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Abstract. Genetic programming is a method to generate computer pro-
grams automatically for a given set of input/output examples that define
the user’s intent. In real-world software development this method could
also be used, as a programmer could first define the input/output exam-
ples for a certain problem and then let genetic programming generate
the functional source code. However, a prerequisite for using genetic
programming as support system in real-world software development is
a high performance and generalizability of the generated programs. For
some program synthesis benchmark problems, however, the generalizabil-
ity to previously unseen test cases is low especially when lexicase is used
as parent selection method. Therefore, we combine in this paper lexicase
selection with small batches of training cases and study the influence of
different batch sizes on the program synthesis performance and the gen-
eralizability of programs generated with genetic programming. For evalu-
ation, we use three common program synthesis benchmark problems. We
find that the selection pressure can be reduced even when small batch
sizes are used. Moreover, we find that, compared to standard lexicase
selection, the obtained success rates on the test set are similar or even
better when combining lexicase with small batches. Furthermore, also
the generalizability of the found solutions can often be improved.

Keywords: Program synthesis · Genetic programming ·
Generalization

1 Introduction

Genetic programming (GP) [3,22] is a technique to automatically generate com-
puter programs. For a given set of input/output examples (training cases) defin-
ing the requirements, GP searches in an evolutionary process for a program
that completely fulfills these requirements. This procedure has similarities to
the standard procedure in real-world software development, for example, as in
test-driven development [2], where the test cases (e.g., unit tests) are defined first
and after that the functional source code is written. GP, which in recent years
has made some progress in automatic program synthesis [11], has the potential
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to replace the second part of this process: writing the functional source code.
However, this assumes that GP can find solutions for many everyday program-
ming problems and that these solutions are generalizable which means that they
also work on previously unseen test cases (as in production).

In recent work, the success rates (percentage of runs that find a correct solu-
tion) for standard program synthesis benchmark problems could be increased sig-
nificantly [9,14]. This increase is strongly related to the use of lexicase selection
[27], in which the training cases are evaluated individually instead of aggregating
a program’s performance on all training cases and selecting by this overall fitness
value (as in tournament selection). However, considering the individual training
cases during selection may lead to a strong overfitting on some benchmark prob-
lems [18,24]. Usually, such solutions generalize poorly to unseen test cases.

For classification problems, Aenugu and Spector [1] have shown that a variant
of lexicase selection using batches combining a set of individual training cases
usually leads to a better generalization. However, there are commonly many
more training cases available in classification than in program synthesis, since
in practice a programmer has to generate all the training cases manually (as
there is no oracle function). So, due to the limited number of training cases, the
choice of the batch size is also limited in program synthesis. Furthermore, it is
still unclear how small batch sizes affect the program synthesis performance and
generalization ability of GP.

Therefore, this work studies the influence of small batch sizes used during
selection on the success rates and the generalizability of the programs gener-
ated by GP. For this analysis, we use three common problems from the general
program synthesis benchmark suite [17].

For evaluation, we use a grammar-guided GP approach and use during selec-
tion batch sizes ranging from β = 1, which corresponds to standard lexicase
selection, to β = 100. To analyze the influence of the batch sizes on the success
rates as well as on the generalizability of the found solutions, we select three
problems from the program synthesis benchmark suite [17] which are known in
the literature for their generalization issues. We find in our experiments that
using small batch sizes can lead to similar or even better success rates on the
test set compared to standard lexicase selection (β = 1). Furthermore, best
generalization rates are achieved with β ≥ 2.

In Sect. 2 we give a brief introduction to lexicase selection and present the rel-
evant work on GP-based program synthesis. Section 3 describes the used bench-
mark problems and the selection method. In Sect. 4 we present our experiments
and discuss the results before concluding the paper in Sect. 5.

2 Lexicase Selection in GP-Based Program Synthesis

In the literature on GP-based program synthesis, variants of lexicase selection
are often compared with other selection methods on a wide range of program
synthesis benchmark problems and the lexicase variants usually outperform other
selection methods like tournament selection, fitness-proportionate selection, or
implicit fitness sharing [8,10,12,13,15–17,20,23–25].
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Algorithm 1: Lexicase Selection
1 cases := shuffle(training cases);
2 candidates := population;
3 while |cases| > 0 & |candidates| > 1 do
4 case := cases.pop(0);
5 candidates := best individuals(candidates, case);

6 end
7 if |candidates| > 1 then
8 return choice(candidates);
9 end

10 return candidates[0];

Algorithm 1 shows the process of selecting an individual for the next gener-
ation with standard lexicase selection [16,27] as pseudo-code. First, the training
cases are shuffled randomly (line 1) and all solutions from the population are con-
sidered as possible candidates for selection (line 2). In the next step, all candidates
which do not have the exact lowest error on the first training case are discarded
and the first training case is removed from the list (lines 4–5). This step is repeated
until either all cases have been considered or only one candidate solution is left
(while loop defined in line 3). Finally, either a random solution chosen from the
remaining candidates will be returned (lines 7–9) or, if there is only a single solu-
tion left, the last remaining candidate solution will be returned (line 10).

Since lexicase selection is computationally intensive in comparison to other
selection methods such as tournament or fitness-proportionate selection, de Melo
et al. [4] suggested batch tournament selection, which combines the benefits
of tournament and lexicase selection. Tested on a set of common regression
problems, batch tournament selection achieves a solution quality similar to lex-
icase selection but is significantly faster. Another approach that is also based
on batches of training cases is batch lexicase selection suggested by Aenugu and
Spector [1]. For classification problems, they show that batch lexicase selection
can improve generalization. In addition to batches, the authors introduce also
a threshold parameter which allows individuals to survive the selection process
even if they have a larger error than the best individual on the considered batch
(depending on the defined threshold). So this parameter allows a further adjust-
ment of the selection pressure (in addition to the selection of the batch size). A
selection method based on similar principles that has been applied to program
synthesis problems, but without analyzing the generalizability of the found solu-
tions, is summed batch lexicase selection [5].

To prevent pre-mature convergence, Kelly et al. [21] suggested knobelty selec-
tion. Based on a defined novelty probability, an individual is selected either
based on its novelty or its performance. For the performance-based selection,
the authors use lexicase selection.

Recently, Hernandez et al. [19] suggested down-sampled lexicase selection,
which operates on a different random subset of the training cases in each
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generation. Although down-sampled lexicase selection consistently achieves bet-
ter results than standard lexicase selection, it has not yet been shown that the
solutions found generalize better to unseen test cases [18].

However, to our knowledge, there is no work so far studying the influence
of small batch sizes on the success rates and the generalizability of programs
generated with GP on program synthesis benchmark problems that are known
for their low generalization rates.

3 Methodology

To analyze the influence of batch sizes on the performance and generalizability
of GP-based program synthesis, we apply a grammar-guided GP approach to
common program synthesis benchmark problems. In this section, we present the
selected benchmark problems and describe the used grammars as well as the
selection method.

3.1 Benchmark Problems

As we want to study if the use of small batches increases generalizability in
the program synthesis domain, we selected three problems from the program
synthesis benchmark suite [17] that are known for their generalization issues in
the literature [24]. The selected problems are:

– Compare String Lengths: For three given strings, return true if the strings
are sorted in ascending order according to their length. Otherwise, return
false.

– Grade: For five given integer values, where the first four values define the
minimum score required to achieve the grades “A”, “B”, “C”, and “D”, and
the fifth value defines the score achieved by a student, return the grade for
this student. Return an “F” if the achieved score is lower than the score
defined by the fourth integer value.

– Small Or Large: For a given integer n, return “small” if n < 1, 000, “large”
if n ≥ 2, 000, and an empty string if 1, 000 ≤ n < 2, 000.

As defined by the benchmark suite, we use 100 training and 1,000 test cases
for Compare String Lengths and Small Or Large, and 200 training and 2,000
test cases for the Grade problem.

3.2 Grammars

In our grammar-guided GP approach, we use context-free grammars supporting
an expressive subset of the Python programming language including variable
assignments, different data types, as well as conditionals. The used grammars
are based on the grammars provided by the PonyGE2 framework [7] which follow
the principle proposed by Forstenlechner et al. [8] which suggests that program
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Table 1. Data types supported by the used grammars for each of the studied program
synthesis benchmark problems.

Benchmark Problem Integer Boolean String Char

Compare String Lengths

Grade

Small Or Large

synthesis grammars should, in addition to some basic data types, only support
the required data types (e.g., the data types specified by a function’s input and
output). With this approach, the used grammars and consequently the resulting
search space can be kept small.

Table 1 shows for each of the studied program synthesis benchmark problems
the data types supported by the used grammars.1 For all benchmark problems,
the basic types Boolean and integer are supported. For Compare String Lengths
and Small Or Large, we support in addition also strings. For the Grade problem,
we support chars together with the required functions to process char values
instead of strings as for this problem no complex string handling is necessary.

3.3 Selection Method

To study the influence of batch sizes in GP-based program synthesis, we extend
the lexicase algorithm to include batches. Algorithm 2 shows this extended lex-
icase variant as pseudo-code.

Algorithm 2: Lexicase Selection with Batches
1 cases := shuffle(training cases);
2 candidates := population;
3 batches := generate batches(cases, β);
4 while |batches| > 0 & |candidates| > 1 do
5 batch := batches.pop(0);
6 candidates := best individuals(candidates, batch);

7 end
8 if |candidates| > 1 then
9 return choice(candidates);

10 end
11 return candidates[0];

Basically, this method is similar to standard lexicase selection. The only
difference is that, instead of individual training cases, batches of training cases
of a pre-defined size β are generated (line 3). If β is a divisor of the number

1 Grammars: https://gitlab.rlp.net/dsobania/progsys-grammars-2022-1.

https://gitlab.rlp.net/dsobania/progsys-grammars-2022-1
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of training cases, then all batches are of equal size. Otherwise, the last batch
is smaller. After the batches are created, all candidates that do not have the
exact lowest aggregated error/best fitness on the first batch are discarded and
the first batch is removed (lines 5–6). As in standard lexicase selection, this step
is repeated until either all batches have been considered or only one candidate
solution is left (lines 4–7). Finally, a randomly chosen candidate of the list of
remaining candidates (lines 8–10) or the last remaining one (line 11) is returned.

For β = 1, the described method works like standard lexicase selection. In
general, the method is a version of batch lexicase selection [1] without the fit-
ness threshold [as we discard all candidates that do not have the exact lowest
error/fitness on a considered batch (line 6)] and consequently also similar to
summed batch lexicase selection [5] as we aggregate in our experiments the fit-
ness of a batch by calculating the sum of the errors on the contained training
cases.

4 Experiments and Results

To study the influence of small batch sizes on the success rates and the gener-
alizability of programs generated by GP we use in our experiments a grammar-
guided GP implementation based on the PonyGE2 framework [7]. We set the
population size to 1, 000 and use position independent grow [6] as initialization
method. We set the maximum initial tree depth (for initialization) to 10 and the
maximum overall tree depth to 17. For variation, we use sub-tree crossover with
a probability of 0.9 and sub-tree mutation with a probability of 0.05. A GP run
is stopped after 300 generations.

As batch sizes, we study all divisors of 100, since for the majority of the
considered benchmark problems 100 training cases are provided (this allows all
batches to be equal in size). Finally, since the results in the program synthesis
domain are often subject to high variance [26], we have doubled the number of
runs used commonly in the literature (e.g., in [17] and [8]) and use 200 runs per
configuration.

4.1 Influence on Selection Pressure

First, we study the influence of the batch sizes on the selection pressure. There-
fore, we analyze the development of the average best fitness during a GP run for
different batch sizes, where the fitness of an individual is the sum of its errors
on the training cases. Furthermore, we analyze for all studied batch sizes the
average generation in which a solution that correctly solves all training cases is
found for the first time.

Figures 1, 2, 3, 4, 5 and 6 show the results for the benchmark problems
considered in this study. The plots on the left (Figs. 1, 3, and 5) show the best
fitness over generations for all studied batch sizes and benchmark problems.
The results are averaged over 200 runs. The plots on the right (Figs. 2, 4, and 6)
show the average generation of a first success on the training cases for all studied
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Fig. 1. Average best fitness over gener-
ations for the Compare String Lengths
problem for all studied batch sizes.

Fig. 2. Average generation of first suc-
cess on training cases over batch sizes for
the Compare String Lengths problem.

Fig. 3. Average best fitness over genera-
tions for the Grade problem for all stud-
ied batch sizes.

Fig. 4. Average generation of first suc-
cess on training cases over batch sizes for
the Grade problem.

Fig. 5. Average best fitness over genera-
tions for the Small Or Large problem for
all studied batch sizes.

Fig. 6. Average generation of first suc-
cess on training cases over batch sizes for
the Small Or Large problem.
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Table 2. Success rates on the training (strain) and the test set (stest) as well as the
generalization rate g achieved by the grammar-guided GP approach for different batch
sizes β for all studied program synthesis benchmark problems. Best values are printed
in bold font.

Benchmark Problem β strain stest g

Compare String Lengths 1 93.0 10.0 0.11

2 91.5 15.5 0.17

4 91.5 8.5 0.09

5 90.5 7.0 0.08

10 80.0 4.5 0.06

20 60.0 4.0 0.07

25 57.5 5.5 0.1

50 29.5 1.5 0.05

100 5.5 0.5 0.09

Grade 1 34.0 8.5 0.25

2 33.5 8.0 0.24

4 31.0 10.5 0.34

5 36.0 7.5 0.21

10 25.0 11.5 0.46

20 20.5 8.5 0.41

25 16.5 6.5 0.39

50 10.5 4.5 0.43

100 5.5 2.5 0.45

Small Or Large 1 9.0 3.5 0.39

2 4.5 3.0 0.67

4 5.5 2.0 0.36

5 2.5 1.5 0.6

10 4.0 1.5 0.38

20 5.0 3.5 0.7

25 3.0 1.0 0.33

50 1.0 0.5 0.5

100 1.5 1.5 1.0

benchmark problems and training cases. The dashed regression line illustrates
the development/trend for increasing batch sizes.

We see for all studied program synthesis benchmark problems that the fitness
decreases more slowly over the generations for increasing batch sizes. The fastest
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fitness reduction (minimization problem) is always achieved with batch size β =
1 (standard lexicase selection). Similarly, we observe the slowest fitness reduction
for β = 100. E.g., for the Compare String Lengths problem (Fig. 1), for β = 100
the average best fitness is around 12 while for β ≤ 25 the average best fitness
is close to zero. Overall, the convergence speed is also reduced for small batch
sizes (4 ≤ β < 20).

For the generation of first success on the training cases we observe on average
increasing values for increasing batch sizes. For the Compare String Lengths
problem (Fig. 2) the success generation increases from around 60 for β = 1
to around 110 for β > 50 and for the Grade problem (Fig. 4) the generation
increases from around 170 to 190. For the Small Or Large problem (Fig. 6),
the regression line remains about constant (slight decrease) over the considered
batch sizes. However, the results for this problem are based on only a smaller
amount of data, compared to the other two benchmark problems, because the
success rates on the training set are low for this problem (see Table 2).

In summary, with an increasing batch size β the selection pressure decreases.
Additionally, the selection pressure can be reduced even with the use of small
batch sizes.

4.2 Analysis of Success Rates and Generalization

To analyze the performance and the generalizability of the solutions found by
GP with different batch sizes, Table 2 shows the success rates on the training
(strain) and the test set (stest) as well as the generalization rate g achieved by
the grammar-guided GP for different batch sizes β for the considered benchmark
problems that are known in the literature for their poor generalization with
lexicase selection [24]. As the results are based on 200 runs, we report strain and
stest in percent. Best values are printed in bold font.

As expected, the success rate on the training set strain decreases for an
increasing batch size β. Also the success rates on the test set stest are low on all
considered benchmark problems for larger batch sizes (β ≥ 25). Nevertheless,
using small batch sizes (2 ≤ β ≤ 10) often leads to similar or even better success
rates on the test set compared to standard lexicase selection (β = 1). E.g., for
the Compare String Lengths problem we achieved a success rate of 15.5 with
β = 2 compared to only 10 with standard lexicase selection.

Furthermore, for all considered benchmark problems, best generalization
rates g are achieved with β ≥ 2. Compared to standard lexicase selection, we
see for the Grade problem and the Small Or Large problem on average notably
larger generalization rates g for β ≥ 10. From a practitioners perspective, a high
generalization rate is even more important than a high success rate as it is essen-
tial that the found programs work also correctly on previously unseen test cases.
An additional check with many test cases is usually not possible in practice as it
is expensive to manually create a large test set. However, if a program synthesis
method is known for producing generalizable solutions, a programmer can trust
this method. If such a method has a low success rate but a high generalization
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rate, then the search can be easily repeated if no successful solution is found in
the first run.

Overall, we find that similar or even better success rates on the test set can be
achieved when combining lexicase selection with small batches instead of using
standard lexicase selection. In addition, best generalization rates are achieved
with β ≥ 2.

5 Conclusions

As GP is able to generate computer programs for a given set of input/output
examples automatically, it has the potential to be used in real-world software
development. Similar as in test-driven development [2], a programmer could
define the input/output examples first and GP could then generate the functional
source code. A prerequisite for GP as support system in software development is
a good program synthesis performance and a high generalizability of the found
programs. However, for some benchmark problems, GP generates programs that
generalize poorly to unseen test cases especially when standard lexicase selec-
tion is used [24]. For classification problems, however, it has been shown that
combining lexicase selection with batches of training cases can improve general-
ization [1]. Anyway, using batches in a program synthesis context is challenging
as usually the number of input/output examples that can be used for training
is low.

Therefore, we studied in this work the influence of small batch sizes during
selection on the success rates and the generalizability of the programs generated
by GP on common program synthesis benchmark problems.

We found that with an increasing batch size the selection pressure is reduced,
which can be observed even for small batch sizes (4 ≤ β < 20). Furthermore, we
found that, compared to standard lexicase selection, the achieved success rates
on the test set are either similar or even better when small batches are used.
Overall, best generalization rates are obtained with a batch size β ≥ 2.

So we suggest to use small batches with lexicase selection in GP-based pro-
gram synthesis as the results are competitive or even better than with standard
lexicase selection and also the generalizability of the found solutions can often
be improved.
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