to determine the predominant classes of failure, to reveal what are the
most failure-prone components, and to assess improvements between subsequent
releases of the same software. Overall this information is valuable to drive quan-
titative evaluation and to supplement measurements. In the following, we present
relevant examples of log-based failure analysis of different types of target systems.

A rather classical target system for classification studies is the operating system.
For instance, authors in [30] present a study of a UNIX system. Analysis is based on
an event log spanning around 11 months. Data in the log is classified and categorized
to identify error trends preceding failures. For example, the study shows that the
input-output subsystem is the most error-prone, which is still true in today’s systems.

The study proposed by [55] provides a characterization of operating system
reboots of Windows NT and 2K machines. The study focuses on unplanned reboots,
representing the occurrence of a failure. A similar classification study is conducted in
[18], which analyzes crash and usage data from Windows XP SP1 machines. These
studies confirmed how the failures observed during operations are not caused by the
operating system itself, but by applications, drivers, and third-party components.

More recently, due to the widespread use of mobile devices in our daily life,
several research groups focused on classification the failures during the operation of
mobile operating systems. In this case, the challenge is to perform the collection
of failure data in a non-intrusive and efficient way, considering the constraints of
mobile devices. A seminal work on Symbian OS [10] demonstrated that majority
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of problems were due to memory access violation errors and heap management,
while other studies [9, 38] confirmed that errors in applications still represent the
main factor of failures, confirming the trend already observed in general purpose
operating systems.

The shift of IT systems to service computing, cloud computing, and scientific
data centers generated an increasing number of works focusing on log-based failure
classification of large-scale and distributed systems, including supercomputers
and server farms. In this case, the challenge of log analysis is to manage the high
volume of events generated by the system at scale, combined with the difficulty to
find actionable insight and real proof of failure in the vast amount of data. As a
notable example, the work in [15] provides an analysis of failures and their impact
for Blue Waters, the Cray hybrid (CPU/GPU) supercomputer at the University of
Illinois at Urbana-Champaign, based on about 3.7 TB of automatically collected
syslogs. Results were useful to understand that processor and memory protection
mechanisms (x8 and x4 Chip kill, ECC, and parity) are able to handle a sustained
rate of errors as high as 250 errors/h while providing a coverage of 99.997% out
of a set of more than 1.5 million of analyzed errors. Software, on the other hand,
was the largest contributor to the node repair hours (53%), with a total of 29 out
of 39 system-wide outages involving the Lustre distributed file system. Authors in
[43] present a pioneer work on the analysis of supercomputer logs, highlighting
the challenges and somehow also the inadequacy, at that time, of logs for failure
classification in such large scale systems, by comparing the results achieved by
analysis of 5 supercomputers.

More recent works on large-scale distributed systems started to look into the
architectural features of the target system, to better infer the relationships between
failure events and the operational context by using system monitoring and soft-
ware execution tracing. For instance, many solutions have emerged for monitoring
microservices- and containers-based systems. As an example, the work [40] presents
a dashboard for monitoring and managing microservices, characterized by a Spring-
based infrastructure that uses Dynatrace.10 The infrastructure allows collecting both
failure rate and response time of eachmicroservice; however, these types of approach
require the instrumentation of the code to be monitored. A different idea is to accom-
pany microservices logs with black box tracing of service invocations [12], to infer
the execution context and to help practitioners in making informed decisions for
troubleshooting and failure classification.

4.2 Dependability Modeling

Modeling the failure behavior of the target system is one of the main aims of log-
based failure analysis. By using failure data, practitioners can infer error patterns and
statistical distributions, can measure relevant attributes, such as mean time to failure

10 https://www.dynatrace.com/.

https://www.dynatrace.com/
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(MTTF), mean time to recover (MTTR), and availability, and/or, more in general,
can extract knowledge about the most failure prone components, error propagation
phenomena between them, etc.

The time to failure variable is often modeled by fitting failure points extracted
from logs, and related timestamps, with statistical distributions.

For instance, authors in [39] model the time to failure by adopting a hyper-
exponential distribution, i.e.,

∑N
i=1 λi e−λi t pi . This distribution is used to model fail-

ures that represent the manifestation of independent and alternate underlying causes.
Distribution used in the study allowed inferring the existence of two separate recov-
ery paths selected in a fixed ratio, resulting from two different classes of software
failures.

Other statistical distributions used to model the time to failure are the lognormal
and weibull. The lognormal distribution can be used when the value of a variable can
be determined by the multiplication of many random factor, which is the case for
software failures. For instance, in [41] the author hypothesizes that the failure rate
of a complex system can be tough as a multiplicative process of independent factors,
e.g., activations of faults, using then a lognormal distribution. Similar considerations
are provided in [51], in the context of high-performance computing systems. The
Weibull distribution, i.e., e−(λt)α [35], is the most adopted to model the failure data
[29, 35, 39], since the value of the shape parameter α allows modeling decreasing
(α < 1), increasing (α > 1), and constant (α = 1), failure hazard rates.

Markov chains, Petri nets (and their extensions such as stochastic activity net-
works) and finite state machines are also used to model the failure behavior. For
instance, in [29] authors use log data to propose a finite state machine to model the
error behavior and the availability of a LAN ofWindows NTmachines. The adoption
of the model showed that, even if the measured system availability was around 99%,
the user-perceived availability was significantly smaller, i.e., 92%: in some cases,
even if a machine of the LAN was up, it was not able to provide correct service to
the user.

4.3 Failure Correlation and Error Propagation Analysis

Logs contain information about errors occurring in different components of the same
target system as well as data about the execution context and the workload of the
system under analysis. This characteristic has been exploited since the first studies on
failure analysis to understand causes and correlation phenomena of system failures.
Works in the area, dating back to the 1980s, prove the existence of a relationship
between the failure behavior and theworkload run by a system.A performance study
of a DEC system conducted in [4, 5], showed that the failure rate is not constant;
nevertheless, many models adopted at that time relied on such an assumption. A
doubly stochastic Poissonmodel was developed to highlight the relationship between
the instantaneous failure rate of a resource and its usage. A similar finding has been
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confirmed by authors in [26], by evaluating the relationship between system load
and failures by means of empirical data.

Several works suggest that failures observed in different system components are
correlated. For example, [32] applies factor and cluster analysis to pinpoint halts
dependencies among components and halt patterns from the log. Although the num-
ber of errors observed during the system operations was relatively small, authors
demonstrated that multiple processes were affected by the same problem, because
of the presence of shared resources. The study proposed in [28] uses statistical tech-
niques to quantify the strength of the relationship among entries in the log. The
approach aimed to discriminate transient, permanent and intermittent failure mani-
festations by assessing the correlation between failure events. Correlation of failure
entries is also used to conduct failure prediction, as proposed for IBM BlueGene/L
[33]. The approach proposed in the paper was able to predict around 80% of memory
and network failures and 47% of I/O failures.

As already observed in Sect. 3.2, faults can generatemultiple errors before a failure
ultimately manifests in the system. This known behavior is exploited in error prop-
agation analysis to infer error models, intermediate paths and effects that pertain to
the activation of faults. Analysis of propagation allows inferring error-prone com-
ponents and establishing where-what type of errors are likely to cause system-wide
failures [1]. This is of great importance for practitioners, since this information pro-
vides actionable insight on where to place error detection and recovery mechanisms
in the software under study, to improve the overall dependability. Several works in
the area of error propagation analysis rely on the instrumentation of the code (either
at source or binary level) to generate error traces upon fault activation. For instance,
PROPANE [23] analyzes the propagation of data errors in single-process C software
systems, and identifies error paths and propagation frequency. PROPANE is based
on a fault injection approach to induce data errors in the system and variable instru-
mentation to detect errors. However, as observed in [45], performing fault-injection
may be time-consuming and cumbersome for the developer. Therefore, it is desirable
to develop an automated technique to derive and place detectors in application code.
In [45] authors devise detectors to be placed in strategic locations in the code in an
automated way without requiring programmer intervention or fault-injection into the
system.

A different approach for error propagation analysis is to capitalize on the data
already produced by the system, e.g., log files, without instrumentation. This is often
the case pf production environments, or for systems based on proprietary compo-
nents off-the-shelf, where there is limited knowledge on system internals. In [13] we
proposed an approach to infer a representation, named error reporting graphs, of the
errors leading from faults in a given component to failures. The graph is constructed
by relying solely on the error data collected from the available logs. In particular, for
a given error event, it is possible to obtain the reporting stage, that can assume one
of the following vaules (adapted from [37]):
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Fig. 5 Example of error reporting graph (from [13])

• immediate (I): the subcomponent that reports the error is also the location of the
fault;

• quick (Q): the subcomponent that reports the error is not the location of the fault,
although it belongs to the same component;

• last (L): the subcomponent that reports the error is not the location of the fault
and belongs to a different component.

Figure5, taken from [13], shows an example of a general error reporting graph. The
graph indicates both multiplicity (M) and Error Propagation Probability (EPP) of
each node/arc. M is the number of log entries that contain that node/arc; the EPP of
a node/arc is the ratio between the multiplicity of the node/arc and the number of
failure data instances used to obtain the graph. So, starting from the fault, it is possible
to reconstruct the path leading to failure, and the traversed components classified as
immediate, quick, and last. The analysis of the graph allows to understand what
are the most error prone components where to place error detection and recovery
mechanisms. For better readability, the graph encompasses one FAILURE node,
while the failure types are shownon the arcs connected to theFAILUREnode (failures
breakdown in the figure).

4.4 Improvement of the Logging Practice

The literature discussed up to this point witnesses how the analysis of event logs has
been beneficial over the last decades for several types of systems and applications,
ranging from failure classification to error propagation. All these studies have how-
ever one major problem in common: performed analysis and even the conclusions
that can be drawn depend heavily on the quality of the log lines that can be collected
from the target system.
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Log lines are produced by the so-called logging mechanism, that is, the set of
logging points and activation code of such logging points (if any) implemented in
the source code of the target system.

The implementation of the logging mechanism is a human-driven and empirical
practice [48]. Logging points can be missing or subject to erroneous activation con-
ditions, leading to wrong or missing lines in the logs. The result is that logs may
report error entries that do not necessarily represent real system failures, or, even
worse, they might completely miss information about failures that happened during
operation. For instance, in our earlier study [7], we demonstrated that around 60%
of failures due to software faults do not leave any trace in the logs. In addition, in
[48], from the analysis of the source code of large industrial projects, we observed
how no strict rules exist, across different product lines of the same company, for the
implementation of the logging points, even if logging constitutes a non-negligible
portion of the source code (around 3.5% of the code).

Moved by these problems, researchers and practitioners in log-based failure anal-
ysis started to look at methods and techniques to produce better andmoremeaningful
logs. Accurate logs can improve the work of the analyst, allowing to achieve rooted
conclusions on the behavior of the observed system.

For instance, authors in [50], introduce a set of recommendations to improve the
expressiveness of the logs, such as structuring the messages as key/value pairs or
making explicit the type of the values in the log entries. Similarly, [64] proposes
to enhance the logging code by adding information, e.g., data values, to ease the
diagnosis task in case of failures. These works improve the invocations of logging
functions that already exist in the software platform. Nevertheless, incompleteness
of the logs cannot be solved acting solely on the existing functions: developers might
forget to log significant events, and, in many cases, errors escape existing logging
points.

For these reasons, other techniques have been adopted to detect and analyze
failures, such as runtime failure detection, executable assertions, or software trac-
ing. Runtime failure detection consists in observing, either locally or remotely, the
execution state of the system [14, 61]. Executable assertions, usually adopted in
the embedded systems domain [24], are check statements performed on the program
variables to detect application-specific content errors, e.g., invalid variable values for
the given function. Software tracing solutions [3] are widely adopted to monitor the
execution of a software system, e.g., to perform Function Boundary Tracing (FBT),
which register function entry and exit events. They rely on software instrumentation
packages, such as DTrace. Along this direction, we proposed the rule-based logging
approach [11], which leverages system design artifacts to define a model encompass-
ing errors leading to failures. A set of rules establishes how the logging mechanism
must be placed in the source code to detect such errors with high accuracy.
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4.5 Security Analysis

System logs collected during the progression of malicious activities and incidents
can be used for security analysis. We discuss some relevant applications across
different application domains.

Large-scale systems and organizations. A cloud-based distributed and paral-
lel security log analysis framework for organizational security is presented in [53].
The framework supports the analysis of system, network, and transaction logs by
using a two-level master-slave architecture and streaming analysis features. A pro-
totype, which analyzes HTTP request logs, has been implemented in the Amazon
cloud environment, in order to detect HTTP sessions with blacklisted destination IP
addresses. Thework [63] proposes an approach that analyzes logs collected from var-
ious network devices. (i.e., web proxies, DHCP and VPN servers, Windows domain
controllers, antivirus software) to detect malicious activity. The approach—called
Beehive—consists of a parsing/filter/normalizing step, a feature-generator and a
detector. The Authors have evaluated Beehive on a large set of real-world enter-
prise log data, and demonstrated that it improves on signature-based approaches to
detecting security incidents. Authors in [52] use real forensic data on security inci-
dents that occurred over a period of 5 years at theNationalCenter for Supercomputing
Applications (NCSA) at the University of Illinois, USA. The proposed methodology
combines automated analysis of data from security monitors and system logs with
human expertise to extract and process relevant data to: (i) determine the progres-
sion of an attack, (ii) establish incident categories and characterize their severity, (iii)
associate alerts with incidents, and (iv) identify incidents missed by the monitoring
tools and examine the reasons for the escapes. Based on the same NCSA dataset,
[47] proposes a Bayesian network approach to detect credential stealing incidents.

Critical information systems. Event logs for security analysis have been used
for critical information systems protection. For example, [56] presents a Supervisory
Control And Data Acquisition (SCADA) security framework for protecting electric
power infrastructures. The framework consists of real-time monitoring and anomaly
detection components, which rely on different sources, such as security, system,
and file integrity logs. Authors in [21] propose MELISSA, i.e., a tool for processing
SCADA logs to detect process-related threats. MELISSA relies on pattern mining to
identify themost and the least frequent (expected to be anomalous) patterns of system
behaviors. A framework for Situational Awareness of Critical Infrastructure and
Networks (SACIN) is presented in [57]. The framework gathers data, e.g., industrial
automation systems and intrusion detection systems logs, from different entities of
a given system, and uniforms their format for subsequent analysis.

Recent trends in security analysis. With rapid growth of volume and variety of
runtime data, security data analysis has been addressed by means of standard Big
Data frameworks. Authors in [19] propose a method for the detection of Advanced
Persistent Threat (APT), which usesMapReduce to analyze security events from dif-
ferent log sources, such as Virtual Private Network, Intrusion Detection System and
firewall. The approach relies on a signature database with known bad information.
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The work [20] proposes an approach to analyze large logs for detecting host misbe-
havior. The approach combines data mining and supervised/unsupervised machine
learning to automate the detection. The approach uses DHCP servers, authentica-
tion servers, and firewall logs as data sources and adopts Hadoop MapReduce and
involves: (i) data mining to extract a set of features from the logs, (ii) clustering
to create sets of hosts with similar behaviors, and (iii) linear classification to detect
misbehaving sets of hosts. More recently, security log analysis has been addressed by
means of deep learning techniques and frameworks. The approach in [16], named
DeepLog, uses a deep neural network to model a system log as a natural language
sequence. DeepLog learns patterns from normative executions in order to detect
anomalies. In [62] is proposed nLSALog, an anomaly detection framework that lever-
ages log files as data source. The framework models the log as a natural language
sequence and uses Long Short-Term Memory (LSTM), built using nominal train-
ing data, to detect security anomalies. Finally, ADA (Adaptive Deep Log Anomaly
Detection) [65] allows the detection of security-related anomalies in system logs,
leveraging deep neural networks with LSTM and dynamic adaptive thresholds.

It is worth noting that research advances in the area of security analysis suffer from
the scarceness of real-life data gathered during spontaneous (i.e., neither induced nor
simulated) incidents and attacks in production environments. This is due to confi-
dentiality restrictions and non-disclosure policies by industry vendors and informa-
tion system providers. Many studies in this area leverage honeypots, “lab-made”
intrusions and ready-to-use public datasets, such as KDD-CUP’99, UNSW-NB15,
CICIDS2017 and many more. As a matter of fact these datasets, surveyed in [49],
have become common benchmarks for intrusion detection.

5 Conclusion and Final Remarks

Log lines emitted by computer systems provide actionable information that allows
understanding the effect of errors on the system behavior. It provides accurate infor-
mation on the system being observed, for the elaboration and validation of analytical
models, and for the improvement of the development process. The collected data
help to explain and to characterize the system under study. Qualitative analysis of
failure, error and fault types observed in the field yields feedback to the development
process and can thus contribute to improving the production process [6]. As stated in
[25], “there is no better way to understand dependability characteristics of computer
systems than by direct measurements and analysis”.

The variety of concrete applications discussed in this chapter shows that logs are
extremely valuable to dependability engineers. Notwithstanding its practical useful-
ness, it must be noted that analysis is limited to manifested failures, that is, the ones
reported by the log. Several types of failures, such as application crashes or hangs, can
escape logging mechanisms and go unreported. Further research has been devoted
to the improvement of the logging mechanism, to produce more meaningful and
ready-to-use logs. Nevertheless, log production is still largely overlooked in soft-
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ware industries, and left to the late stages of development for testing and debugging.
More research is needed to come to common and well understood practices. The
same applies when logs are used for security analysis, where the scarceness of real-
life data represent the current barrier for the large application of latest advances, e.g.,
based on deep learning.

Finally, it should be noted that the specific conditions under which the system
is observed can vary from an installation to another. Doubts can be raised on the
validity of obtained results across different installations of the same system. Log-
based failure analysis is particularly useful for stable installations, such as critical
embedded systems, signal processing equipment, and long-running server systems.
In these systems, dependability needs to be analyzed in order to be continuously
improved. On this last point, it is worth noting that log analysis is partially benefi-
cial to current system installations, while it provides crucial guidelines to improve
successive releases.
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Critical Infrastructure Protection:
Where Convergence of Logical
and Physical Security Technologies is
a Must

Luigi Coppolino, Salvatore D’Antonio, Giovanni Mazzeo, and Luigi Romano

Abstract Security monitoring is a number one priority, especially in Critical Infras-
tructure Protection (CIP), where cyber attacks may have dramatic safety impacts, in
that they may well result in major damage to assets and/or harm to people. Since
effective protection requires that the right actions be taken at the right time, the
results of the monitoring process must: (i) be made available in a timely fashion (i.e.
in near real-time), and (ii) include detailed diagnostic information (i.e. clearly iden-
tify the nature of the problem and the extent of the damage). In this chapter, we: (1)
propose an approach for dependable (i.e. accurate, timely, and trustworthy) security
monitoring, based on correlation of logical and physical events, (2) implement the
approach in a distributed architecture integrating cutting-edge commercial off-the-
shelf (COTS) technologies, and (3) validate the approach with respect to a handful
of case studies, characterized by challenging—and quite diverse—requirements.

1 Introduction, Problem Statement, and Contributions

A plethora of technologies exists, each one representing an individual building block
of a potentially dependable security monitoring facility. Regrettably, they still very
much lack integration. While recently some achievements have been made (e.g.:
Security Event Monitoring (SEM) and Security Information Monitoring (SIM) have
merged into Security Information and Event Monitoring (SIEM), Logical Access
Control Systems (LACS) and Physical Access Control Systems (PACS) havemerged
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into Identity Management (IM)), which has resulted in a leap forward of Security
Operations Center (SOC) technology, much is yet to be done.

We claim that a significant advancement in the convergence of technologies for
logical and physical security is needed. By convergence, we mean: effective cooper-
ation—i.e. coordinated and results-oriented capability of cooperative work—among
previously disjointed functions.

The main messages of the chapter can be summarized as follows:

• Security monitoring facilities must be implemented as dependable (i.e. accurate,
timely, and trustworthy) functions. In particular, since there will always be faults
and intrusions, security monitoring facilities must be designed and implemented
as fault- and intrusion-tolerant systems themselves.

• The most important features of a security monitoring facility are Detection and
Diagnosis, since the ability of detecting faults, attacks, and intrusions along with
the availability of detailed diagnostic information on the nature of the problem as
well as on the extent of the damage is the precondition for triggering appropriate
reactions and for taking effective remediation actions.

• Enhanced situation awareness is needed for dependable detection and diagnosis
of faults, attacks, and intrusions. Situation awareness can only be achieved via
effective correlation of security-relevant events, which must be collected both in
the logical and in the physical domain.

This work makes the following important contributions:

1. It proposes an approach and a conceptual architecture for improving the conver-
gence of logical and physical security technologies. The approach relies on
collection, processing, and correlation of a variety of events which are gener-
ated at multiple architectural levels in the logical and in the physical domain
(including: sensors, network, Operating System and/or Virtual Machine, Data
Base, Application, Business Process, and more).

2. It implements the approach and the conceptual architecture using and/or building
on currently available technologies. When discussing the technical solutions,
it provides a right to the point review of the current State Of The Art (SOTA)
of individual technologies. Importantly, the review features a gap analysis, i.e.
it points out the major limitations of such technologies and identifies the main
avenues towards convergence-oriented improvement.

3. It demonstrates how the approach can be effectively used tomonitor the security
of real world case studies, characterized by challenging requirements. Notably,
the case studies are very diverse, and taken from different application domains.

The rest of the chapter is organized as follows. In Sect. 2, we present the approach
we propose for improving the convergence of logical and physical security technolo-
gies, along with a conceptual architecture suitable for implementing the approach
in a fault- and intrusion-tolerant distributed system. In Sect. 3, we discuss a number
of technologies for logical and physical security, focusing on their limitations (in
terms of lack of integration and/or unleashed potentialities for security monitoring
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purposes). In Sect. 4, we show how the proposed approach and accompanying archi-
tecture can be effectively used in real world setups. Finally, we acknowledge the two
enabling factors of the research described in this chapter, namely: (1) Prof. Ravis-
hankar K. Iyer (Ravi) for the inspiration and the scientific/technical mindset that
he transferred to Luigi Romano (directly) and to the other authors (indirectly), and
(2) the European Commission, for the massive funding that our research group has
received throughout the years.

2 Proposed Approach and Conceptual Architecture

Figure 1 shows the conceptual architecture of the integrated security monitoring
system, which builds on top of the SANS SIEM reference architecture [1]. The
proposed solution collects detection events generated at multiple architectural levels,
and in particular: (1) devices monitoring the physical world, such as: cameras, door
opening sensors, smoke sensors; (2) tools monitoring the logicalworld of the hosting
IT infrastructure, such as: network/host IDS, firewalls, applications’ log utilities,
kernel probes; (3) systems for Business Process Monitoring (BPM) and Business
Activity Monitoring (BAM), capable of identifying anomalies in the process flow;
and (4) threat intelligence platforms, gathering information about observable activ-
ities for threat analysis purposes. It is worth emphasizing that, in the case that the
monitored system is deployed on top of a cloud platform, besides collecting events at
the Operating System level, informationmust also be gathered at the VirtualMachine
(VM) level. Event collection is implemented by means of multiple security probes,

Fig. 1 Architecture of the proposed solution
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which are deployed as a distributed architecture. Besides collecting data from the
infrastructure, our security monitoring system also acquires live threat intelligence
information from the Internet, to improve the awareness of new—and on-going—
attacks occurring in similar infrastructures. This activity is particularly important in
infrastructures which integrate Information Technology (IT) and Operational Tech-
nology (OT) environments, since it is one of the key enabling factors of prevention
measures.

Overall, the proposed securitymonitoring solution consists of fivemain functional
blocks (coloured in black):

• Data Collection and Adaption—Large volumes of heterogeneous data collected
from the infrastructure are received from a multitude of feeds. This block may
perform format adaptions, if these are needed to convert data to common formats.
Our solution includes data feeds which are able to preserve the confidentiality of
the collected data.We refer in particular to business process information extracted
by means of probes based on BPM/BAM tools and/or on parsing of application
logs produced by HIDS solutions, which can potentially contain sensitive data.
This feature is extremely valuable when the monitoring system is deployed on
top of a cloud platform, where protection is needed from particularly challenging
types of attacks—notably: those launched by privileged users (e.g.: the cloud
provider or the system administrator) and/or software (e.g.: the Hypervisor or the
Operating System)—which can also target data in-use (e.g.: in the processor or
in the main memory), as opposed to data in-transfer and data at-rest. It is worth
emphasizing that—to a large extent—protection of data in use is still an open
issue. To this end, we propose the use of Trusted Execution Environment (TEE)
and/orHomomorphicEncryption technologies,which canbe used in combination,
to achieve a high level of security at an acceptable performance penalty. More
precisely: if the amount of sensitive data to be protected during the processing
phase is small (meaning that it fits in the protected memory areas of the CPU),
then TEE technology suffices; for larger amounts of data, we propose combined
use of HE and TEE technologies (more details on the approach we propose can
be found in our VIrtual Secure Enclave (VISE) paper [2].

• Data Correlation and Storage—This layer features evidence-based correlation
techniques, which correlate multiple events to provide a situational picture of
the infrastructure. It is actually here that the physical and logical worlds are
combined together, to providebetter insight into the status of the system.TheEvent
Correlation stage allows to escalate from fault/intrusion symptoms to the adjudged
cause of the fault/intrusion, as well as to estimate the damage to individual system
components. The Aggregation and Correlation of incoming entries are carried
out through complex event detection operators that—based on rules specified
by the operator—can spot situations which can be observed only if the global
context is clearly understood, and—if needed—they can trigger alarms.As already
mentioned, confidentiality of the processing of sensitive data is guaranteed. To
achieve this goal, we provide: (1) operators running in TEE, and (2) operators
capable of processing HE data.
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• Signature-based and Anomaly-based Analytics—Amultitude of operators is used
at this level to execute analytics either on plaintext or on encrypted data. The
collected data is analyzed by means of both signature-based and anomaly-based
threat detection mechanisms. It should be noted that—in order to ensure the
correctness of the results—if even just one data set is homomorphically encrypted,
then all the others necessary for executing the specific analytics must be ciphered
with the same HE scheme. Signature-based components compare log entries with
a pre-existing database of known attack patterns. In this regard, HE analytics
require the availability of HE signatures to detect various types of attacks. As an
example, we implemented a Check Special Char analytics, which acts as a code
injection detector by checking for the existence of special sequence of characters
in audit trails entries such as combinations of dots, semicolons, commas, brackets
or any other non-alphanumericASCII character, which is a symptomof a potential
attack.

Moreover, we also equipped the monitoring system with an analytics for
privacy-preserving anomaly-based detection. As opposed to signature-based,
the anomaly-based detection builds a normal behavior of the system through
a learning phase, and during its execution it monitors if a large deviation from the
model occurs, which could be considered as an anomaly. To enable this type of
detection, we implemented a supervisedMachine Learning (ML) algorithm. This
is defined as a procedure for deriving models from labeled training data, which
represents normal or anomalous state.

• Visualization and Alerting—At this layer, notifications are provided to the
personnel/machinery in charge of operating the monitored system/application
if faults and/or attacks must be handled/countered. The system produces
technical—as well as actionable—information that is made available to the
personnel/machinery in charge. This enables performing actions/procedures
aiming at countering and/or mitigating the effects of faults/attacks that have been
detected, as well as prosecution in court.

• Infrastructure Simulator—The protection of critical infrastructures requires the
security monitoring system to be properly tested in order to verify that it reacts as
expected to attack situations. It is important to check that rules configured in the
system produce correct alerts and in a timely fashion. However, in many cases,
the testing is not doable on the real industrial process as its compromise could
have devastating impacts, in terms of humans’ safety and damage to costly assets.
For this reason, in our solution we propose this additional component that can
be used—together with infrastructure administrators—to evaluate the effects that
actions would have on the critical infrastructure. At a high-level, our simulator is
organized in four main layers. At the top, there is a GUI, which is used to interact
with the simulator. The second and third layers consists in a set of solutions for the
simulation of Information Technologies (IT), andOperational Technologies (OT),
respectively. Finally, the last layer supports the simulation of the industrial process
of the particular critical infrastructure. The IT layer is needed to simulate the
entire spectrum of technologies for information processing, including software,
hardware, communication technologies and related services. The simulated OT
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infrastructure includes the typical elements of a SCADA system, such as Remote
Terminal Units (RTUs), Master Terminal Units (MTUs), and the HumanMachine
Interfaces (HMI) part. Finally, the simulated physical process is the layer that
feeds data as close to reality as possible, whose dynamic model definition must be
performed offline [3]. Our solution leverages the widely-accepted OPC standard
to link the simulated process and the simulated IT/OT devices. In this way, we
can interact with virtually any simulator (e.g., OpenModelica and Simulink) that
transmits data feeds using theOPCprotocol.We can also support hybrid solutions,
where real and simulated elements co-exist.

3 Technology Pillars

The data collection component of the integrated monitoring system can be easily
connected to a plethora of data feeds. Our solution uses Logstash for data collection.
Logstash has already several adapters for this purpose and adding new feeds is rela-
tively straightforward. As discussed in 2, data collection must operate at multiple
layers of the monitored infrastructure. At the infrastructure layer, challenges come
from the monitoring of hardware “health”. Tools exist to detect equipment malfunc-
tioning and foresee failures. As an example, S.M.A.R.T. (Self-Monitoring, Anal-
ysis and Reporting Technology) is a monitoring technology for computer hard disk
drives that detects and reports their reliability state, in the hope of anticipating fail-
ures. Unfortunately, at present, S.M.A.R.T. is implemented individually by manu-
facturers, and while some aspects are standardized for compatibility, others are not.
Random Access Memory (RAM) monitoring is a feature to verify that the computer
can reliably store and retrieve data from memory. A test of memory is generally
performed at the time of powering up, but tools exist to test the memory equipment
at run-time. A computer that fails these tests—perhaps because of old hardware,
damaged hardware, or poorly configured hardware—will be less stable and crash
more often. Even worse, it will become even less stable over time as corrupted data
is written to your hard disk. Other two key building blocks of a security monitoring
facility are Business Process Management (BPM) [4] and Business Activity Moni-
toring (BAM) [5]. BPM has been referred to as a “holistic management” approach
to aligning an organization’s business processes with the wants and needs of clients.
It is worth emphasizing that these processes are critical to the organization, as they
(i) can generate revenue, and (ii) often represent a significant proportion of costs.
BAM is software that aids in monitoring of business activities, as those activities are
implemented in computer systems. It provides near real-time monitoring of business
activities, measurement of Key Performance Indicators (KPIs), their presentation in
dashboards, and automatic and proactive notification in case of deviations. BPM and
BAM are used (almost) exclusively for monitoring the QoS at the application level.
Since many emerging attacks, which evade current IDS/IPS technology, have clear
symptoms in terms of QoS degradation, BPM and BAM have a great potential in
terms of performance improvement of the detection process. By understanding the
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Business Process Logic, it is possible to detect new categories of faults/attacks, e.g.:
faults related to orchestration flaws and attacks related to the exploitation of misuse
cases.

Since the security monitoring solution can be itself the target of attacks, to achieve
a high level of fault- and intrusion-tolerance it is mandatory that technologies that
guarantee a good level of robustness, scalability and elasticity be used throughout the
lifecycle of data (i.e. when data is collected, transferred, processed, and stored). As
for the processing, the correlation technology must guarantee flexibility in terms of
data fusion logic and provide support to both signature and anomaly based analysis.

Based on such considerations, our choice was ElasticSearch for the storage and
Apache Kafka for the propagation. As for the latter, we prefer an asynchronous
communication bus to accommodate burst of data and tolerate possible temporary
downtown of the network infrastructure. As for the communication format, an exten-
sion of the popular IDMEF format was adopted to keep into consideration the infor-
mation related to physical positioning and additional spatial information. Regarding
the processing, we use the Apache Flink tool, since this is a highly configurable and
extensible solution. Moreover, Flink offers effective support in terms of Machine
Learning technologies (e.g. Machine Learning for Flink,1 Apache Mahout2 or Alink
from Alibaba3) for the implementation of anomaly detection logics.

We used two TEE technologies for the protection of data in hosting servers and
devices. In the former case, we leveraged the Intel Software Guard eXtension (SGX)
[6, 7], which allows to create a Trusted Execution Environment (TEE) based on a
mechanism of “reverse sandbox”, i.e., the world outside of the sensitive application
(OS, Hypervisor, BIOS/Firmware) is considered as untrusted and, thus, a potential
source of attacks. In SGX, the sensitive processes’ address space is protected within
the CPU perimeter. SGX also provides a mechanism for Remote Attestation (RA) [8],
which enables the server’s owner—e.g., the service provider–to prove via a trusted
remote third-party that (i) the enclave has a valid measurement hash, (ii) it is running
in a secure environment, and (iii) it has not been tampered with.

Devices instead have beenprotected viaARMTrustZone. Themain idea in this case
is that the processor is physically split in two execution environments, referenced as
normal world (REE) and secure world (TEE). Both worlds have their own user space
and kernel space, together with cache, memory and other resources. The normal
world cannot access the secure world’s resources while the latter can access all
the resources. The normal world is used to run a basic OS, which provides a Rich
Execution Environment (REE). Meanwhile, the secure world always uses a secure
small kernel (TEE-kernel).ARM also introduces a monitor mode to handle switches
between the REE and TEE. Monitor mode saves and restores the context of each
environment during the switches. To enter Monitor mode, the process in each world
invokes a special instruction called SecureMonitor Call (smc) with kernel privileges.
Regarding the HE feature, our solution was tested two different crypto-schemes,

1 https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/index.html.
2 https://mahout.apache.org/.
3 https://github.com/alibaba/Alink/blob/master/README.en-US.md.

https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/index.html
https://mahout.apache.org/
https://github.com/alibaba/Alink/blob/master/README.en-US.md


246 L. Coppolino et al.

i.e., DGHV [9] and TFHE [10], which ensure fully-homomorphic properties with
different performance. During our validations, we discovered that the algorithm that
better fits with ICS requirements is the TFHE.

4 Case Studies

In this section, we show how the proposed monitoring solution can tackle relevant
issues in critical case studies. Selected case studies come from the experience matu-
rated by the authors in the context of projects co-funded by the European Commis-
sion, and include: Dam andWater Supply Network management, Public Administra-
tion and eHealth services, Sensitive Industrial Plant for Chemical Storage. In every
selected scenario, different features of the proposed security monitoring solution
were leveraged, as summarized in Table 1, to afford specific challenges of the case
study. We demonstrate that the proposed solution (and the accompanying architec-
ture) can be effectively adopted to improve the security of real world setups, with
challenging—and diverse—requirements.

4.1 Dam and Water Supply Network

Dams and water supply networks represent fundamental assets for the economy
and the safety of a country. Recent reports about attempts of cyberattacks against
these critical infrastructures have brought national and international authorities as
well as equipment manufactures to propose new approaches to reduce the risk of

Table 1 Summary of features validated in case studies

Feature Dam and water supply
network

Public administration
and eHealth

Sensitive industrial
plant for chemical
storage

Cyber-physical
correlation

G G G

Signature-based
detection

G

Anomaly-based
detection

G G

Secure processing
via TEE

G

Secure processing
via HE

G

Simulation of
infrastructures

G
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cyberthreats. MASSIF and SAWSOC projects dealt with the protection of dam and
water supply networks from attacks.

Dam process monitoring and control relies on the use of Supervisory Control
and Data Acquisition (SCADA) systems that comprise physical sensors, actua-
tors, Remote Terminal Units (RTUs), Human Machine Interfaces, administration
consoles, master stations, historical databases, etc. Moreover, monitoring systems
largely adopt Wireless Sensor Network (WSN) technology, which offers cost-
effective solutions for harsh environments. Most of current dam control systems
integrate Commercial Off-The-Shelf (COTS) components and they are mostly inter-
connected by using standard protocols such as the TCP/IP suite. In this scenario
control system components communicate and interoperate with IT systems, such as
data loggers and visualization stations, via the Internet. Although the operations and
functionality of the overall infrastructure benefit from an interconnected and inte-
grated control system, the connection to the Internet exposes the control system itself
to the risks of cyberattacks, which can exploit system vulnerabilities to compromise
components with unpredictable consequences for dam safety. Current mechanisms
and policies devoted to dam infrastructure protection are mainly related to cyberse-
curity of the monitoring and control system and physical security of dam facilities.
However, these solutions usually lack the capability of interfacing with heteroge-
neous systems and technologies as well as they do not support the collection and
analysis of monitoring data from different sources and probes.

Using SIEMs to jointly manage all different security-relevant events and infor-
mation generated by the dam monitoring probes would be a very powerful mean to
increase the overall protection of such critical infrastructures. Regrettably currently
available SIEM systems deal with the management of logical security aspects and
are specifically designed for this security context. This might make complex the
development of applications targeting security of critical infrastructures in a wider
sense. For instance, correlating network and host events that could be a symptom of
an ongoing cyberattack with suspicious activities detected by the dam surveillance
system may greatly improve the capability of tackling coordinated and sophisticated
threats, but SIEMs are not designed to deal with this kind of scenarios and therefore
the correlation of security events coming from different application domains may be
troublesome. In particular, current solutions usually are not able to merge physical
and logical events into a single stream to process, which definitively improves the
effectiveness of the detection process. The proposed approach exploits data fusion to
achieve convergence between physical and logical security and applies it to improve
the protection of a dam infrastructure.

Data Fusion is the process of combining information from a number of different
sources to provide a robust and complete description of an environment or process of
interest. Data Fusion process is applied where a large amount of data is combined and
fused to obtain information of appropriate quality and integrity on which decisions
can be made. In any data fusion problem, there is an environment, a process, or
a parameter whose true value, situation or state is unknown. The sources provide
imperfect and incomplete knowledge, that is processed and then transformed in
decisions, thus effectively supporting human or automated decision making. Data
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fusion is the process of combining data to refine estimates and predictions of the
state that is observed.

In the dam case study correlation is driven by rules that are created according to the
data fusion paradigm. A main challenge of physical-logical correlation is translating
logical and physical events in a domain where they can be actually compared and
correlated. The selected solution was based on the adoption of the Dempster-Shafer
theory. Events captured from physical security world, like a suspicious access to the
control roomwhere themaster station of the SCADA system is located, are correlated
with the measurement data provided by the sensors that are distributed throughout
the dam infrastructure. This is done in order to detect anomalous values of themetrics
that could be the effect of the false data injection performed by a malware installed in
the master station. The correlation of the data from the logical and physical domain
allows to detect attacks that otherwise would be undetectable by a security system
looking at only one of the two domains.

4.2 Public Administration and eHealth

Enforcing security in PAs and e-health entities is especially challenging due to a
number of factors which, from a security point of view, bring together the two appli-
cation fields. First, involved entities are very heterogeneous in size, budget, and
services. As a consequence, requirements and threats are themselves diverse. Second,
in both sectors, the core business is far away from IT but strongly depends on it. The
latter consideration implies that the final quality of offered services is extremely
sensitive to key competences that are often lacking within the entity. Third, in both
sectors extremely sensitive data are managed and exchanged.

A first consequence of such characteristics is that in these sectors, security moni-
toring cannot be treated as a plug and play solution provided throughout a standard
COTS tool, but it needs to be included as part of a complex security management
process. The COMPACT project [11] specifically targets security of Local Public
Administrations (LPAs). It assumes the security monitoring as one of the many
building blocks of a security management and improvement process. Precisely it
proposes a specialization of the well-known and consolidated Plan-Do-Check-Act
(PDCA) cycle (Fig. 2), which enables LPAs to innovate their cybersecurity improve-
ment process in compliance to the EN ISO/IEC 27001 and BS ISO/IEC 27005
standards. The planning stage is aimed at assessing the initial context and setting
objectives. At this stage tools and techniques for security monitoring are of foremost
importance to gather needed information related to processes and systems and to
feed the risk assessment process. After that the do stage results in the installation of
every planned countermeasure and the consolidation of security monitoring itself, in
the check stage real time security monitoring comes back to continuous monitoring
of security related events. While doing so, it also provides info related to the correct
functioning of security tools, and spots out the need for tuning already installed
mitigation solutions (act stage).
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Fig. 2 The COMPACT PDCA cycle for security management and improvement in LPAs

The COMPACT project also highlighted how, in these sectors, the effectiveness of
personnel training can be dramatically improved by exploiting new training experi-
ences such as gamification. Since training results could provide a valuable data feed,
they need to be integrated in the security monitoring process throughout a versatile
data collection and adaptation solutions that can interact with training platform in
spite of their actual implementation (software, card games, etc.).

Since entities, both in the public sector and in the e-health one, lack internal
competences andproper investments in IT related stuff, it is a commonchoice to exter-
nalize some activities such as security monitoring. Unfortunately, while subscribing
managed security services the company also accept to feed external providers with
business related data including sensitive ones. Though well known methods are
established for protecting the transferring and the storage of the information, data
stays exposed while being processed within the service provider’s perimeter: not
only the service provider, but any attacker gaining admin-like privileges, can poten-
tially access the plain information during its elaboration. With the advent of cloud
computing, a number of techniques for protecting in-use data are being proposed,
including Trusted Execution Environments, Homomorphic Encryption (HE), and
Functional Encryption. Every technique has its own pros and cons. In theKONFIDO
project [12], aimed at ensuring personal data security in cross border treatments of
European patients, such a challenge also arise when the KONFIDO federated SIEM
solution needs to collect and process data belonging to multiple countries. The solu-
tion implemented in the project (Fig. 3) exploits the TEE privacy preserving module
within the general architecture presented in Sect. 2. Specifically the KONFIDO solu-
tion is built on top of the OpenNCP [13]. European eHealth management system.
OpenNCP provides several interoperable services for cross-border exchange of
PatientSummaries (PSs) and ePrescriptions. The KONFIDO SIEM solution was
challenged by detection of code injection attacks operated on the value fields of
a Patient Summary: spotting out the attack needs the PS value fields inspection
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Fig. 3 The monitoring solution for the eHealth case study

but, on the other side, such fields could include patient related sensitive informa-
tion. The adopted solution exchanges PSs throughout TEEs, once the PS reaches the
SIEM context it leaves the TEE but only after its sensitive fields have been homo-
morphically encrypted. The list of sensitive fields comes with a configuration file
exchanged together with the PS. The SIEM thus can inspect encrypted data by using
some dedicated signatures without actually accessing the plaintext. Further details
related to privacy preserving security monitoring, including performance analysis,
can be found in [14].

4.3 Sensitive Industrial Plant for Chemical Storage

As already discussed in Sect. 2, the protection of critical infrastructures requires the
security monitoring system to be properly tested in order to verify that it reacts as
expected to attack situations. It is important to check that rules configured in the
system produce correct alerts and in a timely fashion. In this section, we demon-
strate how the feature provided in the portfolio of our security monitoring solution
can support such testing operations without the risk of compromising safety–critical
processes. This validation activity was made in the context of the EC-funded InfraS-
tress project on a very suitable ICS case study: a chemical storage infrastructure
managed by the Attilio Carmagnani “AC” S.p.A. company.4

The Attilio Carmagnani “AC” S.p.A. terminal covers an area of about 30,000
square meters and includes a set of 31 semi-buried or underground tanks with a total
capacity of 26,840 m3, distributed as follows: 5 tanks of 3.000 m3, 4 tanks of 1.000
m3, 6 tanks of 700 m3, 2 tanks of 400 m3, 6 tanks of 300 m3, 8 tanks of 130 m3.
The tanks normally contain: Aromatic Hydrocarbons, Aliphatic Solvents, Acetates,
Alcohols and Ethylene Glycols. The terminal is connected to Genoa Oil Terminal

4 https://www.carmagnani.com/.

https://www.carmagnani.com/.
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via 3 stainless-steel pipelines and is equipped with trucks and rail loading platforms
connected to the main road, highway and railway, allowing easy transportation of
goods towards national and international main commercial hubs. The plant is in a
densely populated area: for this reason, the safety and security for this infrastructure is
of paramount importance. Attilio Carmagnani “AC” S.p.A. has one specific process
that is safety critical. This consists in a loading/unloading procedure of dangerous
chemicals (highly flammable and hazardous to the aquatic environment),which could
cause catastrophic consequences if attacked. The critical process involves stainless-
steel pipelines connected to the facility of Genoa Oil Terminal, which are used to
transfer the chemicals from vessels to infrastructure’s tanks. One particular flow
is dedicated to highly flammable products. This involves a special tank which is
equippedwith sensors and radars to control its levels of chemicals inside. If thresholds
are reached, a three-way valve is switched by the ICS and the chemicals are forwarded
to other reserve tanks.

The attack tree reported in Fig. 4 shows the scenarios that were tested with the
security monitoring solution on the chemical storage infrastructure. In this diagram,

Fig. 4 The attack tree covered by the security monitoring solution for the chemical storage case
study
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it can be noticed that attackers can violate the security of the infrastructure lever-
aging physical or remote vectors. The threat agent violates the physical site security
accessing the site from the railway gate or from the fence wall. If the site access
was successful, then the Control Room could be the next target. Two doors protect
the Control Building. In this sense, physical detectors implemented in the context of
the InfraStress project raise a warning event that is sent to our security monitoring
system. Once inside the infrastructure, the attacker could either log into the SCADA
server and inject malicious monitoring/control parameters, or land in microcon-
trollers deployed over the infrastructure to, e.g., tamper sensors/actuators measure-
ments, which could lead to highly flammable fluid escaping. Cyber detectors of our
security monitoring system gather information from the units running in the ICS
and send warning/alert event to the central unit which, in turn, correlate the events
received from the physical and cyber world to identify a more complex pattern of
attack occurring on the chemical storage infrastructure.

The simulation tool was properly tuned to reproduce the deployment discussed
above. As a first step, we implemented themodel of the identified critical process (see
Fig. 5). To this end, we leveraged theOpenModelica tool. Afterwards, we configured
cyber-physical detectors on top of the simulated process, which collect events from
the modelled process. They use the OPC standard to communicate the data feeds.
In this way, the security monitoring system can receive events from both real and
simulatedworlds. Finally, we configured the alarming rules in ourmonitoring system
and tested their behavior during the attack. We considered the path highlighted in
Fig. 4. One physical detector processing (a pre-recorded) video from surveillance
cameras raised a warning event. A cyber detector installed in the simulated environ-
ment launched another warning after our simulated attack was made. We exploited
a vulnerability in Linux OS to enter the infrastructure network. From here inside,
we reached a microcontroller unit, i.e., a simulated ARM device that was exploited
to tamper the valve1 shown in Fig. 5. Our security monitoring system correlated a
series of detection events and reported the situation to the operator that was not aware
of the on-going simulation.

Fig. 5 The simulated Attilio Carmagnani “AC” S.p.A. critical process
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5 Conclusion

Physical and logical security are still treated as two separate and distinct domains,
even though recent attacks are more andmore performed through coordinated, multi-
step, and hybrid actions targeting both physical and cyber assets. A unified approach
to security monitoring is definitely beneficial to the protection of an organization
since the capability of collecting and processing events from both domains makes
the organization more resilient and better prepared to prevent, detect, and mitigate
novel and advanced attacks. In this chapter we presented an approach to security
monitoring that relies on the convergence of cyber and physical security through the
correlation of events coming from the two domains. This approach has been vali-
dated in four application scenarios, namely dam and water supply network, sensitive
industrial plant for chemical storage, public administration, and eHealth, where chal-
lenging case studies in terms of complexity, diversity, and relevance of the critical
infrastructure to be protected have been developed.
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Introduction: Cyber Physical Systems
and Healthcare Analytics

Arjun P. Athreya

Computing systems and computer algorithms making use of measurements derived
from cyber physical systems (e.g., smart grids) or biological systems (e.g., humans)
have led to several breakthroughs in the recent years. These breakthroughs grounded
in novel foundational analytical formations comprisemodern-day electric grids, self-
driving cars and precision medicine approaches. These innovations are at the heart
of the way we live, work, and evolve into the technology-rich future guided by
autonomous decision-making robots. Hence, these technologies share the same if not
increased needs of reliability and dependability in performance and trustworthiness
of well-studied mission-critical systems such as aircrafts or supercomputers. For
example, can a smart grid determine the legitimacy of a sudden and unexpected
surge in load as being genuine versus an active cyber attack? Can algorithms using
clinical, genomics and imaging features reliably predict which medication and what
dose will a patient achieve symptomatic remission from chronic conditions?

This section demonstrates the power of novel data and analytics that embody
paradigms of reliable and trustworthy technologies in cyber-physical systems and
healthcare. Wu et al. propose real-time anomaly detection (ReTAD) algorithm for
smart grids to detect anomalous events in real-time with improved performance in
detection of multiple lines with outages. Dr. Lin discusses the approach to devel-
oping general-purpose security architecture by knowing domain-specific knowledge
of the target cyber-physical system such as smart-grids. Transitioning into health-
care analytics, Drs. Wang and Weinshilboum provide a demonstration of the ability
of engineering and healthcare collaborations (between Univ. of Illinois at Urbana-
Champaign and Mayo Clinic) in facilitating precision medicine approaches—with a
case study of major depressive disorder. Next, with an emphasis on natural language
processing in healthcare, Dr. Devarakonda presents novel-data driven approaches for
selecting samples to train modern neural networks. Basu et al. show the possibility
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to detect genomic variants using deep learning approaches, with an application to the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). Finally, Dr. Worrell
elucidates the benefits of engineering, neuroscience and neurology synergy in finding
technologies for individualized management of epilepsy.

This section summarizes the evolution of the use of conventional reliability and
dependability approaches into the development of modern-day analytics for tech-
nologies in cyber-physical systems and healthcare under the aegis of collaborations
led by Prof. Ravi Iyer.



On Improving the Reliability of Power
Grids for Multiple Power Line Outages
and Anomaly Detection

Jie Wu, Jinjun Xiong, and Yiyu Shi

Abstract Improving the reliability of smart grids is critical to not only cost-
effectiveness of electricity delivery but also repair cost reduction. To efficiently
improve the reliability, the real-time anomaly behavior detection and efficient loca-
tion identification of multiple line outages play a major role in wide area monitor-
ing of smart grids. However, capturing the features of anomalous interruption and
then detecting them at real time is difficult for large-scale smart grids, because the
measurement data volume and complexity increase drastically with the exponential
growth of data from the immense intelligent monitoring devices to be rolled out. This
is especially true for multiple line outage detection, as the methods of identifying
the locations of multiple line outages face two major challenges: a limited num-
ber of Phasor Measurement Units (PMUs) and the high computational complexity.
This chapter proposes an efficient real-time anomaly detection (ReTAD) algorithm
to address these challenges, inspired in part by the ambiguity group theory. To char-
acterize the performance of line outage identification, this chapter also introduces
a statistical model to describe the average identification capability of multiple line
outages. Under this model, we develop a global optimal PMUs placement strategy
to maximize the average identification capability for a fixed budget of PMUs. Using
14-, 30-, 57-, 118- and 2383-bus systems, our experimental study demonstrates that
our proposed ReTAD algorithm successfully detects the anomalous events in real-
time and identifies the most likely multiple line outages with a 500× speedup when
compared to the method of exhaustive search. For the IEEE 14- and 57-bus sys-
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tems, our experimental study also demonstrates that the proposed techniques can
select optimal PMU locations while improving the average identification capability
by about 10% compared to random PMUs placement method.

Keywords Multiple power line outages · Location identification · PMU
placement · Real-time · Anomaly detection

1 Introduction

Smart grids, managed by significant intelligence, have demonstrated a great poten-
tials to improve the electricity delivery efficiency from suppliers to consumers while
still satisfying the demand for electricity. The success of smart grids, however, has
been hindered by service interruption caused by abnormal events such as transmis-
sion line outages. For example, two thirds of the blackouts experienced in North
America were caused by a lack of situational awareness [1]. As a result, power is
becoming less reliable and maintenance is becoming more expensive. Over the last
decades, as the demand for electricity increases, the transmission system is used
under a high stress [2, 3] in a deregulated environment. A small abnormal event
that escapes timely detection could culminate in a catastrophic service break-down,
resulting in billions of dollars of loss in revenue [4]. Therefore, the reliability issue
of transmission systems, especially the issue of multiple simultaneous line outages,
has risen significantly in the grid [3]. Anomaly detection at an early stage and iden-
tification of the locations of multiple line outages are thus highly desirable.

In the smart grid, the intelligent monitoring devices, such as supervisory control
and data acquisition (SCADA) and GPS-synchronized phasor measurement units
(PMUs), are being deployed for line outage detection [5–8]. Thanks to the real-
time synchronized measurements by phasor measurement units (PMUs) with high
precision [9–12], PMU is widely considered as a major sensor for line outage detec-
tion [6–8, 13]. Based on the PMUs measurements, prior studies have focused on
transmission line outages detection [5–8, 13]. For instance, Tate et al. proposed an
algorithm to detect single line outage based on the system topology information [13].
And subsequently, Tate et al. designed an algorithm for double line outage detec-
tion [6]. Multiple line outages can be detected by adopting a Markov-dependency
graph model based on the assumptions that the bus phasor angles are condition inde-
pendent and the PMU measurements cover the entire network [7]. Levorato and
Mitra [14] presented an algorithm using a wavelet projection method and a sparse
approximation technique to detect the stochastic anomalous behavior in smart grid.
Zhu and Giannakis [8] proposed a sparse signal reconstruction algorithm to cap-
ture topology-bearing information to detect the number of multiple line outages. To
reduce the complexity while improving the number of line outage detection per-
formance, Chen et al. [15] presented a detection algorithm for multiple line outages
detection based on cross-entropy optimization. These studies have focused on detect-
ing the number of line outages. Although detecting the number of line outages is an
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important work for smart grids, location identification of multiple line outages will
be more helpful for practitioners to solve the pragmatic problems.

This proposedmethod can dealwithmultiple outages at affordable complexity, but
requires the fixed number of line outages as an input. This requirement may not suit
for the scenario without the priori information on the number of line outages. Thus,
how to do the real-time anomaly detection and identify the locations of multiple
line outages with limited PMUs, associated with optimally selection PMUs loca-
tions within acceptable computational cost to achieve the maximum identification
performance for multiple line outages remains an unresolved issue till now.

Therefore, developing the real-time anomaly detection and the location identi-
fication algorithms for multiple outage lines are difficult because of the following
challenges:

1. A limited number of PMU measurements. The efficacy of location identifica-
tion of line outages is affected by the information received from PMUs. Placing
enough PMUs to cover the entire interconnection of a power grid is however too
expensive to warrant this method feasible [16]. Hence, limited PMU measure-
ments threaten the complete and unique identification of multiple line outages
in the non-observable systems.

2. High capacity phasor angle data storage. The gigantic measurement data analy-
sis is also the bottleneck for real time anomaly detection. For example, a PMU
generates as many as 60 timestamped samples per second. The PMU data accu-
mulation is in the range of several terabits per day based on the North American
Electric Reliability Corporation (NERC) report [17]. How to fast analyze and
response the anomaly events based on the high capacity PMU data is really
challenge.

3. High computational complexity. The impact of multiple line outages need to be
modeled, characterized, and recognized.Capturing the characteristics ofmultiple
line outages and then identifying the location of each is difficult for large-scale
smart grids. This computational complexity must be carefully considered to
extend the feasibility of the location identification algorithm design.

4. The difficulty tomathematically describe the identification performance formul-
tiple line outages. Since multiple line outages can simultaneously occur at dif-
ferent locations of smart grid and different line outages may lead to the same
PMUs measurements, capturing the characteristics of multiple line outages and
addressing the unique location of line outage are difficult. Most existing stud-
ies cannot mathematically model the identification performance of multiple line
outages [6–8, 18].

These existing studies have all focused on the off-line detection of transmission
line outages for smart grid. Due to the lack of a comprehensive consideration the
issue of huge phasor angle data storage and analysis, these existing work cannot be
extended to real time anomaly detection and location identification for multiple line
outages. To alleviate the gigantic phasor angle data storage and analysis complexity
for real time anomaly detection, we propose a novel anomaly detection architecture
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and deploy a real time detection algorithm and a location identification methodology
for multiple line outages in large scale smart grid.

In contrast to existing engineering and development efforts, the goal of thiswork is
to, for the first time, provide an anomalous behaviormodeling and a real time anomaly
detection framework to enable rigorous abnormal events analysis and design. The
proposed anomaly detection framework uses fast estimation technique of high dimen-
sional covariance matrices with small sample sizes for efficient and accurate char-
acterization of anomalous behaviors in large-scale power systems under gigantic
phasor angle data volume. After detecting the anomaly behavior, under linear DC
power flow model, we propose a novel location identification scheme (LIS) that can
provide the most likely locations of multiple line outages with reasonable computa-
tional complexity and limited PMUs measurements. Furthermore, we also propose
a mathematical model to describe the average identification capability of multiple
line outages. We then explicitly formulate the PMUs placement problem for iden-
tifying multiple line outages as an optimization problem to maximize the average
identification capability.

The remainder of the chapter is organized into four sections. Section2 addresses
the problem formulation of the real-time anomalous behavior detection, the location
identification for multiple line outages, and the PMUs placement and average iden-
tification capability with mathematical closed-form. Section3 discusses a fast and
efficient real time anomaly detection (ReTAD) algorithm for anomaly detection at
real-time, an efficient LIS algorithm to provide the most likely locations of multiple
line outages with limited PMUs, and two optimal PMU placement algorithms to find
the optimal PMUs locations under a PMUs budget. Section4 introduces the exper-
imental results of the ReTAD, LIS algorithms on 14-, 30-, 57-, 300-, and 2383-bus
systems. Concluding remarks are given in Sect. 5.

2 Problem Formulation

This section firstly introduce power flow model formulation. Secondly it presents
an anomalous behavior modeling and analysis framework to facilitate the proposed
real time anomaly detection (ReTAD) algorithm design. Thirdly, it will introduce
the location identification scheme (LIS) design. Finally, it will formulate the optimal
PMUs placement problem to maximize the average identification capability (AIC).

Power flow models are used to analyze the relationship between injected power
and received power. Assuming constant voltage magnitudes per bus and negligible
transmission losses [19], the DC power flow model offers a simple linear analysis
tool to cope with the nonlinear AC power flow. Although confined only to linear
approximate analysis of the actual nonlinear system, the DC power flow model
turns out to facilitate a variety of power system monitoring tasks under normal
operating conditions, including contingency analysis. The DC power flow model is
thus commonly used in the literatures to analyze the line outages [6–8]. We adopt the
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same model for our formulation, and we will evaluate the efficacy of our approach
through AC power flow models in the Numerical Simulation section.

The power transmission network, consisting of N buses and L transmission
lines, represents the connection relationship between those buses. For each bus
i ∈ {0, 1, . . . , N − 1}, the injected power attempts to communicate with the bus
j ∈ {0, 1, . . . , N − 1} of received power through the susceptance matrix (described
by an N -by-N matrix B). Reference bus denotes as 0.

pi =
N−1∑

j=0

pi j =
N−1∑

j=0

bi j (θi − θ j ), (1)

where pi is the injected power at bus i . pi j represents the power flow from the
injected power at bus i to the received power at bus j (i, j ∈ {0, 1, . . . , N − 1})
through the susceptance matrix (B). The entry of B (bi j ) represents the inverse of the
line inductive reactance xi j between bus i and bus j , given by

bi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
xi j

i �= j, xi j �= 0
N∑
j=1

1
xi j

i = j, xi j �= 0

0 otherwise.

(2)

Note that bi, j = 0 means the transmission line between bus i and bus j is broken.
θi and θ j represent the phasor angles at the bus i and the bus j , respectively. For
conciseness, we rewrite (1) in the matrix form [8] as follows:

p0[N×1] = B0[N×N ] · �0[N×1] , (3)

where 0 denotes the pre-outage value. Meanwhile, the post-outage power flow (p1)
is expressed as:

p1[N×1] = B1[N×N ] · �T
1[1×N ] , (4)

where the N -by-1 vector p1 is the injected power; the N -by-N matrix B1 represents
topology-dependent susceptance matrix in post-outage power flow. T denotes the
transpose operation of matrix.

Four assumptions are made when we design the algorithms. First, the fast system
dynamics are assumed to be well damped, thus bringing the system into a quasi-
stable state after line outage occurs. In this quasi-stable system, any fast oscillation
in the phasor angle can be filtered out with a low-pass filter [13]. Second, considering
the smart grid topology as graph, we assume that no islanding scenario exists when
outage occurs. Thismeans that the underlying graphwill not becomedisconnected [6,
8]. Under the timescale of outage, the injected power and the received power remain
balanced under steady state either in a pre-outage system or in a post-outage system
when outage occurs. Third, the number of PMUmeasurements (M) is larger than the
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number of line outages (F). As a result, M is greater than F . Finally, line outages,
i.e., broken lines, are the primary cause of transmission system failure [4, 20]. We
simply model the outage line (l) by making the bl = 0. Other types of failures will
be considered in the future.

According to literature [21], given the random bus loadswith themean value at the
nominal bus loading, using the cumulant method, power flow pi (i ∈ {0, 1}) can be
considered to follows Gaussian distribution under the hypothesis either pre-outage
scenario (L0) or post-outage scenario (L1), which is shown as follow:

pi ∼ N (μ,�) , i ∈ {0, 1}, (5)

where N represents the Gaussian distribution. When i = 0, pi represents the pre-
outage injected power; when i = 1, pi represents the post-outage injected power.
μ represents N -by-1 mean vector of Gaussian distribution; � represents N -by-N
covariance matrix.

Applying (3) and (4), we obtain the phase angle data θ as

θ0 = B−1
0 ip0, θ

T
1 = B−1

1 ip1. (6)

under the pre-outage scenario (i = 0) and the post-outage scenario (i = 1). Based
on the linear equation (6), the θ is also Gaussian under the hypothesis L0 (L1), with
mean and covariances (μ0, �0) (respectively, (μ1, �1)), as follows:

θ i ∼ N
(
μi ,�i

)
, under Li , i ∈ {0, 1}. (7)

in which μi = B−1
i μ and �i = B−1

i �B−1
i (i ∈ {0, 1}). Note that (B−1

i )T = B−1
i

holds, due to the N -by-N symmetric matrix.
Let construct the spatial-temporal matrix of phasor angle data (�) as an M × N

matrix of M observation samples on each of N phasor angle measurement nodes.
Define the � matrix as shown follows:

� = [θ (1), θ (2), . . . , θ (N )], (8)

where the M-by-1 vector θ (i) = [θ(i)
1 , θ

(i)
2 , . . . , θ

(i)
M ]T (i = 1, 2, . . . , N ) represents

M observation samples of phasor angle.

3 Algorithms Design

3.1 ReTAD Algorithm Design

The proposed work analyzes the anomalous behavior of transmission line outages
and models the spatial-temporal correlation based anomalous behavior using phasor
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angle data matrix. Anomalous behaviors, such as transmission line outages, are a
primary reliability concern of smart grid. Based on the Nbus power system, com-
bined with GPS-synchronized PMUs and Supervisory Control and Data Acquisition
(SCADA) with phasor angle value, the collected phasor angle data is utilized to form
a temporal-spatial matrix � ∈ R

M×N , where M represents the number of tempo-
ral observation samples; N presents the total number of measurements of phasor
angle (N ⊆ Nbus). Given the linear DC power flow model [22], the measure vec-
tor of phasor angle θ [1×N ] ∈ � establish the bridge between injected power vector
and topology-dependent susceptance matrix. Under the timescale of line outages,
the power loading does not change considerably between a pre- and a post-outage
system. The behavior of transmission line outages is thus strongly affected by the
changes of phasor angle data.

Because the power system is an interconnected network, transmission line outages
result in spatial-relatedphase angle data changes.Therefore, some spatial relationship
between the measured phasor angle data from different buses will be changed due to
line outages. To characterize this spatial relationship, we use the analytical method
of estimating the correlation between the measured phasor angle data from different
buses, called correlation coefficient Rθ (i),θ ( j) , as follows:

Rθ (i),θ ( j) = Cov(θ (i), θ ( j))

Sθ (i) · Sθ ( j)
, i, j = 1, 2, . . . , N , (9)

where Cov(θ (i), θ ( j)) represents the covariance betweenmeasured phasor angle sam-
ples θ (i) and θ ( j); Sθ (i) and Sθ ( j) are sample standard deviations of θ (i) and θ ( j),
respectively. The θ is the observation samples of phasor angle which is defined in
Eq. (8).

Given the M observation samples, the correlation coefficient matrix R[N×N ] is
obtained from Eq. (9). Once the correlation coefficient matrix is obtained, we adopt
the similarity distance [23] to measure the distance between Rt and R0, as defined
by

Ds = 1 − Tr(RtR0)

‖Rt‖2‖R0‖2 , (10)

where Tr(·) denotes trace operation; ‖ · ‖2 denotes norm-2 operation; Rt represents
the correlation coefficient matrix from target phasor angle data matrix;R0 represents
the correlation coefficient matrix from pre-outage phasor angle data matrix. This Ds

can be considered as an “anomalous score”, which indicates the anomaly of the target
instance �t . Ds can be also viewed as the influence of the line outage phasor angle
samples. A higher Ds score, which is close to one, means that the target measured
phasor angle data are more likely to be anomalous. Given the sampling windows and
target measured phasor angle data, if its Ds score is above some threshold, we then
detect the measured phasor angle data in the sampling windows as an anomalous
behavior. The complexity of anomalous score is O(N 2).
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Fig. 1 Framework of real
time anomaly detection
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To overcome the issue of gigantic measured phasor angle data volume, we present
the framework of real-time anomaly detection consisting of off-line analysis on
historical measured phasor angle data and obtains the R0 under the outage-free
scenario and on-line detection algorithm for gigantic measured phasor angle data.
Anomaly detection in power system is used to distinguish normal and abnormal
measured phasor angle samples. A fault such as transmission line outage inside the
system is likely to trigger further catastrophic failures, causing billions of dollars loss
in revenue [4]. As illustrated in Fig. 1, the framework of real time anomaly detection
can be divided into two stages: the off-line analysis stage, which creates a model of
the normal condition of measured phasor angle data, and the on-line detection stage,
which detects anomalies by comparing the current (actual) with the modeled one via
anomalous behavior model.

3.1.1 Off-Line Analysis

In the off-line analysis stage, the input data is all the historical monitored normal
phasor angle samples. According to those phasor angle samples and anomalous
behavior model, we directly calculate the N -by-N correlation coefficient matrix
R0 based on the covariance matrix Cov(θ (i), θ ( j)) between measured phasor angle
samples θ (i) and θ ( j) (i, j = 1, 2, . . . , N ), which is given by

Cov(θ (i), θ ( j)) = E[(θ (i) − E(θ (i)))(θ ( j) − E(θ ( j)))T]. (11)

Therefore, the output of the off-line analysis is the normal correlation coefficient
matrix R0, which is used to calculate the anomalous behavior (see Eq.10) in the
on-line detection stage.
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3.1.2 On-Line Detection

During the on-line detection stage, the real time phasor angle data is used to calculate
the current correlation coefficientmatrix (Rt ). Combiningwith the normal correlation
coefficient matrix in the off-line analysis, when an anomaly occurs, the anomalous
score, which was proposed in (10), will be different between current and normal
measured phasor angle samples.

Based on the above discussion, the estimation of high dimensional covariance
matrix is a fundamental problem in Eq. (10), which uses the correlation coefficient
matrix to estimate the anomalous score. However, in order to obtain the accurate
unbiased estimation of high dimensional N × N covariancematrices, a large number
of samples (M → ∞) have to be drawn. Because a phasor data transmission rate
is around 60 samples per second [17], unbiased estimation of the covariance matrix
should take lots of time with huge volume of data samples. Therefore, we need to
deploy a fast estimation of high dimensional N -by-N covariance matrices �� under
small sample size, such as Ns 	 M .

Inspired by Ledoit-Wolf Shrinkage (LWS) method [24], we deploy a covariance
estimator that is not only suitable for small sample size (Ns) and large number of
measured phasor angle (N ), but at the same time is also low computational complex-
ity. Given this phasor angle data matrix as defined in 8 and Ns observation samples,
to estimate the covariance matrix ��, our goal is to find an estimator �̂({θ i }Ns

i=1),
which minimizes the mean squared error (MSE) (or expected quadratic error):

E[‖�̂({θ i }Ns
i=1) − ��‖2]. (12)

Seeking to minimize MSE, we decompose (12) into variance and squared bias,
which is shown as follow:

E[‖�̂ − ��‖2] = ‖E[�̂ − ��]‖2 + E[‖�̂ − E[�̂]‖2]. (13)

Minimizing MSE and finding the optimal �̂
∗
is to get the optimal trade-off between

error due to bias (the first term on the right-hand side of (13)) and error due to
variance (the second term on the right-hand side of (13)). Hence, we firstly construct
the unbiased estimator of ��, called sample covariance matrix S, which is defined
as follows:

S = 1

Ns

Ns∑

i=1

θ iθ
T
i , (14)

where Ns represents the number of observation samples. Due to the unbiased estima-
tor of��, E[S] = �� holds. However, this estimator cannot achieveminimumMSE
because it has high variance (see (13)). Secondly, according to Chen et al. [25], we
use the most well-conditioned estimator of �� with low variance, which is defined
as follows:

U = Tr(S)

N
I, (15)
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where I represents the identity matrix. Tr(·) denotes the trace of a matrix. This
estimator leads to reduced variance but sacrifices of bias. To minimize MSE in (13),
we apply the shrinkage coefficient (ρ) and construct the linear combination estimator
form to leverage between bias and variance, as defined follows:

�̂ = ρU + (1 − ρ)S. (16)

The shrinkage coefficient (ρ, 0 ≤ ρ ≤ 1) plays a critical role for estimator �̂. The
optimal ρ provides a reasonable trade-off between low bias and low variance of
estimator.

Therefore, the following MSE Design Optimization problem can be formulated
intuitively to determine optimal shrinkage coefficientρ in order tomeet theminimum
MSE requirement.

Problem 1 (MSE Design Optimization) Given the sample covariance matrix S, the
MSE design optimization problem is formulated as follows:

Minρ E[‖�̂ − ��‖2]
s.t. �̂ = ρU + (1 − ρ)S, (17)

where U and S follow (15) and (14), respectively.

Note that the shrinkage coefficient ρ is nonrandom. The physical meaning of ρ is
a properly normalized measure of the error of the sample covariance matrix S, which
was discussed in Lemma 2. To illustrate the Lemma 2, we will introduce Lemma 1
first.

Lemma 1 Define γ 2 = ‖�� − U‖2, ξ 2 = E[‖S − ��‖2], λ2 = E[‖S − U‖2].
Then the relationship λ2 = γ 2 + ξ 2 holds.

Proof

λ2 = E[‖S − U‖2] = E[‖S − �� + �� − U‖2]
= E[‖S − ��‖2] + E[‖�� − U‖2]

+ 2E[(S − ��)T(�� − U)] (18)

Because (15) holds, the equivalent formulation: E[‖�� − U‖2] = ‖�� − U‖2
holds. Thus,

λ2 = E[‖S − ��‖2] + ‖�� − U‖2 + Tr(E[(S − ��)T(�� − U)

+ (�� − U)T (S − ��)]) (19)

holds. Because of the unbiased estimator S, E[S] = �� holds. The equation
Tr(E[(S − ��)T(�� − U) + (�� − U)T(S − ��)]) can rewrite as Tr(E[(S − ��)T

(�� − U)] + E[(�� − U)T(S − ��)]). Given (14), (S − ��)T = S − �� holds.
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So, E[(S − ��)T(�� − U)] = E[(S − ��)(�� − U)] = E[S�� − SU − �2
� +

��U]. Due to E[S] = �� holds, E[S�� − SU − �2
� + ��U] equals zero.

Lemma 1 holds. �
Lemma 2 Givenγ 2 = ‖�� − U‖2, ξ 2 = E[‖S − ��‖2],λ2 = E[‖S − U‖2], and
λ2 = γ 2 + ξ 2, the optimal shrinkage coefficient ρ∗ in (17) is shown as follows:

ρ∗ = E[‖S − ��‖2] − E[‖�̂∗ − ��‖2]
E[‖S − U‖2] = ξ 2

λ2
, (20)

where �̂
∗
represents the optimal estimation of �� with minimum MSE.

Proof Using the algebra knowledge, Lemma 1, and E[S] = ��, we rewrite the
objective function as follows:

E[‖�̂ − ��‖2] = ρ2‖�� − U‖2 + (1 − ρ)2E[‖S − ��‖2]
= ρ2γ 2 + (1 − ρ)2ξ 2. (21)

Applying the first-order condition for ρ: 2ργ 2 − 2(1 − ρ)ξ 2 = 0, the optimal solu-
tion is shown follows:ρ∗ = ξ 2

γ 2+ξ 2 = ξ 2

λ2 .At this optimumpoint, the objective function
of Problem MSE Design Optimization can be written by

E[‖�̂∗ − ��‖2] = (
ξ 2

λ2
)2γ 2 + (

γ 2

λ2
)2ξ 2 = γ 2ξ 2

λ2
. (22)

Thus, this Lemma holds. �
Based on physical meaning of ρ, the solution of Problem MSE Design Optimiza-

tion should guarantee the following equations.

�̂
∗ = ξ 2

λ2
U + γ 2

λ2
S

E[‖�̂∗ − ��‖2] = γ 2ξ 2

λ2
. (23)

According to (23), we get the intuitive sense: if S is accurate, then you don’t need
shrink too much; otherwise, you should shrink it a lot to reduce the MSE.

However, the estimator defined by (17) is optimal but cannot be implemented
practically. The reason is that the optimal solution (ρ∗), which is specified by (20),
depends on the unknownmatrix��. Ledoit andWolf [24] proposed an approximately
optimal ρ∗

LW (0 ≤ ρ∗
LW ≤ 1) without any knowledge of the sample distribution, as

shown follows:

ρ∗
LW =

∑Ns
i=1 ‖θ iθ

T
i − S‖2

N 2
s [Tr(S2) − Tr2(S)

N ]
, (24)
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Algorithm 1 The Real Time Anomaly Detection (ReTAD)
1: Initialization: Off-line Analysis
2: Construct the normal phasor angle data matrix �0 = [θT1 ; θT2 ; . . . ; xTM ] based on history phasor angle samples.
3: Compute the correlation coefficient matrix R0 under outage-free scenario
4: Applying the fast RBLWS covariance estimator to obtain the optimal sampling window with minimum MSE.
5: On-line Detection
6: for the time ti at i time step, starting from i = 1 to n time steps do
7: Step 1: Construct phasor angle data matrix �ti = [θT1 ; θT2 ; . . . ; θTNs

]
8: Step 2: Estimate the covariance matrix �̂ti by RBLWS estimator.
9: Step 3: Compute the current correlation coefficient matrix Rti
10: Step 4: Compute the anomalous score Ds by applying Eq. (10).
11: if Ds ≥ threshold
12: The samples are marked as anomaly event and continue to detect
13: else Go to step 1 and continue to detect
14: end if
15: end for
16: return All anomalous samples are marked

where Ns is the number of observation samples; the N -by-1 vector θ i = [θ(1), θ (2),

. . . , θ (N )]T (i = 1, 2, . . . , Ns) represents the i observation sample of phasor angle
data in an N dimensional space. Applying (24) into (16), the LWS estimator �̂

∗
LW

is derived. According to [24], the asymptotic condition is shown as follows: when
both Ns, N → ∞ and N/Ns → ς (0 < ς < ∞), the Eq. (24) converges to (20) in
probability without regard for the sample distribution. Further more, to improve the
performance of estimator, the modified shrinkage coefficient ρ∗∗

LW [24] is defined as

ρ∗∗
LW = min(ρ∗

LW , 1). (25)

Thus, the optimal LWS covariance estimator �̂
∗∗
LW can be derived by applying (25)

in the Eq. (16).
Because the θ follows Gaussian distribution (see (44)), the N -by-1 vector

xi = [θ(1), θ (2), . . . , θ (N )]T (i = 1, 2, . . . , Ns) is also a Gaussian vector. We improve
the LWS estimation method under the Gaussian model. Inspired by Rao-Blackwell
LWS estimation theory [25, 26], given independent N -dimensional Gaussian vec-
tors {xi }Ns

i=1 and sample covariance matrix S, the conditioned expectation of the
LWS covariance estimator (�̂LW RB = E[�̂LW |S]) is never worse than the original
estimator (�̂LW ) under any convex loss criterion,1 as defined by

E[‖�̂LW RB − ��‖2] ≤ E[‖�̂LW − ��‖2]. (26)

Meanwhile, the optimal ρ∗
LW RB is shown as follows:

ρ∗
LW RB = (Ns − 2)Tr(S2) + Tr2(S)

Ns(Ns + 2)
(
Tr(S2 − Tr2(S)

N )
) . (27)

1 The Rao-Blackwell estimation theorem is referred to [25, 26] for further discussion.
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Similarly to the ρ∗∗
LW , the updated optimal shrinkage coefficient is defined by

ρ∗∗
LW RB = min(ρ∗

LW RB, 1). The optimal estimator is thus derived as

�̂
∗
LW RB = ρ∗∗

LW RBU + (1 − ρ∗∗
LW RB)S. (28)

Using the fast covariance matrix estimator, called RBLWS estimator (see (28)),
(9), (10), and historical correlation coefficient matrixR0, we calculate the anomalous
score at real time. If the anomalous score is higher than the threshold, the system
show alert that the abnormal event occurs; other wise, no anomaly event occur.
The detailed algorithm is shown in The Real Time Anomaly Detection (ReTAD)
Algorithm .

Based on the ReTAD algorithm, choosing an appropriate threshold is very critical.
The reason is that the threshold serves as an effective tuning knob between anomaly
detection rate and false positive rate.

3.2 LIS Algorithm Design

Once the anomaly behavior of line outages is detected at real-time, it needs to do
identification of the multiple-line outages in order to avoid catastrophic outages.
Inspired by the large change sensitivity technique [27, 28], the vector δh with h ∈
L = {1, 2, . . . , F} represents the susceptance sensitivity values between the pre- and
the post-outage system. F is the number of simultaneous line outages. The variations
of the susceptance between the pre- and the post-outage system are represented by
�B, as follows:

�B =
F∑

h=1

qhδhqT
h = QNFZδQT

NF , (29)

where the h-th diagonal entry of the diagonal matrixZδ equals δh , h ∈ {1, 2, . . . , F}.
The incidence matrix QNF is formed from N -by-1 vectors qh (h = 1, 2, . . . , F)
as its columns. Denote the selection matrix as S[L×F]. Note that each column of
S[L×F] is a L-by-1 vector of zero entries, except for i th row (i ∈ {1, 2, . . . , F}),
which equals one. The matrixQNF is thus formed fromQNLS[L×F]. Therefore, with
unknown simultaneous line outages (F), we derive the updated susceptance matrix
B′ as follows:

B′
[N×N ] = B0[N×N ] + 
B[N×N ]

= B0[N×N ] + QNF[N×F]Zδ[F×F]Q
T
NF[N×F] , (30)

where B0 is the susceptance matrix in a pre-outage system.
B′−1

is derived by applying the matrix transpose technique from the Woodbury
formula [29]:
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B′−1 = B−1
0 − B−1

0 QNF (Z−1
δ + QT

NFB
−1
0 QNF )−1QT

NFB
−1
0 . (31)

Similarly, the definition of variations in the phasor angle between a pre- and a post-
outage system, ��, is shown as:

�� = �′ − �0, (32)

where �0 and �′ denote the phasor angle in the pre- and the post-outage system,
respectively. And then �� is expressed with (3), (4), (31), and (32):

��[N×1] = −B−1
0[N×N ]QNF[N×F]

(
Z−1

δ[F×F]

+ QT
NF[N×F]B

−1
0[N×N ]QNF[N×F]

)−1
QT

NF[N×F]�0[N×1] . (33)

For simplicity’s sake, denote the N -by-F matrix XNF as

XNF = −B−1
0 QNF , (34)

and denote the F-by-1 vector βF as

βF[F×1] = (
Z−1

δ[F×F] + QT
NF[N×F]B

−1
0[N×N ]QNF[N×F]

)−1
QT

NF[N×F]�0[N×1] . (35)

The �� can now be rewritten:

��[N×1] = XNF[N×F]βF[F×1] . (36)

According to the selection matrix S[L×F], QNF = QNLS[L×F] holds. Applying the
similar definition in (34), we define matrixXNL with respect to all transmission lines
L as follows:

XNL = −B−1
0 QNL , (37)

According to the M PMUs measurements �M = [�1, . . . , �M ], the selection
matrix for M measurements should be denoted as K[M×N ]. Note that each row of
K denotes a 1-by-N vector of zeros, except for the i th column corresponding to
�i , i ∈ {1, 2, . . . , M}, which equals one. We left multiply both sides of (36) by K
to obtain ��M (known as the outage identification equation) as follows:

��M[M×1] = XMF[M×F]βF[F×1] , (38)

where XMF[M×F] = K[M×N ]XNF[N×F] . The columns from XMF[M×F] corresponding to
line outage locations are determined by the known matrix XML . Similarly, left mul-
tiplying both sides of (37), XML is obtained as follows:

XML [M×L] = K[M×N ]XNL [N×L] . (39)
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Therefore, XMF is comprised of F selection columns from XML that correspond to
line outage locations.

Because the susceptance matrix attributes its changes to line outages, we must
select appropriate columns (F) from XML to satisfy the (38). This equation estab-
lishes a relationship between the measured response of the network matrix (XMF ) in
a post-outage system with deviations from line outages (a function of δ based on the
definition of βF ). In a nutshell, the issue of location identification for multiple line
outages transforms into analysis of the outage identification Eq. (38) and locating the
multiple simultaneous line outages. To clarify the LIS algorithm design, we define
the solution of line outage locations as follows:

Definition 1 (Solution) Given the limited PMUs, a solution (s) is a set of selection
columns from XML that correspond to either one or more line outage locations
satisfying (38).

3.2.1 Problem Reformulation Using Ambiguity Group

Distinct line outages lead to the same PMUs measurements, which are commonly
encountered in a real-world scenario. Thus, addressing the unique locations of mul-
tiple simultaneous line outages with the limited PMUs is difficult. Inspired by the
ambiguity group theory [5, 28, 30, 31], we develop the LIS algorithm to identify
the most likely line outage locations. Based on the principle of parsimony [32], the
most likely set of multiple line outage locations is the smallest set of multiple line
locations, which can be identified by limited PMUs.

We first introduce the important definition known as ambiguity group (A) in LIS
algorithm design.

Definition 2 (Ambiguity group) The ambiguity group is a group of w solutions
(s1, s2, . . . , sw), described in Definition 1, that produce the same PMUs measure-
ments in a post-outage system. These same measurements prevent the unique
line outage locations from being further identified by limited PMUs. Note that
A = {s1, s2, . . . , sw}.

Next, according to theOutage Identification Equation (38), location identification
of multiple line outages is formulated to determine which set (or sets) of columns
from XML can satisfy (38). Based on (38), if vector ��M is a vector of zeros, then
no line outages can be identified by the given PMUs. If, however, it is not a vector
of zeros, at least one line outage can be identified. In this scenario, more than one
column in XML [M×L] may satisfy (38).

A naivemethod involves adopting an exhaustive search (ES) algorithm to examine
all columns inXML . Given both the line outages (F) and the total number of lines (L),

the ES algorithm requires the number of operations to be O
(∑F

i=1

(L
i

))
. It shows

that ES algorithm has a high computational complexity. A more effective method for
location identification is expected to reduce the computational cost.
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Because the required set (or sets) of columns from XML is not unique, we hope
to determine the smallest set of multiple outage line locations. According to the
ambiguity group theory [28, 31], the ambiguity groupwithminimumsize can provide
the information about the solvability of location identification problemwith respect to
each solution based on the given PMUs measurements. Denote the ambiguity group
with minimum size as Amin = {s1, s2, . . . , st }. Thus, the goal of LIS algorithm is to
find the smallest set of multiple line outage locations (min{|s1|, |s2|, . . . , |st |}, where
|si | (i ∈ {1, 2, . . . , t}) is the size of solution si ). The possible solution si corresponds
to the set (or sets) of columns fromXML . To analyze characteristics of those possible
solutions of line outage locations, we introduce Lemma 3 as follows:

Lemma 3 Any two solutions of line outage locations from the ambiguity group form
linearly dependent columns of XML.

Proof Due to limited PMUs, multiple solutions produce the same PMU measure-
ments, which obey the Outage Identification Equation (38). We arbitrarily select k
(k ≥ 2) solutions from multiple solutions. Based on Definitions 1 and 2, the Eq. (40)
holds for each possible solution si .

XMsi βsi = �θM , i = 1, 2, . . . , k, (40)

where si represents the set (or sets) of columns from XML , known as the solution
of line outage locations. XMsi is comprised of selection columns (si ) from XML .
βsi corresponds to si -by-1 vector, which has the similar definition in (35). Due to
Eq. (40) holds, we always find a set of λi (i = 1, 2, . . . , k) and let Eq. (41) hold.

k∑

i=1

λi�θM = 0. (41)

Applying (40) to (41), then,

[
XMs1 XMs2 . . . XMsk

]

⎡

⎢⎢⎢⎣

λ1βs1
λ2βs2

...

λkβsk

⎤

⎥⎥⎥⎦ = 0, (42)

where
∑k

i=1 λi = 0, λi �= 0, i = 1, 2, . . . , k. Note that βsi �= 0. Because the vector
[
λ1βs1 λ2βs2 . . . λkβsk

]′
exists with nonzero coefficients, a set of solutions corre-

sponding to columns from XML are linearly dependent. This lemma holds. �
Given the limited PMUs, the following LIS problem can be formulated intuitively

as an optimization problem to determine the smallest set of line outage locations that
satisfying (38).
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Problem 2 (LIS) Given both the system topology and the limited PMUs, the LIS
problem is formulated as follows:

minimize F
subject to ��M = XMFβF

(43)

where F represents the possible solution’s size (si , i ∈ {1, 2, . . . , t}) that correspond
to the number of concurrent outage lines.

3.2.2 Procedure of LIS Algorithm

Since the ambiguity group with minimum size provides the information about the
solvability of location identification problem with respect to each solution based on
the given PMUsmeasurements [28, 31], the critical task for determining the smallest
set of line outage locations is to find the ambiguity group with minimum size (Amin).
According to characteristics of possible solutions (see Lemma 3), the ambiguity
group with minimum size (Amin) is comprised of the selection linearly dependent
columns from XML . Direct method to obtain those linearly dependent columns is
also a combinatorial search with a high computational complexity. Thus, we analyze
the dependencies between those columns from XML and adopt the linear column-
dependence matrix C to represent an expansion of linearly dependent columns from
XML . Minimizing ambiguity group’s size for location identification is thus computed
with C in minimum form, which corresponds to the minimum number of non-zero
entries in C.

We develop the LIS algorithm procedure given in Algorithm 2. Minimizing the
solution of line outage locations involves four basic steps. These steps are described
as follows.
Step 1: Construct a dependence matrix
To analyze the measurement vector’s (��M ) dependency on the desired set(s) of
XML columns, we define the concatenation matrix as Hs[M×(L+1)] =[
��M[M×1] XML [M×L]

]
. To eliminate the dependence on ��M , the matrix Ĥs[M×(L+1)]

arises by eliminating the first row of Hs using the first column [33] as follows:

Ĥs[M×(L+1)] =
[

1[1×1] 0[1×L]

�̂[(M−1)×1] H[(M−1)×L]

]
, (44)

where H[(M−1)×L] is the dependence matrix. This matrix reflects the dependencies
of the desired columns from XML .
Step 2: Minimize the form of a column-dependence matrix
We define r as the rank ofH[(M−1)×L], denoted asH for simplicity, and then decom-
pose H into two linearly dependent sub-matrices:
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Algorithm 2 The LIS Algorithm
1: Initialization
2: Calculate B0 and QNL in a pre-outage power system
3: By applying M PMUs measurements, XML is obtained from (39).
4: Compute ��M .
5: Determine the smallest set of line outage locations
6: Step 1: Construct dependence matrix H
7: Step 2: Minimize the form of a column-dependence matrix C
8: repeat
9: if All sub-matrices of C satisfy Lemma 4 OR not satisfy Lemma 5
10: The number of non-zero entries in C cannot be decreased.
11: else
12: Select Csub from C satisfying Lemma 5
13: Do swapping operation to obtain Cupdate via (51) and (52).
14: if The number of non-zero entries in Cupdate less than the number

of non-zero entries in C
15: Let C := Cupdate.
16: else Go to the stage 12 until the number of non-zero entries in C cannot

be decreased
17: end if
18: end if
19: until Minimum form of C is achieved
20: Step 3: Calculate possible solutions of line outage locations.
21: Sort solutions si (i = 1, 2, . . . , w) in descending order by the size of solution
22: Step 4: Select the best solution s∗

s∗ = arg min
i=1,2,...,w

‖(��Mcali
− ��M )‖2,

23: return The minimal solution with satisfying Outage Identification Equation.

H = [H1 H2] = H1[I C], (45)

H2 = H1C,

whereH1(M−1)×r has a full column rank r .Cr×(L−r) is defined as a column-dependence
matrix, whose columns expand a set of basis columns fromH1 into the corresponding
co-basis columns from H2, which is defined as follows:

Definition 3 (Basis) The basis is a set of components that correspond to the columns
in matrix H1.

Definition 4 (Co-basis) The co-basis is a set of components that correspond to the
columns in matrix H2.

Based on the linear algebra theory [34], the rows in C correspond to components of
the basis; the columns inC correspond to components of the co-basis. Thus, columns
and rows of C with non-zero entries indicate the components of the co-basisH2 and
components of the basis H1, respectively.

Therefore, the minimum form of C is defined as follows:

Definition 5 (Minimum form) The minimum form of C is the minimum number of
non-zero entries in C, which cannot be further decreased.

To minimize the form of C, we must derive C efficiently. The QR decompo-
sition technique can yield a numerically stable solution [34] of linear equations
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with minimum least square error [35]. As a result, we explore a numerically robust
decomposition method using the QR decomposition technique on H[(M−1)×L] to
obtain HE = UR, where E[L×L] is the column permutation matrix. The orthogonal
matrix is U[(M−1)×(M−1)]. The upper triangular matrix is R[(M−1)×L]. HE denotes a
permutation of columns in H. Then, R is broken into

R =
[

�1[r×r] �2[r×(L−r)]
0[(M−1−r)×r ] 0[(M−1−r)×(L−r)]

]
. (46)

The rank of�1 equals the rank ofH, named as r . And then,we introduce the following
proposition to derive C.

Proposition A column-dependence matrix (C) is evaluated with a numerical expres-
sion, as follows:

C = �−1
1 �2. (47)

Proof Due to the results gathered fromQR decomposition,HE = UR = Ur[�1�2]
holds. Ur is constituted by the first r columns of U. Note that r is the rank of H.
Additionally, according to (45), HE is partitioned as

HE = [H′
1H

′
2], (48)

where H′
1 and H′

2 each have a similar definition in (45). Substituting (48) into
HE = Ur[�1�2], hence, H′

1 = Ur�1 and H′
2 = Ur�2 hold. Because H′

2 = H′
1C

holds, the equivalent equation is expressed as

Ur�2 = Ur�1C. (49)

Because the columns within the orthogonal matrix Ur are full, UT
r Ur = I holds.

Multiplying both sides of (49) by UT
r produces �2 = �1C. This result yields C =

�−1
1 �2. �
A single QR decomposition, however, cannot guarantee C in minimum form. To

minimize the number of non-zero entries in C, we need to swap a component in the
basis with a component in the co-basis.

Denote a sub-matrix of C:

Csub =
[
cik cim
c jk c jm

]
. (50)

Assuming c jk is a non-zero entry, the j th component in the basis is swapped with
the kth component in the co-basis. The updated entries from the kth column of C
then becomes:

Ck = −(1/c jk) · [
c1k · · · c j−1 k −1 c j+1 k · · · crk

]T
. (51)
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Additionally, other columns of C are expressed as

Cn =
[
c1n − c jnc1k

c jk
· · · c jn

c jk
· · · crn − c jncrk

c jk

]T
(52)

where n = 1, 2, . . . L − r, n �= k. All zero entries in the kth column of updated C
after swapping remain zero as the same in the original C. Additionally, the non-zero
entry cim in Csub becomes zero after swapping. Therefore, we provide Lemma 4 as
a sufficient condition for C in minimum form.

Lemma 4 If any two columns of C have concurrent non-zero entries in, at most,
one common row, then C achieves the minimum form.

Proof By contradiction, suppose this Lemma is false, i.e., any two columns ofC have
concurrent non-zero entries in, at most, one common row, but C is not in minimum
form. This means that C can be further decreased the number of non-zero entries.
We arbitrarily choose a general sub-matrix Csub from C in (50). Assuming cik=0,
cim �= 0, c jk �= 0, and c jm �= 0 hold, Csub satisfies two columns of concurrent non-
zero entries in, at most, one common row. Thus, we further decrease the number of
non-zero entries inCsub and obtain the updated sub-matrixCsubupdate via (51) and (52),
which is expressed as

Csubupdate =
[− cik

c jk
cim − c jmcik

c jk
1
c jk

c jm
c jk

]
=

[
0 cim
1
c jk

c jm
c jk

]
. (53)

Csubupdate cannot be decreased the number of non-zero entries, contradicting our
assumption. Thus, this lemma holds. �

Then, we provide the Lemma 5 for C, by which can be decreased the number of
non-zero entries.

Lemma 5 The number of non-zero entries in C can be decreased only if C has a
sub-matrix Csub with both all non-zero entries and det(Csub) = 0 holding.

Proof Assume the number of non-zero entries in a general sub-matrix (Csub) from
C in (50) can be decreased. According to Lemma 4, all entries in Csub must be non-
zero. Based on (51) and (52), the updated sub-matrix Csubupdated , after swapping the
j th component of the basis with the kth component of the co-basis, is expressed as

Csubupdated =
[− cik

c jk
cim − c jmcik

c jk
1
c jk

c jm
c jk

]
. (54)

Because all entries inCsub are non-zero, decreasing the number of non-zero entries of
Csub requires that cim − c jmcik

c jk
= 0. Thus, det(Csub) = cimc jk − c jmcik = 0 holds.�

Note that the computational complexity of searching the non-zero 2-by-2 sub-
matrices of C can be limited, because C is the sparse matrix. By removing the rows
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Fig. 2 A six-bus test power
system

with all zero entries and searching the intersection sets of non-zero column index
among any two rows with non-zero entries, the non-zero 2-by-2 sub-matrices of C
can be found efficiently. In summary, the minimum form of C can be achieved from
line 7 to 19 in the LIS Algorithm 2 (Fig. 2).
Step 3: Calculate possible solutions of line outage locations
Based on Lemma 3, the ambiguity group is constituted by the selection linearly
dependent columns of XML , which are obtained by C. Hence, one or more zero
entries in one column of C form a possible solution, which corresponds to the line
outage locations. More specifically, both this column and all rows with non-zero
entries correspond to locations of line outage as indicated by the component of the
co-basis of H′

2 and components of the basis H′
1, respectively.

Summary, the possible solution is constituted of two parts: (1) the component in
the co-basis, which corresponds to one column from C with zero entries and (2) the
components of the basis, which correspond to rows of C with non-zero entries.
Step 4: Select the best solution
Due to the limited PMUsmeasurements,��M is known.We calculate the changes in
the phasor angle ��Mcali

from the obtained potential solutions si (i = 1, 2, . . . , w).
To do so, we use the following equation as the rule to select the best solution s∗

s∗ = arg min
i=1,2,...,w

‖(��Mcali
− ��M)‖2, (55)

We can determine the most likely line outage locations when (55) is satisfied.

3.2.3 Generalization of the LIS Algorithm

This section generalizes theLIS algorithmcombinedwith the loading variation vector
in a practical scenario.
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To analyze the effect of loading variation (ε) in the post-outage system, we define
p′′ to describe the post-outage power flow combinedwith the loading variation effect,
which is shown as follows:

p′′
[N×1] = p0[N×1] + ε[N×1]

= B′
[N×N ] · �′′

[N×1], (36)

where p′′ is the post-outage power values with loading variation. The susceptance
matrix (B′) in a post-outage system combined with loading variation, is included.
Note that B′ is the same in a post-outage system even when loading variation exists.
We define �′′ as the phasor angle data combined with the loading variation in a
post-outage system. The loading variation is represented by ε. In this study, Denote
the ε as the vector of zero-mean, with a covariance matrix σ 2

ε I [21].
By applying the LIS algorithm 3.2, we can generalize the outage identification

equation with loading variation included. This subsection derives the generalized
outage identification equation based on the identical assumptions in Sect. 3.2 and
Sect. 3.2.2.

On account of the loading variation in a post-outage system, we substitute (4)
into (36) to derive �′′ as follows:

�′′ = �′ + B′−1 · ε, (37)

where ε is the vector of loading variation in a post-outage system.
Using both (32) and (37), we can determine the difference between �0 in a pre-

outage system and �′′ in a post-outage system with loading variation, as defined by
��′:

��′ = �′′ − �0 = �� + B′−1 · ε. (38)

By substituting (31) and (33) into (38):

��′ = − B−1
0 QNF

(
Z−1

δ + QT
NFB

−1
0 QNF

)−1
(39)

· QT
NF (�0 + B−1

0 ε) + B−1
0 ε.

By applying (34), (39) is thus described as:

��′
[N×1] = XNF[N×F]βε[F×1] + B−1

0[N×N ]ε[N×1], (40)

where βε is defined as

βε[F×1] = α[F×N ]
(
�0[N×1] + B−1

0[N×N ]ε[N×1]
)

, (41)
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in which
α[F×N ] = (

Z−1
δ[F×F] + QT

NF[N×F]B
−1
0[N×N ]QNF[N×F]

)−1
QT

NF[N×F] . (42)

Given the limited PMUs measurements (M), we use the same selection matrix
K[M×N ] to left multiply both sides of (40). We then obtain ��′

M . This is defined as
the generalized outage identification equation:

��′
M[M×1] = XεMF[M×F] βε[F×1] + K[M×N ]

(
B−1
0[N×N ]ε[N×1]

)
. (43)

According to Sect. 3.2.2, the generalized outage identification equation can again
be solved with the LIS algorithm.

3.3 Optimal Strategy of PMUs Placement Algorithm Design

Based on the previous anomaly behavior ofmultiple line outages analysis, the success
of location identification for multiple-line outages, however, has been hindered by
limited PMU measurements. The difficulty is to mathematically describe the iden-
tification performance for multiple-line outages. Therefore, in this subsection, we
presents an average identification capability (AIC)modeling and analysis framework
for multiple line outages to facilitate the proposed PMUs placement optimization.

3.3.1 Overview of Optimal PMUs Placement for Identifying Multiple
Line Outages

As illustrated in Fig. 3, the framework of finding optimal PMUs placement consists of
three components. Firstly, applying statistic analysis of transmission line outages and
power demand,we build themathematicalmodel to capture the average identification
capability of multiple line outages. Secondly, given the budget of PMUs, we develop
the optimization solver to maximize the average identification capability. Finally, we
obtain the optimal selection of PMU locations under the budget of PMUs.

Three assumptions are made when we explore the optimal PMU placement. First,
fast system dynamics are considered well damped. It thus brings the system into
a quasi-static state when line outage occurs. In this quasi-stable system, any fast
oscillation in the phasor angle data can be filtered out with a low-pass filter [13].
Second, no islanding scenario exists after line outage occurs [6, 8].

According to the problem formulation 2, the vector � ∈ R
N is denoted as all

phase angle data, where N represents the total number of buses. Define the number
of selected PMU locations by M (M ≤ N ). We assume that transmission line can be
in oneof two states:T1 outage-occurred andT0 outage-free.Mathematically, selecting
M out of N buses can be represented by a linear mapRN → R

M ,� �−→ y = KT�,
in which the selection matrix K ∈ R

N×M is the rank M matrix that has exactly one
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unit entry per column, corresponding to a selected PMU location, and the other
entries in columns being zero. Note that KTK = IM , in which IM is the M-by-M
identity matrix. Under the scenario Ti , i = {0, 1}, y is a linear transformation of �.
Thus, y also follows Gaussian distribution:

y ∼ N
(
KTμi ,KT�iK

)
, under Ti , i = 0, 1. (44)

Let define the probability density ofN
(
KTμi ,KT�iK

)
is defined as fi (y;K) (i =

{0, 1}).
Let define the scenarios of line outages � ∈ {1, . . . , |L|}, where |L| = ∑F

f =1

(N
f

)

presents the total possible scenarios of line outages. F is the total number of simul-
taneous line outages. Because different line outages result in different susceptance
matrix B, each f (�)

1 (y;K) represents the probability density of PMU measurement
corresponding to � scenario of line outage.

Inspired by Kullback-Leibler (KL) distance [36, 37], the average identification
capability (AIC) is defined as the average dissimilarity distance between f (�)

1 and f0
(� = 1, 2, . . . , |L|), which is shown as follows:

AIC(K) =
|L|∑

�=1

α�d
(�)(K), (45)

where the function d(�)(K) is described as

Transmission 
System Topology

Demand Statistics in 
Outage Free Scenario 

(Mean and Covariances)

Demand Statistics in Post 
Multiple Outages Scenario 
(Mean and Covariances)

Model Average Identification 
Capability (AIC) of 

Multiple Line Outages 

Input

PMUs Placement Optimization Solver 
to Maximize AIC under the Budget of 

PMUs

Output:
Optimal PMU Locations in Smart Grid 

under the Budget of PMUs

Statistical Analysis of Transmission Line 
Outages and Outage Probability 

Extraction for Each Transmission Line 

Fig. 3 Framework of finding optimal PMUs placement for identifying multiple line outages
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d(�)(K) : = d(�)
(
N

(
KTμ

(�)
1 ,KT�

(�)
1 K

)
||N (

KTμ0,KT�0K
))

(46)

= 1

2

{
(μ

(�)
1 − μ0)

TK
(
KT�0K

)−1
KT(μ

(�)
1 − μ0)

+ tr
((
KT�0K

)−1
KT�

(�)
1 K

)

− log(|KT�0S|)−1|(KT�
(�)
1 K)| − M

}
,

where α� represents the probability of � line outage; tr(·) denotes trace operation; | · |
denotes determinant operation; M is the dimension, which represents the number of
PMU measurements.

Therefore, Given the budget of PMUs, our objective function is to maximize the
average identification capability of multiple line outages, which can be mathemati-
cally formulated as an optimization problem in Problem 3.

Problem 3 Given the budgetC ∈ R and the cost ci j for each PMU (i = 1, 2, . . . , N ;
j = 1, 2, . . . , M), the problem of finding the optimal PMU locations is formulated
as:

maximize AIC(K)

subject to ki j ∈ {0, 1}, i = 1, 2, . . . , N ; j = 1, 2, . . . , M
N∑
i=1

M∑
j=1

ki j ci j ≤ C,

N∑
i=1

ki j = 1,

(47)

where ki j is the element of matrix K.
To prove Problem 3 to be an NP hard problem, we assume that each PMU has the

same cost c, for the sake of simplicity. Thus, the constraint
∑N

i=1

∑M
j=1 ki j ci j ≤ C in

Problem 3 converts to M ≤ �C
c �. Considering M to be the upper bound M = �C

c �,
the Problem 3 can be casted as follows:

Problem 4 Given the number of PMUmeasurements M = �C
c � (M ≤ N ), in which

C ∈ R is the system budget and c is the PMU cost, the problem of finding the optimal
PMU locations is formulated as:

maximize AIC(K)

subject to ki j ∈ {0, 1}, i = 1, 2, . . . , N ; j = 1, 2, . . . , M
N∑
i=1

ki j = 1.
(48)

Optimization Problem 4 is combinatorial. We will prove that the Problem 4 is an NP
hard problem, which is shown as follows.

Theorem 1 Optimization Problem 4 is the NP hard problem.

Proof Inspired by maximal clique problem (MAX-CLIQUE), which is known to be
NPhard [38],we plan to reduce the Problem (4) to be aMAX-CLIQUEproblem. First
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of all, we define the MAX-CLIQUE problem as follows.MAX-CLIQUE [38]: The
graph G = (N , �) is an undirected graph, where N = {1, 2, . . . , N } is the vertex
set of G with cardinality |N | = N , and � ⊆ N × N is the set of undirected edges
of G. The MAX-CLIQUE is the problem for finding the maximum size clique in G,
where a clique in G is a subset of vertices (C ⊆ N ), such that all pairs of vertices in
C are connected by an edge, i.e., ∀v, v

′ ∈ C, {v, v
′ } ∈ � and the size of a clique C is

the number of vertices in C.
For the sake of simplicity, we adopt a special structure N × N matrixV(G), which

is shown in Eq. (49), to reduce the MAX-CLIQUE problem.

V(G) =

⎧
⎪⎨

⎪⎩

2N if i = j

−1 if i �= j, i, j ∈ �

0 otherwise.

(49)

Because the matrix V(G) has positive diagonal elements and is strictly diagonally
dominant, V(G) is the positive definite matrix. Given a maximum size M (M ≤ N )
of clique in G, a set of matrices are represented asWM = {W ∈ R

M×M : W = WT}:

Wi j =
{
2N , i = j

∈ {0,−1}, i �= j,
(50)

where i, j = {1, 2, . . . , M}. Applying the same theory, all matrices inWM are pos-
itive definite. Moreover, let denote 1M as the column vector with all entries equal to
1. We also define the function v(W) = 1TMW−11M follows features as:

Lemma 6 For all matrices S ∈ SM, the following claims holds.

1. Let define A = W−1. Then, ∀i, j, Ai j ≥ 0 holds.
2. if Wi j = 0, then v(W − gi gTj − g j gTi ) ≥ v(W), where gi denotes i th canonical

vector.
3. v(W) ≤ M

2N−M+1 , where the equality holds if and only if W = W∗ = 2NI −
1M1TM + I. Note that I is the M-by-M identity matrix.

�
Proof For claim (1), based on the literature [39], the matrix A = W−1 ≥ 0 holds
for all entries. For claim (2), the function v is convex and differentiable on the set of
positive definite variables [40]. Therefore, applying the first-order Taylor expansion
atS, the equation v(W − gi gTj − g j gTi ) ≥ v(W) holds. For claim (3), we firstly prove

the statement: “if v(W) ≤ M
2N−M+1 holds, thenW = W∗ equals 2NI − 1M1TM + I.”

Based on the condition of this statement, v(W∗) = M
2N−M+1 holds. According to the

definition of function v(·), we obtain that W ∗ equals 2NI − 1M1TM + I. Secondly,
let’s prove the statement: “if W = W∗ equals 2NI − 1M1TM + I, then inequality
v(W) ≤ M

2N−M+1 holds.” For the sake of description, denote theW
∗ as amaximumof

v(W) over the setWM . According to claim (2), it shows that when the more negative
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variables are in the function v(·), the value of v(W) becomes higher. Therefore,
it suffices to illustrate that, ∀i, j (1 ≤ i, j ≤ M), v(W∗) = M

2N−P+1 . The claim (3)
holds.

According to the this Lemma, we reduce the Problem 4 to MAX-CLIQUE. Given
the graph G and the positive integer M (1 ≤ M ≤ N ), we will find whether G has
a clique of maximal size M . Assume that the matrix V(G) satisfies the conditions
in (49). Consider the objective function AIC in Problem 4 as an instance with the
following data: (1) fixed clique sizeM ; (2)μ1 = 1N,μ0 = 0N; (3)�1 = �0 = Z(G);
(4) AIC = 1

2
M

2N−M+1 . Therefore, the Problem 4 becomes the MAX-CLIQUE if and
only if the graph G has a clique of size at M .

Hence, the Problem 4 is an NP hard problem. �
To solve this NP hard problem, we introduce two optimal PMUs placement algo-

rithms to solve the Problem 3. One is the exhaustive search optimal method (ESOM);
the other is the greedy heuristic optimal method (GHOM).

3.3.2 Exhaustive Search Optimal Method (ESOM)

To simplify the description of ESOM, we assume that the PMU has the same cost c.
Thus, the Problem 3 transforms into Problem 4. Given the numbers of PMUs (M),
we denote |J | = (N

M

)
as the total number of possible combinations of selected PMUs.

The total solution space of Problem 4 is denoted as � = {ω1,ω2, . . . ,ω|J|}. Note
that the vector N -by-1 ωq is shown as follows:

ωq = {Ii }Ni=1, {Ii } ∈ {0, 1}, for q = 1, 2, . . . , |J |, (51)

where the indicator function Ii indicates that the i th location is installed PMU. Based
on the definition of a selection matrixK of phasor measurement data, which has one
unit entry per column, corresponding to a selected PMU location, and the other
entries in columns being zero, a selection matrix K is constructed by a ωq . Thus,
the basic idea of ESOM is to search ωq through the whole solution space � to find
the maximal average dissimilarity distance AIC(K) under the given number of PMU
measurements (M = �C

c �).
When N and M are small, an ESOM can efficiently find the global optimal

solution for the Problem 3. However, as N grows up, the Algorithm 3 becomes
computationally infeasible. To reduce the computational complexity, we develop the
sub-optimal algorithm, called greedy heuristic optimal method (GHOM), to address
the Problem 3 with acceptable computational complexity.

3.3.3 Greedy Heuristic Optimal Method (GHOM)

The GHOM is adopted to find the sub-optimal PMUs placement for identifying
multiple line outages, as illustrated in Algorithm 4. For the sake of simplicity, we
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Algorithm 3 (ESOM): Input: μ0, μ1, �0, �1, and initial ω1. Output: K
.
1: Initialization ω1;
2: Calculate K(1) using ω1;
3: Calculate AICmax ← AIC(1);
4: for q = 2, 3, . . . , |J | = (N

M
)
do

5: Calculate K(q) using ωq ;

6: Calculate AIC(q) by K(q);
7: if AIC(q) ≥ AICmax
8: AICmax ← AIC(q)

9: K ← K(q)

10: end if
11: end for
12: return

Algorithm 4 (GHOM): Input: μ0, μ1, �0, �1, and initial selected PMUs set t initp

(size of t initp equals N init
P ). Output: tp = tp ∪ {nρ}M−N init

P
ρ=1 → K

.
1: Initialization the selected PMUs set tp ← t initp ;
2: Calculate K using tP;
3: Calculate AIC(K);
4: for ρ = 1, 2, . . . , M − N init

P do
5: Find nρ = argmaxn /∈sp AIC(K(tp ∪ n));

6: Update tp ← tp ∪ {nρ }.
7: end for
8: Obtain the final selection matrix K;
9: return

also assume that all PMUs have the same cost c. The Problem 3 is thus reformulated
as Problem 4. This GHOM is initialized with a selected subset of bus nodes, defined
as t initp , size of t initp ≤ M . In each iteration, it chooses one more bus node as PMU
installation location to achieve the maximum average identification capability in
terms of Eq. (45), until the total number of PMUs placement reaches the budget of
number of PMUs (M = �C

c �). According to GHOM algorithm 4, the complexity
of each iteration grows linearly with the number of available PMUs, which can
be extended easily in large-scale smart grid for identifying multiple line outages.
Moreover, thisGHOMalgorithm is also suitable for implementation future expansion
plans ofmonitoring systemwhenmore availablePMUsare installed in themonitoring
system.

4 Numerical Experiment

This section evaluates the performance and the operational effectiveness of our pro-
posed anomaly detection approach on anomalous events (i.e., transmission line out-
ages) and location identification algorithm of multiple line outages, as well as the
PMUs placement algorithms in smart grid.
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4.1 Experimental Setup

We first summarize the numerical experimental settings. The software toolboxMAT-
POWER [41] is used to generate both pertinent AC power flow and PMUs measure-
ments. We utilize IEEE 14-, 30-, 57-, 300-bus systems, and Polish 2383-bus systems
as benchmarks. The first four are IEEE benchmark systems [42]. The last is from the
Polish Power System provided by MATPOWER “case2383wp” file. We assume that
each transmission line has the same outage probability and all PMUs have the same
installation cost. For each bus node, the power demand is considered to be random
with the mean value at the nominal power level [42], and the standard deviation
varies from 0.03 to 0.06. All experiments run on a workstation with four 2.7GHz
Intel processors and 4 GB of memory.

4.2 Real-Time Anomaly Detection Experiments

The proposed solution builds an anomalous behavior model and conducts fast covari-
ance matrix estimation to effectively and fast explore the correlation-based anomaly
detection algorithm.
Measured phasor angle data profiles: Applying the AC power flow model and
the software toolbox MATPOWER [41], we generate both pertinent AC power flow
and PMUs measurements. Specifically, we firstly apply Gaussian distribution with
mean value at the nominal power level [42] for each bus node, and standard devia-
tion varies from 0.2 to 0.8 to generate power demand profile. After that, we utilize
the MATPOWER toolbox to generate phasor angle data profiles with sample-scale
resolution based on AC power flow model. Since the measured phasor angle data
is achieved by GPS-based PMUs and regular SCADA, we use parameter time skew
level to describe the timing synchronized gap between SCADA and PMUs.
Multiple transmission line outages:We choose 5000 random scenarios with double
line outages under measured phasor angle nodes at 30% of the number of buses.
Running time analysis: The following studies are conducted on a workstation with
a [2.7]GHz Intel processor and [4]GB of memory. Overall, the proposed anomaly
detection flow with built in anomalous score modeling is highly efficient, with a
running time of 2.3 s on average over 5000 observation samples.
Design metrics: Considering the effectiveness of the anomaly detection algorithm,
two performance design metrics of interest are utilized: detection probability (TP),
also called truepositive rate, and false alarmprobability (FP), also called false positive
rate. More specifically,

• Detection probability is defined as the probability that the anomalous measured
phasor angle samples are detected under specific threshold. In other words, TP
determine how many truly abnormal PMU data are picked up. For the sake of the
illustration, we define TP as follows:
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TP = Pr{Ds > t |abnormal event}
= Ndanomaly

Nanomaly
, (52)

where t represents the threshold level. Ndanomaly represents the truly detection num-
bers of anomalous measured phasor angle samples when anomalous score (Ds) is
larger than threshold. Nanomaly is the total number of anomalous PMUs.

• False alarm probability is defined as the percentage of normal measured phasor
angle data we misclassified as anomalies. FP is thus mathematically defined as:

FP = Pr{Ds > t |normal event}
= Nmc

Nnormal
= Nd − Ndanomaly

Nnormal
, (53)

where Nmc denotes as the number of normal measured phasor angle data we
misclassified as anomalies when anomalous score (Ds) is larger than threshold.
Nd is the total detection number of measured phasor angle samples, when Ds > t .
Nnormal is the total number of normal PMU data.

In this chapter,weuse the receiver operating characteristic (ROC) [43, 44] to visualize
the trade-off between the detection probability and the false alarm probability.

4.2.1 Efficiency of Covariance Estimation Comparison

In this subsection, we adopt the true ��, which obtained by 10,000 phasor angle
samples, to compare the mean square error (MSE) of two covariance estimators: the
traditional method [45] and the Rao-Blackwell LWS method with different shapes
of �̂

∗
. We randomly choose double line outages in IEEE 30-bus systems and Polish

2383-bus systems. Applying software toolbox MATPOWER [41], we generate 3000
multivariate Gaussian phasor angle samples under outage-free scenario and 3000
multivariate Gaussian PMU samples under double-line outages scenario. For the
sake of description, we set up this experiment without time skew. Each simulation
is repeated 500 times. The MSE is illustrated as a function of number of samples,
which is shown in Fig. 4.

Figure4 demonstrates thatMSEconverges at different number ofmeasured phasor
angle samples in different IEEE bus systems and Polish system. Meanwhile, the
MSE achieved by traditional covariance estimator (TRM) and Rao-Blackwell LWS
covariance estimator (RBLWS) are all decreasedwith the number ofmeasured phasor
angle samples increase and eventually convergewhen the number ofmeasured phasor
angle samples is larger enough. It is also observed that MSE achieved by RBLWS
converges faster than TRM.Moreover, theMSE curve in double line outages scenario
has different from the MSE curve in normal outage-free scenario.
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Fig. 4 MSE impacts of a number of samples in IEEE 30-bus system and b number of samples in
Polish 2383-bus system
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4.2.2 ROC Performance Analysis

In this subsection, we apply ROC curve to analyze the anomaly detection perfor-
mance of our proposed method. We randomly choose double line outages in IEEE
30-bus systems and Polish 2383-bus system.While the first two are adopted 10 mea-
sured phasor angle samples as the sampling window, the last one is adopted 100
PMU samples as the sampling window. For the sake of description, we set up this
experiment without time skew. Using the software toolbox MATPOWER [41], we
generate 4000 and 1000 multivariate Gaussian measured phasor angle samples with
normal value (such as outage-free scenario) and with abnormal value (such as double
line outages scenario), respectively. Let set the anomaly ratio is equal to 2, 5, 10,
and 20% when we randomly insert the corresponding numbers of anomalies phasor
angle samples into normal phasor angle sample sets. The ROC curves are created
by altering the values of false alarm probability, which corresponds to the values of
detection threshold. The false alarm probability is from 10 to 100%with a stepping of
10%. Each simulation is repeated 500 times. The numerical results are illustrated in
the ROC curves, which is shown in Fig. 5. It illustrates that the average detection per-
formance increases when false alarm probability increases under the same anomaly
ratio condition. Furthermore, we observe that the detection performance improves
significantly as the anomaly ratio decreases for specific false alarm probability.

4.2.3 Analysis of Anomaly Detection Performance

To clarify the analysis of anomaly detection performance, we define the threshold
level as follows: applying the ROC curves (see Sect. 4.2.2), we select the detection
threshold, which corresponds to the 30% false alarm probability. We use the same
experiment conditions in Sect. 4.2.2. Additionally, choosing the 2% anomaly ratio,
we generate 10,000 and 220 multivariate Gaussian measured phasor angle samples
with normal value (such as outage-free scenario) and with abnormal value (such
as double line outages scenario), respectively. After that, we randomly insert the
anomalies phasor angle samples into normal samples to obtain the phasor angle
sequences for detection. The average anomaly detection probability and running time
are shown in Table1. This table illustrates that different average anomaly detection
performance and different running time among three test cases: IEEE 30-bus system
and Polish 2383-bus system. Table1 also shows that the average anomaly detection
probability relies heavily on the type of bus system.

4.3 LIS Algorithm Experiments

We implement the proposed LIS algorithm, a sparse signal reconstruction algorithm
(calledLassoing algorithm [8]), and an exhaustive search (ES) algorithm inMATLAB
to test the proposed LIS algorithm.
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Fig. 5 The ROC curves in a IEEE 30-bus system and b Polish 2383-bus system
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Table 1 The average detection probability and running time

Average detection probability
(%)

Average running time (s)

IEEE 30-bus system 82.6 8.7e−4

Polish 2383-bus system 61.7 2.07

Fig. 6 IEEE 57-bus system.
PMUs at 50% of the number
of buses: the line outages are
from bus 7 to bus 8 and from
bus 25 to bus 30. The PMUs
are located at buses [5:7,
9:12, 21:24, 26:40, 50];
PMUs at 30% of the number
of buses: the line outages are
from bus 28 to bus 29 and
from bus 46 to bus 47. The
PMUs are located at buses
[2, 20, 22, 26, 28, 31, 32, 34,
38, 39, 41, 44:47, 50, 53]

4.3.1 Comparison Between Different Methods

Using the IEEE 57-bus test system, as shown in Fig. 6, we set up two different sce-
narios to demonstrate a performance comparison between two different methods.
The first scenario includes PMUs at 50% of the number of buses; the second sce-
nario includes PMUs at 30% of the number of buses. To focus on a performance
comparison, we test the IEEE 57-bus system without loading variation.

4.3.2 PMUs at 50% of the Number of Buses

The bold red lines in Fig. 6 represent line outages (i.e., from bus 7 to bus 8 and from
bus 25 to bus 30). The red circles represent the PMUs locations. The PMUs are
placed randomly.

Compared with the Lassoing algorithm [8] and the ES algorithm, results are in
Table2. The proposed LIS algorithm returns the most likely line outage locations:
frombus 7 to bus 8 and frombus 25 to bus 30. Table2 shows that theLIS algorithmhas
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Table 2 Comparison between different methods

PMUs: 50% of # buses Lassoing Alg. [8] ES LIS

Line outages 32–33 and 34–35 7–8 and 25–30 7–8 and 25–30

Computational time
(s)

0.32 684.28 0.92

Table 3 Comparison between different methods

PMUs: 30% of # buses Lassoing Alg. [8] ES LIS

Line outages {7–29 and 47–48} {28–29 and 46–47}
{28–29, 46–47, and
21–22}

{28–29, 46–47, and
21–22}

Computational time
(s)

0.97 707.13 1.28

the same (and correct) identification results of line outages as does the ES algorithm.
Moreover, when compared to the ES algorithm, our proposed LIS algorithm attains
a 742× speedup. In contrast, the Lassoing algorithm [8] does not correctly identify
multiple line outage locations.

4.3.3 PMUs at 30% of the Number of Buses

We analyze the performance of the proposed LIS algorithm with very limited PMUs
measurements. The bold cyan lines in Fig. 6 represent the line outages, such as line
from bus 28 to bus 29 and from bus 46 to bus 47. The bold cyan circles represent the
PMUs locations. When the LIS algorithm is applied, the most likely locations for
line outages are identified as follows: {28–29, 46–47, 21–22}. Table3 illustrates that
the LIS algorithm successfully identifies the most likely line outage locations while
attaining a 552× speedup when compared to the method of exhaustive search. In
contrast, the Lassoing algorithm [8] does not correctly identify multiple line outage
locations with PMUs at 30% of the number of buses.

4.3.4 Sensitivity Analysis

To clarify the impact of PMU coverage and loading variation we define the success
rate as

Success rate = Ngood

Ntotal
, (54)

where Ngood is the number of successful cases and Ntotal is the total number of
simulation cases. We define the successful case by locations of multiple line outages.



294 J. Wu et al.

Fig. 7 The success rate in different bus system under different PMU coverage

Specifically, let S denote the set of actual locations of multiple line outages and
Sidentify denote the set of identification locations of multiple line outages. We define
Sidentify ⊆ S as a successful case.

4.3.5 Impact of PMU Coverage

We test the IEEE 14-, 57-, and 118-bus systems and choose 100 random scenarios
with both single and double line outages. The PMUs are placed randomly with dif-
ferent coverage of the number of bus systems from 10 to 90%. Figure7 demonstrates
that the success rate increases as the PMUs coverage increases. It shows a threshold
effect, which means the success rate doesn’t change too much, when PMU coverage
is above a certain level. It also shows different bus systems have different success
rate even with the same PMU coverage.

4.3.6 Impact of Loading Variation

To illustrate the impact of loading variation, we test the IEEE 118-bus system ran-
domly placing PMUs at 50% of the number of buses. 500 random chosen topologies
with both single and double line outages are tested. The standard deviation of loading
variation is set either equal to zero, corresponding to a loading variation-free case, or
equal to 1, 2, or 5% of the average pre-outage loading condition. The results are listed
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in Table4. This table illustrates that the success rate of our proposed LIS decreases
as the loading variation level increases.

4.4 Optimal PMU Placement Experiments

In this section, we implement three PMUs placement methods: ESOM algorithm,
GHOM algorithm, and random PMU placement algorithm, in MATLAB to obtain
the optimal PMUs placement for identifying multiple line outages.

4.4.1 Performance Comparison

Using IEEE 14-bus system [42] as an example, we compare the performance of
ESOM algorithm, GHOM algorithm, and random PMU placement method via the
average identification capability. The number of required PMU measurements in
IEEE 14-bus system is from 2 to 14 with a stepping of 2. These line outages are
equal to single and double line outages under the same bus system.

Figure8 illustrates the average identification capability versus the number of
selected PMUs in IEEE 14-bus system for single and double line outage. It shows
that the global optimal PMU placement by ESOM has the higher average identi-
fication capability when compared to the GHOM algorithm and the random PMU
placement algorithm. Meanwhile, the average identification capability achieved by
ESOM, GHOM, and random PMU placement method are all increased with the
number of selected PMU and eventually converge when all the PMUs are selected.
It is also observed that when number of PMUs is small, the performance improve-
ment with one additional PMU is much higher when compared to a larger number
of PMUs.

Table 4 Impact of loading variation based on limited PMUs measurement

Success rate (%)

Loading variation level Single Double

0% 86.67 65.2

1% 68.83 50.45

2% 56.91 46.67

5% 40.51 31.23



296 J. Wu et al.

Fig. 8 Average identification capability versus the number of selected PMUs in IEEE14-bus system
when a single line outage occurred and b double line outages occurred
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Table 5 Computational time comparison

IEEE 14-bus system (s) IEEE 57-bus system (s)

Single Double Single Double

ESOM Alg. 4.68 51.94 N/A N/A

GHOM Alg. 0.23 1.68 31.27 374.5

Table 6 Average location identification accuracy based on different optimal PMUs placement
methods

Identification accuracy (%)

Single Double

ESOM Alg. 89.97 66.84

GHOM Alg. 84.12 63.23

Random PMUs placement 80.18 57.36

4.4.2 Computational Time Comparison

Using IEEE 14- and 57-bus systems [42], we compare the computational time of
ESOM algorithm and GHOM algorithm under both single and double line outages
scenarios. The required number of PMUs is at 30% of the number of buses. These
line outages are equal to single and double line outages under the same bus system.
The computational time of ESOM algorithm and GHOM algorithm is shown in
Table5. This table illustrates that the different optimal PMUs placement methods
have different computational time. Table5 also shows that the computational time of
GHOM algorithm attains a 50× speedup when compared to the ESOM algorithm.

4.4.3 Location Identification Accuracy Comparison

Using the IEEE 14-bus systems [42], we compare the location identification accu-
racy of ESOM algorithm, the GHOM algorithm, and the random PMUs placement
method. We randomly choose 500 scenarios with both single and double line. The
required number of PMUs is at 30% of the number of buses. The average location
identification accuracy of line outages is shown in Table6. This table illustrates that
different PMUs placement methods lead to different location identification accuracy
of multiple line outages. Table6 also shows that the ESOM algorithm has highest
location identification accuracy among three PMUs placement methods. Moreover,
the proposed ESOM algorithm improves about 10% location identification accuracy
of multiple line outages, when compared to random PMUs placement method.
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5 Conclusions

This chapter presents an integrated design for real time anomaly detection, location
identification of multiple line outages, and the optimal PMUs placement methods
to characterize the average identification performance of multiple line outages in
large-scale smart grid. The proposed design and optimization flow is driven by an
accurate and fast anomalous behavior modeling and analysis solution. It conducts
spatial-temporal ReTAD algorithm to efficiently address the issue of terabits pha-
sor measurement data volume and tight real time application. Using the real-time
anomaly detection and inspired by the ambiguity group, the proposed location identi-
fication scheme (LIS) algorithm adopts an optimization approach on matrix analysis
to successively search for themost likelymultiple line outage locations. Additionally,
the proposed optimal PMUs placement methods: exhaustive search optimal method
(ESOM) and greedy heuristic optimal method (GHOM) to find the optimal PMUs
placement, targeting on maximizing the average identification capability of multi-
ple simultaneous line outages. The proposed work is evaluated using 14-, 30-, 57-,
300-, and 2383-bus systems. Our experimental study shows that, the proposed solu-
tion can effectively explore the system design space and produce low computational
complexity real time anomaly detection solutions and location identification of the
multiple line outages.
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Domain-Specific Security Approaches
for Cyber-Physical Systems

Hui Lin

Abstract In recent years, attacks have emerged in various cyber-physical systems
(CPS), causing power outages, disrupting water treatment processes, and so on.
These attacks, which are often referred to as advanced persistent threats (APT),
reveal a daunting fact. Adversaries are no longer amateurs that randomly probe and
compromise many computing devices; they are equipped with advanced intelligence
of domain-specific knowledge of the target system and act to achieve a specific goal,
e.g., disrupting physical processes. Like a well-trained sniper, adversaries can target
a small number of certain devices and can exploit legitimate control operations or
well-crafted measurements to inflict physical damage without introducing system-
or network-level anomalies. This chapter will present our belief that can effectively
address those advanced threats, i.e., integrating domain-specific knowledgeof a target
system (with the main focus on smart power grids) into general-purpose security
solutions. This approach will allow us to reveal adversaries’ malicious intentions
and preemptively prevent damage from happening.

1 What Are Cyber-Physical Systems?

Tobetter understandCyber-Physical Systems (CPSs),we can startwith the traditional
control systems. As shown in Fig. 1, even though control systems can have various
appearances, e.g., automobile, medical devices, power grids, and agriculture, they
operate on top of a typical feedback loop. This feedback loop involves two types of
interactions. One type of interaction involves collectingmeasurements from physical
processes and using them as an input to control algorithms, continuously obtaining
the updatedmodels of the physical processes. Another type of interaction involves the
commands generated by the control algorithms according to physical states, ensuring
the system’s operation and long-term stability.

Traditional control systems used legacy sensors and actuators to carry out the
two interactions mentioned above. To further increase operational efficiency and
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Fig. 1 A typical feedback loop in various control systems. Sensors collect measurements from a
physical process such that a control algorithm can accurately monitor the system’s run-time states.
Actuators are responsible for delivering control commands determined by the control algorithm,
maintaining continuous operations in the physical process

reduce administration costs, engineers deploy off-the-shelf computing components
and network infrastructure to replace the legacy sensors and actuators. Consequently,
control systems evolve into CPSs.

Even though there is no standard definition of CPS, the National Institute of
Standards and Technology (NIST) provides the following reference definition [1].
“Cyber-Physical Systems (CPS) comprise interacting digital, analog, physical, and
human components engineered for function through integrated physics and logic.
These systemswill provide the foundation of our critical infrastructure, form the basis
of emerging and future smart services, and improve our quality of life in many areas.
Cyber-physical systems will bring advances in personalized health care, emergency
response, traffic flow management.”

Because CPSs can differ significantly, it is challenging to summarize and discuss
all security solutions that exploit various domain-specific knowledge of the target
systems in a single chapter. To facilitate discussion, wemainly use smart power grids
as an example CPS. Specifically, we use the informal definition provided in [2]. “A
Smart Grid is a modern electricity system. It uses sensors, monitoring, communi-
cations, automation, and computers to improve the flexibility, security, reliability,
efficiency, and safety of the electricity system.” Many security approaches discussed
in this chapter can be generalized to other CPS environments by considering specific
domain-specific system knowledge.

2 Attack Surfaces of Cyber-Physical Systems

Tobetter understandhowcyberattacks affectCPSs,weuseFig. 2 to illustrate potential
attack surfaces, i.e., software or hardware components throughwhich adversaries can
penetrate and compromise a CPS. We intentionally present these attack surfaces on
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Fig. 2 Attack surfaces mapped to CPS’ feedback loop

CPS’ generic control loop, abstracted from the detailed implementation of attacks
targeting specific CPSs.

In attacks that compromise measurements (often referred to as false or bad data
injection attacks, marked as type A in Fig. 2), adversaries try to mislead the control
algorithm by corrupting the cyber system states [3, 4], which can lead to a wrong
command to be issued to the physical process. The impacts of false data injection
attacks vary from system to system. For example, [5–7] study how the compromised
measurement data would indirectly disrupt control operations and create potential
economic losses.

The attacks that compromise measurement data aim at indirect changes of the
commands issued to the physical process. However, in today’s CPSs, commands are
often transmitted over unprotected communication channels of an IP-based control
network. Suppose an adversary can gain access to the control network or the commu-
nication link between the cyber and physical components. In that case, the adversary
can disrupt the system by directly compromising the control commands (type B
attack in Fig. 2). This is not to say that the attacks on sensor measurements are not
important. Quite the opposite, compromised measurements can be used to hide the
real (potentially anomalous) state of a CPS in order to delay the detection of the
attacks before the actual damage to the system (as seen in the example of Stuxnet
[8]).

To identify and rank the attacks that exploit the vulnerabilities in physical compo-
nents (marked as type C in Fig. 2), many researchers propose metrics to reveal and
quantify different types of vulnerabilities [9, 10]. Specifically, power systems’ elec-
trical characteristics, such as loads of substations or transmission lines, can be used
to understand how overloading events caused by cyberattacks can lead to safety
violations. Also, previous research use graph theory to study the characteristics of
transmission or distribution networks in power grids (e.g., connectivity or the length
of the shortest path between substations), determining how malicious attacks can
propagate through the system [11, 12].

Instead of perturbing physical components simultaneously, adversaries can also
perturb physical components in sequence in type C attacks, which are referred to as
cascaded attacks. In [13], the authors present a brief discussion on the risk of cascaded
outages caused by accidents or attacks. Zhu et al. experimentally demonstrate that the
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cascaded attack can introduce more significant damage than the attacks that perturb
multiple physical components simultaneously [10]. Note that type C attacks often
require physical accesses to actual CPS devices, which are not easy, less practical,
and have a higher risk of being detected.

3 Challenges of Detecting Attacks in CPSs

Because CPSs rely on continuous interactions between cyber and physical compo-
nents, attacks targeting CPSs distinguish themselves from the attacks in general
purpose computing environments in two aspects. First, attacks will result in phys-
ical damage, causing irreversible service outages, economic losses, and even human
casualties. Second, the complexity of attacks increases dramatically to ensure the
effectiveness and stealthiness of maliciously manipulating physical processes. These
characteristics introduce new challenges of detecting attacks in CPSs.

3.1 Visibility of System Activities

The strong synergy of cyber andphysical components inCPSsmakes detecting cyber-
physical attacks difficult by monitoring the cyber or physical components separately
from each other.

It is difficult to detect and mitigate attacks based solely on the cyber compo-
nents’ activities for two reasons. First, the communication protocols used by CPSs to
exchange physical data usually lack security approaches like encryption and authen-
tication that are compatible with legacy devices and real-time network communica-
tion. For example, the DNP3 protocol, widely used in the U.S. power grids, chemical
plants, and other critical infrastructure, still lacks encryption features [14]. Conse-
quently, adversaries can easily perform reconnaissance by passively monitoring the
communication without generating anomalies in the cyber domain. Second, the
compromises of the physical process do not necessarily introduce anomalies that
the state-of-art intrusion detection systems will raise alerts [15–17]. In other words,
attacks can be crafted by changing one valid control command to another valid
command without violating any protocol syntax, control flow, or communication
performance. For example, modifying a single bit in a DNP3 packet that delivers
commands to control circuit breakers can change certain breakers’ on/off state. If the
commands are changed to different devices, the disturbance can destabilize a power
grid instead of performing their original functions.

It is also difficult to detect and mitigate the attacks based solely on the activities
from the physical domain. Because many vendors and companies are building phys-
ical devices to serve different objectives, collecting and correlating application logs is
usually time-consuming (some devices are even not equipped with the logging capa-
bilities in their initial design). In addition, traditional safety procedures are originally
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designed to remedy accidents caused by unexpected physical failures, which happen
locally. These safety procedures can become ineffective against malicious attacks,
which can rely on coordinated activities at different sites. For example, in power
grids, traditional contingency analysis considers only low-order incidents (i.e., the
“N− 1” or “N – 1− 1” contingency in which one or two devices are out of service).
Consequently, it is impractical to construct a black list of the possible attacks for a
large-scale system.

3.2 Diagnosis

Diagnosing attacks play a critical role in preventing the same attacks from occurring
in the future. Successful and accurate diagnosis can lead to a thorough understanding
of the life cycle of the attacks and the identification of vulnerabilities in the systems.

However, attacks are hard to diagnose in CPSs because the complexity of the
attacks increases dramatically. Furthermore, although many cyber-physical attacks
cause safety violations, the violations themselves do not reveal the entry point of
the attacks and the malicious activities in the cyber domain. Without such infor-
mation, it is challenging to identify the vulnerability exploited by adversaries and,
thus, to perform appropriate response or remedy actions (e.g., software patching or
updating operational procedures). To make things worse, intelligent adversaries can
hide their existence by disguising themselves as accidental failures [18] to avoid
further diagnosis on the attacks.

3.3 Real-Time Constraints

Physical components in CPSs, which usually observe some physical laws, usually
have strict requirements for the timely delivery of control operations. However, those
requirements can span across different ranges. For example, power grids need to
deliver the commands in the range from several hundred milliseconds to several
seconds [19], while the surgical robots are required to perform control computations
within only a fewmilliseconds [20]. Consequently, it is difficult to design a one-size-
fits-all solution to achieve a run-time detection for all ranges of CPSs.

Because of stringent real-time constraints on control operation, it becomes chal-
lenging to make appropriate remedy decisions on the detected attacks. On the one
hand, passively generating alerts, like how we handle intrusions in general-purpose
computing environments, will not directly prevent physical damage. On the other
hand, placing a detection module in a communication path, like how we deploy
firewalls, can block malicious traffic. But this approach can affect the performance
of all network communications, including benign ones, making it difficult for the
piggybacked operations to observe existing timing constraints.
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4 Attacks Detection in CPSs

Despite all those challenges in handling attacks in CPSs, there are varieties of
methods proposed to achieve accurate and reliable detection. In this section, we will
present different detection methods based on three categories, i.e., anomaly-based,
misuse-based, and specification-based approaches, which are common categories
when discussing intrusion detection in general-purpose computing environments.

4.1 Anomaly-Based Detection in CPSs

Anomaly-based detection refers to the detection methods using system activities that
deviate from a normal profile. Usually, system administrators build a normal profile
in advance by summarizing statistical characteristics extracted from activities when
the target systems are operated without involving any malicious actors. Because of
this detection concept, many machine-learning and data-driven analytic techniques
are applied to build the statistical characteristics of normal system behaviors, serving
as a norm to the target systems. In the domain of CPS, we can build the norm based
on the data from both cyber and physical domains.

4.1.1 Buildings Norm from Cyber Domains

In aCPS, cyber domains, e.g., communications networks connecting various physical
devices, can include valuable knowledge indicating the trajectory of physical states.
Using cyber-domain information to build the normofCPSs’ run-time behavior can be
easily achieved by following experiences developed in general-purpose computing
networks; it often requires small changes on the configuration of existing computing
and network infrastructures. For example, to monitor a network, system administra-
tors can configure an unused port in a network switch or a network router as a SPAN
port that can mirror all network traffic going through the switch or the router to this
port. Because we analyze the copy of existing information, the detection performed
based on the norm built from the cyber domains is often non-intrusive. Even though
non-intrusive detection cannot directly prevent malicious activities, it benefits by
introducing few new vulnerabilities or risks to the existing environment.

Because of these advantages, monitoring cyber domain activities and using them
to detect anomalies are proposed when there are few domain-specific methods for
various CPSs. In these efforts, security solutions mainly rely on specific patterns
observed based on the data extracted from the lower-layer of communications
networks, i.e., transport or IP layer of network packets. For example, based on the
observation that physical operations are usually periodic (i.e., measurements are
collected periodically), Markman et al. divided time-stamped traffic flows into a
sequence of bursts and then built a deterministic finite automaton for each burst of



Domain-Specific Security Approaches for Cyber-Physical Systems 307

the traffic [21]. Compared to treating all traffic equally, the automata built for each
burst can reflect the characteristics of the underlying physical process. Alternatively,
Formby et al. used the differences in the time stamps recorded at consecutive TCP
layer packets to infer the execution time of certain physical operations, which was
further used as device’s fingerprints [22].

4.1.2 Build Norm from Physical Domains

Even though some attacks in CPSs present some anomalies in the cyber domains,
modern attacks, e.g., Stuxnet and the attack that shut down a Ukrainian power
plant in 2015 [8, 23], demonstrate that malicious activities can leave few red flags
in communication patterns. Adversaries can hide their malicious intentions in the
semantics crafted in legitimate formats. Detecting this type of stealthy attack requires
more information from physical domains, revealing ground truths from the physical
processes. These ground truths follow the law of physics. System administrators
observe those physical laws to maintain CPS’ continuous and secure operations
while adversaries are required to observe them to achieve their malicious intentions.
Because those properties remain consistent with the law of physics, some works
refer to those properties as “control invariants” to describe the norm built from the
physical domains [24, 25].

There are two major obstacles to obtaining the data from the physical domains.
The first one is that many legacy devices used in CPSs, such as Programmable Logic
Controllers (PLCs), lack logging mechanisms at their initial designs. Consequently,
lacking first-hand records on what happens locally in each device makes it difficult to
monitor run-time trajectories of physical processes and identify any deviation from
the norm or the expected trajectories. The second obstacle is thatmany legacy devices
rely on proprietary network protocol to exchange information, e.g., what data they
collect and what operations they perform.While some proprietary network protocols
are merged to the TCP/IP protocol stack, allowing modern network monitoring tools
for analysis, some extinct as early documentation are lost and engineerswho designed
them at first hand retire. These closed designs of proprietary protocols also make it
challenging to indirectly estimate the physical state trajectory based on the network
interactions with the target devices.

The direct solution to overcome the first obstacle requires vendors to add logging
capability to their products. Unfortunately, even though some vendors have made
such efforts, the logs added to their devices are far from comprehensive. For example,
smart meters log simple records such as functional codes corresponding to certain
control operations at a certain time [26]. Furthermore, even though it is possible to
add custom logs, it requires instrumentation on the applications or firmware deployed
in those legacy devices, which are implemented under proprietary development
processes [27]. To make things worse, more complicated logs, like what we find
in Syslog in Linux OS, become difficult to implement because of the limited storage
space and computational capability found in legacy devices.
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The path to overcoming the second obstacle is not smooth, despite many efforts
from industrial sectors. Wireshark has provided support for some proprietary proto-
cols widely used in CPSs, e.g., DNP3 and Modbus [14, 28]. Wireshark can extract
information encoded in those protocols for clear display, but it cannot analyze
those pieces of information. Digital Bond has performed early efforts to explore
the signature-matching rules in commercial tools like Snort to analyze limited types
of information related to CPSs’ run-time operations. Still, it is difficult for Snort to
provide complete support on the proprietary protocols. Zeek, another popular intru-
sion detection system (IDS) based on specification-based detection methodology,
provides an interface known as Binpac to add parsers that can fully support some
proprietary protocols [29]. In addition, network administrators can leverage Zeek’s
Turing complete script language to implement their own security policy to accom-
modate various operational environments. One limitation of Binpac included in the
early version of Zeek (whenZeek is known by the name ofBro) is that it only supports
application-layer protocols on top of TCP or UDP. Consequently, it is difficult to add
parsers of protocols in Ethernet/IP that define new services in data link or transport
layers [30]. Fortunately, the successor of Binpac, known as Spicy, included in the
current version of Zeek, has gradually provided the support of protocols defined in
any layers of TCP/IP stack [31].

4.1.3 Discussion

The major advantage of the data-centric approach is that it can apply machine-
learning and data-driven analytic techniques to data from either cyber or physical
domains or both, despite different CPS implementations. Specifically, the advance-
ment of deep learning provides a new opportunity to build norms around both cyber
and physical domains of a CPS, based on which to detect run-time anomalies.

However, applying anomaly-based detection in CPS can still face multiple chal-
lenges [32]. First, there exists a semantic gap between statistical deviations from
normal system profiles and the physical impact of attacks on CPS, without consid-
ering the domain-specific characteristics of a CPS when cyberattacks happen. In
other words, since anomaly does not necessarily represent attacks that can intro-
duce physical damage, this detection method tends to introduce a large number of
false-positive alerts, which can affect the performance or even the safety of normal
control operations. Second, it is difficult to obtain a representative dataset to train
the anomaly-based detection methods. A large number of representative data plays a
critical role in ensuring the performance ofmachine-learning-based or deep-learning-
basedmethods. But physical processes in many CPSs, such as power grids, can expe-
rience slow inertia from mechanical components; it can take a long time to collect
data representing various operating conditions.
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Fig. 3 Number of disclosed vulnerabilities targeting CPS per year from 2011 to 2020 (source IBM
Security X-Force [34])

4.2 Misuse-Based Detection

Misuse-based detection methods, also known as signatures-based detection, detect
attacks based on the knowledge generalized from previously observed attacks.
System administrators can generalize the knowledge of previous attacks at a high
level, such as building a state machine that describes steps that an adversary usually
takes to reach his or her goal [33]. In an alternative way, system administrators can
generalize the knowledge of previous attacks at a low level, such as binary patterns
found in malware or network payloads. The typical example of this low-level attack
knowledge is the anti-malware software used in general-purpose operating systems.

In recent years, the number of discovered vulnerabilities associated with physical
devices and incidents that disrupt CPSs’ operations has increased dramatically. In
Fig. 3, we present a breakdown of those vulnerabilities, summarized by IBM research
[34]. In addition, in 2021 alone, we observe multiple major incidents, from botnet
attacks onFloridawater treatment plants to ransomware attacks onColonial Pipelines
[35, 36].

In general-purpose computing environments, system administrators often transfer
the lessons learned from previous attacks into future defense intelligence, being
shared in public and making the same type of attacks challenging to succeed in the
future. But the situation is very different for attacks in CPSs, which can significantly
jeopardize the reputations of the affected utility companies and lead to huge economic
losses. As a result, many details of the attacks that happened in CPSs are hidden,
let alone being shared among potential competitors. Due to this reason, misuse-based
detection is not widely used in CPS network environments.

4.3 Specification-Based Detection

Specification-based detection relies on a specific model or policy constructed based
on the internal logic of the monitored system. At run-time, any system behavior
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that deviates from this policy or model triggers alerts. It is common to confuse
the specification-based detection with the anomaly-based detection discussed in
Sect. 4.1. These two detection methods have critical differences. First, anomaly-
based detection relies on the deviation of normal systembehavior profiled through the
observation of attack-free systembehaviors.Many anomaly-based detectionmethods
encode the generation of the attack-free system behavior as statistical characteristics.
Specification-based detection relies on the deviation of expected system behaviors
determined by the system’s internal logic. Second, anomaly-based detection only
generalizes attack-free behaviors, while specification-based detection can rely on
internal logic that specifies both what is expected and what is not. In other words,
security operators can use techniques in but not limited to both anomaly-based and
misuse-based detection to estimate system’s internal logic.

Similar to Sect. 4.1, in the domain of CPS, we can specify the internal logic of a
CPS based on either cyber components or physical components.

4.3.1 Building Internal Logic Based on Cyber Domain Knowledge

Using IP-based communications is essential to advance traditional control systems
into modern CPSs. Even though CPSs have relied on similar network infrastructure
used by general-purpose computing environments, they exchange information for a
different objective, i.e., monitoring and maintaining the run-time states of physical
processes. In recent years, many approaches attempt to use various sources from the
cyber domains of a CPS to build the internal logic of a target system. In the remainder
of this section, we present two important sources: specification of network protocols
and system documentation.

Even though many network protocols widely used in CPSs are mapped to the
TCP/IP stack from their original proprietary designs, they still present some unique
functionalities to CPS environments. Those functionalities are closely related to
control operations, which are uncommon in general-purpose computing and network
environments. For example, the DNP3 protocol, originally defined as operating over
a serial link, reflects the end devices’ run-time state and state transitions [14]. Specif-
ically, Sect. 6.3 of [14] specifies how the implementation of a DNP3 master should
handle solicited responses by defining a statemachine including three different states:

• Idle state: the DNP3 master waiting from user inputs to initiate a request. The
DNP3 master starts in this state after a reset operation.

• AwaitFirst state: the DNP3 master is expecting the first fragment of appropriate
responses from DNP3 outstations. Because there can be multiple fragments of
responses for a DNP3 request (e.g., each fragment is sent by a single TCP packet),
the DNP3 master is put in this state after sending a request and before receiving
the first fragment of the response.

• Assembly state: theDNP3master enters this state after receiving thefirst fragment
of the expected response from DNP3 outstations. In this state, the DNP3 master
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assembles all fragments, obtaining the complete response. After that, the DNP3
master will enter into the Idle state.

In other words, physical devices designed to conform to the DNP3 protocol will
follow the state transition specified in the protocol. Consequently, the protocol spec-
ification becomes a valuable source to build the internal logic of certain physical
devices.

Because of the original proprietary nature of the network protocols used in CPS
environments, there are a limited number of network analysis tools that can under-
stand the protocol specifications and extract information that can help build the
internal control logic of end devices. As discussed in 4.1.2, network analysis tools,
such as Wireshark and Zeek, can be used for this different objective.

In addition to the protocol specification, system documentation related to those
legacy devices are another critical source for understanding the internal logic related
to control operations. System documentation can be encoded in both structured and
unstructured formats.

Structured Format Many utilities and standards adopt markup language, such as
XML, to define a set of rules that are both machine-readable
and human-readable. For example, IEC 61,850 defines a
basic structure known as SubstationConfigurationLanguage
to store functionalities related to substation automation in
power grids [37]

Unstructured Format In many other situations, system specifications are often
stored in documentation that is only human-readable. Manu-
ally obtaining internal logic from the documentation can
be time-consuming. However, the current advancement of
natural language processing based on recent advancement of
deep recurrent neural networks can increase the efficiency to
automatically learn the internal logic from human-readable
documentation [38]

4.3.2 Building Internal Logic Based on Physical Domain Knowledge

Because a CPS is a digital upgrade from a control system, the activities in its physical
domains are still governed by physical laws. For example, we can use the following
differential equations, often in a vector format, to describe physical states and their
variations in a time domain.

ẋ(t) = Ax(t)+ Bu(t), (1)

y(t) = Cx(t)+ Du(t), (2)

In Eq. (1), x(t) is a vector of state variables and u(t) is a vector of input signals
of a physical process. The derivative of x(t) over time t, specified by ẋ(t), describes
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the changes of the state variable. In Eq. (2), y(t) is a vector of output signals. These
two equations determine the next state and output of the system based on the values
of current states and input signals.

In various CPSs, the meaning of state variables, input signals, output signals,
as well as configurations correlating them (which are encoded in parameters A, B,
C, and D), will change accordingly. For example, a power grid connects different
substations to deliver energy from generators to load units. In this environment,
system states refer to the voltage magnitude and the phasor angle at each substation;
the input signals refer to the setpoints at different generators; the output signals
refer to the measurements from various types of meters. The physical configurations
correlating those elements refer to the topological connectivity of substations and
physical properties of the connection lines, e.g., the impedance of transmission or
distribution lines.

Because CPS’ physical states need to follow certain physical laws, both malicious
attacks and defenses observe such special requirements in CPSs. For example, in the
attack of Ukraine power plants, adversaries cause the attack by issuing a wrong
input signal, which results in an output that can lead to a blackout. Even though the
input signals present minor cyber anomalies, it will be easy to use the physical laws
to estimate the potential physical consequences and reveal adversaries’ malicious
intentions. Such understanding provides a foundation for multiple research works,
which use the physical laws to build internal logic and detect attacks based on the
results estimated based on the logic [20, 25, 39].

Even though internal logic built from the physical models can provide accurate
detection, solving the physical models to estimate potential consequences can take a
long time to finish. For example, Eqs. (1) and (2) can include at least 8000 parameters
for a power grid including more than 2000 substations. Solving solutions for such
a large grid can take seconds to finish. Even though this latency seems small for an
energy management system, it is at least two orders of magnitude larger than the
latency that normal network analyzers spend on single network activity.

There are two major approaches to overcome the shortcoming of the long latency
of solving physical models. The first approach is to develop a new approximation
algorithm to solve the physical model. Taking power grids for example, we often use
the AC power flow analysis algorithm to solve the nonlinear equation used to specify
power grids’ physical models. The AC power flow analysis uses iterative algorithms,
e.g., the Newton–Raphson algorithm, to accurately calculate the power system’s
state within an accuracy level. To avoid iterative computations, different types of
DC power flow analyses solve the linear approximation of the nonlinear power flow
equations [40]. The DC power flow analysis enjoys reduced computation latency at
the cost of poor solution accuracy. To meet the trade-off of accuracy and detection
latency, adaptive AC power flow analysis is proposed in [39]. This algorithm uses
intermediate solutions from the iterative algorithm as the final solution before the
iterative algorithm is accurately converged. Consequently, system administrators can
dynamically choose when to stop the algorithm according to the accuracy level of
run-time detection.
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The second approach to reducing the latency of solving physical models is to
train data-driven algorithms to approximate the physical models. For example, deep
neural networks can be very effective in describing complicated physical models,
if sufficient and various operating conditions of the physical models are provided.
Consequently, solving the physical models is replaced by performing an interfer-
ence on a trained machine learning model, significantly reducing the computational
latency.

4.3.3 Discussion

Unlike anomaly-based detection, specification-based detection is used inmany actual
general-computing environments. However, when applying this detection method in
CPS environments, a new challenge emerges. Many utility companies will be reluc-
tant to reveal the internal logic to a third-party security solution, revealing multiple
concerns. The first concern is that internal logic is valuable for both adversaries and
defenses. As discussed in [23, 41], adversaries put a great effort on the reconnais-
sance of the internal logic of a target system to launch effective attacks. The second
concern is that the internal logic, which often involves proprietary or patented design,
can be used by the competitor of a utility company for unfair competition.

5 Attack Recovery in CPSs

The resilience of a CPS describes its capability to recover from anomaly incidents,
e.g., accidental events or intentional cyberattacks. After discussing attack detection
in Sect. 4, we will focus on attack recovery in this section.

CPSs can recover from small disturbances relying on their intrinsic feedback
control loop shown in Fig. 1, which is mainly designed and implemented through
mechanical components. The feedback control can be implemented locally in sub-
stations and globally in energy management systems, adjusting power generations to
accommodate continuously-changing load demands (and possiblywith theminimum
costs).

However, the feedback control loop becomes less effective to unprecedented
disturbances observed in cyberattacks. For example, suppose a power grid expe-
riences massive disturbance caused by manipulating a large number of Internet-of-
things (IoT) [42, 43] (e.g., load demand changes by 30% simultaneously). In that
case, the affected power grids will end up in a blackout even with the feedback
control loop. Therefore, in addition to traditional feedback controls, many recovery
mechanisms emerge to restrict the impact of disturbances caused by cyberattacks.



314 H. Lin

5.1 Attack Recovery in Cyber Domains

The communications networks are vulnerable to various attacks, such as denial-of-
service attacks (DoS) or man-in-the-middle (MITM) attacks, leading to the discon-
nections of certain communication links and end nodes. Furthermore, the service
downgrade in the communications networks can indirectly affect the performance of
the control operations in a CPS. For example, in a power grid, control commands and
measurements are required to observe a demanding communication latency, ensuring
accurate wide-area monitoring in power systems and real-time control operations.

Unfortunately, recovering network services, e.g., reconnecting communication
links and deploying duplicate end nodes, is not equivalent to restoring control oper-
ations in a CPS. In the design of virtual circuit switching networks, such as the asyn-
chronous transfer mode (ATM) network in the early 1990s [44, 45], the concept of
self-healing has been proposed to handle link or node failure. The self-healing algo-
rithms try to recover as many lost services as possible under the resource constraint
of network equipment. In this general-purpose network environment, self-healing
is performed on predetermined backup or protection paths [46]. However, in CPS’
network environment, these self-healing algorithms may not become effective. First,
the objective in CPS is to restore control operations, e.g., the observability of a power
grid. This objective is different from the one that is used to restore failed links or nodes
in conventional ATM networks, e.g., minimizing the cost of assigning spare links
[45], maximizing the amount of restored traffic [47, 48], and maximizing the volume
of remaining capacity in routing paths [46, 49]. The main reason is that communi-
cation nodes can play different roles in CPS’ physical processes; their restoration
should be prioritized according to their roles in physical processes, not their roles
in communications networks. Second, the self-healing mechanisms for conventional
networks consider the failure of a small range of components, e.g., single link or
node failures caused by accidental events. But cyberattacks can cause the failure of
a large number of communication nodes, especially the ones used in CPSs.

Because of those differences, methods that aim to restore the services of physical
processes (e.g., the observability and controllability of a power grid) begin to showup.
For example, in [50], Lin et al. attempt to restore the network links and failure nodes to
restore power grids observability. The problem specifically targets lostmeasurements
from phasormeasurement units (PMU) if their upper-level data collector (also known
asPDC, phasor data concentrator) experiences failure. Specifically, the proposed self-
healing networks prioritize recovering the data from PMUs based on their role in
increasing power grid observability, instead of increasing network throughput.

Similarly, in [51, 52], the authors quantified the relationship between the network
connectivity of distributed generation units and the performance of generational
control in power grids. This quantification metric serves as a guideline for recovering
network links that maximize power grids’ controllability while maintaining small
network overhead.
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5.2 Attack Recovery in Physical Domains

CPSs are highly vulnerable to massive disruptions. For example, massive disruptions
in Texas due to snowstorms in 2021 caused power outages in more than 2 million
households, economic losses of more than 80 billion dollars, and more than 150
people losing their lives [53, 54]. If cyberattacks cause those massive disruptions,
CPSs’ current capability is still limited in recovering from the disruptions.

Despite those challenges, many utility companies attempt to remedy the impact of
massive disruption by allocatingmore resources. For example, to remedy a significant
amount of load changes in a power grid triggered by manipulating a large number of
IoT devices, some research works propose to allocate more generation reserve. This
approach can help the power grid to quickly recover from a certain level of disruption.
But it comes with a big price: an increased investment in generation units that will
be rarely used during normal operations. Overcoming the drawbacks of allocating
more generation reserves requires using distributed energy resources, such as solar
power and wind plant, instead of investing in traditional bulky power generations. In
addition, technological advancement in energy storage needs to catch up, making it
possible to reserve generation for later usage. Finally, similar to power grids, other
CPSs will need to leverage their renewable resources to recover from the disruptions
caused by attacks.

6 Preemptive Protection

Many CPS environments still follow the traditional and passive defense paradigm,
whichdetects first and recovers afterward.Unlike passive defense, preemptive protec-
tions are alternative approaches that can disrupt adversaries, especially the intelligent
adversaries that stay stealthy to obtain in-depth knowledge of the target CPS envi-
ronment before initiating any malicious activities. The following section discusses
preemptive protection methods against two types of adversaries, i.e., external and
internal adversaries determined by whether they have penetrated the isolated control
networks used by CPSs.

6.1 Preemptive Protection Against External Adversaries

During the early stage of cyber-physical attacks, external adversaries exploit scanning
or probing to search for potential vulnerable physical devices exposed to the public
Internet. However, we still lack in-depth knowledge of how adversaries behave at the
early stage, because most utility companies tend to limit access to real incidents that
happenedbefore to protect companies’ reputations. This knowledge canplay a critical
role in stopping them before they initiate following malicious activities. There are
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mainly two approaches attempting to obtain this knowledge, i.e., leveraging network
telescoping and building CPS honeypots.

The basic idea of network telescoping is to observe traffic that interacts with
unused address spaces on the public Internet. Because legitimate and correctly config-
ured applications target existing services, the traffic destined to the unused address
spaces is very likely from suspicious entities. An open research question related
to network telescoping is distinguishing traffic issued by legitimate but misconfig-
ured entities from the traffic issued by actual adversaries. It is commonly known
that the traffic from these two groups can present different statistical characteris-
tics. After filtering out traffic from misconfigured entities, the remaining traffic can
reveal previous knowledge about adversaries. Following this method, Fachkha et al.
specifically focused on the traffic in the network telescoping based on common CPS
protocols [55], revealing knowledge such as the distribution of adversaries’ location
and the type of network protocols that adversaries prefer. However, the network tele-
scoping is passive without interacting with the adversaries, still lacking the knowl-
edge of adversaries’ long-term activities on target CPSs. Meanwhile, the analysis
remains on the transport layer of network packets, without deep-packet inspection
on the traffic observed in the network telescoping.

Honeypots or honeynets can interact with adversaries with simulated network
environments [56, 57]. Several honeypot projects aim to build separate computing or
network environments to trace adversaries’ activities onCPSdevices, e.g., PLCs [58–
60]. Han et al. further propose to use software-defined networking (SDN) to automate
interactions with adversaries [61]. Those CPS honeypots can mimic CPS’ cyberin-
frastructure. However, in their constructed networks, the honeypots lack supports for
constructing meaningful application-layer payloads, e.g., measurements exchanged
between physical devices. For example, Conpot presents a common interface to
include physical measurements used in its simulated network environment, but it
is up to the users to create those measurements. The lack of meaningful physical
measurements can easily expose the fake environment of honeypots, losing their
attractions to adversaries.

6.2 Preemptive Protection Against Internal Adversaries

In general, honeypots or honeynets, are deployed to attract adversaries, making
them less interested in real devices. When internal adversaries have already pene-
trated internal control networks and accessed physical devices in remote field sites,
honeypots will become less useful.

For internal adversaries, different groups of moving target defenses (MTD) can
disrupt adversaries’ knowledge related to real devices. Traditional MTD approaches
disrupt adversaries by randomly changing systemandnetwork configurations, e.g., IP
addresses and port numbers [62–65]. These approaches can be applied in the internal
control networks, especially with the help of advanced network technology like SDN
and edge computing. Some recent works leverage similar designs to disrupt control
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operations in CPSs. For example, Rahman et al. randomly change the physical data
set used for power system analysis, attempting to remove some compromised data
and to reduce the effectiveness of false data injection attacks [66]. Another MTD
group intentionally disrupts the physical process in a CPS and uses deviations from
expected consequences to detect attacks [67–70]. Those approaches require physical
perturbations, which can harm the existing physical process.

To avoid modifications to existing physical processes, Lin et al. propose to
provide misleading information about power grids’ cyber and physical infrastruc-
tures to suspicious adversaries, aiming to disrupt adversaries’ reconnaissance. Instead
of mimicking and simulations, which can easily expose fake environments, this
approach leverage a network control application based on SDN to “hook” network
interactions with real devices and use them as network flows of non-existing nodes.
This designwill build lightweight virtual nodes that follow the actual implementation
of network stacks, physical state variations, and system invariants of real physical
devices in power grids. Meanwhile, in [71, 72], Lin et al. also proposed a method to
craft physical measurements that follow physical laws in power grids, serving as a
noise to mislead adversaries into designing ineffective attack strategies.

7 Security Issues Associated with Advanced Computing
Technologies

CPSs evolve from traditional control systems by upgrading computing and commu-
nication technologies, which help to increase computation capabilities and reduce
communication latency. To further increase operation automation and decentral-
ized control, advanced computing technologies boosted by artificial intelligence (AI)
gradually become a critical component in future CPSs. For example, many compa-
nies have put considerable investments in semi or fully automated driving, relying
heavily on the advancement of AI technologies. Critical infrastructures like power
grids also begin to embrace such changes. Shi et al. summarize the state-of-the-art
AI-based techniques to analyze and regulate feedback control used in power grids to
ensure long-term stability [73].

BecauseAI analytic canbecome the target of cyberattacks, a newquestion emerges
for the future AI-enhanced CPS environment: how does the resilience of AI analytic
affect the resilience of CPS’ control functionality. AI analytic is boosted mainly
by the advancement of deep neural networks (DNN), which are applied widely in
unsupervised, supervised, and reinforcement learning. Adversaries can downgrade
AI performances by disrupting training/inference procedures or providing adver-
sarial training samples. When mapping this threat in a CPS environment, we find
that adversaries can leverage the similar attack surface presented in Chap. 2. Specifi-
cally, adversaries can still compromise measurements collected by AI-based control
algorithms or identify vulnerabilities in those algorithms. Note that semantic gaps
exist between the performance downgrade in AI analytic and physical disruptions
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of a CPS. Those semantic gaps will make attacks more challenging to realize but
also make themmore stealthy to detect. For example, Jha et al. discussed how adver-
saries indirectly affect the safety of autonomous vehicles by leveraging adversarial
generative networks [74].

8 Summary

This chapter discusses the unique characteristics of cyberattacks targeting CPSs for
disruptions and how those characteristics drive security solutions aiming to prevent
disruptions. Through decades of research and applications, we learned that cyberat-
tacks are no longer initiated by amateur adversaries; attacks like advanced persistent
threats become themajor actor, searching for devastating physical disruption without
leaving traces. To detect those attacks effectively, we believe that security solutions
should be designed by exploiting adversaries’ very objective, i.e., physical disrup-
tion. This understanding motivates many research approaches to integrate domain-
specific knowledge of a CPS into general-purpose security solutions. Regardless of
being used for passive detection, attack recovery, or preemptive defenses, the secu-
rity solutions rely on data closely associated with physical states. Consequently, even
though attacks can be stealthy, we can reveal adversaries’ malicious intentions and
preemptively prevent the damage from happening. As CPSs play an essential role in
future industrial control systems (sometimes known as the Industry 4.0), it is critical
for security solutions to evolve together with the advancements found in existing
CPSs, maintaining resilience in this exciting area.
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Uniting Computational Science
with Biomedicine: The NSF Center
for Computational Biotechnology
and Genomic Medicine (CCBGM)

Liewei Wang and Richard M. Weinshilboum

Abstract Prof. Ravishankar Iyer (Ravi Iyer) was the driving force behind the
creation of the University of Illinois Urbana-Champaign (UIUC) and Mayo Clinic
joint National Science Foundation (NSF)-funded Center for Biotechnology and
Genomic Medicine (CCBGM). CCBGM—led by Professor Iyer at UIUC and
Professor Liewei Wang from the Mayo Clinic—has served as a “catalyst” for
exchange between these two outstanding institutions and for bringing cuttingedge
Artificial Intelligence and Machine Learning techniques to the “bedside” at Mayo
and beyond in the broader biomedical community. As a result, CCBGM has become
a model for value of inter-institutional and cross-disciplinary collaboration.

Keywords Uniting computational and biomedical science · University of Illinois
Urban-Campaign and the Mayo Clinic · NSF CCBGM ·Major Depressive
Disorder Predictive Algorithm

Prof. Ravishankar Iyer (Ravi Iyer) was the driving force behind the creation of the
University of Illinois Urbana-Champaign (UIUC) and Mayo Clinic joint National
Science Foundation (NSF)-funded Center for Biotechnology andGenomicMedicine
(CCBGM). CCBGM has become a major focus of a long-standing relationship
between UIUC and Mayo as well as a catalyst for uniting modern analytical tech-
niques such as Artificial Intelligence (AI) and Machine Learning with medical prac-
tice at Mayo and with the science based at both institutions. If that description makes
Dr. Iyer sound a bit like a “force of nature”, the authors of this tribute could not
agree more that he was not merely “present at the creation” of this important NSF
Center, but rather that he—in partnership with one of us, Dr. Wang—conceived of,
articulated the vision for CCBGM and drove that vision to reality. The outcome has
served as a positive stimulus to both institutions, UIUC and the Mayo Clinic, as well
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as an example of the tremendous potential of the union of these two greatMidwestern
institutions—one, UIUC, with a tradition of educational excellence, with a special
focus on Engineering and Computer Science, and the other, theMayo Clinic, with an
equally strong and acknowledged reputation for world class excellence in medical
care and medical science. Even though the formal alliance betweenMayo and UIUC
had been forged over a decade before CCBGM, it can be argued that the creation of
CCBGMmoved the original vision for that alliance forward in a striking fashion and
succeeded in helping to bring the original vision behind the alliance to reality with
a series of joint projects, with the exchange of students and fellows between the two
institutions and—finally—with some of those students pursuing careers at the one
or the other of these two world-renowned institutions.

Institutional bridges between the Mayo Clinic and UIUC were led at Mayo by
the Center for Individualized Medicine (CIM), with the original groundwork for
this partnership being laid by the first Mayo CIM Director, Dr. Franklyn Pren-
dergast M.D.-Ph.D. Initially, this promising institutional partnership grew rather
slowly but it was already making steady progress when Ravi came on the scene. For
example, the authors of this chapter were Mayo Clinic Co-PIs for an NIH National
Institute of General Medical Sciences (NIGMS)-funded U54 grant supporting the
“KnowEng” biomedical and genomics database prior to the creation of CCBGM,
a grant with participants from both UIUC and Mayo. However, Ravi’s vision for
CCBGM involved the creation of an effort catalyzed by the NSF but funded heavily
by industry—industry that initially ranged from computational science to the phar-
maceutical industry to agricultural seed companies, all of which were committed to
the application ofmodern computation tomedicine and biology. The initial academic
partners within CCBGMwereUIUC, theMayoClinic and theUniversity of Chicago.
None of those involved will ever forget the original organizational meeting held in
Chicago that involved representatives of the three academic institutions, possible
industry partners and the NSF. The force which brought these apparently disparate
organizations together was and has remained Ravi—with his drive, energy, vision
and eternal optimism. To everyone’s delight, a series of joint projects was agreed
on during that initial meeting—selected by the industry-based participants—with
subsequent meetings held, on a rotating basis, in Chicago, in Rochester, Minnesota
and in Champaign-Urbana. What no one could have predicted was the power of the
vision that Dr. Iyer articulated or the importance of the youthful energy supplied by
the computer science, engineering and biomedical science students who made these
projects successful.

The secret of CCBGMwhich resulted in it becoming a significant factor in a trans-
formative wave that is presently surging through biomedicine—not merely at the
Mayo Clinic but across the world—was the power of bringing talented and creative
young people from biomedicine together with equally creative and talented young
engineers and computer scientist and their mutual recognition of what they might
accomplish by working together. It is doubtful that the organizational leadership of
either of the two lead institutions (the University of Chicago left the partnership early
on when their lead participant accepted a position with industry) fully appreciated
the revolutionary power of Dr. Iyer’s creation. One example of the power and the
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consequences of the CCBGM vision is provided Dr. Arjun Athreya M.S., Ph.D.—
one of Ravi’s students and one of the editors in this tribute to Dr. Iyer. Dr. Athreya,
then a graduate student at UIUC, spent his summers and many holidays in Rochester
working initially with Dr. Liewei Wang on a successful breast cancer cell line-based
genomics project involving the therapy of a specific subtype of breast cancer. During
that time, he became familiar with the projects of graduate students in Dr. Wein-
shilboum’s laboratory located “next door” who were using genomics to study the
response of patients suffering from Major Depressive Disorder (MDD), depression,
the number one psychiatric disease world-wide, to drug therapy. MDD patients are
most often treated with Selective Serotonin Reuptake Inhibitors (SSRIs), drugs that
work, but only in about half to two thirds of MDD patients. By using data from large
clinical trials led by Drs. Weinshilboum and Wang together with their psychiatry
colleagues at Mayo as well as genomic information from SSRI clinical trials from
across the world, Dr. Athreya and his clinical psychiatry colleague, Dr. William
Bobo, developed an AI and Machine Learning-based algorithm that incorporated
clinical data together with genomic data and which could increase the accuracy for
predicting which patients might benefit from SSRI therapy from approximately 55%
to 85–90%—a value that has significant clinical utility. It requires at least twomonths
to clinically “test” the efficacy of SSRIs, an unacceptable wait time for a potentially
suicidal patient. If the algorithm could provide an accurate prediction of outcome
with no waiting time, that would represent a remarkable step forward in the treatment
of this disease. The preceding sentences may appear to make an analytical process
that required years to achieve sound simple. It was not simple, but it was successful!
That MDD SSRI response algorithm is now being implemented for application to
depressed patients at Mayo Clinic and—after US Food and Drug Administration
(FDA) approval—to help patients suffering from MDD outside of Mayo. This will
be the first time that the Mayo Clinic has taken this type of algorithm to the FDA
for review and approval. This one brief but striking vignette serves to illustrate just
how significant the impact of the incorporation of AI and Machine Learning across
a large biomedical center could be potentially—and neither this example nor many
others would have been possible without the structure provided by the CCBGM.

Stepping back briefly fromCCBGM, a series of vignettes like that described above
addressing the drug therapy of a psychiatric disease have resulted in the formation
of an AI Analytical Subcommittee by the Mayo Clinic Center for Individualized
Medicine—with Dr. Liewei Wang, one of the authors of this brief tribute—as Co-
Chair. Prior to the creation of the CCBGM, that would have not been conceivable,
much less possible. The fact that the formation of such a committee now seems an
obvious step illustrates just how far ahead of his peers Dr. Iyer was and how correct
his vision of the future of biomedicine and the necessity for the union of modern
computational science with medicine was. Both the Mayo Clinic and UIUC owe a
debt of gratitude to Dr. Ravi Iyer for his vision, his drive and his ability to bring
diverse disciplines together to achieve a common goal, a goal that—in this case—
will serve to benefit innumerable patients across the nation and, eventually, across
the world.
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Abstract Modern neural networks, that are now commonly used for most natural
language processing (NLP) tasks, contain many hidden units and parameters. There
is a considerable interest in developing strategies for selecting an optimal set of
samples to train such large models for biomedical tasks because developing training
data is expensive and time consuming in the biomedical space. Lack of sufficient
training data is exacerbated by the fact that the ratio of negative samples to positive
samples is also highly skewed, i.e., too many negative samples but too few posi-
tive samples. Therefore, an important problem, especially for the biomedical space,
what is the optimum set of negative samples to use in creating an effective and
balanced training data sample. Interestingly though, the insights which may help
to decide the most effective sample selection can be found in the data itself (i.e.,
in the samples themselves). This chapter briefly reviews traditional approaches to
selecting training samples and then presents the latest data-driven approaches for
selecting samples to effectively train modern neural networks.

1 Introduction

In training machine or deep learning models for natural language processing (NLP),
selecting the right set of training samples can be critical, especially in biomedical
NLP, where there are never enough training samples, and often negative samples
far exceed positive samples in a data set [1]. Consider, for example, the task of
classifying scientific papers into those proposing treatments for Covid-19 and the
rest. Even when limited to the year 2020, out of roughly 1 million articles indexed
in PubMed less than 1% articles are related to Covid-19. For the task then, the ratio
of potential positive to negative samples is 1:99. There are many ways one may
select negative samples to match positive samples (from a uniformly sampled and
labeled subset of the articles), if we wish to train our model using an equal number of
positive and negative samples (which leads to the most balanced predictions). So, the
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question is: What is the best subset of negative samples that should be used to best
train a model? More generally, how does negative sample selection effect training of
a neural model?

The standard approach to selecting negative samples in unbalanced data is to down
sample negatives using random selection. However, research in Active Learning [2]
suggests potential benefits of proactive selection of samples rather than random
selection. In Active Learning, samples are labeled one (or a few) at a time and
which sample(s) should be labeled next is selected (by the Active Learning system)
using a “query” selection strategy. Active Learning starts with the assumption that
there are a few or no labeled data, and using various strategies coupled with the
model being trained, the system proposes next set of samples to be labeled by the
human annotators. Uncertainty sampling is a widely used principle for the next
sample selection. Settles [3, 4] discussed a broad set of selection strategies, such as
selecting least confident, confident margin, and entropy-based samples, based on the
uncertainty principle. Research shows these strategies can train a model as good as
the full training set, with just 20–40% of training samples.

However, samples selected with strategies tied to performance of a model may
not work well for a different model. Note that the uncertainty as discussed above is
tied to its calculation using a specific model and two different models may calculate
two widely different uncertainties. So, the uncertainty based strategies are tied to the
model being developed and not necessarily or directly, to the intrinsic characteristics
of the data itself. Researchers therefore have proposed data intrinsic characteristics
for sample selection. Some such selection strategies are based ondiversity anddensity
of samples [5]. Others proposed approaches that involve similarity or dis-similarity
with already-labeled samples. These data-driven approaches are particularly inter-
esting because they are agnostic to themodel being trained and therefore have broader
applicability. In this chapter we will explore a novel data-driven approach, called
near-miss sampling, as a case study in sample selection for neural network training.

2 Case Study: Near-Miss Sampling for Optimum Model
Training

To recap, in training machine and deep learning models, intentional, data-driven
selection of training samples is an interesting area of research since it has the potential
to leverage data characteristics to improve accuracy and robustness of themodel being
trained. This is especially true in biomedical tasks where negative samples tend to
significantly outnumber positive samples. To make this concrete, let us consider a
conceptual scenario illustrated in Fig. 1a, which is a two-dimensional visualization
of samples in latent space. Solid red dots indicate positive samples and unfilled blue
dots represent potential negative samples. The ratio of positive samples to negative
samples is 1:7 in this example, however, in practice it can be as large as 1:14 or even
higher. The goal is to select negative samples equal in number to positive samples so
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Fig. 1 For balancedmodel prediction, 1:1 positive and negative training samples are needed.Which
samples to select when there is an imbalance (a)? The standard approach is random down sampling
of negatives (b). Here we explore the impact of “near-miss” sampling (c)

that the model is trained to predict labels without a bias towards any one class (i.e.,
does not necessarily favor one label or the other). In Fig. 1b we show a selection
of negative samples, which is a result of random sampling from potential negative
samples. Alternatively, as shown in Fig. 1c, we may choose negative samples based
on the “near-miss” principle.

2.1 The Near-Miss Principle

What is a near-miss? A near miss [6] is a negative example that differs from the
concept being learned in only a small number of significant points. In the psychology
of game playing [7] and in image recognition [8], it was observed that the near misses
have distinct positive effect on the outcome.

Often the near miss principle is explained using the classic example of learning
what is an “Arch” as shown in Fig. 2. The illustrations in the top row represent
correct examples of the structure of an arch, thus they form the positive exam-
ples in the context of training a model. The illustrations in the bottom row repre-
sent structures that are not considered as arches, i.e., negative examples. The key
point is that the structures in the bottom row differ from the top-left structure in
only a small but significant difference—near-misses. The bottom right structure
has no space between vertical columns otherwise it would be a “good” example
of arch. We describe a use case here where this interesting principle was applied as a
strategy for selecting negative samples and its impact on supervised learning models
of a corresponding biomedical NLP task.
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Fig. 2 The near miss concept explained through an example. Near-miss differs from the concept
being learned in only a small number of significant points

2.2 The Biomedical NLP Task: Adverse Drug Event
and Indication Relation Extraction

Let us consider the task of determining if an adverse drug event (ADE) or an indi-
cation relation (or no relation) was expressed in a text segment between a pair of
drug and medical problemmentions. An ADE is a harmful medical effect from using
a drug, and an indication is the use of a drug for treating a particular condition.
An example of an adverse event relation is shown in Fig. 3. In the text segment,

Fig. 3 Adverse drug event (ADE) relation samples: positive and negative
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two entities bortezomib and peripheral neuropathy are the mentions of drug and
medical problem entities respectively. The NLP task is to determine if a text segment
expresses or implies an ADE between them in the text.

In Fig. 3, the relation between the specific mentions of bortezomib and peripheral
neuropathy is a positive example, i.e., the text indeed expresses or implies an ADE
relation between the peripheral neuropathy and bortezomib mentions. There are
several other drug mentions in the text in Fig. 3, i.e., two mentions of chemotherapy,
bendamustine, and a second mention of bortezomib. There are also other medical
problem mentions (e.g., nausea and vomiting) in the text. Any drug mention can
be paired with any medical problem mention to form a negative example for model
training purposes so long as the pair is not in positive samples. In fact, even any pair of
drug and medical problem mentions from any text segment can be used as a negative
example so long as the pair is not in positive sample. The problem of negative sample
selection comes down to which one of these potential negative samples are to be used
in training the relation extraction model.

Two recent biomedical NLP Challenges concerning ADE and indication relation
extraction fromclinical notes provided anopportunity to explore this sample selection
methodology:Medication and Adverse Drug Events from Electronic Health Records
1.0 (MADE) [9] and National NLP Clinical Challenges Task 2 (N2C2) [10]. The
example shown in Fig. 3 is drawn from the MADE dataset. The best performing
systems in the Challenges achieved mid to high 0.7 F measures on the ADE and
indication relations. There is room for improving performance improvement. Before
we further dive into experiments involving near-miss sampling, let us understand
more about the datasets employed in the experiments.

2.3 Datasets

TheMADE dataset contained 1092 de-identified clinical notes of 21 cancer patients.
Each clinical note was annotated with drug names, medical problems, and other enti-
ties, and relations among the entities. It should be noted that the medical problems
were further subcategorized as adverse drug event entities, reason (indication) enti-
ties, and sign or symptoms (SSLIFs), although these details are less relevant to the
topic of discussion here. We will focus only on ADE and indication relations. The
data was split into a training set of 900 notes and a test set of 180 notes.

The N2C2 dataset consisted of 505 discharge summaries from theMIMIC-II clin-
ical care database. Each note was also annotated with drug names, medical problems,
and other entities, and relations among them. Just as in MADE, we will focus only
on ADE and indication relations. This dataset was split into a training set of 303
notes and a test set of 202 notes.

The characteristics of the two datasets are shown in Tables 1 and 2, which include
the number of positive relations and potential negative relations in the training and test
sets broken down by relation types. The Tables nameADE and indication relations as
ADE-Drug andReason-Drug and include other relation types that are not of interest to
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Table 1 The MADE dataset statistics

Relation type Training dataset Test dataset

Positive
samples

Possible
negative
samples

Neg. to pos.
ratio

Positive
samples

Possible
negative
samples

Neg. to pos.
ratio

ADE-drug 2057 27,288 13.3 512 7485 14.6

Reason-drug 4530 54,522 12.0 871 9821 11.3

Total 6587 81,810 12.4 1383 17,306 12.5

The bold lettering is used to signify the importance of the negative to positive sample ratios, which
are large in these data sets

Table 2 The N2C2 dataset statistics

Relation type Training dataset Test dataset

Positive
samples

Possible
negative
samples

Neg. to pos.
ratio

Positive
samples

Possible
negative
samples

Neg. to pos.
ratio

ADE-drug 1061 4430 4.2 724 2912 4.0

Reason-drug 4991 29,751 6.0 3392 20,029 5.9

Total 6052 34,181 5.6 4116 22,941 5.6

The bold lettering is used to signify the importance of the negative to positive sample ratios, which
are large in these data sets

the present discussion. The ratios of potential negative relations to positive relations
are also shown in the tables. The ratios are skewed in both datasets, i.e., substantially
more potential negative relations than the positive relations, but the ratios are even
higher in theMADE training dataset. Specifically, the ratio is 13.3 for the ADE-Drug
relation, 12.0 for Reason-Drug, and 12.4 for the total of two relations in the MADE
training dataset. The corresponding ratios are 4.2, 6.0, and 5.6 for the N2C2 training
dataset. Similar ratios can be seen in the test datasets as well. These skewed ratios
indicate an opportunity to strategically select negative samples to optimize training.
The goal is to select equal number of negative and positive samples so that the model
prediction is balanced across output classes.

2.4 Near-Miss Sampling Applied to the Task

We translated the near-miss principle to text by ensuring that a negative sample shares
largest common text (and hence context) with a positive sample. The concept and
how to select near-miss samples is shown in Fig. 4.

For each entity of a gold standard relation, the immediately preceding and
following entities of the same type as the gold standard entity are identified in the text
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Fig. 4 The near-miss sampling algorithm illustrated

segment under consideration. In Fig. 4, D and P indicate drug and medical problem
entities from a gold standard (true) ADE relation. That is, an ADE relation exists
between D and P entities in the text segment. Dp and Df are the nearest preceding
and following drug entities of D, and similarly Pp and Pf are the nearest preceding
and following medical problem entities of P.

From these four nearest entities and from the original two entities, valid potential
negative relation samples are formed by pairing between one original entity and one
of the nearest entities of the matching entity types. Valid means the relation meets
its entity type requirements and the entity pair occurs in a sequence of words in the
document. In a typical scenario at most four such relations can be formed. In Fig. 4,
these relations are indicated by the four pairs: [D:Pp], [D:Pf], [Dp:P], and [Df:P].

Note that, we may find four or less such relations in each text segment depending
on the occurrence of entities in the text segment. If any of these relations were already
in the gold standard or were picked already as a negative sample, they were removed
from the list. Among the remaining relations, the near-miss sampling randomly picks
one. The most salient point is that these negative relations share most context (i.e.,
surrounding text) with the gold standard positive relation, meeting the definition of
a near-miss sample.

If a near-miss sample cannot be found, a random negative sample (that was not
already picked) was selected from the rest of possible negative samples. Negative
example selection takes place only in the training phase. During the evaluation and
validation phases, all potential relations were assessed by the model and the outcome
was measured accordingly.

Due to practical limitations, our model enforces a maximum sequence length,
which is heuristically determined during the validation phase. In training, positive
samples longer than the max length are ignored, and similarly negative samples
longer than the max length are also ignored. In the evaluation phase also, the
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longer sequences were ignored, and the system was penalized for it in performance
calculations.

2.5 Model Trained (BERT—Bidirectional Encoder
Representations from Transformers)

We used the original BERT (Bidirectional Encoder Representations from Trans-
formers) [11] in our study as it was the best performing deep learning model for
NLP at the time this research was conducted. While several variations and enhance-
ments of BERT have been since developed, each showing incremental improvement,
the original BERT remains as a robust neural network. It achieved significant perfor-
mance improvement on various general domain NLP tasks, including sentence clas-
sification which is relevant to us here. BERT is a pre-trained model that produces
sequence (e.g., sentence) and word level representations, which can be fine-tuned for
task-specific outcomes such as relation classification and concept extraction. Only
a simple feed-forward network with a softmax layer is needed to process the BERT
output for task-specific objectives.

As shown in Fig. 5a, BERT uses layers of neural network components known
as Transformer encoders (Tm) to generate representations of input sequences in the
output. Each BERT layer processes its input sequence in the forward and back-
ward directions simultaneously, using a novel pre-training objective known as the
masked learning model (explained later). The BERT Transformer encoder contains

Fig. 5 Model used in our experiments, BERT (bidirectional encoder representations from trans-
formers) (a) and (b), and the format of the input text to the model (c)
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two sublayers (see Fig. 5b), the first sublayer is a multi-head self-attention [12]
mechanism that allows modeling of the context for each word position, and the
second is a feed-forward network that provides non-linear activation. Fundamen-
tally, an attention layer produces representation for each input token that is based
on any arbitrary input tokens, by comparing each input token with all other input
tokens (self-attention), and producing a series of probability distributions to assign
importance of input tokens. Multi-headed attention can simultaneously optimize for
different combinations of input tokens.

As mentioned earlier, BERT uses a pre-training objective known as the masked
learning model (MLM), [13] where some randomwords in the input are masked, and
the pre-training objective is to predict the original word based on the context. In other
approaches, typically next word prediction was used, which limited a multi-layered
model to process the input either in the forward direction only or process in the
forward and backward directions separately and then aggregate the representations
[14]—both these approaches fail to leverage the forward and backward contexts at
the same time. The use of MLM was a key invention that enabled simultaneous
bidirectional input processing in a multi-layer model, without allowing words-to-be-
predicted appearing in the input of an upper layer.

The BERT model we used here came pre-trained with BookCorpus [15] and
English Wikipedia (general domain corpus). Corpus words were tokenized using
the WordPiece dictionary [16] of 30,000 words and as needed words were split
into pieces using ## (two hash marks). Word piece representations using biomedical
corpus were not readily available at the time of our study, however, recently a BERT
model was pre-trained on a biomedical corpus [17] and it was shown to improve
entity extraction [18].

We employed BERT in its base configuration of 12 layers (=24 sublayers), 768
hidden size, 12 self-attention heads. In this configuration, BERT produced repre-
sentations for each token in the input as well as for the entire sequence (shown as
CLSo). This sequence classification representation from the top layer of BERT (see
Fig. 5a) was used as the input to a fully connected feed-forward layer. A softmax
layer provided the final relation classification label for the pair of entities in the input
sequence.

In our method, as shown in Fig. 5c, the input to BERT was a sequence of words
that started with the first entity of a relation and ended with the second entity of the
relation. As previous studies demonstrated, [19] this is a convenient choice since
sentence segmentation of clinical notes text is error prone due to embedded lists and
tables which are not well handled by the standard NLP code such as NLTK [20].
We were also constrained by our BERT model input limit which was 512 tokens
(word-pieces). Entity spans were further marked using the entity tags. Alternatively,
position encoding can be used to achieve a similar result.

In the training (fine-tuning) stage, the input sequences included all positive
samples in the gold standard and an equal number of negative samples, that were
either randomly down sampled from all possible negative samples or near-miss
sampled as described earlier. Only the sequences that were less than or equal to
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a heuristically determined (in the validation stage) maximum sequence length were
used in training.

2.6 Experiments and Metrics

We fine-tuned our BERT model separately for MADE and N2C2, each with random
down-sampling and near-miss sampling separately. We therefore fine-tuned the
model four different times and tested each one.Wemostly adopted the default settings
of BERT hyperparameters—i.e., training batch size of 16, 10 epochs, and a learning
rate of 2e-5. However, we experimentally determined the optimum sequence length
using validation sets—20% of clinical documents from the N2C2 training set and
10% of clinical documents from theMADE training set. The fine-tuned models were
tested on the full MADE and N2C2 test datasets.

For each of the four experiments, we calculated standard Recall, Precision, and F
measures individually for ADE and indication relations as well as for both combined.
We compared our results with the published results of the systems that performed
best in the task of relation extraction given gold entity labels from the two challenges:
the University of Utah system [21] for MADE (denoted as the MADE-Best), and
the UTHealth developed system [22, 23] for N2C2 (denoted as the N2C2-Best).
Since the published results did not aggregate performance for the ADE and Reason
relations, we obtained their weighted average, weighted by the number of relations
evaluated in the test phase, from individual relation results.

We used two metrics for comparison: (1) Absolute F measure difference; and (2)
Error rate reduction in the F measure achieved by model Y compared to model X,
which is calculated as:

error rate reduction = Fy − Fx

1− Fx

where Fy and Fx are the F measures of models Y and X respectively. While the
absolute F measure difference shows the net improvement in the measure, the error
rate reduction is a sound relative measure that shows reduction in the remaining
performance gap of the previous model. It is usually expressed as a percentage.
Recent studies in the general domain NLP have adapted this metric for effective
comparison [11, 24].

We suspected that when the distance (words) between the entities is short, the
potential to leverage contextual informationwould be rather limited. The two datasets
are also developed from different clinical documents—N2C2 contains discharge
summaries whereas MADE contains clinical notes. In order to quantify such differ-
ences, we studied the sequence length distributions of positive samples, near-miss
samples, and all negative samples for each dataset and plotted their cumulative
distribution frequency.
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2.7 Results

Table 3 shows performance evaluation on the MADE dataset. Precision, recall, and
F measures were shown for BERT with random negative instances sampling (shown
as BERT+Rand) and BERT with the near-miss sampling (shown as BERT+NM) for
each relation type and for the aggregate of ADE and Reason relations. The table
also shows absolute F measure differences between MADE-Best and BERT+Rand,
BERT+Rand andBERT+NM, andbetweenMADE-Best andBERT+NM.Percentage
error rate reduction was shown between MADE-Best and BERT+NM.

BERT+Rand achieved 0.6 and 6.6% performance improvement for the ADE and
Reason relations, and 4.1% for the aggregate. Near-miss improved F measure by
additional 3.3 and 0.9% for the relations, and by 1.9% for the aggregate. Performance
improvement of BERT+NM over MADE-Best was substantial: F measure improved
by 3.9 and 7.5% for ADE and Reason respectively, and by 6.4% for both together.
The error rate reduction was substantial—14.5% for ADE, 31.0% for Reason, and
23.6% for both together.

Table 4 shows performance evaluation on the N2C2 dataset in the same way as in
Table 3. The general trend of the results is like that of theMADE results. BERT+Rand
improved the Fmeasure ofADEandReason relations by 1.5%and 6.8% respectively,
for an aggregate of 6.0%. BERT+NM improved performance of ADE and Reason
relations further by 1.3%and 0.6% respectively, for an aggregate of 0.7%. The overall
improvement over N2C2_Best was 2.8% and 7.4% for ADE and Reason relations,
and 6.7% for the aggregate. The corresponding error rate reductions were 13.7, 30.6,
and 8.3%. Precision and recall details were publicly unavailable for the N2C2_Best
at the time of writing this paper.

Statistical significance test: Previous studies [25] have used the McNamara test
(and is generally accepted as a good test) for determining the statistical significance
of F measure improvement of an NLP task. The test requires the contingency (confu-
sion) table from the performance study. Using the data in our study, we determined
that the F measure improvement with the near-miss sampling was statistically signif-
icant at p < 0.001 for theMADE dataset for the combined ADE and Reason relations.
For the N2C2 dataset, the improvement was significant at p < 0.03 for the combined
ADE and Reason relations. We could not determine statistical significance of perfor-
mance improvements relative to the MADE-Best and N2C2_Best models because
the contingency tables for them are not publicly available at the time of this article.

Another important observation from Tables 3 and 4 is that the near-miss sampling
consistently improved precision, while often losing ground on recall. Near-miss
improved precision for the overall and ADE+Reason by 4.1% and 5.7% for the
MADE dataset, and by 1.2% and 2.3% for the N2C2 dataset respectively. Recall
reduced by small percentages across the broad. These results indicate an impor-
tant characteristic of the near-miss sampling approach. We also note that both
BERT+Rand and BERT+NM consistently improved recall over MADE_Best.
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The sequence length distributions of the positive, all negative, and near-miss-
sampled ADE and Reason relations in the training datasets of MADE and N2C2 are
shown in Fig. 6. We showed detailed statistics of the distributions in Table 5.

Fig. 6 Cumulative distribution frequencies (CDF) of relation sequence lengths of the ADE and
reason relations

Table 5 Sequence lengths
statistics for the training data

Samples Statistic MADE N2C2

Positive samples Mean 22.7 17.6

Std. dev. 26.7 12.1

Median 16 14

Max 501 99

All negative samples Mean 190.5 52.0

Std. dev. 139.9 25.6

Median 155 51

Max 511 99

Near-Miss samples Mean 98.0 37.5

Std. dev. 107.8 23.8

Median 55 32

Max 511 99
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The all-negative sample relation lengths in MADE (blue, dotted line) are signifi-
cantly longer than in N2C2 (red, dotted line) for the ADE and Reason relations. The
median length of the relations in MADE is 3.04 times the median length of N2C2
negative relations, i.e., 155 versus 51 (Table 5).

While some differences exist between the two datasets, the ADE and Reason
relations are consistently long, and therefore, these sequences are likely to contain
more context, which can be leveraged by BERT and the near-miss sampling. The
Figure and the Table also show that the near-miss sampling, reduces the negative
sample lengths. For example, the median lengths for ADE/Reason are 55 and 32
for the two datasets, which are substantially smaller than the median lengths of all
negative samples (i.e., 155 and 51).

3 Discussion

Themethodsweused here, BERTand the near-miss sampling, better leverage contex-
tual information to improve relation extraction compared to the top performing
systems from the shared challenges, MADE and N2C2. BERT even with random
down sampling makes better use of context in two ways:

Multiple layers of Transformer encoders based on the Attention model, rather
than the RNN, LSTM, CNN, or combination models thereof, was shown to better
leverage context.

Using the Masked Learning Model that randomly masks a word in a sequence
for conditioning word representations to simultaneously analyze the input bidirec-
tionally, rather than predicting merely an association of words (as in word2vec),
or the next words (as in OpenAI GPT), or even a concatenation of representations
predicting next and preceding words (as in ELMo).

In addition, BERT only required fine-tuning of a pre-trained model rather than
complex task-specific neural networks that use word representations as features thus
achieving transfer learning from a large text corpus. For these reasons, BERT in our
study performed better than the top performing systems from the challenges. It is
interesting to note that the MADE_Best employed a carefully feature-engineered
Random Forest and N2C2_Best used complex composition of neural networks
consisting of LSTMs and CNNs, and BERT improved upon both approaches.

Selection of negative samples in model training is known to be a challenge, [26–
28] especially when relation entities aremultiple sentences apart which gives rise to a
very large number of potential negative samples. Most previous studies simply down
sampled the larger population, but one study [19] considered a feature-engineered
Alternating Decision Tree machine learning model for selecting candidate samples,
both for training and testing. The near-miss sampling, by preferring negative training
samples that share significant context with positive samples, provides a simpler and
in combination with BERT higher accuracy compared to the previous candidate
selection approach on the datasets.
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In can be observed from the results that the performance improvement achiev-
able from contextual information depends on the length of context between relation
entities. Quantitatively, the relation distance differences in the datasets can be seen
in Fig. 6 and Table 5. Qualitatively, as can be seen from the example in Fig. 3, drug
and medical problems entities are likely to appear further apart in complex discourse
in a clinical document. These typically longer relations offer an opportunity for the
sophisticated neural architecture of BERT to create better representations, and hence
increase F measure accuracy substantially. It should however be noted that the error
rate reduction is significant across most relations with BERT plus near-miss.

Figure 6 and Table 5 also show that the near-miss sampling, not only takes advan-
tage of the contextual information (by definition) but also reduce the negative sample
lengths and make their lengths similar to the positive samples. As we noted earlier,
the near-miss sampling disproportionately improves precision over recall, because
the model learns to distinguish closely related samples from positive and negative
classes.

Important contributions of the case study were as follows:

1. We showed that the BERT model, which leverages bidirectional contextual
information with multi-layer Transformers, requiring only fine-tuning can
provide excellent performance in biomedical relation extractionwithout compli-
cated, task-specific neural network designs containing RNSs, LSTMs, and
CNNs.

2. We showed that the “near-miss” based the near-miss sampling of negative
instances, rather than random selection, can improve training and therefore
model performance especially when there is a large population of potential
negative samples to choose from and when relation sequences are long enough
to form “near-misses” from positive samples.

3. Both BERT and near-miss use contextual information in long distance relations
to achieve significant performance improvement. The performance improve-
ment, compared to the previous methods, was substantial for such relations (i.e.,
ADE and Reason relation): 6.4% absolute Fmeasure improvement (23.6% error
reduction) for the MADE dataset and 6.7% absolute F measure improvement
(28.3% error reduction) for the N2C2 dataset.

4 Learnings from the Case Study and Future Work

The case study above, while showing the importance of context in reasoning about
data and how BERT exploits some of the context using the attention models,
also showed the importance of optimally selecting training samples (here, negative
samples, specifically). For a balanced binary predictor (i.e., a model that selects posi-
tives and negative cases with equal accuracy), the number of positive and negative
samples should be (roughly) equal in number. In the case study, we had an abundance
of negative samples but had a smaller set of positive samples, and therefore we had
the opportunity to experiment with sample selection for negative samples.
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When near-miss negative samples were used in training, themodel achieved better
precision compared to when it was trained on random negative samples (the same
BERT pre-trained was used in both cases). We conclude that the near- miss samples
trained themodel to distinguish the small but critical differences between the positive
and negative cases, and hence reduced false positives on the test cases. The near-miss
negative samples trained the model to be more “precise”.

Some of themodernmachine learning techniques tacitly incorporate the near-miss
principle. Adversarial and Contrastive learning techniques, by definition, attempt to
train models with near-miss samples (they may start out with random samples but
strive to generate near-miss samples eventually). They do so by generating artificial
samples rather than by analyzing the data, of course. Success of these approaches
suggests the power of near-miss samples in effectively training models.

The difference between the data-driven approach, exemplified by the near-miss
strategy, and the model-driven approaches, traditionally used in Active Learning, is
worth noting. The basic idea in Active Learning is to build a model with a small
training dataset and obtain additional, incremental training data based on an analysis
of the predictions of themodel trained so far, and repeat. Themost general strategy for
selecting additional samples for training is based on uncertainty (using the principles
of Shannon’s entropy, for example). However, in practice the uncertainty is calculated
using the model trained so far and therefore the calculated uncertainty is as much a
characteristic of the model as of the data (and in fact, it is difficult to tease out the
different influences of the data and the model). It should be pointed out that some
recent studies used distribution and diversity of the data, as well as model predicted
entropy, in selecting additional samples to be annotated for training. These studies
in effect have recognized the need for data-driven sample selection and demonstrate
the opportunity to incorporate data-driven sampling in Active Learning.

Ageneralized research challenge in using the near-miss principle, is the strategyor
the algorithm needed to determine near-miss samples among negative samples. That
is, how do you apply the principle of near-miss to a specific task? In the case study
discussed here, our strategy was to use a positive sample passage for a relation being
classified and to form a near-miss sample, by selecting entities that are different
from the corresponding entities of the positive sample. It worked well, especially
when the sample passages were long (i.e., had multiple sentences). Similarly, in
a multiple-choice Question Answering task, using the wrong choice from the two
closest answers would create a near-miss dataset. In an image recognition task of,
say, identifying images of cats, images of other animals that are similar looking in
size and shape to cats might be a good strategy for identifying near-misses. However,
in general, the task of defining what is an effective and yet automated method of
determining near-misses is obvious a subject of future research.

Certain initial processing of the data might help to develop strategies for effective
sampling. For example, generating embeddings for text passages and testing for their
similarity using pre-trained models can work for a text classification task.We believe
that the data-driven training sample selection, of which the near-miss sampling is an
example, has an important role in effective training of machine learning and deep
learning models. Even the modern ultra-large language models such as GPT-3 need
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a few task-specific prompts (few-shot learning) and the data-driven approaches can
help proper selection of the few-shot training samples from the larger, available
training data.

Besides the near-miss selection, there are other possible data-driven sample selec-
tion techniques. For example, distribution and diversity of samples have already been
shown to be effective in sample selection for Active Learning. Other characteristics
of text data, such as the part of speech tags, parse trees, dependency trees, word
counts, entity distribution, and so on can be leveraged to improve the training data.
Similarly, image characteristics can be used to select effective training data. Data-
driven sample selection may also play a vital role in the most vexing issues of ethics
and bias in machine learning and deep learning models. Data analysis methods can
be developed to identify possible bias in the data before the data is used to train the
models. The data-driven sample selection in general, is a new research direction with
a promising value.
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Classifying COVID-19 Variants Based
on Genetic Sequences Using Deep
Learning Models

Sayantani Basu and Roy H. Campbell

Abstract The COrona VIrus Disease (COVID-19) pandemic led to the occurrence
of several variantswith time.This has led to an increased importance of understanding
sequence data related to COVID-19. In this chapter, we propose an alignment-free
k-mer based LSTM (Long Short-Term Memory) deep learning model that can clas-
sify 20 different variants of COVID-19. We handle the class imbalance problem by
sampling a fixed number of sequences for each class label. We handle the vanishing
gradient problem in LSTMs arising from long sequences by dividing the sequence
into fixed lengths and obtaining results on individual runs. Our results show that
one-vs-all classifiers have test accuracies as high as 92.5% with tuned hyperparam-
eters compared to the multi-class classifier model. Our experiments show higher
overall accuracies for B.1.1.214, B.1.177.21, B.1.1.7, B.1.526, and P.1 on the one-
vs-all classifiers, suggesting the presence of distinct mutations in these variants. Our
results show that embedding vector size and batch sizes have insignificant improve-
ment in accuracies, but changing from 2-mers to 3-mers mostly improves accuracies.
We also studied individual runs which show that most accuracies improved after the
20th run, indicating that these sequence positions may have more contributions to
distinguishing among different COVID-19 variants.

Keywords COVID-19 · Deep learning · LSTMs · Variants · Gene sequences ·
Classification

1 COVID-19 and Genetic Data

The COrona VIrus Disease (COVID-19) resulted in more than 170 million cases
and more than 3 million deaths worldwide [1]. The virus causing this disease is
known as the SARS-CoV2 virus with the first recorded cases in 2019 [2]. In addition
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to the burden on healthcare resources, other impacts were also observed in other
industries including education, economy, and travel [3, 4]. Countries all around the
world tried to curb the infections by employing a series of mitigation measures in the
form of lockdowns, face coverings, social distancing, frequent sanitizing, limits on
gatherings, etc. [5]. There have been several research efforts worldwide to propose
and design drugs for treating COVID-19 [6, 7]. In severely affected COVID-19
patients, ventilators and antipyretics have shown varying degrees of efficacy [8, 9].
The common “end” to pandemics is achieved through herd immunity, which can
be achieved by ensuring that a significant (preferably the entire) population has
antibodies in their system [10]. Vaccination is one such way to achieve this. In
December 2020, several vaccine candidates were approved after clinical trials in an
effort to protect the population from COVID-19 [11]. However, due to the virulent
nature of COVID-19, mass vaccination with careful mitigation measures still need to
be employed [12] until significant portions of the population including the vulnerable
groups have been fully vaccinated. Studies are still ongoing about the duration of
protection provided by these vaccines and whether booster shots will be required for
further protection [13]. Another problem that has surfaced with time is the rise of
COVID-19 “variants”, which are mutations of the original virus that may or may not
be more infectious [14]. Most trials show that most COVID-19 vaccines are effective
against such variants, although further studies are needed in order to study the newer
variants with time [15–17]. The most important aspect in drug design and vaccine
design is understanding the underlying make-up of the virus—this includes studying
mutations occurring in all variants of the virus. As a result, sequence data is essential
in an effort to fully understand the nature of the COVID-19 virus.

Machine learning, specifically deep learninghas beenhelpful in understanding and
modeling the COVID-19 pandemic with the enormous amount of data available—
several studies have been carried out on image data [18–20], epidemiological data
[21–24], and sequence data [25–27]. At this point of the pandemic, the rise of several
COVID-19 variants has led to an increased need of studying genetic sequences.
More importantly, a system to automatically distinguish and classify the COVID-19
variants using deep learning will help contribute to ongoing research efforts along
with vaccine and drug development research.

In this chapter, we propose an LSTM (Long Short-TermMemory) [28] based deep
learning model to classify different COVID-19 variants based on genetic sequence
data. The rest of this chapter is organized as follows: Sect. 2 discusses the various
COVID-19 variants being studied, Sect. 3 presents our data and methods, Sect. 4
discusses our results, Sect. 5 concludes this chapter, and Sect. 6 mentions our code
repository and availability of our results.
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2 COVID-19 Variants

In this section, we discuss the various COVID-19 variants which have been used in
our experiments. We discuss all variants studied with regard to the PANGO lineage
convention in the following subsections.

2.1 B.1.1.214

This variant was observed in Japan during the third COVID-19 wave [29] which has
been identified to be of 501 N + 484E type [30].

2.2 B.1.1.519

This variant was identified as a variant of interest (VOI) inMexico [31]. Rhoads et al.
[32] have observed the g.29197C > T mutation in all cases of this variant.

2.3 B.1.160

This variant predominantly appeared during the second COVID-19 wave in Eastern
Germany, prior to which it was observed in several other European countries [33].

2.4 B.1.177.21

This variant was found to have spread in several European countries [34].

2.5 B.1.177

This is the parent lineage of variant B.1.177.21 [34]. The parent variant is more
widespread and has several types of strains [35].



350 S. Basu and R. H. Campbell

2.6 B.1.1.7

Also known as the Alpha variant, this variant is widespread and infectious [36] and
has affected several countries including the United States [37].

2.7 B.1.1

This is another variant of COVID-19 that has been detected in several countries [38].

2.8 B.1.221

This variant of COVID-19 was one of the variants detected predominantly in Eastern
Germany leading to the second wave as studied by Yi et al. [33].

2.9 B.1.243

This variant was a variant of interest (VOI) that emerged in Arizona, United States
containing the E484K mutation and spread to other parts of the United States [39].

2.10 B.1.258

This variant was observed to spread in several countries including the Romania [40],
East Germany [33], Lebanon [41], Czech Republic and Slovakia [42].

2.11 B.1.2

This variant of COVID-19 was observed to have emerged in Brazil [43].

2.12 B.1.351

Also known as the Beta variant, this widespread and infectious variant [36] is known
to have the E484K, K417N, N501Y substitutions [37].
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2.13 B.1.427

Also known as the Epsilon variant, this COVID-19 variant was identified in parts
of the United States and was found to be not as infectious as the Alpha, Beta, and
Gamma variants [44, 45].

2.14 B.1.429

Also known as the Epsilon variant, this variant also belongs to the same lineage as
that of B.1.427 [45].

2.15 B.1.526

Also known as the Iota variant, this variant was identified in NewYork, United States
[46]. It contains the E484K mutation [47].

2.16 B.1.596

This variant of COVID-19 was observed to have spread in several countries world-
wide [48].

2.17 B.1.617.2

Also known as the Delta variant, this variant of COVID-19 was observed to have
contributed to the surges of the pandemic in India [49] and has also been observed
in England [50] and the United States [37].

2.18 B.1

This is the variant of COVID-19 that constitutes the parent lineage of several COVID-
19 variants circulating across the various countries around the world [51].
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2.19 D.2

This is the variant of COVID-19 that has been predominantly observed in Australia
[52].

2.20 P.1

Also known as the Gamma variant, this variant was first observed in Brazil [53] and
has affected several countries worldwide including the United States [37].

3 Data and Methods

Data for this study was collected from GISAID (https://www.gisaid.org). We
collected labeled data from 20 lineages of COVID-19 containing genetic sequences
in FASTA format from the beginning of the COVID-19 pandemic till June 5, 2021.
For the purpose of this study, unclassified sequences that were part of ‘None’ were
not considered.

All experiments in this study were run on gpux1 on the HAL (Hardware-
Accelerated Learning) cluster [54].

The presence of multiple variants in the dataset included some variants that were
more widespread and virulent than others and some variants that had more genetic
samples collected in general. However, from amachine learning perspective, training
on samples with imbalanced labels would lead to a class imbalance problem [55].
In order to handle this, we decided to use sampling prior to training our model.
For experiments in this study, we limit the number of labels per class to 1000. The
sampled sequences were chosen randomly from each of the lineages using random
choice from numpy [56].

We have designed our experiments as follows:

1. One-vs-all classification: In this part of our study, we trained and tested our
LSTM model on 20 different binary classifiers. Each classifier was trained to
identify a specific variant from the rest. As previously discussed, for each clas-
sifier, we handle the class imbalance problem in this scenario by considering
1000 sequences from a specific class and 1000 sequences sampled from the rest
of the classes.

2. Multi-class classification: In this part of our study, we trained and tested our
LSTMmodel to classify among 20 different variants at once using a single clas-
sifier. As previously discussed, in this case too, we handle the class imbalance
problem by considering 1000 sequences that are sampled for each class label.

We propose an LSTM (Long Short-Term Memory) [28] based model that would
classify COVID-19 sequences into their respective variants. LSTMs are a type of

https://www.gisaid.org
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recurrent neural network model used in deep learning that are capable of capturing
dependencies over long periods of time and can be used formodeling time series data.
This is useful because variants have temporal consistencymaking themmore obvious
to an LSTM model. Each gene sequence is divided into consecutive overlapping k-
mers. The k-mers when counted uniquely constitute the vocabulary of the language
being considered. For all DNA sequences, we consider the entire alphabet, that is, {A,
T, G, C} alongwith the ambiguous nucleotides—{S,W, R, Y, K,M, B, D,H, V, N}. A
distribution of k-mers revealed themore common nucleotides are {A, T, G, C, N}.We
have included all unambiguous as well as ambiguous nucleotides since the number of
ambiguous nucleotides was small enough compared to the unambiguous nucleotides.
In essence, every DNA sequence is transformed into a set of ‘words’ andwe study the
ordering of thesewords using anLSTMbasedmodel in order to classify the sequences
into their respective variants or classes. We used integer encoding and padding prior
to feeding in the sequences into our LSTMframework, all coded using keras [57]with
a Tensorflow [58] backend in Python3. However, a problem with directly feeding in
sequences in this manner is that in designing such an LSTM, the sequence length,
and consequently, the integer encoded words are essentially the timesteps of the
model. Theminimumsequence length observed in our studieswas around 26,000.We
modeled this as several timesteps in anLSTMmodel because of size and to prevent the
vanishinggradient problem [59].Moreover, experimentswherewedirectly attempted
to train the LSTM model with the full sequences at once were slow to run due to
excessive computational overhead and the programs eventually did not execute until
completion. In an effort to overcome this, we divided the problem into 51 steps,
where we feed in segments of 500 nucleotides (characters of the genetic sequences)
at a time. This helped the programs run successfully until completion. Each of the
predictions from the test set were then averaged over the 51 steps and thresholded
with 0.5 in order to obtain the overall accuracy of the model. This framework is
suitable for the following reasons: (1) it helps reduce computational overload of
feeding in multiple timesteps at once, (2) it handles the vanishing gradient problem
ofLSTMs that can arise due to a large number of timesteps, and (3) it enables us to find
distinguishing portions of the genetic sequences that contribute to better accuracies—
such portions of data are “useful” for identifying and classifying the specific COVID-
19 variant. The only problem with this approach would be missing nucleotides of
lengthy sequences located towards the end due to truncating the sequences after
fixed indices in order to allow the model to train effectively. It is also to be noted
at this point that we have used an alignment-free k-mer based approach in all our
experiments in this study.

3.1 Model Architecture

The value of k for generating k-mers is a hyperparameter itself. Small k-mer values
help in faster extraction of k-mers from long sequences, but do not provide adequate
coverage compared to larger k values.
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For our proposed framework, we use an embedding layer to convert the integer en-
coded k-mer words into vectors of a fixed size. The embedding vector size constitutes
a hyperparameter, along with the batch size that we varied in our experiments.

We use 10 LSTM units and 1 dense layer with sigmoid activation in order to
obtain the probabilities in the case of all our binary classification one-vs-all models.
We use Adam [60] as the optimizer with binary cross entropy and accuracy as the
metric in order to train the model for 50 epochs. We use Sequential() from keras to
stack the layers in a linear fashion.

We used 10 LSTM units and 20 dense units with softmax activation for our
multi-class classification models. We use Adam [60] as the optimizer with sparse
categorical cross entropy and accuracy as the metric in order to train the model for
50 epochs. Similar to the one-vs-all classifiers, we use Sequential() from keras to
stack the layers in a linear fashion.

4 Results and Discussion

The entire set of sampled sequences was shuffled retaining original variant labels and
then divided into an 80% and 20% ratio for training and testing data respectively.
In the results, we primarily focus on discussing accuracies on test data since these
comprise results on “unseen” data and are representative of what the LSTM model
has learnt from the training process.

Table 1 shows the accuracies of varying hyperparameters for k= 2. The cells in the
table show accuracy as a percentage calculated as a combination of the predictions
across all 51 runs. The predicted probabilities from the Dense layer are thresholded
using 0.5 to represent whether a sample belongs to a class or not. The predictions are
then comparedwith the ground truth class labels and the accuracies for every classifier
are obtained using sklearn [61]. Each row in the table represents a classifier where
the task is classifying the specific variant from other COVID-19 variants. Based on
our experiments, changing the embedding size and batch size did not have significant
effect on the accuracies. It is important to note that certain classifiers like those of
B.1.1.214, B.1.177.21, B.1.1.7, B.1.526, and P.1 have better accuracies compared
to others—these higher accuracy scores may be because we are essentially trying
to classify one specific variant and it would need to have features that are distinct
enough for the classifier to tell it apart from the other classes. This may be a broader
indicator of variants that have “novel mutations” of COVID-19 with genetic makeup
different enough from the rest of the sequences from other variants.

Within the accuracies from individual runs, positions after the 20th run till the 51st
run showed higher accuracies in general, hence indicating that these positions may
be of more interest in contributing to the “distinction” of genetic makeup compared
to the beginning portions of the sequences. The exact positions vary based on the
specific classifier and hyperparameters. The entire sets of accuracies obtained from
our individual runs as well as the final results are included in our code repository.

Table 2 shows the accuracies of varying hyperparameters for k = 3. While there
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Table 1 Accuracies for classifying COVID-19 lineages with k = 2

Variant emb_vec = 50 emb_vec = 100 emb_vec = 50 emb_vec = 100

batch_size = 256 batch_size = 256 batch_size = 128 batch_size = 128

B.1.1.214 80.25 80.5 82.5 83

B.1.1.519 65.25 64 64.25 64.25

B.1.160 67.75 70 64.5 68.5

B.1.177.21 80.5 80.5 80.5 80.5

B.1.177 63.75 63.5 64 67

B.1.1.7 90.5 90.5 90.5 90.5

B.1.1 63.5 64.5 64 62.5

B.1.221 71.25 72.25 71.75 73.5

B.1.243 64.75 64.25 64.75 65.5

B.1.258 68 69 65.75 69.75

B.1.2 61.5 61.5 61.75 61

B.1.351 83.5 83.75 83.25 83.75

B.1.427 62.5 62.25 62 62

B.1.429 68 65.5 63.25 65.25

B.1.526 81.75 83 82.25 84.25

B.1.596 64 64.25 64.25 64.25

B.1.617.2 73 73 74.25 74.5

B.1 59 57.5 58 57.5

D.2 74.75 74.75 75.25 75.5

P.1 86 84 84 84

is not much significant change in accuracies compared to the experiments for k= 2,
it is interesting to note that for certain cases, it is beneficial to use k= 3. In this case
too, changes in embedding vector size and batch size did not lead to any significant
changes in the accuracies. The most significant increase in accuracy was observed
in the case of B.1.160. This may be because 3-mers may be more representative of
distinguishing characteristic features of this variant compared to 2-mers. Based on
the results, accuracies generally improve after the 20th run which indicates that these
positionsmay be of interest in distinguishing characteristic features for a certain class
similar to the 2-mers. It is to be noted that while increasing the value of k in k-mers
may add more coverage, the process of extracting sequences takes longer time.

For the multi-class classifier, we varied hyperparameters and obtained accura-
cies for individual runs for embedding vector sizes of 50, 100 and batch sizes of
256, 128 for both k = 2 and k = 3. The results show accuracies of less than 50%
for most of the individual runs in all cases, which are significantly lesser than the
accuracies of individual runs obtained for the one-vs-all classifiers. This may be
because it is harder to correctly distinguish among 20 classes and classify the same
compared to a set of binary classifiers identifying whether a specific variant belongs
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Table 2 Accuracies for classifying COVID-19 lineages with k = 3

Variant emb_vec = 50 emb_vec = 100 emb_vec = 50 emb_vec = 100

batch_size = 256 batch_size = 256 batch_size = 128 batch_size = 128

B.1.1.214 82 81.75 82 82.5

B.1.1.519 63.75 63.75 64 65.5

B.1.160 77.75 78.25 78.25 71.5

B.1.177.21 80.5 80.5 80.5 80.5

B.1.177 67.25 66 64.5 66.75

B.1.1.7 91 91 91 92.5

B.1.1 63.5 63.75 63.75 63.25

B.1.221 73.25 73 73 72.75

B.1.243 65 65 65 64.25

B.1.258 70.25 68.5 69.25 73.25

B.1.2 61.75 61.75 61.5 62.75

B.1.351 84 84.25 84 85.5

B.1.427 62.25 62.25 62.25 64

B.1.429 65 65 65.75 65.75

B.1.526 84.75 84.5 85 84

B.1.596 65.75 65.75 66 66.5

B.1.617.2 74.75 74.75 74.75 75.75

B.1 58 57 57.5 56.5

D.2 75.75 75.75 76 76.25

P.1 84.5 84.75 84.75 85.75

to a class or not. In terms of individual accuracies of runs, it is more beneficial to
build 20 binary classifiers compared to a single classifier classifying 20 classes.While
comparing individual accuracies, though the accuracies themselves are low, the accu-
racies formulti-class classifiers also show an increase in accuracy after the 20th run in
general indicating that thesemay be positions contributing to distinguishing features,
which was also observed in case of the one-vs-all classifiers. Results obtained from
individual runs of the multi-class classifier are also available in our code repository.

5 Conclusion

In this chapter, we proposed an LSTM based deep learning model that can classify
COVID-19 variants based on genetic sequences. Our proposed method is alignment
free and uses k-mers. In our method, we handle the class imbalance problem by
sampling a fixed set of sequences per class. We also handle the vanishing gradient
problem of LSTMs arising from long timesteps due to long lengths of genetic
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sequences by dividing the sequences into fixed segments of smaller timesteps. We
discuss results for accuracies on both one-vs-all classifiers as well as multi-class
classifier models. Our results show that the one-vs-all classifier performs better than
the multi-class classifier models for distinguishing variants on individual runs, with
test accuracies as high as 92.5%. Higher overall accuracies in variants like B.1.1.214,
B.1.177.21, B.1.1.7, B.1.526, and P.1 may suggest that these variants have specific
mutations that distinguish them from the other variants in case of the one-vs-all clas-
sifiers. In terms of hyperparameters, varying the embedding vector sizes and batch
sizes did not change the accuracies in a significant manner based on our experiments.
However, k = 3 yielded slightly better accuracies compared to k = 2 in most cases.
We also observed that the accuracies on individual runs improve after the 20th run in
general, which may suggest that these positions are more important in determining
distinctive features contributing to a specific class. We hope that our model can be
extended in the future for understanding COVID-19 variants based on sequence data
and believe that it can help contribute to vaccine and drug development research.

6 Code

Code and results from our experiments are available here: https://github.com/sayant
anibasu/covid19-gene-variants.
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Twenty-First Century Cybernetics
and Disorders of Brain and Mind

Gregory Worrell

The potential for bridging computer science, neural engineering and implantable
devices for new therapeutics targeting disorders of the brain and mind is well recog-
nized. The rapidly evolving field is at an inflection point created by advances in
computing, engineering, and the understanding of brain mechanisms and disease.
Here I review research with my friend Professor Ravi Iyer, PhD focused on acceler-
ating the application of machine learning and computing to devices designed to treat
epilepsy and associated comorbidities. Over the past 5 yearswe haveworked together
to bridge some of the gaps between research and application to create new therapies
for patients with drug resistant epilepsy. Ravi and his graduate students at Univer-
sity Illinois Urbana Champaign (UIUC) and my group have enjoyed a productive
collaboration in the emerging field of Bioelectronics and Neuromodulation.

I met Ravi in approximately 2015 as part of the Mayo Clinic and UIUC collab-
oration around the emerging medical applications of artificial intelligence. We have
enjoyed a collaboration that has involved multiple students, and in particular Ravi’s
two doctoral students Yogatheesan Varatharajah, who completed his PhD and is now
working in the Department of Neurology at Mayo Clinic, and Krishnakant Saboo
who is a 4th year UIUC PhD. student. Our research has focused on a couple of
fundamental problems in drug resistant focal epilepsy: (1) The spatial localization
of focal epilepsy, or simply stated as the prediction of where seizures are generated
(2) The temporal forecasting of seizures, or when in time seizures will occur (3)
The cognitive, memory and sleep comorbidities of epilepsy. (4) The next generation
of implantable devices that enable sensing, electrical stimulation, and embedded
analytics and their integration with local and distributed computing.
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1 The Spatial Localization of Focal Epilepsy: Predicting
Where Seizures Are Generated

Spatial localization of focal epileptic brain is a cornerstone of epilepsy diagnostics
and critical to successful epilepsy surgery and electrical brain stimulation (EBS).
The gold-standard approach is to record a patient!s habitual seizures with intracranial
electrodes.

Unfortunately, it typically takes days or even weeks to capture a habitual spon-
taneous seizure. If seizures are successfully localized that area of the brain can
potentially be targeted for resection or EBS. The possibility that epileptogenic
tissue and networks can be determined from interictal recordings, electrophysio-
logical recordings without seizures is an active area of research. If successful this
would open the possibility of short intra-operative recordings for mapping epileptic
networks and tissue, and might even better define the margins and nodes of optimal
targets of resection and EBS. In the UIUC-Mayo collaboration we have used modern
machine learning approaches to identify epileptic brain and networks tomap epileptic
and normal brain networks [1–6] and are now investigating the application of this
approach to clinical practice.

In more recent work we investigated scalp EEG, a widely used non-invasive
technology, to characterize the electrophysiological abnormalities in expert reviewed
normal EEG from patients with drug resistant epilepsy and demonstrated the ability
to predict the presence and lateralization of their epilepsy [7].

2 The Temporal Forecasting of Seizures: Predicting When
Seizures Will Occur

For most individuals living with epilepsy, seizures are relatively infrequent events
occupying a small fraction of their life. Despite spending a small fraction of their
lives having seizures, often onlyminutes permonth, peoplewith epilepsy take seizure
drugs (ASD) daily, suffer ASD related side effects, and spend their lives dreading
when the next seizure will strike. The apparent randomness of seizures is associ-
ated with significant psychological consequences [8]. In addition, despite daily ASD
approximately 1/3 of patients continue to have seizures.We hypothesize that epilepsy
can be more effectively treated, both the seizures and their psychological impact, by
providing patients with real-time seizure forecasting. Periods of low seizure proba-
bility would not require ASDs, or at least lower doses, thus reducing ASD exposure
and their side effects. Periods of high seizure probability may respond to acute,
fast acting ASD or a change in electrical brain stimulation parameters. In addition,
patients could alter their activities to avoid injuries that are often associated with
seizures. Patients would be empowered to manage their medications and life activi-
ties using reliable seizure forecasts. Similarly, EBS parameters and therapy might be
adaptively changed to reduce the risk of seizures and the side effects. We have exten-
sively investigated the hypothesis that seizures are predictable events, and pursued
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accurate, clinically relevant seizure forecasting using advances in support vector
machines (SVM), convolutional neural networks, and data-analytic models applied
to continuous intracranial EEG (iEEG) in focal canine epilepsy [9–14]. This is an
initial step in establishing a new treatment paradigm for focal epilepsy, whereby the
probability of seizure occurrence is continuously tracked for patient warning and
intelligent responsive therapies.

3 The Cognitive, Memory and Sleep Comorbidies
of Epilepsy

Sleep, cognitive and mood disturbances are common comorbidities of epilepsy.
Moreover, EBS therapy itself may have a negative impact on sleep, cognition and
mood. Unfortunately, objective assessment and quantification and the absence of
longitudinal data and the established unreliability of patient self-reporting has limited
progress in the field.

We are developing a range of quantitative tools to track sleep [15], cognition [5, 16]
and mood in patients with the ultimate goal of more intelligently intervening with
non-pharmacologic, pharmacologic, and EBS therapies. One area of progress has
beenwith the quantification ofmemory andmanipulationwithEBS [5, 16]. Thiswork
advances efforts to better understand the bidirectional relationship between epilepsy
and cognition, and the impact of EBS. Lastly, in the future the selective application of
EBS may prove useful for a range of neurologic and psychiatric diseases associated
cognition deficits.

4 Next Generation of Implantable Devices that Enable
Sensing, Electrical Stimulation, Embedded Analytics
and Their Integration with Local and Distributed
Computing

The pace of commercial electronics development far outpaces what is possible for
medical device technology. The gap in development speed can be partially overcome
by the integration of implantable devices with off-the-body local and distributed
computing. In this paradigm implanted brain sensing and stimulation devices are
integrated with a smartphone to create a bi-directional interface between human
brain and computation infrastructure. The brain sensing data are streamed off the
device to a smartphone, a local computational node, that also provides a platform
for patient inputs. This opens a useful bidirectional interface that enables large scale
computing not possible using an embedded algorithm. Next generation devices will
enable intelligent, adaptive EBS that not only optimizes seizures reductions, but also
addresses the sleep, cognitive and mood comorbidities of epilepsy [4, 17].

What the future holds: The value of embedding engineers and scientists in
multi-disciplinary teams of including physicians and clinical staff is now widely
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recognized. Nonetheless, neurotechnology is failing to deliver on its diagnostic and
therapeutic promise because the time it takes to translate from the bench to the clinic.

To accelerate human translational Mayo Clinic and UIUC has assembled multi-
disciplinary teams of engineers, scientists, and clinician teams. We have recently
deployed a distributed neural-coprocessors for adaptive neuromodulation in patients
with epilepsy. The system includes a fully functional, implantable device (sensing,
stimulation, embedded analytics, neural co-processor API), wearable sensors, local
and cloud computational infrastructure. We believe the future should find many
diseases applications. Our success will be measured by our ability to create new
therapies for patients (Fig. 1).

Fig. 1 Next generation implanted device integrated with local and distributed computing environ-
ment for epilepsy management. The system seamlessly integrates implantable device sensing and
stimulation with off-the-body computing smartphones and cloud computing. Short latency respon-
sive therapy (green arrow) is embedded on the device and provides millisecond timescale responses
to abnormal brain activity. The bi-directional wireless interface allows continuous iEEG telemetry
and algorithms running on the phone or in the cloud provide longer latency adaptive stimulation
(red arrows), given more computing time that is not feasible using implantable device embedded
algorithms. A particular innovation emerges from whereby electrophysiology and behavior are
integrated. The paradigm shifting approach of using electrophysiology detections (e.g. seizures or
coupling fluctuations in limbic networks) to trigger patient smartphone or watch queries and inter-
actions. In this way electrophysiologic events of interest, such as seizure discharges or abnormal
synchrony, can be selectively investigatedwith focused patient interactions to probe behavior, cogni-
tion, mood etc. Lastly, the system enables integration with wearable sensors like a smart watch and
connects physicians and patients
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Dependability Assessment



Introduction: Dependability Assessment

Karthik Pattabiraman

Dependability assessment is one of the key activities in dependable system design, as
it is important to have high confidence in the dependability of the system. Prof. Ravi
Iyer has worked extensively in this domain, starting from his early career in the late
1970s to the present. In the early phase of his career, his work in this domain mainly
encompassed dependability modeling, using analytical and simulation techniques.
In the next phase, he worked on measurement-based analysis of computer systems
dependability, especially on production systems deployed at Stanford University and
IBM, and he has mademany important contributions in the area. Finally, he’s worked
extensively in the area of fault injection, and his group has pioneeredmany techniques
for both software and hardware-based fault injection. It is therefore especially fitting
that the three articles in this part of the book are each in one of the three areas of
dependability assessment to which Ravi has contributed.

The first article in this part by Prof. Kishor Trivedi and others, is on how to deal
with epistemic uncertainties in reliability models. Unlike aleatory uncertainty that
pertains to randomness in model parameters, epistemic uncertainty has to do with
incomplete information aboutmodel parameters. It is thereforemuchmore difficult to
get rid of this uncertainty via collecting higher fidelity data, for example. One way to
deal with epistemic uncertainty is to treat the parameters of the model themselves as
random variables, and apply the laws of Bayesian probability to them. Unfortunately,
this complicates the process of obtaining an analytical solution to the model due to
the use of multiple integration—this is the problem addressed by the paper.

The second article by Karama Kanoun and Mohamed Kaaniche discusses the
authors’ experience of performing dependability assessment in collaboration with
industry, ranging from stochastic models such as Petri nets to analysis of field
data. The case studies are done with different companies, and at different times
in the authors’ careers (starting from the late 1980s to the recent past). The four
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vignettes present a structured progression of ideas from purely analytical approaches
to simulation and then to online data collection in production systems.

The final article is by Saurabh Jha, one of Ravi’s recent PhD graduates, and
he discusses his research on performing dependability assessment of autonomous
vehicles (AVs) in three different directions. The first direction is to perform empirical
data analysis using a causal model of the system using the System Theoretic Process
Analysis (STPA) methodology—this is demonstrated via a study of disengagement
data in AVs in the state of California in the United States. The second direction is to
use fault injection and fuzz testing to find corner case faults that can lead to safety
violations in AVs, using a causal reasoning based technique. The final direction is
to extend the fuzzing technique to find security attacks in AVs that masquerade as
failures and lead to safety violations. These three techniques also span the gamut
from theoretical reasoning to experimental validation, in tune with Ravi’s research
focus.

Overall, the three chapters provide a nice window into the different facets of
dependability assessment that Ravi hasworked on.We hope the reader enjoys reading
them as much as we did, and also finds inspiration from them for future research
directions and ideas.



Effect of Epistemic Uncertainty in
Markovian Reliability Models

Hiroyuki Okamura, Junjun Zheng, Tadashi Dohi, and Kishor S. Trivedi

Abstract This chapter introduces themoment-based epistemic uncertainty propaga-
tion in Markov models. The epistemic uncertainty in Markov models introduces the
uncertainty of model parameters, and it can be propagated by regarding parameters
as random variables. The idea behind the moment-based approach is to approximate
the multiple integration with a series expansion of model parameters. This leads to
the efficient computation of the uncertainty in the expected output measure. The
expected output measure is represented by the expected value and the variance of
model parameters and the first and second derivatives of output measure with respect
to model parameters. In this chapter, we introduce the formulation of moment-based
epistemic uncertainty propagation and the concrete methods to obtain the first and
second derivatives of output measures in Markov models.

Keywords Epistemic uncertainty propagation · Markov model · Reliability
evaluation

1 Introduction

Reliability is one of the most important qualities of hardware/software systems. To
manage the reliability of a system, we need to define quantitative measures. The
reliability of a system is defined by the probability that the system does not fail for
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a given time period. Based on this definition, there are a number of probabilistic
approaches to compute system reliability. In particular, the model-based approach
has been widely used to assess system reliability [28].

In the model-based approach, we construct probability models that represent the
system behavior in the presence of failure (and possibly recovery) events, and obtain
the quantitative reliability measures through the analysis of the probabilistic models.
In such models, the randomness is generally modeled by parametric distributions,
and is called the aleatory uncertainty. These probability models are then solved at
fixed parameter values of these aleatory distributions and the outputs thus obtained
clearly depend upon the values of the parameters used.

Theparameters of the aleatorymodel are in practice determined fromexperimental
data such as field failure data and other sources. Since the number of observations is
necessarily finite, the sampling errors affect the estimated model parameter values.
Also, even if the parameter values are given by expert guesses, the uncertainty may
be included in the values. This parametric uncertainty arising out of incomplete
information about model input parameters is called epistemic uncertainty [26].

The natural way to handle epistemic uncertainties is to regard the parameters of
the aleatory probabilitymodel as randomvariables. That is, the value of outputmetric
such as availability and reliability under given model parameters is considered to be
conditional. To propagate the epistemic uncertainty of model parameters, the value
of output metric needs to be unconditioned via the law of total probability [27]. This
concept is closely related to Bayes theorem [25], and leads to some difficulties in
terms of numerical computation as it involves multi-dimensional integration.

Since the epistemic uncertainty propagation is based on multi-dimensional inte-
gration, depending on the nature of the solutions of probability models (closed-form,
analytic-numeric or stimulative) and their complexity, Mishra and Trivedi [15, 16]
classified the epistemic uncertainty propagation techniques into three categories:
analytic closed-form integration, numerical integration and sampling-based method.
In case of aleatory models that can be analytically solved to get the model output as
simple closed-form expressions of input parameters, the analytic closed-form inte-
gration can be applied. For more complex expressions of model output, i.e., in the
case where the value of output metric is computed numerically with software pack-
ages like SHARPE [29] or SPNP [12], numerical integration and sampling-based
approximation [5, 17] are applicable. However, the multiple numerical integration is
difficult in practice, and the epistemic uncertainty propagation with numerical inte-
gration is only feasible when the number of model parameters is up to 2. For the case
where the number of input parameters is more than 2, the Monte-Carlo integration,
i.e., the sampling-based method must be applied.

To address the issues on the multiple integration of the epistemic uncertainty
propagation, some suggested using the moments of parameter distributions. The idea
behind the moment-based approach is to approximate the multiple integration with a
series expansion of model parameters. Amer and Iyer [1] presented such a moment-
based approach for the reliability of memory system. In [30], Yin et al. presented the
moment-based approach for a simple reliability model. Also, Harverkort and Meeu-
sissen [9] discussed the uncertainty propagation with the moments of parameter
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distribution for general Markov-reward models. However, in [9], the moment-based
approach could not be applied to a complex Markov-reward model due to the limita-
tion of computational power at that time. Recently, Okamura et al. [18] discussed the
moment-based epistemic uncertainty St Jacinto Island for general Markov models.
The Markov model is a state-based modeling technique to represent the behavior of
a variety of realistic systems which are governed by probabilistic events such as sys-
tem failure. Thus the presented approach in [18] is widely applied to the uncertainty
propagation in the performance evaluation on realistic systems.

Table1 summarizes the applicability of various methods of epistemic uncertainty
propagation, for different types of aleatory models. Other analytic methods for para-
metric epistemic uncertainty propagation, mostly based on algebraic manipulations
of model output and exploiting properties and transformations of expectation and
variance (for simple non state space reliability models), have been studied in [4, 13,
24]. Several recent papers have applied these ideas to high speed railways reliability
models [21], to power consumption models [8] and to system on a chip [20]. The
system on a chip paper also extends the analysis to the case of Weibull aleatory
distributions.

This chapter introduces the moment-based epistemic uncertainty St Jacinto Island
[18] in detail. This chapter is organized as follows. Section2 introduces the basics
and provides an overview of epistemic uncertainty propagation. The moment-based
approach is presented in Sect. 3. In Sect. 3, we also compare the moment-based
approach with the Bayes estimation, and show some properties of moment-based
approach via a simple reliability model. Section4 presents how to obtain the first and
second derivatives of output measures in Markov models, which are required in our
approach to epistemic uncertainty propagation in Markov models. Further, we illus-
trate our method via the numerical illustration of epistemic uncertainty propagation
in the cloud service with virtual machines. Finally, Sect. 5, summarizes the paper.

Table 1 Epistemic uncertainty propagation for different aleatory model types

Epistemic uncertainty propagation method

Closed-form
integration

Numerical
integration

Moment-based Sampling-based

Closed-form
solution

Applicable
(simple
expressions)

Applicable (a few
parameters)

Applicable Applicable

Analytic-numeric
solution

Not applicable Applicable (a few
parameters)

Applicable Applicable

Stimulative
solution

Not applicable Applicable (a few
parameters)

Applicable
(numerical
differentiation is
needed)

Applicable
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2 Epistemic Uncertainty Propagation

2.1 Uncertainty Representation

In this chapter, we consider adding epistemic uncertainty on top of aleatory uncer-
tainty already incorporated in probabilistic models. The epistemic uncertainty is
essentially the uncertainty caused by sampling errors, and can be reduced by increas-
ing the sample size. In this sense, the epistemic uncertainty is called reducible uncer-
tainty as distinguished from the aleatory uncertainty that is irreducible. For example,
we suppose that a time to failure of a product is an exponential distributed random
time and the mean time to failure (MTTF) is about 10,000h. The system reliabil-
ity can simply be given by R(t) = exp(−t/10000). However, the uncertainty in the
MTTF, expressed by the word “about” also affects the system reliability. The former
is the aleatory uncertainty, and the latter is the epistemic uncertainty. The epistemic
uncertainty thus relates to the uncertainty of model parameters.

In general, the methods to determine model parameters are based on (i) the esti-
mation from statistical inference on measured data and (ii) the estimation by domain
experts. In both cases, the estimated model parameters include uncertainty.

1. Estimation based on measured data
The well-known statistical approaches are available to determine model param-
eters. In the statistical estimation, the model parameters are determined based
on the distance between the true model and the observed data. The maximum
likelihood estimation is a commonly-used estimation method to provide the point
estimates of model parameters based on Kullback-Leibler divergence. Also, the
confidence interval represents the uncertainty of population parameters.
This paper discusses the Bayes estimation to represent the uncertainty of param-
eters, which is one of the most suitable approaches. Let θ = (θ1, . . . , θl) be a
parameter vector to be estimated from statistical data D. Suppose that the prior
information on θ is given by the joint prior density f�(θ). Then we have the
posterior information on θ , i.e., the joint posterior density f�(θ |D) is expressed
as

f�(θ |D) = p(D|θ) f�(θ)
∫
p(D|θ) f�(θ)dθ

, (1)

where p(D|θ) is a probability density or mass function of D for a given
parameter vector θ which corresponds to the likelihood function of θ for the
given data D. Also the denominator of Eq. (1) means a multiple integral∫ · · · ∫ p(D|θ) f�(θ)dθ1 · · · dθl . In the context of Bayes estimation, the poste-
rior density represents the uncertainty of parameter estimation. If the variance of
posterior density is large, the uncertainty of model parameter is also large.

In [15], based onBayes theorem, they assumed that the posterior formed Erlang or
beta densities and determined the parameters of these densities from confidence
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intervals. Also, in [7], another approach of the uncertainty propagation has been
proposed when the parameter distribution is given by a characteristic function.

2. Estimation by domain experts

The domain expert often provides the range of parameter; for example, he/she says
the parameter will be between 10,000 and 100,000h. This fuzzy representation
also implies that the true parameter is distributed, and thus, as similar to the
Bayes estimation, we may express the uncertainty with a joint density function
f�(θ). However, since the fuzzy representation does not indicate a concrete type
of distribution on model parameters, we need some assumptions to determine the
type of distribution. For example, if we assume the normal distribution, we can
decide the mean and variance parameters of the normal distribution so that the
0.95 or 0.99 quantile fits to the range of estimation by the expert. Alternatively,
we can assume that the true parameter is uniformly distributed on the range.

2.2 Performance Index with Uncertainty

Let M(θ) be a performance index of system under consideration such as reliability
and availability of an aleatory probability model. Suppose that model parameters are
assumed to be randomly variables, i.e., the parameter vector is defined as a vector
of random variables � = (�1, . . . , �l), and that the joint prior epistemic density
f�(θ) is given. The mean and variance of M(�) can be computed from Mishra and
Trivedi [15]:

E[M(�)] =
∫

M(θ) f�(θ)dθ , (2)

Var[M(�)] = E[M(�)2] − E[M(�)]2,
E[M(�)2] =

∫
M(θ)2 f�(θ)dθ . (3)

Also the cumulative distribution function (c.d.f.) of outputmeasure is given byMishra
and Trivedi [15]:

FM(m) =
∫

I (M(�) ≤ m) f�(θ)dθ , (4)

where I (E) is the indicator variable of an event E .
There are two issues of the epistemic uncertainty propagation: (i) How to deter-

mine the joint epistemic density f�(θ) and (ii) How to compute the multiple inte-
gration. The former issue is essentially a statistical problem. If we have statistical
data, the Bayes estimation is one of the solutions to address the issue. On the other
hand, even if we use the expert knowledge, the density function can be obtained by
an appropriate assumption. However, it should be noted that Eqs. (2)–(4) require the
joint density of model parameters. Although the Bayes estimation can estimate the
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joint density as a posterior distribution, it is not easy to obtain the closed form of
the joint density. Also, on the expert knowledge, no one knows the best practice to
obtain the joint density.

The latter issue is a computation of multiple integration. The methods to obtain a
value of multiple integration are classified to analytic and numerical methods. The
analytic method is to obtain the integration symbolically, and is generally applied to
specific problems only. Mishra and Trivedi [15] presented several instances where
the integration can be solved analytically. In the numerical method, sampling-based
approximation approach, i.e., Monte Carlo integration is well known to be effective
for solving such multiple integration. Let (θ1, . . . , θn) be a set of samples drawn
from the joint epistemic density f�(θ). The Monte Carlo integration provides the
following approximation:

∫
M(θ) f�(θ)dθ ≈ 1

n

n∑

i=1

M(θ i ). (5)

The variants of Monte Carlo integration are quasi-Monte Carlo method [2], the Latin
hypercube sampling [10] and other variance reduction methods.

The MCMC (Markov chain Monte Carlo) is a suitable method to address both
issues simultaneously, and is able to draw parameter samples from the joint posterior
density. The MCMC samples are directly applied to the Monte Carlo integration to
compute mean, variance and c.d.f. of the output measure. The survey of sampling-
basedmethodwas presented in [11]. However,MCMC requires heavy computational
resources, and cannot be applied to the estimation by domain expert.

3 Moment-Based Approach for Epistemic Uncertainty
Propagation

3.1 Formulation

In [18], we introduced the moment-based approach for epistemic uncertainty propa-
gation to address both the issues: the estimation of epistemic density and the compu-
tation of multiple integration. Concretely, we consider a Taylor series expansion of
the expected value of output measure, and then the expected value is represented by
the formulation using moments of joint density. This approach has been applied ear-
lier to the epistemic uncertainty propagation of performance index in some specific
models. Amer and Iyer [1] presented the moment-based approach for the reliability
of memory system. Yin et al. [30] presented an approximation using Taylor series
expansion of epistemic uncertainty propagation for reliability models.

Using a Taylor series expansion of the expected value of the output measure, we
have the following approximation (see Appendix for details):
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E[M(�)] ≈M(θ̂) + 1

2

n∑

i=1

M ′′
i,i (θ̂)Var[�i ]

+
l∑

i=1

i−1∑

j=1

M ′′
i, j (θ̂)Cov[�i ,� j ], (6)

E[M(�)2] ≈ M(θ̂)2 +
l∑

i=1

(
M ′

i (θ̂)2 + M(θ̂)M ′′
i,i (θ̂)

)
Var[�i ]

+ 2
l∑

i=1

i−1∑

j=1

(
M ′

i (θ̂)M ′
j (θ̂) + M(θ̂)M ′′

i, j (θ̂)
)
Cov[�i ,� j ], (7)

where θ̂ = E[�] and

M ′
i (θ̂) = ∂M(θ)

∂θi

∣
∣
∣
∣
θ=θ̂

, (8)

M ′′
i, j (θ̂) = ∂2M(θ)

∂θi∂θ j

∣
∣
∣
∣
θ=θ̂

. (9)

The above approximation requires the first two derivatives of the output measure
M(θ) with respect the input parameters. They can be computed by parametric sen-
sitivity analysis [3, 22]. On the other hand, the necessary information on the joint
density is their expectation, variances and covariances only; we do not need the actual
form of the density.

Using the first two moments of M(�), the p.d.f. of M(�) is approximated by
the normal density with mean E[M(�)] and variance Var[M(�)] = E[M(�)2] −
E[M(�)]2.

3.2 Reliability of a Single Component System

Reliability of a single component system at time t , when the time to failure of the
component follows the exponential distribution with parameter λ, is given by the
well-known formula, R(t; λ) = e−λt [27].

Suppose that D = (t1, . . . , tn) are independent and identically distributed (iid)
samples as observed failure times for the component, and that the prior density of
the failure rate � follows a gamma with shape and rate parameters α and β:

f�(λ) = βαλα−1e−βλ

	(α)
. (10)
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According to Bayes theorem, the posterior density of the failure rate f�(λ|D) is also
gamma with shape and rate parameters n + α and s + β, where s = ∑n

i=1 ti . Then
the mean of R(t;�) becomes

E[R(t;�)] =
∞∫

0

e−λt f�(λ|D)dλ

=
(

1 + λ̂t

n + α

)−(n+α)

, (11)

where the point estimate λ̂ = E[�] = (n + α)/(s + β). Also the variance and c.d.f.
of R(t;�) are given by

Var[R(t;�)] =
(

1 + 2λ̂t

n + α

)−(n+α)

−
(

1 + λ̂t

n + α

)−2(n+α)

, (12)

FR(r) =
∞∫

0

I (R(t; λ) ≤ r) f�(λ|D)dλ

=
∞∫

(− ln r)/t

f�(λ|D)dλ. (13)

As n → ∞, i.e., the number of samples increases, limn→∞ E[R(t;�)] = e−λ̂t and
limn→∞ Var[R(t;�)] = 0. Furthermore, FR(r) converges to the step function which
jumps from 0 to 1 at e−λ̂t .

On the other hand, by applying themoment-based approach,wehave the following
approximation forms:

E[R(t;�)] ≈ e−λ̂t + 1

2
t2e−λ̂tVar[�]

=
(

1 + 1

2
t2Var[�]

)

e−λ̂t . (14)

Var[R(t;�)] ≈ t2e−2λ̂tVar[�] − 1

4
t4e−2λ̂tVar[�]2

= Var[�]
(

1 − 1

4
t2Var[�]

)

t2e−2λ̂t . (15)
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The c.d.f. of R(t;�) is approximated by the normal distribution having the above
mean and variance. Here we examine the accuracy of approximation of moment-
based approach by comparing it with the Bayes estimation. In this example, we set
λ = 1.0 × 10−5 as the true failure rate, and generate 10 and 100 samples from the
exponential distribution with this failure rate. By using the samples, we estimate
the posterior density and the first two moments. The parameters of prior (hyper-
parameters) are set as α = 0 and β = 0. This corresponds to the case where Jeffery’s
prior is adopted. Also, themean and variance of R(t;�), that are used in themoment-
based approach, are computed from the mean and variance of the posterior.

Tables2 and 3 present the estimated reliability functions E[R(t;�)] at λt =
0.01, 0.1, 0.20, 1.0, 5.0, 10.0 in the case where the number of samples are 10 and
100, respectively. In the tables, ‘True’ indicates the reliability function using the
given failure rate, and ‘Plug-in’ indicates the reliability function whose failure rate
is given by the point estimate E[�]. Also, ‘Bayes’ and ‘Moment’ are the results of
Bayes estimation and moment-based approach.

In these tables, the results of moment-based approach are close to those of Bayes
estimation. Therefore, the accuracy of moment-based approach is high. In particular,
when λt is small, the values of moment-based approach are almost same as those
of Bayes estimation. Also, as the number of samples increases, the accuracy of
moment-based approach becomes high. On the other hand, when we compare the
estimates with the true reliability function. The estimates of Bayes andMoment tend
to overestimate, while Plug-in underestimates the reliability function.

Table 2 The evaluation of E[R(t; �)] with 10 samples

λt True Plug-in Bayes Moment

0.01 9.900e−01 9.788e−01 9.788e−01 9.788e−01

0.10 9.048e−01 8.073e−01 8.092e−01 8.092e−01

0.20 8.187e−01 6.518e−01 6.576e−01 6.578e−01

1.00 3.679e−01 1.176e−01 1.438e−01 1.446e−01

5.00 6.738e−03 2.254e−05 6.922e−04 1.516e−04

10.00 4.540e−05 5.079e−10 1.073e−05 1.214e−08

Table 3 The evaluation of E[R(t; �)] with 100 samples

λt True Plug-in Bayes Moment

0.01 9.900e−01 9.904e−01 9.904e−01 9.904e−01

0.10 9.048e−01 9.079e−01 9.079e−01 9.079e−01

0.20 8.187e−01 8.243e−01 8.244e−01 8.244e−01

1.00 3.679e−01 3.805e−01 3.822e−01 3.822e−01

5.00 6.738e−03 7.972e−03 8.926e−03 8.902e−03

10.00 4.540e−05 6.355e−05 9.856e−05 9.322e−05
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Table 4 The evaluation of Var[R(t; �)].
λt 10 samples 100 samples

Bayes Moment Bayes Moment

0.01 4.370e−05 4.388e−05 9.158e−07 9.160e−07

0.10 2.881e−03 2.982e−03 7.684e−05 7.697e−05

0.20 7.354e−03 7.747e−03 2.530e−04 2.538e−04

1.00 7.677e−03 5.613e−03 1.345e−03 1.349e−03

5.00 1.025e−05 −1.083e−08 1.888e−05 1.397e−05

10.00 5.925e−08 −1.234e−16 1.147e−08 2.891e−09

Table4 shows the variance of estimator for the reliability function at λt =
0.01, 0.1, 0.20, 1.0, 5.0, 10.0. Similar to the estimates of E[R(t;�)], the accuracy of
moment-based approach is high when λt is small, and the accuracy becomes high as
the number of samples increases. When λt is small, the moment-based approach can
approximate the variance accurately even though the number of samples is only 10.
In the case where λt is large, the variance is estimated as a negative value. It should
be noted that this estimate causes numerical errors to approximate the probability
density function of the estimator R(t;�), since the variance should be a positive
value analytically.

Figures1, 2, 3 and 4 illustrate density functions of the estimator R(t;�) when
λt = 0.01 and λt = 1.0, respectively. In the figure, the moment-based approach does
not catch the skewed (asymmetry) shape of the posterior when the number of samples
is 10, because the posterior is approximated by a normal density in themoment-based
approach. However, as the number of samples increases, the accuracy of moment-
based approach becomes high, since the posterior density is close to the normal
density. In addition, the diverse (variance) of posterior is also small. We conclude
that the moment-based approach is effective in the case where the variance of the
epistemic density is small.
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Fig. 1 Density functions of R(t; �) (λt = 0.01, 10 samples)
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Fig. 2 Density functions of R(t; �) (λt = 0.01, 100 samples)
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Fig. 3 Density functions of R(t; �) (λt = 1.0, 10 samples)
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Fig. 4 Density functions of R(t; �) (λt = 1.0, 100 samples)
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4 Epistemic Uncertainty in Markov Reliability Models

4.1 Markov Reward Model

The moment-based approach needs to compute the first and second derivatives of
output measure. In general, it is not always possible to obtain the closed form of the
first and second derivatives of output measure, and thus the numerical computation is
required to obtain the first and second derivatives of output measures. In this section,
we consider the computation method of the first and second derivatives of output
measure in the case where the output measure is described by a Markov reward
model (MRM).

The MRM is one of the useful representations for the system performance index,
and is frequently used in the model-based reliability evaluation. Consider a finite-
state continuous-time Markov chain (CTMC) having the infinitesimal generator Q.1

Let π0 be the state probability vector (row vector) at time t = 0.
Let r S be a column vector whose i-th entry represents the reward per unit time

while the CTMC state is i . Also rT is a column vector whose i-th entry is

[rT ]i =
n∑

j=1, j �=i

ri, j qi, j , (16)

where ri, j and qi, j are the reward at which the CTMC state transits from state i to state
j and the transition rate of CTMC from state i to state j , respectively. Define Z(t) as
a stochastic process of reward rate that is earned at time t , and Y (t) = ∫ t

0 Z(τ )dτ as
a cumulative reward process. We have the following representative expected reward
measures

(a) stationary reward rate: E[Z(∞)] = π s r S ,
(b) time averaged reward: limt→∞ E[Y (t)/t] = π s (r S + rT ),
(c) instantaneous reward rate: E[Z(t)] = π(t)r S ,
(d) cumulative reward: E[Y (t)] = ν(t) (r S + rT ),

In the above equations, π s is the stationary probability vector such that

π s Q = 0, π s1 = 1, (17)

where 0 and 1 are column vectors whose entries are 0 and 1, respectively. Also π(t)
is the transient state probability vector at time t :

π(t) = π0 exp(Qt), (18)

and the cumulative probability vector becomes ν(t) = ∫ t
0 π(τ )dτ .

1 MRM is defined by either discrete-time or continuous-time Markov chain. In this chapter, we
focus only on the MRM described by the CTMC.
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For example, the non-repairable system is modeled by the CTMC, and the states
are divided into two groups; UP states SU and DOWN states SD . Then the infinites-
imal generator becomes the following block matrix:

Q =
(
QUU QUD

QDD

)

, (19)

where QUU and QDD are infinitesimal generators corresponding to UP and DOWN,
respectively, and QUD is a matrix for transition rates from UP to DOWN. When the
reward vector r S is defined as

[r S]i =
{
1 if i in SU

0 if i in SD
, (20)

the system reliability function is given by

R(t) = E[Z(t)] = π0 exp(Qt)r S, (21)

which is a category of the instantaneous reward rate [28].

4.2 Partial Derivatives of Performance Index

Here we introduce the computation methods for the first and second derivatives of
the expected reward rates in MRM. The derivatives of stationary and average reward
rates requires the derivatives of stationary probability vector. Since the stationary
probability vector satisfiesEq. (17), the first derivative of stationary probability vector
with respect to a parameter θi satisfies

∂π s

∂θi
Q + π s

∂ Q
∂θi

= 0,
∂π s

∂θi
1 = 0. (22)

Similarly, the second derivatives of stationary probability vector with respect to
parameters θi and θ j is given by the vector such that

∂2π s

∂θi∂θ j
Q + ∂π s

∂θi

∂ Q
∂θ j

+ ∂π s

∂θ j

∂ Q
∂θi

+ π s
∂2Q

∂θi∂θ j
= 0,

∂2π s

∂θi∂θ j
1 = 0. (23)

Since both are linear equations, we can solve them with commonly-used numeri-
cal approaches such as Gaussian elimination. Also, Dhople et al. [6] presented the
method based on the generalized inverse matrix. In the case where Q is a large sparse
matrix, Gauss-Seidelmethod is able to compute the first and second derivatives effec-
tively [19]. Finally, the first and second derivatives of stationary and average rewards
are
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∂

∂θi
E[Z(∞)] = ∂π s

∂θi
r S, (24)

∂

∂θi
lim
t→∞E[Y (t)/t] = ∂π s

∂θi
(r S + rT ) , (25)

∂2

∂θi∂θ j
E[Z(∞)] = ∂2π s

∂θi∂θ j
r S, (26)

∂2

∂θi∂θ j
lim
t→∞E[Y (t)/t] = ∂2π s

∂θi∂θ j
(r S + rT ) , (27)

where we assume that rS and rT are independent of θ , i.e., the constant vectors.
Next we consider the first and second derivatives of instantaneous and cumulative

rewards. In this case, we need to obtain the first and second derivatives of the transient
solution of CTMC. Here the transient solution of CTMC can be expressed as the
following ordinary differential equation:

d

dt
π(t) = π(t)Q, π(0) = π0. (28)

By taking the first derivative of the above equation with respect of θi , we have

d

dt

∂π(t)

∂θi
= ∂π(t)

∂θi
Q + π(t)

∂ Q
∂θi

,
∂π(0)

∂θi
= ∂π0

∂θi
(29)

Eqs. (28) and (29) can be rewritten as follows.

d

dt
�(t; θi ) = �(t; θi )Q(θi ), �(0; θ j ) =

(
π0

∂π0
∂θi

)
. (30)

where �(t; θi ) = (π(t), ∂π(t)/∂θi ) and

Q(θi ) =
(
Q ∂ Q

∂θi

Q

)

. (31)

This implies that ∂π(t)/∂θi can be computed as a subvector of the solution�(t; θi ) =
�(0; θi ) exp(Q(θi )t). Similarly, let Q(θi , θ j ) be a block matrix

Q(θi , θ j ) =

⎛

⎜
⎜
⎜
⎜
⎝

Q ∂ Q
∂θi

∂ Q
∂θ j

∂2 Q
∂θi ∂θ j

Q ∂ Q
∂θ j

Q ∂ Q
∂θi

Q

⎞

⎟
⎟
⎟
⎟
⎠

. (32)

Then the transient solution and its first and second derivatives can be expressed as
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�(t; θi , θ j ) = �(0; θi , θ j ) exp(Q(θi , θ j )t), (33)

�(t; θi , θ j ) =
(
π(t) ∂π(t)

∂θi

∂π(t)
∂θ j

∂2π(t)
∂θi ∂θ j

)
. (34)

Although the matrix Q(θi , θ j ) is not a infinitesimal generator of CTMC, we can
use the uniformization to compute the above solution. In addition, the cumulative
uniformization [23] of Q(θi , θ j ) gives the first and second derivatives of the cumu-
lative probability vector

∫ t
0 π(τ )dτ . Finally, in the case where rS and rT are constant

vectors, the first and second derivatives of instantaneous and cumulative rewards are

∂

∂θi
E[Z(t)] = ∂

∂θi
π(t)r S, (35)

∂

∂θi
E[Y (t)] = ∂

∂θi
ν(t) (r S + rT ) , (36)

∂2

∂θi∂θ j
E[Z(t)] = ∂2

∂θi∂θ j
π(t)r S, (37)

∂2

∂θi∂θ j
E[Y (t)] = ∂2

∂θi∂θ j
ν(t) (r S + rT ) . (38)

4.3 Example: Virtual Machine Model

As an example, we consider a reliability and availability model for virtual machines
(VMs) with migration [14]. The system consists of two physical hosts, and two VMs
run on either of physical hosts. Each of VMs provides a different service. When a
physical host fails, the VMs running on the server should be migrated to the other
host. This migration can be executed by (re)booting (booting) the VM on the other
host. On the other hand, if both physical hosts are up, a VM running on a physical
host can be migrated to the other host without stopping the service, which is known
as live migration. In the system, if two VMs run on one physical host even though
both physical hosts are up, a VM should be migrated to the other host for the purpose
of load balancing. Figure5 illustrates a state transition diagram of the CTMC model
of the system. Tables5 and 6 provide the description of states and transition rates in
the CTMC, respectively. In Fig. 5, the system is down at a state represented by the
circle filled by gray.

In this chapter, we consider the epistemic uncertainty propagation for reliability
and availability using the moment-based approach. The moment-based approach
also requires the variance of model parameters. Suppose that each model parameter
is independently estimated from n samples. Then the minimum-variance unbiased
estimator of population mean is given by the arithmetic mean of samples, and the
variance of estimator is the fraction of the population variance over the number of
samples. In this case, since all the model parameters are determined from the mean
of exponential distribution and Bernoulli distribution, it is assumed that the variance
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Fig. 5 CTMC state transition diagram of VM availability model [14].

of estimator is also given by the fraction of the variance of true distribution over the
number of samples. Concretely, on the mean time parameter such as Mean time for
host failure, the point estimate and the variance of estimator are

E[�̂] = 1

λ
, Var[�̂] = 1

n

(
1

λ

)2

, (39)

where 1/λ is the mean time parameter given in Table6. Also, on the coverage param-
eter, the point estimate and the variance of estimator are

E[�̂] = p, Var[�̂] = p(1 − p)

n
, (40)

where p is the coverage probability given in Table6. This situation implies the ideal
situation where we have succeeded to estimate the true parameters from n samples.
Note that the uncertainty of parameters still remains due to the finite number of
samples even though this is the ideal situation where we estimate the true parameters.

Table7 presents the variance of model parameters when the number of samples
n = 1, 5, 10, 100. The last row in the table indicates the system availability given
from the moment-based approach. In fact, the system availability when we use the
true parameters and the variance of parameters is 0 becomes 0.99999920. Although
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Table 5 The states of system

State Description

UUXUUX VM1 is running on H1, VM2 is running on H2

FXXUUX H1 is failed, VM1 is failed due to the failure of
H1.VM2 is running on H2

DXXUUR H1 failure is detected, VM1 is restarting on H2

DXXUUU H1 is down, VM1 and VM2 are running on H2

UXXUUU H1 is up, VM1 and VM2 are running on H2

UXXFXX H1 is up, H2 is failed. VM1 and VM2 are
failed due to the failure of H2

URXDXX H2 failure is detected. VM1 is restarting on H1

DXXFXX H1 is down, H2 is failed

DXXDXX H1 is down, H2 failure is detected

DXXURX H1 is down, H2 is up, VM2 is restarting on H2

UXXURX H1 is up, H2 is up, VM2 is restarting on H2

UXXUUR H1 is up, VM2 is running on H2.VM1 is
restarting on H2

UFaXUUX App1 is failed, both VMs and Hosts are up

UDaXUUX App1 failure is detected

UPaXUUX App1 failure is not covered.Additional
recovery step is started

UFvXUUX H1 is up, VM1 is failed, VM2 is running on H2

UDvXUUX VM1 failure is detected

UPvXUUX VM1 failure is not covered. Manual repair is
started

the variance of model parameters is not so small, the uncertainty of parameters does
not affect the system availability. That is, if we catch the mean values accurately,
the system availability can be computed by plugging in the estimates as the model
parameters.

Figure6 shows the reliability functions obtained from themoment-based approach.
In the figure, ‘True’ indicates the reliability function when the variance of param-
eters is 0. From this result, we find the reliability function is more sensitive to the
uncertainty of parameters compared to the system availability. In the simple formula,
the system availability is given by the fraction of mean times for UP and DOWN,
and it does not depend on the probability distribution. On the other hand, the relia-
bility function is given by a transient solution of CTMC and it represents the failure
distribution itself. Therefore, even in the general case, the reliability function may
be more sensitive to the uncertainty than the system availability.
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Table 6 Model parameters

Parameter Description Value

1/λh Mean time for host failure 2654 h

1/λv Mean time for VM failure 2893 h

1/λa Mean time to Application
failure

175 h

1/δh Mean time for host failure
detection

30 s

1/δv Mean time for VM failure
detection

30 s

1/δa Mean time for App failure
detection

30 s

1/mv Mean time to migrate a VM 330 s

1/rv Mean time to restart a VM 50 s

1/μh Mean time to repair a host 100min

1/μv Mean time to repair a VM 30min

1/μ1a Mean time to App first repair
(covered case)

1min

1/μ2a Mean time to App second
repair (not covered case)

20min

cv Coverage factor for VM repair 0.95

ca Coverage factor for application
repair

0.8

Table 7 Uncertainty (variance)

Parameter n = 1 n = 5 n = 10 n = 100

1/λh 9.55e+06 4.27e+06 3.02e+06 9.55e+05

1/λv 1.04e+07 4.66e+06 3.29e+06 1.04e+06

1/λa 6.30e+05 2.82e+05 1.99e+05 6.30e+04

1/δh 30.0 13.4 9.5 3.0

1/δv 30.0 13.4 9.5 3.0

1/δa 30.0 13.4 9.5 3.0

1/mv 330.0 147.6 104.4 33.0

1/rv 50.0 22.4 15.8 5.0

1/μh 6000.0 2683.3 1897.4 600.0

1/μv 1800.0 805.0 569.2 180.0

1/μ1a 60.0 26.8 19.0 6.0

1/μ2a 1200.0 536.7 379.5 120.0

cv 0.218 0.097 0.069 0.022

ca 0.400 0.179 0.126 0.040

Availability 0.99999603 0.99999857 0.99999888 0.99999917
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Fig. 6 Reliability functions

5 Summary

In this chapter, we have introduced the moment-based approach to propagate epis-
temic uncertainty in the CTMC models. The method is based on the Taylor series
expansion of multiple integration, and provides the accurate results in the case where
the variance of model parameters is relatively small. In the numerical experiments,
we have first shown the comparison between the moment-based approach and Bayes
estimation. In this result, the reliability considering the epistemic uncertainty was
different from the one of plugin estimates. This implies that the propagation of
epistemic uncertainty is needed to ensure the highly accurate estimation for the
system reliability measures. Also, in the experiment of VM availability, we have
presented the applicability of moment-based approach to the case where there are
many model parameters and more general reward-based output measures. This is the
example where we cannot apply the analytic and numerical integration approaches,
and indicates the advantage of moment-based approach to the analytic and numerical
integration approaches.

Appendix

Let M(θ) be an output measure of a dependability model, where θ = (θ1, . . . , θ l)
T

is a column vector representing a parameter vector. Also, � is a parameter random
vector. Define f�(θ) is the joint epistemic density of the parameter vector �.

Suppose that the point estimate of θ̂ is given by the expected value of f�(θ), i.e.,

θ̂ = E[�] =
∫

θ f�(θ)dθ . (41)
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First we consider the approximation of the expectation of M(�):

E[M(�)] =
∫

M(θ) f�(θ)dθ . (42)

By taking Taylor series expansion of M(θ) at θ̂ , we have:

E[M(�)] =M(θ̂) + E[M ′(θ̂)T (� − θ̂)]
+ 1

2
E

[
(� − θ̂)T M ′′(θ̂)(� − θ̂)

]
+ · · · (43)

where

M ′(θ̂) = ∂M(θ)

∂θ

∣
∣
∣
∣
θ=θ̂

=
(

∂M(θ)

∂θ1

∣
∣
∣
∣
θ=θ̂

· · · ∂M(θ)

∂θ l

∣
∣
∣
∣
θ=θ̂

)T

(44)

and

M ′′(θ̂) = ∂2

∂θ2 M(θ)

∣
∣
∣
∣
θ=θ̂

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂2M(θ)

∂θ2
1

∣
∣
∣
∣
θ=θ̂

· · · ∂2M(θ)

∂θ1∂θ l

∣
∣
∣
∣
θ=θ̂

...
. . .

...

∂2M(θ)

∂θ l∂θ1

∣
∣
∣
∣
θ=θ̂

· · · ∂2M(θ)

∂θ2
l

∣
∣
∣
∣
θ=θ̂

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (45)

Since θ̂ = E[�], the second term of Taylor series expansion becomes 0. We have
the following approximation

E[M(�)] ≈ M(θ̂) + 1

2
E

[
(� − θ̂)T M ′′(θ̂)(� − θ̂)

]

= M(θ̂) + 1

2

( l∑

i=1

M ′′
i,i (θ̂)Var[�i ] + 2

l∑

i=1

i−1∑

j=1

M ′′
i, j (θ̂)Cov[�i ,� j ]

)

,

(46)

where M ′′
i, j (θ̂) is an (i, j)-element of M ′′(θ̂).

Similar to the approximation of E[M(�)], we consider Taylor series expansion
of the second moment of M(�), i.e.,
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E
[
M(�)2

] = M(θ̂)2 + E[2M(θ̂)M ′(θ̂)T (� − θ̂)]
+ E

[
(� − θ̂)T

(
M ′(θ̂)M ′(θ̂)T + M(θ̂)M ′′(θ̂)

)
(� − θ̂)

]
+ · · · . (47)

The approximation is given by

E
[
M(�)2

] ≈ M(θ̂)2 +
l∑

i=1

(
M ′

i (θ̂)2 + M(θ̂)M ′′
i,i (θ̂)

)
Var[� j ]

+ 2
l∑

i=1

i−1∑

j=1

(
M ′

i (θ̂)M ′
j (θ̂) + M(θ̂)M ′′

i, j (θ̂)
)
Cov[�i ,� j ]. (48)

References

1. Amer HH, Iyer RK (1986) Effect of uncertainty in failure rates on memory system reliability.
IEEE Trans Reliab R-35(4):377–379

2. Asmussen S, Glynn PW (2007) Stochastic simulation: algorithms and analysis. Springer
3. Blake JT, Reibman AL, Trivedi KS (1988) Sensitivity analysis of reliability and performability

measures for multiprocessor systems. In: 1988 ACM SIGMETRICS conference on measure-
ment and modeling of computer systems

4. Coit DW (1997) System reliability confidence intervals for complex systems with estimated
component reliability. IEEE Trans Reliab 46(4):487–493

5. Devaraj A,Mishra K, Trivedi K (2010) Uncertainty propagation in analytic availability models.
In: Symposium on reliable distributed systems, SRDS, vol 2010, pp 121–130

6. Dhople SV, Dominguez-Garcia AD (2012) A parametric uncertainty analysis method for
Markov reliability and reward models. IEEE Trans Reliab 61(3):634–648

7. Glasserman P Liu Z (2007) Sensitivity estimates from characteristic functions. In: Henderson
SG, Biller B, Hsieh M-H, Shortle J, Tew JD, Barton RR (eds) Proceedings of the 2007 winter
simulation conference, pp 932–940

8. Gribaudo M, Pinciroli R, Trivedi K (2018) Epistemic uncertainty propagation in power mod-
els. Electron Notes Theoret Comput Sci 337:67–86. Proceedings of the ninth international
workshop on the practical application of stochastic modelling (PASM)

9. Harverkort B, Meeusissen AMH (1995) Sensitivity and uncertainty analysis of Markov-reward
models. IEEE Trans Reliab 44(1):147–154

10. Helton JC,Davis FJ (2003)Latin hypercube sampling andpropagation of uncertainty in analysis
of complex systems. Reliab Eng Syst Safety 81(1):23–69

11. Helton JC, Johnson JD, Sallaberry CJ, Storlie CB (2006) Survey of sampling-based methods
for uncertainty and sensitivity analysis. Reliab Eng Syst Safety 91(10–11):1175–1209

12. Hirel C, Tuffin B, Trivedi KS (2000) SPNP: stochastic petri nets. version 6.0. In: Computer per-
formance evaluation. Modelling Techniques and Tools, vol 1786. Springer Berlin/Heidelberg,
pp 354–357

13. Leiberman GJ, Ross SM (1971) Confidence intervals for independent exponential series sys-
tems. J Am Statist Assoc 66(336):837–840

14. Matos RDS,Maciel PRM,Machida F, KimDS, Trivedi KS (2012) Sensitivity analysis of server
virtualized system availability. IEEE Trans Reliab 61(4):994–1006

15. Mishra K, Trivedi KS (2011) Uncertainty propagation through software dependability models.
In: 2011 IEEE 22nd international symposium on software reliability engineering, pp 80–89



392 H. Okamura et al.

16. Mishra K, Trivedi KS, Some R (2012) Uncertainty analysis of the remote exploration and
experimentation system. J Spacecraft Rockets 49:1032–1042

17. Mishra K, Trivedi KS (2010) A non-obtrusive method for uncertainty propagation in analytic
dependability models. In: Proceedings 4th Asia-Pacific international symposium on advanced
reliability and maintenance modeling (APARM 2010)

18. Okamura H, Dohi T, Trivedi K (2018) Parametric uncertainty propagation through dependabil-
ity models. In: 2018 eighth Latin-American symposium on dependable computing (LADC),
pp 10–18

19. Okamura H, Dohi T (2016) Performance comparison of algorithms for computing parametric
sensitivity functions in continuous-timeMarkov chains. In: Proceedings of the 7th Asia-Pacific
international symposium on advanced reliability and maintenance modeling (APARM 2016),
(Taiwan), McGraw-Hill, pp 415–422

20. Pinciroli R, BobbioA, Boichini C, Cerotti D,GribaudoM,MieleA, TrivediK (2017) Epistemic
uncertainty propagation in a Weibull environment for a two-core system-on-chip. In: 2017 2nd
international conference on system reliability and safety (ICSRS), pp 516–520

21. Pinciroli R, Trivedi KS, Bobbio A (2017) Parametric sensitivity and uncertainty propaga-
tion in dependability models. In: Proceedings of the 10th EAI international conference on
performance evaluation methodologies and tools on 10th EAI international conference on
performance evaluation methodologies and tools, VALUETOOLS’16, pp 44–51, ICST, Brus-
sels, Belgium, Belgium, 2017. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering)

22. Ramesh AV, Trivedi KS (1993) On the sensitivity of transient solutions of Markov models. In:
1993 ACM SIGMETRICS conferecne on measurement and modeling of computer systems

23. Reibman A, Trivedi KS (1989) Transient analysis of cumulative measures of Markov model
behavior. Stochast Models 5(4):683–710

24. Sarkar TK (1971) An exact lower confidence bound for the reliability of a series system where
each component has an exponential time to failure. Technometrics 13(3):535–546

25. Singpurwalla ND (2006) Reliability and risk: a bayesian perspective (1st edn). Wiley
26. Stamatelatos M, Apostolakis G, Dezfuli H, Everline C, Guarro S, Moeini P, Mosleh A, Paulos

T, Youngblood R (2002) Probabilistic risk assessment procedures guide for NASA managers
and practitioners. http://www.hq.nasa.gov/office/codeq/doctree/praguide.pdf

27. Trivedi KS (2001) Probability and Statistics with Reliability. Queuing Comput Sci Appl
28. Trivedi KS, Bobbio A (2017) Reliability and availability engineering: modeling, analysis, and

applications. Cambridge University Press, Cambridge, UK
29. Trivedi KS, Sahner R (2009) SHARPE at the age of twenty two. SIGMETRICS Performance

Evaluat Rev 36(4):52–57
30. Yin L, Smith M, Trivedi KS (2001) Uncertainty analysis in reliability modeling. In: Reliability

and maintainability symposium, pp 229–234

http://www.hq.nasa.gov/office/codeq/doctree/praguide.pdf


System Dependability
Assessment—Interplay Between
Research and Practice

Mohamed Kaâniche and Karama Kanoun

Abstract This chapter illustrates examples of collaborative work with industry in
which we have been involved over time. We concentrate on a set of projects one or
both authors contributed to, in the area of dependability assessment. These collabora-
tions are grouped into four main topics, corresponding respectively to: model-based
dependability assessment, software reliability, simulation and fault injection based
dependability assessment, online error detection and diagnosis. We show examples
of results obtained in the framework of these collaborations.

1 Introduction

This chapter aims to briefly present examples of collaborative work with industry
in which we have been involved over time. We concentrate on a set of projects one
or both authors contributed to, in the area of dependability assessment. Assessment
is used in a broad sense, including dependability evaluation based on (i) behavioral
systemmodels, or on (ii) data collected on a real system, or on (iii) controlled experi-
ments,mainly based on fault injections. The assessment has been used either at design
time to help define system architecture and components, or at run time, to charac-
terize potential system misbehavior or to help and plan corrective or maintenance
actions.

The topics addressed in the collaborative work evolved during the years, initially,
taking into account mainly hardware accidental faults and concentrating on system
safety, then integrating progressively software design faults, either considered alone,
or considering both hardware and software faults and their interactions. Later, we
have focused on the assessment of the impact of malicious faults on system security,
considered alone, then jointly addressing safety and security together. More recently,
model learning approaches used at run time, for error detection and diagnosis, have
become central.

M. Kaâniche (B) · K. Kanoun
LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche,
31400 Toulouse, France
e-mail: Mohamed.Kaaniche@laas.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Wang et al. (eds.), System Dependability and Analytics, Springer Series in Reliability
Engineering, https://doi.org/10.1007/978-3-031-02063-6_23

393

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02063-6_23&domain=pdf
mailto:Mohamed.Kaaniche@laas.fr
https://doi.org/10.1007/978-3-031-02063-6_23


394 M. Kaâniche and K. Kanoun

The context in which our collaborations with industry have been triggered can be
classified into two extreme situations:

• The company has immediate needs, together with a very specific problem to solve
in short or near terms.

• The company needs are real, but the problem to address is open, it is not
clearly stated (on purpose), this case usually corresponds to advance long-term
prospection, to increase the company’s technical skills and be ready for new
challenges.

Of course, intermediate situations are not uncommon: starting with a very specific
problem to be immediately solved, the ultimate aim of the work could be to go further
and prepare new changes for the company.

Obviously, long-term objective situations, without very specific problems to solve
a priori, are more challenging for research, as they are usually far-reaching and
ambitious. The topics are then defined jointly with the company. On the other
hand, very specific problems, requiring immediate solutions, might be less chal-
lenging for research, in particular when similar problems have already been solved
in other sectors. In this case, research role could be to open the company’s vision
to leading practices in other sectors, and can go further by generalizing the problem
and providing solutions that are as generic as possible.

Indeed, the company is a priori interested in solutions that correspond to their
specific business, and research is interested in real problems to solve that could fit
other sectors.

In the rest of this chapter, wewill briefly present examples of workwe have carried
out in collaboration with industry. These examples are grouped in four sections:
(i) model-based dependability assessment, (ii) software reliability, (iii) simulation
and fault injection based dependability assessment, (iv) online error detection and
diagnosis.

2 Model-Based Dependability Assessment

Usually, dependability assessment is carried at design time, in order to define an
appropriate system architecture satisfying the system dependability requirements.
However,model-based dependability assessment could also be helpful during system
operation to anticipate system failures and to schedule system maintenance and/or
reschedule systemmission accordingly. Our work, in an industrial context, addressed
essentially the design phase, with an exception, related to aeronautics. Even though
the same modeling techniques can be used at runtime, the added constraints concern
essentially the way models should be structured to allow their quick update (and
re-execution) during system operation, without requiring an additional validation.

The main difficulties when modeling real-life systems come from the inherent
complexity of the system performing a multitude of related or correlated functions,
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which induces large-scale models, requiring large processing times and tedious vali-
dation process. In addition, during system design, assessment is used as a powerful
means for comparing possible system architectures to select the most suitable one.
Modeling approaches are thus needed to optimize model construction of competing
architectures, their processing and validation, to encourage comparison of several of
them. This is also true for assessment at runtime, as one has to compare maintenance
strategies that are possible, depending on the nature of failed components and on the
maintenance environment available at the time of failure.

Defining an appropriate dependability measure (or attribute) to be assessed is
fundamental. Indeed, classical measures such as availability of safety do not neces-
sarily allow bringing out themost salient properties of the system. In addition, several
complementary attributes are most of the time required to highlight various facets of
a system.

Our work related to dependability assessment was based on Markov chains and
evolved towards Generalized Stochastic Petri Nets (GSPNs) and their offspring.
We have also explored how to automate the generation of GSPN based model from
higher levels description languages such asAADL(ArchitectureAnalysis andDesign
Language), a mature industry-standard [18]. To illustrate the kind of modeling activi-
ties we have carried out in collaboration with industry, we have selected three critical
domains: electricity production and distribution, air traffic control, and aeronautics.

2.1 Electricity Production and Distribution

Several collaborations took place with EDF, the French multinational electric utility
company. The first one [16] was dedicated to the definition of a new architecture for
the monitoring systems of an Extra High Voltage substation, driven by rare, external
solicitations, due to incidents in the process. The main difficulties were due to (i) the
dormancy of the considered system, some parts of which could be failed for a long
period of time and could not be detected without the occurrence of an incident or
until the next system inspection, and (ii) there were very few model processing tools
well suited to this kind of systems and we have adapted SURF-2 [1] to this end. The
approach we have followed was based on (i) the definition of dependability levels
and attributes, directly from the statement of system functions, that can be physically
interpreted, and (ii) the construction of the systems dependability model by aggre-
gatingmodels of subsets that have been reduced to include only those parameters that
have a real influence on the considered attribute. The results have shown the impact of
redundancy both at the computing system level (using double or triple redundancy
for all local equipment) and at the communication level (a reconfigurable optical
counter-rotating double loop) [4]. Even though the above results addressed only the
hardware part of the systems and seem obvious nowadays, the work performed was
challenging because of its explorative nature at that time.

Amore recent collaborationwithEDFwas dedicated to the selection of Instrumen-
tation and control system based on modeling together with fault injection. Candidate
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architectures proposed by various suppliers were compared based on GSPNs [2].
The most impacting parameters identified are then evaluated experimentally using
fault injection [3].

2.2 Air Traffic Control

As the air traffic control (ATC) volume is continuously and rapidly growing, the
associated control systems have to evolve to meet this trend. The French ATC is
based on an automated system (the CAUTRA, “Coordinateur Automatisé du Trafic
Aérien”) providing a valuable support to controllers. CAUTRA is implemented on a
distributed fault-tolerant computing system composed of five regional control centers
(RCC) ensuring coverage of the whole country, and a centralized operating center,
connected to these centers through a dedicated telecommunication network. Redun-
dancy and fault tolerance mechanisms are used at various hardware and software
component levels.

In the framework of two joint collaborations, we have developed two modeling
approaches, dedicated respectively to the assessment of:

• RCC availability: with respect to its two main functions, Flight Plan Processing
(FP) and Radar Data Processing (RD), based on the analysis of the impact of the
failures of its own components, (see e.g. Kanoun et al. [15]).

• ATC safety: based on the analysis of the impact of the CAUTRA components’
failures on the degradation of the service provided to the controller, including
the global CAUTRA system architecture with the five interconnected RCC
subsystems interconected [8].

For each case, we have defined and modeled several alternative architectures,
compared their dependability measures, and identified the most important factors
impacting thesemeasures. Even though the twomodeling approaches are (i)modular,
(ii) based on GSPNs and (iii) take into account permanent and transient failures of
hardware and software components as well as error propagation between compo-
nents, they differ in the model construction approaches due to the very different
nature of the final measures to be assessed. Availability is defined at the regional
center level, while safety is evaluated at the CAUTRA level requiring the knowledge
of the states of all centers. Hence, in addition to modeling of the five regional centers
and the centralized operating center, ATC safety analyses rely heavily on a detailed
Failure Modes and Criticality Analysis (FMECA) to define and assess the service
degradation levels.

For example, for RCC availability assessment, a block modeling approach has
been defined to assess the impact of reconfiguration strategies on the availabilities
of FP and RD. A block represents the model of a component or a dependency.
The block models are generic and have well-defined interfacing rules to facilitate
their composition as well as validation of the resulting composed models. Hence,
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several reconfiguration strategies have been easily compared, with only few addi-
tional blocks, compared to the current architecture at that time. The comparative
analyses identified the reconfiguration strategies that satisfy the following important
requirement: RD unavailability should be less than 5 min per year.

For ATC safety, the models of the regional and the centralized centers are built
independently in successive steps according to an incremental approach, following
specific construction guidelines, to assess the centers dependability, together with an
appropriate specification language associated with transformation rules allowing an
automatic generation of optimized GSPNs. The resulting models are very complex.
For example the GSPN of the Radar Data Processing and the Flight Plan Data
Processing Systems has about 100 places and 500 transitions and corresponds to a
reducedMarkov chain of about 25,000 states. At the global level, the partial measures
assessed for the six centers are combined to assess their impact on ATC safety, more
precisely, on the levels of degradation of the service provided to the controller. The
results identified the most impacting features that need to be monitored during the
design phase.

2.3 Aeronautics

As stated earlier,model-based dependability assessment can be helpful during system
operation too, to anticipate system failures (or mission interruption). This is typically
the case in aeronautics where airline companies and operators need to reschedule a
mission if some components fail. Our collaboration with Airbus was in this context.

The main challenge comes from the fact that the model has to be tuned dynami-
cally, in operation, to take into account the current state of the system, themaintenance
environments and potential new information by operators. Indeed, these operators
usually do not have any knowledge related to dependability modeling techniques.
Hence the model should be prepared and validated in advance, offline, in a way that
makes it easily and very quickly configurable in operation.

To this end, we have developed a modeling approach, based on a metamodel used
to (i) structure the information needed to assess operational reliability, and to (ii)
build a stochastic model to be tuned dynamically to take into account the system
operational state, the mission profile and the maintenance facilities [21]. This model
allows to (i) assess, on-the-fly, the ability to succeed in continuing on the remaining
part of the mission, in case of an unscheduled event occurrence, and to (ii) support
maintenance planning. A case study, based on an aircraft subsystem, is considered
for illustration, using the Stochastic Activity Networks formalism. It shows how to
re-schedule amission, based on the failed component and its impact on the remaining
part of the mission, as well as the maintenance possibilities at the various stops of
the aircraft [22].
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3 Software Reliability

Even though the first software reliability growth models have been published in early
70s, their practical use in industrial environments was very seldom at the time we
had our collaborations with industry. Our first investigations showed that preliminary
rigorous analyses of failure data are required beforemodel applications. For example,
reliability growth/decrease tests (i) tell about the impact of fault removal on software
reliability evolution and (ii) guide selection of models to be applied according to
their trend. In particular, reliability growth model assuming pure reliability growth
give non-meaningful results if applied to data displaying reliability decrease over
some periods of time. Data partitioning improves model results.

We briefly report on two collaborations concerning Electronic Switching Systems
(ESSs), developed by two different companiesAlcatel andTELEBRAS.Even though
both companies were interested in assessing software behavior in operation, the
measures of interest were different, due essentially to the different maturity levels of
the software, when the study took place.

ForAlcatel, the dataset analyzedwas collected during 3 years, on amature system,
in operation on more than 1000 sites. One of the expected results of the collaboration
was an estimate of the software failure rate. Alcatel aim was to build aMarkov chain,
taking into account hardware and software failures, to assess the switching system
unavailability, to check its compliance with the international telecommunications
requirements (that was less than 3 min/year).

Detailed analyses of the data either at the level of the ESS, at the components
levels, as well as taking into account the severity of failures (impact of failures
on service loss) is performed in [14]. They show for example that: (i) the defense
component (in charge of hardware fault tolerance) has the highest failure rate, the
three other software components dedicated to functional operation have equivalent,
lower, failure rates, (ii) only a very low number of faults led to service unavailability,
the others had minor impact.

TELEBRAS started the development of a new series of ESSs increasing progres-
sively the ESS capacity. We concentrated first on the software of the early one
before considering together three successive generations. This very first analysis
[13] allowed to gain insight into the development process and provided, among other
things, an estimate of the number of failures that will occur in the field (equivalently,
the number of required corrections), for planning the maintenance effort after system
delivery. A comparative analysis of the reliability, in terms of failure rates, of the
three generations gives insight into the evolution of the reliability of a family of
products [11]. Examples of comparative analyses, with respect to the evolution of
the nature of faults activated and their impact through the successive generations,
can be found in [9].
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4 Dependability Assessment Based on Simulation and Fault
injection

Simulation offers complementary means to analytical modeling for analyzing and
assessing dependability. Specifically, it offers the possibility to take into account
a much wider spectrum of assumptions and to describe the system behavior at a
relatively lower level of detail, in order to analyze the effects of faults as close as
possible to the components where they occur, and to study their impacts at the system
level. Also, it can be used to estimate the parameters involved in analytical depend-
ability models. The main challenge is related to the need to master the simulation
time that increases dramatically when the model is simulated at a low level of detail.
One possible solution is to develop a hierarchical simulation approach to analyze
the behavior of the target system in the presence of faults by considering different
levels of abstraction. We have explored this approach in the context of a collabora-
tive research project involving the University of Illinois at Urbana-Champaign, and
the StorageTek Company in Colorado, USA [10]. This approach was developed to
support the dependability analysis and evaluation of a highly available commercial
cache-based RAID storage system. The architecture is complex and includes several
layers of overlapping error detection and recovery mechanisms. Three abstraction
levels have been considered to model the cache architecture, cache operations, and
error detection and recovery mechanism. The impact of faults and errors occurring
in the cache and in the disks was analyzed at each level of the hierarchy. The models
have been developed using the DEPEND simulation-based environment developed
at UIUC, which provides facilities to inject faults into a functional behavior model,
to simulate error detection and recovery mechanisms, and to evaluate quantitative
measures. Several fault models were defined for each submodel to simulate cache
component failures, disk failures, transmission errors, and data errors in the cache
memory and in the disks. Some of the parameters characterizing fault injection
in a given submodel correspond to probabilities evaluated from the simulation of
the lowerlevel submodel. Based on the proposed methodology, we evaluated and
analyzed (i) the system behavior under a real workload and high error rate (focusing
on error bursts), (ii) the coverage of the error detection mechanisms implemented in
the system and the error latency distributions, and (iii) the accumulation of errors in
the cache and in the disks. It is important to emphasize that an analytical modeling of
the system is not appropriate in this context due to the complexity of the architecture,
the overlapping of error detection and recovery mechanisms, and the necessity of
capturing the latent errors in the cache and the disks.

Another major challenge in industry concerns the efficient integration of depend-
ability assessment techniques into their existing system engineering process and
tools. We had the opportunity to explore this challenge with Technicatome, a
French industrial leader in nuclear engineering and with Valeo, a global world-wide
automotive supplier.

With Technicatome, the objective was to rely on a commercial systems engi-
neering tool (RDD-100) in order to facilitate the integration of operational safety
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analyses in industrial processes at early design stages. This work has resulted in
the extension of the functionalities offered by this tool by defining mechanisms for
injecting faults into RDD-100 models and analyzing their effects from the point of
view of operational safety. The proposed mechanisms are based on two complemen-
tary techniques. The first one consists in inserting saboteurs, to disturb the inputs
or outputs of the elementary components of the nominal model as well as their
behavior. The second one consists in directly mutating the code of the elementary
components of the nominal model. A critical analysis of the advantages and limi-
tations of each of these techniques, in terms of difficulty of implementation and
the possibilities offered for fault injection and observation of their effects, led us to
propose a solution combining these two techniques [12].

Collaboration with Valeo took place in the context of the publication of the first
standard specifically dedicated to automotive safety systems, ISO 26262. This stan-
dard requires introducing fault injection from the very early phases of the develop-
ment process. Indeed, even though experimental validation of embedded systems,
including fault injection, was of common practice in industry, its adoption in the
early design phase, as advocated by the ISO26262 standard, was not common and
unclear. In this context, we developed a global approach integrating fault injection
in the whole development process in a continuous way, from system requirements
to the verification and validation phase. We have shown the strong link between
classical safety analyses, commonly used in industry for critical systems design and
fault injection principles at design phase. In particular, we have shown the similarities
between two well-known domains that are separated in practice, namely (i) Failure
Modes, Effects, and Criticality analyses Analysis (FMECA) and (ii) fault injection.
More precisely, we have shown how FMECA spreadsheets (i) can be used to guide
fault injection on one hand, and to synthesize the results of fault injection in the other
hand, and (ii) to link the successive development levels via their failure modes, their
causes and their effects, to capture the failure propagation paths between the levels.
These chains help making fault injection campaigns effective.

We have shown the benefits of the proposed approach [17], which is compliant
with the ISO 26262 standard, on a case study from the automotive domain. The
ultimate aim was to guide fault injection experiments, based on early system safety
analyses to optimize the whole development process by defining an optimal set of
experiments. From a practical point of view, a fault injection tool was developed by
Valeo to implement fault injection at various levels.

5 Online Error Detection and Diagnosis

Traditional approaches to dependability assessment are based on the development of
models during the design phase in order to assist in architectural choices. However,
the need is more and more for automated solutions allowing to monitor and assess
the dependability of the system at run-time, i.e. while the system is in operation,
using in particular machine learning algorithms. Indeed, the massive collection of
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data together with the significant progress and successes achieved with machine
learning algorithms have motivated the exploration of these algorithms to support
anomaly detection and diagnosis in several application areas. It should be noted that
such models have been studied since the 1980s, but have received increased attention
in the recent years due to the growing interest in artificial intelligence techniques,
particularly in industry.

We have explored the use of such techniques to support online error detection
and diagnosis in cloud infrastructures and future telecommunication architectures
using network functions and software virtualization technologies (SDN and NFV).
This study was carried out in collaboration with Orange Labs. In particular, we have
defined a generic strategy enabling the detection of two types of anomalies in cloud
services (errors and service level agreement violations)while providing twodiagnosis
levels to the cloud provider (i.e., identifying the anomalous virtual machine and the
type of error causing the anomaly) [19]. The strategy is based on system monitoring
data collected online either from the monitored cloud service, or from the underlying
hypervisor(s) hosting the service. Different types of machine learning algorithms
(supervised, unsupervised, and hybrid) were used to classify anomalous behaviors
of the service. Moreover a fault injection tool was developed to collect training data
including anomalous samples to train the detection and diagnosis models and to
validate our detection strategy. The evaluation was applied to two case studies: a
database management system (MongoDB) and an IP multimedia system developed
as a virtual network function.

In particular, we have compared the efficiency of several classification algorithms
and concluded that the Random Forests algorithm provides in our context the best
tradeoff in terms of detection efficiency and training and detection time. The experi-
mental results include a comparative analysis of the detection performance obtained
with Operating Systems related monitoring data and hypervisor monitoring data.

We have explored similar approaches in the security area to support the detection
of potential intrusions targeting critical embedded applications. In particular, in the
context of a joint work with Thales avionics, we designed and implemented a host-
based intrusion detection system (HIDS) adapted to the specific constraints and strin-
gent requirements of real-time critical applications embedded in Integrated Modular
Avionics (IMA) architectures [6]. The proposedHIDS implements an anomaly-based
approach based on the monitoring of ARINC 653 API calls. The model of the legit-
imate behavior of the application is built based on data collected during the aircraft
integration phase. Besides detecting anomalous behaviors of the target application,
a signature-based system providing a first diagnosis after the detection of an anoma-
lous behavior was also implemented. This approach has been validated on a real
avionic computer and yielded good results in terms of classification accuracy and
resource consumption [7]. To support the validation of theHIDS, we developed a tool
enabling the automatic injection of attacks and the generation of application code
mutations that mimic the behavior of malevolent pieces of code introduced inside
the target application [5].

Besides avionics, we also had the opportunity to design and implement, in collab-
oration with Renault, an intrusion detection system for CAN (Controller Area
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Network) based embedded automotive networks, that takes into account specific
constraints of the automotive domain (simplicity of implementation without modi-
fying the ECU (Electronic Control Unit) architecture, low cost, low detection
latency). The proposed approach consists in automatically generating attack signa-
tures from automata based models, derived from the ECU specification, describing
the behavior of the ECUs on board interacting via messages on the CAN bus [20].
This approachwas validated on an early prototype using simulated attacks performed
on logs of an actual CAN network.

6 Lessons Learned and Concluding Remarks

Joint collaborationswith industry have always been an important source of inspiration
for new research challenges and solutions, as well as an opportunity to validate our
results on real-life use cases and applications. Such collaborations have allowed us to
address a wide range of topics with several industry partners from various application
domains (aeronautics, automotive, telecommunication, energy, etc.). Development
of scalable and generic solutions that can accommodate the increasing complexity
of computing systems and be easily integrated within industrial system engineering
processes are concerns shared by several industry partners. The examples presented
in this chapter clearly show the evolution of the topics of interest to industry over
the years, at least as we have experienced it from our side. This evolution is in-line
with the evolution of the technological trends through the years.

Over the years, we learned to reach quickly a consensus between industry needs
and research objectives while preserving intellectual and industrial properties. In
particular, we have accepted not to publish all results. In an academic world where
publication is becomingmore andmore a driving process, thismay be not acceptable.
However, we have always been able to agree on (i) parts of results we were allowed
to publish and/or include in the PhD dissertation without harming the industrial
properties and (ii) results to be delivered to the industrialist only. With the benefits
of hindsight, this process was always challenging and extremely rewarding. Another
lesson learned concerns the clear distinction, upfront, between the user and the system
provider perspectives. This led us to define dependability attributes related to the
two points of view, and try to optimize both of them or at least reach an acceptable
compromise, which was not obvious all the time, but truly challenging too.

Currently, significant efforts in many industries are being devoted to exploring the
opportunities opened by recent advances in artificial intelligent techniques together
with massive data collection thanks to the widespread deployment of IoT technolo-
gies. One of the main questions is how to leverage these techniques in various areas
(monitoring, anomaly and intrusion detection and diagnosis, testing, etc.) to improve
the dependability, resilience and quality of service of networks and computer systems
performance while reducing the costs. A major challenge in this context is related
to the lack of trust and confidence in such techniques and the need for rigorous and
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formalized approaches to provide justified assurance and ensure a better explain-
ability and acceptability of AI algorithms in a context where malicious threats are
also increasing. This problem has many dimensions and requires an interdisciplinary
approach combining expertise from various scientific fields including mathematics,
optimization theory, computer science, and also social and neuro-sciences. The study
of use cases in different application domains and the cross-fertilization of solutions
from different industrial sectors will be a key to achieve significant advances in this
field.
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Assessing Dependability of Autonomous
Vehicles

Saurabh Jha

Abstract Autonomous vehicles (AVs) such as self-driving cars and unmanned aerial
vehicles are complex systems that use artificial intelligence (AI) and machine learn-
ing (ML) to make real-time navigational decisions. Ensuring the dependability of
AVs in terms of robustness, correctness, reliability, and safety is critical for their mass
deployment and public adoption. However, it is challenging to assess and ensure the
dependability of these systems due to their complexity both in terms of software
and hardware and in terms of the inherent stochasticity and uncertainty in the sensor
data andML/AI algorithms. In this chapter, we design and develop novel assessment
techniques to rigorously validate the AV system, including its runtime operational
characteristics. The developed assessment techniques address the challenges men-
tioned above and significantly outperform the current state-of-the-art assessment
techniques. We demonstrate our developed techniques and scientific contributions
using self-driving cars as a motivating example.

Keywords Autonomous vehicles · Safety · Assessment

1 Introduction

Autonomous vehicles (AVs) such as self-driving cars and unmanned aerial vehicles
are complex systems that use artificial intelligence (AI) and machine learning (ML)
to integrate mechanical, electronic, and computing technologies to make real-time
navigational decisions. AI enables AVs to make their way through complex environ-
ments while maintaining a safety envelope [1, 2] that is continuously measured and
quantified by onboard sensors (e.g., camera, LiDAR, RADAR) [3–5].

AVs suffer both from traditional dependability challenges in hardware and soft-
ware and from ML/AI-related challenges. Traditional dependability challenges in
hardware and software include single-event upsets, bugs, and performance anoma-
lies, whereas ML/AI-related challenges include data and model-related failures. (see
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Fig. 1 Threats and challenges in achieving dependability in mission-critical systems

Fig. 1). All of these factors create significant uncertainty at runtime in the system,
which may lead to erroneous decisions. For AVs, such errors must be detected and
mitigated dynamically at runtime with limited resource (because a commercial AV
has to be a cost-sensitive product for wide adoptability) and time budgets (because
a delay of few milliseconds can lead to safety hazards).

Industry-grade AVs are equipped with detection and mitigation techniques to
handle those challenges; however, a significant number of failures silently escape
detection. Such silent failures, if not dealt with, lead to erratic driving behavior and
safety hazards; thereby, reducing the trust we place on them, as exemplified from
several headline-making AV crashes [6, 7]. Moreover, an adversary can masquerade
an attack as a silent failure by intelligently perturbing the environment or models
to evade detection and successfully cause a safety hazard [8]. Hence, there is a
compelling need for a comprehensive assessment of AV technology to identify and
handle those silent failures.
Contributions. In this chapter,we propose novel assessment techniques to rigorously
validate the system, including its runtime operational characteristics.Wedemonstrate
these techniques and scientific contributions using self-driving cars as a motivating
example. A self-driving car uses an autonomous driving system (ADS) technology
capable of supporting and assisting a human driver in the tasks of (i) monitoring the
surrounding environment (e.g., other vehicles/pedestrians, traffic signals, and road
markings) [9] and (ii) planning and control of the vehicle by actuating the vehicle
using throttle, steer, and brake commands. We target self-driving cars because they
represent oneof themost complex systemsbuilt byhumans andbecause they integrate
mechanical, electrical, electronic, and machine-learning components. However, the
work described in this chapter is broadly applicable to other ML-driven control
systems.

Our contributions in the field of assessment include the following:

(a) Empirical assessment usingproduction systemsandfield-failure datasets: Empir-
ical measurement using field failure datasets obtained from a production systems
allows designers to (i) characterize unanticipated operational behavior and iden-
tify the underlying cause, (ii) statistically estimate the percentage contribution
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of different failure modes to safety hazards, and (iii) track the improvement in
safety over time. In this line of work, our contributions include (i) overlaying
domain-driven models with empirical datasets to deal with the inherent noise
and partial observability present in the real world and (ii) using real-world data
collected over 26 months from September 2014 to November 2016, obtained
from California Department of Motor Vehicle (CA-DMV), consisting of data
from 12 AV manufacturers for 144 vehicles that drove a cumulative 1,116,605
autonomous miles.

(b) Validation using fault injection and fuzzing: Perturbation techniques such as fault
injection and fuzzing allow designers to perturb the system and the environment,
respectively. Such techniques assess the system’s susceptibility to various fail-
ure modes and identify failure propagation chains, which can be used to develop
defenses. These validation techniques can be applied in both the real and simu-
lated worlds. However, validation in a simulated world is safer and faster than
validation in the real world, as it poses no risk to humans or property. In this
line of work, our contributions include accelerating validation techniques to (i)
significantly reduce the time needed to identify safety-hazard-causing faults and
fuzzes and (ii) increase the fault/fuzz coverage. The acceleration is achieved by
pruning the fault/fuzz space using domain knowledge and causal and counter-
factual reasoning techniques.

(c) Masquerading attacks as failures: Creating a security hazard that can be mas-
queraded as a random silent failure and result in a serious safety compromise
(for example, an accident) is attractive from an adversary’s perspective. Demon-
strating these attacks is particularly important for highly exposed systems like
self-driving cars because it allows designers to understand the steps required to
forge such an attack and to develop deterrents to make these attacks significantly
harder. In this line of work, our contributions include showcasing the steps of an
attack that can masquerade as a silent failure, including answering the questions
of what, when and how to attack.

Chapter organization. §2 describes the broader research impact. §3 describes empir-
ical techniques and results. §4 describes fault injection and fuzzing-based validation
techniques. It also describes an attack technique thatmasquerades attacks as naturally
and randomly occurring faults or perturbations. Finally, §5 concludes the chapter by
summarizing the work and providing ideas for future work.

2 Broader Research Impact

Society as a whole is going to witness exponential growth and adoption of AI/ML-
driven cyber-physical systems in critical application domains such as healthcare,
transportation, agriculture, and manufacturing. The availability and deployment of
dependable AI-driven cyber-physical systems is valuable, as they (i) increase effi-
ciency of tasks carried out by humans (e.g., search and rescue missions, pack-
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age delivery, and healthcare) and (ii) enable execution of tasks that are nearly
impossible or dangerous for humans (e.g., mineral mining and deep-sea explo-
ration). The widespread adoption of such systems in a human-centric environment
necessitates understanding AI-engineered systems and their capabilities in the pres-
ence of a wide range of uncertainties, from specification to real-time operations.
These next-generation, AI-driven systems demand an ever-increasing level of sys-
tem dependability (i.e., performance, robustness, security, maintainability, and ease
of use) not available today. The classical approach to dependability (availability, fault
tolerance, integrity, security, etc.) is based upon component reliability views and
fault/error/attack management at the architecture level. While necessary, the classi-
cal approaches are not sufficient, and new methods must be developed to account for
autonomy and safety requirements.

Our work is a step in that direction. We develop novel, causality-driven tech-
niques that meet those demands and provide the theory and foundation for designing
dependable (trustworthy) ML/AI-driven cyber-physical systems. Methods proposed
in this work will allow designers to assess and ensure the dependability of such
systems. We showcased these techniques on self-driving cars, which are complex,
mission-critical ML/AI-driven systems. We believe that the techniques proposed in
this work will pave the way to ensuring the dependability of other autonomous sys-
tems, such as unmanned aerial vehicles, agricultural robots, and kitchen bots, among
others.

3 Empirical Assessment Using Production Systems
and Field-Failure Datasets

Anempirical assessment of field datasets from real-world production systems enables
(i) discovery of failuremodes and operational characteristics encountered in the field;
(ii) quantification of failure statistics, the relative contribution of each failure mode,
and failure propagation paths; and (iii) mining and specification of assertions and
integrity properties that can further guide offline assessment and online detection.

However, using field-failure datasets is challenging, as the internal details of the
system are not available or interpretable (e.g., DNNs). Moreover, these datasets are
inherently noisy and incomplete, forcing theuser tomake assumptions thatmaynot be
true. Our work addresses these challenges by designing data analysis techniques that
overlay field-failure datasets with an abstract representation of the control system,
enabling us to query factual and counterfactual questions (use causal reasoning) to
reason about the observed safety hazards.
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3.1 Concept and Approach

Wedemonstrated ourmodel-driven, field-failure analysis technique by characterizing
the dependability of AVs to showcase the technique’s capability to evaluate the cause,
dynamics, and impact of failures across a wide range of AV manufacturers. We use
publicly available field data from tests on California public roads, including urban
streets, freeways, and highways [11].

Any feedback-based control system, such as an autonomous vehicle, must inter-
nally imitate a causal framework for achieving its goals. For example, a self-driving
car must perceive objects (via sensors and recognition systems), determine their
trajectories (via trajectory estimation), plan its own trajectory, and execute control
commands to follow the planned trajectory (via planning and control models). This
must be true irrespective of the nature of the system (i.e., whether it is driven using
expert-rules, deep learning techniques, or a combination of both). An accident or
disengagement1 must be a result of an inconsistency in reasoning, which in turn
must be due to an ML inference failure, hardware failure, or a bug in software or
hardware. We leverage this insight to develop an abstract model of the ML-driven
cyber-physical systems and overlay the field dataset to pinpoint failure causes. In par-
ticular, we model a cyber-physical system using a control flow graph and ask “what-
if” questions to the model (factual and counterfactual reasoning). In our work, we
use System Theoretic Process Analysis (STPA [12]) for modeling and the California
Department of Motor Vehicles (CA DMV) dataset to characterize the dependability
of self-driving cars.

System Theoretic Process Analysis. To identify multidimensional causes of AV
disengagements/accidents, we built a hierarchical control structure for AVs, rooted in
causal reasoning, by using systems-theoretic hazard modeling and analysis abstrac-
tion (STPA). Figure2 shows the abstract AV hierarchical control structure and high-
lights the three control loops (CL-1,CL-2, and CL-3, indicated with different types
of dashed lines). STPA employs concepts from systems and control theories tomodel
hierarchical control structures in which the components at each level of the hierarchy
impose safety constraints on the activity of the levels below them and communicate
their conditions and behavior to the levels above them. Accidents and disengage-
ments are complex dynamic processes resulting from inadequate perception control
and decision-making at different layers of the system control structure. Accidents and
disengagements seen in the data were overlaid on this structure. Analysis of depen-
dencies along those control loops allows for the identification of inadequate controls
and of the potential causes of those unsafe control actions through the examination of
the operation of components and their interactions in each loop of the control struc-
ture. Any flaws or inadequacies in the algorithm, the process model, or the feedback
used by a controller are considered potential causal factors leading to unsafe control
actions and resultant disengagements/accidents.

1 A transfer of control from the autonomous system to the human driver in the case of a fail-
ure is called a disengagement. Disengagements can be initiated either manually by the driver or
autonomously by the car.
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Fig. 2 Autonomous vehicle hierarchical control structure drawn based on [10]. Examples of control
loops are highlighted as CL-1, CL-2, and CL-3

Dataset. The California Department of Motor Vehicles (CADMV)mandates that all
manufacturers testing AVs on public roads file annual reports detailing both disen-
gagements and accidents (actual collisions with other vehicles, pedestrians, or prop-
erty) [13]. We digitize and normalize the schema for all the datasets. Moreover, we
use NLP techniques to label the failure cause (tag) of each accident/disengagement.
Example data after post-processing of manufacture-provided dataset is shown in
Table1. We analyze field data collected over a 26-month period from September
2014 to November 2016 (part of the DMV’s 2016 and 2017 data releases), con-
taining data from 12 AV manufacturers for 144 vehicles that drove a cumulative
1,116,605 autonomous miles. Across all manufacturers, we observe a total of 5328
disengagements, 42 of which led to accidents.
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Table 1 Sample of disengagement reports from the CA DMV dataset

Manufacturer Raw disengagement report (log) Category Tags

Nissan 1/4/16 | 1:25 PM | Software module froze. As
a result driver safely disengaged and resumed
manual control. | City and highway | Sunny/Dry

System Software

Nissan 5/25/16 | 11:20 AM | Leaf #1 (Alfa) | The AV
didn’t see the lead vehicle, driver safely
disengaged and resumed manual control.

ML/Design Recognition
system

Waymo May-16 | Highway | Safe operation | Disengage
for a recklessly behaving road user

ML/Design Environment

Volkswagen 11/12/14 | 18:24:03 | Takeover-Request |
watchdog error

System Computer
system

We use the “|” to denote field separators
Note that log formats vary across manufacturers and time
Bold-face text represents phrases analyzed by the NLP engine to categorize log lines

Fig. 3 Categorization (in terms of fault tags) of faults that led to disengagements across manufac-
turers

3.2 Results

Our study shows the following:

(i) 64% of disengagements across all manufacturers were the result of problems in,
or untimely decisions made by, the machine learning. Figure3 shows the failure
causes across all manufacturers. Table2 describes the failure causes.
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Table 2 Definition of fault tags and categories that are assigned to disengagements

Tag (failure causes) Category Definition

Environment ML/Design Sudden change in external factors (e.g.,
construction zones, emergency vehicles, accidents)

Computer system System Computer-system-related problem (e.g., processor
overload)

Recognition system ML/Design Failure to recognize outside environment correctly

Planner ML/Design Planner failed to anticipate the other driver’s
behavior

Sensor System Sensor failed to localize in time

Network System Data rate too high to be handled by the network

Design bug ML/Design AV was not designed to handle an unforeseen
situation

Software System Software-related problems such as hang or crash

AV Controller

[
System

ML/Design
“System” when AV controller does not respond to
commands

“ML/Design” when AV controller makes wrong
decisions/predictions

Hang/crash System Watchdog timer error

(ii) Drivers of AVs need to be as alert as drivers of non-AV vehicles. Further, the
small size of the overall action window (detection time + reaction time) would
make reaction-time-based accidents a frequent failure mode with the widespread
deployment of AVs.

(iii) For the same number of miles driven, for the manufacturers that reported acci-
dents, human-driven non-AVs were 15 − 4000× less likely than AV’s to have an
accident. In terms of reliability per mission, AVs are 4.22×worse than airplanes.

3.3 Novelty

The majority of the prior research into AV systems focuses on the functionality
of the systems. Numerous demonstrations of end-to-end computing systems for
autonomous vehicles have recently been done (e.g., [14–21]).While safety is empha-
sized in a number of publications, including [22, 23], they tend to ignore the end-to-
end AV safety and dependability challenges.

Our goal is to assess the end-to-end safety and dependability challenges in AVs
using field-failure data. We present an analysis of the entire control system of the
AV, of which DNNs form the subset of the overall system.
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4 Validation Using Fault Injection and Fuzzing

A key issue for autonomous systems is rigorously demonstrating and validating
their safety. The evolutionary, context-sensitive behavior of autonomous systems
can cause unexpected emergent behavior or unforeseen interactions that were not
necessarily envisioned at the architectural stage of the system design. For these
reasons, it is necessary to develop more refined, at-scale implementations of the
autonomic functions and architectures that can challenge assumptions and modes of
operations.

The causes of “unexpected” behaviors include unforeseen interactions between
autonomy and vehicle, various notions of failure and hazard scenarios, faults (design
and physical), and security threats. However, it is difficult to assess such systems
for several reasons, including (i) Although collecting real-world data in the field is
valuable (as discussed in §3), it is not viable to test mission-critical systems because
(a) it is too slow to test systems in the field, and (b) it can be dangerous for humans
and property to do so and therefore may not be ethical. Moreover, collecting this data
can be slow and expensive, as it must be preprocessed and labeled correctly before
use. (ii) Enumerating over fault/attack space and inputs, which is combinatorially
large, is infeasible.

4.1 Concept and Approach

We address those challenges by modeling the problem of identifying safety-critical
perturbations2 (inputs, faults, attacks) as a machine learning problem under causal
framework (do-calculus [24]). The proposed framework, called the Bayesian Fault
Injector (BFI) [25], relies on factual and counterfactual reasoning about the system
state under the perturbation. Unlike STPA, which requires manual reasoning, our
proposed framework is automatic. The goal is to generate perturbations that will
most likely lead to a safety hazards if activated in the system. We use ML because
it helps prune the combinatorially large space of inputs quickly by eliminating an
entire subspace of faults/inputs where the likelihood of a resultant safety hazard is
low (due to inherent masking offered by the system or environment).

The approach overview, including training and inference steps of BFI, is shown
in Fig. 4. BFI models the system state as a joint distribution over the inputs and
individual autonomous driving software modules. BFI, once trained, allows us to
infer the state of the system under perturbation. In our toy example in Fig. 4, the
joint distribution of the system is P(U, X,Y, Z). Perturbation impacts the software
state (Jp = P(U, X,Y, Z |perturb(X = x)), which eventually impacts the driving
trajectory leading to a safety hazard (e.g., collision). We use do-calculus [26], a kine-
matics model, and ean mergency stop-based safety model to estimate the likelihood
of a collision.

2 We use the terms “perturbation” and “fault” interchangeably.
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Fig. 4 Bayesian Fault Injection framework on a toy AV system consisting of perception, Kalman
Filter, controller, actuation and emergency braking

Do-calculus allows factual and counterfactual reasoning about the system-state
under the perturbation. Using do-calculus, the system state under perturbation can
be rewritten as Jp = P(U, X,Y, Z |do(X = x). The do-calculus requires a specifi-
cation of (i) the control-flow graph, which captures the dependency model among
random variables, and (ii) the conditional distribution among the random variables.
The dependency model can be specified using the prior knowledge of system design
(which is assumed to be available to the tester). The conditional distribution among
the nodes of CFG is modeled using Temporal Bayesian Networks (TBNs), a prob-
abilistic graph model (PGM)-based ML approach. Using TBNs to represent the
joint distribution reduces the number of parameters required to estimate the joint
distribution significantly. Finally, we specify functional relationships capturing the
dependency between the system state and safety (e.g., collision avoidance). Thus, it
explicitly models the propagation and masking of faults/attacks and their impact on
safety. TBNs are trained using system traces gathered with and without fault injec-
tion.3 TBNs significantly reduce the need to gather training data (system traces), as
it explicitly models the relation using statistical parameters, thereby reducing the
computational overhead and training time. The overall training procedure of BFI is
marked as S1 in Fig. 4.

Once the TBN model is trained, the proposed framework is used in offline mode
(i.e., using the collected simulation traces) to infer/predict the impact of perturbation
on the AV software outputs (i.e., actuation values). In this work, we evaluated the
susceptibility of AVs to one perturbation at a time. However, more than one pertur-
bation is allowed in BFI. Such offline inference is significantly faster than perturbing

3 In this work, we use simulation traces consisting of the recorded inputs and outputs of the system
software modules at each timestep obtained while simulating a driving scenario in a Physics-based
simulation engine.
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Fig. 5 Definition of dstop, dsafe, and δ for lateral and longitudinal movement of the car. Non-AV
vehicles are labeled as target vehicles (TV)

the system using fault injection techniques to observe the outputs or safety hazards.
This is because inference does not require fault injection or execution of the software;
instead, it uses the collected traces. The corrupted outputs can change the trajectory
of the autonomous vehicle, which in turn can lead to a collision. However, most vehi-
cles are equipped with a safety monitoring system to detect imminent collisions and
engage emergency braking. But if the stopping distance is more than or equal to the
distance to the closest in-path object on the road, the vehicle will nonetheless collide
with the object. We estimate the stopping distance using a kinematics model, assum-
ing that the vehicle has a safety monitoring system capable of engaging emergency
brakes (using a safety model explained later in this section). The collision checker
uses the stopping distance to predict a collision. The overall inference procedure of
BFI is marked as S2 in Fig. 4. Finally, if BFI predicts that a perturbation is likely
going to cause a safety hazard, we do an actual fault injection on the software while
executing the driving scenario in a Physics-based simulator to validate the output of
BFI itself (as shown in S3 in Fig. 4).

Modeling AV safety. BFI requires a precise definition of AV safety. We define the
instantaneous safety criteria of an AV in terms of the longitudinal (i.e., direction of
motion of the vehicle) and lateral (i.e., perpendicular to the direction of motion of
the vehicle) distance travelled by the AV (see Fig. 5). Those criteria form a “primal”
definition of safety based on collision avoidance, which can be extended with other
notions of safety, e.g., obeying traffic rules. The extended notions of safety are not
considered in this paper, as they can be nuanced based on the laws of the geographic
regions in which they are applied.

Definition 1 The stopping distance dstop is defined as the maximum distance the
vehicle will travel before coming to a complete stop while the maximum comfortable
deceleration amax is being applied.
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Definition 2 The safety envelope dsafe [1, 2] of an AV is defined as the maximum
distance an AV can travel without colliding with any static or dynamic object.

A safety envelope is used to ensure that the vehicle trajectory is collision-free. Pro-
duction ADSs use techniques such as those in [27, 28] to estimate vehicle and object
trajectories, thereby computing dsafe whenever an actuation command is sent to the
mechanical components of the vehicle. These ADSs generally set a minimum value
of dsafe (i.e., dsafe,min) to ensure that a human passenger is never uncomfortable about
approaching obstacles.

Definition 3 The safety potential δ is defined as δ = dsafe − dstop. An AV is defined
to be in a safe state when δ > 0 in both lateral and longitudinal directions.4

BFI finds perturbations that lead to safety hazards under this definition (i.e., δ ≤= 0).

Identifying safety-critical driving scenarios via fuzzing. To assess the AV’s ability
to operate under novel driving scenarios, we developed AVFuzzer [29], which uses
the above-mentioned safety model to generate test cases that determine the safety
violations of an AV in the presence of an evolving traffic environment. Here, we use
genetic algorithms (GA) to perturb valid driving scenarios. Unfortunately, existing
GA techniques converge slowly. Hence, the goal is to accelerate GA in the context
of AV fuzzing. Starting from a valid driving scenario, AVFuzzer perturbs the driving
maneuvers of traffic participants (e.g., other vehicles in the environment) to create
situations in which an AV runs into safety hazards. To optimally determine the
perturbations that are to be introduced, we use the above-mentioned safety model
to guide the search. Here, the goal of GA is to decrease the safety potential of
the vehicle. AVFuzzer consists of three parts: (i) a GA-based search engine that
learns and assesses the safety of the AV, generating seed scenarios that are likely to
have high potential of safety hazards, (ii) a local fuzzer, which exploits the seeds
and dynamically evolves them into safety-hazard scenarios when possible, and (iii)
an on-demand restart mechanism that repeats the optimization with significantly
different starting points in unexplored search space in order to determine diverse
safety hazardous situations.

In this work, we used a black-box testing technique and hence assumed no prior
knowledge of the internals of the AV system. However, if the domain knowledge on
the system’s internals is available, BFI can be used in conjunction with AVFuzzer to
accelerate fuzzing significantly. Testing techniques that assume internal knowledge
of the system fall under the umbrella of white-box testing. This work is described in
detail in [29].
Masquerading attacks as random faults. The above-mentioned techniques are also
used by the attackers to identify runtime vulnerabilities in the system. However, a
challenge for an attacker is to hide the footprint and evade detection. One approach
to evade detection is to masquerade the attack as a naturally occurring random fault
in the system. However, it is challenging to masquerade attacks as faults in AVs

4 We use the shorthand δ > 0 to mean both lateral and longitudinal δs.
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because of the inbuilt compensation in the system and environment. For example,
state tracking algorithms such as Kalman and particle filters tolerate random noise.
Similarly, an attack launched on an AV on an empty road will not result in a collision.
Moreover, the intrusiondetection systemcandetect the attack if the attackermaintains
its presence for too long in the system.

To address these challenges and to identify vulnerabilities that still exist in the
system, we created RoboTack [30], an intelligent malware. The goal of the work
is to identify the steps of the attack and to prevent the attack by building secu-
rity measures that thwart the execution of those steps. A key feature of RoboTack
is its ability to disguise attacks as accidental/random faults to evade detection yet
cause serious safety/reliability incidents (e.g., an accident of an autonomous vehicle).
RoboTack does so by answering the questions of what, how, and when to attack the
system under test by using a runtime decision framework whose goal is to decrease
the safety potential within some threshold duration. The decision framework uses
telemetry data to identify the most vulnerable system state (answering when) and the
corresponding faults (answering what) that will minimally perturb the system (i.e.,
without being detected) while still leading to safety/reliability incidents (answer-
ing how). This approach focuses on evaluating the end-to-end dependability of AVs
instead of focusing only on ML/AI models (e.g., stop-sign attacks).

4.2 Results

We have used BFI on Apollo [4, 31], an industry-grade autonomous vehicle tech-
nology stack from Baidu. Our initial experiences in applying BFI on AVs had the
following results:

(i) BFI is highly effective in finding fault-tolerance-related bugs (561 unique pertur-
bations/faults) that can lead to fatal collisions. Moreover, it provides a speedup
of 1600× over traditional methods.

(ii) RoboTack demonstrated the steps of an attack that can be used by an adversary
to leverage known faults and failure modes. A RoboTack-generated attack is
highly fatal (15–25× more likely to be fatal than state-of-the-art adversarial
attacks [32]), and it evades known detection techniques.

(iii) AVFuzzer found 13 unique adversarial traffic patterns in which Apollo runs into
hazardous situations that lead to crashes. In comparison, exiting techniques such
as random fuzzing and adaptive stress testing can find only 1 and 5 unsafe cases
during the same period of search time.
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4.3 Novelty

Assessment of the safety and resilience of AVs requires robust testing techniques that
are scalable and directly applicable in real-world driving scenarios. It is not scalable
or practical to base a safety argument solely on statistical measures, such as a billion
miles on roads, or on simulations done on platforms such as CARLA [33] or Open
Pilot [5, 34, 35]. Testing the robustness of an ADS has proven to be challenging and
mostly ad hoc or experience-based [36]. In particular, to test the functionality and
design of the hardware and software components of an ADS, current methods rely
on injection of invalid or perturbed inputs [37–39] or faults and errors [39–41] into
an ADS in simulation or into ADS components, and accrual of millions of miles on
roads [23].

However, these methods are not scalable because (i) they lack simulated or real
datasets that would represent all kinds of driving scenarios [34], (ii) it would take
billions of miles of driving to add functionality or do a bug fix in order to drive statis-
tical measures [42], (iii) they are restricted to DNNs [35, 40, 43–45] and sensors [38,
39], even when DNNs form only a small part of the whole ecosystem, and (iv) once
the easy bugs have been fixed, finding rare hazardous events would be exponentially
more expensive, as faults might manifest only under specific conditions (e.g., a cer-
tain software state). Our approach addresses this gap by modeling the problem of
identifying safety-critical perturbations (inputs, faults, attacks) as amachine learning
problem under a causal framework (do-calculus [24]).

5 Conclusion and Future Work

In this chapter, we discussed and demonstrated dependability and safety assessment
techniques for AVs. We described several assessment techniques, such as empir-
ical analysis of field datasets, fault (or perturbation) injection, input fuzzing, and
adversarial techniques. We highlighted the benefits and challenges of using these
techniques in the context of AVs. Finally, we addressed these challenges in ways that
significantly outperform the current state-of-the-art AV assessment techniques.

Extending the techniques for online dynamic risk assessment. The proposed
techniques currently are suitable for design-time assessment, so they are not suitable
for runtime assessment. It is plausible that the proposedmethods maymiss important
rare bugs or faults at design time, leading to safety hazards at runtime. Therefore,
there is a need for extending the proposed techniques for online assessment.However,
achieving this would require significantly scaling the techniques to handle a large
number of actors in milliseconds, as is needed to meet the resource and deadline
constraints on runtime decision making. Our early work [46] proposes techniques
only for safety risk evaluation. In this work, we define a novel, safety-importance
metric that characterizes the influence of an actor (and a driving scene) on the driving
decisions of the Ego actor. This metric allows us to identify all the important actors
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on the road and to use that information to quickly evaluate the risk at runtime. We
plan to integrate this safety-importance metric with the techniques proposed in this
chapter to meet the runtime deadline and resource constraints.

Relevance to other ML-driven systems. ML and AI methods are increasingly
being used in mission-critical, cyber-physical systems to automate various tasks
to achieve high autonomy and performance. Popular examples of mission-critical,
cyber-physical systems include autonomous vehicles (e.g., self-driving cars),medical
devices (e.g., ML-assisted surgical bots), and compute infrastructures (e.g., AIOps
for Cloud/HPC). To realize the promise of such automation, next-generationmission-
critical cyber-physical systems, consisting of both ML and non-ML algorithms and
technologies, must provide an ever-increasing level of runtime system dependabil-
ity (i.e., robustness, reliability, safety, and security) that is not available today. The
proposed techniques in this chapter can be adapted and applied in such settings.
However, significant research is required to integrate these techniques into other
domains.

Exploring dependability challenges in collaborative settings. Ourwork so far only
tackles the dependability assessment of autonomous systems working in isolation.
However, future autonomous systems are expected to rely heavily on the Internet of
Things (IoTs) and to communicate with one another using 5G and other communi-
cation technologies. One potential future direction of this work is to extend these
techniques to such collaborative settings, where agents (i.e., individual autonomous
systems) can help one another to avoid safety issues.
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Foreword: Computing and Genomics
at Illinois

Gene E. Robinson

Professor Ravishankar Iyer’s long and impactful career has led to major advances in
computer engineering, especially the design and validation of dependable computing
systems. This volume, on the occasion of his 70th birthday, honors the many ways
that Ravi has contributed to his field, with leadership, vision, and accomplishment.

Over the past few years, Ravi broadened his scope and has put tremendous energy
and focus into improving the computational infrastructure for the life and medical
sciences. I was with him in this effort since its early days, and have had the privilege
of a rich and impactful collaboration with Ravi in computational genomics over the
past ten years. I will briefly tell this story here, and leave it to Ravi’s many students,
postdocs, and collaborators to describe and honor hismany outstanding contributions
in systems design.

One of my very first meetings after being appointed director of the Carl R. Woese
Institute for Genomic Biology (IGB) in 2011 was with Ravi when he was serving as
interim Vice-Chancellor for Research. On our campus, institute directors report to
the VCR, and that’s what I was there to do: provide an overview of what was going
on in the IGB. We had much to discuss—back then the IGB was just a young and up
and coming multidisciplinary institute.

But our conversations also took a surprising turn. In addition to asking probing
questions about the operation of the IGB, Ravi started inquiring about the status of
computational genomics at the IGB, on campus, and in the field more generally. His
questions were deep and insightful, and I was delighted. Why? Because advances in
genomic biology can proceed only when in tandem with advances in the computa-
tional infrastructure that supports genomics, and here was a world- renowned figure
in computer system design turning his attention to this! Our regular meetings soon
developed a special rhythm: we would move briskly through an account of what was
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going on at the IGB in order to save time for spirited discussions on the future of
genomics.

Ravi and I developed a keen joint interest in exploring how we might strengthen
computational genomics on our campus. We also realized that we had the seeds of a
powerful partnership. He had formerly directed the Coordinated Science Laboratory
(CSL), a powerhouse research laboratory in the Grainger College of Engineering
famous for research on diverse applications of computing and information tech-
nology. We started to imagine the possibilities of a campus computational genomics
initiative, jointly led by CSL and IGB, which we called “CompGen.” Exploratory
meetings were held to introduce computer scientists and computer engineers to
genomic biologists, and vice versa, and there were encouraging signs of interest
and engagement.

Ravi finished hisVCR term in 2012, and hewas then ready to focusmore on devel-
oping the CompGen Initiative. An opportunity soon presented itself when campus
announced the annual Request for Proposals from the National Science Foundation
(NSF) for the Major Research Instrumentation (MRI) Program later that year. We
quickly recruited outstanding colleagues—Victor Jongeneel, Steven Lumetta, and
Saurabh Sinha—and Ravi inspired us with an exciting vision for a new computing
system involving hardware and software to improve the speed of handling and anal-
ysis of genomic data. The grant was awarded, and the CompGen Initiative was off
and running!

CompGen quickly took shape. A strong partnership was developed between CSL
and IGB to run the initiative on behalf of the campus. Thanks to generous support
from several parts of campus, numerous graduate fellowships were awarded for
projects co-supervised by biologists and faculty from the Department of Electrical
and Computer Engineering and the Department of Computer Science. Our goal was
to build a robust research community in which the computer scientists and engineers
understand the nature of the diverse biology problems that require innovative compu-
tational genomics tools, and the genomic biologists understand the growth points in
computer science and engineering that could lead to powerful new tools.

The CompGen Initiative achieved its overarching goal and so we ended it in
2021. In its nine-year existence, the CompGen Initiative incubated and launched
collaborations that garnered over 15 million dollars in federal and industry funding
and contributed substantially to the Illinois research enterprise. CompGen Fellows
seeded many new research projects that resulted in publications, patents, and grants.
For example, several CompGen faculty and trainees including Ravi, me and Ravi’s
student Zachary Stephens collaborated on a paper entitled, “Big Data: Astronom-
ical or Genomical?,”which showed that the projected future needs in computational
genomics exceed even those of astronomy, YouTube, and Twitter. Published in 2015
in PLoS Biology, the paper already has accumulated more than one thousand cita-
tions. In addition to the NSF MRI grant mentioned above, the CompGen Initiative
spawned two campus-wide center grants: a National Institutes of Health Big Data to
Knowledge Center of Excellence, and the NSF Center for Computational Biology
and Genomic Medicine (CCBGM), led by Ravi and Liewei Wang from the Mayo
Clinic, established in 2017.
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CCBGM includes a large contingent of engineering, biological, and medical
faculty from Illinois, Mayo, and diverse industry partners from the pharmaceutical,
technology, and agriculture sectors. Projects provide faculty with the opportunity to
improve the computational genomic infrastructure needed to address the pressing
needs of the center’s industry and medical partners.

The CompGen Initiative has fostered the development of graduate students who
have gone on to develop faculty careers at the intersection of healthcare and artificial
intelligence. This includes one of the organizers of this volume, Professor Arjun P.
Athreya, Ravi’s first CompGen student, now anAssistant Professor of Pharmacology
in the College of Medicine at the Mayo Clinic. Arjun’s doctoral research through
close collaborations with Drs. Richard Weinshilboum, William Bobo and Liewei
Wang atMayoClinic resulted inALMOND, amachine learning framework to predict
individual differences in drug response, which is now being implemented for use at
point of care across the Mayo Clinic. And Ravi’s collaboration with Mayo’s Dr.
Gregory Worrell on “21st Century Cybernetics and Disorders of Brain and Mind,”
which focuses on accelerating the application of machine learning and computing to
devices designed to treat epilepsy, also has provided fertile opportunities for other
graduate students in the Iyer group. You can read about both of these exciting projects
in this volume.

New discoveries in genomics are profoundly changing our view of fundamental
biology, human health, and agriculture. Ten years ago, Ravi correctly saw that we
were at an important crossroads; while analytical technologies had been evolving at
unprecedented speed, biologists were facing major, computational, algorithmic and
statistical challenges in the analysis of the massive amounts of genomic data being
produced. New computing technologies for genomics were (and are still) needed to
better support large-scale analyses of complex biological and biomedical systems,
and to transform the data into reliable information for the extraction of new knowl-
edge, or “actionable intelligence,” as Ravi is fond of saying. Ravi saw that new
developments in computational hardware and software offered new opportunities. I
have been honored to partner with Ravi to develop the CompGen Initiative and I am
pleased to be able to share this brief account with you as just a small part of his excep-
tional legacy of accomplishment and impact. Professor Iyer’s vision, leadership, and
technical contributions have helped provide new multidisciplinary opportunities for
students and faculty at Illinois, thus helping to ensure our leadership in both life
sciences and computing technologies.

Gene E. Robinson, Urbana
July 30, 2021



An Academic Life Begins and Continues
at University of Illinois
at Urbana-Champaign

Janak H. Patel

Prof. Ravishankar K. Iyer (Ravi Iyer) came to Illinois in 1983 for a faculty inter-
view with a strong recommendation from Late Professor Edward J. McCluskey. He
was a Post-Doc at Stanford with Prof. McCluskey’s research group. There were
many faculty interviewers in the Computer area in Illinois. The principal inter-
viewers among them were Professors Edward S. Davidson, Jacob A. Abraham and
me Janak H. Patel. Ravi came with lots of measured data collected on IBM main
framecomputers at SLAC(StanfordLinearAcceleratorCenter) ownedby theDepart-
ment of Energy (DOE) of U.S. Government and run by the Stanford University. His
interview talk was on his hypothesis that Main Frame Computers produce errors
or complete failures when the computing load is very high. His statistics showed
that there was a strong correlation between error rate and the compute load. For
traditional Architecture and Fault-Tolerant faculty, this was a novelty in two impor-
tant ways—(1) Actual Measurement of failure incidences in real computers with
real compute loads. And (2) First time claim that failures are dependent on compute
load. The other faculty were also impressed.We collectively decided that his strength
in measurements will complement most of us theoreticians. An offer for a faculty
position was made to him which he graciously accepted.

He joined Illinois in Fall of 1983. He came with his wife Pamela Iyer. I suggested
them an apartment complex for their first year stay since I had known many new
faculty members before had also stayed in the same complex before buying a house.
They found an apartment there and stayed one year before buying a house.Webecame
good friends. He was very social and got along well with all his colleagues.

In later years, he convinced National Aeronautics and Space Administration
(NASA) about doing research on Fault Tolerance of Computers. NASA had interest
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in sending computers in space which can withstand radiation induced errors in on-
board computers. Ravi Iyer persuaded a Computer Science colleague, Professor Jane
Liu to join him in a Center Proposal. Prof. Liu’s expertise was in real-time computing
that was of interest to NASA for real time control of space crafts and remote satel-
lites. Together the two of them attracted other facultymembers andmade a successful
Center proposal to NASA. He served as Co-Director of the Center named as “Illinois
Computer Laboratory for Aerospace Systems and Software (ICLASS).” The Center
at Illinois producedmany Ph.D.s and research papers under the direction of Ravi Iyer.
The Center operated from 1985 to 1998. During this period, he also convinced then
well known fault-tolerant computer company, Tandem Inc, to donate one of their
computers for measurement of failure data. Tandem was known as the dominant
manufacturer of fault-tolerant computer systems for ATM networks, banks, stock
exchanges, telephone switching centers, and other similar commercial transaction
processing applications requiring maximum uptime and zero data loss. He with his
research group injected errors in the bus system to the detriment of its fault-tolerant
capabilities. This was a revelation to the company.

Ravi Iyer was very active in international community of Dependable Computing.
As a result, he was awarded the 1989 IEEE Fault-Tolerant Computing Symposium
in Chicago. As General Chair he attracted a large group of experts in Program
Committee and conference organization. The conference had one of the largest atten-
dances at Chicago.Not contentwith just oneNASAcenter, he successfully obtained a
four-year research project fromDARPA.Hewas theDirector of thatMulti-University
DARPA Project on Design for Dependability, from 1994 to 1998.

University of Illinois, awarded him aChair Professorship in 1998, named “George
and Ann Fisher Distinguished Professor” which he continues to hold to this day.
In the interim years he held several administrative positions. He was Director of
Coordinated Science Laboratory from 2000 to 2008. Later he served at campus level
senior position ofViceChancellor of Research from2008 to 2011. In later years, Ravi
Iyer expanded his research to Bio-Medical and Post Genome research. He became
involved with Mayo Clinic and currently holds an Adjunct Professorship with them,
where he directs the “Illinois/Mayo Center for Computational Biotechnology and
Genomic Medicine.”

Ravi Iyer continues to apply his knowledge of Dependable Computing to may
devices, notably among them are Surgical Robots and Autonomous Vehicle Control.
In both cases he showed the undocumented perils of errors in computing. In these and
Mayo clinic research, Ravi has come full circle to his roots in Statistical Inferences
that he had employed in early 1980. In modern parlance, his methods are known as
Machine Learning.

Throughout his carrier he has received numerous awards. Notably among these
are: Fellow of the IEEE, ACM, and AAAS. In addition, he received the IEEE
Emanuel R. Piore Award, Humbolt Foundation Award, among many other awards.
Ravi continues to do research and advise many graduate students.
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One Conversation at a Time

Wen-Mei Hwu

In February 1987, I met Prof. Ravi Iyer for the first time during my interview for
an Assistant Professor position at the Department of Electrical and Computer Engi-
neering of the University of Illinois at Urbana-Champaign (ECE Illinois). At the
time, I was completingmy Ph.D. dissertation describing the design of an out-of-order
executionmicroarchitecture, which would later be adopted into the Intel Pentium Pro
microprocessor, the world’s first mass-market microprocessor that performs out-of-
order execution. The main contribution of my dissertation work was an efficient
mechanism for recovering of the in-order execution state so that the exceptions
and faults can be handled precisely in an out-of-order execution microarchitecture.
My work targeted performance improvement by issuing multiple instructions in
parallel and overlapping the execution of instructions with long latencies. I had little
understanding of the work being done in the fault-tolerant computing community.

During my individual meeting with Ravi, he was extremely collegial. Rather than
trying to show me how little I knew about fault-tolerance computing, he kindly
discussed opportunities for me to collaborate with faculty and students in the NASA
ICLASS that he co-directed with Prof. Jane Liu of the Computer Science Depart-
ment. In particular, he expressed genuine interest in having a computer architect to
complement the then existing strength in fault tolerance and testing in ECE Illinois.
This genuine collegiality and strategic thinking helped attract me to Illinois.

After I joined ECE Illinois, Ravi immediately invited me to join the NASA
ICLASS center and started to support my first Ph.D. student Pohua Chang. We used
the funding to work on a new compiler technique called superblock for extracting
instruction-level parallelism and fully utilizing superscalar and VLIW processors.
When I was preparing for my first presentation to the NASA visitors during an
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annual review, I felt awkward that my research was off the focus of the center—
to investigate novel fault-tolerant computing techniques for future space missions.
Obviously, there was not strong connection between the work done by Pohua and
the focus of the center. I discussed my anxiety with Ravi. His advice was to make
an honest presentation on the vision—enabling extremely low-power computing for
embedded applications, including space mission applications. During the review,
Ravi also presented the work as part of the center vision. It was well-received by the
NASA visitors.

One important insight that I gained from the review was the level of challenge in
certifying a computing device for space missions. It is extremely costly to certify that
a computing device is suitable for the harsh radioactive and temperature environment
of a spaceship. As a result, the computing devices deployed in space missions are
typically a decade or more behind the cutting edge of the commercial market. As
a result, NASA is always interested in compiler techniques that can simplify future
hardware and/or enhance the performance of existing hardware.

The work was supported by the ICLASS center in the following four years. The
publications from the work accumulated more than 2000 citations and received
multiple recognitions such as the International Symposium on Computer Archi-
tecture (ISCA) Most Influential Paper Award. The impact of the generous support
from Ravi on my career cannot be overstated. The work also impacted the design of
and compilers for the VLIW DSP processors that have been adopted into billions of
mobile devices.

A more subtle impact from Ravi is how he helped cultivate a whole generation of
ECE faculty members who later created mega centers at the University of Illinois.
Through our daily interaction with Ravi, faculty members like Bill Sanders, David
Nicol and I learned how to think big while taking care of the details of a large center.
For example, I was a terrible negotiator when I started my career at Illinois. After
34 years of learning from Ravi, I finally feel that I can do reasonable negotiations
with both the funding agencies and the University administration when it comes to
large research contracts.

I have only had a small number of opportunities co-authoring papers with Ravi.
Through my limited number of co-authoring activities with him, I have always been
impressed with Ravi’s ability to pull back from the details and bring up the concerns
from 20,000 miles away. He has a unique capability to help the students to see the
concerns from readers who may not be fully invested in the subject area. This has
impacted my interactions with my own students in a very subtle but important way.

Another important lesson that I learned from Ravi is to when and how to use
math in my own research. Very few people know that I have a minor in statistics as
part of my Ph.D. program at the University of California, Berkeley. However, until
I started to interact with Ravi, I did not find a good way to use my math skills in my
research. By observing how Ravi’s use of math in his research, I learned how to use
math productively. This has become very important when I worked on accelerating
machine learning applications using GPUs. I am grateful to Ravi who demonstrated
the practical use of math skills so naturally to all of us.
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When I started to work on GPU Computing technology in 2006, most people
thought that I was going stray down a rabbit hole. When I started writing the “Pro-
gramming Massively Parallel Processors—A Hands-on Approach” textbook with
David Kirk in 2008, most people thought that I was wasting my time. However, Ravi
provided me with strong encouragement as a colleague. To date, the book is in its 4th
edition with more than fifty thousand copies sold worldwide. The book has also been
an academic success and accumulated more than 3600 citations. He also offered his
enthusiastic support when I created the ECE498 and ECE598 courses that were later
adopted by more than 100 universities.

It would be my failure if I did not mention the sense of humor that many of us
managed to rub off from Ravi. It is through so many casual social conversations that
I learned from Ravi not to take myself too seriously. His unique way of injecting
laughter into even the setbacks has been inspiring to many of us. Afterall, as we try
to reach big goals, we are bound to have more setbacks. As Ravi would say, there
are many more failed shots than goals in any good soccer game. Being able to find
humor in these failed shots is so important for anyone who ultimately make the goals.

I would like to finish by crediting Ravi for his keen sense of the potential candi-
dates. Over the past two decades, Ravi and I agreed on supporting several faculty
candidates whom our department unfortunately decided to pass on. All of them later
became extremely successful. Ravi taught me how to ask the type of questions during
interview seminars and individual meetings to get to know the true potential, not just
the work that has already been done, of the candidate. For example, a surprising
number of candidates do not provide high-level intuition and simple examples for
people to truly understand the key ideas and potential generalizations of their work.
Using a simple example to ask about the intuition of the work can help both the
presenter and the audience to fully grasp the important contributions of the work.
It was through numerous candidate seminars and private conversations that Ravi
managed to teach me how to see the potential of a person that may not be even clear
to the person himself/herself. This skill has fundamentally impacted how I mentor
my students.

In so many ways, I have been effectively a postdoc learning from Ravi for the past
34 years. Each conversation with Ravi elevates my understanding of research and
humanity. At 70, Ravi is going stronger than ever with impressive initiatives such as
NSF CCBGM and NSF PPoSS. I look forward to the many more conversations with
Ravi in the years to come!
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