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Abstract. The evolution of hardware has enabled Artificial Neural Net-
works to become a staple solution to many modern Artificial Intelligence
problems such as natural language processing and computer vision. The
neural network’s effectiveness is highly dependent on the optimizer used
during training, which motivated significant research into the design of
neural network optimizers. Current research focuses on creating optimiz-
ers that perform well across different topologies and network types. While
there is evidence that it is desirable to fine-tune optimizer parameters
for specific networks, the benefits of designing optimizers specialized for
single networks remain mostly unexplored.

In this paper, we propose an evolutionary framework called Adaptive
AutoLR (ALR) to evolve adaptive optimizers for specific neural networks
in an image classification task. The evolved optimizers are then compared
with state-of-the-art, human-made optimizers on two popular image clas-
sification problems. The results show that some evolved optimizers per-
form competitively in both tasks, even achieving the best average test
accuracy in one dataset. An analysis of the best evolved optimizer also
reveals that it functions differently from human-made approaches. The
results suggest ALR can evolve novel, high-quality optimizers motivating
further research and applications of the framework.

Keywords: Neuroevolution · Adaptive Optimizers · Structured
Grammatical Evolution

1 Introduction

Artificial Neural Networks (ANN) are an essential part of modern Artificial
Intelligence (AI) and Machine Learning (ML). These systems are popular as
solutions in a variety of different tasks such as computer vision [5,11], and natural
language processing [8,12].

ANN’s design is loosely inspired by the workings of the biological brain. Like
their biological counterpart, ANNs are comprised of several inter-connected units
called neurons. Each connection has an associated value called weight which
determines the strength of the connections between neurons. When using an
ANN for a specific task, a suitable set of weights is necessary to solve the problem.
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The process through which these weight are found is called training. Proper
training is vital for ANN performance, motivating extensive research into how
ANNs should be trained [1,6,9,10,14,20]. As a result, several methodologies and
hyper-parameters were developed to tune the training process.

One vital hyper-parameter is the Learning Rate (LR), a numeric value that
scales changes made to the weights during training. The choice of LR value has
a profound impact on the effectiveness of training, motivating the researchers
to create various solutions (known as optimizers) to optimize the size of the
changes made during training. While optimizers vary in their complexity and
effectiveness [1,6,10,14], one aspect most optimizers share is their generality.
Since training is ubiquitous across most applications of ANNs, optimizers are
designed to be effective on a wide variety of problems and ANN architectures.
This general approach has led to the creation of optimizers that are effective and
easy to apply, but it also raises the question: Can optimizers be pushed further
if we specialize them for specific problems?

To answer this question, we must first establish a way to specialize optimizers
for a specific problem. It is challenging for humans to understand all the dimen-
sions required for manual specialization because ANNs comprise many inter-
dependent components and parameters. However, it is possible to use a search
algorithm to perform this specialization automatically. Evolutionary algorithms
(EA) are strong candidates for this task; these heuristic algorithms can navigate
complicated problem spaces efficiently through biologically inspired procedures
(e.g., crossover, mutation, selection). Using an EA, it is possible to test sev-
eral different optimizers and combine the best performing ones to achieve pro-
gressively better results. The benefits of specialization can then be assessed by
comparing the evolved optimizers with standard, human-made optimizers.

This work uses an evolutionary framework to create optimizers for specific
ML problems. The resulting evolved optimizers are benchmarked against state-
of-the-art hand-made optimizers. Finally, the applicability of evolved optimizers
to different problems is also tested. The results suggest that the evolved opti-
mizers can compete with the human-made optimizers developed over decades
of research. Additionally, one of the evolved optimizers, ADES, remains com-
petitive even when applied to tasks that were not addressed during evolution,
suggesting EAs may be used to create generally applicable optimizers. Finally,
ADES does not function like human-made optimizers; hinting that the evolu-
tionary approach can find creative solutions undiscovered by humans.

The structure of this paper is the following: In Sect. 2 we give historical
background on the human-made optimizers created over the years. In Sect. 3 we
describe how Adaptive AutoLR, the evolutionary framework, is used to evolve
ANN optimizers. The components developed for this work are also presented
and discussed. In Sect. 4 we present the experiments performed and discuss the
results. The evolutionary parameters used are presented as well as the resulting
optimizers. In this we section also compare the evolved optimizers with human-
made solutions in performance and ability to generalize. In Sect. 5 we review the
work presented in this article and summarizes our contributions.
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2 Background

In a typical training procedure, after each training epoch, the system compares
the ANN’s output with the expected output and calculates the error. Based on
this error, back-propagation [19] is used to calculate the changes that should be
made to each weight (known as the gradient). The gradient, often scaled by the
LR, is frequently use to dictate the direction and size of weight changes.

The original LR optimizer, SGD [1], simply sets the new weight (wt) to be
the difference between the old weight (wt−1) and the product of the learning
rate (lr) with the gradient (∇l), shown in Eq. 1.

wt ←− wt−1 − lr ∗ ∇l(wt−1) (1)

Traditionally, a single LR value is used for the entirety of the training. In this
case, all the tuning must be done before the training starts. The problem with
this approach is that one is often forced to rely on experience and trial-and-error
to find an adequate static LR. Research also suggests that different LR values
may be preferable at different points in training [20], meaning a single, static
LR is rarely ideal.

These limitations led to the creation of dynamic LRs which vary the LR value
as training progresses. Dynamic approaches are frequently used [7,22] because
they are easy to implement and usually outperform static LRs [20]. However,
these approaches are limited because they only change the size of changes based
on the training epoch. This is shortcoming motivated the development of the
more sophisticated adaptive optimizers.

Adaptive optimizers are variations of SGD that use long-term gradient infor-
mation to adjust the changes made. In adaptive optimizers, the LR is a static
value combined with weight-specific auxiliary variables. While it is possible to
utilize gradient information to adjust a single LR value, most adaptive opti-
mizers use different rates for each weight. The result is an ANN optimizer that
allows each weight to be updated at a different rate. The most straightforward
adaptive optimizer is the momentum optimizer [9], shown in Eq. 2. The auxiliary
variable is a momentum term (xt) that increases the size of adjustments made to
weights that keep changing in the same direction. Two constants accompany this
term: the learning rate (lr) is responsible for directly scaling the gradient, the
momentum constant (mom) dictates how strong the effect of the momentum is.

xt ←− mom ∗ xt−1 − lr ∗ ∇l(wt−1)
wt ←− wt−1 + xt

(2)

A variation of the momentum optimizer, known as Nesterov’s momentum
[14] is presented in Eq. 3. Nesterov’s momentum varies from the original because
the gradient is calculated for the weight plus the momentum term. As a result,
the optimizer can look-ahead and make corrections to the direction suggested
by the momentum. The look-ahead is beneficial because the momentum term is
slow to change which may hinder the training process.
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xt ←− mom ∗ xt−1 − lr ∗ ∇l(wt−1 + mom ∗ xt−1)
wt ←− wt−1 + xt

(3)

RMSprop [6] is an unpublished optimizer that divides the LR by a moving
discounted average of the weights’ changes. This optimizer will decrease the
LR when the weight changes rapidly and increase it when the weight stagnates.
This LR annealing simultaneously helps the weights converge and prevents them
from stagnating. In Eq. 4, xt is the moving average term, and ρ is the exponential
decay rate used for this same average. The root moving average is then used in
wt to scale the LR and gradient.

xt ←− ρxt−1 + (1 − ρ)∇l(wt−1)2

wt ←− wt−1 − lr ∗ ∇l(wt−1)√
xt + ε

(4)

The final optimizer we will be discussing is Adam [10]. Adam is similar to
RMSprop, but it attempts to correct the bias of starting the moving average at 0
using a new term (zt). Adam also calculates a range where it expects the gradient
to remain consistent ( xt−1√

yt−1
). In Eq. 5 xt and yt are both moving averages; β1

and β2 are exponential decay rates for the averages (similar to ρ in Eq. 4).

xt ←− β1xt−1 + (1 − β1)∇l(wt−1)

yt ←− β2yt−1 + (1 − β2)∇l(wt−1)2

zt ←− lr ∗
√

1 − βt
2

(1 − βt
1)

wt ←− wt−1 − zt ∗ xt√
yt + ε

(5)

3 Adaptive AutoLR

AutoLR is an open-source [16] framework developed to evolve ANN optimizers.
This framework has previously been used to evolve dynamic LR policies [2].
In this work, we propose Adaptive AutoLR (ALR), an implementation of the
framework capable of evolving the more complex adaptive ANN optimizers. This
framework is used to create optimizers specialized for specific tasks to assess the
benefits of optimizer specialization and the potential of evolved optimizers.

For this work, ALR is used to create, evaluate, and improve optimizers during
the evolutionary phase. A separate benchmark phase is performed, where
the evolved optimizers are fairly compared with the human-made solutions. In
the following sections, we will describe the grammar used to determine the struc-
ture of the optimizers and the fitness function utilized to quantify the quality of
the evolved solutions.
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3.1 Grammar

Adaptive optimizers are comprised of a few functions that calculate a set of aux-
iliary variables and adjust the weights of the ANN. This definition is expansive,
creating a complex problem space that demands many evaluations during evolu-
tion. The grammar must account for the problem’s difficulty, enabling diversity
while promoting a smooth evolutionary process.

A consequence of the adaptive optimizer’s broad definition is that the major-
ity of possible solutions cannot train the ANN. It is possible to counteract this
issue through a restrictive grammar that limits the types of functions that can
be evolved. However, we are interested in promoting novel optimizers as much as
possible and will avoid such restrictions as a result. The complete grammar used
for ALR cannot be included due to space restrictions, but an abridged version
is presented in Fig. 1 (full version is available in [15]).

Fig. 1. CFG for the evolution of ANN optimizers.

Individuals in ALR are made up of 4 functions, named: x func, y func,
z func and weight func. Functions x through z work as the auxiliary functions
found in human-made adaptive optimizers; these functions have an associated
result stored between epochs (e.g., xt). By default, the previous iteration result
is included in the function, as shown in Eq. 6, but this behavior can be unlearned



8 P. Carvalho et al.

using the grammar provided. These stored values are a staple of adaptive opti-
mizers as they are essential to implement mechanisms such as momentum.

xt ←− xt−1 − ...

yt ←− yt−1 − ...

zt ←− zt−1 − ...

wt ←− wt−1 − ...

(6)

When the training algorithm calls the optimizer, the individual utilizes its
functions to calculate the new weight values. The auxiliary functions are called
first; the role of these functions is to calculate and store relevant information
based on the gradient changes. These functions are executed sequentially, start-
ing with x and ending with z. The order is essential because each auxiliary
function has access to the result of those that precede it. After all auxiliary
functions have been executed, the weight function is called with access to all
the results. The result of the weight update function, weight func, is then used
as the weight for the next epoch.

There are some aspects of the grammar design that must be discussed. It
should be noted that several productions in the grammar used are identical, but
they are not combined in order to keep the genotype of each function isolated.
The operations and constants were chosen for their presence in human-made
adaptive optimizers. The grammar also includes some bias to facilitate evolution.
The weight function is not allowed to use the gradient; this encourages the use
of auxiliary functions. Auxiliary functions’ terminals are biased in favor of the
gradient, so it is picked more often. Additionally, the expr productions are biased
to facilitate the removal of the function’s previous iteration from the calculations.

3.2 Fitness Function

ALR is usable in any ML application that employs gradient-based training.
In this work, we focus on applying ALR to image classification as there is a
vast backlog of research on the topic that provides proven models and datasets.
Specifically, we chose Fashion-MNIST as it is a good balance between an easy
dataset (e.g., regular MNIST) and a harder one (e.g., CIFAR-10). The ANN used
in ALR can be found in [18]. This ANN is compatible with the Fashion-MNIST
dataset and trains quickly as it has a small number of weights.

The objective of ALR is to create solutions that maximize the accuracy of
the ANN’s predictions. As a result, the fitness function (shown in Algorithm 1)
will utilize the evolved optimizer to train an ANN and use its accuracy after
training and fitness.

However, additional measures are implemented to ensure the fitness value
accurately measures the solution’s actual quality. Specifically, the data used by
the fitness function is split into three sets. The evolutionary training set is
used to train the ANN; this is the only data that interacts with the optimizers
directly. The evolutionary validation set is used to calculate validation met-
rics to track training progress. An early stop mechanism also monitors the vali-
dation loss, aborting the training when the validation loss stagnates. The early
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Algorithm 1: Simplified version of the fitness function used to evaluate
optimizers in ALR
params: network, optimizer, evolutionary training data,

evolutionary validation data, fitness assignment data,
evaluation number

1 minimum acceptable accuracy ← 0.8;
2 fitness ← 1.0;
3 evaluation count ← 0;
4 while evaluation count < evaluation number do
5 trained network ← train(network, optimizer, evolutionary training data,

evolutionary validation data);
6 evaluation accuracy ← get accuracy(trained network,

fitness assignment data);
7 if evaluation accuracy < fitness then
8 fitness ← evaluation accuracy;

9 if evaluation accuracy < minimum acceptable accuracy then
10 return fitness score;

11 evaluation count ++;

12 return fitness;

stop mechanism helps prevent over-fitting and saves computational resources.
After training is complete, the ANN is used to classify the third set of data, the
fitness assignment set. We consider that the accuracy of the ANN in this final
dataset is an accurate measure of the optimizer’s fitness. We refer to this pro-
cess of training and calculating the accuracy of the ANN as an evaluation. It
is worth noting that there are other desirable optimizer features that this fitness
function does not account for, such as convergence speed and hyper-parameter
sensitivity.

We found that some solutions were inconsistent, producing very different
fitness values when repeating the same evaluation. Consequently, we consider
that multiple evaluations should be used to calculate the fitness. Specifically,
the optimizers are trained and evaluated up to five times. While five evaluations
is insufficient to perform any statistical analysis, we found that it was enough to
nurture the evolution of stable solution. The evolutionary training data is split
among the evaluations, forcing the solutions to train using different data each
time. Since each evaluation is computationally expensive and it is desirable to
minimize the number of evaluations. As a result, we define a minimum accept-
able accuracy. If the accuracy achieved in the fitness assignment set is below
this threshold, the optimizer is not considered a viable solution, and the rest of
the evaluations are canceled. This mechanism significantly reduces the resources
used to evaluate low-quality solutions. We consolidate all the results into a sin-
gle fitness value using the worst accuracy across all evaluations as this further
incentivizes the system to produce consistently good solutions.
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4 Experimental Study

This section documents the experiments performed to validate ALR. In Sect. 4.1
we detail the configuration used for the evolutionary process, going over the
parameters used to configure ALR and train the ANN. In Sect. 4.2 we present
and analyze the results of evolution. The typical progress of an evolutionary
run is discussed, and the most notable evolved optimizers are showcased. In
order to properly compare the quality of the evolved optimizers to human-made
solutions, additional experiments are performed to benchmark their quality; this
procedure is documented in Sect. 4.3. Benchmarks are performed on two different
problems. In Sect. 4.4 we present and discuss the performance of the optimizers
in the problem used in evolution, Fashion-MNIST. In Sect. 4.5 we conduct the
same analysis in a different image classification task, CIFAR-10.

4.1 Evolutionary Runs

ALR has a set of evolutionary parameters that must be configured for exper-
imentation. The parameters used in our experiments are presented in Table 1.
The search space posed in this problem is vast; as a result, we found it adequate
to use a high number of generations and a small population. This combination
of parameters is likely to stagnate the population, so a large tournament size is
used to reduce selective pressure.

Fashion-MNIST is the dataset used to evolve the optimizers, and it is com-
prised of training (refer to as Fashion-MNIST-Training) and test (Fashion-
MNIST-Test) data. We will only use Fashion-MNIST-Training (60000 exam-
ples) in the evolutionary runs, splitting it into the evolutionary training set,
evolutionary validation set, and fitness assignment set with 53000, 3500, and
3500 examples, respectively. The 53000 evolutionary training examples are split
evenly among the evaluations (resulting in 10600 training examples per evalua-
tion). The Fashion-MNIST-Test is deliberately excluded from the evolutionary
process; it is essential to reserve a set of data that the evolved solutions never
interact with to draw fair comparisons with human-made optimizers later. Addi-
tionally, the early stop mechanism interrupts training when the validation loss
does not improve for 5 consecutive epochs (controlled by the Patience param-
eter). Each evaluation trains the ANN for a maximum of 100 epochs using a
batch size of 1000. We empirically found that using these parameters with a
human-made optimizer was sufficient to train competent networks.

4.2 Evolutionary Results

Figure 2 shows the averages of the best solution and average population quality
across all runs throughout the evolutionary process. The typical behavior of the
runs can be described as follows. In an early stage, the population is dominated
by individuals that utilize the gradient directly to adjust the weights, without
an LR or any type of adaptive components. While these individuals can train
ANNs adequately occasionally, they fail to replicate their success across different
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Table 1. Experimental parameters.

SGE Parameters Value

Number of runs 9

Number of generations 1500

Number of individuals 20

Tournament size 5

Crossover rate 0.90

Mutation rate 0.15

Dataset Parameters Value

Dataset Fashion-MNIST-Training (60000 instances)

Evolutionary Training set 53000 instances, 10600 instances per evaluation

Evolutionary Validation set 3500 instances

Fitness set 3500 instances

Early Stop Value

Patience 5

Metric Validation Loss

Condition Stop if Validation Loss does not

improve in 5 consecutive epochs

ANN Training Parameters Value

Batch Size 1000

Epochs 100

Metrics Accuracy

evaluations. Nevertheless, these individuals play a vital role in the evolutionary
process as they identify the importance of including the gradient. In most runs,
this genetic material is used in more robust optimizers that can consistently
train competent ANNs leading to an increase in solution quality.

The best and most robust evolved optimizers employ simple, familiar mech-
anisms like a static LR or a simple momentum term. However, two evolved
optimizers stood out as worthy of a focused study and further experimentation.
Since evolved optimizers have a considerable amount of unused genetic material
that hurts readability (e.g., complex auxiliary functions that are not used in cal-
culating the weights), we will be presenting simplified versions of the optimizers
to improve clarity.

The first notable individual was the best performing optimizer across all
runs; a simplified version of this optimizer is shown in Eq. 7; in the instance
produced in evolution lr = 0.0009. This optimizer is unusual in a few ways.
The gradient is never used directly, only its sign. As a result, this optimizer
always changes the weights by a fixed amount. We named this optimizer the
Sign Optimizer. The size of the changes proposed in the evolved instance of
this optimizer is small, likely leading to successive small changes that steadily
improve the ANN until a local optimum is reached. This strategy allows for a
lengthy training procedure even with the early stop mechanism. Early stop only
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Fig. 2. Progression of average fitness and best fitness throughout evolution. Plot shows
the average and standard deviation across all runs.

interrupts training if the validation loss does not improve. The magnitude of
improvements is not considered, favoring optimizers that improve the ANN by a
small margin many times. Additionally, the use of the sign operation adjusts the
direction of the gradient before it is applied to the weights. As far as we know,
this strategy is not used in any human-made optimizers, and it is challenging
to understand its implications completely. While changing the direction of the
gradient seems undesirable, this approach may make the optimizer more resistant
to the common vanishing/exploding gradient problems that can occur during
training. The Sign optimizer does not exhibit any adaptive components; since
adaptive optimizers were the main object of this system, we also selected the
best optimizer with adaptive features for benchmark.

wt = wt−1 − lr ∗ sign(∇l(wt−1)) (7)

The best adaptive evolved optimizer is presented in Eq. 8. As far as we
know, this individual is a novel adaptive optimizer. Specifically, this solution’s
unique aspect is the presence of a squared auxiliary variable that was not found
in human-made approaches. This optimizer is named Adaptive Evolutionary
Squared (ADES) after its defining characteristic; in the instance produced in
evolution β1 = 0.08922, β2 = 0.0891. ADES is considerably more complex than
the Sign optimizer, so assessing how and why it functions is challenging. Since
ADES does not operate similarly to human-made optimizers, we cannot relate its
operations to familiar components. Nevertheless, we empirically observed that
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this optimizer employs a momentum-like mechanism that increases the magni-
tude of changes when moving in the same direction. However, we consider that
thoroughly dissecting ADES and understanding the role of all its components is
outside the scope of this work as it requires significant study outside the field of
evolutionary computation.

yt = yt−1 − (β1 ∗ y2
t−1 + β2 ∗ (yt−1 ∗ ∇l(wt−1)) + β2 ∗ ∇l(wt−1))

wt = wt−1 + yt
(8)

4.3 Benchmark

The evolved optimizers performed well during evolution, but this may not be
representative of their actual quality. During evolution, optimizers were eval-
uated using a limited set of data and an early stop mechanism. Furthermore,
training was restricted to 100 epochs at most, possibly limiting the quality of
ANNs created. In order to determine the actual quality of evolved solutions, it
is essential to benchmark them with human-made optimizers.

Benchmarks use three sets of data with distinct roles: training, validation,
and test. Training data, as the name suggests, is used to train the ANN. The
validation data is used to monitor the ANN’s ability to generalize as training
progresses. The test data is used to make a final assessment of the ANN’s per-
formance. Furthermore, every benchmark is comprised of two phases. In the first
phase (tuning phase), Bayesian optimization [13] tunes the hyper-parameters
of all optimizers. While Bayesian optimization is often used to search for opti-
mizer and network parameters [21], we believe it remains an adequate solution
when applied in this smaller scope. Bayesian optimization tunes all parameters
between 0 and 1. Specifically, the algorithm performs 100 function evaluations
with 10 restarts and each optimizer’s default parameters are used as a probe
to help guide the search. During the tuning phase, ANNs are trained using the
selected optimizer and parameters during 100 epochs. The Bayesian optimization
procedure is guided by the best validation accuracy obtained during training.
In the second phase (trial phase), the best set of hyper-parameters (i.e., the
values that achieved the highest validation accuracy) found for each optimizer
through the tuning process are used to train the ANN. In this phase, training
is performed for 1000 epochs. After training, the best weights (i.e., the weights
that achieved the highest validation accuracy during training) are used to test
the ANN on the test data for a final accuracy assessment. Trials are repeated
30 times, and all results presented show the average and standard deviation of
these trials. No early stop is used at any point during benchmarks.

The evolved optimizers are compared with three human-made optimizers
previously presented: Nesterov’s momentum, RMSprop and Adam on two dif-
ferent benchmarks. The first benchmark compares the evolved optimizers with
the human-made adaptive optimizers in Fashion-MNIST (the task used in evolu-
tion). The second benchmark performs the comparison on CIFAR-10, a different
dataset and network architecture (Keras-CIFAR [3], available in [17])), but the
task is still image classification.
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4.4 Fashion-MNIST

In this benchmark, we test the optimizers in the network architecture (Keras-
MNIST [4], available in [18]) and dataset (Fashion-MNIST) used in evolution.
Additional measures are necessary to ensure fair comparisons in this environ-
ment, since evolved optimizers have an unfair advantage if evaluated on the
data used during evolution. As previously mentioned, the Fashion-MNIST-Test
was deliberately excluded from evolution to enable just comparisons in this
phase. Consequently, it is possible to make fair comparisons between evolved
and human-made optimizers as long as the Fashion-MNIST-Test data is used
to evaluate the final accuracy. As a result, Fashion-MNIST-Training is used for
training (53000 instances) and validation (7000 instances), and Fashion-MNIST-
Test is only used for the final accuracy assessment (10000 instances).

The results of the tuning phase (best hyper-parameter values) and the trial
phase (validation and test accuracy) are presented in Table 2. All optimizers
performed similarly in this benchmark. The exception is the Sign optimizer
that performed about 1.5% worse than its peers. We believe the odd way the
Sign optimizer changes weights is particularly effective at avoiding the early
stop mechanism used during evolution. While the Sign optimizer thrives in the
evolutionary system’s specific evaluation conditions, when moved into a more
traditional training environment, it cannot compete with the other optimizers.
Despite weaker results, the Sign optimizer exhibits the smallest accuracy drop
between the validation and test sets.

Table 2. Trial results of all optimizers in Fashion-MNIST. The parameters tuned for
each optimizer, as well as the best values found through Bayesian optimization are also
presented.

Optimizer Parameter Validation Accuracy Test Accuracy

ADES beta 1 beta 2 93.53 ± 0.11% 92.87 ± 0.16%

0.87621 0.76132

Sign lr 92.08 ± 0.13% 91.29 ± 0.25%

0.0009

Adam lr beta 1 beta 2 93.46 ± 0.10% 92.69 ± 0.20%

0.00127 0.07355 0.78162

RMSprop lr rho 93.61 ± 0.08% 92.80 ± 0.17%

0.00097 0.85779

Nesterov lr momentum 93.41 ± 0.14% 92.82 ± 0.15%

0.09999 0.86715

Notably, ADES has the best test accuracy in Fashion-MNIST, suggesting
ALR succeed in its objective of specialization. While it is expected that the
evolved optimizer would perform well in its native task, it is still remarkable
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that this automatically generated solution can empirically outperform human-
made optimizers. It must be noted that the human-made optimizers are the cul-
mination of many years of research into this subject and ADES competes with
these methods despite being automatically generated. Nevertheless, it must be
acknowledged that the differences in performance between the four best opti-
mizers are minimal. Performing a Mann-Whitney U test for the null hypothesis
comparing the two best solutions: “ADES and Nesterov are equal” with a sig-
nificance level of 0.05, we are unable to reject the null hypothesis (p = 0.267).

4.5 CIFAR-10

This benchmark was designed to test the ability of the evolved optimizers to
generalize to a different problem within the same domain. The dataset chosen was
CIFAR-10, a common problem used to evaluate image classification approaches.
CIFAR-10 also has training (CIFAR-10-Training) and test (CIFAR-10-Test) sets,
similar to Fashion-MNIST. Following the procedure outlined in the previous
section, CIFAR-10-Training is used for training (43000 instances) and validation
(7000 instances), while CIFAR-10-Test (10000 instances) is used to make the
final test accuracy assessment. The architecture used was the Keras CIFAR-10
architecture [3] (available in [17]).

The best parameter values found using Bayesian optimization, and the trial
phase results are presented in Table 3. Once again, despite its weak performance
overall, the Sign optimizer is the most resistant to the dataset change, even
slightly improving its performance when moved to the test set. While this may
seem unusual, consider that the validation accuracy is only used to select the best
weights for testing. Additionally, note that the Sign optimizer does not strictly
follow the direction of the gradient when adjusting weights, possibly making Sign
resistant to overfitting.

However, the most notable result in this benchmark is that ADES remains
one of the best solutions, outperforming Adam and RMSProp in both validation
and test accuracy. While the difference in accuracy is not massive, it is essential
to acknowledge that an evolved optimized can compete with state-of-the-art
solutions even outside its native task. Considering that the supposed advantage
of an evolved optimizer is that it is fine-tuned for the task it is evolved in, this
result is remarkable.

Additionally, the fact that ADES can be successfully used in other image
classification tasks motivates research into other applications of the optimizer.
What other datasets, architectures and ML problems can ADES succeed in?
Further research is necessary to fully understand the contribution of ADES to
ML.

However, the success of ADES in this benchmark also highlights the value
of ALR. A vital characteristic of ADES it is competitive with human-made
optimizers using a novel way of changing weights. Even if future work reveals
that ADES is not widely applicable, understanding its unique features and why it
succeeds in specific tasks may provide helpful insights for creating better human-
made optimizers. Specially because adaptive optimizers historically retool or
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Table 3. Trial results of all optimizers in CIFAR-10. The parameters tuned for each
optimizer, as well as the best values found through Bayesian optimization are also
presented.

Optimizer Parameter Validation Accuracy Test Accuracy

ADES beta 1 beta 2 82.04 ± 0.20% 81.85 ± 0.29%

0.92226 0.69285

Sign lr 74.97 ± 0.40% 75.09 ± 0.50%

0.0009

Adam lr beta 1 beta 2 81.93 ± 0.21% 81.56 ± 0.26%

0.00163 0.81344 0.71023

RMSprop lr rho 80.97 ± 0.27% 80.65 ± 0.45%

0.00085 0.64813

Nesterov lr momentum 82.45 ± 0.25% 82.03 ± 0.25%

0.00907 0.98433

adjust ideas from older solutions to create new, better optimizers. ALR’s ability
to create unique, competitive, evolved optimizers may help researchers improve
human-made optimizers.

It is also worth highlighting that the evolutionary conditions did not incen-
tivize the creation of an optimizer that performed well outside its native task.
ALR created ADES while evaluating optimizers strictly based on their perfor-
mance in the Fashion-MNIST dataset but the optimizer still operates success-
fully in a different task. We consider that this result motivates research into other
applications of ALR. Specifically, it may be interesting to use ALR with a fitness
function that evaluates optimizers based on their performance on several tasks,
promoting general applicability. The evolutionary setup used also enforced mini-
mal limitations on the solutions created. While this led to the creation of a novel
solution, it is relevant to investigate the potential of ALR when using additional
rules that guarantee evolved optimizers are closer to strong, established human-
made optimizers. In fact, it could be interesting to utilize ALR starting from the
population of human-made optimizers. Evolving solutions closer to human-made
optimizers may work as an alternative to hyper-parameter optimization, where
the entire optimizer is tuned for a specific task.

5 Conclusion

This work presents an adaptive implementation of the AutoLR framework. This
framework is capable of producing novel, specialized ANN optimizers through
an EA. Specifically, the framework [2] is used to evolve optimizers for an image
classification task. The setup used included no incentive to imitate traditional
optimizers as solution were rated solely based on their performance.

Some of the optimizers evolved under these circumstances can compete with
the established human-made optimizers. This optimizer, called ADES, showed
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other exciting properties. Despite being evolved in a specific task, this optimizer
could compete with human-made optimizers even in a different task. As such, the
results obtained with ADES indicate that the AutoLR framework could create
new general ANN optimizers that can be employed on a breadth of problems.
To summarize, the contributions of this paper are as follows:

– The proposal of ALR, an implementation of AutoLR capable of producing
adaptive ANN optimizers.

– The evolution, benchmark, and analysis of two new ANN optimizers.
– The discovery of ADES, an automatically-generated adaptive ANN optimizer

capable of competing with state-of-the-art human-made optimizers in two
relevant image classification tasks.

The results obtained in this work also warrant further study into a few topics.
The evolved optimizer ADES remained competitive with human-made solutions
when moved outside of its native task. However, all tasks considered are image
classification problems. It is vital to understand whether ADES retains its utility
when applied to different problems. Furthermore, in this work we only compared
optimizers based on their final test accuracy. However, there are other properties
that are desirable in optimizers such as convergence speed and sensitivity to
hyper-parameters. Studying evolved optimizers in this lens may reveal additional
advantages and disadvantages to this approach. Finally, the success of ADES
outside its native task suggests ALR may serve as a tool for the creation of
optimizers in other applications. In this work, the experiments were designed
to explore the benefits of specializing optimizers, however we found that the
applicability of the solutions produced were also interesting. It would be relevant
to study the benefits of using ALR to create generally applicable optimizers (e.g.,
by assigning optimizer fitness based of their performance in several different
tasks).
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