
Eric Medvet
Gisele Pappa
Bing Xue (Eds.)

LN
CS

 1
32

23 Genetic
Programming
25th European Conference, EuroGP 2022
Held as Part of EvoStar 2022
Madrid, Spain, April 20–22, 2022, Proceedings

Lecture Notes in Computer Science 13223

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Eric Medvet · Gisele Pappa · Bing Xue (Eds.)

Genetic
Programming
25th European Conference, EuroGP 2022
Held as Part of EvoStar 2022
Madrid, Spain, April 20–22, 2022
Proceedings

Editors
Eric Medvet
University of Trieste
Trieste, Italy

Bing Xue
Victoria University of Wellington
Wellington, New Zealand

Gisele Pappa
Universidade Federal de Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-02055-1 ISBN 978-3-031-02056-8 (eBook)
https://doi.org/10.1007/978-3-031-02056-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-5652-2113
https://orcid.org/0000-0002-4865-8026
https://orcid.org/0000-0002-0349-4494
https://doi.org/10.1007/978-3-031-02056-8

Preface

The 25th European Conference on Genetic Programming (EuroGP 2022) took place at
the Complutense University of Madrid, Madrid, Spain, during April 20–22, 2022. Due
to the travel restrictions caused by the COVID-19 pandemic, the conference was held in
a hybrid mode to allow both in-person and online attendance.

Genetic programming (GP) is a unique branch of evolutionary computation that
has been developed to automatically solve design problems, in particular the computer
program design, without requiring the user to know or specify the form or structure of the
solution in advance. It uses the principles of Darwinian evolution to approach problems
in the synthesis, improvement, and repair of computer programs. The universality of
computer programs, and their importance in so many areas of our lives, means that
the automation of these tasks is an exceptionally ambitious challenge with far-reaching
implications. GP has attracted a significant number of researchers and a vast amount
of theoretical and practical contributions are available, as shown by consulting the GP
bibliography.1

Since the first EuroGP event in Paris in 1998, EuroGP has been the only conference
exclusively devoted to the evolutionary design of computer programs and other computa-
tional structures. In fact, EuroGP represents the single largest venue at which GP results
are published. It plays an important role in the success of the field, by serving as a forum
for expressing new ideas, meeting fellow researchers, and initiating collaborations. It
attracts scholars from all over theworld. In a friendly andwelcoming atmosphere authors
present the latest advances in the field and GP-based solutions to complex real-world
problems.

EuroGP 2022 received 35 submissions from around theworld. The papers underwent
a rigorous double-blind peer review process, each being reviewed by multiple members
of an international Program Committee.

Among the papers presented in this volume, 12 were accepted for full-length oral
presentation (34% acceptance rate) and seven as short talks. In 2022, papers submitted to
EuroGP could also be assigned to the “Evolutionary Machine Learning Track”. Among
the 35 submissions, the authors of eight papers indicated their papers fit the track, with
two accepted for full-length oral presentation and four as short talks. Authors of both
categories of papers also had the opportunity to present their work in poster sessions to
promote the exchange of ideas in a carefree manner.

The wide range of topics in this volume reflects the current state of research in
the field. The collection of papers covers interesting topics including developing new
variants ofGP algorithms, synthesizing computer programswithGP, and evolving neural
networks using GP, as well as exploring GP-based explainable or interpretable methods
and applying GP to address complex real-world problems.

Together with three other co-located evolutionary computation conferences (Evo-
COP 2022, EvoMUSART 2022, and EvoApplications 2022), EuroGP 2022 was part of

1 http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html.

https://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

vi Preface

the Evo* 2022 event. This meeting could not have taken place without the help of many
people. The EuroGP Organizing Committee is particularly grateful to the following:

• SPECIES, the Society for the Promotion of Evolutionary Computation in Europe and
its Surroundings, which aims to promote evolutionary algorithmic thinking within
Europe and wider, and more generally to promote inspiration of parallel algorithms
derived from natural processes.

• The high-quality and diverse EuroGP 2022 Program Committee. Each year the mem-
bers give freely of their time and expertise in order to maintain high standards in
EuroGP, providing constructive feedback to help the authors to improve their papers.

• Nuno Lourenço (University of Coimbra, Portugal) for his dedicated work with the
submission system.

• João Correia (University of Coimbra, Portugal), Ignacio Hidalgo (Universidad Com-
plutense de Madrid, Spain), and Francisco Chicano (University of Málaga, Spain) for
their great work on the Evo* publicity, social media service, and website.

• Sérgio Rebelo (University of Coimbra, Portugal), João Correia (University of Coim-
bra, Portugal), andTiagoMartins (University ofCoimbra, Portugal) for their important
graphic design work.

• The local organizing team, in particular Iñaki Hidalgo (Universidad Complutense
Madrid, Spain) for his proactivity in getting us a new venue for the conference. We
also thank Federico Divina (Universidad Pablo de Olavide, Spain) as the original local
organizing chair for Seville, Spain, but unfortunately the conference had to be moved
due to the COVID-19 pandemic.

• Our invited speakers, Gabriela Ochoa and Pedro Larrañaga, who gave inspiring and
enlightening keynote talks.

• Finally, we express our continued appreciation to Anna I. Esparcia-Alcázar (Uni-
versitat Politècnica de València, Spain), from SPECIES, whose considerable efforts
in managing and coordinating Evo* helped towards building a unique, vibrant, and
friendly atmosphere.

April 2022 Eric Medvet
Gisele Pappa

Bing Xue

Organization

Program Co-chairs

Eric Medvet University Degli Studi di Trieste, Italy
Gisele Pappa Universidade Federal de Minas Gerais, Brazil

Publication Chair

Bing Xue Victoria University of Wellington, New Zealand

Local Chair

Iñaki Hidalgo Universidad Complutense Madrid, Spain

Publicity Chair

João Correia Victoria University of Wellington, New Zealand

Conference Administration

Anna I. Esparcia-Alcazar Evostar Coordinator

Program Committee

Ignacio Arnaldo Massachusetts Institute of Technology, USA
R. Muhammad Atif Azad Birmingham City University, UK
Wolfgang Banzhaf Michigan State University, USA
Heder Bernardino Federal University of Juiz de Fora, Brazil
Anthony Brabazon University College Dublin, Ireland
Stefano Cagnoni University of Parma, Italy
Mauro Castelli Universidade Nova de Lisboa, Portugal
Ernesto Costa University of Coimbra, Portugal
Antonio Della Cioppa University of Salerno, Italy
Francisco Fernandez de Vega Universidad de Extremadura, Spain
James Foster University of Idaho, USA
Jin-Kao Hao University of Angers, France
Erik Hemberg Massachusetts Institute of Technology, USA
Malcolm Heywood Dalhousie University, Canada
Ting Hu Memorial University, Canada

viii Organization

Domagoj Jakobović University of Zagreb, Croatia
Krzysztof Krawiec Poznan University of Technology, Poland
Andrew Lensen Victoria University of Wellington, New Zealand
Nuno Lourenço University of Coimbra, Portugal
Penousal Machado University of Coimbra, Portugal
James McDermott University College Dublin, Ireland
Julian Miller University of York, UK
Julio Cesar Nievola Pontificia Universidade Catolica do Parana, Brazil
Michael O’Neill University College Dublin, Ireland
Una-May O’Reilly Massachusetts Institute of Technology, USA
Tomasz Pawlak Poznan University of Technology, Poland
Stjepan Picek Delft University of Technology, The Netherlands
Clara Pizzuti ICAR-CNR, Italy
Peter Rockett University of Sheffield, UK
Lukas Sekanina Brno University of Technology, Czech Republic
Sara Silva University of Lisbon, Portugal
Moshe Sipper Ben-Gurion University, Israel
Lee Spector Hampshire College, USA
Jerry Swan University of York, UK
Ivan Tanev Doshisha University, Japan
Ernesto Tarantino ICAR-CNR, Italy
Leonardo Trujillo Instituto Tecnológico de Tijuana, Mexico
Leonardo Vanneschi Universidade Nova de Lisboa, Portugal
Marco Virgolin Centrum Wiskunde & Informatica,

The Netherlands
Man Leung Wong Lingnan University, Hong Kong, SAR China
Bing Xue Victoria University of Wellington, New Zealand
Mengjie Zhang Victoria University of Wellington, New Zealand

Contents

Long Presentations

Evolving Adaptive Neural Network Optimizers for Image Classification 3
Pedro Carvalho, Nuno Lourenço, and Penousal Machado

Combining Geometric Semantic GP with Gradient-Descent Optimization 19
Gloria Pietropolli, Luca Manzoni, Alessia Paoletti, and Mauro Castelli

One-Shot Learning of Ensembles of Temporal Logic Formulas
for Anomaly Detection in Cyber-Physical Systems . 34
Patrick Indri, Alberto Bartoli, Eric Medvet, and Laura Nenzi

Multi-objective Genetic Programming with the Adaptive Weighted Splines
Representation for Symbolic Regression . 51
Christian Raymond, Qi Chen, Bing Xue, and Mengjie Zhang

SLUG: Feature Selection Using Genetic Algorithms and Genetic
Programming . 68
Nuno M. Rodrigues, João E. Batista, William La Cava,
Leonardo Vanneschi, and Sara Silva

Evolutionary Design of Reduced Precision Levodopa-Induced Dyskinesia
Classifiers . 85
Martin Hurta, Michaela Drahosova, Lukas Sekanina, Stephen L. Smith,
and Jane E. Alty

Using Denoising Autoencoder Genetic Programming to Control
Exploration and Exploitation in Search . 102
David Wittenberg

Program Synthesis with Genetic Programming: The Influence of Batch
Sizes . 118
Dominik Sobania and Franz Rothlauf

Genetic Programming-Based Inverse Kinematics for Robotic Manipulators 130
Julia Reuter, Christoph Steup, and Sanaz Mostaghim

On the Schedule for Morphological Development of Evolved Modular
Soft Robots . 146
Giorgia Nadizar, Eric Medvet, and Karine Miras

x Contents

An Investigation of Multitask Linear Genetic Programming for Dynamic
Job Shop Scheduling . 162
Zhixing Huang, Fangfang Zhang, Yi Mei, and Mengjie Zhang

Cooperative Co-evolution and Adaptive Team Composition
for a Multi-rover Resource Allocation Problem . 179
Nicolas Fontbonne, Nicolas Maudet, and Nicolas Bredeche

Short Presentations

Synthesizing Programs from Program Pieces Using Genetic Programming
and Refinement Type Checking . 197
Sabrina Tseng, Erik Hemberg, and Una-May O’Reilly

Creating Diverse Ensembles for Classification with Genetic Programming
and Neuro-MAP-Elites . 212
Kyle Nickerson, Antonina Kolokolova, and Ting Hu

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 228
Pantia-Marina Alchirch, Dimitrios I. Diochnos,
and Katia Papakonstantinopoulou

Accurate and Interpretable Representations of Environments
with Anticipatory Learning Classifier Systems . 245
Romain Orhand, Anne Jeannin-Girardon, Pierre Parrend,
and Pierre Collet

Exploiting Knowledge from Code to Guide Program Search 262
Dirk Schweim, Erik Hemberg, Dominik Sobania, and Una-May O’Reilly

Multi-objective Genetic Programming for Explainable Reinforcement
Learning . 278
Mathurin Videau, Alessandro Leite, Olivier Teytaud,
and Marc Schoenauer

Permutation-Invariant Representation of Neural Networks with Neuron
Embeddings . 294
Ryan Zhou, Christian Muise, and Ting Hu

Author Index . 309

Long Presentations

Evolving Adaptive Neural Network
Optimizers for Image Classification

Pedro Carvalho(B) , Nuno Lourenço , and Penousal Machado

CISUC, Department of Informatics Engineering, University of Coimbra,
Polo II - Pinhal de Marrocos, 3030 Coimbra, Portugal

{pfcarvalho,naml,penousal}@dei.uc.pt

Abstract. The evolution of hardware has enabled Artificial Neural Net-
works to become a staple solution to many modern Artificial Intelligence
problems such as natural language processing and computer vision. The
neural network’s effectiveness is highly dependent on the optimizer used
during training, which motivated significant research into the design of
neural network optimizers. Current research focuses on creating optimiz-
ers that perform well across different topologies and network types. While
there is evidence that it is desirable to fine-tune optimizer parameters
for specific networks, the benefits of designing optimizers specialized for
single networks remain mostly unexplored.

In this paper, we propose an evolutionary framework called Adaptive
AutoLR (ALR) to evolve adaptive optimizers for specific neural networks
in an image classification task. The evolved optimizers are then compared
with state-of-the-art, human-made optimizers on two popular image clas-
sification problems. The results show that some evolved optimizers per-
form competitively in both tasks, even achieving the best average test
accuracy in one dataset. An analysis of the best evolved optimizer also
reveals that it functions differently from human-made approaches. The
results suggest ALR can evolve novel, high-quality optimizers motivating
further research and applications of the framework.

Keywords: Neuroevolution · Adaptive Optimizers · Structured
Grammatical Evolution

1 Introduction

Artificial Neural Networks (ANN) are an essential part of modern Artificial
Intelligence (AI) and Machine Learning (ML). These systems are popular as
solutions in a variety of different tasks such as computer vision [5,11], and natural
language processing [8,12].

ANN’s design is loosely inspired by the workings of the biological brain. Like
their biological counterpart, ANNs are comprised of several inter-connected units
called neurons. Each connection has an associated value called weight which
determines the strength of the connections between neurons. When using an
ANN for a specific task, a suitable set of weights is necessary to solve the problem.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 3–18, 2022.
https://doi.org/10.1007/978-3-031-02056-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_1&domain=pdf
http://orcid.org/0000-0003-3845-4617
http://orcid.org/0000-0002-2154-0642
http://orcid.org/0000-0002-6308-6484
https://doi.org/10.1007/978-3-031-02056-8_1

4 P. Carvalho et al.

The process through which these weight are found is called training. Proper
training is vital for ANN performance, motivating extensive research into how
ANNs should be trained [1,6,9,10,14,20]. As a result, several methodologies and
hyper-parameters were developed to tune the training process.

One vital hyper-parameter is the Learning Rate (LR), a numeric value that
scales changes made to the weights during training. The choice of LR value has
a profound impact on the effectiveness of training, motivating the researchers
to create various solutions (known as optimizers) to optimize the size of the
changes made during training. While optimizers vary in their complexity and
effectiveness [1,6,10,14], one aspect most optimizers share is their generality.
Since training is ubiquitous across most applications of ANNs, optimizers are
designed to be effective on a wide variety of problems and ANN architectures.
This general approach has led to the creation of optimizers that are effective and
easy to apply, but it also raises the question: Can optimizers be pushed further
if we specialize them for specific problems?

To answer this question, we must first establish a way to specialize optimizers
for a specific problem. It is challenging for humans to understand all the dimen-
sions required for manual specialization because ANNs comprise many inter-
dependent components and parameters. However, it is possible to use a search
algorithm to perform this specialization automatically. Evolutionary algorithms
(EA) are strong candidates for this task; these heuristic algorithms can navigate
complicated problem spaces efficiently through biologically inspired procedures
(e.g., crossover, mutation, selection). Using an EA, it is possible to test sev-
eral different optimizers and combine the best performing ones to achieve pro-
gressively better results. The benefits of specialization can then be assessed by
comparing the evolved optimizers with standard, human-made optimizers.

This work uses an evolutionary framework to create optimizers for specific
ML problems. The resulting evolved optimizers are benchmarked against state-
of-the-art hand-made optimizers. Finally, the applicability of evolved optimizers
to different problems is also tested. The results suggest that the evolved opti-
mizers can compete with the human-made optimizers developed over decades
of research. Additionally, one of the evolved optimizers, ADES, remains com-
petitive even when applied to tasks that were not addressed during evolution,
suggesting EAs may be used to create generally applicable optimizers. Finally,
ADES does not function like human-made optimizers; hinting that the evolu-
tionary approach can find creative solutions undiscovered by humans.

The structure of this paper is the following: In Sect. 2 we give historical
background on the human-made optimizers created over the years. In Sect. 3 we
describe how Adaptive AutoLR, the evolutionary framework, is used to evolve
ANN optimizers. The components developed for this work are also presented
and discussed. In Sect. 4 we present the experiments performed and discuss the
results. The evolutionary parameters used are presented as well as the resulting
optimizers. In this we section also compare the evolved optimizers with human-
made solutions in performance and ability to generalize. In Sect. 5 we review the
work presented in this article and summarizes our contributions.

Evolving Adaptive Neural Network Optimizers for Image Classification 5

2 Background

In a typical training procedure, after each training epoch, the system compares
the ANN’s output with the expected output and calculates the error. Based on
this error, back-propagation [19] is used to calculate the changes that should be
made to each weight (known as the gradient). The gradient, often scaled by the
LR, is frequently use to dictate the direction and size of weight changes.

The original LR optimizer, SGD [1], simply sets the new weight (wt) to be
the difference between the old weight (wt−1) and the product of the learning
rate (lr) with the gradient (∇l), shown in Eq. 1.

wt ←− wt−1 − lr ∗ ∇l(wt−1) (1)

Traditionally, a single LR value is used for the entirety of the training. In this
case, all the tuning must be done before the training starts. The problem with
this approach is that one is often forced to rely on experience and trial-and-error
to find an adequate static LR. Research also suggests that different LR values
may be preferable at different points in training [20], meaning a single, static
LR is rarely ideal.

These limitations led to the creation of dynamic LRs which vary the LR value
as training progresses. Dynamic approaches are frequently used [7,22] because
they are easy to implement and usually outperform static LRs [20]. However,
these approaches are limited because they only change the size of changes based
on the training epoch. This is shortcoming motivated the development of the
more sophisticated adaptive optimizers.

Adaptive optimizers are variations of SGD that use long-term gradient infor-
mation to adjust the changes made. In adaptive optimizers, the LR is a static
value combined with weight-specific auxiliary variables. While it is possible to
utilize gradient information to adjust a single LR value, most adaptive opti-
mizers use different rates for each weight. The result is an ANN optimizer that
allows each weight to be updated at a different rate. The most straightforward
adaptive optimizer is the momentum optimizer [9], shown in Eq. 2. The auxiliary
variable is a momentum term (xt) that increases the size of adjustments made to
weights that keep changing in the same direction. Two constants accompany this
term: the learning rate (lr) is responsible for directly scaling the gradient, the
momentum constant (mom) dictates how strong the effect of the momentum is.

xt ←− mom ∗ xt−1 − lr ∗ ∇l(wt−1)
wt ←− wt−1 + xt

(2)

A variation of the momentum optimizer, known as Nesterov’s momentum
[14] is presented in Eq. 3. Nesterov’s momentum varies from the original because
the gradient is calculated for the weight plus the momentum term. As a result,
the optimizer can look-ahead and make corrections to the direction suggested
by the momentum. The look-ahead is beneficial because the momentum term is
slow to change which may hinder the training process.

6 P. Carvalho et al.

xt ←− mom ∗ xt−1 − lr ∗ ∇l(wt−1 + mom ∗ xt−1)
wt ←− wt−1 + xt

(3)

RMSprop [6] is an unpublished optimizer that divides the LR by a moving
discounted average of the weights’ changes. This optimizer will decrease the
LR when the weight changes rapidly and increase it when the weight stagnates.
This LR annealing simultaneously helps the weights converge and prevents them
from stagnating. In Eq. 4, xt is the moving average term, and ρ is the exponential
decay rate used for this same average. The root moving average is then used in
wt to scale the LR and gradient.

xt ←− ρxt−1 + (1 − ρ)∇l(wt−1)2

wt ←− wt−1 − lr ∗ ∇l(wt−1)√
xt + ε

(4)

The final optimizer we will be discussing is Adam [10]. Adam is similar to
RMSprop, but it attempts to correct the bias of starting the moving average at 0
using a new term (zt). Adam also calculates a range where it expects the gradient
to remain consistent (xt−1√

yt−1
). In Eq. 5 xt and yt are both moving averages; β1

and β2 are exponential decay rates for the averages (similar to ρ in Eq. 4).

xt ←− β1xt−1 + (1 − β1)∇l(wt−1)

yt ←− β2yt−1 + (1 − β2)∇l(wt−1)2

zt ←− lr ∗
√

1 − βt
2

(1 − βt
1)

wt ←− wt−1 − zt ∗ xt√
yt + ε

(5)

3 Adaptive AutoLR

AutoLR is an open-source [16] framework developed to evolve ANN optimizers.
This framework has previously been used to evolve dynamic LR policies [2].
In this work, we propose Adaptive AutoLR (ALR), an implementation of the
framework capable of evolving the more complex adaptive ANN optimizers. This
framework is used to create optimizers specialized for specific tasks to assess the
benefits of optimizer specialization and the potential of evolved optimizers.

For this work, ALR is used to create, evaluate, and improve optimizers during
the evolutionary phase. A separate benchmark phase is performed, where
the evolved optimizers are fairly compared with the human-made solutions. In
the following sections, we will describe the grammar used to determine the struc-
ture of the optimizers and the fitness function utilized to quantify the quality of
the evolved solutions.

Evolving Adaptive Neural Network Optimizers for Image Classification 7

3.1 Grammar

Adaptive optimizers are comprised of a few functions that calculate a set of aux-
iliary variables and adjust the weights of the ANN. This definition is expansive,
creating a complex problem space that demands many evaluations during evolu-
tion. The grammar must account for the problem’s difficulty, enabling diversity
while promoting a smooth evolutionary process.

A consequence of the adaptive optimizer’s broad definition is that the major-
ity of possible solutions cannot train the ANN. It is possible to counteract this
issue through a restrictive grammar that limits the types of functions that can
be evolved. However, we are interested in promoting novel optimizers as much as
possible and will avoid such restrictions as a result. The complete grammar used
for ALR cannot be included due to space restrictions, but an abridged version
is presented in Fig. 1 (full version is available in [15]).

Fig. 1. CFG for the evolution of ANN optimizers.

Individuals in ALR are made up of 4 functions, named: x func, y func,
z func and weight func. Functions x through z work as the auxiliary functions
found in human-made adaptive optimizers; these functions have an associated
result stored between epochs (e.g., xt). By default, the previous iteration result
is included in the function, as shown in Eq. 6, but this behavior can be unlearned

8 P. Carvalho et al.

using the grammar provided. These stored values are a staple of adaptive opti-
mizers as they are essential to implement mechanisms such as momentum.

xt ←− xt−1 − ...

yt ←− yt−1 − ...

zt ←− zt−1 − ...

wt ←− wt−1 − ...

(6)

When the training algorithm calls the optimizer, the individual utilizes its
functions to calculate the new weight values. The auxiliary functions are called
first; the role of these functions is to calculate and store relevant information
based on the gradient changes. These functions are executed sequentially, start-
ing with x and ending with z. The order is essential because each auxiliary
function has access to the result of those that precede it. After all auxiliary
functions have been executed, the weight function is called with access to all
the results. The result of the weight update function, weight func, is then used
as the weight for the next epoch.

There are some aspects of the grammar design that must be discussed. It
should be noted that several productions in the grammar used are identical, but
they are not combined in order to keep the genotype of each function isolated.
The operations and constants were chosen for their presence in human-made
adaptive optimizers. The grammar also includes some bias to facilitate evolution.
The weight function is not allowed to use the gradient; this encourages the use
of auxiliary functions. Auxiliary functions’ terminals are biased in favor of the
gradient, so it is picked more often. Additionally, the expr productions are biased
to facilitate the removal of the function’s previous iteration from the calculations.

3.2 Fitness Function

ALR is usable in any ML application that employs gradient-based training.
In this work, we focus on applying ALR to image classification as there is a
vast backlog of research on the topic that provides proven models and datasets.
Specifically, we chose Fashion-MNIST as it is a good balance between an easy
dataset (e.g., regular MNIST) and a harder one (e.g., CIFAR-10). The ANN used
in ALR can be found in [18]. This ANN is compatible with the Fashion-MNIST
dataset and trains quickly as it has a small number of weights.

The objective of ALR is to create solutions that maximize the accuracy of
the ANN’s predictions. As a result, the fitness function (shown in Algorithm 1)
will utilize the evolved optimizer to train an ANN and use its accuracy after
training and fitness.

However, additional measures are implemented to ensure the fitness value
accurately measures the solution’s actual quality. Specifically, the data used by
the fitness function is split into three sets. The evolutionary training set is
used to train the ANN; this is the only data that interacts with the optimizers
directly. The evolutionary validation set is used to calculate validation met-
rics to track training progress. An early stop mechanism also monitors the vali-
dation loss, aborting the training when the validation loss stagnates. The early

Evolving Adaptive Neural Network Optimizers for Image Classification 9

Algorithm 1: Simplified version of the fitness function used to evaluate
optimizers in ALR
params: network, optimizer, evolutionary training data,

evolutionary validation data, fitness assignment data,
evaluation number

1 minimum acceptable accuracy ← 0.8;
2 fitness ← 1.0;
3 evaluation count ← 0;
4 while evaluation count < evaluation number do
5 trained network ← train(network, optimizer, evolutionary training data,

evolutionary validation data);
6 evaluation accuracy ← get accuracy(trained network,

fitness assignment data);
7 if evaluation accuracy < fitness then
8 fitness ← evaluation accuracy;

9 if evaluation accuracy < minimum acceptable accuracy then
10 return fitness score;

11 evaluation count ++;

12 return fitness;

stop mechanism helps prevent over-fitting and saves computational resources.
After training is complete, the ANN is used to classify the third set of data, the
fitness assignment set. We consider that the accuracy of the ANN in this final
dataset is an accurate measure of the optimizer’s fitness. We refer to this pro-
cess of training and calculating the accuracy of the ANN as an evaluation. It
is worth noting that there are other desirable optimizer features that this fitness
function does not account for, such as convergence speed and hyper-parameter
sensitivity.

We found that some solutions were inconsistent, producing very different
fitness values when repeating the same evaluation. Consequently, we consider
that multiple evaluations should be used to calculate the fitness. Specifically,
the optimizers are trained and evaluated up to five times. While five evaluations
is insufficient to perform any statistical analysis, we found that it was enough to
nurture the evolution of stable solution. The evolutionary training data is split
among the evaluations, forcing the solutions to train using different data each
time. Since each evaluation is computationally expensive and it is desirable to
minimize the number of evaluations. As a result, we define a minimum accept-
able accuracy. If the accuracy achieved in the fitness assignment set is below
this threshold, the optimizer is not considered a viable solution, and the rest of
the evaluations are canceled. This mechanism significantly reduces the resources
used to evaluate low-quality solutions. We consolidate all the results into a sin-
gle fitness value using the worst accuracy across all evaluations as this further
incentivizes the system to produce consistently good solutions.

10 P. Carvalho et al.

4 Experimental Study

This section documents the experiments performed to validate ALR. In Sect. 4.1
we detail the configuration used for the evolutionary process, going over the
parameters used to configure ALR and train the ANN. In Sect. 4.2 we present
and analyze the results of evolution. The typical progress of an evolutionary
run is discussed, and the most notable evolved optimizers are showcased. In
order to properly compare the quality of the evolved optimizers to human-made
solutions, additional experiments are performed to benchmark their quality; this
procedure is documented in Sect. 4.3. Benchmarks are performed on two different
problems. In Sect. 4.4 we present and discuss the performance of the optimizers
in the problem used in evolution, Fashion-MNIST. In Sect. 4.5 we conduct the
same analysis in a different image classification task, CIFAR-10.

4.1 Evolutionary Runs

ALR has a set of evolutionary parameters that must be configured for exper-
imentation. The parameters used in our experiments are presented in Table 1.
The search space posed in this problem is vast; as a result, we found it adequate
to use a high number of generations and a small population. This combination
of parameters is likely to stagnate the population, so a large tournament size is
used to reduce selective pressure.

Fashion-MNIST is the dataset used to evolve the optimizers, and it is com-
prised of training (refer to as Fashion-MNIST-Training) and test (Fashion-
MNIST-Test) data. We will only use Fashion-MNIST-Training (60000 exam-
ples) in the evolutionary runs, splitting it into the evolutionary training set,
evolutionary validation set, and fitness assignment set with 53000, 3500, and
3500 examples, respectively. The 53000 evolutionary training examples are split
evenly among the evaluations (resulting in 10600 training examples per evalua-
tion). The Fashion-MNIST-Test is deliberately excluded from the evolutionary
process; it is essential to reserve a set of data that the evolved solutions never
interact with to draw fair comparisons with human-made optimizers later. Addi-
tionally, the early stop mechanism interrupts training when the validation loss
does not improve for 5 consecutive epochs (controlled by the Patience param-
eter). Each evaluation trains the ANN for a maximum of 100 epochs using a
batch size of 1000. We empirically found that using these parameters with a
human-made optimizer was sufficient to train competent networks.

4.2 Evolutionary Results

Figure 2 shows the averages of the best solution and average population quality
across all runs throughout the evolutionary process. The typical behavior of the
runs can be described as follows. In an early stage, the population is dominated
by individuals that utilize the gradient directly to adjust the weights, without
an LR or any type of adaptive components. While these individuals can train
ANNs adequately occasionally, they fail to replicate their success across different

Evolving Adaptive Neural Network Optimizers for Image Classification 11

Table 1. Experimental parameters.

SGE Parameters Value

Number of runs 9

Number of generations 1500

Number of individuals 20

Tournament size 5

Crossover rate 0.90

Mutation rate 0.15

Dataset Parameters Value

Dataset Fashion-MNIST-Training (60000 instances)

Evolutionary Training set 53000 instances, 10600 instances per evaluation

Evolutionary Validation set 3500 instances

Fitness set 3500 instances

Early Stop Value

Patience 5

Metric Validation Loss

Condition Stop if Validation Loss does not

improve in 5 consecutive epochs

ANN Training Parameters Value

Batch Size 1000

Epochs 100

Metrics Accuracy

evaluations. Nevertheless, these individuals play a vital role in the evolutionary
process as they identify the importance of including the gradient. In most runs,
this genetic material is used in more robust optimizers that can consistently
train competent ANNs leading to an increase in solution quality.

The best and most robust evolved optimizers employ simple, familiar mech-
anisms like a static LR or a simple momentum term. However, two evolved
optimizers stood out as worthy of a focused study and further experimentation.
Since evolved optimizers have a considerable amount of unused genetic material
that hurts readability (e.g., complex auxiliary functions that are not used in cal-
culating the weights), we will be presenting simplified versions of the optimizers
to improve clarity.

The first notable individual was the best performing optimizer across all
runs; a simplified version of this optimizer is shown in Eq. 7; in the instance
produced in evolution lr = 0.0009. This optimizer is unusual in a few ways.
The gradient is never used directly, only its sign. As a result, this optimizer
always changes the weights by a fixed amount. We named this optimizer the
Sign Optimizer. The size of the changes proposed in the evolved instance of
this optimizer is small, likely leading to successive small changes that steadily
improve the ANN until a local optimum is reached. This strategy allows for a
lengthy training procedure even with the early stop mechanism. Early stop only

12 P. Carvalho et al.

Fig. 2. Progression of average fitness and best fitness throughout evolution. Plot shows
the average and standard deviation across all runs.

interrupts training if the validation loss does not improve. The magnitude of
improvements is not considered, favoring optimizers that improve the ANN by a
small margin many times. Additionally, the use of the sign operation adjusts the
direction of the gradient before it is applied to the weights. As far as we know,
this strategy is not used in any human-made optimizers, and it is challenging
to understand its implications completely. While changing the direction of the
gradient seems undesirable, this approach may make the optimizer more resistant
to the common vanishing/exploding gradient problems that can occur during
training. The Sign optimizer does not exhibit any adaptive components; since
adaptive optimizers were the main object of this system, we also selected the
best optimizer with adaptive features for benchmark.

wt = wt−1 − lr ∗ sign(∇l(wt−1)) (7)

The best adaptive evolved optimizer is presented in Eq. 8. As far as we
know, this individual is a novel adaptive optimizer. Specifically, this solution’s
unique aspect is the presence of a squared auxiliary variable that was not found
in human-made approaches. This optimizer is named Adaptive Evolutionary
Squared (ADES) after its defining characteristic; in the instance produced in
evolution β1 = 0.08922, β2 = 0.0891. ADES is considerably more complex than
the Sign optimizer, so assessing how and why it functions is challenging. Since
ADES does not operate similarly to human-made optimizers, we cannot relate its
operations to familiar components. Nevertheless, we empirically observed that

Evolving Adaptive Neural Network Optimizers for Image Classification 13

this optimizer employs a momentum-like mechanism that increases the magni-
tude of changes when moving in the same direction. However, we consider that
thoroughly dissecting ADES and understanding the role of all its components is
outside the scope of this work as it requires significant study outside the field of
evolutionary computation.

yt = yt−1 − (β1 ∗ y2
t−1 + β2 ∗ (yt−1 ∗ ∇l(wt−1)) + β2 ∗ ∇l(wt−1))

wt = wt−1 + yt
(8)

4.3 Benchmark

The evolved optimizers performed well during evolution, but this may not be
representative of their actual quality. During evolution, optimizers were eval-
uated using a limited set of data and an early stop mechanism. Furthermore,
training was restricted to 100 epochs at most, possibly limiting the quality of
ANNs created. In order to determine the actual quality of evolved solutions, it
is essential to benchmark them with human-made optimizers.

Benchmarks use three sets of data with distinct roles: training, validation,
and test. Training data, as the name suggests, is used to train the ANN. The
validation data is used to monitor the ANN’s ability to generalize as training
progresses. The test data is used to make a final assessment of the ANN’s per-
formance. Furthermore, every benchmark is comprised of two phases. In the first
phase (tuning phase), Bayesian optimization [13] tunes the hyper-parameters
of all optimizers. While Bayesian optimization is often used to search for opti-
mizer and network parameters [21], we believe it remains an adequate solution
when applied in this smaller scope. Bayesian optimization tunes all parameters
between 0 and 1. Specifically, the algorithm performs 100 function evaluations
with 10 restarts and each optimizer’s default parameters are used as a probe
to help guide the search. During the tuning phase, ANNs are trained using the
selected optimizer and parameters during 100 epochs. The Bayesian optimization
procedure is guided by the best validation accuracy obtained during training.
In the second phase (trial phase), the best set of hyper-parameters (i.e., the
values that achieved the highest validation accuracy) found for each optimizer
through the tuning process are used to train the ANN. In this phase, training
is performed for 1000 epochs. After training, the best weights (i.e., the weights
that achieved the highest validation accuracy during training) are used to test
the ANN on the test data for a final accuracy assessment. Trials are repeated
30 times, and all results presented show the average and standard deviation of
these trials. No early stop is used at any point during benchmarks.

The evolved optimizers are compared with three human-made optimizers
previously presented: Nesterov’s momentum, RMSprop and Adam on two dif-
ferent benchmarks. The first benchmark compares the evolved optimizers with
the human-made adaptive optimizers in Fashion-MNIST (the task used in evolu-
tion). The second benchmark performs the comparison on CIFAR-10, a different
dataset and network architecture (Keras-CIFAR [3], available in [17])), but the
task is still image classification.

14 P. Carvalho et al.

4.4 Fashion-MNIST

In this benchmark, we test the optimizers in the network architecture (Keras-
MNIST [4], available in [18]) and dataset (Fashion-MNIST) used in evolution.
Additional measures are necessary to ensure fair comparisons in this environ-
ment, since evolved optimizers have an unfair advantage if evaluated on the
data used during evolution. As previously mentioned, the Fashion-MNIST-Test
was deliberately excluded from evolution to enable just comparisons in this
phase. Consequently, it is possible to make fair comparisons between evolved
and human-made optimizers as long as the Fashion-MNIST-Test data is used
to evaluate the final accuracy. As a result, Fashion-MNIST-Training is used for
training (53000 instances) and validation (7000 instances), and Fashion-MNIST-
Test is only used for the final accuracy assessment (10000 instances).

The results of the tuning phase (best hyper-parameter values) and the trial
phase (validation and test accuracy) are presented in Table 2. All optimizers
performed similarly in this benchmark. The exception is the Sign optimizer
that performed about 1.5% worse than its peers. We believe the odd way the
Sign optimizer changes weights is particularly effective at avoiding the early
stop mechanism used during evolution. While the Sign optimizer thrives in the
evolutionary system’s specific evaluation conditions, when moved into a more
traditional training environment, it cannot compete with the other optimizers.
Despite weaker results, the Sign optimizer exhibits the smallest accuracy drop
between the validation and test sets.

Table 2. Trial results of all optimizers in Fashion-MNIST. The parameters tuned for
each optimizer, as well as the best values found through Bayesian optimization are also
presented.

Optimizer Parameter Validation Accuracy Test Accuracy

ADES beta 1 beta 2 93.53 ± 0.11% 92.87 ± 0.16%

0.87621 0.76132

Sign lr 92.08 ± 0.13% 91.29 ± 0.25%

0.0009

Adam lr beta 1 beta 2 93.46 ± 0.10% 92.69 ± 0.20%

0.00127 0.07355 0.78162

RMSprop lr rho 93.61 ± 0.08% 92.80 ± 0.17%

0.00097 0.85779

Nesterov lr momentum 93.41 ± 0.14% 92.82 ± 0.15%

0.09999 0.86715

Notably, ADES has the best test accuracy in Fashion-MNIST, suggesting
ALR succeed in its objective of specialization. While it is expected that the
evolved optimizer would perform well in its native task, it is still remarkable

Evolving Adaptive Neural Network Optimizers for Image Classification 15

that this automatically generated solution can empirically outperform human-
made optimizers. It must be noted that the human-made optimizers are the cul-
mination of many years of research into this subject and ADES competes with
these methods despite being automatically generated. Nevertheless, it must be
acknowledged that the differences in performance between the four best opti-
mizers are minimal. Performing a Mann-Whitney U test for the null hypothesis
comparing the two best solutions: “ADES and Nesterov are equal” with a sig-
nificance level of 0.05, we are unable to reject the null hypothesis (p = 0.267).

4.5 CIFAR-10

This benchmark was designed to test the ability of the evolved optimizers to
generalize to a different problem within the same domain. The dataset chosen was
CIFAR-10, a common problem used to evaluate image classification approaches.
CIFAR-10 also has training (CIFAR-10-Training) and test (CIFAR-10-Test) sets,
similar to Fashion-MNIST. Following the procedure outlined in the previous
section, CIFAR-10-Training is used for training (43000 instances) and validation
(7000 instances), while CIFAR-10-Test (10000 instances) is used to make the
final test accuracy assessment. The architecture used was the Keras CIFAR-10
architecture [3] (available in [17]).

The best parameter values found using Bayesian optimization, and the trial
phase results are presented in Table 3. Once again, despite its weak performance
overall, the Sign optimizer is the most resistant to the dataset change, even
slightly improving its performance when moved to the test set. While this may
seem unusual, consider that the validation accuracy is only used to select the best
weights for testing. Additionally, note that the Sign optimizer does not strictly
follow the direction of the gradient when adjusting weights, possibly making Sign
resistant to overfitting.

However, the most notable result in this benchmark is that ADES remains
one of the best solutions, outperforming Adam and RMSProp in both validation
and test accuracy. While the difference in accuracy is not massive, it is essential
to acknowledge that an evolved optimized can compete with state-of-the-art
solutions even outside its native task. Considering that the supposed advantage
of an evolved optimizer is that it is fine-tuned for the task it is evolved in, this
result is remarkable.

Additionally, the fact that ADES can be successfully used in other image
classification tasks motivates research into other applications of the optimizer.
What other datasets, architectures and ML problems can ADES succeed in?
Further research is necessary to fully understand the contribution of ADES to
ML.

However, the success of ADES in this benchmark also highlights the value
of ALR. A vital characteristic of ADES it is competitive with human-made
optimizers using a novel way of changing weights. Even if future work reveals
that ADES is not widely applicable, understanding its unique features and why it
succeeds in specific tasks may provide helpful insights for creating better human-
made optimizers. Specially because adaptive optimizers historically retool or

16 P. Carvalho et al.

Table 3. Trial results of all optimizers in CIFAR-10. The parameters tuned for each
optimizer, as well as the best values found through Bayesian optimization are also
presented.

Optimizer Parameter Validation Accuracy Test Accuracy

ADES beta 1 beta 2 82.04 ± 0.20% 81.85 ± 0.29%

0.92226 0.69285

Sign lr 74.97 ± 0.40% 75.09 ± 0.50%

0.0009

Adam lr beta 1 beta 2 81.93 ± 0.21% 81.56 ± 0.26%

0.00163 0.81344 0.71023

RMSprop lr rho 80.97 ± 0.27% 80.65 ± 0.45%

0.00085 0.64813

Nesterov lr momentum 82.45 ± 0.25% 82.03 ± 0.25%

0.00907 0.98433

adjust ideas from older solutions to create new, better optimizers. ALR’s ability
to create unique, competitive, evolved optimizers may help researchers improve
human-made optimizers.

It is also worth highlighting that the evolutionary conditions did not incen-
tivize the creation of an optimizer that performed well outside its native task.
ALR created ADES while evaluating optimizers strictly based on their perfor-
mance in the Fashion-MNIST dataset but the optimizer still operates success-
fully in a different task. We consider that this result motivates research into other
applications of ALR. Specifically, it may be interesting to use ALR with a fitness
function that evaluates optimizers based on their performance on several tasks,
promoting general applicability. The evolutionary setup used also enforced mini-
mal limitations on the solutions created. While this led to the creation of a novel
solution, it is relevant to investigate the potential of ALR when using additional
rules that guarantee evolved optimizers are closer to strong, established human-
made optimizers. In fact, it could be interesting to utilize ALR starting from the
population of human-made optimizers. Evolving solutions closer to human-made
optimizers may work as an alternative to hyper-parameter optimization, where
the entire optimizer is tuned for a specific task.

5 Conclusion

This work presents an adaptive implementation of the AutoLR framework. This
framework is capable of producing novel, specialized ANN optimizers through
an EA. Specifically, the framework [2] is used to evolve optimizers for an image
classification task. The setup used included no incentive to imitate traditional
optimizers as solution were rated solely based on their performance.

Some of the optimizers evolved under these circumstances can compete with
the established human-made optimizers. This optimizer, called ADES, showed

Evolving Adaptive Neural Network Optimizers for Image Classification 17

other exciting properties. Despite being evolved in a specific task, this optimizer
could compete with human-made optimizers even in a different task. As such, the
results obtained with ADES indicate that the AutoLR framework could create
new general ANN optimizers that can be employed on a breadth of problems.
To summarize, the contributions of this paper are as follows:

– The proposal of ALR, an implementation of AutoLR capable of producing
adaptive ANN optimizers.

– The evolution, benchmark, and analysis of two new ANN optimizers.
– The discovery of ADES, an automatically-generated adaptive ANN optimizer

capable of competing with state-of-the-art human-made optimizers in two
relevant image classification tasks.

The results obtained in this work also warrant further study into a few topics.
The evolved optimizer ADES remained competitive with human-made solutions
when moved outside of its native task. However, all tasks considered are image
classification problems. It is vital to understand whether ADES retains its utility
when applied to different problems. Furthermore, in this work we only compared
optimizers based on their final test accuracy. However, there are other properties
that are desirable in optimizers such as convergence speed and sensitivity to
hyper-parameters. Studying evolved optimizers in this lens may reveal additional
advantages and disadvantages to this approach. Finally, the success of ADES
outside its native task suggests ALR may serve as a tool for the creation of
optimizers in other applications. In this work, the experiments were designed
to explore the benefits of specializing optimizers, however we found that the
applicability of the solutions produced were also interesting. It would be relevant
to study the benefits of using ALR to create generally applicable optimizers (e.g.,
by assigning optimizer fitness based of their performance in several different
tasks).

Acknowledgments. This work is partially funded by: Fundação para a Ciência e
Tecnologia (FCT), Portugal, under the grant UI/BD/151053/2021, and by national
funds through the FCT - Foundation for Science and Technology, I.P., within the
scope of the project CISUC - UID/CEC/00326/2020 and by European Social Fund,
through the Regional Operational Program Centro 2020.

References

1. Bottou, L.: On-Line Learning and Stochastic Approximations, pp. 9–42. Cambridge
University Press, Cambridge (1999)

2. Carvalho, P., Lourenço, N., Assunção, F., Machado, P.: AutoLR: an evolution-
ary approach to learning rate policies. In: Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, GECCO 2020, pp. 672–680. Association
for Computing Machinery, New York (2020). https://doi.org/10.1145/3377930.
3390158

3. Chollet, F., et al.: Keras CIFAR10 architecture (2015). https://keras.io/examples/
cifar10 cnn tfaugment2d/

https://doi.org/10.1145/3377930.3390158
https://doi.org/10.1145/3377930.3390158
https://keras.io/examples/cifar10_cnn_tfaugment2d/
https://keras.io/examples/cifar10_cnn_tfaugment2d/

18 P. Carvalho et al.

4. Chollet, F., et al.: Keras MNIST architecture (2015). https://keras.io/examples/
mnist cnn/

5. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for
scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2012)

6. Hinton, G., Srivastava, N., Swersky, K.: Overview of mini-batch gradient descent.
University Lecture (2015). https://www.cs.toronto.edu/∼tijmen/csc321/slides/
lecture slides lec6.pdf

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

9. Jacobs, R.A.: Increased rates of convergence through learning rate adaptation.
Neural Netw. 1(4), 295–307 (1988)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

12. Lopez, M.M., Kalita, J.: Deep learning applied to NLP. arXiv preprint
arXiv:1703.03091 (2017)

13. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for
seeking the extremum, vol. 2, pp. 117–129 (2014)

14. Nesterov, Y.: A method for unconstrained convex minimization problem with the
rate of convergence o (1/k̂ 2). In: Doklady an USSR, vol. 269, pp. 543–547 (1983)

15. Pedro, C.: Adaptive AutoLR grammar (2020). https://github.com/soren5/autolr/
blob/master/grammars/adaptive autolr grammar.txt

16. Pedro, C.: AutoLR (2020). https://github.com/soren5/autolr
17. Pedro, C.: Keras CIFAR model (2020). https://github.com/soren5/autolr/blob/

benchmarks/models/json/cifar model.json
18. Pedro, C.: Keras MNIST model (2020). https://github.com/soren5/autolr/blob/

benchmarks/models/json/mnist model.json
19. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-

propagating errors. Nature 323(6088), 533–536 (1986)
20. Senior, A., Heigold, G., Ranzato, M., Yang, K.: An empirical study of learning rates

in deep neural networks for speech recognition. In: 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp. 6724–6728. IEEE (2013)

21. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Proceedings of the 25th International Conference on Neu-
ral Information Processing Systems, NIPS 2012, vol. 2, pp. 2951–2959. Curran
Associates Inc., Red Hook (2012)

22. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach
to designing convolutional neural network architectures. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 497–504.
Association for Computing Machinery, New York (2017). https://doi.org/10.1145/
3071178.3071229

https://keras.io/examples/mnist_cnn/
https://keras.io/examples/mnist_cnn/
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1703.03091
https://github.com/soren5/autolr/blob/master/grammars/adaptive_autolr_grammar.txt
https://github.com/soren5/autolr/blob/master/grammars/adaptive_autolr_grammar.txt
https://github.com/soren5/autolr
https://github.com/soren5/autolr/blob/benchmarks/models/json/cifar_model.json
https://github.com/soren5/autolr/blob/benchmarks/models/json/cifar_model.json
https://github.com/soren5/autolr/blob/benchmarks/models/json/mnist_model.json
https://github.com/soren5/autolr/blob/benchmarks/models/json/mnist_model.json
https://doi.org/10.1145/3071178.3071229
https://doi.org/10.1145/3071178.3071229

Combining Geometric Semantic GP
with Gradient-Descent Optimization

Gloria Pietropolli1, Luca Manzoni1(B), Alessia Paoletti1, and Mauro Castelli2

1 Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste,
Via Alfonso Valerio 12/1, 34127 Trieste, Italy

gloria.pietropolli@phd.units.it, lmanzoni@units.it
2 Nova Information Management School (NOVA IMS), Universidade Nova de Lisboa,

Campus de Campolide, 1070-312 Lisboa, Portugal

mcastelli@novaims.unl.pt

Abstract. Geometric semantic genetic programming (GSGP) is a well-
known variant of genetic programming (GP) where recombination and
mutation operators have a clear semantic effect. Both kind of operators
have randomly selected parameters that are not optimized by the search
process. In this paper we combine GSGP with a well-known gradient-
based optimizer, Adam, in order to leverage the ability of GP to operate
structural changes of the individuals with the ability of gradient-based
methods to optimize the parameters of a given structure.

Two methods, named HYB-GSGP and HeH-GSGP, are defined and
compared with GSGP on a large set of regression problems, showing that
the use of Adam can improve the performance on the test set. The idea
of merging evolutionary computation and gradient-based optimization is
a promising way of combining two methods with very different – and
complementary – strengths.

1 Introduction

Genetic Programming (GP) [13] is one of the most prominent evolutionary com-
putation techniques, with the ability to evolve programs, usually represented as
trees, to solve specific problems given a collection of input and output pairs.
Traditionally, operators in GP have focused on manipulating the syntax of GP
individuals, like swapping subtrees for crossover or replacing subtrees for muta-
tion. While simple to describe, these operations produce an effect on the seman-
tics [25] of the individuals that can be complex to describe, with small varia-
tions in the syntax that may significantly affect the semantics. To address this
problem, semantic operators were introduced. In particular, geometric semantic
operators, first introduced in [15], have been used for defining Geometric Seman-
tic GP (GSGP), a new kind of GP where crossover and mutation operators have
a clear effect on the semantics. While in the original formulation GSGP was only
of theoretical interest, due to the size of the generated individuals, the algorithm
introduced in [24] provided a way for implementing GSGP efficiently.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 19–33, 2022.
https://doi.org/10.1007/978-3-031-02056-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-02056-8_2

20 G. Pietropolli et al.

While the introduction of GSGP helped in establishing a clear effect of recom-
bination and mutation operators, also improving the quality of the generated
solutions, there is still a largely untapped opportunity of combining GSGP with
local search methods. In particular, we can observe that, give two GP trees T1

and T2, their recombination is given by αT1 + (1 − α)T2, and the mutation of
one of them is given by T1 + ms(R1 − R2), where R1 and R2 are two random
trees. As we can observe, there are three parameters, α, β = 1 − α, and ms that
are either fixed or randomly selected during the evolution process. As long as
each function used in the generation of the individuals is derivable, we can com-
pute the gradient of the error with respect to the parameters used in crossover
and mutation. Thus, we can employ a gradient-based optimizer to update the
parameters of each crossover and mutation.

In this paper, we propose a way to combine GSGP and Adam, a well-known
gradient-based optimizer. In some sense, by combining GSGP with a gradient-
based optimizer, we are leveraging the strengths of each of the two methods:
GSGP (and GP in general) is good at providing structural changes in the shape
of the individuals, while gradient-based methods are perfect for optimizing a
series of parameters of the individuals that the evolutionary process has difficulty
in optimizing.

We experimentally show that the proposed method can provide better perfor-
mance with respect to plain GSGP, thus suggesting that a combination of local
search (via Adam) with GSGP is a new promising way to leverage knowledge
from other areas of artificial intelligence: Adam and the gradient-based optimiz-
ers are well-studied in the area of neural networks, representing the main tool
to perform the learning process in a neural network.

This paper is structured as follows: Sect. 2 provides an overview of the
applications of local search to evolutionary methods and GP in particular.
Section 3 recalls the reliant notions of GSGP (Sect. 3.1) and the Adam algorithm
(Sect. 3.2). Section 3.3 introduces the proposed hybridized algorithms combining
GSGP and the Adam algorithm. The experimental settings and the dataset
used in the experimental validation are described in Sect. 4 and the results of
the experimental campaign are presented in Sect. 5. Section 6 summarizes the
main contributions of the paper and provides directions for further research.

2 Related Works

The combination of Evolutionary Algorithms (EAs) and local search strategies
received greater attention in recent years [5,6,17]. While EAs can explore large
areas of the search space, the evolutionary search process improves the programs
in a discontinuous way [20]. On the other hand, when considering local optimiz-
ers, the solutions can be improved gradually and steadily in a continuous way.
Thus, as stated by Z-Flores et al. [7], a hybrid approach that combines EAs with
a local optimizer can result in a well-performing search strategy. Such approaches
are a simple type of memetic search [5], and the basic idea is to include within
the optimization process an additional search operator that, given an individ-
ual, searches for the local optima around it. Thanks to the possibility of fully

Combining Geometric Semantic GP 21

exploiting the local region around each individual, memetic algorithms obtained
excellent results over different domains [5,17], and they outperform evolutionary
algorithms in multimodal optimisation [18]. Despite these results, the literature
presents a poor number of contributions dealing with GP [23], thus indicating
that the GP community may have not addressed the topic adequately. Some
examples are the works of Eskridge [8] and Wang [26] that are domain-specific
memetic techniques not addressing the task of symbolic regression considered
in this work. Muñoz et al. [16], proposed a memetic algorithm that, given a
regression (or classification) problem, creates a new feature space that is sub-
sequently considered for addressing the underlying optimization problem. The
algorithm, by maximizing the mutual information [12] in the new feature space,
shows superior results with respect to other state-of-the-art techniques.

Focusing on the use of gradient descent in GP, the existing contributions
are focused on particular tasks or particular components of the solutions. For
instance, Topcyy et al. [22] analyzed the effectiveness of gradient search opti-
mization of numeric leaf values in GP. In particular, they tuned conventional
random constants utilizing gradient descent, and they considered several sym-
bolic regression problems to demonstrate the approach’s effectiveness. Zhang et
al. [27] applied a similar strategy to address object classification problems and,
also in this case, better results were obtained compared to the ones achieved
with standard GP. Graff et al. [9] employed resilient backpropagation with GP
to address a complex real-world problem concerning wind speed forecasting,
showing improved results. In [21], the authors used gradient-descent search to
make partial changes of certain parts of genetic programs during evolution. To
do that, they introduced weight parameters for each function node, what the
authors call inclusion factors. These weights modulate the importance that each
node has within the tree. The proposed method, which uses standard genetic
operators and gradient descent applied to the inclusion factors, outperformed
the basic GP approach that only uses standard genetic operators (i.e., without
gradient descent and inclusion factors).

The aforementioned contributions are related to syntax-based GP. In the
context of semantics-based GP [25], the integration of a local search strategy into
GP was proposed by Castelli et al. [4] with the definition of a specific semantic
mutation operator. Experimental results showed excellent performance on the
training set, but with a severe overfitting [3]. To the best of our knowledge, this
is the only attempt to integrate a local optimizer within semantic GP.

In this paper, we follow a different strategy, and, to create a hybrid semantic
GP framework, we rely on gradient descent optimization.

3 Gradient Descent GSGP

This section will discuss the two tools that will be combined later in this work.
First, Geometric Semantic GP is described. Later, Adam, one of the most pow-
erful gradient descent optimizers, is introduced and discussed. Afterward, the
main contribution of this paper, i.e., the first integration of a gradient descent
optimizer within GSGP, is presented.

22 G. Pietropolli et al.

3.1 Geometric Semantic GP

Traditional genetic programming investigates the space of programs exploiting
search operators that analyze their syntactic representation. To improve the per-
formance of GP, recent years have witnessed the integration of semantic aware-
ness in the evolutionary process [25]. The semantic of a solution can be identified
by the vector of its output values calculated on the training data. Thus, we can
represent a GP individual as a point in a real finite-dimensional vector space, the
so-called semantic space. Geometric Semantic Genetic Programming (GSGP) is
an evolutionary technique originating from GP that directly searches the seman-
tic space of the programs. GSGP has been introduced by Moraglio and coau-
thors [15], together with the definition of the correspondent Geometric Semantic
Operators (GSOs). These operators replace traditional (syntax-based) crossover
and mutation, inducing geometric properties on the semantic space. GSOs induce
on the training data a unimodal error surface for any supervised learning prob-
lem where input data has to match with known targets. More precisely: given
two parents functions T1, T2 : Rn → R, Geometric Semantic Crossover (GSC)
generates the real function TXO = (T1 ·TR)+((1−TR)·T2), where TR is a random
real functions whose output range in the interval [0, 1]. Similarly, given a parent
function T : Rn → R, Geometric Semantic Mutation (GSM) generates the real
functions TM = T+ms·(TR1−TR2) where TR1 and TR2 are random real functions
whose output range in the interval [0, 1] and ms is a parameter called mutation
step. This means that GSC generates one offspring whose semantics stands on
the line joining the semantics of the two parents in the semantic space, while
GSM generates an individual contained in the hyper-sphere of radius ms cen-
tred in the semantics of the parent in the semantic space. An intrinsic GSGP’s
problem is that this technique leads to larger offsprings with respect to their
parents. Due to this issue, the algorithm becomes excessively unbearably slow
generation after generation, making it unsuitable for real-world applications. In
[2,24], Vanneschi and coauthors introduced a GSGP implementation that solves
this problem and consists in storing only the semantic vectors of newly created
individuals, besides storing all the individuals belonging to the initial population
and all the random trees generated during the generations. This improvement
turn the cost of evolving g generations of n individuals from O(ng) to O(g). The
same idea was subsequently adopted to reconstruct the best individual found by
GSGP, thus allowing for its usage in a production environment [1].

3.2 Adam Algorithm

Adam (Adaptive Moment Estimation) [11] is an algorithm for first-order
gradient-based optimization of stochastic objective functions, based on adaptive
estimates of lower-order models. Adam optimizer is efficient, easy to implement,
requires little memory usage for its execution, and is well suited for problems
dealing with a vast amount of data and/or parameters. The steps performed by
the Adam optimizer are summarized in Algorithm 1. The inputs required for
this method are the parametric function f(θ), the initial parameter vector θ0,

Combining Geometric Semantic GP 23

the number of steps N , the learning rate α, the exponential decay rate of the
first momentum β1, the one for the second momentum β2, and ε, set by default
at 10−8. At every iteration, the algorithm updates first and second moment
estimates using the gradient computed with respect to the stochastic function
f . These estimates are then corrected to contrast the presence of an intrinsic
initialization bias through the divisions described in line 7 and 8, where βi+1

1

stands for the element-wise exponentiation. For further details about the imple-
mentation of the Adam optimizer and the demonstration of its properties, the
reader can refer to [11].

Algorithm 1. Pseudocode of the Adam algorithm.
Require: f(θ), θ0, N, α, β1 ∈ [0, 1), β2 ∈ [0, 1), ε
1: m0 ← 0
2: v0 ← 0
3: for i = 0 · · · N do
4: di+1 ← ∇θfi+1(θi)
5: mi+1 ← β1 · mi + (1 − β2) · di+1

6: vi+1 ← β2 · vi + (1 − β2) · d2
i+1

7: m̄i+1 ← mi+1/(1 − βi+1
1)

8: v̄i+1 ← vi+1/(1 − βi+1
2)

9: θi+1 ← θi − α · m̄i+1/(v̄i+1)
10: end for

3.3 GSGP Hybridized with Gradient Descent

The idea introduced in this work is to combine the strength of the two methods
presented above, i.e., GSGP and the Adam optimizer. Geometric semantic GP,
thanks to the geometric semantic operators, allows big jumps in the solution
space. Thus, new areas of the solution space can be explored, with GSOs also
preventing the algorithm to get stuck in a local optimum. Adam optimizer, on
the other hand, is a gradient-based optimization technique. Thus, it performs
small shifts in the local area of the solution space. A combination of these tech-
niques should guarantee a jump in promising areas (i.e., where good-quality
solutions lie) of the solution space, thanks to the evolutionary search of GSGP
and subsequent refinement of the solution obtained with the Adam algorithm.
Let’s describe in more detail how to implement this combination. Let us consider
an input vector x of n features, and the respective expected scalar value output
y. By applying GSGP, an initial random population of functions in n variables
is created. After performing the evolutionary steps involving GSM and GSC, a
new population T = (T1, T2, · · · , TN) of N individuals is obtained. The resulting
vector T is composed of derivable functions, as they are obtained through addi-
tions, multiplications, and compositions of derivable functions. At this point,
to understand for which parameter we should differentiate T , it is necessary to
introduce an equivalent definition of the geometric semantic operators presented

24 G. Pietropolli et al.

in Sect. 3.1. In particular let us redefine the Geometric Semantic Crossover as
TXO = (T1 · α) + ((1 − α) · T2), where 0 ≤ α ≤ 1, and the Geometric Semantic
Mutation as TM = T + ms · (R1 − R2), where 0 ≤ m ≤ 1. As the values of α
and m are randomly initialised, we can derive T with respect to α, β = (1 − α)
and m. Therefore, the Adam optimizer algorithm can be applied, considering
as objective function f(θ) the generation considered, while the parameter vec-
tor becomes θ = (α, β,m). Thus, GSGP and Adam optimizer can be applied
together to find the best solution for the problem at hand. We propose and
investigate two ways to combine them:

– HYB-GSGP: the abbreviation stands for Hybrid Geometric Semantic Genetic
Programming. Here, one step of GSGP is alternated to one step of the Adam
optimizer.

– HeH-GSGP: the abbreviation stands for Half et Half Geometric Semantic
Genetic Programming. Here, initially, all the GSGP genetic steps are per-
formed, followed by an equal number of Adam optimizer steps.

In the continuation of the paper, we will refer to these two methods using the
abbreviations just introduced.

4 Experimental Settings

This section describes the datasets considered for validating our technique
(Sect. 4.1) and provides all the experimental settings (Sect. 4.2) to make the
experiments completely reproducible. The code, for the complete reproducibil-
ity of the proposed experiments, is available at https://github.com/gpietrop/
GSGP-GD [19].

4.1 Dataset

To assess the validity of the technique proposed in Sect. 3.3, real-world, com-
plex datasets, ranging from different areas, have been considered and tested.
All of them have been widely used as benchmarks for GP, and their properties
have been discussed in [14]. Table 1 summarizes the characteristics of the dif-
ferent datasets, such as the number of instances and the number of variables.
The objective of the first group of datasets is the prediction of pharmacokinetic
parameters of potential new drugs. Human oral bioavailability (%F) measures
the percentage of initial drug dose that effectively reaches the system blood cir-
culation; Median lethal dose (LD50) measures the lethal dose of a toxin, radia-
tion, or pathogen required to kill half the members of a tested population after
a specified test duration; Protein-plasma binding level (%PPB) corresponds to
the percentage of the initial drug dose that reaches the blood circulation and
binds the proteins of plasma. Also, datasets originating from physical problems
are considered: Yacht hydrodynamics (yac) measures the hydrodynamic perfor-
mance of sailing yachts starting from its dimension and velocity; Concrete slump
(slump) measures the value about the slump flow of the concrete; Concrete

https://github.com/gpietrop/GSGP-GD
https://github.com/gpietrop/GSGP-GD

Combining Geometric Semantic GP 25

compressive strength (conc) measures values about the compressive strength of
concrete; Airfoil self-noise (air) is a NASA dataset obtained from a series of
aerodynamic and acoustic test of airfoil blade sections.

Table 1. Principal characteristics of the considered datasets: the number of variables,
the number of instances, the domain, and the task request.

Dataset Variables Instances Area Task

%F 242 359 Pharmacokinetic Regression

LD50 627 234 Pharmacokinetic Regression

%PPB 627 131 Pharmacokinetic Regression

yac 7 308 Physics Regression

slump 10 102 Physics Regression

conc 9 1030 Physics Regression

air 6 1503 Physics Regression

4.2 Experimental Study

For all the datasets described in Sect. 4.1, samples have been split among train
and test sets: 70% of randomly selected data has been used as a training set,
while the remaining 30% has been used as a test set. For each dataset, 100 runs
have been performed, each time with a random train/test split.

To assess the performance of HYB-GSGP and HeH-GSGP, the results
obtained within these methods are compared to the ones achieved with classical
GSGP. The comparison with the performance achieved by standard GP is not
reported, because after some preliminary tests it has been observed that stan-
dard GP is non competitive against GSGP. We considered two hyperparameters
settings to evaluate our methods’ performance with different values assigned to
the learning rate of the Adam algorithm. Both of them are compared against 200
generations of standard GSGP. To make the comparison fair, the total number of
fitness evaluations must be equal for every method considered: 200 generations
in the standard GSGP routine correspond to a combination of 100 generations of
GSGP plus 100 steps of Adam optimizer, both for HYB-GSGP and HeH-GSGP.

The first learning rate value we considered is 0.1 and we will refer to HYB-
GSGP and HeH-GSGP where Adam optimizer used this hyperparameter as,
respectively, HYB-0.1 and HeH-0.1. The second learning rate value we consid-
ered is 0.01 and we will refer to HYB-GSGP and HeH-GSGP where Adam opti-
mizer used this hyperparameter as, respectively, HYB-0.01 and HeH-0.01. The
population size for all the considered systems is set to 50, and the trees of the
first generation are initialized with the ramped half and half technique. Further
details concerning the implementation of the semantic system and the Adam
optimization algorithm are reported in Table 2. The considered fitness function
is the Root Mean Squared Error (RMSE).

26 G. Pietropolli et al.

Table 2. Experimental settings. A horizontal line separates the parameters belonging
to GSGP algorithm and the ones belonging to the Adam technique.

Parameter Value

Function Set +, −, ∗, //

Max. Initial Depth 6

Crossover Rate 0.9

Mutation Rate 0.3

Mutation step 0.1

Selection Method Tournament of size 4

Elitism Best individuals survive

Learing Rate - A (α) 0.1

Learing Rate - B (α) 0.01

Exponential Decay Rate - First Momentum (β1) 0.9

Exponential Decay Rate - Second Momentum (β2) 0.99

ε 10−8

5 Experimental Results

Table 3. Training and testing fitness (RMSE) for the considered benchmark problems.
Bold font indicates the best results.

GSGP HYB-0.1 HYB-0.01 HeH-0.1 HeH-0.01

%F Train 38.08 37.74 36.80 39.61 40.60

Test 40.15 40.48 39.61 40.85 41.23

LD50 Train 2118.00 2086.56 2128.22 2144.27 2161.00

Test 2214.78 2203.25 2229.87 2221.72 2215.09

%PPB Train 30.15 27.00 24.32 34.79 33.26

Test 328.1 401.43 263.81 213.86 235.53

yac Train 11.83 11.92 12.48 12.28 12.31

Test 11.92 11.83 12.52 12.38 12.48

slump Train 4.56 3.47 2.92 5.19 4.41

Test 5.08 3.63 3.32 5.77 4.76

conc Train 9.62 8.86 8.50 10.59 10.05

Test 9.65 8.88 8.69 10.47 10.07

air Train 27.76 31.54 21.98 30.37 30.46

Test 27.94 31.71 21.97 30.15 30.53

As stated in Sect. 3.3, the goal of this study is to compare the performance of
GSGP against the one obtained by the proposed methods.

For each problem, the median of the fitness (calculated over the 100 runs per-
formed), for both the training and the validation sets, is displayed in Table 3. The
corresponding statistical analysis is reported Fig. 1 (for the test set), thorough

Combining Geometric Semantic GP 27

Fig. 1. Boxplots of Testing RMSE obtained over 100 independent runs of the considered
benchmark problems. (a) %F, (b) LD50, (c) %PPB, (d) yac, (e) slump, (f) conc, (g)
air.

28 G. Pietropolli et al.

Fig. 2. Median of training fitness over 100 independent runs for the considered bench-
mark problems. (a) %F, (b) LD50, (c) %PPB, (d) yac, (e) slump, (f) conc, (g) air.

Combining Geometric Semantic GP 29

Fig. 3. Median of testing fitness over 100 independent runs for the considered bench-
mark problems. (a) %F, (b) LD50, (c) %PPB, (d) yac, (e) slump, (f) conc, (g) air.

30 G. Pietropolli et al.

letter-value plots. Letter-value plots are a particular kind of box-plots, intro-
duced for the first time in [10]. We preferred them, over traditional box-plots,
because they provide information not only about the distribution of the data but
also about the tail behavior beyond the quartiles. Finally, the median fitness, at
each generation, for the training and validation set, is displayed, respectively, in
Fig. 2 and in Fig. 3. Training results are reported for the sake of completeness.
Anyway, to compare the performance of the proposed methods against GSGP,
we focus our analysis on the results achieved on the test set.

Table 3 shows that HYB-GSGP outperforms standard geometric semantic
GP, while, most of the time, the HeH-GSGP method produces higher errors
with respect to the two competitors.

Table 4. P-values returned by the Wilcoxon ran-sum test under the alternative hypoth-
esis that the median errors obtained from classical GSGP are smaller or equal than the
median errors of other methods considered, i.e. HYB-0.1, HYB-0.01, HeH-0.1, HeH-0.01

%F LD50 %PPB yac slump conc air

HYB-0.1 Train 0.01484 0.0 0.0 0.9512 0.0 0.0 1.0

Test 0.5978 0.4143 0.6716 0.9512 0.0 0.0 1.0

HYB-0.01 Train 0.5978 0.3820 0.0 0.8948 0.0 0.0 0.0

Test 0.0631 0.6862 0.2158 1.0 0.0 0.0 0.0

HeH-0.1 Train 0.9998 1.0 1.0 1.0 0.9998 0.9998 1.0

Test 0.8384 0.5445 0.0018 1.0 0.9989 0.9992 1.0

HeH-0.01 Train 1.0 0.9984 1.0 1.0 0.4805 0.9573 1.0

Test 1.0 0.6923 0.0074 1.0 0.4805 0.9652 1.0

Considering the %F dataset (Fig. 1(a)), it is possible to see that the best
results are achieved with the HYB-GSGP method in which the learning rate of
the Adam algorithm is 0.01. This performance improvement is achieved after
25 epochs and is maintained throughout all the epochs performed, as shown in
Fig. 3(a).

With respect to the LD50 problem (Fig. 1(b)), HYB-GSGP outperforms
standard GSGP. In this case, the performance improvement is achieved with
a learning rate of 0.1. However, on this benchmark, all the considered tech-
niques perform similarly, with the fitness values on the test set that do not differ
significantly.

Concerning the %PPB dataset (Fig. 1(c)), it is clear that all the models are
affected by overfitting. Hence, our expectation would suggest that lower error
on the training set should lead to higher error on the test set. However, the
HYB-GSGP method is able to perform better than GSGP, both in the training
and validation set. Thus, HYB-GSGP seems to be capable of (slightly) reducing
overfitting.

Taking into account the yac problem (Fig. 1(d)), the best results on the
test set are obtained with HYB-0.1 and, again, this method reaches such a

Combining Geometric Semantic GP 31

performance improvement in approximately 25 epochs. As shown in Fig. 3(d),
the test fitness of GSGP decreases linearly, while for HYB-0.1 fitness decreases
more rapidly, leading the hybrid method to a faster converge.

For the slump dataset (Fig. 1(e)), the combination of GSGP and Adam opti-
mizer is successful, as HYB-GSGP outperforms standard GSGP for both the
considered learning rate values. Moreover, also HeH-0.01 achieved better fitness
values with respect to GSGP. Also in this case, it is interesting to highlight
that the performance improvement provided by HYB-GSGP is achieved in a
few epochs (Fig. 3(e)). A similar behaviour can be observed for the conc dataset
(Fig. 1(f)): HYB-GSGP outperforms classical GSGP after a few epochs. Con-
cerning the air problem (Fig. 1(g)), the HYB-GSGP method with the Adam’s
learning rate of 0.01 leads to a significant improvement in terms of test fitness.
On the other hand, the other hybrid methods introduced in this work are char-
acterized by some instability.

Table 4 reports a statistical significance assessment of the result achieved. In
particular, Table 4 displays the p-values obtained from the Wilcoxon rank-sum
test for pairwise data comparison, with α = 0.05, applied under the alternative
hypothesis that the median errors resulting from the considered techniques are
smaller or equal than the median errors obtained with classical GSGP. The
statistical tests show that, on the test set, the HYB method, in particular HYB-
0.01, obtains better results than GSGP on three benchmark problems.

While there is no clear superiority of one method with respect to the others,
it is interesting to note, especially in Fig. 1, how the distribution of the results
obtained by the hybrid methods is usually as tight or tighter than the distribution
produced by GSGP, showing consistent results that are, in some cases, better
than GSGP. Thus, it appears that using half of the “evolutionary” iterations
coupled with local search via gradient-descent optimization can actually improve
the results.

6 Conclusions

This paper investigates the possibility of integrating a gradient-based optimiza-
tion method, the Adam algorithm, within a genetic programming system, GSGP.
The idea behind this work relies on the possibilities of exploiting and combin-
ing the advantages of these two methods to achieve faster convergence of the
evolutionary search process.

Two different ways of combining these methods have been investigated. In the
former, denoted as HYB-GSGP, a step of GSGP is alternated to a step of Adam.
In the latter, denoted as HeH-GSGP, first, all the GSGP steps are performed,
and, subsequently, the refinement with Adam is executed. The results achieved
with these two methods were compared against classical GSGP on eight real-
world complex benchmark problems belonging to different applicative domains.
The experiments were performed considering two different values of the learning
rate, which is the most relevant parameter of the Adam algorithm.

32 G. Pietropolli et al.

Experimental results show that, in each of the considered benchmarks, HYB-
GSGP outperforms classic GSGP in both training and test sets (with a statis-
tically significant difference on the test set on three problems). These results
corroborate our hypothesis: the combination of GSGP with the Adam optimizer
can improve the performance of GSGP. Moreover, HYB-GSGP converges to
good-quality solutions faster than classical GSGP. In more detail, HYB-GSGP
requires fewer epochs to converge, and the performance achieved by GSGP at the
end of the evolutionary process is worse than the one achieved by the proposed
hybrid method after a few fitness evaluations. On the contrary, the HeH-GSGP
does not outperform GSGP even if it generally ensures good quality results on
the test set. Thus, the results suggest that a combination of one step of GSGP
and one step of Adam is the best way to mix these techniques.

This work represents the first attempt to create a hybrid framework between
GSGP and a gradient descent-based optimizer. Considering the promising results
obtained in this first analysis, this work paves the way to multiple possible
future developments focused on improving the benefits provided by this kind of
combination.

References

1. Castelli, M., Manzoni, L.: GSGP-C++ 2.0: a geometric semantic genetic program-
ming framework. SoftwareX 10, 100313 (2019)

2. Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic
genetic programming. Genet. Program Evolvable Mach. 16(1), 73–81 (2015)

3. Castelli, M., Trujillo, L., Vanneschi, L.: Energy consumption forecasting using
semantic-based genetic programming with local search optimizer. Comput. Intell.
Neurosci. 2015 (2015)

4. Castelli, M., Trujillo, L., Vanneschi, L., Silva, S., Z-Flores, E., Legrand, P.: Geo-
metric semantic genetic programming with local search. In: Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation, pp. 999–1006
(2015)

5. Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic
computation. IEEE Trans. Evol. Comput. 15(5), 591–607 (2011)

6. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 1–33 (2013)

7. Z-Flores, E., Trujillo, L., Schütze, O., Legrand, P.: Evaluating the effects of local
search in genetic programming. In: Tantar, A.-A., et al. (eds.) EVOLVE - A Bridge
between Probability, Set Oriented Numerics, and Evolutionary Computation V.
AISC, vol. 288, pp. 213–228. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-07494-8 15

8. Eskridge, B.E., Hougen, D.F.: Imitating success: a memetic crossover operator
for genetic programming. In: Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No. 04TH8753), vol. 1, pp. 809–815. IEEE (2004)

9. Graff, M., Pena, R., Medina, A.: Wind speed forecasting using genetic program-
ming. In: 2013 IEEE Congress on Evolutionary Computation, pp. 408–415. IEEE
(2013)

10. Hofmann, H., Kafadar, K., Wickham, H.: Letter-value plots: boxplots for large
data. Technical report, had.co.nz (2011)

https://doi.org/10.1007/978-3-319-07494-8_15
https://doi.org/10.1007/978-3-319-07494-8_15

Combining Geometric Semantic GP 33

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)
12. Kojadinovic, I.: On the use of mutual information in data analysis: an overview.

In: Proceedings International Symposium Applied Stochastic Models and Data
Analysis, pp. 738–47 (2005)

13. Koza, J.R., Koza, J.R.: Genetic Programming: on the Programming of Computers
by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

14. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Proceed-
ings of the 14th Annual Conference on Genetic and Evolutionary Computation,
pp. 791–798 (2012)

15. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32937-1 3

16. Muñoz, L., Trujillo, L., Silva, S., Castelli, M., Vanneschi, L.: Evolving multidi-
mensional transformations for symbolic regression with M3GP. Memetic Comput.
11(2), 111–126 (2019)

17. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a
literature review. Swarm Evol. Comput. 2, 1–14 (2012)

18. Nguyen, P.T.H., Sudholt, D.: Memetic algorithms outperform evolutionary algo-
rithms in multimodal optimisation. Artif. Intell. 287, 103345 (2020)

19. Pietropolli, G.: GSGP-GD (2022). https://github.com/gpietrop/GSGP-GD
20. Smart, W., Zhang, M.: Continuously evolving programs in genetic programming

using gradient descent. Technical report, CS-TR-04-10, Computer Science, Victoria
University of Wellington, New Zealand (2004)

21. Smart, W., Zhang, M.: Continuously evolving programs in genetic programming
using gradient descent. In: Proceedings of The Second Asian-Pacific Workshop on
Genetic Programming, Cairns, Australia, p. 16pp (2004)

22. Topchy, A., Punch, W.F., et al.: Faster genetic programming based on local gradi-
ent search of numeric leaf values. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), vol. 155162. Morgan Kaufmann (2001)

23. Trujillo, L., et al.: Local search is underused in genetic programming. In: Riolo,
R., Worzel, B., Goldman, B., Tozier, B. (eds.) Genetic Programming Theory and
Practice XIV. GEC, pp. 119–137. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-97088-2 8

24. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geo-
metric semantic GP and its application to problems in pharmacokinetics. In: Kraw-
iec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş, Hu, B. (eds.) EuroGP 2013. LNCS,
vol. 7831, pp. 205–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37207-0 18

25. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic
programming. Genet. Program Evolvable Mach. 15(2), 195–214 (2014)

26. Wang, P., Tang, K., Tsang, E.P., Yao, X.: A memetic genetic programming with
decision tree-based local search for classification problems. In: 2011 IEEE Congress
of Evolutionary Computation (CEC), pp. 917–924. IEEE (2011)

27. Zhang, M., Smart, W.: Genetic programming with gradient descent search for mul-
ticlass object classification. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E.,
Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 399–408. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24650-3 38

https://doi.org/10.1007/978-3-642-32937-1_3
https://github.com/gpietrop/GSGP-GD
https://doi.org/10.1007/978-3-319-97088-2_8
https://doi.org/10.1007/978-3-319-97088-2_8
https://doi.org/10.1007/978-3-642-37207-0_18
https://doi.org/10.1007/978-3-642-37207-0_18
https://doi.org/10.1007/978-3-540-24650-3_38

One-Shot Learning of Ensembles
of Temporal Logic Formulas for Anomaly

Detection in Cyber-Physical Systems

Patrick Indri1,3, Alberto Bartoli2 , Eric Medvet2(B) , and Laura Nenzi1,2,3

1 Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
2 Department of Engineering and Architecture, University of Trieste, Trieste, Italy

emedvet@units.it
3 TU Wien Informatics, Vienna, Austria

Abstract. Cyber-Physical Systems (CPS) are prevalent in critical
infrastructures and a prime target for cyber-attacks. Multivariate time
series data generated by sensors and actuators of a CPS can be monitored
for detecting cyber-attacks that introduce anomalies in those data. We
use Signal Temporal Logic (STL) formulas to tightly describe the nor-
mal behavior of a CPS, identifying data instances that do not satisfy the
formulas as anomalies. We learn an ensemble of STL formulas based on
observed data, without any specific knowledge of the CPS being mon-
itored. We propose an algorithm based on Grammar-Guided Genetic
Programming (G3P) that learns the ensemble automatically in a single
evolutionary run. We test the effectiveness of our data-driven proposal
on two real-world datasets, finding that the proposed one-shot algorithm
provides good detection performance.

Keywords: Ensemble learning · Grammar Guided Genetic
Programming · Specification mining

1 Introduction

Cyber-Physical Systems (CPS) consist of large collections of mechanical compo-
nents controlled by software modules. Interactions between software modules and
physical world occur through the numerous sensors and actuators that compose
the CPS. Such systems are prevalent in critical infrastructures and, consequently,
have to be considered as a prime target for cyber-attacks. A cyber-attack usually
introduces anomalies in the multivariate time-series data generated by sensors
and actuators, i.e., deviations from the data generated when the CPS operates
normally. Defining which data instances have to be considered normal and which
ones anomalous is very complex, though, because such a classification requires
a significant amount of CPS-specific knowledge.

Signal Temporal Logic (STL) [10,16] is a formal language for describing prop-
erties of signals and, as such, can be used for specifying and monitoring the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 34–50, 2022.
https://doi.org/10.1007/978-3-031-02056-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_3&domain=pdf
http://orcid.org/0000-0003-4132-416X
http://orcid.org/0000-0001-5652-2113
http://orcid.org/0000-0003-2263-9342
https://doi.org/10.1007/978-3-031-02056-8_3

One-Shot STL Ensemble Learning for Anomaly Detection in CPSs 35

behavior of a CPS. In this work we address the problem of modeling the correct
behavior of a CPS by means of STL formulas learned automatically from data
collected while the CPS is working and not annotated in any way—CPS data is
only assumed to be attack-free and fault-free. Violations of the formulas can then
be used to identify anomalous behavior when it occurs. Our approach requires
no specific domain knowledge and is template-free, i.e., we learn both structure
and parameters of STL formulas.

We frame the learning task as an optimization problem, employing Grammar
Guided Genetic Programming (G3P) [28]. We propose a one-shot evolutionary
algorithm that learns an ensemble of STL formulas in a single evolution. Each
formula tightly models the available data based on a subset of the observed
signals—in a sense, each formula defines a CPS property discovered automat-
ically. The voting scheme used for the ensemble defines a data instance as an
anomaly when that instance violates an excessive amount of properties. We
apply our technique on two real-world case studies—the SWaT water treatment
plant [8] and the N-BaIoT set of Internet-of-Things (IoT) devices [20]—and
assess the learned formulas on testing data that include real attacks.

2 Related Work

Specification mining is the research field dealing with methods for determining
and formalizing the requirements of a target system based on its observed behav-
ior. An important line of research in specification mining for CPSs focuses on
STL, in particular, on finding STL formulas satisfied by the observed executions
as much as possible. Template-based methodologies [12,13] rely on a specific,
user-defined template formula, and limit the learning process to determining
good parameters for the template. Such methodologies usually assume that the
available data do not contain any anomalies and introduce a tightness metric to
favor STL formulas that satisfy the data as tightly as possible [12]. The more
challenging template-free approaches, on the other hand, learn both the struc-
ture and the parameters of the STL formulas. Unlike our proposal, template-free
approaches usually require training data with both normal and anomalous exam-
ples annotated as such [2,6,21]. Template-free STL mining with normal data only
was proposed in [24], that also exploited evolutionary computation (as [21] did):
differently than this work, the cited papers do not produce ensembles of STL
formulas, and are hence less suitable for CPSs where more properties should be
monitored at once for an effective anomaly detection.

Other kinds of artifacts, different from STL specification, have been used
for anomaly detection in CPSs. A powerful method on the SWaT testbed has
been proposed in [7], based on data-driven mining of invariants (i.e., relations
between data instances) expressed with an ad-hoc formalism. Anomaly detection
on the same testbed has been developed with Generative Adversarial Networks
(GAN) [14,15] and Deep Neural Networks (DNN) [9,11]. The anomaly criteria
embedded in the neural networks trained on the observed data, however, are
intrinsically much less interpretable than those resulting from an ensemble of
STL formulas.

36 P. Indri et al.

Ensemble learning has been proposed as way for learning models from data
that collectively capture several properties of the underlying system, hence
improving the models effectiveness. There are several cases in which ensemble
learning has been combined with evolutionary computation and, in particular,
with GP. The author of [27] proposed a simple variant of standard GP that
allows to learn an ensemble of formulas for symbolic regression in a single evolu-
tionary run, similarly to our case. Forms of ensemble learning with GP have been
proposed also as the learning of different formulas on different partitions of the
training data—sequential covering [23] and separate-and-conquer [3,19]. How-
ever, those approaches learn the formulas constituting the ensemble sequentially
and are thus intrinsically unable for a one-shot framework.

3 Background: Signal Temporal Logic

Syntax and Semantics. We assume that the system under analysis can be
described by a set of n real-valued variables V = {x1, . . . , xn}. We define a signal
(or trace or trajectory) w a function w : T → R

n, where T = R≥0 is the time
domain, and denote by xi(t) the value of the i-th variable of w at time t ∈ T. A
signal describes the evolution of the system over time.

The logical statements of STL consist of a combination of temporal opera-
tors, Boolean connectives, and propositions, according to the following syntax.
Formally, an STL formula ϕ is a string defined as:

ϕ := � | μ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ϕSIϕ | OIϕ | HIϕ (1)

where � is the true value, ¬, ∧, ∨, and → are the negation, conjunction, disjunc-
tion, and implication logical operators, μ : Rn → {�,⊥} is an atomic proposition
(an inequality of the form y(x1, . . . , xn) ≶ c, with y : Rn → R and c ∈ R), SI ,
OI , and HI are the Since, Once, and Historically temporal operators, and I ⊆ T

is an interval of the form I = [a, b], with 0 ≤ a < b and a, b ∈ T.
For a given signal w, the satisfaction of an STL formula ϕ with respect to the

signal at a time t can be evaluated according to either qualitative (Boolean) or
quantitative (real-valued) semantics [16]. The former states if a signal satisfies
a formula at time t; the latter outputs the degree of satisfaction defined in
a continuous range. Here, we report only quantitative semantics; the reader
may refer to [5,16,17] for more details. The quantitative satisfaction function ρ
returns a value ρ(ϕ,w, t) ∈ R ∪ {−∞,+∞} that quantifies the robustness (or
satisfaction) degree of an STL formula ϕ with respect to a signal w at time t,
and is defined inductively as:

One-Shot STL Ensemble Learning for Anomaly Detection in CPSs 37

ρ(�,w, t) = +∞

ρ(μ,w, t) =

{
y(x1(t), . . . , xn(t)) − c if μ ≡ y(x1(t), . . . , xn(t)) ≥ c

−y(x1(t), . . . , xn(t)) + c otherwise

ρ(¬ϕ,w, t) = −ρ(ϕ,w, t)
ρ(ϕ1 ∧ ϕ2,w, t) = min(ρ(ϕ1,w, t), ρ(ϕ2,w, t))
ρ(ϕ1 ∨ ϕ2,w, t) = ρ(¬(¬ϕ1 ∧ ¬ϕ2),w, t)

ρ(ϕ1 → ϕ2,w, t) = ρ(¬ϕ1 ∨ (ϕ1 ∧ ϕ2),w, t)

ρ(ϕ1S[a,b]ϕ2,w, t) = sup
t′∈t−[a,b]

(
min (ρ(ϕ2,w, t′)), inf

t′′∈[t′,t[
(ρ(ϕ1,w, t′′))

)

ρ(O[a,b]ϕ,w, t) = ρ(�S[a,b]ϕ,w, t)
ρ(H[a,b]ϕ,w, t) = ρ(¬O[a,b]¬ϕ,w, t)

The sign of the robustness ρ(ϕ,w, t) provides a link to Boolean semantics [4].
If ρ(ϕ,w, t) ≥ 0, then w satisfies ϕ at t, denoted by (w, t) |= ϕ; otherwise w
does not satisfies ϕ at t, denoted by (w, t) �|= ϕ.

Tightness. Given two signals w, w′ over the same time domain and a time t
in that domain, the correctness property holds, stating that if (w, t) |= ϕ and
‖w −w′‖∞ < ρ(ϕ,w, t) then (w′, t) |= ϕ, where ‖v‖∞ = maxi|vi| is the infinity
norm. Intuitively, the correctness property suggests that the value of ρ is an
upper bound for perturbations in a signal w for ensuring its satisfaction of ϕ.

Based on the correctness property, we define the tightness of a formula ϕ with
respect to a signal w as ‖ρ(ϕ,w, ·)‖∞ = maxt∈T|ρ(ϕ,w, t)|, where ρ(ϕ,w, ·) :
T → R∪{−∞,+∞} is the robustness signal that describes how ρ(ϕ,w, t) varies
over time. Moreover, we say that a formula ϕ tightly models a signal w if its
tightness is ‖ρ(ϕ,w, ·)‖∞ = 0. Intuitively, this means that ϕ is satisfied by the
signal w, but it is not satisfied by any other signal that is slightly different
than w.

Finite Length Signals. Signals related to real systems are defined on a limited
time domain, i.e., T = [0, tmax] instead of T = R≥0. It follows that it is not
possible to compute the robustness for certain STL formulas on signals that are
defined over a too short time domain. For instance, the operator H[0,b] cannot
be evaluated on signals defined on [0, tmax] with tmax < b.

For formalizing this requirement, we introduce the necessary length [16] of a
formula. The necessary length ‖ϕ‖ ∈ R≥0 of a formula ϕ, is defined inductively
as:

38 P. Indri et al.

‖�‖ = 0 ‖ϕ1 → ϕ2‖ = max (‖ϕ1‖, ‖ϕ2‖)
‖μ‖ = 0 ‖ϕ1S[a,b]ϕ2‖ = max (‖ϕ1‖, ‖ϕ2‖) + b

‖¬ϕ‖ = ‖ϕ‖ ‖O[a,b]ϕ‖ = ‖ϕ‖ + b

‖ϕ1 ∨ ϕ2‖ = max (‖ϕ1‖, ‖ϕ2‖) ‖H[a,b]ϕ‖ = ‖ϕ‖ + b

‖ϕ1 ∧ ϕ2‖ = max (‖ϕ1‖, ‖ϕ2‖)

Given a signal w, we denote by |w| = tmax the signal length. The robustness
ρ(ϕ,w, t) of a formula ϕ can be evaluated only for ‖ϕ‖ ≤ t ≤ |w|. As a con-
sequence, if |w| < ‖ϕ‖, the robustness cannot be computed for any t and the
degree of satisfaction is undecidable.

In an ideal experimental setting, |w| � ‖ϕ‖ holds and no indecision arises;
this condition is satisfied by all our experimental settings.

On Discrete Signals. In many practical cases, as, e.g., for CPSs, the signal
describing the evolution of the system is a multivariate time series generated
by querying, at regular intervals, the sensors and actuators that constitute the
system.

Particularly, we assume that the system is observed every Δt seconds, and
that interval bounds are expressed in units of Δt. It follows that the time domain
is T ⊆ N and that the length of a time interval corresponds to its cardinality—
e.g., for I = [1, 4], |I|= 4. Accordingly, the length of a signal is redefined as the
cardinality of its time domain.

The necessary length for formulas remains as above, with the exceptions of
‖�‖ and ‖μ‖, that are defined as ‖�‖ = ‖μ‖ = 1.

4 Problem Statement

Let wtrain be a signal describing the evolution of a discrete-time system that
operates normally—i.e., as intended, in absence of anomalies—in the time inter-
val Itrain = [t0, t1]. Let wtest be a signal describing the behavior of the same
system in a later time interval Itest = [t2, t3], with t1 < t2, for which it is not
known whether the system is operating normally or not normally. We are inter-
ested in finding a way for generating, based on wtrain, a collection Φ of one or
more STL formulas that can be used for finding anomalies in wtest, i.e., deter-
mining the (possibly empty) subset I ′ of Itest containing all and only the time
instants in which the system is not operating normally.

We assume that, given a collection Φ = {ϕ1, ϕ2, . . . } of STL formulas and
a threshold τ ∈ [0, 1], the subset of time instants in which the system is not
operating normally is obtained as:

Ianomalous =
{

t ∈ Itest :
1

|Φ| |{ϕ ∈ Φ : (wtest, t) �|= ϕ}| > τ

}

Intuitively, at each time instant t, we consider the proportion of formulas not
satisfied by wtest at t and compare it against τ : if the proportion is greater

One-Shot STL Ensemble Learning for Anomaly Detection in CPSs 39

than the threshold, we say that the system is not operating normally at t. The
normality of the behavior at t is hence based on a voting scheme based on Φ
formulas. It should be noted that, due to the constraints related to the necessary
length of formulas, an initial part of wtest cannot be evaluated.

We remark that we are stating the problem as an anomaly detection problem,
no observations are present in wtrain that describe how the system operates
not normally; examples of anomalies are hence not available for generating Φ.
Moreover, we remark that we implicitly assume that, when anomalies occur, the
system output, captured by wtest, differs from the output of the system under
normal operation. If this is not the case, detection of anomalous behavior is not
possible.

5 Methodology

To address the challenging task of detecting anomalies, learning from normal
behavior only, we propose an evolutionary optimization approach based on two
key ideas. First, we learn ensembles of STL formulas, instead of single formulas:
the aggregation of the predictions of many low-bias, high variance models can
favor generalization [27]. Second, we look for STL formulas that tightly model the
training signal wtrain, instead of just modeling it: since we have only observations
of the system operating normally, we are hence assuming that small deviations
from the observed behavior are anomalous. The combination of these two key
ideas and the voting scheme employed when looking for anomalies corresponds
to learning an ensemble of STL formulas, each one tightly describing a specific
property of the system, and to saying that an anomaly occurs when the behavior
of the system is not consistent with at least a given proportion of these properties.

We use a grammar-based version of Genetic Programming (Grammar-Guided
GP, G3P) for performing the search in the space of (ensemble of) STL formu-
las. G3P is naturally suited to our scenario, since the language of formulas is
defined by means of a context-free grammar (see Eq. (1)). Moreover, GP has
been recently shown to be naturally suited for learning ensembles of models in
an efficient and effective way [27]. In fact, we propose a Complex Simultane-
ous Ensemble Learning Algorithm (CESL-Alg) [27], that is, an algorithm that
obtains an ensemble of estimators in a single GP evolution, where we exploit
the fact that GP itself is a population-based technique and naturally deals with
ensembles of individuals. When doing our evolutionary search each individual is
a single STL formula, but the overall outcome is an ensemble and the ensemble
is learned in a single evolution—i.e., we do one-shot learning of ensembles. In
the next sections, we describe the key components of our approach.

Solution Representation. During the evolutionary search, each individual is
a string of the language defined by the context-free grammar of Fig. 1. The gram-
mar encodes numbers with a precision of two decimals in the [0.00, 0.99] range
and interval bounds with a single digit precision in the [0, 9] range. Intervals are
interpreted as I = [d1, d1 + max(1, d2)]. The grammar also defines the temporal

40 P. Indri et al.

operators S[a,b], O[a,b], and H[a,b], and the logical operators ∧, ∨, ¬, and →. For
simplicity, and for the kind of problems we deal with in this study, the grammar
specify propositions that are in the form xi ≶ c.

The grammar of Fig. 1 poses no explicit limit on the complexity of a formula,
allowing for formulas with very large necessary length resulting from the nest-
ing of many temporal operators. However, during the evolution, we enforce a
maximum depth to the derivation trees of the formulas, which limits the nest-
ing. Moreover, the range of temporal operators is limited to [0, 9]. Other means
could be used to impact on the complexity of evolved formulas as, e.g., using a
different grammar for the same language with repeated production rules [22]—as
shown in [18], this could result in better evolvability.

Fig. 1. Our context-free grammar for a system with variables x1, . . . , xn.

Fitness Function. We aim at defining a fitness function that measures, for a
given signal, (i) the tightness of a formula and (ii) the overall length of time
intervals when the formula is not satisfied. For both, the lower, the better. Thus,
we measure the fitness f(ϕ,w) of a candidate STL formula on a signal w as:

f(ϕ,w) =
1

|w| − ‖ϕ‖
∑

‖ϕ‖≤t≤|w |

{
ρ(ϕ,w, t) if ρ(ϕ,w, t) ≥ 0
k if ρ(ϕ,w, t) < 0

(2)

where k ∈ R>0 is a parameter corresponding to a penalty for instants when the
signal does not satisfy the formula.

The proposed function reaches its minimum (zero) for formulas that tightly
model the signal w, i.e., those having a robustness always equals to 0. Addition-
ally, the fitness function favors formulas with positive robustness: by means of
the parameter k, formulas with robustness signal that assumes many negative
values will be penalized. A higher value of k will penalize formulas with nega-
tive robustness more. This, in turn, favors solutions that better agree with the
training data, leading to fewer false positives: since we learn STL formulas from

One-Shot STL Ensemble Learning for Anomaly Detection in CPSs 41

normal data only and we consider instants with negative robustness as anoma-
lous, the parameter k can be interpreted as a penalty for false positives on the
training data, on the assumption that a positive instant is an anomaly.

One-Shot Evolutionary Algorithm. Inspired by [27], we propose a variant
of G3P that produces an ensemble of STL formulas in a single evolutionary run.

A key requirement for ensemble learning to be effective is that models of
the ensemble should be independent. While G3P, being a population-based opti-
mization algorithm, can very efficiently learn many models at the same time,
it might fall short in ensuring their independency, due to the lack of diversity
and premature convergence that frequently afflict GP [25]. In our proposal, we
attempt to minimize the risk of premature convergence as detailed below.

Our proposal employs iteratively a form of extinction to remove individuals
from the population once it has converged to a solution, substituting them with
random immigrants, randomly generated individuals that introduce fresh genetic
material and favor diversity. Particularly, at each iteration we perform three
phases.

– Population update. For each variable defined by the grammar, a group includ-
ing all the individuals (STL formulas) that contain said variable is built. Indi-
viduals with multiple distinct variables will thus belong to multiple groups.
The best individual of each group is copied into the next generation, as a form
of elitism. The offspring for the next generation is completed by reproducing
individuals from the current generation—including elites and with no con-
sideration for grouping—using tournament selection with enforced-diversity
(i.e., genetic operators are applied on parents until the child is not present in
the population) and a non-overlapping generational model.
Since all groups propagate their best individual, the population update pro-
motes the presence of all variables at each iteration, avoiding the utter pre-
dominance of a small percentage of variables that may appear in fit individ-
uals.

– Solutions update. If some individuals solve the problem (e.g., they have f = 0),
consider the groups these solutions belong to. All the individuals belonging
to these groups are removed from the population (extinction) and added to
the solutions ensemble. The population is then refilled with newly generated
individuals (random immigrants).
The solution update exploits individuals homogenisation to find near-optimal
solutions: once a solution is found, individuals belonging to its groups are
expected to have good—although sub-optimal—performance whilst retain-
ing some diversity. They can thus be added to the solution ensemble and be
replaced with new, randomly generated individuals, to encourage exploration
of other areas of the search space.
Usually, not every individual of the population has variables in common
with individuals that currently solve the problem, and the population is not
entirely replaced with new individuals (which would essentially be equivalent

42 P. Indri et al.

to restarting the evolutionary process). This is especially true if many vari-
ables are involved. A computational advantage over repeated standard G3P
evolutions is therefore expected.

– Stop condition. When ntarget distinct variables have been solved (i.e., ntarget

distinct variables appear in formulas that solve the problem), the stop condi-
tion is met.
The stop condition can be used to explore a greater amount of the search space
and act against premature convergence. It controls the trade-off between per-
formance and efficiency.

We remark that in the context of anomaly detection for CPSs, it is not “hard”
to find a formula with a perfect fitness: a trivial case is the one of a proposition
xi ≥ c for a signal whose xi(t) = c for any t. On one hand, this makes the solution
update phase actually triggerable. On the other hand, it makes the ability of the
ensemble to discover anomalies dependent on the number of variables occurring
in the formulas: for this reason, we use ntarget as stopping criterion. Moreover,
since no pruning is performed on the ensemble, the ensemble size is (indirectly)
controlled by ntarget.

Algorithm 1 presents our one-shot G3P algorithm in detail. The population
update step (lines 6–14) builds the variable groups, propagates the best individ-
ual for each group and fills the population of npop individuals. In line 12, a single
child individual is generated by the selectAndReproduceWithEnfDiv procedure,
using tournament selection with enforced-diversity. In the solutions update step
(lines 15–25), the variables of the individuals that satisfies the isSolution condi-
tion are considered and added to the set of solved variables Vsolved; all individuals
that contain at least one of these variables are extracted from the population and
added to the solutions ensemble S. If necessary, the population is refilled with
newly generated individuals (lines 26–28). The stop condition (line 5) counts
the number of distinct variables in Vsolved and, stops the iterative algorithm if
Vsolved ≥ ntarget. The algorithm returns the ensemble of solutions S.

6 Experimental Evaluation

6.1 Datasets and Preprocessing

We considered two real-world case studies to evaluate our proposal, to investigate
its performance in the anomaly detection task and its efficiency in learning the
ensemble of STL formulas.

The Secure Water Treatment (SWaT) [8] testbed is a scaled down water treat-
ment plant for research in the area of cyber security. Data log is collected every
Δt = 1 s for 495 000 s under normal operation (|wtrain| = 495 000) and for
449 920 s with attack scenarios (|wtest| = 449 920). The dataset consists of 24 sen-
sors and 26 actuators readings, for a total of 50 attributes. Sensor readings are
numerical variables, whilst actuator readings are ternary non-ordinal variables.
In wtest the dataset contains 36 attacks: attacks can affect a single component of
the testbed, or span across different components and different stages of the water

One-Shot STL Ensemble Learning for Anomaly Detection in CPSs 43

treatment procedure. A detailed description of the attacks can be found in [8].
Actuators assume the binary values on/off, and a third value corresponding to a
short-lasting transition state [26]; we convert actuator variables to binary vari-
ables, replacing the transition state with the state towards which the transition is
headed.

N-BaIoT is a suite of nine datasets originally proposed in [20] obtained
by monitoring nine commercial IoT devices, operating both under normal and
anomalous conditions. Benign data and attack data under several attack condi-
tions is collected; particularly, the devices are infected with Mirai and BASH-
LITE, two well known IoT malware that can be used to perform botnet attacks.
Botnet attacks aim at the creation of a network of infected devices, to perform
distributed attacks. The attacks are described in greater detail in [20]. Sepa-
rately for each device, the datasets collect 115 traffic statistics every, extracted

1 function evolve():
2 P ← initialise(npop)
3 S ← ∅
4 Vsolved = ∅
5 while countDistinct(Vsolved) < ntarget do
6 P ′ ← ∅
7 {P1, . . . , Pn} ← buildGroups(P)
8 foreach i ∈ {1, . . . , n} do
9 P ′ ← P ′ ∪ best(Pi)

10 end
11 while |P ′| < npop do
12 P ′ ← P ′ ∪ selectAndReproduceWithEnfDiv(P)
13 end
14 P ← P ′

15 foreach p ∈ P do
16 if isSolution(p) then
17 {v1, . . . , vk} ← getVariables(p)
18 Vsolved = Vsolved ∪ {v1, . . . , vk}
19 foreach v ∈ {v1, . . . , vk} do
20 S′ ← getIndividualsWithVariable(P, v)
21 S ← S ∪ S′

22 P ← P \ S′

23 end

24 end

25 end
26 if |P | < npop then
27 P ← P ∪ initialise(npop − |P |)
28 end

29 end
30 return S;

31 end
Algorithm 1: One-shot algorithm.

44 P. Indri et al.

from raw network traffic, Δt = 1 s; all attributes are numerical. Considering
all datasets, a total of 555 937 benign and 7 329 517 malign observations is col-
lected. Similarly to [20], we used 2/3 of the benign observations as the training
set, and concatenated the remaining benign observations and the attack obser-
vations to build the test set. Considering median values across the nine datasets,
|wtrain| = 33 032 and |wtest| = 844 327.

In accordance with the grammar of Fig. 1, we rescaled numerical features to
[0.00, 0.99], using min-max normalization, and converted binary states {off, on} to
numerical variables {0.00, 0.99}. It should be noted that we perform rescaling on
the training set only. Consequently, test observations can assume values outside
[0.00, 0.99] on numerical variables. This is consistent with the proposal of modeling
normal behavior, where values outside the normal ranges may suggest anomalous
behavior. Additionally, this choice makes online anomaly detection feasible, since
the rescaling of a test observation does not require the entirety of the test set.

6.2 Procedure and Evaluation Metrics

We investigated both the efficiency of our one-shot G3P and the effectiveness
in detecting anomalies of the evolved STL. In particular, we were interested in
verifying that (i) our one-shot G3P learns STL ensembles faster than a set of
executions of plain G3P and (ii) the evolved ensembles are better in detecting
anomalies than single STL formulas.

For putting the results of one-shot G3P in perspective, we considered a base-
line consisting in a serial execution of 30 runs, with different random seeds, of a
plain version of G3P with the same representation, genetic operators, and fitness
function (along with other key parameters) of our one-shot G3P. By taking the
ensemble composed of the best individuals (all those with perfect fitness) at the
last generation of n of the 30 runs, we were able to compare our one-shot G3P
against a baseline that evolves few STL formulas (with n = 1) or with a G3P-
based ensemble learning technique that is not one-shot (with n > 1). In other
words, in this baseline n allows to control the efficiency-effectiveness trade-off, on
the assumption that the larger the ensemble, the better the detection effectiveness
and the longer the learning. We call this baseline multi-run G3P.

In our one-shot G3P, we used ntarget = 20, Eq. (2) with c = 1 as the fitness
function, and f = 0 as the isSolution() condition. In both our proposal and
the baseline we used the ramped half-and-half initialization with derivation trees
depth in [3, 20], a population size of 200 individuals, a maximum tree depth of
20 when applying genetic operators, a tournament size of 5. We used standard
G3P mutation and crossover for producing, respectively, 20% and 80% of the
offspring. When enforcing diversity, we did a maximum of 100 applications of
the genetic operators.

Concerning the thresholds τ , we set it in such a way that 20 and 1 not
satisfied formulas, respectively for SWaT and N-BaIoT, suffice for raising an
anomaly. We set these values after exploratory analysis.

One-Shot STL Ensemble Learning for Anomaly Detection in CPSs 45

We implemented1 our proposal in the Java programming language, building
on the tool of [24] which in turns employ the STL monitoring tool Moonlight [1].

For both one-shot G3P and the baseline, we used the trailing 20% of wtrain

as a validation signal. We computed the fitness on the leading 80% and, at the
end of the evolution, we discarded STL formulas that resulted in FPR > 0 on
the validation set.

Effectiveness and Efficiency Metrics. We evaluated the anomaly detection
effectiveness by means of the True Positive Rate (TPR), the False Positive Rate
(FPR), and the Area Under the Curve (AUC), obtained by varying τ at pre-
diction time. We adopt the convention that positive denotes anomalous instants
and negative denotes normal (i.e., not anomalous) instants.

Concerning learning efficiency, since in G3P the largest proportion of the
computational effort lies in determining the fitness of a solution, we use the
number of fitness evaluations fevals to measure efficiency.

6.3 Results

Table 1 presents a comparison of the multi-run G3P and our one-shot G3P over
the 10 problems. For the multi-run approach, a single ensemble was produced
out of 30 runs for each dataset. For the one-shot algorithm, instead, median
values across 10 runs are reported.

The one-shot approach compares favorably with the multi-run one, reaching
higher AUC in 6 out of 10 datasets. The one-shot algorithm performs markedly
better in N-BaIoT-4 and N-BaIoT-8, where the multi-run baseline ensemble
detects no anomaly. Moreover, the one-shot G3P requires significantly fewer
fevals, resulting in a substantial efficiency improvement. It should however be
noted that the one-shot G3P results in larger ensembles: on SWaT, the median
ensemble size is 934 with one-shot and 82 with multi-run—for both, no ensemble
pruning was performed.

If we consider an attack scenario as detected when at least one instant during
anomalous behavior is labeled as anomalous, then the one-shot approach detects
a median of 9 on 36 attacks on SWaT and all attacks on N-BaIoT.

Figure 2 presents an alternative comparison between the baseline and the
one-shot approach. The results are displayed in terms of fevals vs. AUC, with
the optimum being located in the top left corner (i.e., few fitness evaluations—
denoting high efficiency—and high AUC). The results show that reducing the
number of runs for building ensembles in multi-run G3P monotonically increases
efficiency, but reduces effectiveness as well. Single run ensembles learned with
G3P have a tendency to produce solutions with AUC ≈ 0.5 which, in this case,
usually denotes STL solutions that are always satisfied by the test set and that
identify no anomalies. This, in retrospective, motivates the ensemble learning

1 The code is publicly available at https://github.com/pindri/OneShot-ensemble-
learning-anomaly-detection-MTS.

https://github.com/pindri/OneShot-ensemble-learning-anomaly-detection-MTS
https://github.com/pindri/OneShot-ensemble-learning-anomaly-detection-MTS

46 P. Indri et al.

Table 1. Comparison of multi-run and one-shot G3P. For each dataset, the highest
AUC and the lowest fevals between the two approaches are highlighted.

Multi-run G3P (30 runs) One-shot G3P (ntarget = 20)

Dataset TPR FPR AUC fevals TPR FPR AUC fevals

SWaT 0.6648 0.0005 0.8321 43243 0.6571 0.0007 0.8401 11767

N-BaIoT-1 0.9981 0.0000 0.9990 47152 0.8952 0.0011 0.9475 3297

N-BaIoT-2 0.9996 0.0016 0.9989 355696 1.0000 0.0422 0.9998 5732

N-BaIoT-3 0.9949 0.0000 0.9974 51979 0.9596 0.0076 0.9739 5965

N-BaIoT-4 0.0000 0.0002 0.4998 298158 0.9272 0.0025 0.9632 35811

N-BaIoT-5 0.6152 0.0012 0.7681 156033 0.7492 0.0010 0.8742 7898

N-BaIoT-6 0.7192 0.0011 0.8594 371358 0.6807 0.0023 0.8387 12235

N-BaIoT-7 0.7070 0.0000 0.8534 269708 0.6896 0.0009 0.9072 16736

N-BaIoT-8 0.0000 0.0000 0.5000 1015286 0.4166 0.0027 0.7050 88921

N-BaIoT-9 0.7812 0.0005 0.8905 260259 0.7440 0.0011 0.8702 13696

approach, since the results show that a single standard G3P run does not reliably
produce useful formulas.

0 10 20 30 40
0.5
0.6
0.7
0.8
0.9
1

fevals [×1000]

A
U
C

SWaT

0 50 100 150
fevals [×1000]

N-BaIoT-5

1-run ens.
10-run ens.
20-run ens.
30-run ens.
One-shot ens.
Medians

Fig. 2. Comparison of multi-run and one-shot ensembles, efficiency (fevals) vs. perfor-
mance (AUC).

Formulas Complexity. Figure 3 considers all the STL formulas generated with
either the standard G3P approach or our one-shot algorithm. Limiting the analy-
sis to SWaT, we investigate the complexity of the formulas—in isolation, regard-
less of the ensemble they belong to—in terms of the number of distinct variables,
and the necessary length. The latter can be used as a measure of temporal com-
plexity.

One-Shot STL Ensemble Learning for Anomaly Detection in CPSs 47

0 10 20 30
0

20
40
60
80

100

N. of variables

ST
L
fo
rm

ul
as

(%
) Standard G3P

0 10 20 30
N. of variables

One-shot G3P

0 50 100 150
Necessary length

Standard G3P

0 50 100 150
Necessary length

One-shot G3P

Fig. 3. Complexity of STL formulas obtained with standard G3P and one-shot algo-
rithm on SWaT, in terms of number of variables and necessary length.

With regards to the number of variables, the standard G3P runs produce
significantly simpler formulas, with more than 60% of the formulas containing a
single variable. The one-shot algorithm, instead, produces a larger percentage of
solutions with more variables, with some STL formulas containing more than 20
variables. With regards to the necessary length, the one-shot algorithm produces,
once more, formulas that are significantly more complex. In fact, approximately
35% of standard G3P formulas have unitary necessary length: this indicates that
they do not contain temporal operators, but rather consist of (combinations of)
atomic propositions.

For the standard G3P approach, the large percentage of formulas with small
number of variables and small necessary length suggests that premature conver-
gence may indeed be a problem: the evolutions typically converge to temporally
simple formulas that consider only few variables. Each of these solutions per-
fectly model the training set in terms of fitness, but is not able to capture actual
anomalous behaviors, since it considers only few aspects of the CPS.

Comparison with Literature. We can perform a qualitative2 comparison of
our results and the existing literature. [14] and [15] perform anomaly detection
on the SWaT testbed using Generative Adversarial Networks (GAN), whilst [11]
uses Deep Neural Networks (DNN). These approaches reach comparable TPR
but, when specified, suffer from higher FPR: TPR = 0.6464 and FPR = 0.0046
for [14], TPR = 0.6734 and precision = 0.9897 for [15], and TPR = 0.6785
and precision = 0.9830 for [11]. [7], instead, performs significantly better than
our proposal, reaching TPR = 0.7087 with comparable FPR, using invariant-
based anomaly detection. The N-BaIoT dataset is used in [20] employing Deep
Autoencoders, where all anomalies are detected with low FPR.

Thus, our proposal is competitive on SWaT, whilst it compares unfavourably
on N-BaIoT, where it reaches a perfect detection rate only on N-BaIoT-2. How-
ever, as mentioned, on N-BaIoT at least one anomalous instant for each attack
is correctly identified, and all attacks might thus be considered as identified.

2 For the SWaT testbed, different versions of the dataset exist. Thus, no direct quan-
titative comparison can be made.

48 P. Indri et al.

With regards to interpretability and explainability, however, our proposal
is potentially better than GANs, DNNs, and Deep Autoencoders. Crucially,
approaches based Neural Networks result in black-box models, where an in-depth
investigation on the detected anomalies is usually impossible. Our approach is,
to a degree, both interpretable and explainable, since the STL expressions that
cause the detection of an anomaly could be singled out and investigated, and are
human-readable. These considerations suggest that, in cases where our proposal
is bested by more performing approaches, it could be used as a complementary
tool, offering insights on the detection process.

7 Conclusions

We proposed a one-shot GP algorithm for ensemble learning, evaluating its per-
formance on an anomaly detection task. We compared our proposal with ensem-
bles obtained by repeated evolutions of a standard GP implementation. We deem
our results satisfactory and we can summarize the merits of our proposal as fol-
lows: (i) it obtains an ensemble of STL formulas more efficiently than repeated
independent GP runs, whilst reaching comparable detection performance, (ii) it
competes with some of the results available in literature and, when surpassed
by more performing but less interpretable methods, can still be useful to gain
insights on the detection procedure.

In the future, this work could possibly be extended by an analysis of the role
of ntarget in the trade-off between performance and efficiency, and, additionally,
by the implementation of techniques to reduce the size of the one-shot ensembles,
to improve explainability and interpretability.

References

1. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L., Silvetti, S.: MoonLight: a
lightweight tool for monitoring spatio-temporal properties. In: Deshmukh, J.,
Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 417–428. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-60508-7 23

2. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of
temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS,
vol. 8711, pp. 23–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10512-3 3

3. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Learning text patterns using
separate-and-conquer genetic programming. In: Machado, P., et al. (eds.) EuroGP
2015. LNCS, vol. 9025, pp. 16–27. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16501-1 2

4. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Form. Methods Syst. Des. 51(1), 5–30
(2017). https://doi.org/10.1007/s10703-017-0286-7

5. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

https://doi.org/10.1007/978-3-030-60508-7_23
https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1007/978-3-319-16501-1_2
https://doi.org/10.1007/978-3-319-16501-1_2
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-642-39799-8_19

One-Shot STL Ensemble Learning for Anomaly Detection in CPSs 49

6. Ergurtuna, M., Gol, E.A.: An efficient formula synthesis method with past signal
temporal logic. IFAC-PapersOnLine 52(11), 43–48 (2019)

7. Feng, C., Palleti, V.R., Mathur, A., Chana, D.: A systematic framework to generate
invariants for anomaly detection in industrial control systems. In: NDSS (2019)

8. Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in
the design of secure water treatment systems. In: Havarneanu, G., Setola, R., Nas-
sopoulos, H., Wolthusen, S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 88–99.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71368-7 8

9. Goh, J., Adepu, S., Tan, M., Lee, Z.S.: Anomaly detection in cyber physical systems
using recurrent neural networks. In: 2017 IEEE 18th International Symposium on
High Assurance Systems Engineering (HASE), pp. 140–145. IEEE (2017)

10. Wayne, H.: Temporal logic. In: Practical TLA+, pp. 97–110. Apress, Berkeley
(2018). https://doi.org/10.1007/978-1-4842-3829-5 6

11. Inoue, J., Yamagata, Y., Chen, Y., Poskitt, C.M., Sun, J.: Anomaly detection for
a water treatment system using unsupervised machine learning. In: 2017 IEEE
International Conference on Data Mining Workshops (ICDMW), pp. 1058–1065.
IEEE (2017)

12. Jha, S., Tiwari, A., Seshia, S.A., Sahai, T., Shankar, N.: TeLEx: learning signal
temporal logic from positive examples using tightness metric. Form. Methods Syst.
Des. 54(3), 364–387 (2019). https://doi.org/10.1007/s10703-019-00332-1

13. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
34(11), 1704–1717 (2015)

14. Li, D., Chen, D., Goh, J., Ng, S.K.: Anomaly detection with generative adversarial
networks for multivariate time series. arXiv preprint arXiv:1809.04758 (2018)

15. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate
anomaly detection for time series data with generative adversarial networks. In:
Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol.
11730, pp. 703–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30490-4 56

16. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

17. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits.
Int. J. Softw. Tools Technol. Transfer 15(3), 247–268 (2013)

18. Manzoni, L., Bartoli, A., Castelli, M., Gonçalves, I., Medvet, E.: Specializing
context-free grammars with a (1+1)-EA. IEEE Trans. Evol. Comput. 24(5), 960–
973 (2020)

19. Medvet, E., Bartoli, A., Carminati, B., Ferrari, E.: Evolutionary inference of
attribute-based access control policies. In: Gaspar-Cunha, A., Henggeler Antunes,
C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 351–365. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15934-8 24

20. Meidan, Y., et al.: N-BaIoT-network-based detection of IoT botnet attacks using
deep autoencoders. IEEE Pervasive Comput. 17(3), 12–22 (2018)

21. Nenzi, L., Silvetti, S., Bartocci, E., Bortolussi, L.: A robust genetic algorithm
for learning temporal specifications from data. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 323–338. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2 20

https://doi.org/10.1007/978-3-319-71368-7_8
https://doi.org/10.1007/978-1-4842-3829-5_6
https://doi.org/10.1007/s10703-019-00332-1
http://arxiv.org/abs/1809.04758
https://doi.org/10.1007/978-3-030-30490-4_56
https://doi.org/10.1007/978-3-030-30490-4_56
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-15934-8_24
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-319-99154-2_20

50 P. Indri et al.

22. Nicolau, M.: Understanding grammatical evolution: initialisation. Genet. Program
Evolvable Mach. 18(4), 467–507 (2017). https://doi.org/10.1007/s10710-017-9309-
9

23. Pappa, G.L., Freitas, A.A.: Evolving rule induction algorithms with multi-objective
grammar-based genetic programming. Knowl. Inf. Syst. 19(3), 283–309 (2009)

24. Pigozzi, F., Medvet, E., Nenzi, L.: Mining road traffic rules with signal temporal
logic and grammar-based genetic programming. Appl. Sci. 11(22), 10573 (2021)

25. Squillero, G., Tonda, A.: Divergence of character and premature convergence: a
survey of methodologies for promoting diversity in evolutionary optimization. Inf.
Sci. 329, 782–799 (2016)

26. Umer, M.A., Mathur, A., Junejo, K.N., Adepu, S.: Generating invariants using
design and data-centric approaches for distributed attack detection. Int. J. Crit.
Infrastruct. Prot. 28, 100341 (2020)

27. Virgolin, M.: Genetic programming is naturally suited to evolve bagging ensembles.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
830–839 (2021)

28. Whigham, P.A., et al.: Grammatically-based genetic programming. In: Proceedings
of the Workshop on Genetic Programming: From Theory to Real-World Applica-
tions, vol. 16, pp. 33–41. Citeseer (1995)

https://doi.org/10.1007/s10710-017-9309-9
https://doi.org/10.1007/s10710-017-9309-9

Multi-objective Genetic Programming
with the Adaptive Weighted Splines

Representation for Symbolic Regression

Christian Raymond , Qi Chen(B) , Bing Xue , and Mengjie Zhang

School of Engineering and Computer Science, Victoria University of Wellington,
Wellington, New Zealand

{Christian.Raymond,Qi.Chen,Bing.Xue,Mengjie.Zhang}@ecs.vuw.ac.nz

Abstract. Genetic Programming (GP) based symbolic regression is
prone to generating complex models which often overfit the training data
and generalise poorly onto unseen data. To address this issue, many pieces
of research have been devoted to controlling the model complexity of GP.
One recent work aims to control model complexity using a new represen-
tation called Adaptive Weighted Splines. With its semi-structured char-
acteristic, the Adaptive Weighted Splines representation can control the
model complexity explicitly, which was demonstrated to be significantly
better than its tree-based counterpart at generalising to unseen data. This
work seeks to significantly extend the previous work by proposing a multi-
objective GP algorithm with the Adaptive Weighted Splines representa-
tion, which utilises parsimony pressure to further control the model com-
plexity, as well as improve the interpretability of the learnt models. Exper-
imental results show that, compared with single-objective GP with the
Adaptive Weighted Splines and multi-objective tree-based GP with par-
simony pressure, the new multi-objective GP method generally obtains
superior fronts and produces better generalising models. These models are
also significantly smaller and more interpretable.

Keywords: Genetic Programming · Symbolic Regression ·
Multi-objective Optimization · Generalisation

1 Introduction

As a regression technique, Genetic Programming (GP) for symbolic regression
(GPSR) [14] aims to learn a mathematical function that best represents the
underlying relationship between the given input features X and an output tar-
get y, where X and y are drawn on the assumption of a joint probability dis-
tribution P (X, y). Different from traditional and numerical regression methods
[15], GPSR has the capability to learn both the model structure and the model
parameters simultaneously with few assumptions on the model structure or the
data distribution. Due to the symbolic nature of its solutions and the flexible
representation ability, GPSR is typically good at learning complex underlying

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 51–67, 2022.
https://doi.org/10.1007/978-3-031-02056-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_4&domain=pdf
http://orcid.org/0000-0002-0963-9367
http://orcid.org/0000-0001-9367-4757
http://orcid.org/0000-0002-7790-1216
http://orcid.org/0000-0003-4463-9538
https://doi.org/10.1007/978-3-031-02056-8_4

52 C. Raymond et al.

relationship in the data. However, it also has the downside of leading to over-
complex models which not only bring unnecessary computational costs but also
have poor interpretability. Moreover, these over-complex models often overfit the
training data thus have poor generalisation ability.

The model evaluation measure is also another component in GPSR which often
leads to over-complex models. The GP individual in the population that best min-
imises/maximises an objective function, i.e. the fitness function, is selected as the
final model. Traditionally selecting individuals is guided through the Empirical
Risk Minimisation (ERM) principle, giving propagation rights to individuals that
have the lowest training error. However, chasing a lower training error without suf-
ficient regularization often leads GPSR to generate over-complex models which
learn spurious patterns from the training data; consequently, poorly generalising
to the unseen data. This is particularly the case when learning from noisy data or
in the low data regime when there are few instances available to train on.

Recent work presented in [21,23] attempted to regulate the problem of poor
generalisation by introducing a new representation for GPSR called Adaptive
Weighted Splines (AWS). The AWS representation is a semi-structured represen-
tation that has some of the symbolic properties of traditional tree-based GP. It has
the additional benefit of more explicit control over the model complexity through
the use of splines. Preliminary experimental results into GP with the AWS repre-
sentation has shown promising generalisation performance, consistently outper-
forming its tree-based counterpart on a diverse set of regression tasks. However,
the limitation of ERM, which is a key driving force behind over complex GPSR
models, has not been considered in GPSR with the AWS representation [23].

1.1 Research Objectives

Multi-objective optimisation in traditional tree-based GP [16], which minimises
both the training error and the model complexity has been shown to result in
better generalization and more interpretable models [8,9], while there has been
no such similar work yet in regard to using the proposed AWS representation
in GP [23]. Therefore, the overall goal of this work is to develop a new multi-
objective GP method with the AWS representation which will fill this void and
further enhance the generalisation ability and model interpretability of GPSR.
Explicitly, this work aims to achieve the following four research objectives:

1. Develop a multi-objective GP-AWS method to minimise both the training
error and the number of features used in the model.

2. Evaluate the performance of the proposed method by comparing its perfor-
mance against both single-objective and multi-objective GP methods.

3. Investigate whether the new multiobjective GP method can lead to the devel-
opment of more parsimonious and better generalising symbolic regression
models.

4. Perform a visual interpretation of the models generated by the multi-objective
GP-AWS method, as well as providing feature importance analysis regard-
ing the number of mutually shared features and their corresponding feature
weights.

Multi-objective GP with AWS for Symbolic Regression 53

2 Background

2.1 Model Complexity and Generalisation

Many papers have been devoted to improving the generalisation of the GPSR
models via regulating the model complexity [1,6,16,22]. These contributions can
broadly be partitioned into two distinct categories, i.e. regulating the structural
complexity and the functional model complexity.

Structural Complexity of GP Models – Research into regulating the struc-
tural complexity of GP models usually involves examining the size and/or the
structure of the trees. Typical examples include counting the number of struc-
tural elements such as the number of nodes, layers/depth, then applying the
Minimum Description Length (MDL) i.e. Occam’s razor principle [4], to prefer
simpler models. Other structure-based approaches include Operator Equaliza-
tion [24] which controls the distribution of individual sizes in the population
and explicit feature selection [5] to avoid incorporating less informative features
to thus reduce the unnecessary structural complexity.

Regulating the structural complexity tends to be easy to implement and
applicable to many different domains. However, many of these approaches are
relatively ineffective at eliminating overfitting since the structural complexity
has limited correlation with the generalisation ability of the models. GP individ-
uals can be simplified numerically [13] and/or algebraically [27], such that the
structural complexity is decreased significantly, but the functional complexity
and generalisation performance remains the same.

Functional Complexity of GP Models – The functional complexity of a
GP model is measured by the behavior of model over a possible input space.
Some examples of regulating functional complexity for improving generalisation
in GPSR are summarized as follows: Vladislavleva et al. [26] use the Order of
Nonlinearity of a Chebyshev polynomial approximation of GP individuals to
perform multi-objective optimisation on the error and the model complexity.
Chen et al. [7] develop GP with Structural Risk Minimisation methods which
measure the behavioral complexity of GP models via their Vapnik-Chervonenkis
dimensions. Raymond et al. [9,22] introduce the Rademacher Complexity, which
is a data dependent complexity measure and considers the distribution of the
training data, into GPSR to approximate the complexity of GP individual and
penalise individuals which fit the Rademacher variable.

Regulating functional complexity tends to be more effective at enhancing gen-
eralisation due to being more closely related to overfitting. However, measuring
the functional complexity of an unstructured function is not trivial, as getting
a reliable approximation of the model complexity is often very computational
expensive [7].

54 C. Raymond et al.

2.2 Genetic Programming with Adaptive Weighted Splines

Seeking new more well behaved representations is an alternative choice for con-
trolling model complexity. Previous work in [23] proposed a new representation
for GP named Adaptive Weighted Splines (AWS), which is a semi-structured
representation that concedes some of the symbolic properties of GP in order to
offer more explicit control over the complexity of the models through the use of
splines. The AWS representation and the relevant components are introduced in
the following sections.

Individual Representation – When using the AWS representation, given
the inputs space X which has p features, a GP model f is represented by an
aggregation of p feature splines as shown in Eq. (1). Each feature spline models
one feature in the input space X. Each spline consists of three components: a
smoothing spline S, a primary coefficient θ and a secondary coefficient β. The
smoothing spline Si has a degree k, and it is composed of m smoothing spline
knots. The two coefficients θ and β simulate the processes of embedded feature
selection and feature weighting. This has the benefit of making the influence of
each feature on the final predictions of f quantitative and explicit. The p splines
are linearly combined using the weighted summation operation to predict y.

f(X;m, k, λ) =

p∑

i=1

(
round(θi) · βi · Si(x; Ti, k, λ)

)

p∑

i=1

(
round(θi) · βi

) (1)

With AWS, a GP individual is conveniently represented using a continuous vec-
tor which consists of the two coefficients and a knot vector of the smoothing
spline knots points for each of the feature spline components. Figure 1 shows an
example of GP-AWS model with two features splines which are both modelled
by a cubic i.e. k = 3 smoothing spline, defined by six smoothing spline knots
i.e. m = 6, and with no smoothing penalty applied i.e. λ = 0.

Smoothing Splines – A smoothing spline is defined by a smoothing spline knot
vector. It consists of a sequence of m points Ti = {(x1, y1), (x2, y2), · · · , (xm,
ym)}, a degree k and a smoothing penalty λ. To reduce the number of param-
eters, all knots in Ti are placed equispaced along xi. Larger values of m will
lead to models with higher variance and lower bias, while a smaller m leads to
higher bias and lower variance of the model. The smoothing penalty λ controls
the trade-off between closeness and smoothness of fit. The larger λ, the more
smoothing of the model. Moreover, to simplify implementation of the represen-
tation, min-max scaling is applied to all the training features X and targets y.
The scaling process allows the feature splines to be represented using continuous
vectors with values sitting between the interval of (0, 1).

Multi-objective GP with AWS for Symbolic Regression 55

Fig. 1. A GP-AWS model to the bi-variate regression problem: f(x1, x2) = sin(x1) +
0.25 · x1 + 2 + N(0, 0.2), where x2 is random noise.

Primary Coefficient for Feature Selection – The primary coefficient θ takes
a discrete value of either 0 or 1, which controls whether or not the respective
feature spline is used in the model. The value is represented as a continuous
value between 0 and 1, but is rounded to the nearest integer when the model
is evaluated. Incorporating the coefficient θ in AWS emulates embedded feature
selection, as only a subset of the original features are used in constructing the
final model.

Secondary Coefficient for Feature Weighting – The secondary coefficient
β in the feature spline of AWS takes on a continuous value between 0 and 1. β
controls the amount of influence made by the respective feature splines to the
prediction of the model. This simulates a feature weighting process, whereby
more important features are associated with larger weights, compared to less
important features which are associated with smaller weights.

Learning Process – The learning process in GP with the AWS representation
follows a very prototypical implementation of a genetic algorithm, using the
standard genetic operators of crossover, mutation and elitism as well as selection.
For the selection operator, the commonly used tournament selection samples a
predefined number (i.e. tournament size) of individuals and selects the best
individual which best minimises some typical regression loss function, such as
the Mean Squared Error (MSE) or Root Mean Squared Error (RMSE). For
termination criteria, either a predefined number of maximum generations can
be set or termination can occur when there is a stagnation in the performance.

56 C. Raymond et al.

3 Proposed Method

Research into the AWS representation has thus far been treated as a single-
objective optimization problem [23]. This approach is limited though, as the
ERM principle only prioritizes the training performance when performing repro-
duction (selection, crossover, mutation etc.). A promising avenue of research to
improve the generalisation capabilities of GPSR models is to consider the model
complexity as a separate objective. An important principle related to improv-
ing the generalisation of a regression model is the bias-variance trade-off, which
asserts that a model with good generalisation capabilities should balance under-
fitting and overfitting. More specifically, the optimal model should be expressive
enough to express the underlying patterns in the training data, while remaining
simple enough to avoid fitting spurious patterns which will cause a degradation
in performance on unseen data. One promising direction in traditional tree-based
GP has been the use of multi-objective optimization [1] to regulate underfitting
and overfitting by minimizing both the training error and some model complexity
penalty simultaneously.

3.1 Multi-objective Fitness Function

In this section a new multi-objective method for GPSR is developed, which
is called Genetic Programming with Adaptive Weighted Splines and Parsi-
mony Pressure (GP-AWS-PP). Similar to the baseline single-objective GP-AWS
method [23], the new GP method will continue to learn the parameters of the
AWS representation, which is conveniently internally encoded as a p · (2 + m)
length continuous vector. However, instead of only minimizing a single objective
f1 in GP-AWS, such as the Mean Squared Error (MSE), where y and ŷ are the
true and predicted output values respectively, and n is the number of instances.

f1 =
1
n

n∑

i=1

(
yi − ŷi

)2

(2)

An additional objective is also minimised simultaneously which is the total num-
ber of active features f2 used by the model, made explicit by the primary coef-
ficients θ.

f2 =
p∑

i=1

θi

{
1, if θi ≥ 0.5
0, if θi < 0.5

(3)

This is also equivalent to minimizing the number of active parameters in the
AWS representation (i.e. L0 regularization), as a θi value of 0 will turn the
corresponding ith feature spline into an inactive component, i.e. an intron, which
can be discarded when presenting the final model at inference time.

Multi-objective GP with AWS for Symbolic Regression 57

Incorporating this additional objective f2 is expected to improve both the
generalisation and interpretability of the solutions generated by GP. With
respect to generalisation, minimizing the number of active/selected features can
reduce the tendencies of a regression model to learn spurious patterns in features
that are not relevant to the target y, or are redundant if the signal is captured
by another related feature. In regard to interpretability, a model that uses fewer
features is easier to communicate and understand, as the set of features that
composes the model is smaller [5].

3.2 Non-dominated Sorting Genetic Algorithm II

To optimise the multiple objectives in this work, the popular algorithm non-
dominated Sorting Genetic Algorithm (NSGA-II) [10] is used instead. NSGA-II
is a computationally fast and elitist algorithm based on the key ideas of non-
dominated sorting, which involves sorting individuals into ordered fronts based
on their fitness. Additionally, in NSGA-II a unique selection operator is used that
generates the next generation of individuals by taking the union of the parent
and offspring populations and selecting only the best individuals with respect
to their fitness and crowding distance, which ensures that the population is
composed from a high performing set of diverse solutions.

Compared with the single objective GP-AWS method which requires tuning
of a weighting parameter to balance the training performance with the model
complexity, the newly proposed multi-objective GP-AWS-PP method utilizes
the advantage of the population-based mechanism in GP to attain a wide set of
pareto non-dominated solutions with strong performance in each objective with
only a single execution of the entire algorithm.

3.3 Combining Multi-objective Optimization with the Adaptive
Weighted Splines

In traditional tree-based GPSR, many papers have been devoted to improving
the generalisation performance as well as the interpretability of models through
the use of multi-objective optimization on both the error and the structural
complexity, which are often referred to as GP with Parsimony Pressure [17–
19]. These methods have shown some limited success, often making the models
noticeably smaller (fewer parameters). However, they have been shown to be
relatively ineffective at improving generalisation, as the performance is greatly
restricted by the tree-based representation which can be both algebraically [27]
and numerically [13,28] simplified. This makes the structural complexity in tree-
based GP necessarily only a loose proxy for how the model will behave.

Fortunately, one of the key benefits of the new AWS representation is its semi-
structured fixed-length representation, which avoids the use of overly verbose
sub-components by enforcing structure into the representation. Therefore, by
minimising the number of active features in multi-objective AWS, which by
association will also minimise the number of effective parameters in the model,
and by upfront defining the desired flexibility of the splines through the number

58 C. Raymond et al.

of smoothing spline knots m, it is possible to explicitly control the bias-variance
trade-off in AWS as well as increase the interpretability. This is quantified by
the number of active feature used by the learnt models.

4 Experiment Settings

4.1 Benchmark Methods

To examine the generalisation capabilities and interpretability of the proposed
method GP-AWS-PP, comparisons are performed against a multi-objective par-
simony pressure GP method using the traditional tree-based representation
which also treats the model complexity as an independent objective. This is
intended to highlight the benefits of the AWS representation over the tradi-
tional tree-based representation for GPSR. In addition, experiments are also
conducted to compare against two baseline single-objective GP methods, which
are utilized to demonstrate the benefits of considering both the training error
and the model complexity as two separate objectives. More specifically, the three
benchmark methods are as follows:

– Genetic Programming with Parsimony Pressure (GP-PP): a multi-
objective GP method, which introduces parsimony pressure into GP by simul-
taneously minimizing both the training MSE as well as the the number of
nodes, i.e. the model size, via NSGA-II.

– Genetic Programming (GP): a standard implementation of GPSR, which
uses the traditional tree based representation to minimise the single-objective
of the training MSE.

– Genetic Programming with Adaptive Weighted Splines (GP-AWS):
a single-objective GPSR method which uses the AWS representation to min-
imise the training MSE [23].

4.2 Benchmark Problems

In this work, the newly proposed method as well as the three benchmark methods
are evaluated on a number of regression datasets of varying characteristics and
sizes. The datasets selected are summarized in Table 1. There are eight real-
world datasets which have been selected from previous GPSR research [20,22–
24]. The following datasets Concrete Compressive Strength, Diabetes, Red Wine,
Boston Housing, Automobile and Communities and Crime were taken from the
University of California Irvine’s (UCI) Machine Learning Repository [11]. The
remaining real-world dataset Pollution and Tecator can be found in the Carnegie
Mellon University (CMU) StatLib dataset archive [25].

Multi-objective GP with AWS for Symbolic Regression 59

Table 1. Benchmark Datasets

Dataset Number of Number of Instances

Features Total Training Testing

Concrete Strength 8 1030 309 721

Diabetes 10 442 132 310

Red Wine 11 1599 480 1119

Boston House 13 506 152 354

Pollution 15 60 18 42

Automobile 75 205 61 144

Communities Crime 122 1994 199 1795

Tecator 124 240 72 168

In regard to the partitioning of the datasets, for pre-partitioned datasets,
the original partitioning was preserved, while for those that did not come pre-
partitioned, following previous research [22], they were split into training and
testing sets using a 30:70 partitioning. The number of training instances was
deliberately made small to simulate the real-world situations where there are
often very few instances available, resulting in supervised learning methods being
highly prone to overfitting, which is one of the primary areas of interest in this
work.

4.3 Parameter Settings

To ensure a fair comparison is made between the four tested methods, identical
parameters have been used where possible. For all the methods, the population
size has been set to 512 and has been evolved over 100 generations to optimise
for the MSE. To evolve the individuals, the following genetic operator rates were
used: crossover = 0.75, mutation = 0.2 and elitism = 0.05. Selection of indi-
viduals from the population was performed using a standard tournament based
selection method, where the tournament was of size 2. Note that further experi-
ments were conducted using larger tournament sizes to ensure that GP was not
being systematically disadvantaged, the results showed no statistically signifi-
cant differences. The remaining settings for the two groups of GPSR methods
using the different representations are presented as follows:

– GP and GP-PP using the tree-based representation: Similar to pre-
vious research into GP for symbolic regression [22], the function set contains
the following operators: {+,−, ∗,%} and the terminal set contains all features
in the respective dataset, i.e. {x1, x2 · · · , xp}, as well as ephemeral constants
which have random values between the range of (−1, 1). As for initializa-
tion, Ramped Half and Half was chosen to generate the initial population.
In regard to the genetic operators the popular One Point Crossover and
Uniform Mutation is used.

60 C. Raymond et al.

– GP-AWS and GP-AWS-PP using the AWS representation: Following
previous work [23], the following AWS parameters were selected: the number
of smoothing spline knots m = 6, the smoothing penalty λ = 0 which means
no smoothing, and a degree k of 3 is used. In regard to the genetic operators
the P · K Crossover and P · K Mutation presented in [23] is used.

To investigate the performance of the newly proposed method, 100 independent
executions of GP, GP-PP, GP-AWS and GP-AWS-PP are performed on each of
the eight real world datasets.

5 Results and Analysis

The effectiveness of GP-AWS-PP on enhancing the generalisation and the inter-
pretability of the learnt GPSR models is shown in this section. It involves a com-
parison of the hypervolume values between the two multi-objective GP methods,
which is intended to highlight the benefits of incorporating EMO and the AWS
representation against into GP compared to the traditional tree-based represen-
tation. A detailed analysis on the front obtained by the four GP methods is also
included. Note that for single-objective GP methods, a “front” is obtained by
considering the performance and the number of nodes in the best models for an
easy comparison. A demonstration and analysis on the interpretability of the
GPSR models in GP-AWS-PP is also presented.

5.1 Comparisons of Hypervolume Indicator

Comparing the performance of GP-AWS-PP to its tree-based counterpart GP-
PP, the hypervolume indicator is employed. The mean and standard deviation
hypervolume values shown in Table 2 are computed using the popular JMetalPy
python library [3,12], which calculates the hypervolume values of the 100 training
and testing fronts based on the MSE and the number of parameters. Additionally,
the statistical significance based on the non-parametric Mann-Whitney U-test
[2] with a significance level of 0.01 is shown in the column titled SS. Where a “+”
indicates that the respective method has achieved a significantly better result
compared to the opposing method, a “−” indicates that the respective method
has achieved a significantly worse results than the opposing method, and finally
a “=” indicates that both methods are similar in their performance. Examin-
ing the training hypervolume results it is observed that GP-AWS-PP performs
statistically significantly better as quantified by the hypervolume indicator on 5
of the 8 datasets tested when compared to GP-PP. On the remaining datasets
GP-AWS-PP performs equivalently to GP-PP on the Red Wine dataset, and on
the Tecator and Communities and Crime datasets GP-PP performs better then
GP-AWS-PP. In regard to the testing hypervolume results, the results remain
largely consistent with the training hypervolume results seen previously. The
only difference observed is on the Red Wine dataset, where GP-PP now shows
marginally better hypervolume results compared to GP-AWS-PP on average.

Multi-objective GP with AWS for Symbolic Regression 61

Table 2. Training and Testing Hypervolume Values based on the MSE and the Number
of Parameters.

Dataset Method Training SS Testing SS

Avg ± Std Avg ± Std

Concrete GP-PP 0.8116 ± 0.0181 − 0.8102 ± 0.0214 −
GP-AWS-PP 0.9402 ± 0.0034 + 0.9353 ± 0.0042 +

Diabetes GP-PP 0.2760 ± 0.2598 − 0.2989 ± 0.2703 −
GP-AWS-PP 0.8850 ± 0.0024 + 0.8441 ± 0.0029 +

Red Wine GP-PP 0.9790 ± 0.0015 = 0.9787 ± 0.0021 +

GP-AWS-PP 0.9794 ± 0.0001 = 0.9778 ± 0.0003 −
Boston GP-PP 0.9532 ± 0.0081 − 0.8576 ± 0.0228 −

GP-AWS-PP 0.9819 ± 0.0004 + 0.9317 ± 0.0061 +

Pollution GP-PP 0.9852 ± 0.0024 − 0.9831 ± 0.0037 −
GP-AWS-PP 0.9917 ± 0.0000 + 0.9884 ± 0.0004 +

Automobile GP-PP 0.8823 ± 0.0249 − 0.7766 ± 0.0996 −
GP-AWS-PP 0.9374 ± 0.0077 + 0.8909 ± 0.0148 +

Crime GP-PP 0.4557 ± 0.0542 + 0.3864 ± 0.0669 +

GP-AWS-PP 0.3806 ± 0.0224 − 0.3303 ± 0.0248 −
Tecator GP-PP 0.9711 ± 0.0089 + 0.9722 ± 0.0086 +

GP-AWS-PP 0.9122 ± 0.0090 − 0.9111 ± 0.0091 -

Analysis of the hypervolume results reveals that in the majority of cases GP-
AWS-PP is able to achieve better hypervolume values compared to GP-PP. The
experimental results also show that GP-AWS-PP typically has much higher mean
and far smaller standard deviation hypervolume values compared to GP-PP, sug-
gesting that GP-AWS-PP learns superior fronts compared to GP-PP on average.

Note that in two cases GP-PP achieved better hypervolume values. This was
primarily due to the ability of tree-based GP-PP to more effectively minimise
the number of nodes/parameters when compared to GP-AWS-PP (as shown in
Figs. 2 and 3 analysed in the following section). Most importantly, GP-AWS-PP
consistently generates better performing solutions with respect to the primary
objective of the MSE, which is the more salient of the two considered objectives.

5.2 Analyses of Fronts

The final training and testing fronts extracted from 100 independent runs in
GP-PP and GP-AWS-PP are shown in Fig. 2 and 3 respectively. The fronts are
computed by taking the union of 100 independent executions and taking the
best MSE values (f1) at each discrete increment with respect to the number
of nodes/parameters (f2) and removing all dominated solutions, thus giving the
best non-dominated front. Additionally, to compare the performance of the multi-
objective GP methods with the single-objective GP methods, the non-dominated
best-of-run models for GP and GP-AWS from 100 independent runs are shown.

62 C. Raymond et al.

Analyses of Training Fronts – Comparing the training plots of the two GP
methods with the AWS representations shown in Fig. 2, it is observed that the
solutions generated by GP-AWS-PP typically have a slightly higher training MSE
than GP-AWS method on all datasets. These results are to be expected since the
GP-AWS method exclusively aims to optimise for the training error, while GP-
AWS-PP also optimises for the complexity of the models (i.e. the number of active
features) which is a conflicting objective with minimizing the training error.

Comparing the training results of GP-AWS-PP with the two tree-based GP
methods, it is observed that GP-AWS-PP is far more effective at minimizing the
training MSE on all the datasets tested excluding for Communities and Crime,
which is consistent with the findings in [23]. This further supports the claim that
the AWS representation for GPSR is highly competitive and often superior to the
traditional tree-based representation, in both single and multi-objective scenarios.

Analyses of Test Fronts – As shown in Fig. 3, the testing fronts show that GP-
AWS-PP generally obtains very promising generalisation performance, which is
notably better than the two GP methods using the tree-based representation in
seven of the eight tested datasets except for Red Wine. The superior generalisa-
tion performance of GP-AWS-PP over GP and GP-PP confirms the benefits of
the semi-structured representation at regulating model functional complexity.

Fig. 2. Best Non-dominated fronts of the Training MSE and the Number of
Parameters.

Multi-objective GP with AWS for Symbolic Regression 63

Fig. 3. Best Non-dominated Fronts of the Testing MSE and the Number of
Parameters.

Compared with the single-objective GP-AWS, the pattern is very different
from that in the training set. GP-AWS typically constructs highly complex solu-
tions (denoted by the number of parameters/features used) which outperforms
GP-AWS-PP on the training sets but poorly generalises onto the unseen testing
set. More specifically, it is observed that on Concrete Compressive Strength, Dia-
betes, Boston Housing, Pollution, Automobile, Communities and Crime and Teca-
tor GP-AWS-PP obtains superior generalisation performance with respect to the
testing MSE by also considering the model complexity as a separate objective.

Furthermore, this superior generalisation performance of GP-AWS-PP is
often achieved using only a small fraction of the full feature set. This is especially
noticeable on Pollution, Automobile and Tecator, where superior generalisation
performance is achieved with less then half the number of features used compared
to single-objective GP-AWS method. This clearly demonstrates the performance
gain of the proposed multi-objective method GP-AWS-PP over its single objec-
tive counterpart GP-AWS to learn both highly parsimonious and interpretable
regression models, that also generalise well onto unseen data.

5.3 Visualizations and Analyses of GPSR Models in GP-AWS-PP

To further understand the effects of using evolutionary multi-objective opti-
mization in collaboration with the AWS representation, this section provides

64 C. Raymond et al.

a brief analysis of four non-dominated models shown in Fig. 4. These models
were sampled from a single execution of GP-AWS-PP on the Concrete Com-
pressive Strength dataset. Each model displays all the active feature splines
(where θi ≥ 0.5) and their corresponding βi feature weights. The feature splines
are additionally ordered from strongest influence (large βi value) to weakest
influence (smallest βi value) to aid in the interpretation.

From Fig. 4, it can be observed that each model has a differing number of
features, {1, 2, 3, 5}. Consequently, the models that have more active features
are required to have better predictive performance (i.e. lower MSE) since only
non-dominated solutions form the approximated Pareto front by definition. For
features that have been selected, it is found that concrete age X8 has consistently
shown to be the most important feature, as it has the highest feature weight β

Fig. 4. Four non-dominated models generated from a single execution by GP-AWS-PP
on the Concrete Compressive Strength dataset. Testing MSE and number of active is
displayed below each of the respective sub-figure.

Multi-objective GP with AWS for Symbolic Regression 65

in models (a), (c) and (d) and the second height weight in (b), with a weighting
of 45% to the final prediction. A similar pattern occurs for the second most
important feature cement quantity X1 (in kgs), which shows the second highest
feature weight β in models (a), (c) and (d) and highest in (b), with a weight of
55% to the final prediction.

One benefit of AWS over traditional tree-based GP is that features can easily
be inspected by themselves comparably in some respects to what can be done
in a linear model. This is useful as it allows one to interpret the effects of a
single feature in isolation with respect to the final predicted value. For example,
examining X8 which represents the age of the concrete in days it is observed
that in models (a), (b), (c) and (d) the output y value which represents concrete
compressive strength is initially very low. This make sense as the concrete is still
drying, and requires more time to fully harden and achieve full strength. As age
increases it is observed that the compressive strength of the concrete peaks at
around 75 before gradually dropping off (there is some variation between models
past 150 days due to low data density showing below the plot).

6 Conclusions and Future Work

This paper has conducted the very first investigation into applying evolution-
ary multi-objective optimization techniques to a semi-structured representation
(i.e. the AWS representation) for GPSR. The comparisons against traditional
tree-based GP methods using both single-objective and multi-objective learning
frameworks highlights the highly performant generalisation capabilities of both
the single-objective GP-AWS and the newly proposed GP-AWS-PP. Moreover,
the experimental investigations also confirms that the models learnt by the new
multi-objective GP method have much better interpretablity, compared to the
originally single-objective GP-AWS method. A number of interesting findings
have also been found regarding interpreting features used in the learnt models
highlights some potential future work into utilizing the AWS representation for
enhancing the interpretability of many learning algorithms.

References

1. Agapitos, A., Loughran, R., Nicolau, M., Lucas, S., O’Neill, M., Brabazon, A.:
A survey of statistical machine learning elements in genetic programming. IEEE
Trans. Evol. Comput. 23(6), 1029–1048 (2019)

2. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In: 2011 33rd International Conference on
Software Engineering (ICSE), pp. 1–10. IEEE (2011)

3. Beńıtez-Hidalgo, A., Nebro, A.J., Garćıa-Nieto, J., Oregi, I., Ser, J.D.: jMetalPy:
a python framework for multi-objective optimization with metaheuristics. Swarm
Evol. Comput. 100598 (2019). http://www.sciencedirect.com/science/article/pii/
S2210650219301397

4. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Inf.
Process. Lett. 24(6), 377–380 (1987)

http://www.sciencedirect.com/science/article/pii/S2210650219301397
http://www.sciencedirect.com/science/article/pii/S2210650219301397

66 C. Raymond et al.

5. Chen, Q., Zhang, M., Xue, B.: Feature selection to improve generalization of genetic
programming for high-dimensional symbolic regression. IEEE Trans. Evol. Com-
put. 21(5), 792–806 (2017)

6. Chen, Q., Zhang, M., Xue, B.: Structural risk minimization-driven genetic pro-
gramming for enhancing generalization in symbolic regression. IEEE Trans. Evol.
Comput. 23(4), 703–717 (2019)

7. Chen, Q., Xue, B., Shang, L., Zhang, M.: Improving generalisation of genetic pro-
gramming for symbolic regression with structural risk minimisation. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference 2016, pp. 709–716.
ACM (2016)

8. Chen, Q., Xue, B., Zhang, M.: Improving symbolic regression based on correlation
between residuals and variables. In: Proceedings of the 2020 Genetic and Evolu-
tionary Computation Conference, pp. 922–930 (2020)

9. Chen, Q., Xue, B., Zhang, M.: Rademacher complexity for enhancing the gener-
alization of genetic programming for symbolic regression. IEEE Trans. Cybern.
(2020). https://doi.org/10.1109/TCYB.2020.3004361

10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

11. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

12. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algo-
rithm for the hypervolume indicator. In: 2006 IEEE International Conference on
Evolutionary Computation, pp. 1157–1163. IEEE (2006)

13. Kinzett, D., Johnston, M., Zhang, M.: Numerical simplification for bloat control
and analysis of building blocks in genetic programming. Evol. Intel. 2(4), 151–168
(2009)

14. Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers
by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

15. Koza, J.R., et al.: Genetic Programming II, vol. 17. MIT Press, Cambridge (1994)
16. Le, N., Xuan, H.N., Brabazon, A., Thi, T.P.: Complexity measures in genetic

programming learning: a brief review. In: 2016 IEEE Congress on Evolutionary
Computation (CEC), pp. 2409–2416. IEEE (2016)

17. Luke, S., Panait, L.: Fighting bloat with nonparametric parsimony pressure.
In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-
Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 411–421. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45712-7 40

18. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the
4th Annual Conference on Genetic and Evolutionary Computation, pp. 829–836.
Morgan Kaufmann Publishers Inc. (2002)

19. Luke, S., Panait, L.: A comparison of bloat control methods for genetic program-
ming. Evol. Comput. 14(3), 309–344 (2006)

20. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Proceed-
ings of the 14th Annual Conference on Genetic and Evolutionary Computation,
pp. 791–798 (2012)

21. Raymond, C., Chen, Q., Xue, B., Zhang, M.: Multi-objective genetic program-
ming for symbolic regression with the adaptive weighted splines representation.
In: Proceedings of the 2021 Genetic and Evolutionary Computation Conference
Companion, pp. 165–166 (2021)

22. Raymond, C., Chen, Q., Xue, B., Zhang, M.: Genetic programming with
rademacher complexity for symbolic regression. In: 2019 IEEE Congress on Evo-
lutionary Computation (CEC), pp. 2657–2664. IEEE (2019)

https://doi.org/10.1109/TCYB.2020.3004361
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/3-540-45712-7_40

Multi-objective GP with AWS for Symbolic Regression 67

23. Raymond, C., Chen, Q., Xue, B., Zhang, M.: Adaptive weighted splines: a new
representation to genetic programming for symbolic regression. In: Proceedings of
the 2020 Genetic and Evolutionary Computation Conference, pp. 1003–1011 (2020)

24. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional
complexity in genetic programming. In: Proceedings of 2010 Genetic and Evolu-
tionary Computation Conference, pp. 877–884. ACM (2010)

25. Vlachos, P.: Statlib datasets archive. Department of statistics (1998)
26. Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a com-

plexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2008)

27. Wong, P., Zhang, M.: Algebraic simplification of GP programs during evolution.
In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 927–934 (2006)

28. Zhang, M., Wong, P.: Genetic programming for medical classification: a program
simplification approach. Genet. Program Evolvable Mach. 9(3), 229–255 (2008)

SLUG: Feature Selection Using Genetic
Algorithms and Genetic Programming

Nuno M. Rodrigues1(B) , João E. Batista1 , William La Cava3 ,
Leonardo Vanneschi2 , and Sara Silva1

1 LASIGE Faculty of Sciences, University of Lisbon, Lisbon, Portugal
{nmrodrigues,jebatista,sara}@fc.ul.pt

2 NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa,
Campus de Campolide, 1070-312 Lisbon, Portugal

lvanneschi@novaims.unl.pt
3 Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA

william.lacava@childrens.harvard.edu

Abstract. We present SLUG, a method that uses genetic algorithms as a wrap-
per for genetic programming (GP), to perform feature selection while inducing
models. This method is first tested on four regular binary classification datasets,
and then on 10 synthetic datasets produced by GAMETES, a tool for embed-
ding epistatic gene-gene interactions into noisy datasets. We compare the results
of SLUG with the ones obtained by other GP-based methods that had already
been used on the GAMETES problems, concluding that the proposed approach
is very successful, particularly on the epistatic datasets. We discuss the merits
and weaknesses of SLUG and its various parts, i.e. the wrapper and the learner,
and we perform additional experiments, aimed at comparing SLUG with other
state-of-the-art learners, like decision trees, random forests and extreme gradient
boosting. Despite the fact that SLUG is not the most efficient method in terms of
training time, it is confirmed as the most effective method in terms of accuracy.

Keywords: Feature Selection · Epistasis · Genetic Programming · Genetic
Algorithms · Machine Learning

1 Introduction

Epistasis can generally be defined as the interaction between genes, and it is a topic of
interest in molecular and quantitative genetics [7]. In machine learning (ML), several
types of epistatic interactions have been studied. In evolutionary computation, epistasis
has traditionally been interpreted as the interaction between characters, sets of charac-
ters or, generally speaking, parts of the chromosome representing solutions. This type of
epistatic interaction has attracted the interest of researchers mainly because of its effect
on fitness landscapes and, consequently, problem hardness. The topic has been studied
since the early 90s (see for instance [8,30]), and one of the most popular outcomes of
those studies was the NK-landscapes benchmark [2], in which the amount of epistasis
is tunable by means of two parameters, N and K. This benchmark has been used in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 68–84, 2022.
https://doi.org/10.1007/978-3-031-02056-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_5&domain=pdf
http://orcid.org/0000-0001-5312-8276
http://orcid.org/0000-0002-2997-8550
http://orcid.org/0000-0002-1332-2960
http://orcid.org/0000-0003-4732-3328
http://orcid.org/0000-0001-8223-4799
https://doi.org/10.1007/978-3-031-02056-8_5

SLUG 69

several circumstances for testing the performance of genetic algorithm (GA) variants
(see for instance [1,5,22,23,28,37], just to mention a few), and more recently it has
also been extended to genetic programming (GP) [41]. An in-depth, although not very
recent, survey of studies of epistasis in GA can be found in [31], while in [13] the effect
of epistasis on the performance of GA is critically revised, highlighting the difficulty of
GA in optimizing epistatic problems. In [19], epistasis was used to select the appropriate
basis for basis change space transformations in GA, and in the same year [3] proposed
a method to decipher the exact combinations of genes that trigger the epistatic effects,
focusing on multi-effect and multi-way epistasis detection. Recently, a new benchmark
was proposed [24] where epistasis-tunable test functions are constructed via linear com-
binations of simple basis functions. A different way of interpreting epistasis in ML is
by studying the interactions between features in data. The problem of attribute inter-
dependency is well known in ML. It has been studied in several approaches, using for
instance several types of correlation [11] or mutual information [26].

In this paper, we tackle a rather different type of problem: we want to be able to
deal with datasets where, among many variables, only a very limited number of them
are useful and able to explain the target, and they must be used together for the model
to be accurate. In other words, all the few “important” variables must be selected, while
the many “confounding” ones must be left out. Furthermore, these few important vari-
ables are not necessarily correlated between each other, or have any other relationship of
interdependency. This type of behavior can be observed, for instance, in some of Korn’s
benchmark problems proposed in [15], or in some medical problems, where finding
epistasis can be crucial to identify the association between disease and genetic variants,
and consequently be able to develop medical treatments and prevention [29]. It is of
common intuition that, for problems characterized by such a typology of data, feature
selection plays a crucial role, and the objective of this work is to propose a feature selec-
tion strategy that, integrated in a very natural way with the modelling algorithm, could
be appropriate for working with epistatic datasets. The epistatic datasets studied in this
paper have been generated using the GAMETES algorithm, introduced in [38], and have
already been used in [16] as a benchmark to validate the M4GP classification method.
Similar types of datasets have also been studied in [36], where a GP-based pipeline
optimization tool (TPOT-MDR) was proposed to automatically design ML pipelines
for bioinformatics problems. For tackling problems characterized by this type of data,
Urbanowicz and colleagues recently presented RelieF-based feature selection [40], a
unique family of filter-style feature selection algorithms that are sensitive to feature
interactions and that can be applied to various types of problems, including classifi-
cation and regression. In [16] this method has been coupled with M4GP, achieving
state-of-the-art results on the GAMETES datasets.

Our proposal consists of using GA for feature selection. The idea, presented for
instance in [4,17,21], is framed in a well established research track, and surveys can be
found in [12,43]. With the proliferation of data and the consequent development of ML,
the use of GA for feature selection increased in the last decade. Numerous recent con-
tributions can be found, for instance, aimed at improving the method in presence of vast
amounts of data [6,18], or applying the method in several different real-world scenarios,
including medicine [42], economy [34], image processing [33] and sociology [10], just

70 N. M. Rodrigues et al.

to mention a few. However, we match GA with another evolutionary algorithm, Genetic
Programming (GP), obtaining an integrated, and purely evolutionary, method that is
able to perform feature selection and at the same time induce good models using the
selected features. The GA part acts as a wrapper to the GP part, that is the learner. We
call our approach SLUG, and compare it to both standard GP and other GP-based algo-
rithms already used on the GAMETES datasets, such as M3GP [25] and M4GP [16];
we also compare it with other GA-wrapped ML classifiers that also perform feature
selection, such as decision trees, random forests and XGBoost. In [35], the authors pro-
pose an opposite methodology to SLUG, were they GP for feature selection and GA for
feature construction, in an iterative away as opposed to our wrapped approach.

2 SLUG

Our method, feature SeLection Using Genetic algorithms and genetic programming
(SLUG), uses a cooperative approach between these two evolutionary algorithms,
where the quality of each GA individual is assessed by running GP with the features
selected by GA. A schematic showing the behavior of the full SLUG pipeline can be
seen in Fig. 1, with the evaluation of the individuals being detailed in Fig. 2.

After splitting the data into training and test sets, a standard GA is applied to the
training set (Fig. 1). The individuals of this GA are binary strings of length equal to
the number of features in the data. Each bit of the chromosome represents one fea-
ture, where 1 or 0 mean that the respective feature is selected or not, respectively. After
initializing such a population, it is evaluated. The evaluation of each GA individual
requires a complete run of standard GP, using the same training set as the GA but see-
ing only the features selected by the GA individual. The best fitness achieved in the GP
run is the fitness of the GA individual (Fig. 2). Once every GA individual has been eval-
uated, a new GA population is formed by applying selection and the genetic operators,
and after a number of generations the GA finishes and returns both the chromosome
with the best selected features and the GP model that achieved the best results when
given those features (Fig. 1). Finally, the best GP model is then evaluated using the GA
selected features of the test dataset.

Naturally, the GP model does not have to use all the GA selected features, since it
also performs its own feature selection. In fact, this is one of the strengths of SLUG for
epistatic datasets. On the one hand, the number of useful features on the GAMETES
datasets is so low that not even a method like GP, that is so well equipped with feature
selection abilities, can isolate them from the numerous other ones. On the other hand,
the GA only has to reduce the number of features that GP can potentially use, so its task
is facilitated. In other words, the strength of SLUG is that the feature selection step does
not need to be accurate: as long as the right features are among a reasonable number of
selected ones, GP can do the rest of the job.

3 Data

We test our method on two distinct sets of problems. For the first set, we use four
standard binary classification problems: HRT (Heart) [9]; ION (Ionosphere) [9], PRK

SLUG 71

Dataset

Train data Test data

StartNew GA population

Stop? End

Selected features
Evaluate individuals

Select parents

Apply genetic operators

GP model

Evaluation

Fig. 1. A graphical representation of the SLUG pipeline.

1 0 1 0 1

1 1 0 0 0

0 1 1 1 1

0 1 1 1 0

GA population

...

X1 X3 X5

X1 X2

X2 X3 X4 X5

X2 X3 X4

GP

GP

GP

GP

... ...

best fitness

best fitness

best fitness

best fitnessfitness

fitness

fitness

fitness

Selected features

Fig. 2. Illustration of the way the GA individuals are evaluated by running GP with only the
selected features. The best fitness of the GP run is the fitness of the respective GA individual.

(Parkinsons) [9] and SON (Sonar) [44]. Details regarding the composition of these
datasets can be found in Table 1.

For the second set, we use GAMETES datasets, which are produced by a tool for
embedding epistatic gene-gene interactions into noisy genetic datasets [39]. We use 10
different problems that vary according to two measures of difficulty: number of fea-
tures (10, 100, 1000) and signal-to-noise ratio (0.05, 0.1, 0.2, 0.4). For each problem,

72 N. M. Rodrigues et al.

Table 1. Number of features, observations and negative/positive ratio on each dataset.

Datasets HRT ION PRK SON

Features 13 33 23 61

Observations 270 351 195 208

Neg/Pos Ratio 45/55 65/35 75/25 46/54

a two-way epistatic interaction is present that is predictive of the disease classification,
but this is masked by the presence of confounding features and noisy disease classi-
fications. Due to computational and time constraints, we did not perform experiments
on all the possible combinations of number of features and signal-to-noise ratio. The
10 selected datasets are (with simplified names in the format features ratio): 10 005,
10 01, 10 02 and 10 04; 100 005, 100 01, 100 02 and 100 04; 1000 02 and 1000 04.
All the gametes datasets are balanced.

4 Methods

Besides standard GA and standard GP, which are part of the SLUG method, we also
compare our results with the following GP-based methods:

M3GP: M3GP stands for multidimensional multiclass GP with multidimensional
populations [25]. Originally designed for multiclass classification, in M3GP each indi-
vidual is composed of a mutable number of trees, also called dimensions, from which
we extract a set of hyper-features that are then given to a classifier. Along with the
standard crossover and mutation operators, M3GP includes an additional crossover,
which swaps dimensions between individuals, and two additional mutations, which
add/remove dimensions to/from an individual. The fitness of each individual is cal-
culated by running a classifier on the hyper-feature space created by the trees of the
individual. On the original implementation of M3GP, this is by default the Mahalanobis
distance classifier.

M4GP: While the M3GP uses a tree-based structure for the individuals, M4GP, the
successor of M3GP, uses a stack-based structure, which naturally provides support for
multiple outputs. Regarding genetic operators, M4GP uses stack-based operators that
are equivalent to the ones used by M3GP. For selection, M4GP uses lexicase selec-
tion, which out-preformed standard tournament selection, and age-fitness Pareto sur-
vival selection in experiments [16].

M4GP+EKF: Expert knowledge filter (EFK) is a preprocessing feature selection
algorithm from the RelieF family [14]. In M4GP+EKF it is used to reduce the dataset
to the top 10 features before giving it to the M4GP algorithm [16]. From now on we
will call this variant M4GP-E.

As part of the discussion, we also present some results obtained by replacing the
GP part of SLUG with other ML methods, namely, decision trees (DT), random forests
(RF) and extreme gradient boosting, better known as XGBoost (XGB).

SLUG 73

5 Experimental Setup

We run SLUG for 50 generations of the GA, using a population of 100 individuals.
The GP populations also have 100 individuals, but they evolve for only 30 generations,
which our initial experiments revealed to be sufficient to evaluate the quality of the
selected features. GP uses the traditional binary arithmetic operators [+,−, /, ∗] and
no random constants. Fitness is the overall accuracy in the training set, measured after
transforming the real-valued outputs of GP into class labels. The best fitness of each
GP run is passed to the GA as the fitness of each individual, as explained in Sect. 2, and
therefore the GA (and therefore SLUG) also uses the overall accuracy as fitness (as do
all the other GP and non-GP methods used here). Both GA and GP select the parents
of the next generation using tournaments of size 5. Regarding the genetic operators, GP
uses the standard subtree crossover and mutation with 50% probability each. GA also
uses standard crossover that swaps same-sized blocks between 2 chromosomes with
probability of 70%, and standard mutation that performs bit-flip on the chromosome
with probability of 1/n (where n is the population size) and each bit has probability
of 1/m of being flipped (where m is the length of the chromosome, i.e., the number of
features of the problem). Both GA and GP use some elitism: GP guarantees that the best
individual of one generation survives into the next; GA does not guarantee the survival
of the best chromosome from one generation to the next, to avoid diversity loss, but it
keeps track and returns the best chromosome (and respective GP model) that was ever
achieved during the entire run.

Standard GP, M3GP and both M4GP variants all use populations of 500 individu-
als evolving for 100 generations and, like SLUG, they all use tournaments of size 5.
For more specific details on the M3GP and M4GP implementations and settings, the
reader should consult Sect. 4 and the papers cited therein. The implementation of the
GP methods will be available for download once the paper is accepted.

The STGP and M3GP implementations we use in this work can be found here1.
Regarding the methods DT, RF and XGB mentioned in the discussion, we use the

implementations provided by Scikit-learn [27]. We perform hyperparameter optimiza-
tion by means of grid search with 5-fold cross-validation on the entire dataset, for each
of the three methods. For DT we optimize the split criterion and maximum depth; for
RF we optimize the split criterion, number of estimators and maximum depth; for XGB
we optimize the learning rate, maximum depth and number of estimators. The GA runs
with the exact same parameters as SLUG. In all cases, we randomly split the datasets
30 times, one for each run, into 70% training and 30% test.

6 Results

We measure the overall accuracy of the methods and present the results as boxplots
(training and test) of the 30 runs and tables with the (test) medians. To assess the statis-
tical significance of the results, we perform one-way non-parametric ANOVA analysis
by means of Kruskal-Wallis with Holm correction, using 0.05 as the significance thresh-
old. The Appendix contains the Holm-corrected p-values obtained in all the datasets.

1 https://github.com/jespb/Python-STGP and https://github.com/jespb/Python-M3GP.

https://github.com/jespb/Python-STGP
https://github.com/jespb/Python-M3GP

74 N. M. Rodrigues et al.

6.1 Regular Classification Tasks

Taking into consideration the results presented in Table 2, Fig. 3 and Appendix Table
4, we can see that our approach performs well, on par with the other GP methods such
as M3GP and M4GP. Compared to the baseline of standard GP, SLUG performs better
on both HRT and PRK datasets, and presents no significant differences on the remain-
ing two. Regarding the M3GP and M4GP baselines, the results are also positive, with
SLUG outperforming both methods on one problem, presenting no significant differ-
ence on two others, and being outperformed in the remaining problem. Lastly, regarding
M4GP-E, this method outperforms SLUG in one problem, and no significant difference
was found between them in the remaining problems. Finally, we could not help but
notice one thing that appears to be different between SLUG and the other methods, that
is the consistently lower dispersion of the results on training.

Table 2. Median test overall accuracy of the different methods on the non-gametes binary clas-
sification tasks. Best results for each problem are identified in green, more than one when there
are no statistically significant differences.

HRT PRK ION SON

GP 0.778 0.831 0.858 0.698

M3GP 0.790 0.881 0.873 0.786

M4GP 0.784 0.864 0.868 0.762

M4GP-E 0.802 0.873 0.854 0.738

SLUG 0.827 0.864 0.877 0.730

6.2 Gametes Classification Tasks

Taking into consideration the results presented in Table 3, Fig. 4 and Appendix Table 5,
the first thing to notice is the fact that the standard GP baseline was one of the best meth-
ods on the 10-feature gametes problems. It outperformed both M4GP and M4GP-E on
the 10 005 dataset, M4GP-E on 10 01, and all except SLUG on 10 02 2. We hypoth-
esize that, on these easier problems, the exploration of different dimensional feature
spaces that M3GP and M4GP perform is not helpful to the search, preventing the
exploitation of better solutions.

Regarding our approach, the results were again highly positive, with SLUG invari-
ably being one of the top performing methods in all problems. The GA of SLUG is able
to filter out most, if not all, of the redundant features, which are then further filtered
by the standard GP populations, also producing a ready to use model to apply to the
problem.

On the 1000 04 dataset, SLUG produced results significantly worse than M4GP-E.
We attribute this to the default parameterization of SLUG, which always uses very small

2 We performed 30 runs using the same total number of comparisons as SLUG using the STGP
(10000 individuals and 1500 generations). With this, the median test accuracy achieved was
0.4982, while the best was 0.5348.

SLUG 75

Fig. 3. Performance on the non-gametes binary classification datasets. Each plot contains, for
each method, the results on the training (left) and test (right) sets.

populations of 100 individuals. Particularly in the GA, this is too small to appropriately
explore the search space on the 1000-feature problems, and therefore the method is
not fully capable of filtering out the redundant features. To confirm this hypothesis, we
ran SLUG with a larger GA population of 200 individuals. Although this is the double
of the previous population size, it is still a very low number of individuals for such
a large search space (however, further increasing the size of the population becomes
computationally demanding, an issue that is discussed later). We named this variation
SLUG Large (SLUG-L). As it can be seen on Fig. 5, particularly on the 1000 04 dataset,
SLUG-L is slightly improved, enough to be significantly better than the other solutions,
and not significantly worse than M4GP-E.

Once again we notice that SLUG exhibits a much lower dispersion of results than
most other methods (Fig. 4), this time not only on training but also on test. This remark-
able stability is shared by M4GP-E, although not so strongly.

7 Discussion

From the previous results we can state that SLUG is a powerful method that performs
feature selection while inducing high-quality models. On the set of four regular prob-
lems, it was one of the best methods in three of them. On the set of 10 gametes prob-
lems, it was always one of the best methods, although it required a larger population

76 N. M. Rodrigues et al.

Fig. 4. Performance on the gametes datasets. Each plot contains, for each method, the results on
the training (left) and test (right) sets.

SLUG 77

Fig. 5. Performance of different SLUG variants on the two higher dimensional gametes datasets.
Each plot contains, for each variant, the results on the training (left) and test (right) sets.

Table 3. Median test overall accuracy of the different methods on the gametes tasks. Best results
for each problem are identified in green, more than one when there are no statistically significant
differences.

10 005 10 01 10 02 10 04 100 005 100 01 100 02 100 04 1000 02 1000 04

GP 0.628 0.682 0.710 0.663 0.521 0.535 0.509 0.510 0.502 0.495

M3GP 0.622 0.677 0.692 0.796 0.513 0.637 0.680 0.537 0.490 0.507

M4GP 0.617 0.675 0.692 0.792 0.561 0.661 0.681 0.759 0.500 0.511

M4GP-E 0.613 0.665 0.699 0.784 0.607 0.672 0.709 0.781 0.692 0.775

SLUG 0.629 0.682 0.710 0.797 0.617 0.681 0.722 0.777 0.720 0.753

SLUG-L - - - - - - - - 0.720 0.757

size on one of them. On this one exception, one of the hardest problems, the other win-
ner besides SLUG-L was M4GP-E. Published results on M4GP [16] had already shown
that wrapping a feature selection method around a powerful classifier can improve the
results significantly, and here we confirm that indeed, M4GP-E is often significantly
better than M4GP. Reminding that SLUG is also the product of wrapping a feature
selection method (GA) around a powerful classifier (GP), our results reconfirm the
advantages of such an approach, since SLUG is very often significantly better than
standalone GP.

Naturally, we are interested in searching for the best match between wrapper and
learner, and we begin by exploring why SLUG performs so well; which of its parts
is more important, the GA wrapper of the GP learner. On the one hand, we observe
that M4GP is in general a stronger learner than GP; on the other hand, M4GP-E is not
stronger than SLUG. Therefore, GA seems to be a better wrapper than the EKF used
in M4GP-E, and the main responsible for the success of SLUG. While the combination
of GA with M4GP seems like a promising match to explore in the future, for now
we try to answer a simple question: is GA such a good wrapper that it can improve
also the performance of other ML methods, arguably less powerful than the GP-based
ones, like DT, RF and XGB? This question is not only academically interesting, but
also important from a practical point of view. Two evolutionary algorithms nested in

78 N. M. Rodrigues et al.

Fig. 6. Performance of different SLUG variants using DT, RF, XGB and GP (the original SLUG)
on the gametes 1000 04 problem. Each plot contains, for each variant, the results on the training
(left) and test (right) sets.

each other is never an efficient solution in terms of computational effort, so it is not a
surprise that SLUG is... sluggish. Any of the three other mentioned ML methods runs
much faster than GP, so wrapping GA around any of them could result in a much faster
SLUG. Furthermore, like GP, these methods can also perform feature selection on their
own, on top of the preselection made by GA. Therefore, we experiment with alternative
variants of SLUG where GP is replaced by DT, RF and XGB. The problem chosen to
test these variants is the gametes 1000 04, coincidentally the one problem where SLUG-
L was required because SLUG was not one of the best methods (see Sect. 6). We chose
this particular problem because it has already been used in previous studies [16,32]
where the standalone versions of DT, RF and XGB were unable to solve the problem.

The obtained results are shown in Fig. 6 and reveal that, even when wrapped with
GA, these methods are not able to solve the problem, and this means that GP is also
essential for the success of SLUG. Since the other methods also perform feature selec-
tion, the reason why GP is essential is not clear, particularly after observing that in one
of the 30 runs the DT method, which is undoubtedly the less powerful one, was able to
obtain a high-quality model (highest outlier in test, Fig. 6), and it did so after only 17
generations.

8 Conclusion and Future Work

We have presented SLUG, a method for feature selection using genetic algorithms (GA)
and genetic programming (GP). SLUG implements a co-operative approach between
these two evolutionary algorithms, where the quality of each GA individual is assessed
by doing a GP run with the features selected by GA. The GA acts like a wrapper, select-
ing features for GP, the learner. At the end of the process, both the set of GA selected
features and the best GP induced model are returned, and therefore SLUG comprises
the entire pipeline from data preprocessing to predictive modeling. No efforts are put
into the optimization of the model, as this is not the main purpose of our research.

SLUG 79

We tested SLUG on four regular binary classification datasets, and on 10 synthetic
datasets produced by GAMETES, a tool for embedding epistatic gene-gene interactions
into noisy datasets. We compared the results of SLUG with the ones obtained by stan-
dard GP and other GP-based methods like M3GP and two different M4GP variants, one
of them also wrapped by the EKF algorithm for feature selection. SLUG obtained the
best results in practically all the problems, with special relevance for the good results
obtained on the epistatic datasets, whose difficulty was the driver for this research in
the first place.

We discussed the merits and weaknesses of SLUG and the parts that compose it.
Its slowness is its obvious limitation, as it requires considerable computational effort
to run two evolutionary algorithms nested in each other. We experimented with alter-
native implementations, replacing the GP backbone of SLUG with faster methods like
decision trees, random forests and XGBoost, all wrapped with GA for feature selection.
However, even with tuned parameters, none of them was able to catch up with SLUG.

From the above, we conclude that SLUG is a powerful method that performs fea-
ture selection while inducing high-quality models, even without putting any efforts on
model optimization. In the future, we intend to address the main limitation of SLUG, by
reducing its computational demands and therefore making it less sluggish. Many other
improvements and extensions are possible, like the ones described below.

The backbone of SLUG is currently standard GP, which is not appropriate for mul-
ticlass classification. However, it can be replaced by other methods. The ones we tried
did not produce good models, however other options exist, including M3GP and M4GP
themselves, which are some of the best GP-based multiclass classification methods
available today. Replacing GP with M3GP would give us the added flexibility of being
allowed to plug any learning algorithm to the pipeline to work with the hyper-features
evolved by M3GP. Instead of GA+GP, we would have a GA+M3GP+classifier
pipeline, where GA preselects the features, M3GP uses them to build hyper-features
tailored to classifier, and classifier finally induces an optimized predictive model,
with the added advantage that the classifier can be whatever method best suits the needs
of the domain application. Naturally, the same rationale can be used for regression
instead of classification.

Regarding the improvement of the wrapper, the main issue with GA is, and has
always been, the delicate balance between exploration and exploitation, here with an
intense concern regarding computational demands. On the one hand, we want to make
GA converge faster to a good subset of selected features, also to save computational
effort; on the other hand, it must be able to properly explore the search space, partic-
ularly on the most difficult higher dimensional problems, but without requiring large
populations which would increase the computational time. We finalize by presenting
some ideas on how to deal with this.

In order to accelerate convergence, GP (or any other backbone SLUG is using)
could inform GA of what features are actually being used, from the ones preselected. In
case the backbone does not perform feature selection itself, it can probably still inform
what features are more important. This way, the GA could use more information from
the learner than just the fitness achieved with each subset of features, increasing the
cooperation between the two methods. It is reasonable to think that, in this case, the

80 N. M. Rodrigues et al.

GA binary chromosomes would become real-valued ones, where each bit would now
contain a sort of probability of selecting each feature, that the learner could use to
build its own models. In order to promote the exploration of the search space without
having to increase the population size, and particularly when adding measures for faster
convergence, our idea is to use novelty search [20] on the GA in order to increase the
bias towards yet unexplored subsets of features.

Acknowledgment. This work was supported by FCT, Portugal, through funding of LASIGE
Research Unit (UIDB/00408/2020 and UIDP/00408/2020); MAR2020 program via project
MarCODE (MAR-01.03.01-FEAMP-0047); projects BINDER (PTDC/CCI-INF/29168/2017),
AICE (DSAIPA/DS/0113/2019), OPTOX (PTDC/CTA-AMB/30056/2017) and GADgET
(DSAIPA/DS/0022/2018). Nuno Rodrigues and João Batista were supported by PhD Grants
2021/05322/BD and SFRH/BD/143972/2019, respectively; William La Cava was supported by
the National Library Of Medicine of the National Institutes of Health under Award Number
R00LM012926.

Appendix

Table 4. Holm corrected p-values using Kruskal-Wallis for the regular classification problems.

HRT GP M3GP M4GP M4GP-E SLUG

GP — 0.9922 1.1556 0.2843 0.0027

M3GP 0.9922 — 0.6884 0.8486 0.0490

M4GP 1.1556 0.6884 — 0.6599 0.0124

M4GP-E 0.2843 0.8486 0.6599 — 0.7852

SLUG 0.0027 0.0490 0.0124 0.7852 —

PRK GP M3GP M4GP M4GP-E SLUG

GP — 0.0000 0.7658 0.0627 0.0441

M3GP 0.0000 — 0.0597 0.4882 0.1015

M4GP 0.7658 0.0597 — 0.8317 0.7966

M4GP-E 0.0627 0.4882 0.8317 — 0.7220

SLUG 0.0441 0.1015 0.7966 0.7220 —

ION GP M3GP M4GP M4GP-E SLUG

GP — 0.3297 2.2914 1.6595 0.3457

M3GP 0.3297 — 0.9674 0.3734 0.9704

M4GP 2.2914 0.9674 — 1.7345 1.1531

M4GP-E 1.6595 0.3734 1.7345 — 0.3530

SLUG 0.3457 0.9704 1.1531 0.3530 —

SON GP M3GP M4GP M4GP-E SLUG

GP — 0.0000 0.0010 0.0154 0.3311

M3GP 0.0000 — 0.2653 0.3660 0.0232

M4GP 0.0010 0.2653 — 0.6295 0.2414

M4GP-E 0.0154 0.3660 0.6295 — 0.4270

SLUG 0.3311 0.0232 0.2414 0.4270 —

SLUG 81

Table 5. Holm corrected p-values using Kruskal-Wallis for the gametes problems.

10 005 GP M3GP M4GP M4GP-E SLUG

GP — 1.1109 0.0673 0.0107 0.9234

M3GP 1.1109 — 0.8996 0.2383 0.5035

M4GP 0.0673 0.8996 — 0.7535 0.0433

M4GP-E 0.0107 0.2383 0.7535 — 0.0117

SLUG 0.9234 0.5035 0.0433 0.0117 —

10 01 GP M3GP M4GP M4GP-E SLUG

GP — 0.2129 0.0701 0.0194 0.5589

M3GP 0.2129 — 1.3918 0.5030 0.4243

M4GP 0.0701 1.3918 — 0.9644 0.1472

M4GP-E 0.0194 0.5030 0.9644 — 0.0241

SLUG 0.5589 0.4243 0.1472 0.0241 —

10 02 GP M3GP M4GP M4GP-E SLUG

GP — 0.0000 0.0017 0.0021 1.4559

M3GP 0.0000 — 0.7673 0.4077 0.0001

M4GP 0.0017 0.7673 — 0.8110 0.0020

M4GP-E 0.0021 0.4077 0.8110 — 0.0109

SLUG 1.4559 0.0001 0.0020 0.0109 —

10 04 GP M3GP M4GP M4GP-E SLUG

GP — 0.0000 0.0000 0.0000 0.0000

M3GP 0.0000 — 0.8301 0.1779 1.3901

M4GP 0.0000 0.8301 — 0.3962 1.3785

M4GP-E 0.0000 0.1779 0.3962 — 0.0975

SLUG 0.0000 1.3901 1.3785 0.0975 —

100 005 GP M3GP M4GP M4GP-E SLUG

GP — 0.3509 0.3911 0.0012 0.0001

M3GP 0.3509 — 0.0213 0.0000 0.0000

M4GP 0.3911 0.0213 — 0.0000 0.0000

M4GP-E 0.0012 0.0000 0.0000 — 0.3713

SLUG 0.0001 0.0000 0.0000 0.3713 —

100 01 GP M3GP M4GP M4GP-E SLUG

GP — 0.9823 0.0148 0.0060 0.0001

M3GP 0.9823 — 0.0599 0.0072 0.0000

M4GP 0.0148 0.0599 — 0.2304 0.0006

M4GP-E 0.0060 0.0072 0.2304 — 0.0796

SLUG 0.0001 0.0000 0.0006 0.0796 —

100 02 GP M3GP M4GP M4GP-E SLUG

GP — 0.3664 0.0040 0.0000 0.0000

M3GP 0.3664 — 0.2970 0.0001 0.0000

M4GP 0.0040 0.2970 — 0.0005 0.0000

M4GP-E 0.0000 0.0001 0.0005 — 0.0365

SLUG 0.0000 0.0000 0.0000 0.0365 —

100 04 GP M3GP M4GP M4GP-E SLUG

GP — 0.0728 0.0000 0.0000 0.0000

M3GP 0.0728 — 0.0539 0.0000 0.0001

M4GP 0.0000 0.0539 — 0.0015 0.0084

M4GP-E 0.0000 0.0000 0.0015 — 0.1311

SLUG 0.0000 0.0001 0.0084 0.1311 —

1000 02 GP M3GP M4GP M4GP-E SLUG SLUG-L

GP — 0.4726 0.5740 0.0000 0.0000 0.0000

M3GP 0.4726 — 0.0718 0.0000 0.0000 0.0000

M4GP 0.5740 0.0718 — 0.0000 0.0000 0.0000

M4GP-E 0.0000 0.0000 0.0000 — 0.0003 0.0000

SLUG 0.0000 0.0000 0.0000 0.0003 — 0.9174

SLUG-L 0.0000 0.0000 0.0000 0.0000 0.9174 —

1000 04 GP M3GP M4GP M4GP-E SLUG SLUG-L

GP — 0.3560 0.0676 0.0000 0.0000 0.0000

M3GP 0.3560 — 0.2035 0.0000 0.0000 0.0000

M4GP 0.0676 0.2035 — 0.0000 0.0000 0.0000

M4GP-E 0.0000 0.0000 0.0000 — 0.0114 0.1650

SLUG 0.0000 0.0000 0.0000 0.0114 — 0.3762

SLUG-L 0.0000 0.0000 0.0000 0.1650 0.3762 —

References

1. Aguirre, H.E., Tanaka, K.: Genetic algorithms on NK-landscapes: effects of selection, drift,
mutation, and recombination. In: Cagnoni, S., et al. (eds.) Applications of Evolutionary
Computing, pp. 131–142. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
78761-7

2. Altenberg, L.: B2.7.2. NK fitness landscapes. In: Handbook of Evolutionary Computation.
pp. B2.7:5–B2.7:10. IOP Publishing Ltd. and Oxford University Press, London (1997)

3. Ansarifar, J., Wang, L.: New algorithms for detecting multi-effect and multi-way
epistatic interactions. Bioinformatics 35(24), 5078–5085 (2019). https://doi.org/10.1093/
bioinformatics/btz463

4. Chaikla, N., Qi, Y.: Genetic algorithms in feature selection. In: IEEE SMC 1999 Conference
Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat.
No. 99CH37028). vol. 5, pp. 538–540 (1999). https://doi.org/10.1109/ICSMC.1999.815609

https://doi.org/10.1007/978-3-540-78761-7
https://doi.org/10.1007/978-3-540-78761-7
https://doi.org/10.1093/bioinformatics/btz463
https://doi.org/10.1093/bioinformatics/btz463
https://doi.org/10.1109/ICSMC.1999.815609

82 N. M. Rodrigues et al.

5. Chan, K., Aydin, M., Fogarty, T.: An epistasis measure based on the analysis of variance for
the real-coded representation in genetic algorithms. In: The 2003 Congress on Evolutionary
Computation, 2003, CEC 2003. vol. 1, pp. 297–304 (2003). https://doi.org/10.1109/CEC.
2003.1299588

6. Chiesa, M., Maioli, G., Colombo, G.: GARS: Genetic algorithm for the identification of
a robust subset of features in high-dimensional datasets. BMC Bioinform. 21(54) (2020).
https://doi.org/10.1186/s12859-020-3400-6

7. Cordell, H.J.: Epistasis: what it means, what it doesn’t mean, and statistical methods to detect
it in humans. Hum. Mol. Gene. 11(20), 2463–2468 (2002). https://doi.org/10.1093/hmg/11.
20.2463

8. Davidor, Y.: Epistasis variance: a viewpoint on GA-hardness. Found. Gen. Algorithms 1,
23–35 (1991). https://doi.org/10.1016/B978-0-08-050684-5.50005-7

9. Dua, D., Graff, C.: UCI Machine Learning Repository (2017). http://archive.ics.uci.edu/ml
10. Garcı́a-Dominguez, A., et al.: Feature selection using genetic algorithms for the generation

of a recognition and classification of children activities model using environmental sound.
Mob. Inf. Syst. 2020, 12 p (2020). 8617430. https://doi.org/10.1155/2020/8617430

11. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis, The Uni-
versity of Waikato (1999)

12. Hussein, F., Kharma, N., Ward, R.: Genetic algorithms for feature selection and weighting, a
review and study. In: Proceedings of Sixth International Conference on Document Analysis
and Recognition, pp. 1240–1244 (2001). https://doi.org/10.1109/ICDAR.2001.953980

13. Jafari, S., Kapitaniak, T., Rajagopal, K., Pham, V.-T., Alsaadi, F.E.: Effect of epistasis on the
performance of genetic algorithms. J. Zhejiang Univ.-Sci. A 20(2), 109–116 (2018). https://
doi.org/10.1631/jzus.A1800399

14. Kononenko, I.: Estimating attributes: analysis and extensions of relief. In: ECML (1994)
15. Korns, M.F.: Genetic programming symbolic classification: A study. In: Banzhaf, W., Olson,

R.S., Tozier, W., Riolo, R. (eds.) Genetic Programming Theory and Practice XV, pp. 39–54.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90512-9

16. La Cava, W., Silva, S., Danai, K., Spector, L., Vanneschi, L., Moore, J.H.: Multidimen-
sional genetic programming for multiclass classification. Swarm Evol. Comput. 44, 260–272
(2019). https://doi.org/10.1016/j.swevo.2018.03.015

17. Lanzi, P.: Fast feature selection with genetic algorithms: a filter approach. In: Proceedings of
1997 IEEE International Conference on Evolutionary Computation (ICEC 1997). pp. 537–
540 (1997). https://doi.org/10.1109/ICEC.1997.592369

18. Lavine, B.K., White, C.G.: Boosting the performance of genetic algorithms for variable
selection in partial least squares spectral calibrations. Appl. Spectrosc. 71(9), 2092–2101
(2017)

19. Lee, J., Kim, Y.H.: Epistasis-based basis estimation method for simplifying the problem
space of an evolutionary search in binary representation. Complexity 2019, 2095167, 13
pages (2019)

20. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search
for novelty. In: Proceedings of the Eleventh International Conference on Artificial Life, Alife
XI. MIT Press, Cambridge (2008)

21. Li, A.D., Xue, B., Zhang, M.: Multi-objective feature selection using hybridization of a
genetic algorithm and direct multisearch for key quality characteristic selection. Inf. Sci.
523, 245–265 (2020). https://doi.org/10.1016/j.ins.2020.03.032

22. Mathias, K.E., Eshelman, L.J., Schaffer, J.D.: Niches in NK-landscapes. In: Martin, W.N.,
Spears, W.M. (eds.) Foundations of Genetic Algorithms, vol. 6, pp. 27–46. Morgan Kauf-
mann, San Francisco (2001). https://doi.org/10.1016/B978-155860734-7/50085-8

https://doi.org/10.1109/CEC.2003.1299588
https://doi.org/10.1109/CEC.2003.1299588
https://doi.org/10.1186/s12859-020-3400-6
https://doi.org/10.1093/hmg/11.20.2463
https://doi.org/10.1093/hmg/11.20.2463
https://doi.org/10.1016/B978-0-08-050684-5.50005-7
http://archive.ics.uci.edu/ml
https://doi.org/10.1155/2020/8617430
https://doi.org/10.1109/ICDAR.2001.953980
https://doi.org/10.1631/jzus.A1800399
https://doi.org/10.1631/jzus.A1800399
https://doi.org/10.1007/978-3-319-90512-9
https://doi.org/10.1016/j.swevo.2018.03.015
https://doi.org/10.1109/ICEC.1997.592369
https://doi.org/10.1016/j.ins.2020.03.032
https://doi.org/10.1016/B978-155860734-7/50085-8

SLUG 83

23. Merz, P., Freisleben, B.: On the effectiveness of evolutionary search in high-dimensional
NK-landscapes. In: 1998 IEEE International Conference on Evolutionary Computation Pro-
ceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), pp.
741–745 (1998). https://doi.org/10.1109/ICEC.1998.700144

24. Mo, H., Li, Z., Zhu, C.: A kind of epistasis-tunable test functions for genetic algorithms.
Concurr. Comput. Pract. Exp. 33(8), e5030 (2021). https://doi.org/10.1002/cpe.5030

25. Muñoz, L., Silva, S., Trujillo, L.: M3GP- multiclass classification with GP. In: EuroGP
(2015)

26. Nazareth, D.L., Soofi, E.S., Zhao, H.: Visualizing attribute interdependencies using mutual
information, hierarchical clustering, multidimensional scaling, and self-organizing maps. In:
2007 40th Annual Hawaii International Conference on System Sciences (HICSS 2007), pp.
53–53 (2007). https://doi.org/10.1109/HICSS.2007.608

27. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–
2830 (2011)

28. Pelikan, M., Sastry, K., Goldberg, D.E., Butz, M.V., Hauschild, M.: Performance of evolu-
tionary algorithms on NK landscapes with nearest neighbor interactions and tunable over-
lap. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computa-
tion, GECCO 2009, pp. 851–858. Association for Computing Machinery, New York (2009).
https://doi.org/10.1145/1569901.1570018

29. Petinrin, O.O., Wong, K.C.: Protocol for epistasis detection with machine learning using
GenEpi package. Methods Mol. Biol. 2212, 291–305 (2021)

30. Reeves, C.R., Wright, C.C.: Epistasis in genetic algorithms: an experimental design per-
spective. In: Proceedings of the 6th International Conference on Genetic Algorithms. pp.
217–224. Morgan Kaufmann Publishers Inc., San Francisco (1995)

31. Rochet, S.: Epistasis in genetic algorithms revisited. Infor. Sci. 102(1), 133–155 (1997).
https://doi.org/10.1016/S0020-0255(97)00017-0

32. Rodrigues, N.M., Batista, J.E., Silva, S.: Ensemble genetic programming. In: Hu, T.,
Lourenço, N., Medvet, E., Divina, F. (eds.) Genetic Programming, pp. 151–166. Springer,
Cham (2020). https://doi.org/10.1007/978-3-319-30668-1

33. Seo, K.-K.: Content-Based Image Retrieval by Combining Genetic Algorithm and Support
Vector Machine. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds.) ICANN 2007.
LNCS, vol. 4669, pp. 537–545. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74695-9 55

34. Shik Shin, K., Lee, Y.J.: A genetic algorithm application in bankruptcy prediction modeling.
Expert Syst. Appl. 23, 321–328 (2002)

35. Smith, M.G., Bull, L.: Feature construction and selection using genetic programming and a
genetic algorithm. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
Genetic Programming, pp. 229–237. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-319-30668-1

36. Sohn, A., Olson, R.S., Moore, J.H.: Toward the automated analysis of complex diseases in
genome-wide association studies using genetic programming. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2017, pp. 489–496. Association for
Computing Machinery, New York (2017). https://doi.org/10.1145/3071178.3071212

37. Tinós, R., Whitley, D., Chicano, F.: Partition crossover for pseudo-Boolean optimization.
In: Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII,
FOGA 2015, pp. 137–149. Association for Computing Machinery, New York (2015). https://
doi.org/10.1145/2725494.2725497

38. Urbanowicz, R., Kiralis, J., Sinnott-Armstrong, N., et al.: GAMETES: a fast, direct algorithm
for generating pure, strict, epistatic models with random architectures. BioData Mining 5(16)
(2012). https://doi.org/10.1186/1756-0381-5-16

https://doi.org/10.1109/ICEC.1998.700144
https://doi.org/10.1002/cpe.5030
https://doi.org/10.1109/HICSS.2007.608
https://doi.org/10.1145/1569901.1570018
https://doi.org/10.1016/S0020-0255(97)00017-0
https://doi.org/10.1007/978-3-319-30668-1
https://doi.org/10.1007/978-3-540-74695-9_55
https://doi.org/10.1007/978-3-540-74695-9_55
https://doi.org/10.1007/978-3-319-30668-1
https://doi.org/10.1007/978-3-319-30668-1
https://doi.org/10.1145/3071178.3071212
https://doi.org/10.1145/2725494.2725497
https://doi.org/10.1145/2725494.2725497
https://doi.org/10.1186/1756-0381-5-16

84 N. M. Rodrigues et al.

39. Urbanowicz, R.J., Kiralis, J., Sinnott-Armstrong, N.A., Heberling, T., Fisher, J.M., Moore,
J.H.: Gametes: a fast, direct algorithm for generating pure, strict, epistatic models with ran-
dom architectures. BioData Mining 5, 16–16 (2012)

40. Urbanowicz, R.J., Meeker, M., La Cava, W., Olson, R.S., Moore, J.H.: Relief-based feature
selection: Introduction and review. J. Biomed. Inf. 85, 189–203 (2018). https://doi.org/10.
1016/j.jbi.2018.07.014

41. Vanneschi, L., Castelli, M., Manzoni, L.: The K landscapes: a tunably difficult benchmark
for genetic programming. In: Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, GECCO 2011, Association for Computing Machinery, New York
(2011). https://doi.org/10.1145/2001576.2001773

42. Wutzl, B., Leibnitz, K., Rattay, F., Kronbichler, M., Murata, M., Golaszewski, S.M.: Genetic
algorithms for feature selection when classifying severe chronic disorders of consciousness.
PLoS ONE 14(7), 1–16 (2019). https://doi.org/10.1371/journal.pone.0219683

43. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation
approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016). https://
doi.org/10.1109/TEVC.2015.2504420

44. Zhang, S.: sonar.all-data (2018). https://www.kaggle.com/ypzhangsam/sonaralldata

https://doi.org/10.1016/j.jbi.2018.07.014
https://doi.org/10.1016/j.jbi.2018.07.014
https://doi.org/10.1145/2001576.2001773
https://doi.org/10.1371/journal.pone.0219683
https://doi.org/10.1109/TEVC.2015.2504420
https://doi.org/10.1109/TEVC.2015.2504420
https://www.kaggle.com/ypzhangsam/sonaralldata

Evolutionary Design of Reduced Precision
Levodopa-Induced Dyskinesia Classifiers

Martin Hurta1(B) , Michaela Drahosova1 , Lukas Sekanina1 ,
Stephen L. Smith2 , and Jane E. Alty3,4

1 Faculty of Information Technology, Brno University of Technology,
Brno, Czech Republic

{ihurta,drahosova,sekanina}@fit.vut.cz
2 Department of Electronic Engineering, University of York, York, UK

stephen.smith@york.ac.uk
3 Wicking Dementia Centre, University of Tasmania, Hobart, Australia

jane.alty@utas.edu.au
4 Neurology Department, Leeds Teaching Hospitals NHS Trust, Leeds, UK

Abstract. Parkinson’s disease is one of the most common neurological
conditions whose symptoms are usually treated with a drug containing
levodopa. To minimise levodopa side effects, i.e. levodopa-induced dysk-
inesia (LID), it is necessary to correctly manage levodopa dosage. This
article covers an application of cartesian genetic programming (CGP)
to assess LID based on time series collected using accelerators attached
to the patient’s body. Evolutionary design of reduced precision classi-
fiers of LID is investigated in order to find a hardware-efficient classifier
together with classification accuracy as close as possible to a baseline
software implementation. CGP equipped with the coevolution of adap-
tive size fitness predictors (coASFP) is used to design LID-classifiers
working with fixed-point arithmetics with reduced precision, which is
suitable for implementation in application-specific integrated circuits. In
this particular task, we achieved a significant evolutionary design com-
putational cost reduction in comparison with the original CGP. More-
over, coASFP effectively prevented overfitting in this task. Experiments
with reduced precision LID-classifier design show that evolved classifiers
working with 8-bit unsigned integer data representation, together with
the input data scaling using the logical right shift, not only significantly
outperformed hardware characteristics of all other investigated solutions
but also achieved a better classifier accuracy in comparison with classi-
fiers working with the floating-point numbers.

Keywords: Cartesian genetic programming · Coevolution · Adaptive
size fitness predictors · Energy-efficient · Hardware-oriented ·
Fixed-point arithmetic · Levodopa-induced dyskinesia · Parkinson’s
disease

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 85–101, 2022.
https://doi.org/10.1007/978-3-031-02056-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_6&domain=pdf
http://orcid.org/0000-0002-7915-8147
http://orcid.org/0000-0003-1217-4609
http://orcid.org/0000-0002-2693-9011
http://orcid.org/0000-0002-6885-2643
http://orcid.org/0000-0002-5456-8676
https://doi.org/10.1007/978-3-031-02056-8_6

86 M. Hurta et al.

1 Introduction

Parkinson’s disease (PD) is one of the most common neurological conditions affect-
ing approximately 1% of the population over 65 years of age [1,6]. PD is of unknown
cause, and there is no known cure. Patient care consists primarily of suppressing
symptoms and thus maintaining the quality of life for as long as possible. The
key clinical features of PD comprise bradykinesia, rigidity, tremor and postural
instability, which result from dopamine deficiency in part of the brain called sub-
stantia nigra. These symptoms are often treated with the dopamine-replacement
drug levodopa. The right dosage is very important in order to suppress PD symp-
toms and sign and, at the same time to avoid the drug’s troublesome side effects,
including involuntary and often violent muscle spasms, i.e. levodopa-induced dyski-
nesia (LID). Easy and accurate detection of motor abnormalities that people with
PD experience, such as bradykinesia and dyskinesia, is thus crucial for sufficient
dosage adjustment. A small low-power solution that could be implemented directly
into a home wearable device would enable long-term continuous monitoring of peo-
ple with PD in their own homes and allow clinicians accurate assessment of their
patient’s condition and the advised adjustment of levodopa dosage.

Many studies are concerned with a determination of motor difficulties that
people with PD experience, including bradykinesia, tremor or LID, while focused
mainly on the accuracy of classifiers [1]. Thus, approaches using extracted high-
level features, spectral analysis and artificial neural networks are common.

Efforts at designing energy-efficient solutions are then usually focused on
the low power design of sensor units sending data to other devices for addi-
tional evaluation [2,5,8]. Zhu et al. [14] proposed an energy-efficient solution for
tremor detection that considers the power estimation of individual features and
uses fixed-point arithmetic together with a decision tree. However, this solution
involves an invasive source of data, in the form of a local field potential recordings
from deep brain stimulation lead implanted to patients.

Lones et al. [6] introduced an approach consisting in the use of genetic pro-
gramming (GP) and symbolic classifier models based upon low-level features of
the movement data (e.g. raw acceleration values) contrary to the use of neural
networks and higher-level features (e.g. signal energy and spectral powers over
frequency ranges). They developed a non-invasive wearable monitoring system
for assessing dyskinesia in people with PD. Sensing modules comprised a tri-
axial accelerometer and tri-axial gyroscope, and stored data in local memory. In
clinical studies, the data was downloaded to a computer for further processing.

We have adopted their work with the goal to evolve LID-classifiers with
respect to hardware implementation. The subject aspects include area on a
chip, delay and power consumption. Our target is a highly optimized energy-
efficient implementation of a trained classifier that could easily be instantiated
in an application-specific integrated circuit (ASIC) along with the classification
accuracy as close as possible to a baseline software implementation.

In order to consume less energy, we replace standard floating-point oper-
ations with arithmetic operations with reduced precision in the fixed-point
representation because they are less energy demanding. Sze et al. [13] illustrate

Evolutionary Design of Reduced Precision LID-Classifier 87

an impact of using 8-bit fixed point on energy and area: An 8-bit fixed-point add
consumes 3.3 times less energy and 3.8 times less area than a 32-bit fixed-point
add, considering that the energy and area of a fixed-point add scale approxi-
mately linearly (of a fixed-point multiply approximately quadratically) with the
number of bits of operands. Moreover, reducing the precision also reduces the
energy and area cost for storage. The energy and area of memory scale approx-
imately linearly with the number of bits.

To develop candidate LID-classifiers, we use cartesian genetic programming
equipped with coevolution of adaptive fitness predictors (CGPcoASFP) [3] in
order to accelerate classifier evolution. Formerly CGPcoASFP was applied in a
symbolic regression task where coevolved predictors were used to estimate a fitness
function in terms of score and in the image filter design task where an estimated
fitness was peak signal-to-noise ratio (PSNR) [3]. Thus the evolution of classifier
employing the AUC-based (i.e. Area Under the receiver operating characteristics
Curve) fitness function can be seen as a new application for CGPcoASFP.

2 LID-Classifier Design

2.1 Clinical Study Data

In this work, we adopt two clinical studies that are used by Lones et al. [6] and
that were conducted at Leeds Teaching Hospitals NHS Trust, UK. Ethics approval
was granted and all participants gave written informed consent. Participants were
recruited from the Neurology clinics if they had a confirmed diagnosis of PD
and also objective evidence of LID. In both studies, sensing modules containing
accelerometers and gyroscopes, each able to record movement data in the three
spatial and three rotational planes at a sample rate of 100 Hz, were fitted to the
patient’s legs, arms, torso, head and trunk. At the same time, a camera was used
to record patients’ movements. Then trained clinicians analysed the video to mark
up periods of LID while using the standard UDysRS (Unified Dyskinesia Rating
Scale) scoring system. This scoring system grades LID from 0 (no dyskinesia) to
4 (severe dyskinesia). A summary of data collected from the studies is shown in
Table 1. Moreover, marked periods contain information about patients movement
activities, e.g. (patient is) sitting at rest, walking, drinking from cup, talking, etc.

Table 1. Number of examples of each dyskinesia grade (according to UDysRS) col-
lected from the two studies [6].

LID grade Study 1 Study 2

0 (normal, no dyskinesia) 2939 1747

1 (slight dyskinesia) 1227 971

2 (mild dyskinesia) 1688 652

3 (moderate dyskinesia) 681 183

4 (severe dyskinesia) 64 361

88 M. Hurta et al.

2.2 Data Preprocessing

The clinical studies provide the data sampled using a triaxial accelerometer and
a triaxial gyroscope. There are six values (i.e. three spatial and three rotational
values) at each time index. Each data item also contains a LID grade determined
by clinicians as described above.

For further processing, the acceleration values at each time index are modi-
fied, as well as in [6], by calculating the magnitude, using the formula:

|a| =
√

(|a1|2 + |a2|2 + |a3|2). (1)

As the proposed solution should be suitable for an ASIC, it is suggested to
use a fixed-point representation (FX) contrary to a floating-point representation
(FP). Hence, we propose to employ the following data representations: signed
8-bit integer (FX-8s), unsigned 8-bit integer (FX-8u), signed 16-bit integer (FX-
16s) and unsigned 16-bit integer (FX-16u). The range of values, calculated using
Eq. 1, is between 23.33 and 7064.46 for spatial records, which fits only FX-16s
and FX-16u data representations when these values are rounded down. However,
it is necessary to scale the values to the ranges required for FX-8s and FX-8u.
In our initial experiments, we used a formula for scaling to the 8-bit ranges:

di =
xi − xmin

xmax − xmin
· (dmax − dmin) + dmin, (2)

where xi ∈ M denotes the original (FP) value in the set of all magnitude values
M calculated using Eq. 1, and values xmax and xmin represent the maximum, and
the minimum respectively, values in M . Values dmax and dmin are the maximum,
and the minimum of, respectively, possible target values. In our experiments, we
use scaling to [−128, 127] and [0, 127] to evolve LID-classifiers with FX-8s and
scaling to [0, 255] for FX-8u.

Although the use of Eq. 2 has shown promising results (see Fig. 4a), an alter-
native method based on a bit shift operation, which is easier to implement in
hardware than Eq. 2, is examined in further experiments. As the logical right
shift by five bits is very close to the result of Eq. 2 (i.e. division by around 28),
the examined data scaling consists in binary input value shifting right by 3 up
to 8 bits, i.e. three up to eight least-significant bits of the classifier input values
are lost.

2.3 Classifier Model

In order to automatically design LID-classifiers, we have adopted the classifier
model introduced by Lones et al. [6], except the training algorithm. As each
record of patient’s movements is cut into periods, of different lengths, according
to the UDysRS LID grade it characterizes, each period (i.e. a time series) is used
as a single fitness case for LID-classifier training.

A fitness case consists of L calculated magnitudes of acceleration. The fitness
case is processed during classification in the following way: L − 31 overlapping

Evolutionary Design of Reduced Precision LID-Classifier 89

Fig. 1. LID-classifier model. The resulting response determines the LID grade by apply-
ing a threshold to the response range of the classifier.

windows of length 32 (0.32 s) generate L−31 vectors for the classifier inputs. The
classifier generates an output for each of the L − 31 vectors, and the resulting
response from the classifier is then expressed as the mean of output values. The
resulting response determines the LID grade (i.e. one of five classes) by applying
a threshold to the response range of the classifier. The procedure of fitness case
classification is illustrated in Fig. 1.

2.4 Classifier Training

For the automated design of LID-classifier, we propose to use GP, which is suit-
able for searching for executable structures, such as classifiers. We employ a
variant of GP, the cartesian genetic programming (CGP) [10], which has been
repeatedly used in solving problems of prediction and classification while achiev-
ing very good results [9]. In addition, CGP was successful in various related top-
ics, such as the design of efficient digital circuits [7] and medical applications [12].
Many variants and improvements of CGP are summarized in [11]. In previous
research, Lones et al. [6] employed implicit-context CGP to train LID-classifiers.
We experience standard CGP representation [10] and the CGP equipped with
the coevolution of adaptive size fitness predictors (CGPcoASFP) [3] in order to
accelerate classifier evolution.

As the considered classifiers operate over a sliding window consisting of 32
samples, each candidate classifier can utilise up to 32 inputs, i.e. ni = 32, of
the following data representations: FP, 8-bit FX, and 16-bit FX. These data
representations are also used in a classifier response in a form of single value,
i.e. n0 = 1, and in the set of functions Γ , working over two operands i1 and i2.
Classifier evolution is operated using a simple (1 + λ) evolutionary algorithm.

As a fitness function determining the quality of classifiers we use AUC
(Area Under the receiver operating characteristics Curve), which allows accurate
assessment of the ability to distinguish classes without defining a threshold value.
Algorithm 1 provides a pseudo-code of AUC-based fitness calculation procedure.

90 M. Hurta et al.

Algorithm 1: Pseudo-code for AUC-based fitness calculation
Function calculate auc(responses):

TPR = 0; FPR = 0; AUC = 0; // True & False Positive Rate, Area Under the Curve
TPR step = 1/count N target responses(responses);
FPR step = 1/count P target responses(responses);
coords = [(0,0)]; // The ROC curve has the TPR on y axis and the FPR on x axis

sort(responses); // Sort responses in descending order

// Calculate TPR and FPR for all thresholds
for (i = 0, i <count(responses), i++) do

if responses[i].target == P then // TP classifier response, TPR increase
TPR += TPR step;

else // FP classifier response, FPR increase
FPR += FPR step;

end
/* Append current FPR and TPR to coordinates for ROC construction; for more

items with the same response, coordinates appended only once */
if responses[i].output != responses[i+1].output then

coords.append((FPR,TPR));
end

end

// Calculate the area under the curve using the trapezoidal rule
for (i = 0, i <count(coords)-1, i++) do

AUC += (coords[i+1].x - coords[i].x) * 0.5 * (coords[i].y + coords[i+1].y);
end
return AUC

Besides standard CGP, we employ CGPcoASFP in this task to accelerate
the time demanding fitness evaluations. Drahosova et al. [3] developed a com-
bination of fitness prediction with coevolution in CGP to reduce the number
of expensive full fitness evaluations. The method replaces some of the objective
fitness evaluations with an estimated fitness calculated using only a small part
of training set and thus accelerates the training process.

In the CGPcoASFP algorithm, candidate programs are evolved using the
usual (1 + λ) evolutionary strategy together with a population of fitness predic-
tors evolved with a simple genetic algorithm. Two archives of the best solutions
supplement these two populations. An archive of the best fitness predictor is
used for the fitness evaluation of candidate programs. An archive called fitness
trainers with the best candidate programs, partially filled with random pro-
grams, is used for predictors evaluation. In addition, these fitness predictors
adapt their size, i.e. the number of fitness cases they use for fitness estimation,
using a heuristic method proposed in [3]. The variable size of fitness predictor
helps to evaluate classifiers on the proper amount of input data, i.e. to find a
good trade-off between the time and quality of evaluation.

3 Experimental Setup

Training Data Set: In order to train classifiers, we use solely the first data
set, i.e. clinical study 1 described in Sect. 2.1, where, due to the size of sliding
window, only data items with a minimal length of 32 samples are employed.

Evolutionary Design of Reduced Precision LID-Classifier 91

Table 2. Groups of data items from clinical study 2 structured to evaluate classifiers
by LID grades and patient’s activities separately. Due to the sliding window size (i.e.
32 samples), data items (from the two clinical studies, Table 1) of a length lower than
32 samples are excluded for training and evaluation.

Group LID grade number of LID grade number of

class N data items N class P data items P

LID 1 0 1588 1 895

LID 2 0 1588 2 628

LID 3 0 1588 3 179

LID 4 0 1588 4 361

Walking 0 90 3, 4 21

Sitting-at-rest 0 733 3, 4 170

As described in [6], only data of LID grade 0, understood to be LID negative
(N), and merged grades 3 and 4, understood to be LID positive (P), are used
for training. The reason is that it is easier to generate robust classifiers when
grades 1 and 2 are not involved during training, as described in [6]. It means
that the training set consists of 2939 fitness cases with target class N and 745
fitness cases with target class P. Therefore, the resulting classifier is binary. The
severity of LID (see Table 1), i.e. one of five classes, is then decided by applying
a threshold to the response range of the classifier according to LID grades that
occurred in clinical study 1.

Test Data Set: Classifiers are evaluated using the second data set, i.e. clinical
study 2 described in Sect. 2.1, in order to obtain an evaluation on unseen data.
The second data set is divided into four groups, each containing the data items
of grade 0 and data items of one of the remaining grades, see Table 2. This allows
measuring the quality of LID-classifier (in terms of AUC) for each LID grade
separately. As each data item in the clinical studies contains information about
patient movement activity, two additional groups of data items of walking and
sitting-at-rest patient activities are utilised. These groups contain only data of
LID grades 0, as class N, and merged grades 3 and 4, as class P.

3.1 Experiments

In order to evolve LID-classifiers that can be easily implemented in an ASIC, we
applied CGP to design classifiers working with FX-16u, FX-16s, FX-8u, and FX-
8s. To evaluate the proposed approach, the following experiments are investigated:

Experiment E1: All examined LID-classifiers are designed using standard
CGP and CGP equipped with the coevolution of adaptive size fitness predic-
tors (CGPcoASFP). These approaches are compared in terms of the quality of
evolved classifiers (AUC) and the time of evolutionary design. This experiment
aims to examine CGPcoASFP in a new task, i.e. the classifier design employing
the AUC-based fitness function.

92 M. Hurta et al.

Experiment E2: In order to investigate the possibility of evolved LID-
classifiers with reduced precision along with classification accuracy as close as
possible to a baseline software implementation, we compare the AUC of LID-
classifiers working with 8-bit and 16-bit FX with the AUC of evolved classifier
working with 32-bit FP. In our experiments, we consider the following five data
representations: 1) FP, 2) FX-8u, 3) FX-8s, 4) FX-16u, and 5) FX-16s.

In addition to these experiments, we examine two ways of input values scaling
for 8-bit processing: (1) using Eq. 2, as described in Sect. 2.2, and (2) using the
bit-shift operation, i.e. scaling of binary input value using shifting right by 3 up
to 8 bits (SR-3, SR-4, SR-5, SR-6, SR-7, SR-8). These experiments aim to assess
the impact of the data scaling on the ability to classify LID correctly.

Experiment E3: Three evolved LID-classifiers working with FX are selected
according to their AUC on the training set, test set respectively, and synthesised
using a standard design flow. Then, their hardware characteristics, i.e. area on
the chip, delay, power consumption, and power delay product (PDP), are com-
pared.

3.2 CGP Setup

The initial parameters of CGP were based on the results of work [6], i.e. the grid
size of 6 × 6 with the set of functions Γ = {+,−,×,÷,mean,min,max, abs}.
However, our search for suitable parameters shows that the grid size of 1 × 36
together with the L-back of 36 leads to faster convergence. Next, the (1 + 4)
evolutionary strategy and the Goldman mutation operator [4] is used to produce
a new generation.

3.3 CGPcoASFP Setup

The coevolution setup is based on [3] and customized for this task according to
our initial experiments. The setup of CGP while coevolving with predictors is
the same as the setup of standard CGP in Sect. 3.2.

Our preliminary experiments with different settings of predictor evolution
reveal that six fitness trainers in the archive and eight fitness predictors in the
predictor population are enough to produce a satisfactory predictor. The evo-
lution of fitness predictors is conducted using a simple GA, where one-point
crossover and mutation with probability 0.01 per gene operators are used. A
new generation of predictors consists of three top-ranked predictors from the
previous generation, one randomly generated predictor and four offspring whose
parents are selected using a 2-tournament selection. Previous experiments [3]
have revealed that a frequent interaction (generation to generation) between
populations does not lead to programs with desired quality in a reasonable time
because of very fast changes in involved populations. Hence, one generation in
the predictor evolution executed each 30 generations of program evolution is
enough to produce satisfactory predictors in this task.

Evolutionary Design of Reduced Precision LID-Classifier 93

The size of fitness predictor is initialized with 300 fitness cases, which is
around 8% of the original training set. The length of fitness predictors is then
based on the detected phase of evolution and adjusted when a new fitness pre-
dictor is being evolved after finding a new candidate program with the best
subjective fitness or after a predefined number of generations. Decision condi-
tions and their priority for updating the size of predictor are used the same
as in [3], except the prediction error threshold (Ithr) parameter. This parame-
ter depends on the fitness function. We have found that the error threshold of
Ithr = 1.04 is suitable for our task, particularly it leads to the rapid convergence
of CGP utilising the AUC-based fitness function.

3.4 Time of Stabilization of LID-Classifier Evolution

For evaluation of proposed approaches, we propose the time of stabilization of
LID-classifier evolution. Time of stabilization denotes a time of evolution in
which most of the runs (of proposed approach) are able to adapt the evolved
LID-classifier on the training set. We define the time of stabilization, ts, as the
moment in which median fitness increase stagnation (out of 100 runs) is detected
together with 95% confidence interval narrowing, i.e. Δfitness(ti) <0.0001 (for
next 10 s) and wconfidence(ti) <0.005, where Δfitness(ti) is the difference between
median fitness values in ti and ti + 10 s and wconfidence(ti) is the width of con-
fidence interval in ti.

4 Results

All presented results are based on one hundred independent runs for each of algo-
rithm settings. All experiments are performed on the Barbora supercomputer,
part of IT4Innovations National Supercomputing Center, where the nodes used
for the calculations are equipped with a pair of Intel Cascade Lake 6240 proces-
sors. CGP and CGPcoASFP employed the same amount of resources.

4.1 Experiment 1: Comparisons of CGP and CGPcoASFP

We compare the design of classifiers using standard CGP and its extended variant
CGPcoASFP. Table 3 summarizes mean AUC of LID-classifiers evolved using pro-
posed approaches on the training set and the test set after 60 s of evolution and at
the time of stabilization ts. It can be seen that CGPcoASFP achieves the stabili-
sation of evolution approximately nine times faster, together with comparable or
better mean AUC, than CGP on both training and test data. Mean AUC improve-
ment occurs even if we compare it after 60 s of evolution. Next, CGP evolving FX-
16u, FX-16s and FX-8s LID-classifiers need significantly more time than other pro-
posed combinations to achieve satisfactory fitness. Boxplots showing AUC on the
test groups at the time of stabilization of evolution, ts, are shown in Fig. 3.

The mean training set size, i.e. the fitness predictor size, in the moment of
stabilization of evolution, ts, is shown in Table 3. In comparison to the initial
8%, CGPcoASFP uses approximately 1.33% of the original training set in ts.

94 M. Hurta et al.

Table 3. For each data representation, the mean AUC of LID-classifiers evolved using
CGP and CGPcoASFP (shortly ASFP in this table) on the training set and on the
test set (for significant dyskinesia - LID 3, 4) after 60 s of evolution and at the time
of stabilization ts. In this table, FX-8u LID-classifiers work with data scaled using
SR-5, FX-8s using Eq. 2. For comparison of CGP and CGPcoASFP, the higher AUC
is marked in bold font for each data representation. The mean training set size (fitness
predictor size) in ts is shown in the last row.

Data representation FP FX-16u FX-8u FX-16s FX-8s

Algorithm CGP ASFP CGP ASFP CGP ASFP CGP ASFP CGP ASFP

Time of
48 25 1189 65 63 50 549 65 421 27

stabilization ts [s]

Training set

Mean AUC
0.899 0.902 0.899 0.899 0.898 0.908 0.903 0.904 0.896 0.894

in ts

Mean AUC
0.899 0.903 0.851 0.899 0.898 0.908 0.846 0.904 0.817 0.898

in t = 60 s

Test set

Mean AUC
0.889 0.889 0.872 0.895 0.915 0.926 0.894 0.893 0.871 0.878

in ts

Mean AUC
0.888 0.888 0.834 0.893 0.916 0.926 0.826 0.893 0.750 0.889

in t = 60 s

Mean training set
100 1.52 100 1.35 100 1.21 100 1.26 100 1.32

size [%] in ts

Figure 2 shows the median AUC on the training set (red line) and on the test
groups of FX-8u LID-classifiers evolved using CGP (Fig. 2a) and CGPcoASFP
(Fig. 2b) during evolution. In order to determine AUC on the test groups, the
top-ranked LID-classifier from each generation is (after evolution) re-evaluated
using the test groups to show the ability to generalize on unseen data. It can be

(a) CGP. (b) CGPcoASFP.

Fig. 2. Median AUC on the training set (red line) and on the test groups of FX-8u (SR-
5) LID-classifiers evolved using CGP and CGPcoASFP during evolution. The graph is
obtained out of 100 runs with highlighted 95% confidence interval. Red vertical lines
show the determined ts. (Color figure online)

Evolutionary Design of Reduced Precision LID-Classifier 95

(a) Test group LID 1. (b) Test group LID 2.

(c) Test group LID 3. (d) Test group LID 4.

(e) Test group walking. (f) Test group sitting-at-rest.

Fig. 3. Box plots of AUC on the test groups at the time of stabilization of evolution,
ts. These figures show the AUC of LID-classifiers working with all investigated data
representations evolved using CGP and CGPcoASFP. Investigated data representations
include FP, FX-16u, FX-8u (SR-5), FX-16s and FX-8s (Eq. 2 [–128, 127]).

96 M. Hurta et al.

seen that using CGP overfitting on the training set occurs during the evolution,
especially on the walking data group, while CGPcoASFP has not overfitted the
first data set.

4.2 Experiment 2: Comparisons of Data Representations

Figure 4a shows the median AUC on the test set of evolved LID-classifiers
working with investigated data representations during the evolution. Notice that
LID-classifiers are evolved using the training set. After the evolution, the top-
ranked LID-classifier from each generation is re-evaluated using the test set to
show the ability of evolved LID-classifier to generalize on unseen data, in Fig. 4a
and Fig. 4b. For the FX-8u data representation, the data are scaled using Eq. 2
to the range [0, 255] and for FX-8s using Eq. 2 to the ranges [–128,127] and
[0,127], in Fig. 4a. It can be seen that FX-8s LID-classifier with the input data
in the range [0,127] cannot achieve a satisfactory AUC and together with FX-8s
LID-classifier with the input data in the range [–128,127] converges slower in
comparison with other investigated data representations. FX-16s, FX-16u and
FP achieved a very comparable AUC on the test set while differing in convergence
speed. FX-8u surprisingly overcame all other investigated data representations
both in the target AUC and the convergence speed. A significant difference is
confirmed by the Mann-Whitney U test with a significance level of 0.05.

Figure 4b shows the median AUC on the test set during the evolution of
FX-8u LID-classifier working with the input data scaled using Eq. 2, SR-3, SR-
4, SR-5, SR-6, SR-7, and SR-8. SR-5 is very close to the result of Eq. 2 (i.e.
division by around 28). Our experiments have shown that the logical right shift
by five bits is a more suitable data scaling method in this task than using Eq. 2.

(a) Data representations. (b) Scaling methods for FX-8u.

Fig. 4. Median AUC (in the course of evolution) on the test set of LID-classifiers
evolved using CGPcoASFP obtained out of 100 runs with highlighted 95% confidence
interval: (a) shows AUC during the evolution of classifiers working with investigated
data representations; (b) shows AUC during the evolution of FX-8u classifiers with the
use of investigated scaling methods.

Evolutionary Design of Reduced Precision LID-Classifier 97

Table 4. Mean AUC presented in [6] and mean AUC out of 100 runs for standard CGP
with FP, CGPcoASFP with FP, standard CGP with FX-8u (SR-5) and CGPcoASFP
with FX-8u (SR-5). For each test group, the best result is marked in bold font.

LID 1
[AUC]

LID 2
[AUC]

LID 3
[AUC]

LID 4
[AUC]

Sitting-at-
rest [AUC]

Walking
[AUC]

CGP FP 0.55 0.69 0.85 0.93 0.92 0.75

CGPcoASFP FP 0.56 0.69 0.85 0.93 0.92 0.76

CGP FX-8u (SR-5) 0.56 0.71 0.89 0.95 0.95 0.84

CGPcoASFP FX-8u (SR-5) 0.56 0.71 0.89 0.96 0.95 0.85

Lones et al. [6] 0.56 0.69 0.85 0.93 0.92 0.73

Proposed solutions utilising both CGP and CGPcoASFP for designing FP
LID-classifiers achieve mean AUC comparable with the approach presented in
[6], see Table 4. Comparisons of the FX-8u (SR-5) LID-classifier (evolved using
CGPcoASFP) and the existing solution presented in [6] in Table 4 shows that the
proposed method achieves slightly better mean AUC across the test groups and
the significantly better mean AUC = 0.85 for the test group walking compared to
Lones et al. [6] mean AUC = 0.73, despite the fact that the proposed classifiers
are working with the reduced precision.

Results of Experiment E2 suggest that it is easier to find significant discrim-
inatory patterns using FX-8u processing together with SR-5 data preprocessing
than using other investigated approaches, see Fig. 3. The most evident AUC
increase is for the test group walking. It is possible that limiting the precision
shaves off some noise and hence the overfitting tendencies. This denotes the suit-
ability of this model for long-term home monitoring, as patients go through their
daily activities, which should be a subject of further study.

4.3 Experiment 3: Hardware Characteristics of Evolved Classifiers

Three LID-classifiers, evolved using CGPcoASFP and working with the FX rep-
resentation, are selected for a hardware implementation. The first classifier C1
works with FX-8u and data scaled using SR-5, see Fig. 5a. The second classifier
C2 (Fig. 5b) and third classifier C3 (Fig. 5c) are evolved to operate FX-16u and
the original data.

Classifiers C1 and C2 are chosen based on their fitness on training data.
Classifier C3 is an expensive solution because it contains area-demanding com-
ponents contributing to the higher AUC on the test set. Table 5 shows the AUC
of selected classifiers on the test data groups.

98 M. Hurta et al.

-
-

MAX

31
25
9
4 ...

...

...

...

(a) C1: FX-8u.

MIN

-
MAX

30
24
4
0

MAX
...

...

...
...

(b) C2: FX-16u.

-
/MAX

29
22
7
3

MEAN /

...

...

...

...

...

(c) C3: FX-16u.

Fig. 5. LID-classifiers used for hardware characteristics evaluation.

Table 5. AUC of the selected LID-classifiers on the test groups.

LID 1 LID 2 LID 3 LID 4 Walking Sitting

C1 (8-bit) 0.57 0.72 0.89 0.96 0.82 0.95

C2 (16-bit) 0.55 0.68 0.84 0.92 0.75 0.91

C3 (16-bit) 0.55 0.69 0.85 0.94 0.76 0.93

Table 6. Hardware characteristics of synthesized LID-classifiersfor for a 45 nm tech-
nology.

LID-Classifier Area on chip [µm2] Delay [ns] Power [mW] PDP [pJ]

C1: FX-8u 258.58 0.94 0.17 0.16

C2: FX-16u 901.53 3.36 0.36 1.20

C2: FX-32u 1936.80 6.63 0.80 5.28

C3: FX-16u 6417.68 40.54 2.78 112.77

C3: FX-32u 27156.98 179.69 10.32 1854.11

Classifiers C2 and C3 are also successfully verified to give comparable AUC
results even with an unsigned 32-bit FX (FX-32u). In order to determine the
hardware cost, Synopsys Design Compiler targeting 45 nm ASIC technology is
employed as a synthesis tool.

Table 6 shows the hardware characteristics of presented classifiers working
with various data representations. We can immediately see that the classifier
C2 (utilising simpler functions such as maximum, minimum, and subtraction)
has significantly better characteristics than the classifier C3 utilising expensive
multiplication and division operations.

In Table 6, it can be seen 7.54 times lower energy consumption of classifier
C1 in comparison with the classifier C2 working with 16-bit and 709× lower in
comparison with classifier C3 working with 32-bit.

Figure 6a shows receiving operating curve (ROC) of the classifier C1, which
is the best evolved (in terms of AUC on the training set) for test groups LID 1,
LID 2, LID 3 and LID 4. The classifier C1 outperforms all of the other inves-
tigated classifiers in terms of AUC on the test groups as well as in terms of
hardware characteristics. Figure 6b compares ROCs of classifier C1 and the
best evolved software implementation (operating with float) for test groups

Evolutionary Design of Reduced Precision LID-Classifier 99

(a) LID 1, LID 2, LID 3, LID 4. (b) Walking and sitting-at-rest.

Fig. 6. The ROC curves: (a) of the classifier C1 on LID grades; (b) of the top-ranked
FP classifier and classifier C1 on walking and sitting-at-rest test groups to allow com-
parisons of FP and FX-8u (SR-5) classifiers.

sitting-at-rest and walking, where the improvement of classifier quality is evi-
dent. Notice that the best-evolved and energy-efficient LID-classifier is a very
simple solution as it contains only three function instances (see Fig. 5a).

5 Conclusions

In this paper, we have shown that cartesian genetic programming equipped with
the coevolution of adaptive size fitness predictors is able to design classifiers
that can be used to determine presence and the severity of levodopa-induced
dyskinesia. The method was applied to designing classifiers working with five
various data representations. This approach outperformed the original CGP in
terms of computational cost in all of the investigated experiments and effectively
prevented overfitting when evolving FX-8u LID-classifiers.

We have investigated the design of an LID-classifier working with a reduced
precision in order to find a hardware efficient classifier with a classification accu-
racy as close as possible to a baseline software implementation (using float data
representations). We have observed that classifiers working with FX-8u, together
with input data preprocessing using the logical right shift by five bits, achieved
better classifier accuracy (AUC) than classifiers working with FP or FX-16u
and FX-16s. Moreover, the FX-8u LID-classifier significantly outperformed the
hardware characteristics of all other investigated solutions.

We will analyse why such a simple solution works and exploit this analysis
in developing even better classifiers. We plan to extend this approach, to evolve
classifiers of other movement abnormalities, such as bradykinesia. Hence, we
think of developing a method in which hardware properties, i.e. area on chip,

100 M. Hurta et al.

delay and power consumption, will be included and utilised directly during the
design process performed by genetic programming.

Acknowledgements. This work was supported by the Czech science foundation
project 21-13001S and by the Ministry of Education, Youth and Sports of the Czech
Republic through the e-INFRA CZ (ID:90140).

The author would like to thank Dr. Vojtech Mrazek for his help with circuit syn-
thesis. We also acknowledge the patients and clinical staff of Leeds Teaching Hospitals
NHS Trust, particularly Dr Stuart Jamison and Dr Jeremy Cosgrove, for their contri-
bution to the clinical study that generated the data used in this research, Dr Michael
Lones for his help and advice with regards to the technical aspects, and also the UK
National Institute for Health Research (NIHR) for adopting the study within in its
Clinical Research Network Portfolio.

References

1. Ahlrichs, C., Lawo, M.: Parkinson’s disease motor symptoms in machine learning:
a review. Health Inform. Int. J. 2(4), 1–18 (2013). https://doi.org/10.5121/hiij.
2013.2401

2. Dinesh, K., Xiong, M., Adams, J., Dorsey, R., Sharma, G.: Signal analysis for
detecting motor symptoms in Parkinson’s and Huntington’s disease using multi-
ple body-affixed sensors: a pilot study. In: 2016 IEEE Western New York Image
and Signal Processing Workshop (WNYISPW), pp. 1–5 (2016). https://doi.org/
10.1109/WNYIPW.2016.7904834

3. Drahosova, M., Sekanina, L., Wiglasz, M.: Adaptive fitness predictors in coevo-
lutionary Cartesian genetic programming. Evol. Comput. 27(3), 497–523 (2019).
https://doi.org/10.1162/evco a 00229

4. Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic
programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş, Hu, B.
(eds.) EuroGP 2013. LNCS, vol. 7831, pp. 61–72. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37207-0 6

5. Locatelli, P., Alimonti, D., Traversi, G., Re, V.: Classification of essential tremor
and Parkinson’s tremor based on a low-power wearable device. Electronics (Basel)
9(10), 1–18 (2020). https://doi.org/10.3390/electronics9101695

6. Lones, M.A., et al.: A new evolutionary algorithm-based home monitoring device
for Parkinson’s Dyskinesia. J. Med. Syst. 41(11), 176:1–176:8 (2017). https://doi.
org/10.1007/s10916-017-0811-7

7. Manazir, A., Raza, K.: Recent developments in Cartesian genetic programming
and its variants. ACM Comput. Surv. 51(6), 1–29 (2019). https://doi.org/10.1145/
3275518

8. Milano, F., et al.: Parkinson’s disease patient monitoring: a real-time tracking
and tremor detection system based on magnetic measurements. Sensors (Basel,
Switzerland) 21(12) (2021). https://doi.org/10.3390/s21124196

9. Miller, J.F.: Cartesian genetic programming. In: Cartesian Genetic Programming,
pp. 17–34. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-17310-3

10. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proceedings of the
3rd European Conference on Genetic Programming EuroGP’2000. LNCS, vol.
1802, pp. 121–132. Springer, Cham (2000). https://doi.org/10.1007/978-3-540-
46239-2 9

https://doi.org/10.5121/hiij.2013.2401
https://doi.org/10.5121/hiij.2013.2401
https://doi.org/10.1109/WNYIPW.2016.7904834
https://doi.org/10.1109/WNYIPW.2016.7904834
https://doi.org/10.1162/evco_a_00229
https://doi.org/10.1007/978-3-642-37207-0_6
https://doi.org/10.3390/electronics9101695
https://doi.org/10.1007/s10916-017-0811-7
https://doi.org/10.1007/s10916-017-0811-7
https://doi.org/10.1145/3275518
https://doi.org/10.1145/3275518
https://doi.org/10.3390/s21124196
https://doi.org/10.1007/978-3-642-17310-3
https://doi.org/10.1007/978-3-540-46239-2_9
https://doi.org/10.1007/978-3-540-46239-2_9

Evolutionary Design of Reduced Precision LID-Classifier 101

11. Miller, J.F.: Cartesian genetic programming: its status and future. Gene. Program.
Evol. Mach. 21(1), 129–168 (2019). https://doi.org/10.1007/s10710-019-09360-6

12. Smith, S.L., Lones, M.A.: Medical applications of Cartesian genetic programming.
In: Stepney, S., Adamatzky, A. (eds.) Inspired by Nature. ECC, vol. 28, pp. 247–
266. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67997-6 12

13. Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural net-
works: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017). https://doi.
org/10.1109/JPROC.2017.2761740

14. Zhu, B., Taghavi, M., Shoaran, M.: Cost-efficient classification for neurological dis-
ease detection. In: 2019 IEEE Biomedical Circuits and Systems Conference (Bio-
CAS), pp. 1–4 (2019). https://doi.org/10.1109/BIOCAS.2019.8918702

https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1007/978-3-319-67997-6_12
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/BIOCAS.2019.8918702

Using Denoising Autoencoder Genetic
Programming to Control Exploration

and Exploitation in Search

David Wittenberg(B)

Johannes Gutenberg University, Mainz, Germany

wittenberg@uni-mainz.de

Abstract. Denoising Autoencoder Genetic Programming (DAE-GP) is
a novel neural network-based estimation of distribution genetic program-
ming (EDA-GP) algorithm that uses denoising autoencoder long short-
term memory networks as a probabilistic model to replace the standard
mutation and recombination operators of genetic programming (GP). At
each generation, the idea is to flexibly identify promising properties of
the parent population and to transfer these properties to the offspring
where the DAE-GP uses denoising to make the model robust to noise
that is present in the parent population. Denoising partially corrupts can-
didate solutions that are used as input to the model. The stronger the
corruption, the stronger the generalization of the model. In this work, we
study how corruption strength affects the exploration and exploitation
behavior of the DAE-GP. For a generalization of the royal tree problem
(high-locality problem), we find that the stronger the corruption, the
stronger the exploration of the solution space. For the given problem,
weak corruption resulting in a stronger exploitation of the solution space
performs best. However, in more rugged fitness landscapes (low-locality
problems), we expect that a stronger corruption resulting in a stronger
exploration will be helpful. Choosing the right denoising strategy can
therefore help to control the exploration and exploitation behavior in
search, leading to an improved search quality.

Keywords: Genetic Programming · Estimation of Distribution
Algorithms · Probabilistic Model-Building · Denoising Autoencoders

1 Introduction

Estimation of distribution genetic programming (EDA-GP) algorithms are meta-
heuristics for variable-length combinatorial optimization problems that sample
from a learned probabilistic model, replacing the standard mutation and recom-
bination operators of genetic programming (GP). At each generation, the idea
is to first learn the properties of promising candidate solutions of the parent
population (model building) and to then sample from the model to transfer the
learned properties to the offspring (model sampling) [9].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 102–117, 2022.
https://doi.org/10.1007/978-3-031-02056-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_7&domain=pdf
http://orcid.org/0000-0001-5435-0426
https://doi.org/10.1007/978-3-031-02056-8_7

Using DAE-GP to Control Exploration and Exploitation in Search 103

An example of an EDA-GP is denoising autoencoder genetic programming
(DAE-GP) that uses denoising autoencoder long short-term memory networks
(DAE-LSTMs) as a probabilistic model [25]. In comparison to previous EDA-GP
approaches, it has the advantage that the model does not impose any assump-
tions about the relationships between problem variables which allows the DAE-
GP to flexibly identify and model relevant properties of the parent population.
The DAE-GP captures dependencies between problem variables by first encod-
ing candidate solutions (in prefix notation) to the latent space and then recon-
structing the candidate solutions from the latent space. For model building, the
DAE-GP is trained to minimize the reconstruction error between the encoded
and decoded candidate solutions. For model sampling, candidate solutions are
propagated through the trained model to transfer the learned properties to the
offspring [25].

The DAE-GP uses denoising to prevent the model from learning the simple
identity function [25]. The idea is to partially corrupt input candidate solutions
to make the model robust to noise that is present in the parent population. The
stronger the corruption, the stronger the generalization of the model [24]. Previous
work on estimation of distribution algorithms (EDA), where candidate solutions
have a fixed length of size n, found that exploration and exploitation in search can
be controlled by the strength of corruption [16]. Exploration increases the diversity
of a population by introducing new candidate solutions into search; exploitation
reduces diversity by focusing a population of candidate solutions on promising
areas of the solution space [19]. Adjusting the corruption strength can therefore
help to balance exploration and exploitation leading to a more successful search:
we either increase diversity to overcome local optima avoiding premature conver-
gence, or we decrease diversity to exploit promising solution spaces [16].

In this work, we study how corruption strength affects the exploration and
exploitation behavior of the DAE-GP. Wittenberg et al. [25] used subtree muta-
tion to corrupt input candidate solutions. Subtree mutation randomly selects a
node in a tree and replaces the subtree at that node with a new random sub-
tree generated by ramped half-and-half. The use of subtree mutation has the
advantage that it leads to a variation in tree size (the number of nodes in parse
tree) [25]. However, applying subtree mutation complicates the control of cor-
ruption strength: as subtree mutation randomly selects a subtree to be replaced
by a new random subtree, corruption is stronger if the root of the selected sub-
tree is nearer to the root of the parse tree. Furthermore, increasing or decreasing
corruption strength is difficult.

Therefore, this paper introduces Levenshtein edit as a new and improved
denoising strategy. Levenshtein edit is based on the Levenshtein distance [12] and
operates on the string representation of a candidate solution (prefix expression).
It uses insertion (add one node), deletion (remove one node), and substitution
(replace one node by another node) as edit operators to corrupt a candidate solu-
tion. The advantage of using Levenshtein edit over subtree mutation is that we
can accurately adjust corruption strength. The more nodes we edit, the stronger
the corruption, and the more we force the DAE-GP to focus on general properties
of the parent population.

104 D. Wittenberg

We compare the performance of the DAE-GP with Levenshtein edit and dif-
ferent levels of corruption strength (2%, 5%, 10%, 20%) to a DAE-GP with sub-
tree mutation and standard GP, and analyze the impact of corruption strength
on search. We find that corruption strength strongly influences both the per-
formance and the exploration and exploitation behavior of the DAE-GP: the
stronger we corrupt input candidate solutions, the stronger the exploration.
However, exploration is useful, only if we want to escape from local optima.
For the generalization of the royal tree problem (which is an easy problem with
high locality), we find that the DAE-GP with weak corruption (Levenshtein edit
with 5% corruption strength) performs best. However, when facing more rugged
fitness landscapes, a stronger degree of exploration can be helpful. We therefore
believe that the denoising strategy is the key to the success of the DAE-GP: it
allows us to control the level of exploration and exploitation in search helping
us to improve search quality.

In Sect. 2, we present related work on EDA-GP. We describe DAE-LSTMs in
Sect. 3, where we focus on the architecture, the denoising strategy, and on model
building and sampling. In Sect. 4, we introduce the experiments and discuss the
results. We draw conclusions in Sect. 5.

2 Related Work

We can categorize research on EDA-GP into two research streams [9,21]: The
first one uses probabilistic prototype trees (PPT) as a model. Given the maxi-
mum arity a of the functions in the function set (the interior nodes of a GP parse
tree), a PPT is a full tree of arity a where we set the depth of the PPT equal to
the maximum tree depth dmax. At each node of the PPT, the idea is to first build
a multinomial probability distribution over the set of allowed functions (internal
nodes) and terminals (leaf nodes) and to then update the distributions according
the candidate solutions that are presented to the model. In 1997, Salustowicz and
Schmidhuber [20] introduced PPTs as the first probabilistic model in EDA-GP
called probabilistic incremental program evolution (PIPE) [20]. Based on PIPE
that evolves univariate probability distributions, EDA-GP models have been
developed that capture dependencies between nodes in a PPT tree. Examples
are the bivariate estimation of distribution programming (EDP) [28] or the mul-
tivariate program optimization with linkage estimation (POLE) [4,6]. Hasegawa
and Iba [6] report that POLE needs less fitness evaluations than standard GP
to solve the MAX, the deceptive MAX, and the royal tree problem [6].

The second stream of research uses grammars as EDA-GP model [9,21]. Here,
Ratle and Sebag [18] presented stochastic grammar-based genetic programming
(SG-GP) as the first grammar-based approach in 2001. SG-GP uses stochas-
tic context-free grammar (SCFG) as a probabilistic model. The idea is to first
identify a set of production rules for a problem with weights attached to the
production rules and to then update these weights according to usage counts
of the production rules in a parent population [18]. Since SG-GP assumes the
production rules to be independent, more sophisticated EDA-GP models cap-
turing more complex grammars have been developed. Consequently, program

Using DAE-GP to Control Exploration and Exploitation in Search 105

with annotated grammar estimation (PAGE) is an extension that uses expec-
tation maximization (EM) or variational Bayes (VB) to learn production rules
with latent annotations. A latent annotation can be, e.g., the position or the
depth of a node in a tree [5]. Another extension is grammar-based genetic pro-
gramming with a Bayesian network (BGBGP) that was introduced by Wong et
al. [26] in 2014. BGBGP uses Bayesian networks with stochastic context-sensitive
grammars (SCSG) as a model. Compared to SCFG, SCSG additionally incorpo-
rate contextual information allowing the Bayesian network to learn dependencies
between production rules [26]. To further refine the BGBGP, Wong et al. [27]
added (fitness) class labels to the model. The authors argue that this allows
the model to differentiate between good and poor candidate solutions helping
the model to find better solutions. For the deceptive MAX and the asymmetric
royal tree problem, the model outperforms POLE, PAGE-EM, PAGE-VB, and
grammar-based GP in the number of fitness evaluations [27].

One example of an EDA-GP model that does not rely on PPTs or grammars
is the n-gram GP proposed by Poli and McPhee [14], where n-grams are used to
model relationships between a group of n consecutive sequences of instructions
that can learn dependencies in linear GP. Similarly, Hemberg et al. [7] suggested
operator free genetic programming (OFGP), which learns n-grams of ancestor
node chains. An n-gram of ancestors is the sequence of a node and its n-1 ancestor
nodes in a GP parse tree. However, for the Pagie-2D problem, OFGP could not
outperform standard GP [7].

Wittenberg et al. [25] recently suggested DAE-GP that uses denoising
autoencoder long short-term memory networks (DAE-LSTMs) as a probabilistic
model. For a generalization of the royal tree problem, the DAE-GP outperforms
standard GP. The DAE-GP can better identify promising areas of the solution
space compared to standard GP resulting in a more efficient search in the number
of fitness evaluations, especially in large search spaces [25]. The authors argue
that, compared to previous EDA-GP approaches, the flexible model representa-
tion is the key reason for the high performance, allowing the model to identify
in parallel, both position as well as context of relevant substructures [25].

The idea of using DAE as probabilistic models in EDA has earlier been pre-
sented by Probst [15] who introduced DAE-EDA. DAE-EDA was designed for
problems where candidate solutions follow a fixed-length representation [15]. For
the NK landscapes, deceptive traps and HIFF problem, Probst and Rothlauf [16]
show that the DAE-EDA yields competitive results compared to the Bayesian
optimization algorithm (BOA). However, DAE-EDA is better parallelizable,
making it the preferred choice especially in large search spaces. Furthermore,
the authors show that corruption strength has a strong impact on exploration
and exploitation in search. Adjusting the level of corruption can therefore help
to either increase exploration which helps to overcome local optima, or to exploit
relevant solution spaces making search more efficient [16].

106 D. Wittenberg

3 Denoising Autoencoder LSTMs

DAE-LSTMs are artificial neural networks that consist of an encoding and a
decoding LSTM: the encoding LSTM encodes a candidate solution (a linear
sequence in prefix expression) to the latent space; the decoding LSTM decodes
the latent space back to a candidate solution. Since we train the DAE-LSTM
to reconstruct the input, the architecture is also referred to as autoencoder long
short-term memory network (AE-LSTM) [22], where we use denoising on input
candidate solutions to prevent the model from learning the simple identity func-
tion. Denoising transforms the AE-LSTM into a DAE-LSTM. When using DAE-
LSTMs as a probabilistic model in EDA-GP (DAE-GP), we repeat the following
two steps at each generation: first, we train the model to learn relevant proper-
ties of our parent population (model building). Then, we propagate candidate
solutions through the trained DAE-LSTM to transfer the learned properties to
the offspring (model sampling).

In the following sections, we first explain the architecture of AE-LSTMs and
the concept of denoising, where we introduce Levenshtein edit as a new denoising
strategy. Then, we describe the training as well as the sampling procedure where
syntax control is used to restrict the sample space to syntactically valid candidate
solutions.

3.1 Autoencoder LSTMs

Figure 1 shows the architecture of an AE-LSTM with one input layer, one hidden
layer (consisting of LSTM memory cells), and one output layer. It is based on the
architecture presented in [25]. x and o represent the input and output candidate
solution of length m and k, respectively. h is the hidden state at time step t,
where the total number of time steps corresponds to T = m+k (m, k ∈ N). The
encoding LSTM (left) first sequentially encodes a candidate solution x, with xt,
t ∈ {1, 2, ..,m} through the encoding function g(x), where each xt represents a
function or terminal of a candidate solution in our parent population. At each
time step t (except t = 0), the LSTM memory cell then receives three inputs: the
current input xt, the previous hidden state ht−1 and the previous cell state ct−1

(not shown here). The idea of transferring information from one time step to the
next is to capture long-term dependencies in training data [8]. After complete
processing of the input candidate solution x, we copy hm and cm, and transfer it
to the decoding LSTM, thus hm+1 = hm and cm+1 = cm. The decoding LSTM
(right) then uses the decoding function d(h) and decodes ht back to an output
candidate solution o, with the aim to reconstruct the input candidate solution
x. Using ot as input in ot+1 helps to further reduce the reconstruction error [22].
Similar to [22] and [25], we reverse the input candidate solution x to allow the
model to learn low range correlations in training data.

3.2 Suggesting a New Denoising Strategy: Levenshtein Edit

The aim of the AE-LSTM is to reconstruct the input. Given that the hidden
layer is sufficiently large, a trivial way to solve this task is to learn the simple

Using DAE-GP to Control Exploration and Exploitation in Search 107

h1

xm

h2

xm−1

hm

x1

hm+1 hT−1 hT

o1 ok−1 ok

ok−2 ok−1

copy

Fig. 1. Autoencoder LSTM assuming one hidden layer

identity function, which means that the AE-LSTM simply replicates the candi-
date solutions given as input. Since we want to learn a more useful representation
of the properties of our parent population, we apply denoising on input candi-
date solutions, transforming the AE-LSTM into a DAE-LSTM. Based on the
first DAE presented by Vincent et al. [24] in 2008, the idea is to partially cor-
rupt input candidate solutions making the model robust to noise that is present
in our parent population.

At each generation g, we use the corruption function c(x) to denoise the can-
didate solutions that were previously selected as promising candidate solutions
from population Pg. We can formally describe the process by

x̃i = c(xi) ∀i ∈ {1, .., N}, (1)

where x̃i is the corrupted version of the ith candidate solution x in the training
set X (of size N) [25].

As a new corruption function c(x), we introduce Levenshtein edit. Leven-
shtein edit operates on the string representation of x (prefix expression) and
uses insertion (add one node), deletion (remove one node), and substitution
(replace one node by another node) to transform x into x̃. We control the cor-
ruption strength by a priori defining a corruption percentage p (0 < p < 1).
Given a function set F , a terminal set T , and a candidate solution x, with xj ,
j ∈ {1, 2, ..,m}, we corrupt x by iteratively processing each node xj , where each
xj has a chance of p to be corrupted: with uniform probability, we either insert
a random symbol s ∈ F ∪T at index j (insertion), we delete xj (deletion), or we
delete xj and insert a random symbol s ∈ F ∪ T at index j (substitution). Note
that these edit operations may produce corrupted candidate solutions x̃ that
do not follow GP syntax. However, sampling with syntax control (see Sect. 3.4)
ensures that output candidate solutions o are syntactically valid. Using Lev-
enshtein edit as denoising strategy has several advantages: similar to subtree
mutation presented in [25], we introduce variance in tree size. This is desirable
since it introduces additional variation into x̃. However, this variation should

108 D. Wittenberg

not lead to a bias towards larger or smaller trees. When using subtree mutation
as denoising strategy, we randomly select a subtree to be replaced. Depending
on the size of the selected subtree, we easily corrupt larger or smaller parts of
x resulting in a bias in tree size. The situation is different for Levenshtein edit:
here, we randomly choose denoising operators that iteratively either increase
(insertion), decrease (deletion), or maintain (substitution) the size of x. Thus,
for any p, the expected tree size of x̃ is equal to the tree size of x, which means
that we are able to introduce variation without inducing a bias in tree size.
Furthermore, we can easily control the corruption strength by adjusting p. The
larger p, the stronger the variation, and the stronger the corruption. The results
in Sect. 4 will show that this helps to control exploration and exploitation in
search.

3.3 Training Procedure

At each generation g, we train a DAE-LSTM (from scratch) according to the
training procedure shown in Algorithm 1. It is similar to the training procedure
presented in [25]. We first initialize the trainable parameters θ of our network,
where W

′
, b

′
, and W

′′
, b

′′
(Algorithm 1, line 1) denote the trainable weights and

biases of the encoding and decoding LSTM, respectively. Then, we iteratively
adjust the values of the trainable parameters θ using gradient descent. Given
the corruption percentage p, we first transform the candidate solution xi into x̃i

(Algorithm 1, line 4). Then, we propagate x̃i through the DAE-LSTM, using
the encoding function g(x) (Algorithm 1, line 5) and the decoding function d(x)
(Algorithm 1, line 6). We compute the reconstruction error using the multiclass
cross entropy loss function by

θ := min
θ

N∑

i=1

Err(xi, oi), (2)

where oi is the output candidate solution and xi the original (not the corrupted)
input candidate solution. We update the parameters θ into the direction of the
negative gradient and control the strength of the update using the learning rate
α (0 < α < 1) (Algorithm 1, line 7).

Algorithm 1. Pseudocode for training a DAE-LSTM

1: Initialize θ = {W
′
, b

′
, W

′′
, b

′′}
2: while not converged do
3: for each candidate solution xi in training set X do
4: x̃i = c(xi; p)
5: h = g(x̃i; θ)
6: oi = d(h; θ)

7: θ := θ − α ∗ ∂Err(xi,oi)
∂θ

8: end for
9: end while

Using DAE-GP to Control Exploration and Exploitation in Search 109

We use early stopping to prevent the DAE-LSTM from overfitting. Given
a hold-out validation set U , we stop training as soon as the validation error
Err(xj , oj), with xj , oj ∈ U , converges. We measure error convergence by observ-
ing the number of epochs that the validation error does not improve. As soon as
we reach 200 epochs of no improvement, we stop training and use those param-
eters θ for sampling that minimize the validation error.

3.4 Sampling with Syntax Control

We use the DAE-LSTM with the trained parameters θ to sample new candidate
solutions o forming the offspring population Pg+1. The procedure is shown in
Algorithm 2 and based on [1,16,25]. Given θ (Algorithm 2, line 1), we first
randomly pick a candidate solution x of our training set X (Algorithm 2, line
2). Then, we corrupt x into x̃ (Algorithm 2, line 3) using the same denoising
strategy as during training and propagate x̃ through the DAE-LSTM (Algorithm
2, lines 4–5), where we add the resulting output candidate solution o to Pg+1

(Algorithm 2, line 6).

Algorithm 2. Pseudocode for sampling from a DAE-LSTM

1: Given the trained DAE-LSTM with θ = {W
′
, b

′
, W

′′
, b

′′}
2: Pick x ∈ X randomly
3: x̃ = c(x, p)
4: h = g(x̃; θ)
5: o = d(h; θ)
6: Add o to new population Pg+1

Furthermore, we introduce a syntax control mechanism that only allows syn-
tactically valid candidate solutions to be sampled. The mechanism proceeds as
follows: at each time step t, with t ∈ {m+1,m+2, .., T}, when decoding h back
to o (Algorithm 2, line 5), the DAE-LSTM generates a probability distribution
q over the set of functions and terminals (defined by F and T). Similar to grow
initialization [11], we first identify the set of functions and terminals that gen-
erate a syntactically valid candidate solution. Then, we set the classes of invalid
functions and terminals in q to zero and normalize the remaining probabilities in
q back to one, where we use the updated probability distribution to sample ot.

Without denoising, syntax control is usually not needed since the complexity
of the DAE-LSTM is sufficient to also learn correct syntax. However, the stronger
the corruption, the more difficult it becomes for the DAE-LSTM to sample
syntactically valid candidate solutions, since corrupted candidate solutions used
as input to the model no longer belong to the same parent population as X.
In these cases, syntax control is very useful: we prevent the DAE-LSTM from
inefficient resampling and allow the model to explore new solution spaces, which
can help to overcome local optima and to avoid premature convergence.

110 D. Wittenberg

4 Experiments

We present the experimental setup for studying the influence of denoising on
search. We find that the DAE-GP with Levenshtein edit and p = 0.05 outper-
forms a DAE-GP with subtree mutation and standard GP. Furthermore, we show
that corruption strength p strongly affects search: the stronger the corruption,
the stronger the exploration. Adjusting the corruption strength can therefore
help to either exploit or explore relevant areas of the solution space.

4.1 Experimental Setup

For our study, we use the generalization of the royal tree problem presented
in [25] as test problem. It is based on the royal tree problem introduced by
Punch et al. [17] but uses the initialization method ramped half-and-half [11] to
generate target candidate solutions xopt. The idea is to define a fitness based on
the structure of a candidate solution x by

fitnessx =
lev(x, xopt)

max(lx, lxopt
)
, (3)

where lev is the minimum Levenshtein distance, defined by the minimum
number of insertion, deletion, and substitution operations necessary to transform
x into xopt [12]. Similar to [25], we divide lev by the maximum size l of x and
xopt, resulting in fitnessx ∈ [0, 1]: the closer x to xopt, the better the fitness,
where fitnessx = 0 means that x is identical to xopt [25]. We tune the complexity
of the problem by adjusting the minimum and maximum tree depths dmin and
dmax, respectively. The larger the solution space, the more difficult the problem.

We implemented the experiments in Python using the evolutionary frame-
work DEAP [3] and the neural network framework Keras [2]. Table 1 shows the
GP and DAE-GP parameters. We use the Pagie-1 [13] function and terminal set
and define two different problem settings, where we fix the minimum tree depth
to dmin = 3 and set the maximum tree depth to dmax ∈ {4, 5}. We choose a
population size of 500, use binary tournament selection, and run the experiments
for a total of 100 generations. We use ramped half-and-half to generate both the
initial population and the target candidate solutions xopt and define 30 different
xopt per problem setting. Performing 5 runs per xopt results in a total number of
150 runs that we aggregate per problem setting and algorithm. Since we consider
six different algorithm configurations, we conduct 1,800 runs in total.

For GP, we follow the recommendations of Koza [11] and use subtree crossover
as variation operator where we set an internal node bias to assure that 90%
of the crossover points are functions. For the DAE-GP, we have to a priori
define a set of hyperparameters. Note that we did not conduct a hyperparameter
optimization. We set the number of hidden layers to one and the number of
hidden neurons equal the maximum size l of the candidate solutions used as input
to the model. We found that the complexity of the model is sufficient to learn
complex relationships in training data while allowing efficient model building

Using DAE-GP to Control Exploration and Exploitation in Search 111

Table 1. GP and DAE-GP Parameters

Parameter Setting

function set F = {+,−, ∗, /, sin, cos, exp, log}
terminal set T = {x, y, 1}
target cand. solutions 30 per problem setting

runs 5 per target candidate solution

population size 500

generations 100

initialization ramped half-and-half

selection tournament selection of size 2

tree depths dmin = 3 and dmax ∈ {4, 5}
variation operator GP: subtree crossover with internal node bias (90% functions,

10% terminals), DAE-LSTM: model building and sampling

with Levenshtein edit using p ∈ {0.02, 0.05, 0.1, 0.2} and

subtree mutation using dmin, dmax = 2 [25]

and sampling. We split the parent population into 50% training set X and 50%
validation set U , and set the batch size to 25 (10% of X). We use a learning rate
of α = 0.001 and perform adaptive moment estimation (Adam) [10] for gradient
descent optimization. To study the impact of denoising on search, we vary the
denoising strategy throughout the experiments: we test Levenshtein edit, with
p ∈ {0.02, 0.05, 0.1, 0.2}, and a DAE-GP using subtree mutation, where previous
work recommends to set the depth of the new subtree to dmin, dmax = 2 [25].

4.2 Performance Results

We first study the algorithm success rates for the two problem complexities
(dmax ∈ {4, 5}) and the six different algorithm configurations. A run is success-
ful as soon as the algorithm finds a candidate solution x during search that is
identical to the target candidate solution xopt (fitnessx = 0). Table 2 shows
the average success rates after 100 generations. Each success rate represents the
average over 150 runs (5 runs for each of the 30 target candidate solutions xopt).
As expected, the average success rates are higher for dmax = 4 compared to
dmax = 5: the solution space becomes larger when choosing larger tree depths
making it harder to find xopt. However, the success rates differ strongly depend-
ing on the algorithm considered. For both dmax = 4 and dmax = 5, the DAE-GP
with Levenshtein edit and p = 0.05 performs best, with an average success rate of
72.67% and 58.67%, respectively. Interestingly, increasing or decreasing p results
in a loss in search success. While the DAE-GP with p = 0.02 and p = 0.1 yields
similar average success rates compared to standard GP (51.33% vs. 59.33% vs.
50.00% for dmax = 4 and 38.00% vs. 35.33% vs. 36.67% for dmax = 5), we
achieve low success rates using strong corruption: for dmax = 4 and dmax = 5,
the DAE-GP with p = 0.2 only finds 26.00% and 16.67% of the target solutions,
respectively. The DAE-GP with subtree mutation performs worst, with average

112 D. Wittenberg

success rates of 16.00% and 1.33%, respectively. The high performance of the
DAE-GP with Levenshtein edit and p = 0.05 indicates that the model success-
fully identifies and models relevant properties of the parent population and is
able to transfer these properties to the offspring. However, performance strongly
depends on the denoising strategy applied.

Table 2. Average success rates after 100 generations

Algorithm dmax = 4 dmax = 5

Standard GP 50.00% 36.67%

DAE-GP Levenshtein edit p = 2% 51.33% 38.00%

DAE-GP Levenshtein edit p = 5% 72.67% 58.67%

DAE-GP Levenshtein edit p = 10% 59.33% 35.33%

DAE-GP Levenshtein edit p = 20% 26.00% 16.67%

DAE-GP subtree mutation 16.00% 1.33%

0.0

0.2

0.4

0.6

0 25 50 75 100
generation

be
st

 fi
tn

es
s

Algorithm

standard GP

DAE−GP Lev. edit 2%

DAE−GP Lev. edit 5%

DAE−GP Lev. edit 10%

DAE−GP Lev. edit 20%

DAE−GP subtree mut.

(a) dmax = 4

0.0

0.2

0.4

0.6

0 25 50 75 100
generation

be
st

 fi
tn

es
s

Algorithm

standard GP

DAE−GP Lev. edit 2%

DAE−GP Lev. edit 5%

DAE−GP Lev. edit 10%

DAE−GP Lev. edit 20%

DAE−GP subtree mut.

(b) dmax = 5

Fig. 2. Average best fitness over number of generations for problems of varying com-
plexity.

Figure 2 plots the average best fitness over the number of generations. Since
we face a minimization problem, we observe a general decrease in the average
best fitness over the number of generations. The solution space is larger for
dmax = 5, resulting in a best fitness level that is slightly higher compared to
dmax = 4. Again, for both problem settings, the DAE-GP with Levenshtein edit
and p = 0.05 performs best, confirming the results from Table 2. Interestingly,

Using DAE-GP to Control Exploration and Exploitation in Search 113

in early generations, the DAE-GP with p = 0.02 finds similar best fitness candi-
date solutions compared to p = 0.05 but then hardly improves from generation
g = 30 (dmax = 4) and g = 40 (dmax = 5), indicating that the algorithm has
already converged. In contrast, when setting the corruption strength to p = 0.1,
we observe a similar best fitness slope of the DAE-GP and standard GP, demon-
strating a similar search behavior. When using p = 0.2 or subtree mutation as
denoising strategy, the performance is much worse.

Given the distribution of the best fitness at the end of each run (generation
100), we conduct several (pairwise) Mann-Whitney U-Tests to test the hypoth-
esis that the best fitness distributions are from the same population. Assuming
a significance level of 0.05, we find that the DAE-GP with Levenshtein edit and
p = 0.05 yields p-values <0.01 for all pairwise comparisons. The results indicate
that this DAE-GP is significantly better than all other tested algorithms. When
using p = 0.1 and comparing the DAE-GP to standard GP, we find p-values of
0.09 (dmax = 4) and 0.58 (dmax = 5). Similarly, when setting the corruption
strength to p = 0.02 and comparing the DAE-GP to standard GP, we find p-
values of 0.98 (dmax = 4) and 0.2 (dmax = 5). In both cases, the results indicate
that the best fitness distributions do not significantly differ from each other,
confirming the observation that these algorithms generate similar best fitness
candidate solutions.

4.3 The Influence of Denoising on Search

The results above demonstrate that denoising has a strong impact on the perfor-
mance of the DAE-GP. To better understand the influence of denoising on search,
we study the exploration and exploitation behavior of the algorithms. Similar
to [25], we approximate exploration and exploitation by examining the num-
ber of new candidate solutions over generations that have never been sampled
before. Exploitation is stronger, if search introduces a lower number of new can-
didate solutions during search. In contrast, the more new candidate solutions we
introduce into search, the stronger the exploration. According to Rothlauf [19],
we need to find an appropriate and problem-specific balance between explo-
ration and exploitation in search. For problems, where small variations on the
genotype lead to small variations in fitness (high-locality problems), we usually
need much less exploration compared to problems, where the fitness landscape
is rugged (low-locality problems). Thus, depending on the problem at hand, we
either need to increase exploitation, making search more efficient, or we need
to increase exploration, helping search to keep diversity high and allowing to
overcome local optima and to avoid premature convergence [19].

For the generalization of the royal tree problem, we plot results in Fig. 3.
As expected, for both variants, we observe a general decrease in the number
of candidate solutions over generations. Furthermore, the level of exploration is
in general higher for dmax = 5, again because we face a larger solution space
compared to dmax = 4.

When comparing different denoising strategies with each other, we notice
that the level of exploration and exploitation strongly differs throughout the

114 D. Wittenberg

0

100

200

300

400

500

0 25 50 75 100
generation

nu
m

be
r o

f n
ew

 in
di

vi
du

al
s

ov
er

al
l

Algorithm

standard GP

DAE−GP Lev. edit 2%

DAE−GP Lev. edit 5%

DAE−GP Lev. edit 10%

DAE−GP Lev. edit 20%

DAE−GP subtree mut.

(a) dmax = 4

0

100

200

300

400

500

0 25 50 75 100
generation

nu
m

be
r o

f n
ew

 in
di

vi
du

al
s

ov
er

al
l

Algorithm

standard GP

DAE−GP Lev. edit 2%

DAE−GP Lev. edit 5%

DAE−GP Lev. edit 10%

DAE−GP Lev. edit 20%

DAE−GP subtree mut.

(b) dmax = 5

Fig. 3. Mean number of new candidate solutions over number of generations for prob-
lems of varying complexity.

search. For Levenshtein edit, we observe that the larger the corruption strength
p, the stronger the exploration. While the DAE-GP with p = 0.02 strongly
decreases and converges towards zero at generation g = 50 (dmax = 4) and
g = 75 (dmax = 5), setting corruption strength to p = 0.2 results in a strong
exploration of the solution space. Interestingly, as noticed in Sect. 4.2, both
settings lead to an inferior performance compared to p = 0.05. The DAE-GP
with p = 0.02 easily gets stuck in local optima (premature convergence) as we
tend to replicate the candidate solutions given as input. In contrast, the DAE-
GP with corruption strength of p = 0.2 introduces too many new candidate
solutions, resulting in an inefficient search. Thus, by setting corruption strength
to p = 0.05, we find a good balance between exploration and exploitation in
search.

Another interesting observation is that the level of exploration of standard
GP is similar to the one of the DAE-GP, using Levenshtein edit with p = 0.1.
Thus, we can adjust the corruption strength in a way that allows us to imitate
the exploration and exploitation behavior of standard GP, also yielding similar
performance results.

For subtree mutation as denoising strategy, we notice that the level of explo-
ration is highest throughout the search, yielding the worst results. We think that
the introduction of syntax control (see Sect. 3.4) is the main reason for the bad
performance of subtree mutation compared to the results published in [25]. Syn-
tax control allows the DAE-GP to introduce more new candidate solutions into
search, which can be helpful to overcome local optima. However, for the general-
ization of the royal tree problem (high-locality problem), the strong exploration

Using DAE-GP to Control Exploration and Exploitation in Search 115

leads to inferior performance. Instead, search with strong exploitation, as shown
for Levenshtein edit p = 0.05, is more successful.

The results indicate that the denoising strategy is key to the success of the
DAE-GP. It strongly influences exploration and exploitation in search and there-
fore affects performance. Thus, we believe that the denoising strategy should be
adjusted depending on the problem at hand: while weaker corruption helps to
improve search quality for high-locality problems, we expect stronger corruption
to be more successful when we face rugged fitness landscapes (low-locality prob-
lems). Here, a stronger exploration of the solution space can help to overcome
local optima and to avoid premature convergence.

5 Conclusions

The DAE-GP is an EDA-GP model based on artificial neural networks that flex-
ibly identifies and models hidden relationships in training data. It uses denoising
on input candidate solutions to make the model robust to noise that is present
in the parent population. This paper introduced Levenshtein edit as a new and
improved denoising strategy, allowing us to precisely control corruption strength.
Furthermore, we implemented a new syntax control mechanism for sampling
from the DAE-GP, allowing a higher level of exploration throughout the search.

We find that denoising strongly influences exploration and exploitation in
search and therefore affects performance. The stronger we denoise input candi-
date solutions, the stronger the exploration. Exploration is especially useful for
low-locality problems where we want to escape from local optima. In contrast,
for high-locality problems, such as the generalization of the royal tree problem
considered in this work, stronger exploitation is needed. Therefore the DAE-GP
with low corruption strength (5%) performs best. The results show that the
denoising strategy is key to the success of the DAE-GP: it permits us to con-
trol the exploration and exploitation behavior in search leading to an improved
search quality.

In future work, we investigate the influence of denoising on other prob-
lem domains. We will study if we can dynamically control corruption strength
throughout search. In addition, we think that Levenshtein edit as denoising
strategy can still be improved. The denoising strategy presented in this paper
operates on the string of a candidate solution, which easily destroys GP syntax.
Thus, Levenshtein edit operating on a parse tree could be a promising approach.
Furthermore, a hyperparameter optimization could further improve model qual-
ity, as well as other architectures, such as the transformer architecture [23].
Besides this, future work should investigate if a pre-training of the model before
evolution helps to improve search quality.

Acknowledgements. I thank my team in Mainz, especially Franz Rothlauf, for
insightful discussions on this topic, as well as Dirk Schweim and Malte Probst for
previous work on this topic.

116 D. Wittenberg

References

1. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders as
generative models. In: Advances on Neural Information Processing Systems (NIPS
2013), vol. 26, pp. 899–907 (2013)

2. Chollet, F.: keras. https://github.com/fchollet/keras (2015)
3. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagńe, C.: DEAP:

evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)
4. Hasegawa, Y., Iba, H.: Estimation of Bayesian network for program generation. In:

Proceedings of the Third Asian-Pacific Workshop on Genetic Programming, pp.
35–46. Hanoi, Vietnam (2006)

5. Hasegawa, Y., Iba, H.: Estimation of distribution algorithm based on probabilistic
grammar with latent annotations. In: Proceedings of the IEEE Congress on Evo-
lutionary Computation, CEC 2007, pp. 1043–1050. IEEE (2007), https://doi.org/
10.1109/CEC.2007.4424585

6. Hasegawa, Y., Iba, H.: A Bayesian network approach to program generation. IEEE
Trans. Evol. Comput. 12(6), 750–764 (2008). https://doi.org/10.1109/tevc.2008.
915999

7. Hemberg, E., Veeramachaneni, K., McDermott, J., Berzan, C., O’Reilly, U.M.:
An investigation of local patterns for estimation of distribution genetic program-
ming. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2012), pp. 767–774. ACM, Philadelphia (2012). https://doi.org/10.1145/
2330163.2330270

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

9. Kim, K., Shan, Y., Nguyen, X.H., McKay, R.I.: Probabilistic model building in
genetic programming: a critical review. Gene. Program. Evol. Mach. 15(2), 115–
167 (2013). https://doi.org/10.1007/s10710-013-9205-x

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations. San Diego (2015)

11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, London (1992)

12. Kruskal, J.B.: An overview of sequence comparison: time warps, string edits,
and macromolecules. Soc. Ind. Appl. Math. (SIAM) Rev. 25(2), 201–237 (1983).
https://doi.org/10.1137/1025045

13. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evol.
Comput. 5(4), 401–418 (1997)

14. Poli, R., McPhee, N.F.: A linear estimation-of-distribution GP system. In: Proceed-
ings of the 11th European Conference on Genetic Programming (EuroGP 2008),
pp. 206–217. Springer, Neapel (2008). https://doi.org/10.1007/978-3-540-78671-9

15. Probst, M.: Denoising autoencoders for fast combinatorial black box optimization.
In: Proceedings of the Companion Publication of the Annual Conference on Genetic
and Evolutionary Computation, pp. 1459–1460. ACM, Madrid (2015)

16. Probst, M., Rothlauf, F.: Harmless overfitting: Using denoising autoencoders in
estimation of distribution algorithms. J. Mach. Learn. Res. 21(78), 1–31 (2020).
http://jmlr.org/papers/v21/16-543.html

17. Punch, B., Zongker, D., Goodman, E.: The royal tree problem, a benchmark for sin-
gle and multi-population genetic programming. In: Angeline, P.J., Kinnear, K.E.,
Jr. (eds.) Advances in Genetic Programming II, pp. 299–316. MIT Press, Cam-
bridge (1996)

https://github.com/fchollet/keras
https://doi.org/10.1109/CEC.2007.4424585
https://doi.org/10.1109/CEC.2007.4424585
https://doi.org/10.1109/tevc.2008.915999
https://doi.org/10.1109/tevc.2008.915999
https://doi.org/10.1145/2330163.2330270
https://doi.org/10.1145/2330163.2330270
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s10710-013-9205-x
https://doi.org/10.1137/1025045
https://doi.org/10.1007/978-3-540-78671-9
http://jmlr.org/papers/v21/16-543.html

Using DAE-GP to Control Exploration and Exploitation in Search 117

18. Ratle, A., Sebag, M.: Avoiding the bloat with stochastic grammar-based genetic
programming. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer,
M. (eds.) EA 2001. LNCS, vol. 2310, pp. 255–266. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46033-0 21

19. Rothlauf, F.: Design of Modern Heuristics: Principles and Application, 1st edn.
Springer, Berlin (2011). https://doi.org/10.1007/978-3-540-72962-4

20. Salustowicz, R., Schmidhuber, J.: Probabilistic incremental program evolution.
Evol. Comput. 5(2), 123–141 (1997). https://doi.org/10.1162/evco.1997.5.2.123

21. Shan, Y., McKay, R., Essam, D., Abbass, H.: A survey of probabilistic model
building genetic programming. In: Pelikan, M., Sastry, K., CantúPaz, E. (eds.)
Scalable Optimization via Probabilistic Modeling, pp. 121–160. Springer, Berlin
(2006). https://doi.org/10.1007/978-3-540-34954-9

22. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video
representations using LSTMs. In: Proceedings of the 32nd International Conference
on Machine Learning (ICML 2015), pp. 843–852. ACM, Lille (2015). https://doi.
org/10.5555/3045118.3045209

23. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
�L, Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30,
5998–6008 (2017)

24. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the 25th Inter-
national Conference on Machine Learning (ICML 2008), pp. 1096–1103. ACM,
Helsinki (2008). https://doi.org/10.1145/1390156.1390294

25. Wittenberg, D., Rothlauf, F., Schweim, D.: DAE-GP: denoising autoencoder LSTM
networks as probabilistic models in estimation of distribution genetic programming.
In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference,
pp. 1037–1045. GECCO 2020, ACM, New York (2020). https://doi.org/10.1145/
3377930.3390180

26. Wong, P.K., Lo, L.Y., Wong, M.L., Leung, K.S.: Grammar-based genetic program-
ming with Bayesian network. In: IEEE Congress on Evolutionary Computation
(CEC’14), pp. 739–746. IEEE, Beijing (2014)

27. Wong, P.K., Lo, L.Y., Wong, M.L., Leung, K.S.: Grammar-based genetic program-
ming with dependence learning and Bayesian network classifier. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2014), pp. 959–
966. ACM, Vancouver (2014). https://doi.org/10.1145/2576768.2598256

28. Yanai, K., Iba, H.: Estimation of distribution programming based on Bayesian
network. In: IEEE Congress on Evolutionary Computation (CEC 2003), pp. 1618–
1625. IEEE, Canberra (2003). https://doi.org/10.1109/CEC.2003.1299866

https://doi.org/10.1007/3-540-46033-0_21
https://doi.org/10.1007/978-3-540-72962-4
https://doi.org/10.1162/evco.1997.5.2.123
https://doi.org/10.1007/978-3-540-34954-9
https://doi.org/10.5555/3045118.3045209
https://doi.org/10.5555/3045118.3045209
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/3377930.3390180
https://doi.org/10.1145/3377930.3390180
https://doi.org/10.1145/2576768.2598256
https://doi.org/10.1109/CEC.2003.1299866

Program Synthesis with Genetic
Programming: The Influence

of Batch Sizes

Dominik Sobania(B) and Franz Rothlauf

Johannes Gutenberg University, Mainz, Germany
{dsobania,rothlauf}@uni-mainz.de

Abstract. Genetic programming is a method to generate computer pro-
grams automatically for a given set of input/output examples that define
the user’s intent. In real-world software development this method could
also be used, as a programmer could first define the input/output exam-
ples for a certain problem and then let genetic programming generate
the functional source code. However, a prerequisite for using genetic
programming as support system in real-world software development is
a high performance and generalizability of the generated programs. For
some program synthesis benchmark problems, however, the generalizabil-
ity to previously unseen test cases is low especially when lexicase is used
as parent selection method. Therefore, we combine in this paper lexicase
selection with small batches of training cases and study the influence of
different batch sizes on the program synthesis performance and the gen-
eralizability of programs generated with genetic programming. For evalu-
ation, we use three common program synthesis benchmark problems. We
find that the selection pressure can be reduced even when small batch
sizes are used. Moreover, we find that, compared to standard lexicase
selection, the obtained success rates on the test set are similar or even
better when combining lexicase with small batches. Furthermore, also
the generalizability of the found solutions can often be improved.

Keywords: Program synthesis · Genetic programming ·
Generalization

1 Introduction

Genetic programming (GP) [3,22] is a technique to automatically generate com-
puter programs. For a given set of input/output examples (training cases) defin-
ing the requirements, GP searches in an evolutionary process for a program
that completely fulfills these requirements. This procedure has similarities to
the standard procedure in real-world software development, for example, as in
test-driven development [2], where the test cases (e.g., unit tests) are defined first
and after that the functional source code is written. GP, which in recent years
has made some progress in automatic program synthesis [11], has the potential
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 118–129, 2022.
https://doi.org/10.1007/978-3-031-02056-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_8&domain=pdf
http://orcid.org/0000-0001-8873-7143
http://orcid.org/0000-0003-3376-427X
https://doi.org/10.1007/978-3-031-02056-8_8

Program Synthesis with GP: The Influence of Batch Sizes 119

to replace the second part of this process: writing the functional source code.
However, this assumes that GP can find solutions for many everyday program-
ming problems and that these solutions are generalizable which means that they
also work on previously unseen test cases (as in production).

In recent work, the success rates (percentage of runs that find a correct solu-
tion) for standard program synthesis benchmark problems could be increased sig-
nificantly [9,14]. This increase is strongly related to the use of lexicase selection
[27], in which the training cases are evaluated individually instead of aggregating
a program’s performance on all training cases and selecting by this overall fitness
value (as in tournament selection). However, considering the individual training
cases during selection may lead to a strong overfitting on some benchmark prob-
lems [18,24]. Usually, such solutions generalize poorly to unseen test cases.

For classification problems, Aenugu and Spector [1] have shown that a variant
of lexicase selection using batches combining a set of individual training cases
usually leads to a better generalization. However, there are commonly many
more training cases available in classification than in program synthesis, since
in practice a programmer has to generate all the training cases manually (as
there is no oracle function). So, due to the limited number of training cases, the
choice of the batch size is also limited in program synthesis. Furthermore, it is
still unclear how small batch sizes affect the program synthesis performance and
generalization ability of GP.

Therefore, this work studies the influence of small batch sizes used during
selection on the success rates and the generalizability of the programs gener-
ated by GP. For this analysis, we use three common problems from the general
program synthesis benchmark suite [17].

For evaluation, we use a grammar-guided GP approach and use during selec-
tion batch sizes ranging from β = 1, which corresponds to standard lexicase
selection, to β = 100. To analyze the influence of the batch sizes on the success
rates as well as on the generalizability of the found solutions, we select three
problems from the program synthesis benchmark suite [17] which are known in
the literature for their generalization issues. We find in our experiments that
using small batch sizes can lead to similar or even better success rates on the
test set compared to standard lexicase selection (β = 1). Furthermore, best
generalization rates are achieved with β ≥ 2.

In Sect. 2 we give a brief introduction to lexicase selection and present the rel-
evant work on GP-based program synthesis. Section 3 describes the used bench-
mark problems and the selection method. In Sect. 4 we present our experiments
and discuss the results before concluding the paper in Sect. 5.

2 Lexicase Selection in GP-Based Program Synthesis

In the literature on GP-based program synthesis, variants of lexicase selection
are often compared with other selection methods on a wide range of program
synthesis benchmark problems and the lexicase variants usually outperform other
selection methods like tournament selection, fitness-proportionate selection, or
implicit fitness sharing [8,10,12,13,15–17,20,23–25].

120 D. Sobania and F. Rothlauf

Algorithm 1: Lexicase Selection
1 cases := shuffle(training cases);
2 candidates := population;
3 while |cases| > 0 & |candidates| > 1 do
4 case := cases.pop(0);
5 candidates := best individuals(candidates, case);

6 end
7 if |candidates| > 1 then
8 return choice(candidates);
9 end

10 return candidates[0];

Algorithm 1 shows the process of selecting an individual for the next gener-
ation with standard lexicase selection [16,27] as pseudo-code. First, the training
cases are shuffled randomly (line 1) and all solutions from the population are con-
sidered as possible candidates for selection (line 2). In the next step, all candidates
which do not have the exact lowest error on the first training case are discarded
and the first training case is removed from the list (lines 4–5). This step is repeated
until either all cases have been considered or only one candidate solution is left
(while loop defined in line 3). Finally, either a random solution chosen from the
remaining candidates will be returned (lines 7–9) or, if there is only a single solu-
tion left, the last remaining candidate solution will be returned (line 10).

Since lexicase selection is computationally intensive in comparison to other
selection methods such as tournament or fitness-proportionate selection, de Melo
et al. [4] suggested batch tournament selection, which combines the benefits
of tournament and lexicase selection. Tested on a set of common regression
problems, batch tournament selection achieves a solution quality similar to lex-
icase selection but is significantly faster. Another approach that is also based
on batches of training cases is batch lexicase selection suggested by Aenugu and
Spector [1]. For classification problems, they show that batch lexicase selection
can improve generalization. In addition to batches, the authors introduce also
a threshold parameter which allows individuals to survive the selection process
even if they have a larger error than the best individual on the considered batch
(depending on the defined threshold). So this parameter allows a further adjust-
ment of the selection pressure (in addition to the selection of the batch size). A
selection method based on similar principles that has been applied to program
synthesis problems, but without analyzing the generalizability of the found solu-
tions, is summed batch lexicase selection [5].

To prevent pre-mature convergence, Kelly et al. [21] suggested knobelty selec-
tion. Based on a defined novelty probability, an individual is selected either
based on its novelty or its performance. For the performance-based selection,
the authors use lexicase selection.

Recently, Hernandez et al. [19] suggested down-sampled lexicase selection,
which operates on a different random subset of the training cases in each

Program Synthesis with GP: The Influence of Batch Sizes 121

generation. Although down-sampled lexicase selection consistently achieves bet-
ter results than standard lexicase selection, it has not yet been shown that the
solutions found generalize better to unseen test cases [18].

However, to our knowledge, there is no work so far studying the influence
of small batch sizes on the success rates and the generalizability of programs
generated with GP on program synthesis benchmark problems that are known
for their low generalization rates.

3 Methodology

To analyze the influence of batch sizes on the performance and generalizability
of GP-based program synthesis, we apply a grammar-guided GP approach to
common program synthesis benchmark problems. In this section, we present the
selected benchmark problems and describe the used grammars as well as the
selection method.

3.1 Benchmark Problems

As we want to study if the use of small batches increases generalizability in
the program synthesis domain, we selected three problems from the program
synthesis benchmark suite [17] that are known for their generalization issues in
the literature [24]. The selected problems are:

– Compare String Lengths: For three given strings, return true if the strings
are sorted in ascending order according to their length. Otherwise, return
false.

– Grade: For five given integer values, where the first four values define the
minimum score required to achieve the grades “A”, “B”, “C”, and “D”, and
the fifth value defines the score achieved by a student, return the grade for
this student. Return an “F” if the achieved score is lower than the score
defined by the fourth integer value.

– Small Or Large: For a given integer n, return “small” if n < 1, 000, “large”
if n ≥ 2, 000, and an empty string if 1, 000 ≤ n < 2, 000.

As defined by the benchmark suite, we use 100 training and 1,000 test cases
for Compare String Lengths and Small Or Large, and 200 training and 2,000
test cases for the Grade problem.

3.2 Grammars

In our grammar-guided GP approach, we use context-free grammars supporting
an expressive subset of the Python programming language including variable
assignments, different data types, as well as conditionals. The used grammars
are based on the grammars provided by the PonyGE2 framework [7] which follow
the principle proposed by Forstenlechner et al. [8] which suggests that program

122 D. Sobania and F. Rothlauf

Table 1. Data types supported by the used grammars for each of the studied program
synthesis benchmark problems.

Benchmark Problem Integer Boolean String Char

Compare String Lengths

Grade

Small Or Large

synthesis grammars should, in addition to some basic data types, only support
the required data types (e.g., the data types specified by a function’s input and
output). With this approach, the used grammars and consequently the resulting
search space can be kept small.

Table 1 shows for each of the studied program synthesis benchmark problems
the data types supported by the used grammars.1 For all benchmark problems,
the basic types Boolean and integer are supported. For Compare String Lengths
and Small Or Large, we support in addition also strings. For the Grade problem,
we support chars together with the required functions to process char values
instead of strings as for this problem no complex string handling is necessary.

3.3 Selection Method

To study the influence of batch sizes in GP-based program synthesis, we extend
the lexicase algorithm to include batches. Algorithm 2 shows this extended lex-
icase variant as pseudo-code.

Algorithm 2: Lexicase Selection with Batches
1 cases := shuffle(training cases);
2 candidates := population;
3 batches := generate batches(cases, β);
4 while |batches| > 0 & |candidates| > 1 do
5 batch := batches.pop(0);
6 candidates := best individuals(candidates, batch);

7 end
8 if |candidates| > 1 then
9 return choice(candidates);

10 end
11 return candidates[0];

Basically, this method is similar to standard lexicase selection. The only
difference is that, instead of individual training cases, batches of training cases
of a pre-defined size β are generated (line 3). If β is a divisor of the number

1 Grammars: https://gitlab.rlp.net/dsobania/progsys-grammars-2022-1.

https://gitlab.rlp.net/dsobania/progsys-grammars-2022-1

Program Synthesis with GP: The Influence of Batch Sizes 123

of training cases, then all batches are of equal size. Otherwise, the last batch
is smaller. After the batches are created, all candidates that do not have the
exact lowest aggregated error/best fitness on the first batch are discarded and
the first batch is removed (lines 5–6). As in standard lexicase selection, this step
is repeated until either all batches have been considered or only one candidate
solution is left (lines 4–7). Finally, a randomly chosen candidate of the list of
remaining candidates (lines 8–10) or the last remaining one (line 11) is returned.

For β = 1, the described method works like standard lexicase selection. In
general, the method is a version of batch lexicase selection [1] without the fit-
ness threshold [as we discard all candidates that do not have the exact lowest
error/fitness on a considered batch (line 6)] and consequently also similar to
summed batch lexicase selection [5] as we aggregate in our experiments the fit-
ness of a batch by calculating the sum of the errors on the contained training
cases.

4 Experiments and Results

To study the influence of small batch sizes on the success rates and the gener-
alizability of programs generated by GP we use in our experiments a grammar-
guided GP implementation based on the PonyGE2 framework [7]. We set the
population size to 1, 000 and use position independent grow [6] as initialization
method. We set the maximum initial tree depth (for initialization) to 10 and the
maximum overall tree depth to 17. For variation, we use sub-tree crossover with
a probability of 0.9 and sub-tree mutation with a probability of 0.05. A GP run
is stopped after 300 generations.

As batch sizes, we study all divisors of 100, since for the majority of the
considered benchmark problems 100 training cases are provided (this allows all
batches to be equal in size). Finally, since the results in the program synthesis
domain are often subject to high variance [26], we have doubled the number of
runs used commonly in the literature (e.g., in [17] and [8]) and use 200 runs per
configuration.

4.1 Influence on Selection Pressure

First, we study the influence of the batch sizes on the selection pressure. There-
fore, we analyze the development of the average best fitness during a GP run for
different batch sizes, where the fitness of an individual is the sum of its errors
on the training cases. Furthermore, we analyze for all studied batch sizes the
average generation in which a solution that correctly solves all training cases is
found for the first time.

Figures 1, 2, 3, 4, 5 and 6 show the results for the benchmark problems
considered in this study. The plots on the left (Figs. 1, 3, and 5) show the best
fitness over generations for all studied batch sizes and benchmark problems.
The results are averaged over 200 runs. The plots on the right (Figs. 2, 4, and 6)
show the average generation of a first success on the training cases for all studied

124 D. Sobania and F. Rothlauf

Fig. 1. Average best fitness over gener-
ations for the Compare String Lengths
problem for all studied batch sizes.

Fig. 2. Average generation of first suc-
cess on training cases over batch sizes for
the Compare String Lengths problem.

Fig. 3. Average best fitness over genera-
tions for the Grade problem for all stud-
ied batch sizes.

Fig. 4. Average generation of first suc-
cess on training cases over batch sizes for
the Grade problem.

Fig. 5. Average best fitness over genera-
tions for the Small Or Large problem for
all studied batch sizes.

Fig. 6. Average generation of first suc-
cess on training cases over batch sizes for
the Small Or Large problem.

Program Synthesis with GP: The Influence of Batch Sizes 125

Table 2. Success rates on the training (strain) and the test set (stest) as well as the
generalization rate g achieved by the grammar-guided GP approach for different batch
sizes β for all studied program synthesis benchmark problems. Best values are printed
in bold font.

Benchmark Problem β strain stest g

Compare String Lengths 1 93.0 10.0 0.11

2 91.5 15.5 0.17

4 91.5 8.5 0.09

5 90.5 7.0 0.08

10 80.0 4.5 0.06

20 60.0 4.0 0.07

25 57.5 5.5 0.1

50 29.5 1.5 0.05

100 5.5 0.5 0.09

Grade 1 34.0 8.5 0.25

2 33.5 8.0 0.24

4 31.0 10.5 0.34

5 36.0 7.5 0.21

10 25.0 11.5 0.46

20 20.5 8.5 0.41

25 16.5 6.5 0.39

50 10.5 4.5 0.43

100 5.5 2.5 0.45

Small Or Large 1 9.0 3.5 0.39

2 4.5 3.0 0.67

4 5.5 2.0 0.36

5 2.5 1.5 0.6

10 4.0 1.5 0.38

20 5.0 3.5 0.7

25 3.0 1.0 0.33

50 1.0 0.5 0.5

100 1.5 1.5 1.0

benchmark problems and training cases. The dashed regression line illustrates
the development/trend for increasing batch sizes.

We see for all studied program synthesis benchmark problems that the fitness
decreases more slowly over the generations for increasing batch sizes. The fastest

126 D. Sobania and F. Rothlauf

fitness reduction (minimization problem) is always achieved with batch size β =
1 (standard lexicase selection). Similarly, we observe the slowest fitness reduction
for β = 100. E.g., for the Compare String Lengths problem (Fig. 1), for β = 100
the average best fitness is around 12 while for β ≤ 25 the average best fitness
is close to zero. Overall, the convergence speed is also reduced for small batch
sizes (4 ≤ β < 20).

For the generation of first success on the training cases we observe on average
increasing values for increasing batch sizes. For the Compare String Lengths
problem (Fig. 2) the success generation increases from around 60 for β = 1
to around 110 for β > 50 and for the Grade problem (Fig. 4) the generation
increases from around 170 to 190. For the Small Or Large problem (Fig. 6),
the regression line remains about constant (slight decrease) over the considered
batch sizes. However, the results for this problem are based on only a smaller
amount of data, compared to the other two benchmark problems, because the
success rates on the training set are low for this problem (see Table 2).

In summary, with an increasing batch size β the selection pressure decreases.
Additionally, the selection pressure can be reduced even with the use of small
batch sizes.

4.2 Analysis of Success Rates and Generalization

To analyze the performance and the generalizability of the solutions found by
GP with different batch sizes, Table 2 shows the success rates on the training
(strain) and the test set (stest) as well as the generalization rate g achieved by
the grammar-guided GP for different batch sizes β for the considered benchmark
problems that are known in the literature for their poor generalization with
lexicase selection [24]. As the results are based on 200 runs, we report strain and
stest in percent. Best values are printed in bold font.

As expected, the success rate on the training set strain decreases for an
increasing batch size β. Also the success rates on the test set stest are low on all
considered benchmark problems for larger batch sizes (β ≥ 25). Nevertheless,
using small batch sizes (2 ≤ β ≤ 10) often leads to similar or even better success
rates on the test set compared to standard lexicase selection (β = 1). E.g., for
the Compare String Lengths problem we achieved a success rate of 15.5 with
β = 2 compared to only 10 with standard lexicase selection.

Furthermore, for all considered benchmark problems, best generalization
rates g are achieved with β ≥ 2. Compared to standard lexicase selection, we
see for the Grade problem and the Small Or Large problem on average notably
larger generalization rates g for β ≥ 10. From a practitioners perspective, a high
generalization rate is even more important than a high success rate as it is essen-
tial that the found programs work also correctly on previously unseen test cases.
An additional check with many test cases is usually not possible in practice as it
is expensive to manually create a large test set. However, if a program synthesis
method is known for producing generalizable solutions, a programmer can trust
this method. If such a method has a low success rate but a high generalization

Program Synthesis with GP: The Influence of Batch Sizes 127

rate, then the search can be easily repeated if no successful solution is found in
the first run.

Overall, we find that similar or even better success rates on the test set can be
achieved when combining lexicase selection with small batches instead of using
standard lexicase selection. In addition, best generalization rates are achieved
with β ≥ 2.

5 Conclusions

As GP is able to generate computer programs for a given set of input/output
examples automatically, it has the potential to be used in real-world software
development. Similar as in test-driven development [2], a programmer could
define the input/output examples first and GP could then generate the functional
source code. A prerequisite for GP as support system in software development is
a good program synthesis performance and a high generalizability of the found
programs. However, for some benchmark problems, GP generates programs that
generalize poorly to unseen test cases especially when standard lexicase selec-
tion is used [24]. For classification problems, however, it has been shown that
combining lexicase selection with batches of training cases can improve general-
ization [1]. Anyway, using batches in a program synthesis context is challenging
as usually the number of input/output examples that can be used for training
is low.

Therefore, we studied in this work the influence of small batch sizes during
selection on the success rates and the generalizability of the programs generated
by GP on common program synthesis benchmark problems.

We found that with an increasing batch size the selection pressure is reduced,
which can be observed even for small batch sizes (4 ≤ β < 20). Furthermore, we
found that, compared to standard lexicase selection, the achieved success rates
on the test set are either similar or even better when small batches are used.
Overall, best generalization rates are obtained with a batch size β ≥ 2.

So we suggest to use small batches with lexicase selection in GP-based pro-
gram synthesis as the results are competitive or even better than with standard
lexicase selection and also the generalizability of the found solutions can often
be improved.

References

1. Aenugu, S., Spector, L.: Lexicase selection in learning classifier systems. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 356–364
(2019)

2. Beck, K.: Test-driven Development: by Example. Addison-Wesley Professional
(2003)

3. Cramer, N.L.: A representation for the adaptive generation of simple sequential
programs. In: Proceedings of an International Conference on Genetic Algorithms
and the Applications, pp. 183–187 (1985)

128 D. Sobania and F. Rothlauf

4. De Melo, V.V., Vargas, D.V., Banzhaf, W.: Batch tournament selection for genetic
programming: the quality of lexicase, the speed of tournament. In: Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 994–1002 (2019)

5. Deglman, J.: Summed batch lexicase selection on software synthesis problems.
Scholarly Horizons: Univ. Minnesota, Morris Undergraduate J. 7(1), 3 (2020)

6. Fagan, D., Fenton, M., O’Neill, M.: Exploring position independent initialisation
in grammatical evolution. In: 2016 IEEE Congress on Evolutionary Computation
(CEC), pp. 5060–5067. IEEE (2016)

7. Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill,
M.: PonyGE2: Grammatical evolution in Python. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, pp. 1194–1201 (2017)

8. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: A grammar design pattern
for arbitrary program synthesis problems in genetic programming. In: McDermott,
J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017.
LNCS, vol. 10196, pp. 262–277. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-55696-3 17

9. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Extending program synthe-
sis grammars for grammar-guided genetic programming. In: Auger, A., Fonseca,
C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018.
LNCS, vol. 11101, pp. 197–208. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99253-2 16

10. Helmuth, T., Abdelhady, A.: Benchmarking parent selection for program synthesis
by genetic programming. In: Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion, pp. 237–238 (2020)

11. Helmuth, T., Kelly, P.: PSB2: the second program synthesis benchmark suite. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 785–
794 (2021)

12. Helmuth, T., McPhee, N.F., Spector, L.: The impact of hyperselection on lexicase
selection. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence 2016, pp. 717–724 (2016)

13. Helmuth, T., McPhee, N.F., Spector, L.: Lexicase selection for program synthesis:
a diversity analysis. In: Riolo, R., Worzel, B., Kotanchek, M., Kordon, A. (eds.)
Genetic Programming Theory and Practice XIII. GEC, pp. 151–167. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-34223-8 9

14. Helmuth, T., McPhee, N.F., Spector, L.: Program synthesis using uniform muta-
tion by addition and deletion. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1127–1134 (2018)

15. Helmuth, T., Pantridge, E., Spector, L.: Lexicase selection of specialists. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 1030–1038
(2019)

16. Helmuth, T., Pantridge, E., Spector, L.: On the importance of specialists for lexi-
case selection. Genetic Program. Evol. Mach. 21(3), 349–373 (2020). https://doi.
org/10.1007/s10710-020-09377-2

17. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
pp. 1039–1046 (2015)

18. Helmuth, T., Spector, L.: Explaining and exploiting the advantages of down-
sampled lexicase selection. In: Artificial Life Conference Proceedings, pp. 341–349.
MIT Press One Rogers Street, Cambridge, MA 02142–1209 USA (2020)

https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-99253-2_16
https://doi.org/10.1007/978-3-319-99253-2_16
https://doi.org/10.1007/978-3-319-34223-8_9
https://doi.org/10.1007/s10710-020-09377-2
https://doi.org/10.1007/s10710-020-09377-2

Program Synthesis with GP: The Influence of Batch Sizes 129

19. Hernandez, J.G., Lalejini, A., Dolson, E., Ofria, C.: Random subsampling improves
performance in lexicase selection. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pp. 2028–2031 (2019)

20. Jundt, L., Helmuth, T.: Comparing and combining lexicase selection and novelty
search. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 1047–1055 (2019)

21. Kelly, J., Hemberg, E., O’Reilly, U.-M.: Improving genetic programming with novel
exploration - exploitation control. In: Sekanina, L., Hu, T., Lourenço, N., Richter,
H., Garćıa-Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 64–80. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-16670-0 5

22. Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection, vol. 1. MIT press (1992)

23. Saini, A.K., Spector, L.: Effect of parent selection methods on modularity. In: Hu,
T., Lourenço, N., Medvet, E., Divina, F. (eds.) Genetic Programming, pp. 184–194.
Springer International Publishing, Cham (2020)

24. Sobania, D.: On the generalizability of programs synthesized by grammar-guided
genetic programming. In: Hu, T., Lourenço, N., Medvet, E. (eds.) EuroGP 2021.
LNCS, vol. 12691, pp. 130–145. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-72812-0 9

25. Sobania, D., Rothlauf, F.: A generalizability measure for program synthesis with
genetic programming. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, pp. 822–829 (2021)

26. Sobania, D., Schweim, D., Rothlauf, F.: Recent developments in program synthesis
with evolutionary algorithms. arXiv preprint arXiv:2108.12227 (2021)

27. Spector, L.: Assessment of problem modality by differential performance of lexicase
selection in genetic programming: a preliminary report. In: Proceedings of the 14th
Annual Conference Companion on Genetic and Evolutionary Computation, pp.
401–408 (2012)

https://doi.org/10.1007/978-3-030-16670-0_5
https://doi.org/10.1007/978-3-030-72812-0_9
https://doi.org/10.1007/978-3-030-72812-0_9
http://arxiv.org/abs/2108.12227

Genetic Programming-Based Inverse
Kinematics for Robotic Manipulators

Julia Reuter(B) , Christoph Steup , and Sanaz Mostaghim

Institute for Intelligent Cooperating Systems, Faculty of Computer Science,
Otto von Guericke University Magdeburg, Magdeburg, Germany
{julia.reuter,christoph.steup,sanaz.mostaghim}@ovgu.de

Abstract. In this paper, we introduce an inverse kinematics model for a
robotic manipulator using Genetic Programming (GP). The underlying
problem requires learning of multiple joint parameters of the manipulator
to reach a desired position in the Cartesian space. We present a new app-
roach to identify a closed-form solution for the Inverse Kinematics (IK)
problem, namely IK-CCGP. The novelty of IK-CCGP is the cooperative
coevolutionary learning strategy. Unlike other GP approaches, IK-CCGP
is not limited to a certain angle combination to reach a given pose and is
designed to achieve more flexibility in the learning process. Moreover, it
can operate both as single- and multi-objective variants. In this paper,
we investigate whether the inclusion of further objectives, i.e. correlation
and the consistency of a solution with physical laws, contributes to the
search process. Our experiments show that the combination of the two
objectives, error and correlation, performs very well for the given prob-
lem and IK-CCGP performs the best on a kinematic unit of two joints.
While our approach cannot attain the same accuracy as Artificial Neu-
ral Networks, it overcomes the explainability gap of IK models developed
using ANNs.

Keywords: Genetic Programming · Cooperative Coevolution ·
Multi-Objective Optimization · Inverse Kinematics

1 Introduction

Robotic manipulators are at the center of process automation. Most applications
today like automatic welding or pick and place tasks require these to operate
with high flexibility in movement [24]. At the same time, in special use cases
with many manipulators in a small arena like in swarm robotics, we need them
to operate in very confined spaces. As a result, a plethora of robotic manipulators
were constructed by many companies, which do not follow the standard 6 degrees
of freedom (DOF) configuration. One example, is the 5 DOF KUKA youBot
manipulator that serves as a use case for this paper. By removing one joint [16],
the robot takes up less space and is still quite flexible. While these robots fulfill
the flexibility and compactness criteria, the kinematic analysis is complicated

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 130–145, 2022.
https://doi.org/10.1007/978-3-031-02056-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_9&domain=pdf
http://orcid.org/0000-0002-7023-7965
http://orcid.org/0000-0001-6936-9760
http://orcid.org/0000-0002-9917-5227
https://doi.org/10.1007/978-3-031-02056-8_9

Genetic Programming-Based Inverse Kinematics for Robotic Manipulators 131

by untypical joint configurations. This is because the standard methods cannot
be applied anymore. Consequently, understanding the kinematics, i.e., relation
between the DOF and the resulting movement of the rigid body of an arbitrary
robotic manipulator, is crucial.

The general structure of a robotic manipulator is an open kinematic chain.
It consists of multiple, typically rotational joints, which are connected by links.
Non-rotational joints such as prismatic joints are left out of consideration in
this paper. The joint rotation parameters θi, i = 1, . . . , |DOF | are variable.
In general, a robotic manipulator operates in a 6-D environment X = [p, o]T =
[x, y, z, θx, θy, θz]T . In this pose representation, the vector p = [x, y, z]T indicates
the position of the end-effector, while o = [θx, θy, θz]T represents the end-effector
orientation using three Euler angles [13,21].

The goal of the forward kinematics (FK) denoted by g is to find the pose
of the end-effector given the robot joint angles, i.e., X = g(θ1 . . . θ|DOF |). This
calculation is straightforward as there is exactly one pose for every joint-angle
combination, feasible or not. A common standard to describe the kinematic
model of a robot is the Denavit-Hartenberg (D-H) convention, which requires
only four parameters per joint. These are the link length ai, the link twist αi,
the link offset di, and the joint angle θi [25]. For any given rotational link, three
of these quantities are constant, while only θi is variable and defines the actual
movement [13].

The inverse kinematics (IK) problem aims at the opposite, with the goal to
find the robot joint angles given a target pose, i.e., θ = g−1(X). In contrast to
the FK, there are multiple solutions to the IK problem. This makes the prob-
lem considerably more complex than the forward kinematics. In general, finding
a closed form solution is of great interest, i.e., finding an explicit relationship
between a joint variable θi and the elements of the 6-D pose vector X. Since
multiple valid joint configurations can be found for a given pose, closed-form
solutions allow for real-time movements and can furthermore provide decision
rules to prefer a particular configuration over another [21]. Moreover, an explicit
relationship enables the mathematical analysis of safety-relevant edge cases. A
variety of closed-form solution approaches have emerged for different applica-
tions within the last decades [2,5]. Classical analytical approaches provide IK
solutions in real-time. However, they are often not applicable to robots with
non-standard axis configurations, since such robots do not always have unique
solutions to the IK problem. Modern computational approaches like Artificial
Neural Networks (ANN) can overcome this issue, but lack transparency and
explainability. Between these conflicting priorities, finding a fast, explainable
solution for a non-standard configured robot is a complex task.

In this paper, we develop a novel approach to learn an IK model of a
robotic manipulator. We use Genetic Programming (GP) as the learning mech-
anism. GP produces equations that are human-readable and can be executed in
real-time, while still providing explainability and allow the adaptation of non-
standard robotic configurations. We propose the novel Cooperative Coevolution-
ary Genetic Programming for Inverse Kinematics (IK-CCGP) approach, which

132 J. Reuter et al.

tackles the need of an IK model for multiple outputs, i.e., one value per joint of
the kinematic chain.

We examined the proposed IK-CCGP on a KUKA youBot with 5 DOF and
performed several experiments on various settings of the problem. Furthermore,
we compare our results with the reported results based on ANN in [1,22]. Our
experiments show that we can achieve very good results in certain areas of the
workspace. However, an ANN still provides more accurate solutions with smaller
failure rates. Nevertheless, the solutions produced by GP can considerably con-
tribute to the explainability of the solutions, which is one of the major goals of
this paper.

2 Related Work

Addressing the IK problem with GP is mainly driven by Chapelle et al., who
published two papers in 2001 and 2004 [3,4]. In both papers, the problem was
modeled as a single-objective problem with a length-penalizing RMSE of the
joint angle as a fitness function. All joint equations were learned sequentially
starting from joint one, feeding the result to the next joint and so forth. The
proposed setting reached an accuracy of 10−2 radians for the first joint θ1 and
10−1 radians for the last joint θ6. The maximum error on the tested instances
was 0.3 radians. Next to the mentioned works, the principles of evolution are
mostly applied to find off-line, i.e. not real-time capable, IK solutions for given
robotic manipulators. Parker et al. [19] developed an Evolutionary Algorithm
(EA) model that approximates the joint values for a given end-pose. This app-
roach incorporates the FK equations and uses the positioning error between the
desired and the learned poses as the objective to be minimized. Kalra et al. [14]
used EAs to find multiple solutions for the IK problem.

Another application of GP in the robotic field is the calibration of manipu-
lators. Dolinsky et al. [8] used GP to approximate an error function between the
desired and the actual position of the end-effector caused by mechanical inaccu-
racies of the real-world robot compared to its simulation. The authors proposed
a coevolutionary algorithm, as multiple joint corrections need to be calculated
at the same time which all mutually affect each other.

The Artificial Neural Networks (ANN) have been applied to the IK problem
for simple manipulators [9,12] and additionally for 6 DOF standard manipula-
tors [6]. These approaches solely give the target pose as an input to predict the
corresponding joint angle values. They mainly focus on improving the parame-
ters of the model, such as the number of hidden neurons or the learning rate.
Almusawi et al. [1] proposed to include the current joint configurations of a 6
DOF robot in the input parameters, which improved accuracy, especially for
continuous trajectories such as drawing a circle with a pen. A different error
measure was suggested by Srisuk et al. [22]: Instead of comparing the learned
and desired joint angles of the 4 DOF manipulator, the authors implemented
the FK equations to compute the end-effector pose from the learned angles.
The error function is thus a distance measure between the learned pose and the

Genetic Programming-Based Inverse Kinematics for Robotic Manipulators 133

desired pose. By incorporating the FK equations, this approach allows learning
the underlying kinematic behavior without limiting good results to pre-defined
joint angles. This helps to overcome the singularity problem of a robot, where
multiple joint configurations lead to the same end pose.

In a comparative study, El-Sherbiny et al. [10] opposed different mod-
ern IK approaches, namely ANNs, Adaptive Neuro Fuzzy Inference Systems
and Genetic Algorithms, to solve the IK problem for a 5 DOF manipulator.
ANNs outperformed the other methods. For broader overview about modern IK
approaches, refer to [2, Chapter 6].

3 Genetic Programming-Based Inverse Kinematics

In the following, we first present our approach on modelling the IK problem using
several objective functions. Afterwards, we introduce the proposed universal,
problem-independent algorithm IK-CCGP.

3.1 Fitness Functions to Model the IK Problem

As already mentioned in the introduction, we aim to learn a model to solve the
IK problem. In order to reach a certain pose in Cartesian space, two different
error functions can be utilized during the training of the GP, which both lead
to the same final pose: The joint angle error f1(θ) and the pose error f1(X),
where θ represents the angle and X the pose. In addition, we consider other
objective functions such as correlation coefficient and dimension penalty, as first
introduced by [26].

Fitness Function (f1): f1(θ) describes the difference between the given and the
produced joint value in [rad] and is to be minimized for each of the joints in
the kinematic chain. This objective function designed to enforce the GP to learn
the exact angle values given in the training data to reach a certain pose. Hence,
a genetic program is to be identified that transforms the input pose into the
desired joint angle value by optimizing for f1(θ):

f1(θ) =

√
1
κ

∑κ
i=1 (θ̂i − θi)2 (1)

where κ refers to the number of data points involved. An alternative to f1(θ)
is f1(X). Due to the kinematic setup of a robotic manipulator, multiple joint
configurations can lead to the same end pose, i.e. more than one valid solutions
exist for the given problem. While the f1(θ) error function limits the GP to
precisely learn the target joint values to reach the desired position, the f1(X)
error function allows for more flexibility in the learning process. Instead of com-
paring each learned joint value to its given target value, their resulting pose is
computed using the FK equations and compared to the desired pose. We con-
sider the position and orientation of a pose as separate objectives, since they

134 J. Reuter et al.

also come in different units. Hence, the optimization problem can be formulated
using two objectives:

f1(X) =
[
f1(p), f1(o)

]T =

[√
1
κ

∑κ
i=1 ||p̂i − pi||2,

√
1
κ

∑κ
i=1 ||ôi − oi||2

]T

(2)

where p is a vector of the position parameters x, y, z and o a vector of
the orientation parameters θx, θy, θz. f1(X) refers to the combined pose error
function, considering the position and orientation error as separate objectives.
The position error f1(p) and orientation error f1(o) use the Euclidean distance
between the desired and the learned output.

Correlation Coefficient (f2): As an additional objective to enhance the learning
process, a transformed version of the Spearman correlation coefficient is used
as introduced in [26]. It describes the correlation between the produced and the
desired output of a genetic program. The main idea behind employing correlation
next to the error is to evolve programs that are not yet numerically meaningful
but already produce results that correlate with the desired output. Ideally, only
small changes in these programs are necessary to produce numerically accurate
outputs. Also, a high negative correlation can contribute positively to the learn-
ing process, as only one mathematical operation is necessary to invert the results.
Therefore, we use the absolute value of the correlation coefficient: f2 := 1 − |ρ|.
When using the angle error f1(θ) as the first objective, ρ represents the corre-
lation between the produced and the desired angle values. For the pose error
f1(A), three parameters for positioning and three for orientation, need to be
considered. To this end, one correlation coefficient is calculated for each position
and orientation. The final ρ is equal to the mean of the two absolute values of
the position and orientation correlation coefficients.

Dimension Penalty (f3): Dealing with different physical units such as [rad] and
[m] in the same genetic program is a challenging task, especially since trigono-
metric functions convert these units. The third objective f3 is formulated to
guide the algorithm to evolve programs which do not violate physical laws and
match the target unit (i.e., [rad] for each joint angle of the manipulator). Dif-
ferent implementations of a dimension penalty in GP can be found in literature
[15,17,18,23]. In this paper, we compute the objectives f1 and f2 solely based on
their numerical values without any unit feasibility check. For f3, we traverse the
GP tree using post-order traversal and check each operation within an individual
for unit matching. Penalties are aggregated throughout the individual, whereby
each infeasible operation increases the penalty value by 1. Given that an opera-
tion is performed on incompatible units, the unit of the first input argument is
handed over to the next operation, i.e. when an angle in [rad] and a length in
[m] are added, this operation is penalized with a value of 1 and the unit [rad]
is handed over to the next operation. Similarly, when an individual produces a
unit that does not match the target unit, a value of 1 is added to the penalty
variable. The objective function for the dimension penalty can be formulated
as f3 := dimPenop + dimPenout, where dimPenop represents the aggregated

Genetic Programming-Based Inverse Kinematics for Robotic Manipulators 135

ω

θ θ θ

ω ω

Fig. 1. One iteration of the IK-CCGP approach

dimension penalties produced by non-physical operations within the individual
and dimPenout is either 0 or 1, depending on whether the output unit is equal
to the target unit.

3.2 Cooperative Coevolutionary GP for Inverse Kinematics

Cooperative coevolution is a concept in evolutionary algorithms that simultane-
ously evolves multiple so-called subpopulations to solve a given problem. There
are several variants of cooperation between the subpopulations. In some studies,
the evolved solutions in each subpopulation are merged into a single solution
to be evaluated [20]. In this paper, we keep the solutions separate, but evaluate
them in a combined fitness measure denoted as collective evaluation. Here, one
subpopulation per joint is evolved, while the other subpopulations are repre-
sented each by one representative individual. For the collective evaluation, we
employ the FK equations to minimize the error between the desired pose and the
learned pose in Cartesian space, which also attained good result in [8,22]. This
is the main idea in the proposed Cooperative Coevolutionary GP for Inverse
Kinematics (IK-CCGP).

Figure 1 depicts one iteration of the IK-CCGP approach, as described in
lines 6-15 in the complete Algorithm 1. The coevolutionary learning process is
defined by multiple phases: While one subpopulation is evolved, the remaining
subpopulations stand idle and are not changed. Global representatives for each

136 J. Reuter et al.

Algorithm 1: IK-CCGP Algorithm
Input : Training data X, number of subpopulations ω, subpopulation size N ,

number of generations k, number of iterations l
Output: Set of archives Aj , j = 1, . . . , ω

1 for j ← 1 to ω do
2 Pj ← randomly initialize subpopulation with size N
3 rj ← select global representative from Pj

4 Aj ← initialize empty archive

5 end
6 for iter ← 1 to l do
7 for j ← 1 to ω do
8 for i ← 1 to N do
9 evaluate (Pj,i, X, r, j) // evaluation in Algorithm 2

10 end
11 Pj , Aj ← GP (k, X, Pj , Aj) // evaluation in Algo. 2

12 Pj , Aj ← MutOnlyGP (k, X, Pj , Aj) // evaluation in Algo. 2

13 rj ← update global representative using Aj

14 end
15 end
16 return

⋃ω
j=1 Aj

subpopulation that is currently not under training guarantee the common evalu-
ation using the FK equations. Next to the coevolutionary setting, we employ two
important concepts in our algorithms that contribute to the learning process.

In the first concept, we introduce a two phase training strategy. In the first
training phase, Function GP (Algorithm 1, line 11) calls a standard GP algo-
rithm for k generations with crossover and mutation probabilities pc = pm [26].
In case of crossover, either one-point crossover or leaf-based one-point crossover
is chosen at random. Mutation selects randomly between uniform mutation, node
replacement, insertion mutation and shrink mutation. In the second phase, we
only use mutation for k generations to refine the current individuals in terms of
slight changes in the primitives and prevent uncontrolled growth. Thus, Func-
tion MutOnlyGP (Algorithm 1, line 12) only selects from mutation operations,
i.e. node replacement with a probability of 2/3 and shrink mutation with 1/3.
In both Functions GP and MutOnlyGP , the archive Aj is updated according
to the Pareto-dominance criterion. It means that only non-dominated solutions
can be kept in the archive.

For the second concept, we provide information about the angles of the pre-
vious joints to the currently trained joint to steer the learning process towards
a closed form solution. This idea arises from the fact that there are multiple
joint configurations for the same pose. Thus, even when all other joint values are
learned using the objective function f1(θ), deviations in only one joint value can
lead to an extremely inaccurate final pose. Inverse input transformation reverts
the influence of all joints that are located before the currently learned joint in

Genetic Programming-Based Inverse Kinematics for Robotic Manipulators 137

Algorithm 2: IK-CCGP Evaluation Procedure for One Individual
Input : Individual indj , Training Data X, Set of Representatives r, Joint

Index j
Output: Objective values

1 inds ← (r0, . . . , rj−1, indj , rj+1, . . . , rω)
2

1Xω ← X
3 for i ← 1 to ω do
4 θi ← parse iXω through indsi

5
i+1Xω ← tf(θi, i)

iXω

6 end
7 X̂ ← g(θi, . . . , θω)

8 f ← [f1(X), f2, f3]
T

9 return f

the kinematic chain. To revert the influence of joint i, denoted by θi, from the
target pose iXω, we compute

i+1Xω = (Rotαi
)−1(Transai

)−1(Transdi
)−1(Rotθi

)−1 iXω = tf(θ, i) iXω (3)

where αi denotes the orientation offset, ai the link length and di the position
offset of the joint i. i+1Xω is the transformed target pose in the coordinate frame
of joint i + 1, which is used in the training of joint i + 1. The offset parameters
are constant for a given joint.

Algorithm 2, lines 2-6, describes this consecutive transformation for all joints
of the kinematic chain: the training data is parsed through the representative
of the first joint and translates the training data by the resulting angle values
using Eq. 3. The transformed pose is used as input data for the individual of the
second joint and so on.

These two concepts are included in Algorithm 1. The algorithm requires a
set of training data X, the number of joints ω and the subpopulation size N .
Additional input parameters are the number of generations per training phase k
and the number of training iterations l. Initially, one representative is randomly
selected from each of the initial subpopulations (lines 1-4). In the main loop
(lines 6-15), the subpopulations are evolved using the above two-phase training
strategy. The evaluation procedure for an individual in GP and MutOnlyGP
calls Algorithm 2. First (line 1), a list of representatives and the individual to be
evaluated is created in the order of the joints in the kinematic chain. For exam-
ple, when joint j = 2 is currently trained and the kinematic chain consists of
ω = 4 joints, the list contains the elements [r1, ind2, r3, r4], denoted by inds. This
list is used to perform the inverse transformation of the training data in lines
3-6, as introduced previously. The resulting joint angles θ1 . . . θω are fed into the
FK equations to compute the resulting pose X̂ (Algorithm 2, line 7). This pose
can then be compared to the true pose X using the objective function f1(X).
Depending on the application, additional objectives can be computed. After k
generations of the two-phase training, one representative from the subpopulation

138 J. Reuter et al.

is selected, which is used to determine the joint value for this subpopulation dur-
ing the evolution of the remaining subpopulations. After l iterations of the main
loop, the algorithm terminates and returns a Pareto-dominance-based archive of
cooperative solutions. Each solution is a non-dominated individual of a subpop-
ulation, together with the representatives of the other subpopulations that were
used during the evaluation and calculation of the objective values. In general,
the proposed approach can be applied to either the entire kinematic chain of a
robot or a kinematic unit within the kinematic chain that consists of multiple
consecutive joints.

4 Experimental Evaluation

To evaluate the proposed approach, we take an inverse kinematics model θ =
g−1(X) for the KUKA youBot as application scenario. The function g has the
domain dom(g) = [−0.4 m; 0.4 m]3 × [−π rad;π rad]3, which is essentially the
reachable area of the KUKA youBot. The co-domain is given by the possible
range of the joints angles θ1 . . . θ5. This manipulator comes with a special setup:
The first joint plays an important role as it determines the plane, in which the
target position is located. This plane can be defined by two configurations of
the base joint ±π apart from each other. When the robot bends over itself, the
first joint is directed towards the opposite side of the target position. Hence, an
angle error of f1(θ) = ±π rad can be produced when a GP learns an angle that
also defines the plane but is shifted by π. We consider two different variants of
input angles of joint 1 for the training of joints > 1: First, the true joint 1 angle
including bend-overs (this requires a bend-over handling strategy). Second, the
projected angle resulting from the projection of the target pose onto the x-y-
plane, which excludes bend-overs. The projected angle can be calculated with
the simple equation θ1 = 169

180π − arctan2(y, (x − 0.024)), where 169
180π and 0.024

are known offset parameters of the first joint. The major goals of the experiments
are to find out, which combination of objective functions performs best, and how
the proposed IK-CCGP performs on a kinematic unit of two joints compared to
a kinematic chain of three consecutive joints. Furthermore, we intend to measure
to what extent the outcome is affected by transforming the input data for joints
2 and 3 by the projected angle of joint 1 compared to transforming by the ground
truth angle of joint 1.

4.1 Data Processing

To generate the training data for the IK problem, we used a FK implementation
for the youBot : For each of the 5 joints, 20 discrete positions are selected evenly
distributed within the movement range of the joint. For all 205 combinations of
joint values, the end effector pose in Cartesian space is computed using the FK
equations. A robot simulation environment performs a feasibility check on each
data instance, i.e. whether the configuration leads to a feasible pose or causes
intersections of the arm. All infeasible samples are removed from the training

Genetic Programming-Based Inverse Kinematics for Robotic Manipulators 139

Fig. 2. Data samples in the workspace of the manipulator. Colors represent angle values
for joint 2. Left: Input data for joint 1. No transformation. Right: Input data for joint
2. Influence of the first joint is removed by inverse transformation.

data set, leaving 949,593 feasible data samples within the robot workspace that
can be employed for training the IK-CCGP algorithm. We extract a represen-
tative training dataset with 10,000 samples evenly distributed over the entire
workspace. For the sake of computational cost, the algorithms are trained on
batches of data with a batch size of 200. The samples per batch are defined
beforehand to facilitate a fair comparison between the algorithmic variants. For
the final evaluation of the found solutions, we employ 20,000 data samples ran-
domly drawn from the workspace.

Each training sample incorporates the pose parameters x, y, z, θx, θy, θz

and corresponding joint angles θ1, θ2, θ3, θ4, θ5. As described in the previous
section, we transform the input data for joints > 1 according to Eq. 3 to remove
the influence of previous joints. Figure 2 shows an exemplary distribution of the
training data, where (left) displays input data for training the first joint, and
(right) input data for the second joint. It has a planar shape since the influence
of the first joint is removed. In this way, the target position depends on only two
instead of three variables.

4.2 Experiment Setup

We run experiments in two stages: In preliminary experiments, we identify the
best combination of fitness functions for the given problem by performing the
training of joint 2 on the angle error f1(θ) and the additional objectives f2
and f3. We select joint 2 as a use case since a simple equation is not known
beforehand, other than for the first joint, where we either require a bend-over
handling technique for the ground truth angles or use the simple formula for
projected angles. The best combination of objective functions is employed in the
advanced experiments, where we challenge our proposed IK-CCGP approach. To
compare the performance of our approach on different numbers of joints involved

140 J. Reuter et al.

in the coevolution, we test two scenarios: First, we train the first three joints
of the kinematic chain of the KUKA youBot, which includes the base joint and
the first kinematic unit of joints 2 and 3. Second, to understand the influence
of the different joint 1 input variants ground truth and projected, we take the
angle of the first joint as given and evaluate how the proposed approach reacts
to the two different input types. To get an impression about the quality of our
proposed approaches, we only consider the kinematic unit consisting of joint 2
and 3 in this scenario. Since the orientation of a pose is mostly determined by the
last two joints, we optimize and evaluate the outcome of the experiments only
on the position error f1(p) and leave the orientation error out of consideration.
This makes a total of three experiment instances for advanced experiments: IK-
CCGP-3 that applies our approach on the first three consecutive joints of the
kinematic chain, IK-CCGP-2G and IK-CCGP-2P using ground truth (G) and
projected (P) joint 1 input data respectively applied to the kinematic unit of
joints 2 and 3.

All experiments use the same function set F = {+, −, ·, /, cos(◦), sin(◦),
tan(◦), arccos(◦), arcsin(◦), arctan2, −◦, ◦2, √◦, ◦ mod 2π}, where ◦ repre-
sents the input of unary operators. The terminal set T varies for each experiment
and consists of the six parameters that define the (ground truth or projected)
target pose and additionally a set of constants C containing the offset param-
eters of the joints that are currently trained: T = {x, y, z, θx, θy, θy} + C. For
each algorithmic variant, 31 independent runs are performed. The parameters
are set as follows: In the single-objective optimization, we use tournament selec-
tion with a tournament size of 3. We use NSGA-II algorithm for multi-objective
optimization [7]. The population size is μ = λ = 1500 for all experiments. We
use crossover and mutation probabilities of 0.5, except for the mutation-only
phase, with a mutation probability of 1.0. The leaf-biased crossover selects a
leaf with a probability of 0.8. The maximum depth of a solution tree is set
to 20 with a maximum of 30 nodes. The preliminary experiments execute ten
algorithmic iterations, one of which consists of ten generations of crossover and
mutation followed by ten generations of mutation-only, summing up to 200 gen-
erations in total. As the advanced experiments intend to solve a more complex
problem and coevolution requires more time for mutual adjustment between the
subpopulations, l = 20 iterations of the IK-CCGP algorithm are performed,
where each subpopulation is trained for k = 10 generations in each phase of
the two-phase training. This makes a total of 800 generations for IK-CCGP-
2G and IK-CCGP-2P and 1200 for the three joint experiment IK-CCGP-3. All
algorithms are implemented using the deap-framework version 1.3.1 [11] and the
pint package1 version 0.16.1.

4.3 Preliminary Experiments

In the preliminary experiments, we test the performance of the combinations of
objectives f = [f1(θ)], f = [f1(θ), f2]T , f = [f1(θ), f3]T and f = [f1(θ), f2, f3]T .

1 https://github.com/hgrecco/pint.

https://github.com/hgrecco/pint

Genetic Programming-Based Inverse Kinematics for Robotic Manipulators 141

We always include the error function f1(θ), since it is the main objective we want
to minimize. The individual with the lowest angle RMSE according to f1(θ) on
the evaluation dataset is selected as the best solution for each of the 31 runs.
Thus, for each experiment variant, 31 RMSE values are employed to determine
the quality of the learned solutions. We conduct the pairwise Wilcoxon-Mann-
Whitney rank sum test with a level of significance α = 0.05 to compare the
general performance of the different objective function variants.

The results of the statistical test indicate that the multi-objective variant
f = [f1(θ),f2]T is superior to the single-objective variant f = [f1(θ)]. This
implies that the correlation as an additional objective enhances the quality of
the results. The combination f = [f1(θ), f3]T yields the worst results. The three-
objective variant, that also incorporates correlation, can partially compensate
the drawbacks of the dimension penalty objective. Nonetheless, it is outper-
formed by the two-objective variant using f = [f1(θ),f2]T .

4.4 Advanced Experiments

Based on the preliminary experiments, all advanced experiments are conducted
using the combination of objectives f = [f1(p), f2]T .

Figure 3 (left) shows the convergence behavior of the position error for the
advanced experiments. This data is deduced from the training process, which
starts 400 generations later for IK-CCGP-2G and IK-CCGP-2P, as they do
not include the training for joint 1. From this plot, one may infer that exper-
iment variant IK-CCGP-3 performed the worst. Especially the zigzag pattern
of the gray curve indicates that the learning process did not follow a contin-
uous improvement, but rather oscillated around a slowly declining curve. This
behavior can be explained by the fact that joint 1 is an additional variable in
IK-CCGP-3. Since the first joint defines the plane in which the final position
lies within the workspace, errors in this joint can lead to large deviations in the
final position. It can be observed that it is of great advantage when the angle
value of the first joint is already known, as for IK-CCGP-2G and IK-CCGP-2P.
In this way, the algorithm only operates towards finding the correct position on
the predefined plane, which shrinks the search space tremendously. IK-CCGP-
2G and IK-CCGP-2P follow more the expected fitness development with poor
results in the beginning, which rapidly improve in the first quarter of the evolu-
tion process and converge towards the end. In general, both experiments produce
position errors in the magnitude of a few centimeters.

For further analyses, we select the solution with the smallest position RMSE
among the 31 experiment runs for each of the experiment variants. Figure 3
(right) displays the distribution of position errors on the evaluation dataset for
these best solutions. It becomes apparent that the best solution of IK-CCGP-3
performs the worst over all other solutions, with a median error of 0.0671 m.
The other variants range between 2 and 3 centimeters of median error. No severe
difference between using the ground truth or projected joint 1 angles as input
data can be observed. The overall best solution with an RMSE of 0.0343 m, a
maximum absolute error (MAE) of 0.1712 m and a median error of 0.0213 m
was obtained by experiment variant IK-CCGP-2P.

142 J. Reuter et al.

Fig. 3. Results of the advanced experiments. Left: Convergence behavior of the three
experiment variants. Right: Error distribution on the evaluation dataset with 20,000
samples using the best solution of each experiment variant.

Furthermore, we analyze the percentage of large error values of more than
0.1 m. Again, IK-CCGP-3 with 28.3% has the largest percentage of error. The
approach with the smallest percentage of large errors is IK-CCGP-2P with 0.8%,
compared to IK-CCGP-2G with 2.1%. Figure 4 gives additional clues about the
distribution of large errors within the workspace. For all data samples which
caused large position errors, the original positions are plotted to identify prob-
lematic regions. The IK-CCGT-2P algorithm had mainly problems finding joint
values for positions at the top of the reachable area and very few outliers in the
remaining workspace. Additionally, IK-CCGT-2G produced large errors at the
bottom of the workspace and the edge of the reachable area.

The algorithm found more consistent solutions throughout the workspace
when the projected joint 1 angles were given as inputs, i.e. IK-CCGT-2P, com-
pared to the ground truth angles in IK-CCGT-2G. An explanation for this obser-
vation is that IK-CCGT-2G is trained on the ground truth data of joint 1. Thus,
it was possible that the algorithm received input values of joint 1 that were ±π
apart but arrived at positions that are very close to each other, once with a
bend over and once without. To the contrary, IK-CCGT-2P received very con-
sistent input angles of joint 1, i.e. positions that are very close to each other
also originated from the same joint 1 angle. This continuous input helped the
algorithm to learn a consistent formula for most positions within the workspace.
Two possible explanations for the cluster of large errors above the center of the
x-y-plane with z-values between 0.33m and 0.47m arise from this assumption:
First, these positions can only be reached by a bend over due to the kinematic
configuration of the robot. Or second, the algorithm has issues learning joint
angles that completely extend the arm to the top.

4.5 Discussion

Our main goal to prefer genetic programming over ANNs in this paper is the
explainability of the produced solutions. However, the accuracy is the typical

Genetic Programming-Based Inverse Kinematics for Robotic Manipulators 143

Fig. 4. Distribution of large position errors >0.1 m evaluated on 20,000 data samples.
Left: IK-CCGP-2G. Right: IK-CCGP-2P, z values of cluster in the center range from
0.33 m to 0.47 m

criterion that an IK model is assessed on. Most IK models developed with
ANNs are evaluated using continuous trajectory tracking: once the start posi-
tion of the trajectory is found, the subsequent positions are close to the current
position. Our evaluation method uses 20,000 independent positions instead of
a continuous trajectory, which makes it difficult to compare our accuracy to
ANNs. Nevertheless, multiple papers show that the position error of ANNs is
in the magnitude of millimeters, while the best solution developed by our app-
roach has a median error of 2.13 cm [1,22]. Since the existing GP approaches
for the IK problem use an angle error in [rad], a fair comparison between
our approach using position errors in [m] and the existing GP approaches is
not possible [3,4]. Even though the position accuracy of our approach leaves
space for future research, we obtain human-readable equations that can be
analyzed mathematically. This is especially necessary for manipulator opera-
tions in safety-relevant areas. An equation obtained by experiment IK-CCGP-2P

for joint 3 is θ3 =
(
x + 155

180π + 56
180π − (sin(0.033)+0.155)·(sin(θz+0.033))

θx

)2

mod 2π.
The numbers are known offset parameters of the joints. Due to the transfor-
mation of input poses, θx only takes on the values 1.570 or −1.570 for joint
3. Since sin(v) = v, v < 0.1 can be assumed, the equation evaluates to
θ3 =

(
x + 211

180π ± 0.12 · sin (θz + 0.033)
)2 mod 2π. Thus, our algorithm devel-

oped an equation in which θ3 only depends on x and the orientation parameter
θz as well as the sign given by θx. This equation is more comprehensible than
the usually multidimensional matrices produced by ANNs. Nevertheless, it makes
use of non-physical operations, such as θz + 0.033, where an angle and a length
are added. This is an expected behavior, as the dimension penalty objective was
not optimized in our approach.

144 J. Reuter et al.

5 Conclusion and Future Work

This paper proposes the IK-CCGP approach to solve the inverse kinematics
problem using genetic programming. The main goal is to overcome the explain-
ability gap of ANNs. A cooperative coevolutionary setting using a two-phase
training strategy was introduced. To include information about the joint angles
of previous joints, we employed inverse transformation of training data. We fur-
thermore introduced different objective functions, one of which employed the FK
equations to compute the pose from the learned joint angles. We evaluated the
proposed approach by developing an IK model for the 5 DOF KUKA youBot
manipulator. In preliminary experiments, we identified the combination of objec-
tives error and correlation, f = [f1, f2]T , as fitting for our purpose. In advanced
experiments, we tested the IK-CCGP approach in three scenarios. The exper-
iments for learning three consecutive joints of the kinematic chain performed
worst. On the other hand, experiments that learned a kinematic unit of two
joints generated promising results in the magnitude of a few centimeters of posi-
tion error. The proposed approach overcomes the explainability gap of ANNs and
is generally applicable to a variety of robotic configurations. For future research,
further analysis of the resulting equations, such as a boundary value analysis,
can be conducted. Moreover, the remaining two joints of the kinematic chain
can be analyzed using a geometric IK approach. This can decrease the overall
position error compared to the current position error.

References

1. Almusawi, A.R., Dülger, L.C., Kapucu, S.: A new artificial neural network app-
roach in solving inverse kinematics of robotic arm (Denso vp6242). Comput. Intell.
Neurosci. 2016 (2016)

2. Aristidou, A., Lasenby, J., Chrysanthou, Y., Shamir, A.: Inverse kinematics tech-
niques in computer graphics: a survey. Comput. Graph. Forum 37(6), 35–58 (2018)

3. Chapelle, F., Bidaud, P.: A closed form for inverse kinematics approximation of
general 6R manipulators using genetic programming. In: IEEE International Con-
ference on Robotics and Automation, vol. 4, pp. 3364–3369 (2001)

4. Chapelle, F., Bidaud, P.: Closed form solutions for inverse kinematics approxima-
tion of general 6r manipulators. Mech. Mach. Theory 39(3), 323–338 (2004)

5. Craig, J.J.: Introduction to Robotics: Mechanics and Control. Pearson Education
Inc., 3rd edn. (1989)

6. Daunicht, W.J.: Approximation of the inverse kinematics of an industrial robot by
defanet. In: IEEE International Joint Conference on Neural Networks, pp. 1995–
2000 (1991)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

8. Dolinsky, J.U., Jenkinson, I., Colquhoun, G.J.: Application of genetic programming
to the calibration of industrial robots. Comput. Ind. 58(3), 255–264 (2007)

9. Eckmiller, R., Beckmann, J., Werntges, H., Lades, M.: Neural kinematics net for a
redundant robot arm. In: IEEE International Joint Conference on Neural Networks,
vol. 2, pp. 333–339 (1989)

Genetic Programming-Based Inverse Kinematics for Robotic Manipulators 145

10. El-Sherbiny, A., Elhosseini, M.A., Haikal, A.Y.: A comparative study of soft com-
puting methods to solve inverse kinematics problem. Ain Shams Eng. J. 9(4),
2535–2548 (2018)

11. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

12. Hakala, J., Fahner, G., Eckmiller, R.: Rapid learning of inverse robot kinemat-
ics based on connection assignment and topographical encoding (cate). In: IEEE
International Joint Conference on Neural Networks, vol. 2, pp. 1536–1541 (1991)

13. Jazar, R.N.: Theory of Applied Robotics: Kinematics, Dynamics, and Control.
Springer Science Business Media, Heidelberg (2010)

14. Kalra, P., Mahapatra, P., Aggarwal, D.: An evolutionary approach for solving the
multimodal inverse kinematics problem of industrial robots. Mech. Mach. Theory
41(10), 1213–1229 (2006)

15. Keijzer, M., Babovic, V.: Dimensionally aware genetic programming. In: Proceed-
ings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol.
2, pp. 1069–1076 (1999)

16. Kucuk, S., Bingul, Z.: Inverse kinematics solutions for industrial robot manipula-
tors with offset wrists. Appl. Math. Model. 38(7–8), 1983–1999 (2014)

17. Li, D., Zhong, J.: Dimensionally aware multi-objective genetic programming for
automatic crowd behavior modeling. ACM Trans. Model. Comput. Simulat. 30(3),
1–24 (2020)

18. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’neill, M.: Grammar-based
genetic programming: a survey. Genetic Program. Evol. Mach. 11(3–4), 365–396
(2010)

19. Parker, J.K., Khoogar, A.R., Goldberg, D.E.: Inverse kinematics of redundant
robots using genetic algorithms. In: IEEE International Conference on Robotics
and Automation, vol. 1, pp. 271–276 (1989)

20. Rodriguez-Coayahuitl, L., Morales-Reyes, A., Escalante, H.J., Coello, C.A.C.:
Cooperative co-evolutionary genetic programming for high dimensional problems.
In: Parallel Problem Solving from Nature, pp. 48–62 (2020)

21. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. John
Wiley & Sons, Inc., New York (2005)

22. Srisuk, P., Sento, A., Kitjaidure, Y.: Forward kinematic-like neural network for
solving the 3d reaching inverse kinematics problems. In: 14th International Con-
ference on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology, pp. 214–217 (2017)

23. Wappler, S., Wegener, J.: Evolutionary unit testing of object-oriented software
using strongly-typed genetic programming. In: Proceedings of the 8th Annual Con-
ference on Genetic and Evolutionary Computation, pp. 1925–1932 (2006)

24. Wei, Y., Jian, S., He, S., Wang, Z.: General approach for inverse kinematics of NR
robots. Mech. Mach. Theory 75, 97–106 (2014)

25. Zhang, Y., Li, Y., Xiao, X.: A novel kinematics analysis for a 5-dof manipula-
tor based on kuka youbot. In: IEEE International Conference on Robotics and
Biomimetics, pp. 1477–1482 (2015)

26. Zille, H., Evrard, F., Reuter, J., Mostaghim, S., van Wachem, B.: Assessment of
multi-objective and coevolutionary genetic programming for predicting the stokes
flow around a sphere. In: Conference Proceedings EUROGEN 2021 (2021)

On the Schedule for Morphological
Development of Evolved Modular

Soft Robots

Giorgia Nadizar1 , Eric Medvet2(B) , and Karine Miras3

1 Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
2 Department of Engineering and Architecture, University of Trieste, Trieste, Italy

emedvet@units.it
3 Artificial Intelligence Department, Rijksuniversiteit Groningen, Groningen,

The Netherlands

Abstract. Development is fundamental for living beings. As robots are
often designed to mimic biological organisms, development is believed to
be crucial for achieving successful results in robotic agents, as well. What
is not clear, though, is the most appropriate scheduling for development.
While in real life systems development happens mostly during the initial
growth phase of organisms, it has not yet been investigated whether such
assumption holds also for artificial creatures. In this paper, we employ
a evolutionary approach to optimize the development—according to dif-
ferent representations—of Voxel-based Soft Robots (VSRs), a kind of
modular robots. In our study, development consists in the addition of
new voxels to the VSR, at fixed time instants, depending on the devel-
opment schedule. We experiment with different schedules and show that,
similarly to living organisms, artificial agents benefit from development
occurring at early stages of life more than from development lasting for
their entire life.

Keywords: Adaptation · Evolutionary Robotics · Embodied
cognition · Development · Body-brain evolution

1 Introduction and Related Works

Phenotypic development is pervasive in nature and it can happen in different
dimensions, e.g., lifetime body adaptations to cope with environmental seasonal
changes [1], brain plasticity through learning [2], body training [3], behavioral
environmental regulation [4], etc. Additionally to these forms of development,
there is a very fundamental one: growth. Notably, growth starts during mor-
phogenesis and may continue for a long period during the lifetime of a creature,
according to its species. In humans, the fluctuations of phenotypic growth depend
on genetic and environmental factors during prepubertal and pubertal develop-
ment [5]. Because of the complexity of these factors, the difficulty of establishing
growth standards has been discussed [6]. Moreover, different body traits develop

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 146–161, 2022.
https://doi.org/10.1007/978-3-031-02056-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_10&domain=pdf
http://orcid.org/0000-0002-3535-9748
http://orcid.org/0000-0001-5652-2113
http://orcid.org/0000-0003-4942-3488
https://doi.org/10.1007/978-3-031-02056-8_10

Morphological Development of Evolved Modular Soft Robots 147

at distinct ages. For instance, while the significant height growth happens until
adolescence [7], male muscle mass peaks around their 20 to 30 years old [8].

Curiously, while body growth in animals is rapid in early life, it then progres-
sively slows, and the reasons for this are not yet quite understood [7], though
its association to possible advantages of delaying fertility maturation has been
discussed [9]. Furthermore, animal brain development is lifelong, happening pre-
natally, during infancy and adolescence, and even in adulthood [10]. In fact,
because of its complexity, the human frontal cortex is not fully developed until
the mid twenties [4]. Note that this developmental maturation does not necessar-
ily mean growth in the brain, but a better organization of the neural structures,
requiring some form of pruning [4]. Interestingly, synaptic pruning—i.e., remov-
ing some of the connections in the neural network constituting the brain—has
been shown to be potentially beneficial also for evolved artificial agents [11,12].

While the dynamics of growth, including the interplay between body and
brain development, is unclear, we could hardly doubt that this complex dynamics
is fundamental for the behavioral complexity observed in diverse species. There-
fore, the field of Evolutionary Robotics has great motivation to study growth
development. Nevertheless, not only is the field focused mostly on evolving the
controller without evolving the body [13], but also has development received
relatively little attention.

Some developmental representations have become popular [14,15], but they
have been mostly used for morphogenesis only. One instance of a development
study has demonstrated the benefits of environmental regulation for lifetime phe-
notypic plasticity so that bodies and brains of robots could adapt in response
to environmental changes [16,17]. Another approach experimented with recon-
figurable robots that relied on manually designed bodies [18]. Furthermore, a
field of research called morphogenetic engineering has been introduced to pro-
mote models of complex self-architecture systems [19]. Some other examples of
development studies are the use of pre-programmed lifetime changes that could
be compared to growth: investigating the impact of development on evolvabil-
ity [20,21], and exploring the effects of using stages of morphological development
as a way of scaffolding behavior [22].

Although the aforementioned works represent an important step for the inves-
tigations of development within artificial life, there is still a lot to be explored.
There is a pressure for an increase in this type of investigation, with the purpose
of expanding our perspective about how development can be carried out, and in
which conditions determined effects shall be observed.

Aiming at furnishing the literature with new insights, in this paper we address
a specific question related to growth development: does the development sched-
ule impact on the effectiveness of evolved agents? Namely, is a continuous, lifelong
development better or worse than a development that occurs mostly at the begin-
ning of the life of the agent? To this extent, we design various development repre-
sentations for 2-D simulated modular Voxel-based Soft Robots (VSRs) [23] which
can be optimized via suitable evolutionary algorithms (EAs): we hence combine
development with evolution, allowing robots to undergo alterations on different
timescales. Due to their expressive power, VSRs are ideal for experimenting with

148 G. Nadizar et al.

morphological development and they have already been used in [21,24]: differently
from the present paper, the two cited works do not study the development sched-
ule, but the overall impact of development on evolution, in [21], and the possibility
of exploiting environmental feedback for determining the development, in [24].

Even though our work focuses on morphological development, involving only
the body of the agent, the robot controller is tightly coupled with its morphology:
therefore, we also design evolvable brains which can effectively control different
bodies. To assess the effects of development, we evaluate the performance of robots
in a locomotion task. For providing more context, our study encompasses also
agents which do not undergo development, considered as a baseline. Our results
show that, for all representations, the most appropriate scheduling of development
for artificial agents resembles that of living organisms. Namely, we find that early
development yields to better performing robots than those which experience con-
tinuous growth. Moreover, the comparison with non-developing robots confirms
the potentially beneficial effects of development for artificial agents.

2 Background: Voxel-Based Soft Robots

We experiment with Voxel-based Soft Robots (VSRs), a kind of modular soft
robots. Each VSR module consists of a deformable cube (voxel), which can vary
in volume in order to achieve movement. The final volume of each voxel is deter-
mined by two factors: (a) external forces acting on the voxel, which is deformable
by construction, and (b) a control signal, regulating active expansion/contraction
of the voxel. In this study, we consider a 2-D variant of said robots that are simu-
lated in discrete time [25]. Working in 2-D reduces the computational cost of the
simulation, while yielding results that are conceptually portable to the 3-D case.

A VSR is defined by its morphology and its controller, describing respectively
the arrangement of voxels in a 2-D grid and the law which determines each voxel
control signal.

2.1 VSR Morphology

The morphology of a VSR describes the voxel arrangement in a 2-D grid. Each
voxel is a soft deformable square, modeled with (a) four masses at the corners, to
prevent excessive deformations and rigidly connect neighbors, (b) spring-damper
systems, to ensure softness and elasticity, and (c) ropes, to avoid uncontrolled
expansion. We refer the reader to [26] for further details on the voxel mechanical
model utilized.

VSRs accomplish movement similarly to biological muscles, thanks to the
contraction and expansion of individual voxels. The behavior of each voxel is
determined by a control signal and by the interaction with other bodies, exerting
their forces on it, e.g., the ground or other voxels. At each simulation time
step k, the controller feeds every i-th voxel with a control signal a

(k)
i ∈ [−1, 1],

−1 corresponding to maximum requested expansion, and 1 corresponding to
maximum requested contraction. In the simulator employed [25], contraction

Morphological Development of Evolved Modular Soft Robots 149

and expansions are modeled as linear variations of the rest-length of the spring-
damper system, proportional to the control signal received.

Voxels are equipped with sensors. We use three types of sensors, whose read-
ings can be exploited by the VSR controller: (a) area sensors, perceiving the
ratio between the current area of the voxel and its rest area, (b) touch sensors,
sensing if the voxel is in contact with the ground or not, and (c) velocity sensors,
which perceive the velocity of the center of mass of the voxel along the x- and
y-axes (thus corresponding to the union of a vx and a vy sensor). We normalize
sensor readings in such a way that, at each simulation time step, the readings
s
(k)
i of the i-th voxel are defined in [−1, 1]4.

2.2 VSR Controller

At each simulation time step k, the VSR controller is fed with the sensor readings
s(k) = [s(k)

1 s
(k)
1 . . .] and outputs the control signals a(k) = (a(k)

1 , a
(k)
2 , . . .) for

all voxels.
In this study, we consider two different kinds of controllers: the phase con-

troller [21,23,27] and the neural controller [28,29]. For both controllers, in this
work, even though we compute the control signal at each simulation time step, we
actually apply it to the voxel every tstep = 0.5 s and keep it constant in between
variations. In other words, we employ a step like control signal derived by the orig-
inal control signal. We do this because we aim at preventing vibrating behaviors,
which have been found to be a strong attractor in evolution of VSRs [30].

Phase Controller. In the phase controller, each control signal is computed from
the current time, according to a sinusoidal function. Namely, the control signal of
the i-th voxel at simulation time step k is computed as a

(k)
i = sin (2fπkΔt + φi),

where f is the sine wave frequency, Δt is the simulation time interval, and φi

is the voxel phase. In most works where they have been used, these controllers
have been optimized only in the phases φi, whereas f is set a priori to the same
value for each voxel: for this reason, these are called phase controllers.

Note that this is an open-loop type of controller, which does not exploit
sensor readings s(k).

Neural Controller. VSR neural controllers are based on Artificial Neural Net-
works (ANNs), which are employed to process sensor readings and produce voxel
control signals. Neural controllers have been demonstrated beneficial for the
achievement of good performance in VSRs [28,31], due to their sensing abilities.

We use the distributed neural controller presented in [29], consisting of
a number of fully-connected feed-forward ANNs, i.e., multi-layer perceptrons
(MLPs), one per voxel. At every simulation time step k, each MLP pro-
cesses the local sensor readings s

(k)
i together with the information coming from

the neighboring voxels, in order to produce the local control signal a
(k)
i and

the information to be passed to neighboring voxels. The information passed

150 G. Nadizar et al.

between neighboring voxels consists of a vector of nsignal values, or a zero-
vector of the same size for voxels at the boundaries. Such vector is processed
with one time step of delay, i.e., every MLP processes the vectors produced
by neighboring MLPs at the previous simulation time step. The control sig-
nal of the i-th voxel is hence determined as

[
a
(k)
i m

(k)
i,N m

(k)
i,E m

(k)
i,S m

(k)
i,W

]
=

MLPθ

([
s
(k)
i m

(k−1)
iN ,S m

(k−1)
iE ,W m

(k−1)
iS ,N m

(k−1)
iW ,E

])
, where m

(k)
i,N ∈ [−1, 1]nsignal is the

information output by the i-th voxel for its neighbor at north (the same for the
other three neighbors), m

(k−1)
iN ,S ∈ [−1, 1]nsignal is the information output by the

neighbor at north for the i-th voxel (that is its neighbor at south) at previous time
step k − 1, and θ ∈ R

p is the vector of the parameters (or weights) of the MLP.
In this study, we utilize an identical MLP in each voxel, both in terms of

architecture and weights θ. This design choice arises from the fact that this con-
troller can be employed for a variable amount of voxels without any changes, so
it is particularly suitable for a developing body. Moreover, [30] showed experi-
mentally that using the same MLP in each voxel is not worse than using MLPs
with different weights.

3 Development of VSRs

We consider morphological development, i.e., a mechanism according to which,
at given time instants during the life of the VSR, new voxels are added to the
VSR body.

For the purpose of this study, we say that the development of a VSR is
completely described by a schedule and a development function. We define the
schedule as a sequence S = (tj)j of time instants when the addition of a new
voxel occurs. We define the development function as a function d that, given
a number of voxels n, outputs a VSR d(n) consisting of at most n voxels. We
impose the requirements for the function d that, for all n, (a) the morphology
of the VSR d(n) differs from the morphology of the VSR d(n + 1) for at most
one voxel and (b) d(n) has no more voxels than d(n + 1).

Given a starting size n0, a schedule S, and a development function d, we can
perform a simulation of a VSR d(n0) that starts with a morphology of (at most)
n0 voxels at t = 0 and, at each tj ∈ S, develops to a VSR d(n0 + j) that is not
smaller than the previous one.

The main goal of this study is to gain insights into the impact of the schedule
on the effectiveness of evolved developing VSRs. To achieve this goal, we set the
schedule to a few predefined sequences, let the evolution optimize the developing
function, and compare the outcomes.

3.1 Representations for the Development Function

For broadening the generality of our experimental findings, we consider four
different ways of representing the developing function in a way that allows its
optimization by the means of evolution.

Morphological Development of Evolved Modular Soft Robots 151

For the ease of presentation, we describe the development function d in terms
of a function dmorph, that determines the morphology of the VSR, and a func-
tion dcontroller, that determines the controller of the VSR. Moreover, we directly
describe how the outputs of dmorph(n, g) and dcontroller(n, g) are computed, given
a genotype g and a number n.

Vector-Based Morphology Representation. Given a real vector v ∈ R
n2
side ,

we obtain a morphology of n voxels as follows.
We denote by M = dmorphology(n,v) the Boolean matrix describing the

obtained morphology, where the voxel at position i, j is present if and only if
the corresponding element mi,j is set. First, we reshape the vector v to a matrix
V of n2

side real values. Second, we determine the greatest element of V and set
the corresponding element of M . Then, we repeat the following two steps until
min(n, n2

side) elements of M have been set: (1) we consider the subset of M
unset elements that are adjacent to set elements and (2) we set the element of
the subset with the largest corresponding value in V .

Note that, with this representation, it is guaranteed that the morphology will
have exactly n voxels, provided that nside, a parameter of the representation, is
large enough.

Figure 1 provides a schematic representation of an example of application of
this function with nside = 5 and n = 4.

-0.5 0.9 -0.5. . .

(a) Real vec. v.

-0.5 0.9 -0.8 -0.7 -0.8

0.2 -0.4 0.9 0.9 -0.7

-0.4 0.0 1.3 -0.4 0.5

0.9 0.7 0.8 0.2 0.5

0.0 -0.1 -0.4 0.4 -0.5

(b) Real matrix V .

F F F F F

F F T T F

F F T F F

F F T F F

F F F F F

(c) Bool. mat. M . (d) VSR.

Fig. 1. Schematic view of the grid-based morphology representation dmorph(n, v), with
nside = 5, n = 4, and an example v ∈ R

25. Dark orange is used to highlight the first
element chosen (the one with highest value), whereas lighter orange is used to indicate
the other chosen elements. The gray area indicates the candidate voxels for a possible
future development (i.e., n = 5 with this same v). (Color figure online)

Tree-Based Morphology Representation. Given an ordered tree T in which
each node is a number in R and has either 0 or 4 child nodes, we obtain a
morphology of up to n voxels as follows.

Each node of the tree corresponds to an element of the matrix M describing
the morphology and the four children of a node correspond to the four neighbor-
ing elements at north, south, east, and west. Given a node corresponding to the
mi,j element, the first child corresponds to mi,j−1, the second to mi,j+1, etc.

152 G. Nadizar et al.

First, we transform T into a tree T ′ by mapping each node of T to a
node in T ′ being a pair (v, u), where v ∈ R is the node real value and
u ∈ {set,unset,used}—initially, u = unset for every node in T ′. Second,
we set the root u to set. Then, we repeat the following three steps until n nodes
in T ′ have u = set or there are no more T ′ nodes with u = unset: (1) we con-
sider the subset of nodes with u = unset and whose parent node has u = set,
(2) we choose the node in the subset with the largest v, and (3) set u = set
for the chosen node and u = used for all the other nodes representing the same
position and with u = unset. Finally, we obtain the morphology M by setting
the element m0,0—for convenience, we assume that the indexes of the elements
of M can assume values in Z—and setting every other element i, j for which
there is a set node in T ′ whose relative position to the root is i, j.

Note that, with this representation, a morphology with less than n voxels
could be obtained for a given tree T . In the extreme case, if T consists of the
root node only, then the morphology will have just one voxel. On the other hand,
the representation is parameter-free and does not impose an upper bound on the
number of voxels in the VSR. Note also that, for each position of the matrix M
there are up to four nodes in the tree T , but at most one is used depending
on ancestors of the node: i.e., this representation is redundant [32] and exhibits
epistasis [33].

Figure 2 provides a schematic representation of an example of application of
this function with n = 4.

0.2

1.1

0.9 0.7 -0.2 0.1

0.2 0.8

0.4 -0.1 -0.5 0.5

-0.2

N

N N

S

S S

E

E E

W

W W

(a) Tree T ′.

F F F F

F T T F

F T F F

F T F F

(b) Bool. matr.M . (c) VSR.

Fig. 2. Schematic view of the tree-based morphology representation dmorph(n, T), with
n = 4. Colors in T ′ nodes represent the value of u, while numbers are the ones of T (not
shown here for brevity). Dark orange is used to highlight the root of the tree, whereas
lighter orange is for u = set, white for u = unset, and gray for u = used. The same
colors are used in the Boolean matrix M and in the obtained VSR morphology. Black
cells in M correspond to nodes that are not present in the tree, hence such cells could
never be used with this T , regardless of n. (Color figure online)

Vector-Based Phase Controller Representation. Given a real vector v ∈
R

n2
side , we obtain a phase controller for a VSR whose morphology M can be

contained in a nside × nside grid of voxels as follows.
First, we reshape the vector v to a matrix V of nside × nside real values.

Second we build a phase controller in which the phase φ of the voxel at position
i, j, if any, is given by the corresponding element in V . If there is no voxel at
i, j, the corresponding element in V does not contribute to the controller.

Morphological Development of Evolved Modular Soft Robots 153

Vector-Based Neural Controller Representation. Given a real vector v ∈
R

p and a description of the topology of an MLP consisting on the numbers
l1, . . . , lm of neurons for each layer (with p =

∑i<m
i=1 li+1(li + 1)), we obtain a

neural controller by simply setting the parameters vector θ of the MLP to v.
Note that, since the MLP is the same for all voxels, this controller is applica-

ble to any VSR, regardless of its morphology, provided that (a) l1 is compatible
with the dimension nsensor = |s(k)

i | of sensor readings in the voxels and with the
value of nsignal and (b) lm is compatible with the value of nsignal. More precisely,
given nsensor and nsignal, l1 = nsensor + 4nsignal and lm = 1 + 4nsignal must hold.
Since nsensor is determined by the morphology (nsensor = 4 in this work, see
Sect. 2.1), it follows that the free parameters for this representations are nsignal,
m, and the values of lj for 2 ≤ j < m.

Tree-Based Phase Controller Representation. This controller representa-
tion is tightly coupled with the tree-based morphology representation: in fact,
we only use it in combination with that representation. Given an ordered tree
T in which each node is a pair of numbers v, φ ∈ R

2 and has either 0 or 4 child
nodes, we obtain a phase controller for the VSR mapped from the v-part of T
according to the tree-based morphology representation, as follows. Let M be the
morphology obtained as described above, we associate with each voxel in the
morphology the φ value of the corresponding element in T .

The rationale for this representation, is to tightly couple v values, determining
the morphology, and φ values, determining the controller, by embedding them
in the same tree. Together with appropriate genetic operators, this link should
prevent destructive effects resulting from the misalignment between the part of
the genotype describing the morphology and the one describing the brain [34].

Full Development Function Representations. Summarizing, we consider
the four representations resulting from the following combinations of a dmorph

and a dcontroller representation:

– Grid-phase, in which the genotype is a vector v ∈ R
2n2

side : we obtain the
robot by mapping the leading half of v with the vector-based morphology
representation and the trailing half with the vector-based phase controller
representation.

– Grid-neural, in which the genotype is a vector v ∈ R
n2
side+p: we obtain the

robot by mapping the leading n2
side elements of v with the vector-based mor-

phology representation and the trailing p elements with the vector-based neu-
ral controller representation.

– Tree-phase, in which the genotype is a tree T with nodes in R
2 with either 0

or 4 children: we obtain the robot by mapping the tree of the first elements
of T nodes with the tree-based morphology representation and T with the
tree-based phase controller representation.

154 G. Nadizar et al.

– Tree-neural, in which the genotype is a pair T,v composed of a tree T with
nodes in R with either 0 or 4 children and a vector v ∈ R

p: we obtain the
robot by mapping T with the tree-based morphology representation and v
with the vector-based neural controller representation.

3.2 Evolution of the Development Function

To evolve a development function, we employ a single, standard EA that we
adapt, in the initialization and genetic operators, to the four different represen-
tations presented above.

In our EA, we iteratively evolve a population of npop solutions for ngen gen-
erations. At each generation, we build the offspring by repeating npop times the
following steps: (1) we randomly select the crossover (with probability pcross)
or the mutation (with probability 1 − pcross) genetic operator; (2) we select one
or two parents (depending on the chosen operator) with a tournament selection
of size ntour; (3) we apply the operator to the parents obtaining a new individ-
ual. Then, we merge the parents and the offspring, we keep only the npop best
individuals, and proceed to the next generation.

For initializing the population, we sample U(−1, 1) for each element of the
vector-based representations, and we use the ramped half-and-half initialization
(with depth in [dmin, dmax]) for the tree-based representation. For the latter, we
sample U(−1, 1) for the values of the nodes.

Concerning the genetic operators, we do as follows. In the vector-based
representations (grid-phase and grid-neural), we use the extended geometric
crossover, where the child v ∈ R

n is determined from the parents v1,v2 ∈ R
n

as v = v1 + α(v2 − v1) + β, where α ∈ R
n is sampled as αi ∼ U(−0.5, 1.5),

and β ∈ R
n is sampled as βi ∼ N(0, σcross). As mutation, we use the Gaussian

mutation, where v = v1 + β, with betas sampled from N(0, σmut).
In the tree-based representations, we use the standard subtree crossover,

which consists in replacing a random subtree of one parent with a randomly
chosen subtree of the other parent: both subtrees are picked to ensure the child
tree has a maximum depth of dmax. As mutation, we use the standard subtree
mutation, in which one random subtree is replaced with a newly generated tree,
ensuring a maximum depth of dmax for the child. Only with the tree-phase
representation, with 50 % probability, we apply a noise sampled from N(0, σmut)
to each φ element of the tree instead of applying the standard subtree mutation.

In the combined representation (tree-neural), we do crossover by applying
standard subtree crossover and extended geometric crossover to the two parts
of the genotype. Similarly, we do mutation by applying Gaussian mutation and
standard subtree mutation.

4 Experimental Evaluation

We performed several experiments to answer to the following research questions:
What is the most appropriate development schedule for artificial agents? Does
it depend on the representation of the development function?

Morphological Development of Evolved Modular Soft Robots 155

For answering to said questions, we evolved development functions to develop
VSRs suited for the task of locomotion, in which the goal for the robot is to
travel as far as possible on a terrain in a given amount of time. We employed two
different development schedules, together with no development, to be considered
as a baseline. A detailed description of the experimental procedure and results
follows.

Concerning the representation, we used the following parameters: nside = 10,
f = 1 Hz, nsignal = 2, m = 4, and l2 = l3 = l1 = 4+4 ·2 = 12 (i.e., we used MLPs
with two inner layers with the same size of the input layer). Regarding the EA,
we used the following parameters: npop = 96 and ngen = 209 (corresponding to
20 000 total fitness evaluations), pcross = 0.75, ntour = 10, σcross = 0.1, σmut =
0.35, dmin = 3, and dmin = 6. We verified that, for the chosen value of npop and
ngen, evolution was in general capable of converging to a solution, i.e., longer
evolutions would have resulted in negligible fitness improvements.

To evaluate the effectiveness of an individual, i.e., a development function,
given a schedule S, we proceeded as follows. At the beginning of the simulation,
we (1) used the development function to obtain an initial VSR d(n0) from n0

and (2) we placed it right above the terrain at the starting position. Then,
at each ti ∈ S during the simulation, we (1) removed the VSR d(ni−1) from
the simulation, taking note of the x-coordinate xleft of its leftmost voxel, (2)
used the development function to develop the VSR to d(ni) and (3) placed the
developed VSR in the simulation right above the terrain in a position such that
its leftmost part was at xleft. We stopped the simulation after 210 s (simulated
time), took note of the run distance Δx, as the difference between the initial
and final x-coordinate of the center of mass of the VSR, and used Δx as fitness.

We removed and added (i.e., re-spawn) the VSR just before and right after
each development because the new voxel might have been added in positions
that conflict with the current posture of the robot (e.g., under a foot, “inside”
the terrain). As a consequence, each development step led to a re-spawning of
the VSR, where its gait was interrupted.

We characterized the performance of the representations in conjunction with
two development schedules, both encompassing 14 stages: early development
Searly = (10, 20, 30, . . . , 120, 130), resembling biological development, and uni-
form development Suniform = (15, 30, 45 . . . , 180, 195), accounting for continuous
growth (numbers are in s). In addition, to have a baseline for comparisons, we
also employed a non-developmental schedule Sno-devo = ∅: in this case VSRs were
initialized according to the initial development, and no voxels were ever added
to them. To ensure fairness in terms of re-spawning (as such events could slow
down the VSR), we interrupted the gait to lift the VSR in the air according to
Suniform, even though no development was occurring.

Concerning the initial size n0 of the VSRs, we aimed at being as fair as
possible, since larger robots could, in principle, benefit from having more power.
Hence, we chose n0,early = 6, n0,uniform = 8, and n0,no-devo = 14 in order to
have approximately the same weighted average VSR size during the simulation
(n̄early ≈ 14.7, n̄uniform = 14.5, and n̄no-devo = 14). In other words, the chosen

156 G. Nadizar et al.

values of n0 resulted in all VSRs having approximately the same integral of size
over the simulations.

For each of the 4 · 3 combinations of representation and schedule, we per-
formed 10 independent, i.e., based on different random seeds, evolutionary opti-
mizations, obtaining a total of 120 runs. When comparing results of pairs of
combinations, we performed the Mann-Whitney U test, after having verified
the proper requirements, with the null hypothesis of equality of the means—we
report the p-values. Note that, since we performed multiple pairwise comparisons
simultaneously, we applied the required Bonferroni corrections for evaluating the
significance of results.

We used 2D-VSR-Sim [25] for the simulation setting all parameters to default
values; in particular, we set the simulation time interval Δt = 1

60 s. We made
the code for the experiments publicly available at https://github.com/giorgia-
nadizar/VSREvoDevo.

4.1 Results and Discussion

The experimental results are reported in Figs. 3, 4 and 5. The most high level find-
ing of our experiments is displayed in Fig. 3, which depicts the distributions of the
fitness Δx of the best individuals at the end of evolution for each representation
and schedule. From such plots, we are able to compare the outcomes deriving from
Searly and Suniform: given the distributions and the p-values, we can conclude that,
in general, early development is not worse than uniform development, and that for
phase controllers it is significantly better. We can hence infer that development in
artificial life is somehow similar to development in real life, and, even though crea-
tures that continuously grow end up being larger, such trait does not really benefit
their overall performance. We hypothesize that early development is more effec-
tive as the optimization of the controller of the agent is favored by the fact that
the brain is able to interact with a fixed body for a longer amount of time (the last
development stage, which is longer than the other ones). Therefore, we speculate
that evolution finds a way to optimize the controller for the last body, since being
optimal during this longer stage could result in more distance gain, hence in higher
fitness. On the other hand, continuous growth seems to hinder brain development,
as evolution cannot find an optimal controller to almost equally fit all the bodies
the controller interacts with.

Comparison Against No Development. Reasoning further on Fig. 3, it is
interesting to also compare the results achieved by non-developing VSRs. From
the previous assumptions, we would expect such outcomes to be significantly
better than both early and uniformly developed VSRs, as in this case the brain
is optimized for just one body. However, the results shown in the plots are less
clear, as there is no evident winner among the non-developed, early-developed,
and uniformly-developed VSRs. We explain these mixed findings by reasoning
on two factors: the re-spawning and the lack of development. Concerning the
re-spawning, it likely slowed VSRs down, even though they were not really devel-
oping, preventing them from exhibiting a fluid and effective gait. In addition, we

https://github.com/giorgia-nadizar/VSREvoDevo
https://github.com/giorgia-nadizar/VSREvoDevo

Morphological Development of Evolved Modular Soft Robots 157

speculate that the lack of actual development could have been detrimental for
the overall performance achieved, consistently with [21].

0

500

1,000

1,500 < 0.01 0.02
< 0.01

F
it
ne

ss
Δ

x

Grid-phase

0.76 0.06
0.15

Grid-neural

< 0.01 < 0.01
0.01

Tree-phase

0.04 0.90
0.40

Tree-neural

Early
Uniform
No-devo

Fig. 3. Box plots of the fitness Δx of the best development functions at the end of evo-
lution for different representations (plot columns) and development schedules (color).
p-values are shown above pairs of boxes. We consider α = 0.05/3 ≈ 0.017 for statistical
significance, due to the Bonferroni correction.

Analysis of VSR Velocity. To gain further insight on the obtained results,
we also measured the velocity of VSRs along development: we define vx,i as the
average velocity achieved by a VSR in its i-th stage of development. Figure 4
depicts the distribution of the velocity of VSRs during the last development
stage for each representation and schedule. These outcomes are aligned with
the previous findings: early development yields to not slower VSRs compared to
uniform development, whereas non developed VSRs tend to exhibit fuzzier rela-
tionships with the others. However, more interesting conclusions can be drawn
if we interpret Fig. 4 taking into consideration that VSRs in the last (i.e., 14-th)
stage have different sizes according to the chosen schedule, namely n14,early = 19,
n14,uniform = 21, and n14,no-devo = 14. In fact, we can observe that, surprisingly,
larger VSRs do not correspond to higher velocity. To explain this, we resort
to the same motivation provided before. Namely, early development generates
VSRs that are mostly optimized for the last stage of their lives, not only because
the last robots are bigger in size, but also because the body-brain interaction is
longer.

To conclude the velocity analysis, we provide in Fig. 5 a display of the vx,i
throughout the simulation. From these plots, the previously laid hypothesis as
to why early development is more successful seems to be confirmed. In addition,
we can note that both early and uniform development follow a general growing
trend for the velocity, suggesting that also size plays a significant role in the
achievement of good performance at locomotion.

Comparison Among Representations. Last, it is interesting to reason on
the different outcomes produced by the representations we experimented with,
both in terms of fitness Δx (Fig. 3) and velocity vx,14 in the last development
stage (Fig. 4). We summarize the outcomes of the statistical significance tests
between pair of representations in Table 1, where we use colored dots (the color

158 G. Nadizar et al.

0

5

10
< 0.01 0.07

< 0.01

L
as
t
st
.
ve
l.

v x
,1
4 Grid-phase

0.41 0.05
1

Grid-neural

0.05 < 0.01
0.96

Tree-phase

< 0.01 0.84
< 0.01

Tree-neural

Early
Uniform
No-devo

Fig. 4. Box plots of the last stage velocity vx,14 of the best development functions at the
end of evolution for different representations (plot columns) and development schedules
(color). p-values are shown above pairs of boxes. We consider α = 0.05/3 ≈ 0.017 for
statistical significance, due to the Bonferroni correction.

0 100 200
0
2
4
6
8

10

Sim. time t

St
ag

e
av

g.
ve
l.

v x
,i Grid-phase

0 100 200
Sim. time t

Grid-neural

0 100 200
Sim. time t

Tree-phase

0 100 200
Sim. time t

Tree-neural

Early
Uniform
No-devo

Fig. 5. Average velocity vx,i (median with lower and upper quartiles across the 10 rep-
etitions) of the developing VSRs at different stages during the simulation, for different
representations (plot columns) and development schedules (color).

encoding the development schedule) to annotate distributions which are signifi-
cantly different (p-value < α = 0.05/6 ≈ 0.008). From the table we can immedi-
ately notice that the results obtained without development almost never signif-
icantly depend on the employed representation, whereas the outcomes coming
from early or uniform development show more interesting variety among rep-
resentations. Taking into account Figs. 3 and 4 and Tables 1a and 1b, we can
conclude that the grid-phase representation is in general not worse than the oth-
ers, and is significantly better for a subset of schedules and representations. We
speculate that this could depend on two factors: the direct representation and
the superiority of a phase controller to a neural controller for developing VSRs.
Namely, we hypothesize that it is easier for evolution to find suitable phases
values for a growing body, than optimizing a single MLP to fit all voxels of a
wide gamut of bodies.

To conclude the discussion on the experiments we show in Fig. 6 an example
of a developing VSR obtained at the end of one evolution with the grid-phase
representation and the uniform schedule: in the figure, each frame shows the
VSR during a developing stage. The corresponding video is available at https://
youtu.be/DD4D20EH1sA.

https://youtu.be/DD4D20EH1sA
https://youtu.be/DD4D20EH1sA

Morphological Development of Evolved Modular Soft Robots 159

Table 1. Statistical significance results for different metrics and representations. Each
cell is annotated with a dot if the p-value on the two representations with the same
schedule is < α = 0.05/6 ≈ 0.008 (due to the Bonferroni correction).

GP GN TP TN

GP – • ••• ••
GN • –

TP ••• – ••
TN •• •• –

(a) Fitness Δx.

GP GN TP TN

GP – • •• ••
GN • –

TP •• – •
TN •• • –

(b) Last stage vel. vx,14.

• Early

• Uniform

• No-devo

Fig. 6. View of a developing VSR (uniform schedule with the grid-phase representa-
tion). Each image is taken ≈ 0.5 s after a voxel has been added to the VSR body,
to leave time to the robot to fall and exhibit its posture on the ground. Voxels color
encodes the ratio between its current area and its rest area (red for contraction, yellow
for rest, green for expansion). (Color figure online)

5 Concluding Remarks

In this work, we investigated the effects of different schedules for morphological
development of Voxel-Based Soft Robots (VSRs), a kind of modular soft robots.
To this extent, we evolved development functions, i.e., functions which can build
and extend VSRs bodies and controllers, to generate and develop VSRs capable
of successfully performing the task of locomotion. Aiming at achieving general
results, our study encompassed four representations for development functions,
based on different combinations of body-brain encodings, and we also included
non-developing VSRs, as a baseline. Our experimental findings show that, simi-
larly to living organisms, VSRs benefit from early development, whereas contin-
uous growth tends to hinder the overall performance of the agent. In particular,
we have noticed that, despite having more power, bigger VSRs deriving from
continuous growth are not more effective than the early developed smaller ones,
concluding that an appropriate development schedule plays a key role in deter-
mining the effectiveness of a VSR.

As an extension of this work, it might be of interest to experiment with
additional representations, e.g., based on neural cellular automata, and to take
into account environmental feedback [24] in development. Moreover, the concept
of early mortality [16] could be introduced in our framework.

160 G. Nadizar et al.

Acknowledgements. The experimental evaluation of this work has been partially
supported by a Google Faculty Research Award granted to E.M.. K.M. was supported
by the Hybrid Intelligence Center, a 10-year program funded by the Dutch Ministry
of Education, Culture and Science through the Netherlands Organization for Scientific
Research (https://www.hybrid-intelligence-centre.nl), grant number 024.004.022.

References

1. Liknes, E.T., Swanson, D.L.: Phenotypic flexibility of body composition associated
with seasonal acclimatization in passerine birds. J. Thermal Biol. 36(6), 363–370
(2011)

2. Fusco, G., Minelli, A.: Phenotypic plasticity in development and evolution: facts
and concepts (2010)

3. Kelly, S.A., Panhuis, T.M., Stoehr, A.M.: Phenotypic plasticity: molecular mech-
anisms and adaptive significance. Compr. Physiol. 2(2), 1417–1439 (2011)

4. Sapolsky, R.M.: Behave: The Biology of Humans At Our Best and Worst. Penguin,
London (2017)

5. Thomis, M.A., Towne, B.: Genetic determinants of prepubertal and pubertal
growth and development. Food Nutr. Bull. 27(4 suppl5), S257–S278 (2006)

6. Butte, N.F., Garza, C., de Onis, M.: Evaluation of the feasibility of international
growth standards for school-aged children and adolescents. J. Nutr. 137(1), 153–
157 (2007)

7. Lui, J.C., Baron, J.: Mechanisms limiting body growth in mammals. Endocr. Rev.
32(3), 422–440 (2011)

8. Batsis, J.A., Buscemi, S.: Sarcopenia, sarcopenic obesity and insulin resistance. In:
Medical Complications of Type 2 Diabetes. IntechOpen (2011)

9. Jones, J.H.: Primates and the evolution of long, slow life histories. Current Biol.
21(18), R708–R717 (2011)

10. Thompson, R.A., Nelson, C.A.: Developmental science and the media: early brain
development. Am. Psychol. 56(1), 5 (2001)

11. Nadizar, G., Medvet, E., Pellegrino, F.A., Zullich, M., Nichele, S.: On the effects of
pruning on evolved neural controllers for soft robots. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, pp. 1744–1752 (2021)

12. Nadizar, G., Medvet, E., Huse Ramstad, H., Nichele, S., Pellegrino, F.A., Zullich,
M.: Merging pruning and neuroevolution: towards robust and efficient controllers
for modular soft robots. Knowl. Eng. Rev. 37, 1–13 (2022)

13. Prabhu, S.G.R., Seals, R.C., Kyberd, P.J., Wetherall, J.C.: A survey on
evolutionary-aided design in robotics. Robotica 36(12), 1804–1821 (2018)

14. Lindenmayer, A.: Mathematical models for cellular interactions in development I.
Filaments with one-sided inputs. J. Theoret. Biol. 18(3), 280–299 (1968)

15. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of
development. Genetic Program. Evol. Mach. 8(2), 131–162 (2007)

16. Miras, K., Cuijpers, J., Gülhan, B., Eiben, A.: The impact of early-death on phe-
notypically plastic robots that evolve in changing environments. In: ALIFE 2021,
The 2021 Conference on Artificial Life, MIT Press (2021)

17. Miras, K., Ferrante, E., Eiben, A.: Environmental regulation using Plasticoding
for the evolution of robots. Front. Robot. AI 7, 107 (2020)

18. Daudelin, J., Jing, G., Tosun, T., Yim, M., Kress-Gazit, H., Campbell, M.: An inte-
grated system for perception-driven autonomy with modular robots. Sci. Robot.
3(23), eaat4983 (2018)

https://www.hybrid-intelligence-centre.nl

Morphological Development of Evolved Modular Soft Robots 161

19. Doursat, R., Sayama, H., Michel, O.: Morphogenetic Engineering: Toward Pro-
grammable Complex Systems. Springer, Cham (2012). https://doi.org/10.1007/
978-3-642-33902-8

20. Kriegman, S., Cheney, N., Corucci, F., Bongard, J.C.: Interoceptive robust-
ness through environment-mediated morphological development. arXiv preprint
arXiv:1804.02257 (2018)

21. Kriegman, S., Cheney, N., Bongard, J.: How morphological development can guide
evolution. Sci. Rep. 8(1), 1–10 (2018)

22. Bongard, J.: Morphological change in machines accelerates the evolution of robust
behavior. Proc. Natl. Acad. Sci. 108(4), 1234–1239 (2011)

23. Hiller, J., Lipson, H.: Automatic design and manufacture of soft robots. IEEE
Trans. Robot. 28(2), 457–466 (2012)

24. Walker, K., Hauser, H., Risi, S.: Growing simulated robots with environmental
feedback: an eco-evo-devo approach. In: GECCO 2021, New York, NY, USA, pp.
113–114. Association for Computing Machinery (2021)

25. Medvet, E., Bartoli, A., De Lorenzo, A., Seriani, S.: 2D-VSR-Sim: a simulation tool
for the optimization of 2-D voxel-based soft robots. SoftwareX 12, 100573 (2020)

26. Medvet, E., Bartoli, A., De Lorenzo, A., Seriani, S.: Design, Validation, and Case
Studies of 2D-VSR-Sim, an Optimization-friendly Simulator of 2-D Voxel-based
Soft Robots. arXiv-2001 (2020)

27. Corucci, F., Cheney, N., Giorgio-Serchi, F., Bongard, J., Laschi, C.: Evolving soft
locomotion in aquatic and terrestrial environments: effects of material properties
and environmental transitions. Soft Robot. 5(4), 475–495 (2018)

28. Talamini, J., Medvet, E., Bartoli, A., De Lorenzo, A.: Evolutionary synthesis of
sensing controllers for voxel-based soft robots. In: Artificial Life Conference Pro-
ceedings, pp. 574–581. MIT Press (2019)

29. Medvet, E., Bartoli, A., De Lorenzo, A., Fidel, G.: Evolution of distributed neural
controllers for voxel-based soft robots. In: Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, pp. 112–120 (2020)

30. Medvet, E., Bartoli, A., Pigozzi, F., Rochelli, M.: Biodiversity in evolved voxel-
based soft robots. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 129–137 (2021)

31. Ferigo, A., Iacca, G., Medvet, E.: Beyond body shape and brain: evolving the
sensory apparatus of voxel-based soft robots. In: Castillo, P.A., Jiménez Laredo,
J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 210–226. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72699-7 14

32. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary compu-
tation. Evol. Comput. 11(4), 381–415 (2003)

33. Vanneschi, L., Castelli, M., Manzoni, L.: The k landscapes: a tunably difficult
benchmark for genetic programming. In: Proceedings of the 13th Annual Confer-
ence on Genetic and Evolutionary Computation, pp. 1467–1474 (2011)

34. Pagliuca, P., Nolfi, S.: The dynamic of body and brain co-evolution. Adapt. Behav.
1059712321994685 (2020)

https://doi.org/10.1007/978-3-642-33902-8
https://doi.org/10.1007/978-3-642-33902-8
http://arxiv.org/abs/1804.02257
https://doi.org/10.1007/978-3-030-72699-7_14

An Investigation of Multitask Linear
Genetic Programming for Dynamic Job

Shop Scheduling

Zhixing Huang , Fangfang Zhang(B) , Yi Mei , and Mengjie Zhang

School of Engineering and Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6140, New Zealand

{zhixing.huang,fangfang.zhang,yi.mei,mengjie.zhang}@ecs.vuw.ac.nz

Abstract. Dynamic job shop scheduling has a wide range of applica-
tions in reality such as order picking in warehouse. Using genetic pro-
gramming to design scheduling heuristics for dynamic job shop schedul-
ing problems becomes increasingly common. In recent years, multitask
genetic programming-based hyper-heuristic methods have been devel-
oped to solve similar dynamic scheduling problem scenarios simultane-
ously. However, all of the existing studies focus on the tree-based genetic
programming. In this paper, we investigate the use of linear genetic pro-
gramming, which has some advantages over tree-based genetic program-
ming in designing multitask methods, such as building block reusing.
Specifically, this paper makes a preliminary investigation on several
issues of multitask linear genetic programming. The experiments show
that the linear genetic programming within multitask frameworks have a
significantly better performance than solving tasks separately, by sharing
useful building blocks.

Keywords: Multitask · Linear genetic programming ·
Hyper-heuristic · Dynamic job shop scheduling

1 Introduction

Job shop scheduling (JSS) is a typical combinatorial optimization problem and
has a large commercial value in manufacturing systems. There are a set of
machines and a set of jobs in the job shop. The job shop processes the set of jobs
by the given machines so that some objectives, such as tardiness and makespan,
are optimized. For dynamic job shop scheduling (DJSS), there are some dynamic
events such as new job arrivals, which need to be considered when making sched-
ules. In DJSS with new job arrivals, the information of the new jobs is not known
in advance. Such characteristic requires optimization techniques to be able to
make an instant reaction (e.g., re-scheduling or repairing existing schedules)
to the newly arrived jobs. It also limits the application of some existing exact
optimization algorithms such as branch-and-bound and dynamic programming
whose computation burden may be too large for the instant reaction.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 162–178, 2022.
https://doi.org/10.1007/978-3-031-02056-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_11&domain=pdf
http://orcid.org/0000-0001-9560-3020
http://orcid.org/0000-0001-5516-3972
http://orcid.org/0000-0003-0682-1363
http://orcid.org/0000-0003-4463-9538
https://doi.org/10.1007/978-3-031-02056-8_11

An Investigation of Multitask LGP for DJSS 163

Hyper-heuristic methods (HH) have been successfully applied to many appli-
cations [18]. They try to search a suitable scheduling heuristic for a certain prob-
lem by selecting or recombining some existing scheduling heuristics [6]. Different
from heuristic methods whose search space consists of solutions (i.e., complete
schedules), HH methods search in a heuristic space given by users. Specifically,
the heuristics in JSS are also known as dispatching rules. It has been shown
that HH methods can obtain more sophisticated and effective priority dispatch-
ing rules than human designed ones in DJSS [1,5,28]. Genetic programming-
based hyper heuristic (GPHH) is one of the most popular branches of HH meth-
ods [5,14]. Specifically, for GPHH, scheduling heuristics are encoded into genetic
programming (GP) individuals. These heuristics will be modified by genetic
operators and evaluated on problem instances. The performance of heuristics on
the problem instances will be regarded as the fitness of those heuristics. The
quality of scheduling heuristics are improved generation by generation.

Although there have been many advanced techniques to assist GPHH to
find more effective heuristics in solving a certain DJSS problem [15,24–26], it is
a tedious and expensive task for GPHH methods to search effective heuristics
for each single scenario. In recent years, some researchers found that sharing
knowledge among different scenarios is a potential research direction to enhance
GPHH in solving different DJSS scenarios [16,22]. Given that many DJSS sce-
narios share similarities in objective functions or job shop environments, they
may require the same building blocks (e.g., subtrees in tree-based GP) to form
an effective scheduling heuristic.

Evolutionary multitask optimization is an emerging topic of evolutionary
computation area, which aims to fully utilize the search information among dif-
ferent tasks [20]. The evolutionary multitask methods will accept more than one
optimization tasks and solve them simultaneously by an evolutionary computa-
tion method within a unified search space. The evolutionary multitask optimiza-
tion has a wide spectrum of applications nowadays, such as vehicle routing [2,29],
time series prediction [7,11], and robot path planning [21]. The evolutionary mul-
titask techniques in these applications are validated to be more effective than
solving the problems separately.

To adapt multitask techniques to GPHH methods for dynamic scheduling,
several GPHH-specific multitask techniques are proposed. For example, Park
et al. [16] proposed a niched GP to improve the generalization ability with
different machine breakdown levels (i.e., different optimization tasks). Specif-
ically, the term “niched” means the GP method has a light-weight grouping
mechanism. Every group in niched GP is assigned to a specific task. The breed-
ing and selection of GP population were also designed based on these groups.
Besides, Zhang et al. respectively made an investigation on multitask GPHH
methods [23] and proposed a multitask multi-population GPHH method to
design dispatching rules for dynamic flexible JSS [22]. To improve the train-
ing efficiency and precisely share the search information, Zhang et al. [27] fur-
ther proposed a surrogate-assisted multitask GPHH method. Their designed

164 Z. Huang et al.

surrogate model successfully enhances the GPHH in terms of test performance
and convergence speed.

However, most of existing studies of multitask GPHH are designed based on
tree-based GP [13]. Since the tree-like structures usually only have one output,
GP individuals have to be assigned to a specific task in the off-the-shelf evolu-
tionary multitask optimization frameworks. On the other hand, linear genetic
programming (LGP) [4], which can reuse useful building blocks easily, may be
more suitable for multitask optimization. Though LGP has some advantages over
tree-based GP in designing multitask frameworks, none of the existing studies
apply LGP to multitask optimization frameworks.

To consolidate the foundation of applying LGP to multitask framework, this
paper serves as a preliminary work to investigate the performance and behaviour
of linear genetic programming with multitask optimization frameworks. Basi-
cally, this paper makes an investigation about several key issues of developing
multitask linear genetic programming-based hyper heuristic (LGPHH). These
issues are summarised into the following three research questions:

– Which existing multitask framework (e.g., multifactorial evolutionary frame-
work and multitask multi-population framework) is most suitable with
LGPHH?

– How effective is LGPHH compared with the existing tree-based GPHH for
multitask DJSS?

– How does multitask LGPHH share information among the individuals for
different tasks?

The rest of the paper is organised as follows. Section 2 gives the introduction
to DJSS, LGP, and two existing multitask frameworks. Section 3 develops two
LGPHH-based multitask methods for solving DJSS problems. The experiment
settings and the result analysis are respectively introduced in Sect. 4 and 5.
Finally, Sect. 6 draws out some conclusions.

2 Background

2.1 Dynamic Job Shop Scheduling

DJSS with new job arrival start with an empty job shop whose set of machines
M are given beforehand. The jobs will come into the job shop to form the job set
J over time. Their information cannot be known until their arrival. Every job j
has a sequence of operations (oj1, ..., oji, ..., ojlj)(1 ≤ i ≤ lj), an arrival time αj ,
a due date dj , and a weight ωj . The operation oji will be processed by a certain
machine π(oji) ∈ M with a processing time δ(oji). A machine can only process
one operation at any time and its process is assumed to be uninterruptable.
The operation sequence of job j specifies the process order of those operations.
oji+1(i + 1 ≤ lj) can only be processed after oji is completed.

This paper mainly considers the flowtime and the tardiness as the perfor-
mance metrics of the job shop. To formulate these metrics, we denote the actual

An Investigation of Multitask LGP for DJSS 165

Fig. 1. An example program of LGP

starting time of an operation oji as x(oji) and denote the finishing time of job
j as cj , where cj = x(ojlj) + δ(ojlj). The flowtime and the tardiness are further
specified as maximum flowtime (Fmax), mean flowtime (Fmean), mean weighted
flowtime (WFmean), maximum tardiness (Tmax), mean tardiness (Tmean), and
mean weighted tardiness (WTmean). They are formulated as below.

– Fmax = maxj∈J(cj − x(oj1))

– Fmean =
∑

j∈J (cj−x(oj1))

|J|
– WFmean =

∑
j∈J (cj−x(oj1))·ωj

|J|
– Tmax = maxj∈J(max(cj − dj , 0))

– Tmean =
∑

j∈J (max(cj−dj ,0))

|J|
– WTmean =

∑
j∈J (max(cj−dj ,0)·ωj)

|J|

2.2 Linear Genetic Programming

LGP [4] is a GP variant which has been successfully applied to classification [3,
9,12,17] and symbolic regression problems [8,19]. LGP individuals are sequences
of register-based instructions. The instructions in a same sequence are executed
sequentially to form a completed computer program. The linear arrangement
of instructions and the sequential execution are two core meaning of the term
“linear”. For every single instruction in LGP, it contains three parts: source
register, operation, and destination register. The values in the source registers
serve as the inputs of the operation. The output from the operation is assigned
to the destination register and passed to the subsequent instructions. To output
the final result, at least one output register is needed for LGP. By default, the
first register is regarded as the output register. Figure 1 is a simple example
of LGP individual to represent a mathematical formula “max(xy,min(x,−y))”.
R0, R1 and R2 are three registers. They serve as both source and destination
registers. These registers are initialized by a certain value, such as zero in this
example. The LGP individual can also be transformed into a directed acyclic
graph (DAG) to be more compact.

The evolutionary framework of LGP is quite similar with the one of standard
GP. But because of the different representation, LGP has two kinds of different
genetic operators from standard GP [13]. The first type of genetic operators is

166 Z. Huang et al.

macro variation. The term “macro” means that this kind of genetic operators
produce offspring mainly by affecting the total number of instructions. The other
type of genetic operators is micro variation. Contrarily, micro variation does not
change the total number of instructions, but only changes the primitives inside
instructions to produce offspring.

2.3 Related Work

In the literatures, there are two popular evolutionary multitask frameworks for
existing GPHH methods. One is multifactorial evolutionary algorithm (MFEA)
and the other is multitask multi-population GPHH (M2GP).

Multifactorial Evolutionary Algorithm. MFEA was firstly proposed by
Gupta et al. [10]. The main idea of MFEA is to use an evolutionary algorithm
with a single population of individuals to solve different optimization tasks simul-
taneously. All of these individuals are encoded into a unified search space and
can be transformed into a problem-specific representation to solve different tasks.
To evolve the individuals for different tasks simultaneously, MFEA introduces
four key properties, i.e., factorial cost, factorial rank, scalar fitness, and skill
factor. Based on these properties, the effectiveness of an individual in solving a
certain task can be represented by the factorial cost and rank. The individuals
good at solving different tasks can be identified by different skill factors. The
individuals with different skill factors can also make a fair comparison together
based on the scalar fitness. To enable individuals to share the information among
different tasks, Gupta et al. developed an assortative mating algorithm which
allows individuals with different skill factors to perform crossover with a pre-
defined probability. A vertical cultural transmission is also developed together
with the assortative mating to propagate the skill factor from parent individuals
to offspring.

Multitask Multi-population GPHH. M2GP is proposed by Zhang et al. [22],
which is a GP-specific multitask optimization framework. Specifically, M2GP
splits a GP population into several sub-populations, each for a single task. Every
sub-population evolves GP individuals with the conventional evolutionary frame-
work of GP. GP individuals in M2GP are trained on different problem instances
in different generations. GP individuals in M2GP share their knowledge by swap-
ping sub-trees across different sub-populations. Different from MFEA in which
individuals may change their skill factor (i.e., corresponding task) by imitat-
ing different parents, GP individuals in M2GP only evolve for a certain task
and will not migrate to the other sub-populations. To improve the efficiency of
multitask learning, M2GP further proposes an origin-based offspring reservation
strategy, which only keeps the offspring generated based on the parent from
the corresponding sub-population and discards the other offspring in crossover.
The empirical results show that M2GP has a better performance than MFEA in
solving dynamic flexible JSS problems.

An Investigation of Multitask LGP for DJSS 167

Fig. 2. Flowchart of MF-LGPHH

3 Multitask LGPHH

In this paper, we aim to make a preliminary investigation on the performance and
the behaviour of LGP with off-the-shelf GPHH-specific multitask optimization
techniques. Specifically, two multitask LGPHH methods are developed based on
MFEA and M2GP respectively.

3.1 Multi-factorial LGPHH

Multi-factorial LGPHH (MF-LGP) is developed based on MFEA. The evolu-
tionary framework of MF-LGP is shown in Fig. 2 where the dark boxes are the
key differences from basic LGPHH methods. Initially, LGP individuals are ran-
domly generated and evaluated on all different DJSS tasks to identify their skill
factors. The minimum ranking among different tasks is regarded as the fitness of
LGP individuals (i.e., scalar fitness). In every generation, parent individuals are
randomly selected from the population. The offspring are generated by a newly
developed LGP-specific assortative mating algorithm. This algorithm generates
offspring by mutating instructions or exchanging instruction segments of parent
individuals based on the skill factors of parents and a predefined random mating
probability (rmp). The skill factors of offspring are also updated by inheriting
from one of the parents. To improve the training efficiency, every LGP individual
will be evaluated on only one corresponding DJSS scenario, which is specified by
the skill factor. The performance of LGP heuristic is regarded as the fitness of
individuals. Then, both of parent and offspring individuals are concatenated into
an intermediate population. The best individuals of the intermediate population
will be selected greedily and form the new population in next generation. To
ensure the fitness of LGP individuals are comparable, all LGP individuals are
evaluated on a same DJSS problem instance.

To be more specific, the newly developed LGP-specific assortative mating
(shown in Algorithm 1) is designed based on [10] and the three basic genetic
operators of LGP (i.e., crossover, macro mutation, and micro mutation). The
algorithm accepts two randomly selected parents from the population. If the two
parent individuals have the same skill factor or a randomly generated number is

168 Z. Huang et al.

Algorithm 1: Assortative Mating for MF-LGP
Input: Two selected parents pa and pb, crossover rate rc, and a random mating

probability rmp.
Output: Two offspring ca and cb.

1 Generate two random numbers rand1 and rand2 between 0 and 1;
// crossover

2 if (pa and pb have same skill factor) or (rand1 < rc) then
3 Perform LGP crossover on pa and pb to produce two offspring ca and cb;
4 Perform vertical cultural transmission on the skill factors of ca and cb;

// macro mutation

5 else if rand2 < 0.5 then
6 Apply LGP macro mutation on pa and pb respectively to produce offspring

ca and cb;

// micro mutation

7 else
8 Apply LGP micro mutation on pa and pb respectively to produce offspring

ca and cb;

9 Return ca and cb.

smaller than the random mating probability, the crossover is performed on the
parent individuals to produce offspring. The skill factors of offspring are updated
based on the vertical cultural transmission proposed in [10]. If the two parents
have different skill factors and the random mating probability is not satisfied,
macro and micro mutation will be performed. In this algorithm, macro and
micro mutation have the same probability in producing offspring. Since macro
and micro mutation only accept one parent individual each time, the skill factor
of the generated offspring is the same as that of the parent in mutation.

However, MF-LGP only uses one DJSS problem instance during evolution,
and the performance of MF-LGP may be limited by the insufficient training
instances. To have a comprehensive investigation, a MFEA-based LGPHH with
GP selection paradigm is also developed. It replaces the selection paradigm of
conventional MFEA into the one of standard GP, which applies tournament
selection to select parents and replaces the old population by offspring. Since
there is no concatenation of parents and offspring, the problem instances can be
rotated every generation. This variant of MFEA-based LGPHH is denoted as
MF-LGProtate.

3.2 Multitask Multi-population LGPHH

In this paper, we extend M2GP to LGP to develop a new algorithm called
M2LGP. The flowchart of M2LGP is shown in Fig. 3. The dark boxes in Fig. 3 also
highlight key differences from basic LGP. Basically, it firstly initializes multiple
populations of LGP individuals randomly. The individuals in a sub-population
are only evaluated on a certain DJSS scenario. When the stopping conditions are
not satisfied, M2LGP reproduces offspring by origin-based offspring reservation

An Investigation of Multitask LGP for DJSS 169

Initialize multi-
population of LGP

Produce offspring based on different
sub-populations by origin-based
offspring reservation strategy

Evaluate different sub-
populations on different

DJSS tasks

Output the best individual
for every task

NOYES

Rotate instances of
DJSS

Replace sub-populations
by the corresponding

offspring

Produce offspring by
basic LGP genetic

operators

Evolution

YES

NOSatisfy random
mating probability?

Satisfy stopping
conditions?

Fig. 3. Flowchart of M2LGP

strategy or basic LGP genetic operators based on a probability specified by
a random mating probability. The sub-populations are then replaced by the
offspring. The DJSS problem instance is rotated every generation. Finally, the
best LGP individuals in the different sub-populations are outputted to test data.

Specifically, the evolution of M2LGP produces offspring by three basic kinds
of LGP genetic operators. The pseudo code of the evolution is shown in Algo-
rithm2. To share the search information, the origin-based offspring reservation
strategy proposed by Zhang et al. is also extended to LGP crossover. When the
random number is smaller than rmp, LGP selects two parent individuals from
different sub-populations. Then, LGP exchanges the instruction segments of the
parent individuals and only retains the offspring from the parent individual of
the corresponding sub-population. The old sub-population will be replaced by
the newly generated offspring population.

4 Experiment Design

4.1 Multitask DJSS Scenarios

Based on the categorization in [22], there are two types of multitask settings
in DJSS, i.e., heterogeneous and homogeneous multitask optimization. Specifi-
cally, heterogeneous multitask problems contain a set of DJSS problems whose
optimization objectives are different but having a same utilization level. On the
contrary, the DJSS problems in homogeneous multitask problems have a same
optimization objective but different utilization levels. We develop three scenar-
ios for each type of multitask settings. These six scenarios are listed in Table 1.
The notation “<x, y>” denotes a task whose optimization objective is x and
utilization level is y.

There are 10 machines for every problem instance. The new arrival jobs
have a sequence of operations whose length ranges from 2 to 10. The processing
time of operations is a continuous value from 1 to 99. Every job has a weight.
Specifically, 20%, 20%, and 60% of the new jobs have a weight of 1, 4, and 2

170 Z. Huang et al.

Algorithm 2: Evolution of M2LGP
Input: The population of the current generation pop, crossover rate rc, macro

mutation rate rmacro, micro mutation rate rmicro, and a random mating
probability rmp.

Output: An updated LGP population.
1 for all sub-population s in pop do
2 Initialize an empty sub-population sn;
3 Load elite individuals from s to sn by an elitism selection;
4 while size of sn < size of s do
5 Generate a random number rand1 between 0 and 1;
6 Use tournament selection to select a parent individual pa from s;

// crossover

7 if rand1 < rc then
8 Generate a random number rand2 between 0 and 1;
9 if rand2 < rmp then

10 Select pb from another sub-population s′(s′ �= s) by tournament
selection;

// origin-based offspring reservation

11 Swap an instruction segment from pb to pa to produce offspring
ca;

12 sn = sn
⋃{ca};

13 else
14 Select pb from s by tournament selection;
15 Perform LGP crossover on pa and pb to produce two offspring ca

and cb;
16 sn = sn

⋃{ca, cb};

// macro mutation

17 else if rand1 < rc + rmacro then
18 Apply LGP macro mutation on pa to produce offspring ca;
19 sn = sn

⋃{ca};

// micro mutation

20 else if rand1 < rc + rmacro + rmicro then
21 Apply LGP micro mutation on pa to produce offspring ca;
22 sn = sn

⋃{ca};

23 else
24 reproduce pa to sn.

25 s = sn;

26 Return pop.

An Investigation of Multitask LGP for DJSS 171

Table 1. Problem settings of the multitask scenarios

Scenarios task1 task2 task3

homogeneous multitask

homoFmean <Fmean, 0.95> <Fmean, 0.85> <Fmean, 0.75>

homoTmean <Tmean, 0.95> <Tmean, 0.85> <Tmean, 0.75>

homoWTmean <WTmean, 0.95> <WTmean, 0.85> <WTmean, 0.75>

heterogeneous multitask

heteFTMax <Fmax, 0.95> <Tmax, 0.95>

heteFTMean <Fmean, 0.95> <Tmean, 0.95>

heteWFTMean <WFmean, 0.95> <WTmean, 0.95>

Table 2. The terminal set

Notation Description

NIQ the number of operations in the queue of a machine

WIQ the total processing time of operations in the queue of a machine

MWT the waiting time of the machine

PT the processing time of the operation

NPT the processing time of the next operation

OWT the waiting time of the operation

NWT the waiting time of the next to-be-ready machine

WKR the total remaining processing time of the job

NOR the number of remaining operations of the job

WINQ total processing time of operations in the queue of the machine which
specializes in the next operation of the job

NINQ number of operations in the queue of the machine which specializes in the next
operation of the job

rFDD the difference between the expected due date of the operation and the system
time

rDD the difference between the expected due date of the job and the system time

W the weight of the job

TIS the difference between system time and the arrival time of the job

SL the difference between the expected due date and the sum of the system time
and WKR

respectively. During the simulation, the first 1000 jobs will be regarded as warm-
up jobs to ensure that heuristics are evaluated in a steady state of job shops.
The performance of a heuristic is evaluated by the subsequent 5000 jobs. For
every scenario, 30 independent runs with different random seeds are carried out,
and each output heuristic is tested on 50 unseen DJSS instances.

172 Z. Huang et al.

4.2 Comparison Methods

To investigate the three research questions, two comparison methods are devel-
oped. Firstly, a baseline method of LGPHH is adopted. It simply runs the
LGPHH for each single task separately. In other words, there is no knowl-
edge transfer among the tasks. LGPHH serves as a baseline for other multitask
optimization techniques. Secondly, the state-of-the-art GPHH-specific multitask
method, M2GP, is adopted. M2GP is based on tree-based GP.

Table 3. The mean (and standard deviation) of test performance in all multitask
scenarios

Scenario Task LGPHH M2GP M2LGP MF-LGP MF-LGProtate

homo

Fmean

<Fmean, 0.95> 1584.4(21.0) 1569.3(10.5) 1577.0(12.8) 1609.8(26.7) 1580.6(13.2)

<Fmean, 0.85> 870.7(6.8) 861.5(2.7) 863.8(3.5) 874.4(6.1) 867.2(5.6)

<Fmean, 0.75> 658.7(1.7) 654.8(1.3) 655.0(1.6) 656.9(2.2) 655.8(1.7)

homo

Tmean

<Tmean, 0.95> 1129.3(8.7) 1125.1(15.1) 1125.3(11.9) 1165.3(26.9) 1134.3(13.8)

<Tmean, 0.85> 427.1(5.9) 415.9(2.1) 417.1(2.9) 429.4(7.0) 419.2(4.2)

<Tmean, 0.75> 218.9(1.7) 215.0(1.1) 215.2(1.0) 217.9(2.1) 215.7(1.3)

homo

WTmean

<WTmean, 0.95> 1817.0(29.4) 1771.6(27.7) 1804.9(27.3) 1839.2(24.9) 1787.5(26.3)

<WTmean, 0.85> 731.1(9.1) 724.5(4.8) 731.2(4.6) 745.5(12.0) 728.5(6.4)

<WTmean, 0.75> 394.3(2.5) 391.5(1.6) 393.8(2.0) 400.2(4.1) 392.6(2.2)

heteFT

Max

<Fmax, 0.95> 4470.5(108.0) 4551.7(173.5) 4450.1(114.2) 4794.1(203.6) 4461.0(96.0)

<Tmax, 0.95> 3945.2(117.3) 3991.2(117.1) 3878.4(90.5) 4272.7(170.8) 3849.6(82.3)

heteFT

Mean

<Fmean, 0.95> 1579.8(10.6) 1570.2(8.4) 1570.1(11.7) 1620.1(31.0) 1572.2(15.0)

<Tmean, 0.95> 1132.9(23.0) 1119.1(9.7) 1121.8(13.5) 1167.0(28.1) 1122.1(14.0)

heteW

FTMean

<WFmean, 0.95> 2793.7(31.7) 2763.7(23.0) 2783.0(34.6) 2813.9(26.0) 2781.5(35.6)

<WTmean, 0.95> 1803.4(30.2) 1771.4(25.6) 1799.4(35.4) 1823.1(26.5) 1792.9(33.8)

Average rank 3.40 2.09 2.51 4.42 2.57

bold font: a method is significantly better than most of other methods on a certain task.

M2LGP: Multitask Multi-population LGPHH; MF-LGP: Multi-factorial LGPHH;

MF-LGProtate: Multi-factorial LGPHH with training instance rotation.

The parameters of these methods are designed based on [22]. Basically, the
population size and the number of sub-populations vary with the number of
tasks. When there are k tasks, there will be k sub-populations for the methods
based on M2GP, and there will be totally k×200 individuals for all LGP methods
(k × 400 individuals for tree-based GP methods). The total number of genera-
tions is 102 for LGP methods and 51 for tree-based GP methods. Every LGP
individual has a maximum of 50 instructions. Each manipulates four available
registers. The first register is regarded as the output register. To facilitate the
knowledge transfer among tasks, LGP adopts a kind of effective macro muta-
tion and a linear crossover to produce offspring. Specifically, the effective macro
mutation inserts (or removes) an effective instruction into (from) heuristics, and
will remove all ineffective instructions after mutation. The maximum crossover
length and the maximum length difference of the linear crossover are both 30.
Specifically, the crossover, macro and micro mutation rate of M2LGP are 60%,
10%, and 25% respectively. The hyper parameters of tree-based GP are set the
same as the ones of [22]. A terminal set including sixteen terminals is designed
for the GP methods, which is shown in Table 2.

An Investigation of Multitask LGP for DJSS 173

5 Results and Discussion

5.1 Test Performance

To analyze the effectiveness of multitask LGPHH, the test performance of the five
methods are compared, as shown in Table 3. A Friedman test with a significance
level of 0.05 is also applied to the test performance analysis. The average rank
below the table shows the overall ranking of all algorithms based on the Friedman
test. The p-value of the Friedman test on the test performance is 1.3e−08, which
means there is a significant difference among all of these algorithms. Therefore,
a pairwise Wilcoxon test with false discovery rate correction (by the Benjamini
and Hochberg method) and a significance level of 0.05 is further applied to every
pair of these methods. The bold results in the table highlight the methods which
are significantly better than most of other methods.

To answer the first research questions, i.e., which existing multitask frame-
work is suitable to LGPHH, the baseline LGPHH, M2LGP and the two MFEA-
based LGPHH are compared. Generally speaking, M2LGP and MF-LGProtate

have a quite competitive performance with each other. They show a similar
average ranking about 2.5. They also have a significantly better performance
than the baseline method in most of the scenarios based on the Wilcoxon test.
However, the simple combination of LGPHH and MFEA does not work very
well in all these scenarios. Its average rank is 4.42 among the five algorithms.
Given that the optimization problems in the paper are minimization problems,
MF-LGP has the worst performance in most cases. The results of the three mul-
titask LGPHH methods imply that simply replacing LGPHH into the existing
multitask frameworks is not always a good way. It is likely for multitask LGPHH
to work poorly, especially when there are some unsuitable designs for LGPHH
in multitask frameworks. Based on the results, it is advisable for LGPHH to be
adopted in M2LGP and MF-LGProtate which enable LGPHH to have sufficient
training instances by GP selection methods.

To investigate the effectiveness of multitask LGPHH compared with tree-
based GPHH, M2GP, M2LGP, and MF-LGProtate are further compared. Basi-
cally, M2LGP and MF-LGProtate are less effective than the state-of-the-art
method, i.e., M2GP. The results of the average rank show that M2LGP and
MF-LGProtate have a bigger value than M2GP. It implies that M2GP has a
better overall performance than the two LGPHH-based multitask algorithms.
Although the performance of M2LGP and MF-LGProtate are quite competitive
with M2GP in the three heterogeneous scenarios, they are inferior to M2GP in
the three homogeneous multitask scenarios based on the Wilcoxon test. The test
effectiveness of multitask LGPHH methods should be further improved.

5.2 Example Program Analysis

To analyze how LGPHH shares useful knowledge among different tasks, we sam-
ple some example heuristics from all independent runs. Here, three heuristics

174 Z. Huang et al.

from an independent run of M2LGP in solving homoWTmean and two heuris-
tics from an independent run of MF-LGP in solving heteFTMax are selected.
These LGP-based heuristics are transformed into DAGs and are shown in Fig. 4.
The nodes of the DAGs represent different operations or terminals (oval for oper-
ations and rectangle for terminals). Each node has at most two output edges.
These output edges accept the result from the node that it points to. The “0” and
“1” beside edges respectively denote the first and second argument of operations.
The final heuristic value is outputted from the top node.

min

WINQ
1

NIQ
0

min
0

NPT
1

+
1

PT
0

/
0

W
1

min

1

0

+

0

1

/

1

0

min
0

NOR
1

/

0

1

min

1

0

min
1 0

+
1

NINQ
0

*
1

0

min

1

0

+

0

1

/

1

0

(a) WTmean0.95

min

NIQ
0 1

min
0

WINQ
1

+
1

PT
0

min
0

NPT
1

+

0

1

/
0

W
1

min

1

0

/

1

0

+

0

1

-

1

0

-
1

NINQ
0

max

1

0

min

1

0

+

0

1

min

1

0

/

1

0

min

1

0

min

1

0

+

0

1

/

1

0

(b) WTmean0.85

+

PT
0

WIQ
1

*
1

NIQ
0

min

1

0

*
1

NINQ
0

min
0

NPT
1

+

0

1

min
0

WINQ
1

-
0

W
1

*

0

1

min

1

0

/

1

0

min
01

min

1

0

+

0

1

/

1

0

(c) WTmean0.75

-

WKR
1

WIQ
0

max
1

WINQ
0

+
1

rFDD
0

-
0

rDD
1

+

0

1

(d) Fmax0.95

max

NOR
0

WIQ
1

+
1

PT
0

-
0

WKR
1

max
1

WINQ
0

+
1

rFDD
0

/

1

0

(e) Tmax0.95

Fig. 4. Three example programs from homoWTmean and two example programs from
heteFTMax

An Investigation of Multitask LGP for DJSS 175

Fig. 5. Examples of common patterns in heuristics

If we have a closer look on these DAGs, some common patterns with at least
three nodes can be found among the scheduling heuristics from a same scenario.
The common patterns of these scheduling heuristics are highlighted in grey.
Figure 5 shows some example common patterns in these heuristics. For the tasks
of WTmean, the three heuristics share common building blocks of dividing job
weight and adding the processing time of next operation multiple times. These
building blocks are also reused multiple times in these heuristics. It implies that
it is advisable to select the operations with large weight and short processing
time in minimizing the weighted mean tardiness. Besides, LGP-based heuris-
tics can also share some “high-level” structures of operation combinations. The
“/,+,min” structure is adopted by two of the heuristics at the top of the DAGs.
For the tasks of Fmax and Tmax, the two heuristics share a building block of
“rFDD + max(WINQ,−WKR)”. It implies that, to minimize the maximum
flowtime and tardiness, prioritizing the operations which are close to the due
date (i.e., small rFDD) and have a lot of remaining work (i.e., large WKR) is
a useful strategy. Besides, the operations which do not suffer from bottle neck
machines (i.e., small WINQ) should also be processed as soon as possible. Aver-
agely, more than half of the nodes are covered by at least one repeated patterns
in these five heuristics. The results validate that LGP-based heuristics can share
useful building blocks and operation combinations in the two existing multitask
frameworks.

6 Conclusion

This paper makes an investigation of LGPHH methods with different evolution-
ary multitask frameworks. To extend LGPHH to two existing multitask frame-
works, we have developed two LGPHH-based multitask methods, which are MF-
LGP and M2LGP, based on the characteristics of LGPHH. These methods are
examined on six different multitask scenarios, including three homogeneous and
three heterogeneous scenarios. Some conclusions are drawn out based on the com-
parison. Firstly, the results show that M2GP and MFEA with training instance
rotation help LGPHH to have an effective test performance in multitask learn-
ing. It implies that LGPHH is suitable to those frameworks with more GPHH
characteristics. Secondly, the multitask LGPHH methods based on off-the-shelf

176 Z. Huang et al.

frameworks are worse than tree-based GPHH methods in terms of test effective-
ness. Designing a multitask framework to further enhance LGPHH performance
will be our future work. Thirdly, the heuristics in multitask LGPHH can share
some common patterns. These common patterns can be both of reusable building
blocks and operation combinations. By sharing these common patterns among
different tasks, the multitask LGPHH methods can be more effective than solv-
ing these tasks separately. In our future work, more LGP characteristics will be
considered in the design of multitask frameworks, to further enhance the perfor-
mance of multitask LGPHH. For example, LGP individuals can have multiple
output registers to solve different tasks, and some selective crossovers can be
developed based on different output registers.

References

1. Al-Sahaf, H., et al.: A survey on evolutionary machine learning. J. R. Soc. N. Z.
49(2), 205–228 (2019)

2. Ardeh, M.A., Mei, Y., Zhang, M.: A novel multi-task genetic programming app-
roach to uncertain capacitated Arc routing problem. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 759–767 (2021)

3. Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neu-
ral networks in medical data mining. IEEE Trans. Evol. Comput. 5(1), 17–26
(2001)

4. Brameier, M., Banzhaf, W.: Linear Genetic Programming, vol. 53. Springer, Boston
(2007). https://doi.org/10.1007/978-0-387-31030-5

5. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of produc-
tion scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124
(2016)

6. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.:
A classification of hyper-heuristic approaches: revisited. In: Gendreau, M., Potvin,
J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 453–477. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-91086-4 14

7. Chandra, R., Ong, Y.S., Goh, C.K.: Co-evolutionary multi-task learning for
dynamic time series prediction. Appl. Soft Comput. J. 70, 576–589 (2018)

8. Dal Piccol Sotto, L.F., De Melo, V.V.: A probabilistic linear genetic programming
with stochastic context-free grammar for solving symbolic regression problems. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1017–
1024 (2017)

9. Downey, C., Zhang, M., Liu, J.: Parallel linear genetic programming for multi-class
classification. Genet. Program Evolvable Mach. 13(3), 275–304 (2012). https://doi.
org/10.1007/s10710-012-9162-9

10. Gupta, A., Ong, Y.S., Feng, L.: Multifactorial evolution: toward evolutionary mul-
titasking. IEEE Trans. Evol. Comput. 20(3), 343–357 (2016)

11. Huang, S., Zhong, J., Yu, W.J.: Surrogate-assisted evolutionary framework with
adaptive knowledge transfer for multi-task optimization. IEEE Trans. Emerg. Top.
Comput. 9(4), 1930–1944 (2019)

12. Kantschik, W., Banzhaf, W.: Linear-tree GP and its comparison with other GP
structures. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B.,
Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 302–312. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45355-5 24

https://doi.org/10.1007/978-0-387-31030-5
https://doi.org/10.1007/978-3-319-91086-4_14
https://doi.org/10.1007/s10710-012-9162-9
https://doi.org/10.1007/s10710-012-9162-9
https://doi.org/10.1007/3-540-45355-5_24

An Investigation of Multitask LGP for DJSS 177

13. Koza, J.R.: Genetic programming as a means for programming computers by
natural selection. Stat. Comput. 4(2), 87–112 (1994). https://doi.org/10.1007/
BF00175355

14. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling: a
survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017). https://
doi.org/10.1007/s40747-017-0036-x

15. Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted genetic programming with
simplified models for automated design of dispatching rules. IEEE Trans. Cybern.
47(9), 2951–2965 (2017)

16. Park, J., Mei, Y., Nguyen, S., Chen, G., Zhang, M.: Evolutionary multitask opti-
misation for dynamic job shop scheduling using niched genetic programming. In:
Mitrovic, T., Xue, B., Li, X. (eds.) AI 2018. LNCS (LNAI), vol. 11320, pp. 739–751.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03991-2 66

17. Provorovs, S., Borisov, A.: Use of linear genetic programming and artificial neural
network methods to solve classification task. Sci. J. Riga Tech. Univ. Comput. Sci.
45(1), 133–139 (2012)

18. Sanchez, M., Cruz-Duarte, J.M., Ortiz-Bayliss, J.C., Ceballos, H., Terashima-
Marin, H., Amaya, I.: A systematic review of hyper-heuristics on combinatorial
optimization problems. IEEE Access 8, 128068–128095 (2020)

19. Wilson, G., Banzhaf, W.: A comparison of cartesian genetic programming and
linear genetic programming. In: O’Neill, M., et al. (eds.) EuroGP 2008. LNCS,
vol. 4971, pp. 182–193. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78671-9 16

20. Xu, Q., Wang, N., Wang, L., Li, W., Sun, Q.: Multi-task optimization and multi-
task evolutionary computation in the past five years: a brief review. Mathematics
9(8), 1–44 (2021)

21. Yi, J., Bai, J., He, H., Zhou, W., Yao, L.: A multifactorial evolutionary algorithm
for multitasking under interval uncertainties. IEEE Trans. Evol. Comput. 24(5),
908–922 (2020)

22. Zhang, F., Mei, Y., Nguyen, S., Tan, K.C., Zhang, M.: Multitask genetic
programming-based generative hyperheuristics: a case study in dynamic schedul-
ing. IEEE Trans. Cybern. 1–14 (2021). https://doi.org/10.1109/TCYB.2021.
3065340

23. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: A preliminary approach to evolutionary
multitasking for dynamic flexible job shop scheduling via genetic programming. In:
Proceedings of Genetic and Evolutionary Computation Conference Companion, pp.
107–108 (2020)

24. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Collaborative multifidelity-based sur-
rogate models for genetic programming in dynamic flexible job shop scheduling.
IEEE Trans. Cybern. 1–15 (2021). https://doi.org/10.1109/TCYB.2021.3050141

25. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Correlation coefficient-based recombi-
native guidance for genetic programming hyperheuristics in dynamic flexible job
shop scheduling. IEEE Trans. Evol. Comput. 25(3), 552–566 (2021)

26. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Evolving scheduling heuristics via
genetic programming with feature selection in dynamic flexible job-shop schedul-
ing. IEEE Trans. Cybern. 51(4), 1797–1811 (2021)

27. Zhang, F., Mei, Y., Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted evolu-
tionary multitasking genetic programming for dynamic flexible job shop scheduling.
IEEE Trans. Evol. Comput. 25(4), 651–665 (2021)

https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/s40747-017-0036-x
https://doi.org/10.1007/s40747-017-0036-x
https://doi.org/10.1007/978-3-030-03991-2_66
https://doi.org/10.1007/978-3-540-78671-9_16
https://doi.org/10.1007/978-3-540-78671-9_16
https://doi.org/10.1109/TCYB.2021.3065340
https://doi.org/10.1109/TCYB.2021.3065340
https://doi.org/10.1109/TCYB.2021.3050141

178 Z. Huang et al.

28. Zhang, F., Nguyen, S., Mei, Y., Zhang, M.: Genetic Programming for Produc-
tion Scheduling - An Evolutionary Learning Approach. Springer, Singapore (2021).
https://doi.org/10.1007/978-981-16-4859-5

29. Zhou, L., Feng, L., Zhong, J., Ong, Y.S., Zhu, Z., Sha, E.: Evolutionary multi-
tasking in combinatorial search spaces: a case study in capacitated vehicle routing
problem. In: IEEE Symposium Series on Computational Intelligence (2016)

https://doi.org/10.1007/978-981-16-4859-5

Cooperative Co-evolution and Adaptive
Team Composition for a Multi-rover

Resource Allocation Problem

Nicolas Fontbonne1(B), Nicolas Maudet2, and Nicolas Bredeche1

1 Sorbonne Université, CNRS, ISIR, 75005 Paris, France
nicolas.fontbonne@sorbonne-universite.fr
2 Sorbonne Université, LIP6, 75005 Paris, France

Abstract. In this paper, we are interested in ad hoc autonomous agent
team composition using cooperative co-evolutionary algorithms (CCEA).
In order to accurately capture the individual contribution of team agents,
we propose to limit the number of agents which are updated in-between
team evaluations. However, this raises two important problems with
respect to (1) the cost of accurately estimating the marginal contribu-
tion of agents with respect to the team learning speed and (2) complet-
ing tasks where improving team performance requires multiple agents to
update their policies in a synchronized manner. We introduce a CCEA
algorithm that is capable of learning how to update just the right amount
of agents’ policies for the task at hand. We use a variation of the El Farol
Bar problem, formulated as a multi-robot resource selection problem, to
provide an experimental validation of the algorithms proposed.

Keywords: ad hoc autonomous agent teams · multi-agent systems ·
marginal contribution · team composition · multi-robots · cooperative
co-evolutionary algorithms (CCEA) · evolutionary computation ·
evolutionary robotics

1 Introduction

When multiple individuals get together to solve a task, it is sometimes diffi-
cult to identify who is actually contributing, and who is not. This is especially
problematic when the benefits are equally shared among individuals, including
with free-riders who invest a minimal amount of effort. Nature abounds from
such examples and various strategies evolved to mitigate the detrimental cost of
free-riding, such as partner choice or reputation [11,22].

The problem of identifying the marginal contribution of individuals has also
been studied extensively in cooperative game theory [18]. However, exact methods
such as computing the Shapley value [17] require strong assumptions (e.g. ability
to replay coalitions) and unrealistic computation time, which have led to a flour-
ishing research into the design of approximate methods [21,23,24]. The basic idea

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 179–193, 2022.
https://doi.org/10.1007/978-3-031-02056-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_12&domain=pdf
https://doi.org/10.1007/978-3-031-02056-8_12

180 N. Fontbonne et al.

of such methods is to identify the individual’s contribution by computing the dif-
ference between the group performance with and without this very individual (e.g.
by removing it or by replacing it with an individual with a default strategy).

In this research, we are interested in ad hoc autonomous agent teams where
agents must act together without pre-coordination [19], which implies that the
environment is non-stationary as all agents learn in parallel. This requires using
methods that can only alter individuals’ strategy, with neither a default strategy
being known nor the possibility to remove temporarily one particular individual.

Such problem settings have been explored in evolutionary computation for
multiagent systems, and notably with Cooperative Co-Evolutionary Algorithms
(CCEA) which were first introduced in [13,14] and largely explored since then
(see [10] for a review of variants and applications). In particular, CCEA have
been explored in setups involving multiple robotic agents in tasks such as explo-
ration and foraging [7] and environment monitoring [15,16,25].

In this paper, we address the problem of isolating team members so as to
identify their contribution within the collective. On the one hand, one could
allow only a single agent to learn at a given time, making it possible to measure
accurately its contribution as other agents’ strategies would remain stationary.
On the other hand, several (or all) of the agents’ policies could be iterated at
the same time, possibly speeding up learning thanks to parallelization.

Balancing between providing accurate estimation of an individual contribu-
tion and parallelization of learning actually depends on the context at hand.
When rewards are sparse and depend on a single individual’s behavioural inno-
vation, it is preferable to bootstrap learning with large-scale exploration. How-
ever, whenever team performance increases it is more efficient to turn towards
a more conservative search so as to retain previous improvements. Finally, one
less obvious situation arises when the synergy between individuals is required to
improve performance, for example when two robots are required to open a door,
none of which would gain any benefit by acting alone.

The rest of the paper is organized as follows. Section 2 presents the problem
of team composition in CCEA. Section 3 presents two CCEA algorithms that
enable to tune the number of learning agents within one learning step. The two
algorithms differ with respect to how the balance between contribution estima-
tion accuracy and learning parallelization is set: fixed, or self-adaptive. Section 4
presents the problem used for evaluation, which is a modified version of the
famous Bar El Farol problem [1] formulated as a multi-robot resource allocation
problem where coordination is required (i.e. several resources must be harvested
and harvesting is extremely beneficial it the optimal fixed number of robots is
met). Results are presented in Sect. 5 for both the ad hoc version of and the
self-adaptive versions of the algorithm.

2 Cooperative Coevolutionary and Team Composition

In its most simple setup, cooperative co-evolutionary algorithms (CCEA) rely
on a collection of independent evolutionary algorithms, with each dedicated to

Cooperative Co-evolution and Adaptive Team Composition 181

optimizing the policy of one particular agent of the team [4,5]. Each independent
algorithm works to improve the performance of one agent’s control parameters
using an assessment of the team performance.

Each algorithm maintains a population of parameter sets, which define can-
didate policies for the agent this algorithm is in charge of. At each generation,
performance assessment is computed for various teams. Then, each instance of
the CCEA tries to improve its agent’s performance by using classic evolutionary
operators of selection, mutation and recombination.

The problem faced by CCEA is thus a black-box optimization problem, with
the additional twist that evaluation is for the whole team, and optimization is
performed at the individual level, thus implying a weak link between team eval-
uation and the actual individual behaviour. Defining θ as the vector containing
the parameters provided by each algorithm of the CCEA, F as the fitness func-
tion used to assess team performance and f the fitness value, we have:

F : team parameters θ −→ fitness value f

Figure 1 illustrates the learning loop of a simple multi-agent black-box opti-
mization procedure for cooperative co-evolution. A given algorithm in charge
of a particular agent i will provide policy parameters θi for this agent to be
evaluated in a team. These parameters will be evaluated alongside parameters
provided by the other agents. The team is then evaluated and a fitness value is
returned.

Fig. 1. The learning loop of interaction. All agents submit their own parameters inde-
pendently for evaluation. They are evaluated at the same time on the environment or
task. This return the fitness f of the whole team. Finally this feedback is used by all
agent to update their parameters submission for next iteration.

After an evaluation, each agent has to evaluate if the new set of parameters
proposed θi has contributed to the team fitness in a negative, positive or neutral
manner. It is necessary to extract from the fitness f = F (θ), the part which
depends only on the parameters of the agent i, F i(θi).

From an agent’s viewpoint, an increase in team performance may be due
to others, and may even shadow a decrease in the very contribution the agent

182 N. Fontbonne et al.

performs. In order to mitigate the intrinsically noisy fitness evaluation due to
team heterogeneity (team composition changes over time), multiple evaluations
of the same set of policy parameters will be performed for a given agent, so that
different versions of θi can be ranked and further selected to create new candidate
policies for the next generation. However, obtaining an exact assessment of one
individual’s contribution to the team remains elusive unless all other individuals
follow static policies. Considering teams formed of n team agents, with each
agent’s evolutionary algorithm maintaining a population of p candidate policies,
complexity would be O(pn) at each generation.

In order to provide results in a reasonable time, CCEA generally relies on
a partial evaluation of agents’ policy contribution, by evaluating a subset of
all possible team compositions at each iteration. Though such implementation
breaks down complexity, CCEA algorithms have been shown to have a tendency
to prematurely converge to stable states because of a deceptive fitness landscape
created by the choice of collaborators for evaluation [6,12]. Several methods have
been proposed to address these issues, including novelty-based rewards to escape
local minima [7] or automatically merging populations when agents’ behaviours
are similar to address scalability issues [8,9]. However, the contribution of one
specific agent remains approximated rather than precisely measured.

3 Cooperative Co-evolutionary Algorithms with Limited
Team Composition Update

In the simplest case, the global fitness F (θ) is the sum of each agent’s individual
fitness F i(θi) for the current team:

F (θ) =
∑

i∈agents

F i(θi)

With θi the policy parameters for agent i, and θ = (θ0, . . . , θi, . . . , θN−1),
i.e. the team policy parameters composed of the policies of N agents.

Whenever a single agent updates its policy parameters, the variation in over-
all fitness F (θt+1) − F (θt) will be equal to the variation in the fitness due to
the change in behaviour of the agent concerned δF i. This can be written as:

F (θt+1) − F (θt) = F−i(θ−i
t+1) + F i(θit+1) − F−i(θ−i

t) − F i(θit)

= F i(θit+1) − F i(θit) (1)

= δF i

With F−i(θ−i) the performance of all individuals minus the agent i, assuming
θ−i is stationary between t and t + 1. Though an exact value for the contribu-
tion of agent i remains unavailable, δF i gives a proxy which provides sufficient
information to measure both the direction and amplitude of the change due to
agent i’s new policy.

Cooperative Co-evolution and Adaptive Team Composition 183

Assuming agents are independent, the above equation holds true and can
be used as long as only one agent’s policy is changed at a time. However, this
assumption incurs two important limitations:

– The computational cost of iterating over a single agent’s strategy at a time
is high (see previous Section), and there is a trade-off between the quality of
one agent’s contribution estimation and the expected gain at the level of the
team (e.g. whenever a single robot is needed to significantly improve team
performance, trying with all robots is relevant);

– The task may require coupling between the agents’ behaviour, and any team
fitness improvements may require that several agents change their policy
parameters simultaneously (e.g. moving a heavy object can only be done
with two robots). If not, a CCEA can get stuck on a local minimum if we
assume independence between agents and change only one agent at a time.

In order to address these issues and still retain the benefit of accurate esti-
mation of the agents’ contribution, we propose a CCEA algorithm where it is
possible to modulate the number of agents that are updated in-between team
evaluations. We use a collection of (1+1)-GA algorithm where each (1+1)-GA
algorithm i provides the policy parameters θi for its corresponding agent i, and
the whole team is evaluated using all agents with their policy parameters, i.e.
θ = (θ0, . . . , θN−1).

Algorithm 1: CC-(1+1)-GAkfixed

Introducing k mutants per iteration
1 k ← number of team members to be updated;
2 N ← total number of agents;
3 θparent ← parameters initialisation;
4 fparent ← F (θparent);
5 for gen < nb max generation do
6 ID ← randomly sample k agents;

7 θID
child ← mutate(θID

parent);

8 fchild ← F (θID
child, θ−ID

parent);
9 if fchild ≥ fparent then

10 θID
parent ← θID

child;
11 fparent ← fchild;

12 end

13 end

Algorithm 1 details the complete CCEA, which runs multiple instance of
(1+1)-GA in parallel, which we will refer to as the CC-(1+1)-GAkfixed algorithm
from now on. Each (1+1)-GA algorithm maintains a population of two individ-
uals [3], a parent θiparent and a child θichild. Both are candidate policy parameters
for agent i. The parent is replaced when the child fares better, and a new child

184 N. Fontbonne et al.

is created by applying mutation on the new parent. Whenever a child fails to
outperform its parent, it is replaced by a new child mutated from the current
parent. The mutation operator depends on the problem (e.g. Gaussian mutation,
bit-flip, uniform draw).

At each new iteration, k agents are drawn and randomly changed in the
team, with 0 < k ≤ N . The k parameter is used to tune the amount of renewal
k/N for the team composition in-between iterations of the CCEA algorithm.
The k new team members are kept only if they provide an increase in the team
fitness. Therefore, the challenge is to find the most efficient size k of the number
of team agents to be modified at each CCEA steps. So far, k is fixed beforehand
by the user, and may benefits from prior knowledge on the task regarding pos-
sible required coupling between agents, in terms of number of agents to change
simultaneously to reach the global optimum in terms of team efficiency.

However, such prior knowledge may not be available and a relevant value
of k not only depends on the problem (e.g. some problems may require cou-
pling between agents, others may not), but also on the current state of the
optimization (e.g. broad initial search steps vs. refined tuning near the optimal
solution). In order to address this, we propose the CC-(1+1)-GAkadaptive , where
the k parameter is learned during the course of evolution (see Algorithm2). We
propose to choose the number of team members to be updated by using the
adversarial bandit learning algorithm EXP3 (Exponential-weight algorithm for
Exploration and Exploitation [2]) that tracks the success rate of various possi-
ble values for k so far, which means both exploiting the current best value and
exploring alternate values. The goal of the adaptation mechanism is to converge
to the best possible value for k for the context at hand, i.e. the value that leads
to the largest increase of fitness, whether through rare but important increases
or through small but frequent increases.

As described in Algorithm 2, we define a set of J possible values for k
(k0, ..., kJ−1), each associated with a weight W (kj) monitoring the success rate
of a particular kj . Lines 10–13 of the algorithm detail which kj is selected for a
particular iteration. We compute the probability distribution of each kj which
depends on the weight W (kj) and the parameter γ of the algorithm. γ → 1
favours exploration (i.e. the choice of kj will be almost uniform). On the con-
trary, γ → 0 favours exploitation, taken into account the importance of the
weights W (kj). The fitness gain is normalized between [0, 1] (Line 20) and then
used to update the weight W (kj) (Line 21).

4 The Multi-rover Resource Selection Problem

We define a problem that is a variation of the well-known El Farol bar problem [1,
24] where each individual must choose a day to go to the bar among M possible
choices with the criterion of not being too numerous each days. In our setup, we
consider the problem where N independent robots must spread over M resources,
and where each resource has an optimal capacity c in terms of number of robots

Cooperative Co-evolution and Adaptive Team Composition 185

Algorithm 2: CC-(1+1)-GAkadaptive

Replacing a varying number of team agents per iteration
1 K ← table of possible number of team members to update simultaneously ;
2 W ← table of weights for each k;
3 P ← table of probability for each k;
4 k ← number of team members to be updated ;
5 N ← total number of agents;
6 θparent ← parameters initialization;
7 γ ← real ∈ [0, 1], parameter for the EXP3 algorithm ;
8 fparent ← F (θparent);
9 for gen < nb max generation do

10 for j = 1, . . . , J do

11 P [j] ← (1 − γ) W [j]
∑J

i=1 W [i]
+ γ

J

12 end
13 kj ← random draw in K[] with probabilities P [];
14 ID ← randomly sample k agents;

15 θID
child ← mutate(θID

parent);

16 fchild ← F (θID
child, θ−ID

parent);
17 if fchild ≥ fparent then
18 θID

parent ← θID
child;

19 fparent ← fchild;

20 R ← tanh (fchild
fparent

);

21 W [j] ← W [j] exp(γR
P [j]J

);

22 end

23 end

necessary to optimally harvest it. This is illustrated in Fig. 2, which provides an
example where each robot chooses a resource.

Team performance f is obtained by adding each resource’s satisfaction φc.
For each resource, its satisfaction φc depends on the number of robots r who
chose it. This satisfaction is described by the following equation:

φc(r) =
{

Mr exp(−r
c) if r = c

r exp(−r
c) else. (2)

where r represents the amount of robots on the resource, M the total number of
resources, and c controls the optimal number of robots required for the resource.

The satisfaction function diverges from the original formulation of the El
Farol Bar problem as the best team performance always implies that the number
of robots per resource must be optimal (exactly c robots per resource), even if
it implies some resources are left aside or only partially filled. The satisfaction
boost for the r = c case ensures that filling a maximum number of resources with
the c robots is the optimal strategy. An example of such function with c = 10 is
plotted on Fig. 3.

186 N. Fontbonne et al.

Fig. 2. The N = 60 robots are represented here as little rovers that each must choose
between M = 7 resources. Here the selected agent chooses resource 5. When all robots
have made their choices, the satisfaction for each resources are computed and summed
to obtain the fitness f of the team.

Fig. 3. Satisfaction function with c = 10 of a given resource, depending on the number
of robots that picked it

The fitness of a team is then the sum of the satisfaction for all resources:

f =
∑

m∈[0,M−1]

φc(rm)

where rm is the number of robots at resource m. The robots must coordinate to
optimally fill a maximum number of resources.

To increase the value of this function, it is then necessary to move individuals
from crowded resources to resources with fewer robots, up to the extent that
resources with the exact number of robots are favoured.

The number of robots N , the number of resources M , and the optimal number
of robots per resource c can be modified to change the structure of the problem.
In the next section, different instances of this problem are used to study various
properties of the algorithms we proposed in the previous section. In particular,
it is possible to set up the problem so that either single or multiple changes in

Cooperative Co-evolution and Adaptive Team Composition 187

the team composition may always yield too few or too many permutations in
the team distribution over resources for team performance to increase.

5 Results

5.1 Experimental Setting

We use the Multi-Rover Resource Selection problem, with different number of
resources M , number of agents N , and optimal number of robots per resource
c. The three setups used are:

– Setup 1 with N = 120, M = 300, and c = 30. There are many resources,
each requiring a large number of robots. The maximum performance could
be reached by a team of exactly M × c = 300 × 30 = 9000 agents. Given
the limited number of agents, they must spread over a few of the resources
(N/c = 120/30 = 4 resources) so that the team reaches optimal performance;

– Setup 2 with N = 900, M = 300, and c = 3. The number of robots involved
makes it possible to reach the optimal team performance value for this setup
(N = M × c) if all agents are uniformly spread over the resources;

– Setup 3 with N = 60, M = 7, and c = 10. There exists several configurations
of pairing agents and resources which are local optima and cannot be escaped
by updating only one agent in the team. Figure 4 gives an example of a
sub-optimal configuration for which using k = 1 is detrimental. When the
algorithm gets into such a configuration, all possible updates of a unique agent
will decrease the team fitness. Escaping such a local optimum requires either
exploring new configurations at the cost of a (hopefully temporary) decrease
in team performance (see [7] for example using novelty search in CCEA, which
is out-of-scope of the current paper) or modifying several agents at the same
time (which is possible with k > 1).

In the following, we use both the CC-(1+1)-GAkfixed algorithm with either
k = 1, 10 or 30, and the CC-(1+1)-GAkadaptive algorithm (using EXP3) for learn-
ing the value of k in {1, 10, 30}. All experiments are replicated 32 times. Mean
and standard deviation for all algorithm variants are traced. Evaluations is used
on the x-axis to provide a fair comparison in terms of computational effort.

5.2 Fixed vs. Adaptive Methods for Team Composition Update

Starting with the three variants of the CC-(1+1)-GAkfixed algorithm, we can
observe different learning dynamics depending both on the value of k and the
setup at hand.

In the first setup (Fig. 5(a)), we observe a clear benefit for using k = 10 and
k = 30 during the first iterations. But this initial gain in performance does not
allow it to converge faster when using k = 1. In particular, a value of k = 30 is
extremely deleterious for the convergence as it fails to reach the optimum value
within the allocated evaluation budget. This tendency is even more visible in the

188 N. Fontbonne et al.

Fig. 4. The resource selection problem has local minimums that can’t be escaped by
mutating only one agent. In this example, 60 agents must spread on 7 resources by
being 10 on 6 of them. In the state where 4 resources are selected by 10 agents, 2 are
selected by 7, and 1 by 6, modifying the selection of one agent can only decrease the
fitness of the system.

Fig. 5. Performance of the CC-(1+1)-GAkfixed algorithm with either k = 1, k = 10
and k = 30, as well as CC-(1+1)-GAkadaptive with k ∈ {1, 10, 30}. Performance f is
plotted as mean (solid lines) and standard deviation for the three setups considered
with respect to the number of fitness evaluations. Curves are plotted on a x-log scale.
There are 32 replications for each algorithm and for each experiment.

second setup (Fig. 5(b)). Using larger values for k provides a slight advantage at
the beginning but is quickly lost for both k = 10 and k = 30.

The outcome is rather different in the third setup (Fig. 5(c)) as using k > 1
allows to reach better performances and prevent the algorithm to get stuck on
a local optimum. Indeed, the algorithm becomes stalled when using k = 1, the

Cooperative Co-evolution and Adaptive Team Composition 189

structure of the problem making it impossible to improve team performance
without considering coupled synergies when updating team members.

Figures 5(a) and (b) show that the CC-(1+1)-GAkadaptive algorithm follows
the curves of the best performing algorithms using a fixed value of k. Figure 5(c)
also shows that the adaptive algorithm is able to adapt to a situation where the
CC-(1+1)-GAkfixed algorithm would fail because of its fixed k value (here, using
k = 1 withholds convergence to an optimal team composition). Overall, dynami-
cally modulating the number of policies updated in the team composition always
results in performance curves closely matching the best out of the algorithmic
variants using a fixed value of k. This remains true even when the best variant
with a fixed k value is outperformed by another variant with a different value of
k, which confirms the relevance of the adaptive algorithm to act as an anytime
learning algorithm. In other words, the CC-(1+1)-GAkadaptive algorithm presents
the best choice when the problem and the evaluation budget are not known.

5.3 Dynamics of Adapting the Number of Team Agents to Update

We analyze how the CC-(1+1)-GAkadaptive algorithm is changing the value of
k throughout evolution for the three setups at hand. Figure 6 represents the
median value of k over the 32 repetitions for each of the three experimental
setups. We observe that the algorithm switches between the different values for
k, and follows different dynamics depending on the setup.

In the first setup, the method slightly favours k = 1 and k = 10 after a few
iterations of exploration. This bias is consistent with the performances observed
for k fixed, where the k = 30 version is less efficient (see Fig. 5). In the second
setup, the value of k decreases during the learning process to stabilize at k = 1,
allowing for some fine-tuning of team composition. The third setup displays
somewhat different dynamics for the value of k, quickly switching from one
value to the other. The difference in performance between the different group
sizes is not large enough to make a clear-cut choice, and the method chooses k
uniformly at each step without impacting the performances.

100 101 102 103 104

number of evaluations

1

10

30

m
ed
ia
n
k

(a) setup 1

100 101 102 103 104 105

number of evaluations

(b) setup 2

100 101 102 103 104

number of evaluations

(c) setup 3

Fig. 6. Median value of k over the 32 repetitions for the first (left), second (middle)
and third setups (right). Curves are plotted on a x-log scale.

190 N. Fontbonne et al.

5.4 Sensitivity of Meta-parameters

As described in Algorithm 2, CC-(1+1)-GAkadaptive uses two meta-parameters,
which are:

– K = (k0, ..., kJ−1), the set of possible values for k;
– the egalitarianism factor γ that determines at each step whether k should be

chosen at random (uniform sampling), or selected with respect to the weights
of the k values, obtained from the cumulative fitness gain for each particular
value of k. The value of γ balances between exploitation and exploration, and
the EXP3 algorithm for multi-armed bandit problems has been extensively
studied elsewhere [2,20];

In the previous section, these meta-parameters were fixed as follow: the set
of possible k was limited to {1, 10, 30}, the egalitarianism factor γ was set to 0.1.

Fig. 7. Sensitivity of the algorithm to meta-parameters. Each column represents one
of the different experimental setups. On the rows, one of the meta-parameter is fixed
and the other one is varying. On the top, the set of k are fixed but γ varies. At the
bottom, γ is fixed but the set of k varies.

Figure 7 shows the sensitivity of the algorithm with respect to the different
meta-parameters. From top to bottom, the sensitivity to γ and the set of possible
k. The general conclusion from this study is that the algorithm is robust and
remains a relevant choice for anytime learning. Learning curves remain close to
what has been shown previously, with some exceptions for extreme values. In
particular, we can observe that:

Cooperative Co-evolution and Adaptive Team Composition 191

– γ does not have a significant impact on the algorithm, provided that it is not
too small nor too high to efficiently modulate the exploration and exploitation
of k’s

– the algorithm is somewhat also sensitive to the cardinal of the set of possible
values for k. When there are too many possibilities to explore, the evaluation
of each choice takes more time and is, therefore, less accurate if the context
changes too fast. The effect of this exploration can especially be observed for
the second setup where the algorithm is less accurate when the value for k
can be chosen among 30 possible values (k ∈ [1, 30]).

6 Conclusion

In this paper, we present a cooperative co-evolutionary algorithm (CCEA) that
implements a collection of (1+1)-GA algorithms, each endowed with the task to
optimize the policy parameters of a specific agent while performance is assessed
at the level of the team. Our algorithm acts on team composition by continuously
updating a limited number of team agents, depending on the task at hand and
the level of completion. Therefore, the main contribution of this paper is to
describe an algorithm with a self-adapting team composition update mechanism
used throughout learning.

We showed that modulating through time the number of new policies added
to the current team makes it possible to provide efficient anytime learning, with-
out requiring a priori knowledge on the problem to be solved. Moreover, we show
that the algorithm can deal with problems where coupling between agents during
learning is mandatory to improve team performance.

Experimental validation was conducted using a variant of the El Farol Bar
problem, a famous problem in collective decision making, which was modified
to capture a multi-agent resource selection problem. Our algorithm is indeed
also relevant for multi-robotic setups, which have been recently studied using
various CCEA algorithms [7–9,15,16,25], and future works are currently being
conducted in this direction.

Acknowledgements. This work is funded by ANR grant ANR-18-CE33-0006.

References

1. Arthur, W.B.: Inductive reasoning and bounded rationality. Am. Econ. Rev. 84(2),
406–411 (1994)

2. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)

3. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies - a comprehensive introduction.
Nat. Comput. 1(1), 3–52 (2002). https://doi.org/10.1023/A:1015059928466

4. De Jong, K.A.: Evolutionary computation: a unified approach. In: Proceedings of
the 2016 on Genetic and Evolutionary Computation Conference Companion, pp.
185–199 (2016)

https://doi.org/10.1023/A:1015059928466

192 N. Fontbonne et al.

5. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, vol. 53.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05094-1

6. Funes, P., Pujals, E.: Intransitivity revisited coevolutionary dynamics of numbers
games. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary
Computation, GECCO 2005, pp. 515–521. Association for Computing Machinery,
New York (2005)

7. Gomes, J., Mariano, P., Christensen, A.L.: Novelty-driven cooperative coevolution.
Evol. Comput. 25(2), 275–307 (2017)

8. Gomes, J., Mariano, P., Christensen, A.L.: Dynamic team heterogeneity in cooper-
ative coevolutionary algorithms. IEEE Trans. Evol. Comput. 22(6), 934–948 (2018)

9. Gomes, J., Mariano, P., Christensen, A.L.: Challenges in cooperative coevolution of
physically heterogeneous robot teams. Nat. Comput. 18(1), 29–46 (2016). https://
doi.org/10.1007/s11047-016-9582-1

10. Ma, X., et al.: A survey on cooperative co-evolutionary algorithms. IEEE Trans.
Evol. Comput. 23(3), 421–441 (2019)

11. Noë, R., Hammerstein, P.: Biological markets: supply and demand determine the
effect of partner choice in cooperation, mutualism and mating. Behav. Ecol. Socio-
biol. 35(1), 1–11 (1994). https://doi.org/10.1007/BF00167053

12. Panait, L.: Theoretical convergence guarantees for cooperative coevolutionary algo-
rithms. Evol. Comput. 18(4), 581–615 (2010)

13. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to func-
tion optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994.
LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58484-6 269

14. Potter, M.A., De Jong, K.A.: Cooperative coevolution: an architecture for evolving
coadapted subcomponents. Evol. Comput. 8, 1–29 (2000)

15. Rahmattalabi, A., Chung, J.J., Colby, M., Tumer, K.: D++: structural credit
assignment in tightly coupled multiagent domains. In: 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 4424–4429. IEEE
(2016)

16. Rockefeller, G., Khadka, S., Tumer, K.: Multi-level fitness critics for cooperative
coevolution. In: Proceedings of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2020), pp. 1143–1151, 9–13 May 2020

17. Shapley, L.S.: A value for n-person games. In: Contributions to the Theory of
Games II. Annals of Mathematics Studies, vol. 28, pp. 307–317 (1953)

18. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, Cambridge
(2008)

19. Stone, P., Kaminka, G.A., Kraus, S., Rosenschein, J.S.: Ad hoc autonomous agent
teams: collaboration without pre-coordination. In: Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, pp. 1504–1509.
AAAI Press (2010)

20. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press, Cambridge (2018)

21. Tumer, K., Agogino, A.K., Wolpert, D.H.: Learning sequences of actions in col-
lectives of autonomous agents. In: Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems: Part 1, pp. 378–385
(2002)

22. West, S.A., Griffin, A.S., Gardner, A.: Social semantics: altruism, cooperation,
mutualism, strong reciprocity and group selection. J. Evol. Biol. 20(2), 415–32
(2007)

https://doi.org/10.1007/978-3-662-05094-1
https://doi.org/10.1007/s11047-016-9582-1
https://doi.org/10.1007/s11047-016-9582-1
https://doi.org/10.1007/BF00167053
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/3-540-58484-6_269

Cooperative Co-evolution and Adaptive Team Composition 193

23. Wolpert, D.H., Tumer, K.: Optimal payoff functions for members of collectives.
Adv. Complex Syst. 4(2/3), 265–279 (2001)

24. Wolpert, D.H., Tumer, K.: An introduction to collective intelligence. Technical
report, NASA (2008)

25. Zerbel, N., Tumer, K.: The power of suggestion. In: Proceedings of the 19th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2020), pp. 1602–1610, 9–13 May 2020

Short Presentations

Synthesizing Programs from Program
Pieces Using Genetic Programming
and Refinement Type Checking

Sabrina Tseng(B), Erik Hemberg, and Una-May O’Reilly

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
stseng@alum.mit.edu, {hembergerik,unamay}@csail.mit.edu

Abstract. Program synthesis automates the process of writing code,
which can be a very useful tool in allowing people to better leverage
computational resources. However, a limiting factor in the scalability of
current program synthesis techniques is the large size of the search space,
especially for complex programs. We present a new model for synthesiz-
ing programs which reduces the search space by composing programs
from program pieces, which are component functions provided by the
user. Our method uses genetic programming search with a fitness func-
tion based on refinement type checking, which is a formal verification
method that checks function behavior expressed through types. We eval-
uate our implementation of this method on a set of 3 benchmark prob-
lems, observing that our fitness function is able to find solutions in fewer
generations than a fitness function that uses example test cases. These
results indicate that using refinement types and other formal methods
within genetic programming can improve the performance and practical-
ity of program synthesis.

1 Introduction

Program synthesis, the automatic construction of a computer program from a
user specification, is a challenging and central problem in the field of artificial
intelligence (AI) [7]. Programming has been classified as “AI-hard” [35] since all
problems in AI can reduce to programming, and thus our progress in program
synthesis serves as a good benchmark for how close we are to achieving general
artificial intelligence [21]. In addition, program synthesis has broad applications
in software engineering. For example, software development often entails refac-
toring old code to improve structure or readability without affecting behavior,
which program synthesis can help automate. In addition, program synthesis can
allow non-programmers to efficiently perform computational tasks [3].

Two of the main approaches to program synthesis are stochastic search through
genetic programming [14], and formal verification methods such as symbolic solv-
ing [7]. However, solver-based methods do not scale beyond small programs such
as introductory programming problems [9], and many current approaches are con-
strained in scope [21]. In this paper, we propose a new program synthesis model
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 197–211, 2022.
https://doi.org/10.1007/978-3-031-02056-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_13&domain=pdf
https://doi.org/10.1007/978-3-031-02056-8_13

198 S. Tseng et al.

which leverages pre-existing code, in the form of functions that we call “program
pieces”, and synthesizes the high-level program structure. This model allows for
an approach that incorporates refinement type checking [32], a formal verification
method, into genetic programming search.

Genetic programming (GP) is a search technique that begins with an initial
population of programs from the search space, and evolves and combines the
most “fit” programs through non-deterministic processes similar to biological
evolution to move towards an optimal solution [25]. In particular, GP proceeds
in generations, where in each generation the search selects the most fit programs
and varies them to get a new generation of more evolved and more fit programs.
In GP systems, the performance of the search depends heavily on the fitness
function, since incorrect programs need a good heuristic to optimize [7,22]. A
common fitness function is the program’s accuracy on a set of example inputs
and outputs. However, having a large set of examples is computationally expen-
sive [6], while a small set of examples leads to under-specification and often
the wrong generalizations [7]. NetSyn [17] showed that using neural networks to
learn a fitness function can improve GP performance. This suggests that there
is still room for improvement in the design of the fitness function.

On the other hand, formal verification methods can be used to synthesize
programs through symbolic proofs of satisfiability and correctness. One exam-
ple of a formal verification method is refinement type checking [32], which is a
stronger form of type checking that can enforce predicates on types. Specifically,
a user can define stricter input and output types for a function using refinement
types, so that the refinement type check enforces expected preconditions and
postconditions. The liquid type system [28] allows for efficient static checking of
refinement type safety, without requiring every expression to be manually anno-
tated. However, as mentioned above, formal methods alone do not scale well
beyond small programs.

Our key idea in this paper is to improve scalability by decomposing programs
into program pieces, which are functions provided by the user or imported from a
library. We form candidate programs by composing program pieces. By abstract-
ing away logical units of code into these program pieces, we reduce the search
space for the synthesis, thus enabling us to solve larger synthesis problems. Fur-
thermore, this allows users of our system to make use of built-in functions or
external libraries, which can provide complex logic for free.

An additional benefit of this decomposition is that we can use refinement
types to specify the input and output types of program pieces, which specifies
the overall intended behavior of the program we want to synthesize. In our pro-
posed system, we use refinement type checking as a fitness function within our
GP algorithm. In particular, we define a novel fitness function based on the
number of errors that result from the refinement type check, so that programs
with fewer errors have better fitness. Using this fitness function, we observe that
the GP search converges towards a program that has no type errors, which we
consider to be correct since the refinement types specify the intended behavior.
In addition, unlike fitness functions based on input-output examples which are

Synthesizing Programs from Program Pieces 199

under-specified as mentioned above, refinement types provide a formal specifi-
cation of the entire input and output spaces.

We present the following contributions in this paper:

– A general-purpose program synthesis model that synthesizes programs by
composing preexisting program pieces

– A fitness function on programs composed of pieces that enables GP to find
good programs, derived from the number and type of errors that result from
refinement type checking

– An evaluation of the new fitness function in this model

We evaluate the performance of our proposed fitness function against a fitness
function that uses accuracy on input-output examples. We find that on average,
with our refinement type-based fitness function, the GP search finds solutions
in about 20% fewer generations than when we use input-output examples.

The remainder of the paper is structured as follows: first, we outline our meth-
ods, including how we translate the refinement type check into a fitness function
(Sect. 2). Next, we describe our experiments and results (Sect. 3). Finally, we
discuss related work (Sect. 4) and conclusions (Sect. 5).

2 Method

We will present our method in 4 sections. First, we describe our program synthe-
sis model, defining program pieces and introducing a running example (Sect. 2.1).
Next, we outline our base genetic programming (GP) algorithm and how it syn-
thesizes programs (Sect. 2.2). Next, we briefly introduce refinement types and
LiquidHaskell (Sect. 2.3). Then, we present our new fitness function, describing
how we integrate information from LiquidHaskell into the base GP algorithm
(Sect. 2.4).

2.1 Program Synthesis Model

In our program synthesis model, programs are composed of program pieces,
which are functions provided by the user or imported from built-in and exter-
nal libraries. As a running example, we consider a list filtering problem that we
call FilterEvens: given a list of integers, return a list containing only the even
integers from the input. The example below, and subsequent examples, will use
Haskell syntax [11]. A user might provide the following 3 program pieces:

Example 1. Program pieces for FilterEvens

1. condition takes in integer x and returns true if x is even, false otherwise.

condition :: Int -> Bool
condition x = x ‘mod‘ 2 == 0

2. condition takes in integer x and returns true if x is odd, false otherwise.

200 S. Tseng et al.

condition :: Int -> Bool
condition x = x ‘mod‘ 2 /= 0

3. filterEvens takes in an array of integers xs and returns the array containing
all members from xs for which condition is true.

filterEvens :: [Int] -> [Int]
filterEvens xs = [a | a <- xs, condition a]

A correct program would consist of pieces 1 and 3. Note that piece 2 is not ulti-
mately needed; a user will not have complete knowledge of the implementation,
so they may include pieces that the synthesis algorithm chooses not to use.

2.2 Genetic Programming Algorithm

In the context of program synthesis, genetic programming evolves a population
of candidate programs over time to find an optimal program [14]. Candidate
programs are defined by their chromosome, a sequence of integers representing
the indexes of the program pieces that compose that program. For example,
using our FilterEvens problem defined in Example 1, the chromosome c = [1, 3]
corresponds to this program consisting of piece numbers 1 and 3:

Example 2. Program defined by chromosome [1, 3], which uses the correct con-
dition to filter a list to only contain even integers

condition :: Int -> Bool
condition x = x ‘mod‘ 2 == 0

filterEvens :: [Int] -> [Int]
filterEvens xs = [a | a <- xs, condition a]

A sketch of our base genetic programming algorithm is shown in Algorithm1.
We provide a set of parameters Θ which includes the population size, chromo-
some length, mutation and crossover rate for variation, tournament size, and
elite size, and parameter G, the number of generations to run for. We also pro-
vide a fitness function f , which computes a heuristic representing how “good”
each candidate solution is, along with a set of input/output examples X which
we use to test candidate programs to compute fitness (described in more detail
below).

The algorithm proceeds in the following steps, labeled with the corresponding
line numbers in Algorithm1:

– Generate individuals (1): Let |c| be the chromosome length and |P | the
number of program pieces; both are provided in the parameters. We generate
a random individual by generating |c| random numbers, each in the range
[0, |P |). This list represents the chromosome for that individual. We repeat
the process pop size times to generate an initial population.

Synthesizing Programs from Program Pieces 201

– Compute fitness (2, 6): We use the provided fitness function f to compute
fitness for each individual in the population.

– Selection (4): To select individuals for variation, we use tournament selec-
tion [4]. The tournament size t is provided in the parameters Θ. We will run
pop size tournaments, where each tournament selects t individuals at ran-
dom from the population and selects the individual with best fitness. Thus,
individuals with higher fitness are more likely to be selected for variation.

– Variation (5): We use two variation operators to create new individuals.
• Mutation [23]: With probability equal to the mutation rate, we mutate

an individual as follows. Given a chromosome c, we choose an index uni-
formly at random from [0, |c|), and change it to a new value, also chosen
uniformly at random from the range of possible values [0, |P |), to get new
chromosome c′.

• Single-Point Crossover [24]: With probability equal to the crossover
rate we create two new individuals as follows. Given two chromosomes c1
and c2, we choose an index uniformly at random to be the crossover point
p. We create new individuals c′

1 and c′
2 such that c′

1 contains the left part
of c1, up to index p, and the right part of c2, from index p+1 to the end,
and vice versa for c′

2.
– Replacement (7): We use an elitism strategy [26] to update the popula-

tion. Let e be the elite size provided in the parameters Θ. We choose our
new population to consist of the e individuals from the current generation
before variation with the best fitness, plus the (pop size − e) individuals
after variation with the best fitness.

Algorithm 1. Genetic Programming for Program Synthesis
evolve(Θ,G, f,X):
1: P ← generate individuals(Θ) // Generate random initial population
2: P ← computeFitness(P, f(X, ·)) // Compute fitness of initial pop
3: for G iterations do
4: P ′ ← selection(P, Θ) // Select individuals for variation
5: P ′ ← variation(P ′, Θ) // Mutation and crossover
6: P ′ ← computeFitness(P ′, f(X, ·)) // Compute fitness of new pop
7: P ← replacement(P, P ′, Θ) // Update population depending on fitness
8: end for
9: p∗ ← max({p.fitness : p ∈ P})

10: return p* // Return program with max fitness

Fitness Function. In our base algorithm, we use a standard fitness function:
the candidate program’s accuracy on the example test cases X [14]. In particular,
given some chromosome c, fitness is given by

202 S. Tseng et al.

fIO(X, c) =
number of correct examples
total number of examples

Under this fitness function, programs which perform better on the example
cases will have higher fitness. However, there are potential problems with using
input-output examples, as mentioned in Sect. 1. This fitness function only spec-
ifies a program’s intended behavior for a small set of examples, and a solution
that succeeds on these examples may not necessarily generalize to others [13].
This leads us to explore refinement types as an alternate way to compute fitness.

2.3 Refinement Types and LiquidHaskell

Refinement types are types that further restrict the space of possible values by
specifying a predicate. For example, we can express the filterEvens function
from our running example using refinement types as follows, indicating that it
takes a list of integers as input and outputs a list of even integers:

Example 3. LiquidHaskell Refinement Type Specification for filterEvens

{-@ type Even = {v:Int | v mod 2 = 0} @-}
{-@ filterEvens :: [Int] -> [Even] @-}

LiquidHaskell [34] is a plugin for Haskell which supports refinement types,
including static checking of refinement type safety using a symbolic solver such
as Z3 [20]. We can express a function like filterEvens in Example 3, and Liquid-
Haskell will verify at compile time that filterEvens satisfies the refined type.
In this case LiquidHaskell checks that the output of filterEvens is always a list
of even integers. If the check fails, LiquidHaskell outputs errors showing which
refinement type specifications were not satisfied. This static checking is able to
not only restrict integer values, but also enforce properties of lists and other
complex types, so it is applicable to a broad range of functions.

2.4 Refinement Types Fitness Function

For certain types of problems, such as the FilterEvens example we have defined,
refinement types are able to express the intended behavior of the program.
Because this is a symbolic check, it verifies that behavior over all valid inputs
without relying on example test cases.

To make use of this property, we leverage LiquidHaskell’s refinement type
checking to define a new fitness function for the GP. To do so, we require that
the user provide a refinement for each program piece. Since refinements are
based only on the intended behavior of a function, and do not depend on the
implementation, we assume that users will be able to provide refinements even
for library functions that will be used in the synthesized code.

A naive fitness function that simply runs the LiquidHaskell type check would
return a binary value (0 if it fails, 1 if it passes), which does not work well as
a heuristic. Instead, we can look more closely at LiquidHaskell’s output, which
includes syntax errors and refinement type errors, to construct a more fine-
grained function.

Synthesizing Programs from Program Pieces 203

Syntax Errors. We assume that individual program pieces, which are often
built-in functions or library functions, are free of syntax errors. Under this
assumption, the only syntax errors that can be produced by combining program
pieces are multiple definition errors (for pieces that have the same name and
function signature), and missing definition errors (for pieces that were declared
in other pieces but don’t appear in the solution). The maximum number of
syntax errors that can result is equal to the length of the chromosome.

Refinement Type Errors. Refinement type checking is only performed after
regular syntax checking, so no refinement type errors are reported if a program
has incorrect syntax. Otherwise, if the program has no syntax errors, Liquid-
Haskell will report one error per refinement (i.e. per function signature) that is
not satisfied. Thus, the maximum possible number of refinement type errors is
also equal to the length of the chromosome.

Fitness Function. We construct our fitness function using a linear scale based
on the number and type of errors reported. In addition, we follow the principle
that syntax errors are generally “worse” than refinement type errors; syntax
errors indicate structural issues like duplicated or missing program pieces, while
refinement type errors mean that the program has the right structure.

Therefore, for a given chromosome c (with length |c|) where LiquidHaskell
produces s syntax errors and t refinement type errors, we calculate the following
fitness function:

fRT (c) =

{
0.5 − s

2|c| if s > 0 (syntax checking fails)

1 − t
2|c| if s = 0 (syntax checking succeeds)

(1)

From Eq. 1, programs that have syntax errors always have fitness <0.5 while
programs that have no syntax errors will have fitness ≥0.5. A program that has
no syntax or refinement type errors, such as the program given in Example 2,
has a fitness value of 1 and is considered to be correct.

As another example, consider the program in our FilterEvens specifica-
tion with the chromosome [2, 3]. We include the LiquidHaskell refinement type
specifications as well:

Example 4. Program defined by chromosome [2, 3], which uses the incorrect con-
dition, filtering the list to contain odd integers

{-@ condition :: x:Int -> {v:Bool | (v <=> (x mod 2 /= 0))} @-}
condition :: Int -> Bool
condition x = x ‘mod‘ 2 /= 0

{-@ type Even = {v:Int | v mod 2 = 0} @-}
{-@ filterEvens :: [Int] -> [Even] @-}
filterEvens :: [Int] -> [Int]
filterEvens xs = [a | a <- xs, condition a]

204 S. Tseng et al.

This program compiles without syntax errors, but the filterEvens refine-
ment type specification is not satisfied as the given condition yields odd instead
of even integers. Thus, this program produces 0 syntax errors and 1 refinement
type error, resulting in a fitness value of 1 − 1

2·2 = 0.75. This program is given
a higher fitness than, for example, one that is missing a condition function,
which would cause syntax errors.

We will use this fitness function with our original GP algorithm as described
in Algorithm 1.

3 Experiments and Results

In this section we present an evaluation of our new fitness function based on
refinement type checking. Our goal is to assess whether it can provide a per-
formance and scalability improvement over two baselines: a standard fitness
function based on input-output examples, and random search. In Sect. 3.1 we
specify our benchmark problems and what program pieces we use in the synthe-
sis. In Sect. 3.2 we describe our experimental setup. Next, in Sect. 3.3 we outline
the results of our evaluation. Lastly, in Sect. 3.4 we discuss limitations of our
technique and possible threats to its validity.

3.1 Program Synthesis Problems

We use a set of 3 program synthesis problems for evaluation. Some are adapted
from a general program synthesis benchmark suite [9] and expanded for our
program synthesis model as described below. All of them have the property that
their behavior can be expressed using refinement types. For program pieces, we
chose building blocks that are likely to be part of the standard library for any
language, such as checking if an integer is even or filtering a list, as well as
domain-specific functions that the user would provide, such as a function that
joins two sorted partitions used in sorting algorithms. Below are the problem
specifications and a high level description of what program pieces are included.

1. List Filtering (adapted from Count Odds in [9]): Given a list of integers,
filter the list and return 3 new lists containing just the even integers, just the
odd integers, and just the integers greater than 2. We provide several possible
filtering conditions as program pieces, including the correct ones as well as
others that are not needed for the correct solution.

2. Insertion Sort: Given a list of integers, sort them in ascending order using
insertion sort. We provide several possible conditions for determining when
to insert, as well as a skeleton for the sort. The skeleton provides the control
flow, so our search needs to find the correct conditions and operations to fit
into the skeleton.

3. QuickSort: Given a list of integers, sort them in ascending order using quick-
sort. We provide a skeleton for the sort function, as in Insertion Sort, as well
as different possible ways of partitioning the list for quicksort.

Synthesizing Programs from Program Pieces 205

3.2 Experimental Setup

For each selected program synthesis problem, we run 60 trials and report per-
formance as the number of generations taken to find a solution. We compare the
following 3 variants of GP search:

1. RefinementTypes (RT): GP search using our new fitness function based
on counting errors from refinement type checking (Eq. 1).

2. IOExamples (IO): GP search using a baseline fitness function using accu-
racy on a set of input-output example cases, as described in Sect. 2.2. For each
problem, we choose a small (<10) but diverse set of examples. Specifically, we
ensure that the example sets cover all execution paths in a correct solution.

3. RandomSearch (RS): Random generation of individuals. To make this
comparable with GP search, we proceed in generations, where pop size
individuals are randomly generated and evaluated per generation. As with
GP search we can report the number of generations taken to find a solu-
tion. Thus, the total number of fitness evaluations is the same (pop size *
generations), so the running time is approximately equal as well. We include
this as a baseline to verify that GP is well suited to our program synthesis
model and provides an improvement over naive random search.

We also run each problem on 3 different search space sizes to evaluate scal-
ability; we vary the size of the search space by including or excluding different
optional program pieces which are not needed in a correct solution.

The common parameters that we used for all experiments is shown in Table 1.
Note that for ease of implementation, we terminate searches after 20 generations
and report a run as having taken 20 generations if it does not find a solution.

Table 1. Experiment parameters

Parameter Value

Mutation rate 0.3

Crossover rate 0.8

Tournament size 3

Elite size 2

Population size 20

Max generations 20

Number of trials 60

We tuned the max generations and population size to find a setting in which
most trials find a solution before reaching the max generation limit. We did not
tune the other parameters.

206 S. Tseng et al.

Our implementation, including problem specifications and program piece
specifications for each problem, is available on GitHub1.

3.3 Results

Table 2 shows the results of our experiments. For each problem and set of pro-
gram pieces, the search space size is calculated as |P ||c|, where |P | is the number
of program pieces and |c| is the length of the chromosome. We present the sample
mean x̄ and standard deviation s of the number of generations taken to find a
solution for each fitness function.

The p-values shown in the table come from comparing the two specified
variants using the Mann-Whitney U nonparametric test [18], which tests the
null hypothesis that two sets of samples have the same population distribu-
tion (in particular, the probability that a random member from population 1 is
greater than a random member from population 2 is 1/2). The p-values have also
been adjusted for multiple hypothesis testing using the Bonferroni correction to
decrease the likelihood of Type I error [1]; specifically, we multiply p-values by
2, the number of simultaneous hypotheses we are testing.

Table 2. Experiment Results. We run 60 trials per problem, search space size, and
variant and record the number of generations taken to find a solution. We report the
sample mean x̄ and standard deviation s. The p-values come from the Mann-Whitney U
nonparametric test and have been adjusted using the Bonferroni correction for multiple
hypothesis testing. p-values less than 0.05 are in bold.

Problem Search Generations to find solution pRT=IO pRT=RS

Space
Size

Refinement
Types

IO
Examples

Random
Search

x̄ s x̄ s x̄ s

List Filtering 5.9e4 8.2 5.4 10.5 6.6 14.2 6.8 0.065 0.000

1.0e5 12.5 6.2 14.8 5.9 15.9 6.0 0.046 0.002

1.0e6 12.8 6.6 16.7 5.0 17.8 4.6 0.000 0.000

Insertion Sort 1e5 5.4 4.8 8.4 7.1 8.4 6.5 0.042 0.010

1.6e6 8.0 5.7 8.9 6.9 11.4 6.9 0.700 0.008

1.8e7 9.4 7.0 13.1 6.7 16.4 5.1 0.008 0.000

QuickSort 2.6e5 9.3 6.1 11.1 7.3 12.7 7.0 0.181 0.005

5.3e5 10.3 6.2 14.6 6.3 15.8 6.5 0.000 0.000

1.0e6 9.0 6.2 17.2 4.8 15.5 6.5 0.000 0.000

We can see from the table that in general, RefinementTypes finds a solu-
tion in fewer generations than the two baselines. Across all the experiments,

1 https://github.com/sabrinatseng/GAble.

https://github.com/sabrinatseng/GAble

Synthesizing Programs from Program Pieces 207

RefinementTypes achieves an average improvement of 20% over IOExamples
and 32% over RandomSearch. The p-values show that the improvement is signif-
icant (p < 0.05) in most cases.

We hypothesize that a key reason for the performance improvement is the
difference in fitness values for programs that have syntax errors. For IOExamples,
all programs that have syntax errors have a fitness value of 0 since the fitness
evaluation is not able to run at all (the program cannot be interpreted). We can
see in Fig. 1a that for IOExamples, many candidate programs (all those with
syntax errors) have fitness values of 0, and there are not many distinct fitness
values. On the other hand, the RefinementTypes fitness function provides a
heuristic even if there are syntax errors, as seen in Fig. 1b, where there are four
distinct fitness values for programs with syntax errors (fitness <0.5). This is
helpful because among programs that have syntax errors, some are still closer to
correct (e.g. less errors) and the RefinementTypes fitness function can capture
that. Therefore, in areas of the search space corresponding to programs that
have syntax errors, the new fitness function can still guide the GP search whereas
those programs are all evaluated to be equally “unfit” by the IOExamples fitness
function. In the trial shown in Fig. 1, the search using IOExamples is unable to
find a solution after 20 generations, whereas the additional heuristic information
provided by RefinementTypes allows the GP search to find a solution after 10
generations.

(a) IOExamples (b) RefinementTypes

Fig. 1. Scatter plots of population’s fitness values over time (generations) for (a)
IOExamples and (b) RefinementTypes fitness functions. Each plots was generated from
one trial run on the QuickSort problem with the same search space size and population
size. Each point (g, f) represents an individual in generation g with a fitness value of
f , and the opacity increases with the number of individuals with fitness value f .

We also see from the table that the p-value generally remains below 0.05 as
the search space size increases, which shows that the performance improvements
that we observe can potentially scale to larger problems as well.

208 S. Tseng et al.

3.4 Threats to Validity

We note that refinement types are not applicable to every problem; for example,
some string manipulations, such as the Double Letters problem from [9], would
be difficult to express using refinement types since they involve complex depen-
dencies between indices of the string. In addition, we observed that the GP search
overall runs an order of magnitude slower in terms of wall-clock time when using
the refinement type check rather than example cases as a fitness function. We
did not optimize our implementations; in particular, there are many I/O oper-
ations that may be unnecessary in a better implementation, so this difference
may change after optimization.

4 Related Work

Since the fitness function is so integral in GP search, many researchers have
studied different ways of defining the fitness function. NetSyn [17], mentioned
in Sect. 1, uses a neural network to learn a better fitness function based on
input-output examples. CrowdBoost [2] explores evolving the fitness function
along with candidate programs during GP. Hemberg et al. [10] show that it is
possible to improve search performance by using domain knowledge extracted
from the problem description to construct the fitness function. Implicit fitness
sharing [19], in which multiple individuals that solve the same example case
must “share” the reward, can also improve search performance by preserving
population diversity. Another related approach is behavioral programming [15,
16], which introduces the use of the full execution trace of a candidate program
in the evaluation stage rather than relying solely on a scalar objective fitness
function.

Others have investigated using formal methods like model checking and Hoare
logic for program verification as the basis for the fitness function in GP [8,12].
Our approach similarly uses formal methods for the GP’s fitness function, but
we use refinement types, which are often less verbose and require less manual
annotation than Hoare logic; with LiquidHaskell, it is very easy to define and
verify refinement types for program pieces [33].

Prior works have also explored refinement types and their applicability to
program synthesis. Synquid [27] uses refinement types for program synthesis
without GP by decomposing the type specifications and solving local type con-
straints. Fonseca et al. [5] suggest an approach for combining GP with refinement
types, including a possible fitness function for refinements expressed in their
programming language; however, they do not present any experimental data or
results.

A similar approach for improving practicality of program synthesis is pro-
gram sketching, where a user provides a partially-complete template of a pro-
gram, and the synthesis algorithm fills in the missing low-level details [29]. This
has been implemented successfully for certain problem domains in systems like
Sketch [31] and Psketch [30], which achieve better efficiency because the

Synthesizing Programs from Program Pieces 209

search space is restricted. Our approach is analogous but inverted: the user pro-
vides building blocks and the synthesis algorithm finds a correct composition of
those building blocks. This has the same benefit of restricting the search space
and can be useful in situations where a user does not have enough knowledge of
the program structure to build a sketch.

5 Conclusions

Our results show that it is possible to express complex programs such as sorting
using our program piece-based model. Using this model for program synthesis,
we can make use of refinement type checking to express correctness properties
of the program. We show that in this model, using refinement type checking
to evaluate fitness within GP search can provide an improvement over using
an example-based fitness evaluation. These results merit further investigation
into different approaches to achieving scalability in program synthesis as well
as different ways of incorporating symbolic solving within GP search. In future
work, we hope to evaluate a wider set of benchmarks, including more complex
problems with larger search spaces. We also hope to further explore ways to for-
malize and potentially automate the construction of program pieces, for example
by searching the standard library, or using GP to “fill in” missing pieces.

References

1. Bland, J.M., Altman, D.G.: Multiple significance tests: the Bonferroni method.
BMJ 310(6973), 170 (1995). http://bmj.bmjjournals.com/cgi/content/full/310/
6973/170

2. Cochran, R.A., D’Antoni, L., Livshits, B., Molnar, D., Veanes, M.: Program boost-
ing: program synthesis via crowd-sourcing. SIGPLAN Not. 50(1), 677–688 (2015).
https://doi.org/10.1145/2775051.2676973

3. David, C., Kroening, D.: Program synthesis: challenges and opportunities. Philos.
Trans. Ser. A Math. Phys. Eng. Sci. 375(2104), Article ID 20150403 (2017)

4. Fang, Y., Li, J.: A review of tournament selection in genetic programming. In: Cai,
Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 181–192.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16493-4 19

5. Fonseca, A., Santos, P., Silva, S.: The usability argument for refinement typed
genetic programming. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp.
18–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2 2

6. Giacobini, M., Tomassini, M., Vanneschi, L.: Limiting the number of fitness cases
in genetic programming using statistics. In: Guervós, J.J.M., Adamidis, P., Beyer,
H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol.
2439, pp. 371–380. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45712-7 36

7. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends R© Program.
Lang. 4(1–2), 1–119 (2017). https://doi.org/10.1561/2500000010

8. He, P., Kang, L., Johnson, C.G., Ying, S.: Hoare logic-based genetic programming.
Sci. China Inf. Sci. 54(3), 623–637 (2011). https://doi.org/10.1007/s11432-011-
4200-4

http://bmj.bmjjournals.com/cgi/content/full/310/6973/170
http://bmj.bmjjournals.com/cgi/content/full/310/6973/170
https://doi.org/10.1145/2775051.2676973
https://doi.org/10.1007/978-3-642-16493-4_19
https://doi.org/10.1007/978-3-030-58115-2_2
https://doi.org/10.1007/3-540-45712-7_36
https://doi.org/10.1007/3-540-45712-7_36
https://doi.org/10.1561/2500000010
https://doi.org/10.1007/s11432-011-4200-4
https://doi.org/10.1007/s11432-011-4200-4

210 S. Tseng et al.

9. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO 2015, pp. 1039–1046. Association for Computing Machinery, New York
(2015). https://doi.org/10.1145/2739480.2754769

10. Hemberg, E., Kelly, J., O’Reilly, U.M.: On domain knowledge and novelty to
improve program synthesis performance with grammatical evolution. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, GECCO 2019, pp.
1039–1046. Association for Computing Machinery, New York (2019). https://doi.
org/10.1145/3321707.3321865

11. Hudak, P., et al.: Report on the programming language Haskell: a non-strict, purely
functional language version 1.2. SIGPLAN Not. 27(5), 1–164 (1992). https://doi.
org/10.1145/130697.130699

12. Johnson, C.G.: Genetic programming with fitness based on model checking. In:
Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.)
EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71605-1 11

13. Kitzelmann, E.: Inductive programming: a survey of program synthesis techniques.
In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812,
pp. 50–73. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11931-
6 3

14. Koza, J.R.: Survey of genetic algorithms and genetic programming. In: Proceedings
of WESCON 1995, pp. 589– (1995)

15. Krawiec, K.: Behavioral Program Synthesis with Genetic Programming. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-27565-9

16. Krawiec, K., O’Reilly, U.M.: Behavioral programming: a broader and more detailed
take on semantic GP. In: Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, GECCO 2014, pp. 935–942. Association for Com-
puting Machinery, New York (2014). https://doi.org/10.1145/2576768.2598288

17. Mandal, S., Anderson, T.A., Turek, J.S., Gottschlich, J., Zhou, S., Muzahid, A.:
Learning fitness functions for machine programming (2021)

18. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947). https://
doi.org/10.1214/aoms/1177730491

19. McKay, R.I.B.: Fitness sharing in genetic programming. In: Proceedings of the 2nd
Annual Conference on Genetic and Evolutionary Computation, GECCO 2000, San
Francisco, CA, USA, pp. 435–442. Morgan Kaufmann Publishers Inc. (2000)

20. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

21. O’Neill, M., Spector, L.: Automatic programming: the open issue? Genet. Program
Evolvable Mach. 21, 251–262 (2019). https://doi.org/10.1007/s10710-019-09364-2

22. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic
programming. Genet. Program Evolvable Mach. 11(3–4), 339–363 (2010). https://
doi.org/10.1007/s10710-010-9113-2

23. Page, J., Poli, R., Langdon, W.B.: Mutation in genetic programming: a preliminary
study. In: Poli, R., Nordin, P., Langdon, W.B., Fogarty, T.C. (eds.) EuroGP 1999.
LNCS, vol. 1598, pp. 39–48. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48885-5 4

24. Poli, R., Langdon, W.B.: Genetic programming with one-point crossover. In:
Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design

https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1145/3321707.3321865
https://doi.org/10.1145/3321707.3321865
https://doi.org/10.1145/130697.130699
https://doi.org/10.1145/130697.130699
https://doi.org/10.1007/978-3-540-71605-1_11
https://doi.org/10.1007/978-3-540-71605-1_11
https://doi.org/10.1007/978-3-642-11931-6_3
https://doi.org/10.1007/978-3-642-11931-6_3
https://doi.org/10.1007/978-3-319-27565-9
https://doi.org/10.1145/2576768.2598288
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10710-019-09364-2
https://doi.org/10.1007/s10710-010-9113-2
https://doi.org/10.1007/s10710-010-9113-2
https://doi.org/10.1007/3-540-48885-5_4
https://doi.org/10.1007/3-540-48885-5_4

Synthesizing Programs from Program Pieces 211

and Manufacturing, pp. 180–189. Springer, London (1998). https://doi.org/10.
1007/978-1-4471-0427-8 20

25. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd. (2008)

26. Poli, R., McPhee, N.F., Vanneschi, L.: Elitism reduces bloat in genetic program-
ming. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary
Computation, GECCO 2008, pp. 1343–1344. Association for Computing Machin-
ery, New York (2008). https://doi.org/10.1145/1389095.1389355

27. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. SIGPLAN Not. 51(6), 522–538 (2016). https://doi.org/10.1145/
2980983.2908093

28. Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid types. In: Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2008, pp. 159–169. Association for Computing Machinery, New York
(2008). https://doi.org/10.1145/1375581.1375602

29. Solar-Lezama, A.: Program synthesis by sketching. Ph.D. thesis, University of Cal-
ifornia at Berkeley, USA (2008)

30. Solar-Lezama, A., Jones, C.G., Bodik, R.: Sketching concurrent data structures.
SIGPLAN Not. 43(6), 136–148 (2008). https://doi.org/10.1145/1379022.1375599

31. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. SIGARCH Comput. Archit. News 34(5), 404–415
(2006). https://doi.org/10.1145/1168919.1168907

32. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M.,
Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 209–228. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37036-6 13

33. Vazou, N., Seidel, E.L., Jhala, R.: LiquidHaskell: experience with refinement types
in the real world. In: Proceedings of the 2014 ACM SIGPLAN Symposium on
Haskell, Haskell 2014, pp. 39–51. Association for Computing Machinery, New York
(2014). https://doi.org/10.1145/2633357.2633366

34. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton-Jones, S.: Refinement
types for Haskell. SIGPLAN Not. 49(9), 269–282 (2014). https://doi.org/10.1145/
2692915.2628161

35. Yampolskiy, R.V.: AI-complete, AI-hard, or AI-easy - classification of problems in
AI. In: MAICS (2012)

https://doi.org/10.1007/978-1-4471-0427-8_20
https://doi.org/10.1007/978-1-4471-0427-8_20
https://doi.org/10.1145/1389095.1389355
https://doi.org/10.1145/2980983.2908093
https://doi.org/10.1145/2980983.2908093
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1379022.1375599
https://doi.org/10.1145/1168919.1168907
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2633357.2633366
https://doi.org/10.1145/2692915.2628161
https://doi.org/10.1145/2692915.2628161

Creating Diverse Ensembles
for Classification with Genetic

Programming and Neuro-MAP-Elites

Kyle Nickerson1(B) , Antonina Kolokolova1, and Ting Hu2

1 Memorial University of Newfoundland, St. John’s, NL, Canada
kln870@mun.ca

2 School of Computing, Queen’s University, Kingston, ON, Canada

Abstract. Model diversity is essential for ensemble classifiers, which
make predictions by combining predictions from multiple simpler mod-
els. While ensemble classifiers often outperform single-model classifiers,
their success crucially depends on the ensemble’s construction. Genetic
programming (GP) is a powerful evolutionary algorithm that can evolve
populations of simple classifiers; however, standard GP algorithms pro-
duce populations of models with correlated predictions. Recent work in
the broader evolutionary computing community has begun focusing on
methods for evolving diverse populations, such as MAP-Elites [24], which
can evolve populations that are diverse in a low dimensional behavior
space. In this work, we demonstrate a novel technique for using MAP-
Elites to create diverse GP populations, which can be used as ensemble
classifiers. We demonstrate the utility of our framework, which we call
Neuro-MAP-Elites, by comparing it with other classification algorithms
across a diverse set of classification datasets.

Keywords: Diversity · Linear genetic programming · Ensemble
classifiers

1 Introduction

Ensemble classifiers, which make predictions by combining multiple simple mod-
els, outperform single model classifiers for many supervised learning tasks. The
importance of diversity in ensemble classifiers is well documented, however in
general it can be challenging to create diverse ensemble classifiers in a principled
way. While there may be various notions of diversity, for ensemble classifiers it
is specifically error diversity - meaning that individual classifiers make errors on
different samples - which matters most [7].

To see the benefit of error diversity, consider a toy problem consisting of only
three samples and a set of limited classifiers, each of which can only classify two
of the three samples. In this scenario, we can construct an optimal ensemble
from three limited classifiers, as long as they are maximally diverse with respect

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 212–227, 2022.
https://doi.org/10.1007/978-3-031-02056-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_14&domain=pdf
http://orcid.org/0000-0001-7547-9798
http://orcid.org/0000-0001-6382-0602
https://doi.org/10.1007/978-3-031-02056-8_14

Creating Diverse Ensembles with Neuro-MAP-Elites 213

Fig. 1. Benefit of ensemble diversity. In this toy example, each classifier can only
achieve a maximum accuracy of 67%. However, as long as there is diversity in the
errors made, a majority vote classifier constructed from these imperfect classifiers will
achieve perfect accuracy.

to the errors they make. Conversely, if even two of the three classifiers make the
same error, then the ensemble will not be correct in all cases (see Fig. 1).

The fact that evolutionary algorithms (EAs), such as genetic programming,
produce populations of solutions makes them seemingly ideal for ensemble cre-
ation. However, many standard EAs for evolving classifiers lose diversity as evo-
lution proceeds, causing the predictions of the individuals in the final population
to be strongly correlated. This limits our ability to create an effective ensemble
classifier directly from a final population. In practice, we can run an EA many
times and create a diverse ensemble by selecting the best individual from each
run to be in the final ensemble, however there are drawbacks to this method.
In addition to being wasteful by not using all models from each run, there are
other issues with this approach. For example, it is possible that if the standard
algorithm is run too long that independent trails will converge to the same or
similar solutions, and if it is not run long enough, the individuals will not be fit
enough to be useful in an ensemble.

Within the field of evolutionary computing, there are many examples of the
utility of creating diverse sets of solutions as opposed to focusing on a single
best solution, such as evolving adaptable robot controllers [10], playing card
games [8,12], and generating video game content [14]. Many of these results rely
specifically on the MAP-Elites algorithm, a niching EA, which represents the
population as a discrete grid of cells and assigns solutions to cells based on their
behaviors [24].

In MAP-Elites, candidate solutions only compete with other candidates
assigned to the same cell, which allows the population to maintain diversity as
evolution proceeds. The mapping from solutions to cells is facilitated by behav-
ior descriptors, which maps solutions to a low dimensional behavior space. The
behavior space is then partitioned into cells, and solutions are assigned to the
cells in which their behavior descriptors lie. This partitioning of the behavior
space helps prevent MAP-Elites populations from converging to a set of highly
similar solutions by preserving diversity in the behavior space [24].

Defining effective behavior descriptors is an essential aspect of MAP-Elites,
as they determine the sorts of diversity which will be produced. As mentioned
above, when creating ensemble classifiers, we are particularly concerned about

214 K. Nickerson et al.

diversity with respect to the classification errors made. Given a fixed set of
samples to be classified, error information can be represented naturally as a
high dimensional binary indicator vector, with length equal to the number of
samples. Our method relies on a variational autoencoder (VAE) to learn a low-
dimensional representation of the high dimensional error vectors.

The main contribution of this work is Neuro-MAP-Elites (NME), a novel
framework based on MAP-Elites, for evolving ensembles of classifiers with
greater error diversity. Using linear genetic programs (LGPs) as our classifi-
cation model, we show that NME can be used to create diverse populations of
classifiers and further that these more diverse populations make more effective
ensemble classifiers.

2 Background

In this section, we provide some brief background on the techniques upon which
NME is based.

2.1 Linear Genetic Programming

In general, genetic programming (GP) seeks to evolve computational models for
making predictions [5]. There are many variants of GP, based on different represen-
tations for the computationalmodels being evolved, such as treeGP [19], Cartesian
GP [22] and linear GP (LGP) [5]. In this work, we use LGP for our genetic pro-
gramming model, as it provides good performance on a wide range of classification
tasks [5,30]; however, any GP variant can be used with our method. In this section,
we give a general overview of LGP, and in Sect. 3, we provide more specific details
on the specific LGP implementation used in this work.

Simply put, LGP is a type of GP where computational models (i.e., pro-
grams) are represented as sequences of instructions, often resembling impera-
tive programs [5]. Generally, programs have access to a number (nregisters) of
writable computation registers used when executing their instruction sequences.
Programs also have some registers designated as input registers, which, as their
name suggests, contain input values to the program. In the context of classi-
fication tasks, these input values are the features of the samples that we are
classifying. The input registers may be implemented by designating a subset of
the writable computation registers as input registers or as a separate set of read-
only registers. Instructions typically involve mathematical operations on values
stored in registers and result in either information being written to registers,
or changes to the program execution (such as skipping instructions). Programs
perform classification of samples as follows: first, the samples’ features are loaded
into the input registers, next the instructions are executed, and finally the final
state of the computation registers is then transformed to a prediction. The trans-
formation of the final state of the computation registers may be done in many
ways and is dependent on the problem. In the simple case of binary classification
tasks, a common approach is to designate a single computation register as the

Creating Diverse Ensembles with Neuro-MAP-Elites 215

output register, and then compare the value of the final register to a predefined
threshold to obtain the prediction (i.e., if output > threshold predict class 1, else
predict class 2). In this work, we combine LGP with the MAP-Elites algorithm
to help create diverse populations.

2.2 Map-Elites

Map-Elites is an EA designed to evolve diverse populations of solutions in a
single run [24]. More specifically, Map-Elites falls under the umbrella of quality
diversity algorithms, which are EAs designed to evolve populations of high-
performing solutions which are also diverse. The way Map-Elites works is fairly
straightforward – instead of using an unstructured population, as is typical in
EAs, MAP-Elites used a structured grid population to maintain diversity. The
structured grid contains a number of cells equal to the maximum population
size. Each cell begins empty and may contain no more than one solution during
the execution of the algorithm. When a new candidate solution is created, there
is a two-step process to determine if the candidate solution is added to the
population. First, a behavior function maps the candidate solution to a single cell.
The candidate solution then competes with the current solution in this cell, or
if no solution currently occupies the cell, the candidate solution is automatically
added. The simplest way to implement the competition is by simply selecting
the solution with the highest fitness and breaking ties randomly.

An essential part of MAP-Elites is determining the mapping from solutions
to cells. To this end, when evaluating a possible solution, a behavior descriptor is
produced, in addition to a fitness score. The behavior space is a low-dimensional
vector, typically 2D, used to represent a solution in the behavior space. The
behavior space is partitioned into (usually equal sized) cells so that a program is
assigned to the cell in the behavior space in which its descriptor lies. The reason
for using low-dimensional descriptors is that higher dimensional descriptors lead
to problems stemming from the curse of dimensionality. Specifically, the problem
is that if we divide each dimension into k regions (boundaries for the cell), then
the total number of cells for a d-dimensional descriptor will be kd. If we instead
try to fix the max population size at N , then there can only be �logd N� regions
per dimension. In practice, we typically want at least ten regions per dimension,
so we must stick to low-dimensional descriptors or use other variants of MAP-
Elites, such as MAP-Elites-CVT [32].

2.3 Variational Autoencoders (VAEs)

VAEs are a powerful probabilistic modeling framework for representation learn-
ing [18]. The VAE framework assumes that high dimensional observed data are
generated by a random process acting on unobserved latent factors. VAEs are
composed of two feed-forward neural net models, often called the encoder and
decoder networks. The encoder network learns to infer a distribution over low-
dimensional representations of the high dimensional data, and the decoder learns

216 K. Nickerson et al.

a generative model from latent factors to the samples from the original high
dimensional space.

To train a VAE, the weights of both the encoder and decoder are optimized
together, using an unsupervised objective. During training, the high-dimensional
original data x are passed through the encoder, which outputs a probability dis-
tribution over encodings of x. Specifically, this is done by outputting a mean
vector μx, and variance vector σx, which are interpreted as parameters to a
Normal distribution with a diagonal only co-variance matrix. A sample is then
drawn from this distribution, and the sample is fed into the decoder, which aims
to reconstruct the original sample x by outputting x̂. The loss function used to
train a standard VAE is known as the evidence lower bound (ELBO), and con-
tains two terms. The first is the reconstruction error ||x − x̂||2, which measures
the reconstruction quality. In the loss function, this term incentivizes the VAE
towards learning low-dimensional encodings, which are informative about the
high dimensional representation. The other term is the KL divergence between
the distribution output by the encoder, and a standard Normal distribution
DKL(N(μx, σx)||N(0, I)). This term encourages representations that are approx-
imately normally distributed.

While it may seem beneficial to only focus on the first objective—which is
essentially what is done in basic autoencoders [17] – the second objective provides
regularization and encourages the encoder to learn smoother encodings. This
means small changes in the latent features produce small changes in the high
dimensional space, and similar high dimensional vectors are encoded to nearby
locations in the low dimensional space. Further, it also produces latent spaces in
which the samples are approximately normally distributed, which is useful for
some downstream tasks.

There have been many modifications made to VAEs since their original
proposal. Here we briefly mention a VAE variant called β-VAE [16], which is
used in this work. β-VAE follows the original VAE design but employs a mod-
ified version of the ELBO loss function. In β-VAE, the loss contains a con-
stant β, which controls the relative weight of the two terms in the standard
VAE loss. The benefit of β-VAE is that it allows us to control the trade-off
between the two terms in the ELBO. Specifically, the β-VAE loss function is:
loss = ||x − x̂||2 + βDKL(N(μx, σx)||N(0, I)).

2.4 Ensemble Classifiers

Traditionally, GP approaches to classification rely on outputting the single best
program as the final predictive model. However, it has been argued that since
these algorithms produce populations of programs that are all adapted to the
target task, it is logical to make use of the entire population in the final model [13,
29]. One major issue which must be addressed when evolving ensembles is the
maintenance of diversity amongst the individual solutions, as predictive diversity
has been shown to be crucial in ensemble creation [7].

In work from the GP community on evolving ensembles, there are generally
two approaches; offline approaches, which construct the ensemble directly from

Creating Diverse Ensembles with Neuro-MAP-Elites 217

a final population, and online approaches, which gradually build the ensemble
during evolution [13]. With offline approaches, it is necessary to actively design
the population structure to encourage diversity and prevent convergence to a
population of identical or similar individuals. In online approaches, while not
strictly necessary, diversity preserving populations can be beneficial [29].

More recently, others have used EAs with explicit diversity mechanisms to
create ensemble classifiers. Boisvert and Sheppard [4] use an approach based on
novelty search [21], to evolve diverse ensembles of decision trees. In this work,
the population is represented as a variable-sized archive, and new candidate
solutions are added to the archive if they meet a criterion based on novelty and
fitness. Cardoso et al. [9] also used novelty search in the space of neural network
architectures to create diverse ensembles. In their work, the novelty metrics were
based explicitly on error diversity. To the best of our knowledge, our work is the
first to apply MAP-Elites and GP to create ensemble diversity.

3 Our LGP Implementation

In this section we describe the specific details of the LGP implementation used
in this work. In our implementation of LGP, all instructions have the format

destination = source1 <op> source2

where op is one of the functions in the operator set {ADD, SUBT, MULT, PDIV,
SNIG, QUIT}, and destination, source1, source2 refer to registers which store
floating point values (see Table 1 for information on the operators).

Table 1. Operators from LGP system. dest refers the destination register and src1,
src2 refer to source registers.

Operators Description

ADD dest = src1 + src2

SUBT dest = src1 − src2

MULT dest = src1 ∗ src2

PDIV if scr1 �= 0 dest = src1/src2

else dest = src1

SNIG if src1 > src2, skip next instruction

(skip next if greater)

QUIT do not execute any more instructions

In our system, all registers are writable, including the input registers. Pro-
grams have access to a total of 10 + nfeatures registers, where nfeatures is the
number of features in the dataset. This setting was determined empirically and
worked well with the variety of datasets we tested. Others have advocated using

218 K. Nickerson et al.

a constant multiple of the number of features [5], however we found that for
datasets with many features, this method provides too many registers, and evo-
lution takes much longer to find good solutions. For initialization, the first regis-
ter is set to 0.0, the following nine are set to constant values, and the remaining
nfeatures registers are set to the feature values of the sample which is being clas-
sified. Any binary features are represented using 1.0 to represent true and 0.0
for false. A program’s prediction is based on the final value of the first register;
values greater than 0 are interpreted as a prediction that the class label is “1”,
values less than 0 are interpreted as a prediction that the class label is “0”.
Programs that end execution with 0 in the first register are interpreted as not
having made a prediction; when computing a program’s fitness, no prediction is
always scored as an incorrect prediction.

Variation. In our LGP algorithm, we produce variation in programs through
both micro and macro mutations. Our macro mutation operator replaces a ran-
domly selected instruction with a new randomly generated instruction, and our
micro mutation operator randomly changes either the operator, destination reg-
ister, or one of the source registers of a randomly selected operation.

When generating random instructions, new instructions obey the following
rules, which allows for efficient evolution and ensures all mutations result in legal
programs. The first rule simply ensures all instructions refer to valid registers
and operators by enforcing bounds on their range. This second rule is that when
generating a random value for a destination register of a program, the maximum
value is one greater than the current maximum value of a destination register in
that program. This rule is inspired by the progressive complexification proposed
in NEAT [31] and is designed to encourage mutations to have a higher chance
of being effective (Table 2).

Table 2. Rules for random instruction creation. Rule 1 ensures that generated instruc-
tions are always legal and meaningful. Rule 2 encourages mutations to have a higher
change of being effective. In rule 2, max dest refers to the largest integer representing
a destination register in the program for which the instruction is being generated, and
is taken to be 0 in the case of a program with no instructions.

Rule Description

Rule 1 op ∈ {0, 1, ..., 5}
src1, src2, dest ∈ {0, 1, ..., 9 + nfeatures}

Rule 2 dest ∈ {0, ...,max dest + 1}

Fitness. A program’s fitness is its balanced accuracy score on the training data,
which is computed from the number of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN): fitness = 0.5TP

TP+FN + 0.5TN
TN+FP .

The balanced accuracy score provides a good dataset agnostic measure of the
accuracy of a classifier, as it is normalized to account for imbalanced classes [26].

Creating Diverse Ensembles with Neuro-MAP-Elites 219

Behaviors. To use MAP-Elites with LGP, we must define suitable behavior
descriptors for the LGP programs. Previously there has been only limited work
using MAP-Elites together with LGP, such as [11]. In our experiments using basic
MAP-Elites with LGP, we use three behavior descriptors to categorize program
behaviors: the number of features, instructions, and registers used by the pro-
gram. The number of instructions counts only instructions that affect the final
output of the program, and the number of registers counts the number of unique
destination registers used in effective instructions, both of which of indicative of
a programs complexity (see Table 3 for information on the descriptors used with
each variant).

Table 3. Behavior descriptors used with each variant of MAP-Elites.

ME Type # of features # of registers # of instructions VAE encoder

Basic ME 0 X X

Basic ME 1 X X

Basic ME 2 X X

Neuro ME X

4 Neuro MAP-Elites

This section details the Neuro MAP-Elites (NME) algorithm, an offline approach
to evolving diverse GP populations, which can be used as accurate predictive
ensembles. We begin by outlining an ideal high-dimensional behavior descrip-
tor appropriate for any classifier, particularly linear genetic programs. We then
propose a low-dimensional approximation that can be used with MAP-Elites to
create accurate ensemble classifiers.

The primary motivation behind our behavior descriptors is that classifiers
are designed to make predictions on samples coming from some distribution.
When we describe the behavior of a classifier, what really matters is how it
behaves on samples from this target distribution. This is similar to the idea
of program semantics, which has previously been studied in the context of GP
[1,2,20,23,25]. The main innovation in this work is proposing a methodology for
creating a low-dimensional encoding that captures this notion of behavior.

If we consider a simplified case in which the target distribution is uniform
over a finite dataset, we can create a high dimensional descriptor of a classi-
fier behavior by recording its predictions on all samples. In this case, the high
dimensional descriptor gives a complete description of the classifier behavior.
The question of whether it is possible to obtain a complete low dimensional
description of the behavior is equivalent to the question of whether it is possible
to compress the high dimensional descriptors to a fixed low dimension without
loss - which in general is not possible. This means that for any low dimensional
behavior descriptor, some programs with different prediction behaviors will be

220 K. Nickerson et al.

mapped to the same point in the low dimensional space. The goal of our method
is to provide a low dimensional approximation to the ideal high dimensional
descriptor. To this end, we employ a VAE which learns to compress the high
dimensional ideal descriptors into low dimensional approximations.

The proposed NME algorithm can be divided into 3 phases; mining solutions,
VAE training, and a final MAP-Elites run using the encoder to generate behavior
descriptors (see Fig. 2 for an overview of the algorithm.)

Fig. 2. Overview of Neuro-MAP-Elites. (Phase 1) Create an archive of classifiers and
record their predictions on training samples. In our implementation, we create this
archive by running MAP-Elites multiple times using various simple descriptors. (Phase
2) A VAE is trained to compress the prediction vectors to a low-dimensional descriptor
which can be used to map programs to cells in MAP-Elites. (Phase 3) Run MAP-Elites,
using the encoder network to produce behavior descriptors when mapping programs to
cells.

4.1 Mine Solutions

The goal of the first phase of NME is to draw a sample from the distribution
of errors produced by ‘good’ programs, which can be used in phase two to train
the VAE. In general, and depending on the specific problem, what constitutes
a ‘good’ solution may vary. In this work, we consider any solution which is
present in a final population and obtains a balanced accuracy score greater than
0.5 on the training data. To create the sample, we run a basic version of MAP-
Elites using various descriptors (Basic ME0, Basic ME1, Basic ME2), and record
the predictions made by each individual in the final populations on all training
samples.

4.2 VAE Training

The goal of the second phase is to learn a low-dimensional representation of
samples from the distribution of errors produced by ‘good’ programs. To this
end, we use the prediction vectors from solutions produced in the first phase as
training data and train a β-VAE to encode these vectors into a 2-dimensional
representation to be used as a behavior descriptor in MAP-Elites.

Creating Diverse Ensembles with Neuro-MAP-Elites 221

Initially, when training the VAE, we used cross-validation to select the opti-
mal β values for each dataset from values in the range {0.1, 0.2, ..., 1.5}. We
found for all datasets that the optimal β was in {0.2, 0.3, 0.4}, so when running
final experiments, we reduced the range of β values tested to only those ≤ 1.0.
For each β, we repeat fitting the VAE five times, using different random seeds,
as we found that the random initialization impacted the VAEs’ ability to learn
good representations. The VAE that created the highest entropy distribution in
the latent space was selected from these five fitting trials. We experimented with
using two and three dimensions for the latent space; however, all experiments in
this work are based on two dimensions, as we did not find better performance
from increasing the latent space to three dimensions.

The VAE that created the highest entropy distribution in the latent space
was selected from these five fitting trials.

4.3 MAP Elites with Encoder

In the final phase, we rerun MAP-Elites, however instead of using the basic
descriptors (as in phase 1), we now use the encoder network of the VAE (trained
in phase 2) to produce the descriptors. The encoder takes as input a binary
prediction vector made by a program on the training data and outputs a 2-
dimensional real-valued encoding of the prediction vector. As the encoder was
trained as part of a VAE, the distribution of encodings should be approximately
a unit normal distribution. We take advantage of this fact when partitioning the
latent space into bins to use with MAP-Elites, and set the bin boundaries so
that each bin has equal probability mass under a normal distribution.

5 Experiment Setup

To test the efficacy of our method, we compared the predictive accuracy of our
method against other standard supervised learning techniques across a diverse
set of datasets.

5.1 Dataset Selection

In this work, we use a subset of datasets from the Penn Machine Learning
Benchmarks (PMLB) repository [26] which contains a large collection of curated
datasets for machine learning evaluation and comparison. PMLB contains a wide
assortment of datasets suitable for various machine learning tasks. In this work,
we considered datasets that contain a binary classification task. As our algo-
rithm produces an ensemble classifier, we are particularly interested in how
it performs relative to other ensemble classifiers. To this end, we selected the
datasets based on the performance of a standard ensemble classifier: random
forest [6]. Specifically, we selected two datasets where random forest performs
much better than other standard classifiers, two datasets where random forest

222 K. Nickerson et al.

performs much worse, and finally two datasets where all the tested standard
algorithms do poorly (see Table 4).

For all classifiers, the datasets were first partitioned into a “full training’ and
a test set (75%–25% split). The “full training’ set is further partitioned into
training and validation sets (75%–25% split). The training sets are used to fit
the models, the validation sets are used to determine model hyperparameters,
and the test sets are used to compute the final metrics.

Table 4. Datasets used for classifier comparison. See [26] for dataset details.

Dataset Difficult for RF Difficult for other ML

Breast X

Monk2 X

HV without noise X

HV with noise X

GAMETES Epistasis X X

Parity5+5 X X

To demonstrate the efficacy of our method, we compare the performance
achieved by classifiers generated with NME against the performance of standard
machine learning classifiers, as well as genetic programming classifiers evolved
using a classic version of MAP-Elites.

5.2 Standard Machine Learning Classifiers

All experiments using standard classifiers used the classifier implementations
from scikit-learn [27], as well as scikit-learn utilities for tuning their parameters1.
Specifically, we considered the following five standard machine learning classifiers
(scikit-learn names in parentheses); random forest (RandomForestClassifier) [6],
k -nearest neighbors (KNeighborsClassifier), logistic regression (LogisticRegres-
sionClassifier) [3], Gaussian naive Bayes (GaussianNB) [15] and support vector
machine classifiers (SVC) [28].

5.3 Map-Elites Classifiers

For both basic MAP-Elites and NME, we tested two methods of creating a
final classifier from the final population. In the first method, the final classifier is
simply the single program with the best fitness from the final population. If mul-
tiple programs are tied for the best fitness, the program with the fewest effective
instructions is selected (if there is still a tie, the winner is chosen randomly).
In the second method, an ensemble is created by combining all programs in the
final population with fitness above a threshold t (t is chosen to maximize the

1 See github.com/BigTuna08/nme for the code to tune parameters of all models.

https://github.com/BigTuna08/nme

Creating Diverse Ensembles with Neuro-MAP-Elites 223

accuracy of the majority vote classifier on the training data). The ensemble clas-
sifier outputs the prediction of the majority of the programs, with ties broken
randomly. We also considered other methods of combining programs to create
the final classifier, such as weighting the programs by their fitness, but this did
not improve results.

All runs of MAP-Elites used a 20 × 20 grid for the population and ran for 1
million evaluations.

6 Results

In this section we present results comparing NME with the variants of basic
MAP-Elites described in Table 3. In addition to our results on ensemble accuracy
(Sect. 6.3), we show results supporting our methods in Sects. 6.1 and 6.2.

6.1 VAE Efficacy

One possible concern with this methodology is how well the learned encod-
ing captures the information from the original high dimensional descriptors. To
investigate this, we examine the decoders’ ability to reconstruct the original
high dimensional descriptor from the 2-dimensional encoding. Averaged across
all datasets, the decoders were able to correctly reconstruct over 88% of the pre-
dictions, with the reconstruction ability varying from just below 80% to nearly
100% on the various datasets (see Table 5).

Table 5. Accuracy of VAE at reconstructing predictions. Percent scores indicate the
percentage of bits in the error vectors correctly reconstructed by the VAE. Higher
scores indicate that the learned descriptors are more informative about the ideal high
dimensional descriptors.

Dataset VAE prediction reconstruction

Breast 98.88%

HV without noise 90.25%

HV with noise 89.66%

Monk2 89.19%

Parity5+5 84.94%

GAMETES Epistasis 79.67%

Mean 88.76%

6.2 Diversity Comparison

Here, we compare the predictive diversity of ensembles of LGP programs cre-
ated by basic variants of MAP-Elites, as well as our proposed NME method.
We define the predictive diversity as the average Euclidean distance between

224 K. Nickerson et al.

prediction vectors within the ensemble. To obtain these results, we conducted
50 independent runs of each MAP-Elites variant (Table 3).

The results from comparing predictive diversity (Table 6) support our claim
that NME produces more diverse populations. We found that across all datasets,
the average diversity produced by NME in a single run was greater than both (1)
the diversity of an ensemble created by combining all final populations created
from the three variants of basic MAP-Elites and (2) the diversity of the single
best run of basic MAP-Elites. Further, these results show that for four of the six
datasets tested, the least diverse single run of NME was still more diverse than
the most diverse run of basic MAP-Elites (Table 6).

Table 6. Comparison of LGP prediction diversity with top 2 scores in bold. Here we
show the diversity scores obtained from running basic ME 120 times and combining
the final populations (Multi), the highest diversity score obtained in a single run (Best
Single), the average diversity score from a single run (Mean Single), and the lowest
diversity score from a single run (Worst Single). Across all datasets, NME produced
populations with the the most diversity. For many datasets, the least diverse single run
of NME was more diverse than all variants using basic MAP-Elites.

Basic ME NME

Dataset Multi Best Single Mean Single Mean Single Worst Single

GAMETES 4.67 5.74 3.85 7.64 5.78

HV noise 7.62 7.54 6.27 8.69 7.93

HV 4.83 5.18 4.26 7.11 5.66

Breast 3.28 3.74 2.97 4.29 3.58

Monk2 3.51 4.21 3.29 4.64 4.11

Parity5+5 3.98 4.64 3.76 6.85 5.34

6.3 Ensemble Accuracy

Measured across all datasets, our method compares favorably against both the
traditional machine learning classifiers and LGP classifiers evolved using MAP-
Elites with basic LGP descriptors.

However, no method is a clear winner across all of the datasets (see Table 7).
On the two datasets which were selected for being easy for random forest
(Breast and Monk2), random forest was the most accurate. On one of the
datasets, which was significantly harder for random forest than other stan-
dard classifiers (HV without noise), multiple methods achieved perfect accu-
racy, including NME partial vote; on the other (HV with noise), multiple stan-
dard methods outperform all evolved classifiers. Finally, on the datasets which
were difficult for standard methods (Parity5+5 and GAMETES Epistasis),
evolved classifiers outperformed the standard ones, although in only one of these
(GAMETES Epistasis) was the NME classifier the best.

Another finding evident from Table 7 is that of the methods tested that
evolve ensembles, those created with NME significantly outperform ensembles

Creating Diverse Ensembles with Neuro-MAP-Elites 225

created with the basic variants of MAP-Elites. This is despite the fact that
basic MAP-Elites can produce high-quality single solutions, sometimes better
than the single solutions produced by NME. This result supports our hypothesis
that NME generates populations with more meaningful diversity and that this
diversity is beneficial for creating ensembles.

Table 7. Comparison of balanced accuracy scores of common machine learning classi-
fiers and evolved classifiers. Best scores for each dataset are indicated in bold.

Dataset RF KNN LR GNB SVC ME-Best ME-Vote NME-Best NME-Vote

Breast .950 .564 .500 .949 .500 .939 .579 .913 .943

Monk2 .987 .709 .447 .456 .697 .729 .502 .642 .785

HV .646 .637 1.00 .523 .949 1.00 .426 .986 1.00

HV noise .575 .520 .974 .526 .854 .687 .495 .709 .802

GAMETES .499 .515 .486 .513 .486 .495 .516 .510 .569

Parity5+5 .594 .601 .463 .463 .473 1.00 .494 .891 .986

Mean .709 .591 .645 .572 .660 .808 .502 .775 .848

7 Discussion

Using representation learning techniques in combination with quality diversity
methods provides a promising avenue for creating diverse classifier ensembles.
In this work, we have provided a method for extending MAP-Elites for use with
high dimensional descriptors by learning low dimensional approximations to the
true descriptors. Here, we focused on diversity with respect to the errors made,
but there are other possible high dimensional descriptors that could be used with
our method.

One in particular, is information about features used by each classifier. In a
similar manner as the high dimensional binary error vectors, information about
the features used by a classifier can naturally be represented as a binary indicator
vector, which could be compressed by a VAE. There are two main reasons why it
may be beneficial to use this methodology with feature information; the first is
for working with data with missing or noisy features, and the second is to improve
our understanding of what features tend to co-occur in effective classifiers. This
second use is perhaps the most interesting and relies on the generative model
portion of the VAE (sometimes called the decoder), as opposed to the encoder
portion used in NME. If we use a simple generative model, such as a single-layer
neural network, we can inspect the model to gain insight into the relationships
amongst features.

Another possible direction for this work is to explore other methods for com-
pressing the ideal high-dimensional descriptor outlined in this work. The design
of VAE models has recently received much attention from the representation
learning community, and it is possible that novel architectures may be more
suitable for use in our algorithm. In our experiments, we limited the VAE latent

226 K. Nickerson et al.

dimension to two, as we found that was sufficient for encoding most of the infor-
mation in the prediction vectors for most datasets. Clearly, this may be limiting,
particularly when the number of samples used for creating the prediction vectors
is large. In future work, we plan to examine the relationship between the number
of samples included in the high dimensional descriptor, the dimensionality of the
encoding, and the performance of NME.

One limitation of our current work is NME requires greater computational
resources than traditional GP methods, as it requires us to create an initial set
of solutions and train a VAE, before evolving the final population with MAP-
Elites. In our current implementation, we create the initial set of solutions by
running basic variants of MAP-Elites multiple times, which is a major cause
of inefficiency. In future work, we plan to experiment with more efficient ways
to create the initial solution set; in particular by using more efficient machine
learning classifiers in this step. We also plan to implement a cyclical version of
NME, which can continuously alternate between phase two (training VAE) and
phase three (MAP-Elites with encoder), until a stopping condition is met. This
will hopefully reduce the amount of effort needed in phase 1, as the solution
set used to train the VAE will be updated as NME proceeds. By improving
the efficiency of NME, we can make it more practically competitive with non-
evolutionary classifiers and lead to greater adoption of GP by the larger machine
learning community.

References

1. Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming,
pp. 111–116, July 2008

2. Beadle, L., Johnson, C.: Semantically driven mutation in genetic programming,
pp. 1336–1342, May 2009

3. Berkson, J.: Application of the logistic function to bio-assay. J. Am. Statist. Assoc.
39(227), 357–365 (1944)

4. Boisvert, S., Sheppard, J.W.: Quality diversity genetic programming for learning
decision tree ensembles. In: Hu, T., Lourenço, N., Medvet, E. (eds.) EuroGP 2021.
LNCS, vol. 12691, pp. 3–18. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-72812-0 1

5. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming, 1st edn. Springer
Publishing Company Inc., Cham (2007)

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
7. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey

and categorisation. Inf. Fusion 6(1), 5–20 (2005)
8. Canaan, R., Togelius, J., Nealen, A., Menzel, S.: Diverse agents for ad-hoc coop-

eration in Hanabi. In: 2019 IEEE Conference on Games (CoG), pp. 1–8 (2019)
9. Cardoso, R.P., Hart, E., Kurka, D.B., Pitt, J.V.: Using novelty search to explicitly

create diversity in ensembles of classifiers. In: GECCO 2021, pp. 849–857. ACM,
New York, NY, USA (2021)

10. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like ani-
mals. Nature 521, 503–507 (2015)

11. Dolson, E., Lalejini, A., Ofria, C.: Exploring genetic programming systems with
map-elites, August 2018

https://doi.org/10.1007/978-3-030-72812-0_1
https://doi.org/10.1007/978-3-030-72812-0_1

Creating Diverse Ensembles with Neuro-MAP-Elites 227

12. Fontaine, M.C., Lee, S., Soros, L.B., De Mesentier Silva, F., Togelius, J., Hoover,
A.K.: Mapping hearthstone deck spaces through map-elites with sliding bound-
aries. In: GECCO 2019, pp. 161–169. ACM, New York, NY, USA (2019)

13. Gagné, C., Sebag, M., Schoenauer, M., Tomassini, M.: Ensemble learning for free
with evolutionary algorithms? In: GECCO 2007, pp. 1782–1789. ACM, New York,
NY, USA (2007)

14. Gravina, D., Khalifa, A., Liapis, A., Togelius, J., Yannakakis, G.N.: Procedural
content generation through quality diversity (2019)

15. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd edn. Springer, Cham (2009). https://
doi.org/10.1007/978-0-387-84858-7

16. Higgins, I., t al.: beta-VAE: learning basic visual concepts with a constrained vari-
ational framework. In: ICLR (2017)

17. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

18. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2014)
19. Koza, J.R.: Genetic programming: automatic programming of computers. EvoNews

1(3), 4–7 (1997)
20. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space.

In: GECCO 2009, pp. 987–994. ACM, New York, NY, USA (2009)
21. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search

for novelty alone. Evol. Comput. 19(2), 189–223 (2011)
22. Miller, J.: Cartesian Genetic Programming, vol. 43, June 2003
23. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-

ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32937-1 3

24. Mouret, J., Clune, J.: Illuminating search spaces by mapping elites (2015)
25. Nguyen, Q.U., Hoai, N., O’Neill, M., McKay, R., Galván-López, E.: Semantically-

based crossover in genetic programming: application to real-valued symbolic regres-
sion. Genetic Program. Evol. Mach. 12, 91–119 (2011)

26. Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: PMLB:
a large benchmark suite for machine learning evaluation and comparison. BioData
Mining 10(1), 36 (2017)

27. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

28. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp.
61–74. MIT Press (1999)

29. Rodrigues, N.M., Batista, J.E., Silva, S.: Ensemble genetic programming. In: Hu,
T., Lourenço, N., Medvet, E., Divina, F. (eds.) EuroGP 2020. LNCS, vol. 12101, pp.
151–166. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44094-7 10

30. Sha, C., Cuperlovic-Culf, M., Hu, T.: Smile: systems metabolomics using inter-
pretable learning and evolution. BMC Bioinform. 22(1), 284 (2021)

31. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

32. Vassiliades, V., Chatzilygeroudis, K., Mouret, J.: Using centroidal voronoi tessella-
tions to scale up the multidimensional archive of phenotypic elites algorithm. IEEE
Trans. Evol. Comput. 22(4), 623–630 (2018)

https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1007/978-3-030-44094-7_10

Evolving Monotone Conjunctions
in Regimes Beyond Proved Convergence

Pantia-Marina Alchirch1(B) , Dimitrios I. Diochnos2 ,
and Katia Papakonstantinopoulou1,2

1 Athens University of Economics and Business (TESLAB), Athens, Greece
{marina.alchirch,katia}@aueb.gr

2 University of Oklahoma, Norman, Oklahoma, USA
{diochnos,katia}@ou.edu

Abstract. Recently it was shown, using the typical mutation mecha-
nism that is used in evolutionary algorithms, that monotone conjunctions
are provably evolvable under a specific set of Bernoulli (p)n distributions.
A natural question is whether this mutation mechanism allows conver-
gence under other distributions as well. Our experiments indicate that
the answer to this question is affirmative and, at the very least, this
mechanism converges under Bernoulli (p)n distributions outside of the
known proved regime.

Keywords: Evolvability · Genetic programming · Monotone
conjunctions · Distribution-specific learning · Bernoulli (p)n

distributions

1 Introduction

Automating the creation of computer programs that perform intelligent opera-
tions has been driving the research in evolutionary programming and in machine
learning – though the approaches used are oftentimes different. Slightly more
than a decade ago, these two fields came closer with the introduction of the
framework of evolvability by Leslie Valiant [16].

Evolvability formulates evolution as a learning process and is a framework
for a special type of local search method that ultimately develops individuals
(that is, computer programs) that have high fitness within their environment. In
other words, the goal is to develop a function that has high predictive accuracy
on an unknown function c that we want to learn from training examples.

We continue the study of a simple and intuitive class of Boolean functions,
that of monotone conjunctions, within the framework of evolvability.

1.1 Monotone Conjunctions and Representation

A monotone conjunction is a function that combines a set of variables with a
Boolean AND. For example, the function f = x1 ∧ x2 ∧ x5 returns true if the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 228–244, 2022.
https://doi.org/10.1007/978-3-031-02056-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_15&domain=pdf
http://orcid.org/0000-0002-9596-7884
http://orcid.org/0000-0002-2934-606X
http://orcid.org/0000-0002-4674-9303
https://doi.org/10.1007/978-3-031-02056-8_15

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 229

first, second and fifth variable are satisfied simultaneously on a truth assignment
a = (a1, . . . , an) ∈ {0, 1}n, otherwise it returns false. When we are working
in a space with n Boolean variables, an intuitive representation for monotone
conjunctions is that of a bitstring of length n, where a 1 (resp. 0) in a particular
bit indicates the presence (resp. absence) of the specific variable in the function.
For example, when n = 8, we can represent the function f = x1 ∧ x2 ∧ x5 as:
1 1 0 0 1 0 0 0 . With |h| we denote the size of a monotone conjunction h;

the number of variables that are contained in h. Hence, in our example, |f | = 3.

On the Importance of Conjunctions Within Machine Learning. Con-
junctions, as well as disjunctions, are perhaps the most basic classes of Boolean
functions that act as building blocks for more complex functions. Even though
these classes of functions are simple, nevertheless they have exponentially many
functions on n Boolean variables and therefore provide a basic testbed for various
ideas, as well as for understanding general bounds that are proved in the context
of machine learning. Furthermore, learning algorithms for such basic classes of
functions may provide insights for more sophisticated algorithms or even extend
naturally to algorithms for richer classes of functions in certain contexts.

As an example, within the Probably Approximately Correct (PAC) model of
learning [15], learning functions that are disjunctions of a constant number k
of conjunctions can be achieved with a learning algorithm that is merely used
for learning conjunctions [11]. The idea is that a disjunction of k conjunctions
f1 ∨ f2 ∨ · · · ∨ fk can be converted to a conjunctive formula, where each clause
has at most k literals1 via the distributive law as shown below:

f1 ∨ f2 ∨ · · · ∨ fk =
∧

u1∈f1,u2∈f2,...,uk∈fk

(u1 ∨ u2 ∨ · · · ∨ uk) .

Therefore, for every selection (allowing repetitions) of k literals (u1, u2, . . . , uk)
over the original set of n Boolean variables {x1, . . . , xn}, one can create a new
variable yu1,u2,...,uk

whose value is defined by yu1,u2,...,uk
= u1 ∨ u2 ∨ · · · ∨ uk.

Hence, an efficient distribution-independent algorithm for learning conjunctions
from the set {x1, . . . , xn}, may also learn such richer functions efficiently, but
this time over the broader set of the y variables, which are (2n)k in total.

1.2 Related Work and Motivation

Using a simulation argument, a hallmark result in evolvability is one by Vitaly
Feldman where it has been shown that evolvability is equivalent to learning
using correlational statistical queries under a fixed distribution [5]. However, this
simulation result, as has also been pointed out by Feldman, is not necessarily the
most intuitive or efficient approach for designing evolutionary algorithms. At the
same time intuitive evolutionary mechanisms are desirable and sought for; see,
e.g., [9,12]. In this context, it is perhaps not surprising that one of the simplest,

1 A literal is a Boolean variable or its negation.

230 P.-M. Alchirch et al.

non-trivial, classes of Boolean functions, that of monotone conjunctions, has
received a lot of attention and their evolvability has been studied.

In particular, Leslie Valiant gave a swapping-type algorithm for learning
monotone conjunctions when the distribution was uniform over {0, 1}n, when he
introduced evolvability [16]. We outline this swapping algorithm in Sect. 3.1. The
analysis of this algorithm was simplified in [3]. Eventually it was shown that this
algorithm converges for Bernoulli (p)n distributions (defined in Sect. 3), charac-
terized by any p ∈ (0, 1), where the uniform distribution is a special case obtained
for p = 1/2. Meanwhile, another direction of research towards the learnability
of monotone conjunctions has explored the power of parallel statistical queries
by means of recombination [7], and of horizontal gene transfer [14].

On the other hand, the problem of learning monotone, or not, conjunctions
has been studied within genetic programming (GP) as well. In this direction
[9,10] have explored tree-like representations for learning monotone conjunc-
tions under the uniform distribution in the realistic (for machine learning and
evolvability) case, where the number of training examples are upper bounded by
some polynomial of the input parameters. There has also been done additional
work on exploring the learnability of monotone conjunctions, but some of these
algorithms may have unrealistic assumptions for the framework of evolvability.
For example, the algorithm in [13] uses a genetic approach in which the updates
depend on the number of bits in which the candidate solution and the input
differ. As another example, in the case of [6] it is assumed that the learner has
knowledge of the exact fitness value of various hypotheses.

Along the lines of genetic programming, another mechanism that has been
studied is the one inspired by the standard mutation mechanism that is encoun-
tered in (1 + 1) evolutionary algorithms (EAs). This mechanism considers all
the bits in the bitstring representation of a monotone conjunction (recall the dis-
cussion from Sect. 1.1) and tosses a coin that succeeds with probability 1/n in
each bit. Whenever the coin toss succeeds, the bit at the particular coordinate is
flipped. This algorithm has been shown to converge under product distributions
where each variable is satisfied with the same probability p (called Bernoulli (p)n

distributions; see Sect. 3), when p takes values in (0, 1/3] ∪ {1/2} [2]. A natural
question that we try to answer in this paper is the following one:

Does the mutation mechanism that is inspired by the (1+1) EA allow the
evolvability of monotone conjunctions under a broader set of distributions,
compared to what is currently provably known?

Our experimental findings indicate that the answer is affirmative.

Structure of the Paper. Section 2 summarizes the computational models that
come together in our work. Section 3 provides details on the problem that we
study as well as a brief discussion on a related algorithm to our work, from
where we draw inspiration on providing specific values to certain parameters
that govern the evolutionary mechanism that we study. Section 4 provides details
on the implementation of our method and how we define successful executions.

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 231

Section 5 presents the values of certain parameters that we use in the experiments
as well as discusses the results of our experimental study. Section 6 concludes our
work with a summary and ideas for future work.

2 Computational Models Relevant to Our Work

We now describe briefly the computational models that are relevant to our work.
Before we do that, however, we make a remark on the terminology.

Remark 1 (Terminology). A candidate solution of an optimization problem, in
EAs/GP is typically called an individual. On the other hand, in machine learning,
a candidate solution to a learning problem, is typically called a hypothesis (or a
model). One may use these terms interchangeably and in particular in our case
these correspond to Boolean functions (or, if you prefer, to computer programs).

2.1 Evolutionary Algorithms and Evolving Programs

Evolutionary algorithms is a class of algorithms that develop solutions to opti-
mization problems of interest. The development of these solutions proceeds in an
iterative manner, such that candidate solution(s) from one iteration to the next
are typically obtained after applying modification operators on the representa-
tion of the candidate solution(s) of the previous iteration. The function that is
being optimized is called a fitness function. The idea is that the higher the fit-
ness value of a particular individual (solution) is, the better the individual is for
our purposes; i.e., as a solution to the optimization problem that we solve. The
simplest mechanism that creates such solutions is shown in Algorithm 1, where
we see that given an individual (candidate solution) x encoded as a bitstring of
length n, a mutated version x′ is obtained from x after tossing n times a coin that
succeeds with probability 1/n, and upon success of each coin toss, the respective
bit in the binary representation of x is flipped. This modification mechanism is
called a mutation as it tries to mimic in an elegant and compact way the way
mutations occur in nature, and thus allows this algorithmic scheme to explore
the binary search space in a randomized way. If x′ is at least as fit as its parent
x, then x′ is selected to be the solution used for the next generation; otherwise,

Algorithm 1: The (1+1) Evolutionary Algorithm
Input: A function f to be optimized over {0, 1}n.
Output: A solution x, candidate for optimizing f .

1 x ← random string from {0, 1}n;
2 repeat
3 Compute x′ by flipping each bit of x independently with probability 1/n;
4 if f(x′) ≥ f(x) then x ← x′;
5 until some termination condition is met;

232 P.-M. Alchirch et al.

x is selected for one more generation. This way, the different solutions that we
obtain across the different iterations (also known as generations) monotonically
increase the fitness values that correspond to them. The interested reader may
find additional discussion and several interesting results in [4].

A closely related field to EAs is that of genetic programming (GP) [8]. Simi-
larly to EAs, the goal of GP is to develop a solution/individual that maximizes
a fitness function. However, in the case of GP, the individuals correspond to
different functions (computer programs), rather than to mere numerical points
or truth assignments, from the domain of the fitness function. The most usual
representation of these individuals is with the use of tree structures, as then on
one hand such a representation is convenient (in a manner similar to decision
trees) and on the other hand it is easy to define modification operators inspired
by nature, such as mutation and recombination, and give rise to new individuals
to be considered as candidate solutions that may survive in the next generation.

Our work in this paper falls under the broader umbrella of supervised machine
learning, where the goal of the learner is to develop a function that approximates
well some ground truth function. In other words, the goal of the learner is very
well aligned with the goal of GP. On the other hand, the functions that we
consider in our case have a very natural representation using bitstrings, as it
was discussed in Sect. 1.1, and thus we can ultimately use Algorithm 1.

2.2 Supervised Machine Learning and Evolvability

In supervised machine learning the learner is typically presented with a set
S = {(xi, c(xi))}m

i=1 of training examples that exhibit the behavior of some
ground truth function c on certain instances of the domain X . Based on this
information, the learner forms a hypothesis (or a model) h that approximates
the ground truth c. For example, one typical approach for selecting a hypothesis
h from a set of possible hypotheses H, is that of empirical risk minimization,
where the h ∈ H that is selected is the function that has the best predictive
accuracy on the training examples S that were given to the learner.

Evolvability on the other hand is a special framework for supervised machine
learning. In particular, in evolvability, the learner only gets to know how well
their hypotheses approximate the ground truth function c, based on aggregate
information that is computed from training examples. This information is equiv-
alent to a noisy estimate of the risk (error rate) of the various hypotheses. The
idea is that evolvability casts the whole process of evolution as a learning prob-
lem and the modifications that occur on the individuals (hypotheses) during the
evolution should be favoring the fittest ones for survival to the next generation.
In that sense, the encoding of the individuals at the genotype level cannot depend
on individual experiences, but rather on some aggregate signal that is received
from the environment, which thus describes how fit the particular individual is
for this environment. Algorithms for evolvability are called ecorithms.

After this brief high-level discussion on supervised learning and evolvability,
we will now provide more details for the framework of evolvability. We are looking
at Boolean functions where the output values true and false are represented

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 233

by 1 and −1 respectively. Evolvability works in a local search fashion, where
at each step of the evolution a (parent) hypothesis h is considered together
with the hypotheses that are obtained after applying a mutation operator on
the particular (parent) hypothesis h, forming a neighborhood N(h). Eventually,
each hypothesis in the neighborhood N(h) is evaluated using a fitness function,
called performance, and ultimately this function is driving the search. For a
target function c that we are trying to learn2 and a distribution D over {0, 1}n,
the performance of a hypothesis h, also called the correlation of h and c, is

PerfD (h, c) = Ex∼D [h(x) · c(x)] . (1)

Note that from the above definition we also have that:

PerfD (h, c) =
∑

x∈{0,1}n

h(x)c(x)Prx∼D (x) = 1 − 2 · Prx∼D (h(x) �= c(x)) . (2)

An approximate value P̂erfS (h, c) of PerfD (h, c) is obtained empirically for each
hypothesis using a sample S; we denote this value with νh for brevity. Then, for
a real constant t, called tolerance, we obtain the sets:

⎧
⎨

⎩

Bene = {h′ ∈ N(h) | νh′ > νh + t}
Neut = {h′ ∈ N(h) | νh′ ≥ νh − t} \ Bene.
Del = {h′ ∈ N(h) | νh′ < νh − t}

(3)

Hence, for the next iteration, a hypothesis from the set Bene is selected, should
Bene �= ∅. Otherwise, a hypothesis from Neut is selected; note that Neut �= ∅
since Neut always contains the parent hypothesis h. Thus, while the set Del of
deleterious mutations is needed for partitioning the neighborhood N(h), it is of
little interest as no hypothesis will ever be selected from Del. The goal of the
evolution is to produce in poly(1/ε, 1/δ, n)-time a hypothesis h such that

Pr
(
PerfD (h, c) < PerfD (c, c) − ε

)
< δ . (4)

3 The Learning Problem that We Study

We are interested in learning monotone conjunctions in the framework of evolv-
ability. In particular, we focus on Bernoulli (p)n distributions Bn,p over {0, 1}n.
These distributions are specified by the probability p of setting each variable
xi equal to 1. Thus, a truth assignment (a1, . . . , an) ∈ {0, 1}n has probability∏n

i=1 pai(1− p)1−ai . Given a monotone conjunction c that we want to learn and
a hypothesis h, we can partition the variables that appear in either c or h as
shown below:

c =
m∧

i=1

xi ∧
u∧

k=1

yk and h =
m∧

i=1

xi ∧
r∧

�=1

w� . (5)

2 The function c is also called ideal function, as it represents the ideal behavior in a
certain environment.

234 P.-M. Alchirch et al.

Therefore, the x’s are mutual variables, the y’s are called undiscovered (or miss-
ing) variables, and the w’s are the wrong (or redundant) variables. Variables in
the target c are called good, otherwise they are called bad. Given this decompo-
sition, we can calculate the quantity Prx∼Bn,p

(h(x) �= c(x)) under a Bn,p distri-
bution, with the following two observations:

– h(x) = +1 and c(x) = −1: This happens on truth assignments where the xi’s
are satisfied, the w�’s are satisfied, and at least one of the yk’s is falsified.
Therefore, this will happen with probability pmpr(1 − pu).

– h(x) = −1 and c(x) = +1: Similar analysis implies that this will happen with
probability pmpu(1 − pr).

Adding the above two we get: Prx∼Bn,p
(h(x) �= c(x)) = pm+r+pm+u−2pm+r+u.

As a consequence, (2) reduces to,

PerfBn,p
(h, c) = 1 − 2pm+r − 2pm+u + 4pm+r+u . (6)

Definition 1 (Short, Medium, Long). Given integers q and ϑ, a monotone
conjunction f is short when |f | ≤ q, medium when q < |f | ≤ q + ϑ, and long
otherwise.

Definition 1 partitions the class of functions that we want to learn in three groups
and will allow us to define a criterion (Criterion 1) that we will use in order to
determine if a particular experimental run is successful or not. We will also need
the following definition.

Definition 2 (Best q-Approximation). A hypothesis h is called a best q-
approximation of c if |h| ≤ q and ∀h′ �= h, |h′| ≤ q : PerfD (h′, c) ≤ PerfD (h, c).

3.1 A Related Algorithm: The Swapping Algorithm

Before we discuss details of our implementation, we briefly describe a related
algorithm to our work, the swapping algorithm for monotone conjunctions, that
was introduced by Valiant in [16].

The swapping algorithm has been shown to converge [1] under Bernoulli
(p)n distributions that are characterized by any 0 < p < 1 using the general
evolutionary scheme that was described in Sect. 2.2, where at every step of the
evolution the neighborhood N(h) is partitioned into the sets Bene, Neut, and
Del, and selection first favors the set Bene, otherwise the set Neut. The algorithm
is important for our work because we intend to use some of its parameters and
ideas in the evolutionary mechanism that we want to study.

In the swapping algorithm, the neighborhood N(h) of a monotone conjunc-
tion h is the set of monotone conjunctions that arise by adding a variable (neigh-
borhood N+(h)), removing a variable (neighborhood N−(h)), or swapping a
variable with another one (neighborhood N±(h)), plus the conjunction itself.
Thus, N(h) = N−(h) ∪ N+(h) ∪ N±(h) ∪ {h}. As an example, let h = x1 ∧ x2,
and n = 4. Then, N−(h) = {x1, x2}, N+(h) = {x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x4},

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 235

and N±(h) = {x3 ∧ x2, x4 ∧ x2, x1 ∧ x3, x1 ∧ x4}. Note that |N(h)| = O (n |h|)
in general. Finally, for the parameters q and ϑ that appear in Definition 1, the
swapping algorithm uses the following values:

q = �log1/p(3/ε)� and ϑ = log1/p(2)� . (7)

4 Implementation

Regarding the implementation, our starting point is the algorithm for the evo-
lution of monotone conjunctions that was used in [2], which in turn is based on
the (1 + 1) EA (Algorithm 1). Our evolutionary mechanism is shown in detail
in Algorithm 2. This algorithm is known to converge [2] to a hypothesis that
satisfies (4), which is the goal for evolution, for Bernoulli (p)n distributions that
are characterized by p ∈ (0, 1/3]∪{1/2}. However, we are interested in studying
this evolutionary mechanism, at the very least, for other values of p that charac-
terize Bernoulli (p)n distributions and it is this particular case that we explore
in this paper. Below we explain the functions that appear in Algorithm 2.

Algorithm 2: Mutator function based on the (1 + 1) EA
1 q ← �log1/p (3/ε)�;
2 h′ ← Mutate(h);
3 if p < 1/3 then t ← pq−1 min{4pq/3, 1 − 3p};
4 else if p = 1/3 then t ← 2 · 3−1−2q;
5 else if p = 1/2 then t ← 2−2q;
6 else if p > 1/3 and p < 1/2 then
7 ϑ ← 0;
8 Λ ← 1 − 2p;

9 μ ← min{2pq+ϑ, Λ};
10 t ← pq−1μ(1 − p);

11 else
12 k ← �log1/p (2)�;
13 ϑ ← k;

14 Λ ← min{∣
∣ 2pk − 1

∣
∣ ,

∣
∣ 1 − 2pk+1

∣
∣};

15 μ ← min{2pq+θ, Λ};
16 t ← pq−1μ(1 − p);

17 if |h′| > q then return h;
18 νh ← EvaluateHypothesis(h);
19 νh′ ← EvaluateHypothesis(h′);
20 if νh′ > νh + t then return h′;
21 else if νh′ >= νh − t then return USelect(h, h′);
22 else return h;

236 P.-M. Alchirch et al.

EvaluateHypothesis returns the performance PerfD (h, c) of a hypothesis
h. In the experiments we do that using (6), by using the values m, u, and r, of
the mutual, undiscovered, and redundant variables.

The function Mutate takes as input the bit vector that represents the initial
hypothesis, flips each bit with probability 1/n, and returns the new mutated
hypothesis. This is the mutation mechanism that was described in Algorithm 1.

The function USelect is responsible for selecting uniformly at random a
hypothesis from the two that are passed as parameters. In particular, the two
hypotheses are h and h′, where h is the initial hypothesis and h′ the mutated
one that occurred from function Mutate.

Finally, we would like to make the following remark. As discussed in Sect. 2.2,
the evolutionary mechanism has access to a noisy value P̂erfS (h, c), that is
obtained from an appropriately large sample S, as a proxy for the true value
PerfD (h, c) for some hypothesis h. However, by using (6) directly in Evaluate-
Hypothesis we obtain the true value exactly. We argue that this should not be
a problem, as the neighborhood is split into the sets Bene, Neut, and Del based
on the tolerance t. The idea is that when one may try in the future to prove
rigorously our experimental findings from Sect. 5, it should be enough to identify
the minimum non-zero difference in the performance between any two hypothe-
ses in the hypothesis space. Assuming this value is equal to Δ, then by setting
the tolerance equal to Δ/2 and requiring approximation of each PerfD (h, c) to
be done within Δ/2 of their true value, then the sets Bene, Neut, and Del, will
be entirely correct in the partitioning of the hypotheses in the neighborhood, to
beneficial, neutral, and deleterious.

4.1 Setting the Parameters q and ϑ

Two important parameters that we use in Algorithm 2 are the parameters q and
ϑ and the values that we use are given by (7). Regarding q, its value has been
the same in [1–3] and therefore it is only natural to maintain this definition in
our work as well. Regarding ϑ, we introduce it because it was useful for proving
the convergence of the swapping algorithm when p ≥ 1/2. One of the ideas
from [1] is that when the function c that we want to learn is of medium size
(i.e., q < |c| ≤ q + ϑ) and the distribution Bn,p is governed by some p ≥ 1/2,
then convergence is proved when a hypothesis h is formed that is a best q-
approximation of c (per Definition 2). Hence, our hope is that this phenomenon
will transcend from the swapping algorithm where it has been proved to work,
to the (1+1) EA mechanism that we explore in this work.

4.2 Guessing a Good Value for the Tolerance t

Beyond q and ϑ for which we use the values of (7), another important parameter
for evolution is that of the tolerance t. As the algorithm that we use (Algorithm 2)
comes from [2], we use the values indicated by [2] in the proved regime; i.e., when
p ∈ (0, 1/3] ∪ {1/2}. In the unproved regime (i.e., when p �∈ (0, 1/3] ∪ {1/2}) we
attempt to use the tolerance that is indicated in [1] which allows the swapping

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 237

algorithm to converge for every p ∈ (0, 1) that characterizes the Bernoulli (p)n

distribution that governs the instances. In particular, the tolerance in [1] is

tswapping = pq−1μ(1 − p) , (8)

where μ = min{2pq+ϑ, Λ}. Regarding the quantity Λ, if 0 < p < 1/2 we have

Λp<1/2 = 1 − 2p . (9)

When p ∈ [1/2, 1), the quantity Λ is defined by first looking if p is of the form
2−1/k, with k ∈ {1, . . . , n}, or if p belongs to a sub-interval of [1/2, 1) of the form
(2−1/k, 2−1/(k+1)); in other words, we care about the two consecutive points from
the family of points 2−1/k (with k ∈ {1, . . . , n}) that contain p. It is this latter
case which corresponds to the values of p > 1/2 that we examine in this work
in the unproved regime (i.e., p ∈ {0.6, 0.7, 0.8, 0.9}). Note that the interval of
interest (2−1/k, 2−1/(k+1)) is obtained for k = log1/p(2)�. Eventually, a quantity
that is good enough for our purposes is to set

Λp>1/2 = min{∣∣2pk − 1
∣∣ ,

∣∣1 − 2pk+1
∣∣} . (10)

In other words, using (9) and (10) we can define

Λ =
{

Λp<1/2 , if 1/3 < p < 1/2,
Λp>1/2 , if 1/2 < p < 1 .

(11)

Now, one can use (11) in (8) and compute the desired tolerance that will be used
for the experiments depending on the p that we want to test.

4.3 Successful Executions

The following criterion was used for proving convergence in [1] and we adopt it.

Criterion 1 (Success Criterion). We define a single run to be successful if
we accomplish the following:

(a) When c is short, identify c precisely.
(b) When c is medium, generate a best q-approximation of c.
(c) When c is long, generate a hypothesis h such that PerfBn,p

(h, c) ≥ 1 − ε.

Therefore, for a given Bernoulli (p)n distribution and a given target c, we
run Algorithm 2 in an endless loop until we satisfy our Criterion 1. In fact, we
consider such an execution successful if we satisfy Criterion 1 for 10 consecutive
iterations, thus signifying that the solution that we have found has some notion
of stability and therefore it is not the case that we satisfy perhaps Criterion 1
during one iteration but then in a subsequent iteration the hypothesis drifts
away and evolves to a solution that has performance less than 1 − ε.

Remark 2 (On the Strictness of the Success Criterion). Criterion 1 is probably
more strict than what is really needed in some cases. To see this, consider the

238 P.-M. Alchirch et al.

following situation: say, p = 0.2, ε = 0.01 (⇒ q = 4), and the target function
that we want to learn is c = x1 ∧ x2 ∧ x3 ∧ x4. Then, according to Criterion 1,
this is case (a), and we would like to evolve h such that h = c. However, the
hypothesis h′ = x5 ∧x6 ∧x7 ∧x8 is very different from c (as none of the variables
that appear in h also appears in c) but nevertheless, using (6), we see that it
holds PerfBn,p

(h′, c) = 1 − 2 · 0.24 − 2 · 0.24 + 4 · 0.28 ≈ 0.99361. In other words,
even if h′ does not satisfy the stringent requirement of case (a) of our criterion
for successful execution, since ε = 0.01 it nevertheless satisfies (4) which is really
the goal of evolution, as it has performance at least 1 − ε.

5 Experimental Results and Discussion

Using Algorithm 2 we perform experiments3 for Bn,p distributions such that p =
j/10, where j ∈ {1, 2, . . . , 9}. By testing the values p ∈ {0.1, 0.2, 0.3, 0.5} we can
understand the rate of convergence when p is in the regime of proved convergence
(based on [2]). Moreover, we can also use these numbers as baselines for forming
conclusions regarding the rate of convergence when we perform experiments
under distributions Bn,p that are characterized by values of p, when p is outside
of the known regime of (0, 1/3] ∪ {1/2} where we have proved convergence.

5.1 Details on the Experimental Setup

Dimension of the Instance Space. In all of our experiments we set the dimension
of our instance space to be equal to n = 100. This value of n = 100 allows a
rich hypothesis space while at the same time it allows the repetitive execution
of Algorithm 2 in a fairly reasonable amount of time for our experiments.

Target Sizes that we Test. For each p value mentioned above we generate targets
that have sizes taken from the sets Sa, Sb, and Sc shown below:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sa = {1, 2, q/4, q/2, 3q/4, q − 1, q}
Sb = {q + 1, q + ϑ/2, q + ϑ}
Sc = {q + ϑ + 1, q + ϑ + (n − q − ϑ)/4,

q + ϑ + 2(n − q − ϑ)/4,
q + ϑ + 3(n − q − ϑ)/4, n}.

(12)

In particular, the target sizes from the set Sa are used for testing case (a) of
Criterion 1, the target sizes from the set Sb are used for testing case (b) of
Criterion 1, and the target sizes from the set Sc are used for testing case (c) of
Criterion 1. Note that when p < 1/2, then ϑ = 0. In such a case we consider the
set Sb to be empty. That is, the target size that is indicated as having size q + 1
is available in the set Sc where now q + ϑ + 1 = q + 0 + 1 = q + 1.

Epochs (Repetitions). For each pair (p, |c|) that we test, we perform 100 different
epochs (repetitions) starting from the empty hypothesis (i.e., h is a bitstring of
3 Source code available at: https://gitlab.com/marina pantia/evolvability code.

https://gitlab.com/marina_pantia/evolvability_code

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 239

length n where each entry has the value of 0) until convergence. The epochs
smooth the experimental results and allow us to better understand the average
case of execution.

Numerical Values of the Parameters q, ϑ, and t. Table 1 summarizes the values
that the parameters q, ϑ, and t obtain, when p = j/10 for j ∈ {1, 2, . . . , 9}.

5.2 High-Level Summary of Results

We note that in every single one of our experiments we were able to satisfy
Criterion 1. Table 2 presents the average number of iterations that was necessary
so that we can satisfy Criterion 1 in every case that we tested.

Table 1. Values of q, ϑ, and tolerance t corresponding to each probability p that we
tested in our experiments. Note that the values for the tolerance t should be multiplied
by 10−6. In every case the dimension of the instance space is n = 100.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

q 3 4 5 7 9 12 16 26 55

ϑ 0 0 0 0 1 1 1 3 6

t (10−6) 13.3 17 26.2 8.05 3.81 3.79 6.62 2.33 1.09

Table 2. Average number of iterations until convergence (as computed using 100
epochs), depending on the target size and the probability used. Note that when p < 1/2,
then ϑ = 0 and therefore in these situations it is the case that q+1 > q+ϑ/2 as well as
q+1 > q+ϑ. Therefore, some values may be repeated or appear out of order. However,
for uniformity we keep these rows everywhere in accordance to the presentation of the
sets Sa, Sb, and Sc in (12) from Sect. 5.1. In addition, when p ∈ {0.5, 0.6, 0.7}, then
ϑ = 1 and hence q + 1 = q + ϑ/2 = q + ϑ as we use rounding in order to treat decimals
(i.e., round(ϑ/2) = round(1/2) = 1).

Target size |c| Probability p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 9355.3 8240.16 6109.52 4494.06 1846.62 292.16 263.67 231.91 264.03

2 18373.48 13234.84 8878.63 6757.35 3460.26 1275.46 1189.7 413.5 432.55

q/4 9355.3 8240.16 6109.52 6757.35 3460.26 2377.29 2285.82 1251.94 1147.72

q/2 18373.48 13234.84 8878.63 13631.78 6485.19 4388.57 4522.01 2340.74 1482.84

3q/4 18373.48 22613.09 22200.21 15894.43 11988.98 7071.61 6480.98 3718.52 2071.57

q 39011.15 33743.87 40434.23 37737.39 26736.85 15716.76 15174.42 6951.12 3826.76

q + 1 12.56 13.56 14.82 15.67 24303.88 23337.84 28692.53 7449.52 3608.87

q + ϑ/2 39011.15 33743.87 40434.23 37737.39 24303.88 23337.84 28692.53 9728.63 4553.08

q + ϑ 39011.15 33743.87 40434.23 37737.39 24303.88 23337.84 28692.53 14651.58 9382.01

q + ϑ + 1 12.56 13.56 14.82 15.67 17.2 20.4 27.54 39.87 102.61

q + ϑ + (n − q − ϑ)/4 12.49 13.78 14.4 15.04 17.15 20.53 25.37 38.43 100.97

q + ϑ + 2(n − q − ϑ)/4 12.67 13.68 14.93 14.79 16.88 20.8 25.24 38.15 92.61

q + ϑ + 3(n − q − ϑ)/4 13.03 13.9 14.92 14.45 17.31 20.72 25.4 38.95 97.44

n 12.22 13.93 15.04 14.77 17.21 20.87 25.92 37.27 94.81

On the Convergence against Long Targets. As it can be seen from Table 2, case
(c) in Criterion 1, corresponding to |c| > q + ϑ, is perhaps the easiest one to

240 P.-M. Alchirch et al.

accomplish. The intuitive reason from the work of [1] is that q and ϑ have been
selected in such a way, so that any hypothesis h that has size q, regardless of its
composition of good and bad variables among the q variables that it contains, will
satisfy the equation PerfBn,p

(h, c) ≥ 1−ε. In particular, the intuitive idea is that
c and h contain enough many variables and hence they make positive predictions
on a small subspace of the n-dimensional hypercube {0, 1}n. As a consequence c
and h agree almost everywhere, since almost everywhere they make a negative
prediction. As a further consequence, their correlation is at least 1 − ε. Indeed,
in our experiments when |c| > q +ϑ, regardless of the underlying value of p that
governs the distribution, we see that h satisfies the criterion PerfBn,p

(h, c) ≥ 1−ε
very quickly.

On the Convergence against Short and Medium Targets. Moreover, quite remark-
ably, based on the results shown in Table 2 for short and medium targets, the
evolutionary mechanism that we study appears to be converging faster to a solu-
tion that satisfies Criterion 1 when p is outside of the known proved regime of
(0, 1/3] ∪ {1/2}. As characteristic examples one can compare the entries corre-
sponding to p = 0.4 versus p = 0.3, or p = 0.8 versus p = 0.5.

The conclusions that we draw for the different values of p that we test are
similar. Therefore in Sect. 5.3 below we focus on one particular case where p =
0.4, while in Sect. 5.4 we complement Table 2 and the discussion of Sect. 5.3 by
showing boxplots with more refined information on the convergence rate of every
case that we tested.

5.3 Details on the Convergence When p = 0.4

Figure 1a presents the average number of iterations against target sizes up to
q + 2 when p ∈ {0.3, 0.4, 0.5} and n = 100. Table 1 informs us that for p = 0.3,

(a) Iterations until convergence when n = 100
and p = 0.4, compared to p = 0.3 and p = 0.5
where it is known that the algorithm converges
efficiently. On the horizontal axis we see target
sizes as a function of q, so that we can study
better case (a) of Criterion 1.

(b) Iterations until convergence when n = 100
and p = 0.4, compared to p = 0.3 and p = 0.5
where it is known that the algorithm converges
efficiently. We can see the convergence rate when
p = 0.4 across the entire spectrum of possible
target sizes.

Fig. 1. Iterations until convergence when n = 100 and p ∈ {0.3, 0.4, 0.5}. In Fig. 1a
we focus in the situation where |c| ∈ {1, 2, q/2, 3q/4, q, q + 1} which covers case (a) of
Criterion 1, even though q is different for the different p values; see, e.g., Table 1. When
|c| > q + 1 the convergence is very fast for all cases. In Fig. 1b we see the complete
picture for target sizes between 1 and n = 100.

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 241

p = 0.4, and p = 0.5 we have q = 3, q = 4, and q = 5 respectively. Even though
these values of q are different, nevertheless, they all correspond to the situation
where the target is short – case (a) of Criterion 1 – and for this reason we decided
to put labels on the x axis that are related to q. Of course, since the q values are
different, one can also consider a plot similar to Fig. 1b and be able to see the
complete picture for target sizes between 1 and n = 100 in each case. Regardless
if one uses Fig. 1a or b, we observe that (i) the algorithm converges for every
target size, and (ii) the rate of convergence when p = 0.4 is very similar to what
we observe for p = 0.3 and p = 0.5 where it has been proved that the algorithm
converges. Similar results are discussed below for other values of p.

5.4 Further Details on the Experiments of Every (p, |c|) Pair Tested

We complement Table 2 and the discussion of Sect. 5.3 by providing further
statistics for the executions of Algorithm 2. Figure 2 presents boxplots regard-
ing the number of iterations that was needed so that Criterion 1 was satisfied
for every p = i/10, with i ∈ {1, 3, 4, 5, 6, 7, 8, 9} and for every target size that
belonged to one of the sets Sa, Sb, and Sc that were described in (12). (Due
to space limitations we omitted the case for p = 0.2.) Each boxplot shows the
median value for the execution of the algorithm regarding a particular (p, |c|)
pair. Furthermore, the thick part of the boxplot indicates the range of values that
belong between the 25th and the 75th percentile. The whiskers are drawn so that
they are in 1.5 times the inter-quartile range and finally in some cases we may
also see some outliers which correspond to executions that took unexpectedly
long/short time.

5.5 Discussion

As a summary, for every value p = j/10 with j ∈ {1, 2, . . . , 9} that characterizes
a Bernoulli (p)n distribution, Algorithm 2 satisfied the goal of evolution and
converges to a function that satisfies (4). This is true against any target function
that we tested. Moreover, the average case analysis indicates that the running
time needed to converge to such a good solution is in fact comparable to the
running time that is needed (on average) by a simpler variant of this algorithm,
that is obtained when the algorithm is tested against values of p ∈ (0, 1/3] ∪
{1/2}, where it is has been proved that the algorithm converges efficiently [2].

Implications. One first implication of these experimental results is that the
(1+1)-EA variant that we examined, appears to be equally powerful as the swap-
ping algorithm which provably evolves monotone conjunctions for Bernoulli (p)n

distributions governed by any p ∈ (0, 1) satisfying (4). A second implication is
that the success criterion that we set beforehand (Criterion 1) indeed appears
to capture fairly accurately what is happening on successful executions that also
generate stable solutions. As a consequence of these two, a third implication is
that the experimental convergence that we explored motivates future work for a
formal approach on rigorously proving the convergence of the algorithm under

242 P.-M. Alchirch et al.

(a) p = 0.1, q = 3 and ϑ = 0. (b) p = 0.3, q = 5 and ϑ = 0.

(c) p = 0.4, q = 7 and ϑ = 0. (d) p = 0.5, q = 9 and ϑ = 1.

(e) p = 0.6, q = 12 and ϑ = 1. (f) p = 0.7, q = 16 and ϑ = 1.

(g) p = 0.8, q = 26 and ϑ = 3. (h) p = 0.9, q = 55 and ϑ = 6.

Fig. 2. Boxplots of iterations needed until convergence when n = 100 and for prob-
abilities p ∈ {0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The x-axis corresponds to target sizes
generated according to the sets Sa, Sb, and Sc that are presented in Sect. 5.1; these
sizes depend on p as they depend on the parameters q and ϑ which ultimately depend
on p. Furthermore, when |c| > q+ϑ, the convergence is very fast and thus the deviation
from the median of the iterations is insignificant.

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 243

Bernoulli (p)n distributions for values of p ∈ (0, 1) outside of the known proved
regime, which is (0, 1/3]∪{1/2} based on [2]. Fourth, somehow surprisingly, the
experimental results suggest that the convergence of the algorithm is actually
faster in the unknown regime compared to the known one, when the target is
short or medium (i.e., for target sizes that are expected to be difficult); e.g.,
compare the results between p = 0.8 and p = 0.5 in Table 2.

6 Conclusions

We studied the evolvability of monotone conjunctions under Bernoulli (p)n dis-
tributions using the standard mutation mechanism that appears in (1+1) EAs.
We extended the algorithm introduced in [2] by drawing inspiration from the
convergence properties of the swapping algorithm under such distributions [1].
Our experiments indicate that the extension we proposed allows the formation of
hypotheses that approximate well any target function c under arbitrary Bernoulli
(p)n distributions since the computed solutions in our experiments were stable
and more importantly satisfied the goal of evolution required by (4) in every
combination (p, |c|) that we tested. In the future, it would be interesting to prove
rigorously this experimental result, as well as explore the convergence of this
(1+1) EA-based mutation mechanism under distributions beyond Bernoulli (p)n.

References

1. Diochnos, D.I.: On the evolution of monotone conjunctions: drilling for best approx-
imations. In: Ortner, R., Simon, H.U., Zilles, S. (eds.) ALT 2016. LNCS (LNAI),
vol. 9925, pp. 98–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46379-7 7

2. Diochnos, D.I.: On the evolvability of monotone conjunctions with an evolutionary
mutation mechanism. J. Artif. Intell. Res. 70, 891–921 (2021)

3. Diochnos, D.I., Turán, G.: On evolvability: the swapping algorithm, product dis-
tributions, and covariance. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009.
LNCS, vol. 5792, pp. 74–88. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04944-6 7

4. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

5. Feldman, V.: Evolvability from learning algorithms. In: STOC, pp. 619–628 (2008)
6. Kalkreuth, R., Droschinsky, A.: On the time complexity of simple cartesian genetic

programming. In: IJCCI, pp. 172–179. ScitePress (2019)
7. Kanade, V.: Evolution with recombination. In: FOCS, pp. 837–846 (2011)
8. Koza, J.R.: Genetic Programming - On the Programming of Computers by Means

of Natural Selection. Complex Adaptive Systems. MIT Press, Cambridge (1993)
9. Lissovoi, A., Oliveto, P.S.: On the time and space complexity of genetic program-

ming for evolving Boolean conjunctions. J. Artif. Intell. Res. 66, 655–689 (2019)
10. Mambrini, A., Oliveto, P.S.: On the analysis of simple genetic programming for

evolving Boolean functions. In: Heywood, M.I., McDermott, J., Castelli, M., Costa,
E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 99–114. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30668-1 7

https://doi.org/10.1007/978-3-319-46379-7_7
https://doi.org/10.1007/978-3-319-46379-7_7
https://doi.org/10.1007/978-3-642-04944-6_7
https://doi.org/10.1007/978-3-642-04944-6_7
https://doi.org/10.1007/978-3-319-30668-1_7

244 P.-M. Alchirch et al.

11. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J.
ACM 35(4), 965–984 (1988)

12. Reyzin, L.: Statistical Queries and Statistical Algorithms: Foundations and Appli-
cations. CoRR abs/2004.00557 (2020)

13. Ros, J.P.: Learning Boolean functions with genetic algorithms: a PAC analysis. In:
FOGA, pp. 257–275 (1992)

14. Snir, S., Yohay, B.: Prokaryotic evolutionary mechanisms accelerate learning. Dis-
crete Appl. Math. 258, 222–234 (2019)

15. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
16. Valiant, L.G.: Evolvability. J. ACM 56(1), 3:1-3:21 (2009)

Accurate and Interpretable
Representations of Environments

with Anticipatory Learning
Classifier Systems

Romain Orhand1,2(B), Anne Jeannin-Girardon1,2, Pierre Parrend1,3,
and Pierre Collet1,2

1 Icube Laboratory - UMR 7357, 300 bd Sébastien Brant, 67412 Illkirch, France
{rorhand,anne.jeannin,pierre.parrend,pierre.collet}@unistra.fr
2 University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France

3 EPITA, 14-16 Rue Voltaire, 94270 Le Kremlin-Bicêtre, France

Abstract. Anticipatory Learning Classifier Systems (ALCS) are rule-
based machine learning algorithms that can simultaneously develop a
complete representation of their environment and a decision policy based
on this representation to solve their learning tasks. This paper intro-
duces BEACS (Behavioral Enhanced Anticipatory Classifier System) in
order to handle non-deterministic partially observable environments and
to allow users to better understand the environmental representations
issued by the system. BEACS is an ALCS that enhances and merges
Probability-Enhanced Predictions and Behavioral Sequences approaches
used in ALCS to handle such environments. The Probability-Enhanced
Predictions consist in enabling the anticipation of several states, while
the Behavioral Sequences permits the construction of sequences of
actions. The capabilities of BEACS have been studied on a thorough
benchmark of 23 mazes and the results show that BEACS can han-
dle different kinds of non-determinism in partially observable environ-
ments, while describing completely and more accurately such environ-
ments. BEACS thus provides explanatory insights about created decision
policies and environmental representations.

Keywords: Anticipatory Learning Classifier System · Machine
learning · Explainability · Non-determinism · Building Knowledge

1 Introduction

Explainability has now become an important concern for automated decision
making in domains such as healthcare, justice, employment or credit scoring,
among others. Deep Learning models are widely used in these domains, because
of their ability to extract relevant features from complex data. However, they are
not intrinsically explainable and require the use of post-hoc models to shed light

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 245–261, 2022.
https://doi.org/10.1007/978-3-031-02056-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-02056-8_16

246 R. Orhand et al.

on their decisions. Models exist that are, by design, more explainable, but at
the cost of reduced performance in solving tasks: performance is thus balanced
with explainability. The approach developed in this paper aims at enhancing the
performance of such models while enabling them to provide more explanatory
elements regarding their decisions.

We are interested in Reinforcement Learning models. Among intrinsically
explainable Reinforcement Learning models, Anticipatory Learning Classifier
Systems (ALCS) are rule-based machine learning algorithms that are based on
the cognitive mechanism of Anticipatory Behavioral Control [19]. ALCS build
their population of rules (called classifiers) by comparing successive perceptions
of their environment in {conditions-actions-effects} tuples [11]: ALCS try
to anticipate the consequences of an action according to their environmental
situations. ALCS do not depend on a stochastic process to learn new tasks:
Anticipatory Behavioral Control enables them to learn new tasks immediately,
from the anticipation they built, giving insights to explain the use of the classi-
fiers created by the system.

The work presented in this paper focuses on the ability of ALCS to deal with
non-deterministic environments used in reinforcement learning problems, while
making the classifiers of ALCS more explainable. Non-determinism can take dif-
ferent forms [16]: perceptual sensors can have irrelevant random attributes, be
noisy or insufficient to determine the exact state of the environment (referred to
as the Perceptual Aliasing Issue); the results of actions can be uncertain; rewards
from the environment can be noisy. In particular, non-deterministic properties
of the perceptual sensors or regarding the results of actions bring about aliased
states, which are environmental states related to these forms of non-determinism.
These aliased states prevent ALCS from achieving their task, if they cannot detect
such states and build appropriate classifiers to deal with them.

This paper introduces BEACS (Behavioral Enhanced Anticipatory Classifier
System) which aims to strengthen both the performance and the explainability
of ALCS in non-deterministic, partially observable environments. The objective
of BEACS is to build complete and accurate representations of its environment
(via its population of classifiers), regardless of the non-deterministic properties
of the environment, while being able to efficiently solve the task learned.

In Sect. 2, the main principles of Anticipatory Learning Classifier Systems are
presented along with the mechanisms allowing them to handle non-determinism.
After an analysis of these principles and mechanisms, BEACS is introduced in
Sect. 3. Section 4 presents a study of the capabilities of BEACS through a thor-
ough benchmarking on the different mazes used as test-beds in the literature. The
results achieved by BEACS are discussed in Sect. 5, before concluding in Sect. 6.

2 Related Works

2.1 Principles of ALCS

As illustrated in Fig. 1, ALCS classifiers are mainly made of a {C,A,E} tuple
(consisting of a condition component C, an action component A and an effect

Accurate and Interpretable Representations of Environments with ALCS 247

Fig. 1. Illustration of a classifier Cl of an ALCS in a maze environment, if the provided
observations are the eight squares adjacent to each position starting from the North
and clockwise. The hash is a wildcard that corresponds to all possible items in the
condition and indicates there are no changes in the effect.

component E), a mark that specifies states for which the classifier has failed to
anticipate, a measurement of the quality of anticipation q, and lastly, a prediction
of the expected reward r [18].

Assessment of anticipation quality, and prediction of the expected rewards
of classifiers are respectively done using the Anticipatory Learning Process and
Reinforcement Learning.

Hence, the Anticipatory Learning Process is used to discover association
patterns within the environment by means of the {C,A,E} tuples. These tuples
are built by comparing perceptions retrieved successively. ALCS classifiers are
created or updated based on the differences between these perceptions. Rein-
forcement Learning is used to compute the expected rewards in order to fit the
classifiers to the task being learned, and provide more adaptive capabilities to
ALCS.

ALCS manage their population of classifiers by looping between perceiving
new sensory inputs, evolving their population of classifiers thanks to both learn-
ing paradigms, and interacting with the environment by performing an action
from the set of classifiers matching the current perception (for further details,
refer to [6]).

ACS2 [6] is an enhanced version of Stolzmann’s Anticipatory Classifier Sys-
tem (which was the first ALCS) [18]. It includes a genetic generalization mecha-
nism to remove specialized attributes in the condition components of classifiers
[2]. ACS2 also includes new action selection policies [3] to improve the evolu-
tion of the most general and accurate classifiers. Different exploration strategies
of ACS2 were compared in [12] and an action planning mechanism was added
to this model [21] in order to speed up the learning process. [13] replaced the
reinforcement component of ACS2 by a mechanism that maximizes the averaged
rewards, while [4] used a learning classifier system dedicated to approximating
the optimal state values of the transitions learned between states of the environ-
ment. In parallel, two other ALCS were developed: YACS implements different
heuristics from ACS2 to focus on the most relevant attributes in the condition
and effect components of classifiers, as these attributes could be uncorrelated

248 R. Orhand et al.

Fig. 2. Illustration of a classifier Cl1 having a Behavioral Sequence to bridge the aliased
green state from a non-aliased blue state, as well as a classifier Cl2 enhanced by PEP to
represent the environmental transitions from the PAI state, according to the classifiers
representation in Fig. 1.

[9]; MACS implements a new attribute in the effect component of its classifiers
to enable the system to discover new patterns from its environment [8].

2.2 ALCS and Non-determinism

To allow ALCS to deal with non-deterministic environments, Behavioral
Sequences (BSeq) [18] and Probability-Enhanced Predictions (PEP) [5] have been
proposed, as depicted by Fig. 2. BSeq and PEP have both been integrated to ACS2
in [15] and [16]. They are triggered by classifiers that get both a correct anticipa-
tion and an incorrect anticipation in a unique state (i.e. in an aliased state).

BSeq enable the ALCS to bridge states that are related to the Perceptual
Aliasing Issue using sequences of actions. However, BSeq do not enable the ALCS
to build a complete and accurate representation of their environments as some
states are skipped, and BSeq cannot promote the best decision policies because
sub-optimal sequences of actions could be favored [17]. BSeq also imply a finer
control of the population of classifiers by the ALCS, because the more these
sequences are built, the more the population of classifiers will grow [15].

PEP were introduced in ALCS to deal with aliased states: PEP enable the
prediction of an ensemble of anticipations, enabling the model to build a com-
plete model of their environment. All items in the effect component of the
{C,A,E} tuple are replaced by PEP: they consist of an associative array in
which keys are symbols related to the expected perceptive attributes, and values
represent their probabilities to be anticipated by the classifier. The probabilities
p, corresponding to the encountered aliased state, are updated in all the PEP as
follows: p = p + bp ∗ (1 − p), where bp is an update rate, and all probabilities are
then normalized. Nevertheless, both the probabilities computed in PEP and the
sets of anticipated states they describe can be incoherent with the environmental
settings of the ALCS: nonexistent states can be described by PEP (due to the
combination of multiple associative arrays) and the computed probabilities are
sensitive to their update parameter and the retrieved perceptions [17].

BEACS (Behavioral Enhanced Anticipatory Classifier System) is hereby intro-
duced, with the goal of improving both the explainability of the system and its

Accurate and Interpretable Representations of Environments with ALCS 249

Fig. 3. Illustration of PEPACS and BEACS classifiers enhanced by PEP and EPE in
Woods100 to represent the environmental transitions from the PAI state, according to
the representation depicted in the Fig. 1.

performance in non-deterministic partially observable environments. BEACS cou-
ples, for the first time, both Behavioral Sequences and PEP approaches to han-
dle learning tasks in such environments, while each of these approaches is also
improved. Because the Perceptual Aliasing Issue (PAI) is a type of aliasing that
PEP manage, this coupling is based on the detection of PAI [17]. BEACS is there-
fore based on the state-of-the-art PEPACS that integrated PEP in ACS2 [16].

3 Behavioral Enhanced Anticipatory Classifier System

3.1 Enhancing PEP into EPE

PEP enhancements resulted in Enhanced Predictions through Experience (EPE).
Both PEP and EPE have the same goal of allowing classifiers to anticipate several
states, but they differ in the representations they employ. As depicted in Fig. 3,
EPE consists in an associative array whose keys are the perceptions anticipated
by the classifiers, and whose values are the number of occurrences when these
perceptions have been anticipated. As a result, because each anticipated state is
explicitly described and counted, EPE provides more detailed information than
an effect component with multiple PEP. Moreover, this method does not require
a dedicated learning rate to be set up, and the probabilities of each anticipated
perceptive item can be retrieved.

BEACS triggers the construction of EPE classifiers (i.e. that uses EPE) by
using the same aliased state detection mechanism as PEPACS. EPE classifiers
are constructed similarly to PEP enhanced classifiers in PEPACS, with two
exceptions: they are tagged with the aliased states that trigger their creation;
their effect component is merged from those of their two parents, and the number
of occurrences of each anticipation are summed. The number of occurrences of
a given classifier is only updated when this classifier anticipates several states,
otherwise a default value of 1 is set to the unique anticipation. Classifiers that
cannot subsume each other and correspond to the same aliased state (due to
their condition, mark, and aliased state tag) are used to avoid the generation of
useless EPE classifiers.

250 R. Orhand et al.

The anticipation of several states can lead to over-generalization, where
enhanced classifiers can be used in non aliased states because of the genetic
generalization pressure. To prevent this issue, PEPACS completely replaces the
enhanced effects of genetic generalization offspring with the anticipation of the
current perception, at the cost of a knowledge loss and a reduced learning speed,
as the system may have to gradually rebuild the enhanced effect. BEACS does
not replace the enhanced effects. Instead, BEACS exploits the aliased state tag
to control the evolution of EPE classifiers if they have been over-generalized:
they are specialized from their aliased state tag instead of using the current
perception; they can directly learn new anticipations from their aliased state
tag only, by adding states they failed to anticipate to their EPE (the related
counters are set to 1).

Finally, the mutation operator used in the genetic generalization mechanism
was modified to consider the semantics of the wildcard used in ALCS: this wild-
card corresponds to all possible perceptive attribute in the condition, and indi-
cates the related attribute from the condition does not change in the effect (e.g.
Fig. 1). Hence, a perceptive attribute can be generalized via mutation, only if the
associated attribute of the effect does not predict both a change and an absence
of change. This modification aims at preserving the coherence of BEACS classi-
fiers by preventing the creation of such contradictory classifiers.

3.2 Coupling EPE with Behavioral Sequences

Allowing ALCS to distinguish PAI states (states related to the Perceptual Alias-
ing Issue) from other aliased states detected by the system is the first step
towards coupling EPE and Behavioral Sequences. This differentiation is then
used to condition the creation of behavioral classifiers (classifiers with a Behav-
ioral Sequence). It enables BEACS to control more precisely when BSeq should
be used and ultimately, the evolution of its population. The Perceptual Aliasing
Issue occurs in partially observable environments when the system cannot differ-
entiate states that are truly distinct. The goal is to focus on states reachable from
a PAI (and different from it): these reachable states should be more numerous
than the number of actions that lead to distinct states (when the same action
lead to different states, only the most anticipated state is considered). Both the
set of reachable states and the number of actions can be computed with the help
of EPE classifiers.

To do so, the most experienced classifiers for each single action are retrieved
from the set of classifiers that matches the current perceptive input (with respect
to their marks and their aliased state tags), by computing the product of their
experience and their cubic quality (this power is used to widen differences
between classifier qualities). If these most experienced classifiers exist for all
possible single actions and are experienced enough (according to a user defined
threshold), the set of reachable states and the number of actions that are related
to a perceptive change are computed using the {C,A,E} tuple of these classifiers
and the current perception.

Accurate and Interpretable Representations of Environments with ALCS 251

While the detection of aliased states occurs at a classifier scale, the detection
of PAI states should occurs at the scale of a set of classifiers. To avoid unneeded
computational operations, BEACS does not attempt to detect the PAI states
as soon as an aliased state is detected by a classifier: the PAI states detection
occurs at the end of the anticipatory learning process. As BEACS also needs time
to fit its classifiers to its environment in order to discover transitions between
states, the occurrence of the detection of PAI states is similar to the way the
genetic generalization takes place (as described by [6]): it depends on θBSeq, a
user parameter representing the delay between two such consecutive detections,
and an internal timestamp tBSeq (added to each classifier) measuring the current
delay. All states detected as PAI or no longer being PAI are registered in a list.

3.3 Enhancing the Behavioral Sequences

Once the use of Behavioral Sequences is triggered by the detection of PAI states,
behavioral classifiers are built thanks to the penultimate classifier selected by
BEACS in the state s(t − 1) and candidate classifiers in state s(t) that suc-
cessfully anticipated state s(t + 1). These candidate classifiers are temporarily
stored by BEACS, until all the classifier anticipations have been considered in the
Anticipatory Learning Process. Then, if state s(t) has been registered as a PAI
state, the {C,A,E} tuples of the behavioral classifiers are made of: the condi-
tion component of the penultimate classifier, a fine-tuned effect component from
the candidate classifiers and the penultimate classifier, and both action com-
ponents in a sequence, while other internal parameters are set to default. The
fine-tuned effect component is computed by replacing each anticipated change
of the penultimate classifier and the candidate classifiers with the related per-
ceptive attributes of state s(t + 1), and then by removing all effect attributes
that match the condition component.

BEACS also stamps its behavioral classifiers with the PAI state that triggered
their construction. If a state previously detected as PAI is no longer related to
PAI, all behavioral classifiers related to this state are removed from the popula-
tion of classifiers. This enables BEACS to adaptively build and delete behavioral
classifiers as PAI states are detected, thus avoiding needless population growth.

As opposed to [14,15], BEACS no longer discriminates behavioral classifiers
that lead to a loop between identical states: it is up to the reinforcement com-
ponent of BEACS to fit the use of these classifiers, instead of decreasing their
quality while their anticipations are correct. Thereby, the Anticipatory Learning
Process used by BEACS is the same for all classifiers and the mechanism that
prevent such loops has been removed.

BEACS genetic generalization mechanism was also extended to prevent the
use of behavioral sequences in states unrelated to the Perceptual Aliasing Issue.
To do so, behavioral classifiers are indirectly generalized through mutation by
comparing the condition components of the offspring: if one perceptive attribute
is generalized in one condition component and not in the other, the related
perceptive attribute in the other can be generalized. This indirect generalization
avoids building useless behavioral classifiers that would match states that do

252 R. Orhand et al.

not lead to PAI states. Because behavioral classifiers can contain EPE, their
mutation operator follows the modification introduced in Sect. 3.1 to preserve
the meaning of the classifiers.

Finally, BEACS Reinforcement Learning component uses the concept of Dou-
ble Q-Learning [10] to adapt the rewards predicted by the classifiers to the length
of the action sequences in order to promote the usage of the shortest Behavioral
Sequences. Each classifier Cl uses two estimators (Cl.rA and Cl.rB) to compute
its reward prediction Cl.r, by using the immediate reward ρ, the discounted
maximum payoffs predicted in the next time-step maxPA and maxPB, the dis-
count factor γ, the reinforcement learning rate β, the number of actions in the
Behavioral Sequence #act, the maximal length of Behavioral Sequences Bseq and
a configurable difference εr. Even if both estimators converged to the same value,
εr allows BEACS to be biased in favor of the shortest sequences. The prediction
reward of a classifier is scaled, so that the highest reward of one predictor is given
when the sequence is made of a unique action, while the difference between the
two estimators is used to decrease the prediction reward according to the length
of the sequence of actions. Classifiers prediction rewards of an action set are
updated as described by the Algorithm 1.

Algorithm 1. BEACS Reinforcement Learning Component
1: function UpdatePredReward(Cl, maxPA, maxPB , ρ, γ, β, #act, Bseq, εr)
2: if random() < 0.5: then
3: Cl.rA ← Cl.rA + β(ρ + γmaxPB − Cl.rA)
4: else
5: Cl.rB ← Cl.rB + β(ρ + γmaxPA − Cl.rB)

6: maxr ← max(Cl.rA, Cl.rB)
7: minr ← min(Cl.rA, Cl.rB)

8: Cl.r ← maxr − (maxr−minr+εr) ∗(#act−1)
Bseq

BEACS was tested with a set of mazes, which are widely used as reinforce-
ment learning benchmark [1]: the obtained results are presented in the following
section.

4 Performance in Maze Environments

4.1 Experimental Protocol

Using the maze benchmark from [15], the experimental protocol is set in order
to address the following questions:

– Can BEACS detect PAI states in order to efficiently build classifiers with
Behavioral Sequences?

– Does the coupling of Behavioral Sequences with EPE in BEACS enable the
system to build (a) complete representations of its environments, and (b)
efficient decision policies?

Accurate and Interpretable Representations of Environments with ALCS 253

– To what extent are the probabilities derived from PEP and EPE consistent
with the non-deterministic properties of the environments?

– Can BEACS efficiently control the evolution of its populations of classifiers
to alleviate the growth of its population due to the use of BSeq?

The benchmark is made up of 23 mazes of different complexities (due to the
occurrence of PAI states for instance). To make the learning and the solving
of the task more complex, the results of actions have a 25% chance of being
uncertain, in which case the system performs a random action without knowing
which one.

The goal of BEACS in these mazes is to construct a complete and accurate
representation of its environment, by moving one grid-cell at a time, and in either
eight adjacent positions, while attempting to reach the exit as fast as possible. Its
perceptive capabilities are limited to the eight squares adjacent to each position.
Its starting position in the mazes is random (but distinct from the exit).

BEACS is compared with BACS [15] and PEPACS [16] (control experiments)
on the maze benchmark, as they are the state-of-the-art ALCS using Behavioral
Sequences and PEP, respectively. For each maze of the benchmark, 30 runs were
performed using each of these three ALCS. A run firstly consists of a succession
of 5000 trials, that are constrained explorations until the exit or the maximal
number of actions (100) are reached: ε is set to 0.8 for the ε-greedy policy used
to select actions; the learning rate of the Anticipatory Learning Process and
Reinforcement Learning, β, is set to 0.05; the PEP learning rate of PEPACS is
set to 0.01; the maximal length of the Behavioral Sequences of BACS and BEACS
is set to 3; θBSeq of BEACS is set to 1000 to manage the PAI states detection.
Then, the ALCS are switched to pure exploitation (i.e. no Anticipatory Learning
Process) and have 500 trials to bootstrap an efficient decision policy (ε = 0.2,
β = 0.05) and 500 more trials to stabilize the rewards (ε = 0, β = 0.05), before
recording the number of actions required by the ALCS to reach the exit for 500
more trials (ε = 0, β = 0.05). Other ALCS-related parameters not described
here are initialized to the default values provided in [6]. A detailed learning
parameters analysis could be considered for future work to emphasise their role
in the building of environmental representations and decision policies by ALCS.

4.2 Metrics

For each experiment, the following metrics were collected for the 3 ALCS: the
size of populations of classifiers along with the ratio of reliable classifiers within
the populations, the average number of steps required to reach the exit, the
knowledge ratio, and the average EP-accumulated error (EP stands for Enhanced
Predictions). The list of states considered as PAI states by BEACS was also
collected.

The knowledge ratio is the ratio of correct transitions learned by at least
one reliable classifier to all possible transitions. Only transitions that led to
environmental changes are included.

254 R. Orhand et al.

The average EP-accumulated error is a new required metric because knowl-
edge ratios only provide information about symbol occurrences in PEP, and not
about the environmental fitness of the computed PEP probabilities: for each pos-
sible transitions in the maze using a unique action, theoretical probabilities asso-
ciated with the reachable states are first computed given the non-deterministic
properties of the maze.The difference between each PEP item of the effect com-
ponent of the most experienced and reliable classifier (if one exist, otherwise
the most experienced as defined in Sect. 3.2) and the corresponding theoretical
probabilities are then computed. These differences are finally accumulated and
averaged over the number of possible transitions, before being divided by the
length of the effect component to get the average error by EP. In the case of
EPE, a normalization of the counters associated to a perceptual attribute of
interest can provide probabilities that are equivalent to those obtained by PEP.

All metrics were averaged over the 30 runs, for each environment. The
obtained averages were compared with p-values computed by Welch t-test with
(Welch-) Satterthwaite degrees of freedom (significance threshold 0.05) [7].

4.3 Performance

Can BEACS detect PAI states in order to efficiently build classifiers with Behav-
ioral Sequences?

According to the environmental properties of the benchmark mazes, there
were 1590 PAI states and 9810 non-PAI states throughout all experiments.
BEACS has correctly identified 1490 of the 1590 PAI states, missed remaining
100 PAI states and incorrectly categorized 23 states as PAI. Thus, the balanced
accuracy of the PAI state detection of BEACS is approximately 99.15%.

Does the coupling of Behavioral Sequences with EPE in BEACS enable the sys-
tem to build (a) representations of its environments, and (b) efficient decision
policies?

Figure 4 illustrates the knowledge ratios achieved by BEACS, BACS and
PEPACS: BEACS and PEPACS were globally able to build complete represen-
tations of their environments, although PEPACS performed better than BEACS
in 7 mazes, equally well as BEACS in 15 mazes (at least p ≥ 0.06) and worse
than BEACS in the remaining maze. BEACS did not achieve full knowledge of
its environments in any of the experiments in two environments (MazeE1 and
MiyazakiA) where it reached, at most, 97.84% and 99.31% respectively. PEPACS
achieved full knowledge of its environments in every maze at least once.

Figure 5 shows the average number of steps required by the three ALCS to
reach the exit. BEACS performed better than BACS in 20 mazes, equally well
as BACS in the 3 remaining mazes (p ≥ 0.07). BEACS performed better than
PEPACS in 12 mazes, equally well as PEPACS in 3 mazes (p ≥ 0.24) and worse
than PEPACS in the 8 remaining mazes.

To what extent are the probabilities derived from PEP and EPE consistent with
the non-deterministic properties of the environments?

Accurate and Interpretable Representations of Environments with ALCS 255

Fig. 4. Knowledge ratio achieved by BEACS, BACS and PEPACS. The higher the
knowledge ratios, the better the performance. The use of PEP or EPE respectively
permits PEPACS and BEACS to build complete representations of their environments.

The average EP-accumulated errors for each maze and ALCS are depicted in
Fig. 6. BEACS has the lowest average EP-accumulated errors across all environ-
ments. BACS obtains, for 21 of the 23 environments, lower errors than PEPACS
and larger errors than PEPACS for Cassandra4× 4 and MazeE1. Therefore, the
probabilities computed from the EPE of BEACS are the most consistent accord-
ing to the non-deterministic properties of the environments.

Can BEACS efficiently control the evolution of its populations of classifiers to
alleviate the growth of its population due to the use of BSeq?
Figure 7 shows the size of the populations of classifiers created by BEACS, BACS
and PEPACS, as well as the ratios of reliable classifiers within these populations.
In 21 environments, BEACS populations are smaller than BACS populations
while in the remaining two mazes, BEACS populations are larger. BEACS pop-
ulations are smaller than PEPACS populations in 15 environments and larger
for the 8 remaining mazes. BEACS has the highest ratios of reliable classifiers in
19 mazes and shares the highest ratios with PEPACS in Woods101.5 (p ≥ 0.13).
PEPACS has the highest ratios of reliable classifiers in the remaining environ-
ments: MazeE1, MiyazakiA and Woods100.

5 Discussion

Some states related to the Perceptual Aliasing Issue are impossible to detect due
to the aliasing detection mechanism.

256 R. Orhand et al.

Fig. 5. Average steps to exit achieved by BEACS, BACS and PEPACS. The lower the
average number of steps, the better the performance. BEACS is globally more efficient
than BACS and PEPACS to reach the exit in non-deterministic mazes.

BEACS is the first ALCS to successfully detect when an aliasing state is related
to the Perceptual Aliasing Issue. However, analyzing the 100 states that were
not detected as PAI states revealed a limit: 90 of these states were not even
detected as aliased. This is explained by the fact that truly distinct states in
an environment can yield the same perceptions as well as the exact same envi-
ronmental transitions to other PAI states. Because ALCS detect aliasing when
several states are reachable for a state-action pair, such PAI states cannot cur-
rently be detected by BEACS or any ALCS.

BEACS Balances Performance and Explainability
Behavioral Sequences (BSeq) and Enhanced Predictions through Experience
(EPE) are used together to improve both performance and explainability of
ALCS. BEACS intends to generalize the results reported for both approaches
in a range of environments with varying characteristics and non-deterministic
properties that have never been tested in previous studies.

First of all, although the number of learning steps used in the experiments is
not set up according to the complexity of the benchmark mazes (this complexity
refers to, for instance, the size of the maze or its non-deterministic properties),
BEACS outperforms BACS and is globally more efficient than PEPACS (as
shown in Fig. 5). However, its performance suggest that its reinforcement com-
ponent could be further improved to promote the use of the shortest sequences
of actions, since BEACS used, at most, one extra step in the environments in
which PEPACS performs better than BEACS. Correlating the achieved results

Accurate and Interpretable Representations of Environments with ALCS 257

Fig. 6. Average EP-accumulated errors given the non-deterministic mazes, highlighting
the gaps of the probabilities computed by PEPACS with the environmental settings.
The lower the average EP-accumulated errors, the more accurate the environmental
representations. The representations built by BEACS are more accurate than those of
BACS and PEPACS.

of the ALCS with the intrinsic properties of each maze could be a direction for
future research to improve their reinforcement component.

Then, even if BEACS performs slightly worse than PEPACS overall (up to
about 4% worse on average over all environments), it is able to create complete
representations of its environments (as seen in Fig. 4). The Behavioral Sequences
are responsible for the observed discrepancies between PEPACS and BEACS.
Indeed, their use implies that the system explores and fits these sequences to its
environment at the expense of representation construction, which is thus slowed
as Behavioral Sequences do not build reliable classifiers in PAI states.

However, the probabilities derived from the set of anticipations in BEACS
classifiers are closer to the expected theoretical probabilities than those of BACS
and PEPACS (as illustrated in Fig. 6): BEACS environmental representations
are thus much more accurate than those of PEPACS and BACS. The probabil-
ities computed by PEPACS are worse than those of BACS in 21 of 23 environ-
ments, even though PEPACS, as opposed to BACS, includes the PEP-mechanism
to build accurate representations. In other words, BACS unreliable classifiers in
aliased states may better describe the probability to anticipate next states than
PEPACS reliable classifiers. This highlights the sensibility of the probabilities
computed by PEPACS with regards to the experience of the system, when the
system suffers from uncertainty in its action rather than relying on the experi-
ence of the system to make the probabilities converge, as BEACS does.

258 R. Orhand et al.

Fig. 7. Size of the populations of classifiers built by BEACS, BACS and PEPACS,
along with the ratios of reliable classifiers within these populations. Small classifiers
populations are easier to manipulate to extract knowledge. The higher these ratios, the
more advanced the learning as the populations converge.

BEACS Explainability Assessment
BEACS computes its probabilities from EPE through experience, hence the
larger the number of learning steps, the more accurate the probabilities. BEACS
anticipations therefore provide new insights into classifier explainability by
ensuring the reliability of the environmental representations: BEACS classifiers
can reliably be chained to trace the possible causes of a particular event. However,
as environments get more complex due to non-deterministic properties or percep-
tive inputs related to high-dimensional search spaces, populations of classifiers
grow. The smaller the population of classifiers, the more BEACS is explainable.
Thus, further works should focus on mechanisms efficiently reducing the popula-
tions of classifiers, such as compaction [20], by exploiting the knowledge acquired
in BEACS population of classifiers.

Moreover, the representations used by BEACS to describe the classifier con-
ditions and effects are kept unspoiled. This was possible thanks to the new
mutation operator introduced in the genetic generalization mechanism, but at
the expanse of the building of less general classifiers. Refining these represen-
tations to both highlight the changes in ALCS environments and build more
general classifiers is a direction for future research.

6 Conclusion

This paper introduced BEACS (Behavioral Enhanced Anticipatory Classi-
fier System) as an alternative machine learning model to solve reinforcement

Accurate and Interpretable Representations of Environments with ALCS 259

learning tasks, in an effort to increase both the performance and explainabil-
ity of Anticipatory Learning Classifier Systems. BEACS couples Behavioral
Sequences (BSeq) and Enhanced Predictions through Experience (EPE) to han-
dle non-deterministic, partially observable environments, which are common in
the real world. While Behavioral Sequences enable ALCS to bridge states which
cannot be distinguished by perception alone (known as the Perceptual Alias-
ing Issue) using sequences of actions, Enhanced Predictions through Experi-
ence allow ALCS to build multiple anticipations in non-deterministic states (i.e.
aliased states).

BEACS is the first ALCS integrating a mechanism to distinguish states
related to the Perceptual Aliasing Issue from all other aliased states. This allows
the system to know when Behavioral Sequences should and should not be used,
as BSeq can be used to deal with PAI but not with other types of aliasing. The
construction of classifiers using BSeq has been enhanced and now provides a
better control of these classifiers. The length of sequences of actions is taken
into account to fit these sequences more efficiently to the environment. BEACS
uses the EPE mechanism to build more accurate and explainable representations
of its environments. The EPE classifiers aim at describing precisely each states
encountered by the system, according to the environmental properties. Finally,
by adaptively deleting, generalizing, and specializing its classifiers, BEACS can
better frame the expansion of its population.

The results of a thorough experimental protocol using maze environments
show that BEACS (1) is the only ALCS that builds complete and accurate inter-
nal representations of its environment when faced with non-deterministic envi-
ronmental properties such as the Perceptual Aliasing Issue or uncertain results of
action, (2) describes more precisely the states anticipated by the classifiers along
with their probabilities to be anticipated, (3) builds efficient decision policies to
solve the learning tasks and (4) provides explanatory insights about created
decision policies and environmental representations to its user.

Future works should focus on the management of classifiers populations, to
ease the interpretation of these populations through compression, visualization
or generalization, as well as the assessment of different Reinforcement Learning
mechanisms that can be embedded within ALCS.

References

1. Bagnall, A.J., Zatuchna, Z.V.: On the classification of maze problems. In: Bull, L.,
Kovacs, T. (eds.) Foundations of Learning Classifier Systems. Studies in Fuzziness
and Soft Computing, pp. 305–316. Springer, Heidelberg (2005). https://doi.org/
10.1007/11319122 12

2. Butz, A.M.V., Goldberg, B.D.E., Stolzmann, C.W.: The anticipatory classifier sys-
tem and genetic generalization. Nat. Comput. 1, 427–467 (2002). https://doi.org/
10.1023/A:1021330114221

3. Butz, M.V.: Biasing exploration in an anticipatory learning classifier system. In:
Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol.
2321, pp. 3–22. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48104-
4 1

https://doi.org/10.1007/11319122_12
https://doi.org/10.1007/11319122_12
https://doi.org/10.1023/A:1021330114221
https://doi.org/10.1023/A:1021330114221
https://doi.org/10.1007/3-540-48104-4_1
https://doi.org/10.1007/3-540-48104-4_1

260 R. Orhand et al.

4. Butz, M.V., Goldberg, D.E.: Generalized state values in an anticipatory learning
classifier system. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory Behav-
ior in Adaptive Learning Systems. LNCS (LNAI), vol. 2684, pp. 282–301. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45002-3 16

5. Butz, M.V., Goldberg, D.E., Stolzmann, W.: Probability-enhanced predictions in
the anticipatory classifier system. In: Luca Lanzi, P., Stolzmann, W., Wilson, S.W.
(eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 37–51. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44640-0 4

6. Butz, M.V., Stolzmann, W.: An algorithmic description of ACS2. In: Lanzi, P.L.,
Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp.
211–229. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48104-4 13

7. Fagerland, M.W., Sandvik, L.: Performance of five two-sample location tests for
skewed distributions with unequal variances. Contemp. Clin. Trials 30, 490–496
(2009)

8. Gérard, P., Meyer, J.A., Sigaud, O.: Combining latent learning with dynamic pro-
gramming in the modular anticipatory classifier system. Eur. J. Oper. Res. 160(3),
614–637 (2005)

9. Gerard, P., Stolzmann, W., Sigaud, O.: YACS: a new learning classifier sys-
tem using anticipation. Soft Comput. 6, 216–228 (2002). https://doi.org/10.1007/
s005000100117

10. Hasselt, H.: Double q-learning. In: Advances in neural information processing sys-
tems, pp. 2613–2621 (2010)

11. Hoffmann, J.: Anticipatory behavioral control. In: Butz, M.V., Sigaud, O., Gérard,
P. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS (LNAI), vol.
2684, pp. 44–65. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45002-3 4

12. Kozlowski, N., Unold, O.: Investigating exploration techniques for ACS in dis-
cretized real-valued environments. In: Proceedings of the 2020 Genetic and Evolu-
tionary Computation Conference Companion, pp. 1765–1773 (2020)

13. Koz�lowski, N., Unold, O.: Anticipatory classifier system with average reward cri-
terion in discretized multi-step environments. Appl. Sci. 11(3), 1098 (2021)

14. Métivier, M., Lattaud, C.: Anticipatory classifier system using behavioral sequences
in non-Markov environments. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.)
IWLCS 2002. LNCS (LNAI), vol. 2661, pp. 143–162. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40029-5 9

15. Orhand, R., Jeannin-Girardon, A., Parrend, P., Collet, P.: BACS: a thorough study
of using behavioral sequences in ACS2. In: Bäck, T., et al. (eds.) PPSN 2020, Part
I. LNCS, vol. 12269, pp. 524–538. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58112-1 36

16. Orhand, R., Jeannin-Girardon, A., Parrend, P., Collet, P.: PEPACS: integrating
probability-enhanced predictions to ACS2. In: Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion, pp. 1774–1781 (2020)

17. Orhand, R., Jeannin-Girardon, A., Parrend, P., Collet, P.: Explainability and per-
formance of anticipatory learning classifier systems in non-deterministic environ-
ments. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pp. 163–164 (2021)

18. Stolzmann, W.: An introduction to anticipatory classifier systems. In: Lanzi, P.L.,
Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp.
175–194. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45027-0 9

19. Stolzmann, W., Butz, M., Hoffmann, J., Goldberg, D.: First cognitive capabilities
in the anticipatory classifier system, February 2000

https://doi.org/10.1007/978-3-540-45002-3_16
https://doi.org/10.1007/3-540-44640-0_4
https://doi.org/10.1007/3-540-48104-4_13
https://doi.org/10.1007/s005000100117
https://doi.org/10.1007/s005000100117
https://doi.org/10.1007/978-3-540-45002-3_4
https://doi.org/10.1007/978-3-540-45002-3_4
https://doi.org/10.1007/978-3-540-40029-5_9
https://doi.org/10.1007/978-3-030-58112-1_36
https://doi.org/10.1007/978-3-030-58112-1_36
https://doi.org/10.1007/3-540-45027-0_9

Accurate and Interpretable Representations of Environments with ALCS 261

20. Tan, J., Moore, J., Urbanowicz, R.: Rapid rule compaction strategies for global
knowledge discovery in a supervised learning classifier system. In: Artificial Life
Conference Proceedings, vol. 13, pp. 110–117 (2013)

21. Unold, O., Rogula, E., Koz�lowski, N.: Introducing action planning to the antici-
patory classifier system ACS2. In: Burduk, R., Kurzynski, M., Wozniak, M. (eds.)
CORES 2019. AISC, vol. 977, pp. 264–275. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-19738-4 27

https://doi.org/10.1007/978-3-030-19738-4_27
https://doi.org/10.1007/978-3-030-19738-4_27

Exploiting Knowledge from Code
to Guide Program Search

Dirk Schweim1(B) , Erik Hemberg2, Dominik Sobania3 ,
and Una-May O’Reilly2

1 Baden-Wuerttemberg Cooperative State University, Heidenheim, Germany
dirk.schweim@dhbw-heidenheim.de

2 MIT CSAIL, Cambridge, MA, USA
{hembergerik,unamay}@csail.mit.edu

3 Johannes Gutenberg University, Mainz, Germany
dsobania@uni-mainz.de

Abstract. Human code is different from code generated by program
search. We investigate if properties from human-generated code can guide
program search to improve the qualities of the generated programs, e.g.,
readability and performance. Here we focus on program search with
grammatical evolution, which produces code that has different structure
compared to human-generated code, e.g., loops and conditions are hardly
used. We use a large code-corpus that was mined from the open software
repository service GitHub and measure software metrics and properties
describing the code-base. We use this knowledge to guide the search by
incorporating a new selection scheme. Our new selection scheme favors
programs that are structurally similar to the programs in the GitHub
code-base. We find noticeable evidence that software metrics can help in
guiding evolutionary search.

Keywords: Program Synthesis · Program Search · Software Search ·
Grammar Guided Genetic Programming · Genetic Programming ·
Grammatical Evolution · Mining Software Repositories

1 Introduction

A recent study [23] identified several problems in program search with grammat-
ical evolution (GE, [18]). For example, conditionals or loops are often not effec-
tively used since the fitness signal does not guide the search towards these com-
plex structures [23]. Instead, small building blocks are combined and the search
iteratively evolves very specialized programs. The authors come to the conclusion
that “the current problem specification and especially the definition of the fitness

The authors thank Jordan Wick for sharing his expertise, the insightful discussions,
and his help on our project. This work was supported by a fellowship within the IFI
programme of the German Academic Exchange Service (DAAD).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 262–277, 2022.
https://doi.org/10.1007/978-3-031-02056-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_17&domain=pdf
http://orcid.org/0000-0002-8629-0285
http://orcid.org/0000-0001-8873-7143
https://doi.org/10.1007/978-3-031-02056-8_17

Exploiting Knowledge from Code to Guide Program Search 263

functions do not allow guided search, as the resulting problem constitutes a needle-
in-a-haystack problem” [23]. They state that a main challenge for future research
in program search is to find new ways that help to guide the search.

In this article we focus on the question of how knowledge gained from human-
generated code can be used as an additional bias to guide program search with
GE. In most current GE approaches, general programming knowledge is only
incorporated into the evolutionary search process via the BNF grammar. In
effect, the evolved solutions are often unreadable as well as “bloated” [22] and
therefore, hardly maintainable or testable. We extend the current approaches
and investigate the possibility to use software metrics from an existing code-
base to guide the search with GE for program search problems. Our work is
a first step to evaluate the question how general programming knowledge can
be used to guide an evolutionary search towards programs that are similar to
human-generated programs.

Therefore, we mined a code-corpus, consisting of 211,060 real-world and high-
quality Python functions. We use this human-generated code and measure the
frequencies of software metrics that describe properties of the code in the code-
base. Then, we propose multiple GE variants where the additional knowledge
about code properties is used as an additional signal to guide the search. Our
results show that additional information can help guide the program search. Fur-
thermore, we gain valuable insight on how future approaches can be improved.
For example, we learn that setting too many additional objectives is detrimental,
because the conventional fitness signal is obfuscated.

In Sect. 2, we present related work. In Sect. 3, we describe how we mined the
code-base from GitHub. Furthermore, we analyze the code-base and describe
relevant software metrics. Section 4 describes our experiments and discusses the
results. The article ends with concluding remarks (Sect. 5)

2 Related Work

Sobania and Rothlauf [23] state that a main challenge for future research in
program search is to find better fitness signals and problem representations
that help to guide the search. Petke [16] suggested to use existing code pro-
duced by software developers to develop new search operators. She discussed
the idea that the knowledge gained from analysis of existing code-bases could
be a form of template during mutation (similar to [17]). Hemberg et al. [9] pro-
posed to add domain knowledge and novelty as an alternative fitness signal. The
authors [9] extracted knowledge from program search problem definitions and
used the gained knowledge to guide the search.

A larger number of studies investigate challenges in program search. For
example, Dijkstra noted that the use of test cases does not allow to appropri-
ately measure generalization [4]. For program search based on genetic program-
ming, this is investigated in a recent paper [21]. Other challenges in program
search have been collected by Krawiec [13]. He discusses the large search space,
context-dependent behavior of functions, and multiple ways to describe desired

264 D. Schweim et al.

functionality (see also multiple-attractor problem described in [1]). Forstenlech-
ner et al. [7] found that some program search problems are easy, but others could
not be solved at all by their approach. To study these differences in performance,
Sobania and Rothlauf [23] empirically analyze GE search behavior on program
search tasks. In their experiments, they find that GE is not able to solve program
search tasks that use loops or conditions. Also, they note that mutations often
lead to worse solutions and more complex code structures. In their experiments,
they were not able to evolve code that was capable of solving moderately com-
plex problems while being structurally similar to human-generated code. This
means that not only the structure of evolved programs is complex in most cases
but also that the functions are combined in ways that do not lead to functioning
programs. They conclude that the search is often more similar to a needle-in-a-
haystack problem and that GE searches in the wrong areas of the search space in
these cases. Furthermore, [22] compared Python functions generated by differ-
ent initialization methods for GE and GP with around 50,000 human generated
functions mined from GitHub. They find large differences in the structure of
abstract syntax trees (ASTs) as well as in how functions are combined between
automatically and human-generated code. For example, software developers tend
to use a limited set of language elements most of the time, whereas initialization
approaches randomly combine the available functions and terminals, being only
restricted by the rules defined (e.g., in the GE grammar). The authors suggest
to evolve code that imitates human-generated code by incorporating perplexity
pressure into the fitness function. The paper states that it is possible to evolve
code that looks human-generated but the authors do not evaluate the generated
code on real problems. Note that our code corpus subsumes this, and is more
than four times larger, since we do not limit the number of function arguments.

3 GitHub Code Corpus

In our experiments we use human-generated code in the programming language
Python that was mined from the software repository hosting service GitHub.
Python is a widely used programming language and there are many open source
projects freely available on GitHub. Furthermore, it is comparatively easy to
parse Python source code.

On GitHub, users are able to rate software repositories. We only use reposito-
ries with 150 or more positive user ratings (“stars”). We cloned a total of 10,723
repositories that met the aforementioned search criteria. Then, we iterated over
every Python file in the repositories and extracted all functions. Next, comments
and empty lines were removed from the extracted functions. Furthermore, we do
not use class methods because they often perform very basic tasks (e.g., chang-
ing class attributes). Overall, our code-corpus consists of 211,060 real-world and
high-quality Python functions.

We use widely known software metrics to perform a descriptive analysis of
the code-base, investigating the question if there are certain similarities in high-
quality human-generated Python code that could be useful to help in guiding

Exploiting Knowledge from Code to Guide Program Search 265

an evolutionary search. The software metrics are described in Sect. 3.1 and the
results of the descriptive analysis are presented in Sect. 3.2.

3.1 Software Metrics

To investigate the properties of the source code, we use the following well known
software metrics. We apply the metrics either directly on the source code rep-
resentation or on its abstract tree representation, commonly referred to as the
abstract syntax tree (AST) representation.

– Lines of code (LOC): The number of lines of a given function (comments
and empty lines are not taken into account).

– Cyclomatic complexity: The number of paths through the program (e.g.,
an if statement leads to two independent paths). The minimum cyclomatic
complexity is 1 [14].

– AST depth: For an AST, this is the length of the longest non-backtracking
path from the root of the tree to any tree node in the AST [12].

– AST tree size: The number of nodes in an AST.
– Lexical diversity: The ratio of the number of AST node types over the

number of AST nodes [11] (i.e., number of different nodes in the AST tree
divided by the size of the AST tree).

For more details and examples regarding the metrics please refer to [22].
We used the Python module radon1 to calculate the LOC and the cyclomatic

complexity. To get the AST depth, number of AST nodes, and lexical diversity,
we first generated an AST object using astdump2 for each of the functions in
the code-corpus. Then, we recursively iterated over each of the AST objects to
calculate the respective metrics.

3.2 Descriptive Analysis of the Code Corpus

We present and discuss the results of the descriptive analysis of the GitHub
code-base. We calculate the different software metrics for each Python function
in the code-base and count the respective frequencies. Lexical diversity is a
continuous metric and therefore we use “bucketing”. We count the frequencies
of the lexical diversity in intervals with a size of 0.01: {x ∈ R|a < x ≤ a +
0.01}∀a ∈ {0, 0.01, ..., 0.99}. For example, the lexical diversity of a program in
the code-base is 0.483, so the absolute frequency of programs with a lexical
diversity 0.48 < x ≤ 0.49 is increased by one. LOC, cyclomatic complexity, AST
depth, and number of AST nodes are discrete values and we count the respective
frequencies without bucketing. Figures 1a–e plot the relative frequencies of the
programs in the code-base over the respective values of a software metric.

Figure 1a presents the results for LOC. We can observe that the frequency of
programs decreases with increasing LOC. The frequency of very small programs
1 radon: https://pypi.org/project/radon/.
2 astdump: https://pypi.org/project/astdump/.

https://pypi.org/project/radon/
https://pypi.org/project/astdump/

266 D. Schweim et al.

(a) Relative frequency of programs over
the number of lines of code (LOC)

(b) Relative frequency of programs
over the cycolmatic complexity

(c) Relative frequency of programs over
the AST depth

(d) Relative frequency of programs
over the number of AST nodes

(e) Relative frequency of programs over
the lexical diversity; lexical diversity is
presented using numbered buckets with
an interval size of 1 % (e.g., bucket 1
includes all programs with a lexical di-
versity 0 < x ≤ 0.01)

Fig. 1. Software metrics for the functions in the GitHub code-corpus

Exploiting Knowledge from Code to Guide Program Search 267

with only few LOC is very high—90% of the programs have between 2 and 21
LOC and the median number of LOC is 6.

Figure 1b shows the results for cyclomatic complexity. Similar to the results
for LOC, we observe that the complexity is low in the majority of programs.
95% of the programs have a cycolmatic complexity between 1 and 10 and the
median complexity is 2.

Results for AST tree depth are presented in Fig. 1c. The highest frequency
can be observed for an AST tree depth of 5 and the median depth is 8. 95% of
the programs have an AST tree depth between 2 and 12.

The number of AST nodes is presented in Fig. 1d and is more diverse com-
pared to the previous metrics. 90% of the programs have between 2 and 215
AST nodes. The median number of AST nodes is 51.

Last, Fig. 1e presents the results for the lexical diversity. Buckets are num-
bered from 1 to 100. We can see several “spikes”. For example, the relative
frequency of programs with a lexical diversity between 0.5 and 0.51 (bucket 50)
is about 2.58%, while the frequency between 0.51 and 0.52 (bucket 51) is only
about 0.021%. These spikes can be explained by the small bucket size and, as a
consequence, a high variance. Lexical diversity measures “vocabulary richness”,
meaning that a low lexical diversity indicates simplicity and repetition of the
same concepts. The peak for the lexical diversity of 1. can be explained by triv-
ial or very short programs (e.g., return input). The median lexical diversity is
0.37 and the figure shows that many programs have lexical diversities around
this value. This indicates that human software developers rely on repeatedly
using a limited set of language elements to solve a problem.

In summary, code that received positive ratings (“stars”) by human pro-
grammers has several similarities in its structural properties. Often, it consists
of short code with a low complexity where certain concepts are used repeatedly.
These findings are in line with our expectations since it is common to reduce
complexity of code by breaking down the code into several smaller functions.
Please note that our brief descriptive analysis only investigates what a major-
ity of GitHub users rate as “good and useful code”. This does not mean that
programmers should aspire to write such code—for example, it is an ongoing
discussion if a lower number of LOC and a higher degree of modularization are
desirable [2,6,20]. Furthermore, we want to point out that our evaluation does
incorporate certain human biases—for example, people possibly avoid to use
complex code or may not evaluate it positively. However, this is in line with the
goal of this article: we seek to evolve simple, understandable code that looks
like human-generated code. Therefore, it seems appropriate to use the metrics
evaluated in this section to guide evolutionary search with the goal to improve
the readability and maintainability of the generated code.

4 Experiments

It is an open question how additional information can be appropriately added
to an evolutionary search to increase search performance. Furthermore, it is

268 D. Schweim et al.

not clear what kind of information is helpful. In our experiments, we use the
frequency distributions of the software metrics gained from the GitHub code-
base and test multiple methods how this additional knowledge can be added to
the search. We present our experimental setup (Sect. 4.1) and discuss the results
(Sect. 4.2).

4.1 Experimental Setup

We first introduce a baseline algorithm referred to as base, a standard GE algo-
rithm with widely used parameters. The parameters for base are presented in
Table 1. Note that we use a large maximum tree depth of 30 which allows us to
observe a relatively unconstrained search behavior. We do not allow wrapping
during mapping and instead use a high initial genome length. Our algorithm uses
tournament lexicase selection [24], where a subset of the population is compared
sequentially on multiple test cases. If some programs have identical performance
on all test cases, we randomly select one of these solutions.

Table 1. Baseline parameters

Parameter Value

Generations 80

Initialization Random initialization with valids and no duplicates [15]

Initial genome length 1,000

Population size 1,000

Variation operators Subtree crossover (90%), subtree mutation (10%), crossover and
mutation are only applied on valid individuals and limited to
codons that are used during mapping from genotype to pheno-
type

Selection Tournament lexicase selection (tournament size 10)

Elite size 5

Max. tree depth 30

We will also evaluate an alternative version of base denoted as base dmax17.
In base dmax17, we set the maximum tree depth to 17 [12] to limit the size and
complexity of the evolved code. Furthermore, we add parsimony pressure to the
selection scheme—if there are multiple solutions with identical performance, we
always select the smallest solution.

We compare the two aforementioned baseline approaches with four alterna-
tive variants, where the selection operator differs from the baseline approaches.
The overall idea for the variants is to guide the search by conventional test case
fitness in half of the cases and towards programs that have similar structures
than the programs in the GitHub code-base in the remaining half of cases. Thus,
in these variants, we use the conventional lexicase selection mechanism of base
only in 50% of the cases. In the remaining 50%, we use an alternative selection

Exploiting Knowledge from Code to Guide Program Search 269

scheme—a tournament lexicase selection where the conventional test case vector
is replaced with a vector of the relative frequencies of software metrics. Therefore,
we calculate the software metrics presented in Sect. 3.1 for each of the evolved
programs and look up the relative frequencies of these software metrics measured
in the GitHub code-base. As a result, we get a vector with relative frequencies
for each evolved program. We use this vector within a lexicase selection scheme
and select the programs with the highest relative frequencies. This means that
programs with software metrics that are more frequent in the GitHub repository
are favored over programs with less frequent metrics.

In metrics50, the vector of the relative frequencies of software metrics consists
of lines of code, cyclomatic complexity, AST depth, AST tree size, and lexical
diversity. The metrics used in metrics50 describe the structure of the programs
in the GitHub code-base. However, information about the type of instructions
that are used in the GitHub code-base is not included into the search. Therefore,
we introduce metrics50+ngrams. metrics50+ngrams is working like metrics50,
except that frequencies of n-grams of ancestors are evaluated in the alternative
selection scheme as well. An n-gram of ancestors in an AST tree is the sequence
of a node i and its n−1 ancestor nodes (parent, grandparent, great-grandparent,
etc.) on the same branch [10,19]. We evaluated n-grams of ancestors with n = 2
and n = 3 in the AST representations of the programs in the GitHub code-
base. Every program can have multiple values (e.g., the programs AST has 5
different n-grams, some of them occur more than once). Thus, we count the 2-
and 3-grams for each program; then, we normalize the frequencies over all 2- and
3-grams in the code-base to get overall n-gram frequencies. During evaluation,
we count the 2- and 3-grams, add the relative frequencies and normalize over
the number of 2- and 3-grams in the programs AST. Thus, two more values
are added to the evaluation vector in this setup (one value for 2- or 3-grams,
respectively).

The third option of using the knowledge of the GitHub code-base in an evolu-
tionary search is a multi-objective search with NSGA-II [3]. In NSGAII, we use
the vector with relative frequencies from metrics50 and append the conventional
fitness value to get the multi-objective vector. Furthermore, in NSGAII+ngrams,
we add 2- and 3-gram frequencies to the multi-objective vector.

In Sect. 3.2 we saw that program metrics possibly could just guide the search
towards simple and non-complex programs. To check this hypothesis, we intro-
duce a last variant, parsimony50. In parsimony50, we use the selection mecha-
nism of base with a probability of 50%. In the remaining 50%, we choose the
program with the minimum number of AST nodes. Table 2 summarizes the vari-
ants of the baseline GE algorithm base that we compare in our experiments.

Note that the elite size is measured by the conventional fitness value in all
variants, which prevents losing the best solutions found up to a certain point
in the search. We evaluate all variants on three program search benchmark
problems—count odds, smallest, and median [8] For our experiments, we used
the PonyGE2 framework [5], including the respective grammars for program
search problems.

270 D. Schweim et al.

Table 2. Overview of the variants of the baseline GE algorithm base that are compared
in our experiments

Name Description

base dmax17 Max. tree depth is set to 17 and parsimony pressure is added to
the lexicase selection scheme

metrics50 An alternative selection scheme is used: 50% conventional lexicase
selection, 50% lexicase selection where the test case vector is
replaced with a vector of relative frequencies of software metrics

metrics50+ngrams Same as metrics50, but in addition to the software metrics we also
use 2- and 3-gram frequencies during selection

NSGAII We use the vector with relative frequencies from metrics50 and
append the conventional fitness value to get the multi-objective
vector, 6 objectives

NSGAII+ngrams Same as NSGAII but the multi-objective vector is further
extended with 2- and 3-gram frequencies, 8 objectives

parsimony50 An alternative selection scheme is used: 50% conventional lexicase
selection, in the remaining 50%, we choose the program with the
minimum number of AST nodes

Many more variants could be tested. In fact, we did various experiments
with percentages of selection schemes different from 50. Furthermore, we did a
number of experiments with a weighted lexicase selection scheme to account for
different importance of the software metrics. However, the results did not show
that some metrics were consistently more important than others over multiple
benchmark problems. Due to space limitations, we limit our results to the seven
carefully chosen variants presented above, which we think provide to the most
interesting insights.

4.2 Results and Discussion

We investigate the possibility to use software metrics from an existing code-
base to guide the search with GE for program search problems. We present and
discuss our results.

Performance. First, we will evaluate the performance of the different search vari-
ants. Figures 2a–c show the percentage of solved test cases of the best solutions
over the number of generations for three program search benchmark problems—
count odds (Fig. 2a), smallest (Fig. 2b), and median (Fig. 2c) [8]. For each vari-
ant, we present the average result of 100 runs. Figure 2d shows the legend for
Figs. 2a–c.

The two baseline algorithms base and base dmax17 evolve the best programs
on all three problem instances. Programs evolved with base lead, on average,
to slightly better results. Thus, limiting the depth to 17 and introducing the
parsimony pressure to the selection scheme leads to a decreased performance.

Exploiting Knowledge from Code to Guide Program Search 271

Fig. 2. Percentage of solved test cases of the best solution in a generation over the
number of generations for three benchmark problems; results are the average over 100
runs per variant

Results for parsimony50 are worse, compared to the baseline variants. This is
due to the strong parsimony pressure in this variant, where the smallest programs
are selected in 50 % of the cases. As a consequence, the diversity is reduced.

The performance of metrics50 and metrics50+ngrams are comparable on the
count odds and the smallest problem instance. Both results are slightly worse
than the results of base and base dmax17. On the median problem instance,
metrics50 performs worse and metrics50+ngrams leads to results that are com-
parable to base dmax17. The additional information of 2- and 3-grams in met-
rics50+ngrams helps guiding the search towards better solutions in this case.

NSGAII and NSGAII+ngrams led to the worst results on all three problem
instances. Some possible reasons are that there are too many objectives, and that
the conventional fitness signal is too weak and programs are often selected based
on a software metric frequency. This clearly prevents the search from finding
good solutions.

272 D. Schweim et al.

Overall, the additional information gained from the GitHub repository does
not improve the search performance. However, our goal is to improve readabil-
ity and maintainability of the code, not only performance. Therefore, we will
continue with an analysis of the size of the solutions.

Program Size. Figures 3a–c plot the AST tree size of the best solution over the
number of generations for count odds (Fig. 3a), smallest (Fig. 3b), and median
(Fig. 3c). For each variant, we present the average result of 100 runs.

Fig. 3. AST tree size of the best solution in a generation over the number of generations
for three benchmark problems; results are the average over 100 runs per variant

We can see that the best programs found with base are very large compared
to many other variants, especially on the median problem instance. The sec-
ond baseline, base dmax17, is able to find relatively small programs and only
the programs found with NSGAII and NSGAII+ngrams are slightly smaller.
Our experiments indicate that the multiobjective approaches with NSGAII and
NSGAII+ngrams focus too much on program structure and this does not allow
to find high-quality programs.

Exploiting Knowledge from Code to Guide Program Search 273

The size of the programs that are evolved with metrics50+ngrams and met-
rics50 is large in many cases. Interestingly, the high parsimony pressure in par-
simony50 does also not effectively prevent bloat—the programs are much bigger
than the programs that are evolved with base dmax17. An explanation for this
behavior is that, due to elitism, bloated solutions will always stay in the popu-
lation when their performance is better compared to other programs that were
optimized for their size. The search has to evolve small and highly fit solutions
from time to time to effectively prevent bloat. This can be seen for metrics50
and metrics50+ngrams on the smallest and for metrics50+ngrams on the median
problems. From time to time the search finds small and favorable solutions and
then the size of the best solution in the population decreases drastically. For par-
simony50, we can only observe smaller changes—the code grows over multiple
generations.

Program Content. In the last part of our analysis we want to focus on the AST
node types that are used in the evolved programs. For better comparability we
manually generated a solution. Listing 1.1 shows the hand-coded solution to the
median problem. The code was written by following the rules of the grammar
that is also used by the evolutionary algorithm variants. Lines 1–4 are prede-
fined initializations that are also in all evolved programs. These lines were only
included in the exemplary code for reasons of comparability to automatically
evolved solutions. Only line 5 would have been evolved by an evolutionary algo-
rithm.

Listing 1.1. Example of a small human solution to the median problem

1 def median (in0 : int , in1 : int , in2 : i n t) :
2 i 0 = in t () ; i 1 = in t () ; i 2 = in t ()
3 b0 = bool () ; b1 = bool () ; b2 = bool ()
4 r e s0 = in t ()
5 r e s0 = min (max(in2 , min (in1 , in0)) ,
6 max(in1 , min (in2 , in0)))

We will compare the best programs evolved after 80 generations for the
median problem with the hand-coded solution. We limit this part of the analysis
on three variants—base, base dmax17, and metrics50+ngrams. We selected base
and base dmax17 because of the good performance on all three program search
benchmarks (compared to the remaining variants). metrics50+ngrams was taken
into account because it was the most successful approach that used the additional
fitness signal and thus, is the most promising of our variants. Table 3 presents the
number of AST nodes per node type used in the best solution after generation
80 on the median problem. Results are averaged over 100 evolutionary runs per
variant. We highlighted the rows of the node types that we used in the small
hand-coded solution.

274 D. Schweim et al.

Table 3. Used number of AST node types for the median problem for three different
variants (base, metrics50+ngrams, and base dmax30); results are the average over 100
runs per variant

Operator Small human
solution

base dmax17 metrics50+ngrams Base

Add 0 0.2 1.7 9.6

And 0 0.0 0.0 0.2

Assign 7 8.1 8.1 12.1

AugAssign 0 0.1 0.1 0.5

BinOp 0 0.5 5.2 28.3

BoolOp 0 0.0 0.0 0.6

Call 11 13.5 37.9 154.9

Compare 0 0.1 0.1 1.8

Eq 0 0.0 0.0 0.2

Gt 0 0.0 0.1 0.2

GtE 0 0.0 0.0 0.4

If 0 0.1 0.1 1.7

Load 17 20.7 59.4 255.6

Lt 0 0.0 0.0 0.4

LtE 0 0.0 0.0 0.3

Mult 0 0.2 1.8 9.1

Name 24 28.9 67.5 268.3

NameConstant 0 0.1 0.0 0.6

Not 0 0.0 0.0 0.7

NotEq 0 0.0 0.0 0.2

Num 0 0.3 5.3 28.1

Or 0 0.0 0.0 0.4

Store 7 8.2 8.2 12.7

Sub 0 0.2 1.8 10.1

UAdd 0 0.7 3.2 15.8

USub 0 0.3 2.8 13.4

UnaryOp 0 1.0 6.0 29.9

While 0 0.0 0.0 0.2

Total

number of

operations 67.0 84.3 210.2 857.1

It is very interesting to see that base dmax17 often evolves programs that use
the same node types that are also used in the hand-coded program. Other node
types are rarely used and bloat results from very few meaningless function calls,

Exploiting Knowledge from Code to Guide Program Search 275

e.g., min(in0,in0). This is a good property if the search gets a clear fitness
signal like in the median problem. On the other hand, it limits the possibility
to find more complex solutions. For example, the grammars that we used would
also allow more complex solutions where loops, conditionals, and comparisons
are necessary. To find such a complex solution will be hard when following the
conventional fitness signal.

On the contrary, bloat in base is due to various meaningless calls, e.g., a
large amount of useless arithmetic operations. metrics50+ngrams is a promising
approach that allows to evolve complexity but the amount of bloat is controlled.

In summary, if we take into account both, the performance and the size of
the evolved programs, base dmax17 is the most favorable setting. In base dmax17,
bloat is limited very effectively while the performance is comparable to base.
However, the approach does not help to find complex programs. For example,
our results indicate that more complex non-linear program structures like con-
ditionals and loops are not effectively used by the current GE approaches (with
“general grammars” that are not optimized for a problem instance)

In our experiments, we find evidence that software metrics and n-gram fre-
quencies can help evolving good solutions, while helping to limit bloat and allow-
ing for more complexity. Arguably, meta information such as the software met-
rics examined in this work may not be enough additional signal to be effectively
exploited by evolutionary search. This is no big surprise, since it is also hard
for humans to quantify code quality. Overall, our work is a first step towards
the goal to effectively use additional input signals to guide the search towards
meaningful complex programs.

5 Conclusion

Creating high-quality code is a complex task, even for humans. The goal of
this paper was to discuss and evaluate the idea of how additional knowledge
gained from a large amount of high-quality human-generated code can help in
an evolutionary search. We find evidence that meta-information can help in
guiding the search. However, the code metrics used in our experiments are rather
simplistic, i.e., they do not capture the semantics or internal logic of the code.

Future work has to investigate how information from the existing code-base
can be used more effectively to further improve the search performance. In future
work, we will investigate:

– learn transition probabilities from code in code-base,
– use carefully chosen examples from a code repository to help guiding the

search (or initializing it),
– use probabilistic models (e.g., deep learning approaches) to evaluate the code

quality and incorporate this information into the search.

276 D. Schweim et al.

References

1. Altenberg, L.: Open problems in the spectral analysis of evolutionary dynamics. In:
Menon, A. (ed.) Frontiers of Evolutionary Computation. Genetic Algorithms and
Evolutionary Computation, vol. 11, pp. 73–102. Springer, Boston (2004). https://
doi.org/10.1007/1-4020-7782-3 4

2. Basili, V.R., Perricone, B.T.: Software errors and complexity: an empirical inves-
tigation. Commun. ACM 27(1), 42–52 (1984)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

4. Dijkstra, E.W.: The humble programmer. Commun. ACM 15(10), 859–866 (1972)
5. Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill,

M.: PonyGE2: grammatical evolution in python. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pp. 1194–1201. ACM, Berlin
(2017)

6. Fenton, N.E., Neil, M.: A critique of software defect prediction models. IEEE Trans.
Softw. Eng. 25(5), 675–689 (1999)

7. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Towards understanding and
refining the general program synthesis benchmark suite with genetic programming.
In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–6. IEEE
(2018)

8. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
pp. 1039–1046. ACM, New York (2015)

9. Hemberg, E., Kelly, J., O’Reilly, U.M.: On domain knowledge and novelty to
improve program synthesis performance with grammatical evolution. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, GECCO 2019, pp.
1039–1046. ACM, New York (2019)

10. Hemberg, E., Veeramachaneni, K., McDermott, J., Berzan, C., O’Reilly, U.M.:
An investigation of local patterns for estimation of distribution genetic program-
ming. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary
Computation (GECCO 2012), pp. 767–774. ACM, New York (2012)

11. Johansson, V.: Lexical diversity and lexical density in speech and writing: a devel-
opmental perspective. In: Working Papers in Linguistics, vol. 53, pp. 61–79 (2009)

12. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

13. Krawiec, K.: Behavioral Program Synthesis with Genetic Programming. Studies in
Computational Intelligence, vol. 618. Springer, Cham (2016)

14. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE–2(4), 308–320
(1976)

15. Nicolau, M.: Understanding grammatical evolution: initialisation. Genet. Program.
Evolvable Mach. 18(4), 467–507 (2017). https://doi.org/10.1007/s10710-017-9309-
9D

16. Petke, J.: New operators for non-functional genetic improvement. In: Proceedings
of the Genetic and Evolutionary Computation Conference Companion, pp. 1541–
1542. ACM, New York (2017)

17. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
and code transplants to specialise a C++ Program to a Problem class. In: Nicolau,
M., et al. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 137–149. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44303-3 12

https://doi.org/10.1007/1-4020-7782-3_4
https://doi.org/10.1007/1-4020-7782-3_4
https://doi.org/10.1007/s10710-017-9309-9D
https://doi.org/10.1007/s10710-017-9309-9D
https://doi.org/10.1007/978-3-662-44303-3_12

Exploiting Knowledge from Code to Guide Program Search 277

18. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for
an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C.
(eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055930

19. Schweim, D., Wittenberg, D., Rothlauf, F.: On sampling error in genetic program-
ming. Nat. Comput. (2021). https://doi.org/10.1007/s11047-020-09828-w

20. Selby, R.W., Basili, V.R.: Analyzing error-prone system structure. IEEE Trans.
Softw. Eng. 17(2), 141–152 (1991)

21. Sobania, D.: On the generalizability of programs synthesized by grammar-guided
genetic programming. In: Hu, T., Lourenço, N., Medvet, E. (eds.) EuroGP 2021.
LNCS, vol. 12691, pp. 130–145. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-72812-0 9

22. Sobania, D., Rothlauf, F.: Teaching GP to program like a human software devel-
oper: using perplexity pressure to guide program synthesis approaches. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2019), pp.
1065–1074. ACM, New York (2019)

23. Sobania, D., Rothlauf, F.: Challenges of program synthesis with grammatical evolu-
tion. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds.) EuroGP 2020. LNCS,
vol. 12101, pp. 211–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-44094-7 14

24. Spector, L.: Assessment of problem modality by differential performance of lex-
icase selection in genetic programming: a preliminary report. In: Proceedings of
the 14th Annual Conference Companion on Genetic and Evolutionary Computa-
tion, GECCO 2012, pp. 401–408. Association for Computing Machinery, New York
(2012)

https://doi.org/10.1007/BFb0055930
https://doi.org/10.1007/s11047-020-09828-w
https://doi.org/10.1007/978-3-030-72812-0_9
https://doi.org/10.1007/978-3-030-72812-0_9
https://doi.org/10.1007/978-3-030-44094-7_14
https://doi.org/10.1007/978-3-030-44094-7_14

Multi-objective Genetic Programming
for Explainable Reinforcement Learning

Mathurin Videau1(B), Alessandro Leite1, Olivier Teytaud2,
and Marc Schoenauer1

1 TAU, Inria Saclay, LISN, Paris, France
mathurin.videau@dauphine.eu

2 Meta AI Research, Paris, France

Abstract. Deep reinforcement learning has met noticeable successes
recently for a wide range of control problems. However, this is typically
based on thousands of weights and non-linearities, making solutions com-
plex, not easily reproducible, uninterpretable and heavy. The present
paper presents genetic programming approaches for building symbolic
controllers. Results are competitive, in particular in the case of delayed
rewards, and the solutions are lighter by orders of magnitude and much
more understandable.

Keywords: Genetic Programming · Reinforcement Learning ·
Explainable Reinforcement Learning (XRL) · Genetic Programming
Reinforcement Learning (GPRL)

1 Introduction

Interpretability plays an important role in the adoption and acceptance
of machine learning (ML) models. A model is normally considered explainable if
its users can understand the reasons for an output of a given input and if they
can include it into their decision processes. When a model lacks understandabil-
ity, its usefulness reduces since it may be hard to ensure correctness. While the
literature has mostly focused on developing different techniques to explain super-
vised and unsupervised machine learning models and neural networks, reinforce-
ment learning (RL) methods also require explanations to be adopted by a broad
audience. In RL, an agent learns a particular behavior through repeated trial-
and-error interactions with a specific environment. At each time step, the agent
observes the state of the environment, chooses an action, and in return, receives
a reward [23,51]. RL methods can be difficult to understand as they depend on
the way the reward functions are defined, on how the states are encoded, and
on the chosen policy. For this reason, different explainable artificial intelligence
(XAI) methods have been proposed over the last years.

Explainable artificial intelligence (XAI) comprises a set of methods that aim
to highlight the process that a machine learning model employed to output a

M. Videau—Now at Meta AI Research.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 278–293, 2022.
https://doi.org/10.1007/978-3-031-02056-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_18&domain=pdf
https://doi.org/10.1007/978-3-031-02056-8_18

Multi-objective GP for Explainable RL 279

prediction using terms interpretable by humans [3,13]. Interpretability in this
case means the degree to which humans understand the causes for a model out-
put [36]. It contrasts with the concept of a black-box which cannot be understood
by humans. Although, interpretability and explainability are usually used inter-
changeably, the former is an intrinsic property of a predictive model, whereas
the latter is modeled as post-hoc explanations and thus, separated from the pre-
dictive model [18]. Genetic programming, linear regression, and decision trees up
to a certain depth are examples of interpretable models, while neural networks
and ensemble methods are considered black-boxes. Post-hoc explanations can be
global or local. While global explanations describe the overall logic of a model
independently of input queries, local explanations try to elucidate the reasons
for an output produced for a specific input query. Post-hoc explainers can be
agnostic or dependent of the underlying approach used by the black-box. Feature
importance is an example of the former, and is hence used by many explana-
tion methods to describe how crucially each feature contributes to a prediction,
thus helping to understand the underlying process. In other words, they use
the weights of each feature as a proxy for explicability. Examples include Local
Interpretable Model-Agnostic Explanations (LIME) [41] and SHapley Additive
exPlanations (SHAP) [32]. LIME explains a black-box by weighting the distance
between the predictions made by an interpretable model and by the black-box
for a given query instance. Then, it outputs the contribution of each feature for
the prediction. SHAP, on the other hand, relying on cooperative game theory,
describes how to distribute the total gains of the game to players according to
their contributions, and similarly, it outputs the importance of each feature for
the prediction. Other approaches include partial dependence plot (PDP) [7] and
saliency map [47,48], for instance.

This paper focuses on explainable reinforcement learning (XRL). We propose
and analyze genetic programming (GP)-based RL (GPRL) policies for different
control tasks (Sect. 3). The policies are programs representing symbolic expres-
sions. In this work, the proxy used for interpretability is the size of the expres-
sion of the policy, and their terms (i.e., features). Experimental results (Sect. 4)
show that GP-based RL policies can outperform state-of-the-art neural networks
on various tasks, while being much more interpretable. Furthermore, they also
demonstrate that traditional GP methods require additional support to solve
motion tasks. Map-Elites [38] demonstrates to be a good option without dete-
riorating the interpretability of the policies, in contrast with imitation learning
approaches. Source code is available at gitlab.inria.fr/trust-ai/xrl/gpxrl.

2 Related Work

Recent years have seen an increasing interest in explaining reinforcement
learning policies. It is mainly due to the advancement of deep reinforcement
learning (DRL) methods. On the one hand, many works have used decision
trees [5,12,14,30,43] to try to understand how the state space is segmented
into different actions: decision trees distill the behavior of the neural net-
works [5,12,30]. On the other hand, other studies rely on symbolic expressions

http://gitlab.inria.fr/trust-ai/xrl/gpxrl

280 M. Videau et al.

to represent DRL policies either by program synthesis [22,52] or by symbolic
regression methods [22,27,29,53,54]. The former uses neural networks to gener-
ate the programs while the latter relies mostly on genetic programming due to
its historical performance when employed as a policy regularizer [22,27,53,54].
For example, Verma et al. [52] use the base sketch to generate programs that try
to mimic a neural network using the mean squared error as proxy metric. Their
results show that in addition to be interpretable, the policies can generalize bet-
ter than the neural networks. Liventsev et al. [31] use the Brainfuck language to
describe policies that are driven by both genetic programming and by a recur-
rent neural network (RNN). Their results show that although this combination
lead to better program structure, they underperform deep reinforcement learning
policies. Also, they might bring sparsity, but not really explainability. Recently,
symbolic regression methods have been used to explain complex RL tasks. For
instance, Wilson et al. [53] showed that GP-based policies can outperform neural
networks in some specific Atari games tasks. However, their number of operations
make them hard to understand. Also, on Atari games, Kelly et al. [24] used Tan-
gled Program Graphs (TPG) to evolve a symbolic program that solves all the
games. Much less complex than their deep neural network (DNN) challengers,
their programs allow some explainability of their behavior, but remain difficult
to understand globally. Hein et al. [22] demonstrated that similar performance
can be observed on continuous control tasks, but their approach need sample
trajectories to derive the GP policies. Kubalík et al. [27], on the other hand, got
analytical expressions of the value function by framing the problem as a fixed
point of the Bellman equation. Therefore, this approach demands knowledge
about the transition function to enable learning. Landajuela et al. [29] showed
that for continuous control tasks, symbolic regression methods helped by neural
networks may outperform neural networks-only policies. In addition, in the cases
where the dynamics of the tasks are known, the authors proved the stability of
the symbolic policies. Nevertheless, for problems with multidimensional actions,
this process requires pre-trained neural networks.

Table 1 summarizes the main existing works on GP-based RL policies. While
literature has concentrated on evaluating the performance of RL policies for
specific task environments, this work focuses on studying both the performance
and interpretability of GP-based RL policies on various control tasks. Further-
more, we also investigate strategies to handle some identified limitations of tra-
ditional GP approaches when dealing with complex control tasks.

3 Explainable Reinforcement Learning Using GP

Reinforcement learning (RL) is usually formalized as a Markov decision
process (MDP), i.e., a tuple (S,A, p, r), where S and A are the state and action
spaces. At each discrete time step t, an agent observes the system state st ∈ S
and takes an action at ∈ A. The system state then changes to state st+1 with
probability p(st+1|st, at) and the agent receives a reward r(st, at, st+1) ∈ R, for
a reward function r : S × A × S �→ R. A policy is a function from S into A that
associates to each state the action to be taken in that state (only deterministic
policies are considered in this work).

Multi-objective GP for Explainable RL 281

Table 1. Summary of interpretable GP-based RL policies

Work Approach Environment Objective(s)

[33] MCTS Mountain Car
Acrobot

Cumulative mean reward
+ complexity

[52] NN + Bayesian opt TORCS Cumulative reward

[29] Deep Symbolic
Regression

OpenAI Gym:
Classical control, Box2D,

Mujocco
Cumulative reward

[31] RNN + GP OpenAI Gym (4 envs) Cumulative reward

[54] NN + EFS
Acrobot

Mountain Car
Industrial Benchmark[21]

MSE

[53] Mixed type
Cartesian GP Atari Cumulative reward

[24] Tangle Program Graphs Atari Cumulative reward

[27] Multi-Gene GP 1-DOF, 2-DOF
Magman Bellman MSE

[22] Tree GP
Montain Car,

CartPole
Industrial Benchmark [21]

Cumulative reward
+ complexity

This
work

Tree GP +
Linear GP

OpenAI Gym:
Classical control,
Box2D, Mujoco

Cumulative reward
+ complexity

The solution of an RL problem with time horizon H ∈ [0,+∞] and a discount
factor γ ∈ [0, 1] is a policy π∗ that maximizes the expected discounted cumulative
reward over all starting states s0 ∈ S and all realizations of the trajectory
starting from s0 according to the stochastic state transition p, hereafter called
its score, and defined as follows.

score(π) = Es0

[
H−1∑
t=0

γtR(st, π(st))

]
(1)

The expectation in Eq. (1) above is estimated from several Monte-Carlo simu-
lations of the policy at hand with random starting states (more below).
Explainability. Because there is no formal definition of explainability, a com-
mon practice is to use as a proxy the complexity of the obtained solutions [13,18].
The size of an expression and the number of selected features in its formula deter-
mine the complexity of a policy. Each operator and terminal is assigned a given
elementary complexity (see Table 2), and the global complexity is the sum over
the whole formula of these elementary complexities [22]. Furthermore, two ways
are experimented with in this work to obtain simple solutions: two-objective opti-
mization, with cumulated reward and complexity as objectives; biased operators
that favor removal over additions of terms in the solution (details in Sect. 4.1).

282 M. Videau et al.

Bandit-like Evaluation Strategy. GP policies have heterogeneous sizes and
computational costs. In order to obtain an accurate estimate of their scores, we
try to allocate our simulation budget as efficiently as possible, and in particular
to run more Monte-Carlo simulations for promising individuals, using a multi-
armed-bandit-like strategy as follows: a total budget T of simulations is allocated
at each generation (details below). Each individual of the population (i.e., policy)

is attributed an upper confidence bound (UCB) value defined by x̄+c
√

ln(n′+T)
n ,

where c is an exploration constant, x̄ is the mean score of the policy and n′ is an
offset accounting for past simulations of this policy prior to this generation, and
n the number of times this policy was simulated over all generations. Policies
are chosen to be simulated based on this UCB score, by batches of k policies in
parallel (i.e., the k ones with the highest UCB values are chosen). The policies
with high UCB values are either the ones that have a high score, or the ones
that have been simulated a small number of times. This process is repeated until
the total budget T is exhausted. Individuals that have never been simulated,
and hence have an infinite UCB value, are therefore simulated at least once.
After each simulation, the UCB values of the simulated policies are updated: x̄
takes into account the new score, and n is incremented by one. Note that in case
of multi-objective optimization, this batch strategy is biased toward the best
scoring individuals of the Pareto front – but these are the ones of main interest
here.

Per Generation Simulation Budget. In conjunction with the bandit
like strategy presented above, the global simulation budget per generation
is gradually increased between generations. The reason is that the differ-
ences in scores between different policies are likely to decrease, and the vari-
ance of the scores needs to be decreased to improve the robustness of the
ranking among policies when their differences become more and more sub-
tle. The detailed parametrization of this scheduling is available in the code
source (gitlab.inria.fr/trust-ai/xrl/gpxrl).

4 The Experiments

The first goal of the experiments is to quantify the score/interpretability trade-
offs when using GP compared to the traditional direct policy search strategies
usually embraced by RL approaches. Different benchmarks are used, with dif-
ferent levels of difficulty, and GP are compared with state-of-the-art algorithms,
either pertaining to direct policy search, or to classical RL techniques. Further-
more, two different GP representations are considered in that respect, classical
parse trees [26], and linear GP [8]. Likewise, as the literature lacks a recognized
measure of interpretability, we will also deeply analyze and compare the results
beyond complexity, regarding feature importance on the one hand, and exact
analytical policies on the other hand.

http://gitlab.inria.fr/trust-ai/xrl/gpxrl

Multi-objective GP for Explainable RL 283

4.1 GP Representations

We experimented with two GP representations, and implemented them in python
using the DEAP library [16].

Tree-Based GP. The first representation is the standard parse tree [26], with
one point crossover, and a mutation operator that either adds Gaussian noise to
a random ephemeral constant with probability 0.3, or replaces a random subtree
with a randomly generated one (with probability 0.7). We used non-dominated
sorting genetic algorithm (NSGA)-II non-dominated sorting tournament selec-
tion based on the two objectives, score and complexity. But some RL tasks
require multiple continuous actions as output, whereas trees only have one out-
put. In such contexts, individuals are teams of trees, where each tree corresponds
to one continuous action. All variation operators are performed on one of the
trees of the team, and trees with same index are crossed-over. Unfortunately, this
results in completely independent action policies, something rather inefficient.
Linear GP. We thus moved to linear GP [8], that can consider multiple con-
tinuous actions natively (as different registers). In such context, shared features
can arise, improving both the score and the complexity of the policies. Standard
crossovers for linear GP are used (i.e., exchange of a segment of instructions) and
mutation is either an insertion or a deletion of a random instruction, or a random
modification of an existing instruction. Tournament selection with tournament
size of five is used. Furthermore, the probability of instruction removal is twice
that of an insertion, creating a bias toward small programs (though NSGA-II
would also be a viable alternative, not implemented at the moment).
Hyper-parameters. For both representations, evolution’s parameters can be
found in Table 3. The optimization ends after the fixed number of generations is
reached. In both setups, it was experimentally assessed that high crossover rates
did not improve the score of the resulting policies, while increasing their sizes: a
low (or zero) crossover rate is hence used throughout this work.

Finally, the choice between (μ, λ) and (μ+λ) strategies was based on prelim-
inary experiments. On the one hand, (μ, λ) tends to be more robust to noise but
consistently forgets the best solution between generations, which produces high
variance and non-monotonic convergence. On the other hand, (μ + λ) can find
better solutions, but it is more subject to noise if individuals are not sufficiently
simulated. Indeed, some solutions could have good fitness just because of a few
lucky simulations. In our bandit like setup, this issue is less likely to occur since
the individuals are continually tested throughout the evolution process. So, in
the following experiments, we used the (μ+ λ) schema. Also, these experiments
showed us that the exploration constant c of the bandit doesn’t have that much
impact on the results, and it was set by default to

√
2.

4.2 Benchmarks and Evaluation

Open AI gym [9] was used to evaluate all policies here, on three different con-
trol environments: classical control, Mujoco, and Box2D. While classic control
environment proposes easy tasks, Box2D and Mujoco offer more complex ones.

284 M. Videau et al.

Fig. 1. A Pareto front found for the Pendulum, and the returned solution

Choosing the Solution. In the case of multi-objective optimization (for
tree GP), the returned solution is manually chosen from the Pareto front as
the one having the best complexity while being only slightly sub-optimal in
terms of score. An example of such a selected solution can be seen in Fig. 1. For
linear GP, the best individual according to the score, is returned. In all cases,
the score of the returned solution is computed through 1000 independent simu-
lations. Three runs have been performed for each setting (i.e., environment and
hyper-parameters as in Table 3), and the best of the three is used in Table 2 and
Fig. 2 (low variations between runs were observed). There is also a Colab Note-
book showing the efficiency and portability of the symbolic policies presented
in Table 2 at shortest.link/VHv.

4.3 Baselines

We compare the evolved GP-based policies with the ones obtained by neural
network and Nested Monte-Carlo Search, two state-of-the-art approaches in RL
and games. What is called the “neural network” policy below is in fact the best
performing policy between Proximal Policy Optimization (PPO) [46], Soft Actor
Critic (SAC) [19], or Advantage Actor Critic (A2C) [37] algorithms. PPO is an
on-policy strategy that optimizes a first-order approximation of the expected
reward while cautiously ensuring that it stays closed to the real value. SAC, on
the other hand, is an off-policy algorithm that balances between the expected
return and the entropy. Finally, A2C is an asynchronous gradient-based algo-
rithm to turn agents’ exploration process into a stationary one. These methods
achieved impressive performance when used in different application domains.
However, these baselines use a lot of information from the problem, including
rewards at each time step. As this information is not necessarily available in all
real-world settings, we add other methods which use only the total reward per
episode, as the GP methods proposed in this work. These methods include Nested
Monte-Carlo Search (NMCS) [10] and direct policy search (DPS) [28,34,45,49].

http://shortest.link/VHv

Multi-objective GP for Explainable RL 285

The “DPS” baseline below reports the best-performing DPS between CMA [20] or
NGOpt [35], Population control [6], Differential Evolution [50], PSO [25], Meta-
Models [4], or complex combinations that are proposed in Nevergrad [40], includ-
ing NoisyRL, SpecialRL, and MixDeterministicRL, defined as follows. MixDe-
terministicRL runs PSO, GeneticDE and DiagonalCMA and keeps the best of
the three for the second half of the budget. NoisyRL uses a chaining of a MixDe-
terministicRL plus a method for fine-tuning robustly to noise, and SpecialRL
uses a chaining of MixDeterministicRL combined with population control for
fine-tuning.

In order to reduce the complexity of DPS controllers, we tested (i) various
architectures of neural networks as in [35,40] (e.g., shallow, semi-deep, deep),
(ii) different sizes of hidden layers, (iii) different optimization methods, and (iv)
different initial step-sizes1, keeping and plotting only the best result. In spite of
being the most versatile tools with minimum constraints on the environment,
we shall see that GP and DPS are competitive, while GP controllers have the
lowest complexity.

5 Experimental Results

5.1 Quantitative Analysis

Table 2 shows the cumulative rewards of the policies in the various environments.
GP-based policies outperform neural networks for simple and non-motion tasks.
For the motion tasks, GP-based policies are obviously trapped in some local
optimum. Indeed, they only manage to keep the agent in the upright position as
much as possible. It is due to its high variance compared to the ones obtained
by a neural network, as can be seen in Fig. 3.

We obtained good and relatively compact controllers by DPS, i.e., methods
only using the total cumulated reward. In short, the scores are satisfying, compet-
itive with PPO, SAC, and NMCS (sometimes better and sometimes worse). On
the other hand, in spite of testing many architectures and optimization methods,
DPS failed to compete with the GP-based approaches in terms of complexity, as
shown in Fig. 2.

Beyond complexity, we evaluated the interpretability of GP-based policies
through the number of features used in the symbolic expressions. As can be
seen in Fig. 4, for each environment, GP-based policies does figure out the most
important features to solve the tasks. Furthermore, they are sometimes easily
explainable. For example, for the LunarLander environment, the behavior of
the agent is Eq. (2): (1) stops the main engine after landing, (2) reduce rocket’s
speed as it moves close to the platform, (3) stabilize the rocket in its vertical axis
and keep it in the center of the platform, and (4) reduce the speed of the rocket
close to the center of the platform. We can even notice that the policy ignores
the orientation of the rocket when deciding the action to execute, and decide

1 This DPS benchmark has been merged in Nevergrad, and our experiments can
be reproduced by «python −m nevergrad.benchmark gp −−num_workers = 60
−−plot».

286 M. Videau et al.

Table 2. Scores (average cumulated rewards), after each policy was re-simulated 1000
times. DPS refers to the best result for moderate complexity of Direct Policy Search
by Nevergrad, and NN to the best of PPO, SAC and A2C. For TreeGP and LinearGP
we use the best training error of 3 runs and test it; we validated results by rerunning
the whole process (including the best of 3) a second time and got similar results.

Environment # in # out DPS Tree
GP

Linear
GP NN NMCS

Control tasks
Cartpole 4 2 500.0 500.0 500.0 500.0† 484.27
Acrobot 6 3 -72.74 -83.17 -80.99 −82.98† -89.69

MountainCarC0 2 1 99.4 99.31∗∗ 88.16 94.56‡ 97.89
Pendulum 3 1 -141.9 -154.36 -164.66 -154.69‡ -210.71

Mujoco
InvDoublePend 9 1 9360 9092.17 9089.50 9304.32‡ –

InvPendSwingUp 5 1 893.3 893.35 887.08 891.45‡ –
Hopper 15 3 2094 999.19 949.27 2604.91‡ –

Box2D
LunarLanderC0 8 2 282.5 287.58 262.42 269.31† –
BipedalWalker 24 4 310.1 268.85 257.22 299.44∗ –

BipedalWalkerHardcore 24 4 8.16 9.25 10.63 246.79∗ –
†PPO [46], ‡SAC[19] ∗A2C[37]
∗∗ Rely on operators’ overflow protections, keeping only the best one for the non-
linearity

to repair this “bug” in the policy. On the other hand, for abstract environments
such as the BipedalWalker similar analysis is difficult. However, we can still
observe that the actions strongly rely on their own articulations and not on the
lidar (Eq. (4)).

main engine:a0 = (y > 0)
︸ ︷︷ ︸

(1)

? (−0.37y − ẏ + 0.1)
︸ ︷︷ ︸

(2)

: 0 (2)

side engine: a1 = (4(θ − x)
︸ ︷︷ ︸

(3)

−ẋ)4
︸ ︷︷ ︸

(4)

(3)

hip1 : a0 = knee1.θ (4)

knee1 : a1 =
knee1.θ̇

lidar5
(5)

hip2 : a2 =
lidar7

knee1.θ̇
− hip2.θ + hull.θ (6)

knee2 : a3 = hull.θ − knee2.θ (7)

5.2 Dealing with the Local Minimum Trap

From these experiments, it seems that, on discontinuous search spaces, GP-
based policies have a high risk of converging to some local minima. Indeed, since

Multi-objective GP for Explainable RL 287

Fig. 2. Complexity of the policies based on expressions’ size. Y-axis is in logarithmic
scale

Fig. 3. Cumulative rewards of the solution policies with a more detailed view on the
distributions over the post-evolution one thousand simulations. For graphic compre-
hension, inverse double pendulum and Hopper rewards were divided by ten and two
respectively

changing a unique operation leads to important programs’ changes, evolution
has a hard time to transition from one local optimum to another. As a result,
there is a lack of exploration for solving the task at hand. Next sections describe
how imitation learning [1,2] and (QD) [39] could be used to tackle this issue and
at the same time improve the score of symbolic RL policies – and how only QD
succeeds.

288 M. Videau et al.

Table 3. Evolution parameters

Representation Tree GP Linear GP

Classic control environments
Strategy NSGA-II tournament

Function set {+,−,×, /, if} {+,−,×, /, if}
Evolution’s parameters Pmut = 0.9 Pmut = 1.0

Pcrossover = 0.1 Pins = 0.3, Pdel = 0.6
PInstruction_mut = 0.5
Pcrossover = 0.0

Parents μ 100 100
Offspring λ 100 100

Number of generations 500 500
Mujoco and Box2D environments

Strategy NSGA-II tournament
Function set {+,−,×, /, if, exp, log, sin} {+,−,×, /, if, exp, log, sin}

Evolution’s parameters Pmut = 0.9 Pmut = 1.0
Pcrossover = 0.1 Pins = 0.3, Pdel = 0.6

PInstruction_mut = 0.5
Pcrossover = 0.0

Parents μ 500 500
Offspring λ 500 500

Number of generations 2000 2000

5.2.1 Imitation Learning
Imitation learning aims to accelerate learning by somehow mimicking successful
demonstrations of solutions of the task at hand. In this case, the agent acquires
knowledge by observing a teacher which performs the target task. The problem
can be formulated as a supervised learning approach in which for a data set
mapping states to actions, the goal of the agent results in minimizing the error
of deviating from the demonstrated output. Formally, from a set of n demonstra-
tions D = {(s0, a0), . . . , (sn, an)} with si, ai ∈ S × A, an agent learns a policy
π such that π(si) = ai, where π(si) is the predicted action by the teacher. In
this work, a pre-trained neural network played the role of a teacher π and a GP
program (the learner) tries to imitate it by learning a policy π̂ that minimizes
a loss �(π̂(si), ai), with � being the mean square error for the continuous tasks
and cross-entropy for the discrete ones. Results of two variants of this approach
can be seen in Table 4. Behavioral cloning (BC) [44] comprises the basic imita-
tion strategy that uses a static database of trajectories. DAGGER [42], on the
other hand, uses a dynamic set of trajectories and runs additional simulations
of the selected trajectories. None of these trials led to better result than the
one presented in Sect. 4.1. Furthermore, these trials tend to produce more com-
plex policies, reducing their interpretability (Fig. 4). This approach was hence
abandoned.

Multi-objective GP for Explainable RL 289

Fig. 4. Complexity of the GP-based policy based on both expression’s size and selected
features

Table 4. Mean cumulative rewards of policy obtained by Imitation Learning (left) and
Map-Elites (right) on 1000 simulations

Environment BC[44] DAGGER[42]

Cartpole 500.0 500.0
Acrobot -84.17 -81.302

MountainCar 94.06 94.46
Pendulum -1032.09 -280.22

InvDoublePend 8523.78 8874.56
InvPendSwingUp -104.01 427.92

LunarLander 247.28 272.62
BipedalWalker -0.66 32.74

Hopper 59.87 713.78

Environment
QD-Tree

GP

QD-

Linear
NN

BipedalWalker 311.34 299.64 299.44∗
Hopper 2152.19 1450.11 2604.91‡

∗ A2C [37] ‡ SAC [19]

5.2.2 Quality Diversity
Quality diversity is an optimization algorithm that aims to find a set of strong
and maximally diverse solutions [39]. Diversity is measured in the behavioral
space, considering that all the behaviors are equally important. In this work,
in order to maintain and even maximize the diversity in the population, we

290 M. Videau et al.

rely on the Map-Elites algorithm [38] and in particular, a variant that takes
into account noisy fitness values [15]. Based on its behavioral features, each
individual is placed on a grid. All selections of individuals are independent,
and proceed as follows: first, a cell is uniformly selected among the non-empty
cells of the grid. If there are more than one individual in the cell, a random
one is selected. To avoid too large grids, we use only two behavioral features,
discretize them in ten intervals, and limit the number of individuals per cell to ten
individuals by removing the worst individuals when new ones are placed there.
These aspects, when put together, give a population size of at most one thousand
individuals. To estimate the behavioral features and scores, at each generation,
each new individual is simulated on three episodes. All the other parameters
are the same from the one presented in Table 3 in the Mujoco and Box2D part.
Once the Map-ELites algorithm round is finished, a subset of the grid is selected
according to a score threshold, and is the initial population of the algorithm
presented in Sect. 4.1, run for a hundred generations. This last part aims to
fine-tune the solutions found by Map-Elites and to reduce their complexity by
using NSGA-II. All these experiments were done with the QDpy library [11]. For
BipedalWalker, the behavioral features are the mean amplitude of the hip1 and
hip2 joints (i.e., the mean of |s4|, |s9|). For Hopper, the behavioral features are
the mean amplitude of foot and leg joints (i.e., the mean of |s13|, |s11|).

Table 4 shows the results obtained by employing our QD approach. For the
two locomotion environments, the score of the policies significantly increased.
This improvement is clearly visible for the Hopper task. Indeed, in this envi-
ronment, the policy changed from a static behavior (i.e., tree GP) to a walk-
ing one (i.e., QD-tree GP). Furthermore, the policies remain interpretable with
respect to their degree of complexity and the number of features as can be
observed in Fig. 4.

6 Conclusion and Further Work

In RL, a policy maps the state of an environment to the actions to be taken
by an agent [51], and the agent must learn the action-state mapping that maxi-
mizes the cumulative rewards. Therefore, some states may be irrelevant or even
inadequate for some policies. As a result, they may lead to policies that are
hard to understand and explain. Nevertheless, the literature has mostly focused
on using traditional machine learning methods and neural networks in order to
explain reinforcement learning, whereas it is necessary to deeper understand its
functioning and decisions. Likewise, the majority of works in explainable rein-
forcement learning has focused on specific task environments. In this paper,
we investigated the use of GP-based RL policies considering both score and
interpretability for several environments simultaneously. Our approach relied on
parse trees [26] and linear GP [8] to represent the programs combined with a
multi-arm bandit strategy to allocate the computational budget across the gen-
erations. Experimental results on three different types of control environments
show that the GP-based RL policy can have score similar to state-of-the-art

Multi-objective GP for Explainable RL 291

methods (e.g., neural networks), while still being explainable when considering
the size of their expressions, and the selected features. Furthermore, we observed
that standard GP methods need help to solve motion tasks correctly, as they
stay stuck in local optima. Map-Elites [38] revealed to be an appropriate option
without penalizing the interpretability of the policies. Nevertheless, the size of
the grids determines the quality of the solutions and the convergence time. Con-
sequently, it may be unsuitable for high-dimension problems. Bayesian optimiza-
tion may handle convergence issue by selecting the grid to explore [17]. Another
alternative comprises in incrementally increases the number of features to train
a population to explore both the features and grids’ size diversity. Further direc-
tion also includes the usage of Tangled Program Graphs (TPG) to enable code
reuse. However, it still misses at the moment some native support for continuous
actions.

Acknowledgements. This research was partially funded by the European Commis-
sion within the HORIZON program (TRUST-AI Project, Contract No. 952060).

References

1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning.
In: ICML, p. 1 (2004)

2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

3. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies,
opportunities and challenges toward responsible AI. IF 58, 82–115 (2020)

4. Auger, A., Schoenauer, M., Teytaud, O.: Local and global order 3/2 convergence
of a surrogate evolutionary algorithm. In: GECCO, p. 8 (2005)

5. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy
extraction. arXiv:1805.08328 (2018)

6. Beyer, H.G., Hellwig, M.: Controlling population size and mutation strength by
meta-ES under fitness noise. In: FOGA, pp. 11–24 (2013)

7. Biecek, P., Burzykowski, T.: Explanatory Model Analysis: Explore, Explain And
Examine Predictive Models. CRC Press, Boca Raton (2021)

8. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer, Cham
(2007). https://doi.org/10.1007/978-0-387-31030-5

9. Brockman, G., et al.: OpenAI Gym. arXiv:1606.01540 (2016)
10. Cazenave, T.: Nested Monte-Carlo search. In: IJCAI (2009)
11. Cazenille, L.: QDpy: a python framework for quality-diversity (2018).

bit.ly/3s0uyVv
12. Coppens, Y., Efthymiadis, K., Lenaerts, T., Nowé, A., Miller, T., Weber, R., Mag-

azzeni, D.: Distilling deep reinforcement learning policies in soft decision trees. In:
CEX Workshop, pp. 1–6 (2019)

13. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv:1702.08608 (2017)

14. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning.
JMLR 6, 503–556 (2005)

15. Flageat, M., Cully, A.: Fast and stable map-elites in noisy domains using deep
grids. In: ALIFE, pp. 273–282 (2020)

http://arxiv.org/abs/1805.08328
https://doi.org/10.1007/978-0-387-31030-5
http://arxiv.org/abs/1606.01540
http://bit.ly/3s0uyVv
http://arxiv.org/abs/1702.08608

292 M. Videau et al.

16. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
evolutionary algorithms made easy. JMLR 13, 2171–2175 (2012)

17. Gaier, A., Asteroth, A., Mouret, J.B.: Data-efficient exploration, optimization, and
modeling of diverse designs through surrogate-assisted illumination. In: GECCO,
pp. 99–106 (2017)

18. Gilpin, L., Bau, D., Yuan, B., Bajwa, A., Specter, M., Kagal, L.: Explaining expla-
nations: an approach to evaluating interpretability of ML. arXiv:1806.00069 (2018)

19. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: ICML, pp.
1861–1870 (2018)

20. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. ECO 11(1), 1–10 (2003)

21. Hein, D., et al.: A benchmark environment motivated by industrial control prob-
lems. In: IEEE SSCI, pp. 1–8 (2017)

22. Hein, D., Udluft, S., Runkler, T.A.: Interpretable policies for reinforcement learning
by genetic programming. Eng. App. Artif. Intell. 76, 158–169 (2018)

23. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey.
JAIR 4, 237–285 (1996)

24. Kelly, S., Heywood, M.I.: Multi-task learning in Atari video games with emergent
tangled program graphs. In: GECCO, pp. 195–202 (2017)

25. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IJCNN, pp. 1942–
1948 (1995)

26. Koza, J.R.: Genetic Programming: On the Programming of Computers by means
of Natural Evolution. MIT Press, Massachusetts (1992)

27. Kubalík, J., Žegklitz, J., Derner, E., Babuška, R.: Symbolic regression methods for
reinforcement learning. arXiv:1903.09688 (2019)

28. Kwee, I., Hutter, M., Schmidhuber, J.: Gradient-based reinforcement planning in
policy-search methods. In: Wiering, M.A. (ed.) EWRL. vol. 27, pp. 27–29 (2001)

29. Landajuela, M., et al.: Discovering symbolic policies with deep reinforcement learn-
ing. In: ICML, pp. 5979–5989 (2021)

30. Liu, G., Schulte, O., Zhu, W., Li, Q.: Toward interpretable deep reinforcement
learning with linear model u-trees. In: ECML PKDD, pp. 414–429 (2018)

31. Liventsev, V., Härmä, A., Petković, M.: Neurogenetic programming framework for
explainable reinforcement learning. arXiv:2102.04231 (2021)

32. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: NeurIPS, pp. 4768–4777 (2017)

33. Maes, F., Fonteneau, R., Wehenkel, L., Ernst, D.: Policy search in a space of simple
closed-form formulas: towards interpretability of reinforcement learning. In: ICDS,
pp. 37–51 (2012)

34. Mania, H., Guy, A., Recht, B.: Simple random search provides a competitive app-
roach to reinforcement learning. arXiv:1803.07055 (2018)

35. Meunier, L., et al.: Black-box optimization revisited: Improving algorithm selection
wizards through massive benchmarking. In: IEEE TEVC (2021)

36. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

37. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: ICML,
pp. 1928–1937 (2016)

38. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites.
arXiv:1504.04909 (2015)

39. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolu-
tionary computation. Front. Robot. AI 3, 40 (2016)

http://arxiv.org/abs/1806.00069
http://arxiv.org/abs/1903.09688
http://arxiv.org/abs/2102.04231
http://arxiv.org/abs/1803.07055
http://arxiv.org/abs/1504.04909

Multi-objective GP for Explainable RL 293

40. Rapin, J., Teytaud, O.: Nevergrad - a gradient-free optimization platform (2018).
bit.ly/3g8wghU

41. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? Explaining the
predictions of any classifier. In: SIGKDD, pp. 1135–1144 (2016)

42. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured
prediction to no-regret online learning. In: AISTATS, pp. 627–635 (2011)

43. Roth, A.M., Topin, N., Jamshidi, P., Veloso, M.: Conservative q-improvement:
reinforcement learning for an interpretable decision-tree policy. arXiv:1907.01180
(2019)

44. Russell, S.: Learning agents for uncertain environments. In: COLT, pp. 101–103
(1998)

45. Schoenauer, M., Ronald, E.: Neuro-genetic truck backer-upper controller. In: IEEE
CEC, pp. 720–723 (1994)

46. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv:1707.06347 (2017)

47. Selvaraju, R.R., et al.: Grad-CAM: Visual explanations from deep networks via
gradient-based localization. In: ICCV, pp. 618–626 (2017)

48. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: ICML, pp. 3145–3153 (2017)

49. Sigaud, O., Stulp, F.: Policy search in continuous action domains: an overview.
arXiv:1803.04706 (2018)

50. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. JGO 11(4), 341–359 (1997)

51. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT press, Cambridge (2018)

52. Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically inter-
pretable reinforcement learning. In: ICML, pp. 5045–5054 (2018)

53. Wilson, D.G., Cussat-Blanc, S., Luga, H., Miller, J.F.: Evolving simple programs
for playing Atari games. In: GECCO, pp. 229–236 (2018)

54. Zhang, H., Zhou, A., Lin, X.: Interpretable policy derivation for reinforcement
learning based on evolutionary feature synthesis. Complex Intell. Syst. 6(3), 741–
753 (2020). https://doi.org/10.1007/s40747-020-00175-y

http://bit.ly/3g8wghU
http://arxiv.org/abs/1907.01180
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1803.04706
https://doi.org/10.1007/s40747-020-00175-y

Permutation-Invariant Representation
of Neural Networks with Neuron

Embeddings

Ryan Zhou(B) , Christian Muise , and Ting Hu

Queen’s University, Kingston, ON K7L 2N8, Canada
{20rz11,christian.muise,ting.hu}@queensu.ca

Abstract. Neural networks are traditionally represented in terms of
their weights. A key property of this representation is that there are
multiple representations of a network which can be obtained by permut-
ing the order of the neurons. These representations are generally not
compatible between networks, making recombination a challenge for two
arbitrary neural networks - an issue known as the “permutation problem”
in neuroevolution. This paper proposes an indirect encoding in which a
neural network is represented in terms of interactions between neurons
rather than explicit weights, and which works for both fully connected
and convolutional networks. In addition to reducing the number of free
parameters, this encoding is agnostic to the ordering of neurons, bypass-
ing a key problem for direct weight-based representation. This allows us
to transplant individual neurons and layers into another network without
accounting for the specific ordering of neurons. We show through experi-
ments on the MNIST and CIFAR-10 datasets that this method is capable
of representing networks which achieve comparable performance to direct
weight representation, and that combining networks this way preserves
a larger degree of performance than through direct weight transfer.

Keywords: Neuroevolution · Indirect Encoding · Neural Networks ·
Convolutional Neural Networks · Crossover · Permutation Invariance

1 Introduction

One of the main challenges in neuroevolution is developing an effective crossover
operation. This is in large part due to what is known as the competing con-
ventions or permutation problem [37]: given any particular neural network, an
equivalent network can be obtained by permuting the order of the neurons along
with the corresponding weights. In other words, functionally identical networks
- that is, networks with the same computation graph - can have different repre-
sentations simply because the units comprising them are defined in a different
order. This implies two things: that the representation contains unnecessary
information about the ordering of neurons, and that the internal representa-
tions for two networks are overwhelmingly likely to be incompatible. Crossover

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Medvet et al. (Eds.): EuroGP 2022, LNCS 13223, pp. 294–308, 2022.
https://doi.org/10.1007/978-3-031-02056-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02056-8_19&domain=pdf
http://orcid.org/0000-0002-2192-2667
http://orcid.org/0000-0002-2728-6585
http://orcid.org/0000-0001-6382-0602
https://doi.org/10.1007/978-3-031-02056-8_19

Permutation-Invariant Representation of Neural Networks 295

x0 x1 . . . xn(0)

h
(1)
0 h

(1)
1

. . . h
(1)

n(1)

h
(2)
0 h

(2)
1

. . . h
(2)

n(2)

Network
...

Explicit representation

...

W (1)

n(0) × n(1)

W (2)

n(1) × n(2)

Permutation invariant
(implicit) representation

...

z
(0)
0

z
(1)
0

z
(2)
0

z
(0)
1

z
(1)
1

z
(2)
1

z
(0)

n(0)

z
(1)

n(1)

z
(2)

n(2)

. . .

. . .

. . .

Fig. 1. A neural network (left) with n(i) hidden units per layer is traditionally repre-
sented by explicitly specifying the weights of the connections, usually as a matrix or
tensor W (i) of dimension n(i−1) × n(i) (middle). We propose instead to view the net-

work as sets of neurons (right), with a neuron j in layer i represented as a vector z
(i)
j .

Weights are generated implicitly by calculating alignment coefficients between neurons.
This representation is parameter efficient and there is no explicit ordering within each
layer, rendering it permutation invariant.

between incompatible representations will generally be destructive to learned
relationships.

Representing the network in a way that is agnostic to the neuron order, i.e.,
is permutation invariant with respect to the neurons, can reduce this problem of
incompatible representations. In this paper, we propose neuron embeddings, an
indirect encoding method for representing a neural network which views the net-
work as unordered sets of neurons rather than ordered lists of weights (Fig. 1).
This builds permutation invariance directly into the representation. The key
to our approach is that the weights are not fixed, but are generated dynami-
cally by individual neurons based on the other neurons present in the network.
This allows neurons not only to be reordered but also moved between models
in crossover operations. A neuron that is moved will adapt its weights to the
new population it finds itself in. In addition, because direct weight representa-
tion implicitly contains information about neuron order, a permutation invariant
indirect representation can be made smaller and more parameter efficient.

Our experiments with the proposed representation show that crossover using
neuron embeddings significantly improves the performance of the resulting net-
work compared to the same operation done using direct representation. We also
propose and demonstrate a method by which this can be extended to convolu-
tional neural networks, allowing the network to be permutation invariant with
respect to the ordering of convolutional filters.

In the following section, Sect. 2, we will present some context and motiva-
tion and contrast our approach with existing ones. In Sect. 3, we introduce the

296 R. Zhou et al.

proposed concept of neuron embeddings, self-contained representations of
individual neurons, and the corresponding representation of the network as
unordered sets of these embeddings. In Sect. 4 we present our experiments and
results. We find that neuron embedding representation achieves comparable
network performance to direct representation in fewer parameters, and that
crossover with embeddings preserves a larger degree of functionality than with
direct representation. We provide some concluding remarks in Sect. 5.

2 Related Work

Neuroevolution and Indirect Encoding. Neuroevolution is the application of evo-
lutionary methods to neural networks. A key component of many evolutionary
algorithms is recombination, but applying it to neural networks has been chal-
lenging because of the permutation problem. Addressing it has been a central
focus of neuroevolution work [35]. Previous methods have approached this by
looking for analogous structures in the network to limit the impact of permu-
tation [37], or by sorting the neurons based on their connections [5]. However,
these methods do not scale to the sizes of networks in modern deep learning. We
propose that a more efficient solution is to build permutation invariance into the
representation, thereby avoiding the problem.

A second challenge for large-scale neuroevolution is the large number of
weights in a neural network, leading to impractically large genomes if direct
encoding is used - that is, if each weight is coded for individually in the genome.
Indirect encoding is an alternative approach which represents the network using a
small number of parameters and uses rules to generate the weights [31,38]. This
concept has proved successful at allowing larger networks to be trained with
evolution [14,21,36]. Modern neural network architectures can also be viewed in
this light; notably, convolution [11,23] and attention [42] generate large numbers
of effective weights from small numbers of explicit parameters. We use indirect
encoding in our method, generating weights based on a small number of vector
representations.

Permutation Invariance in Neural Networks. Permutation invariance refers to
the property that a function remains unchanged even when some aspect of it is
permuted. Previous work has been done on introducing various forms of permu-
tation invariance (PI) to neural networks, primarily focused on allowing neural
networks to exhibit permutation invariance over the inputs. [9] and [45] introduce
methods which use pooling operations to perform permutation-invariant opera-
tions for set inputs. [2] introduce permutation invariance into the features them-
selves by recombining pairs of features. Set Transformer [25] builds upon these
by using self-attention to capture higher order interactions. Sensory neurons [39]
use similar modular units to produce a PI policy. These methods address per-
mutation invariance in the inputs rather than the network representation itself.
We draw on these ideas in order to do the opposite - to represent an arbitrary
neural network (which may or may not be permutation invariant with respect
to the inputs) in a manner that is PI to shuffling of the neurons.

Permutation-Invariant Representation of Neural Networks 297

Neuron-Based Representation. Neuron-based representations have also previ-
ously been employed in the literature, often in the context of evolving individual
neurons [12,26,32] or compact representations of networks [8,10,17,30]. Our
work makes use of neuron-based representation to achieve permutation invari-
ance, but is aimed at bridging the gap between these two applications. Our aim
is not to train individual neurons in a population-based manner but instead
to represent entire pretrained networks and discover structures which can be
transferred between networks. Compared to previous work on full network rep-
resentations, our approach not only represents single networks but also aims to
improve cross-model compatibility between multiple networks by reducing net-
works down to transferable units. As such, the approach we propose is designed
to make the individual neuron representations as self-contained as possible, with-
out any interaction with network-specific structures such as hypernetworks.

Attention. Attention [42] is a highly successful mechanism which underpins many
modern deep neural networks. The key strength of attention is its ability to gen-
erate a large number of attention scores using only a small number of parameters,
and to do so dynamically, which can be seen as form of indirect encoding [40].
In addition, it does so in a permutation-invariant way, by only depending on the
features of the two endpoints. Because of this key property, we base our model on
the attention kernel with appropriate modifications. Attention as used in mod-
els such as Transformers [42] operates between the tokens given as inputs to the
network; our method differs in that we use as endpoints the neurons themselves,
generating a set of weights which are agnostic to the input.

Model Compression and Tensor Decomposition. Neural network compression
refers to the general goal of reducing the size of a model in order to reduce
the amount of storage or computation required without significantly impacting
performance. One method of achieving this is through tensor decomposition.
Because weights in neural networks may be represented with tensors, it is pos-
sible to express the full tensor as a product or sum of lower-rank or smaller ten-
sors. Several methods for providing exact or approximate decompositions exist
[1,20]; commonly used methods include CP [18], Tucker [41] and tensor train
[27] decomposition. The method we describe in this paper can be viewed as a
low-rank decomposition of the weight tensors, similar to the methods described
in [16] and [44]. That is, for a weight matrix W ∈ R

m×n with rank r, we approx-
imate W with the product W = XY with X ∈ R

m×r and Y ∈ R
r×n. This

reduces the number of parameters from mn to r(m+n) [6]. There are two major
points of contrast between our method and other tensor decompositions: first,
our primary goal is to generate self-contained representations of neurons and so
the embedding for each neuron is used twice - once to determine the incoming
weights, and once to determine the outgoing weights. For this reason, our method
imposes a symmetry constraint such that the two embeddings are identical in
order to produce a single representation of the “role” of a neuron. Second, our
method is only a decomposition in the case of the linear dot-product kernel;
other attention kernels allow it to represent a broader class of functions.

298 R. Zhou et al.

3 Method

We will first describe how our method works for a simple feedforward network.
Then, we will describe how convolutional neural networks can be represented as
well. In short, we replace all weights in the network with a set of vector repre-
sentations of the neurons present in the network. Weights are then generated in
an attention-like way, with some modifications.

It is important that each neuron’s representation contains all the information
necessary to perform its function so that it can be moved between networks -
thus, there is no equivalent to the query, key and value networks of attention
which would need to be external to the neuron. This ensures a neuron’s rep-
resentation is fully self-contained, allowing it to be transplanted into a second
neural network and generate new weights without requiring information from
the original neural network.

Neuron Embedding. The core idea of our method is to introduce a learnable
vector embedding z for each neuron (Fig. 1). This is simply a d-dimensional
vector which represents the role of the neuron and can be trained via gradient
descent. This is used to generate weight scores between it and all neurons in the
previous layer using a kernel K(·, ·). We calculate the alignment score αij in a
manner similar to attention by using a dot product kernel, and assign this score
as the weight. That is, we take the dot product between the embedding z

(l)
i of

neuron i in layer l and the embedding z
(l+1)
j of neuron j in layer l + 1 [42] with

an optional nonlinearity σ:

αij = K(z(l)
i ,z

(l+1)
j) = σ(z(l)

i z
(l+1)
j

�
) (1)

This is done efficiently as a matrix operation by packing the embeddings for
both layers into the matrices Z(l) ∈ R

nl×d and Z(l+1) ∈ R
nl+1×d, where ni is

the number of hidden units in the layer i. The activation vector h(l) of layer l
takes the place of the value function, giving us:

Attention(Z(l),Z(l+1),h(l)) = σ(Z(l)Z(l+1)�)h(l) (2)

This can be implemented simply by assigning the matrix of attention scores
to be the weight matrix W (l). Note that unlike the Transformer formulation
of attention, we use the unscaled dot product here. Scaling the dot product by
1√
d

corrects the variance of the product to be 1 when the input embeddings
have variance 1; however, we find in practice it is more effective to scale the
initialization of the embeddings. Each component of the embedding is initialized
to be normally distributed with standard deviation 1√

d
or equivalently variance

1
d , where d is the dimensionality of the embedding:

zi ∼ N(0,
1
d
) (3)

This ensures the magnitude of the embedding vectors has a mean of 1, remov-
ing the need for scaling.

Permutation-Invariant Representation of Neural Networks 299

Bias. In addition to the embedding, each neuron contains a learnable bias b in
order to match the overall function of a feedforward network. This bias has the
same role as the bias in a feedforward layer, and is added after the weights are
applied. Since each bias is specific to a single neuron, it can be considered part
of the self-contained representation and moved to a different network.

Input Encoding. To generate the weights for the first layer, it is necessary to pro-
vide an embedding for each input to the network, which can be learned from the
data [7]. A second possibility is to provide predefined embeddings; for example,
through positional encodings [42]. We tested sinusoidal positional embeddings
for one and two dimensions [42,43] as well as localized wavelets, but found that
in practice, these fixed embeddings performed poorly. We allow a model to learn
the input embeddings from the dataset, which can then be shared with subse-
quent models trained on the same dataset. This is important for cross-model
transfer, as it provides the two models a common basis from which to work.

Input tensor

standard
convolution

pointwise
convolution depthwise

convolution

neuron
embedding depthwise

convolution

Standard convolution

Reversed depthwise
separable convolution

Neuron embedding
convolution

Fig. 2. Representation of a convolutional neuron. The standard representation explic-
itly specifies all the weights in the kernel. Depthwise separable convolutions provide an
approximate replacement by splitting the kernel into a pointwise convolution, which
mixes information across channels, and a depthwise convolution which applies one
spatial kernel per channel. We replace the pointwise convolution with an implicit rep-
resentation using neuron embeddings but keep the depthwise convolution, rendering
the network permutation invariant to the ordering of filters but preserving spatial
structure. Each neuron embedding and depthwise convolution pair represents a single
output filter.

Encoding Convolutional Networks. Convolutional neural networks present a
unique challenge. For a k × k filter with n(i) input channels, we have k2 · n(i)

incoming weights. However, we only have n(i) embeddings in the layer below. In
addition, we would like to do this in a way that can be encapsulated as a single
neuron, allowing it to operate in a self-contained manner.

300 R. Zhou et al.

Our solution (Fig. 2) is to employ reversed order depthwise separable convo-
lutions [3]. The standard order is to apply the n(i) depthwise convolutions first,
followed by the pointwise convolution to expand the number of channels from
n(i) to n(i+1). However, in order to produce self-contained representations, we
would like to treat each pointwise-depthwise pair as a single neuron; for this,
we need n(i+1) depthwise kernels. Thus, we reverse the order of operations, per-
forming the pointwise convolution first to produce n(i+1) different channels in the
output, and then assign each channel its own depthwise convolution. Since the
pointwise convolution can be seen as a feedforward network along the channel
dimension, we can represent this using neuron embeddings, with one embedding
per output channel. Performing the steps in reverse order is also known as a
blueprint separable convolution and exhibits improved training properties [13].

4 Experiments

We now present a series of experiments designed to test the ability of our method
to represent equivalent networks to direct weight encoding, and to evaluate its
ability to preserve performance under crossover. We use the MNIST [24] and
CIFAR-10 [22] datasets to evaluate the models. All models were implemented in
Python using the PyTorch library [29], and the code can be found on GitHub
at https://github.com/ryanz8/neuron-embedding. Experiments were performed
on a single computer with an NVIDIA RTX3090 GPU.

Hyperparameter Optimization. Hyperparameters for the direct weight represen-
tation models were manually tuned following empirical guidelines [28,33] with
a small random search over learning rate and weight decay. As the focus of this
paper is on the relative efficacy of the representation methods rather than overall
performance, we did not perform heavy hyperparameter optimization. Rather,
we attempt to showcase the models under similar starting conditions. As such,
the hyperparameters of the neuron embedding representations were matched to
those of the direct representations. This should favor the direct representation
slightly; however, there is the possibility that the results will differ or the per-
formance gap will be greater under different hyperparameters.

4.1 Training from Random Initialization

Our first experiment tests the ability of our method to achieve comparable perfor-
mance to weight encoding when trained from random initialization. The intent
is to test whether neuron embeddings can be trained the same way as direct
weight representations without any special tuning. We compared two types of
architectures: fully connected and convolutional, each using direct weight repre-
sentation, against equivalents using neuron embedding representation. We chose
training settings which yielded high performance after a short amount of train-
ing for the direct weight representations, and used the same settings without
modification for the neuron embedding representations.

https://github.com/ryanz8/neuron-embedding

Permutation-Invariant Representation of Neural Networks 301

Table 1. Performance when trained from random initialization for fully connected
(FC) models and convolutional (conv) models. “Direct” models use direct (explicit)
weight representation. “Sep.” models use reverse order depthwise separable convolu-
tions (blueprint separable convolutions). “Emb.” models (ours, bolded) use neuron
embedding representation.

Dataset Model Parameters Layers Acc. (%) CE Loss

MNIST FC (direct) 318010 2 fc 98.05 0.0672
MNIST FC (emb.) 76416 2 fc 97.43 0.0999
MNIST FC (direct) 417640 5 fc 98.14 0.0710
MNIST FC (emb.) 97536 5 fc 97.44 0.1077
MNIST Conv. (direct) 160070 3 conv 2 fc 99.38 0.0294
MNIST Conv. (sep.) 84750 3 conv 2 fc 99.27 0.03732
MNIST Conv. (emb.) 51598 3 conv 2 fc 99.00 0.0412

CIFAR-10 ResNet9 (direct) 2438794 8 conv 1 fc 89.40 0.3962
CIFAR-10 ResNet9 (sep.) 287818 8 conv 1 fc 88.21 0.4312
CIFAR-10 ResNet9 (emb.) 98298 8 conv 1 fc 86.90 0.4469

All models unless otherwise specified were trained with cross-entropy loss [19],
using the Adam optimizer on MNIST and SGD with momentum on CIFAR-
10. Network widths are noted in brackets, with convolutional layers denoted
with a superscript c. We test a 2-layer (400,10) and 5-layer (400,400,400,400,10)
feedforward network and a 5-layer convolutional network (16c,40c,1000,100,10)
on MNIST, and a 9-layer ResNet (64c,128c,128c,128c,256c,256c,256c,256c,10) [15]
on CIFAR-10 designed based on the results of the DAWNBench benchmark
[4,28]. For models using neuron embedding, we set the nonlinearity σ to be the
identity for faster training. All models use ReLU activation for all layers except
the output. Comparison was done using the best model found after 2000 steps of
training as determined by cross-validation on a holdout set of 10000 data points.
With Adam, we use a one-cycle learning rate schedule [34] and cosine annealing,
with a learning rate of 0.01 and batch size of 1000 which has been shown to
work well in combination with this schedule [33]. For stochastic gradient descent,
we use linear annealing with a maximum learning rate of 2 × 10−4 obtained by
hyperparameter search and a batch size of 512. The dimensionality of the neuron
embeddings is set to 64 for fully connected models and 48 for convolutional
models.

The results in Table 1 show that representation using neuron embeddings is
able to achieve comparable performance to direct weight representation, when
using standard training settings without modification. The slight difference in
performance we attribute to the use of training settings optimized for direct
weight representation; as we will show next, it is not due to the smaller number
of parameters leading to a gap in expressiveness for this problem. We note that
training time is also not impacted, and in some cases is actually reduced which
we attribute to the smaller number of parameters.

302 R. Zhou et al.

Table 2. Results for training to a 2-layer reference network. An embedding dimension
of 64 is sufficient to match the performance of this network within margin of error,
while decreasing the embedding dimension degrades the performance. MSE refers to
the mean squared deviation of the weights in the neuron embedding representation
from the weights in the reference network. The mean-squared amplitude of the weights
in the reference network is 0.0152.

Model Free Parameters Accuracy (%) MSE

Reference 318010 97.48 -
Neuron embedding (64 dims) 76416 97.48 0.00036
Neuron embedding (32 dims) 38208 97.15 0.00053
Neuron embedding (16 dims) 19104 75.08 0.00095
Neuron embedding (8 dims) 9552 65.61 0.00177
Neuron embedding (4 dims) 4776 20.72 0.00414

4.2 Compression Ability

Our next experiment tests the ability of neuron embeddings to exactly reproduce
the weights of a reference fully connected network. This tests the expressiveness
of the neuron embeddings. We expect that if the network is able to reproduce the
weights, then performance should match that of the reference network. We tested
different values for d, the embedding dimension to show the effect of embedding
expressiveness on the final accuracy.

To force the embeddings to replicate the weights, we train the embeddings by
minimizing the mean squared loss over all the generated weights when compared
to the reference network. This was chosen as it corresponds to minimizing the
quantity

N∑

i=1

1
mini

‖Wi − Zi−1ZT
i ‖2F . (4)

That is, it approximates the full-rank decomposition of the weight matrices
normalized by the number of elements. Here Wi is the weight matrix for layer
i, mi and ni are the dimensions of Wi, Zi−1 and Zi are the neuron embeddings
for the layers i − 1 and i, and ‖ · ‖F is the Frobenius norm. Models were trained
using the Adam optimizer with a learning rate of 0.002 for 2000 steps.

Results are shown in Table 2. As can be seen, with sufficient d models are
able to almost exactly match the performance of a directly encoded network.
Insufficient expressiveness as a result of a too small d harms the performance
of the network, but even with only 8 dimensions a significant fraction of the
knowledge was still represented (with an accuracy of 65% versus the 10% of
random chance). In all cases, the number of parameters of the neuron embedding
model was smaller than that of the fully connected reference network, despite
being able to match the weights.

Permutation-Invariant Representation of Neural Networks 303

4.3 Cross-model Compatibility

Our next experiment tests whether neuron-based representations enable better
compatibility between different models. Our goal is to determine the degree to
which the function of a neuron is preserved when moved to a different setting.
This evaluates the potential of this representation for crossover operations and
cross-model transfer learning.

We trained two models from random initialization, producing two different
networks to act as a source network and a target network. We then trained
two neuron embedding models to replicate the weights of each direct encoding
parent. We use the same learned input encodings for both neuron embedding
models, done by copying the learned input encodings from the target network to
the source network before training. This did not affect the weights themselves
and it was possible to replicate both the weights of the source and target network
to high accuracy using the same embeddings for the inputs but different neuron
embeddings for all subsequent layers.

We performed this process for both fully connected and convolutional mod-
els. The fully connected models contained 8 hidden layers with 400 neurons each
and a 10 neuron output layer. The convolutional models consisted of three 3× 3
reverse-order depthwise separable convolutional layers with 20, 40 and 80 neu-
rons, followed by a 100 neuron fully connected hidden layer and the 10 neuron
output layer.

Neuron Transplant. We tested compatibility for both pairs of models by trans-
ferring a variable number of neurons in the first hidden layer from the source
network to the target network, which we refer to as a crossover operation. If the
internal representations are compatible, we expect models to retain a greater
degree of performance under this operation. Here, a crossover coefficient of 0.8
indicates that 80% of the neurons in that layer of the target network have been
replaced and 20% of the neurons remain. A coefficient of 1.0 indicates that the
entire layer has been replaced with the layer from the source network. Neurons
are chosen in random order for this, and we repeat each experiment 10 times
and report the mean and 95% confidence interval.

The results in Fig. 3 show that transplanting neurons in the hidden layer
results in minor loss of performance for both models until roughly 1/3 of the
neurons were replaced, after which performance deteriorates rapidly. When the
entire layer was transferred, performance was close to chance for the direct encod-
ing. This is as expected as the weights of the layer are adapted to their original
setting and do not store information in a form usable by the new model. How-
ever, in the case of transfer through neuron embedding, we are able to preserve
a larger fraction of the relationships even when the entire layer is transplanted
to a new network.

We stress that the direct representation and the neuron embedding represen-
tation both encode the same networks with the same weights; thus, the greater
information transfer is due entirely to the way in which the layers are encoded.

304 R. Zhou et al.

Fig. 3. Accuracy under neuron transplant for fully connected (top) and convolutional
(bottom) models. Bold lines show the mean over 10 runs, and the shaded region indi-
cates a 95% confidence interval for the mean. Crossover coefficient (horizontal axis)
represents the fraction of neurons in the layer replaced by neurons from another model.
We compare two identical networks encoded in two ways - direct encoding or neuron
embedding. At 100% crossover, an entire layer from the source network is directly
transplanted to the recipient network without any further training. We observe that
the same network when encoded with neuron embedding maintains significantly more
performance, and can function even when the entire layer is replaced.

Permutation-Invariant Representation of Neural Networks 305

Linear Interpolation. To investigate whether these results are an artifact of
the neuron transplant method, we perform a second experiment, but rather
than transferring single neurons we apply linear interpolation to every neuron in
the layer simultaneously. For the direct representation, we linearly interpolate
between the weights of the two models, and for the embedding representation we
linearly interpolate between the corresponding embedding vectors of the neuron
representation. Results of this operation are shown in Fig. 4. We observe similar
results to the previous experiment for the fully connected model, suggesting that
the representation itself is responsible for the results. However, we note slightly
worse performance by both representations on the convolutional model. It is
worth noting that the embedding vectors themselves are interpolated, producing
entirely new embeddings; this suggests that it is possible to perform crossover
on the neuron level, as well as on the network level.

Fig. 4. Model accuracy under linear interpolation for fully connected model (left) and
convolutional model (right). The weights and embedding vectors are directly inter-
polated by taking a weighted average, and all neurons in the layer are interpolated
simultaneously. We observe similar results to the previous experiment on the fully
connected network. Note that embedding vectors themselves are being changed; this
suggests the possibility of neuron-level as well as network-level crossover.

5 Conclusion

In this paper we presented neuron embeddings, an indirect encoding method for
representing a neural network in terms of unordered sets of individual neurons.
This is a parameter-efficient representation which is also invariant to permuta-
tion of the neurons, allowing for better compatibility when performing crossover.
Our method encapsulates the role of a neuron into a single self-contained rep-
resentation which is used to generate the weights implicitly, allowing them to
be transferred into a second neural network and still preserve some degree of
function, even when the two networks are trained independently. This opens
the door to new possibilities for neuroevolution, as this removes one important
roadblock for crossover in neural networks, and can be used in conjunction with
other methods such as those based on neuron alignment. In addition, the self-
contained nature of the representations may prove useful for methods which

306 R. Zhou et al.

evolve individual neurons, rather than complete networks. Of interest for future
work is the extension of this method to larger hierarchical structures, which may
also enable more efficient neural architecture search.

This work also has potential applications for cross-dataset knowledge trans-
fer and transfer learning, which we intend to investigate in more depth moving
forward. For example, it may be possible to transfer knowledge from multiple
models or to improve upon existing methods of imitation learning. We also would
like to further investigate whether neuron-based representation can aid in visu-
alizing the patterns and knowledge contained in a neural network. If this is the
case, this could lead to future applications for interpretability.

References

1. Bacciu, D., Mandic, D.P.: Tensor decompositions in deep learning. In: Computa-
tional Intelligence, p. 10 (2020)

2. Chen, X., Cheng, X., Mallat, S.: Unsupervised Deep HAAR Scattering on Graphs.
In: Advances in Neural Information Processing System, vol. 27. Curran Associates,
Inc. (2014)

3. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1800–1807. IEEE, Honolulu, HI, July 2017. https://doi.org/10.1109/CVPR.2017.
195

4. Coleman, C., et al.: DAWNBench: an end-to-end deep learning benchmark and
competition. In: NIPS ML Systems Workshop, p. 10 (2017)

5. Das, A., Hossain, M.S., Muhammad Abdullah, S., Ul Islam, R.: Permutation free
encoding technique for evolving neural networks. In: Sun, F., Zhang, J., Tan, Y.,
Cao, J., Yu, W. (eds.) ISNN 2008. LNCS, vol. 5263, pp. 255–265. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-87732-5 29

6. Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware accel-
eration for neural networks: a comprehensive survey. Proc. IEEE 108(4), 485–532
(2020). https://doi.org/10.1109/JPROC.2020.2976475

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, vol. 1 (Long and Short
Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapo-
lis, Minnesota, June 2019. https://doi.org/10.18653/v1/N19-1423, https://www.
aclweb.org/anthology/N19-1423

8. Dürr, P., Mattiussi, C., Floreano, D.: Neuroevolution with analog genetic encoding.
In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 671–680. Springer, Heidelberg
(2006). https://doi.org/10.1007/11844297 68

9. Edwards, H., Storkey, A.: Towards a neural statistician. In: 5th International Con-
ference on Learning Representations (ICLR 2017), pp. 1–13 (2017)

10. Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, Representation,
and Dynamics in Neurobiological Systems. Computational Neuroscience Series, A
Bradford Book, Cambridge, MA, USA, October 2002

https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1007/978-3-540-87732-5_29
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.1007/11844297_68

Permutation-Invariant Representation of Neural Networks 307

11. Fukushima, K., Miyake, S.: Neocognitron: a self-organizing neural network model
for a mechanism of visual pattern recognition. In: Amari, S., Arbib, M.A. (eds.)
Competition and Cooperation in Neural Nets, vol. 45, pp. 267–285. Springer, Berlin
(1982). https://doi.org/10.1007/978-3-642-46466-9 18

12. Gomez, F.J.: Robust Non-Linear Control through Neuroevolution. Ph.D. thesis,
University of Texas at Austin, August 2003

13. Haase, D., Amthor, M.: Rethinking depthwise separable convolutions: how intra-
kernel correlations lead to improved mobilenets. In: 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 14588–14597. IEEE,
Seattle, WA, USA, June 2020. https://doi.org/10.1109/CVPR42600.2020.01461

14. Hausknecht, M., Khandelwal, P., Miikkulainen, R., Stone, P.: HyperNEAT-GGP: a
hyperNEAT-based Atari general game player. In: Proceedings of the 14th Annual
Conference on Genetic and Evolutionary Computation, pp. 217–224 (2012)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90

16. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. In: Proceedings of the British Machine Vision
Conference 2014, pp. 88.1–88.13. British Machine Vision Association, Nottingham
(2014). https://doi.org/10.5244/C.28.88

17. Karaletsos, T., Dayan, P., Ghahramani, Z.: Probabilistic meta-representations of
neural networks. arXiv:1810.00555, October 2018

18. Kiers, H.: Towards a standardized notation and terminology in multiway analysis.
J. Chemometrics 14, 105–122 (2000). https://doi.org/10.1002/1099-128X(200005/
06)14:33.0.CO;2-I

19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y.,
LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

20. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev.
51(3), 455–500 (2009). https://doi.org/10.1137/07070111X

21. Koutńık, J., Cuccu, G., Schmidhuber, J., Gomez, F.: Evolving large-scale neu-
ral networks for vision-based reinforcement learning. In: Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computation, pp. 1061–1068
(2013)

22. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Technical
Report TR-2009 (2009)

23. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1(4), 541–551 (1989)

24. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. ATT Labs.
7, 6 (2010). http://yann.lecun.com/exdb/mnist

25. Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set transformer: a
framework for attention-based permutation-invariant neural networks. In: Interna-
tional Conference on Machine Learning, pp. 3744–3753. PMLR, May 2019

26. Moriarty, D.E., Mikkulainen, R.: Efficient reinforcement learning through sym-
biotic evolution. Mach. Learn. 22(1), 11–32 (1996). https://doi.org/10.1023/A:
1018004120707

27. Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33, 2295–2317
(2011). https://doi.org/10.1137/090752286

28. Page, D.: How to Train Your ResNet, September 2018
29. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning

library. arXiv preprint arXiv:1912.01703 (2019)

https://doi.org/10.1007/978-3-642-46466-9_18
https://doi.org/10.1109/CVPR42600.2020.01461
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.5244/C.28.88
http://arxiv.org/abs/1810.00555
https://doi.org/10.1002/1099-128X(200005/06)14:33.0.CO;2-I
https://doi.org/10.1002/1099-128X(200005/06)14:33.0.CO;2-I
https://doi.org/10.1137/07070111X
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1023/A:1018004120707
https://doi.org/10.1023/A:1018004120707
https://doi.org/10.1137/090752286
http://arxiv.org/abs/1912.01703

308 R. Zhou et al.

30. Reisinger, J., Miikkulainen, R.: Acquiring evolvability through adaptive represen-
tations. In: Proceedings of the 9th Annual Conference on Genetic and Evolution-
ary Computation - GECCO 2007, p. 1045. ACM Press, London, England (2007).
https://doi.org/10.1145/1276958.1277164

31. Schmidhuber, J.: Discovering neural nets with low Kolmogorov complexity and
high generalization capability. Neural Netw. 10(5), 857–873 (1997)

32. Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F.: Training recurrent net-
works by Evolino. Neural Comput. 19(3), 757–779 (2007). https://doi.org/10.
1162/neco.2007.19.3.757

33. Smith, L.N.: A disciplined approach to neural network hyper-parameters: part
1-learning rate, batch size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820 (2018)

34. Smith, L.N., Topin, N.: Super-convergence: very fast training of neural networks
using large learning rates. In: Artificial Intelligence and Machine Learning for
Multi-Domain Operations Applications, vol. 11006, p. 1100612. International Soci-
ety for Optics and Photonics (2019)

35. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks
through neuroevolution. Nat. Mach. Intell. 1(1), 24–35 (2019)

36. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

37. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

38. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life
9(2), 93–130 (2003)

39. Tang, Y., Ha, D.: The Sensory Neuron as a Transformer: Permutation-Invariant
Neural Networks for Reinforcement Learning. arXiv:2109.02869, September 2021

40. Tang, Y., Nguyen, D., Ha, D.: Neuroevolution of self-interpretable agents. In: Pro-
ceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 414–
424 (2020)

41. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31(3), 279–311 (1966). https://doi.org/10.1007/BF02289464

42. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS 2017, pp.
6000–6010. Curran Associates Inc., Red Hook, NY, USA, December 2017

43. Wang, Z., Liu, J.C.: Translating math formula images to latex sequences using
deep neural networks with sequence-level training (2019)

44. Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank and
sparse decomposition. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 67–76. IEEE, Honolulu, HI, July 2017. https://doi.org/
10.1109/CVPR.2017.15

45. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola,
A.J.: Deep sets. In: Advances in Neural Information Processing Systems, vol. 30.
Curran Associates, Inc. (2017)

https://doi.org/10.1145/1276958.1277164
https://doi.org/10.1162/neco.2007.19.3.757
https://doi.org/10.1162/neco.2007.19.3.757
http://arxiv.org/abs/1803.09820
http://arxiv.org/abs/2109.02869
https://doi.org/10.1007/BF02289464
https://doi.org/10.1109/CVPR.2017.15
https://doi.org/10.1109/CVPR.2017.15

Author Index

Alchirch, Pantia-Marina 228
Alty, Jane E. 85

Bartoli, Alberto 34
Batista, João E. 68
Bredeche, Nicolas 179

Carvalho, Pedro 3
Castelli, Mauro 19
Chen, Qi 51
Collet, Pierre 245

Diochnos, Dimitrios I. 228
Drahosova, Michaela 85

Fontbonne, Nicolas 179

Hemberg, Erik 197, 262
Hu, Ting 212, 294
Huang, Zhixing 162
Hurta, Martin 85

Indri, Patrick 34

Jeannin-Girardon, Anne 245

Kolokolova, Antonina 212

La Cava, William 68
Leite, Alessandro 278
Lourenço, Nuno 3

Machado, Penousal 3
Manzoni, Luca 19
Maudet, Nicolas 179
Medvet, Eric 34, 146
Mei, Yi 162
Miras, Karine 146
Mostaghim, Sanaz 130
Muise, Christian 294

Nadizar, Giorgia 146
Nenzi, Laura 34
Nickerson, Kyle 212

O’Reilly, Una-May 197, 262
Orhand, Romain 245

Paoletti, Alessia 19
Papakonstantinopoulou, Katia 228
Parrend, Pierre 245
Pietropolli, Gloria 19

Raymond, Christian 51
Reuter, Julia 130
Rodrigues, Nuno M. 68
Rothlauf, Franz 118

Schoenauer, Marc 278
Schweim, Dirk 262
Sekanina, Lukas 85
Silva, Sara 68
Smith, Stephen L. 85
Sobania, Dominik 118, 262
Steup, Christoph 130

Teytaud, Olivier 278
Tseng, Sabrina 197

Vanneschi, Leonardo 68
Videau, Mathurin 278

Wittenberg, David 102

Xue, Bing 51

Zhang, Fangfang 162
Zhang, Mengjie 51, 162
Zhou, Ryan 294

	 Preface
	 Organization
	 Contents
	Long Presentations
	Evolving Adaptive Neural Network Optimizers for Image Classification
	1 Introduction
	2 Background
	3 Adaptive AutoLR
	3.1 Grammar
	3.2 Fitness Function

	4 Experimental Study
	4.1 Evolutionary Runs
	4.2 Evolutionary Results
	4.3 Benchmark
	4.4 Fashion-MNIST
	4.5 CIFAR-10

	5 Conclusion
	References

	Combining Geometric Semantic GP with Gradient-Descent Optimization
	1 Introduction
	2 Related Works
	3 Gradient Descent GSGP
	3.1 Geometric Semantic GP
	3.2 Adam Algorithm
	3.3 GSGP Hybridized with Gradient Descent

	4 Experimental Settings
	4.1 Dataset
	4.2 Experimental Study

	5 Experimental Results
	6 Conclusions
	References

	One-Shot Learning of Ensembles of Temporal Logic Formulas for Anomaly Detection in Cyber-Physical Systems
	1 Introduction
	2 Related Work
	3 Background: Signal Temporal Logic
	4 Problem Statement
	5 Methodology
	6 Experimental Evaluation
	6.1 Datasets and Preprocessing
	6.2 Procedure and Evaluation Metrics
	6.3 Results

	7 Conclusions
	References

	Multi-objective Genetic Programming with the Adaptive Weighted Splines Representation for Symbolic Regression
	1 Introduction
	1.1 Research Objectives

	2 Background
	2.1 Model Complexity and Generalisation
	2.2 Genetic Programming with Adaptive Weighted Splines

	3 Proposed Method
	3.1 Multi-objective Fitness Function
	3.2 Non-dominated Sorting Genetic Algorithm II
	3.3 Combining Multi-objective Optimization with the Adaptive Weighted Splines

	4 Experiment Settings
	4.1 Benchmark Methods
	4.2 Benchmark Problems
	4.3 Parameter Settings

	5 Results and Analysis
	5.1 Comparisons of Hypervolume Indicator
	5.2 Analyses of Fronts
	5.3 Visualizations and Analyses of GPSR Models in GP-AWS-PP

	6 Conclusions and Future Work
	References

	SLUG: Feature Selection Using Genetic Algorithms and Genetic Programming
	1 Introduction
	2 SLUG
	3 Data
	4 Methods
	5 Experimental Setup
	6 Results
	6.1 Regular Classification Tasks
	6.2 Gametes Classification Tasks

	7 Discussion
	8 Conclusion and Future Work
	References

	Evolutionary Design of Reduced Precision Levodopa-Induced Dyskinesia Classifiers
	1 Introduction
	2 LID-Classifier Design
	2.1 Clinical Study Data
	2.2 Data Preprocessing
	2.3 Classifier Model
	2.4 Classifier Training

	3 Experimental Setup
	3.1 Experiments
	3.2 CGP Setup
	3.3 CGPcoASFP Setup
	3.4 Time of Stabilization of LID-Classifier Evolution

	4 Results
	4.1 Experiment 1: Comparisons of CGP and CGPcoASFP
	4.2 Experiment 2: Comparisons of Data Representations
	4.3 Experiment 3: Hardware Characteristics of Evolved Classifiers

	5 Conclusions
	References

	Using Denoising Autoencoder Genetic Programming to Control Exploration and Exploitation in Search
	1 Introduction
	2 Related Work
	3 Denoising Autoencoder LSTMs
	3.1 Autoencoder LSTMs
	3.2 Suggesting a New Denoising Strategy: Levenshtein Edit
	3.3 Training Procedure
	3.4 Sampling with Syntax Control

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance Results
	4.3 The Influence of Denoising on Search

	5 Conclusions
	References

	Program Synthesis with Genetic Programming: The Influence of Batch Sizes
	1 Introduction
	2 Lexicase Selection in GP-Based Program Synthesis
	3 Methodology
	3.1 Benchmark Problems
	3.2 Grammars
	3.3 Selection Method

	4 Experiments and Results
	4.1 Influence on Selection Pressure
	4.2 Analysis of Success Rates and Generalization

	5 Conclusions
	References

	Genetic Programming-Based Inverse Kinematics for Robotic Manipulators
	1 Introduction
	2 Related Work
	3 Genetic Programming-Based Inverse Kinematics
	3.1 Fitness Functions to Model the IK Problem
	3.2 Cooperative Coevolutionary GP for Inverse Kinematics

	4 Experimental Evaluation
	4.1 Data Processing
	4.2 Experiment Setup
	4.3 Preliminary Experiments
	4.4 Advanced Experiments
	4.5 Discussion

	5 Conclusion and Future Work
	References

	On the Schedule for Morphological Development of Evolved Modularpg Soft Robots
	1 Introduction and Related Works
	2 Background: Voxel-Based Soft Robots
	2.1 VSR Morphology
	2.2 VSR Controller

	3 Development of VSRs
	3.1 Representations for the Development Function
	3.2 Evolution of the Development Function

	4 Experimental Evaluation
	4.1 Results and Discussion

	5 Concluding Remarks
	References

	An Investigation of Multitask Linear Genetic Programming for Dynamic Job Shop Scheduling
	1 Introduction
	2 Background
	2.1 Dynamic Job Shop Scheduling
	2.2 Linear Genetic Programming
	2.3 Related Work

	3 Multitask LGPHH
	3.1 Multi-factorial LGPHH
	3.2 Multitask Multi-population LGPHH

	4 Experiment Design
	4.1 Multitask DJSS Scenarios
	4.2 Comparison Methods

	5 Results and Discussion
	5.1 Test Performance
	5.2 Example Program Analysis

	6 Conclusion
	References

	Cooperative Co-evolution and Adaptive Team Composition for a Multi-rover Resource Allocation Problem
	1 Introduction
	2 Cooperative Coevolutionary and Team Composition
	3 Cooperative Co-evolutionary Algorithms with Limited Team Composition Update
	4 The Multi-rover Resource Selection Problem
	5 Results
	5.1 Experimental Setting
	5.2 Fixed vs. Adaptive Methods for Team Composition Update
	5.3 Dynamics of Adapting the Number of Team Agents to Update
	5.4 Sensitivity of Meta-parameters

	6 Conclusion
	References

	Short Presentations
	Synthesizing Programs from Program Pieces Using Genetic Programming and Refinement Type Checking
	1 Introduction
	2 Method
	2.1 Program Synthesis Model
	2.2 Genetic Programming Algorithm
	2.3 Refinement Types and LiquidHaskell
	2.4 Refinement Types Fitness Function

	3 Experiments and Results
	3.1 Program Synthesis Problems
	3.2 Experimental Setup
	3.3 Results
	3.4 Threats to Validity

	4 Related Work
	5 Conclusions
	References

	Creating Diverse Ensembles for Classification with Genetic Programming and Neuro-MAP-Elites
	1 Introduction
	2 Background
	2.1 Linear Genetic Programming
	2.2 Map-Elites
	2.3 Variational Autoencoders (VAEs)
	2.4 Ensemble Classifiers

	3 Our LGP Implementation
	4 Neuro MAP-Elites
	4.1 Mine Solutions
	4.2 VAE Training
	4.3 MAP Elites with Encoder

	5 Experiment Setup
	5.1 Dataset Selection
	5.2 Standard Machine Learning Classifiers
	5.3 Map-Elites Classifiers

	6 Results
	6.1 VAE Efficacy
	6.2 Diversity Comparison
	6.3 Ensemble Accuracy

	7 Discussion
	References

	Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence
	1 Introduction
	1.1 Monotone Conjunctions and Representation
	1.2 Related Work and Motivation

	2 Computational Models Relevant to Our Work
	2.1 Evolutionary Algorithms and Evolving Programs
	2.2 Supervised Machine Learning and Evolvability

	3 The Learning Problem that We Study
	3.1 A Related Algorithm: The Swapping Algorithm

	4 Implementation
	4.1 Setting the Parameters q and
	4.2 Guessing a Good Value for the Tolerance t
	4.3 Successful Executions

	5 Experimental Results and Discussion
	5.1 Details on the Experimental Setup
	5.2 High-Level Summary of Results
	5.3 Details on the Convergence When p=0.4
	5.4 Further Details on the Experiments of Every (p, 69640972 c86418188) Pair Tested
	5.5 Discussion

	6 Conclusions
	References

	Accurate and Interpretable Representations of Environments with Anticipatory Learning Classifier Systems
	1 Introduction
	2 Related Works
	2.1 Principles of ALCS
	2.2 ALCS and Non-determinism

	3 Behavioral Enhanced Anticipatory Classifier System
	3.1 Enhancing PEP into EPE
	3.2 Coupling EPE with Behavioral Sequences
	3.3 Enhancing the Behavioral Sequences

	4 Performance in Maze Environments
	4.1 Experimental Protocol
	4.2 Metrics
	4.3 Performance

	5 Discussion
	6 Conclusion
	References

	Exploiting Knowledge from Code to Guide Program Search
	1 Introduction
	2 Related Work
	3 GitHub Code Corpus
	3.1 Software Metrics
	3.2 Descriptive Analysis of the Code Corpus

	4 Experiments
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Conclusion
	References

	Multi-objective Genetic Programming for Explainable Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Explainable Reinforcement Learning Using GP
	4 The Experiments
	4.1 GP Representations
	4.2 Benchmarks and Evaluation
	4.3 Baselines

	5 Experimental Results
	5.1 Quantitative Analysis
	5.2 Dealing with the Local Minimum Trap

	6 Conclusion and Further Work
	References

	Permutation-Invariant Representation of Neural Networks with Neuron Embeddings
	1 Introduction
	2 Related Work
	3 Method
	4 Experiments
	4.1 Training from Random Initialization
	4.2 Compression Ability
	4.3 Cross-model Compatibility

	5 Conclusion
	References

	Author Index

