
Synthesizing Programs from Program
Pieces Using Genetic Programming
and Refinement Type Checking

Sabrina Tseng(B), Erik Hemberg, and Una-May O’Reilly

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
stseng@alum.mit.edu, {hembergerik,unamay}@csail.mit.edu

Abstract. Program synthesis automates the process of writing code,
which can be a very useful tool in allowing people to better leverage
computational resources. However, a limiting factor in the scalability of
current program synthesis techniques is the large size of the search space,
especially for complex programs. We present a new model for synthesiz-
ing programs which reduces the search space by composing programs
from program pieces, which are component functions provided by the
user. Our method uses genetic programming search with a fitness func-
tion based on refinement type checking, which is a formal verification
method that checks function behavior expressed through types. We eval-
uate our implementation of this method on a set of 3 benchmark prob-
lems, observing that our fitness function is able to find solutions in fewer
generations than a fitness function that uses example test cases. These
results indicate that using refinement types and other formal methods
within genetic programming can improve the performance and practical-
ity of program synthesis.

1 Introduction

Program synthesis, the automatic construction of a computer program from a
user specification, is a challenging and central problem in the field of artificial
intelligence (AI) [7]. Programming has been classified as “AI-hard” [35] since all
problems in AI can reduce to programming, and thus our progress in program
synthesis serves as a good benchmark for how close we are to achieving general
artificial intelligence [21]. In addition, program synthesis has broad applications
in software engineering. For example, software development often entails refac-
toring old code to improve structure or readability without affecting behavior,
which program synthesis can help automate. In addition, program synthesis can
allow non-programmers to efficiently perform computational tasks [3].

Two of the main approaches to program synthesis are stochastic search through
genetic programming [14], and formal verification methods such as symbolic solv-
ing [7]. However, solver-based methods do not scale beyond small programs such
as introductory programming problems [9], and many current approaches are con-
strained in scope [21]. In this paper, we propose a new program synthesis model
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 197–211, 2022.
https://doi.org/10.1007/978-3-031-02056-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_13&domain=pdf
https://doi.org/10.1007/978-3-031-02056-8_13

198 S. Tseng et al.

which leverages pre-existing code, in the form of functions that we call “program
pieces”, and synthesizes the high-level program structure. This model allows for
an approach that incorporates refinement type checking [32], a formal verification
method, into genetic programming search.

Genetic programming (GP) is a search technique that begins with an initial
population of programs from the search space, and evolves and combines the
most “fit” programs through non-deterministic processes similar to biological
evolution to move towards an optimal solution [25]. In particular, GP proceeds
in generations, where in each generation the search selects the most fit programs
and varies them to get a new generation of more evolved and more fit programs.
In GP systems, the performance of the search depends heavily on the fitness
function, since incorrect programs need a good heuristic to optimize [7,22]. A
common fitness function is the program’s accuracy on a set of example inputs
and outputs. However, having a large set of examples is computationally expen-
sive [6], while a small set of examples leads to under-specification and often
the wrong generalizations [7]. NetSyn [17] showed that using neural networks to
learn a fitness function can improve GP performance. This suggests that there
is still room for improvement in the design of the fitness function.

On the other hand, formal verification methods can be used to synthesize
programs through symbolic proofs of satisfiability and correctness. One exam-
ple of a formal verification method is refinement type checking [32], which is a
stronger form of type checking that can enforce predicates on types. Specifically,
a user can define stricter input and output types for a function using refinement
types, so that the refinement type check enforces expected preconditions and
postconditions. The liquid type system [28] allows for efficient static checking of
refinement type safety, without requiring every expression to be manually anno-
tated. However, as mentioned above, formal methods alone do not scale well
beyond small programs.

Our key idea in this paper is to improve scalability by decomposing programs
into program pieces, which are functions provided by the user or imported from a
library. We form candidate programs by composing program pieces. By abstract-
ing away logical units of code into these program pieces, we reduce the search
space for the synthesis, thus enabling us to solve larger synthesis problems. Fur-
thermore, this allows users of our system to make use of built-in functions or
external libraries, which can provide complex logic for free.

An additional benefit of this decomposition is that we can use refinement
types to specify the input and output types of program pieces, which specifies
the overall intended behavior of the program we want to synthesize. In our pro-
posed system, we use refinement type checking as a fitness function within our
GP algorithm. In particular, we define a novel fitness function based on the
number of errors that result from the refinement type check, so that programs
with fewer errors have better fitness. Using this fitness function, we observe that
the GP search converges towards a program that has no type errors, which we
consider to be correct since the refinement types specify the intended behavior.
In addition, unlike fitness functions based on input-output examples which are

Synthesizing Programs from Program Pieces 199

under-specified as mentioned above, refinement types provide a formal specifi-
cation of the entire input and output spaces.

We present the following contributions in this paper:

– A general-purpose program synthesis model that synthesizes programs by
composing preexisting program pieces

– A fitness function on programs composed of pieces that enables GP to find
good programs, derived from the number and type of errors that result from
refinement type checking

– An evaluation of the new fitness function in this model

We evaluate the performance of our proposed fitness function against a fitness
function that uses accuracy on input-output examples. We find that on average,
with our refinement type-based fitness function, the GP search finds solutions
in about 20% fewer generations than when we use input-output examples.

The remainder of the paper is structured as follows: first, we outline our meth-
ods, including how we translate the refinement type check into a fitness function
(Sect. 2). Next, we describe our experiments and results (Sect. 3). Finally, we
discuss related work (Sect. 4) and conclusions (Sect. 5).

2 Method

We will present our method in 4 sections. First, we describe our program synthe-
sis model, defining program pieces and introducing a running example (Sect. 2.1).
Next, we outline our base genetic programming (GP) algorithm and how it syn-
thesizes programs (Sect. 2.2). Next, we briefly introduce refinement types and
LiquidHaskell (Sect. 2.3). Then, we present our new fitness function, describing
how we integrate information from LiquidHaskell into the base GP algorithm
(Sect. 2.4).

2.1 Program Synthesis Model

In our program synthesis model, programs are composed of program pieces,
which are functions provided by the user or imported from built-in and exter-
nal libraries. As a running example, we consider a list filtering problem that we
call FilterEvens: given a list of integers, return a list containing only the even
integers from the input. The example below, and subsequent examples, will use
Haskell syntax [11]. A user might provide the following 3 program pieces:

Example 1. Program pieces for FilterEvens

1. condition takes in integer x and returns true if x is even, false otherwise.

condition :: Int -> Bool
condition x = x ‘mod‘ 2 == 0

2. condition takes in integer x and returns true if x is odd, false otherwise.

200 S. Tseng et al.

condition :: Int -> Bool
condition x = x ‘mod‘ 2 /= 0

3. filterEvens takes in an array of integers xs and returns the array containing
all members from xs for which condition is true.

filterEvens :: [Int] -> [Int]
filterEvens xs = [a | a <- xs, condition a]

A correct program would consist of pieces 1 and 3. Note that piece 2 is not ulti-
mately needed; a user will not have complete knowledge of the implementation,
so they may include pieces that the synthesis algorithm chooses not to use.

2.2 Genetic Programming Algorithm

In the context of program synthesis, genetic programming evolves a population
of candidate programs over time to find an optimal program [14]. Candidate
programs are defined by their chromosome, a sequence of integers representing
the indexes of the program pieces that compose that program. For example,
using our FilterEvens problem defined in Example 1, the chromosome c = [1, 3]
corresponds to this program consisting of piece numbers 1 and 3:

Example 2. Program defined by chromosome [1, 3], which uses the correct con-
dition to filter a list to only contain even integers

condition :: Int -> Bool
condition x = x ‘mod‘ 2 == 0

filterEvens :: [Int] -> [Int]
filterEvens xs = [a | a <- xs, condition a]

A sketch of our base genetic programming algorithm is shown in Algorithm1.
We provide a set of parameters Θ which includes the population size, chromo-
some length, mutation and crossover rate for variation, tournament size, and
elite size, and parameter G, the number of generations to run for. We also pro-
vide a fitness function f , which computes a heuristic representing how “good”
each candidate solution is, along with a set of input/output examples X which
we use to test candidate programs to compute fitness (described in more detail
below).

The algorithm proceeds in the following steps, labeled with the corresponding
line numbers in Algorithm1:

– Generate individuals (1): Let |c| be the chromosome length and |P | the
number of program pieces; both are provided in the parameters. We generate
a random individual by generating |c| random numbers, each in the range
[0, |P |). This list represents the chromosome for that individual. We repeat
the process pop size times to generate an initial population.

Synthesizing Programs from Program Pieces 201

– Compute fitness (2, 6): We use the provided fitness function f to compute
fitness for each individual in the population.

– Selection (4): To select individuals for variation, we use tournament selec-
tion [4]. The tournament size t is provided in the parameters Θ. We will run
pop size tournaments, where each tournament selects t individuals at ran-
dom from the population and selects the individual with best fitness. Thus,
individuals with higher fitness are more likely to be selected for variation.

– Variation (5): We use two variation operators to create new individuals.
• Mutation [23]: With probability equal to the mutation rate, we mutate

an individual as follows. Given a chromosome c, we choose an index uni-
formly at random from [0, |c|), and change it to a new value, also chosen
uniformly at random from the range of possible values [0, |P |), to get new
chromosome c′.

• Single-Point Crossover [24]: With probability equal to the crossover
rate we create two new individuals as follows. Given two chromosomes c1
and c2, we choose an index uniformly at random to be the crossover point
p. We create new individuals c′

1 and c′
2 such that c′

1 contains the left part
of c1, up to index p, and the right part of c2, from index p+1 to the end,
and vice versa for c′

2.
– Replacement (7): We use an elitism strategy [26] to update the popula-

tion. Let e be the elite size provided in the parameters Θ. We choose our
new population to consist of the e individuals from the current generation
before variation with the best fitness, plus the (pop size − e) individuals
after variation with the best fitness.

Algorithm 1. Genetic Programming for Program Synthesis
evolve(Θ,G, f,X):
1: P ← generate individuals(Θ) // Generate random initial population
2: P ← computeFitness(P, f(X, ·)) // Compute fitness of initial pop
3: for G iterations do
4: P ′ ← selection(P, Θ) // Select individuals for variation
5: P ′ ← variation(P ′, Θ) // Mutation and crossover
6: P ′ ← computeFitness(P ′, f(X, ·)) // Compute fitness of new pop
7: P ← replacement(P, P ′, Θ) // Update population depending on fitness
8: end for
9: p∗ ← max({p.fitness : p ∈ P})

10: return p* // Return program with max fitness

Fitness Function. In our base algorithm, we use a standard fitness function:
the candidate program’s accuracy on the example test cases X [14]. In particular,
given some chromosome c, fitness is given by

202 S. Tseng et al.

fIO(X, c) =
number of correct examples
total number of examples

Under this fitness function, programs which perform better on the example
cases will have higher fitness. However, there are potential problems with using
input-output examples, as mentioned in Sect. 1. This fitness function only spec-
ifies a program’s intended behavior for a small set of examples, and a solution
that succeeds on these examples may not necessarily generalize to others [13].
This leads us to explore refinement types as an alternate way to compute fitness.

2.3 Refinement Types and LiquidHaskell

Refinement types are types that further restrict the space of possible values by
specifying a predicate. For example, we can express the filterEvens function
from our running example using refinement types as follows, indicating that it
takes a list of integers as input and outputs a list of even integers:

Example 3. LiquidHaskell Refinement Type Specification for filterEvens

{-@ type Even = {v:Int | v mod 2 = 0} @-}
{-@ filterEvens :: [Int] -> [Even] @-}

LiquidHaskell [34] is a plugin for Haskell which supports refinement types,
including static checking of refinement type safety using a symbolic solver such
as Z3 [20]. We can express a function like filterEvens in Example 3, and Liquid-
Haskell will verify at compile time that filterEvens satisfies the refined type.
In this case LiquidHaskell checks that the output of filterEvens is always a list
of even integers. If the check fails, LiquidHaskell outputs errors showing which
refinement type specifications were not satisfied. This static checking is able to
not only restrict integer values, but also enforce properties of lists and other
complex types, so it is applicable to a broad range of functions.

2.4 Refinement Types Fitness Function

For certain types of problems, such as the FilterEvens example we have defined,
refinement types are able to express the intended behavior of the program.
Because this is a symbolic check, it verifies that behavior over all valid inputs
without relying on example test cases.

To make use of this property, we leverage LiquidHaskell’s refinement type
checking to define a new fitness function for the GP. To do so, we require that
the user provide a refinement for each program piece. Since refinements are
based only on the intended behavior of a function, and do not depend on the
implementation, we assume that users will be able to provide refinements even
for library functions that will be used in the synthesized code.

A naive fitness function that simply runs the LiquidHaskell type check would
return a binary value (0 if it fails, 1 if it passes), which does not work well as
a heuristic. Instead, we can look more closely at LiquidHaskell’s output, which
includes syntax errors and refinement type errors, to construct a more fine-
grained function.

Synthesizing Programs from Program Pieces 203

Syntax Errors. We assume that individual program pieces, which are often
built-in functions or library functions, are free of syntax errors. Under this
assumption, the only syntax errors that can be produced by combining program
pieces are multiple definition errors (for pieces that have the same name and
function signature), and missing definition errors (for pieces that were declared
in other pieces but don’t appear in the solution). The maximum number of
syntax errors that can result is equal to the length of the chromosome.

Refinement Type Errors. Refinement type checking is only performed after
regular syntax checking, so no refinement type errors are reported if a program
has incorrect syntax. Otherwise, if the program has no syntax errors, Liquid-
Haskell will report one error per refinement (i.e. per function signature) that is
not satisfied. Thus, the maximum possible number of refinement type errors is
also equal to the length of the chromosome.

Fitness Function. We construct our fitness function using a linear scale based
on the number and type of errors reported. In addition, we follow the principle
that syntax errors are generally “worse” than refinement type errors; syntax
errors indicate structural issues like duplicated or missing program pieces, while
refinement type errors mean that the program has the right structure.

Therefore, for a given chromosome c (with length |c|) where LiquidHaskell
produces s syntax errors and t refinement type errors, we calculate the following
fitness function:

fRT (c) =

{
0.5 − s

2|c| if s > 0 (syntax checking fails)

1 − t
2|c| if s = 0 (syntax checking succeeds)

(1)

From Eq. 1, programs that have syntax errors always have fitness <0.5 while
programs that have no syntax errors will have fitness ≥0.5. A program that has
no syntax or refinement type errors, such as the program given in Example 2,
has a fitness value of 1 and is considered to be correct.

As another example, consider the program in our FilterEvens specifica-
tion with the chromosome [2, 3]. We include the LiquidHaskell refinement type
specifications as well:

Example 4. Program defined by chromosome [2, 3], which uses the incorrect con-
dition, filtering the list to contain odd integers

{-@ condition :: x:Int -> {v:Bool | (v <=> (x mod 2 /= 0))} @-}
condition :: Int -> Bool
condition x = x ‘mod‘ 2 /= 0

{-@ type Even = {v:Int | v mod 2 = 0} @-}
{-@ filterEvens :: [Int] -> [Even] @-}
filterEvens :: [Int] -> [Int]
filterEvens xs = [a | a <- xs, condition a]

204 S. Tseng et al.

This program compiles without syntax errors, but the filterEvens refine-
ment type specification is not satisfied as the given condition yields odd instead
of even integers. Thus, this program produces 0 syntax errors and 1 refinement
type error, resulting in a fitness value of 1 − 1

2·2 = 0.75. This program is given
a higher fitness than, for example, one that is missing a condition function,
which would cause syntax errors.

We will use this fitness function with our original GP algorithm as described
in Algorithm 1.

3 Experiments and Results

In this section we present an evaluation of our new fitness function based on
refinement type checking. Our goal is to assess whether it can provide a per-
formance and scalability improvement over two baselines: a standard fitness
function based on input-output examples, and random search. In Sect. 3.1 we
specify our benchmark problems and what program pieces we use in the synthe-
sis. In Sect. 3.2 we describe our experimental setup. Next, in Sect. 3.3 we outline
the results of our evaluation. Lastly, in Sect. 3.4 we discuss limitations of our
technique and possible threats to its validity.

3.1 Program Synthesis Problems

We use a set of 3 program synthesis problems for evaluation. Some are adapted
from a general program synthesis benchmark suite [9] and expanded for our
program synthesis model as described below. All of them have the property that
their behavior can be expressed using refinement types. For program pieces, we
chose building blocks that are likely to be part of the standard library for any
language, such as checking if an integer is even or filtering a list, as well as
domain-specific functions that the user would provide, such as a function that
joins two sorted partitions used in sorting algorithms. Below are the problem
specifications and a high level description of what program pieces are included.

1. List Filtering (adapted from Count Odds in [9]): Given a list of integers,
filter the list and return 3 new lists containing just the even integers, just the
odd integers, and just the integers greater than 2. We provide several possible
filtering conditions as program pieces, including the correct ones as well as
others that are not needed for the correct solution.

2. Insertion Sort: Given a list of integers, sort them in ascending order using
insertion sort. We provide several possible conditions for determining when
to insert, as well as a skeleton for the sort. The skeleton provides the control
flow, so our search needs to find the correct conditions and operations to fit
into the skeleton.

3. QuickSort: Given a list of integers, sort them in ascending order using quick-
sort. We provide a skeleton for the sort function, as in Insertion Sort, as well
as different possible ways of partitioning the list for quicksort.

Synthesizing Programs from Program Pieces 205

3.2 Experimental Setup

For each selected program synthesis problem, we run 60 trials and report per-
formance as the number of generations taken to find a solution. We compare the
following 3 variants of GP search:

1. RefinementTypes (RT): GP search using our new fitness function based
on counting errors from refinement type checking (Eq. 1).

2. IOExamples (IO): GP search using a baseline fitness function using accu-
racy on a set of input-output example cases, as described in Sect. 2.2. For each
problem, we choose a small (<10) but diverse set of examples. Specifically, we
ensure that the example sets cover all execution paths in a correct solution.

3. RandomSearch (RS): Random generation of individuals. To make this
comparable with GP search, we proceed in generations, where pop size
individuals are randomly generated and evaluated per generation. As with
GP search we can report the number of generations taken to find a solu-
tion. Thus, the total number of fitness evaluations is the same (pop size *
generations), so the running time is approximately equal as well. We include
this as a baseline to verify that GP is well suited to our program synthesis
model and provides an improvement over naive random search.

We also run each problem on 3 different search space sizes to evaluate scal-
ability; we vary the size of the search space by including or excluding different
optional program pieces which are not needed in a correct solution.

The common parameters that we used for all experiments is shown in Table 1.
Note that for ease of implementation, we terminate searches after 20 generations
and report a run as having taken 20 generations if it does not find a solution.

Table 1. Experiment parameters

Parameter Value

Mutation rate 0.3

Crossover rate 0.8

Tournament size 3

Elite size 2

Population size 20

Max generations 20

Number of trials 60

We tuned the max generations and population size to find a setting in which
most trials find a solution before reaching the max generation limit. We did not
tune the other parameters.

206 S. Tseng et al.

Our implementation, including problem specifications and program piece
specifications for each problem, is available on GitHub1.

3.3 Results

Table 2 shows the results of our experiments. For each problem and set of pro-
gram pieces, the search space size is calculated as |P ||c|, where |P | is the number
of program pieces and |c| is the length of the chromosome. We present the sample
mean x̄ and standard deviation s of the number of generations taken to find a
solution for each fitness function.

The p-values shown in the table come from comparing the two specified
variants using the Mann-Whitney U nonparametric test [18], which tests the
null hypothesis that two sets of samples have the same population distribu-
tion (in particular, the probability that a random member from population 1 is
greater than a random member from population 2 is 1/2). The p-values have also
been adjusted for multiple hypothesis testing using the Bonferroni correction to
decrease the likelihood of Type I error [1]; specifically, we multiply p-values by
2, the number of simultaneous hypotheses we are testing.

Table 2. Experiment Results. We run 60 trials per problem, search space size, and
variant and record the number of generations taken to find a solution. We report the
sample mean x̄ and standard deviation s. The p-values come from the Mann-Whitney U
nonparametric test and have been adjusted using the Bonferroni correction for multiple
hypothesis testing. p-values less than 0.05 are in bold.

Problem Search Generations to find solution pRT=IO pRT=RS

Space
Size

Refinement
Types

IO
Examples

Random
Search

x̄ s x̄ s x̄ s

List Filtering 5.9e4 8.2 5.4 10.5 6.6 14.2 6.8 0.065 0.000

1.0e5 12.5 6.2 14.8 5.9 15.9 6.0 0.046 0.002

1.0e6 12.8 6.6 16.7 5.0 17.8 4.6 0.000 0.000

Insertion Sort 1e5 5.4 4.8 8.4 7.1 8.4 6.5 0.042 0.010

1.6e6 8.0 5.7 8.9 6.9 11.4 6.9 0.700 0.008

1.8e7 9.4 7.0 13.1 6.7 16.4 5.1 0.008 0.000

QuickSort 2.6e5 9.3 6.1 11.1 7.3 12.7 7.0 0.181 0.005

5.3e5 10.3 6.2 14.6 6.3 15.8 6.5 0.000 0.000

1.0e6 9.0 6.2 17.2 4.8 15.5 6.5 0.000 0.000

We can see from the table that in general, RefinementTypes finds a solu-
tion in fewer generations than the two baselines. Across all the experiments,

1 https://github.com/sabrinatseng/GAble.

https://github.com/sabrinatseng/GAble

Synthesizing Programs from Program Pieces 207

RefinementTypes achieves an average improvement of 20% over IOExamples
and 32% over RandomSearch. The p-values show that the improvement is signif-
icant (p < 0.05) in most cases.

We hypothesize that a key reason for the performance improvement is the
difference in fitness values for programs that have syntax errors. For IOExamples,
all programs that have syntax errors have a fitness value of 0 since the fitness
evaluation is not able to run at all (the program cannot be interpreted). We can
see in Fig. 1a that for IOExamples, many candidate programs (all those with
syntax errors) have fitness values of 0, and there are not many distinct fitness
values. On the other hand, the RefinementTypes fitness function provides a
heuristic even if there are syntax errors, as seen in Fig. 1b, where there are four
distinct fitness values for programs with syntax errors (fitness <0.5). This is
helpful because among programs that have syntax errors, some are still closer to
correct (e.g. less errors) and the RefinementTypes fitness function can capture
that. Therefore, in areas of the search space corresponding to programs that
have syntax errors, the new fitness function can still guide the GP search whereas
those programs are all evaluated to be equally “unfit” by the IOExamples fitness
function. In the trial shown in Fig. 1, the search using IOExamples is unable to
find a solution after 20 generations, whereas the additional heuristic information
provided by RefinementTypes allows the GP search to find a solution after 10
generations.

(a) IOExamples (b) RefinementTypes

Fig. 1. Scatter plots of population’s fitness values over time (generations) for (a)
IOExamples and (b) RefinementTypes fitness functions. Each plots was generated from
one trial run on the QuickSort problem with the same search space size and population
size. Each point (g, f) represents an individual in generation g with a fitness value of
f , and the opacity increases with the number of individuals with fitness value f .

We also see from the table that the p-value generally remains below 0.05 as
the search space size increases, which shows that the performance improvements
that we observe can potentially scale to larger problems as well.

208 S. Tseng et al.

3.4 Threats to Validity

We note that refinement types are not applicable to every problem; for example,
some string manipulations, such as the Double Letters problem from [9], would
be difficult to express using refinement types since they involve complex depen-
dencies between indices of the string. In addition, we observed that the GP search
overall runs an order of magnitude slower in terms of wall-clock time when using
the refinement type check rather than example cases as a fitness function. We
did not optimize our implementations; in particular, there are many I/O oper-
ations that may be unnecessary in a better implementation, so this difference
may change after optimization.

4 Related Work

Since the fitness function is so integral in GP search, many researchers have
studied different ways of defining the fitness function. NetSyn [17], mentioned
in Sect. 1, uses a neural network to learn a better fitness function based on
input-output examples. CrowdBoost [2] explores evolving the fitness function
along with candidate programs during GP. Hemberg et al. [10] show that it is
possible to improve search performance by using domain knowledge extracted
from the problem description to construct the fitness function. Implicit fitness
sharing [19], in which multiple individuals that solve the same example case
must “share” the reward, can also improve search performance by preserving
population diversity. Another related approach is behavioral programming [15,
16], which introduces the use of the full execution trace of a candidate program
in the evaluation stage rather than relying solely on a scalar objective fitness
function.

Others have investigated using formal methods like model checking and Hoare
logic for program verification as the basis for the fitness function in GP [8,12].
Our approach similarly uses formal methods for the GP’s fitness function, but
we use refinement types, which are often less verbose and require less manual
annotation than Hoare logic; with LiquidHaskell, it is very easy to define and
verify refinement types for program pieces [33].

Prior works have also explored refinement types and their applicability to
program synthesis. Synquid [27] uses refinement types for program synthesis
without GP by decomposing the type specifications and solving local type con-
straints. Fonseca et al. [5] suggest an approach for combining GP with refinement
types, including a possible fitness function for refinements expressed in their
programming language; however, they do not present any experimental data or
results.

A similar approach for improving practicality of program synthesis is pro-
gram sketching, where a user provides a partially-complete template of a pro-
gram, and the synthesis algorithm fills in the missing low-level details [29]. This
has been implemented successfully for certain problem domains in systems like
Sketch [31] and Psketch [30], which achieve better efficiency because the

Synthesizing Programs from Program Pieces 209

search space is restricted. Our approach is analogous but inverted: the user pro-
vides building blocks and the synthesis algorithm finds a correct composition of
those building blocks. This has the same benefit of restricting the search space
and can be useful in situations where a user does not have enough knowledge of
the program structure to build a sketch.

5 Conclusions

Our results show that it is possible to express complex programs such as sorting
using our program piece-based model. Using this model for program synthesis,
we can make use of refinement type checking to express correctness properties
of the program. We show that in this model, using refinement type checking
to evaluate fitness within GP search can provide an improvement over using
an example-based fitness evaluation. These results merit further investigation
into different approaches to achieving scalability in program synthesis as well
as different ways of incorporating symbolic solving within GP search. In future
work, we hope to evaluate a wider set of benchmarks, including more complex
problems with larger search spaces. We also hope to further explore ways to for-
malize and potentially automate the construction of program pieces, for example
by searching the standard library, or using GP to “fill in” missing pieces.

References

1. Bland, J.M., Altman, D.G.: Multiple significance tests: the Bonferroni method.
BMJ 310(6973), 170 (1995). http://bmj.bmjjournals.com/cgi/content/full/310/
6973/170

2. Cochran, R.A., D’Antoni, L., Livshits, B., Molnar, D., Veanes, M.: Program boost-
ing: program synthesis via crowd-sourcing. SIGPLAN Not. 50(1), 677–688 (2015).
https://doi.org/10.1145/2775051.2676973

3. David, C., Kroening, D.: Program synthesis: challenges and opportunities. Philos.
Trans. Ser. A Math. Phys. Eng. Sci. 375(2104), Article ID 20150403 (2017)

4. Fang, Y., Li, J.: A review of tournament selection in genetic programming. In: Cai,
Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 181–192.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16493-4 19

5. Fonseca, A., Santos, P., Silva, S.: The usability argument for refinement typed
genetic programming. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp.
18–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2 2

6. Giacobini, M., Tomassini, M., Vanneschi, L.: Limiting the number of fitness cases
in genetic programming using statistics. In: Guervós, J.J.M., Adamidis, P., Beyer,
H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol.
2439, pp. 371–380. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45712-7 36

7. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends R© Program.
Lang. 4(1–2), 1–119 (2017). https://doi.org/10.1561/2500000010

8. He, P., Kang, L., Johnson, C.G., Ying, S.: Hoare logic-based genetic programming.
Sci. China Inf. Sci. 54(3), 623–637 (2011). https://doi.org/10.1007/s11432-011-
4200-4

http://bmj.bmjjournals.com/cgi/content/full/310/6973/170
http://bmj.bmjjournals.com/cgi/content/full/310/6973/170
https://doi.org/10.1145/2775051.2676973
https://doi.org/10.1007/978-3-642-16493-4_19
https://doi.org/10.1007/978-3-030-58115-2_2
https://doi.org/10.1007/3-540-45712-7_36
https://doi.org/10.1007/3-540-45712-7_36
https://doi.org/10.1561/2500000010
https://doi.org/10.1007/s11432-011-4200-4
https://doi.org/10.1007/s11432-011-4200-4

210 S. Tseng et al.

9. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO 2015, pp. 1039–1046. Association for Computing Machinery, New York
(2015). https://doi.org/10.1145/2739480.2754769

10. Hemberg, E., Kelly, J., O’Reilly, U.M.: On domain knowledge and novelty to
improve program synthesis performance with grammatical evolution. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, GECCO 2019, pp.
1039–1046. Association for Computing Machinery, New York (2019). https://doi.
org/10.1145/3321707.3321865

11. Hudak, P., et al.: Report on the programming language Haskell: a non-strict, purely
functional language version 1.2. SIGPLAN Not. 27(5), 1–164 (1992). https://doi.
org/10.1145/130697.130699

12. Johnson, C.G.: Genetic programming with fitness based on model checking. In:
Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.)
EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71605-1 11

13. Kitzelmann, E.: Inductive programming: a survey of program synthesis techniques.
In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812,
pp. 50–73. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11931-
6 3

14. Koza, J.R.: Survey of genetic algorithms and genetic programming. In: Proceedings
of WESCON 1995, pp. 589– (1995)

15. Krawiec, K.: Behavioral Program Synthesis with Genetic Programming. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-27565-9

16. Krawiec, K., O’Reilly, U.M.: Behavioral programming: a broader and more detailed
take on semantic GP. In: Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, GECCO 2014, pp. 935–942. Association for Com-
puting Machinery, New York (2014). https://doi.org/10.1145/2576768.2598288

17. Mandal, S., Anderson, T.A., Turek, J.S., Gottschlich, J., Zhou, S., Muzahid, A.:
Learning fitness functions for machine programming (2021)

18. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947). https://
doi.org/10.1214/aoms/1177730491

19. McKay, R.I.B.: Fitness sharing in genetic programming. In: Proceedings of the 2nd
Annual Conference on Genetic and Evolutionary Computation, GECCO 2000, San
Francisco, CA, USA, pp. 435–442. Morgan Kaufmann Publishers Inc. (2000)

20. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

21. O’Neill, M., Spector, L.: Automatic programming: the open issue? Genet. Program
Evolvable Mach. 21, 251–262 (2019). https://doi.org/10.1007/s10710-019-09364-2

22. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic
programming. Genet. Program Evolvable Mach. 11(3–4), 339–363 (2010). https://
doi.org/10.1007/s10710-010-9113-2

23. Page, J., Poli, R., Langdon, W.B.: Mutation in genetic programming: a preliminary
study. In: Poli, R., Nordin, P., Langdon, W.B., Fogarty, T.C. (eds.) EuroGP 1999.
LNCS, vol. 1598, pp. 39–48. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48885-5 4

24. Poli, R., Langdon, W.B.: Genetic programming with one-point crossover. In:
Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design

https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1145/3321707.3321865
https://doi.org/10.1145/3321707.3321865
https://doi.org/10.1145/130697.130699
https://doi.org/10.1145/130697.130699
https://doi.org/10.1007/978-3-540-71605-1_11
https://doi.org/10.1007/978-3-540-71605-1_11
https://doi.org/10.1007/978-3-642-11931-6_3
https://doi.org/10.1007/978-3-642-11931-6_3
https://doi.org/10.1007/978-3-319-27565-9
https://doi.org/10.1145/2576768.2598288
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10710-019-09364-2
https://doi.org/10.1007/s10710-010-9113-2
https://doi.org/10.1007/s10710-010-9113-2
https://doi.org/10.1007/3-540-48885-5_4
https://doi.org/10.1007/3-540-48885-5_4

Synthesizing Programs from Program Pieces 211

and Manufacturing, pp. 180–189. Springer, London (1998). https://doi.org/10.
1007/978-1-4471-0427-8 20

25. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd. (2008)

26. Poli, R., McPhee, N.F., Vanneschi, L.: Elitism reduces bloat in genetic program-
ming. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary
Computation, GECCO 2008, pp. 1343–1344. Association for Computing Machin-
ery, New York (2008). https://doi.org/10.1145/1389095.1389355

27. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. SIGPLAN Not. 51(6), 522–538 (2016). https://doi.org/10.1145/
2980983.2908093

28. Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid types. In: Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2008, pp. 159–169. Association for Computing Machinery, New York
(2008). https://doi.org/10.1145/1375581.1375602

29. Solar-Lezama, A.: Program synthesis by sketching. Ph.D. thesis, University of Cal-
ifornia at Berkeley, USA (2008)

30. Solar-Lezama, A., Jones, C.G., Bodik, R.: Sketching concurrent data structures.
SIGPLAN Not. 43(6), 136–148 (2008). https://doi.org/10.1145/1379022.1375599

31. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. SIGARCH Comput. Archit. News 34(5), 404–415
(2006). https://doi.org/10.1145/1168919.1168907

32. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M.,
Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 209–228. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37036-6 13

33. Vazou, N., Seidel, E.L., Jhala, R.: LiquidHaskell: experience with refinement types
in the real world. In: Proceedings of the 2014 ACM SIGPLAN Symposium on
Haskell, Haskell 2014, pp. 39–51. Association for Computing Machinery, New York
(2014). https://doi.org/10.1145/2633357.2633366

34. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton-Jones, S.: Refinement
types for Haskell. SIGPLAN Not. 49(9), 269–282 (2014). https://doi.org/10.1145/
2692915.2628161

35. Yampolskiy, R.V.: AI-complete, AI-hard, or AI-easy - classification of problems in
AI. In: MAICS (2012)

https://doi.org/10.1007/978-1-4471-0427-8_20
https://doi.org/10.1007/978-1-4471-0427-8_20
https://doi.org/10.1145/1389095.1389355
https://doi.org/10.1145/2980983.2908093
https://doi.org/10.1145/2980983.2908093
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1379022.1375599
https://doi.org/10.1145/1168919.1168907
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2633357.2633366
https://doi.org/10.1145/2692915.2628161
https://doi.org/10.1145/2692915.2628161

	Synthesizing Programs from Program Pieces Using Genetic Programming and Refinement Type Checking
	1 Introduction
	2 Method
	2.1 Program Synthesis Model
	2.2 Genetic Programming Algorithm
	2.3 Refinement Types and LiquidHaskell
	2.4 Refinement Types Fitness Function

	3 Experiments and Results
	3.1 Program Synthesis Problems
	3.2 Experimental Setup
	3.3 Results
	3.4 Threats to Validity

	4 Related Work
	5 Conclusions
	References

