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Abstract. Denoising Autoencoder Genetic Programming (DAE-GP) is
a novel neural network-based estimation of distribution genetic program-
ming (EDA-GP) algorithm that uses denoising autoencoder long short-
term memory networks as a probabilistic model to replace the standard
mutation and recombination operators of genetic programming (GP). At
each generation, the idea is to flexibly identify promising properties of
the parent population and to transfer these properties to the offspring
where the DAE-GP uses denoising to make the model robust to noise
that is present in the parent population. Denoising partially corrupts can-
didate solutions that are used as input to the model. The stronger the
corruption, the stronger the generalization of the model. In this work, we
study how corruption strength affects the exploration and exploitation
behavior of the DAE-GP. For a generalization of the royal tree problem
(high-locality problem), we find that the stronger the corruption, the
stronger the exploration of the solution space. For the given problem,
weak corruption resulting in a stronger exploitation of the solution space
performs best. However, in more rugged fitness landscapes (low-locality
problems), we expect that a stronger corruption resulting in a stronger
exploration will be helpful. Choosing the right denoising strategy can
therefore help to control the exploration and exploitation behavior in
search, leading to an improved search quality.

Keywords: Genetic Programming · Estimation of Distribution
Algorithms · Probabilistic Model-Building · Denoising Autoencoders

1 Introduction

Estimation of distribution genetic programming (EDA-GP) algorithms are meta-
heuristics for variable-length combinatorial optimization problems that sample
from a learned probabilistic model, replacing the standard mutation and recom-
bination operators of genetic programming (GP). At each generation, the idea
is to first learn the properties of promising candidate solutions of the parent
population (model building) and to then sample from the model to transfer the
learned properties to the offspring (model sampling) [9].
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An example of an EDA-GP is denoising autoencoder genetic programming
(DAE-GP) that uses denoising autoencoder long short-term memory networks
(DAE-LSTMs) as a probabilistic model [25]. In comparison to previous EDA-GP
approaches, it has the advantage that the model does not impose any assump-
tions about the relationships between problem variables which allows the DAE-
GP to flexibly identify and model relevant properties of the parent population.
The DAE-GP captures dependencies between problem variables by first encod-
ing candidate solutions (in prefix notation) to the latent space and then recon-
structing the candidate solutions from the latent space. For model building, the
DAE-GP is trained to minimize the reconstruction error between the encoded
and decoded candidate solutions. For model sampling, candidate solutions are
propagated through the trained model to transfer the learned properties to the
offspring [25].

The DAE-GP uses denoising to prevent the model from learning the simple
identity function [25]. The idea is to partially corrupt input candidate solutions
to make the model robust to noise that is present in the parent population. The
stronger the corruption, the stronger the generalization of the model [24]. Previous
work on estimation of distribution algorithms (EDA), where candidate solutions
have a fixed length of size n, found that exploration and exploitation in search can
be controlled by the strength of corruption [16]. Exploration increases the diversity
of a population by introducing new candidate solutions into search; exploitation
reduces diversity by focusing a population of candidate solutions on promising
areas of the solution space [19]. Adjusting the corruption strength can therefore
help to balance exploration and exploitation leading to a more successful search:
we either increase diversity to overcome local optima avoiding premature conver-
gence, or we decrease diversity to exploit promising solution spaces [16].

In this work, we study how corruption strength affects the exploration and
exploitation behavior of the DAE-GP. Wittenberg et al. [25] used subtree muta-
tion to corrupt input candidate solutions. Subtree mutation randomly selects a
node in a tree and replaces the subtree at that node with a new random sub-
tree generated by ramped half-and-half. The use of subtree mutation has the
advantage that it leads to a variation in tree size (the number of nodes in parse
tree) [25]. However, applying subtree mutation complicates the control of cor-
ruption strength: as subtree mutation randomly selects a subtree to be replaced
by a new random subtree, corruption is stronger if the root of the selected sub-
tree is nearer to the root of the parse tree. Furthermore, increasing or decreasing
corruption strength is difficult.

Therefore, this paper introduces Levenshtein edit as a new and improved
denoising strategy. Levenshtein edit is based on the Levenshtein distance [12] and
operates on the string representation of a candidate solution (prefix expression).
It uses insertion (add one node), deletion (remove one node), and substitution
(replace one node by another node) as edit operators to corrupt a candidate solu-
tion. The advantage of using Levenshtein edit over subtree mutation is that we
can accurately adjust corruption strength. The more nodes we edit, the stronger
the corruption, and the more we force the DAE-GP to focus on general properties
of the parent population.
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We compare the performance of the DAE-GP with Levenshtein edit and dif-
ferent levels of corruption strength (2%, 5%, 10%, 20%) to a DAE-GP with sub-
tree mutation and standard GP, and analyze the impact of corruption strength
on search. We find that corruption strength strongly influences both the per-
formance and the exploration and exploitation behavior of the DAE-GP: the
stronger we corrupt input candidate solutions, the stronger the exploration.
However, exploration is useful, only if we want to escape from local optima.
For the generalization of the royal tree problem (which is an easy problem with
high locality), we find that the DAE-GP with weak corruption (Levenshtein edit
with 5% corruption strength) performs best. However, when facing more rugged
fitness landscapes, a stronger degree of exploration can be helpful. We therefore
believe that the denoising strategy is the key to the success of the DAE-GP: it
allows us to control the level of exploration and exploitation in search helping
us to improve search quality.

In Sect. 2, we present related work on EDA-GP. We describe DAE-LSTMs in
Sect. 3, where we focus on the architecture, the denoising strategy, and on model
building and sampling. In Sect. 4, we introduce the experiments and discuss the
results. We draw conclusions in Sect. 5.

2 Related Work

We can categorize research on EDA-GP into two research streams [9,21]: The
first one uses probabilistic prototype trees (PPT) as a model. Given the maxi-
mum arity a of the functions in the function set (the interior nodes of a GP parse
tree), a PPT is a full tree of arity a where we set the depth of the PPT equal to
the maximum tree depth dmax. At each node of the PPT, the idea is to first build
a multinomial probability distribution over the set of allowed functions (internal
nodes) and terminals (leaf nodes) and to then update the distributions according
the candidate solutions that are presented to the model. In 1997, Salustowicz and
Schmidhuber [20] introduced PPTs as the first probabilistic model in EDA-GP
called probabilistic incremental program evolution (PIPE) [20]. Based on PIPE
that evolves univariate probability distributions, EDA-GP models have been
developed that capture dependencies between nodes in a PPT tree. Examples
are the bivariate estimation of distribution programming (EDP) [28] or the mul-
tivariate program optimization with linkage estimation (POLE) [4,6]. Hasegawa
and Iba [6] report that POLE needs less fitness evaluations than standard GP
to solve the MAX, the deceptive MAX, and the royal tree problem [6].

The second stream of research uses grammars as EDA-GP model [9,21]. Here,
Ratle and Sebag [18] presented stochastic grammar-based genetic programming
(SG-GP) as the first grammar-based approach in 2001. SG-GP uses stochas-
tic context-free grammar (SCFG) as a probabilistic model. The idea is to first
identify a set of production rules for a problem with weights attached to the
production rules and to then update these weights according to usage counts
of the production rules in a parent population [18]. Since SG-GP assumes the
production rules to be independent, more sophisticated EDA-GP models cap-
turing more complex grammars have been developed. Consequently, program
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with annotated grammar estimation (PAGE) is an extension that uses expec-
tation maximization (EM) or variational Bayes (VB) to learn production rules
with latent annotations. A latent annotation can be, e.g., the position or the
depth of a node in a tree [5]. Another extension is grammar-based genetic pro-
gramming with a Bayesian network (BGBGP) that was introduced by Wong et
al. [26] in 2014. BGBGP uses Bayesian networks with stochastic context-sensitive
grammars (SCSG) as a model. Compared to SCFG, SCSG additionally incorpo-
rate contextual information allowing the Bayesian network to learn dependencies
between production rules [26]. To further refine the BGBGP, Wong et al. [27]
added (fitness) class labels to the model. The authors argue that this allows
the model to differentiate between good and poor candidate solutions helping
the model to find better solutions. For the deceptive MAX and the asymmetric
royal tree problem, the model outperforms POLE, PAGE-EM, PAGE-VB, and
grammar-based GP in the number of fitness evaluations [27].

One example of an EDA-GP model that does not rely on PPTs or grammars
is the n-gram GP proposed by Poli and McPhee [14], where n-grams are used to
model relationships between a group of n consecutive sequences of instructions
that can learn dependencies in linear GP. Similarly, Hemberg et al. [7] suggested
operator free genetic programming (OFGP), which learns n-grams of ancestor
node chains. An n-gram of ancestors is the sequence of a node and its n-1 ancestor
nodes in a GP parse tree. However, for the Pagie-2D problem, OFGP could not
outperform standard GP [7].

Wittenberg et al. [25] recently suggested DAE-GP that uses denoising
autoencoder long short-term memory networks (DAE-LSTMs) as a probabilistic
model. For a generalization of the royal tree problem, the DAE-GP outperforms
standard GP. The DAE-GP can better identify promising areas of the solution
space compared to standard GP resulting in a more efficient search in the number
of fitness evaluations, especially in large search spaces [25]. The authors argue
that, compared to previous EDA-GP approaches, the flexible model representa-
tion is the key reason for the high performance, allowing the model to identify
in parallel, both position as well as context of relevant substructures [25].

The idea of using DAE as probabilistic models in EDA has earlier been pre-
sented by Probst [15] who introduced DAE-EDA. DAE-EDA was designed for
problems where candidate solutions follow a fixed-length representation [15]. For
the NK landscapes, deceptive traps and HIFF problem, Probst and Rothlauf [16]
show that the DAE-EDA yields competitive results compared to the Bayesian
optimization algorithm (BOA). However, DAE-EDA is better parallelizable,
making it the preferred choice especially in large search spaces. Furthermore,
the authors show that corruption strength has a strong impact on exploration
and exploitation in search. Adjusting the level of corruption can therefore help
to either increase exploration which helps to overcome local optima, or to exploit
relevant solution spaces making search more efficient [16].



106 D. Wittenberg

3 Denoising Autoencoder LSTMs

DAE-LSTMs are artificial neural networks that consist of an encoding and a
decoding LSTM: the encoding LSTM encodes a candidate solution (a linear
sequence in prefix expression) to the latent space; the decoding LSTM decodes
the latent space back to a candidate solution. Since we train the DAE-LSTM
to reconstruct the input, the architecture is also referred to as autoencoder long
short-term memory network (AE-LSTM) [22], where we use denoising on input
candidate solutions to prevent the model from learning the simple identity func-
tion. Denoising transforms the AE-LSTM into a DAE-LSTM. When using DAE-
LSTMs as a probabilistic model in EDA-GP (DAE-GP), we repeat the following
two steps at each generation: first, we train the model to learn relevant proper-
ties of our parent population (model building). Then, we propagate candidate
solutions through the trained DAE-LSTM to transfer the learned properties to
the offspring (model sampling).

In the following sections, we first explain the architecture of AE-LSTMs and
the concept of denoising, where we introduce Levenshtein edit as a new denoising
strategy. Then, we describe the training as well as the sampling procedure where
syntax control is used to restrict the sample space to syntactically valid candidate
solutions.

3.1 Autoencoder LSTMs

Figure 1 shows the architecture of an AE-LSTM with one input layer, one hidden
layer (consisting of LSTM memory cells), and one output layer. It is based on the
architecture presented in [25]. x and o represent the input and output candidate
solution of length m and k, respectively. h is the hidden state at time step t,
where the total number of time steps corresponds to T = m+k (m, k ∈ N). The
encoding LSTM (left) first sequentially encodes a candidate solution x, with xt,
t ∈ {1, 2, ..,m} through the encoding function g(x), where each xt represents a
function or terminal of a candidate solution in our parent population. At each
time step t (except t = 0), the LSTM memory cell then receives three inputs: the
current input xt, the previous hidden state ht−1 and the previous cell state ct−1

(not shown here). The idea of transferring information from one time step to the
next is to capture long-term dependencies in training data [8]. After complete
processing of the input candidate solution x, we copy hm and cm, and transfer it
to the decoding LSTM, thus hm+1 = hm and cm+1 = cm. The decoding LSTM
(right) then uses the decoding function d(h) and decodes ht back to an output
candidate solution o, with the aim to reconstruct the input candidate solution
x. Using ot as input in ot+1 helps to further reduce the reconstruction error [22].
Similar to [22] and [25], we reverse the input candidate solution x to allow the
model to learn low range correlations in training data.

3.2 Suggesting a New Denoising Strategy: Levenshtein Edit

The aim of the AE-LSTM is to reconstruct the input. Given that the hidden
layer is sufficiently large, a trivial way to solve this task is to learn the simple
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Fig. 1. Autoencoder LSTM assuming one hidden layer

identity function, which means that the AE-LSTM simply replicates the candi-
date solutions given as input. Since we want to learn a more useful representation
of the properties of our parent population, we apply denoising on input candi-
date solutions, transforming the AE-LSTM into a DAE-LSTM. Based on the
first DAE presented by Vincent et al. [24] in 2008, the idea is to partially cor-
rupt input candidate solutions making the model robust to noise that is present
in our parent population.

At each generation g, we use the corruption function c(x) to denoise the can-
didate solutions that were previously selected as promising candidate solutions
from population Pg. We can formally describe the process by

x̃i = c(xi) ∀i ∈ {1, .., N}, (1)

where x̃i is the corrupted version of the ith candidate solution x in the training
set X (of size N) [25].

As a new corruption function c(x), we introduce Levenshtein edit. Leven-
shtein edit operates on the string representation of x (prefix expression) and
uses insertion (add one node), deletion (remove one node), and substitution
(replace one node by another node) to transform x into x̃. We control the cor-
ruption strength by a priori defining a corruption percentage p (0 < p < 1).
Given a function set F , a terminal set T , and a candidate solution x, with xj ,
j ∈ {1, 2, ..,m}, we corrupt x by iteratively processing each node xj , where each
xj has a chance of p to be corrupted: with uniform probability, we either insert
a random symbol s ∈ F ∪T at index j (insertion), we delete xj (deletion), or we
delete xj and insert a random symbol s ∈ F ∪ T at index j (substitution). Note
that these edit operations may produce corrupted candidate solutions x̃ that
do not follow GP syntax. However, sampling with syntax control (see Sect. 3.4)
ensures that output candidate solutions o are syntactically valid. Using Lev-
enshtein edit as denoising strategy has several advantages: similar to subtree
mutation presented in [25], we introduce variance in tree size. This is desirable
since it introduces additional variation into x̃. However, this variation should
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not lead to a bias towards larger or smaller trees. When using subtree mutation
as denoising strategy, we randomly select a subtree to be replaced. Depending
on the size of the selected subtree, we easily corrupt larger or smaller parts of
x resulting in a bias in tree size. The situation is different for Levenshtein edit:
here, we randomly choose denoising operators that iteratively either increase
(insertion), decrease (deletion), or maintain (substitution) the size of x. Thus,
for any p, the expected tree size of x̃ is equal to the tree size of x, which means
that we are able to introduce variation without inducing a bias in tree size.
Furthermore, we can easily control the corruption strength by adjusting p. The
larger p, the stronger the variation, and the stronger the corruption. The results
in Sect. 4 will show that this helps to control exploration and exploitation in
search.

3.3 Training Procedure

At each generation g, we train a DAE-LSTM (from scratch) according to the
training procedure shown in Algorithm 1. It is similar to the training procedure
presented in [25]. We first initialize the trainable parameters θ of our network,
where W

′
, b

′
, and W

′′
, b

′′
(Algorithm 1, line 1) denote the trainable weights and

biases of the encoding and decoding LSTM, respectively. Then, we iteratively
adjust the values of the trainable parameters θ using gradient descent. Given
the corruption percentage p, we first transform the candidate solution xi into x̃i

(Algorithm 1, line 4). Then, we propagate x̃i through the DAE-LSTM, using
the encoding function g(x) (Algorithm 1, line 5) and the decoding function d(x)
(Algorithm 1, line 6). We compute the reconstruction error using the multiclass
cross entropy loss function by

θ := min
θ

N∑

i=1

Err(xi, oi), (2)

where oi is the output candidate solution and xi the original (not the corrupted)
input candidate solution. We update the parameters θ into the direction of the
negative gradient and control the strength of the update using the learning rate
α (0 < α < 1) (Algorithm 1, line 7).

Algorithm 1. Pseudocode for training a DAE-LSTM

1: Initialize θ = {W
′
, b

′
, W

′′
, b

′′}
2: while not converged do
3: for each candidate solution xi in training set X do
4: x̃i = c(xi; p)
5: h = g(x̃i; θ)
6: oi = d(h; θ)

7: θ := θ − α ∗ ∂Err(xi,oi)
∂θ

8: end for
9: end while
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We use early stopping to prevent the DAE-LSTM from overfitting. Given
a hold-out validation set U , we stop training as soon as the validation error
Err(xj , oj), with xj , oj ∈ U , converges. We measure error convergence by observ-
ing the number of epochs that the validation error does not improve. As soon as
we reach 200 epochs of no improvement, we stop training and use those param-
eters θ for sampling that minimize the validation error.

3.4 Sampling with Syntax Control

We use the DAE-LSTM with the trained parameters θ to sample new candidate
solutions o forming the offspring population Pg+1. The procedure is shown in
Algorithm 2 and based on [1,16,25]. Given θ (Algorithm 2, line 1), we first
randomly pick a candidate solution x of our training set X (Algorithm 2, line
2). Then, we corrupt x into x̃ (Algorithm 2, line 3) using the same denoising
strategy as during training and propagate x̃ through the DAE-LSTM (Algorithm
2, lines 4–5), where we add the resulting output candidate solution o to Pg+1

(Algorithm 2, line 6).

Algorithm 2. Pseudocode for sampling from a DAE-LSTM

1: Given the trained DAE-LSTM with θ = {W
′
, b

′
, W

′′
, b

′′}
2: Pick x ∈ X randomly
3: x̃ = c(x, p)
4: h = g(x̃; θ)
5: o = d(h; θ)
6: Add o to new population Pg+1

Furthermore, we introduce a syntax control mechanism that only allows syn-
tactically valid candidate solutions to be sampled. The mechanism proceeds as
follows: at each time step t, with t ∈ {m+1,m+2, .., T}, when decoding h back
to o (Algorithm 2, line 5), the DAE-LSTM generates a probability distribution
q over the set of functions and terminals (defined by F and T ). Similar to grow
initialization [11], we first identify the set of functions and terminals that gen-
erate a syntactically valid candidate solution. Then, we set the classes of invalid
functions and terminals in q to zero and normalize the remaining probabilities in
q back to one, where we use the updated probability distribution to sample ot.

Without denoising, syntax control is usually not needed since the complexity
of the DAE-LSTM is sufficient to also learn correct syntax. However, the stronger
the corruption, the more difficult it becomes for the DAE-LSTM to sample
syntactically valid candidate solutions, since corrupted candidate solutions used
as input to the model no longer belong to the same parent population as X.
In these cases, syntax control is very useful: we prevent the DAE-LSTM from
inefficient resampling and allow the model to explore new solution spaces, which
can help to overcome local optima and to avoid premature convergence.
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4 Experiments

We present the experimental setup for studying the influence of denoising on
search. We find that the DAE-GP with Levenshtein edit and p = 0.05 outper-
forms a DAE-GP with subtree mutation and standard GP. Furthermore, we show
that corruption strength p strongly affects search: the stronger the corruption,
the stronger the exploration. Adjusting the corruption strength can therefore
help to either exploit or explore relevant areas of the solution space.

4.1 Experimental Setup

For our study, we use the generalization of the royal tree problem presented
in [25] as test problem. It is based on the royal tree problem introduced by
Punch et al. [17] but uses the initialization method ramped half-and-half [11] to
generate target candidate solutions xopt. The idea is to define a fitness based on
the structure of a candidate solution x by

fitnessx =
lev(x, xopt)

max(lx, lxopt
)
, (3)

where lev is the minimum Levenshtein distance, defined by the minimum
number of insertion, deletion, and substitution operations necessary to transform
x into xopt [12]. Similar to [25], we divide lev by the maximum size l of x and
xopt, resulting in fitnessx ∈ [0, 1]: the closer x to xopt, the better the fitness,
where fitnessx = 0 means that x is identical to xopt [25]. We tune the complexity
of the problem by adjusting the minimum and maximum tree depths dmin and
dmax, respectively. The larger the solution space, the more difficult the problem.

We implemented the experiments in Python using the evolutionary frame-
work DEAP [3] and the neural network framework Keras [2]. Table 1 shows the
GP and DAE-GP parameters. We use the Pagie-1 [13] function and terminal set
and define two different problem settings, where we fix the minimum tree depth
to dmin = 3 and set the maximum tree depth to dmax ∈ {4, 5}. We choose a
population size of 500, use binary tournament selection, and run the experiments
for a total of 100 generations. We use ramped half-and-half to generate both the
initial population and the target candidate solutions xopt and define 30 different
xopt per problem setting. Performing 5 runs per xopt results in a total number of
150 runs that we aggregate per problem setting and algorithm. Since we consider
six different algorithm configurations, we conduct 1,800 runs in total.

For GP, we follow the recommendations of Koza [11] and use subtree crossover
as variation operator where we set an internal node bias to assure that 90%
of the crossover points are functions. For the DAE-GP, we have to a priori
define a set of hyperparameters. Note that we did not conduct a hyperparameter
optimization. We set the number of hidden layers to one and the number of
hidden neurons equal the maximum size l of the candidate solutions used as input
to the model. We found that the complexity of the model is sufficient to learn
complex relationships in training data while allowing efficient model building
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Table 1. GP and DAE-GP Parameters

Parameter Setting

function set F = {+,−, ∗, /, sin, cos, exp, log}
terminal set T = {x, y, 1}
target cand. solutions 30 per problem setting

runs 5 per target candidate solution

population size 500

generations 100

initialization ramped half-and-half

selection tournament selection of size 2

tree depths dmin = 3 and dmax ∈ {4, 5}
variation operator GP: subtree crossover with internal node bias (90% functions,

10% terminals), DAE-LSTM: model building and sampling

with Levenshtein edit using p ∈ {0.02, 0.05, 0.1, 0.2} and

subtree mutation using dmin, dmax = 2 [25]

and sampling. We split the parent population into 50% training set X and 50%
validation set U , and set the batch size to 25 (10% of X). We use a learning rate
of α = 0.001 and perform adaptive moment estimation (Adam) [10] for gradient
descent optimization. To study the impact of denoising on search, we vary the
denoising strategy throughout the experiments: we test Levenshtein edit, with
p ∈ {0.02, 0.05, 0.1, 0.2}, and a DAE-GP using subtree mutation, where previous
work recommends to set the depth of the new subtree to dmin, dmax = 2 [25].

4.2 Performance Results

We first study the algorithm success rates for the two problem complexities
(dmax ∈ {4, 5}) and the six different algorithm configurations. A run is success-
ful as soon as the algorithm finds a candidate solution x during search that is
identical to the target candidate solution xopt (fitnessx = 0). Table 2 shows
the average success rates after 100 generations. Each success rate represents the
average over 150 runs (5 runs for each of the 30 target candidate solutions xopt).
As expected, the average success rates are higher for dmax = 4 compared to
dmax = 5: the solution space becomes larger when choosing larger tree depths
making it harder to find xopt. However, the success rates differ strongly depend-
ing on the algorithm considered. For both dmax = 4 and dmax = 5, the DAE-GP
with Levenshtein edit and p = 0.05 performs best, with an average success rate of
72.67% and 58.67%, respectively. Interestingly, increasing or decreasing p results
in a loss in search success. While the DAE-GP with p = 0.02 and p = 0.1 yields
similar average success rates compared to standard GP (51.33% vs. 59.33% vs.
50.00% for dmax = 4 and 38.00% vs. 35.33% vs. 36.67% for dmax = 5), we
achieve low success rates using strong corruption: for dmax = 4 and dmax = 5,
the DAE-GP with p = 0.2 only finds 26.00% and 16.67% of the target solutions,
respectively. The DAE-GP with subtree mutation performs worst, with average
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success rates of 16.00% and 1.33%, respectively. The high performance of the
DAE-GP with Levenshtein edit and p = 0.05 indicates that the model success-
fully identifies and models relevant properties of the parent population and is
able to transfer these properties to the offspring. However, performance strongly
depends on the denoising strategy applied.

Table 2. Average success rates after 100 generations

Algorithm dmax = 4 dmax = 5

Standard GP 50.00% 36.67%

DAE-GP Levenshtein edit p = 2% 51.33% 38.00%

DAE-GP Levenshtein edit p = 5% 72.67% 58.67%

DAE-GP Levenshtein edit p = 10% 59.33% 35.33%

DAE-GP Levenshtein edit p = 20% 26.00% 16.67%

DAE-GP subtree mutation 16.00% 1.33%
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Fig. 2. Average best fitness over number of generations for problems of varying com-
plexity.

Figure 2 plots the average best fitness over the number of generations. Since
we face a minimization problem, we observe a general decrease in the average
best fitness over the number of generations. The solution space is larger for
dmax = 5, resulting in a best fitness level that is slightly higher compared to
dmax = 4. Again, for both problem settings, the DAE-GP with Levenshtein edit
and p = 0.05 performs best, confirming the results from Table 2. Interestingly,
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in early generations, the DAE-GP with p = 0.02 finds similar best fitness candi-
date solutions compared to p = 0.05 but then hardly improves from generation
g = 30 (dmax = 4) and g = 40 (dmax = 5), indicating that the algorithm has
already converged. In contrast, when setting the corruption strength to p = 0.1,
we observe a similar best fitness slope of the DAE-GP and standard GP, demon-
strating a similar search behavior. When using p = 0.2 or subtree mutation as
denoising strategy, the performance is much worse.

Given the distribution of the best fitness at the end of each run (generation
100), we conduct several (pairwise) Mann-Whitney U-Tests to test the hypoth-
esis that the best fitness distributions are from the same population. Assuming
a significance level of 0.05, we find that the DAE-GP with Levenshtein edit and
p = 0.05 yields p-values <0.01 for all pairwise comparisons. The results indicate
that this DAE-GP is significantly better than all other tested algorithms. When
using p = 0.1 and comparing the DAE-GP to standard GP, we find p-values of
0.09 (dmax = 4) and 0.58 (dmax = 5). Similarly, when setting the corruption
strength to p = 0.02 and comparing the DAE-GP to standard GP, we find p-
values of 0.98 (dmax = 4) and 0.2 (dmax = 5). In both cases, the results indicate
that the best fitness distributions do not significantly differ from each other,
confirming the observation that these algorithms generate similar best fitness
candidate solutions.

4.3 The Influence of Denoising on Search

The results above demonstrate that denoising has a strong impact on the perfor-
mance of the DAE-GP. To better understand the influence of denoising on search,
we study the exploration and exploitation behavior of the algorithms. Similar
to [25], we approximate exploration and exploitation by examining the num-
ber of new candidate solutions over generations that have never been sampled
before. Exploitation is stronger, if search introduces a lower number of new can-
didate solutions during search. In contrast, the more new candidate solutions we
introduce into search, the stronger the exploration. According to Rothlauf [19],
we need to find an appropriate and problem-specific balance between explo-
ration and exploitation in search. For problems, where small variations on the
genotype lead to small variations in fitness (high-locality problems), we usually
need much less exploration compared to problems, where the fitness landscape
is rugged (low-locality problems). Thus, depending on the problem at hand, we
either need to increase exploitation, making search more efficient, or we need
to increase exploration, helping search to keep diversity high and allowing to
overcome local optima and to avoid premature convergence [19].

For the generalization of the royal tree problem, we plot results in Fig. 3.
As expected, for both variants, we observe a general decrease in the number
of candidate solutions over generations. Furthermore, the level of exploration is
in general higher for dmax = 5, again because we face a larger solution space
compared to dmax = 4.

When comparing different denoising strategies with each other, we notice
that the level of exploration and exploitation strongly differs throughout the
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Fig. 3. Mean number of new candidate solutions over number of generations for prob-
lems of varying complexity.

search. For Levenshtein edit, we observe that the larger the corruption strength
p, the stronger the exploration. While the DAE-GP with p = 0.02 strongly
decreases and converges towards zero at generation g = 50 (dmax = 4) and
g = 75 (dmax = 5), setting corruption strength to p = 0.2 results in a strong
exploration of the solution space. Interestingly, as noticed in Sect. 4.2, both
settings lead to an inferior performance compared to p = 0.05. The DAE-GP
with p = 0.02 easily gets stuck in local optima (premature convergence) as we
tend to replicate the candidate solutions given as input. In contrast, the DAE-
GP with corruption strength of p = 0.2 introduces too many new candidate
solutions, resulting in an inefficient search. Thus, by setting corruption strength
to p = 0.05, we find a good balance between exploration and exploitation in
search.

Another interesting observation is that the level of exploration of standard
GP is similar to the one of the DAE-GP, using Levenshtein edit with p = 0.1.
Thus, we can adjust the corruption strength in a way that allows us to imitate
the exploration and exploitation behavior of standard GP, also yielding similar
performance results.

For subtree mutation as denoising strategy, we notice that the level of explo-
ration is highest throughout the search, yielding the worst results. We think that
the introduction of syntax control (see Sect. 3.4) is the main reason for the bad
performance of subtree mutation compared to the results published in [25]. Syn-
tax control allows the DAE-GP to introduce more new candidate solutions into
search, which can be helpful to overcome local optima. However, for the general-
ization of the royal tree problem (high-locality problem), the strong exploration



Using DAE-GP to Control Exploration and Exploitation in Search 115

leads to inferior performance. Instead, search with strong exploitation, as shown
for Levenshtein edit p = 0.05, is more successful.

The results indicate that the denoising strategy is key to the success of the
DAE-GP. It strongly influences exploration and exploitation in search and there-
fore affects performance. Thus, we believe that the denoising strategy should be
adjusted depending on the problem at hand: while weaker corruption helps to
improve search quality for high-locality problems, we expect stronger corruption
to be more successful when we face rugged fitness landscapes (low-locality prob-
lems). Here, a stronger exploration of the solution space can help to overcome
local optima and to avoid premature convergence.

5 Conclusions

The DAE-GP is an EDA-GP model based on artificial neural networks that flex-
ibly identifies and models hidden relationships in training data. It uses denoising
on input candidate solutions to make the model robust to noise that is present
in the parent population. This paper introduced Levenshtein edit as a new and
improved denoising strategy, allowing us to precisely control corruption strength.
Furthermore, we implemented a new syntax control mechanism for sampling
from the DAE-GP, allowing a higher level of exploration throughout the search.

We find that denoising strongly influences exploration and exploitation in
search and therefore affects performance. The stronger we denoise input candi-
date solutions, the stronger the exploration. Exploration is especially useful for
low-locality problems where we want to escape from local optima. In contrast,
for high-locality problems, such as the generalization of the royal tree problem
considered in this work, stronger exploitation is needed. Therefore the DAE-GP
with low corruption strength (5%) performs best. The results show that the
denoising strategy is key to the success of the DAE-GP: it permits us to con-
trol the exploration and exploitation behavior in search leading to an improved
search quality.

In future work, we investigate the influence of denoising on other prob-
lem domains. We will study if we can dynamically control corruption strength
throughout search. In addition, we think that Levenshtein edit as denoising
strategy can still be improved. The denoising strategy presented in this paper
operates on the string of a candidate solution, which easily destroys GP syntax.
Thus, Levenshtein edit operating on a parse tree could be a promising approach.
Furthermore, a hyperparameter optimization could further improve model qual-
ity, as well as other architectures, such as the transformer architecture [23].
Besides this, future work should investigate if a pre-training of the model before
evolution helps to improve search quality.

Acknowledgements. I thank my team in Mainz, especially Franz Rothlauf, for
insightful discussions on this topic, as well as Dirk Schweim and Malte Probst for
previous work on this topic.
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