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To date, MS proteomics data is identified using database search algorithms based
purely on numerical techniques or some denovo techniques that allow peptide identi-
fication without using databases. Currently, there is no single strategy from database
search or denovo techniques that can claim as the most accurate strategy. Substantial
work has been carried out toward developing computational techniques for iden-
tification of peptides using database search [1], as well as denovo algorithms [2].
However, peptide identification problems are well-known and prevalent [3] includ-
ing but not limited to misidentifications or no identification for peptides, statistical
accuracy (FDR) and inconsistencies between different search engines [4].

Most of the algorithms applied toMS data have been limited to traditional numer-
ical algorithms and can be categorized as database search algorithms and denovo
algorithms. Comparison across literature indicates decreased average accuracy of
denovo algorithms (38.1–64.0%) [4] relative to database search algorithms (30–80%)
[5]. However, within-study direct comparisons of database verses denovo machine
learning (ML) approaches have revealed modest gains [6], indicating further formal
evaluation is warranted. Moreover, ML methods use different validation metrics and
the lack of standard metrics and/or data-benchmarks can lead to overly optimistic
assessment for machine learning algorithms [7]. Overall, prior literature demon-
strated limited accuracy and generalizability [4] identifying peptides using current
limited ML methods.

Previous work suggests that numerical algorithms and the use of traditional ML
algorithms may not be able to capture and integrate the multidimensional features
of MS data [8]. However, deep learning methods [4, 8] may offer an improved
approach for identifying peptides in noisy high-dimensional MS data and peptides
that are very similar to each other [9]. Preliminary progress assessing deep learning
methods in peptide deduction applied to MS data has yielded an average accuracy
of 82–95% on selected data sets but with limited precision (amino acid level 72%)
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and recall (peptide—level 39.24%) [8]. However, large volumes of data with large
number of possible parameters are needed for deep learning training, particularly for
MS data, which has resulted in a technical hurdle in developing such strategies. We
have previously shown that this can result in overfitted deep learning models [10]
with limited increase in accuracy due to noise feature-integration. Such overfitting
leads to limited generalizability [11], and contributes to the ongoing reproducibility
crisis [12–14]. One Deep-learning algorithmwhen used on another’s data set leads to
like 30% accuracy which suggests that there is a generalizability problem [15, 16].
Further, existing ML algorithms are computationally expensive and subsequently
have limited scalability in training and application. Our prior work has demonstrated
that this is particularly true for MS applications that scale poorly with increasing
size of data sets [17]. Computational scaling and management are needed for these
machine learning algorithms as this is currently a significant challenge for proteomics
practitioners interested in applying these techniques.

In the future, we foresee the integrated use of image-processing, machine learn-
ing, including deep learning for MS data, to identify peptides from MS data in a
highly accurate manner. To this end, there is some literature that has focused on pro-
cessing MS data using machine learning and deep learning techniques. Importantly,
image-processing, deep learning strategies, and fusing of multi-modal features have
not been applied to MS data even though these techniques have the potential to radi-
cally change how MS data is processed with highly accurate peptide identifications.
However, to make the proposed deep learning training and solutions scalable, HPC
algorithms are needed.

10.1 Why HPC is Essential for Machine-Learning Models

Deep-learning models have unmatched expressive power as compared to traditional
machine learning solutions. However, this expressive power comes from very large
number of trainable parameters which can capture complex relationships between
the data. In general, bigger and deeper Convolutional Neural Networks (CNN) mod-
els are used for various applications that are successful. The objective of this aim
is to design and develop high-performance computing strategies which can process
big MS data and accelerate the proposed deep learning models. CPU-GPU-based
methods can give superior speeds in the processing of MS data, and of training,
and inferring of deep learning models. Successful completion of such CPU-GPU-
based pipelines is likely to contribute fundamental HPC techniques to our base of
knowledge, without which the complex training and inferring of deep learning net-
works cannot be accomplished in reasonable timeframes. Upon completion of this
research challenge, it is our expectation that we will have developed a HPC frame-
work for the proposed DL solutions for MS-based omics computational strategies
developed by us/others. Such tools would be important because they would likely
aid in much-needed approaches to study human gut/environments microbiomes in a
scalable fashion.
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As part of our preliminary studies (Haseeb et al. Nature 2021), we explored
our recently proposed HPC framework (called HiCOPS) [18] for efficient accel-
eration of database peptide search algorithms on large-scale symmetric multipro-
cessor distributed-memory supercomputers. HiCOPS exhibits orders-of-magnitude
improvement in speed compared with several existing shared- and distributed-
memory database peptide search tools, allowing several gigabytes of experimental
MS/MS data to be searched against terabytes of theoretical databases in a few min-
utes compared with the several hours required by existing algorithms. The proposed
HiCOPS parallel design implements an unconventional approach in which the (mas-
sive) theoretical databases are distributed across parallel nodes in a load-balanced
fashion followed by asynchronous parallel execution of the database peptide search.
On completion, the locally computed results are merged into global results in a
communication-optimal manner. We have demonstrated an extensive performance
evaluation in which we report between 70 and 80% strong-scale efficiency and less
than 25% overall performance overheads (load imbalance, I/O, interprocess commu-
nication, pipeline halt); collectively depicting a near-optimal parallel performance.
This overhead cost-optimal design, alongwith several optimizations, allowsHiCOPS
to maximize resource utilization and alleviate performance bottlenecks. Since our
HPC framework is search-algorithm oblivious it will be a natural extension to incor-
porate meta-proteomics deep learning model into the HPC framework.

10.2 Preliminary Data and Findings

In our recent paper [19], we have designed and implemented a Deep Cross-Modal
Similarity Network called SpeCollate. This is a deep learning network that tries to
learn the scoring function between the spectra and peptides by mapping the different
modalities of the data into a shared Euclidean subspace. This is achieved by learning
fixed sized embeddings, and training the network using sextuplets of positive and
negative examples. SpeCollate also uses a custom-designed SNAP-loss function and
hardest negative mining for appropriate negative examples to improve the training
performance. In order to train the network 4.8 million sextuplets obtained from
the NIST and MassIVE peptide libraries were used and which allowed our deep
learning model to perform better than Crux and MSFragger in terms of the number
of peptide-spectrum matches (PSMs) and unique peptides identified under 1% FDR
for real-world data. To the best of our knowledge, our deep learning network is the
first model that can determine the cross-modal similarity between peptides and mass
spectra for MS-based omics.

Despite all the superior accuracy of the deep learning model one thing that was
a severe bottleneck was the time it takes to train the network. Since there is no
theoretical framework that would allow us to predict the performance of the model,
one has to fully train the model and run validation and testing before any judgement
can be made. Our single preliminary design shows that it takes approx. 283 days
of compute time to train a single deep learning network with 5 hyper-parameters
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optimizations. The intractability of a singlemodel demonstrates that continued search
for better DL models is huge technical hurdle in studying MS-based meta-omics.
Each possible deep-network, even though carefully selected, has to be completely
trained to assess its feasibility. Apart from the time it takes for the deep learning
model training and inferences; the workflows that process MS data are also shown
to be inefficient, both theoretically [20] and in real-world experiments [18, 21]. We
believe, the HPC frameworks, that can accelerate the MS data analysis as well as the
training and inference of deep learningwill be essential to tract any kind ofMS-based
omics data analysis.

We believe that HPC will be at the forefront of these scientific investigations in
the future.
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