
Chapter 8
G-MSR: A GPU-Based Dimensionality
Reduction Algorithm

Fahad Saeed and Muhammad Haseeb

In our previous chapters, we have introduced a generalized strategy has been devised
that can be used for processing ofMS-based omics data sets on a CPU-GPU architec-
ture. Pre-processing of this data is an essential element for proteomics pipelines but
the scalability of these pre-processing workflows has not been the focus of research
in this domain. Hence many of the existing pipelines may take multiple hours or days
to complete the processing [1].

The number of spectra produced by a single experiment can vary from few thou-
sand to billions depending on the objective of the experiment, and species that are
being considered. However, this is just for single run of experiments. The plethora
of experimental spectra now available from different laboratories facilitates an enor-
mous amount of data that can be used, reused, or reevaluated for systems biology
researchers. Each spectrum consists of 2 columns of data where the first column
consists of mass-to-charge ratio (m/z), and the second column consists of the cor-
responding intensities [2, 3]. In this chapter, we showcase how a generalized GPU-
DAEMON strategy can be used for a noise reduction workflow for MS-based omics
data using CPU-GPU architectures. Our strategy is called G-MSR and was first
introduced in [3]. Note that this GPU-based noise reduction algorithm tries closely
follows the processing patterns of MS-REDUCE algorithm [4].1

8.1 G-MSR Algorithm

Similar to the MS-REDUCE algorithm, G-MSR need to perform three steps: (1)
Spectral classification, (2) Quantization, and (3) Weighted random sampling. The
input parameters consist of a reduction factor R which is then applied to the given
spectra s which will result in a spectrum that is equal to R ∗ |s|. The classification
stage allows the spectra to be classified into four classes. The spectra which are

1 Some parts of this chapter may have appeared in [3].
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classified in the same class are quantized such that each spectrum is grouped based
on the peaks that are significant. Then there is a weighted random sampling in used in
each class such that peaks are randomly sampled from each quantum. The weighted
sampling allows that the most significant peaks make it to the final reduced spectra.

The weighted random sampling step can be formulated as the following equation
where xi is the sampling weight for the i th quantum, qi is the number of peaks in
the quanta i , p′ is the total peaks in the spectra, and n is the number of quanta.

n∑

i=0

xi
100

= p′ (8.1)

Figure8.2 shows the design of G-MSR overlapped on the GPU-DAEMON tem-
plate andFig. 8.1 showsa comparison in theworkflowsofMS-REDUCEandG-MSR.
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Fig. 8.1 a Shows the work flow of MS-REDUCE. b Construction of QIS from 3-D quantized
spectrum fromMS-REDUCE. cWork flow of G-MSR, blocks with same color represent processing
in same kernel. A copy of actual spectra is maintained on the CPU for the construction of reduced
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Fig. 8.2 Design of G-MSR overlaid on GPU-DAEMON template

8.1.1 Simplifying Complex Data Structures

As discussed before, the mass spectra obtained from MS consist of mass-to-charge
ratios and their corresponding intensities. In a naive method complete spectra along
with their meta-data would be transferred over the PCIe cable to GPU for processing.
But following the GPU-DAEMON template we separate the intensities from the
larger data structure in the forms of multiple arrays (one array for each spectrum)
and only transfer these over to GPU memory. This cuts down the amount of data
being transferred by more than 50%. The actual spectra are kept on the host for
book-keeping and post-processing phase.

8.1.2 Simplifying Complex Computations

Since intensities are floating point numbers, we round them off to nearest integer
before transferring them to GPU. This converts all the floating point computations
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to integer computations thus simplifying the computations. As shown at the end of
this chapter, this approximation does not affect the algorithm’s performance.

8.1.3 Efficient Array Management

The quantization stage of MS-REDUCE reduction algorithm discussed in Chap. 3
transforms the spectra into 3-Dimensional data structures. Managing this 3-D data
structure is challenging for data processing on a GPU architecture [5], also in-order
for GPU-DAEMON’s array management technique to work we need to map the data
into a 1-Dimensional array. To achieve this, we introduced a novel data structure
called Quantized Index Spectrum (QIS) which maps a 3-D quantized spectrum onto
a 1-D array which can then be easily managed using the techniques discussed in
Sect. 6.3.3. The QIS data structure serves a dual purpose of transforming 3-D quan-
tized spectra to 1-D array while performing the step of quantization. As discussed
before, the quantization step basically groups together the peaks of a spectrum.
In a QIS data structure, these groups of peaks are present in contiguous memory
locations, with a separate array of pointers keeping track of starting and ending
points. Each of this group can be considered as a sub-array, since these sub-arrays
are independent of each other we can use the strategy of Sect. 6.3.3 for exploiting
fine-grained parallelism. For G-MSR algorithm, we replace Fsub by QIS construc-
tion in GPU-DAEMON template. In order to construct a QIS, instead of clustering
peaks together as in MS-REDUCE, we clustered together with the indices of the
peaks which make up a quantum. For each spectrum, a QIS is an array containing
peak indices clustered together at computed distances. We refer to this structure as
quantized-indexed-spectrum (QIS). We can formally define QIS for a spectrum si as:
Definition: Qi where Qi = {q1, q2, q3, . . . , qm} and each qt = {l1, l2, l3, . . . , ln} is
quantum t , and l represents index for a peak in si . In QIS structure, quanta are sorted
in their increasing order. Figure8.1b shows the construction of QIS from intensity
array. The QIS then overwrites the spectrum to conserve space.

8.1.4 Exploiting Shared Memory

To better exploit the sharedmemory, sub-arrays are thenmoved to the sharedmemory
for further processing if the Eq. 6.2 is satisfied.

8.1.5 In-Warp Optimizations

The sub-arrays created by theQIS are a part of a larger array, with their beginning and
end pointers listed separately. So, all the sub-arrays created by QIS are in contiguous
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memory locations. This feature of QIS helps ensure that when consecutive sub-arrays
are processed by consecutive threads of a warp, memory coalescing takes place.

8.1.6 Result Sifting

In the first step, rather than transferring complete spectra we transferred only the part
which was needed for GPU-processing, and because of the random sampling which
takes place in the third phase of dimensionality reduction algorithm [4], it becomes
difficult to maintain which intensities are eliminated on the GPU-side. To tackle this
problem,we used an additional property ofQIS data structure, i.e. the indices of peaks
which are eliminated on the GPU-side are retained with a place-holder. These place-
holders help in constructing a binary spectrum indicating the indices of intensities to
be retained in the reduced spectrum. We define Binary Spectra as Definition: Given
a spectrum si = {p1, p2, p3, . . . , pn} a Binary Spectrum Bi for the corresponding
reduced spectrum s ′

i is defined as, Bi = {e j = 1|p j ∈ s ′
i } ∪ {e j = 0|p j /∈ s ′

i }. In other
words, if a peak at index j in si is included in the reduced spectrum then there will be
a 1 at index j of Bi ; otherwise it will be zero. For each spectrum, a binary spectrum is
generated and only these binary spectra are then copied back to CPU. Binary spectra
are memory efficient and helpful in quick reconstruction of reduced spectra on the
CPU side. Introduction of QIS and Binary Spectra thus enabled G-MSR to copy back
just the bare minimum and resolve the GPU-CPU bottleneck.

8.1.7 Post Processing Results

The Binary Spectra copied back in the previous phase are then used for constructing
the reduced spectra on the CPU side as shown in Fig. 8.2. Figure 8.3 shows the
difference in the amount of data handled by MS-REDUCE and G-MSR.

8.2 Results and Experiments

8.2.1 Time Complexity Model

To compute the time complexity of G-MSR we replace T ( fsub) = O( NB ) +
O( N∗n2

B∗p ) + O( N∗n
B ) and T ( f proc) = O( s∗NB ) in Eq. 6.3. Here the fsub time includes

sorting, classification and construction of QIS data structure while the f proc time
consists of weighted random sampling phase. Replacing the values in Eq. 6.3 and
simplifying leaves us with:
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of scarce in-core memory

O

(
N ∗ (n2 + l)

B ∗ p

)
(8.2)

where l = p ∗ (2 + n + n ∗ s) and s is the sampling rate.

8.2.2 Experiment Setup

For all the experiments we made use of a Linux server running Ubuntu Operat-
ing System, version 14.01. The server houses two Intel Xeon E5-2620 Processors,
clocked at 2.40 GHz with a total RAM of 48 GBs. The system has an NVIDIA Tesla
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Fig. 8.4 Figure showing the
speed up gained by G-MSR
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K-40c GPU with a total of 2880 CUDA Cores and 12 GBs of RAM. CUDA version
7.5 and GCC version 4.8.4 were used for compilation.

8.2.3 Scalability and Time Analysis

For this experiment, we used the appended UPS2 dataset which had over a million
spectra. Timing experiments were performed with progressively increasing datasizes
to cover the cases where data fits in the GPU’s memory and when it doesn’t. Our
experiments showed peak speedups of 386, 288, and 158 for the three Reduction
Factors (RF) of 10%, 30%, and 50%, respectively. In accordance with the Eq. 8.2
we get smaller speedup for larger RF and we observe a decrease in speedup with
increasing number of spectra in Fig. 8.4. Also with higher RF, amount of data being
processed is increased. This increased data leads to more memory being used per
warp and thus minimizes the number of concurrent threads leading to increased
execution time shown in Fig. 8.5.

8.2.4 Quality Assessment

We used the same method of quality assessment as shown in Fig. 5.6. For our exper-
iments we set the FDR value of interest to 5%, i.e. any PSM having FDR value
below 5% is an acceptable match, we call them effective matches. Figure8.7 shows
percentage of effective matches with varying reduction factors for both algorithms.
G-MSR and MS-REDUCE gave almost same percentages of effective matches.
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Fig. 8.5 Figure showing the
execution times for G-MSR
and MS-REDUCE for
varying reduction factors. In
the legend, numbers
following the algorithm
names are reduction factors.
The vertical line represents
the point where in-core
memory is filled
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Fig. 8.6 Figure showing the
execution times for G-MSR
operating at reduction factors
of 10, 30, and 50. The
vertical line represents the
point where in-core memory
is filled
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8.2.5 Reductive Proteomics for high-resolution instruments

In high-resolution proteomics, the x-axis resolution. i.e. number of bins can lead
to large data processing times. Pre-processing of spectra with G-MSR and MS-
REDUCEwill reduce the dataset size and hence the processing times. We performed
peptide deductions for UPS2 dataset after preprocessing it with G-MSR at different
reduction factors (RF). We used Tide integrated with hiXcorr was used for peptide
deduction in this experiment. Fig. 8.8 shows that the performance of peptide deduc-
tion becomes more scalable with smaller reduction factors even with increasing
resolution.
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Fig. 8.7 A comparison of quality assessment plots of MS-REDUCE and G-MSR. In the legend,
numerical value following name of the algorithm represents its reduction factor. X-axis contains
the labels for the experimental datasets while Y-axis represents the percentage of peptide matches
with FDR of greater than 5%

8.2.6 Comparison with Unified Memory

To assess the performance of G-MSR (a GPU-DAEMON-based version of MS-
REDUCE algorithm), we compared it against a unified memory-based GPU imple-
mentation of MS-REDUCE. The unified memory technique enables quick and easy
development of GPU-based algorithms. For our purpose, we simply took the sequen-
tial version of G-MSR [4] and modified the code following rules of GPU algorithm
development using CUDA unified memory [6]. For scalability study, we appended
the UPS2 dataset multiple times to get progressively larger datasets. Figures8.9 and
8.11 shows that GPU-DAEMON based implementation consistently out-performs
thenaive implementation. It canbeobserved inFig. 8.11 thatCUDAunified-memory-
based implementation reaches its in-core memory limit at only 14,000 spectra, while
G-MSR as shown in Fig. 8.6 reaches its in-core memory limit at 400,000 spectra.
Along with better speed, GPU-DAEMON helps conserve limited in-core memory
so that more throughput can be achieved. Figure8.10 shows that GPU-DAEMON
version uses a very small amount of in-core memory in comparison to the unified-
memory-based implementation.
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Fig. 8.8 Timing plots of peptide deduction process using Tide with hiXcorr algorithm. Here RF is
the reduction factor. An increasing RF makes the process more scalable
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Fig. 8.10 Figure shows that GPU-DAEMON based implementation of MS-REDUCE uses only a
fraction of memory as used by the CUDA unified memory implementation
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Fig. 8.11 Figure shows that GPU-DAEMON-based implementation ofMS-REDUCE scales better
with increasing spectra. It should be noticed that CUDA unified memory-based version reaches in-
core limit earlier and cannot processmore than 14,000 spectra in a single passwhileGPU-DAEMON
implementation can process about 400,000 spectra before that limit is reached Fig. 8.6
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