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Computational techniques have taken a newmeaning for scientific inquiry in biology
especially after the introduction of high-throughput experimental techniques. These
instruments can produce massive amounts of data that needs to be processed in a
scalable fashion to ensure that we can make sense of these data sets from various
sources [2, 3]. As expected, Mass Spectrometry (MS) based omics is essential for
precision medicine, cancer research, and drug discovery but the scale at which these
data sets needs to be processed is massive (tera- to peta-byte levels) [2–4]. We have
also shown that proteomics, andmeta-proteomics search can taken impractically long
times [5, 6].which canbecomeamajor technical hurdle in investigating these systems
biology studies. The existing serial algorithms scale very poorly with increasing size
of the data sets, and HPC methods are also shown to be much less than optimal [2,
7].

The post-Moore era of computer architectures has given us ubiquitous access to
multicore, manycore, CPU-FPGA, and CPU-GPU architectures which can be used
for acceleration of applications [8, 9]. However, up until recently there has not been
a serious effort toward developing high-performance computing algorithms for MS-
based omics. Likewise, any underlying high-performance computing building blocks
[8, 9] that are domain specific had not been built to date. However, it is clear that
high-performance computing architectures can, and must, be used for accelerating
the processing of big MS-based omics data; something that has been successful in
so many other domains [10, 11].

One exciting development in computer architecture is the development of Graph-
ics Processing Unit (GPU) which is a low-cost device but is capable of housing
thousands of small computational cores which can be used for exploitation of paral-
lelism in many scientific workflows [12, 13]. However, the limitation of GPU-based
computing is that the parallel algorithmhas to be designed specifically to exploit GPU

Some parts of this chapter may have appeared in [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9_6

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_6&domain=pdf
https://doi.org/10.1007/978-3-031-01960-9protect LY1	extunderscore 6
https://doi.org/10.1007/978-3-031-01960-9_6


78 F. Saeed and M. Haseeb

architecture for accelerating the code. Since the design of the algorithms is applica-
tion specific, many of the GPU-based algorithms do not have re-usable designs that
can be used for MS-based omics. Other limitations include the development of par-
allel code without taking into account all of the factors that can affect the speedups
and scalability (i.e. inserting parallel programming pragmas in code in the hope to
get some speedups) leading to plethora of poorly designed parallel algorithm that
can exploit the GPU for MS-based omics [8].

When we started this research, we did not just wanted to have another GPU-based
algorithms for MS-based omics. We wanted to develop the fundamental building
blocks for GPU-based MS omics data analysis that can be used as fundamental
guidelines, and generic principles which would give speedups for many workflows.
Such generic goalposts would allow MS domain scientists to develop GPU-based
algorithm, which would scale, without worrying too much about complexities of
GPU architectures (something that may not be possible for domain scientists to pick
just because it is a whole other field of study).

To facilitate the development of GPU-based MS omics workflows; we designed,
and implemented a generic GPU-based algorithmic design templates called GPU-
DAEMON (GPU Algorithm Design, Data Management and Optimization). GPU-
DAEMON is a GPU-based template that allows exploitation of GPU architecture for
any data that looks like large number of very small arrays. Of course, it is designed
and implemented with MS data analysis in mind, but we showed in our paper that
it is very much applicable to other domains (such a fMRI-based neuroscience) anal-
ysis. To design GPU-DAEMON we considered all possible bottlenecks, template
design for efficient data management of array structures, and various optimization
that allows maximal occupancy, and performance for the GPU-based cores. Once
we have introduced the design of GPU-DAEMON, we will implement a GPU-based
MS-REDUCE algorithm in the next chapter.

6.1 GPU Architecture and CUDA

Graphical processing units (GPU) were developed to improve the graphics (and
related) quality for gaming. However, computational scientists have worked toward
using this architecture for general purpose computing to improve the scalability of
the scientific workflows. GPU consists of large number of cores that can process in
parallel, and can be potentially used for processing individual elements of an image
matrix, or matrix calculations to exploit the massively parallel cores available in a
typical GPU [14]. A typical GPU consists of several StreamingMultiprocessors (SM)
each of which contains several CUDA cores which can vary from one GPU model
to another. For example, GTX 1080Ti GPU contains 28 SMs with 128 CUDA cores
each where as K-40 Tesla GPU contains 15 streaming multiprocessors with 192 core
each making a total of 2880 cores.

Irrespective of how many SMs or CUDA cores a GPU has; each SM in a GPU
has a fast on-chip memory associated with it and shared among its cores. This fast



6 A Easy to Use Generalized Template to Support Development of GPU Algorithms 79
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on-chip memory is at least 100x times faster than the GPU global memory but is
small in size (32kbyte or 64kbyte) [15]. There is also an off-chip memory, known
as Global Memory, which is much larger in size (several GB is not uncommon in
new GPUs), and is mostly used for storing data, and communicating it with the host
CPU. A generic overview of the CPU-GPU architecture is shown in Fig. 6.1.

6.1.1 CUDA Overview

Interest in designing and implementing general purpose computing on GPUs made
NVIDIA introduce CUDA standard which can be used with multiple languages to
program GPUs [16]. CUDA uses SIMT (Single Instruction Multiple Thread) model
which combined the SIMD (Single Instruction Multiple Data) with the assumption
of multiple threads and allows exploitation of two levels of parallelism [17, 18].
CUDA standard forms a software overlay that could allow the programmer easy
access to parallel architectural features of a GPU. In CUDA programming model,
each compute unit is arranged in the form of a Grid of Blocks each containing several
threads, where the number of threads, and blocks are GPU dependent. Each thread
within a block is assigned 2 IDs, i.e. Threads ID, and Block ID which can be used to
track and use each thread in each block. The SMs that are shown in Fig. 6.1 would be
replaced with blocks and CUDA cores with threads. As discussed earlier, the number
of threads that are active at any given time is dependent on the GPU card that is used
[16].

6.1.2 CPU-GPU Computing

For any CPU-GPU computing, one needs a CPU that can act as a host which can
offload tasks and data to the GPU which usually behaves like a co-processor. Data
from RAM associated with CPU is transferred to the GPU’s global memory via
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PCIe bus with a set of CUDA instructions. CUDA kernel is executed on the GPU
where each CUDA core complete the instructions independently. Once the kernel
has completed the instructions, and calculation on a given data fragment, the results
are transferred back to the host again via PCIe bus. Since PCIe bus is a bottleneck
when processing big data, one has to design GPU-based algorithm by having a
good understanding (and profiling) of the algorithm [19]. To ensure that scalable
processing can happen only most compute intense parts are transferred to the GPU
for processing. If enough effort is not invested in the design of the algorithm; theCPU-
GPU code will perform poorly when compared to a single one threaded CPU [14].
In the next section we are going to discuss different challenges, and their solutions
that one has to consider when design GPU-based algorithms for MS-based omics.

6.2 Challenges in GPU Algorithm Design

This section is dedicated to discuss different challenges, bottleneck, and their solu-
tions when designed GPU-based algorithms for MS-based omics.

6.2.1 Need for Data Parallel Design

GPUcompute nodes are generally large in number, and are simple coreswithout deep
pipelines or complex architecture-specific optimizations. Therefore, the best way to
exploit GPU cores is to be able to design a parallel strategy that can exploit the data
parallelism, and can execute tasks in a parallel fashion without any communication
between different cores.

6.2.2 Data Transfer Bottlenecks

Part of the algorithm which is offloaded to the GPU for processing requires that the
data is present in the memory of the CPU before the kernel is launched. Since this
transfer of data needs to take place via PCIe bus; it is one of the biggest bottlenecks
that are faced for big data applications. Needless to say, like any parallel algorithms,
if the communication time (to transfer the data) is larger than the time it takes to
compute the data; then the scalability of the implementation is limited. In the same
way, if the data that is transferred from theGPU to the CPU is larger than the available
memory; again efficient data transfer techniques are needed to eliminate or reduce
CPU-GPU bottlenecks.
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6.2.3 Non-coalesced Memory Accesses

GPU threads that are active are grouped into 32 thread-chunks and are known as
warp which are scheduled on to the SMs when they are available. These wraps
can then be mapped to each of the SMs as the resources become available. Global
memory accesses from the threads of a wrap can be combined together (colloquially
known as coalesced together) to the same memory transaction if the locations have
spatial locality . If spatial locality is not present, then accessing the global memory
in multiple transactions leads to stalling the wrap execution. This specific issue can
become a major bottleneck if the parallel method that can exploit a GPU is not
carefully designed.

6.2.4 Warp Divergence

In SIMT execution, the thread in a wrap execute in a lock-step which allows all the
independent instruction to be executed simultaneously. Branches on the other hand
can lead the threads to divergewhich can result in efficiency loss, andminimization of
this warp-divergence is one of the challenges, and major design decision for parallel
algorithms that can exploit GPUs.

6.2.5 Exploiting Coarse Grained and Fine Grained
Parallelism

Since GPUs require two-levels of parallelism, each level would need fine-grained
data management methods to exploit the parallelism that might be available in the
architecture. Most often this will require that the data is managed in a way that
decomposes the data in fine-grained sets so that they can be processed in parallel. If
the decomposition is not fine-grained enough, the amount of parallelism that can be
exploited using GPU would be under utilized leading to less scalable solutions.

6.3 Basic Principles of GPU-DAEMON

The proposed GPU base template provides a design that can be used for CPU-GPU-
based algorithms for big data omics especially for MS-based omics, Next Gener-
ation Sequencing (NGS) based genomics, and fMRI based connectomics. For our
purposes, we will focus on the design principles that are relevant to MS-based omics
data analysis. The design of our proposedGPU-DAEMON is divided into seven steps
where each step gives a generic solution that tackles one or more GPU bottleneck. Of
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Fig. 6.2 Figure shows the template for GPU-DAEMON

course, these solutions need to be adapted to the application that is being considered
but give a good starting point to modify depending on the problem being solved.
Figure 6.2 shows the steps in GPU-DAEMON. The first step is to analyze and profile
the algorithm for which the GPU-based method is being developed. This step will
determine if the proposed method is compute- or data-intensive. Any compute- or
data-intensive parts are kept for the GPU-side while other simpler operations may
be completed on a CPU.

6.3.1 Simplifying Complex Data Structures

PCIe bus that is mostly used to transfer the large data structures is one of the first
bottlenecks that are encountered.Our proposed approach of transferring the complete
data structures is easy and intuitive for the programmer, andgenerally does not require
the complete redesign of the parallel code. With limited memory compute area in the
GPU dictates that only a small portion of the data structure is needed for computation
at any given point in time. Therefore, a design methodology that requires one to only
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transfer part of the data structure will considerably reduce the bottleneck that is
associated with PCIe bus.

6.3.2 Simplifying Complex Computations

In general, existing GPU architectures are simple computing platforms and do not
allow complex computations which makes them specialized for large number of
computations. To this end, the second step of the GPU-DAEMON is to simplify the
complex computations, e.g. by converting floating point numbers into integers, or
representing those data sets as binary making data computations simpler for these
cores. Of course, these simplifications are application specific, and not all compu-
tations or data can be made simpler especially in the scenario where precision is
required.

6.3.3 Efficient Array Management in GPU

From the data management prospective, CPU-GPU strategy is dependent on how the
arrays of the data are managed, and how different CUDA compute nodes compete for
access to data; and how this data is accessed can determine the performance of the
GPU-based parallel algorithm. To exploit the multiple levels of parallelism that are
available, we introduce and evaluate fragmentation strategy that can be accomplished
using two steps: (1) First step consists of ensuring that each array can be mapped to
a unique block in the GPU in a coarse-grained fashion. This can almost always be
accomplished since the number of CUDA blacks are much larger than the number
of arrays.

(2) The second step is used to exploit fine-grained parallelism by decomposing
each array into sub-arrays and then mapping them to a cluster of threads. Since this
is more specific to the application, the data mapping can be categorized into two
parts each with a different approach. If the data calculations are independent and
are not dependent on the calculation from other arrays cells then an array of size m,
following number of elements assigned per-thread should suffice:

Ei = m

nT
(6.1)

EnT−1 = Ei + m mod (nT )

where Ei is the number of elements to be mapped to thread i where nT is the total
number of threads available per block, and EnT−1 represents the number of elements
mapped to the last thread in block. Here we assume that Thread IDs start at position
0. Start and end indices for sub-array assigned to each thread can be calculated as
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SIi = i ∗ Ei

E Ii = (SIi + (i + 1) ∗ Ei ) − 1

E InT−1 = (E InT−2 + EnT−1) − 1

Here SIi and E Ii are the locations for first and last elements of the sub-arrays assigned
to thread i , respectively.

When the data is dependent on each other for calculations, then elements need
to be divided into data independent subsets using a suitable user defined function as
shown in GPU-DAEMON template Fig. 6.2. We denote this function by Fsub.

6.3.4 Exploiting Shared Memory

Sharedmemory that is available on aGPU is 100x times faster than any othermemory,
which makes exploitation of this memory module most consequential for the per-
formance of the code. The programmer would want to make sure that the frequently
accessed part of the calculations is moved to the shared memory. One condition
[15, 19] that would ensure that such move will give reasonable speed advantage the
following equation must hold:

(Tt f ) + (PSM) < (PGM) (6.2)

Here Tt f is the time to move data from global to shared memory while PSM and PGM

are the processing times in Shared and Global memory, respectively.

6.3.5 In-Warp Optimizations

Optimization strategies which will ensure that we get the best performance from a
GPU; we want to ensure that thread divergence inside a warp, and memory coa-
lescing to access global memory are reduced to minimize loss in performance. For
thread divergence, usually the parallel algorithm needs to be redesigned (or at least
reconfigured) so that the threads needed for computations do not diverge in a warp.
Global memory coalescing can be achieved by good thread to data mapping strategy.
The mappings discussed in third step of GPU-DAEMON simplify this mapping. By
mapping consecutive threads to independent contiguous array segments of Step 3
can help achieve memory coalescing.
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6.3.6 Result Sifting

Once computations have been completed, the programmer has to ensure that the
output is also managed correctly. Sometimes these output arrays can be larger than
the input data [20], and attention has to be paid to ensure that memory transfer
bottlenecks are not formed. Usual techniques include either compressing the output
results or copying back just the relevant part of the calculations. Since these are
very specific to the application under consideration, we will not generalize this for
GPU-DAEMON.

6.3.7 Post Processing Results

If in the first step, if a transformation is performed on the data to simplify the transfer
and processing then there may be a need for a post-processing phase. This phase
is mostly performed on the host processor and is basically an inverse of the data
transformation performed in the first step.

6.3.8 Time Complexity Model for GPU-DAEMON

Any algorithm developed using GPU-DAEMONwill have total time Ttot comprising
of two terms

Ttot = TCPU + TGPU

where TCPU is the total time complexity of CPU part of the design and TGPU is
the total time complexity of GPU part of the design. Here we will give a generic
formulation for TGPU , this formulation can be used to derive the actual time com-
plexity of the GPU part of the algorithm. TGPU depends on the time taken to dis-
integrate a given array into data independent segments (Tsub), time for processing
the data independent arrays (Tproc) and the time for result sifting step (Tsi f t ), i.e.
TGPU = Tsub + Tproc + Tsi f t . If we consider N arrays with each of size n then the
total time for applying disintegration function fsub to N arrays on GPU would be
equal to Tsub = N

B ∗ (
T ( fsub)

p ) where B is the number of Cuda Blocks active at a
given time, p is the number of threads active per block and T ( fsub) is the time for
fsub. Similarly, we can compute T ( f proc) to be N

B ∗ (
T ( f proc)

p ) for processing function

fsub and Tsi f t = N∗x∗T ( fsi f t )
B∗p for result sifting function fsi f t . Here x is the number of

elements in each result array. This gives us

TGPU = N

B ∗ p
∗ (T ( fsub) + T ( f proc) + x ∗ T ( fsi f t )) (6.3)
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