
Chapter 7
Computational CPU-GPU Template for
Pre-processing of Floating-Point MS
Data

Fahad Saeed and Muhammad Haseeb

The data from MS spectra is usually stored as shortlist of numbers. To process these
spectra, more often than not, one has to “see” inside the data to make data pre- and
post-processing decisions [2]. Sorting, and searching of data for an array of numbers
is one of the oldest problems in computer science. There has been significant effort
in developing algorithms that can sort very large array [3]. However, for MS data,
instead of having a single large array (ofm/z values) there are a lot ofmoderately sized
arrays of a very large number. We have demonstrated that sorting (or searching) of
MS data with a lot of spectra is a bottleneck for many pre-processing routines [2, 4].
In order to make this pre-processing efficient, and allowing the users to be able to use
our proposed techniques we have formulated a template-based GPU strategy known
as GPU-DAEMON. GPU-DAEMON is a strategy that allows developers who might
not be familiar with CPU-GPU architecture but would want to utilize the parallel
strategy for efficient processing. We have developed a GPU-Array sort algorithm
that first appeared in our paper [4] which allows us to utilize CPU-GPU architecture,
and sort millions of short MS spectra. Figure 7.1 shows design of GPU-ArraySort
overlaid on GPU-DAEMON template.

7.1 Simplifying Complex Data Structures

Since GPU-ArraySort is mostly used as integral part of a bigger algorithm, in this
step the data to be sorted can be extracted from larger data structures and stored in
the form of simple arrays. These arrays are then transferred over to GPU memory
via the PCIe cable. Since the sorting operation cannot be further simplified, the step
for simplification of computations was skipped for this algorithm.

Some parts of this chapter may have appeared in [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9_7

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-01960-9_7
 -2047 61833 a -2047 61833 a

https://doi.org/10.1007/978-3-031-01960-9_7

90 F. Saeed and M. Haseeb

Transfer only simplified data arrays

CPU GPU

Extract data to be sorted and
represent as arrays

Sor�ng cannot be further
simplified. Skip this step..

2

1

Random sampling to
generate independent

sub-arrays

Fine grained array break down
using suitable func�on

Warp 1

Coarse grained mapping
of arrays to CUDA blocks.3a 3b

4 Move sub-arrays
to be sorted to the

shared memory.

Warp 2

5 In-warp (32) op�miza�ons
to ensure coalesced
memory accesses.

Result arrays

Filtering is skipped. Sorted arrays
are transferred as is

6Sorted arrays can
be used for further

computa�ons

7
Data on

CPU

Sorted arrays

Start Here

CPU

GPU

CPU

GPU

Data transfer over
PCIe.

Fig. 7.1 Design of GPU-ArraySort overlaid on GPU-DAEMON template

7.2 Efficient Array Management

Sorting problem allows placement of the elements depending on the stored value
which is presented as dependent sub-array case of Sect. 6.3.3. We get the coarse-
grained mapping of each array on CUDA blocks as discussed in Sect. 6.3.3. We
achieve coarse-grained mapping of each array on different CUDA blocks using the
method discussed in Sect. 6.3.3. Sample-based bucketing techniquewas performed to
exploit fine-grained parallelism [5]. We used this strategy to fragment data into sub-
arrays which are mapped on the compute units. Sample-based bucked functioning
(Fsub) for splitter and bucketing is discussed in the section below.

7.2.1 Splitter Selection

The arrays are assumed to be small enough that it fits within GPU’s shared memory,
and the number of splitters required depends on the number of buckets needed for
the array. The size of these buckets must be optimized to get maximum efficiency.

7 Computational CPU-GPU Template for Pre-processing of Floating-Point MS Data 91

Our empirical study [1] has shown that the best performance is gained when the
number of elements is no more than 20 [1]. This choice of size of bucket is totally
independent of size of individual array as well as total number of arrays.

Definition 7.1 If n is the size of an array, let Bi be the set of buckets for array i ,
Bi = {b1, b2, b3, . . . bp} where p = � n

20�.
For p buckets we need to have p − 1 splitters, these splitters are obtained from a

sample set obtained from the unsorted array Ai using regular sampling method. Our
studies [1, 6] have shown that if the data is uniformly distributed then 10% regular
sampling resulted in the most load-balanced buckets. The samples are obtained first
using the in-place insertion sort, and then the remaining p − 1 splitters are chosen
by picking splitter at regular intervals. Each block then returns to its splitter that is
written to the global memory at indices calculated using the block ids that are written
in consecutive memory locations with each block performing all operations using a
single thread. Since the sampled array is small it can be placed inside the memory
and the proposed technique is efficient to be used.

The array of splitters thus formed can be defined as

Definition 7.2 Let S be the array of size N , each element si ∈ S is an array of
size q which consists of splitters for array Ai . S = {s1, s2, s3, . . . , sN } where si =
{sp1, sp2, sp3 . . . , spq} and q = p − 1.

Algorithm 5 describes a per-thread pseudo-code for first phase.

7.2.2 Bucketing

In this phase, the splitter values obtained from the previous phase are translated into
a global array used to keep track of the bucket sizes.

Definition 7.3 Let Z be the array of size N , each element zi ∈ Z is an array of
size q which consists of bucket sizes for array Ai . Z = {z1, z2, z3, . . . , zN } where
zi = {zb1, zb2, zb3 . . . , zbp}, here each zb j ∈ zi represents size of bucket j in array
Ai .

Each array is assigned a unique block with threads equal to the number of buckets
p. The sub-array spi is small in size and can be moved to the shared memory for
effective and frequent usage. The pointer to these arrays can also be determined on
the fly depending on the block and thread id such that each thread gets a unique pair
of splitters.

Definition 7.4 Let ri denote a splitter pair for a thread i then ri = {spi [t id],
spi [t id + 1]} here tid denotes each thread′s id. The splitter pair allows us to have
thread that avoids branch divergence by removing other paths of the code as observed
in Algorithm 4. To avoid any overlapping buckets, we use two additional splitters
in sub-array spi by adding a splitter smaller than the smallest, and larger than the

92 F. Saeed and M. Haseeb

largest value in Ai . Keeping track of a counter zb j ∈ zi , where j is the bucket and i
is the array, array Ai can be traversed in parallel to complete the bucketing process
which will result in each counter containing the size of the bucket. Each bucket is
written back to the actual memory location of array Ai . Using this method we are
able to parallelize this write back process with the advantage of saving more than
50% of device’s global memory.

Algorithm 4 describes a per-thread pseudo code for second phase.

Algorithm 4: Per thread pseudo code for bucketing phase
Data: An array Ai and a pair of splitters ri
Result: A bucket of elements within splitter pair range

1 splitterPair = obtainSplitters(ri)
2 initializeBucket(bucket)
3 index = 0
4 bucketIndex = 0
5 while not the end of array Ai do
6 if splitterPair[1] < Ai [index] < splitterPair[2] then
7 bucket[bucketIndex] = Ai [index] bucketIndex + +
8 index + +

7.3 In-Wrap Optimizations and Exploiting SharedMemory

The buckets and the sub-arrays, formed in the previous step, are small enough to
fit in the shared memory. However, the sub-arrays are assigned to a warp which are
placed in contiguous location in the memory to minimize memory transactions and
accesses. If the size of the array is larger than the GPU memory; it must be sorted
in batches. Our design and results have shown that CUDA streams data transfer,
and data processing times overlap to create a pipeline like affect resulting in better
processing times as compared to simple batch processing.

7.4 Time Complexity Model

Time complexity of GPU-ArraySort can be determined by replacing the values of
T (fsub) and T (f proc) in Eq. 6.3 with O(np) and O(np ∗ log(np)), respectively. Here
n is the length of each array while p is the number of threads per CUDA block.

O

(
n

p
+ n

p
∗ log

(
n

p

))
(7.1)

7 Computational CPU-GPU Template for Pre-processing of Floating-Point MS Data 93

Algorithm 5: Per thread pseudo code for splitter selection
Data: An array Ai and required number of splitters q
Result: An array of splitters si for array Ai

1 samples = obtainSamples(Ai)

2 sortedSamples = insertionSort(samples)
3 index = 0
4 sampleIndex = 0
5 stride = calculateStride(sortedSamples)
6 while sizeOf (si) not equal to q do
7 si [index] = Ai [sampleIndex]
8 sampleIndex+ = stride
9 index + +

7.5 Performance Evaluation

Performance evaluation of the proposed technique was performed by sorting large
number of arrays, and then see which techniques can have a higher throughput (i.e.
can sort more number of arrays on a given GPU). Since there is no dedicated GPU-
based algorithm we used NVIDIA’s Thrust Library to used stable sort by tagging
them with keys. A brief explanation is given below:

7.5.1 Sorting Using Tagged Approach (STA)

Let I = {A1, A2, A3, . . . , Ai } be a list of arrays to be sorted where i = N , then in
order to use the STA approach we create another list of arrays and call it the array
of tags.

Definition 7.5 Let T = {T1, T2, T3, . . . , Ti } be list of arrays of tags such that i = N
and |Ti | = |Ai |. Here each element t ∈ Ti represents a tag for array Ti and carries the
same value, i.e. t = i . Once the tags have been created all the arrays of I are merged
into one single array and all the tags are merged into another array. Then the sorting
proceeds in two steps :

• Perform a stable sort on the array, containing the arrays to be sorted, using the
array of tags, as keys.

• Perform a stable sort on the array of tags, using the array of arrays to be sorted, as
keys.

The process has been explained in Fig. 7.2. It is clear that STA kind of strategy
takes a lot more resources (both memory, and time) than would be needed for an
optimal parallel computing strategy. Redundant work includes adding tags to the
array, sorting them, and the need to sort the tag arrays in the GPU global memory.
Further the STA technique uses Radix sort for sorting of the numbers which utilizes

94 F. Saeed and M. Haseeb

data

tags

{7,6,4,3,4,3,2,1,9,8,6,1}

{1,1,1,1,2,2,2,2,3,3,3,3}

data

tags

{1,1,2,3,3,4,4,6,6,7,8,9}

{2,3,2,1,2,1,2,1,3,1,3,3}

data

tags

data

tags

{{3,4,6,7},{1,2,3,4},{1,6,8,9}}

{{1,1,1,1},{2,2,2,2},{3,3,3,3}}

data

tags

1 2

34

5

fla�en arrays

sort tags by datastable sort data by tags

create a tag array

Fig. 7.2 A step by step process explaining the STA technique, here the arrays to be sorted are
referred as test arrays: (I) A tag array is created for each array to be sorted. (II) Arrays are merged
into one big array. (III) Arrays are sorted using the array of tags as keys. (IV) Again arrays are
sorted using the test arrays as key. (V) Arrays are restored based upon their tags

almost O(N) more space than the data under process [7]. The estimated memory
that is used by STA is approx. 3 times more than the memory required for optimal
processing [8] be required to sort all the arrays.

7.5.2 Runtime Analysis and Comparisons

We performed the experiments to create 4 different data sets where each set consists
of 200k arrays where each array was generated using uniform distribution between
0 and 231 − 1. The size of these arrays was 1000, 2000, 3000, and 4000 respectively
for four data sets thatwere producedwith floating point data type.All the experiments
listed below were performed using 24 CPU cores each operating at 1200 MHz,
Graphic Processing Unit used was NVIDIA’s Tesla K-40c consisting of 2880 CUDA
cores. Total globalmemory available on the devicewas 11520MBytes and the shared
memory of 48 KBytes was available per block.

Figures 7.3, 7.4, 7.5 and 7.6 show runtime comparison between STA and GPU-
ArraySort. GPU-Array sort with its superior memory efficient design out-performs
STA technique for all the array sizes that we investigated.

7.5.3 Data Handling Efficiency

The experiments that we discussed in the previous section were performed again
without any bounds on the number of arrays. Table 7.1 shows that the maximum

7 Computational CPU-GPU Template for Pre-processing of Floating-Point MS Data 95

Fig. 7.3 The figure shows
time versus number of arrays
plots for GPU-ArraySort and
the tagged sorting approach
using key-based stable
sorting algorithm from
Thrust library

214 215 216 217

0

2,000

4,000

6,000

8,000

Number of Arrays (N)

T
im

e
(m

ill
is
ec
on

ds
)

Run Time Analysis for Array Size 1000

GPU-ArraySort
STA

Fig. 7.4 The figure shows
time versus number of arrays
plots for GPU-ArraySort and
the tagged sorting approach
using key-based stable
sorting algorithm from
Thrust library

214 215 216 217

0

0.5

1

1.5

·104

Number of Arrays (N)

T
im

e
(m

ill
is
ec
on

ds
)

Run Time Analysis for Array Size 2000

GPU-ArraySort
STA

number of arrays processed by each competing method. These experiments demon-
strate that GPU-ArraySort algorithm is able to process more than 3 timesmore arrays
than the competing STA-based approach.

96 F. Saeed and M. Haseeb

Fig. 7.5 The figure shows
time versus number of arrays
plots for GPU-ArraySort and
the tagged sorting approach
using key-based stable
sorting algorithm from
Thrust library

214 215 216 217

0

0.5

1

1.5

2

2.5

·104

Number of Arrays (N)

T
im

e
(m

ill
is
ec
on

ds
)

Run Time Analysis for Array Size 3000

GPU-ArraySort
STA

Fig. 7.6 The figure shows
time versus number of arrays
plots for GPU-ArraySort and
the tagged sorting approach
using key-based stable
sorting algorithm from
Thrust library

214 215 216 217
0

1

2

3

·104

Number of Arrays (N)

T
im

e
(m

ill
is
ec
on

ds
)

Run Time Analysis for Array Size 4000

GPU-ArraySort
STA

7 Computational CPU-GPU Template for Pre-processing of Floating-Point MS Data 97

Table 7.1 Table for memory efficiency of GPU-ArraySort

Array size GPU-ArraySort STA

1000 2000000 700000

2000 1050000 350000

3000 700000 200000

4000 500000 150000

Note: The table shows number of arrays sorted by STA technique and GPU-ArraySort. The center
column shows that GPU-ArraySort can sort upto 2 million arrays of size 1000 while in comparison
STA technique was able to sort only 0.7 million arrays. This comparison is for Tesla K-40c GPU

References

1. AwanMG, Saeed F (2016) Gpu-arraysort: a parallel, in-place algorithm for sorting large number
of arrays. In: 2016 45th international conference on parallel processing workshops (ICPPW).
IEEE, pp 78–87

2. Awan MG, Saeed F (2016) Ms-reduce: an ultrafast technique for reduction of big mass spec-
trometry data for high-throughput processing. Bioinformatics 32(10):1518–1526

3. Satish N, Harris M, Garland M (2009) Designing efficient sorting algorithms for manycore
gpus. In: IEEE international symposium on parallel & distributed processing, 2009. IPDPS
2009. IEEE, pp 1–10

4. AwanMG, Saeed F (2016)Gpu-arraysort: A parallel, in-place algorithm for sorting large number
of arrays. In: 2016 45th international conference on parallel processing, parallel processing
workshops (ICPPW). IEEE, pp 78–87

5. Liu F, Huang M-C, Liu X-H, Wu E-H (2009) Efficient depth peeling via bucket sort. In: Pro-
ceedings of the conference on high performance graphics 2009. ACM, pp 51–57

6. Awan MG, Saeed F (2017) An out-of-core gpu based dimensionality reduction algorithm for
big mass spectrometry data and its application in bottom-up proteomics. In: Proceedings of
the 8th ACM international conference on bioinformatics, computational biology, and health
informatics. ACM, pp 550–555

7. Horsmalahti P (2012) Comparison of bucket sort and radix sort. arXiv:1206.3511
8. Guo Z, Huang T-W, Lin Y (2020) Gpu-accelerated static timing analysis. In: Proceedings of the

39th international conference on computer-aided design, pp 1–9

http://arxiv.org/abs/1206.3511
 23462 35804 a 23462 35804 a

http://arxiv.org/abs/1206.3511

	7 Computational CPU-GPU Template for Pre-processing of Floating-Point MS Data
	7.1 Simplifying Complex Data Structures
	7.2 Efficient Array Management
	7.2.1 Splitter Selection
	7.2.2 Bucketing

	7.3 In-Wrap Optimizations and Exploiting Shared Memory
	7.4 Time Complexity Model
	7.5 Performance Evaluation
	7.5.1 Sorting Using Tagged Approach (STA)
	7.5.2 Runtime Analysis and Comparisons
	7.5.3 Data Handling Efficiency

	References

