
Chapter 5
Learning and Pricing with Inventory
Constraints

Qi (George) Chen, He Wang, and Zizhuo Wang

5.1 Introduction

In this chapter, we consider learning and pricing problems with inventory con-
straints: given an initial inventory of one or multiple products and finite selling
season, a seller must choose prices dynamically to maximize revenue over the course
of the season. Inventory constraints are prevalent in many business settings. For
most goods and services, there is limited inventory due to supply constraint, sellers’
budget constraint, or limited storage space. Therefore, one must consider the impact
of inventory constraints when learning demand functions and setting prices.

Dynamic pricing with inventory constraints has been extensively studied in
the revenue management literature, often under the additional assumption that the
demand function (i.e., the relationship between demand and price) is known to the
seller prior to the selling season. However, when the demand function is unknown,
the seller faces a trade-off commonly referred to as the exploration–exploitation
trade-off. Toward the beginning of the selling season, the seller may offer different
prices to try to learn and estimate the demand rate at each price (“exploration”
objective). Over time, the seller can use these demand rate estimates to set prices that

Q. (George) Chen
London Business School, London, UK
e-mail: gchen@london.edu

H. Wang (�)
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, USA
e-mail: he.wang@isye.gatech.edu

Z. Wang
School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
e-mail: wangzizhuo@cuhk.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_5

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_5&domain=pdf

 885 46882 a 885 46882 a

mailto:gchen@london.edu

 885
51863 a 885 51863 a

mailto:he.wang@isye.gatech.edu

 885
55738 a 885 55738 a

mailto:wangzizhuo@cuhk.edu.cn

 -2016 61494
a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_5

104 Q. (George) Chen et al.

maximize revenue throughout the remainder of the selling season (“exploitation”
objective). With limited inventory, pursuing the exploration objective comes at the
cost of not only lowering revenue but also diminishing valuable inventory. Simply
put, if inventory is depleted while exploring different prices, there is no inventory
left to exploit the knowledge gained.

In this chapter, we will study how one should design learning algorithm in the
presence of inventory constraints. Specifically, we will study how one can overcome
the additional challenges brought forth by the limited inventory and still design
efficient algorithms for learning demand functions with regret guarantees. In what
follows, we will first discuss the simplest case in this setting in Sect. 5.2, i.e., the
learning and pricing problem of a single product with an inventory constraint. Then,
in Sect. 5.3, we discuss the problem of learning and pricing with multiple products
under inventory constraints. Finally, in Sect. 5.4, we consider a Bayesian learning
setting with inventory constraints. In each of the sections, we describe the model
and the challenges and then present the algorithms and analysis for respective
problems. In Sect. 5.5, we present concluding remarks and some further readings
for this chapter.

5.2 Single Product Case

In this section, we consider the problem of a monopolist selling a single product
in a finite selling season T . We assume that the seller has a fixed inventory x

at the beginning and no replenishment can be made during the selling season.
During the selling season, customers arrive according to a Poisson process with an
instantaneous demand rate λt at time t .1 In our model, we assume that λt is solely
dependent on the price the seller offers at time t . That is, we can write λt = λ(p(t)),
where p(t) is the price offered at time t . The sales will be terminated at time T , and
there is no salvage value for the remaining items.

In our model, we assume that the set of feasible prices is an interval [p, p] with
an additional cut-off price p∞ such that λ(p∞) = 0. The demand rate function λ(p)

is assumed to be strictly decreasing in p and has an inverse function p = γ (λ). We
define a revenue rate function r(λ) = λγ (λ), which captures the expected revenue
when the price is chosen such that the demand is λ. We further assume r(λ) is
concave in λ. These assumptions on demand functions are quite standard and are
called the regular assumptions in the revenue management literature (Gallego and
van Ryzin, 1994).

In addition to the above, we make the following assumptions on the demand rate
function λ(p) and the revenue rate function r(λ):

Assumption 1 For some positive constants M , K , mL, and mU ,

1 Our analysis and result also work if we discretize the time horizon and assume at each time period
t , there is a probability λt such that a customer arrives.

5 Learning and Pricing with Inventory Constraints 105

1. Boundedness: |λ(p)| ≤ M for all p ∈ [p, p].
2. Lipschitz continuity: λ(p) and r(λ(p)) are Lipschitz continuous with respect

to p with factor K . Also, the inverse demand function p = γ (λ) is Lipschitz
continuous in λ with factor K .

3. Strict concavity and differentiability: r ′′(λ) exists and −mL ≤ r ′′(λ) ≤ −mU <

0 for all λ in the range of λ(p) for p ∈ [p, p].
In the following, we use � = �(M,K,mL,mU) to denote the set of demand

functions satisfying the above assumptions with the corresponding coefficients. In
our model, the seller does not know the true demand function λ. The only knowledge
the seller has is that the demand function belongs to �. Note that � does not need
to have any parametric representation. We note that Assumption 1 is quite mild, and
it is satisfied for many commonly used demand function classes including linear,
exponential, and logit demand functions.

To evaluate the performance of any pricing algorithm, we adopt the minimax
regret objective. We call a pricing policy π = (p(t) : 0 ≤ t ≤ T) admissible if
(1) it is a non-anticipating price process that is defined on [p, p] ∪ {p∞} and (2) it

satisfies the inventory constraint, that is,
∫ T

0 dNπ(s) ≤ x,with probability 1, where

Nπ(t) = N
(∫ t

0 λ(p(s))ds
)
denotes the cumulative demand up to time t using

policy π .
We denote the set of admissible pricing policies by P. We define the expected

revenue generated by a policy π by

Jπ(x, T ; λ) = E

[∫ T

0
p(s)dNπ(s)

]

. (5.1)

Given a demand rate function λ, there exists an optimal admissible policy π∗ that
maximizes (5.1). In our model, since we do not know λ in advance, we seek π ∈ P
that performs as close to π∗ as possible.

However, even if the demand function λ is known, computing the expected
value of the optimal policy is computationally prohibitive. It involves solving a
continuous-time dynamic program exactly. Fortunately, as shown in Gallego and
van Ryzin (1994), there exists an upper bound for the expected value of any policy
based on the following deterministic optimization problem:

JD(x, T ; λ) = sup
∫ T

0
r(λ(p(s)))ds

s.t.
∫ T

0
λ(p(s))ds ≤ x (5.2)

p(s) ∈ [p, p] ∪ {p∞}, ∀s ∈ [0, T].

Gallego and van Ryzin (1994) showed that JD(x, T ; λ) provides an upper bound
on the expected revenue generated by any admissible pricing policy π , that is,

106 Q. (George) Chen et al.

Jπ(x, T ; λ) ≤ JD(x, T ; λ), for all λ ∈ � and π ∈ P. With this upper bound,
we define the regret Rπ(x, T ; λ) for any given demand function λ ∈ � and policy
π ∈ P by

Rπ(x, T ; λ) = 1 − Jπ(x, T ; λ)

JD(x, T ; λ)
. (5.3)

Clearly, Rπ(x, T ; λ) is always greater than 0. Furthermore, the smaller
Rπ(x, T ; λ) is, the closer the performance of π is to that of the optimal policy.
However, since the decision-maker does not know the true demand function, it is
attractive to have a pricing policy π that achieves small regrets across all possible
underlying demand functions λ ∈ �. To capture this, we consider the worst-case
regret. Specifically, the decision-maker chooses a pricing policy π , and the nature
picks the worst possible demand function for that policy and our goal is to minimize
the worst-case regret:

inf
π∈P supλ∈�

Rπ(x, T ; λ). (5.4)

Unfortunately, it is hard to evaluate (5.4) for any finite size problem. In order
to obtain theoretical guarantee of proposed policies, we adopt a widely used
asymptotic performance analysis. Particularly, we consider a regime in which
both the size of the initial inventory and the demand rate grow proportionally.
Specifically, in a problem with size n, the initial inventory and the demand function
are given by

xn = nx and λn(·) = nλ(·).

Define JD
n (x, T ; λ) = JD(nx, T , nλ) = nJD(x, T , λ) to be the optimal value

to the deterministic problem with size n and Jπ
n (x, T ; λ) = Jπ(nx, T , nλ) to be

the expected value of a pricing policy π when it is applied to a problem with size n.
The regret for the size-n problem Rπ

n (x, T ; λ) is therefore

Rπ
n (x, T ; λ) = 1 − Jπ

n (x, T ; λ)

JD
n (x, T ; λ)

,

and our objective is to study the asymptotic behavior of Rπ
n (x, T ; λ) as n grows

large and design an algorithm with small asymptotic regret.

5.2.1 Dynamic Pricing Algorithm

In this section, we introduce a dynamic pricing algorithm, which achieves near-
optimal asymptotic regret for the aforementioned problem. To start with, we first

5 Learning and Pricing with Inventory Constraints 107

consider the full-information deterministic problem (5.2). As shown in Besbes and
Zeevi (2009), the optimal solution to (5.2) is given by

p(t) = pD = max{pu, pc} (5.5)

where

pu = arg max
p∈[p,p]

{r(λ(p))}, pc = arg min
p∈[p,p]

∣
∣
∣λ(p) − x

T

∣
∣
∣ . (5.6)

The following important lemma is proved in Gallego and van Ryzin (1994).

Lemma 1 Let pD be the optimal deterministic price when the underlying demand
function is λ. Let πD be the pricing policy that uses the deterministic optimal
price pD throughout the selling season until there is no inventory left. Then,
RπD

n (x, T , λ) = O(n−1/2).

Lemma 1 states that if one knows pD in advance, then simply applying this price
throughout the entire time horizon can achieve asymptotically optimal performance.
Therefore, the idea of our algorithm is to find an estimate of pD that is close enough
to the true one efficiently, using empirical observations on hand. In particular, under
Assumption 1, we know that if pD = pu > pc, then

∣
∣
∣r(p) − r(pD)

∣
∣
∣ ≤ 1

2
mL(p − pD)2 (5.7)

for p close to pD , while if pD = pc ≥ pu, then

∣
∣
∣r(p) − r(pD)

∣
∣
∣ ≤ K

∣
∣
∣p − pD

∣
∣
∣ (5.8)

for p close to pD . In the following discussion, without loss of generality, we assume
pD ∈ (p, p). Note that this can always be achieved by choosing a large interval of
[p, p].

We now state the main result in this section. We use the notation f (n) =
O∗(g(n)) to denote there is a constant C and k such that f (n) ≤ C · g(n) · logk n.

Theorem 1 Let Assumption 1 hold for � = �(M,K,mL,mU). Then, there exists
an admissible policy π generated by Algorithm 1, such that for all n ≥ 1,

sup
λ∈�

Rπ
n (x, T ; λ) = O∗ (n−1/2

)
.

A corollary of Theorem 1 follows from the relationship between the nonparamet-
ric model and the parametric one:

Corollary 1 Assume that � is a parameterized demand function family satisfying
Assumption 1. Then, there exists an admissible policy π generated by Algorithm 1,
such that for all n ≥ 1,

108 Q. (George) Chen et al.

sup
λ∈�

Rπ
n (x, T ; λ) = O∗ (n−1/2

)
.

Now, we explain the meaning of Theorem 1 and Corollary 1. First, as we will
show a matching lower bound in Theorem 2, the result in Theorem 1 is the best
asymptotic regret that one can achieve in this setting. Another consequence of our
result is that it shows that there is no performance gap between parametric and
nonparametric settings in the asymptotic sense, implying that the value of knowing
the parametric form of the demand function is marginal in this problem when the
best algorithm is adopted. In this sense, our algorithm could save firms’ efforts in
searching for the right parametric form of the demand functions.

Now, we describe the dynamic pricing algorithm. As mentioned earlier, we aim
to learn pD through price experimentations. Specifically, the algorithm will be
able to distinguish whether pu or pc is optimal. Meanwhile, it keeps a shrinking
interval containing the optimal price with high probability until a certain accuracy
is achieved.

Now, we explain the ideas behind the Algorithm 1. In the algorithm, we divide
the selling season into a carefully selected set of time periods. In each time period,
we test a set of prices within a certain price interval. Based on the empirical
observations, we shrink the price interval to a smaller subinterval that still contains
the optimal price with high probability and enter the next time period with a smaller
price range. We repeat the shrinking procedure until the price interval is small
enough so that the desired accuracy is achieved.

Recall that the optimal deterministic price pD is equal to the maximum of pu

and pc, where pu and pc are solved from (5.6). As shown in (5.7) and (5.8), the
local behavior of the revenue rate function is quite different around pu and pc: the
former one resembles a quadratic function, while the latter one resembles a linear
function (this is an important feature due to the inventory constraint). This difference
requires us to use different shrinking strategies for the cases when pu > pc and
pc > pu. This is why we have two learning steps (Steps 2 and 3) in our algorithm.
Specifically, in Step 2, the algorithm works by shrinking the price interval until
either a transition condition (5.10) is triggered or the learning phase is terminated.
We show that when the transition condition (5.10) is triggered, with high probability,
the optimal solution to the deterministic problem is pc. Otherwise, if we terminate
learning before the condition is triggered, we know that pu is either the optimal
solution to the deterministic problem or it is close enough so that using pu can yield
a near-optimal revenue. When (5.10) is triggered, we switch to Step 3, in which we
use a new set of shrinking and price testing parameters. Note that in Step 3, we start
from the initial price interval rather than the current interval obtained. This is not
necessary but solely for the ease of analysis. Both Step 2 and Step 3 (if it is invoked)
must terminate in a finite number of iterations.

In the end of the algorithm, a fixed price is used for the remaining selling season
(Step 4) until the inventory runs out. In fact, instead of applying a fixed price in

5 Learning and Pricing with Inventory Constraints 109

Algorithm 1 Dynamic pricing algorithm (DPA)
Step 1. Initialization:

(a) Consider a sequence of τu
i , κu

i , i = 1, 2, . . . , Nu and τ c
i , κc

i , i = 1, 2, . . . , Nc (τ and κ

represent the length of each learning period and the number of different prices to be tested
in each learning period, respectively. Their values along with the values of Nu and Nc are
defined in (5.22)–(5.27), (5.17) and (5.21)). Define pu

1
= pc

1
= p and pu

1 = pc
1 = p. Define

tui = ∑i
j=1 τu

j , for i = 0 to Nu and tci = ∑i
j=1 τ c

j , for i = 0 to Nc;

Step 2. Learn pu or determine pc > pu:
For i = 1 to Nu do

(a) Divide [pu
i
, pu

i] into κu
i equally spaced intervals and let {pu

i,j , j = 1, 2, . . . , κu
i } be the left

endpoints of these intervals;
(b) Divide the time interval [tui−1, t

u
i] into κu

i equal parts and define

�u
i = τu

i

κu
i

, tui,j = tui−1 + j�u
i , j = 0, 1, . . . , κu

i ;

(c) For j from 1 to κu
i , apply pu

i,j from time tui,j−1 to tui,j . If inventory runs out, then apply p∞
until time T and STOP;

(d) Compute

d̂(pu
i,j) = total demand over [tui,j−1, t

u
i,j)

�u
i

, j = 1, . . . , κu
i ;

(e) Compute

p̂u
i = arg max

1≤j≤κu
i

{pu
i,j d̂(pu

i,j)} and p̂c
i = arg min

1≤j≤κu
i

∣
∣
∣d̂(pu

i,j) − x/T

∣
∣
∣ ; (5.9)

(f) If

p̂c
i > p̂u

i + 2
√
log n · pu

i − pu
i

κu
i

(5.10)

then break from Step 2, enter Step 3 and set i0 = i;
Otherwise, set p̂i = max{p̂c

i , p̂
u
i }. Define

pu

i+1
= p̂i − log n

3
· pu

i − pu
i

κu
i

and pu
i+1 = p̂i + 2 log n

3
· pu

i − pu
i

κu
i

. (5.11)

And define the price range for the next iteration

Iu
i+1 = [pu

i+1
, pu

i+1].

Here we truncate the interval if it does not lie inside the feasible set [p, p];
(g) If i = Nu, then enter Step 4(a);

(continued)

110 Q. (George) Chen et al.

Algorithm 1 (continued)
Step 3. Learn pc when pc > pu:
For i = 1 to Nc do

(a) Divide [pc
i
, pc

i] into κc
i equally spaced intervals and let {pc

i,j , j = 1, 2, . . . , κc
i } be the left

endpoints of these intervals;
(b) Define

�c
i = τ c

i

κc
i

, tci,j = tci−1 + j�c
i + tui0 , j = 0, 1, . . . , κc

i ;

(c) For j from 1 to κc
i , apply pc

i,j from time tci,j−1 to tci,j . If inventory runs out, then apply p∞
until time T and STOP;

(d) Compute

d̂(pc
i,j) = total demand over [tci,j−1, t

c
i,j)

�c
i

, j = 1, . . . , κc
i ;

(e) Compute

q̂i = arg min
1≤j≤κc

i

∣
∣
∣d̂(pc

i,j) − x/T

∣
∣
∣ . (5.12)

Define

pc

i+1
= q̂i − log n

2
· pc

i − pc
i

κc
i

and pc
i+1 = q̂i + log n

2
· pc

i − pc
i

κc
i

. (5.13)

And define the price range for the next iteration

I c
i+1 = [pc

i+1
, pc

i+1].

Here, we truncate the interval if it does not lie inside the feasible set of [p, p];
(f) If i = Nc, then enter Step 4(b);

Step 4. Apply the learned price:

(a) Define p̃ = p̂Nu + 2
√
log n · pu

Nu −pu
Nu

κu
Nu

. Use p̃ for the rest of the selling season until the

inventory runs out;
(b) Define q̃ = q̂Nc . Use q̃ for the rest of the selling season until the inventory runs out.

Step 4, one may continue learning using our shrinking strategy. However, it will not
further improve the asymptotic performance of our algorithm.

In the following, we define τu
i , κu

i , Nu, τ c
i , κc

i andNc. Without loss of generality,
we assume T = 1 and p − p = 1 in the following discussion. We first provide a set
of relations we want (τu

i , κu
i) and (τ c

i , κc
i) to satisfy. Then, we explain the meaning

of each relations and derive a set of parameters that satisfy these relations. We use
the notation f ∼ g to mean that f and g are of the same order in n.

The relations that we want (τu
i , κu

i)N
u

i=1 to satisfy are

5 Learning and Pricing with Inventory Constraints 111

(
pu

i − pu
i

κu
i

)2

∼
√

κu
i

nτu
i

, ∀i = 2, . . . , Nu, (5.14)

pu
i+1 − pu

i+1
∼ log n · pu

i − pu
i

κu
i

, ∀i = 1, . . . , Nu − 1, (5.15)

τu
i+1 ·

(
pu

i − pu
i

κu
i

)2

·√log n ∼ τu
1 , ∀i = 1, . . . , Nu − 1. (5.16)

Also, we define

Nu = min
l

⎧
⎨

⎩
l :
(

pu
l − pu

l

κu
l

)2
√
log n < τu

1

⎫
⎬

⎭
. (5.17)

Next, we state the set of relations we want (τ c
i , κc

i)N
c

i=1 to satisfy

pc
i − pc

i

κc
i

∼
√

κc
i

nτ c
i

, ∀i = 2, . . . , Nc, (5.18)

pc
i+1 − pc

i+1
∼ log n · pc

i − pc
i

κc
i

, ∀i = 1, . . . , Nc − 1, (5.19)

τ c
i+1 · pc

i − pc
i

κc
i

·√log n ∼ τ c
1 , ∀i = 1, . . . , Nc − 1. (5.20)

Also, we define

Nc = min
l

{

l : pc
l − pc

l

κc
l

√
log n < τc

1

}

. (5.21)

To understand the above relations, it is useful to examine the source of revenue
losses in our algorithm. First, there is an exploration loss in each period—the prices
tested are not optimal, resulting in suboptimal revenue rate or suboptimal inventory
consumption rate. The magnitude of such losses in each period is roughly the
deviation of the revenue rate (or the inventory consumption rate) multiplied by the
time length of the period. Second, there is a deterministic loss due to the limited
learning capacity—we only test a grid of prices in each period and may never use
the exact optimal price. Third, since the demand follows a stochastic process, the
observed demand rate may deviate from the true underlying demand rate, resulting
in a stochastic loss. Note that these three losses also exist in the learning algorithm

112 Q. (George) Chen et al.

proposed in Besbes and Zeevi (2009). However, in dynamic learning, the loss in one
period does not simply appear once, it may have impact on all the future periods.
The design of our algorithm tries to balance these losses in each step to achieve the
maximum efficiency of learning. With these in mind, we explain the meaning of
each equation above in the following:

• The first relation (5.14) ((5.18), respectively) balances the deterministic loss

induced by only considering the grid points (the grid granularity is
pu

i −pu
i

κu
i

(
pc

i −pc
i

κc
i

,

resp.)) and the stochastic loss induced in the learning period which will be shown

to be

√
κu
i

nτu
i
(

√
κc
i

nτ c
i
, respectively). Due to the relation in (5.7) and (5.8), the loss

is quadratic in the price granularity in Step 2 and linear in Step 3.
• The second relation (5.15) ((5.19), respectively) makes sure that with high

probability, the price intervals Iu
i (I c

i , respectively) contain the optimal price pD .
This is necessary, since otherwise a constant loss will be incurred in all periods
afterward.

• The third relation (5.16) ((5.20), respectively) bounds the exploration loss for
each learning period. This is done by considering the multiplication of the
revenue rate deviation (also demand rate deviation) and the length of the learning

period, which in our case can be upper bounded by τu
i+1

√
log n ·

(
pu

i −pu
i

κu
i

)2

(τ c
i+1

√
log n · pc

i −pc
i

κc
i

, respectively). We want this loss to be of the same order

for each learning period (and all equal to the loss in the first learning period,
which is τ1) to achieve the maximum efficiency of learning.

• Formula (5.17) ((5.21), respectively) determines when the price we obtain is
close enough to optimal such that we can apply this price in the remaining selling

season. We show that
√
log n·

(
pu

l −pu
l

κu
l

)2
(
√
log n· pc

l −pc
l

κc
l

, respectively) is an upper

bound of the revenue rate and demand rate deviations of price p̂l . When this is
less than τ1, we can simply apply p̂l and the loss will not exceed the loss of the
first learning period.

Now, we solve the relations (5.14)–(5.16) and obtain a set of parameters that satisfy
them:

τu
1 = n− 1

2 · (log n)3.5 and τu
i = n− 1

2 ·(35)i−1 · (log n)5, ∀i = 2, . . . , Nu, (5.22)

κu
i = n

1
10 ·(35)i−1 · log n, ∀i = 1, 2, . . . , Nu. (5.23)

As a by-product, we have

pu
i − pu

i
= n− 1

4 (1−(35)i−1), ∀i = 1, 2, . . . , Nu. (5.24)

5 Learning and Pricing with Inventory Constraints 113

Similarly, we solve the relations (5.18)–(5.20) and obtain a set of parameters that
satisfy them:

τ c
1 = n− 1

2 · (log n)2.5 and τ c
i = n− 1

2 ·(23)i−1 · (log n)3, ∀i = 2, . . . , Nc, (5.25)

κc
i = n

1
6 ·(23)i−1 · log n, ∀i = 1, 2, . . . , Nc (5.26)

and

pc
i − pc

i
= n− 1

2 (1−(23)i−1), ∀i = 1, . . . , Nc. (5.27)

Note that by (5.24) and (5.27), the price intervals defined in our algorithm indeed
shrink in each iteration.

5.2.2 Lower Bound Example

In the last section, we proposed a dynamic pricing algorithm and proved an upper
bound of O∗(n−1/2) on its regret in Theorem 1. In this section, we show that there
exists a class of demand functions satisfying our assumptions such that no pricing
policy can achieve an asymptotic regret less than O∗(n−1/2). This lower bound
example provides a clear evidence that the upper bound is tight. Therefore, our
algorithm achieves nearly the best performance among all possible algorithms and
closes the performance gap for this problem. Because our algorithm and the lower
bound example apply for both parametric and nonparametric settings, it also closes
the gap for the problem with a known parametric demand function.

Theorem 2 (Lower Bound Example) Let λ(p; z) = 1/2 + z − zp, where z is a
parameter taking values in Z = [1/3, 2/3] (we denote this demand function set by
). Let p = 1/2, p = 3/2, x = 2, and T = 1. Then, we have the following:

• This class of demand function satisfies Assumption 1. Furthermore, for any z ∈
[1/3, 2/3], the optimal price pD always equals pu and pD ∈ [7/8, 5/4].

• For any admissible pricing policy π and all n ≥ 1,

sup
z∈Z

Rπ
n (x, T ; z) ≥ 1

12(48)2
√

n
.

We first explain some intuitions behind this example. Note that all the demand
functions in	 cross at one common point, that is, when p = 1, λ(p; z) = 1/2. Such
a price is called an uninformative price in Broder and Rusmevichientong (2012).
When there exists an uninformative price, experimenting at that price will not gain

114 Q. (George) Chen et al.

information about the demand function. Therefore, in order to learn the demand
function (i.e., the parameter z) and determine the optimal price, one must at least
perform some price experiments at prices away from the uninformative price; on
the other hand, when the optimal price is indeed the uninformative price, doing
price experiments away from the optimal price will incur some revenue losses. This
tension is the key reason for such a lower bound for the loss, and mathematically it
is reflected in statistical bounds on hypothesis testing. For the proof of Theorem 2,
we refer the readers to Wang et al. (2014).

5.3 Multiproduct Setting

In this section, we consider a multiple product and multiple resource generalization
of the problem introduced in the previous section. This more general problem, also
known as the price-based Network Revenue Management (NRM) problem with
learning, considers a setting in which a seller sells to incoming customers n types
of products, each of which is made up from a subset of m types of resources,
during a finite selling season which consists of T decision periods. Denote by
A = [Aij] ∈ R

m×n+ the resource consumption matrix, which indicates that a
single unit of product j requires Aij units of resource i. Denote by C ∈ R

m+ the
vector of initial capacity levels of all resources at the beginning of the selling
season which cannot be replenished and have zero salvage value at the end of
the selling season. At the beginning of period t ∈ [T], the seller first decides the
price pt = (pt,1; . . . ;pt,n) for his products, where pt is chosen from a convex
and compact set P = ⊗n

l=1[pl
, p̄l] ⊆ R

n of feasible price vectors. Let Dt(pt) =
(Dt,1(pt); . . . ;Dt,n(pt)) ∈ D := {(d1; . . . ; dn) ∈ {0, 1}n : ∑n

i=1 di ≤ 1} denote
the vector of realized demand in period t under price pt . For simplicity, we assume
that at most one sale for one of the products occurs in each period. We assume that
the purchase probability vector for all products under any price pt , i.e., λ∗(pt) :=
E [Dt(pt)] is unknown to the seller, and this relationship λ∗(.), also known as the
demand function, needs to be estimated from the data the seller observes during the
finite selling season. Define the revenue function r∗(p) := p · λ∗(p) to be the one-
period expected revenue that the seller can earn under price p. It is typically assumed
in the literature that λ∗(.) is invertible (see the regularity assumptions below). By
abuse of notation, we can then write r∗(p) = p · λ∗(p) = λ · p∗(λ) = r∗(λ) to
emphasize the dependency of revenue on demand rate instead of on price. We make
the following regularity assumptions about λ∗(.) and r∗(.) which can be viewed as
multidimensional counterparts of Assumption 1.

Regularity Assumptions

R1. λ∗(.) is twice continuously differentiable and it has an inverse function p∗(.)
which is also twice continuously differentiable.

5 Learning and Pricing with Inventory Constraints 115

R2. There exists a set of turnoff prices p∞
j ∈ R+ ∩ {∞} for j = 1, . . . , n such that

for any p = (p1; . . . ;pn), pj = p∞
j implies that λ∗

j (p) = 0.
R3. r∗(.) is bounded and strongly concave in λ.

Compared to the single product setting, the NRM setting imposes two challenges:
first, the nice solution structure for single product setting breaks down in the
presence of multiple types of products and resources, and second, the approach
of estimating the deterministic optimal prices and then applying this learned price
may not be sufficient to get tight regret bound since ensuring the same estimation
error of the deterministic optimal prices in multidimensional setting requires
significantly more observations which in turn affects the best achievable regret
bound of this approach. The goal of this section is twofold. First, we introduce two
settings of NRM where the demand function possesses some additional structural
properties, i.e., the parametric setting where demand function comes from a family
of functions parameterized by a finite number of parameters and the nonparametric
setting where demand function is sufficiently smooth. Second, we introduce an
adaptive exploitation pricing scheme which help achieve tight regret bound for the
two settings. In the remainder of this section, after introducing some additional
preliminary results in Sect. 5.3.1, we will first investigate parametric setting in
Sect. 5.3.2 and then investigate the nonparametric setting in Sect. 5.3.3.

5.3.1 Preliminaries

Let D1:t := (D1,D2, . . . , Dt) denote the history of the demand realized up to and
including period t . LetHt denote the σ -field generated by D1:t . We define a control
π as a sequence of functions π = (π1, π2, . . . , πT), where πt is aHt−1-measurable
real function that maps the history D1:t−1 to ⊗n

j=1[pj
, p̄j] ∪ {p∞

j }. This class of
controls is often referred to as non-anticipating controls because the decision in
each period depends only on the accumulated observations up to the beginning of the
period. Under policy π , the seller sets the price in period t equal to pπ

t = πt (D1:t−1)

almost surely (a.s.). Let � denote the set of all admissible controls:

� :=
{

π :
T∑

t=1

ADt(p
π
t) � C and pπ

t = πt (Ht−1) a.s.

}

.

Note that even though the seller does not know the underlying demand function, the
existence of the turnoff prices p∞

1 , . . . , p∞
n guarantees that this constraint can be

satisfied if the seller applies p∞
j for product j as soon as the remaining capacity

at hand is not sufficient to produce one more unit of product j . Let Pπ
t denote the

induced probability measure of D1:t = d1:t under an admissible control π ∈ �, i.e.,

116 Q. (George) Chen et al.

Pπ
t (d1:t) =

t∏

s=1

⎡

⎢
⎢
⎣

⎛

⎝1 −
n∑

j=1

λ∗
j (p

π
s)

⎞

⎠

(
1−∑n

j=1 ds,j

)

n∏

j=1

λ∗
j (p

π
s)ds,j

⎤

⎥
⎥
⎦ ,

where pπ
s = πs(d1:s−1) and ds = [ds,j] ∈ D for all s = 1, . . . , t . (By definition

of λ∗(.), the term 1 − ∑n
j=1 λ∗

j (p
π
s) can be interpreted as the probability of no-

purchase in period s under price pπ
s .) Denote by Eπ the expectation with respect to

the probability measure Pπ
t . The total expected revenue under π ∈ � is then given

by

Rπ = Eπ

[
T∑

t=1

pπ
t · Dt(p

π
t)

]

.

The multidimensional version of the deterministic problem in the previous
section can be formulated as follows:

(P) JD := max
pt ,t∈[T]

{
T∑

t=1

r∗(pt) :
T∑

t=1

Aλ∗(pt) � C

}

,

or equivalently, (Pλ) JD := max
λt ,t∈[T]

{
T∑

t=1

r∗(λt) :
T∑

t=1

Aλt � C

}

.

By assumption R3, Pλ is a convex program and it can be shown that JD is an
upper bound for the total expected revenue under any admissible control, i.e., Rπ ≤
JD for all π ∈ �. This allows us to define the regret of an admissible control
π ∈ � as ρπ := JD − Rπ . Let λD denote the optimal solution of Pλ, and let
pD = p∗(λD) denote the corresponding optimal deterministic price. (Since r∗(λ)

is strongly concave with respect to λ, by Jensen’s inequality, the optimal solution is
static, i.e., λt = λD for all t .) Let Ball(x, r) be a closed Euclidean ball centered at
x with radius r . We state our fourth regularity assumption below which essentially
states that the static price should neither be too low that it attracts too much demand
nor too high that it induces no demand:

R4. There exists φ > 0 such that Ball(pD, φ) ⊆ P.
Finally, we will consider a sequence of problems where the length of the selling

season and the initial capacity levels are scaled proportionally by a factor k > 0.
One can interpret k as the size of the problem. One can show that the optimal
deterministic solution in the scaled problems remains λD . Let ρπ(k) denote the
regret under an admissible control π ∈ � for the problem with scaling factor k. We
use the asymptotic order of ρπ(k) as the metric for heuristic performance.

5 Learning and Pricing with Inventory Constraints 117

5.3.2 Parametric Case

In the parametric setting, the functional form of the demand is known, but the finite
parameters which pin down the function are unknown. Mathematically, let � be a
compact subset of Rq , where q ∈ Z++ is the number of unknown parameters. Under
the parametric demand case, the seller knows that the underlying demand function
λ∗(.) equals λ(.; θ) for some θ ∈ �. Although the function λ(.; θ) is known, the
true parameter vector θ∗ is unknown and needs to be estimated from the data.
The one-period expected revenue function is given by r(p; θ) := p · λ(p; θ). To
leverage the parametric structure of the unknown function, we will focus primarily
on Maximum Likelihood (ML) estimation which not only has certain desirable
theoretical properties but is also widely used in practice. As shown in the statistics
literature, to guarantee the regular behavior of ML estimator, certain statistical
conditions need to be satisfied. To formalize these conditions in our context, it is
convenient to first consider the distribution of a sequence of demand realizations
when a sequence of q̃ ∈ Z++ fixed price vectors p̃ = (p̃(1), p̃(2), . . . , p̃(q̃)) ∈ Pq̃

have been applied. For all d1:q̃ ∈ Dq̃ , we define

Pp̃,θ (d1:q̃) :=
q̃∏

s=1

⎡

⎢
⎢
⎣

⎛

⎝1 −
n∑

j=1

λj (p̃
(s); θ)

⎞

⎠

(
1−∑n

j=1 ds,j

)

n∏

j=1

λj (p̃
(s); θ)ds,j

⎤

⎥
⎥
⎦

and denote by Ep̃
θ the expectation with respect to Pp̃,θ . In addition to the regularity

assumptions R1–R4, we impose additional properties to ensure that the function
class {λ(.; θ)}θ∈� is well-behaved.

Parametric Family Assumptions

A1 λ(p; θ) and
∂λj

∂pi
(p; θ) for all i, j ∈ [n] and i �= j are continuously

differentiable in θ .
A2 R1 and R3 hold for all θ ∈ �.
A3 There exists p̃ = (p̃(1), p̃(2), . . . , p̃(q̃)) ∈ Pq̃ such as for all θ ∈ �,

i. Pp̃,θ (.) �= Pp̃,θ ′
(.) for all θ ′ ∈ � and θ ′ �= θ .

ii. For all k ∈ [q̃] and j ∈ [n], λj (p̃
(k); θ) > 0 and

∑n
j=1 λj (p̃

(k); θ) < 1.
iii. The minimum eigenvalue of the matrix I(p̃, θ) := [Ii,j (p̃, θ)] ∈ R

q×q

where

Ii,j (p̃, θ) = Ep̃
θ

[

− ∂2

∂θi∂θj

logPp̃,θ (D1:q̃)

]

is bounded from below by a positive number.

118 Q. (George) Chen et al.

Note that A1 and A2 are quite natural assumptions satisfied by many demand
functions such as linear, multinomial logit, and exponential demand. We call p̃

in A3 exploration prices. A3 ensures that there exists a set of price vectors (e.g.,
p̃), which, when used repeatedly, would allow the seller to use ML estimator to
statistically identify the true demand parameter. Note that the symmetric matrix
I(p̃, θ) defined in A3-iii is known as the Fisher information matrix in the literature,
and it captures the amount of information that the seller obtains about the true
parameter vector using the exploration prices p̃. A3-iii requires the Fisher matrix to
be strongly positive definite; this is needed to guarantee that the seller’s information
about the underlying parameter vector strictly increases as he observes more demand
realizations under p̃. We want to point out that it is easy to find exploration prices
for the commonly used demand function families. For example, for linear and
exponential demand function families, any q̃ = n+1 price vectors p̃(1), . . . , p̃(n+1)

constitute a set of exploration prices if (a) they are all in the interior of P and
(b) the vectors (1; p̃(1)), . . . , (1; p̃(n+1)) ∈ R

n+1 are linearly independent. For
the multinomial logit demand function family, any q̃ = 2 price vectors p̃(1), p̃(2)

constitute a set of exploration prices if (a) they are both in the interior of P and (b)
p̃

(1)
i �= p̃

(2)
i for all i = 1, . . . , n.

Next, we develop a heuristic called Parametric Self-adjusting Control (PSC).
In PSC, the selling season is divided into an exploration stage followed by an
exploitation stage. The exploration stage lasts for L periods (L is a tuning parameter
to be selected by the seller) where the seller alternates among exploration prices to
learn the demand function. At the end of the exploration stage, the seller computes
his ML estimate of θ∗, denoted by θ̂L (in case the maximum of the likelihood
function is not unique, take any maximum as the ML estimate), based on all his
observations so far, and solves Pλ(θ̂L) for its solution λD(θ̂L) as an estimate of
the deterministically optimal demand rate λD(θ∗). Then, for the remaining (T −L)-
period exploitation stage, the seller uses price vectors according to a simple adaptive
rule which we explain in more detail below. Define �̂t (pt ; θ̂L) := Dt − λ(pt ; θ̂L),
and let Ct denote the remaining capacity at the end of period t . The complete PSC
procedure is given in Algorithm 2.

In contrast to many proposed heuristics that use the learned deterministic optimal
price for exploitation, PSC uses the adaptive price adjustment rule in (5.28) for
exploitation. To see the idea behind this design, suppose the estimate of the
parameter vector is accurate (Jasin, 2014). In that setting, �̂t equals the stochastic
variability in demand arrivals �t := Dt − λ(pt ; θ∗), and the pricing rule in (5.28)
reduces to adjusting the prices in each period t to achieve a target demand rate,
i.e., λD(θ∗)−∑t−1

s=L+1
�s

T −s
. The first part of this expression, λD(θ∗), is the optimal

demand rate if there were no stochastic variability, and we use it as a base rate;
the second part of the expression, on the other hand, works as a fine adjustment
to the base rate in order to mitigate the observed stochastic variability. To see how
such adjustment works, consider the case with a single product: if there is more
demand than what the seller expects in period s, i.e., �s > 0, then the pricing rule
automatically accounts for it by reducing the target demand rate for all remaining

5 Learning and Pricing with Inventory Constraints 119

Algorithm 2 Parametric self-adjusting control (PSC)
Tuning Parameter: L

1. Stage 1 (Exploration)

a. Determine the exploration prices {p̃(1), p̃(2), . . . , p̃(q̃)}.
b. For t = 1 to L, do:

• If Ct−1 � Aj for all j , apply price pt = p̃(�(t−1)q̃/L�+1) in period t .
• Otherwise, apply price pt ′,j = p∞

j for all j and t ′ ≥ t ; then terminate PSC.

c. At the end of period L:

• Compute the ML estimate θ̂L based on p1:L and D1:L
• Solve Pλ(θ̂L) for λD(θ̂L).

2. Stage 2 (Exploitation)
For t = L + 1 to T , compute:

p̂t = p

(

λD(θ̂L) −
t−1∑

s=L+1

�̂s(ps; θ̂L)

T − s
; θ̂L

)

. (5.28)

• If Ct−1 � Aj , and p̂t ∈ P, apply price pt = p̂t in period t

• Otherwise, for product j = 1 to n, do:

– If Ct−1 ≺ Aj , apply price pt,j = p∞
j .

– Otherwise, apply price pt,j = pt−1,j

(T − s)-period; moreover, the target demand rate adjustment is made uniformly
across all (T −s)-period so as to minimize unnecessary price variations. Jasin (2014)
has shown that the ability to accurately mitigate the stochastic variability allows
this self-adjusting pricing rule be effective when the parameter vector is known.
However, as one can imagine, such precise adjustment is not possible when the
parameter vector is subject to estimation error. Indeed, when θ̂L �= θ∗, the seller can
only adjust target demand rate based on an estimate of �s , i.e., �̂s ; moreover, the
seller can no longer correctly find out the price vector that accurately induces (on
average) the target demand rate since the inverse demand function is also subject
to estimation error. Can this pricing rule work well when the underlying demand
parameter is subject to estimation error? The answer is yes, and the key observation
is that these two sources of systematic biases push the price decisions on opposing
directions and their impact is thus reduced. To see that, consider a single product
case where the seller overestimates demand for all prices, i.e., λ(p; θ̂L) > λ(p; θ∗)
for all p: on the one hand, since the seller would underestimate the stochastic
variation that he needs to adjust (i.e., �̂s = Ds−λ(ps; θ̂L) < Ds−λ(ps; θ∗) = �s),
this would push up the target demand rate (which would push down the price) than
if there were no estimation error; on the other hand, since p(λ; θ̂L) > p(λ; θ∗), for

120 Q. (George) Chen et al.

a given target demand rate, the presence of estimation error would push the price
up. Quite interestingly, these opposing mechanisms are sufficient for PSC to achieve
the optimal rate of regret.

Theorem 3 Suppose that R1–R4 and A1–A3 hold. Set L = �√
kT �. Then, there

exists a constant M1 > 0 independent of k ≥ 1 such that ρPSC(k) ≤ M1
√

k for all
k ≥ 1.

Note that in light of the lower bound example in the previous section, PSC
achieves the best achievable regret. The reason PSC achieves this tight bound can be
briefly explained as follows. First, it leverages the fact that the demand model is fully
determined by a finite-dimensional vector θ∗, which can be efficiently estimated
by ML estimation. Under ML, roughly speaking, to obtain an estimation error in
the order of ε, the seller needs to spend roughly �(ε−2) periods exploring the
demand curve with exploration prices which are not necessarily optimal. Second,
the self-adjusting pricing rule in (5.28) helps reduce the impact of estimation error
on revenue obtained during exploitation compared to using the learned deterministic
price directly. To see that, suppose that the true parameter vector is misestimated by
a small error ε, then one can show that λD(θ̂L) is roughly ε away from λD(θ∗). If
the seller simply uses the learned deterministic optimal price pD(θ̂L) throughout
the exploitation stage, then the one-period regret is roughly r(λD(θ∗); θ∗) −
r(λD(θ̂L); θ∗) ≈ ∇λr(λ

D(θ∗); θ∗) · (λD(θ∗)−λD(θ̂L)) ≈ �(ε) (note that a tighter
bound cannot be obtained since the gradient at the constrained optimal solution is
not necessarily zero). In PSC, as mentioned above, the pricing rule (5.28) introduces
opposing mechanisms to mitigate the impact of systematic error ε on regret which
results in a one-period regret of �(ε2). Thus, the total regret in both exploration and
exploitation is bounded by �(L) + �(ε2(kT − L)) = O(ε−2 + ε2kT), which is
bounded by O(

√
kT) after optimally tuning ε (or equivalently, L).

5.3.3 Nonparametric Case

The setting in Sect. 5.3.2 assumes that the seller has a good prior knowledge of
the functional form of the demand function which may not be appropriate in
cases such as new product launch where no historically relevant data is available.
Blindly assuming a parametric demand model may be inappropriate and could
potentially result in significant revenue loss if the parametric form is misspecified,
e.g., a seller who uses linear model to fit the data generated by a logit model.
An alternative setting, also known as the nonparametric approach, is one where
the seller has no prior knowledge of the functional form but tries to estimate the
demand directly. The challenge of this approach is that, instead of estimating a
finite number of parameters, the seller now needs to directly estimate the demand
function value at different price vectors to get an idea of the shape of the demand
curve; thus, the number of point estimates needed to ensure low estimation error
increases exponentially as the number of products increases. To keep the estimation

5 Learning and Pricing with Inventory Constraints 121

problem tractable, a common assumption made in the statistics literature for
nonparametric approaches is to impose smoothness conditions of the underlying
demand functions (Gyorfi et al., 2002). To that end, let s̄ denote the largest integer
such that |∂a1,...,anλ∗

j (p)/∂p
a1
1 . . . ∂p

an
n | is uniformly bounded for all j ∈ [n] and

0 ≤ a1, . . . , an ≤ s̄. We call s̄ the smoothness index. We make the following
smoothness assumptions:

Nonparametric Function Smoothness Assumptions

N1. s̄ ≥ 2.

N2.

∣
∣
∣
∣
∂a1,...,anλ∗

j (p)

∂p
a1
1 ...∂p

an
n

∣
∣
∣
∣ is uniformly bounded for all j ∈ [n], p ∈ P, 0 ≤ a1, . . . , an ≤ s̄.

The above assumptions are fairly mild and are satisfied by most commonly
used demand functions, including linear, polynomial with higher degree, logit, and
exponential with a bounded domain of feasible prices. The smoothness index s̄

indicates the level of difficulty in estimating the corresponding demand function:
the larger the value of s̄, the smoother the demand function, and the easier it is to
estimate its shape because its value cannot have a drastic local change.

The idea of the nonparametric approach to be introduced later in this section is
to replace the ML estimator in PSC by a nonparametric estimation procedure. One
such approach is to use a linear combination of spline functions to approximate
the underlying demand function which we introduce below. Spline functions have
been widely used in engineering to approximate complicated functions, and their
popularity is primarily due to their flexibility in effectively approximating complex
curve shapes (Schumaker, 2007). This flexibility lies in the piecewise nature of
spline functions—a spline function is constructed by attaching piecewise polyno-
mial functions with a certain degree, and the coefficients of these polynomials are
computed in such a way that a sufficiently high degree of smoothness is ensured
in the places where the polynomials are connected. More formally, for all l ∈ [n],
let p

l
= xl,0 < xl,1 · · · < xl,d < xl,d+1 = p̄l be a partition that divides [p

l
, p̄l]

into d + 1 subintervals of equal length where d ∈ Z++. Let G := ⊗n
l=1Gl denote

a set of grid points, where Gl = {xl,i}d+1
i=0 . We define the function space of tensor-

product polynomial splines of order (s; . . . ; s) ∈ R
n with a set of grid points G

as S(G, s) := ⊗n
l=1Sl (Gl , s), where Sl (Gl , s) := {f ∈ Cs−2([p

l
, p̄l]) : f is

a single-variate polynomial of degree s − 1 on each subinterval [xl,i−1, xl,i), for
all i ∈ [d] and [xl,d , xl,d+1]}. One of the key questions that spline approximation
theory addresses is the following: given an arbitrary function λ that satisfies N1-
N2, find a spline function g∗ ∈ S(G, s) that approximates λ well. Among the
various approaches, one of the most popular approximations is using the so-called
tensor-product B-Spline basis functions (Schumaker, 2007). This approach is based
on using the linear combinations of a collection of (s + d)n tensor-product B-
Spline basis functions, denoted by {Ni1,...,in (x1, . . . , xn)}s+d,...,s+d

i1=1,...,in=1, which span
the functional space S(G, s), to approximate the target function λ. Therefore, the
problem of finding g∗ is reduced to the problem of computing the coefficients for

122 Q. (George) Chen et al.

representing g∗. Schumaker (2007) proposed an explicit formula for computing
these coefficients when the value of λ is perfectly observable, and the coefficients
depend on λ(.) only via its function value evaluated on a finite number of price
vectors in P (i.e., the (s + d)nsn price vectors in G̃ defined in Algorithm 3); the
details for the formula are bit technical, but we provide these in Algorithm 3 for
completeness. In our problem setting, finding an approximation for λ∗

j (.) for all
j ∈ [n] is more challenging since we observe noisy observations of the function
value, so we use empirical mean of demand realizations as a surrogate for λ∗

j (p)

and propose the following Spline Estimation algorithm in Algorithm 4 to estimate
the demand, which involves observing L̃0 := L0(s + d)nsn samples.

Let λ̃(.) denote the spline function computed via Algorithm 4. It can be shown
that with high probability, the approximation error of λ̃(.) converges to zero at a
slightly slower rate than the ML estimator in the parametric case. While one may
be tempted to directly apply the exploitation method in PSC, i.e., the pricing rule
in (5.28), the analysis of such approach is quite difficult since, given the nature
of B-spline functions and the estimation procedure, λ̃(.) may lose some of the
regularity properties that λ∗(.) possesses. Thus, we introduce two more functional
approximations on λ̃(.) before applying the self-adjusting pricing procedure for
exploitation. To that end, we introduce a quadratic program approximation of P

Algorithm 3 Spline approximation

Input function: λ ∈ C0(P) and λ satisfies N1 and N2
Output function: g∗ ∈ S(G, s)

1. For l ∈ [n], i ∈ [s + d], define {yl,i}2s+d
i=1 as follows

yl,1 = · · · = yl,s = xl,0,

yl,s+1 = xl,1, yl,s+2 = xl,2, . . . , yl,s+d = xl,d ,

yl,s+d+1 = · · · = yl,2s+d = xl,d+1;

moreover, compute the following:

τl,i,j = yl,i + (yl,i+s − yl,i)
j−1
s−1 and βl,i,j = ∑j

v=1
(−1)v−1

(s−1)! φ
(s−v)
l,i,s (0)ψ(v−1)

l,i,j (0), for j ∈ [s],

where φl,i,s (t) = ∏s−1
r=1(t − yl,i+r), ψl,i,j (t) = ∏j−1

r=1 (t − τl,i,r), ψl,i,1(t) ≡ 1. Let G̃ :=
{(τ1,i1,j1 ; . . . ; τn,in,jn) : il ∈ [s + d], jl ∈ [s] for all l ∈ [n]}.

2. Define g∗ as follows:

g∗(x1, . . . , xn) =
s+d∑

i1=1

· · ·
s+d∑

in=1

γi1,...,inNi1,...,in (x1, . . . , xn),

where γi1,...,in =
s∑

j1=1

j1∑

r1=1

· · ·
s∑

jn=1

jn∑

rn=1

λ(τ1,i1,r1 , . . . , τn,in,rn)
∏n

l=1 βl,il ,jl
∏n

l=1
∏jl

sl=1,sl �=rl
(τl,il ,rl − τl,il ,sl)

5 Learning and Pricing with Inventory Constraints 123

Algorithm 4 Spline estimation
Input Parameter: L0, n, s Tuning Parameter: d

1. Estimate λ∗(p) at points p ∈ G̃. For each p ∈ G̃
a. Apply price p L0 times
b. Let λ̃(p) be the sample mean of the L0 observations

2. Construct spline approximation

a. For all j ∈ [1, n] and il ∈ [1, s + d], l ∈ [1, n], calculate coefficients c
j
i1,...,in

as:

c
j
i1,...,in

=
s∑

j1=1

j1∑

r1=1

· · ·
s∑

jn=1

jn∑

rn=1

λ̃j (τ1,i1,r1 , . . . , τn,in,rn)
∏n

l=1 βl,il ,jl
∏n

l=1
∏jl

sl=1,sl �=rl
(τl,il ,rl − τl,il ,sl)

.

b. Construct a tensor-product spline function λ̃(p) = (λ̃1(p); . . . ; λ̃n(p)), where

λ̃j (p) =
s+d∑

i1=1

· · ·
s+d∑

in=1

c
j
i1,...,in

Ni1,...,in (p).

in which we approximate the constraints of P with linear functions and its objective
with a quadratic function. First, to linearize the constraints of P, since the capacity
constraints form an affine transformation of the demand function, we will simply
linearize the demand function. For any a ∈ R

n, B ∈ R
n×n, let B1, . . . , Bn be the

columns ofB and define θι = (a;B1; . . . ;Bn) ∈ R
n2+n, where the subscript ι stands

for linear demand. We denote a linear demand function by λ(p; θι) = a+B ′p. Next,
we explain how we use a quadratic function to approximate the objective of P. For
any E ∈ R, F ∈ R

n,G ∈ R
n×n, let G1, . . . , Gn denote the columns of G and define

θo = (E;F ;G1; . . . ;Gn) ∈ R
n2+n+1, where the subscript o stands for objective.

We denote the resulting quadratic function by q(p; θo) = E+F ′p+ 1
2p

′Gp. Finally,

let θ = (θo; θι) ∈ R
2n2+2n+1. For any θ ∈ R

2n2+2n+1, δ ∈ R
m, we can define a

quadratic program QP(θ; δ) as follows:

(QP(θ; δ)) max
p∈P

{
q(p; θo) : Aλ(p; θι) � C

T
− δ

}
.

It can be shown that quadratic program will have the same optimal solution as
P and will possess some very useful stability properties if the parameters of the
quadratic and linear functions are chosen as follows: for linear demand function, let
θ∗
ι = (a∗;B∗

1 ; . . . ;B∗
n), where B∗ := ∇λ∗(pD) and a∗ := λD − (B∗)′pD; for the

quadratic objective function, let θ∗
o = (E∗;F ∗;G∗

1; . . . ;G∗
n) where

E∗ := 1

2
(pD)′H ∗pD, F ∗ := a∗ − H ∗pD, G∗ := B∗ + (B∗)′ + H ∗,

124 Q. (George) Chen et al.

where H ∗ is an n by n symmetric matrix defined as H ∗ := B∗∇2r∗
λ(λD)(B∗)′ −

B∗ − (B∗)′. Finally, let θ∗ := (θ∗
o ; θ∗

ι). Note that QP(θ∗; 0) is a very intuitive
approximation of P since the function λ(p; θ∗

ι) = a∗ + (B∗)′p = λD + (B∗)′(p −
pD) can be viewed as a linearization of λ∗(.) at pD . Note also that the gradients of
the objective function and the constraints in QP(θ∗; 0) at pD coincide with those in
P. By Karush–Kuhn–Tucker (KKT) optimality conditions, it can be shown that the
optimal solution of QP(θ∗; 0) is the same as the optimal solution of P.

We are now ready to describe Nonparametric Self-adjusting Control (NSC) and
discuss its asymptotic performance. NSC consists of an exploration procedure and
an exploitation procedure. The exploration procedure uses the Spline Estimation
algorithm in Algorithm 4 to construct a spline approximation λ̃(.) of the underlying
demand function λ∗(.). This function λ̃(.) is then used to construct a linear function
λ(.; θ̂ι) that closely approximates λ(.; θ∗

ι) in the neighborhood of pD and a quadratic
program that closely approximates P. During the exploitation phase, we use the
optimal solution of the approximate quadratic program as baseline control and
automatically adjust the price according to a version of (5.28). Further details will
be provided below. Recall that L̃0 is the duration of the Spline Estimation algorithm.
Let Ct denote the remaining capacity at the end of period t . Let θ̂ := (θ̂o; θ̂ι), where
θ̂ι := (â; B̂1; . . . ; B̂n), θ̂o := (Ê; F̂ ; Ĝ1; . . . ; Ĝn) and

B̂ := ∇λ̃(p̃D), â := λ̃ − B̂ ′p̃D, Ê := 1
2 (p̃

D)′Ĥ p̃D, F̂ := â − Ĥ p̃D,

Ĝ := B̂ + B̂ ′ + Ĥ , and

Ĥ = [Ĥij] where Ĥij :=−û′
ij B̂

−1λ̃D and ûij :=
[

∂2λ̃1(p̃
D)

∂pi∂pj

; . . . ; ∂2λ̃n(p̃
D)

∂pi∂pj

]

.

(Note that p̃D is the deterministic optimal solution of a version of P, where λ∗ is
replaced by λ̃.) The details of NSC is given in Algorithm 5.

The following result states that the performance of NSC is close to the best
achievable (asymptotic) performance bound.

Theorem 4 Suppose that s ≥ 4, L0 = �(kT)(s+n/2)/(2s+n−2)

(log(kT))(2s+n−4)/(2s+n−2)� and d = �(L1/2
0 / log(kT))1/(s+n/2)�. There exists

a constant M1 > 0 independent of k > 3 such that for all s ≥ 4, we have

ρNSC(k) ≤ M1k
1
2+ε(n,s,s̄) log k, where ε(n, s, s̄) = 1

2

(
2s − 2(s ∧ s̄) + n + 2

2s + n − 2

)

.

Note that since most commonly used demand functions such as polynomial with
arbitrary degree, logit, and exponential are infinitely differentiable (i.e., s̄ can be
arbitrarily large), for any fixed ε > 0, we can select integers s ≥ (n+2)/(4ε)−(n−
2)/2 such that the performance under NSC is O(k1/2+ε log k). Theoretically, this
means that the asymptotic performance of NSC is very close to the best achievable
performance lower bound of �(

√
k). By comparing the algorithm and the analysis

5 Learning and Pricing with Inventory Constraints 125

Algorithm 5 Nonparametric self-adjusting control (NSC)
Input Parameters: n, s Tuning Parameter: d, L0

1. Stage 1 (Exploration Phase 1 - Spline Estimation)

a. For t = 1 to L̃0 ∧ T

• If Ct−1 ≺ Aj for some j = 1, . . . , n, set pt,j = p∞
j for all j = 1, . . . , n.

• Otherwise, follow Step 1 in Spline Estimation algorithm.

b. At the end of period L̃0 ∧ T , do:

• If L̃0 ≥ T , terminate NSC.
• If L̃0 < T and C

L̃0
≺ Aj for some j = 1, . . . , n:

– For all t > L̃0, set pt,j = p∞
j for all j = 1, . . . , n.

– Terminate NSC.

• If L̃0 < T and C
L̃0

� Aj for all j = 1, . . . , n:

– Follow Step 2 in Spline Estimation algorithm to get λ̃(.).
– Go to Stage 2 below.

2. Stage 2 (Exploration Phase 2 - Function Approximation)

a. Solve P̃ and obtain the optimizer p̃D .
b. Let δ := C/T − C

L̃0
/(T − L̃0).

c. Compute â, B̂, Ê, F̂ , Ĝ, Ĥ and θ̂ = (θ̂o; θ̂ι).

• If B̂ is invertible, go to Stage 2(d) below.
• Otherwise, for t = L̃0 + 1 to T :

– If Ct−1 � Aj for j = 1, . . . , n, apply pt = p̃D .
– Otherwise, for product j = 1 to n, do:

· If Ct−1 ≺ Aj , set pt,j = p∞
j .

· Otherwise, set pt,j = pt−1,j .

d. Solve QP(θ̂; δ) for its static price pD
δ (θ̂).

3. Stage 3 (Exploitation)
For t = L̃0 + 1 to T :

• Compute: p̂t = pD
δ (θ̂) − ∇λp(λD

δ (θ̂); θ̂ι) ·∑t−1
s=L̃0+1

�̃s

T −s
, where �̃t := Dt − λ(pt ; θ̂ι).

• If p̂t ∈ P and Ct−1 � Aj for j = 1, . . . , n, apply pt = p̂t .
• Otherwise, for product j = 1 to n, do:

– If Ct−1 ≺ Aj , set pt,j = p∞
j .

– Otherwise, set pt,j = pt−1,j .

of PSC and NSC, the extra ε in the exponent of the regret bound of NSC is driven by
the slightly slower rate of convergence of the nonparametric approach for estimating

126 Q. (George) Chen et al.

demand function. It remains an open question whether there exists a nonparametric
approach for the NRM setting with a continuum of feasible price vectors which
attains a regret bound of O(

√
k).

5.4 Bayesian Learning Setting

The multi-armed bandit (MAB) problem is often used to model the exploration–
exploitation trade-off in the dynamic learning and pricing model without inventory
constraints (see Chap. 1 for an overview of the MAB problem). In one of the earliest
papers on the multi-armed bandit problem, Thompson (1933) proposed a novel
randomized Bayesian algorithm, which has since been referred to as the Thompson
sampling algorithm. The basic idea of Thompson sampling is that at each time
period, random numbers are sampled according to the posterior distributions of
the reward for each action, and then the action with the highest sampled reward
is chosen. In a revenue management setting, each “action” or “arm” is a price, and
“reward” refers to the revenue earned by offering that price. Thus, in the original
Thompson sampling algorithm—in the absence of inventory constraints—random
numbers are sampled according to the posterior distributions of the mean demand
rates for each price, and the price with the highest sampled revenue (i.e., price times
sampled demand) is offered.

In this section, we develop a class of Bayesian learning algorithms for the
multiproduct pricing problem with inventory constraints. This class of algorithms
extends the powerful machine learning technique known as Thompson sampling
to address the challenge of balancing the exploration–exploitation trade-off under
the presence of inventory constraints. We focus on a model with discrete price sets
and present two algorithms (the algorithm can also be used for continuous price
sets, see Ferreira et al. (2018)). The first algorithm adapts Thompson sampling by
adding a linear programming (LP) subroutine to incorporate inventory constraints.
The second algorithm builds upon our first; specifically, in each period, we modify
the LP subroutine to further account for the purchases made to date. Both of the
algorithms contain two simple steps in each iteration: sampling from a posterior
distribution and solving a linear program. As a result, the algorithms are easy to
implement in practice.

5.4.1 Model Setting

We consider a retailer who sellsN products, indexed by i ∈ [N], over a finite selling
season. (Below, we denote by [x] the set {1, 2, . . . , x}.) These products consume M

resources, indexed by j ∈ [M]. Specifically, we assume that one unit of product i

consumes aij units of resource j , where aij is a fixed constant. The selling season
is divided into T periods. There are Ij units of initial inventory for each resource

5 Learning and Pricing with Inventory Constraints 127

j ∈ [M], and there is no replenishment during the selling season. We define Ij (t)

as the inventory at the end of period t , and we denote Ij (0) = Ij . In each period
t ∈ [T], the following sequence of events occurs:

1. The retailer offers a price for each product from a finite set of admissible price
vectors. We denote this set by {p1, p2, . . . , pK }, where pk (∀k ∈ [K]) is a vector
of lengthN specifying the price of each product. More specifically, we have pk =
(p1k, . . . , pNk), where pik is the price of product i, for all i ∈ [N]. Following
the tradition in dynamic pricing literature, we also assume that there is a “shut-
off” price p∞ such that the demand for any product under this price is zero with
probability one. We denote by P(t) = (P1(t), . . . , PN(t)) the prices chosen by
the retailer in this period, and require that P(t) ∈ {p1, p2, . . . , pK, p∞}.

2. Customers then observe the prices chosen by the retailer and make purchase
decisions. We denote byD(t) = (D1(t), . . . ,DN(t)) the demand of each product
at period t . We assume that given P(t) = pk , the demand D(t) is sampled from a
probability distribution on RN+ with joint cumulative distribution function (CDF)
F(x1, . . . , xN ;pk, θ), indexed by a parameter (or a vector of parameters) θ that
takes values in the parameter space � ⊂ R

l . The distribution is assumed to be
subexponential; note that many commonly used demand distributions such as
normal, Poisson, exponential and all bounded distributions belong to the family
of subexponential distributions. We also assume that D(t) is independent of the
historyHt−1 = (P (1),D(1), . . . , P (t − 1),D(t − 1)) given P(t).

Depending on whether there is sufficient inventory, one of the following
events happens:

(a) If there is enough inventory to satisfy all demand, the retailer receives an
amount of revenue equal to

∑N
i=1 Di(t)Pi(t), and the inventory level of each

resource j ∈ [M] diminishes by the amount of each resource used such that
Ij (t) = Ij (t − 1) −∑N

i=1 Di(t)aij .
(b) If there is not enough inventory to satisfy all demand, the demand is partially

satisfied and the rest of demand is lost. Let D̃i(t) be the demand satisfied
for product i. We require D̃i(t) to satisfy three conditions: 0 ≤ D̃i(t) ≤
Di(t),∀i ∈ [N]; the inventory level for each resource at the end of this
period is nonnegative: Ij (t) = Ij (t − 1) −∑N

i=1 D̃i(t)aij ≥ 0,∀j ∈ [M];
there exists at least one resource j ′ ∈ [M]whose inventory level is zero at the
end of this period, i.e. Ij ′(t) = 0. Besides these natural conditions, we do not
require any additional assumption on how demand is specifically fulfilled.
The retailer then receives an amount of revenue equal to

∑N
i=1 D̃i(t)Pi(t) in

this period.

We assume that the demand parameter θ is fixed but unknown to the retailer at the
beginning of the season, and the retailer must learn the true value of θ from demand
data. That is, in each period t ∈ [T], the price vector P(t) can only be chosen based
on the observed history Ht−1, but cannot depend on the unknown value θ or any
event in the future. The retailer’s objective is to maximize expected revenue over
the course of the selling season given the prior distribution on θ .

128 Q. (George) Chen et al.

We use a parametric Bayesian approach in our model, where the retailer has
a known prior distribution of θ ∈ � at the beginning of the selling season.
However, our model allows the retailer to choose an arbitrary prior. In particular,
the retailer can assume an arbitrary parametric form of the demand CDF, given by
F(x1, . . . , xN ;pk, θ). This joint CDF parametrized by θ can parsimoniously model
the correlation of demand among products. For example, the retailer may specify
products’ joint demand distribution based on some discrete choice model, where θ

is the unknown parameter in the multinomial logit function. Another benefit of the
Bayesian approach is that the retailer may choose a prior distribution over θ such
that demand is correlated for different prices, enabling the retailer to learn demand
for all prices, not just the offered price. e selling season as inventory is depleted; this
latter idea is incorporated into the second algorithm that we will present later.

5.4.2 Thompson Sampling with Fixed Inventory Constraints

We now present the first version of the Thompson sampling-based pricing algorithm.
For each resource j ∈ [M], we define a fixed constant cj := Ij /T . Given any
demand parameter ρ ∈ �, we define the mean demand under ρ as the expectation
associated with CDF F(x1, . . . , xN ;pk, ρ) for each product i ∈ [N] and price
vector k ∈ [K]. We denote by d = {dik}i∈[N],k∈[K] the mean demand under the
true model parameter θ .

The Thompson sampling with Fixed Inventory Constraints (TS-fixed) algorithm
is shown in Algorithm 6. Here, “TS” stands for Thompson sampling, while “fixed”
refers to the fact that we use fixed constants cj for all time periods as opposed
to updating cj over the selling season as inventory is depleted; this latter idea is
incorporated into the second algorithm that we will present later.

Steps 1 and 4 are based on the Thompson sampling algorithm for the classical
multi-armed bandit setting, whereas Steps 2 and 3 are added to incorporate inventory
constraints. In Step 1 of the algorithm, we randomly sample parameter θ(t)

according to the posterior distribution of unknown demand parameter θ . This step
is motivated by the original Thompson sampling algorithm for the classical multi-
armed bandit problem. The key idea of the Thompson sampling algorithm is to
use random sampling from the posterior distribution to balance the exploration–
exploitation trade-off. The algorithm differs from the ordinary Thompson sampling
in Steps 2 and 3. In Step 2, the retailer solves a linear program, LP(d(t)), which
identifies the optimal mixed price strategy that maximizes expected revenue given
the sampled parameters. The first constraint specifies that the average resource
consumption in this time period cannot exceed cj , the average inventory available
per period. The second constraint specifies that the sum of probabilities of choosing
a price vector cannot exceed one. In Step 3, the retailer randomly offers one of the
K price vectors (or p∞) according to probabilities specified by the optimal solution
of LP(d(t)). Finally, in Step 4, the algorithm updates the posterior distribution of θ

given Ht . Such Bayesian updating is a simple and powerful tool to update belief

5 Learning and Pricing with Inventory Constraints 129

Algorithm 6 Thompson sampling with fixed inventory constraints (TS-fixed)
Repeat the following steps for all periods t = 1, . . . , T :

1. Sample Demand: Sample a random parameter θ(t) ∈ � according to the posterior distribution
of θ given history Ht−1. Let the mean demand under θ(t) be d(t) = {dik(t)}i∈[N],k∈[K].

2. Optimize Prices given Sampled Demand: Solve the following linear program, denoted by
LP(d(t)):

LP(d(t)) : max
x

K∑

k=1

(

N∑

i=1

pikdik(t))xk

subject to
K∑

k=1

(

N∑

i=1

aij dik(t))xk ≤ cj , ∀j ∈ [M]

K∑

k=1

xk ≤ 1

xk ≥ 0, k ∈ [K].

Let x(t) = (x1(t), . . . , xK(t)) be the optimal solution to LP(d(t)).
3. Offer Price: Offer price vector P(t) = pk with probability xk(t), and choose P(t) = p∞ with

probability 1 −∑K
k=1 xk(t).

4. Update Estimate of Parameter: Observe demand D(t). Update the history Ht = Ht−1 ∪
{P(t),D(t)} and the posterior distribution of θ given Ht .

probabilities as more information—customer purchase decisions in our case—
becomes available. By employing Bayesian updating in Step 4, we are ensured that
as any price vector pk is offered more and more times, the sampled mean demand
associated with pk for each product i becomes more and more centered around the
true mean demand, dik .

We note that the LP defined in Step 2 is closely related to the LP used by Gallego
and Van Ryzin (1997), where they consider a network revenue management problem
in the case of known demand. Essentially, their pricing algorithm is a special case
of Algorithm 6 where they solve LP(d), i.e., LP(d(t)) with d(t) = d, in every time
period.

Next, we illustrate the application of our TS-fixed algorithm by providing
one concrete example. For simplicity, in this example, we assume that the prior
distribution of demand for different prices is independent; however, the definition
of TS-fixed is quite general and allows the prior distribution to be arbitrarily
correlated for different prices. As mentioned earlier, this enables the retailer to
learn the mean demand not only for the offered price but also for prices that are
not offered.

Example (Bernoulli Demand with Independent Uniform Prior) We assume that for
all prices, the demand for each product is Bernoulli distributed. In this case, the
unknown parameter θ is just the mean demand of each product. We use a beta

130 Q. (George) Chen et al.

posterior distribution for each θ because it is conjugate to the Bernoulli distribution.
We assume that the prior distribution of mean demand dik is uniform in [0, 1] (which
is equivalent to a Beta(1, 1) distribution) and is independent for all i ∈ [N] and
k ∈ [K]. In this example, the posterior distribution is very simple to calculate. Let
Nk(t − 1) be the number of time periods that the retailer has offered price pk in the
first t − 1 periods, and let Wik(t − 1) be the number of periods that product i is
purchased under price pk during these periods. In Step 1 of TS-fixed, the posterior
distribution of dik is Beta(Wik(t −1)+1, Nk(t −1)−Wik(t −1)+1), so we sample
dik(t) independently from a Beta(Wik(t − 1) + 1, Nk(t − 1) − Wik(t − 1) + 1)
distribution for each price k and each product i. In Steps 2 and 3, LP(d(t))

is solved and a price vector pk′ is chosen; then, the customer demand Di(t) is
revealed to the retailer. In Step 4, we then update Nk′(t) ← Nk′(t − 1) + 1,
Wik′(t) ← Wik′(t −1)+Di(t) for all i ∈ [N]. The posterior distributions associated
with the K − 1 unchosen price vectors (k �= k′) are not changed.

5.4.3 Thompson Sampling with Inventory Constraint Updating

Now, we propose the second Thompson sampling-based algorithm. Recall that in
TS-fixed, we use fixed inventory constants cj in every period. Alternatively, we
can update cj over the selling season as inventory is depleted, thereby incorporating
real-time inventory information into the algorithm.

In particular, we recall that Ij (t) is the inventory level of resource j at the
end of period t . Define cj (t) = Ij (t − 1)/(T − t + 1) as the average inventory
for resource j available from period t to period T . We then replace constants
cj with cj (t) in LP(d(t)) in step 2 of TS-fixed, which gives us the Thompson
sampling with Inventory Constraint Updating algorithm (TS-update for short)
shown in Algorithm 7. The term “update” refers to the fact that in every iteration,
the algorithm updates inventory constants cj (t) in LP(d(t)) to incorporate real-time
inventory information.

In the revenue management literature, the idea of using updated inventory rates
like cj (t) has been previously studied in various settings (Jasin and Kumar, 2012;
Jasin, 2014). TS-update is an algorithm that incorporates real-time inventory
updating when the retailer faces an exploration–exploitation trade-off with its
pricing decisions. Although intuitively incorporating updated inventory information
into the pricing algorithm should improve the performance of the algorithm, Cooper
(2002) provides a counterexample where the expected revenue is reduced after the
updated inventory information is included. Therefore, it is not immediately clear
if TS-update would achieve higher revenue than TS-fixed. We will rigorously
analyze the performance of both TS-fixed and TS-update in the next section;
our numerical simulation shows that in fact there are situations where TS-update
outperforms TS-fixed and vice versa.

5 Learning and Pricing with Inventory Constraints 131

Algorithm 7 Thompson sampling with inventory constraint updating (TS-update)
Repeat the following steps for all periods t = 1, . . . , T :

1. Sample Demand: Sample a random parameter θ(t) ∈ � according to the posterior distribution
of θ given history Ht−1. Let the mean demand under θ(t) be d(t) = {dik(t)}i∈[N],k∈[K].

2. Optimize Prices given Sampled Demand: Solve the following linear program, denoted by
LP(d(t), c(t)):

LP(d(t), c(t)) : max
x

K∑

k=1

(

N∑

i=1

pikdik(t))xk

subject to
K∑

k=1

(

N∑

i=1

aij dik(t))xk ≤ cj (t), ∀j ∈ [M]

K∑

k=1

xk ≤ 1

xk ≥ 0, k ∈ [K].

Let x(t) = (x1(t), . . . , xK(t)) be the optimal solution to LP(d(t), c(t)).
3. Offer Price: Offer price vector P(t) = pk with probability xk(t), and choose P(t) = p∞ with

probability 1 −∑K
k=1 xk(t).

4. Update Estimate of Parameter: Observe demand D(t). Update the history Ht = Ht−1 ∪
{P(t),D(t)} and the posterior distribution of θ given Ht .

5.4.4 Performance Analysis

To evaluate the proposed Bayesian learning algorithms, we compare the retailer’s
revenue with a benchmark where the true demand distribution is known a priori. We
define the retailer’s regret over the selling horizon as

Regret(T , θ) = E[Rev∗(T) | θ] − E[Rev(T) | θ],

where Rev∗(T) is the revenue achieved by the optimal policy if the demand
parameter θ is known a priori, and Rev(T) is the revenue achieved by an algorithm
that may not know θ . The conditional expectation is taken on random demand
realizations given θ and possibly on some external randomization used by the
algorithm (e.g., random samples in Thompson sampling). In words, the regret is
a nonnegative quantity measuring the retailer’s revenue loss due to not knowing the
latent demand parameter.

We also define the Bayesian regret (also known as Bayes risk) by

BayesRegret(T) = E[Regret(T , θ)],

where the expectation is taken over the prior distribution of θ .

132 Q. (George) Chen et al.

We now prove regret bounds for TS-fixed and TS-update under the realistic
assumption of bounded demand. Specifically, in the following analysis, we further
assume that for each product i ∈ [N], the demand Di(t) is bounded by Di(t) ∈
[0, d̄i] under any price vector pk , ∀k ∈ [K]. However, the result can be generalized
when the demand is unbounded and follows a sub-Gaussian distribution. We also
define the constants

pmax := max
k∈[K]

N∑

i=1

pikd̄i , p
j
max := max

i∈[N]:aij �=0,k∈[K]
pik

aij

, ∀j ∈ [M],

where pmax is the maximum revenue that can possibly be achieved in one period,
and p

j
max is the maximum revenue that can possibly be achieved by adding one unit

of resource j , ∀j ∈ [M].
Theorem 5 The Bayesian regret of TS-fixed is bounded by

BayesRegret(T) ≤
⎛

⎝18pmax + 37
N∑

i=1

M∑

j=1

p
j
maxaij d̄i

⎞

⎠
√

T K logK.

Theorem 6 The Bayesian regret of TS-update is bounded by

BayesRegret(T) ≤
⎛

⎝18pmax + 40
N∑

i=1

M∑

j=1

p
j
maxaij d̄i

⎞

⎠
√

T K logK + pmaxM.

The results above state that the Bayesian regrets of both TS-fixed and TS-
update are bounded by O(

√
T K logK), where K is the number of price vectors

that the retailer is allowed to use and T is the number of time periods. Moreover,
the regret bounds are prior-free as they do not depend on the prior distribution
of parameter θ ; the constants in the bounds can be computed explicitly without
knowing the demand distribution.

It has been shown that for a multi-armed bandit problem with reward in [0, 1]—a
special case of our model with no inventory constraints—no algorithm can achieve
a prior-free Bayesian regret smaller than �(

√
KT) (see Theorem 3.5, Bubeck and

Cesa-Bianchi 2012). In that sense, the above regret bounds are optimal with respect
to T and cannot be improved by any other algorithm by more than

√
logK .

Note that the regret bound of TS-update is slightly worse than the regret
bound of TS-fixed. Although intuition would suggest that updating inventory
information in TS-update will lead to better performance than TS-fixed, this
intuition is somewhat surprisingly not always true—we can find counterexamples
where updating inventory information actually deteriorates the performance for any
given horizon length T .

5 Learning and Pricing with Inventory Constraints 133

The detailed proofs of Theorems 5 and 6 are omitted. We briefly summarize
the intuition behind the proofs. For both Theorems 5 and 6, we first assume an
“ideal” scenario where the retailer is able to collect revenue even after inventory
runs out. We show that if prices are given according to the solutions of TS-fixed
or TS-update, the expected revenue achieved by the retailer is within O(

√
T)

compared to the optimal revenue Rev∗(T). However, this argument overestimates
the expected revenue. In order to compute the actual revenue given constrained
inventory, we should account for the amount of revenue that is associated with
lost sales. For Theorem 5 (TS-fixed), we prove that the amount associated with
lost sales is no more than O(

√
T). For Theorem 6 (TS-update), we show that the

amount associated with lost sales is no more than O(1).

5.5 Remarks and Further Reading

The content of Sect. 5.2 is based on Wang (2012) and Wang et al. (2014). For the
proofs of the main results, the readers are referred to Wang et al. (2014). In Wang
et al. (2014), there are also implementation suggestions for the proposed algorithms.
Note that in practical implementation, the algorithm can be made more efficient
by relaxing some requirements stated in the Algorithm 1. Extensive numerical
experiments and comparison with other algorithms can be found in Wang (2012)
and Wang et al. (2014). Later, Lei et al. (2014) improve the result of Theorem 1
to remove the logarithmic factor in the worst-case regret using a bisection type of
method. For details of the algorithm and the analysis, we refer the readers to Lei
et al. (2014).

Section 5.3 is adapted from Chen et al. (2019) and Chen et al. (2021), which
contain full proofs of the theorems presented and additional numerical studies. Chen
et al. (2021) further considers a well-separated condition of demand functions and
derive a much sharperO(log2 k) regret than theO(

√
k) regret in the general demand

case.
Section 5.4 is primarily based on Ferreira et al. (2018). The definition of Bayesian

regret used in this section is a standard metric for the performance of online
Bayesian algorithms, see Russo and Van Roy (2014). Ferreira et al. (2018) also
developed the Thompson sampling algorithms for the linear demand case and the
bandits with knapsack problem, see Badanidiyuru et al. (2013).

Other methods have been proposed in the literature to address learning and
pricing problems in the constrained inventory setting. One approach is to separate
the selling season (T periods) into a disjoint exploration phase (say, from period
1 to τ) and exploitation phase (from period τ + 1 to T) (Besbes and Zeevi, 2009,
2012). One drawback of this strategy is that it does not use purchasing data after
period τ to continuously refine demand estimates. Furthermore, when there is very
limited inventory, this approach is susceptible to running out of inventory during the
exploration phase before any demand learning can be exploited. Another approach
is to use multi-armed bandit methods such as the upper confidence bound (UCB)

134 Q. (George) Chen et al.

algorithm (Auer et al., 2002) to make pricing decisions in each period. The UCB
algorithm creates a confidence interval for unknown demand using purchase data
and then selects a price that maximizes revenue among all parameter values in the
confidence set. We refer the readers to Badanidiyuru et al. (2013) and Agrawal and
Devanur (2014) for UCB algorithms with constrained inventory.

Acknowledgments This chapter is partially based on material copyrighted by INFORMS and is
republished with permission.

References

Agrawal, S., & Devanur, N. R. (2014). Bandits with concave rewards and convex knapsacks. In
Proceedings of the Fifteenth ACM Conference on Economics and Computation (pp. 989–1006)

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2–3), 235–256.

Badanidiyuru, A., Kleinberg, R., & Slivkins, A. (2013). Bandits with knapsacks. In IEEE 54th
Annual Symposium on Foundations of Computer Science (FOCS) (pp. 207–216).

Besbes, O., & Zeevi, A. (2009). Dynamic pricing without knowing the demand function: Risk
bounds and near-optimal algorithms. Operations Research, 57(6), 1407–1420.

Besbes, O., & Zeevi, A. (2012). Blind network revenue management. Operations Research, 60(6),
1537–1550.

Broder, J., & Rusmevichientong, P. (2012). Dynamic pricing under a general parametric choice
model. Operations Research, 60(4), 965–980.

Bubeck, S., & Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends in Machine Learning, 5(1), 1–122.

Chen, Q., Jasin, S., & Duenyas, I. (2019). Nonparametric self-adjusting control for joint learning
and optimization of multiproduct pricing with finite resource capacity. Mathematics of Opera-
tions Research, 44(2), 601–631.

Chen, Q., Jasin, S., & Duenyas, I. (2021). Joint learning and optimization of multi-product pricing
with finite resource capacity and unknown demand parameters. Operations Research, 69(2),
560–573.

Cooper, W. L. (2002). Asymptotic behavior of an allocation policy for revenue management.
Operations Research, 50(4), 720–727.

Ferreira, K. J., Simchi-Levi, D., & Wang, H. (2018). Online network revenue management using
Thompson sampling. Operations Research, 66(6), 1586–1602.

Gallego, G., & van Ryzin, G. (1994). Optimal dynamic pricing of inventories with stochastic
demand over finite horizons. Management Science, 40(8), 999–1029.

Gallego, G., & Van Ryzin, G. (1997). A multiproduct dynamic pricing problem and its applications
to network yield management. Operations Research, 45(1), 24–41.

Gyorfi, L., Kohler, M., Krzyzak, A., & Walk, H. (2002). A distribution-free theory of nonparamet-
ric regression. Springer.

Jasin, S. (2014). Reoptimization and self-adjusting price control for network revenue management.
Operations Research, 62(5), 1168–1178.

Jasin, S., & Kumar, S. (2012). A re-solving heuristic with bounded revenue loss for network
revenue management with customer choice. Mathematics of Operations Research, 37(2), 313–
345.

Lei, Y. M., Jasin, S., & Sinha, A. (2014). Near-optimal bisection search for nonparametric dynamic
pricing with inventory constraint, in Working Paper.

5 Learning and Pricing with Inventory Constraints 135

Russo, D., & Van Roy, B. (2014). Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4), 1221–1243.

Schumaker, L. (2007). Spline functions: Basic theory (3rd ed.). Cambridge University Press.
Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view

of the evidence of two samples. Biometrika, 25(3/4), 285–294.
Wang, Z. (2012). Dynamic learning mechanism in revenue management problems. PhD thesis,

Stanford University, Palo Alto.
Wang, Z., Deng, S., & Ye, Y. (2014). Close the gaps: A learning-while-doing algorithm for single-

product revenue management problems. Operations Research, 62(2), 318–331.

	5 Learning and Pricing with Inventory Constraints
	5.1 Introduction
	5.2 Single Product Case
	5.2.1 Dynamic Pricing Algorithm
	5.2.2 Lower Bound Example

	5.3 Multiproduct Setting
	5.3.1 Preliminaries
	5.3.2 Parametric Case
	5.3.3 Nonparametric Case

	5.4 Bayesian Learning Setting
	5.4.1 Model Setting
	5.4.2 Thompson Sampling with Fixed Inventory Constraints
	5.4.3 Thompson Sampling with Inventory Constraint Updating
	5.4.4 Performance Analysis

	5.5 Remarks and Further Reading
	References

