
Computational Biology

Fahad Saeed
Muhammad Haseeb

High-Performance
Algorithms for Mass
Spectrometry-Based
Omics

Computational Biology

Advisory Editors

Gordon Crippen, University of Michigan, Ann Arbor, MI, USA

Joseph Felsenstein, University of Washington, Seattle, WA, USA

Dan Gusfield, University of California, Davis, CA, USA

Sorin Istrail, Brown University, Providence, RI, USA

Thomas Lengauer, Max Planck Institute for Computer Science, Saarbrücken,
Germany

Marcella McClure, Montana State University, Bozeman, MT, USA

Martin Nowak, Harvard University, Cambridge, MA, USA

David Sankoff, University of Ottawa, Ottawa, ON, Canada

Ron Shamir, Tel Aviv University, Tel Aviv, Israel

Mike Steel, University of Canterbury, Christchurch, New Zealand

Gary Stormo, Washington University in St. Louis, St. Louis, MO, USA

Simon Tavaré, University of Cambridge, Cambridge, UK

Tandy Warnow, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Lonnie Welch, Ohio University, Athens, OH, USA

Editors-in-Chief

Andreas Dress, CAS-MPG Partner Institute for Computational Biology, Shanghai,
China

Michal Linial, Hebrew University of Jerusalem, Jerusalem, Israel

Olga Troyanskaya, Princeton University, Princeton, NJ, USA

Martin Vingron, Max Planck Institute for Molecular Genetics, Berlin, Germany

Editorial Board

Robert Giegerich, University of Bielefeld, Bielefeld, Germany

Janet Kelso, Max Planck Institute for Evolutionary Anthropology, Leipzig,
Germany

Gene Myers, Max Planck Institute of Molecular Cell Biology and Genetics,
Dresden, Germany

Pavel Pevzner, University of California, San Diego, CA, USA

Endorsed by the International Society for Computational Biology, the Computa-
tional Biology series publishes the very latest, high-quality research devoted to
specific issues in computer-assisted analysis of biological data. The main emphasis
is on current scientific developments and innovative techniques in computational
biology (bioinformatics), bringing to light methods from mathematics, statistics
and computer science that directly address biological problems currently under
investigation.

The series offers publications that present the state-of-the-art regarding the prob-
lems in question; show computational biology/bioinformatics methods at work; and
finally discuss anticipated demands regarding developments in future methodology.
Titles can range from focusedmonographs, to undergraduate and graduate textbooks,
and professional text/reference works.

Fahad Saeed ·Muhammad Haseeb

High-Performance
Algorithms for Mass
Spectrometry-Based Omics

Fahad Saeed
Knight Foundation School of Computing
and Information Sciences
Florida International University
Miami, FL, USA

Muhammad Haseeb
Knight Foundation School of Computing
and Information Sciences
Florida International University
Miami, FL, USA

ISSN 1568-2684 ISSN 2662-2432 (electronic)
Computational Biology
ISBN 978-3-031-01959-3 ISBN 978-3-031-01960-9 (eBook)
https://doi.org/10.1007/978-3-031-01960-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-01960-9

Fahad Saeed dedicates this book to Saba,
Haadi, and Emaan.

Preface

To date, the processing of high-throughputMass Spectrometry (MS) data is primarily
accomplished using serial algorithms. Developing new methods to process MS data
is an active area of research [1], but there is no single strategy that focuses on scal-
ability of MS-based methods [2]. MS is a diverse and versatile technology for high-
throughput functional characterization of proteins, small molecules, and metabo-
lites in complex biological mixtures. In the recent years, the technology has rapidly
evolved and is now capable of generating increasingly large (multiple terabytes per
experiment) [1] and complex (multiple species/microbiome/high-dimensional) data
sets [3]. This rapid advances in MS instrumentation must be matched by equally
fast and rapid evolution of scalable methods developed for the analysis of these
complex data sets. Ideally, the new methods should leverage the rich heterogeneous
computational resources available in a ubiquitous fashion in the form of multicore,
manycore, CPU-GPU, CPU-FPGA, and IntelPhi architectures. The absence of these
high-performance computing algorithms now hinders scientific advancements inMS
research [2].

In systems, biology setting workflows (or pipelines) are frequently used which are
a sequence of loosely connected computational tasks. Database-searchworkflows are
the most commonly used data processing pipelines which require matching a high-
dimensional noisy MS data (called spectra) to a database of protein sequences. The
entire workflow is executed using as a script-like structure that executes different
algorithms which is then run on a dedicated workstation. The data volume can easily
reach terabyte level depending on the experiment and search parameters for these
workflows. The currently used state-of-the-art serial and parallel methods are data
(and communication cost) oblivious which may not give the best possible perfor-
mance for these database-search workflows. Currently used state-of-the-art serial
algorithms results in unusually long processing times.

Development of parallel computing techniques to deal with this deluge of data has
also been limited and has mostly adopted the batch mode (or embarrassingly parallel
computing) formof processing.As onemight imagine there have been some efforts in
developingHPCalgorithms that canbeused for speedingup the processing.However,
most of these efforts have been limited to parallelization of specific algorithms or

vii

viii Preface

workflows without the ability to generalize the end-to-end performance for other
existing or new algorithms. In order to take the field of computational proteomics
forward and set it afoot with more mature fields such as genomics more concerted
HPC efforts. This has resulted in limited speedups (e.g. 30x speedup for 200 cores)
and consequently limited usage by proteomics practitioners who might not see the
advantage of trivial reduction in processing times.

Our own preliminary study suggests that such workflows when used with data
divided among compute nodes in an oblivious manner lead to unbalanced workload
and results in hours to weeks of computation with the state-of-the-art software [4].
Therefore, concerted efforts are needed for the development of high-performance
computing (HPC) framework for working with large mass spectrometry data sets
while benefiting advancements in areas of science including proteomics, proteoge-
nomics, meta-proteomics, and microbiomes. These frameworks must be able to
leverage the vast HPC heterogeneous architectures that are ubiquitous in the form of
desktops, laptops, clusters, and supercomputers.

The scientific premise of this project is that progress can be gained
in developing scalable MS-based omics data analysis tools for non-model
organism proteomics/meta-proteomics/proteogenomic will require: (1) Improved
data-partitioning strategies allowing minimization of data communication between
different levels of memory hierarchy and processing units; (2) Improved parallel
algorithms on distributed-memory architectures to address the scalability limitations
due to excessive communication costs; (3) Improved parallel algorithms for CPU-
GPU/CPU-FPGA architecture to exploit heterogeneity of modern HPC machines;
(4) Integration of these parallel algorithms to XSEDE Supercomputers Gateways
will make our methods available for large-scale omics system biology studies.

To address these challenges, we will formulate and develop MS-specific parallel
computing abstraction that incurs minimal I/O times on the multitude of heteroge-
neous architectures. Second, to address the diversity of the mass spectrometry user
community, we will formulate HPC frameworks that supports scaling down analysis
(i.e. working with large data files on relatively inexpensive hardware such as CPU-
GPU without fully loading them into memory), as well as scaling up (i.e. ability to
execute the workflows on large XSEDE supercomputers and cloud computing infras-
tructure).By ensuring the compatibility ofmass spectrometry-specific data standards,
supporting the number of heterogeneous architectures for efficient processing and
generating optimized code bases in open-source format will enable the development
of scalable analytical methods. Therefore, our framework aims to democratize access
to HPC infrastructure for a broader community of life and systems biology scien-
tists, and create a blueprint for a new paradigm for HPC computing for large MS
data sets—making HPC the fourth pillar of scientific investigations.

Miami, FL, USA
January 2022

Fahad Saeed

Preface ix

References

1. Kong AT, Leprevost FV, Avtonomov DM,Mellacheruvu D, Nesvizhskii AI (2017)Msfragger:
ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics.
Nat Methods 14(5):513

2. Haseeb M, Afzali F, Saeed F (2019) Lbe: A computational load balancing algorithm for
speeding up parallel peptide search in mass-spectrometry based proteomics. In: IEEE Inter-
national parallel and distributed processing symposium workshops (IPDPSW), IEEE, 2019,
pp 191–198

3. Tariq MU, Saeed F (2021) Specollate: Deep cross-modal similarity network for mass
spectrometry data based peptide deductions. PloS one 16(10), e0259349

4. Awan MG, Saeed F (2016) Ms-reduce: an ultrafast technique for reduction of big mass
spectrometry data for high-throughput processing. Bioinformatics 32(10):1518–1526

Acknowledgements

The research presented was supported by the NIGMS of the National Institutes
of Health (NIH) under award number: R01GM134384. The authors were further
supported by the NSF under award number: NSF CAREER OAC-1925960. The
content is solely the responsibility of the authors and does not necessarily represent
the official views of the NIH and/or the NSF. This work used the National Science
Foundation (NSF)XSEDE supercomputers through allocations TG-CCR150017 and
TG-ASC200004. The authors would also like to acknowledge hardware donation by
Intel Altera (DE10-PRO-SX FPGA) and NVIDIA (TITAN Xp GPU).

xi

Contents

1 Need for High-Performance Computing for MS-Based Omics
Data Analysis . 1
Fahad Saeed and Muhammad Haseeb
References . 4

2 Introduction to Mass Spectrometry Data . 7
Fahad Saeed and Muhammad Haseeb
2.1 Proteomics . 7

2.1.1 Mass Spectrometry-Based Proteomics 7
2.1.2 MS/MS Data Pre-processing . 10
2.1.3 Peptide Identification . 10

2.2 Proteogenomics . 12
References . 14

3 Existing HPC Methods and the Communication Lower
Bounds for Distributed-Memory Computations for Mass
Spectrometry-Based Omics Data . 21
Fahad Saeed and Muhammad Haseeb
3.1 Introduction . 21
3.2 Communication Model . 23

3.2.1 Sequential Computer . 24
3.2.2 Parallel Computer . 24

3.3 MS Database Proteomics, Proteogenomics,
and Meta-Proteomics Search . 24
3.3.1 Generalized Parallel Computing Strategy 25

3.4 Communication Lower Bounds . 26
3.5 Meta-Analysis of Results of Current HPC Methods 29
3.6 Discussions . 32
3.7 Conclusions . 33
References . 34

xiii

xiv Contents

4 High-Performance Computing Strategy Using
Distributed-Memory Supercomputers . 37
Fahad Saeed and Muhammad Haseeb
4.1 Introduction . 37

4.1.1 Background . 38
4.1.2 Problem Statement . 38

4.2 The HiCOPS Framework . 39
4.2.1 Database Indexing . 39
4.2.2 Experimental Data Pre-processing . 41
4.2.3 Parallel Database Peptide Search . 41
4.2.4 Assembling the Local Results . 42

4.3 Optimizations . 42
4.3.1 Task Scheduling . 42
4.3.2 Communication Optimization . 43

4.4 Results . 44
4.4.1 Experimental Settings . 44
4.4.2 Correctness Analysis . 45
4.4.3 Speed Comparison . 46
4.4.4 Performance Evaluation . 47

4.5 Discussion . 50
References . 55

5 Fast Spectral Pre-processing for Big MS Data . 57
Fahad Saeed and Muhammad Haseeb
5.1 A Review of Spectral Pre-processing Methods 57

5.1.1 Spectral Denoising Algorithms . 58
5.1.2 Spectral Quality Assessment Algorithms 59
5.1.3 Separation of b-y Ions . 59

5.2 MS-REDUCE: An Ultra-Fast Data Reduction Algorithm
for Big MS Data . 60
5.2.1 Spectral Classification . 61
5.2.2 Spectral Quantization . 63
5.2.3 Weighted Random Sampling . 64

5.3 Performance Evaluation of MS-REDUCE 66
5.3.1 Time Complexity . 67
5.3.2 Experimental Verification of the Complexity

Analysis . 67
5.3.3 Speed Comparison . 68
5.3.4 Comparing MS-REDUCE with Other Denoising

Methods . 69
5.3.5 Quality Assessment . 69
5.3.6 Comparison with Random Sampling of Peaks 70
5.3.7 Comparison with Conventional Algorithms 71

References . 74

Contents xv

6 A Easy to Use Generalized Template to Support Development
of GPU Algorithms . 77
Fahad Saeed and Muhammad Haseeb
6.1 GPU Architecture and CUDA . 78

6.1.1 CUDA Overview . 79
6.1.2 CPU-GPU Computing . 79

6.2 Challenges in GPU Algorithm Design . 80
6.2.1 Need for Data Parallel Design . 80
6.2.2 Data Transfer Bottlenecks . 80
6.2.3 Non-coalesced Memory Accesses . 81
6.2.4 Warp Divergence . 81
6.2.5 Exploiting Coarse Grained and Fine Grained

Parallelism . 81
6.3 Basic Principles of GPU-DAEMON . 81

6.3.1 Simplifying Complex Data Structures 82
6.3.2 Simplifying Complex Computations 83
6.3.3 Efficient Array Management in GPU 83
6.3.4 Exploiting Shared Memory . 84
6.3.5 In-Warp Optimizations . 84
6.3.6 Result Sifting . 85
6.3.7 Post Processing Results . 85
6.3.8 Time Complexity Model for GPU-DAEMON 85

References . 86

7 Computational CPU-GPU Template for Pre-processing
of Floating-Point MS Data . 89
Fahad Saeed and Muhammad Haseeb
7.1 Simplifying Complex Data Structures . 89
7.2 Efficient Array Management . 90

7.2.1 Splitter Selection . 90
7.2.2 Bucketing . 91

7.3 In-Wrap Optimizations and Exploiting Shared Memory 92
7.4 Time Complexity Model . 92
7.5 Performance Evaluation . 93

7.5.1 Sorting Using Tagged Approach (STA) 93
7.5.2 Runtime Analysis and Comparisons 94
7.5.3 Data Handling Efficiency . 94

References . 97

8 G-MSR: A GPU-Based Dimensionality Reduction Algorithm 99
Fahad Saeed and Muhammad Haseeb
8.1 G-MSR Algorithm . 99

8.1.1 Simplifying Complex Data Structures 101
8.1.2 Simplifying Complex Computations 101
8.1.3 Efficient Array Management . 102
8.1.4 Exploiting Shared Memory . 102

xvi Contents

8.1.5 In-Warp Optimizations . 102
8.1.6 Result Sifting . 103
8.1.7 Post Processing Results . 103

8.2 Results and Experiments . 103
8.2.1 Time Complexity Model . 103
8.2.2 Experiment Setup . 104
8.2.3 Scalability and Time Analysis . 105
8.2.4 Quality Assessment . 105
8.2.5 Reductive Proteomics for high-resolution

instruments . 106
8.2.6 Comparison with Unified Memory 107

References . 110

9 Re-configurable Hardware for Computational Proteomics 111
Fahad Saeed, Muhammad Haseeb, and Sumesh Kumar
9.1 Introduction . 111

9.1.1 Construction of a Field-Programmable Gate Array 111
9.2 Popular Architectural Configurations Using FPGAs 112

9.2.1 Systolic Array Configuration . 113
9.2.2 Parallel Asynchronous PEs Connected

to the System Bus . 114
9.2.3 Parallel Processors with Communication

Interconnect . 114
9.3 FPGA Design for Computational Proteomics 116

9.3.1 Architecture Overview . 117
9.3.2 Processing Element (PE) . 118
9.3.3 Bus-Arbitration Module . 119
9.3.4 Binary Search Module . 119
9.3.5 Ion-Matching Circuit . 120
9.3.6 Experiments and Results . 121

9.4 Conclusion . 124

10 Machine-Learning and the Future of HPC for MS-Based
Omics . 125
Fahad Saeed and Muhammad Haseeb
10.1 Why HPC is Essential for Machine-Learning Models 126
10.2 Preliminary Data and Findings . 127
References . 128

Glossary . 131

Index . 137

Chapter 1
Need for High-Performance Computing
for MS-Based Omics Data Analysis

Fahad Saeed and Muhammad Haseeb

For the past 30 years, significant efforts were invested for the development of design-
ing and implementing more efficient scoring functions which included highly suc-
cessful search engines [1–5]. Similar to other domains, numerical algorithms were
developed for Mass Spectrometry (MS)-based peptide deduction and are designed
and implemented by assuming number of arithmetic operations as the sole metric for
efficiency. In the last decade, the technological trend ofMoore’s law has kept making
the arithmetic operations faster. As a result, the bottleneck for many algorithms have
shifted from computational arithmetic operations efficiency to communication, i.e.
communication costs of either moving the data between different levels of memory
hierarchy (e.g. RAM, cache) or between different distributed-memory processors
connected via a network. There are numerous [6–8] studies that have shown this
trend that the cost of moving data exceeds the costs of doing the arithmetic oper-
ations [6]. This gap is, and will continue to grow exponentially over time with the
introduction of multicore, manycore, and GPU architectures [8–10].

To date, processing of high-throughput MS data is accomplished mostly using
serial algorithms. Recent trends in systems biology (e.g. meta-proteomics, non-
model proteomics, microbiomes) MS-based experiments point towards the need for
larger, better, and faster computational tools. This trend is fed by the MS technology
that has rapidly evolved and is now capable of generating increasingly large and
complex (multiple species/microbiome/high-dimensional) data sets [11]; leading to
high-impact proteomics, meta-proteomics and microbiomes studies directly related
to human disease and health. This rapid advances in MS instrumentation must be
matched by equally rapid evolution of scalable methods developed for the analysis
of these complex data sets. Developing new methods to process MS data is an active
area of research [5] but the focus of this research, till date, has been towards improv-
ing the efficiency of arithmetic operations. Exclusion of communication costs as a
metric, of otherwise highly successful methods, is becoming a severe bottleneck for

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-01960-9protect LY1	extunderscore 1
https://doi.org/10.1007/978-3-031-01960-9_1

2 F. Saeed and M. Haseeb

processing of MS data, and now hinders scientific advancements for microbiome,
and (meta) proteomics/microbiome research [12] workflows are the most commonly
used data processing pipelines thatmatch the high-dimensional noisyMSdata (called
spectra) to a database of protein sequences. These MS data sets are then processed
using databases which may be several times larger than the original proteome (or a
combination of multiple proteomes in case of meta-proteomics studies) depending
on the search parameters. The data volume can easily reach terabyte level depending
on the experiment and search parameters for these workflows.

Comparison across literature indicates decreased scalability of the serial algo-
rithms. The scalability issues for these serial methods are solved using various fil-
tering mechanisms but this has shown increased misidentification of peptides and/or
inconsistencies between various search engines [13, 14]. It is not uncommon to have
a terabyte scale database against which millions of raw experimental spectra need to
be processed for model organisms (e.g. Rattus) and a few dynamic modification as
search parameters. Non-model organism is considered the next frontier to accelerate
insight into chronic disease in humans [15] requires even larger search spaces which
would lead to intractable runtimes for both serial algorithms and traditional HPC
methods for MS-based omics.

Increasing size of the spectra and theoretical database search space has led to
the development of high-performance computing strategies [16–21] to speed up
these search engines. However, similar to serial numerical algorithms, the objec-
tive of these HPC methods has been to speed up the arithmetic scoring part of the
search engines with little to no efforts to minimize the communication costs. How-
ever, within-study direct comparisons of serial versus high-performance computing
(HPC) proteomics algorithms have revealed modest gains [22]. Cloud computing-
based processing, alone, cannot fill the gap of scalable tools since a non-efficient
tool on desktop or cluster is non-efficient on cloud and scaling the cloud resources
are costly prohibitive. All these indicate that further formal design and evaluation
are warranted for scalable infrastructure for MS-based omics database workflows.
High-performance computing algorithms that can leverage multicore, manycore,
distributed-memory, and CPU-GPU architectures can make the existing pipelines
much more scalable while maintaining a high confidence in peptide identifications.
More modern techniques based on deep learning models [23, 24] are known to have
scalability problems with increasing size of the training sets and will incur similar
bottlenecks when incorporated into regular MS-based omics workflows.

Therefore, there is an urgent need for scalable solutions of more confident peptide
identifications without which the integrity, and the confidence in large-scale systems
biology studies is not possible, especially for meta-proteomics, proteogenomics, and
MS-based microbiome or non-model organisms’ studies having a direct impact on
personalized nutrition, microbiome research, and cancer therapeutics.

In order to fill this gap, we collectively as a scientific community have to design
parallelization techniques, and approaches for high-performance MS omics data
analysis. However, in contrast to existing methods, these HPC algorithms must be
designed by considering both computational, and communication costs as metrics

1 Need for High-Performance Computing for MS-Based Omics Data Analysis 3

for efficiency. One parallel algorithm1 with provable efficiencies can be designed for
distributed-memory architectures, it can be extended for multicore, manycore, and
Graphics Processing Units (GPU’s), and cloud-platforms. To maximize the impact,
effective research works are required to solve the following facets: (1) Improved
data-partitioning strategies allowing minimization of data communication between
different levels of memory hierarchy, and processing units; (2) Improved parallel
algorithms on distributed-memory architectures to address the scalability limitations
due to excessive communication costs, and (3) Integration of these parallel algo-
rithms to existing workflows using XSEDE Supercomputers, and Amazon Cloud-
Computing infrastructure.

Additional capabilities expected from highly scalable HPCmethods include new-
found abilities to process: (1) large number of potential dynamic PTM’s search
parameters, (2) Limiting filtering that may lead to omics dark-data, and (3) search
against multiple organisms from different taxonomic families for meta-proteomics
and microbiome studies. Integration of these HPC methods to existing workflows
will enable systems biologist to investigate complex microbiome communities and
identify the taxonomic families which is so intimately associated with human health
and disease. This novel, substantially different, and scalable computational approach
to study complex proteomes (and microbiome) at the proteomics level is expected to
allow us to overcome the current scalability limitations of existing workflows. This
new class of HPC algorithms, we believe, will open these new horizons for precision
nutrition studies, interaction insights for complex microbiome communities and its
effects on human gut, and overall mental and physical health.

The proposed HPC research for MS-based omics data analysis is innovative,
in our opinion, because it represents a substantive departure from the status quo.
To our knowledge, communication-avoiding parallel algorithms that consider both
computation and communication costs to improve the efficiency of these workflows
has never been achieved in the context of MS-based omics data analysis. Although
rarely employed to date, the incorporation of novel and exciting parallel algorithmic
design will make the power of supercomputing, ubiquitous manycore, and GPU-
based architectures accessible to large scores of systems biology scientists. Such an
accessible HPC framework will serve as the proof-of-concept infrastructure which
will enable bold questions, and large system biology studies not hindered or ham-
pered by the limiting factors associated with prohibitively long running times and/or
non-accessible workflows.

Our hope is that HPC will help in understanding, and studying microbiome MS-
based omics in the sameway it hasmade a remarkable difference in our understanding
of the cosmos, genomics, and molecular dynamics.

1 Parallel algorithm and high-performance computing (HPC) method will be used interchangeably
in this book.

4 F. Saeed and M. Haseeb

References

1. Eng JK,FischerB,Grossmann J,MacCossMJ (2008)A fast sequest cross correlation algorithm.
J Proteome Res 7(10):4598–4602

2. Diament BJ, Noble WS (2011) Faster sequest searching for peptide identification from tandem
mass spectra. J Proteome Res 10(9):3871–3879

3. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral
data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom
5(11):976–989

4. McIlwain S, Tamura K, Kertesz-Farkas A, Grant CE, Diament B, Frewen B, Howbert JJ,
Hoopmann MR, Kall L, Eng JK et al (2014) Crux: rapid open source protein tandem mass
spectrometry analysis. J Proteome Res 13(10):4488–4491

5. Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI (2017) Msfragger:
ultrafast and comprehensive peptide identification inmass spectrometry-based proteomics. Nat
Methods 14(5):513

6. Ballard G, Demmel J, Holtz O, Schwartz O (2011) Minimizing communication in numerical
linear algebra. SIAM J Matrix Anal Appl 32(3):866–901

7. Council NR et al (2005)Getting up to speed: the future of supercomputing. National Academies
Press

8. Ballard G, Carson E, Demmel J, Hoemmen M, Knight N, Schwartz O (2014) Communication
lower bounds and optimal algorithms for numerical linear algebra. Acta Numerica 23:1

9. Demmel J, Eliahu D, Fox A, Kamil S, Lipshitz B, Schwartz O, Spillinger O (2013)
Communication-optimal parallel recursive rectangular matrix multiplication. In: 2013 IEEE
27th international symposium on parallel and distributed processing. IEEE, pp 261–272

10. Solomonik E, Bhatele A, Demmel J (2011) Improving communication performance in dense
linear algebra via topology aware collectives. In: SC’11: Proceedings of 2011 international
conference for high performance computing, networking, storage and analysis. IEEE, pp 1–11

11. SaitoMA,Bertrand EM,DuffyME,GaylordDA,HeldNA,HerveyWJ,HettichRL, Jagtap PD,
JanechMG,KinkadeDB,LearyDH,McIlvinMR,MooreEK,MorrisRM,NeelyBA,NunnBL,
Saunders JK, Shepherd AI, Symmonds NI, Walsh DA (2019) Progress and challenges in ocean
metaproteomics and proposed best practices for data sharing. J ProteomeRes 18(4):1461–1476,
pMID: 30702898. http://dx.doi.org/10.1021/acs.jproteome.8b00761

12. Yates III JR (2019) Proteomics of communities: metaproteomics
13. Griss J, Perez-Riverol Y, Lewis S, Tabb DL, Dianes JA, del Toro N, Rurik M, Walzer M,

Kohlbacher O, Hermjakob H et al (2016) Recognizing millions of consistently unidentified
spectra across hundreds of shotgun proteomics datasets. Nat Methods 13(8):651

14. Tran NH, Zhang X, Xin L, Shan B, Li M (2017) De novo peptide sequencing by deep learning.
Proc Natl Acad Sci 114(31):8247–8252

15. Heck M, Neely BA (2020) Proteomics in non-model organisms: a new analytical frontier. J
Proteome Res

16. Kulkarni G, Kalyanaraman A, Cannon WR, Baxter D (2009) A scalable parallel approach for
peptide identification from large-scale mass spectrometry data. In: 2009 international confer-
ence on parallel processing workshops. IEEE, pp 423–430

17. Li C, Li K, Li K, Lin F (2019) Mctandem: an efficient tool for large-scale peptide identification
on many integrated core (mic) architecture. BMC Bioinform 20(1):397

18. Sun J, Chen B, Wu F-X (2014) An improved peptide-spectral matching algorithm through
distributed search over multiple cores and multiple cpus. Proteome Sci 12(1):18

19. Duncan DT, Craig R, Link AJ (2005) Parallel tandem: a program for parallel processing of
tandem mass spectra using pvm or mpi and x! tandem. J Proteome Res 4(5):1842–1847

20. Bjornson RD, Carriero NJ, Colangelo C, Shifman M, Cheung K-H, Miller PL, Williams K
(2008) X!! tandem, an improved method for running x! tandem in parallel on collections of
commodity computers. J Proteome Res 7(1):293–299

http://dx.doi.org/10.1021/acs.jproteome.8b00761
http://dx.doi.org/10.1021/acs.jproteome.8b00761

1 Need for High-Performance Computing for MS-Based Omics Data Analysis 5

21. Li C, Li K, Chen T, Zhu Y, He Q (2019) Sw-tandem: a highly efficient tool for large-scale
peptide sequencing with parallel spectrum dot product on sunway taihulight. Bioinformatics
(Oxford, England) 35(19):3861–3863

22. Saeed F, Haseeb M, Iyengar S (2020) Communication lower-bounds for distributed-memory
computations for mass spectrometry based omics data. arXiv:2009.14123

23. Qiao R, Tran NH, Li M, Xin L, Shan B, Ghodsi A (2019) Deepnovov2: better de novo peptide
sequencing with deep learning. arXiv:1904.08514

24. Chi H, Liu C, Yang H, Zeng W-F, Wu L, Zhou W-J, Niu X-N, Ding Y-H, Zhang Y, Wang
R-M et al (2018) Open-pfind enables precise, comprehensive and rapid peptide identification
in shotgun proteomics. bioRxiv, 285395

http://arxiv.org/abs/2009.14123
http://arxiv.org/abs/2009.14123
http://arxiv.org/abs/1904.08514
http://arxiv.org/abs/1904.08514

Chapter 2
Introduction to Mass Spectrometry Data

Fahad Saeed and Muhammad Haseeb

Mass spectrometry (MS) is used to elucidate the chemical structures of peptide
molecules and has numerous systems biology applications [1–12]. Mass spectrome-
try is also used in metabolomics, glycomics, lipidomics, and clinical applications [5,
6, 13–16]. In the first stage for mass spectrometry-based proteomics, unknown pro-
teins are isolated and digested using enzymes (such as trypsin) to cut these proteins
into smaller pieces called peptides. These peptides are unknown and the masses of
these peptides are separated using high-performance liquid chromatography (HPLC)
and thereafter fragmented using two stage mass spectrometry (MS/MS or MS2) to
produce millions of these mass spectra known as MS2. The new mass spectrometry
machines such as Thermo Orbitrap Fusion can produce millions of MS2 spectra
within hours [11, 29]. Protein molecules are combinatorial chains of 20 basic amino
acids. And study of proteomics mostly deals with sequencing of these chains.

We discuss few of the MS-based omics strategies, their data generation, and
methods with which most of the analysis is completed.

2.1 Proteomics

2.1.1 Mass Spectrometry-Based Proteomics

Twowidely used approaches to analyze proteins using mass spectrometry from com-
plex biology samples are Top-Down approach and Bottom-up approach. Both tech-
niques allow one to get data that is specific to the proteins but the data that is acquired
has to be analyzed in different formats and with different assumptions. In the Top-
Down approach the purified samples of proteins are fed into the mass spectrometer

Parts of this chapter may have appeared in [24].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-01960-9protect LY1	extunderscore 2
https://doi.org/10.1007/978-3-031-01960-9_2

8 F. Saeed and M. Haseeb

KM

K

A I
V L I Y

S SI

L I TR
V

Protein mixture

200 300 400 500 600 700 800 900 1000

b7

b1y1
b2

b3

b4

b5
b6

b8
b9

y2

y3

y4
y5

y6
y7

y8

y9

R
el

at
iv

e
A

bu
nd

an
ce

m/z (Da)

Trypsin

Liquid
ChromatographyProteolysis Mass

Spectrometry

Raw Spectrum
Data

Fig. 2.1 Process of generating MS/MS spectra from a protein mixture using mass spectrometry
analysis. Protein in themixture is broken into peptides using the enzyme called trypsin which breaks
the protein strings at K andR bases generating peptides of varying sizes. This peptidemixture is then
refined and peptides are moved through mass spectrometer which generates an MS/MS spectrum
for each peptide of different mass

where they are ionized, fragmented, and ultimately “read” by the mass spectrometer.
The resulting data is tandem mass spectrum which is then analyzed using plethora
of computational methods for identification of proteins, and the variants that might
occur. The secondmost commonly usedmethod called Bottom-Up approach or Shot-
gun approachworks as follows. Purified proteinmixture is proteolyzed into a peptides
using various enzymes (e.g. Trypsin). This peptide mixture is then sent to the mass
spectrometer which using automated liquid chromatography mass spectrometry LC-
MS/MS pipeline is used for fragmentation, and measuring the mass-to-charge ratio
of each of the fragments. For the measurements using mass spectrometer, in the first
stage the proteins are ionized, and MS1 spectra is acquired. Thereafter, the peptide
ions are selected based on the m/z and fragmented which are then depicted as MS2
spectra. A simplified version ofMass Spectrometry is shown in Fig. 2.1. The resulting
MS2 spectra are then processed using computational tools in targeted or untargeted
manner to identify specific or all peptides in a given sample.

The two data acquisition methods in the shotgun LC-MS/MS pipeline include:

2.1.1.1 Data Dependent Acquisition (DDA)

The peptide eluting from the liquid chromatography (LC) at any given point in
time is first detected at the first level of mass spectrum (MS1) in Data Dependent
Acquisition (DDA). After this first step, k (∼ 10–20) most abundant peaks (also
known as peptide precursor ions) are separated using m/z which are further selected
for fragmentation. Since the spectra that are acquired are very much dependent on
the data that is available to LC at that point in time this technique is known as

2 Introduction to Mass Spectrometry Data 9

“data dependent”. This data acquisition technique is advantageous because it allows
separation of peptide ions in the first which greatly reduces the probability of so-
called convoluted spectra and where each fragment-ion has a direct correlation to
the peptide precursor-ion mass. Although the data that is acquired is cleaner that can
be used for further interpretation; the data itself is less reproducible because peptide
ions that are eluted have variable intensities across experiments. This method of data
acquisition also suffers from low coverage of the proteins in the sample because a
significant number of peptides ions are discarded in the first stage. Finally, themethod
may also suffer from low data-production rate when greater number of peptide ions
are chosen for fragmentation in MS1 stage of the acquisition.

2.1.1.2 Data Independent Acquisition (DIA)

Data Independent Acquisition (DIA) operates by including all the peptides ion in
the MS1 spectra that are within a constrained m/z ratio window that are then chosen
for MS2 fragmentation [17]. If all the ions that are entering the mass spectrometer
at a given point in time are chosen for fragmentation than such acquisition is called
broadband DIA. Commonly used DIA method includes performing a MSE frag-
mentation such that the peptide is first subjected to low-energy Collision-induced
dissociation (CID) that is then followed by high energy fragmentation (e.g. Higher
energy collisional dissociation (HCD) [17].

Another variant of DIA method which can produce significant amount of data is
Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS) [18]
which works by isolating swaths of specific m/z ranges in theMS1 spectra. The frag-
ments of all peptides that are in each window for each point in the chromatogram.
The ion chromatograms for fragment-ions in MS2 spectra and their precursor ions
are extracted, called extracted ion chromatograms (XICs), which allow a drastic
improvement of signal-to-noise ratio in the multiplexedMS2 data. The major advan-
tage of SWATH-MS is that the windows can be fragmented in parallel which allow
massively parallel high-throughput data. This enables accurate reproducibility, and
significantly better coverage of the peptides in the sample [19].

This allows a complete digital profile of the sample for each time point in the
chromatogram, co-eluting window for MS2 spectra for each MS1 spectrum. The
drawback of this kind of approach is thatMS2 data is highly convoluted becauseMS2
spectrum can now contain fragment-ions from multiple peptide precursors. This in
turn leads to loss of direct one-to-onemapping of fragment-ion and precursor-ion [17,
18]. Therefore, to analyze this complex data sets several computational techniques
have been proposed [20]. Many of these techniques including DIA-UMPIRE [21],
DeMux [20], Group-DIA [22], MSPLIT-DIA [23] work by first detecting precursor
and fragment-ion peaks from the multiplexed DIA spectra which leads to pseudo-
tandem DDA-like MS/MS spectra. This pseudo-spectra is then used and searched
against a sequence database or spectral library for identification. Other tools like
PIQED [24] improve upon the previous methods by incorporating techniques to
identify post-translational modifications (PTM) in DIA MS2 data. More recently,

10 F. Saeed and M. Haseeb

deep learning techniques for denovo identification of peptide sequences have been
proposed in the form of methods such as DeepNovo-DIA [25] to identify peptides
from these complex spectra. Open-SWATH [26] also allows targeted analysis of the
DIA data. The reader is referred to this comprehensive survey [27] on strategies,
methods, and software solutions for DIA data.

2.1.2 MS/MS Data Pre-processing

Any DDA MS/MS data obtained from mass spectrometer contains a combination
of real signal and noise irrespective of the resolution of the mass spectrometer [28].
Our earlier studies have found that more than 90% of the spectra consist of noise
[29]. Due to the process using which MS data is generated, similar peptide ions
can get fragmented multiple times which can generate redundant data. This data
can be considered analogous to coverage in next-generation genome sequencing in
genomics and can be used for many statistical analysis, and clustering. Therefore,
removing noisy peaks, low-quality spectra, reconstruction of missing peaks, and
merging of redundantMS/MS spectrawhich can be further used for analysis [29–34],
and may result in quicker analysis of data [31]. Some interesting tools include pParse
[35] which using machine learning to classify co-eluting peptides, MS-REDUCE
[29] that uses quantization, and random sampling for noise reduction,MS-Clustering
[34], Pep-Miner [36], CAMS-RS [37], MaRaCluster [38] that incorporate different
metrics to cluster raw MS data which can be used for further processing. A more
comprehensive survey for pre-processing MS/MS data is available in [28].

2.1.3 Peptide Identification

Deduction of peptides from MS data is one of the fundamental operations that are
executed for DDA tandemMS/MS spectra. There are three main techniques [39] that
are used for this deduction: (1) Donovomethods; (2) spectral library search methods;
(3) database search methods.

2.1.3.1 De Novo

In an event there is no reference library, or if non-model organism has been used for
experiments; De novo peptide deduction method is utilized [40]. The peaks in the
spectra are used for labeling amino acid masses, charge, and fragmentation that can
lead to deduction of peptides. However, most of the De Novo methods result in low
accuracy, or confidence which result in low identification rate for highly challenging
PTM spectra, fragmentation errors, and mutations in the peptide identification pro-
cesses. PepNovo [40], pNovo [41], Open-pNovo [42], DeepNovo [43], PEAKS [44],

2 Introduction to Mass Spectrometry Data 11

Lutefisk [45], Spectral Networks [46], AuDeNs [47], MSNovo [48], SeqMS [49],
PFIA [50], and NovoHMM [51] are some of the Denovo methods that are currently
available. Most of these tools construct graphs where the vertices are the peaks, and
the optimal path between them is constructed using dynamic programming based on
fragmentation model. To date, Denovo methods have not found widespread usage
due to accuracy and confidence lmitations.

2.1.3.2 Spectral Library Search

When a library of annotated MS data is available, the experimentally acquired MS
data can be compared against such a library using statistical techniques, and signal
processing methods. The advantage of spectral library search is accurate peptide
identification, and quantification of PTM’s [52]. The disadvantages include small size
of spectral libraries, the need for annotation (some can be done computationally but
needs a human to supervise), and generally the need to perform similar experimental
conditions for the spectra to confidently match with the library. ANN-SoLo [53],
pMatch [54], SpectraST [52], Pepitome [55], NIST MSPepSearch [56], X! Hunter
[57], ProMEX [58], HMMatch [59], MSDash [60], QuickMod [61], OMSSA [62],
and MzMod [63] are some of the published work in this area where researchers have
shown high rate of accuracy for a variety of conditions, and PTMs.

2.1.3.3 Database Search

The most accurate, and commonly used method suitable for peptide identification is
database search methods which operate by comparing experimental MS/MS spec-
tra against predicted spectra (from model organisms databases) [64]. The theoret-
ical spectral libraries are first produced by digesting in-silico proteome sequence
databases into short peptide sequences, and then predicting theMS/MS spectra using
the m/z ratio, and the charge of the amino acids. Post-translational modifications that
are part of the search-parameters are also used for the prediction of the individual
peaks in the (modified) spectra. Recently, few machine learning techniques [65–68]
have also been incorporated in these database search tools that improve on the pre-
diction of the peaks for different fragmentations, and have been shown to improve the
accuracy of the database search tools due to superior matching of the spectra against
these theoretical spectra. Most commonly used search tools include SEQUEST [69],
SpecOMS [70],MSFragger [5], Open-pFind [71], Andromeda [72], X! Tandem [73],
Crux [74], Tide [75], Comet [76], TagGraph [77], PEAKS-DB [78], and JUMP [79].

The theoretical protein database can expand in the search space that is required for
matching the spectra, and many of these tools employ various filtration techniques
that can be used for efficient computations which are usually followed by peptide-to-
spectrum matches. There is also significant work in developing scoring techniques
that are fast and can be used formassive data sets which include shared-peak counting
[5, 62, 70, 80–82], sequence tagging [71, 77, 78, 83–88], and peptide precursormass

12 F. Saeed and M. Haseeb

m/z200 900

Theoretical Spectra

MKYILVG
IGKGIIAS
KSCGL

Protein Database
(Reference Proteome)

Digestion

MK
YILVGGVISGIGK

GIIASSVRTIK
SCGL

Peptide
Database

Compare
200 300 400 500 600 700 800 900 1000

b7

b1y1
b2

b3

b4
b5

b6
b8

b9
y2

y3

y4
y5

y6
y7

y8

y9

m/z (Da)

m/z200 900

m/z200 900

Experimental Spectra

Fig. 2.2 A generic proteomics flow. In-silico digestion of the protein database is performed to
generate peptides. These peptides are then converted to the theoretical spectra and compared against
the experimental spectra

[76, 89–91] based methods. These methods use various features of the spectra data
such as precursor charge, enzyme specificity, and other features in the MS data to
filter the search space for efficient computations. The reduced search space is then
generally used for scoring the peptide for a given spectra as demonstrated by various
tools [62, 69, 73–76, 92–95].

Finally, the obtained peptide-to-spectrum match, spectrum to spectrum match
and the de novo constructed tag scores are re-analyzed to assign confidence to the
computed scores. In general, confidence scores are assigned using probabilistic clas-
sification models, a score also called False Discovery Rate (FDR), that computes the
probably of a “true” match from a random chance match. In order to calculate FDR,
tools such as Percolator [96–98], Protein Prophet [99], and iProphet [100] generate a
decoy database which is then used to searchMS spectra against decoy proteins which
are eventually scored to assess the confidence in the matches. There are few other
methods (TagGraph [77], Open-pFind [71]) that have been proposed which employ
a decoy-free model and incorporate a probabilistic-distribution based models that
have learned features from MS/MS data. A generic workflow of protein database
search is shown in Fig. 2.2.

2.2 Proteogenomics

Proteogenomics studies are performed to discover novel peptides by searching the
spectra against any of the conceivable peptide from six-frame, splice-graph or other
customizable databases. The identified peptides are either intergenic (i.e. mapping
to areas in DNA located between annotated genes) or intragenic (mapping to DNA
located with in an annotated gene). The gene that has been annotated can be used
to identify peptides that can map to exon, intron, alternative exon-exon junction,
exon-intron junction, 5’ UTR, 3’ UTR sites [101]. A detailed proteogenomic work-
flow is shown in Fig. 2.3 which is depicting a 6-frame translation of the database
search used for searching intragenic peptides performed using the theoretical pro-
tein database obtained from six-frame translation. Few limitations of this workflow

2 Introduction to Mass Spectrometry Data 13

AGCTAGGT
ACGTATTT
CCGGGTT

6 Frame Database

HPL, DTCLP,
SLRYV

Database Search

FDR Analysis &
Further Refinement

Reported
PSM

Input
spectra

Report
Novel

Peptides

Reference
Genome

Add, refine,
gene annotation

Start

Six-Frame
Translation

Fig. 2.3 Detailed flow for 6-frame database search. The process starts by generating a custom
protein database by translating all the six frames. Experimental spectra are searched against this
database to find novel peptides. The output from these tools is further refined using different tools.
At the end, the novel discoveries are reported and can be used to add annotation to the reference
genome or refine gene models

include using huge database size of mostly non-existing proteins which can lead
to inflated number of peptide matches, which can also lead to inability to identify
exon-exon junction peptides. There are some techniques that have been designed to
increase the accuracy of these algorithms for matching such as creating customized
database for proteogenomic analysis, and using filtration techniques to predict coding
genes in the translated database. RNA-sequencing data can also be used to generate
a more compact customized protein database.

Increasing number of proteogenomic tools [102–106] have been proposed till date
which allows searching spectra against a custom or six-frame translated database,
visualization, and automated annotation. First step includes obtaining a database
against which experimental spectra can be searched and such a database can be
constructed using either translating the entire genome (with all possible amino acid
sequences) or using smaller databases such as pseudogene db, lncRNA db, splice db,
UTR db, and sORF. Next, the experimental spectra are matched with this generated
database to find novel peptides or proteins. Various filtering mechanism have been
formulated to reduce the number of peptides that are searched in this large theoretical
database to increase the confidence of the matches. Once, the identified peptides are
selected, they are further curated and screened to remove any falsematches thatmight
have passed the FDR filter. To reduce the number of false positive matches against

14 F. Saeed and M. Haseeb

a very large- and inflated. As the search space for proteogenomic workflows is huge
(hundreds of times larger than the reference proteome), the number of false positives
tend to be much higher than the specified limit. Therefore, certain guidelines need
to be followed when reporting proteogenomic matches as novel peptides [101].

References

1. Musbacher N, Schreiber TB, Daub H (2010) Glycoprotein capture and quan-
titative phosphoproteomics indicate coordinated regulation of cell migration
upon lysophosphatidic acid stimulation. Mol Cell Proteomics 9(11):2337–2353.
arXiv:www.mcponline.org/content/9/11/2337full.pdf+html, https://doi.org/10.1074/mcp.
M110.000737http://www.mcponline.org/content/9/11/2337.abstract

2. Solit DB, Mellinghoff IK (2010) Tracing cancer networks with phosphoproteomics. Nat
Biotech 28(10):1028–1029. https://doi.org/10.1038/nbt1010-1028

3. Gruhler A, Olsen V, Mohammed S, Mortensen P, Faergeman J, Mann M, Jensen N (2005)
Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell
Proteomics 4:310

4. Wolf-YadlinA,Hautaniemi S, LauffenburgerA,WhiteM (2007)Multiple reactionmonitoring
for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci
USA 104:5860

5. Cantin T, Venable D, Cociorva D, Yates R (2006) Iii quantitative phosphoproteomic analysis
of the tumor necrosis factor pathway. J Proteome Res 5:127

6. Beausoleil A, Jedrychowski M, Schwartz D, Elias E, Villen J, Li J, Cohn A, Cantley C, Gygi
P (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad
Sci USA 101:12130

7. Olsen V, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in
vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635

8. Hoffert J, Pisitkun T, Wang G, Shen R, Knepper M (2006) Quantitative phosphoproteomics
of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites.
Proc Natl Acad Sci USA

9. Saeed F, Pisitkun T, Hoffert JD,WangG, GucekM, KnepperMA (2012) An efficient dynamic
programming algorithm for phosphorylation site assignment of large-scalemass spectrometry
data. In: 2012 IEEE international conference on bioinformatics and biomedicine workshops
(BIBMW), vol 11. IEEE, BioMed Central Ltd, pp 618–625

10. Pisitkun T, Shen R-F, KnepperMA (2004) Identification and proteomic profiling of exosomes
in human urine. Proc Natl Acad Sci USA 101(36):13368–13373

11. Zhao B, Pisitkun T, Hoffert JD, Knepper MA, Saeed F (2012) CP hos: a program to cal-
culate and visualize evolutionarily conserved functional phosphorylation sites. Proteomics
12(22):3299–3303

12. Linnet K (2013) Toxicological screening and quantitation using liquid chromatography/time-
of-flight mass spectrometry. J Forensic Sci Criminol 1(1):1

13. Gika HG, Theodoridis GA, Plumb RS, Wilson ID (2014) Current practice of liquid
chromatography-mass spectrometry in metabolomics and metabonomics. J Pharm Biomed
Anal 87:12–25

14. Hoffert J, Pisitkun T, Wang G, Shen F, Knepper M (2006) Quantitative phosphoproteomics
of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites.
Proc Natl Acad Sci USA 103(18):7159–7164

15. Li X, Gerber SA, Rudner AD, Beausoleil SA, Haas W, Elias JE, Gygi SP (2007) Large-scale
phosphorylation analysis of alpha-factor-arrested saccharomyces cerevisiae. J Proteome Res
6(3):1190–1197. http://www.biomedsearch.com/nih/Large-scale-phosphorylation-analysis-
alpha/17330950.html

http://arxiv.org/abs/www.mcponline.org/content/9/11/2337full.pdf+html
http://arxiv.org/abs/www.mcponline.org/content/9/11/2337full.pdf+html
https://doi.org/10.1074/mcp.M110.000737
https://doi.org/10.1074/mcp.M110.000737
https://doi.org/10.1074/mcp.M110.000737
http://www.mcponline.org/content/9/11/2337.abstract
http://www.mcponline.org/content/9/11/2337.abstract
https://doi.org/10.1038/nbt1010-1028
https://doi.org/10.1038/nbt1010-1028
http://www.biomedsearch.com/nih/Large-scale-phosphorylation-analysis-alpha/17330950.html
http://www.biomedsearch.com/nih/Large-scale-phosphorylation-analysis-alpha/17330950.html
http://www.biomedsearch.com/nih/Large-scale-phosphorylation-analysis-alpha/17330950.html

2 Introduction to Mass Spectrometry Data 15

16. Gruhler A, Olsen JV,Mohammed S,Mortensen P, FaergemanNJ,MannM, Jensen ON (2005)
Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell
Proteomics 4(3):310–327. https://doi.org/10.1074/mcp.M400219-MCP200

17. Doerr A (2014) Dia mass spectrometry. Nat Methods 12(1):35
18. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R

Targeted data extraction of the MS/MS spectra generated by data-independent acqui-
sition: a new concept for consistent and accurate proteome analysis. Mol Cell Pro-
teomics 11(6). https://www.mcponline.org/content/11/6/O111.016717.full.pdf, https://doi.
org/10.1074/mcp.O111.016717

19. Egertson JD, Kuehn A, Merrihew GE, Bateman NW, MacLean BX, Ting YS, Canterbury
JD, Marsh DM, Kellmann M, Zabrouskov V, et al (2013) Multiplexed MS/MS for improved
data-independent acquisition. Nat Methods 10(8):744

20. BernM,FinneyG,HoopmannMR,MerrihewG,TothMJ,MacCossMJ (2009)Deconvolution
of mixture spectra from ion-trap data-independent-acquisition tandem mass spectrometry.
Anal Chem 82(3):833–841

21. Tsou C-C, Avtonomov D, Larsen B, Tucholska M, Choi H, Gingras A-C, Nesvizhskii AI
(2015) DIA-Umpire: comprehensive computational framework for data-independent acqui-
sition proteomics. Nat Methods 12(3):258

22. Li Y, Zhong C-Q, XuX, Cai S,WuX, ZhangY, Chen J, Shi J, Lin S, Han J (2015) Group-DIA:
analyzing multiple data-independent acquisition mass spectrometry data files. Nat Methods
12(12):1105

23. Wang J, Tucholska M, Knight JD, Lambert J-P, Tate S, Larsen B, Gingras A-C, Bandeira N
(2015) MSPLIT-DIA: sensitive peptide identification for data-independent acquisition. Nat
Methods 12(12):1106

24. Meyer JG, Mukkamalla S, Steen H, Nesvizhskii AI, Gibson BW, Schilling B (2017) PIQED:
automated identification and quantification of protein modifications from DIA-MS data. Nat
Methods 14(7):646

25. Tran NH, Qiao R, Xin L, Chen X, Liu C, Zhang X, Shan B, Ghodsi A, Li M (2019) Deep
learning enables de novo peptide sequencing from data-independent-acquisition mass spec-
trometry. Nat Methods 16(1):63–66

26. Röst HL, Rosenberger G, Navarro P, Gillet L, Miladinović SM, Schubert OT, Wolski W,
Collins BC,Malmström J, Malmström L, et al (2014) Openswath enables automated, targeted
analysis of data-independent acquisition MS data. Nat Biotechnol 32(3):219

27. Bilbao A, Varesio E, Luban J, Strambio-De-Castillia C, Hopfgartner G, Müller M, Lisacek F
(2015) Processing strategies and software solutions for data-independent acquisition in mass
spectrometry. Proteomics 15(5–6):964–980

28. Castillo S, Gopalacharyulu P, Yetukuri L, Orešič M (2011) Algorithms and tools for the
preprocessing of LC-MS metabolomics data. Chemom Intell Lab Syst 108(1):23–32

29. Awan MG, Saeed F (2016) MS-Reduce: an ultrafast technique for reduction of big mass
spectrometry data for high-throughput processing. Bioinformatics 32(10):1518–1526

30. Mujezinovic N, Raidl G, Hutchins JR, Peters J-M, Mechtler K, Eisenhaber F (2006) Clean-
ing of raw peptide MS/MS spectra: improved protein identification following deconvolution
of multiply charged peaks, isotope clusters, and removal of background noise. Proteomics
6(19):5117–5131

31. Ding J, Shi J, Poirier GG, Wu F-X (2009) A novel approach to denoising ion trap tandem
mass spectra. Proteome Sci 7(1):9

32. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) Mzmine 2: modular framework for
processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC
Bioinform 11(1):395

33. Xia J, Psychogios N, Young N, Wishart DS (2009) Metaboanalyst: a web server for
metabolomic data analysis and interpretation. Nucl Acids Res 37(suppl_2):W652–W660

34. FrankAM,BandeiraN, Shen Z, Tanner S, Briggs SP, SmithRD, Pevzner PA (2007) Clustering
millions of tandem mass spectra. J Proteome Res 7(01):113–122

https://doi.org/10.1074/mcp.M400219-MCP200
https://doi.org/10.1074/mcp.M400219-MCP200
https://www.mcponline.org/content/11/6/O111.016717.full.pdf
https://www.mcponline.org/content/11/6/O111.016717.full.pdf
https://doi.org/10.1074/mcp.O111.016717
https://doi.org/10.1074/mcp.O111.016717
https://doi.org/10.1074/mcp.O111.016717

16 F. Saeed and M. Haseeb

35. Yuan ZF, Liu C, Wang HP, Sun RX, Fu Y, Zhang JF, Wang LH, Chi H, Li Y, Xiu LY, et al
pParse: a method for accurate determination of monoisotopic peaks in high-resolution mass
spectra. Proteomics 12(2):226–235

36. Beer I, Barnea E, Ziv T, Admon A (2004) Improving large-scale proteomics by clustering of
mass spectrometry data. Proteomics 4(4):950–960

37. Saeed F, Hoffert JD, Knepper MA (2014) Cams-rs: clustering algorithm for large-scale mass
spectrometry data using restricted search space and intelligent random sampling. IEEE/ACM
Trans Comput Biol Bioinform (TCBB) 11(1):128–141

38. The M, Lukas K (2016) Maracluster: a fragment rarity metric for clustering fragment spectra
in shotgun proteomics. J Proteome Res 15(3):713–720

39. Nesvizhskii AI (2010) A survey of computational methods and error rate estimation proce-
dures for peptide and protein identification in shotgun proteomics. J Proteomics 73(11):2092–
2123

40. Frank A, Pevzner P (2005) PepNovo: de novo peptide sequencing via probabilistic network
modeling. Anal Chem 77(4):964–973

41. Chi H, Sun R-X, Yang B, Song C-Q, Wang L-H, Liu C, Fu Y, Yuan Z-F, Wang H-P, He
S-M et al (2010) pNovo: de novo peptide sequencing and identification using HCD spectra.
J Proteome Res 9(5):2713–2724

42. Yang H, Chi H, ZhouW-J, ZengW-F, He K, Liu C, Sun R-X, He S-M (2017) Open-pNovo: de
novo peptide sequencing with thousands of protein modifications. J Proteome Res 16(2):645–
654

43. Tran NH, ZhangX, Xin L, Shan B, LiM (2017) De novo peptide sequencing by deep learning.
Proc Natl Acad Sci 114(31):8247–8252

44. MaB, ZhangK,Hendrie C, LiangC, LiM,Doherty-KirbyA, LajoieG (2003) Peaks: powerful
software for peptide de novo sequencing by tandemmass spectrometry. Rapid CommunMass
Spectrom 17(20):2337–2342

45. Taylor JA, JohnsonRS (2001) Implementation anduses of automateddenovopeptide sequenc-
ing by tandem mass spectrometry. Anal Chem 73(11):2594–2604

46. Bandeira N (2007) Spectral networks: a new approach to de novo discovery of protein
sequences and posttranslational modifications. Biotechniques 42(6):687–695

47. Grossmann J, Roos FF,CieliebakM,LiptákZ,Mathis LK,MüllerM,GruissemW,Baginsky S
(2005) Audens: a tool for automated peptide de novo sequencing. J Proteome Res 4(5):1768–
1774

48. Mo L, Dutta D, Wan Y, Chen T (2007) Msnovo: a dynamic programming algorithm for de
novo peptide sequencing via tandem mass spectrometry. Anal Chem 79(13):4870–4878

49. Fernandez-de-Cossio J, Gonzalez J, Satomi Y, Shima T, Okumura N, Besada V, Betancourt L,
Padron G, Shimonishi Y, Takao T (2000) Automated interpretation of low-energy collision-
induced dissociation spectra by SeqMS, a software aid for de novo sequencing by tandem
mass spectrometry. ELECTROPHORESIS: An Int J 21(9):1694–1699

50. Jagannath S, Sabareesh V (2007) Peptide fragment ion analyser (PFIA): a simple and versatile
tool for the interpretation of tandem mass spectrometric data and de novo sequencing of
peptides. Rapid Commun Mass Spectrom: Int J Devoted Rapid Dissem Up-To–Minute Res
Mass SpectrometryRapid Commun Mass Spectrom: Int J Devoted Rapid Dissem Up-to-the-
Minute Res Mass Spectrom 21(18):3033–3038

51. Fischer B, Roth V, Roos F, Grossmann J, Baginsky S, Widmayer P, Gruissem W, Buhmann
JM (2005) NovoHMM: a hidden Markov model for de novo peptide sequencing. Anal Chem
77(22):7265–7273

52. Lam H, Deutsch E, Eddes J, Eng J, King N, Yang S, Roth J, Kilpatrick L, Neta P, Stein S, et al
(2006) Spectrast: an open-source MS/MS spectramatching library search tool for targeted
proteomics. In: Poster at 54th ASMS conference on mass spectrometry, pp 1–10

53. Bittremieux W, Meysman P, Noble WS, Laukens K (2018) Fast open modification spec-
tral library searching through approximate nearest neighbor indexing. J Proteome Res
17(10):3463–3474

2 Introduction to Mass Spectrometry Data 17

54. Ye D, Fu Y, Sun R-X, Wang H-P, Yuan Z-F, Chi H, He S-M (2010) Open MS/MS spectral
library search to identify unanticipated post-translational modifications and increase spectral
identification rate. Bioinformatics 26(12):i399–i406

55. Dasari S, Chambers MC, Martinez MA, Carpenter KL, Ham A-JL, Vega-Montoto LJ, Tabb
DL (2012) Pepitome: evaluating improved spectral library search for identification comple-
mentarity and quality assessment. J Proteome Res 11(3):1686–1695

56. Griss J (2016) Spectral library searching in proteomics. Proteomics 16(5):729–740
57. Lam H, Aebersold R (2010) Spectral library searching for peptide identification via tandem

MS. In: Proteome bioinformatics. Springer, pp 95–103
58. Hummel J, Niemann M, Wienkoop S, Schulze W, Steinhauser D, Selbig J, Walther D, Weck-

werth W (2007) ProMEX: a mass spectral reference database for proteins and protein phos-
phorylation sites. BMC Bioinform 8(1):216

59. Wu X, Tseng C-W, Edwards N (2007) HMMatch: peptide identification by spectral matching
of tandem mass spectra using hidden Markov models. J Comput Biol 14(8):1025–1043

60. Wu Z, Lajoie G, Ma B (2008) MSDash: mass spectrometry database and search. In: Compu-
tational systems bioinformatics: vol 7. World Scientific, pp 63–71

61. Ahrne E, Nikitin F, Lisacek F, Muller M (2011) QuickMod: a tool for open modification
spectrum library searches. J Proteome Res 10(7):2913–2921

62. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant
SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3(5):958–964

63. Horlacher O, Lisacek F, Markus M (2015) Mining large scale tandemmass spectrometry data
for protein modifications using spectral libraries. J Proteome Res 15(3):721–731

64. Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI (2017) MSFrag-
ger: ultrafast and comprehensive peptide identification in mass spectrometry-based pro-
teomics. Nat Methods 14(5):513

65. Tiwary S, Levy R, Gutenbrunner P, Soto FS, Palaniappan KK, Deming L, Berndl M, Brant A,
Cimermancic P, Cox J (2019) High-quality MS/MS spectrum prediction for data-dependent
and data-independent acquisition data analysis. Nat Methods 16(6):519

66. Gessulat S, Schmidt T, Zolg DP, Samaras P, Schnatbaum K, Zerweck J, Knaute T, Rechen-
berger J, Delanghe B, Huhmer A et al (2019) Prosit: proteome-wide prediction of peptide
tandem mass spectra by deep learning. Nat Methods 16(6):509

67. ZhouX-X,ZengW-F,ChiH, LuoC,LiuC, Zhan J,HeS-M,ZhangZ (2017) pDeep: predicting
MS/MS spectra of peptides with deep learning. Anal Chem 89(23):12690–12697

68. Gabriels R, Martens L, Degroeve S (2019) Updated MS2pip web server delivers fast and
accurate MS2 peak intensity prediction for multiple fragmentation methods, instruments and
labeling techniques. Nucleic Acids Res 47(W1):W295–W299

69. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral
data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom
5(11):976–989

70. David M, Fertin G, Rogniaux H, Tessier D (2017) SpecOMS: a full open modification
search method performing all-to-all spectra comparisons within minutes. J Proteome Res
16(8):3030–3038

71. Chi H, Liu C, Yang H, Zeng W-F, Wu L, Zhou W-J, Wang R-M, Niu X-N, Ding Y-H, Zhang
Y, et al (2018) Comprehensive identification of peptides in tandem mass spectra using an
efficient open search engine. Nat Biotechnol 36(11):1059

72. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a
peptide search engine integrated into theMaxquant environment. J ProteomeRes 10(4):1794–
1805

73. Craig R, Beavis RC (2004) Tandem: matching proteins with tandem mass spectra. Bioinfor-
matics 20(9):1466–1467

74. Park CY, Klammer AA, Kall L, MacCoss MJ, Noble WS (2008) Rapid and accurate peptide
identification from tandem mass spectra. J Proteome Res 7(7):3022–3027

75. Diament BJ, Noble WS (2011) Faster SEQUEST searching for peptide identification from
tandem mass spectra. J Proteome Res 10(9):3871–3879

18 F. Saeed and M. Haseeb

76. Eng JK, Fischer B, Grossmann J, MacCoss MJ (2008) A fast SEQUEST cross correlation
algorithm. J Proteome Res 7(10):4598–4602

77. Devabhaktuni A, Lin S, Zhang L, Swaminathan K, Gonzalez CG, Olsson N, Pearlman SM,
Rawson K, Elias JE (2019) Taggraph reveals vast protein modification landscapes from large
tandem mass spectrometry datasets. Nat Biotechnol 37(4):1

78. Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, Zhang W, Zhang Z, Lajoie GA, Ma B
(2012) Peaks DB: de novo sequencing assisted database search for sensitive and accurate
peptide identification. Mol Cell Proteomics 11(4):M111-010587

79. WangX, Li Y,WuZ,WangH, TanH, Peng J (2014) Jump: a tag-based database search tool for
peptide identification with high sensitivity and accuracy. Mol Cell Proteomics 13(12):3663–
3673

80. BernM,CaiY,GoldbergD (2007) Lookup peaks: a hybrid of de novo sequencing and database
search for protein identification by tandem mass spectrometry. Anal Chem 79(4):1393–1400

81. Chi H, He K, Yang B, Chen Z, Sun R-X, Fan S-B, Zhang K, Liu C, Yuan Z-F, Wang Q-
H et al (2015) pFind-Alioth: a novel unrestricted database search algorithm to improve the
interpretation of high-resolution MS/MS data. J Proteomics 125:89–97

82. Li Y, Chi H, Wang L-H, Wang H-P, Fu Y, Yuan Z-F, Li S-J, Liu Y-S, Sun R-X, Zeng R
et al (2010) Speeding up tandem mass spectrometry based database searching by peptide and
spectrum indexing. Rapid Commun Mass Spectrom 24(6):807–814

83. Mann M, Wilm M (1994) Error-tolerant identification of peptides in sequence databases by
peptide sequence tags. Anal Chem 66(24):4390–4399

84. Tabb DL, Saraf A, Yates JR (2003) GutenTag: high-throughput sequence tagging via an
empirically derived fragmentation model. Anal Chem 75(23):6415–6421

85. Dasari S, Chambers MC, Codreanu SG, Liebler DC, Collins BC, Pennington SR, Gallagher
WM, Tabb DL (2011) Sequence tagging reveals unexpected modifications in toxicopro-
teomics. Chem Res Toxicol 24(2):204–216

86. Dasari S, Chambers MC, Slebos RJ, Zimmerman LJ, Ham A-JL, Tabb DL (2010) Tagrecon:
high-throughputmutation identification through sequence tagging. J ProteomeRes 9(4):1716–
1726

87. Searle BC, Dasari S, Wilmarth PA, Turner M, Reddy AP, David LL, Nagalla SR (2005)
Identification of protein modifications using MS/MS de novo sequencing and the opensea
alignment algorithm. J Proteome Res 4(2):546–554

88. Tanner S, Shu H, Frank A, Wang L-C, Zandi E, Mumby M, Pevzner PA, Bafna V (2005)
Inspect: identification of posttranslationally modified peptides from tandem mass spectra.
Anal Chem 77(14):4626–4639

89. Tanner S, Pevzner PA, Bafna V (2006) Unrestrictive identification of post-translational mod-
ifications through peptide mass spectrometry. Nat Protoc 1(1):67

90. Chick JM, Kolippakkam D, Nusinow DP, Zhai B, Rad R, Huttlin EL, Gygi SP (2015) A
mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun
proteomics as modified peptides. Nat Biotechnol 33(7):743

91. Griss J, Perez-Riverol Y, Lewis S, Tabb DL, Dianes JA, del Toro N, Rurik M, Walzer M,
Kohlbacher O, Hermjakob H, et al (2016) Recognizing millions of consistently unidentified
spectra across hundreds of shotgun proteomics datasets. Nat Methods 13(8):651

92. Lundgren DH, Han DK, Eng JK (2005) Protein identification using turbosequest. Curr Protoc
Bioinform 10(1):13–3

93. Kim S, Pevzner PA (2014) Ms-gf+ makes progress towards a universal database search tool
for proteomics. Nat Commun 5(1):5277

94. Clauser KR, Baker P, Burlingame AL (1999) Role of accurate mass measurement (±10 ppm)
in protein identification strategies employing MS or MS/MS and database searching. Anal
Chem 71(14):2871–2882

95. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identifica-
tion by searching sequence databases using mass spectrometry data. ELECTROPHORESIS:
An Int J 20(18):3551–3567

2 Introduction to Mass Spectrometry Data 19

96. Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ (2007) Semi-supervised learning
for peptide identification from shotgun proteomics datasets. Nat Methods 4(11):923–925

97. BroschM, Yu L, Hubbard T, Choudhary J (2009) Accurate and sensitive peptide identification
with mascot percolator. J Proteome Res 8(6):3176–3181

98. Spivak M, Weston J, Bottou L, Käll L, Noble WS (2009) Improvements to the percola-
tor algorithm for peptide identification from shotgun proteomics data sets. J Proteome Res
8(7):3737–3745

99. KellerA,NesvizhskiiAI,Kolker E,AebersoldR (2002)Empirical statisticalmodel to estimate
the accuracy of peptide identifications made by MS/MS and database search. Anal Chem
74(20):5383–5392

100. Shteynberg D, Deutsch EW, Lam H, Eng JK, Sun Z, Tasman N, Mendoza L, Moritz RL,
Aebersold R, Nesvizhskii AI (2011) iProphet: multi-level integrative analysis of shotgun
proteomic data improves peptide and protein identification rates and error estimates. Mol
Cell Proteomics 10(12):M111-007690

101. Nesvizhskii AI (2014) Proteogenomics: concepts, applications and computational strategies.
Nat Methods 11(11):1114–1125

102. Zhu Y, Orre LM, Johansson HJ, Huss M, Boekel J, Vesterlund M, Fernandez-Woodbridge A,
Branca RM, Lehtiö J (2018) Discovery of coding regions in the human genome by integrated
proteogenomics analysis workflow. Nat Commun 9(1):903

103. RiskBA, SpitzerWJ,GiddingsMC (2013) Peppy: proteogenomic search software. J Proteome
Res 12(6):3019–3025

104. Jagtap PD, Johnson JE, Onsongo G, Sadler FW, Murray K, Wang Y, Shenykman GM, Band-
hakavi S, Smith LM, Griffin TJ (2014) Flexible and accessible workflows for improved pro-
teogenomic analysis using the galaxy framework. J Proteome Res 13(12):5898–5908

105. Nagaraj SH,Waddell N,Madugundu AK,Wood S, Jones A,MandyamRA, Nones K, Pearson
JV, Grimmond SM (2015) PGTools: a software suite for proteogenomic data analysis and
visualization. J Proteome Res 14(5):2255–2266

106. Castellana NE, Shen Z, He Y, Walley JW, Briggs SP, Bafna V (2014) An automated pro-
teogenomic method uses mass spectrometry to reveal novel genes in Zea mays. Mol Cell
Proteomics 13(1):157–167

Chapter 3
Existing HPC Methods and the
Communication Lower Bounds
for Distributed-Memory Computations
for Mass Spectrometry-Based Omics
Data

Fahad Saeed and Muhammad Haseeb

Mass spectrometry (MS)-based omics data analysis requires substantial time and
resources which has necessitated the need for high-performance computing (HPC)
methods. Fewparallel algorithms have been proposed, designed, and developedwhen
the amount of data that needed to be processed was smaller in scale, i.e. only a few
PTM were of interest and would satisfy when only a shorter theoretical database
was needed for computations. However, with the increase in the amount of data
that needs processing due to the expansion of theoretical databases due to a large
number of PTMs that are needed for various system biology problems; the current
HPC methods are not sufficiently scalable with the increasing size of the database
or the processors. However, all of this is anecdotal and more evidence is needed to
quantify how good or bad the current HPC methods were. We also wanted to know
if there was a more scalable algorithm that could be possible and this is the objective
of this chapter.

3.1 Introduction

Numerical algorithms have tried to improved the efficiency of arithmetic operations
for several decades now [1]. Moore’s law increased the size and the efficiency of
the computer chips which has resulted in increasing the arithmetic operations faster.
Therefore, many of the current numerical algorithms are bottlenecked by the com-
munication costs of the data movement in contrast to the speed of the arithmetic
operations. This communication cost can be due to data movement between differ-
ent levels of the hierarchy of memory or it could be due to communication of the
data between different processing units and different distributed-memory processors

Some parts of this chapter may have appeared in [25].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9_3

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_3&domain=pdf

 -2047 61833 a -2047 61833 a

https://doi.org/10.1007/978-3-031-01960-9_3

22 F. Saeed and M. Haseeb

connected via a network. Overwhelming studies have shown that the cost of moving
the data exceeds the cost of arithmetic operations in most of the numerical algo-
rithms [1–3]. New generation of architectures that include multicore, manycore, and
CPU-GPU architectures will increase the gap between the communication costs and
the computation costs, i.e. communication costs will become more significant over
time [4, 5]. This trend is observed both for serial as well as parallel algorithms [1].

To increase the efficiency of data analysis workflow, significant investment of
time and resources has poured in and resulted in efficient numerical methods [6–
10]. All of these methods have considered arithmetic operations as the sole metric
for efficiency. MS-based experiments can now generate larger and more complex
(multiple species, non-model species, microbiome) data sets that needmore complex
search engine mechanisms including but not limited to searching the data sets using
a large number of PTMs. This is essential for large-scale systems biology studies
that can lead to high-impact proteomics, meta-proteomics, and microbiome studies
directly related to human disease and health.

Although the development of computational methods for MS data analysis is an
active area of research, the overall objective of these research studies andworkflows is
to increase the computational efficiency of the methods. Database search mechanism
is the most widely used data processing pipeline which works by matching MS
spectra with a database of theoretical spectra generated in silico. These theoretical
databases can grow several times larger than the original proteome and is highly
dependent on the search parameters used and can be larger for meta-proteomics
or non-model studies [11, 12]. This data can easily reach terabyte level leading
to intractable runtimes for the current genre of serial numerical algorithms. Since
serial algorithms can easily be overwhelmedwhen the theoretical data is significantly
larger than the available memory on the system, researchers have retort to developing
HPC algorithms [13, 14, 14–18] for these MS-based omics workflows. Similar to
serial algorithms, the HPC methods have also been designed and implemented as a
way to speed up the arithmetic scoring part with no effort towards minimizing the
communication costs. These excessive communications costs lead to the performance
of serial [6–10], andHPCmethods that are less than stellarwhichmayhave dampened
the enthusiasmof proteomics practitioners due to excessive processing times for these
workflows.

There is sufficient anecdotal evidence for systems biology practitioners and pro-
teomics domain experts. However, how do we quantify if the reported methods are
adequately scalable and if there are algorithms that could be proposed for a better
performance. Therefore, we set out to ask the following two questions that could help
us answer these questions: (1) What are the lower bounds of the currently reported
state-of-the-art HPC methods; (2) If these lower bounds can be improved with the
introduction of newparallel algorithms and if that is possible. The boundswill be sim-
ilar for serial algorithms subject to architecture-specific communication costs. Our
anecdotal evidence also suggested that not a lot of performance was gained when
the number of processing units is increased for the existing parallel algorithms. We
needed to investigate why this is the case, and if in fact the communication costs are

3 Existing HPC Methods and the Communication … 23

the bottleneck for these parallel algorithms and that this performance is not due to a
specific library or an artifact of the architecture.

In this chapter, we prove that the efficiency of these parallel algorithms is bottle-
necked by communication costs. We also show that the theoretical lower bounds that
are possible are not achieved by any of the existing state-of-the-art HPCmethods. At
the end of the chapter, we summarize all of the scalability data that we had collected
from published reports to observe and demonstrate that theoretical lower bounds are
in agreement with the empirical observations.

Attaining the lower bounds that we prove in this chapter would require a signif-
icant redesign of parallel algorithm which can process MS-based omics data sets.
In contrast to existing practices of including few thread, or OPENMP parameters in
parallel code, these redesigns would have to exploit numerical properties, MS data
compressive analytics , decomposition of data on distributed architectures, and focus
on developing metrics that minimize the communication costs associated with these
parallel algorithms.

The rest of the chapter is organized as follows. In Sect. 3.2, we formulate the
communication models to analyze the current parallel algorithms. This is followed
by Sect. 3.3, we briefly introduce the reader to proteomics workflows and summarize
(and reduce) the parallelization strategy that is used by current HPCmethods. There-
after, in Sect. 3.4, we provide theoretical communications bounds, the computation
bounds, and the overall runtime bounds of the existing, and (possible but not yet
discovered) communication-optimal parallel algorithms. The next Sect. 3.5 provides
themeta-data analysis of published results till date and a short description of how this
meta-data analysis is in agreement with our theoretical bounds that we just proved.
The chapter concludes with a useful discussion about the current and future research
efforts that are needed in this domain.

3.2 Communication Model

Design of parallel algorithms for big data problem requires that the load is balanced
on all processing units, and the communication costs are minimal as compared to the
computation costs [19]. Theparallel algorithms that are proposed forMS-basedomics
can be modeled in the following way: The two costs associated with communication
are when the parallel algorithm sends n words from one processor to another via the
network. In this case, the words are first packed in contiguous blocks or memory
and are known asmessage in parallel computing or MPI jargon. Once the message is
packed, it is then sent to the other processor as the parallel algorithmic might dictate.
The times it takes to assemble, pack, and transmit the data is an overhead that is
fixed depending on the computer infrastructure, and this latency cost is denoted by
α in our model. Bandwidth cost is the time it needs to transmit the n words and
is denoted by βn. Therefore, the cost to send one message of n words is denoted
by α + βn and the time to send S messages containing a total of W words can be
denoted byαS + βW . Also assume thatγ denotes the time to complete one arithmetic

24 F. Saeed and M. Haseeb

computation, and the total number of computations is denoted by F . Summation of all
of these terms is equal to αS + βW + γF and it is easier to see that α >> β >> γ.
Therefore, parallel algorithms that can minimize both the bandwidth and latency will
lead to scalable algorithms. The communication model that we have just presented
is used for developing communication-minimizing parallel algorithms for a plethora
of linear-algebraic computations.

3.2.1 Sequential Computer

For two levels of memory hierarchy, the model αS + βW + γF , would suffice. The
model can be extended if there are more levels of hierarchy available in a specific
system where the data moved to/from different levels have to incorporate into the
model.

3.2.2 Parallel Computer

Our model that uses αS + βW + γF would be sufficient to provide the communica-
tion costs that may be associated with one node of a parallel computing architecture.
For our purposes, we will assume a single homogeneous supercomputer which is a
distributed-memory architecture. The advantage of this assumption is that the lower
bounds calculated on one processor is enough to get lower bounds on the whole
algorithm for completing the same tasks. The upper bounds (time for the whole
algorithm) will be the summation of all the terms ordered with dependencies con-
sidering the critical paths which maximize those costs, i.e. If the parallel algorithm
can allow an overlap between communication and computation, then the expres-
sion can be replaced with max(αS + βW, γF) or max(αS,βW, γF) but does not
affect the asymptotic relations. Lastly, we will define Communication-avoiding, or
communication-optimal algorithm for methods that can attain asymptotically lower
bounds of communication for a given architecture.

3.3 MS Database Proteomics, Proteogenomics,
and Meta-Proteomics Search

To prove our lower bounds in the most generalized form applicable to a wide variety
of MS-based omics workflows, we will first define database-search strategy used
Mass spectrometry-based proteomics in its simplest and bare bone form without
considering the systems biology objectives or method-specific optimizations. Pep-
tide identification is commonly accomplished by performing a database searchwhere
the experimentally obtained MS data spectra are compared (and scored) with a theo-

3 Existing HPC Methods and the Communication … 25

m/z200 900

Theoretical Spectra

MKYILVG
IGKGIIAS
KSCGL

Protein Database
(Reference Proteome)

Digestion

MK
YILVGGVISGIGK

GIIASSVRTIK
SCGL

Peptide
Database

Compare
200 300 400 500 600 700 800 900 1000

b7

b1y1
b2

b3

b4
b5

b6
b8

b9
y2

y3

y4
y5

y6
y7

y8

y9

m/z (Da)

m/z200 900

m/z200 900

Experimental Spectra

Fig. 3.1 A high-level overview of the MS-based proteomics data analysis that leads to spectra-to-
peptide deductions

retically predicted spectra-database [10]. This theoretical spectra-database (or theo-
retical database) is obtained by first performing a in silico digestion of the proteome
sequence database into peptides. These peptides are then used to predict the MS/MS
spectra, and its possible (modified) variants,1 including post-translation modifica-
tions (PTMs), fragmentation types, and the associated mass windows. The matching
and scoring of the spectra2 with the theoretical database is known as peptide-to-
spectrummatch (PSM) computations, and a high-level overview is shown in Fig. 3.1.

3.3.1 Generalized Parallel Computing Strategy

All parallel algorithms (except for HiCOPS [20]) have been proposed as numeri-
cal algorithms that have been designed to improve the computational efficiency of
the parallel methods. All of the existing HPC methods work in the following way:
Assume that there are N spectra that need to be processed using p processors. All of
these methods divide N spectra among p processors such that N/p spectra are pro-
cessed on each processing unit. The underlying assumption is that either database
is divided (and replicated equally among processing units) or that (smaller) FASTA
database is communicated which is then expanded on each machine. In either case,
database D is either communicated or expanded. After this initial communication,
these HPC algorithms operate by executing a serial method (such as XTandem)
on each node in parallel. Completion of the computations triggers each processor to
transmit the result back to themaster node. A sketch of this is illustrated in Algorithm
1. Few assumptions that aremadewhen developing theseHPCmethods include equal
load for each spectra computation with minimal communication costs and assump-
tion that load-balanced system can be achieved by dividing the spectra into equal
numbers. We now show in this chapter that the assumptions are a source of major
bottleneck for these parallel algorithms.

1 Theoretical database generally will refer to the in-silico predicted MS/MS spectra from these
peptides.
2 Spectra will generally refer to spectra obtained experimentally unless otherwise stated.

26 F. Saeed and M. Haseeb

Algorithm 1: General HPC strategy that is used by Parallel Methods for MS
based Proteomics data
Result: Each Spectra is assigned to a peptide

1 while Spectra need peptide deduction do
1. Take a species-specific protein database; and expand it to a theoretical database D

using search parameters;
2. Database D is copied whole on each of the P processors;
3. The spectra set S that needs to be processed are divided in S/P parts;
4. S/P spectra are processed on each of the processor in parallel;
5. The results are accumulated using MPI-gather or similar operation;

2 end

3.4 Communication Lower Bounds

We formulate the problem in terms of matrix calculations and prove both the com-
munication and computation bounds that are exhibited by these HPC methods.

Definition 3.1 Theoretical database is produced in-silico using peptides that are
obtained from the proteome database. This theoretical database is expanded using
the search parameters specific to the PTMs. Assume that this database is m × n
matrix D wherem presented the number of theoretical spectra entries, and n presents
the average length of the entries. The entries of matrix D can be access using i and j
indexes where (0 ≤ i < n) and (0 ≤ j < m). Then rows of D can be accessed using
D(0, j), D(1, j), and so on.

Definition 3.2 Let the set of spectra s0, s1, . . . , s(q−1) that needs to be processed can
be presented by a matrix S q × r , where q represents the number of spectra and r
represents the average length of the spectra. The entries of matrix S can be access
using i and j indexes, where (0 ≤ i < r) and (0 ≤ j < q). Then rows of S can be
access using S(0, j), S(1, j), and so on.

Matrix D, matrix S, and the peptides that are deduced are shown in Fig. 3.2.

Definition 3.3 The parallel architecture is a distributed-memory processor with M
fast memory associated with a single-core processor. We will assume that all proces-
sors are connected to each other via a network.

Lemma 3.1 There are three communication rounds that will take place to complete
the computations as shown in Algorithm 1 for the existing parallel algorithms.

Proof One communication round is the distribution of the database on each of the
processors. The second communication round is the distribution of q/p spectra on
each processor. The third communication round is completed when processing on
each compute node is completed and q/p messages are accumulated on a single
master machine.

3 Existing HPC Methods and the Communication … 27

theoretical spectrum 1

theoretical spectrum 2

theoretical spectrum m

average length = n

m
 s

pe
ct

ra

experimental spectrum 1

experimental spectrum 2

experimental spectrum q

average length = r

q
sp

ec
tra

=

T

q experiemental spectra

m
 th

eo
re

tic
al

 s
pe

ct
ra

peptide scores

peptide scores

peptide scores

Fig. 3.2 A schematic of the matrix D (that represents the theoretical spectra), matrix S (that
represents the experimental spectra), and matrix that holds the peptide that is deduced

Theorem 3.1 The totalwords that are communicatedusing three rounds listed above
are equal to �(mn) for existing HPC strategies.

Proof The total words communicated on each processor is equal to |D| + |S|
p + |S|

p .

Here, it is easy to see that |D| = (m × n). Further, |S|
p is going to be equal to thewords

that are communicated from the spectra set i.e. q×r
p . The final communication round

is when the peptides are deduced for each spectrum and accumulated on a processor.
The words that will be communicated are equal to q×r

p . r is assumed to be the case
where the spectra peaks are equal to the peptide length. Then the total number of
words that are communicated is equal to (m × n) + q×r

p + q×r
p = (m × n) + 2 q×r

p .
Therefore, the words communicated is �(mn + 2r q

p).

Theorem 3.2 The computational costs of dot product like scoring that is performed
for peptide-to-spectrum match for each processor is equal to F = qm(2n−1)

p .

Proof Each scalar dot product (called score)willwork onone array from the database
D and one array from the spectra S. On processor P0which contains the wholematrix
D and subset of matrix from S, a score is calculated for D(0, i) 0 ≤ i ≤ n and S(0, j)
0 ≤ j ≤ r . This will require n multiplications and (n − 1) additions. Since this has
to be done for all entries of database D, it will requirem × (2n − 1) computation for
a single spectrum. It is obvious that the number of spectra on each processor is q/p.
This implies that the words that need to be processed on each processor are qm(2n−1)

p .

Theorem 3.3 The lower bound of bandwidth communication for database spectra
to peptide match is W = �(mp) for any configuration of database or spectra in which
dot-product scores are performed for matching.

Proof The lower bound of communication possible is equal to�(#of Flops/
√
M).

The computations required for dot product like routines is O(
qm(2n)

p) as proved
in our earlier theorem. The size of the fast memory is assumed to contain both the
database, the spectra that needs to be searched and the result of the scoring. Therefore,√
M ≥ mn + 2qr

p . Then the equation �(
2qm

p×(mn+ 2qr
p)

). Our earlier assumption that

n ≈ r and q can be approaching m is applicable here without losing generality.

28 F. Saeed and M. Haseeb

This gives us m2n
pmn+2qn which is equivalent to m2

pm+2q . For M which can contain the
database, the spectra, and the results; As before for q ≈ m proves that lower bound
of communication which can be reached is equal to �(mp).

Theorem 3.4 We prove that the lower bound on the Latency cost L = �(2
mpn2)

Proof A lower bandwidth bound on the bandwidth costW gives us a lower bound on
the latency cost L . Assume that the largest message by a given architecture is mmax ,
then it is clear that L ≥ W/mmax since no message can be larger than the memory.
Therefore, we get L = �(

#of f lops
M3/2). Assuming that q ≈ m the #of f lops = m2(2n−1)

p ,

then L = �(m
2(2n)

pM3/2). Since we know that
√
M = mn + 2qr

p , substituting will give us

L = m2(2n)

p×(mn+ 2qr
p)3

. Since for large data sets q ≈ m, and n ≈ r , the expression can be

approximated as 2
mpn2×(1+ 4

p + 12
p2

+ 8
p3

)
. Therefore, L ≈ �(2

mpn2).

Theorem 3.5 The overall runtime lower bound of existing HPC methods is �(mn)

irrespective of how many processors are used for computations.

Proof The overall runtime bound can be calculated for existing HPCmethods can by
summation of L and F , and the communication that is specific to existing algorithms.
The summation of these qm(2n−1)

p + (2
mpn2)+ (mn) gives us a lower bound on the overall

run time which is bounded by �(mn).

Corollary 3.1 Mass filtering (or other filterings specific to MS data) for candidate
generation does not change the communication bounds of �(mn) of the current
parallel algorithms.

Proof The communication bounds that we just proved assume that no filtering is
taking place for these computations. This ensures that the results are generalizable
to all parallel algorithms without getting into method-specific details. However, we
show below, that mass-filtering does not change the communication bounds:

Case 1: The mass-filtering takes place on the master node and the database
and truncated databases are communicated Worst-case communication bounds are
�(mn) since all (or a constant factor) of the database could be communicated at
certain nodes and is not in the control of the parallel method since the assumption is
that each node will have N/p computations. Assuming that the transmitted parts are
a fraction of the number of processors, i.e. q/p, it is easy to see that �((q/p) ∗ mn)

computations are needed at the master node, proving that the communication bounds
remain unchanged.

Case 2: The mass filtering takes place on each node in parallel. If the mass
filtering takes place on each node in parallel, then it needs to communicate �(mn)

database to each node and the communication bounds calculated in this paper remain
unchanged.

Corollary 3.2 Fragment-Ion Index scoring similar to MSFragger also does not
change the communication bounds of �(mn) if the same parallelization method
is executed.

3 Existing HPC Methods and the Communication … 29

Proof Fragment-Ion index is based on indexing the peaks for each of the theoretical
spectra. If the indexing is taking place on the head node then �(mn) communication
has to take place to distribute the index on each of the processing nodes.

Theorem 3.6 We prove that much tighter lower bounds are possible for parallel
algorithms (that are yet to be discovered). Combining the lower bounds on W, L, and
F will yield lower bounds on the overall run time possible for processor with M ≤
(mn + 2qr

p) memory available. Therefore, the lower bounds possible for parallel
algorithms is equal to �(

nmq
p).

Proof Combining the lower bounds on W , L , and F will yield lower bounds on the
overall run time of the existing HPC algorithms. In our theorems, we have proved
that L = (2

mpn2) + F = qm(2n−1)
p + W = m2

pm+2q . This summation gives us a result of

�(
2mnq
p).

Theorem 3.5 shows that the existingHPC algorithm only achieves�(mn) runtime
and is independent of the number of processors used. Advantage of using HPC using
these algorithms is that a smaller subset (q) of spectra needs to be processed. This
advantage, however, vanishes when the size of the theoretical database is increased.
Theorem 3.6 predicts �(nm

2

p) as the runtime possible when m is approx. equal to
q. By approximating q to m results in simple mathematical expressions, it does
over-estimate the lower bound of the run time. A more realistic expression could be
�(

nmq
p)which includes both parameters for spectra aswell as the size of the database.

Nevertheless, an increasing number of PTMs that are used to search for spectra for
large-scale non-model systems biology experiments will result in database sizes that
are much larger than the number of spectra; therefore being the dominating factor in
all communication costs for computational experiments. None of the HPC methods,
to date, achieve lower bounds of communication, and computations as dictated by
these theorems. Still, significant research efforts are needed to achieve these bounds
in theory and practice.

3.5 Meta-Analysis of Results of Current HPC Methods

In order to evaluate how closely the currentHPCmethods follow the theoretical limits
that have been proved in our theorems, we downloaded the results from the following
methods [7, 13–18, 21–25]. These methods included MPI-based implementation on
distributed-memory machines, Hadoop implementations, and multicore designs. We
focused on the results that have been reported for distributed-memory machines but
excluded implementations that used Hadoop-based systems since communication
patterns and infrastructure information is generally not available from these com-
mercial cloud-based services. CPU-GPU-based implementations were also excluded
from this meta-analysis for the same reasons.

We needed to evaluate these HPC methods with metrics that were architecture-
specific and system-independent as possible, i.e. cluster-specific advantages are not

30 F. Saeed and M. Haseeb

0 50 100 150 200 250
Number of Processors

104

105

106

of

 M
es

sa
ge

s
C

om
m

un
ic

at
ed

 (l
og

 s
ca

le
)

Reported Results (Current Methods)
Coummunication Lower-Bounds (Current Methods)
Communication Lower-Bounds (Theoretical)

Fig. 3.3 The graph shows the amount of communication that takes place with an increasing number
of processors. As can be seen that most of the HPC methods that are listed do not achieve the lower
bounds on communication. The gap increases rapidly between the communication required for the
state-of-the-art HPC algorithms and the communication that can be theoretically achieved

considered in the evaluation to ensure that it is fair. One of thesemetrics is the amount
of total communication that is independent of themachines that might have been used
for experimentation and is also in line with our theorems. The other metric that also
allows us to evaluate the existing HPC methods is independent of other machines
and would ensure fair comparison is speedups.

We downloaded all the results [7, 13–18, 21–25] that have been reported till
date. The information that we extracted from these methods include database size,
number of spectra, reported times, speedups, and memory footprint (not always
reported). Using all the information from the published literature, we plotted the
communication message that was required to complete the method as a function of
theoretical database (spectra length and number are neglected). Both communication
bounds that were calculated for the current methods and the theoretical bounds that
are possible were plotted. Figure3.3 shows that the results that are reported are

3 Existing HPC Methods and the Communication … 31

0 50 100 150 200 250
Number of Processors

0

50

100

150

200

250
S

pe
ed

up
Ideal Linear Speedups (Expected)
Reported Results (Current Methods)

Fig. 3.4 This graph represents the speedups that are reported by the papers and the corresponding
linear speedup that can be achieved with an increasing number of processors. Note that the reported
results that are listed here are also the results that are depicted in Fig. 3.3 and show a one-to-one
correspondence between the amount of communication and the speedupswith an increasing number
of processors

close to the bounds that we have calculated. As can be seen from the figure the
increasing number of processors must need a decreasing number of message (in
theoretically communication-optimal algorithm) in contrast to the current real-world
implementations. Clearly, not considering communication costs in the design of these
parallel algorithms results in much more communication than would be expected
from optimal communication-avoiding solutions which is not a norm till date [13].

The secondmetric thatwe usedwas speedups. Speedups are a goodmetric because
the reported results are in fact the speed that one gets compared to the same archi-
tecture (with more processors, for instance). This makes speedup an ideal metric
that can be used for evaluating the performance of the parallel algorithm without the
need to explicitly compare one method with another method (that may be running
on a different machine). As expected, in concurrence with our theoretical results, the
reported results show decreased speedups with increasing number of processors for
all state-of-the-art methods. The results are plotted in Fig. 3.4. As dictated by our
theoretical framework, the decrease in the speedup is due to increased communica-
tion costs with increasing size of the database and increasing number of processors,
i.e. increasing processor does not result in decreased communication due to sharding
of the database. Such an optimal communication-avoiding algorithm (which has not
been discovered till date) could result in near-linear speedupswith increasing number
of processors.

32 F. Saeed and M. Haseeb

3.6 Discussions

Scalable parallel algorithms with provable performance for large-scale MS systems
biology studies are essential formaking personalized nutrition,microbiome research,
and cancer therapeutics a clinical reality. Such scalable algorithms are ofmore impor-
tance when performing systems biology experiments for non-model proteomics,
meta-proteomics, and proteogenomics studies where the search-space traversal for
peptide(s) with modification can be huge. We have formulated a generalized theo-
retical framework which allows us to determine the communication bounds that are
reached by the existing methods. Our meta-analysis conclusively shows that the per-
formance obtained by existing HPCmethods is far less than the theoretically optimal
methods and results in sub-optimal speedups with increasing number of processors.
Our framework also dictates what are the theoretical limits that can be reached by
(yet to be discovered) communication-optimal parallel algorithms. Discovery of such
communication-optimal algorithms can result in provably superior performance for
peptide deductionmethods onmulticore, GPU, distributed-memory supercomputers,
and cloud-computing infrastructure. Such contributions are expected to be signifi-
cant because they will open up novel and faster ways to analyze MS data for various
omics (read: preteomics, proteogenomic, meta-proteomics, etc.) studies considered
“too large-scale”.

Following are a few caveats that can be used to get a better understanding of the
proposed theoretical framework:

1. For the framework, we have assumed a single parallel strategy which is algorith-
mically the closest one could get for the current HPC methods that have been
proposed till date. Variation such as scoring, getting candidate peptides, etc.,
are not considered part of the parallelization strategy in order to get generalized
mathematical bounds. Since data is moved in similar fashion in all existing HPC
methods; any inclusion of scoring variations will only result in modification of
constant in the proved communication bounds.

2. The theoretical bounds that we have proved are with the assumption that theo-
retical database and spectra cannot fit inside a single machine memory M. If the
size of the data is not that large, then the speedups that one would get could be
much higher. However, such a result would be an artifact of the data and or the
machine being used, not a generalizable result. This also is in agreement with
the meta-analysis which shows that increasing the number of processors does not
result in correspondingly linear speedups expected of scalable parallel solutions.

3. We have assumed in our framework that the theoretical database is on the master
node which is communicated by the network. One can also assume that the whole
database is not communicated (only the FASTA files are communicated from the
master processor). However, this assumption will not affect the bounds since the
communication costs are now substituted by computations costs, i.e. O(nm2/p).
Therefore, with data distribution method that is used by the current HPCmethods
will achieve the lower bounds thatwe have proved.Ourmeta-analysis of published
results also concurs with this argument.

3 Existing HPC Methods and the Communication … 33

4. Another interesting point to think about is that for calculating our bound we
assumed that the whole database is needed for computations. For calculating our
bounds, we assume that the whole database is needed for computations. One
can argue that only “candidate peptides” are used by real algorithms. However,
this reasoning does not affect the communication lower bounds since getting
or calculating the candidate spectra still need access to the theoretical spectral
database and the communication bottleneck remains unchanged.

3.7 Conclusions

For the past 30years, efforts have been invested to design efficient peptide deduc-
tion algorithms which are, to date, are implemented as numerical algorithms. The
HPC methods that have been proposed were designed and implemented as meth-
ods that require faster computations with little or no attention to the communication
costs of these algorithms. However, the significant increase in the compute power
due to Moore’s law has made the arithmetic computations faster, and as a result,
MS algorithm has shifted from computational arithmetic efficiency to communica-
tion bottleneck. However, poor scalability of the existing HPC methods has been
considered an artifact of the system or data and has not been investigated.

In this chapter, we have formulated a theoretical framework that can be used to
quantify the (communication) performance for the state-of-the-art HPC methods.
We presented lower bounds that are reached by these HPC (and serial) methods and
lower bounds that could be achieved by parallel algorithms on distributed-memory
architectures. To the best of our knowledge, this is the first study to formulate a
theoretical framework showing that the existing parallel strategies for MS-based
omics data analysis are not achieving the communication bounds that are possible
and that continued improvements are needed in this area of research. Meta-analysis
of existing HPCmethods has also revealed that the theoretical bounds agree with the
experimental data that is observed.

Therefore, urgently, parallel algorithms are needed that are communication-
optimal, can bridge the gap between theory and practice, and can gracefully scale
with an increasing number of processors. In contrast to the present generation of
methods, the next generation of HPC methods must be designed by considering
both computational and communication costs as metrics for efficiency. This next
generation of HPC methods can scale (at least) linearly with increasing number of
processors, size of the (theoretical) database and would allow massive scale analysis
of meta-proteomics, proteogenomics, and non-model omics using MS data and push
us one step closer to precision medicine.

34 F. Saeed and M. Haseeb

References

1. Ballard G, Carson E, Demmel J, Hoemmen M, Knight N, Schwartz O (2014) Communication
lower bounds and optimal algorithms for numerical linear algebra. Acta Numer 23:1

2. Ballard G, Demmel J, Holtz O, Schwartz O (2011) Minimizing communication in numerical
linear algebra. SIAM J Matrix Anal Appl 32(3):866–901

3. Council NR, et al (2005) Getting up to speed: The future of supercomputing. National
Academies Press

4. Demmel J, Eliahu D, Fox A, Kamil S, Lipshitz B, Schwartz O, Spillinger O (2013)
Communication-optimal parallel recursive rectangular matrix multiplication. In: 2013 IEEE
27th international symposium on parallel and distributed processing. IEEE, pp 261–272

5. Solomonik E, Bhatele A, Demmel J (2011) Improving communication performance in dense
linear algebra via topology aware collectives. In: SC’11: proceedings of 2011 international
conference for high performance computing, networking, storage and analysis. IEEE, pp 1–11

6. Eng JK, Fischer B, Grossmann J, MacCoss MJ (2008) A fast SEQUEST cross correlation
algorithm. J Proteome Res 7(10):4598–4602

7. Diament BJ, Noble WS (2011) Faster SEQUEST searching for peptide identification from
tandem mass spectra. J Proteome Res 10(9):3871–3879

8. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral
data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom
5(11):976–989

9. McIlwain S, Tamura K, Kertesz-Farkas A, Grant CE, Diament B, Frewen B, Howbert JJ,
Hoopmann MR, Kall L, Eng JK et al (2014) Crux: rapid open source protein tandem mass
spectrometry analysis. J Proteome Res 13(10):4488–4491

10. Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI (2017) Msfragger:
ultrafast and comprehensive peptide identification inmass spectrometry-based proteomics. Nat
methods 14(5):513

11. Yates III JR (2019) Proteomics of communities: metaproteomics
12. Heck M, Neely BA (2020) Proteomics in non-model organisms: a new analytical frontier. J

Proteome Res
13. Kulkarni G, Kalyanaraman A, Cannon WR, Baxter D (2009) A scalable parallel approach for

peptide identification from large-scale mass spectrometry data. In: 2009 international confer-
ence on parallel processing workshops. IEEE, pp 423–430

14. Li C, Li K, Li K, Lin F (2019)MCtandem: an efficient tool for large-scale peptide identification
on many integrated core (MIC) architecture. BMC Bioinform 20(1):397

15. Sun J, Chen B, Wu F-X (2014) An improved peptide-spectral matching algorithm through
distributed search over multiple cores and multiple CPUS. Proteome Sci 12(1):18

16. Duncan DT, Craig R, Link AJ (2005) Parallel tandem: a program for parallel processing of
tandem mass spectra using PVM or MPI and x! tandem. J Proteome Res 4(5):1842–1847

17. Bjornson RD, Carriero NJ, Colangelo C, Shifman M, Cheung K-H, Miller PL, Williams K
(2008) X!! tandem, an improved method for running x! tandem in parallel on collections of
commodity computers. J Proteome Res 7(1):293–299

18. Li C, Li K, Chen T, Zhu Y, He Q (2019) SW-tandem: a highly efficient tool for large-scale
peptide sequencing with parallel spectrum dot product on Sunway TaihuLight. Bioinformatics
(Oxford, England) 35(19):3861–3863

19. BallardG,Demmel J, Holtz O, Lipshitz B, SchwartzO (2012) Communication-optimal parallel
algorithm for strassen’s matrix multiplication. In: Proceedings of the twenty-fourth annual
ACM symposium on parallelism in algorithms and architectures, pp 193–204

20. Haseeb M, Saeed F (2021) High performance computing framework for tera-scale database
search of mass spectrometry data. Nat Comput Sci 1(8):550–561

21. Li C, Li K, Li K, Xie X, Lin F (2019) Swpepnovo: an efficient de novo peptide sequencing
tool for large-scale MS/MS spectra analysis. Int J Biol Sci 15(9):1787

3 Existing HPC Methods and the Communication … 35

22. Baumgardner LA, Shanmugam AK, Lam H, Eng JK, Martin DB (2011) Fast parallel tandem
mass spectral library searching using GPU hardware acceleration. J Proteome Res 10(6):2882–
2888

23. Pratt B, Howbert JJ, Tasman NI, Nilsson EJ (2012) MR-tandem: parallel x! tandem using
hadoop MapReduce on amazon web services. Bioinformatics 28(1):136–137

24. LiC,ChenT,HeQ,ZhuY,LiK (2016)Mruninovo: an efficient tool for de novopeptide sequenc-
ing utilizing the hadoop distributed computing framework. Bioinformatics 33(6):944–946.
https://academic.oup.com/bioinformatics/article-pdf/33/6/944/25147928/btw721.pdf,https://
doi.org/10.1093/bioinformatics/btw721https://doi.org/10.1093/bioinformatics/btw721

25. Kalyanaraman A, Cannon WR, Latt B, Baxter DJ (2011) Mapreduce implementation of a
hybrid spectral library-database search method for large-scale peptide identification. Bioinfor-
matics 27(21):3072–3073. https://academic.oup.com/bioinformatics/article-pdf/27/21/3072/
16901315/btr523.pdf, https://doi.org/10.1093/bioinformatics/btr523

 -318 7168 a -318
7168 a

https://academic.oup.com/bioinformatics/article-pdf/33/6/944/25147928/btw721.pdf

 32143 7168 a 32143 7168 a

https://doi.org/10.1093/bioinformatics/btw721
https://doi.org/10.1093/bioinformatics/btw721

 14616 8275 a 14616 8275 a

https://doi.org/10.1093/bioinformatics/btw721

 10081 11596
a 10081 11596 a

https://academic.oup.com/bioinformatics/article-pdf/27/21/3072/16901315/btr523.pdf
https://academic.oup.com/bioinformatics/article-pdf/27/21/3072/16901315/btr523.pdf

 8236 12703 a 8236 12703
a

https://doi.org/10.1093/bioinformatics/btr523

Chapter 4
High-Performance Computing Strategy
Using Distributed-Memory
Supercomputers

Fahad Saeed and Muhammad Haseeb

4.1 Introduction

Database peptide search is themost commonly employed computational technique to
deduce peptides from the experimentally obtainedmass spectrometry data [2]. In this
technique, the experimental spectral data are compared against a protein sequence
database through various search algorithms in order to assign the correct peptide
sequence to each experimental spectrum [3]. Since the experimental spectra data
(histogram-like data) and the peptide sequence data (text data) are not one-to-one
comparable, database search simulates the mass spectrometry process in silico to
generate theoretical spectra from the peptide sequences in the database [3]. Several
other techniques also exist for complete or partial inter-conversion between the two
data domains including sequence-tagging [4, 5], de novo [6–8], and their combi-
nations [9, 10]. In general, the workflow of any modern database peptide search
algorithm involves the following steps [3]:

1. Clean, denoise, reconstruct, and pre-process the experimental data.
2. Simulate in silico mass spectrometry to generate a database of theoretical spectra.
3. Optional: Index the converted database for faster search.
4. Search the processed experimental data against the processed (and indexed)

database.
5. Post-processed the results, compute statistical significance of the matches, com-

pute false discovery, and so on.

Many software frameworks have been proposed in the past three decades to speed
up the database search workflow, most of which have focused on reducing the num-
ber of required computations through data cleaning, aggressive database filtration,
and de novo-assisted approaches [4, 5, 9–21]. Therefore, these advanced algorithms
now increasingly require both CPU and memory resources for optimal performance.

Some parts of this chapter may have appeared in [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9_4

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_4&domain=pdf

 -2047 61833 a -2047 61833 a

https://doi.org/10.1007/978-3-031-01960-9_4

38 F. Saeed and M. Haseeb

Consequently, the number of computations performed permemory transaction (arith-
metic intensity) [22] now upper bounds the performance of most modern database
search algorithms. This situation is further aggravated as the database index incor-
porates post-translational modifications (PTMs) leading to several hundred giga- to
terabyte-scale databases [11, 23]. As shown in several big data fields [24], memory
contention upper bounds can be alleviated by effectively dividing-and-conquering
the computational problem across a distributed-memory supercomputer. Therefore,
in this chapter, we focus on an efficient distributed-memory computational design
for accelerating the database peptide search problem.

4.1.1 Background

Many computational frameworks such as X!!Tandem [25, 26], MR-Tandem [27],
SW-Tandem [28], MCtandem [29], Bolt [30], MS-PyCloud [31], and UltraQuant
strive to accelerate the database peptide search on supercomputers. However, the
major limitation in all existing frameworks is the inefficient use of the distributed
architecture, leading to the same memory contention that limits the shared-memory
algorithms. This inefficiency stems from their parallel design (divide-and-conquer
strategy) that involves partitioning the experimental data across parallel nodes, each
having a replica of the complete (gigantic) database index. For instance, ParallelTan-
dem [25] runs parallel instance of X!Tandem using MPI or PVM. X!!Tandem [26]
implements an internally parallelizedX!TandemusingMPI.MR-Tandem [27] paral-
lelize through Map-Reduce model allowing for better load balance. MCtandem [29]
and SW-Tandem [28] implement accelerator-offloaded versions of the X!Tandem
with some extra optimizations. Furthermore, Bolt [30] implements a parallel MS-
Fragger, MS-PyCloud [31] parallelizes MS-GF+ [32] in cloud-computing setting
and UltraQuant parallelizes MaxQuant37 using the same straightforward parallel
design.

In 2009, Kulkarni et al. [33] proposed two preliminary parallel designs that cor-
rectly leverage the distributed memory by splitting the large database index among
parallel nodes reducingmemory contention per node.However, the data stream-based
search workflow employed by these parallel models limited the parallel efficiency
to 50% due to frequent inter-node communications and on-the-fly computations per-
formed to merge local results into collective results at the end.

4.1.2 Problem Statement

Identification of peptides from mass spectrometry data is a fundamental step in
computational proteomics. Existing parallel database search algorithms are based on
inherently shared-memory designs that do not optimally scale on distributed-memory
architectures. This leaves a gap for a parallel strategy capable of deriving maximum

4 High-Performance Computing Strategy Using Distributed-Memory Supercomputers 39

performance from modern high-performance computing (HPC) systems. We intro-
duce HiCOPS [1], a search algorithm-independent parallelization strategy for the
acceleration of generic database peptide search workflows onto distributed-memory
supercomputers, achieving impressive computational speeds and near-optimal par-
allel scalability.

4.2 The HiCOPS Framework

HiCOPS’s design is based on the single program, multiple data (SPMD) Bulk Syn-
chronous Parallel (BSP) [34] computational model where the computations are per-
formed by a pool of independent asynchronous parallel computing nodes. The nodes
execute the required algorithmic computations in supersteps [34] and synchronize
after each superstep, if required. A superstep is defined as a series or a set of asyn-
chronously executable algorithmic work. HiCOPS splits the database peptide search
workflow into the following four supersteps as also shown in Fig. 4.1.

1. Split the theoretical database across the compute nodes in a load-balanced fashion
and create local database indices.

2. Partition the experimental MS/MS data set across the compute nodes and locally
pre-process, index, denoise, and re-construct the data as needed.

3. On each parallel node, search the entire experimentalMS/MS data set (in batches)
against the local database index using the provided search algorithm.

4. Assemble a partition of the intermediate results produced in the last step at each
parallel node and communicate back the final results to their origin nodes.

4.2.1 Database Indexing

The peptide sequences along with their post-translationally modified sequences are
partitioned across the parallel nodes in a load-balanced fashion using the LBE [35]
algorithm. The LBE algorithm is supplemented with a new metric, called Mod Dis-
tance (Δm) [1], to allow separation of database entries (peptides or variants) that
have the same Edit Distance (Δe) [35]. The extracted partition of the database is
then locally indexed at all parallel nodes using the supplied indexing algorithm.

Scalability: This superstep generates similar sized database slices in O(D) time
followed by local indexing in (D/p log D/p) time, where D is the size of complete
search space and p is the number of parallel nodes. Therefore, the scalability of this
step is limited by the partitioning step.

40 F. Saeed and M. Haseeb

Fig. 4.1 a Superstep 1: The massive search space of theoretical spectra (shown as shapes) is par-
titioned among parallel MPI processes in a load-balanced (clustering (stripes) + scattering) fashion
b Superstep 2: The experimental MS/MS spectra data pre-processed in data-parallel fashion. c
Superstep 3: Per-process view of the parallel database peptide search workflow executed in hybrid
task and data-parallel fashion at all HiCOPS tasks. On each process, three parallel tasks R, I , and
K work in a producer-consumer pipeline to load the experimental data search it against the local
search space, and communicate the local results to the shared memory, respectively. The thread
allocation to each task is managed through a task scheduling algorithm to maintain pipeline syn-
ergy. d Superstep 4: The local results from the last superstep are assembled into complete results,
which are inter-communicated between the nodes for the final output

4 High-Performance Computing Strategy Using Distributed-Memory Supercomputers 41

4.2.2 Experimental Data Pre-processing

This superstep is executed in an embarrassingly parallel fashion by randomly parti-
tioning the experimental MS/MS spectra data across parallel nodes followed by the
execution of supplied pre-processing algorithms. The pre-processed data is written
back to the shared file system on completion for subsequent use. Note that this step
may be skipped in subsequent runs altogether if the pre-processed data is available.

Scalability: This superstep exhibits a coarse-grained embarrassingly parallel pro-
file as equal-sized chunks of experimental data can be processed by parallel nodes
in near-equal amount of time. In real-world scenario, this superstep may incur some
overheads due to load imbalance and data communication overheads.

4.2.3 Parallel Database Peptide Search

This is the most important superstep in HiCOPS and executes about 80–90% of
the overall algorithmic word. In this superstep, the parallel nodes search the pre-
processed experimental spectra against their local database index. This superstep
is designed through a hybrid (task and data-parallel) producer-consumer pipeline
model explained as follows. Three parallel tasks, namely R, I , and K are forked that
load batches of pre-processed experimental data into the main memory, execute the
database search, and write intermediate results to the shared file system, respectively.
The number of parallel cores assigned to each task at a given time is governed by
a forecasting-based task-scheduling algorithm explained in later sections. The data
flow between the pipeline is designed using memory buffers and queues to handle
speed mismatches between producers and consumers.

Scalability: This superstep executes a complex pattern of compute, memory,
and communication operations due to the involved data flows and random database
accesses required. Therefore, to derive the maximum performance from the sys-
tem, we introduce several optimizations including task scheduling, data buffering,
and sampling (discussed in Sect. 4.3). These optimizations ensure that the system
resources are never under- or over-utilized to avoid overheads. The task R reads the
pre-processed experimental data from the storage in linear time, the task I searches
the data against the local database in O(sN D) time, where s is the complexity of the
supplied search algorithm, N is the size of experimental data set, and D is the size
of local database. Finally, the task K communicates the local results in O(r) time,
where r is the size of intermediate results data. Since this superstep executes in a
hybrid fashion, the overall time for this step can be written as O(sN D) + θ where
O(sN D) is time for task I and θ is the extra time needed by K to finish after I is
done. The above equation is true since the task R (producer) must complete before
I (consumer) which is the main step plus some extra time to complete the pipeline
given by θ .

42 F. Saeed and M. Haseeb

4.2.4 Assembling the Local Results

This superstep assembles the intermediate results produced in the last superstep in a
hybrid parallel fashion. Two parallel tasksW and L are spawned, whereW performs
the assembly and L communicates the assembled global results to the other paral-
lel HiCOPS nodes. W assembles the intermediate results into final results through
accumulation and digital signal shift operations. The complete null distribution is
constructed and statistical significance (expected values) of top-scoring hits is com-
puted either using Linear Tail-Fit method or (log-Weibull) curve fitting method.
Figure4.1d illustrates the score assembly process. Static thread scheduling is used in
this superstep and all available cores (cpi) are assigned to W with 1 over-subscribed
thread assigned to L . Since an all-to-all data exchange may be needed in worst-case
scenario, the number of inter-process communication operations are upper bound
bounded by O(P2). Finally, once the two tasks W and L complete (join), the final
results are written to the file system in data-parallel fashion.

Scalability: W performs the assembly in time: O(xrp), where r is the number
of results, p is the number of HiCOPS processes, and x is the runtime of the curve
fitting algorithm (typically linear or quadratic regression).

4.3 Optimizations

4.3.1 Task Scheduling

Recall that the data flow between the pipeline tasks in the database search superstep
is designed using buffer queues. The status of the queues at any point during the
execution also indicates the relative speed of the three tasks. For example, the number
of experimental data batches in queue: R → I at any time indicates their relative
speeds. If the queue is getting fuller, it means that the data production is faster than
the consumption speed and vice versa. There are certain edge cases as well such as
the initial state of the queues and the time to produce at least one batch of data which
are handled by keeping a record of the change and accumulation of the production
to consumption delay by the scheduling algorithm. Three regions are defined for the
queue R → I , i.e. r1 = (data < 5), r2 = (5 ≤ data < 15), and r3 = (data ≥ 15) which
alert the scheduling algorithm if a change may be needed in the near future. The task
scheduling algorithm dynamically assigns threads to each of the tasks R, I , and K
using the Algorithm 2.

4 High-Performance Computing Strategy Using Distributed-Memory Supercomputers 43

Algorithm 2: Task Scheduling in Superstep 3
Data: buffer queue: R → I (qF), per batch halt time (th), thresholds for minimum halt

(tmin), surge (tsurge), and max accumulation (tacc)
Result: Optimal thread allocation between subtasks R, I , and K
/* Local variable to record halt time accumulation */

1 tcumu ← 0
/* While data is being produced */

2 while (brem > 0) do
/* If halt time is larger than tmin */

3 if thalt ≥ tmin then
4 tcumu+ = thalt
5 if tcumu > tacc or thalt > tsurge then
6 move_thread(src = I, dst = R) tcumu ← 0

7 else
8 if qF .si ze() < 5 and | r |== 0 then
9 move_thread(src = I, dst = R) tcumu ← 0

10 else if qF .si ze() > 15 and | r |> 1 then
11 move_thread(src = R, dst = I)

12 return move_Allthreads(src = R, dst = I)

4.3.2 Communication Optimization

Each parallel node executing HiCOPS produces intermediate results for each exper-
imental spectrum consisting: the top-scoring search hit (8 bytes) and the local null
distribution of the scores (2048 bytes) totaling a data packet =∼2KB per experimen-
tal spectrum. Since most data sets on mass spectrometry data repositories contain
several hundred thousand tomillions of spectra, communicating 2K B × p2 data over
the network would result in loss in performance. To mitigate this, we implement two
methods that exploit the produced null distribution information which is known to
follow a log-Weibull curve. The first method uses a regression technique to fit a stan-
dard log-Weibull curve into the null distribution keeping only the curve parameters:
μ and β (8 bytes) and discarding the whole 2KB distribution data. The advantage of
this technique is that the payload size reduces from 2KB to 16bytes. The disadvan-
tages, however, include loss in the accuracy of results when assembled as well as the
extra computations required for regression. The extra computations overhead could
be reduced by offloading the task to GPUs, FPGAs, or other accelerators if available.
The secondmethod directly samples the null distribution by first locating themean of
the curve and then extracting at most s (s = 120 default) intense samples around the
mean. Further, the samples along the head of the curve are prioritized since the tail in
log-Weibull distributions are usually skewed (flat) and could be easily interpolated if
needed. This allows us to fit the local results per experimental spectrum within 256
bytes (in contrast to 2KB) significantly reducing the communication overheads. The
sampling algorithm is depicted in Algorithm 3.

44 F. Saeed and M. Haseeb

Algorithm 3: Sampling Algorithm
Data: local null distribution (dl), number of samples to extract (smax)
Result: Sampled null distribution (ds)
/* find sampling space along x-axis */

1 x1 = f indMin(dl [x])
2 x2 = f indMax(dl [x])
/* find the distribution’s μ value */

3 μ = AverageMeanAndMedian(dl , x1, x2)
/* pick samples until smax */
/* check if we have more than smax samples to begin with */

4 if x2 − x1 > smax then
/* sample until s = smax */

5 while s < smax do
/* sample around μ by prioritizing curve head over the

skewed-tail */
6 sa = samplebyPriori t y(μ, x1, x2)

/* append to ds */
7 ds .append(sa);

/* optimize for maximum distribution area picked */
8 optimize(area(ds), area(dl))

9 else
/* simply return the unsampled dl */

10 ds = dl

11 return dl

4.4 Results

UniProt Homo sapiens and UniProt SwissProt databases were used with combina-
tions of commonly occurring post-translational modifications (PTMs) to emulate
increasingly larger theoretical-spectra databases. Furthermore, combinations of sev-
eral PRIDE Archive data sets (Accession numbers: PXD: 009072, 020590, 015890,
007871, 010023, 012463, 013074, 013332, 014802, and 015391) were used as data
sets across our experiments. All experiments were run on the Extreme Science
and Engineering Discovery Environment (XSEDE) Supercomputers Comet clus-
ter located at San Diego Supercomputing Center (SDSC). Note that the minimum
number of parallel nodes required by HiCOPS in an experiment must be ≥ D/M ,
where D is the size of database index and M is the main memory per node.

4.4.1 Experimental Settings

The databases were digested in silico using Trypsin as an enzyme (fully tryptic)
with two allowed missed cleavages, peptide lengths between 6 and 46, and peptide

4 High-Performance Computing Strategy Using Distributed-Memory Supercomputers 45

masses between 500 and 5000Da using OpenMS toolkit. The theoretical spectra
were simulated by generating b- and y-ions up to +3 charge with zero isotope error
and no decoys. Cysteine carbamidomethylation was set as a fixed modification. The
maximum number of allowed modified residues (amino acid letters) per peptide
was set to 5. Restricted search peptide precursor filter was set to ±5Da to cover
for differences in mass calculation errors (average or monoisotopic masses) and
open-search peptide precursor filter was set to ≥ ±100Da. We will describe each
performed experiment in terms of the database and data set sizes and the filters used
as a tuple t = (D, q, δM, δF), where D is the theoretical spectra database size in
100 million spectra, q is the experimental data set size in 1 million spectra, δM is
the peptide precursor mass filter in ±1Da, and δF is the fragment-ion mass filter in
±1Da. Note that if δF (fourth element) is not specified in a tuple, it means that it is
set to ±0.01Da.

The experimental MS/MS spectra pre-processing was set to minimum for fairness
across search tools. These settings were as follows: allowed precursor mass and
charge range to 500–5000Da and +1 to +4, respectively, min. peaks matched for
PSM candidacy: 4, min. database hits for statistical modeling: 4, denoising: peak-
picking top 100 (by intensity), all other processing: off.

4.4.2 Correctness Analysis

We broke down our correctness analysis into two parts, i.e. correctness of the parallel
design and correctness of peptide identification. For the first part, we compared the
HiCOPS’s results by running it on an increasing number of parallel nodes against
the ones produced by serial HiCOPS execution. The results in Figs. 4.2 and 4.3 show
over 99.6% consistency between serial and parallel runs up to 3 decimal points for
several experiments with varying settings. The small number of inaccurate results
stemmed from precision losses in sampling and assembly steps. For the second part,
we compared the peptide identifications from HiCOPS and MSFragger. For this,
we implemented an MSFragger-like fragment-ion index-based shared-peak count-
ing coupled hyperscore search algorithmwithinHiCOPS. In our setup, we performed
three sets of experiments in both restricted- and open-search settings. These experi-
ments in the tuple form are given as: c1 = (0.18, 0.86, 0.01), c2 = (0.66, 1.51, 0.01),
c3 = (0.80, 1.51, 0.01), c4 = (0.18, 0.86, 2), c5 = (0.66, 1.51, 1), c6 = (0.80, 1.51, 2). The
obtained results from both tools depicted a close correlation between hyperscores
computed by both tools in restricted-search mode (pearson coefficient R ≥ 90%),
which dropped to about R ≥ 75% in open-search setting. There are many reason for
this drop including the internal data processing, search and re-ranking algorithms
employed MSFragger. Since MSFragger is not an open-source tool, the exact reason
could not be fully determined. Remember that the peptide identifications produced
by HiCOPS depend on the supplied algorithms and not the parallel design itself.

46 F. Saeed and M. Haseeb

Fig. 4.2 HiCOPS computed
hyperscores in serial and
parallel runs relate by
y = x + ε

2 3 4 5 6 7 8 9
hyperscore (serial)

2

3

4

5

6

7

8

9

hy
pe

rs
co

re
 (

pa
ra

lle
l)

Fig. 4.3 HiCOPS computed
e-values in serial and parallel
runs relate by y = x + ε

0 2 4 6 8
e-values (serial)

0

2

4

6

8

e-
va

lu
es

 (
pa

ra
lle

l)

4.4.3 Speed Comparison

Wecompared theHiCOPS-based hyperscore algorithm against various database pep-
tide search tools in both serial and parallel mode across six experiments of increas-
ing algorithmic workload sizes given in tuple form as s1 = (0.008, 0.935, 0.1), s2 =
(0.008, 0.935, 5), s3 = (0.07, 1.51, 5), s4 = (0.935, 1.515, 0.1), s5 = (0.935, 1.515,
5), s6 = (2.13, 3.89, 1). The parallel versions of the serial database search engines,
if not available, were implemented by spawning multiple instances of their binary
across a cluster, each searching a partition of the experimental MS/MS data set.
We used our implemented shared-peak coupled hyperscore search algorithm [11]
to compare HiCOPS’s performance with other tools. The obtained results depict
that the HiCOPS-based search leverages its optimized parallel design to provide, on
average, about 10× speedup over several other tools in all parallel configurations
(See Tables4.1, 4.2, 4.3, 4.4, 4.5, 4.6). In order to alleviate the effect of search
algorithm-based speedups across tools, we compared HiCOPS with MSFragger

4 High-Performance Computing Strategy Using Distributed-Memory Supercomputers 47

Table 4.1 Runtime for experiment: s1 = (0.008, 0.935, 0.1) in seconds for several tools with
increasing number of parallel nodes

Tool n = 1 n = 2 n = 4 n = 8 n = 16

HiCOPS 221.12 166.321 126.358 113.538 134.869

MSFragger 299.4

SW-Tandem 1015 992 1002 999 1019

Crux 2470

X!!Tandem 4980 2445 1279 690 360

Table 4.2 Runtime for experiment: s2 = (0.008, 0.935, 5) in seconds for several tools for increas-
ing number of parallel nodes (n)

Tool n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64

HiCOPS 349.52 188.1 135.792 115.186 101.796 101.089 143.941

MSFragger 521.2818

X!Tandem 18645

X!!Tandem 115000 57700 29050 14600 7400 3720 1980

SW-Tandem 17979 17094 15366 14344 15124 15097 14973

Table 4.3 Runtime for experiment: s3 = (0.07, 1.51, 5) in seconds for several toolswith increasing
number of parallel nodes (n)

Tool n = 1 n = 2 n = 4 n = 8 n = 16 n = 32

HiCOPS 1850.135 960.589 520.743 315.696 198.305 134.474

MSFragger 12037.82 6692.2 3599.6 2151.46 984.72 987

Comet 44700 33240 19950 11482 5669.1 3601.05

X!!Tandem 29947.28 15612.64 8228.57

MSGF+
(1Da)

46800 25200

(similar algorithm) inmore detail. The results show that HiCOPS depicts much better
overhead performance (lower I/O and load imbalance overheads), even though the
compute time for both tools was similar (See Tables 4.3, 4.4, 4.5, 4.6 for runtimes
and Tables 4.7, 4.8, 4.9, 4.10 for corresponding percentage overhead times).

4.4.4 Performance Evaluation

HiCOPS’s parallel performance was analyzed using 12 experiments of varying sizes
(i.e. search space, data set and open-/closed-search settings). These experiments in
their tuple form are given as exp1 = (0.3, 0.84, 0.1), exp2 = (0.3, 0.84, 2), exp3 = (3.89,

48 F. Saeed and M. Haseeb

Table 4.4 Runtime for experiment: s4 = (0.935, 1.515, 0.1) in seconds for several tools with
increasing number of parallel nodes (n)

Tool n = 1 n = 2 n = 4 n = 8 n = 16

HiCOPS 965.56 557.549 371.585 262.16 213.622

MSFragger 39439 20043 8591.54 4750.7 3389.6

X!Tandem 1710000

Crux 875500

Table 4.5 Runtime for experiment: s5 = (0.935, 1.515, 5) in seconds for several toolswith increas-
ing number of parallel nodes (n)

Tool n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64

HiCOPS 89682.5 22541.98 6607.923 2797.644 1445.38 807.054 485.541

MSFragger 203954.7 83900 53960 23500 16800 11890 6030

Table 4.6 Runtime for experiment: s6 = (2.13, 3.89, 1) in seconds for several toolswith increasing
number of parallel nodes (n)

Tool n = 4 n = 8 n = 16 n = 32 n = 64

HiCOPS 15832.72 3086.035 1405.969 858.5937 596.3815

MSFragger 19295.5 9952.23 5973.42 3380.52

Comet (10Da) 30747.6 20796.6 12627.6

Table 4.7 Percentage MSFragger runtime spent as I/O overhead in speed comparison experiments
(Tables4.3, 4.4, 4.5, 4.6) for increasing number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64

3 54.73001 36.77117 37.94588 37.57913 42.5197 32.70517

4 89.41652 83.91858 81.0623 42.12432 19.17925

5 23.595 25.43838 15.22387 7.24766 3.869643 2.24222 2.824212

6 63.00951 57.55996 29.43372 14.72555

Table 4.8 Percentage HiCOPS runtime spent as I/O overhead in speed comparison experiments
(Tables4.3, 4.4, 4.5, 4.6) for increasing number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64

3 0.831183 1.611824 4.65796 4.973139 10.05522 10.22056

4 1.56 3.0322 10.82498 7.657919 9.497617

5 0 0.071812 0.608724 0.717604 1.403714 7.378193 8.38405

6 2.559578 3.584081 7.430818 12.48344 18.53344

4 High-Performance Computing Strategy Using Distributed-Memory Supercomputers 49

Table 4.9 Percentage MSFragger runtime spent as load imbalance overhead in speed comparison
experiments (Tables4.3, 4.4, 4.5, 4.6) with increasing number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64

3 0 1.02 6.99 20.47 37.66 33.59

4 0 2.09 43.79 35.47 32.64

5 0 6.04 12.3 9.49 61.27 137.04 108.62

6 28.65 34.48 69.037 39.48

Table 4.10 Percentage HiCOPS runtime spent as load imbalance overhead in speed comparison
experiments (Tables4.3, 4.4, 4.5, 4.6) with increasing number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64

3 0 0.204832 0.152784 1.74169 5.498741 8.084369 8.401276

4 0 0.214879 7.623076 2.620038 4.615141

5 0 0.389582 2.180723 4.12997 4.386946 7.95819 5.386342

6 2.203713 2.581644 0.979308 3.581092

0.07, 5), exp4 = (1.51, 2.13, 5), exp5 = (6.1, 0.93, 5), exp6 = (3.89, 7.66, 5), exp7 =
(1.51, 19.54, 5), exp8 =(1.6, 38.89, 5), exp9 = (3.89, 15.85, 5), exp10 = (3.89, 1.08,
5), exp11 = (1.58, 2.13, 1), and exp12 = (0.305, 0.847, 5). Recall that the minimum
number of parallel nodes required by HiCOPS an experiment must be ≥ D/M ,
where D is the size of database index and M is main memory per node. Therefore,
the speedup and strong-scale efficiency calculations in performance analysis were
done relative to the base case (smallest experiment with nodes > ≥ D/M). The
results show between 70 and 80% relative strong-scale efficiency for HiCOPS on
average for sufficiently large experiments (See Tables4.11, 4.12, 4.13). Experiments
with smaller workloads deteriorate in parallel efficiency according to the Amdahl’s
law. Hyper-linear efficiency was also observed for larger experiments due to sharp
decrease in memory contention with increase in number of parallel nodes. To verify
this, we also instrumented hardware counters that depict an improved instructions per
cycle and cache misses performance per node leading to lower memory contention
in this scenario (See Tables4.14, 4.15, 4.16).

4.4.4.1 Overhead Evaluation

We further quantified the overheads in HiCOPS bymeasuring several metrics includ-
ing load imbalance, inter-node communication, pipeline stalls, I/O, and so on in the
above 12 experiments. The results depict that the I/O and load imbalance consti-
tutes about 10% of the runtime each and the inter-node communications constitute
about 5% of the overall runtime keeping the overall overhead timeless than 25% (See
Tables4.17, 4.18, 4.19, 4.20).

50 F. Saeed and M. Haseeb

Table 4.11 HiCOPS’s experimental runtime in seconds for the 12 experiments (expi) for increasing
number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 72

1 136.1 96.1 84.86 76.1

2 402.7 171.8 108.93 91.31

3 1850.14 960.59 520.74 315.7 198.31 134.47

4 5832.72 3086.04 1405.97 858.59 596.38

5 40168.01 12887.29 5516.6 3024.14 1785.71 1137.6

6 2924.2 1395.58 873.23

7 6911.85 3205.26

8 1755.31 1634.56

9 4554.66 2418.61

10 6721.3 2686.52 1301.51 728.86 424.01 296.96

11 1397.34 751.81 486.53 344.5 297.1

12 888.64 329.21 155.91 110.14

Table 4.12 HiCOPS’s relative speedup for increasing number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 72

1 1 1.42 1.6 1.79

2 1 2.34 3.7 4.41

3 1 1.93 3.55 5.86 9.33 13.76

4 1 1.89 4.15 6.79 9.78

5 1 3.12 7.28 13.28 22.49 35.31

6 1 2.1 3.35

7 1 2.16

8 1 1.07

9 1 1.88

10 1 2.5 5.16 9.22 15.85 22.63

11 1 1.86 2.87 4.06 4.7

12 1 2.7 5.7 8.07

4.5 Discussion

High-performance computing (HPC) has shifted towards heterogeneous computing
[36] as the Graphical Processing Units (GPUs) become integral components of the
modern top 500 supercomputers [37]. Therefore, our future efforts focus on com-
pletely revamping the currently proposed SPMD-BSP-basedHiCOPSparallel design
to fully leverage GPUs and other hardware accelerators in conjunction with symmet-
ric multiprocessing nodes to further accelerate the database search. As shown by our
experimental results, HiCOPS’s peptide identification rates are limited by the (sup-

4 High-Performance Computing Strategy Using Distributed-Memory Supercomputers 51

Table 4.13 HiCOPS’s relative strong-scale efficiency for the 12 experiments (expi) for increasing
number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 72

1 1 0.71 0.4 0.22375

2 1 1.17 0.925 0.55125

3 1 0.965 0.8875 0.7325 0.583125 0.43

4 1 0.945 1.0375 0.84875 0.61125

5 1 1.56 1.82 1.66 1.405625 1.103438

6 1 1.05 0.8375

7 1 1.08

8 1 0.951

9 1 0.94

10 1 1.25 1.29 1.1525 0.990625 0.707188

11 1 0.93 0.7175 0.5075 0.29375

12 1 1.35 1.425 1.00875

Table 4.14 HiCOPS’s instructions per cycle (ipc) for the 12 experiments (expi) for increasing
number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64

1 0.658605 0.62594 0.606399 0.598779

2 0.761496 1.194591 1.28988 1.265229

3 1.172292 1.184356 1.203304 1.193149 1.161948 1.126351

4 0.936649 0.919458 0.919458 0.919458 0.919458

5 0.56322 0.975077 1.163958 1.176262 1.18136 1.170231

6 0.969719 1.19811 1.274765

9 0.97069 1.204607

10 0.85263 1.131857 1.249126 1.257584 1.24926 1.214691

11 0.936649 0.919458 0.913205 0.905938 0.932812

12 0.627035 1.102769 1.410214 1.40052

plied) executed algorithms for data pre-processing, searching, and post-processing.
Therefore, to improve on this, we also focus our future efforts towards the in-house
development of existing and new algorithms, andmachine- and deep learningmodels
[38, 39] for various HiCOPS’s supersteps.

52 F. Saeed and M. Haseeb

Table 4.15 HiCOPS’s LLC cache misses/total cache misses (lpc) for the 12 experiments (expi)
for increasing number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64

1 0.357922 0.356453 0.339776 0.318339

2 0.227645 0.097253 0.069666 0.078104

3 0.022755 0.023158 0.02732 0.029027 0.025319 0.02616

4 0.104159 0.10849 0.10849 0.10849 0.10849

5 0.22868 0.08208 0.0218 0.020076 0.023515 0.028213

6 0.109903 0.05892 0.040184

9 0.08764 0.035651

10 0.143212 0.062753 0.0326 0.033188 0.038109 0.041286

11 0.11627 0.121692 0.108632 0.116228 0.126823

12 0.21529 0.101541 0.04108 0.045104

Table 4.16 HiCOPS’s write stalls/total stalls (wps) for the 12 experiments (expi) for increasing
number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64

1 0.044665 0.03385 0.02621 0.019666

2 0.201336 0.184515 0.169855 0.151227

3 0.113917 0.106945 0.092391 0.079345 0.073518 0.070596

4 0.13683 0.126815 0.126815 0.126815 0.126815

5 0.136007 0.123383 0.101126 0.095139 0.086466 0.062529

6 0.189123 0.15903 0.136501

9 0.162653 0.139683

10 0.18857 0.161705 0.137424 0.123278 0.107838 0.092693

11 0.123683 0.126815 0.130513 0.125154 0.132481

12 0.213821 0.212703 0.20419 0.186142

4 High-Performance Computing Strategy Using Distributed-Memory Supercomputers 53

Table 4.17 Percentage HiCOPS’s time spent in load imbalance overhead for the 12 experiments
(expi) for for the 12 experiments (expi) increasing number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 72

1 2.247232 5.478383 5.468814 9.327324

2 0.203377 0.476728 0.751866 1.537653

3 0.011691 0.022445 0.041688 0.068697 0.312204 0.706813

4 0.007338 0.013869 0.808574 2.492005 2.61933

5 0.143813 0.302233 0.039956 0.431971 0.233134 5.375071

6 0.007387 0.015479 0.024756

7 0.005527 0.076835

8 1.594526 1.02223

9 0.004774 0.00895

10 0.003223 0.008067 0.016665 0.029342 0.051187 0.072798

11 0.964836 3.017238 3.386828 11.24338 12.52164

12 0.092163 0.24878 0.5253 0.743586

Table 4.18 Percentage HiCOPS’s time spent in inter-process communication overhead for the 12
experiments (expi) for increasing number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 72

1 5.232105 3.926955 7.904505 6.856858

2 3.79414 2.314373 3.384774 4.295352

3 0.08221 0.478144 0.930593 1.765939 2.93689 4.200068

4 0.136043 0.332012 0.88928 4.020877 2.097651

5 0.016538 0.063838 0.198492 0.411026 0.900368 1.031999

6 0.431297 0.743349 1.297135

7 0.495525 1.015206

8 0.834609 0.643964

9 0.309112 1.056103

10 0.058962 0.283043 0.505798 2.516395 1.953969 3.919733

11 0.469823 0.927757 2.55235 1.740178 1.567835

12 0.4885 1.746925 2.267319 5.660874

54 F. Saeed and M. Haseeb

Table 4.19 Percentage HiCOPS’s time spent as pipeline halt overhead for the 12 experiments
(expi) for increasing number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 72

1 2.247232 5.478383 5.468814 9.327324

2 0.203377 0.476728 0.751866 1.537653

3 0.011691 0.022445 0.041688 0.068697 0.312204 0.706813

4 0.007338 0.013869 0.808574 2.492005 2.61933

5 0.143813 0.302233 0.039956 0.431971 0.233134 5.375071

6 0.007387 0.015479 0.024756

7 0.005527 0.076835

8 1.594526 1.02223

9 0.004774 0.00895

10 0.003223 0.008067 0.016665 0.029342 0.051187 0.072798

11 0.964836 3.017238 3.386828 11.24338 12.52164

12 0.092163 0.24878 0.5253 0.743586

Table 4.20 Percentage HiCOPS’s time spent in I/O overhead for the 12 experiments (expi) for
increasing number of parallel nodes (n)

Exp. No. n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 72

1 2.535598 3.336975 4.120759 4.190594

2 1.251304 2.853384 7.482856 13.60012

3 0.831183 1.611824 4.65796 4.973139 10.05522 10.22056

4 2.559578 3.584081 7.430818 12.48344 18.53344

5 0.518943 1.498282 3.304334 5.407848 7.547681 14.42935

6 0.339751 1.347544 1.12055

7 0.39289 1.641276

8 6.90806 7.375666

9 0.427518 1.045725

10 0.711574 0.586334 1.414206 5.262876 4.497312 6.250695

11 5.24391 8.263088 7.360256 10.34876 15.43937

12 0.581338 1.388488 1.955603 3.611701

4 High-Performance Computing Strategy Using Distributed-Memory Supercomputers 55

References

1. Haseeb M, Saeed F (2021) High performance computing framework for tera-scale database
search of mass spectrometry data. Nat Comput Sci 1(8):550–561

2. Nesvizhskii AI, Roos FF, Grossmann J, Vogelzang M, Eddes JS, Gruissem W, Baginsky S,
Aebersold R (2006) Dynamic spectrum quality assessment and iterative computational analysis
of shotgun proteomic data toward more efficient identification of post-translational modifica-
tions, sequence polymorphisms, and novel peptides. Mol Cell Proteomics 5(4):652–670

3. Nesvizhskii AI (2010) A survey of computational methods and error rate estimation procedures
for peptide and protein identification in shotgun proteomics. J Proteomics 73(11):2092–2123

4. Chi H, Liu C, Yang H, ZengWF,Wu L, ZhouWJ, Niu XN, Ding YH, Zhang Y,Wang RM, et al
(2018) Open-pfind enables precise, comprehensive and rapid peptide identification in shotgun
proteomics. bioRxiv 285395

5. BernM, Cai Y, Goldberg D (2007) Lookup peaks: a hybrid of de novo sequencing and database
search for protein identification by tandem mass spectrometry. Anal Chem 79(4):1393–1400

6. Frank A, Pevzner P (2005) Pepnovo: de novo peptide sequencing via probabilistic network
modeling. Anal Chem 77(4):964–973

7. Chi H, Sun R-X, Yang B, Song C-Q,Wang L-H, Liu C, FuY, Yuan Z-F,WangH-P, He S-M et al
(2010) pNovo: de novo peptide sequencing and identification using HCD spectra. J Proteome
Res 9(5):2713–2724

8. Taylor JA, Johnson RS (2001) Implementation and uses of automated de novo peptide sequenc-
ing by tandem mass spectrometry. Anal Chem 73(11):2594–2604

9. Zhang J, Xin L, Shan B, ChenW, Xie M, Yuen D, ZhangW, Zhang Z, Lajoie GA, Ma B (2012)
PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide
identification. Mol Cell Proteomics 11(4):M111-010587

10. Devabhaktuni A, Lin S, Zhang L, Swaminathan K, Gonzalez CG, Olsson N, Pearlman SM,
Rawson K, Elias JE (2019) Taggraph reveals vast protein modification landscapes from large
tandem mass spectrometry datasets. Nat Biotechnol 37(4):1

11. Kong AT, Leprevost FV, AvtonomovDM,Mellacheruvu D, Nesvizhskii AI (2017)MSFragger:
ultrafast and comprehensive peptide identification inmass spectrometry-based proteomics. Nat
Methods 14(5):513

12. McIlwain S, Tamura K, Kertesz-Farkas A, Grant CE, Diament B, Frewen B, Howbert JJ,
Hoopmann MR, Kall L, Eng JK et al (2014) Crux: rapid open source protein tandem mass
spectrometry analysis. J Proteome Res 13(10):4488–4491

13. Yuan ZF, Liu C, Wang HP, Sun RX, Fu Y, Zhang JF, Wang LH, Chi H, Li Y, Xiu LY, et al
(2012) pParse: A method for accurate determination of monoisotopic peaks in high-resolution
mass spectra. Proteomics 12(2):226–235

14. Deng Y, Ren Z, Pan Q, Qi D, Wen B, Ren Y, Yang H, Wu L, Chen F, Liu S (2019) pClean: an
algorithm topreprocess high-resolution tandemmass spectra for database searching. J Proteome
Res 18(9):3235–3244

15. Degroeve S, Martens L (2013) MS2PIP: a tool for MS/MS peak intensity prediction. Bioinfor-
matics 29(24):3199–3203

16. Zhou X-X, ZengW-F, Chi H, Luo C, Liu C, Zhan J, He S-M, Zhang Z (2017) pDeep: predicting
MS/MS spectra of peptides with deep learning. Anal Chem 89(23):12690–12697

17. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral
data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom
5(11):976–989

18. Craig R, Beavis RC (2003) Amethod for reducing the time required tomatch protein sequences
with tandem mass spectra. Rapid Commun Mass Spectrom 17(20):2310–2316

19. Diament BJ, Noble WS (2011) Faster SEQUEST searching for peptide identification from
tandem mass spectra. J Proteome Res 10(9):3871–3879

20. Eng JK, Fischer B, Grossmann J, MacCoss MJ (2008) A fast SEQUEST cross correlation
algorithm. J Proteome Res 7(10):4598–4602

56 F. Saeed and M. Haseeb

21. Park CY, Klammer AA, Kall L, MacCoss MJ, Noble WS (2008) Rapid and accurate peptide
identification from tandem mass spectra. J Proteome Res 7(7):3022–3027

22. Williams S,Waterman A, Patterson D (2009) Roofline: an insightful visual performance model
for multicore architectures. Commun ACM 52(4):65–76

23. Chi H, He K, Yang B, Chen Z, Sun R-X, Fan S-B, Zhang K, Liu C, Yuan Z-F, Wang Q-
H et al (2015) pFind-Alioth: a novel unrestricted database search algorithm to improve the
interpretation of high-resolution MS/MS data. J Proteomics 125:89–97

24. Marx V (2013) Biology: the big challenges of big data
25. Duncan DT, Craig R, Link AJ (2005) Parallel tandem: a program for parallel processing of

tandem mass spectra using PVM or MPI and x! tandem. J Proteome Res 4(5):1842–1847
26. Bjornson RD, Carriero NJ, Colangelo C, Shifman M, Cheung K-H, Miller PL, Williams K

(2007) X!! tandem, an improved method for running x! tandem in parallel on collections of
commodity computers. J Proteome Res 7(1):293–299

27. Pratt B, Howbert JJ, Tasman NI, Nilsson EJ (2011) MR-tandem: parallel x! tandem using
hadoop MapReduce on amazon web services. Bioinformatics 28(1):136–137

28. Li C, Li K, Chen T, Zhu Y, He Q (2019) SW-Tandem: a highly efficient tool for large-scale
peptide sequencing with parallel spectrum dot product on Sunway TaihuLight. Bioinformatics
(Oxford, England) 35(19):3861–3863

29. Li C, Li K, Li K, Lin F (2019)MCtandem: an efficient tool for large-scale peptide identification
on many integrated core (MIC) architecture. BMC Bioinformatics 20(1):397

30. Prakash A, Ahmad S,Majumder S, Jenkins C, Orsburn B (2019) Bolt: a new age peptide search
engine for comprehensive MS/MS sequencing through vast protein databases in minutes. J Am
Soc Mass Spectrom 30(11):2408–2418

31. Chen L, Zhang B, Schnaubelt M, Shah P, Aiyetan P, Chan D, Zhang H, Zhang Z (2018)
MS-PyCloud: an open-source, cloud computing-based pipeline for LC-MS/MS data analysis.
bioRxiv 320887

32. Kim S, Pevzner PA (2014) MS-GF+ makes progress towards a universal database search tool
for proteomics. Nat Commun 5(1):5277

33. Kulkarni G, Kalyanaraman A, Cannon WR, Baxter D (2009) A scalable parallel approach for
peptide identification from large-scale mass spectrometry data. In: 2009 international confer-
ence on parallel processing workshops. IEEE, pp 423–430

34. Valiant LG (1990) A bridging model for parallel computation. Commun ACM 33(8):103–111
35. HaseebM, Afzali F, Saeed F (2019) LBE: a computational load balancing algorithm for speed-

ing up parallel peptide search in mass-spectrometry based proteomics. In: IEEE international
parallel and distributed processing symposiumworkshops (IPDPSW). IEEE 2019, pp 191–198

36. Madsen JR, Awan MG, Brunie H, Deslippe J, Gayatri R, Oliker L, Wang Y, Yang C, Williams
S (2020) Timemory: modular performance analysis for HPC. In: International conference on
high performance computing. Springer, pp 434–452

37. Stevens R, Ramprakash J, Messina P, Papka M, Riley K (2019) Aurora: argonne’s next-
generation exascale supercomputer. Technical report, ANL (Argonne National Laboratory
(ANL), Argonne, IL (United States))

38. Liu K, Li S, Wang L, Ye Y, Tang H (2020) Full-spectrum prediction of peptides tandem mass
spectra using deep neural network. Anal Chem 92(6):4275–4283

39. Lin Y-M, Chen C-T, Chang J-M (2019) MS2CNN: predicting MS/MS spectrum based on
protein sequence using deep convolutional neural networks. BMC Genomics 20(9):1–10

Chapter 5
Fast Spectral Pre-processing for Big MS
Data

Fahad Saeed and Muhammad Haseeb

In this chapter, we discuss and introduce a data pre-processing algorithm for dimen-
sionality reduction of big MS data. We will start by discussing a few spectral pre-
processing methods followed by the introduction MS-REDUCE which is a highly
efficient method for processing MS data

5.1 A Review of Spectral Pre-processing Methods

One of the most essential and fundamental processes that is used for MS-based
omics data needs processing of the data so that it can be fed to the available tools.
Pro-processing of spectral data is essential for MS-based omics data in recent years.
This pre-processing of MS data has an objective, i.e. to allow readability of MS data
using tools that are available to process it, e.g. Tide, MSFragger.

Pre-processing for MS data can include a plethora of method and some of them
are listed below:

• Spectral Clustering [2];
• Noise Reduction in Spectra [3];
• Quality assessment of spectra [4];
• Precursor charge determination [5].
• b-y Ion Separation [6].

The objective of these methods is to reduce the noise variance in the spectra,
whichmay lead to better peptide identification (with better confidence in the deduced
peptides), and perhaps reduce the amount it takes for the tools to complete the
processing. Since spectral noise reduction is the most readily used technique for

Some parts of this chapter may have appeared in [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9_5

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-01960-9protect LY1	extunderscore 5
https://doi.org/10.1007/978-3-031-01960-9_5

58 F. Saeed and M. Haseeb

processing of MS data, we introduce a few algorithms that have been proposed to
date.

5.1.1 Spectral Denoising Algorithms

There are multiple spectral denoising algorithms that have been proposed till date
with various objectives. Most of the algorithms try to deduce which peak is noise
and correspondingly remove it or increase the intensity of the peak measured as a
function of the spectra under consideration.

5.1.1.1 MS-Cleaner Algorithm

MSCleaner [7] removes the unwanted peaks from the spectra to reduce noise and
data that needs to be processed by the search engines. Four different algorithms were
proposed which included numerical analysis and signal processing techniques which
allowed the method to look for charged ions, isotopic clusters, background noise,
and, more importantly, detection of spectra that are not interpretable. Although the
methods are reported to work well for a variety of spectra, these methods are deemed
too compute-intensive for processing of big MS data. In this study, the authors have
reported the optimized version of their implementation to process spectra in 0.25 s for
a data set that is 53944.Of course, the current rate atwhichMSdata can be produced is
much more than a few thousands making processing using these traditional methods
less than ideal. However, with increased computational load the authors were able
to show a reduction of 15%–39% in raw data. MS Cleaner software, a version 2.0 in
2010 [8] was also introduced by the same subset of authors. This improved version
detects the peptide ladder sequence using a fixed number of most intense peaks from
each spectrum and results in a faster reduction in data by up to 80% as reported by
the authors. The improved speed of the methods also results in about 0.02s–0.08 s
per spectrum depending on the kind of spectra being processed.
Ding’s Denoising Algorithm:
Another denoising algorithm [3] consists of two steps: (1) peak intensity is adjusted
using five different features. In the later stage, amorphological reconstruction filter is
employed to remove the noisy peaks based on their adjusted intensity in the previous
stage. The method is reported to reduce the data by up to 60% but our experiments
have demonstrated that the processes are extremely compute-intensive with results of
1 million spectra taking more than 3 days to complete processing. Two other similar
methods are also published [9, 10] but suffer from the same problem of compute-
intensive workflows—For example, [10] takes approximately 1.7 s per spectrum and
would take an exceedingly long time to process millions of spectra.

5 Fast Spectral Pre-processing for Big MS Data 59

5.1.2 Spectral Quality Assessment Algorithms

As a pre-processing step, there are multiple studies that have shown that assessment
of quality of the spectra can also contribute to better and more accurate peptide
deduction. For example, the authors in this study [11] estimate the quality of the
spectra by treating the problem as a constraint optimization problem and show that
up to 74% of the low-quality spectra could be removed using this technique. They
also show that almost 10% of the spectra is also eliminated as a result of this method.
In order to remove this limitation, authors in [12] have introduced a novel feature
that is based on cumulative intensity normalization and shows that 60% of the low-
quality spectra can be removed while losing 2% of the high-quality spectra. Other
methods include [4, 13–15] which use various technique to eliminate the low-quality
spectra. However, most of these proposed techniques are very compute-intensive
which makes them infeasible for big data MS-based omics.

5.1.3 Separation of b-y Ions

As discussed in this chapter, the elimination of low-quality spectra can help in pre-
processing phase of MS data analysis. However, as expected if we are eliminating
low-quality spectra; all the useful information that might be in the spectra is also
eliminated. Therefore, there are multiple methods that try to eliminate the peaks
that might be of low quality instead of eliminating the whole spectra. Since the
existing algorithm implicitly assumes that all the b- and y-ions are present, using such
pre-processing technique necessitates that post-processing algorithms be redesigned
so that the method can incorporate using only b- and y-ions without the explicit
assumptions that all peaks are available.

We are aware of only two algorithms that operate by removing incorrect or noisy
b- or y-ions from MS2 spectrum. One such method [6] uses a graph-theoretic model,
constructs a de novo spectra graph [16] and uses edge-weights for other features of the
spectra to partition the graph into multiple smaller subgraphs. These subgraphs are
then labeled as sets of b- and y-ions based on a final graph after the partitioningwhich
can be used for further processing. This method is shown to give impressive results
on only simulated data sets, and very high-resolution high-quality spectra. However,
the experiments for experimental data are highly limited and have been performed
over a very small number of high-quality experimental spectra. Another tool known
as MS-REDUCE is also shown to give impressive results on simulated, and real data
sets on awide variety of parameters and is shown to be low-computational complexity
which makes it ideal for processing big MS data. MS-REDUCE methods and their
parallelization is discussed in the next few chapters.

60 F. Saeed and M. Haseeb

5.2 MS-REDUCE: An Ultra-Fast Data Reduction
Algorithm for Big MS Data

We introduce highly efficient data processing algorithm for dimensionality reduction
of bigMSdata calledMS-REDUCE [1, 17]which allows a reduction in the number of
peaks, and in turn theoverall data that needs to beprocessedby subsequentworkflows.
The proposed MS-REDUCE method is a low-computational solution that operates
by selecting and sampling peaks based on pre-defined quantized levels. Note that
all the peaks that are selected to be useful peaks are determined before any peptide
deduction calculations.1 To make the process of low-computational intensity, all the
calculations are performed on only a handful (of sampled) of peaks irrespective
of the size of the spectra under consideration. Due to this reason, MS-REDUCE
can operate in linear time with respect to the size of the spectra. Here, we formally
introduce the problem. Notations will be introduced and defined wherever they occur
first throughout the manuscript.

Definition 5.1 Let there be N number of spectra S = {s1, s2, . . . , sN }. If length of
spectrum si is li , then each spectrum can be represented as a series of peaks, i.e.
si = {p1, p2, p3, . . . , pl}, where p is a peak in a spectrum.

Definition 5.2 If s ′
i denotes a spectrum after being processed by MS-REDUCE and

the size of the processed spectrum be l ′i , then R is the reduction factor such that
R = (l ′i/ li) ∗ 100 for each spectrum.

Each spectrum s in S has to reduced to s′ so that both s and s′ belong to the same
peptide with some degree of confidence. There are of course cases where s and s′
belong to different peptides. In that case, if the peptide match for s′ has a confidence
value better than the threshold value to qualify for a high-confidence hit, then that
counts as a correct hit. One example of such an instance is assumed that there is a
spectrum s that was incorrectly mapped to peptide A. However, after MS-REDUCE
processing and the resulting suppression in noise levels, the spectrum s′ may corre-
spond correctly to another peptide B or vice versa. Correctness is determined by the
quality assessment that we will discuss in this chapter.

The proposed solution MS-REDUCE exploits the data that is obtained from the
MS instruments, i.e. 90% of peaks in given spectra are noise or that they may not
be useful when deducing peptides [8]. MS-REDUCE also exploits the variation in
the MS data and runs using a three-stage pipeline as shown in Fig. 5.1: (1) Spectral
Classification; (2) Peak Quantization; (3) Weighted Random Sampling.

The spectral classificationmodule is the first stage and its objective is to determine
the spectrumnoise levels of a given spectrum.Our earlier paper [1, 17] has introduced
a novel metric, called Spectral Intensity Spread (SIS), that roughly estimates the
diversity (or deviation) of the peaks in a given data set. This part of the method
operates on the assumption that the larger the value of SIS, the more noisy a given
spectrum is, and hence more noise needs to be eliminated [18].

1 Knowing which peaks are useful after the peptide deduction is a trivial operation.

5 Fast Spectral Pre-processing for Big MS Data 61

Input
Spectrum Spectral Classification Labelled

Spectrum

Spectral Quantization

Quantized
SpectrumWeighted Random SamplingReduced

Spectrum

Reduction
Factor

Fig. 5.1 Figure showing the pipeline for MS-REDUCE algorithm

After the first phase of putting the spectra in the correct SIS class, the next module
is called spectral quantization module where the spectra are quantized using differ-
ent levels of intensity. The number of quantization levels depends on the class of
spectra that was assigned in the previous stage. If the spectra are more noisy, more
quantization levels are assigned to the spectra. Since the module distributes the peaks
into different groups based on the intensity levels of the spectra, therefore, it is much
simpler and faster to access the peaks based on their intensity levels.

The last module takes the quantized spectra where the signal peaks are randomly
selected on the quanta. The number of peaks that are retained is dependent on the user-
defined reduction factor R. Weighted sampling rates are calculated for each quantum
so that summation of the peaks collected at each level is equal to the percentage of the
peaks that are required. Sampling rate is the percentage of the peak that is retained
in each quantization level. Below we describe each of the modules in detail.

The number of peaks to be retained is calculated based on the user-defined reduc-
tion factor R.

5.2.1 Spectral Classification

Most of the previous pre-processing algorithms that deal with noise reduction of
MS data, considered all spectra in the same class, i.e. MS spectra that have a better
quality were treated in the same way as spectra that had a poor signal-to-noise
ratio. This assumption results in compute-intensive tasks for spectra which may
not need much processing (due to being better quality spectra). In this module,
MS-REDUCE classifies MS data based on the quality and S/N ratio of the spectra
under consideration. The classification takes place by classifying the spectra using
an approximation of the noise content in them.

62 F. Saeed and M. Haseeb

5.2.1.1 Intensity Spread

The classification of the spectra takes place by comparing the spectrum’s intensity
spread with the average intensity spread of the whole data set under consideration.
With this formulation, nomatter what the quality of theMS data is in a given data set,
the methodology always classifies the spectra between spectra that are comparatively
better in quality than other spectra under consideration.

More formally:

Definition 5.3 LetN be the total number of spectra in set S then S = {s1, s2, s3, . . . ,
sn}, where si represents one spectrum. Then the intensity spread for spectrum si can
be calculated as

Vi = Max10Avg(si) − Min10Avg(si) (5.1)

where Vi is the intensity spread of the spectrum i, and Max10Avg(si) and
Min10Avg(si) present the average of ten most and least intense peaks of the spec-
trum, respectively. Similarly, average intensity spread for a data set can be calculated
as

Vavg =
∑N

i=1(Max10Avg(si) − Min10Avg(si)

N
(5.2)

where: Vavg = Average Intensity Spread N = number of spectra in set S

As expected, this classification is a very low-complexity procedure and as dic-
tated by Eq. (5.2), the calculation requires processing of only 20 peaks per spectra
regardless of its size.

5.2.1.2 Classification

All spectra are classified into four different classes and the grouping takes place by
calculating how much below or above the value of V is with respect to the Vavg. Any
classes that are named are in increasing numerical order and higher classes contain
spectra with larger value V and vice versa. The threshold values V are also assigned
based on the data sets Vavg that would allow mapping to a particular class.

More formally, the threshold values for each class can be defined as follows:

Definition 5.4 Let x denote a class then for x = {1, 2, 3}

Sx =
{

si |(x − 1) ∗ 1

4
∗ Vavg ≤ Vi ≤ x ∗ 1

4
∗ Vavg

}

(5.3)

and for x = {4}:

Sx =
{

si |3
4

∗ Vavg ≤ Vi

}

(5.4)

where: Sx = Class x containing spectra assigned to it.

5 Fast Spectral Pre-processing for Big MS Data 63

In
te

ns
ity

m/z

In
te

ns
ity

m/z

In
te

ns
ity

m/z

In
te

ns
ity

m/z

Class 1

In
te

ns
ity

m/z

Class 3

In
te

ns
ity

m/z

Class 4

In
te

ns
ity

m/z

1
2 3 4

1 2 4
3

In
te

ns
ity

m/z

Compare each spectrum’s V with Vavg and assign to a class.

Class 2

Fig. 5.2 Figure depicts a visual representation of classification stage. The shaded regions present the
Spectral Spread (V); larger the shaded area, the larger the value of V and noisier the corresponding
spectrum is considered

Figure 5.2 shows an example of two spectra (1 and 2) which have a varied range
of intensities. However, their spectra spread is almost the same and, therefore, they
have been assigned to the same class.

5.2.2 Spectral Quantization

The quantization of the spectra takes place along the intensity axis. The intensity of
the peaks are compared with the upper and lower quanta of the spectra that have been
defined, and if these comparisons are within a certain limit, they are assigned to that
quantum. This process allows us to have separate bins which contain peaks within a
specific range of intensities. The useful peaks are then picked from their quanta and
added to the final reduced spectra as explained in the next step. This also allows the
method to make decisions without heavy computations.

5.2.2.1 Quantization Levels

The number of quantization levels is chosen so the spectra that have wide intensity
spread are quantized in a large number of levels, and narrower spread is divided into
smaller number of levels. An example of quantization of class I spectrum is illustrated
in Fig. 5.3. Our preliminary experiments have suggested that a spectrum with a
smaller intensity spread does not improve the quality of the spectra but contributes
to increasing the processing time. Smallest number of quantization levels are used
to reduce time- and space requirements. Our proposed method assigns 1, 2, 3, and 4

64 F. Saeed and M. Haseeb

classes are 5, 7, 9, and 11 levels of quantization, and these numbers are obtained by
extensive empirical observations and experiments.

The quantization process can be formally defined as

Definition 5.5 Let nx be the maximum number of quantization levels for class x,
then we can have n1 = 5, n2 = 7, n3 = 9, and n4 = 11. qi j represents the quantum
j of spectrum i. Then following equations are calculated for each spectrum si , for
each quantum j from 1 till nx for j < nx

qi j = {p| (j − 1)

nx
∗ M10A(si) ≤ ‖p‖ ≤ j

nx
∗ M10A(si)} (5.5)

for j = nx

qi j = {p| (j − 1)

nx
∗ M10A(si) ≤ ‖p‖} (5.6)

where: j = quantization level under consideration qij = jth quantization level of ith
spectrum nx = number of quantization levels for class x ‖p‖ = intensity of peak p
M10A(si) = Average Intensity of 10 most intense peaks of si

Equations (5.5) and (5.6) are computed for each value of nx ranging from 1 till
nx .

The quantum number that is assigned to each peak represents certain character-
istics, e.g. any of the peaks in quantum 1 are the lowest peaks and contain the least
intense peaks that are available in that data set. Similarly, quantum 11 is the highest
quanta level for class 4 spectra and would contain peaks with the highest intensity.
By design, we have made sure that the quanta are equally spaced because 90% of
data is redundant, so the probability that any outlier (if any) will affect the quality of
the hits is extremely small and any irregular quantization is likely not needed.

5.2.3 Weighted Random Sampling

Probability of finding a peak that is useful is greater in higher quanta [19]. The
underlying assumption of this module is that each peak within one quantization level
has equal probability of being useful for peptide deduction. Therefore, in order to
determine which peaks must be sampled from each quantum, sampling weights are
computed which are explained below (Fig. 5.4).

5.2.3.1 Weights Calculation

The number of peaks that are retained have to be calculated given by a reduction
factor by the user. The recursive method estimating the sampling weights for each
of the defined quantum has to satisfy the equation below:

5 Fast Spectral Pre-processing for Big MS Data 65

5th Quantization Level

4th Quantization Level

3rd Quantization Level

2nd Quantization Level

1st Quantization Level

In
te

ns
ity

m/z

Fig. 5.3 Figure represents quantization of a class I spectrum with five different quantization levels.
The red-colored peaks are the most intense and belong to the fifth quantum, while the light blue-
colored are the least intense and have been binned into the lowest quantum

nx∑

i=1

(
xi
100

∗ qi) = p
′

(5.7)

where: xi = sampling rate for quantization level iqi = ith quantization level ‖qi‖ =
number of peaks at ith quantization level p

′ = number of peaks required to satisfy
the reduction factor

Peaks are then selected from the highest quantization levels and then continued
downwards till the required number of peaks are reached. If there are more peaks
than that are required at a given quantization level. random sampling of the peaks is
done to select the required number of peaks.

Formally, this can be presented by Eqs. (5.8) through (5.10): case 1: ‖qnx‖ = p
′

xi =
{
100, if i = nx .

0, otherwise
(5.8)

case 2: ‖qnx‖ > p
′

xi =
{ ‖qi‖−(‖qi‖−p

′

‖qi‖), if i = nx .

0, otherwise
(5.9)

case 3: Default

66 F. Saeed and M. Haseeb

Fig. 5.4 Figure presents a
visual representation of the
random sampling module. In
this figure, the topmost
quantum is assigned a weight
of 100%, while the fourth
quantum is assigned a weight
of 50%. Peaks from all other
quanta are discarded owing
to their zero sampling rate

In
te

ns
ity

m/z

100%

50%

0%

0%

0%

Random
Sam

pling

xi =
{
100, if p

′ − ‖q j‖ > ‖q j+1‖.
p

′ −∑nx
j=i+1 ‖q j‖
‖qi‖ , otherwise

(5.10)

Figure 5.4 shows an example of weighted random sampling executed on class I
spectra. The figure on the right shows the reduced spectra and the two peaks that are
chosen from the fourth quanta only one of them appears in the final spectrum which
has been randomly chosen.

5.3 Performance Evaluation of MS-REDUCE

Performance evaluation of MS-REDUCE is done in the following two phases: (1)
execution time and speedups are observed and compared against the existing algo-
rithms; (2) Quality assessment of data produced as a result of MS-REDUCE is done,
i.e. the quality of the matches after the reduction in the data is done. All of the exper-
iments were performed using experimentally obtained data sets. Reduction in the

5 Fast Spectral Pre-processing for Big MS Data 67

data and the accuracy of the peptide deduction are compared with the existing tools
[17].

5.3.1 Time Complexity

Time complexity of MS-REDUCE can be computed by observing the big-O com-
plexity of each of the modules and then summing them. We show below that this
makes MS-REDUCE having a linear time complexity with respect to the number of
spectra.

Time complexity calculations are as follows:

• First module is Intensity Spread which involves two processes. First is the sorting
of spectra and second step is calculating the average intensity of max and min
peaks.The first step is a O(li log(li)) process where li is the length of spectrum i.
The second step is a constant time process and has a time complexity of O(1).
This is done for each spectrum which makes the total time complexity equal to N,
i.e. O(N) assuming that the total number of spectra to be N, where N >> li .

• Second step classifies spectra into classes depending on the noise level associated
with their level. This requires a comparison of Average Intensity Spread for each
spectra. The comparison step is a constant time process. Repeating this for N
spectra results in linear time complexity of O(N), where N is the number of
spectra.

• Quantization module requires comparison of each peak that has pre-calculated
values repeated 4 times and is a constant time process. This results in time com-
plexity of O(4 ∗ l). Module works on each spectra giving a time complexity of
O(4 ∗ l ∗ N) asN is much larger than other values so it can be presented as O(N).

• The last module performs a random sampling of peaks based upon user-defined
sampling rateR.Number of peaks to be sampled is givenby s ∗ l. ForN spectra time
complexity is equal to O(s ∗ l ∗ N). This also results in O(N) time complexity.

Result can be summed up to O(4 ∗ N ∗ L) which is approximately equivalent to
O(N) since N is much larger than L .

5.3.2 Experimental Verification of the Complexity Analysis

After the theoretical computational complexity, experimental assessment and verifi-
cation are needed. In order to accomplish this, we used data sets of various qualities,
experiments, and numbers. For all the experiments, we replicated the UPS2 data
sets as many times as was needed to get the desired sizes. Ten different data sets,
each having 100,000 spectra were produced and all the experiments were performed
using Linux-based server with 24 cores, each operating at 1200MHz. For our single-
threaded implementation ofMS-REDUCE, the result shown in Fig. 5.5 depicts linear

68 F. Saeed and M. Haseeb

Fig. 5.5 Figure showing a
graph between processing
time of MS-REDUCE and
the number of spectra
processed at reduction
factors of 10, 30, 60, and 90.
The horizontal axis
represents the number of
spectra, while the vertical
axis represents time in
milliseconds

217 218 219 220
0

0.5

1

1.5

2

2.5

·106

Number of Spectra

T
im

e
(m

ill
is
ec
on

ds
)

MS-REDUCE Timing Plot

RF-10
RF-30
RF-60
RF-90

time complexity with respect to the number of spectra which concurs with our the-
oretical computational complexity analysis. All experiments were performed with
user-defined reduction factors 10, 30, 60, and 90, and in order to compensate for sys-
tem irregularities each experiment was performed 10 times, and average execution
time was reported. Reduction factor as defined previously is the amount of data that
is retained by the algorithm, and our execution results are shown in Fig. 5.5 clearly
show that the change in the reduction factor does not affect the run time significantly,
and retains almost linear-trend for various levels of reduction-factors.

5.3.3 Speed Comparison

The proposed MS-REDUCE was also compared with other leading start-of-the-art
denoising methods [3]. To accomplish a fair comparison, two metrics were defined:
(1) Conventional speedup (i.e. how fast or slow is one method from the other); (2)
Spectra per second (SPS) that is analyzed using the said method. Below we define
both metrics in a more formal way:

S = Tother/Treduce (5.11)

Here, S is the speed up obtained, Tother is the processing time of competingmethod,
and Treduce is the time taken by MS-REDUCE.

SPS = Spectra/Time (5.12)

5 Fast Spectral Pre-processing for Big MS Data 69

Table 5.1 Speedup achieved by MS-REDUCE over the denoising algorithm

Spectra Tdenoise(msec) Tms−reduce(msec) Speed up

9.61 × 104 2.35 × 107 2.25 × 105 103

1.92 × 105 4.41 × 107 4.50 × 105 96

2.89 × 105 6.49 × 107 6.78 × 105 94

3.85 × 105 8.60 × 107 9.03 × 105 94

4.81 × 105 1.09 × 108 1.12 × 106 95

5.78 × 105 1.31 × 108 1.75 × 106 83

6.74 × 105 1.55 × 108 2.0 × 106 86

7.71 × 105 1.76 × 108 2.05 × 106 94

8.67 × 105 1.97 × 108 2.29 × 106 94

9.63 × 105 2.20 × 108 2.47 × 106 98

1.06 × 106 2.43 × 108 2.81 × 106 99

Equation (5.11) mathematically shows the calculation for conventional speedup
and Eq. (5.12) gives the equation for presents spectra per second metric. As can be
seen that bigger number for eachmetric is better forMS-REDUCE, [3] is represented
as Denoising Algorithm.

5.3.4 Comparing MS-REDUCE with Other Denoising
Methods

Execution of both algorithms was done using similar computational environments
to ensure a fair comparison. Table 5.1 shows the results from timing experiments
for both MS-REDUCE, and Denoising method [3]. Columns 2, and 3 are shown the
execution time inmilliseconds. As can be seenDe-Noising algorithm takesmore than
3 days whileMS-REDUCE takes 47min to process 1million spectra. This givesMS-
REDUCE almost 100 times more speedup as compared to other leading methods.
This also ensures that such denoising algorithms can be used for pre-processing of
MS data, something that has not been done due to excessively long processing times
for these denoising methods.

5.3.5 Quality Assessment

We now discuss the quality of the spectra that is obtained when processed using MS-
REDUCE and other leading methods. Figure 5.6 show the workflow that is used to
fairly assess the quality of the spectra that is obtained fromdenoising algorithms. First
the raw spectra are fed into the denoising algorithm (MS-REDUCE, and others), and

70 F. Saeed and M. Haseeb

TIDE

Raw MS
Spectra

TIDE

Percolator

Percolator

FDR Filtering

FDR Filtering

Quality Check
Percentage Match

Test Algorithm

Test Data

Reference
Data

Decoy
Matches

Peptide
Spectral
Matches

Decoy
Matches

Peptide
Spectral
Matches

Fig. 5.6 Figure shows the flow of quality assessment experiments. The Test Algorithm shown in
the top right corner is replaced by the algorithm under observation i.e. MS-REDUCE or Denoising
Algorithm

the spectra that is emitted from these algorithms are sent to Tide [20] search engine of
Crux toolkit [21]. Tide provides peptide spectral matches, and decoy matches using
a combination of real+decoy databases. Thereafter, percolator [22] does some pre-
processing to compute the statistical confidence value for the PSMs and calculated the
false discovery rate (FDR), and assigns it to each PSM.We calculated the number of
PSMs for same FDR threshold obtained by using the data sets which had been treated
by the test algorithm. Using this information it is easy to calculate the percentage of
high-quality PSMs obtained by processed spectra (by denoising algorithm), and the
PSM obtained when only the raw spectra is used. All experiments that are reported
were repeated for FDRvalues of 1%, 3%, 5%, 7%, and9%.However, for the depiction
of results and making it easier for visualization, we will be using FDR of 5% as a
nominal value used for reporting results.

5.3.6 Comparison with Random Sampling of Peaks

We performed the computational quality assessment experiments with all thirteen
UPS2 data sets. For ease of visualization only FDR value of 5% is used for results
shown in Figs. 5.7, 5.8, 5.9, 5.10 and 5.11 which depict the experiments performed
using MS-REDUCE and random peak sampling [17]. For these 3 HCD and 3 CID
experiments for UPS2 data sets are reported.

The results graphs have been plotted by varying the reduction factor (from 10%
to 90%) of MS-REDUCE, as well as the sampling rate of random peaks selection
methods. The 100%would represent that no peaks have been eliminated from the raw
spectra and is thus untreated. In general, it is clear that MS-REDUCE gives superior
performance by exhibiting percentage matches of around 90% with data reduction
rate of only 20% i.e. theMS-REDUCEwill give highly accurate results evenwhen the
number of peaks that are available to process the data as compared to the raw data is
only of 20% value. This is a significant result since these results show that 80% of the
peaks that are present in the raw data is useless for any peptide deduction (and hence

5 Fast Spectral Pre-processing for Big MS Data 71

Fig. 5.7 Quality assessment
plots for CID-DS1,
CID-DS2, and CID-DS3
data sets

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Reduction Factor

%
M
at
ch

MS-REDUCE
Random Sampled

CID-DS1
CID-DS2
CID-DS3

Fig. 5.8 Quality assessment
plots for CID-DS4,
CID-DS5, and CID-DS6
data sets

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Reduction Factor

P
er
ce
nt
ag

e
M
at
ch

MS-REDUCE
Random Sampled

CID-DS4
CID-DS5
CID-DS6

can be eliminated). These results are shown to be consistent across experimental
conditions, fragmentation types, etc., with overall HCD fragmentationmore accurate
as compared to CID due to better S/N ratio for HCD data sets [23].

5.3.7 Comparison with Conventional Algorithms

In the last step of the quality assessment process, we compared the quality results of
MS-REDUCE as compared to other noise-reducing algorithms. The workflow that
is followed for a fair comparison is shown in Fig. 5.6. As can be seen in Fig. 5.12
the quality assessment plots were compared for De-Noising Algorithm, MSCleaner

72 F. Saeed and M. Haseeb

Fig. 5.9 Quality assessment
plots for HCD-DS1,
HCD-DS2, and HCD-DS3
data sets

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Reduction Factor

P
er
ce
nt
ag

e
M
at
ch

MS-REDUCE
Random Sampled

HCD-DS1
HCD-DS2
HCD-DS3

Fig. 5.10 Quality
assessment plots for
HCD-DS4, HCD-DS5, and
HCD-DS6 data sets

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Reduction Factor

P
er
ce
nt
ag

e
M
at
ch

MS-REDUCE
Random Sampled

HCD-DS4
HCD-DS5
HCD-DS6

2.0, and MS-REDUCE (30, 60, and 90 reduction factors). As these figures show,
MS-REDUCE gives a superior performance as compared to MSCleaner 2.0 for all
data sets except UPS2 for all reduction factor values. MS-REDUCE also gives com-
parable performance to Denoising Algorithm when operating at a reduction factor of
60. However, the superior scalability of MS-REDUCE and low-cost computational
complexity have a distinct advantage that is not shared with other state-of-the-art
denoising techniques.

Even with almost linear-complexity of MS-REDUCE, we would want to take
advantage of multicore, manycore, and CPU-GPU architectures that are now ubiq-
uitous. This will be the subject of our next chapters.

5 Fast Spectral Pre-processing for Big MS Data 73

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Reduction Factor

P
er
ce
nt
ag

e
M
at
ch

MS-REDUCE
Random Sampled

Fig. 5.11 Quality assessment plot for UPS2 data set

C
ID

-D
S1

C
ID

-D
S2

C
ID

-D
S3

C
ID

-D
S4

C
ID

-D
S5

C
ID

-D
S6

H
C

D
-D

S1

H
C

D
-D

S2

H
C

D
-D

S3

H
C

D
-D

S4

H
C

D
-D

S5

H
C

D
-D

S6

U
P

S2

20

40

60

80

100

P
er

ce
nt

ag
e

M
at

ch

Quality Assessment

De-Noising Algorithm
MSCleaner 2.0

MS-REDUCE-30
MS-REDUCE-60
MS-REDUCE-90

Fig. 5.12 Quality assessment plots for MS-REDUCE and other pre-processing algorithms. X-axis
shows experimental data sets

74 F. Saeed and M. Haseeb

References

1. Awan MG, Saeed F (2016) Ms-reduce: an ultrafast technique for reduction of big mass spec-
trometry data for high-throughput processing. Bioinformatics 32(10):1518–1526

2. Saeed F, Hoffert JD, Knepper MA (2013) Cams-rs: clustering algorithm for large-scale mass
spectrometry data using restricted search space and intelligent random sampling. IEEE/ACM
Trans Comput Biol Bioinform 11(1):128–141

3. Ding J, Shi J, Poirier GG, Wu F-X (2009) A novel approach to denoising ion trap tandem mass
spectra. Proteome Sci 7(1):9

4. BernM, Goldberg D,McDonaldWH, JRY IIII (2004) Automatic quality assessment of peptide
tandem mass spectra. Bioinformatics 20

5. Wu F-X, Ding J, Poirier GG (2008) An approach to assessing peptide mass spectral quality
without prior information. Int J Funct Inform Pers Med 1(2):140–155

6. Yan B, Pan C, Olman VN, Hettich RL, Xu Y (2004) A graph-theoretic approach for the
separation of b and y ions in tandem mass spectra. Bioinformatics 21(5):563–574

7. Mujezinovic N, Raidl G, Hutchins JRA, Peters J-M,Mechtler K, Eisenhaber F (2006) Cleaning
of raw peptide ms/ms spectra: improved protein identification following deconvolution of
multiply charged peaks, isotope clusters, and removal of background noise. Proteome Sci
6:5117–5131

8. Mujezinovic N, Schneider G, Wildpaner M, Mechtler K, Eisenhaber F (2010) Reducing the
haystack to find the needle: improved protein identification after fast elimination of non-
interpretable peptide ms/ms spectra and noise reduction. BMC Genomics 11

9. Zhang J, He S, Ling2 CX, Cao X, Zeng R, Gao W (2008) Peakselect: preprocessing tandem
mass spectra for better peptide identification. Rapid Commun Mass Spectrom 22

10. Gentzel M, Kocher T, Ponnusamy S, Wilm M (2003) Preprocessing of tandem mass spectro-
metric data to support automatic protein identification. Proteomics 3

11. Lin W, Wang J, Zhang WJ, Wu FX (2012) An unsupervised machine learning method for
assessing quality of tandem mass spectra. Proteome Sci 10

12. Na S, Paek E (2007) Quality assessment of tandem mass spectra based on cumulative intensity
normalization. J Proteome Res 5(12)

13. Tabb DL, MacCoss MJ, Wu CC, Anderson SD, III JRY (2003) Similarity among tandem mass
spectra from proteomic experiments: detection, significance, and utility. Anal Chem 75(10)

14. Purvine S, Kolker N, Kolker E (2004) Spectral quality assessment for high-throughput tandem
mass spectrometry proteomics. OMICS J Integr Biol 8(3)

15. Ding J, Shi J, Wu FX (2011) Svm-rfe based feature selection for tandemmass spectrum quality
assessment. Int J Data Min Bioinform 5(1)

16. Dancik V, Addona TA, Clauser KR, Vath JE, Pevzner PA (1999) De novo peptide sequencing
via tandem mass spectrometry. J Comput Biol 6(3–4):327–342

17. Awan MG, Saeed F (2015) On the sampling of big mass spectrometry data. In: Proceedings
of the 7th international conference on bioinformatics and computational biology, BICOB, pp
143–148

18. Wells G, Prest H, RussIV CW (2011)Why use signal-to-noise as a measure of ms performance
when it is often meaningless? Technical report, Agilent Technologies

19. Havilio M, Haddad Y, Smilansky Z (2003) Intensity-based statistical scorer for tandem mass
spectrometry. Anal Chem 75(3):435–444

20. Diament BJ, Noble WS (2011) Faster sequest searching for peptide iden-
tification from tandem mass spectra. J Proteome Res 10(9):3871–3879.
arXiv:http://pubs.acs.org/doi/pdf/10.1021/pr101196n

21. Park CY, Klammer AA, Kall L, MacCoss MJ, Noble WS (2008) Rapid and accu-
rate peptide identification from tandem mass spectra. J Proteome Res 7(7):3022–3027.
arXiv:http://pubs.acs.org/doi/pdf/10.1021/pr800127y

22. Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ (2007) Semi-supervised learning
for peptide identification from shotgun proteomics datasets. Nat Methods 4(11):923

http://arxiv.org/10.1021/pr101196n
http://arxiv.org/10.1021/pr101196n
http://arxiv.org/10.1021/pr800127y
http://arxiv.org/10.1021/pr800127y

5 Fast Spectral Pre-processing for Big MS Data 75

23. Saeed F, Pisitkun T, Hoffert JD, Wang G, Gucek M, Knepper MA (2012) An efficient dynamic
programming algorithm for phosphorylation site assignment of large-scale mass spectrometry
data. In: 2012 IEEE international conference on bioinformatics and biomedicine workshops
(BIBMW), vol. 11, IEEE, BioMed Central Ltd, pp 618–625

Chapter 6
A Easy to Use Generalized Template to
Support Development of GPU
Algorithms

Fahad Saeed and Muhammad Haseeb

Computational techniques have taken a newmeaning for scientific inquiry in biology
especially after the introduction of high-throughput experimental techniques. These
instruments can produce massive amounts of data that needs to be processed in a
scalable fashion to ensure that we can make sense of these data sets from various
sources [2, 3]. As expected, Mass Spectrometry (MS) based omics is essential for
precision medicine, cancer research, and drug discovery but the scale at which these
data sets needs to be processed is massive (tera- to peta-byte levels) [2–4]. We have
also shown that proteomics, andmeta-proteomics search can taken impractically long
times [5, 6].which canbecomeamajor technical hurdle in investigating these systems
biology studies. The existing serial algorithms scale very poorly with increasing size
of the data sets, and HPC methods are also shown to be much less than optimal [2,
7].

The post-Moore era of computer architectures has given us ubiquitous access to
multicore, manycore, CPU-FPGA, and CPU-GPU architectures which can be used
for acceleration of applications [8, 9]. However, up until recently there has not been
a serious effort toward developing high-performance computing algorithms for MS-
based omics. Likewise, any underlying high-performance computing building blocks
[8, 9] that are domain specific had not been built to date. However, it is clear that
high-performance computing architectures can, and must, be used for accelerating
the processing of big MS-based omics data; something that has been successful in
so many other domains [10, 11].

One exciting development in computer architecture is the development of Graph-
ics Processing Unit (GPU) which is a low-cost device but is capable of housing
thousands of small computational cores which can be used for exploitation of paral-
lelism in many scientific workflows [12, 13]. However, the limitation of GPU-based
computing is that the parallel algorithmhas to be designed specifically to exploit GPU

Some parts of this chapter may have appeared in [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9_6

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_6&domain=pdf
https://doi.org/10.1007/978-3-031-01960-9protect LY1	extunderscore 6
https://doi.org/10.1007/978-3-031-01960-9_6

78 F. Saeed and M. Haseeb

architecture for accelerating the code. Since the design of the algorithms is applica-
tion specific, many of the GPU-based algorithms do not have re-usable designs that
can be used for MS-based omics. Other limitations include the development of par-
allel code without taking into account all of the factors that can affect the speedups
and scalability (i.e. inserting parallel programming pragmas in code in the hope to
get some speedups) leading to plethora of poorly designed parallel algorithm that
can exploit the GPU for MS-based omics [8].

When we started this research, we did not just wanted to have another GPU-based
algorithms for MS-based omics. We wanted to develop the fundamental building
blocks for GPU-based MS omics data analysis that can be used as fundamental
guidelines, and generic principles which would give speedups for many workflows.
Such generic goalposts would allow MS domain scientists to develop GPU-based
algorithm, which would scale, without worrying too much about complexities of
GPU architectures (something that may not be possible for domain scientists to pick
just because it is a whole other field of study).

To facilitate the development of GPU-based MS omics workflows; we designed,
and implemented a generic GPU-based algorithmic design templates called GPU-
DAEMON (GPU Algorithm Design, Data Management and Optimization). GPU-
DAEMON is a GPU-based template that allows exploitation of GPU architecture for
any data that looks like large number of very small arrays. Of course, it is designed
and implemented with MS data analysis in mind, but we showed in our paper that
it is very much applicable to other domains (such a fMRI-based neuroscience) anal-
ysis. To design GPU-DAEMON we considered all possible bottlenecks, template
design for efficient data management of array structures, and various optimization
that allows maximal occupancy, and performance for the GPU-based cores. Once
we have introduced the design of GPU-DAEMON, we will implement a GPU-based
MS-REDUCE algorithm in the next chapter.

6.1 GPU Architecture and CUDA

Graphical processing units (GPU) were developed to improve the graphics (and
related) quality for gaming. However, computational scientists have worked toward
using this architecture for general purpose computing to improve the scalability of
the scientific workflows. GPU consists of large number of cores that can process in
parallel, and can be potentially used for processing individual elements of an image
matrix, or matrix calculations to exploit the massively parallel cores available in a
typical GPU [14]. A typical GPU consists of several StreamingMultiprocessors (SM)
each of which contains several CUDA cores which can vary from one GPU model
to another. For example, GTX 1080Ti GPU contains 28 SMs with 128 CUDA cores
each where as K-40 Tesla GPU contains 15 streaming multiprocessors with 192 core
each making a total of 2880 cores.

Irrespective of how many SMs or CUDA cores a GPU has; each SM in a GPU
has a fast on-chip memory associated with it and shared among its cores. This fast

6 A Easy to Use Generalized Template to Support Development of GPU Algorithms 79

Fig. 6.1 Figure showing
CPU-GPU architecture
overview. All the data
transfers happen via PCIe

L2 L2

RAM

HDD

c c

c c

c c

c c

Global Memory

SHMSHM

SHMSHM

SM SM

SM SM

L1

CPU GPU

PC
Ie

on-chip memory is at least 100x times faster than the GPU global memory but is
small in size (32kbyte or 64kbyte) [15]. There is also an off-chip memory, known
as Global Memory, which is much larger in size (several GB is not uncommon in
new GPUs), and is mostly used for storing data, and communicating it with the host
CPU. A generic overview of the CPU-GPU architecture is shown in Fig. 6.1.

6.1.1 CUDA Overview

Interest in designing and implementing general purpose computing on GPUs made
NVIDIA introduce CUDA standard which can be used with multiple languages to
program GPUs [16]. CUDA uses SIMT (Single Instruction Multiple Thread) model
which combined the SIMD (Single Instruction Multiple Data) with the assumption
of multiple threads and allows exploitation of two levels of parallelism [17, 18].
CUDA standard forms a software overlay that could allow the programmer easy
access to parallel architectural features of a GPU. In CUDA programming model,
each compute unit is arranged in the form of a Grid of Blocks each containing several
threads, where the number of threads, and blocks are GPU dependent. Each thread
within a block is assigned 2 IDs, i.e. Threads ID, and Block ID which can be used to
track and use each thread in each block. The SMs that are shown in Fig. 6.1 would be
replaced with blocks and CUDA cores with threads. As discussed earlier, the number
of threads that are active at any given time is dependent on the GPU card that is used
[16].

6.1.2 CPU-GPU Computing

For any CPU-GPU computing, one needs a CPU that can act as a host which can
offload tasks and data to the GPU which usually behaves like a co-processor. Data
from RAM associated with CPU is transferred to the GPU’s global memory via

80 F. Saeed and M. Haseeb

PCIe bus with a set of CUDA instructions. CUDA kernel is executed on the GPU
where each CUDA core complete the instructions independently. Once the kernel
has completed the instructions, and calculation on a given data fragment, the results
are transferred back to the host again via PCIe bus. Since PCIe bus is a bottleneck
when processing big data, one has to design GPU-based algorithm by having a
good understanding (and profiling) of the algorithm [19]. To ensure that scalable
processing can happen only most compute intense parts are transferred to the GPU
for processing. If enough effort is not invested in the design of the algorithm; theCPU-
GPU code will perform poorly when compared to a single one threaded CPU [14].
In the next section we are going to discuss different challenges, and their solutions
that one has to consider when design GPU-based algorithms for MS-based omics.

6.2 Challenges in GPU Algorithm Design

This section is dedicated to discuss different challenges, bottleneck, and their solu-
tions when designed GPU-based algorithms for MS-based omics.

6.2.1 Need for Data Parallel Design

GPUcompute nodes are generally large in number, and are simple coreswithout deep
pipelines or complex architecture-specific optimizations. Therefore, the best way to
exploit GPU cores is to be able to design a parallel strategy that can exploit the data
parallelism, and can execute tasks in a parallel fashion without any communication
between different cores.

6.2.2 Data Transfer Bottlenecks

Part of the algorithm which is offloaded to the GPU for processing requires that the
data is present in the memory of the CPU before the kernel is launched. Since this
transfer of data needs to take place via PCIe bus; it is one of the biggest bottlenecks
that are faced for big data applications. Needless to say, like any parallel algorithms,
if the communication time (to transfer the data) is larger than the time it takes to
compute the data; then the scalability of the implementation is limited. In the same
way, if the data that is transferred from theGPU to the CPU is larger than the available
memory; again efficient data transfer techniques are needed to eliminate or reduce
CPU-GPU bottlenecks.

6 A Easy to Use Generalized Template to Support Development of GPU Algorithms 81

6.2.3 Non-coalesced Memory Accesses

GPU threads that are active are grouped into 32 thread-chunks and are known as
warp which are scheduled on to the SMs when they are available. These wraps
can then be mapped to each of the SMs as the resources become available. Global
memory accesses from the threads of a wrap can be combined together (colloquially
known as coalesced together) to the same memory transaction if the locations have
spatial locality . If spatial locality is not present, then accessing the global memory
in multiple transactions leads to stalling the wrap execution. This specific issue can
become a major bottleneck if the parallel method that can exploit a GPU is not
carefully designed.

6.2.4 Warp Divergence

In SIMT execution, the thread in a wrap execute in a lock-step which allows all the
independent instruction to be executed simultaneously. Branches on the other hand
can lead the threads to divergewhich can result in efficiency loss, andminimization of
this warp-divergence is one of the challenges, and major design decision for parallel
algorithms that can exploit GPUs.

6.2.5 Exploiting Coarse Grained and Fine Grained
Parallelism

Since GPUs require two-levels of parallelism, each level would need fine-grained
data management methods to exploit the parallelism that might be available in the
architecture. Most often this will require that the data is managed in a way that
decomposes the data in fine-grained sets so that they can be processed in parallel. If
the decomposition is not fine-grained enough, the amount of parallelism that can be
exploited using GPU would be under utilized leading to less scalable solutions.

6.3 Basic Principles of GPU-DAEMON

The proposed GPU base template provides a design that can be used for CPU-GPU-
based algorithms for big data omics especially for MS-based omics, Next Gener-
ation Sequencing (NGS) based genomics, and fMRI based connectomics. For our
purposes, we will focus on the design principles that are relevant to MS-based omics
data analysis. The design of our proposedGPU-DAEMON is divided into seven steps
where each step gives a generic solution that tackles one or more GPU bottleneck. Of

82 F. Saeed and M. Haseeb

Transfer only simplified data arrays

CPU GPU

* =
101001

011001

001001&

Simplifying Complex Data
Structures

Simplifying complex
computa ons

2

1

ƒ()

Fine grained array break down
using suitable func on

Warp 1

Coarse grained mapping
of arrays to CUDA blocks.3a 3b

User defined
func on, to
break down

arrays into data
independent

elements.

4 Moving frequently
accessed arrays to
shared memory.

Warp 2

5 In-warp op miza ons to
ensure coalesced memory

accesses.

Result arrayUse a filtering
technique to filter

best/interes ng results
Shortlisted values
to be copied back

6
Using data on CPU
with results from

GPU to re-
construct required

data structures

7
Data on

CPU

Results from GPU

Start Here

CPU

GPU

CPU

GPU

Data transfer over
PCIe.

Fig. 6.2 Figure shows the template for GPU-DAEMON

course, these solutions need to be adapted to the application that is being considered
but give a good starting point to modify depending on the problem being solved.
Figure 6.2 shows the steps in GPU-DAEMON. The first step is to analyze and profile
the algorithm for which the GPU-based method is being developed. This step will
determine if the proposed method is compute- or data-intensive. Any compute- or
data-intensive parts are kept for the GPU-side while other simpler operations may
be completed on a CPU.

6.3.1 Simplifying Complex Data Structures

PCIe bus that is mostly used to transfer the large data structures is one of the first
bottlenecks that are encountered.Our proposed approach of transferring the complete
data structures is easy and intuitive for the programmer, andgenerally does not require
the complete redesign of the parallel code. With limited memory compute area in the
GPU dictates that only a small portion of the data structure is needed for computation
at any given point in time. Therefore, a design methodology that requires one to only

6 A Easy to Use Generalized Template to Support Development of GPU Algorithms 83

transfer part of the data structure will considerably reduce the bottleneck that is
associated with PCIe bus.

6.3.2 Simplifying Complex Computations

In general, existing GPU architectures are simple computing platforms and do not
allow complex computations which makes them specialized for large number of
computations. To this end, the second step of the GPU-DAEMON is to simplify the
complex computations, e.g. by converting floating point numbers into integers, or
representing those data sets as binary making data computations simpler for these
cores. Of course, these simplifications are application specific, and not all compu-
tations or data can be made simpler especially in the scenario where precision is
required.

6.3.3 Efficient Array Management in GPU

From the data management prospective, CPU-GPU strategy is dependent on how the
arrays of the data are managed, and how different CUDA compute nodes compete for
access to data; and how this data is accessed can determine the performance of the
GPU-based parallel algorithm. To exploit the multiple levels of parallelism that are
available, we introduce and evaluate fragmentation strategy that can be accomplished
using two steps: (1) First step consists of ensuring that each array can be mapped to
a unique block in the GPU in a coarse-grained fashion. This can almost always be
accomplished since the number of CUDA blacks are much larger than the number
of arrays.

(2) The second step is used to exploit fine-grained parallelism by decomposing
each array into sub-arrays and then mapping them to a cluster of threads. Since this
is more specific to the application, the data mapping can be categorized into two
parts each with a different approach. If the data calculations are independent and
are not dependent on the calculation from other arrays cells then an array of size m,
following number of elements assigned per-thread should suffice:

Ei = m

nT
(6.1)

EnT−1 = Ei + m mod (nT)

where Ei is the number of elements to be mapped to thread i where nT is the total
number of threads available per block, and EnT−1 represents the number of elements
mapped to the last thread in block. Here we assume that Thread IDs start at position
0. Start and end indices for sub-array assigned to each thread can be calculated as

84 F. Saeed and M. Haseeb

SIi = i ∗ Ei

E Ii = (SIi + (i + 1) ∗ Ei) − 1

E InT−1 = (E InT−2 + EnT−1) − 1

Here SIi and E Ii are the locations for first and last elements of the sub-arrays assigned
to thread i , respectively.

When the data is dependent on each other for calculations, then elements need
to be divided into data independent subsets using a suitable user defined function as
shown in GPU-DAEMON template Fig. 6.2. We denote this function by Fsub.

6.3.4 Exploiting Shared Memory

Sharedmemory that is available on aGPU is 100x times faster than any othermemory,
which makes exploitation of this memory module most consequential for the per-
formance of the code. The programmer would want to make sure that the frequently
accessed part of the calculations is moved to the shared memory. One condition
[15, 19] that would ensure that such move will give reasonable speed advantage the
following equation must hold:

(Tt f) + (PSM) < (PGM) (6.2)

Here Tt f is the time to move data from global to shared memory while PSM and PGM

are the processing times in Shared and Global memory, respectively.

6.3.5 In-Warp Optimizations

Optimization strategies which will ensure that we get the best performance from a
GPU; we want to ensure that thread divergence inside a warp, and memory coa-
lescing to access global memory are reduced to minimize loss in performance. For
thread divergence, usually the parallel algorithm needs to be redesigned (or at least
reconfigured) so that the threads needed for computations do not diverge in a warp.
Global memory coalescing can be achieved by good thread to data mapping strategy.
The mappings discussed in third step of GPU-DAEMON simplify this mapping. By
mapping consecutive threads to independent contiguous array segments of Step 3
can help achieve memory coalescing.

6 A Easy to Use Generalized Template to Support Development of GPU Algorithms 85

6.3.6 Result Sifting

Once computations have been completed, the programmer has to ensure that the
output is also managed correctly. Sometimes these output arrays can be larger than
the input data [20], and attention has to be paid to ensure that memory transfer
bottlenecks are not formed. Usual techniques include either compressing the output
results or copying back just the relevant part of the calculations. Since these are
very specific to the application under consideration, we will not generalize this for
GPU-DAEMON.

6.3.7 Post Processing Results

If in the first step, if a transformation is performed on the data to simplify the transfer
and processing then there may be a need for a post-processing phase. This phase
is mostly performed on the host processor and is basically an inverse of the data
transformation performed in the first step.

6.3.8 Time Complexity Model for GPU-DAEMON

Any algorithm developed using GPU-DAEMONwill have total time Ttot comprising
of two terms

Ttot = TCPU + TGPU

where TCPU is the total time complexity of CPU part of the design and TGPU is
the total time complexity of GPU part of the design. Here we will give a generic
formulation for TGPU , this formulation can be used to derive the actual time com-
plexity of the GPU part of the algorithm. TGPU depends on the time taken to dis-
integrate a given array into data independent segments (Tsub), time for processing
the data independent arrays (Tproc) and the time for result sifting step (Tsi f t), i.e.
TGPU = Tsub + Tproc + Tsi f t . If we consider N arrays with each of size n then the
total time for applying disintegration function fsub to N arrays on GPU would be
equal to Tsub = N

B ∗ (
T (fsub)

p) where B is the number of Cuda Blocks active at a
given time, p is the number of threads active per block and T (fsub) is the time for
fsub. Similarly, we can compute T (f proc) to be N

B ∗ (
T (f proc)

p) for processing function

fsub and Tsi f t = N∗x∗T (fsi f t)
B∗p for result sifting function fsi f t . Here x is the number of

elements in each result array. This gives us

TGPU = N

B ∗ p
∗ (T (fsub) + T (f proc) + x ∗ T (fsi f t)) (6.3)

86 F. Saeed and M. Haseeb

References

1. Awan MG, Eslami T, Saeed F (2018) Gpu-daemon: Gpu algorithm design, data management
and optimization template for array based big omics data. Comput Biol Med 101:163–173

2. Abuín JM, Pichel JC, Pena TF, Amigo J (2016) Sparkbwa: speeding up the alignment of
high-throughput dna sequencing data. PloS one 11(5):e0155461

3. Awan MG, Saeed F (2016) Ms-reduce: an ultrafast technique for reduction of big mass spec-
trometry data for high-throughput processing. Bioinformatics 32(10):1518–1526

4. Saeed F, Hoffert JD, Knepper MA (2013) Cams-rs: clustering algorithm for large-scale mass
spectrometry data using restricted search space and intelligent random sampling. IEEE/ACM
Trans Comput Biol Bioinform 11(1):128–141

5. Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI (2017) Msfragger:
ultrafast and comprehensive peptide identification inmass spectrometry-based proteomics. Nat
Methods 14(5):513–520

6. Jagtap P, Goslinga J, Kooren JA, McGowan T, Wroblewski MS, Seymour SL, Griffin TJ
(2013) A two-step database search method improves sensitivity in peptide sequence matches
for metaproteomics and proteogenomics studies. Proteomics 13(8):1352–1357

7. Saeed F (2015) Big data proteogenomics and high performance computing: challenges and
opportunities. In: 2015 IEEE global conference on signal and information processing (Glob-
alSIP). IEEE, pp 141–145

8. Tariq U, Cheema UI, Saeed F (2017) Power-efficient and highly scalable parallel graph sam-
pling using fpgas. In: 2017 international conference onReConFigurable computing and FPGAs
(ReConFig). IEEE, pp 1–6

9. Eslami T, Awan MG, Saeed F (2017) Gpu-pcc: a gpu based technique to compute pairwise
pearson’s correlation coefficients for big fmri data. In: Proceedings of the 8thACMinternational
conference on bioinformatics, computational biology, and health informatics. ACM, pp 723–
728

10. Lin C-H, Li J-C, Liu C-H, Chang S-C (2017) Perfect hashing based parallel algorithms for
multiple string matching on graphic processing units. In: IEEE transactions on parallel and
distributed systems

11. Ma Y, Chen L, Liu P, Lu K (2016) Parallel programing templates for remote sensing image
processing on gpu architectures: design and implementation. Computing 98(1–2):7–33

12. Warris S, Yalcin F, Jackson KJ, Nap JP (2015) Flexible, fast and accurate sequence alignment
profiling on gpgpu with paswas. PloS one 10(4):e0122524

13. Baumgardner LA, Shanmugam AK, Lam H, Eng JK, Martin DB (2011) Fast parallel tandem
mass spectral library searching using gpu hardware acceleration. J Proteome Res 10(6):2882–
2888

14. Fatahalian K, Sugerman J, Hanrahan P (2004) Understanding the efficiency of gpu algorithms
for matrix-matrix multiplication. In: Proceedings of the ACMSIGGRAPH/EUROGRAPHICS
conference on graphics hardware. ACM, pp 133–137

15. AwanMG,SaeedF (2016)Gpu-arraysort: a parallel, in-place algorithm for sorting large number
of arrays. In: 2016 45th International Conference on Parallel Processing Parallel Processing
Workshops (ICPPW). IEEE, pp 78–87

16. Nvidia (2016). http://docs.nvidia.com/cuda/index.htmlCUDA Toolkit Documentation v7.5.
http://docs.nvidia.com/cuda/index.html

17. Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with cuda.
Queue 6(2):40–53

18. Lindholm E, Nickolls J, Oberman S, Montrym J (2008) Nvidia tesla: a unified graphics and
computing architecture. IEEE Micro 28(2)

http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/index.html

6 A Easy to Use Generalized Template to Support Development of GPU Algorithms 87

19. Awan MG, Saeed F (2017) An out-of-core gpu based dimensionality reduction algorithm for
big mass spectrometry data and its application in bottom-up proteomics. In: Proceedings of
the 8th ACM international conference on bioinformatics, computational biology, and health
informatics. ACM, pp 550–555

20. Lee J-Y, FujimotoGM,Wilson R,WileyHS, Payne SH (2017) Blazing signature filter: a library
for fast pairwise similarity comparisons. bioRxiv 162750

Chapter 7
Computational CPU-GPU Template for
Pre-processing of Floating-Point MS
Data

Fahad Saeed and Muhammad Haseeb

The data from MS spectra is usually stored as shortlist of numbers. To process these
spectra, more often than not, one has to “see” inside the data to make data pre- and
post-processing decisions [2]. Sorting, and searching of data for an array of numbers
is one of the oldest problems in computer science. There has been significant effort
in developing algorithms that can sort very large array [3]. However, for MS data,
instead of having a single large array (ofm/z values) there are a lot ofmoderately sized
arrays of a very large number. We have demonstrated that sorting (or searching) of
MS data with a lot of spectra is a bottleneck for many pre-processing routines [2, 4].
In order to make this pre-processing efficient, and allowing the users to be able to use
our proposed techniques we have formulated a template-based GPU strategy known
as GPU-DAEMON. GPU-DAEMON is a strategy that allows developers who might
not be familiar with CPU-GPU architecture but would want to utilize the parallel
strategy for efficient processing. We have developed a GPU-Array sort algorithm
that first appeared in our paper [4] which allows us to utilize CPU-GPU architecture,
and sort millions of short MS spectra. Figure 7.1 shows design of GPU-ArraySort
overlaid on GPU-DAEMON template.

7.1 Simplifying Complex Data Structures

Since GPU-ArraySort is mostly used as integral part of a bigger algorithm, in this
step the data to be sorted can be extracted from larger data structures and stored in
the form of simple arrays. These arrays are then transferred over to GPU memory
via the PCIe cable. Since the sorting operation cannot be further simplified, the step
for simplification of computations was skipped for this algorithm.

Some parts of this chapter may have appeared in [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9_7

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_7&domain=pdf

 -2047 61833 a -2047 61833 a

https://doi.org/10.1007/978-3-031-01960-9_7

90 F. Saeed and M. Haseeb

Transfer only simplified data arrays

CPU GPU

Extract data to be sorted and
represent as arrays

Sor�ng cannot be further
simplified. Skip this step..

2

1

Random sampling to
generate independent

sub-arrays

Fine grained array break down
using suitable func�on

Warp 1

Coarse grained mapping
of arrays to CUDA blocks.3a 3b

4 Move sub-arrays
to be sorted to the

shared memory.

Warp 2

5 In-warp (32) op�miza�ons
to ensure coalesced
memory accesses.

Result arrays

Filtering is skipped. Sorted arrays
are transferred as is

6Sorted arrays can
be used for further

computa�ons

7
Data on

CPU

Sorted arrays

Start Here

CPU

GPU

CPU

GPU

Data transfer over
PCIe.

Fig. 7.1 Design of GPU-ArraySort overlaid on GPU-DAEMON template

7.2 Efficient Array Management

Sorting problem allows placement of the elements depending on the stored value
which is presented as dependent sub-array case of Sect. 6.3.3. We get the coarse-
grained mapping of each array on CUDA blocks as discussed in Sect. 6.3.3. We
achieve coarse-grained mapping of each array on different CUDA blocks using the
method discussed in Sect. 6.3.3. Sample-based bucketing techniquewas performed to
exploit fine-grained parallelism [5]. We used this strategy to fragment data into sub-
arrays which are mapped on the compute units. Sample-based bucked functioning
(Fsub) for splitter and bucketing is discussed in the section below.

7.2.1 Splitter Selection

The arrays are assumed to be small enough that it fits within GPU’s shared memory,
and the number of splitters required depends on the number of buckets needed for
the array. The size of these buckets must be optimized to get maximum efficiency.

7 Computational CPU-GPU Template for Pre-processing of Floating-Point MS Data 91

Our empirical study [1] has shown that the best performance is gained when the
number of elements is no more than 20 [1]. This choice of size of bucket is totally
independent of size of individual array as well as total number of arrays.

Definition 7.1 If n is the size of an array, let Bi be the set of buckets for array i ,
Bi = {b1, b2, b3, . . . bp} where p = � n

20�.
For p buckets we need to have p − 1 splitters, these splitters are obtained from a

sample set obtained from the unsorted array Ai using regular sampling method. Our
studies [1, 6] have shown that if the data is uniformly distributed then 10% regular
sampling resulted in the most load-balanced buckets. The samples are obtained first
using the in-place insertion sort, and then the remaining p − 1 splitters are chosen
by picking splitter at regular intervals. Each block then returns to its splitter that is
written to the global memory at indices calculated using the block ids that are written
in consecutive memory locations with each block performing all operations using a
single thread. Since the sampled array is small it can be placed inside the memory
and the proposed technique is efficient to be used.

The array of splitters thus formed can be defined as

Definition 7.2 Let S be the array of size N , each element si ∈ S is an array of
size q which consists of splitters for array Ai . S = {s1, s2, s3, . . . , sN } where si =
{sp1, sp2, sp3 . . . , spq} and q = p − 1.

Algorithm 5 describes a per-thread pseudo-code for first phase.

7.2.2 Bucketing

In this phase, the splitter values obtained from the previous phase are translated into
a global array used to keep track of the bucket sizes.

Definition 7.3 Let Z be the array of size N , each element zi ∈ Z is an array of
size q which consists of bucket sizes for array Ai . Z = {z1, z2, z3, . . . , zN } where
zi = {zb1, zb2, zb3 . . . , zbp}, here each zb j ∈ zi represents size of bucket j in array
Ai .

Each array is assigned a unique block with threads equal to the number of buckets
p. The sub-array spi is small in size and can be moved to the shared memory for
effective and frequent usage. The pointer to these arrays can also be determined on
the fly depending on the block and thread id such that each thread gets a unique pair
of splitters.

Definition 7.4 Let ri denote a splitter pair for a thread i then ri = {spi [t id],
spi [t id + 1]} here tid denotes each thread′s id. The splitter pair allows us to have
thread that avoids branch divergence by removing other paths of the code as observed
in Algorithm 4. To avoid any overlapping buckets, we use two additional splitters
in sub-array spi by adding a splitter smaller than the smallest, and larger than the

92 F. Saeed and M. Haseeb

largest value in Ai . Keeping track of a counter zb j ∈ zi , where j is the bucket and i
is the array, array Ai can be traversed in parallel to complete the bucketing process
which will result in each counter containing the size of the bucket. Each bucket is
written back to the actual memory location of array Ai . Using this method we are
able to parallelize this write back process with the advantage of saving more than
50% of device’s global memory.

Algorithm 4 describes a per-thread pseudo code for second phase.

Algorithm 4: Per thread pseudo code for bucketing phase
Data: An array Ai and a pair of splitters ri
Result: A bucket of elements within splitter pair range

1 splitterPair = obtainSplitters(ri)
2 initializeBucket(bucket)
3 index = 0
4 bucketIndex = 0
5 while not the end of array Ai do
6 if splitterPair[1] < Ai [index] < splitterPair[2] then
7 bucket[bucketIndex] = Ai [index] bucketIndex + +
8 index + +

7.3 In-Wrap Optimizations and Exploiting SharedMemory

The buckets and the sub-arrays, formed in the previous step, are small enough to
fit in the shared memory. However, the sub-arrays are assigned to a warp which are
placed in contiguous location in the memory to minimize memory transactions and
accesses. If the size of the array is larger than the GPU memory; it must be sorted
in batches. Our design and results have shown that CUDA streams data transfer,
and data processing times overlap to create a pipeline like affect resulting in better
processing times as compared to simple batch processing.

7.4 Time Complexity Model

Time complexity of GPU-ArraySort can be determined by replacing the values of
T (fsub) and T (f proc) in Eq. 6.3 with O(np) and O(np ∗ log(np)), respectively. Here
n is the length of each array while p is the number of threads per CUDA block.

O

(
n

p
+ n

p
∗ log

(
n

p

))
(7.1)

7 Computational CPU-GPU Template for Pre-processing of Floating-Point MS Data 93

Algorithm 5: Per thread pseudo code for splitter selection
Data: An array Ai and required number of splitters q
Result: An array of splitters si for array Ai

1 samples = obtainSamples(Ai)

2 sortedSamples = insertionSort(samples)
3 index = 0
4 sampleIndex = 0
5 stride = calculateStride(sortedSamples)
6 while sizeOf (si) not equal to q do
7 si [index] = Ai [sampleIndex]
8 sampleIndex+ = stride
9 index + +

7.5 Performance Evaluation

Performance evaluation of the proposed technique was performed by sorting large
number of arrays, and then see which techniques can have a higher throughput (i.e.
can sort more number of arrays on a given GPU). Since there is no dedicated GPU-
based algorithm we used NVIDIA’s Thrust Library to used stable sort by tagging
them with keys. A brief explanation is given below:

7.5.1 Sorting Using Tagged Approach (STA)

Let I = {A1, A2, A3, . . . , Ai } be a list of arrays to be sorted where i = N , then in
order to use the STA approach we create another list of arrays and call it the array
of tags.

Definition 7.5 Let T = {T1, T2, T3, . . . , Ti } be list of arrays of tags such that i = N
and |Ti | = |Ai |. Here each element t ∈ Ti represents a tag for array Ti and carries the
same value, i.e. t = i . Once the tags have been created all the arrays of I are merged
into one single array and all the tags are merged into another array. Then the sorting
proceeds in two steps :

• Perform a stable sort on the array, containing the arrays to be sorted, using the
array of tags, as keys.

• Perform a stable sort on the array of tags, using the array of arrays to be sorted, as
keys.

The process has been explained in Fig. 7.2. It is clear that STA kind of strategy
takes a lot more resources (both memory, and time) than would be needed for an
optimal parallel computing strategy. Redundant work includes adding tags to the
array, sorting them, and the need to sort the tag arrays in the GPU global memory.
Further the STA technique uses Radix sort for sorting of the numbers which utilizes

94 F. Saeed and M. Haseeb

data

tags

{7,6,4,3,4,3,2,1,9,8,6,1}

{1,1,1,1,2,2,2,2,3,3,3,3}

data

tags

{1,1,2,3,3,4,4,6,6,7,8,9}

{2,3,2,1,2,1,2,1,3,1,3,3}

data

tags

data

tags

{{3,4,6,7},{1,2,3,4},{1,6,8,9}}

{{1,1,1,1},{2,2,2,2},{3,3,3,3}}

data

tags

1 2

34

5

fla�en arrays

sort tags by datastable sort data by tags

create a tag array

Fig. 7.2 A step by step process explaining the STA technique, here the arrays to be sorted are
referred as test arrays: (I) A tag array is created for each array to be sorted. (II) Arrays are merged
into one big array. (III) Arrays are sorted using the array of tags as keys. (IV) Again arrays are
sorted using the test arrays as key. (V) Arrays are restored based upon their tags

almost O(N) more space than the data under process [7]. The estimated memory
that is used by STA is approx. 3 times more than the memory required for optimal
processing [8] be required to sort all the arrays.

7.5.2 Runtime Analysis and Comparisons

We performed the experiments to create 4 different data sets where each set consists
of 200k arrays where each array was generated using uniform distribution between
0 and 231 − 1. The size of these arrays was 1000, 2000, 3000, and 4000 respectively
for four data sets thatwere producedwith floating point data type.All the experiments
listed below were performed using 24 CPU cores each operating at 1200 MHz,
Graphic Processing Unit used was NVIDIA’s Tesla K-40c consisting of 2880 CUDA
cores. Total globalmemory available on the devicewas 11520MBytes and the shared
memory of 48 KBytes was available per block.

Figures 7.3, 7.4, 7.5 and 7.6 show runtime comparison between STA and GPU-
ArraySort. GPU-Array sort with its superior memory efficient design out-performs
STA technique for all the array sizes that we investigated.

7.5.3 Data Handling Efficiency

The experiments that we discussed in the previous section were performed again
without any bounds on the number of arrays. Table 7.1 shows that the maximum

7 Computational CPU-GPU Template for Pre-processing of Floating-Point MS Data 95

Fig. 7.3 The figure shows
time versus number of arrays
plots for GPU-ArraySort and
the tagged sorting approach
using key-based stable
sorting algorithm from
Thrust library

214 215 216 217

0

2,000

4,000

6,000

8,000

Number of Arrays (N)

T
im

e
(m

ill
is
ec
on

ds
)

Run Time Analysis for Array Size 1000

GPU-ArraySort
STA

Fig. 7.4 The figure shows
time versus number of arrays
plots for GPU-ArraySort and
the tagged sorting approach
using key-based stable
sorting algorithm from
Thrust library

214 215 216 217

0

0.5

1

1.5

·104

Number of Arrays (N)

T
im

e
(m

ill
is
ec
on

ds
)

Run Time Analysis for Array Size 2000

GPU-ArraySort
STA

number of arrays processed by each competing method. These experiments demon-
strate that GPU-ArraySort algorithm is able to process more than 3 timesmore arrays
than the competing STA-based approach.

96 F. Saeed and M. Haseeb

Fig. 7.5 The figure shows
time versus number of arrays
plots for GPU-ArraySort and
the tagged sorting approach
using key-based stable
sorting algorithm from
Thrust library

214 215 216 217

0

0.5

1

1.5

2

2.5

·104

Number of Arrays (N)

T
im

e
(m

ill
is
ec
on

ds
)

Run Time Analysis for Array Size 3000

GPU-ArraySort
STA

Fig. 7.6 The figure shows
time versus number of arrays
plots for GPU-ArraySort and
the tagged sorting approach
using key-based stable
sorting algorithm from
Thrust library

214 215 216 217
0

1

2

3

·104

Number of Arrays (N)

T
im

e
(m

ill
is
ec
on

ds
)

Run Time Analysis for Array Size 4000

GPU-ArraySort
STA

7 Computational CPU-GPU Template for Pre-processing of Floating-Point MS Data 97

Table 7.1 Table for memory efficiency of GPU-ArraySort

Array size GPU-ArraySort STA

1000 2000000 700000

2000 1050000 350000

3000 700000 200000

4000 500000 150000

Note: The table shows number of arrays sorted by STA technique and GPU-ArraySort. The center
column shows that GPU-ArraySort can sort upto 2 million arrays of size 1000 while in comparison
STA technique was able to sort only 0.7 million arrays. This comparison is for Tesla K-40c GPU

References

1. AwanMG, Saeed F (2016) Gpu-arraysort: a parallel, in-place algorithm for sorting large number
of arrays. In: 2016 45th international conference on parallel processing workshops (ICPPW).
IEEE, pp 78–87

2. Awan MG, Saeed F (2016) Ms-reduce: an ultrafast technique for reduction of big mass spec-
trometry data for high-throughput processing. Bioinformatics 32(10):1518–1526

3. Satish N, Harris M, Garland M (2009) Designing efficient sorting algorithms for manycore
gpus. In: IEEE international symposium on parallel & distributed processing, 2009. IPDPS
2009. IEEE, pp 1–10

4. AwanMG, Saeed F (2016)Gpu-arraysort: A parallel, in-place algorithm for sorting large number
of arrays. In: 2016 45th international conference on parallel processing, parallel processing
workshops (ICPPW). IEEE, pp 78–87

5. Liu F, Huang M-C, Liu X-H, Wu E-H (2009) Efficient depth peeling via bucket sort. In: Pro-
ceedings of the conference on high performance graphics 2009. ACM, pp 51–57

6. Awan MG, Saeed F (2017) An out-of-core gpu based dimensionality reduction algorithm for
big mass spectrometry data and its application in bottom-up proteomics. In: Proceedings of
the 8th ACM international conference on bioinformatics, computational biology, and health
informatics. ACM, pp 550–555

7. Horsmalahti P (2012) Comparison of bucket sort and radix sort. arXiv:1206.3511
8. Guo Z, Huang T-W, Lin Y (2020) Gpu-accelerated static timing analysis. In: Proceedings of the

39th international conference on computer-aided design, pp 1–9

http://arxiv.org/abs/1206.3511

Chapter 8
G-MSR: A GPU-Based Dimensionality
Reduction Algorithm

Fahad Saeed and Muhammad Haseeb

In our previous chapters, we have introduced a generalized strategy has been devised
that can be used for processing ofMS-based omics data sets on a CPU-GPU architec-
ture. Pre-processing of this data is an essential element for proteomics pipelines but
the scalability of these pre-processing workflows has not been the focus of research
in this domain. Hence many of the existing pipelines may take multiple hours or days
to complete the processing [1].

The number of spectra produced by a single experiment can vary from few thou-
sand to billions depending on the objective of the experiment, and species that are
being considered. However, this is just for single run of experiments. The plethora
of experimental spectra now available from different laboratories facilitates an enor-
mous amount of data that can be used, reused, or reevaluated for systems biology
researchers. Each spectrum consists of 2 columns of data where the first column
consists of mass-to-charge ratio (m/z), and the second column consists of the cor-
responding intensities [2, 3]. In this chapter, we showcase how a generalized GPU-
DAEMON strategy can be used for a noise reduction workflow for MS-based omics
data using CPU-GPU architectures. Our strategy is called G-MSR and was first
introduced in [3]. Note that this GPU-based noise reduction algorithm tries closely
follows the processing patterns of MS-REDUCE algorithm [4].1

8.1 G-MSR Algorithm

Similar to the MS-REDUCE algorithm, G-MSR need to perform three steps: (1)
Spectral classification, (2) Quantization, and (3) Weighted random sampling. The
input parameters consist of a reduction factor R which is then applied to the given
spectra s which will result in a spectrum that is equal to R ∗ |s|. The classification
stage allows the spectra to be classified into four classes. The spectra which are

1 Some parts of this chapter may have appeared in [3].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9_8

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-01960-9protect LY1	extunderscore 8
https://doi.org/10.1007/978-3-031-01960-9_8

100 F. Saeed and M. Haseeb

classified in the same class are quantized such that each spectrum is grouped based
on the peaks that are significant. Then there is a weighted random sampling in used in
each class such that peaks are randomly sampled from each quantum. The weighted
sampling allows that the most significant peaks make it to the final reduced spectra.

The weighted random sampling step can be formulated as the following equation
where xi is the sampling weight for the i th quantum, qi is the number of peaks in
the quanta i , p′ is the total peaks in the spectra, and n is the number of quanta.

n∑

i=0

xi
100

= p′ (8.1)

Figure8.2 shows the design of G-MSR overlapped on the GPU-DAEMON tem-
plate andFig. 8.1 showsa comparison in theworkflowsofMS-REDUCEandG-MSR.

Intensi�es Intensi�es Intensi�es

Sorted
intensi�es

Weighted Sampling step outputs Binary
Spectrum corresponding to each input spectrum.

These are transferred back to CPU for
construc�on of Reduced Spectra for file wri�ng.

Sor�ng

Range
Calcula�ons

Classifica�on
&

Quan�za�on

Weighted
Sampling

Iavg

&
{I1, I2, …, IN}

Quan�zed Indexed
Spectra (QIS)

Binary Spectrum
transferred from GPU

Construc�on of Reduced Spectrum
Only those intensity and mass-to-charge

pairs are considered for reduced
spectrum which have a “1” at

corresponding index in Binary Spectrum.

Reduced Spectrum
Wri�en to file

0 1 0 0 0 11 0 1 0 1 0 0 0 11 0 1 0 1 0 0 0 11 0 1

Instead of copying complete spectra their
intensi�es are listed in an array and copied to
GPU. A copy of actual spectra is maintained on

the CPU.

CPU SIDE GPU SIDE

5 6 3 9 1 811 7 3

Construc�on of QIS
QIS is constructed by

mapping intensity indices
to QIS such that

consecu�ve elements
belong to same quantum.

4 8 2 4 1 108 6 10
0 1 2 3 4 5 6 7 8 9 10 11

QIS

Intensity
Array

CPU to GPU
Transfer

GPU to CPU
Transfer

Actual Spectra

in
te

ns
i�

es

m/z

in
te

ns
i�

es

m/z

in
te

ns
i�

es
in

te
ns

i�
es

in
te

ns
i�

es

m/z

in
te

ns
i�

es

m/z

2

4

10

8

4

1

Quanta

Mapping Array
Indices to QIS

In
te

ns
ity

m/z

0 1 0 0 0 11 0 1 0 1 0 0 0 11 0 1 0 1 0 0 0 11 0 1

Spectral
Classifica�on

Spectral
Quan�za�on

Weighted
Sampling

Reduced spectrumraw spectrum Quan�zed Spectrum

In
te

ns
ity

m/z

Classified spectrum with
Intensity Spread

in
te

ns
i�

es

in
te

ns
i�

es

m/z

in
te

ns
i�

es

m/z

MS-REDUCE

Mapping 3D Quan�zed
Structure to QIS

Figure below shows mapping
between 3D Quan�zed

Structure to 1D QIS. This
mapping is fully reversible.

Only intensity arrays are
transferred to GPU for Processing

1

3

5

4

67

9

8

2

Fig. 8.1 a Shows the work flow of MS-REDUCE. b Construction of QIS from 3-D quantized
spectrum fromMS-REDUCE. cWork flow of G-MSR, blocks with same color represent processing
in same kernel. A copy of actual spectra is maintained on the CPU for the construction of reduced
spectra

8 G-MSR: A GPU-Based Dimensionality Reduction Algorithm 101

Transfer intensity data arrays

CPU GPU

Extract only intensity arrays
from the spectra

Skipped due to the nature of
the algorithm

2

1

QIS
construc�on

Fine grained array break down
using QIS func�on

Warp 1

Coarse grained mapping
of arrays to CUDA blocks.3a 3b

4
Move data to the
shared memory

according to
Equa�on 2

Warp 2

5 In-warp (32) op�miza�ons
to ensure coalesced
memory accesses.

Binary spectra
(to be copied back)

Binary spectra are generated and
copied to preserve the m/z to
intensity mapping in the data

6

7

Binary arrays

Start Here

CPU

GPU

CPU

GPU

Data transfer over
PCIe.

metadata

QIS data
structure allows
obtaining data
independent

sub-arrays

01001 10010

Processed QIS (results)

1 0 0 1 0 1 0

Use metadata on CPU to
reduce spectra

Binary array
Reduced
spectra

Fig. 8.2 Design of G-MSR overlaid on GPU-DAEMON template

8.1.1 Simplifying Complex Data Structures

As discussed before, the mass spectra obtained from MS consist of mass-to-charge
ratios and their corresponding intensities. In a naive method complete spectra along
with their meta-data would be transferred over the PCIe cable to GPU for processing.
But following the GPU-DAEMON template we separate the intensities from the
larger data structure in the forms of multiple arrays (one array for each spectrum)
and only transfer these over to GPU memory. This cuts down the amount of data
being transferred by more than 50%. The actual spectra are kept on the host for
book-keeping and post-processing phase.

8.1.2 Simplifying Complex Computations

Since intensities are floating point numbers, we round them off to nearest integer
before transferring them to GPU. This converts all the floating point computations

102 F. Saeed and M. Haseeb

to integer computations thus simplifying the computations. As shown at the end of
this chapter, this approximation does not affect the algorithm’s performance.

8.1.3 Efficient Array Management

The quantization stage of MS-REDUCE reduction algorithm discussed in Chap. 3
transforms the spectra into 3-Dimensional data structures. Managing this 3-D data
structure is challenging for data processing on a GPU architecture [5], also in-order
for GPU-DAEMON’s array management technique to work we need to map the data
into a 1-Dimensional array. To achieve this, we introduced a novel data structure
called Quantized Index Spectrum (QIS) which maps a 3-D quantized spectrum onto
a 1-D array which can then be easily managed using the techniques discussed in
Sect. 6.3.3. The QIS data structure serves a dual purpose of transforming 3-D quan-
tized spectra to 1-D array while performing the step of quantization. As discussed
before, the quantization step basically groups together the peaks of a spectrum.
In a QIS data structure, these groups of peaks are present in contiguous memory
locations, with a separate array of pointers keeping track of starting and ending
points. Each of this group can be considered as a sub-array, since these sub-arrays
are independent of each other we can use the strategy of Sect. 6.3.3 for exploiting
fine-grained parallelism. For G-MSR algorithm, we replace Fsub by QIS construc-
tion in GPU-DAEMON template. In order to construct a QIS, instead of clustering
peaks together as in MS-REDUCE, we clustered together with the indices of the
peaks which make up a quantum. For each spectrum, a QIS is an array containing
peak indices clustered together at computed distances. We refer to this structure as
quantized-indexed-spectrum (QIS). We can formally define QIS for a spectrum si as:
Definition: Qi where Qi = {q1, q2, q3, . . . , qm} and each qt = {l1, l2, l3, . . . , ln} is
quantum t , and l represents index for a peak in si . In QIS structure, quanta are sorted
in their increasing order. Figure8.1b shows the construction of QIS from intensity
array. The QIS then overwrites the spectrum to conserve space.

8.1.4 Exploiting Shared Memory

To better exploit the sharedmemory, sub-arrays are thenmoved to the sharedmemory
for further processing if the Eq. 6.2 is satisfied.

8.1.5 In-Warp Optimizations

The sub-arrays created by theQIS are a part of a larger array, with their beginning and
end pointers listed separately. So, all the sub-arrays created by QIS are in contiguous

8 G-MSR: A GPU-Based Dimensionality Reduction Algorithm 103

memory locations. This feature of QIS helps ensure that when consecutive sub-arrays
are processed by consecutive threads of a warp, memory coalescing takes place.

8.1.6 Result Sifting

In the first step, rather than transferring complete spectra we transferred only the part
which was needed for GPU-processing, and because of the random sampling which
takes place in the third phase of dimensionality reduction algorithm [4], it becomes
difficult to maintain which intensities are eliminated on the GPU-side. To tackle this
problem,we used an additional property ofQIS data structure, i.e. the indices of peaks
which are eliminated on the GPU-side are retained with a place-holder. These place-
holders help in constructing a binary spectrum indicating the indices of intensities to
be retained in the reduced spectrum. We define Binary Spectra as Definition: Given
a spectrum si = {p1, p2, p3, . . . , pn} a Binary Spectrum Bi for the corresponding
reduced spectrum s ′

i is defined as, Bi = {e j = 1|p j ∈ s ′
i } ∪ {e j = 0|p j /∈ s ′

i }. In other
words, if a peak at index j in si is included in the reduced spectrum then there will be
a 1 at index j of Bi ; otherwise it will be zero. For each spectrum, a binary spectrum is
generated and only these binary spectra are then copied back to CPU. Binary spectra
are memory efficient and helpful in quick reconstruction of reduced spectra on the
CPU side. Introduction of QIS and Binary Spectra thus enabled G-MSR to copy back
just the bare minimum and resolve the GPU-CPU bottleneck.

8.1.7 Post Processing Results

The Binary Spectra copied back in the previous phase are then used for constructing
the reduced spectra on the CPU side as shown in Fig. 8.2. Figure 8.3 shows the
difference in the amount of data handled by MS-REDUCE and G-MSR.

8.2 Results and Experiments

8.2.1 Time Complexity Model

To compute the time complexity of G-MSR we replace T (fsub) = O(NB) +
O(N∗n2

B∗p) + O(N∗n
B) and T (f proc) = O(s∗NB) in Eq. 6.3. Here the fsub time includes

sorting, classification and construction of QIS data structure while the f proc time
consists of weighted random sampling phase. Replacing the values in Eq. 6.3 and
simplifying leaves us with:

104 F. Saeed and M. Haseeb

Read spectra

Other informa�on

Mass to charge ra�o

Intensi�es

Only intensi�es

G-MSR MS-REDUCE

Binary Spectra

Other informa�on

Mass to charge ra�o

Intensi�es

Write spectra

Reduced
Spectrum

Reduced
Spectrum

Only
intensi�es

Complete
spectra

Approx data
handled =

N*n

Approx data
handled =

N*(2n)+Nm

Fig. 8.3 Here N denotes the number of spectra, n the size of largest spectrum, and m the size of
other information. Transferring only intensities to GPU for processing can conserve more than 50%
of scarce in-core memory

O

(
N ∗ (n2 + l)

B ∗ p

)
(8.2)

where l = p ∗ (2 + n + n ∗ s) and s is the sampling rate.

8.2.2 Experiment Setup

For all the experiments we made use of a Linux server running Ubuntu Operat-
ing System, version 14.01. The server houses two Intel Xeon E5-2620 Processors,
clocked at 2.40 GHz with a total RAM of 48 GBs. The system has an NVIDIA Tesla

8 G-MSR: A GPU-Based Dimensionality Reduction Algorithm 105

Fig. 8.4 Figure showing the
speed up gained by G-MSR
over MS-REDUCE while
operating at reduction factor
(RF) of 10, 30, and 50. The
vertical line represents the
point where in-core memory
is filled

217 218 219 220

100

200

300

400

In-Core Limit

Number of Spectra
Sp

ee
du

p

Speedu3p Gain

RF-10
RF-30
RF-50

K-40c GPU with a total of 2880 CUDA Cores and 12 GBs of RAM. CUDA version
7.5 and GCC version 4.8.4 were used for compilation.

8.2.3 Scalability and Time Analysis

For this experiment, we used the appended UPS2 dataset which had over a million
spectra. Timing experiments were performed with progressively increasing datasizes
to cover the cases where data fits in the GPU’s memory and when it doesn’t. Our
experiments showed peak speedups of 386, 288, and 158 for the three Reduction
Factors (RF) of 10%, 30%, and 50%, respectively. In accordance with the Eq. 8.2
we get smaller speedup for larger RF and we observe a decrease in speedup with
increasing number of spectra in Fig. 8.4. Also with higher RF, amount of data being
processed is increased. This increased data leads to more memory being used per
warp and thus minimizes the number of concurrent threads leading to increased
execution time shown in Fig. 8.5.

8.2.4 Quality Assessment

We used the same method of quality assessment as shown in Fig. 5.6. For our exper-
iments we set the FDR value of interest to 5%, i.e. any PSM having FDR value
below 5% is an acceptable match, we call them effective matches. Figure8.7 shows
percentage of effective matches with varying reduction factors for both algorithms.
G-MSR and MS-REDUCE gave almost same percentages of effective matches.

106 F. Saeed and M. Haseeb

Fig. 8.5 Figure showing the
execution times for G-MSR
and MS-REDUCE for
varying reduction factors. In
the legend, numbers
following the algorithm
names are reduction factors.
The vertical line represents
the point where in-core
memory is filled

217 218 219 220

0

1

2

3

4

·106

In-Core Limit

Number of Spectra
T
im

e
(m

ill
is
ec
on

ds
)

Execution Time

G-MSR-10
G-MSR-30
G-MSR-50

MS-REDUCE-10
MS-REDUCE-30
MS-REDUCE-50

Fig. 8.6 Figure showing the
execution times for G-MSR
operating at reduction factors
of 10, 30, and 50. The
vertical line represents the
point where in-core memory
is filled

217 218 219 220
0

2

4

6
·104

In-Core Limit

Number of Spectra

T
im

e
(m

ill
is
ec
on

ds
)

Execution Time

G-MSR-10
G-MSR-30
G-MSR-50

8.2.5 Reductive Proteomics for high-resolution instruments

In high-resolution proteomics, the x-axis resolution. i.e. number of bins can lead
to large data processing times. Pre-processing of spectra with G-MSR and MS-
REDUCEwill reduce the dataset size and hence the processing times. We performed
peptide deductions for UPS2 dataset after preprocessing it with G-MSR at different
reduction factors (RF). We used Tide integrated with hiXcorr was used for peptide
deduction in this experiment. Fig. 8.8 shows that the performance of peptide deduc-
tion becomes more scalable with smaller reduction factors even with increasing
resolution.

8 G-MSR: A GPU-Based Dimensionality Reduction Algorithm 107

C
ID

-D
S1

C
ID

-D
S2

C
ID

-D
S3

C
ID

-D
S4

C
ID

-D
S5

C
ID

-D
S6

H
C
D
-D

S1

H
C
D
-D

S2

H
C
D
-D

S3

H
C
D
-D

S4

H
C
D
-D

S5

H
C
D
-D

S6

U
P
S2

70

80

90

100
%

M
at
ch

Quality Assessment

G-MSR-30
G-MSR-60
G-MSR-90

MS-REDUCE-30
MS-REDUCE-60
MS-REDUCE-90

Fig. 8.7 A comparison of quality assessment plots of MS-REDUCE and G-MSR. In the legend,
numerical value following name of the algorithm represents its reduction factor. X-axis contains
the labels for the experimental datasets while Y-axis represents the percentage of peptide matches
with FDR of greater than 5%

8.2.6 Comparison with Unified Memory

To assess the performance of G-MSR (a GPU-DAEMON-based version of MS-
REDUCE algorithm), we compared it against a unified memory-based GPU imple-
mentation of MS-REDUCE. The unified memory technique enables quick and easy
development of GPU-based algorithms. For our purpose, we simply took the sequen-
tial version of G-MSR [4] and modified the code following rules of GPU algorithm
development using CUDA unified memory [6]. For scalability study, we appended
the UPS2 dataset multiple times to get progressively larger datasets. Figures8.9 and
8.11 shows that GPU-DAEMON based implementation consistently out-performs
thenaive implementation. It canbeobserved inFig. 8.11 thatCUDAunified-memory-
based implementation reaches its in-core memory limit at only 14,000 spectra, while
G-MSR as shown in Fig. 8.6 reaches its in-core memory limit at 400,000 spectra.
Along with better speed, GPU-DAEMON helps conserve limited in-core memory
so that more throughput can be achieved. Figure8.10 shows that GPU-DAEMON
version uses a very small amount of in-core memory in comparison to the unified-
memory-based implementation.

108 F. Saeed and M. Haseeb

1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001

212

213

214

bin-size (da)

T
im

e
(s
ec
on

ds
)

Scalability Experiments

RF-10
RF-20
RF-40
RF-60
RF-80
RF-100

Fig. 8.8 Timing plots of peptide deduction process using Tide with hiXcorr algorithm. Here RF is
the reduction factor. An increasing RF makes the process more scalable

Fig. 8.9 Total speed up
achieved by GPU-DAEMON
implementation over CUDA
unified memory-based
implementation

211 212 213 214

35

40

45

50

Total Spectra

Sp
ee
d
U
p

Speed Up Gained

Speed-Up

8 G-MSR: A GPU-Based Dimensionality Reduction Algorithm 109

211 212 213 214

0

500

1,000

Total Spectra

G
P
U
-M

em
or
y
U
se
d
(M

B
s)

Memory Footprint

GPU-DAEMON
CUDA-Unified

Fig. 8.10 Figure shows that GPU-DAEMON based implementation of MS-REDUCE uses only a
fraction of memory as used by the CUDA unified memory implementation

211 212 213 214

27

29

211

213

215

Total Spectra

T
im

e(
m
se
c)

Execution Time

GPU-DAEMON
CUDA-Unified

Fig. 8.11 Figure shows that GPU-DAEMON-based implementation ofMS-REDUCE scales better
with increasing spectra. It should be noticed that CUDA unified memory-based version reaches in-
core limit earlier and cannot processmore than 14,000 spectra in a single passwhileGPU-DAEMON
implementation can process about 400,000 spectra before that limit is reached Fig. 8.6

110 F. Saeed and M. Haseeb

References

1. Mujezinovic N, Schneider G, Wildpaner M, Mechtler K, Eisenhaber F (2010) Reducing the
haystack to find the needle: improved protein identification after fast elimination of non-
interpretable peptide ms/ms spectra and noise reduction. BMC Genomics 11(1):S13

2. Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI (2017) Msfrag-
ger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics.
Nature Methods 14(5):513–520

3. Awan MG, Saeed F (2017) An out-of-core GPU based dimensionality reduction algorithm for
big mass spectrometry data and its application in bottom-up proteomics. In: Proceedings of
the 8th ACM international conference on bioinformatics, computational biology, and health
informatics. ACM, pp 550–555

4. Awan MG, Saeed F (2016) Ms-reduce: an ultrafast technique for reduction of big mass spec-
trometry data for high-throughput processing. Bioinformatics 32(10):1518–1526

5. Baskaran MM, Bordawekar R Optimizing sparse matrix-vector multiplication on GPUS using
compile-time and run-time strategies, IBM Research Report, RC24704 (W0812-047)

6. Nvidia (2018) CUDA toolkit documentation. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Chapter 9
Re-configurable Hardware for
Computational Proteomics

Fahad Saeed, Muhammad Haseeb, and Sumesh Kumar

9.1 Introduction

In 1984, when the world was introduced to the first-ever reconfigurable hardware
(FPGAs) device, it offered to solve a critical problem facedduring the implementation
of application specific integrated chips (ASIC). Even though FPGAs ran at a clock
speed much slower than that of an ASIC, they provided an attractive solution to
emulate the design logic and verify the functional and timing performance at the
early stages of the design process. Over the years, FPGAs have evolved from being a
tiny fraction of the integrated-circuit manufacturing industry to becoming an industry
of their own. With the introduction of advanced lithographic process technologies, it
is now cost-efficient to produce multibillion gate FPGAs and deploy larger designs
directly in the solutions used in high-performance computing (HPC) industry. This
chapter describes the potential of the groundbreaking role that FPGAs can play in
developing HPC solutions for the application area of proteomics. The architecture of
FPGAs and a number of design strategies using FPGAs for proteomics are discussed
in the sections that follow.

9.1.1 Construction of a Field-Programmable Gate Array

A high-level snapshot of a typical FPGA architecture is shown in Fig. 9.1. A mesh of
configurable logic blocks (CLB) is connected by programmable routing logic blocks.
Each CLB consists of several look up tables (LUT) implementing general purpose
logic functions required by any design. The FPGA programming bitstream enables
the specific logic paths to achieve a required functionality. The CLBs also contain
registers at its output to facilitate the development of pipelined designs.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9_9

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_9&domain=pdf
https://doi.org/10.1007/978-3-031-01960-9protect LY1	extunderscore 9
https://doi.org/10.1007/978-3-031-01960-9_9

112 F. Saeed et al.

Fig. 9.1 FPGA structure built on an island style routing structure

The FPGA contains an ample amount of routing resource blocks that can be
programmed to enable the tristate buffers which connect the wires inside the block.
These connections not only enable connections between CLBs but between short
segments to form long wire segments as well.

9.2 Popular Architectural Configurations Using FPGAs

After reviewing the intricacies of an FPGA, it is not hard to imagine the kind of
applications that will be extremely successful at exploiting this architecture. While
ASICs are designed to run at clock speeds reaching in gigahertz, an FPGA can only
execute its designs at a few 100MHz of clock speed . However, the benefit of FPGA
based designs comes from its ease of programmability when compared to ASICs,
better throughput by developing highly pipelined designs compared with CPUs,
and better achievable power efficiency when compared to GPUs. These conclusions
have been drawn fromworks that have attempted to use FPGAs for DSP applications
such asmatrixmultiplication and video processing, and bioinformatics such as string-
matching algorithms in genomics. Although different requirements warrant different
kinds of design approaches to take, a few of the popular choices of design approach
are presented here (Figs. 9.2, 9.3 and 9.4).

9 Re-configurable Hardware for Computational Proteomics 113

Fig. 9.2 Rectangular mesh
systolic array architecture

Fig. 9.3 Hexagonal
arrangement of processors

Fig. 9.4 Linear systolic
array

9.2.1 Systolic Array Configuration

A systolic array configuration refers to the arrangement of large number of relatively
simple processors or processing elements (PE) with local interconnects between
them. These types of architectures are especially suitable for algorithms with regular
dataflow requiring sequential access to the main memory. Various approaches have
been explored to define the interconnections between the PEs, a few of which are
presented in Figs. 9.2, 9.3 and 9.4.

In a systolic configuration, inputs and outputs can either flow in any direction or
they can remain stationary inside the PE. The PEs on the edge is either connected
to the memory bus or the input/output collector modules. The entire circuit runs at
moderately low clock frequencies compared to an ASIC, but a more efficient use
of the FPGA resources is achieved as most PEs are processing on a piece of data
simultaneously to increase the system throughput. Different configurations have been
experimented for different application problems such as matrix multiplication and
convolution. Figure9.3 shows a hexagonal arrangement where each PE is connected
to six neighboring PEs, while each PE is connected to four neighboring PEs in
rectangular arrangement, and to two neighboring PEs in a linear arrangement. The
trade-off between these choices comes in the form of throughput verses power-
consumption. For example, while total number of simultaneously executing PEs

114 F. Saeed et al.

might be greater in a hexagonal arrangement, its total number of idle PEs is alsomuch
greater compared to a linear arrangement. Another advantage of systolic architecture
is the ability to utilize the routing resources on chip in a more efficient manner. If
we observe Figs. 9.2, 9.3 and 9.4, the inherent architecture of the FPGA is systolic
in nature where each PE logic can be implemented by using one or more adjacent
CLBs on the FPGA, and routing resources are used to connect to only neighboring
PEs which avoids the use long wire segments and helps to meet timing requirements.

Systolic arrays provide optimal performance if certain conditions are met.

1. The computation time for each PE must be equal as all PEs depend on their
neighbors for partial results.

2. Memory access pattern must be non-random or deterministic.

9.2.2 Parallel Asynchronous PEs Connected to the System
Bus

Since systolic arrays are synchronous in nature, i.e. the computation of PEs must
be synchronized, a different approach can be adopted for algorithms having random
memory access patterns and irregular computation pattern. Figure9.5 shows PEs
connected to the main system bus and have no interconnections with the other PEs.
Each PE starts processing on the data as soon as it receives it. A separate logic block
can be designed which only serves to offload the input data to PEs and collect the
corresponding outputs. All the PEs in the system execute asynchronously in the sense
that they do not need to synchronize their computation with other PEs in the system.
However, the performance of such a system is greatly limited as more PEs are used,
which cause congestion on the single bus shared by all the PEs. The right number
of PEs is selected by calculating the trade-off between memory operation time and
computation time. Another challenge is to balance the computation load among
the PEs evenly. For computational loads with less degree of data inter-dependency,
load balancing can be easily achieved as the workload can be divided by simply
distributing (n/p)th of the total input data n among p processing elements.

9.2.3 Parallel Processors with Communication Interconnect

Another architectural setting which combines the features of systolic and asyn-
chronous processing features is shown in Fig. 9.5. This kind of configuration allows
local processing which is independent of the execution of other PEs in the system.
However, it includes communication interconnect between the processing elements
to allow the sharing of computation parameters and input data processing (Fig. 9.6).

The PEs are connected to the main memory bus which is accessible by the host
CPU. For the host CPU, PEs act as co-processor units for carrying out computation

9 Re-configurable Hardware for Computational Proteomics 115

Fig. 9.5 PE is represented
by gray block. Each PE
executes independently of
other PEs in the system

Fig. 9.6 Parallel processors with intercommunication network to share features and data

116 F. Saeed et al.

and CPU is responsible for orchestrating the flow of computation as the nature of
computations mostly being performed are irregular in nature. Each PEs has its own
local RAMwhich allows execution of lightweight computation kernels and local data
management rather than simple compute operations as we saw in the pure systolic
array architectures.

9.3 FPGA Design for Computational Proteomics

The most demanding computational problems in proteomics are those involving
peptide identification. In the peptide identification process, millions of experimental
spectrum vectors are compared against a peptide database of already discovered
peptides. Some of the most popular database search algorithms rely on computing
a similarity score between an experimental spectrum vector acquired from mass
spectrometers and a theoretically generated spectrum from the peptide. The similarity
scores basically provide a quantitative measure of the number of peaks that match
between the experimental and theoretical spectrum. One such similarity score is
called Xcorr which is computed by taking the cross-correlation between the two
vectors. Following themain principles of high-performance architecture design using
FPGAs described above, an example architecture for accelerating the computation
of Xcorr is presented here. The similarity score between a theoretically generated
spectrum vector X and an experimentally acquired spectrum vector Y of length n is
defined as

Xcorr =
n−1∑

i=0

X [i]Y [i] − 1

151

n−1∑

i=0

τ=75∑

τ=−75

X [i]Y [i − τ] (9.1)

Equation (9.1) calculates the difference between the dot product and cross-
correlation calculated with an offset value of τ = 75. This calculation can be simpli-
fied by performing a pre-processing step which allows us to carry out the expensive
dot product operation only once instead of performing dot products across all offsets.
The pre-processing step is summarized below,

Xcorr =
n−1∑

i=0

X [i]
(
Y [i] − 1

151

τ=75∑

τ=−75

Y [i − τ]
)

YP =
n−1∑

i=0

(
Y [i] − 1

151

τ=75∑

τ=−75

Y [i − τ]
)

(9.2)

by following the simplification in (9.2), we can reduce the overall computation to

Xcorr =
n−1∑

i=0

X [i]YP [i]

9 Re-configurable Hardware for Computational Proteomics 117

9.3.1 Architecture Overview

A bird’s eye view of the architecture design to implement Eq. (9.1) is shown in
Fig. 9.7. In this setup, the host CPU acts as a computation manager, whose only job
is to transfer the required mass spectrometry data to the FPGA DRAM via the PCIe
link. On the FPGA side, the PCIe communication between CPU and the logic is
performed via the PCIe DMA. Along with that, FPGA logic has a lightweight core
defining a register file to hold the parameters of computation and communicate with
the CPU. Other important components in the design are the processing element (PE)
and the bus-arbitration module.

The main steps of the algorithm—reading experimental spectra from the DRAM ,
candidate peptide search, theoretical spectra ion generation, dot product computation,
and compiling resulting scores—are carried out by the PE. In this design setting, there
can be as many PEs executing in parallel as allowed by the number of resources
available on the FPGA fabric. All the PEs execute the computation independently
of each other and on their local copy of experimental spectrum information. Since
there is only one DRAM, all the PEs have access to it via the system bus. A bus-
arbitration module sits between the system bus and the PEs which allocates access
to the PEs based on a fairness scheme. In this scenario, where the size of request
(size of data to be transferred) will be roughly equal for all the PEs, one fair scheme
which is implemented here is the first-come-first-serve (FCFS) policy. The following
sub-sections explain the construction of some of the important sub-modules in the
design.

Fig. 9.7 Complete system architecture shows host CPU communicates with FPGA RAM via PCIe
DMA bridge which is connected to Intel’s Avalon memory mapped bus. Core registers module
contains the computation parameters and is also used for FPGA-CPU communication. To allow
efficient use of the Avalon memory mapped bus, all PEs are connected to FCFS-based bus arbiter
which is in turn connected to Avalon memory mapped bus

118 F. Saeed et al.

9.3.2 Processing Element (PE)

The processing element is in essence a lightweight single-purpose processor whose
instructions are the computation parameters which are stored in the core-compute
registers. The flow of computation in this algorithm is maintained by a state machine
which carries out all the steps in order. In Fig. 9.8, the state machine is represented
by the block called “Control Logic”. The control logic performs the following steps
in order

1. Request access to the bus arbiter for memory access.
2. After access is granted, copy the next available spectrum from the DRAM into

the local on-chip RAM.
3. Read the precursor mass of the copied spectrum and activate binary search mod-

ule to find candidate peptides.
4. Copy the candidate peptides into the peptide registers.

Fig. 9.8 Detailed internal construction of a single processing element. At the heart is the control
logic which controls the function of all the sub-modules in the figure. Binary search module fetches
a candidate peptide and stores it in a peptide FIFO. Ion generator reads the peptide and generates
fragment-ions. A 512-bit packet containing 16 32-bit ion-mz and intensity pair values along with
a 32-bit theoretical ion and intensity pair values are fed to the ion-matching kernel which finds the
matching peak and stores the partial score in on-chip RAM

9 Re-configurable Hardware for Computational Proteomics 119

5. Generate the predicted peptide ions theoretically.
6. Read the experimental spectrum ions and theoretically generated ions and pass

them to ion-matching module.
7. Wait for the ion-matching module to finish the computation of dot product score.
8. After completion, the resulting scores for the current experimental spectrum in

local RAM are placed into the result RAM.
9. Read the dot product scores along with experimental spectrum information and

transfer them to the DRAM.
10. Signal the address of the resulting scores and the completion of operation to the

CPU by writing to core control registers.

9.3.3 Bus-Arbitration Module

The bus-arbitration module ensures that all the PEs in the system have an equal
amount of workload so that maximum performance benefit is achieved. In the case
when a large number of PEs are connected to the system bus, a huge number of
requests can congest the bus resulting in uneven bus allocation. The bus arbiter
module avoids this by keeping track of the order in which access requests were
received. In this way, PEs are assigned based on a first-come-first-serve (FCFS)
policy. The detailed architectural view of the bus arbiter module is shown in Fig. 9.9.
The arbiter module has input lines named “bus request” which are coming from the
PEs. Whenever a PE generates the request for access to the bus, the wait register
connected to that signal counts and keeps track of the time elapsed since the request
was generated. When the bus finally becomes available, a find-max module finds the
register which has the largest wait time value, and the arbiter assigns the access of
the bus to the corresponding PE.

9.3.4 Binary Search Module

The peptides are placed in DRAM sorted by their mass value. This facilitates the
searching for candidate peptides as the search key is also based on the precursor
mass value for the experimental spectrum. The search operation is performed in
log(n) time—where n is the total number of peptides—by the binary search module.
The hardware circuit to perform a binary search operation is shown in Fig. 9.10. For
every request, the search module starts by accessing the memory location at n/2 and
compares the mass of the read peptide with the mass of experimental spectrum. In
the circuit, the address register is used to hold the address to the current location
being accessed. If the mass lies in the precursor window, the location of the peptide
is returned, otherwise the address register is updated to search in the location n/2+ δ
or n/2− δ, based on the previous comparison. This operation is repeated until the
required precursor window condition is satisfied.

120 F. Saeed et al.

Fig. 9.9 Brief logic
description of bus-arbitration
module. Bus request lines
from all the PEs are coming
into the arbiter. When a PE is
denied service, its wait count
register is incremented,
dynamically increasing its
priority for the next turn.
Find max module is a
comparator tree that finds
which registers have the
maximum value and grants
access to the corresponding
PE

Fig. 9.10 Control logic to
perform binary search for the
precursor-ion mass. Based on
the precursor mass window,
search module start from
address location n/2 where n
is the last address. A MUX
selects the next address to be
read if a candidate peptide is
not found

9.3.5 Ion-Matching Circuit

Prior to the beginning of computation, the experimental spectrum vector is stored in
the local on-chipRAMin the compressed sparse row (CSR) format. The ion-matching
module is a combinational circuit which is connected to the experimental spectrum
vector in the on-chip RAM and the theoretically generated ions coming from the
ion-generator module. The computation begins by moving packets of experimental
spectrum pairs of ion m/z and intensity values into the circuit. Each packet is a

9 Re-configurable Hardware for Computational Proteomics 121

Fig. 9.11 The ion-matching circuit receives a 512-bit packet containing 16 experimental ions
which are all compared with a theoretical ion in one cycle. The matched ions are multiplied and
accumulated in the score register. If the theoretical ion is outside the range of current experimental
ions, next packet is requested from the on-chip-RAM by incrementing the counter

64-byte long word containing 16-ion pairs. The packet size was determined from
the DRAM read packet size which is 6-byte long. The intensity value of the 16 ions
is compared with a theoretical ion to check if it lies in range. This comparison is
done using 16 parallel comparators as shown in Fig. 9.11. If the theoretical ion is
matched, the corresponding intensity value is multiplied by the intensity value of
the theoretical ion and accumulated in the score register. If the ion is not matched,
then either a new theoretical ion is generated by the module or a new experimental
spectrum vector is read from the on-chip RAM. In this manner, the ions from both
experimental and theoretical vector arematched sequentially to finish the dot product
scoring. After completion of the computation, the final score is stored in a separate
on-chip RAM collecting results.

9.3.6 Experiments and Results

The hardware design explained above was designed using Intel Qsys system builder
and Quartus for Stratix 10 FPGA board. The design was tested for a clock frequency
of 200MHz. The dataset used for this experimentwas fromPRIDE (Proteomics Iden-
tification Database) called PXD000612 containing more than 90,000 experimentally
acquired spectra which were matched against more than 669k peptides from the

122 F. Saeed et al.

Table 9.1 Total processing time for 90494 experimental spectra compared with 669964 peptides.
Here the time is shown for the number of PEs instantiated in the system verses cache size used

Cache Total processing time for #PEs (s)

Size 1 4 8 12 16 20 24 32

512B 54.63 16.65 15.43 15.25 15.28 15.10 15.03 14.98

1kB 48.01 12.36 9.36 8.57 8.18 8.06 7.84 7.76

2kB 39.44 7.87 4.35 3.02 2.30 1.84 1.55 1.25

4kB 37.62 7.42 4.11 2.84 2.17 1.75 1.47 1.18

human proteome dataset. For this search process, there were over 316 million dot
product computations performed.

The design achieves its performance gains by optimizing the number of DRAM
accesses and employing input reuse. In digital systems, main memory accesses are
muchmore expensive compared to data access fromon-chip resources. In this design,
input reuse is implemented by carefully selecting the size of on-chip RAMwhich acts
as processor cache. In computer systems, caching works by predicting the data which
will be accessed next so that it is already available next to the processor instead of
waiting for it to arrive from the DRAM. In this design, there is no need of predicting
as it is already known that is expensive to copy from the DRAM in experimental
spectrum vectors. Each experimental vector has to be comparted to all the candidate
peptides separately, thus in order to minimize DRAM accesses it is imperative to
copy it only once and keep it in cache until it is no longer be required for future
computations. If the cache size is not big enough to hold the entire spectrum, then
it must be copied from the DRAM in chunks. Since each chunk must be discarded
after it has been processed, it has to be copied again for every candidate peptide.
This will result in exponentially higher number of DRAM accesses compared to the
case when cache size is big enough to hold the entire spectrum vector. The correct
size of cache was chosen by experimentation on the dataset. The results of this
design space exploration are illustrated in Table 9.1. Table 9.1 shows the effect of
cache (implemented as on-chip RAM) size on the above-defined three parameters.
It is evident that the total computation time decreases linearly with increasing the
number of processing elements when the cache size is 2kB or 4kB. However, for a
cache size below 2kB, the speedup does not follow a linear behavior after increasing
the PEs above 6.

The analysis was extended to clearly demonstrate the time spent on computation
and communication, where the communication time is further divided in terms of
time spent on I/O (memory operations in this case) and waiting time. These terms
are defined as
Average compute time: Time spent by the processor on computing dot product.
Average I/O time: Time spent by the processor on performing memory read/write
operations.
Averagewait time:Time spent byprocessor onwaiting toget access to the memory bus.

9 Re-configurable Hardware for Computational Proteomics 123

Table 9.2 Average wait time of each processing element for number of PEs instantiated in the
system verses the size of cache used

Cache Average wait time for #PEs (s)

1 4 8 12 16 20 24 32

512B 0.0 5.78 9.38 15.25 11.08 11.93 12.47 13.13

1kB 0.0 2.80 4.07 4.91 5.40 5.81 5.97 6.26

2kB 0.0 0.0018 0.0020 0.0022 0.0022 0.0023 0.0023 0.0023

4kB 0.0 0.0018 0.0019 0.0020 0.0021 0.0021 0.0021 0.0022

Table 9.3 Average time spent by each processing element on performing DRAM read/write oper-
ations for number of PEs instantiated in the system verses size of cache used

Cache Average I/O time for #PEs (s)

1 4 8 12 16 20 24 32

512B 15.39 3.05 1.69 1.17 0.88 0.71 0.59 0.48

1kB 8.11 1.60 0.88 0.60 0.46 0.37 0.30 0.24

2kB 0.0081 0.0016 0.0009 0.0007 0.0006 0.0004 0.0003 0.0002

4kB 0.0077 0.0015 0.0008 0.0005 0.0004 0.0003 0.0002 0.0002

Tables9.2, 9.3, and 9.4 show the breakdown of total time spent in terms of the
above-defined terms. These numbers represent the average time spent by a single
processing element in the system. In Table9.3, we can see the pattern of change in
waiting time when a cache size of 512B, 1kB, 2kB, and 4kB is used in the system.
When the cache size is below 2kB, the average wait time is shown to be increasing
exponentially when the number of PEs is increased. However, when a 2kB or 4kB
of cache is used, the wait time stays roughly constant for up to 32 PEs.

Table 9.3 shows a similar trend in average I/O time, there is an exponential increase
in the time spent on read/write operations with the DRAM when the cache size is
below 2kB. The time spent on memory operations when cache is below 2kB is 600x
higher. This was expected as we know that the size of largest experimental spectrum
vector in our dataset is less than 2kB. So, when the cache is not large enough to keep
the entire spectrum vector, then the PE has to copy the vector in chunks, and it has
to copy the same vector all over again for every candidate peptide.

Table 9.4 demonstrates an important result, i.e. the average amount of time spent
by a processing element on performing dot product is not affected by the size of
cache. For any cache size, the computation time scales linearly with the number
of processing elements instantiated in the system irrespective of the size of cache
used. This is in line with the design decision described in earlier sections, i.e. the
total processing time in this problem is stalled due to the inefficient memory access
operation.

124 F. Saeed et al.

Table 9.4 Average time spent by each processing element on performing dot product computation
operations for number of PEs instantiated in the system verses size of cache used

Cache Average compute time for #PEs (s)

1 4 8 12 16 20 24 32

512B 39.23 7.81 4.35 3.00 2.28 1.85 1.54 1.24

1kB 39.89 7.95 4.40 3.05 2.31 1.87 1.56 1.26

2kB 39.43 7.86 4.34 3.01 2.29 1.84 1.55 1.25

4kB 37.25 7.42 4.11 2.84 2.16 1.75 1.47 1.17

9.4 Conclusion

The design presented in this chapter to accelerate the computation of Xcorr using
FPGAs provides some insight on performing architecture level optimizations to cre-
ate an efficient communication and computation pipelines. Using the high reconfig-
urability of FPGAs, a design can be adapted to any kind of requirements demanded
by the application. Moreover, performing design space exploration by measuring
performance metrics against varying important system parameters such as the num-
ber of processing elements and cache size, etc., one can find the most optimal choice
of parameters in the final design.

Chapter 10
Machine-Learning and the Future of
HPC for MS-Based Omics

Fahad Saeed and Muhammad Haseeb

To date, MS proteomics data is identified using database search algorithms based
purely on numerical techniques or some denovo techniques that allow peptide identi-
fication without using databases. Currently, there is no single strategy from database
search or denovo techniques that can claim as the most accurate strategy. Substantial
work has been carried out toward developing computational techniques for iden-
tification of peptides using database search [1], as well as denovo algorithms [2].
However, peptide identification problems are well-known and prevalent [3] includ-
ing but not limited to misidentifications or no identification for peptides, statistical
accuracy (FDR) and inconsistencies between different search engines [4].

Most of the algorithms applied toMS data have been limited to traditional numer-
ical algorithms and can be categorized as database search algorithms and denovo
algorithms. Comparison across literature indicates decreased average accuracy of
denovo algorithms (38.1–64.0%) [4] relative to database search algorithms (30–80%)
[5]. However, within-study direct comparisons of database verses denovo machine
learning (ML) approaches have revealed modest gains [6], indicating further formal
evaluation is warranted. Moreover, ML methods use different validation metrics and
the lack of standard metrics and/or data-benchmarks can lead to overly optimistic
assessment for machine learning algorithms [7]. Overall, prior literature demon-
strated limited accuracy and generalizability [4] identifying peptides using current
limited ML methods.

Previous work suggests that numerical algorithms and the use of traditional ML
algorithms may not be able to capture and integrate the multidimensional features
of MS data [8]. However, deep learning methods [4, 8] may offer an improved
approach for identifying peptides in noisy high-dimensional MS data and peptides
that are very similar to each other [9]. Preliminary progress assessing deep learning
methods in peptide deduction applied to MS data has yielded an average accuracy
of 82–95% on selected data sets but with limited precision (amino acid level 72%)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9_10

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01960-9_10&domain=pdf

 -2047 61852 a -2047 61852 a

 -2047 61852
a -2047 61852 a

https://doi.org/10.1007/978-3-031-01960-9_10

126

and recall (peptide—level 39.24%) [8]. However, large volumes of data with large
number of possible parameters are needed for deep learning training, particularly for
MS data, which has resulted in a technical hurdle in developing such strategies. We
have previously shown that this can result in overfitted deep learning models [10]
with limited increase in accuracy due to noise feature-integration. Such overfitting
leads to limited generalizability [11], and contributes to the ongoing reproducibility
crisis [12–14]. One Deep-learning algorithmwhen used on another’s data set leads to
like 30% accuracy which suggests that there is a generalizability problem [15, 16].
Further, existing ML algorithms are computationally expensive and subsequently
have limited scalability in training and application. Our prior work has demonstrated
that this is particularly true for MS applications that scale poorly with increasing
size of data sets [17]. Computational scaling and management are needed for these
machine learning algorithms as this is currently a significant challenge for proteomics
practitioners interested in applying these techniques.

In the future, we foresee the integrated use of image-processing, machine learn-
ing, including deep learning for MS data, to identify peptides from MS data in a
highly accurate manner. To this end, there is some literature that has focused on pro-
cessing MS data using machine learning and deep learning techniques. Importantly,
image-processing, deep learning strategies, and fusing of multi-modal features have
not been applied to MS data even though these techniques have the potential to radi-
cally change how MS data is processed with highly accurate peptide identifications.
However, to make the proposed deep learning training and solutions scalable, HPC
algorithms are needed.

10.1 Why HPC is Essential for Machine-Learning Models

Deep-learning models have unmatched expressive power as compared to traditional
machine learning solutions. However, this expressive power comes from very large
number of trainable parameters which can capture complex relationships between
the data. In general, bigger and deeper Convolutional Neural Networks (CNN) mod-
els are used for various applications that are successful. The objective of this aim
is to design and develop high-performance computing strategies which can process
big MS data and accelerate the proposed deep learning models. CPU-GPU-based
methods can give superior speeds in the processing of MS data, and of training,
and inferring of deep learning models. Successful completion of such CPU-GPU-
based pipelines is likely to contribute fundamental HPC techniques to our base of
knowledge, without which the complex training and inferring of deep learning net-
works cannot be accomplished in reasonable timeframes. Upon completion of this
research challenge, it is our expectation that we will have developed a HPC frame-
work for the proposed DL solutions for MS-based omics computational strategies
developed by us/others. Such tools would be important because they would likely
aid in much-needed approaches to study human gut/environments microbiomes in a
scalable fashion.

10 Machine-Learning and the Future of HPC for MS-Based Omics 127

As part of our preliminary studies (Haseeb et al. Nature 2021), we explored
our recently proposed HPC framework (called HiCOPS) [18] for efficient accel-
eration of database peptide search algorithms on large-scale symmetric multipro-
cessor distributed-memory supercomputers. HiCOPS exhibits orders-of-magnitude
improvement in speed compared with several existing shared- and distributed-
memory database peptide search tools, allowing several gigabytes of experimental
MS/MS data to be searched against terabytes of theoretical databases in a few min-
utes compared with the several hours required by existing algorithms. The proposed
HiCOPS parallel design implements an unconventional approach in which the (mas-
sive) theoretical databases are distributed across parallel nodes in a load-balanced
fashion followed by asynchronous parallel execution of the database peptide search.
On completion, the locally computed results are merged into global results in a
communication-optimal manner. We have demonstrated an extensive performance
evaluation in which we report between 70 and 80% strong-scale efficiency and less
than 25% overall performance overheads (load imbalance, I/O, interprocess commu-
nication, pipeline halt); collectively depicting a near-optimal parallel performance.
This overhead cost-optimal design, alongwith several optimizations, allowsHiCOPS
to maximize resource utilization and alleviate performance bottlenecks. Since our
HPC framework is search-algorithm oblivious it will be a natural extension to incor-
porate meta-proteomics deep learning model into the HPC framework.

10.2 Preliminary Data and Findings

In our recent paper [19], we have designed and implemented a Deep Cross-Modal
Similarity Network called SpeCollate. This is a deep learning network that tries to
learn the scoring function between the spectra and peptides by mapping the different
modalities of the data into a shared Euclidean subspace. This is achieved by learning
fixed sized embeddings, and training the network using sextuplets of positive and
negative examples. SpeCollate also uses a custom-designed SNAP-loss function and
hardest negative mining for appropriate negative examples to improve the training
performance. In order to train the network 4.8 million sextuplets obtained from
the NIST and MassIVE peptide libraries were used and which allowed our deep
learning model to perform better than Crux and MSFragger in terms of the number
of peptide-spectrum matches (PSMs) and unique peptides identified under 1% FDR
for real-world data. To the best of our knowledge, our deep learning network is the
first model that can determine the cross-modal similarity between peptides and mass
spectra for MS-based omics.

Despite all the superior accuracy of the deep learning model one thing that was
a severe bottleneck was the time it takes to train the network. Since there is no
theoretical framework that would allow us to predict the performance of the model,
one has to fully train the model and run validation and testing before any judgement
can be made. Our single preliminary design shows that it takes approx. 283 days
of compute time to train a single deep learning network with 5 hyper-parameters

128

optimizations. The intractability of a singlemodel demonstrates that continued search
for better DL models is huge technical hurdle in studying MS-based meta-omics.
Each possible deep-network, even though carefully selected, has to be completely
trained to assess its feasibility. Apart from the time it takes for the deep learning
model training and inferences; the workflows that process MS data are also shown
to be inefficient, both theoretically [20] and in real-world experiments [18, 21]. We
believe, the HPC frameworks, that can accelerate the MS data analysis as well as the
training and inference of deep learningwill be essential to tract any kind ofMS-based
omics data analysis.

We believe that HPC will be at the forefront of these scientific investigations in
the future.

References

1. Deutsch EW, Mendoza L, Shteynberg D, Slagel J, Sun Z, Moritz RL (2015) Trans-proteomic
pipeline, a standardized data processing pipeline for large-scale reproducible proteomics infor-
matics. PROTEOMICS-Clin Appl 9(7–8):745–754

2. Vyatkina K, Wu S, Dekker LJ, VanDuijn MM, Liu X, Tolic N, Dvorkin M, Alexandrova S,
Luider TM, Pasa-Tolic L et al (2015) De novo sequencing of peptides from top-down tandem
mass spectra. J Proteome Res 14(11):4450–4462

3. Griss J, Perez-Riverol Y, Lewis S, Tabb DL, Dianes JA, del Toro N, Rurik M, Walzer M,
Kohlbacher O, Hermjakob H et al (2016) Recognizing millions of consistently unidentified
spectra across hundreds of shotgun proteomics datasets. Nat Methods 13(8):651

4. Tran NH, Zhang X, Xin L, Shan B, Li M (2017) De novo peptide sequencing by deep learning.
Proc Natl Acad Sci 114(31):8247–8252

5. Chick JM, Kolippakkam D, Nusinow DP, Zhai B, Rad R, Huttlin EL, Gygi SP (2015) A
mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun
proteomics as modified peptides. Nat Biotechnol 33(7):743

6. Chi H, Liu C, Yang, H Zeng W-F, Wu L, Zhou W-J, Niu X-N, Y-H Ding, Zhang Y, Wang
R-M et al (2018) Open-pfind enables precise, comprehensive and rapid peptide identification
in shotgun proteomics, bioRxiv 285395

7. Obermeyer Z, Emanuel EJ (2016) Predicting the future-big data, machine learning, and clinical
medicine. N Engl J Med 375(13):1216

8. Qiao R, Tran NH, Li M, Xin L, Shan B, Ghodsi A Deepnovov2: better de novo peptide
sequencing with deep learning. arXiv:1904.08514

9. Zhou X-X, ZengW-F, Chi H, Luo C, Liu C, Zhan J, He S-M, Zhang Z (2017) pdeep: predicting
ms/ms spectra of peptides with deep learning. Anal Chem 89(23):12690–12697

10. Eslami T, Saeed F (2018) Similarity based classification of adhd using singular value decom-
position. In: Proceedings of ACM international conference on computing frontiers (CF’18),
pp 19–25

11. Zou L, Zheng J, Miao C, Mckeown MJ, Wang ZJ (2017) 3d CNN based automatic diagnosis
of attention deficit hyperactivity disorder using functional and structural MRI. IEEE Access
5:23626–23636

12. Allison DB, Shiffrin RM, Stodden V (2018) Reproducibility of research: issues and proposed
remedies. Proc Natl Acad Sci 115(11):2561–2562

13. Hutson M (2018) Artificial intelligence faces reproducibility crisis. Science (New York, NY)
359(6377):725

14. Berrar D, DubitzkyW (2017) On the Jeffreys-Lindley paradox and the looming reproducibility
crisis inmachine learning. In: 2017 IEEE international conference on data science and advanced
analytics (DSAA). IEEE pp 334–340

 11624 41875 a 11624
41875 a

http://arxiv.org/abs/1904.08514

10 Machine-Learning and the Future of HPC for MS-Based Omics 129

15. GabrielsR,MartensL,DegroeveS (2019)Updatedms2pipweb server delivers fast and accurate
ms2 peak intensity prediction for multiple fragmentation methods, instruments and labeling
techniques. Nucleic Acids Res 47(W1):W295–W299

16. Gessulat S, Schmidt T, ZolgDP, Samaras P, SchnatbaumK, Zerweck J, Knaute T, Rechenberger
J, Delanghe B, HuhmerA et al (2019) Prosit: proteome-wide prediction of peptide tandemmass
spectra by deep learning. Nat Methods 16(6):509

17. Haseeb M, Afzali F, Saeed F (2019) Lbe: A computational load balancing algorithm for speed-
ing up parallel peptide search in mass-spectrometry based proteomics. In: IEEE international
parallel and distributed processing symposium workshops (IPDPSW). IEEE, pp 191–198

18. Haseeb M, Saeed F (2021). Source data: high performance computing framework for tera-
scale database search of mass spectrometry data. https://doi.org/10.5281/zenodo.5076575

19. TariqMU, Saeed F (2021) Specollate: deep cross-modal similarity network for mass spectrom-
etry data based peptide deductions. PLoS ONE 16(10):e0259349

20. Saeed F, Haseeb M, Iyengar S Communication lower-bounds for distributed-memory compu-
tations for mass spectrometry based omics data. arXiv:2009.14123

21. Kumar S, Saeed F (2021) Communication-avoidingmicro-architecture to compute xcorr scores
for peptide identification. In: 2021 31st international conference on field-programmable logic
and applications (FPL). IEEE, pp 99–103

 18233
10489 a 18233 10489 a

https://doi.org/10.5281/zenodo.5076575

 17923 14917 a 17923 14917 a

http://arxiv.org/abs/2009.14123

Glossary

Accuracy (peptide identification) The fraction of experimental MS/MS spectra
correctly matched to their peptide sequence.

Amdahl’s Law A formula to compute the theoretical maximum achievable
speedup in parallel computing.

Application Specific Integrated Chip A computer chip or a microprocessor
specifically designed to (optimally) perform a certain use in contrast to a gen-
eral purpose CPU.

Arithmetic operations CPU operations of arithmetic nature including addition,
subtraction, multiplication, division, multiply-add etc.

ASIC Application Specific Integrated Chip.
Asynchronous parallel Aparallel computing configurationwheremultiple CPUs

or nodes independently and simultaneously work to complete a task or algorithm.
Background noise The noisyMS/MS data introduced by the environment includ-

ing any impurities, the equipment, or stray ionization in mass spectrometry.
Bandwidth cost The amount of bandwidth (bits/second) consumed by a certain

task/algorithm.
Bitstream A sequence of computer bits.
Bolt A parallel computing based algorithm for database peptide search.
Bulk Synchronous Parallel (BSP) Bulk Synchronous Parallel. A parallel com-

puting scheme where a set of asynchronous parallel nodes execute a bulk of
algorithmic work before synchronizing in contrast to synchronizing after each
cycle or step.

Buckets Set of (similar) items having similar properties or requiring the same
computation.

Cache A fast memory commonly used to store frequently used items for the pro-
cessor.

Chromatogram A color pattern formed by performing liquid chromatography
where each color represents a separated compound in the mixture.

CID Collision Induced Dissociation. A method to dissociate peptides or protein
ions into fragments.

Co-eluting peptides Peptides that elute together in the mass spectrometer com-
monly because they are isobaric and are not separated only based on their relative
mass.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9

131

https://doi.org/10.1007/978-3-031-01960-9
https://doi.org/10.1007/978-3-031-01960-9

132 Glossary

Coalesced memory access A technique to combine several many and haphazard
memory accesses into one transaction to improve bandwidth.

Coding genes Genes (regions of a genome sequence) that translate to proteins.
Communication cost Overhead cost of communicating between parallel running

CPUs or nodes to synchronize and/or exchange information.
Connectomics Connectomics is the production and study of the connections

within an organism’s brain and nervous system.
Convolutional Neural Networks (CNNs) CNNs or ConvNets are a class of deep

learning that apply sliding kernels to detect features. CNNs have wide application
in image and video applications.

Correlation A statistical measure of the degree to which two or more variables
are coherent to one another.

CPU-GPU architectures Computer architectures incorporating both general pur-
pose CPUs, Graphical Processing Units (GPUs) and the interconnect between
them.

Cross-correlation A method to compute similarity between experimental and
theoretical MS/MS spectra.

Curve fitting Fitting a standard curve given by a polynomial to a given chart/
histogram by optimizing polynomial’s parameters, coefficients and exponents.

Dark-data ExperimentalMS/MSspectra that donotmatch to anypeptide sequence
and hence are unknown.

Data Dependent Acquisition (DDA) A mode of data collection in mass spec-
trometry. In DDA, the mass spectrometer selects only the most intense peaks or
peptide ions in the first stage, and further fragments them for analysis.

Data Independent Acquisition (DIA) A mode of data collection in mass spec-
trometry. In DIA, the mass spectrometer divides the peptide precursor mass range
into mass windows. Then during each cycle of 2–4s, the mass spectrometer frag-
ments all peptide ions precursors in the windows.

Database Search Amethod to identify peptides from the experimental mass spec-
trometry data. In database search, the experimental mass spectra are compared
against a database of theoretical spectra to find the best match. The theoretical
spectra are generated using in-silico simulation process using protein sequences.

de novo A method to directly analyze the experimental mass spectrometry data
and infer the peptide sequence(s) it may correspond to.

Data parallelism A parallel computing technique where several CPUs perform
work by simultaneously performing the same computation on different data.

Data partitioning The process of partitioning a large chunk of data into smaller
chunks for simultaneous processing.

Denoising The process of removing spurious data points and noisy peaks intro-
duced by the environment in the actual data.

Dimensionality reduction The process of reducing the number of dimensions
(properties) per data point. For example, reducing data points from (x, y, z) →
(x, y).

Edit Distance A method to measure the dissimilarity between two sequences or
strings.

Glossary 133

Embarrassingly parallel An ideal parallel computing situation where increasing
the number of nodes or processors by K× results in a speedup of K×.

Exon A portion of the gene sequence that codes for amino acids.
Intron A portion of the gene sequence that does not code for amino acids.
fMRI Functional magnetic resonance imaging (fMRI) measures brain activity by

detecting changes associated with the blood flow.
GPU Graphical Processing Unit.
Heterogeneous computing In heterogeneous computing, the algorithmic work-

load is parallelized over asymmetric computing resources, often general purpose
CPUs and GPUs, in a way to better harness the system to achieve speedup.

High-performance computing (HPC) High-performance computing refers to
using supercomputers and large-scale computers to solve computational and
numerical problems, often performing massive amounts of complex computa-
tions on complex and large data sets, to compute the solution.

Hybrid parallelism A parallelization technique where both the task and data are
split among parallel machines to achieve parallelism.

Hyperscore An algorithm to compute similarity between an experimental and a
theoretical MS/MS spectrum.

Intragenic Being or occurring within a gene.
Isotopic clusters The set of closely located (clustered) peaks in a spectrum rep-

resenting different isotopes of the molecules inside the mass spectrometer.
Lipidomics A life sciences sub-field involving large-scale studies of networks and

pathways in cellular lipids in biological systems.
LBE A parallel computing algorithm for balanced distribution of database peptide

search workload across distributed-memory supercomputers.
Load balance Themeasure of workload balance between simultaneously running

parallel computers working together to compute a solution.
Locality The measure of the closeness of the data to its processing element in the

memory hierarchy.
Lock-step A parallel computer architecture where all parallel cores share a pro-

gram counter thus perform the same operation on a different piece of data all
simultaneously and synchronously.

Machine learning An artificial intelligence (AI).
Map-Reduce A computational model consisting of two steps i.e. map and reduce

working a divide and conquer computing approach for big data sets often on a
parallel computing system.

MassIVE A repository for experimental MS/MS data.
Memory contention A measure of the amount of memory bandwidth under con-

sumption.
Message A data or information exchange between processing elements or CPUs.
Microbiome Microbiome is the collection of all bacteria, fungi, viruses and their

genes that live inside our bodies.
Mod Distance (MD) A post-translational mutation aware algorithm to measure

similarity between two peptide sequences.
Index A data structure that allows quick querying of information.

134 Glossary

Moore’s Law Moore’s Law states that the number of transistors in a dense inte-
grated circuit (IC) doubles roughly every two years. In today’s world, Moore’s
Law is almost outdated due to thermal limitations of ICs.

Next Generation Sequencing (NGS) Modern and extremely fast DNA sequenc-
ing technology which has enabled the production of billions of DNA reads in a
few hours.

Open-search The execution of database peptide search for peptide identification
using a wide (often ±500Da) precursor mass tolerance setting. Open-search is
commonlyused to identify spectrawith unknownpost-translationalmodifications.

Overfitting A scenario in machine learning where the trained model loses its
generality and ends up simply memorizing the data set used to train it. Overfitting
is evident if there is a huge gap between training and test set accuracies.

Pipeline stall A scenario in pipeline based parallel computing design when the
relative speeds of producer and consumers don’t match resulting in a halt in the
pipeline flow.

Parallelization The method of re-expressing the algorithmic work such that it
could be computed on a parallel computer often faster than a serial computer
without compromising on final results.

PSM Peptide to Spectrum Match (PSM) represents a match between an experi-
mental MS/MS spectrum and a peptide or protein sequence. The PSMs are often
statistically analyzed for p- and q-value confidence scores.

Post translational modifications (PTM) The mutations that occur in peptides or
proteins after they have been synthesized from the genes. PTMs can also be
chemically induced during mass spectrometry.

SIMT Single Instruction Multiple Threads (SIMT) is a parallel computing model
native to GPUs. In this model, all threads perform the same instruction in a lock-
step fashion on a different piece of data.

Non-model proteomics A sub-branch of proteomics that studies the proteomics
aspect of the organisms whose reference protein database is not yet available.

Peptide coverage A measure of how well the peptide ion has been dissociated
inside mass-spectrometer. Ideally, the peptide ions should break at all possible
cleavage points to produce a high quality fingerprint.

Processing Element (PE) A computing element such as CPU, GPU etc.
Pearson coefficient Pearson coefficient is ameasure of linear relationshipbetween

two sets of data.
Peptide A smaller protein (amino acid chain).
Random sampling A sampling method that selects samples from the original

data set at random. The randomization process typically follows a probability
distribution.

Regression A statistical method to compute and measure the strength of relation
between a given function and a data set. It is also commonly used to model a data
set using a known polynomial or a function.

Scalability A measure of parallel computing efficiency depicting the amount of
speed advantage that could be achieved by introducing a certain number of pro-
cessing elements in computing.

Glossary 135

Search-engine An algorithm that performs and optimizes a query (experimental
spectrum in our case) against a reference database.

Sequencing The process of identifying and assigning a peptide/protein sequence
to an experimental spectrum.

Six-frame translation In-silico method for translating a DNA sequence into
amino acids taking in account the three possible reading frames in each direc-
tion. i.e., 5’UTR and 3’UTR Resulting in six possible translations.

Spectral Library Search Peptide identification method where the experimental
MS/MS spectra are compared against a library of pre-identified experimental
MS/MS spectra to find the best possible match.

Speedup The measure of increase in processing speed achieved by introducing
more processing elements in the system.

SWATH Sequential Window Acquisition of All Theoretical Mass Spectra
(SWATH) is a technique for Data Independent Acquisition (DIA) in mass spec-
trometry.

Index

A
Accuracy, 126
Algorithms, 1
Amdahl’s law, 49
Amino acids, 7
Application Specific Integrated Chip

(ASIC), 111
Arithmetic operations, 1
Asynchronous parallel, 39

B
Background noise, 58
Bandwidth cost, 23
Binary search module, 119
Bitstream, 111
Bolt, 38
Bottleneck, 1
Bottom-up, 7
Broadband DIA, 9
Buckets, 92
Bulk Synchronous Parallel (BSP), 39
Bus-arbitration module, 119

C
Cache, 124
Chains, 7
Chromatogram, 9
Clock speed, 112
Cloud computing, 2
Clustering, 10
Coalesced memory access, 81
Coarse-grained parallelism, 41
Coding genes, 13
Co-eluting, 9

Collision-Induced Dissociation (CID), 9, 70
Communication, 1
Communication costs, 2
Compressive analytics, 23
Computational model, 39
Configurable Logic Blocks (CLB), 111
Connectomics, 81
Convoluted spectra, 9
Convolutional Neural Networks, 126
Correlation, 45
CPU-GPU architectures, 2
Cross-correlation, 124
CUDA, 78
Curve fitting, 42
Cysteine carbamidomethylation, 45

D
Dark-data, 3
Database Search, 2, 11
Database sharding, 38
Data buffering, 41
Data buffers, 42
Data Dependent Acquisition, 8
Data Independent Acquisition, 9
Data modality, 127
Data parallelism, 41
Data-partitioning, 3
Deep-learning, 2
Denoising, 69
De novo, 10
Digested, 7
Dimensionality reduction, 60
Distributed-memory, 1
Dot product, 27

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2022
F. Saeed and M. Haseeb, High-Performance Algorithms for Mass Spectrometry-Based
Omics, Computational Biology 34,
https://doi.org/10.1007/978-3-031-01960-9

137

https://doi.org/10.1007/978-3-031-01960-9
https://doi.org/10.1007/978-3-031-01960-9

138 Index

DRAM, 117
DSP, 112
Dynamic programming, 11

E
Edit Distance, 39
Efficiency, 1
Eluted, 9
Eluting, 8
Embarrassingly parallel, 41
Embeddings, 127
Enzymes, 7
Exon, 12
Exon-exon junction, 12
Exon-intron junction, 12
Extracted Ion Chromatogram (XIC), 9
ExtremeScience andEngineeringDiscovery

Environment (XSEDE), 3, 44

F
Field-Programmable Gate Array (FPGA),

43, 111
First-Come-First-Serve (FCFS), 117
Forecasting, 41
Fragmentation, 8
Fragmented, 7
Fragment-ion index, 28
Functional Magnetic Resonance Imaging

(fMRI), 81

G
Gene models, 13
Generalizable, 28
Genomics, 3
Global memory, 79
Glycomics, 7
Graphics Processing Unit (GPU), 1

H
Hadoop, 29
Hardest negative mining, 127
Hardware accelerator, 38
Hardware counters, 48
Heterogeneous computing, 50
HiCOPS, 39
Higher-energy Collisional Dissociation

(HCD), 9, 70
High-Performance Computing (HPC), 2, 3
Homogeneous supercomputer, 24
Homo sapiens, 44

Hybrid parallelism, 41
Hyperscore, 46

I
Indexing, 39
In-silico, 22
Instructions per cycle, 49
Intensity spread, 62
Intergenic, 12
Interpretable spectra, 58
Intragenic, 12
Intron, 12
In-warp optimization, 92
Ion-matching circuit, 120
Isotopic clusters, 58

L
Latency cost, 23
LBE, 39
LC-MS/MS, 7
Linear Tail-Fit, 42
Lipidomics, 7
Liquid chromatography, 7
Load balance, 38
Locality, 81
Lock-step, 81
Logic paths, 111
Look Up Table (LUT), 111
Lower-bounds, 24

M
Machine learning, 125
Manycore, 1
Map-Reduce, 38
MassIVE, 127
Mass spectrometry, 1, 2, 7
Mass-to-charge, 8
MaxQuant, 38
MCtandem, 38
Memory contention, 38, 49
Memory hierarchy, 1, 3
Mesh, 111
Message, 23
Metabolomics, 7
Meta-proteomics, 1
Microbiome, 3
Mod Distance, 39
Modification, 2
Molecular dynamics, 3
Moore’s law, 1
MPI, 29, 38

Index 139

MR-Tandem, 38
MSCleaner, 58
MS-Fragger, 38
MS-GF+, 38
MS-PyCloud, 38
MS-REDUCE, 57
Multicore, 1
Mutations, 10

N
Network, 1
Next Generation Sequencing (NGS), 10, 81
NIST, 127
Non-model proteomics, 1

O
Omics, 2
Open-search, 45
Overfitting, 126
Overheads, 41

P
Parallel computer, 24
Parallel efficiency, 38
Parallelization, 2
Parallelization strategy, 39
Pearson coefficient, 45
Peptide, 1, 7
Peptide coverage, 9
Peptide-to-Spectrum Match (PSM), 25
Pipeline stalls, 49
Post-Translational Modifications (PTM), 3
Pragmas, 78
Precursor ion, 9
Pre-processing, 41
PRIDE Archive, 44
Processing Element (PE), 113
Producer-consumer model, 41
Proteogenomics, 2
Proteolyzed, 8
Proteome, 2
Proteomics, 2
PSM candidate, 28
PVM, 38

Q
Quantized Index Spectrum (QIS), 102

R
Random access, 41

Random sampling, 70
Reconfigurability, 124
Registers, 111
Regression, 43
Reproducibility, 126
Restricted-search, 45
Routing, 114

S
Sampling, 41
Scalability, 2
Scheduling, 41
Scoring, 1
Search-engines, 1
Sequencing, 7
Sequential Computer, 24
Sequential Window Acquisition of all The-

oretical Mass Spectra (SWATH-MS),
9

Serial algorithms, 1, 2
Shared memory, 79
Shared-peak count, 11
Shotgun proteomics, 8
Sifting, 85
Similarity network, 127
Single InstructionMultiple Threads (SIMT),

81
Single Program, Multiple Data (SPMD), 39
Six-frame, 12
Six-frame translation, 12
SNAP-loss function, 127
SpeCollate, 127
Spectral library search, 11
Spectral quantization, 61
Speedup, 31
Splice-graph, 12
Streaming Multiprocessor (SM), 78
Subarrays, 92
Subspace, 127
Supercomputing, 3
Superlinear, 49
Superstep, 39
Swaths, 9
SwissProt, 44
SW-Tandem, 38
Synchronize, 39
Synchronous, 114
System bus, 114
Systems biology, 1
Systolic array, 113

140 Index

T
Task parallelism, 41
Testing, 127
Theoretical database, 25
Thread block, 79
Top-Down, 7
Training, 127
Tristate buffers, 112

U
UltraQuant, 38
Underfitting, 126
Unified memory, 106
UniProt, 44

UPS2, 70

V
Validation, 127

W
Warp, 81
Warp divergence, 81

X
Xcorr, 124
XTandem, 38

	Preface
	References

	Acknowledgements
	Contents
	1 Need for High-Performance Computing for MS-Based Omics Data Analysis
	References

	2 Introduction to Mass Spectrometry Data
	2.1 Proteomics
	2.1.1 Mass Spectrometry-Based Proteomics
	2.1.2 MS/MS Data Pre-processing
	2.1.3 Peptide Identification

	2.2 Proteogenomics
	References

	3 Existing HPC Methods and theCommunication Lower Bounds for Distributed-Memory Computations for Mass Spectrometry-Based Omics Data
	3.1 Introduction
	3.2 Communication Model
	3.2.1 Sequential Computer
	3.2.2 Parallel Computer

	3.3 MS Database Proteomics, Proteogenomics, and Meta-Proteomics Search
	3.3.1 Generalized Parallel Computing Strategy

	3.4 Communication Lower Bounds
	3.5 Meta-Analysis of Results of Current HPC Methods
	3.6 Discussions
	3.7 Conclusions
	References

	4 High-Performance Computing Strategy Using Distributed-Memory Supercomputers
	4.1 Introduction
	4.1.1 Background
	4.1.2 Problem Statement

	4.2 The HiCOPS Framework
	4.2.1 Database Indexing
	4.2.2 Experimental Data Pre-processing
	4.2.3 Parallel Database Peptide Search
	4.2.4 Assembling the Local Results

	4.3 Optimizations
	4.3.1 Task Scheduling
	4.3.2 Communication Optimization

	4.4 Results
	4.4.1 Experimental Settings
	4.4.2 Correctness Analysis
	4.4.3 Speed Comparison
	4.4.4 Performance Evaluation

	4.5 Discussion
	References

	5 Fast Spectral Pre-processing for Big MS Data
	5.1 A Review of Spectral Pre-processing Methods
	5.1.1 Spectral Denoising Algorithms
	5.1.2 Spectral Quality Assessment Algorithms
	5.1.3 Separation of b-y Ions

	5.2 MS-REDUCE: An Ultra-Fast Data Reduction Algorithm for Big MS Data
	5.2.1 Spectral Classification
	5.2.2 Spectral Quantization
	5.2.3 Weighted Random Sampling

	5.3 Performance Evaluation of MS-REDUCE
	5.3.1 Time Complexity
	5.3.2 Experimental Verification of the Complexity Analysis
	5.3.3 Speed Comparison
	5.3.4 Comparing MS-REDUCE with Other Denoising Methods
	5.3.5 Quality Assessment
	5.3.6 Comparison with Random Sampling of Peaks
	5.3.7 Comparison with Conventional Algorithms

	References

	6 A Easy to Use Generalized Template to Support Development of GPU Algorithms
	6.1 GPU Architecture and CUDA
	6.1.1 CUDA Overview
	6.1.2 CPU-GPU Computing

	6.2 Challenges in GPU Algorithm Design
	6.2.1 Need for Data Parallel Design
	6.2.2 Data Transfer Bottlenecks
	6.2.3 Non-coalesced Memory Accesses
	6.2.4 Warp Divergence
	6.2.5 Exploiting Coarse Grained and Fine Grained Parallelism

	6.3 Basic Principles of GPU-DAEMON
	6.3.1 Simplifying Complex Data Structures
	6.3.2 Simplifying Complex Computations
	6.3.3 Efficient Array Management in GPU
	6.3.4 Exploiting Shared Memory
	6.3.5 In-Warp Optimizations
	6.3.6 Result Sifting
	6.3.7 Post Processing Results
	6.3.8 Time Complexity Model for GPU-DAEMON

	References

	7 Computational CPU-GPU Template for Pre-processing of Floating-Point MS Data
	7.1 Simplifying Complex Data Structures
	7.2 Efficient Array Management
	7.2.1 Splitter Selection
	7.2.2 Bucketing

	7.3 In-Wrap Optimizations and Exploiting Shared Memory
	7.4 Time Complexity Model
	7.5 Performance Evaluation
	7.5.1 Sorting Using Tagged Approach (STA)
	7.5.2 Runtime Analysis and Comparisons
	7.5.3 Data Handling Efficiency

	References

	8 G-MSR: A GPU-Based Dimensionality Reduction Algorithm
	8.1 G-MSR Algorithm
	8.1.1 Simplifying Complex Data Structures
	8.1.2 Simplifying Complex Computations
	8.1.3 Efficient Array Management
	8.1.4 Exploiting Shared Memory
	8.1.5 In-Warp Optimizations
	8.1.6 Result Sifting
	8.1.7 Post Processing Results

	8.2 Results and Experiments
	8.2.1 Time Complexity Model
	8.2.2 Experiment Setup
	8.2.3 Scalability and Time Analysis
	8.2.4 Quality Assessment
	8.2.5 Reductive Proteomics for high-resolution instruments
	8.2.6 Comparison with Unified Memory

	References

	9 Re-configurable Hardware for Computational Proteomics
	9.1 Introduction
	9.1.1 Construction of a Field-Programmable Gate Array

	9.2 Popular Architectural Configurations Using FPGAs
	9.2.1 Systolic Array Configuration
	9.2.2 Parallel Asynchronous PEs Connected to the System Bus
	9.2.3 Parallel Processors with Communication Interconnect

	9.3 FPGA Design for Computational Proteomics
	9.3.1 Architecture Overview
	9.3.2 Processing Element (PE)
	9.3.3 Bus-Arbitration Module
	9.3.4 Binary Search Module
	9.3.5 Ion-Matching Circuit
	9.3.6 Experiments and Results

	9.4 Conclusion

	10 Machine-Learning and the Future of HPC for MS-Based Omics
	10.1 Why HPC is Essential for Machine-Learning Models
	10.2 Preliminary Data and Findings
	References

	Appendix Glossary
	Index

