
Chapter 9
The MNL-Bandit Problem

Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi

9.1 Introduction

One fundamental problem in revenue management that arises in many settings
including retail and display-based advertising is assortment optimization. Here,
the focus is on understanding how consumers select from a large number of
substitutable items and identifying the optimal offer set to maximize revenues.
Typically, for tractability, we assume a model that captures consumer preferences
and focus on computing the optimal offer set. However, model selection and
estimating the parameters is a challenging problem. In many e-commerce settings
such as fast fashion retail, products have short selling seasons. Therefore, the data
on consumer choices is either limited or nonexistent. The retailer needs to learn
consumer preferences by offering different assortments and observing purchase
decisions, but short selling seasons limit the extent of experimentation. There is
a natural trade-off in these settings, where the retailer needs to learn consumer
preferences and also maximizes cumulative revenues simultaneously. Finding the
right balance between exploration and exploitation is a challenge. This chapter
focuses on designing tractable robust algorithms for managing this trade-off in
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sequential decision-making under uncertainty for assortment optimization, which
is a key component in many revenue management applications.

Organization We first provide an overview of assortment planning and the multi-
nomial logit model (MNL), which is the most popular predictive model for
this application domain in Sect. 9.2. In Sect. 9.3, we introduce the “MNL-Bandit
problem” (term first coined in Agrawal et al. (2019)) that formulates the problem
of dynamic assortment optimization and learning under the MNL choice model.
In Sect. 9.4, we discuss approaches based on the principle of optimism under
uncertainty from Agrawal et al. (2016) that bridges the aforementioned gap between
theory and practice. In Sect. 9.5, discuss the Thompson Sampling (TS)-based
approach from Agrawal et al. (2017) with similar theoretical guarantees. This
approach motivated by the growing popularity of TS approaches in practice due to
their attractive empirical performance. In Sect. 9.6, we discuss fundamental limits
on the performance of any dynamic learning algorithm for the MNL-Bandit problem
which establishes that the algorithms discussed in this chapter are near-optimal. We
conclude in Sect. 9.7 with some discussion on recent progress on the extensions of
MNL-Bandit problem to settings involving contextual features and a large number
of products.

9.2 Choice Modeling and Assortment Optimization

In many settings, a decision-maker is faced with the problem of identifying an
optimal mix of items from a large feasible set. For example, an online retailer
needs to select a subset (assortment) of products to display to its shoppers. Due
to substitution effects, the demand for an individual product is influenced by
other products in the assortment presented to the shopper. In display-based online
advertising, a publisher needs to select a set of advertisements to display to its users,
and due to competition between the ads, the click rates for an individual ad depends
on the assortment of ads displayed. A movie recommendation system like the one
used by Netflix or Amazon must determine a small subset of items to suggest
to its users from a large pool of similar alternatives, and the user response may
depend on the overall attractiveness of the recommended set. Furthermore, in all
these settings, different items may be valued differently from the decision-maker’s
perspective. Therefore, the assortment of items offered to users has significant
impact on revenues. In order to identify the ideal set to offer, the decision-maker
must understand the substitution patterns of users.

Choice models capture these substitution effects among items by specifying the
probability with which a user selects an item from an offered set of items. More
specifically, let N = {1, · · · , N} be the set of all available items for the decision-
maker to choose from. For any subset S ⊂ N and any item i ∈ S, a choice model
describes the probability of a random consumer preferring item i in the set S as
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π(i, S) = Pr(customer selects item i from offer set S).

We refer to π(i, S) as choice probabilities. Using these choice probabilities, one can
compute the expected revenue associated with an offer set as the weighted sum of
revenues of items in the offer set and the choice probabilities. Specifically, if the
value (revenue) associated with item i ∈ N is given by ri , then the expected revenue
R(S) of any assortment S ⊂ N can be written as

R(S) =
∑

i∈S

ri · π(i, S).

Then, the decision-maker can identify an optimal set by computing the set with
highest expected revenue, resulting in an optimization problem commonly referred
to as the assortment optimization problem and formulated as

max
S⊆N

R(S). (9.1)

More generally, assortment optimization problems also allow for constraints that
arise in practice, e.g., budget for inventory, product purchasing, display capacity,
etc.

A fundamental problem in assortment planning is (choice) model selection.
There is a trade-off between working with models that have greater predictive
power vs. simple models that allow greater tractability. Given a large number
of alternatives, estimating choice probabilities from transactional data is a highly
nontrivial task. As an extreme case, one may consider a choice model that makes
no structural assumptions on the choice probabilities π(i, S) and therefore can
represent any customer choice behavior. Learning and optimizing under such a
choice model would require estimating 2N parameters and solving an intractable
combinatorial optimization problem. The trade-offs between the representation
power and the tractability of a choice model are an important consideration for
the decision-maker in its deployment, particularly in settings where one needs to
constantly estimate and optimize the model.

The Multinomial Logit Model (MNL), owing primarily to its tractability, is one
of the most widely used choice models for assortment selection problems. Recently,
large-scale field experiments by Alibaba Feldman et al. (2021) have demonstrated
the efficacy of the MNL model in boosting revenues. In this chapter, we use the
MNL choice model to model customer preferences and develop efficient approaches
that learn the model while simultaneously optimizing revenue.

Under the MNL model, the probability that a consumer purchases product i when
offered an assortment S ⊂ {1, . . . , N} is given by πMNL(i, S) = vi

v0+∑
j∈S vj

, where

vi is the attraction parameter for product i in the MNL model. Without loss of
generality, we can assume that v0 = 1, and therefore, the choice probabilities can
be reformulated as
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πMNL(i, S) = vi

1 + ∑
j∈S vj

, (9.2)

and the expected revenue for any assortment S is given by

R(S, v) =
∑

i∈S

ri
vi

1 + ∑
j∈S vj

. (9.3)

From the choice probabilities, we can see that the ratio of choice probabilities
of two items, πMNL(i, S) and πMNL(j, S), is independent of the offer set S. This
property is known as the independent of irrelevant attributes (IIA) property (Ben-
Akiva and Lerman, 1985) and is a limitation of the MNL model. Other random
utility-based choice models like Nested Logit (NL) (Williams, 1977) and Mixed
Logit model (mMNL) (McFadden and Train, 2000) generalize the MNL model
and are not restricted by the IIA property. However, estimation of these models
and the corresponding assortment planning problems involved are often intractable
highlighting the challenges involved in model selection. See Désir et al. (2021) for
further discussion on tractability of choice models. The closed-form expression of
the choice probabilities makes the MNL model extremely tractable from estimation
and optimization point of view (see Talluri and Van Ryzin (2004).) The tractability
of the model in decision-making is the primary reason MNL has been extensively
used in practice (Greene, 2003; Ben-Akiva and Lerman, 1985; Train, 2009).

Traditionally, assortment decisions are made at the start of the selling period
based on a choice model that has been estimated from historical data; see (Kok
and Fisher, 2007) for a detailed review. In many business applications such as
fast fashion and online retail, new products can be introduced or removed from
the offered assortments in a fairly frictionless manner, and the selling horizon
for a particular product can be short. Therefore, the traditional approach of first
estimating the choice model and then using a static assortment based on the
estimates is not practical in such settings. Rather, it is essential to experiment
with different assortments to learn consumer preferences, while simultaneously
attempting to maximize immediate revenues. Suitable balancing of this exploration–
exploitation trade-off is the focus of the remainder of this chapter.

9.3 Dynamic Learning in Assortment Selection

As alluded to above, many instances of assortment optimization problems com-
mence with very limited or even no a priori information about consumer prefer-
ences. Traditionally, due to production considerations, retailers used to forecast
the uncertain demand before the selling season starts and decide on an optimal
assortment to be held throughout. There are a growing number of industries like
fast fashion and online display advertising where demand trends change constantly
and new products (or advertisements) can be introduced (or removed) from offered
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assortments in a fairly frictionless manner. In such situations, it is possible to
experiment by offering different assortments and observing resulting purchases. Of
course, gathering more information on consumer choice in this manner reduces the
time remaining to exploit the said information.

Motivated by aforementioned applications, let us consider a stylized dynamic
optimization problem that captures some salient features of the above application
domain. The goal is to develop an exploration–exploitation policy that balances
between gaining new information for learning the model and exploiting past
information for optimizing revenue. In particular, consider a constrained assortment
selection problem under the multinomial logit (MNL) model with N substitutable
products and a “no purchase” option. The objective is to design a policy that
adaptively selects a sequence of history-dependent assortments (S1, S2, . . . , ST ) ∈
ST so as to maximize the cumulative expected revenue,

E

(
T∑

t=1

R(St , v)

)
, (9.4)

where R(S, v) is the revenue corresponding to assortment S as defined as in (9.3).
We measure the performance of a decision-making policy via its regret. The
objective then is to design a policy that approximately minimizes the regret defined
as

Reg(T , v) =
T∑

t=1

R(S∗, v) − E[R(St , v)], (MNL-Bandit)

where S∗ = argmax
S∈S

R(S, v), with S being the set of feasible assortments.

This exploration–exploitation problem, which is referred to as the MNL-Bandit
problem, is the focus of this chapter.

Constraints Over Assortment Selection The literature considers several naturally
arising constraints over the assortments that the retailer can offer. The simplest
form of constraints is cardinality constraints, i.e., an upper bound on the number
of products that can be offered in the assortment. Other more general constraints
include partition matroid constraints (where the products are partitioned into
segments and the retailer can select at most a specified number of products from
each segment) and joint display and assortment constraints (where the retailer needs
to decide both the assortment and the display segment of each product in the
assortment and there is an upper bound on the number of products in each display
segment). More generally, consider the set of totally unimodular (TU) constraints
on the assortments. Let x(S) ∈ {0, 1}N be the incidence vector for assortment
S ⊆ {1, . . . , N}, i.e., xi(S) = 1 if product i ∈ S and 0 otherwise. The approaches
discussed here extend to constraints of the form

S = {S ⊆ {1, . . . , N} | A x(S) ≤ b, 0 ≤ x ≤ 1} , (9.5)
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where A is a totally unimodular matrix and b is integral (i.e., each component of
the vector b is an integer). The totally unimodular constraints model a rich class
of practical assortment planning problems including the examples discussed above.
We refer the reader to Davis et al. (2013) for a detailed discussion on assortment
and pricing optimization problems that can be formulated under the TU constraints.

Algorithmic Approaches Some initial works that consider the problem of min-
imizing regret under the MNL choice model include (Rusmevichientong et al.,
2010; Sauré and Zeevi, 2013). Both these works present an “explore first and
exploit later” approach. In particular, a selected set of assortments are explored
until parameters can be estimated to a desired accuracy, and then the optimal
assortment corresponding to the estimated parameters is offered for the remaining
selling horizon. More specifically, when the expected revenue difference between
the optimal and next best assortments is �, existing approaches uniformly explore
all the products for O(log T/�) time periods and use the obtained data to estimate
the optimal assortment. The exploration period that depends on the knowledge
of the revenue gap, �, is to ensure that the algorithm can identify the optimal
assortment with “high probability.” Following this approach, (Sauré and Zeevi,
2013) show an asymptotic O(N log T/�) regret bound, while (Rusmevichientong
et al., 2010) establish an O(N2 log2 T/�) regret bound; recall N is the number
of products and T is the time horizon. However, as highlighted above, their
algorithm relies crucially on a priori knowledge of the revenue gap, �, which is
not readily available in practice. In Sect. 9.4.4, we will highlight via numerical
simulations how lack of this knowledge can result in settings where these algorithms
perform quite poorly. In the remainder of the chapter, we focus on approaches that
simultaneously explore and exploit demand information. Specifically, we discuss
a UCB (upper confidence bound)-based approach from Agrawal et al. (2016,
2019) and a Thompson Sampling-based approach from Agrawal et al. (2017). An
advantage of these adaptive approaches is that they do not require any a priori
knowledge or assumptions, and their performance is in some sense best possible
(matches the worst-case lower bound), thereby, making these approaches more
universal in its scope.

9.4 A UCB Approach for the MNL-Bandit

In this section, we discuss an algorithm from Agrawal et al. (2016, 2019) that
adapts the popular upper confidence bounds (UCBs) approach to the MNL-
Bandit problem. After presenting the details of the algorithm, in Sect. 9.4.2, we
present the regret analysis that shows that this algorithm achieves a worst-case regret
bound of O(

√
NT log NT ) under a mild assumption, namely that the no purchase
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is the most “frequent” outcome. In Sect. 9.4.3, we also present the instance-
dependent regret bounds that show that for “well separated” instances, the regret
of the policy is bounded by O

(
min

(
N2 log NT /�,

√
NT log NT

))
, where � is

the “separability” parameter discussed in the previous section. This is comparable
to the regret bounds, O (N log T/�) and O

(
N2 log2 T/�

)
, established in Sauré

and Zeevi (2013) and Rusmevichientong et al. (2010), respectively, even though the
policy does not require any prior information on � unlike the aforementioned work.
Finally, in Sect. 9.4.4, we present a computational study from Avadhanula (2019)
that highlights several salient features of the UCB-based policy. In particular, the
study tests the performance of the proposed algorithm over instances with varying
degrees of separability between optimal and suboptimal solutions and observe that
the performance is bounded irrespective of the “separability parameter.” In contrast,
the approach of Sauré and Zeevi (2013) “breaks down” and results in linear regret
for some values of the “separability parameter.”

Challenges and Overview
A key difficulty in applying standard multi-armed bandit techniques to this problem
is that the response observed on offering a product i is not independent of other
products in assortment S. Therefore, the N products cannot be directly treated as N

independent arms. The algorithm presented here utilizes the specific properties of
the dependence structure in MNL model to obtain an efficient algorithm with order√

NT regret.
The algorithm is based on a nontrivial extension of the UCB algorithm in Auer

et al. (2002), which is predicated on Lai and Robbins (1985). It uses the past
observations to maintain increasingly accurate upper confidence bounds for the
MNL parameters {vi, i = 1, . . . , N} and also uses these to (implicitly) maintain
an estimate of expected revenue R(S, v) for every feasible assortment S. In every
round, the algorithm picks the assortment S with the highest optimistic revenue.
There are two main challenges in implementing this scheme. First, the customer
response to being offered an assortment S depends on the entire set S and does
not directly provide an unbiased sample of demand for a product i ∈ S. In order
to obtain unbiased estimates of vi for all i ∈ S, we offer a set S multiple times:
specifically, it is offered repeatedly until a no purchase occurs. We show that
proceeding in this manner, the average number of times a product i is purchased
provides an unbiased estimate of the parameter vi . The second difficulty is the
computational complexity of maintaining and optimizing revenue estimates for each
of the exponentially many assortments. To this end, we use the structure of the MNL
model and define our revenue estimates such that the assortment with maximum
estimated revenue can be efficiently found by solving a simple optimization
problem. This optimization problem turns out to be a static assortment optimization
problem with upper confidence bounds for vi’s as the MNL parameters, for which
efficient solution methods are available.
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9.4.1 Algorithmic Details

The algorithm divides the time horizon into epochs, where in each epoch we offer
an assortment repeatedly until a no purchase outcome occurs. Specifically, in each
epoch �, we offer an assortment S� repeatedly. Let E� denote the set of consecutive
time steps in epoch �. E� contains all time steps after the end of epoch � − 1, until
a no purchase happens in response to offering S�, including the time step at which
no purchase happens. The length of an epoch |E�| conditioned on S� is a geometric
random variable with success probability defined as the probability of no purchase
in S�. The total number of epochs L in time T is implicitly defined as the minimum
number for which

∑L
�=1 |E�| ≥ T .

At the end of every epoch �, we update our estimates for the parameters of MNL,
which are used in epoch � + 1 to choose assortment S�+1. For any time step t ∈ E�,
let ct denote the consumer’s response to S�, i.e., ct = i if the consumer purchased
product i ∈ S�, and 0 if no purchase happened. We define v̂i,� as the number of
times a product i is purchased in epoch �,

v̂i,� :=
∑

t∈E�

1(ct = i). (9.6)

For every product i and epoch � ≤ L, we keep track of the set of epochs before �

that offered an assortment containing product i and the number of such epochs. We
denote the set of epochs by Ti (�) and the number of epochs by Ti(�); that is,

Ti (�) = {τ ≤ � | i ∈ Sτ } , Ti(�) = |Ti (�)|. (9.7)

We compute v̄i,� as the number of times product i was purchased per epoch,

v̄i,� = 1

Ti(�)

∑

τ∈Ti (�)

v̂i,τ . (9.8)

We show that for all i ∈ S�, v̂i,� and v̄i,� are unbiased estimators of the MNL
parameter vi (see Corollary 6). Using these estimates, we compute the upper
confidence bounds, vUCBi,� , for vi as

vUCBi,� := v̄i,� +
√

v̄i,�

48 log (
√

N� + 1)

Ti(�)
+ 48 log (

√
N� + 1)

Ti(�)
. (9.9)

We establish that vUCBi,� is an upper confidence bound on the true parameter vi , i.e.,

vUCBi,� ≥ vi , for all i, � with high probability (see Lemma 1). The role of the upper
confidence bounds is akin to their role in hypothesis testing; they ensure that the
likelihood of identifying the parameter value is sufficiently large. We then offer the
optimistic assortment in the next epoch, based on the previous updates as follows:
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S�+1 := argmax
S∈S

max
{
R(S, v̂) : v̂i ≤ vUCBi,�

}
, (9.10)

where R(S, v̂) is as defined in (9.3). We later show that the above optimization
problem is equivalent to the following optimization problem:

S�+1 := argmax
S∈S

R̃�+1(S), (9.11)

where R̃�+1(S) is defined as

R̃�+1(S) :=

∑

i∈S

riv
UCB
i,�

1 +
∑

j∈S

vUCBj,�

. (9.12)

We summarize the precise steps of this UCB-based algorithm in Algorithm 1.
Finally, we may remark on the computational complexity of implement-

ing (9.10). The optimization problem (9.10) is formulated as a static assortment
optimization problem under the MNL model with TU constraints, with model
parameters being vUCBi,� , i = 1, . . . , N (see (9.11)). There are efficient polynomial
time algorithms to solve the static assortment optimization problem under

Algorithm 1 Exploration–Exploitation algorithm for MNL-Bandit

1: Initialization: vUCBi,0 = 1 for all i = 1, . . . , N

2: t = 1 ; � = 1 keeps track of the time steps and total number of epochs, respectively
3: while t < T do

4: Compute S� = argmax
S∈S

R̃�(S) =

∑

i∈S

riv
UCB
i,�−1

1+
∑

j∈S

vUCBj,�−1

5: Offer assortment S�, observe the purchasing decision, ct of the consumer
6: if ct = 0 then
7: compute v̂i,� = ∑

t∈E�
1(ct = i), no. of consumers who preferred i in epoch �, for all

i ∈ S�

8: update Ti (�) = {τ ≤ � | i ∈ S�} , Ti(�) = |Ti (�)|, no. of epochs until � that offered
product i

9: update v̄i,� =
1

Ti(�)

∑

τ∈Ti (�)

v̂i,τ , sample mean of the estimates

10: update vUCBi,� =v̄i,� +
√

v̄i,�

48 log (
√

N� + 1)

Ti(�)
+ 48 log (

√
N� + 1)

Ti(�)
; � = � + 1

11: else
12: E� = E� ∪ t , time indices corresponding to epoch �

13: end if
14: t = t + 1
15: end while
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MNL model with known parameters (see Avadhanula et al. 2016; Davis et al.
2013; Rusmevichientong et al. 2010). We will now briefly comment on how
Algorithm 1 is different from the existing approaches of Sauré and Zeevi (2013) and
Rusmevichientong et al. (2010) and also why other standard “bandit techniques”
are not applicable to the MNL-Bandit problem.

Remark 1 (Universality) Note that Algorithm 1 does not require any prior knowl-
edge/information about the problem parameters v (other than the assumption
vi ≤ v0, refer to Avadhanula (2019) for discussion on designing algorithms for
settings when vi > v0). This is in contrast with the approaches of Sauré and
Zeevi (2013) and Rusmevichientong et al. (2010), which require the knowledge
of the “separation gap,” namely, the difference between the expected revenues of
the optimal assortment and the second best assortment. Assuming knowledge of
this “separation gap,” both these existing approaches explore a predetermined set
of assortments to estimate the MNL parameters within a desired accuracy, such
that the optimal assortment corresponding to the estimated parameters is the (true)
optimal assortment with high probability. This forced exploration of predetermined
assortments is avoided in Algorithm 1, which offers assortments adaptively, based
on the current observed choices. The confidence regions derived for the parameters
v and the subsequent assortment selection ensure that Algorithm 1 judiciously
maintains the balance between exploration and exploitation that is central to the
MNL-Bandit problem.

Remark 2 (Estimation Approach) Because the MNL-Bandit problem is parameter-
ized with parameter vector (v), a natural approach is to build on standard estimation
approaches like maximum likelihood (MLE), where the estimates are obtained by
optimizing a loss function. However, the confidence regions for estimates resulting
from such approaches are either asymptotic and are not necessarily valid for
finite time with high probability or typically depend on true parameters, which
are not known a priori. For example, finite time confidence regions associated
with maximum likelihood estimates require the knowledge of sup

v∈V
I (v) (see

Borovkov 1984), where I is the Fisher information of the MNL choice model
and V is the set of feasible parameters (that is not known a priori). Note that
using I (vMLE) instead of sup

v∈V
I (v) for constructing confidence intervals would

only lead to asymptotic guarantees and not finite sample guarantees. In contrast, in
Algorithm 1, the estimation problem is resolved by a sampling method designed to
give us unbiased estimates of the model parameters. The confidence bounds of these
estimates and the algorithm do not depend on the underlying model parameters.
Moreover, our sampling method allows us to compute the confidence regions
by simple and efficient “book keeping” and avoids computational issues that are
typically associated with standard estimation schemes such as MLE. Furthermore,
the confidence regions associated with the unbiased estimates also facilitate a
tractable way to compute the optimistic assortment (see (9.10), (9.11), and Step
4 of Algorithm 1), which is less accessible for the MLE estimate.
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9.4.2 Min–Max Regret Bounds

For the regret analysis, we make the following assumptions.

Assumption 1

1. The MNL parameter corresponding to any product i ∈ {1, . . . , N} satisfies vi ≤
v0 = 1.

2. The family of assortments S is such that S ∈ S and Q ⊆ S implies that Q ∈ S.

The first assumption is equivalent to the “no purchase option” being the most likely
outcome. We note that this holds in many realistic settings, in particular, in online
retailing and online display-based advertising. The second assumption implies that
removing a product from a feasible assortment preserves feasibility. This holds for
most constraints arising in practice including cardinality and matroid constraints
more generally. We would like to note that the first assumption is made for ease of
presentation of the key results and is not central to deriving bounds on the regret.
The main result is the following upper bound on the regret of the policy stated in
Algorithm 1.

Theorem 1 (Performance Bounds for Algorithm 1) For any instance v =
(v0, . . . , vN) of the MNL-Bandit problem with N products, ri ∈ [0, 1], and
Assumption 1, the regret of the policy given by Algorithm 1 at any time T is bounded
as

Regπ(T , v) ≤ C1
√

NT log NT + C2N log2 NT ,

where C1 and C2 are absolute constants (independent of problem parameters).

Proof Outline
In this section, we briefly discuss an outline of different steps involved in proving
Theorem 1. We refer the interested readers to Agrawal et al. (2019) and Avadhanula
(2019) for detailed proofs.

Confidence Intervals The first step in the regret analysis is to prove the following
two properties of the estimates vUCB

i,� computed as in (9.9) for each product i.

Specifically, that vi is bounded by vUCBi,� with high probability and that as a product

is offered an increasing number of times, the estimates vUCBi,� converge to the true
value with high probability. Specifically, we have the following result.

Lemma 1 For every � = 1, · · · , L, we have:

1. vUCBi,� ≥ vi with probability at least 1 − 6
N�

for all i = 1, . . . , N .
2. There exist constants C1 and C2 such that

vUCBi,� − vi ≤ C1

√
vi log (

√
N� + 1)

Ti(�)
+ C2

log (
√

N� + 1)

Ti(�)
,

with probability at least 1 − 7
N�

.
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Intuitively, these properties establish vUCB
i,� as upper confidence bounds con-

verging to actual parameters vi , akin to the upper confidence bounds used in the
UCB algorithm for MAB in Auer et al. (2002). These properties follow from an
observation that is conceptually equivalent to the IIA (independence of irrelevant
alternatives) property of MNL and shows that in each epoch τ , v̂i,τ (the number of
purchases of product i) provides independent unbiased estimates of vi . Intuitively,
v̂i,τ is the ratio of probabilities of purchasing product i to preferring product 0 (no
purchase), which is independent of Sτ . This also explains why we choose to offer
Sτ repeatedly until no purchase occurs. Given these unbiased i.i.d. estimates from
every epoch τ before �, we apply a multiplicative Chernoff–Hoeffding bound to
prove concentration of v̄i,�.

Validity of the Optimistic Assortment The product demand estimates vUCBi,�−1 were

used in (9.12) to define expected revenue estimates R̃�(S) for every set S. In the
beginning of every epoch �, Algorithm 1 computes the optimistic assortment as S� =
arg maxS R̃�(S) and then offers S� repeatedly until no purchase happens. The next
step in the regret analysis is to leverage the fact that vUCBi,� is an upper confidence
bound on vi to prove similar, though slightly weaker, properties for the estimates
R̃�(S). First, we note that estimated revenue is an upper confidence bound on the
optimal revenue, i.e., R(S∗, v) is bounded by R̃�(S�) with high probability. The
proof for these properties involves careful use of the structure of MNL model to
show that the value of R̃�(S�) is equal to the highest expected revenue achievable
by any feasible assortment, among all instances of the problem with parameters in
the range [0, vUCBi ], i = 1, . . . , n. Since the actual parameters lie in this range with
high probability, we have that R̃�(S�) is at least R(S∗, v) with high probability. In
particular, we have the following result.

Lemma 2 Suppose S∗ ∈ S is the assortment with highest expected revenue, and
Algorithm 1 offers S� ∈ S in each epoch �. Then, for every epoch �, we have

R̃�(S�) ≥ R̃�(S
∗) ≥ R(S∗, v) with probability at least 1 − 6

�
.

Bounding the Regret The final part of the analysis is to bound the regret in each
epoch. First, we use the fact that R̃�(S�) is an upper bound on R(S∗, v) to bound
the loss due to offering the assortment S�. In particular, we show that the loss
is bounded by the difference between the “optimistic” revenue estimate, R̃�(S�),
and the actual expected revenue, R(S�). We then prove a Lipschitz property of
the expected revenue function to bound the difference between these estimates in
terms of errors in individual product estimates |vUCBi,� − vi |. Finally, we leverage the

structure of the MNL model and the properties of vUCB
i,� to bound the regret in each

epoch. Lemma 3 provides the precise statements of above properties.
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Lemma 3 If ri ∈ [0, 1], there exist constants C1 and C2 such that for every � =
1, · · · , L, we have

(1 + ∑
j∈S�

vj )(R̃�(S�) − R(S�, v)) ≤ C1

√
vi log (

√
N�+1)

|Ti (�)| + C2
log (

√
N�+1)

|Ti (�)| ,

with probability at least 1 − 13
�

.

9.4.3 Improved Regret Bounds for “Well Separated” Instances

In this section, we consider the problem instances that are “well separated” and
present an improved logarithmic regret bound. More specifically, we present an
O(log T ) regret bound for Algorithm 1 for instances that are “well separated.” In
Sect. 9.4.2, we established worst-case regret bounds for Algorithm 1 that hold for
all problem instances satisfying Assumption 1. While the algorithm ensures that the
exploration–exploitation trade-off is balanced at all times, we demonstrate that it
quickly converges to the optimal solution for the problem instances that are “well
separated,” leading to even better regret bounds. More specifically, we consider
problem instances where the optimal assortment and “second best” assortment
are sufficiently “separated” and derive an O(log T ) regret bound that depends
on the parameters of the instance. Note that, unlike the regret bound derived in
Sect. 9.4.2 that holds for all problem instances satisfying Assumption 1, the bound
we derive here only holds for instances having certain separation between the
revenues corresponding to optimal and second best assortments. In particular, let
�(v) denote the difference between the expected revenues of the optimal and second
best assortment, i.e.,

�(v) = min
{S∈S|R(S,v) 
=R(S∗,v)}

{R(S∗, v) − R(S)}. (9.13)

We have the following result.

Theorem 2 (Performance Bounds for Algorithm 1 in “Well Separated” Case)
For any instance v = (v0, . . . , vN) of the MNL-Bandit problem with N products,
ri ∈ [0, 1], and Assumption 1, the regret of the policy given by Algorithm 1 at any
time T is bounded as

Reg(T , v) ≤ B1

(
N2 log T

�(v)

)
+ B2,

where B1 and B2 are absolute constants.

Proof Outline We provide a proof outline here. We refer the interested readers
to Avadhanula (2019) for a detailed proof. In this setting, we analyze the regret
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by separately considering the epochs that satisfy certain desirable properties and the
ones that do not. Specifically, we denote epoch � as a “good” epoch if the parameters
vUCBi,� satisfy the following property:

0 ≤ vUCBi,� − vi ≤ C1

√
vi log (

√
N� + 1)

Ti(�)
+ C2

log (
√

N� + 1)

Ti(�)
,

and we call it a “bad” epoch otherwise, where C1 and C2 are constants as defined
in Lemma 1. Note that every epoch � is a good epoch with high probability
(1 − 13

�
), and we show that regret due to “bad” epochs is bounded by a constant

(see Lemma 1). Therefore, we focus on “good” epochs and show that there exists a
constant τ , such that after each product has been offered in at least τ “good” epochs,
Algorithm 1 finds the optimal assortment. Based on this result, we can then bound
the total number of “good” epochs in which a suboptimal assortment can be offered
by our algorithm. Specifically, let

τ = 4NC log NT

�2(v)
, (9.14)

where C = max{C2
1 , C2}. Then, we have the following result.

Lemma 4 Let � be a “good” epoch and S� be the assortment offered by Algorithm 1
in epoch �. If every product in assortment S� is offered in at least τ “good epochs,”
i.e., Ti(�) ≥ τ for all i, then we have R(S�, v) = R(S∗, v).

The next step in the analysis is to show that Algorithm 1 will offer a small
number of suboptimal assortments in “good” epochs. More specifically, we have
the following result:

Lemma 5 Algorithm 1 cannot offer suboptimal assortments in more than Nτ

“good” epochs.

It should be noted that the bound obtained in Theorem 2 is similar in magnitude
to the regret bounds obtained by Sauré and Zeevi (2013) and is strictly better than
the regret bound O(N2 log2 T ) established by Rusmevichientong et al. (2010).
Moreover, the algorithm does not require the knowledge of �(v), unlike the
aforementioned papers that build on a conservative estimate of �(v) to implement
their proposed policies.

9.4.4 Computational Study

In this section, we present insights from numerical experiments in Avadhanula
(2019) that test the empirical performance of our policy and highlight some of its
salient features. We study the performance of Algorithm 1 from the perspective of
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robustness with respect to the “separability parameter” of the underlying instance.
In particular, we consider varying levels of separation between the revenues
corresponding to the optimal assortment and the second best assortment and perform
a regret analysis numerically. We contrast the performance of Algorithm 1 with the
approach in Sauré and Zeevi (2013) for different levels of separation. We observe
that when the separation between the revenues corresponding to optimal assortment
and second best assortment is sufficiently small, the approach in Sauré and Zeevi
(2013) breaks down, i.e., incurs linear regret, while the regret of Algorithm 1 only
grows sub-linearly with respect to the selling horizon.

9.4.4.1 Robustness of Algorithm 1

Here, we present a study that examines the robustness of Algorithm 1 with
respect to the instance separability. We consider a parametric instance (see (9.15)),
where the separation between the revenues of the optimal assortment and the next
best assortment is specified by the parameter ε and compare the performance of
Algorithm 1 for different values of ε.

Experimental Setup We consider the parametric MNL setting with N = 10, K =
4, ri = 1 for all i, and utility parameters v0 = 1 and for i = 1, . . . , N ,

vi =
{

0.25 + ε, if i ∈ {1, 2, 9, 10}
0.25, else ,

(9.15)

where 0 < ε < 0.25, specifies the difference between revenues corresponding to the
optimal assortment and the next best assortment. Note that this problem has a unique
optimal assortment {1, 2, 9, 10} with an expected revenue of 1 + 4ε/2 + 4ε and
the next best assortment has revenue of 1 + 3ε/2 + 3ε. We consider four different
values for ε, ε = {0.05, 0.1, 0.15, 0.25}, where higher value of ε corresponds to
larger separation and hence an “easier” problem instance.

Results Figure 9.1 summarizes the performance of Algorithm 1 for different values
of ε. The results are based on running 100 independent simulations, and the standard
errors are within 2%. Note that the performance of Algorithm 1 is consistent across
different values of ε, with a regret that exhibits sub-linear growth. Observe that as
the value of ε increases, the regret of Algorithm 1 decreases. While not immediately
obvious from Fig. 9.1, the regret behavior is fundamentally different in the case
of “small” ε and “large” ε. To see this, in Fig. 9.2, we focus on the regret for
ε = 0.05 and ε = 0.25 and fit to log T and

√
T , respectively. (The parameters

of these functions are obtained via simple linear regression of the regret vs log T

and
√

T , respectively). It can be observed that the regret is roughly logarithmic
when ε = 0.25 and in contrast roughly behaves like

√
T when ε = 0.05. This

illustrates the theory developed in Sect. 9.4.3, where we showed that the regret grows
logarithmically with time, if the optimal assortment and the next best assortment are
“well separated,” while the worst-case regret scales as

√
T .
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Fig. 9.1 Performance of Algorithm 1 measured as the regret on the parametric instance (9.15).
The graphs illustrate the dependence of the regret on T for “separation gaps” ε =
0.05, 0.1, 0.15, and 0.25, respectively

Fig. 9.2 Best fit for the regret of Algorithm 1 on the parametric instance (9.15). The graphs (a)
and (b) illustrate the dependence of the regret on T for “separation gaps” ε = 0.05 and 0.25,
respectively. The best y = β1 log T + β0 fit and the best y = β1

√
T + β0 fit are superimposed on

the regret curve

9.4.4.2 Comparison with Existing Approaches

In this section, we present a computational study comparing the performance of
our algorithm to that of Sauré and Zeevi (2013). To be implemented, their approach
requires certain a priori information of a “separability parameter”; roughly speaking,
measuring the degree to which the optimal and next best assortments are distinct
from a revenue standpoint. More specifically, their algorithm follows an explore-
then-exploit approach, where every product is offered for a minimum duration of
time that is determined by an estimate of said “separability parameter.” After this
mandatory exploration phase, the parameters of the choice model are estimated
based on the past observations, and the optimal assortment corresponding to the
estimated parameters is offered for the subsequent consumers. If the optimal assort-
ment and the next best assortment are “well separated,” then the offered assortment
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Fig. 9.3 Comparison with the algorithm of Sauré and Zeevi (2013). The graphs (a), (b), (c),
and (d) compare the performance of Algorithm 1 to that of Sauré and Zeevi (2013) on problem
instance (9.15), for ε = 0.05, 0.1, 0.15, and 0.25 respectively

is optimal with high probability, otherwise, the algorithm could potentially incur
linear regret. Therefore, the knowledge of this “separability parameter” is crucial.
For our comparison, we consider the exploration period suggested by Sauré and
Zeevi (2013) and compare it with the performance of Algorithm 1 for different
values of separation (ε). We will see that for any given exploration period, there
is an instance where the approach in Sauré and Zeevi (2013) “breaks down” or in
other words incurs linear regret, while the regret of Algorithm 1 grows sub-linearly
(O(

√
T ), more precisely) for all values of ε as asserted in Theorem 1.

Experimental Setup and Results We consider the parametric MNL setting as
described in (9.15) and for each value of ε ∈ {0.05, 0.1, 0.15, 0.25}. Since the
implementation of the policy in Sauré and Zeevi (2013) requires knowledge of the
selling horizon and minimum exploration period a priori, we take the exploration
period to be 20 log T as suggested in Sauré and Zeevi (2013) and the selling horizon
T = 106. Figure 9.3 compares the regret of Algorithm 1 with that of Sauré and
Zeevi (2013). The results are based on running 100 independent simulations with
standard error of 2%. We observe that the regret for Sauré and Zeevi (2013) is better
than the regret of Algorithm 1 when ε = 0.25 but is worse for other values of
ε. This can be attributed to the fact that for the assumed exploration period, their
algorithm fails to identify the optimal assortment within the exploration phase with
sufficient probability and hence incurs a linear regret for ε = 0.05, 0.1, and 0.15.
Specifically, among the 100 simulations we tested, the algorithm in Sauré and Zeevi
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(2013) identified the optimal assortment for only 7%, 40%, 61%, and 97% cases,
when ε = 0.05, 0.1, 0.15, and 0.25, respectively. This highlights the sensitivity to
the “separability parameter” and the importance of having a reasonable estimate for
the exploration period. Needless to say, such information is typically not available
in practice. In contrast, the performance of Algorithm 1 is consistent across different
values of ε, insofar as the regret grows in a sub-linear fashion in all cases.

9.5 Thompson Sampling for the MNL-Bandit

Motivated by the attractive empirical properties, in this section, we focus on
a Thompson Sampling (TS)-based approach to the MNL-Bandit problem, first
presented in Agrawal et al. (2017). In Sect. 9.5.1, we present the details of TS-
based policy. In particular, we describe how to leverage the sampling technique
introduced in Chap. 9.4 and design a prior distribution on the parameters of the MNL
model such that the posterior update under the MNL-bandit feedback is tractable.
In Sect. 9.5.4, we prove that the proposed algorithm achieves an Õ(

√
NT log T K)

regret upper bound. Here, we also highlight the key ingredient of the TS-based
approach, a two-moment approximation of the posterior, and the ability to judicially
correlate samples, which is done by embedding the two-moment approximation in a
normal family. Section 9.5.5 demonstrates the empirical efficiency of our algorithm
design.

9.5.1 Algorithm

In this section, we describe the posterior sampling (aka Thompson Sampling)-based
algorithm for the MNL-Bandit problem. The basic structure of Thompson Sampling
involves maintaining a posterior on the unknown problem parameters, which is
updated every time new feedback is obtained. At the beginning of every round,
a sample set of parameters is generated from the current posterior distribution,
and the algorithm selects the best offer set according to these sample parameters.
In the MNL-Bandit problem, there is one unknown parameter vi associated with
each item. To adapt the TS algorithm for this problem, we would need to maintain
a joint posterior for (v1, . . . , vN). However, updating such a joint posterior is
nontrivial since the feedback observed in every round is a choice sampled from
the multinomial distribution. This depends on the subset S offered in that round. In
particular, even if we initialize with an independent prior from a popular analytical
family such as multivariate Gaussian, the posterior distribution after observing
the MNL choice feedback will have a complex description. As a first step in
addressing this challenge, we attempt to design a Thompson Sampling algorithm
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with independent priors. In particular, we leverage a sampling technique introduced
in Sect. 9.4 that allows us to decouple individual parameters from the MNL choice
feedback and provide unbiased estimates of these parameters. We can utilize these
unbiased estimates to efficiently maintain independent conjugate Beta priors for the
parameters vi for each i. We present the details in Algorithm 1 below.

9.5.2 A TS Algorithm with Independent Beta Priors

Here, we present the first version of the Thompson sampling algorithm, which will
serve as an important building block for the main algorithm in Sect. 9.5.3. In this
version, we maintain a Beta posterior distribution for each item i = 1, . . . , N ,
which is updated as we observe users’ choice of items from the offered subsets. A
key challenge here is to choose priors that can be efficiently updated on observing
user choice feedback, to obtain increasingly accurate estimates of parameters {vi}.
To address this, we use the sampling technique introduced in the previous section
to decouple estimates of individual parameters from the complex MNL feedback.
The idea is to offer a set S multiple times; in particular, a chosen set S is offered
repeatedly until the “outside option” is picked (in the online advertising application
discussed earlier, this corresponds to displaying the same subset of ads repeatedly
until we observe a user who does not click on any of the displayed ads). Proceeding
in this manner, due to the structure of the MNL model, the average number of times
an item i is selected provides an unbiased estimate of parameter vi . Moreover, the
number of times an item i is selected is also independent of the displayed set and
is a geometric distribution with success probability 1/(1 + vi) and mean vi . This
observation is used as the basis for the epoch-based algorithmic structure and the
choice of prior/posterior, as a conjugate to this geometric distribution.

Epoch-Based Offerings Similar to the UCB approach, the algorithm proceeds in
epochs � = 1, 2, . . . An epoch is a group of consecutive time steps, where a set S�

is offered repeatedly until the outside option is picked in response to offering S�.
The set S� to be offered in epoch � is picked at the beginning of the epoch based
on the sampled parameters from the current posterior distribution; the construction
of these posteriors and choice of S� is described in the next paragraph. We denote
the group of time steps in an epoch as E�, which includes the time step at which
an outside option was preferred. The following lemmas provide important building
blocks for our construction. Refer to Avadhanula (2019) for detailed proofs.

Lemma 6 (Unbiased Estimate) Let ṽi,� be the number of times an item i ∈ S� is
picked when the set S� is offered repeatedly until the outside option is picked. Then,
for any � and i, ṽi,� are i.i.d. geometric random variables with success probability

1
1+vi

and expected value vi .

Lemma 7 (Conjugate Priors) For any α > 3, β > 0, and Yα,β ∼ Beta(α, β),
let Xα,β = 1

Yα,β−1 and fα,β denote the probability distribution of random variable
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Xα,β . If the prior distribution of vi is fα,β , then after observing ṽi,�, a geometric
random variable with success probability 1

vi+1 , the posterior distribution of vi is
given by

P

(
vi

∣∣∣ṽi,� = m
)

= fα+1,β+m(vi).

Construction of Conjugate Prior/Posterior From Lemma 6, we have that for any
epoch � and for any item i ∈ S�, the estimate ṽi,�, the number of picks of item i in
epoch � is geometrically distributed with success probability 1/(1 + vi). Therefore,
if we use the distribution of 1/Beta(1, 1) − 1 as the initial prior for vi , and then, in
the beginning of epoch �, from Lemma 7, we have that the posterior is distributed
as 1

Beta(ni (�),Vi (�))
− 1, with ni(�) being the number of epochs the item i has been

offered before epoch � (as part of an assortment) and Vi(�) being the number of
times it was picked by the user.

Selection of Subset to be Offered To choose the subset to be offered in epoch �,
the algorithm samples a set of parameters μ1(�), . . . , μN(�) independently from the
current posteriors and finds the set that maximizes the expected revenue as per the
sampled parameters. In particular, the set S� to be offered in epoch � is chosen as

S� := argmax
|S|≤K

R(S,µ(�)). (9.16)

The details of the above procedure are provided in Algorithm 2.

Algorithm 2 A TS algorithm for MNL-Bandit with Independent Beta priors

Initialization: For each item i = 1, · · · , N , Vi = 1, ni = 1.

t = 1, keeps track of the time steps

� = 1, keeps count of total number of epochs

while t ≤ T do

(a) (Posterior Sampling) For each item i = 1, · · · , N , sample θi(�) from the Beta(ni , Vi)

and compute μi(�) = 1
θi (�)

− 1

(b) (Subset Selection) Compute S� = argmax
|S|≤K

R(S,µ(�)) =
∑

i∈S riμi (�)

1+∑
j∈S μj (�)

(c) (Epoch-based offering)
repeat

Offer the set S�, and observe the user choice ct ;

Update E� = E� ∪ t , time indices corresponding to epoch �; t = t + 1

until ct = 0 ot t = T

(d) (Posterior update)

For each item i ∈ S�, compute ṽi,� = ∑
t∈E�

I(ct = i), number of picks of item i in
epoch �.

Update Vi = Vi + ṽi,�, ni = ni + 1, � = � + 1.

end while
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Algorithm 2 presents some unique challenges for theoretical analysis. A worst-
case regret analysis of Thompson Sampling-based algorithms for MAB typically
relies on showing that the best arm is optimistic at least once every few steps,
in the sense that the parameter sampled from the posterior is better than the true
parameter. Due to the combinatorial nature of our problem, such a proof approach
requires showing that every few steps, all the K items in the optimal offer set
have sampled parameters that are better than their true counterparts. However,
Algorithm 2 samples the posterior distribution for each parameter independently
in each round. This makes the probability of being optimistic exponentially small
in K . In Sect. 9.5.3, we modify Algorithm 2 to address these challenges and in a
manner amenable to theoretical analysis.

9.5.3 A TS Algorithm with Posterior Approximation and
Correlated Sampling

In this section, we present a variant of TS with correlated sampling that achieves
provably near-optimal regret bounds. We address the challenge associated with the
combinatorial nature of the MNL-Bandit by employing correlated sampling across
items. To implement correlated sampling, we find it useful to approximate the Beta
posterior distribution by a Gaussian distribution with approximately the same mean
and variance as the former, what was referred to in the introduction as a two-
moment approximation. This allows us to generate correlated samples from the N

Gaussian distributions as linear transforms of a single standard Gaussian random
variable. Under such correlated sampling, we can guarantee that the probability
that all K optimal items are simultaneously optimistic is constant, as opposed to
being exponentially small (in K) in the case of independent sampling. However,
such correlated sampling reduces the overall variance of the maximum of N

samples severely, thus inhibiting exploration. We “boost” the variance by taking
K samples instead of a single sample of the standard Gaussian. The resulting
variant of Thompson Sampling, therefore, has three main modifications: posterior
approximation through a Gaussian distribution, correlated sampling, and taking
multiple samples (for “variance boosting”). We elaborate on each of these changes
below.

Posterior Approximation First, we present the following result that helps us in
approximating the posterior.

Lemma 8 (Moments of the Posterior Distribution) If X is a random variable
distributed as Beta(α, β), then

E

(
1
X

− 1
)

= β
α−1 , and Var

(
1
X

− 1
)

=
β

α−1

(
β

α−1 +1
)

α−2 .
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We approximate the posterior distributions used in Algorithm 2 for each MNL
parameter vi , by a Gaussian distribution with approximately the same mean and
variance given in Lemma 8. In particular, let

v̂i (�) := Vi(�)

ni(�)
, σ̂i(�) :=

√
50v̂i (�)(v̂i(�) + 1)

ni(�)
+ 75

√
log T K

ni(�)
, � = 1, 2, . . .

(9.17)

where ni(�) is the number of epochs item i has been offered before epoch �,
and Vi(�) being the number of times it was picked by the user. We will use
N

(
v̂i (�), σ̂

2
i (�)

)
as the posterior distribution for item i in the beginning of epoch �.

The Gaussian approximation of the posterior facilitates efficient correlated sampling
from posteriors that plays a key role in avoiding the theoretical challenges in
analyzing Algorithm 2.

Correlated Sampling Given the posterior approximation by Gaussian distribu-
tions, we correlate the samples by using a common standard normal variable and
constructing our posterior samples as an appropriate transform of this common
standard normal. More specifically, in the beginning of an epoch �, we generate
a sample from the standard normal distribution, θ ∼ N (0, 1), and the posterior
sample for item i is generated as v̂i (�) + θσ̂i(�). Intuitively, this allows us to
generate sample parameters for i = 1, . . . , N that are either simultaneously large or
simultaneously small, thereby, boosting the probability that the sample parameters
for all the K items in the best offered set are optimistic (i.e., the sampled parameter
values are higher than the true parameter values).

Multiple (K) Samples The correlated sampling decreases the joint variance of the
sample set. More specifically, if θi were sampled independently from the standard
normal distribution for every i, then for any epoch �, we have that

Var
(

max
i=1,··· ,N

{
v̂i (�) + θσ̂i(�)

}) ≤ Var
(

max
i=1,··· ,N

{
v̂i (�) + θi σ̂i(�)

})
.

In order to boost this joint variance and ensure sufficient exploration, we modify
the procedure to generate multiple sets of samples. In particular, in the beginning of
an epoch �, we now generate K independent samples from the standard normal
distribution, θ(j) ∼ N(0, 1), j = 1, . . . , K . And then for each j , a sample
parameter set is generated as

μ
(j)
i (�) := v̂i (�) + θ(j)σ̂i (�), i = 1, . . . , N.

Then, we use the largest valued samples

μi(�) := max
j=1,··· ,K μ

(j)
i (�),∀i,
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Algorithm 3 TS algorithm with Gaussian approximation and correlated sampling
Input parameters: α = 50, β = 75
Initialization: t = 0, � = 0, ni = 0 for all i = 1, · · · , N .

for each item, i = 1, · · · , N do

Offer item i to users until the user selects the “outside option”. Let ṽi,1 be the number of
times item i was offered. Update: Vi = ṽi,1 − 1, t = t + ṽi,1, � = � + 1 and ni = ni + 1.

end for
while t ≤ T do

(a) (Correlated Sampling) for j = 1, · · · ,K

Sample θ(j)(�) from the distribution N (0, 1) and let θmax(�) = max
j=1,··· ,Kθ(j)(�);

update v̂i = Vi

ni
.

For each item i ≤ N , compute μ
(j)
i (�) = v̂i + θmax(�) ·

(√
αv̂i (v̂i+1)

ni
+ β

√
log T K
ni

)
.

end

(b) (Subset selection) Same as step (b) of Algorithm 2.

(c) (Epoch-based offering) Same as step (c) of Algorithm 2.

(d) (Posterior update) Same as step (d) of Algorithm 2.

end while

to decide the assortment to offer in epoch �,

S� := arg max
S∈S

{R(S,µ(�))} .

We describe the algorithmic details formally in Algorithm 3.
Intuitively, the second-moment approximation provided by Gaussian distribution

and the multiple samples taken in Algorithm 3 may make the posterior converge
slowly and increase exploration. However, the correlated sampling may compensate
for these effects by reducing the variance of the maximum of N samples and
therefore reducing the overall exploration. In Sect. 9.5.5, we illustrate some of these
insights through numerical simulations. Here, correlated sampling is observed to
provide significant improvements as compared to independent sampling and while
posterior approximation by Gaussian distribution has little impact.

9.5.4 Regret Analysis

The following bound on the regret of Algorithm 3 was proven in Agrawal et al.
(2017).
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Theorem 3 For any instance v = (v0, · · · , vN) of the MNL-Bandit problem with
N products, ri ∈ [0, 1], and satisfying Assumption 1, the regret of Algorithm 3 in
time T is bounded as

Reg(T , v) ≤ C1
√

NT log T K + C2N log2 T K,

where C1 and C2 are absolute constants (independent of problem parameters).

Proof Outline
We provide a proof sketch for Theorem 3. We break down the expression for total
regret

Reg(T , v) := E

[
T∑

t=1

R(S∗, v) − R(St , v)

]
,

into regret per epoch, and rewrite it as follows:

Reg(T, v) = E

[
L∑

�=1

|E�|
(
R(S∗, v) − R(S�,µ(�))

)
]

︸ ︷︷ ︸
Reg1(T,v)

+E

[
L∑

�=1

|E�| (R(S�,µ(�)) − R(S�, v))

]

︸ ︷︷ ︸
Reg2(T,v)

,

where |E�| is the number of periods in epoch �, and S� is the set repeatedly offered
by our algorithm in epoch �. We bound the two terms: Reg1(T , v) and Reg2(T , v)

separately.
Since S� is chosen as the optimal set for the MNL instance with parameters

µ(�), the first term Reg1(T , v) is essentially the difference between the optimal
revenue of the true instance and the optimal revenue of the sampled instance. This
term contributes no regret if the revenues corresponding to the sampled instances
are optimistic, i.e., if R(S�,µ(�)) ≥ R(S∗, v). Unlike optimism under uncertainty
approaches such as UCB, this property is not directly ensured by the Thompson
Sampling-based algorithm. To bound this term, we utilize the anti-concentration
properties of the posterior, as well as the dependence between samples for different
items. In particular, we use these properties to prove that at least one of the K

sampled instances is optimistic “often enough.”
The second term Reg2(T , v) captures the difference in reward from the offered

set S� when evaluated on sampled parameters in comparison to the true parameters.
We bound this by utilizing the concentration properties of the posterior distributions.
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It involves showing that for the sets that are played often, the posterior will converge
quickly so that revenue on the sampled parameters will be close to that on the true
parameters.

In what follows, we elaborate on the anti-concentration properties of the posterior
distribution required to prove Theorem 3.

Anti-Concentration of the Posterior Distribution The last and important compo-
nent of our analysis is showing that revenues corresponding to the sampled instances
are not optimistic, i.e., if R(S�,µ(�)) < R(S∗, v) only in a “small number” of
epochs. We utilize the anti-concentration properties of the posterior to prove that
one of the K sampled instances corresponds to higher expected revenue. We then
leverage this result to argue that the Reg1(T , v) is small.

We will refer to an epoch � as optimistic if the expected revenue of the optimal
set corresponding to the sampled parameters is higher than the expected revenue
of the optimal set corresponding to true parameters, i.e., R(S∗,µ(�)) ≥ R(S∗, v).
Any epoch that is not optimistic is referred to as a non-optimistic epoch. Since S�

is an optimal set for the sampled parameters, we have R(S�,µ(�)) ≥ R(S∗,µ(�)).

Hence, for any optimistic epoch �, the difference between the expected revenue
of the offer set corresponding to sampled parameters R(S�,µ(�)) and the optimal
revenue R(S∗, v) is bounded by zero. This suggests that as the number of optimistic
epochs increases, the term Reg1(T , v) decreases.

The central technical component of our analysis is showing that the regret
over non-optimistic epochs is “small.” More specifically, we prove that there are
only a “small” number of non-optimistic epochs. From the restricted monotonicity
property of the optimal revenue (see Lemma 2), we have that an epoch � is optimistic
if every sampled parameter, μi(�), is at least as high as the true parameter vi for
every item i in the optimal set S∗. Recall that each posterior sample, μ

(j)
i (�), is

generated from a Gaussian distribution, whose mean concentrates around the true
parameter vi . We can use this observation to conclude that any sampled parameter
will be greater than the true parameter with constant probability, i.e., μ

(j)
i (�) ≥ vi .

However, to show that an epoch is optimistic, we need to show that sampled
parameters for all the items in S∗ are larger than the true parameters. This is
where the correlated sampling feature of our algorithm plays a key role. We use
the dependence structure between samples for different items in the optimal set and
variance boosting (by a factor of K) to prove an upper bound of roughly 1/K on the
number of consecutive epochs between two optimistic epochs. More specifically,
we have the following result.

Lemma 9 (Spacing of Optimistic Epochs) Let EAn(τ ) denote the set of consec-
utive epochs between an optimistic epoch τ and the subsequent optimistic epoch τ ′.
For any p ∈ [1, 2], we have

E

[∣∣∣EAn(τ )

∣∣∣
p]

≤
(

e12

K
+ 301/p

)p

.
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9.5.5 Empirical Study

In this section, we test the various design components of the Thompson Sampling-
based approach through numerical simulations. The aim is to isolate and understand
the effect of individual features of our algorithm like Beta posteriors vs. Gaussian
approximation, independent sampling vs. correlated sampling, and single sample
vs. multiple samples, on the practical performance.

We simulate an instance of the MNL-Bandit problem with N = 1000, K =
10, and T = 2 × 105, when the MNL parameters {vi}i=1,...,N are generated
randomly from Unif[0, 1]. And, we compute the average regret based on 50
independent simulations over the randomly generated instance. In Fig. 9.4, we report
the performance of the following different variants of TS:

(i) Algorithm 2: Thompson Sampling with independent Beta priors, as described
in Algorithm 2.

(ii) TSIID Gauss: Algorithm 2 with Gaussian posterior approximation and inde-
pendent sampling. More specifically, for each epoch � and for each item i,
we sample a Gaussian random variable independently with the mean and
variance equal to the mean and variance of the Beta prior in Algorithm 2
(see Lemma 9.17).

(iii) TSGauss Corr: Algorithm 3 with Gaussian posterior approximation and corre-
lated sampling. In particular, for every epoch �, we sample a standard normal
random variable. Then, for each item i, we obtain a corresponding sample by
multiplying and adding the preceding sample with the standard deviation and
mean of the Beta prior in Algorithm 2 (see Step (a) in Algorithm 3). We use
the values α = β = 1 for this variant of Thompson Sampling.

(iv) Algorithm 3: Algorithm 1 with Gaussian posterior approximation with corre-
lated sampling and boosting by using multiple (K) samples. This is essentially
the version with all the features of Algorithm 3. We use the values α = β = 1
for this variant of Thompson Sampling.

For comparison, we also present the performance of UCB approach discussed in
the previous section. The performance of all the variants of TS is observed to be
better than the UCB approach in our experiments, which is consistent with the other
empirical evidence in the literature.

Figure 9.4 shows the performance of the TS variants. Among the TS variants,
the performance of Algorithm 2, i.e., Thompson Sampling with independent
Beta priors is similar to TSIID Gauss, the version with independent Gaussian
(approximate) posteriors, indicating that the effect of posterior approximation is
minor. The performance of TSGauss Corr, where we generate correlated samples
from the Gaussian distributions, is significantly better than the other variants of the
algorithm. This is consistent with our remark earlier that to adapt the Thompson
sampling approach of the classical MAB problem to our setting, ideally, we would
like to maintain a joint prior over the parameters {vi}i=1,...,N and update it to a joint
posterior using the Bandit feedback. However, since this can be quite challenging,
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Fig. 9.4 Regret growth with T for various heuristics on a randomly generated MNL-
Bandit instance with N = 1000,K = 10

and intractable in general, we use independent priors over the parameters. The
superior performance of TSGauss Corr demonstrates the potential benefits of consid-
ering a joint (correlated) prior/posterior in settings with a combinatorial structure.
Finally, we observe that the performance of Algorithm 3, where an additional
“variance boosting” is provided through K independent samples, is worse than
TSGauss Corr. Note that while “variance boosting” facilitates theoretical analysis,
it also results in a longer exploration period explaining the observed degradation of
performance in comparison to the TS variant without “variance boosting.” However,
Algorithm 3 performs significantly better than the independent Beta posterior
version Algorithm 2. Therefore, significant improvements in performance due to the
correlated sampling feature of Algorithm 3 compensate for the slight deterioration
caused by boosting.

9.6 Lower Bound for the MNL-Bandit

In this section, we present the fundamental theoretical limits that any policy must
incur a regret of �(

√
NT ). More precisely, (Chen and Wang, 2017) established the

following result.

Theorem 4 (Lower Bound on Achievable Performance (Chen andWang, 2017))
There exists a (randomized) instance of the MNL-Bandit problem with v0 ≥ vi , i =
1, . . . , N , such that for any N and K , and any policy π that offers assortment Sπ

t ,
|Sπ

t | ≤ K at time t , we have for all T ≥ N that
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Reg(T , v) := Eπ

(
T∑

t=1

R(S∗, v) − R(Sπ
t , v)

)
≥ C

√
NT ,

where S∗ is (at-most) K-cardinality assortment with maximum expected revenue,
and C is an absolute constant.

Theorem 4 is proved by a reduction to a parametric multi-armed bandit (MAB)
problem, for which a lower bound is known. We refer the interested readers to
Chen and Wang (2017) for a detailed proof. Note that Theorem 4 establishes
that Algorithms 1 and 3 achieve near-optimal performance without any a priori
knowledge of problem parameters. Furthermore, these algorithms are adaptive in
the sense that their performance is near-optimal in the “well separated” case.

9.7 Conclusions and Recent Progress

In this chapter, we studied the dynamic assortment selection problem under the
widely used multinomial logit (MNL) choice model. Formulating the problem
as a parametric multi-arm bandit problem, we discussed algorithmic approaches
that learn the parameters of the choice model while simultaneously maximizing
the cumulative revenue. We focused on UCB and Thompson Sampling-based
algorithms that are universally applicable, and whose performance (as measured
by the regret) is provably nearly optimal.

However, the approaches presented here only considered the settings where
every product has its own utility parameter and has to be estimated separately.
Such approaches can handle only a (small) finite number of products. Many real
application settings involve a large number of products essentially described by a
small of features, via what is often referred to as a factor model. Recently, several
works (Chen et al., 2019, 2020, 2021; Cheung and Simchi-Levi, 2017; Saha and
Gopalan, 2019; Feng et al., 2018; Miao and Chao, 2021, 2019; Oh and Iyengar,
2021, 2019) have considered extensions of the approaches presented here to those
more complex settings.

The works of Chen et al. (2020); Miao and Chao (2019); Oh and Iyengar (2021)
consider the more general contextual variant of the MNL-Bandit problem. These
papers build upon (Agrawal et al., 2016, 2019) to develop UCB-based approaches
and establish worst-case regret bounds of Õ(d

√
T ), where d is the dimension of

contexts, with some additional dependencies on certain problem parameters.
The works of Cheung and Simchi-Levi (2017); Miao and Chao (2021); Oh and

Iyengar (2019) developed Thompson Sampling-based approaches for contextual
variations of the MNL-Bandit problem. These works achieve a Bayesian regret
bound of Õ(d

√
T ) that are dependent on problem parameters. Feng et al. (2018)

and Saha and Gopalan (2019) consider the best arm identification variant of the
MNL-Bandit problem, where the focus is only on exploration to identify the best K
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items. Chen et al. (2019) consider a variant of the MNL-Bandit where feedback from
a small fraction of users is not consistent with the MNL choice model. They present
a near-optimal algorithm with a worst-case regret bound of Õ(εK2T + √

NKT ),
where ε is the fraction of users for whom the feedback is corrupted.

Disclaimer This work was done when Vashist (one of the authors) was at Columbia
University.
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