
Chapter 2
Reinforcement Learning

Zheng Wen

2.1 Introduction

Reinforcement learning (RL) (Sutton & Barto, 2018) is a subfield of machine
learning concerned with how an agent (or decision-maker) should learn to take
actions to maximize some notion of cumulative reward while interacting with an
environment, as is illustrated in Fig. 2.1. Specifically, at each time step, the agent
first adaptively chooses an action based on its prior knowledge, past observations,
and past rewards; then, it will receive a new observation and a new reward from
the environment. In general, the agent’s observations and rewards are stochastic and
statistically dependent on its chosen action and its state in the environment. In most
RL problems, the environment is only partially known and the agent cannot compute
an optimal or near-optimal policy based on its prior knowledge. Consequently, it
needs to learn to take optimal or near-optimal actions while interacting with the
environment.

RL is one of the three basic machine learning (Friedman et al., 2001; Bishop,
2006) paradigms, alongside supervised learning and unsupervised learning. While
supervised learning and unsupervised learning algorithms aim to learn from labeled
or unlabeled datasets, in RL problems, the agent aims to learn to take good
actions from its interactions with a usually partially known environment. Due to
its generality, RL has also been studied in many other fields, such as operations
research, control theory, game theory, multi-agent systems, information theory, and
statistics. From the perspective of operations research and control theory, RL is
closely related to dynamic programming (DP), approximate dynamic programming
(ADP), and optimal control (Bertsekas, 2000, 2011; Powell, 2007). Specifically,
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Fig. 2.1 Illustration of reinforcement learning (RL) problems, in which the agent chooses actions
and receives the observations and rewards from the environment. In most RL problems, the agent’s
observation includes the next state it will transit to

similar to classical DP problems that aim to compute an optimal policy in Markov
decision processes (MDPs), basic RL problems are usually formulated as problems
that aim to learn an optimal or near-optimal policy in MDPs. The main difference
is that, in DP problems the agent is assumed to know the model of the MDP and
hence can compute an optimal policy based on that model; however, in most RL
problems the agent does not fully know the model and has to learn to take optimal
or near-optimal actions.

One key challenge that arises in RL, but not in supervised and unsupervised
learning, is the exploration-exploitation trade-off. Specifically, in RL, to obtain more
reward, an agent should prefer actions that it has found effective in producing reward
(exploitation). However, to discover such actions, the agent needs to try actions
that might be effective in producing reward, or actions that might provide useful
information about an optimal or near-optimal policy (exploration). In other words,
the agent needs to exploit what it has already learned to obtain reward, but it also
has to explore to make better action selections in the future. If an agent exclusively
pursues exploration or exploitation, then it can easily fail or lose a lot of reward in
some problems. A successful RL agent should carefully balance the exploration-
exploitation trade-off by designing an appropriate exploration scheme.

In addition to the exploration-exploitation trade-off, another challenge for RL is
that modern RL problems tend to have intractably large state space and/or action
space. For example, in an online recommendation system, the state might include
the inventory levels of all items, and the action might be an ordered list of items
chosen to display. Hence, both the cardinalities of the state space and the action
space can be enormous. For such large-scale RL problems, we cannot expect to learn
an optimal policy with limited time, data, and computational resources. Instead, our
goal is to learn a good approximate solution within limited time and using limited
data and computational resources. Many such agents have been built for large-scale
RL problems. In particular, deep reinforcement learning (DRL) is a subfield of RL



2 Reinforcement Learning 17

aiming to build agents based on (deep) neural networks that can learn approximate
solutions for large-scale RL problems.

RL has extensive applications in many fields, such as online recommendation
systems (Chen et al., 2019; Kveton et al., 2015), robotics (Kober et al., 2013),
information retrieval (Zhang et al., 2020), energy management systems (Kuznetsova
et al., 2013; Wen et al., 2015), revenue management (Gosavii et al., 2002), and
financial engineering (Fischer, 2018). In the past decade, several high-performance
DRL agents have been built for games like Go, Chess, and Atari games (Silver
et al., 2016, 2017b, 2017a; Schrittwieser et al., 2020). Many of them have achieved
a performance comparable to or even better than that of a professional human player.
In particular, the AlphaGo agent (Silver et al., 2016) beat a world champion in
the game of Go. Many researchers are working on extending these agents built for
games to other exciting application areas.

The remainder of this chapter is organized as follows: in Sect. 2.2, we briefly
review Markov decision processes (MDPs) and dynamic programming (DP) solu-
tions. In Sect. 2.3, we provide a high-level review of some classical RL algorithms.
We also discuss two key issues for RL algorithm design: exploration scheme
design and approximate solution methods for large-scale RL problems, in that
section. Finally, we conclude this chapter and provide pointers for further reading
in Sect. 2.4.

2.2 Markov Decision Process and Dynamic Programming

Markov decision processes (MDPs) are stochastic control processes used in a
variety of optimization and machine learning problems where the outcomes (e.g.,
rewards, next states) are partly random and partly controlled by the agent. They
provide a framework for modeling decision making in dynamic systems. As we have
mentioned in Sect. 2.1, basic RL problems can be formulated as problems in which
an agent aims to learn an optimal or near-optimal policy in partially known MDPs.
Several classes of MDPs, such as finite-horizon MDPs, infinite-horizon discounted
MDPs, and infinite-horizon average-reward MDPs, have been widely studied in the
literature. In this section, we will briefly review two classical classes of MDPs:
the finite-horizon MDPs in Sect. 2.2.1 and the infinite-horizon discounted MDPs
in Sect. 2.2.2. Interested readers might refer to (Bertsekas, 2000, 2011) for further
reading.

When the model of an MDP is completely known, its optimal policy can
be computed by dynamic programming (DP) algorithms. Though classical DP
algorithms are of limited utility in RL due to the assumption that the MDP model
is completely known, it does provide a foundation for understanding RL algorithms
described later in this chapter. In this section, we will also briefly review the DP
algorithms for the finite-horizon MDPs and the infinite-horizon discounted MDPs.
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2.2.1 Finite-Horizon Markov Decision Process

A finite-horizon MDP is characterized by a tuple MF = (S,A, P , r,H, ρ), where
S is a finite state space, A is a finite action space, P and r , respectively, encode
the transition model and the reward model, H is the finite time horizon, and ρ is
a probability distribution over the state space S. At the first period h = 1, the
initial state s1 is independently drawn from the distribution ρ. Then, at each period
h = 1, 2, . . . , H , if the agent takes action ah ∈ A at state sh ∈ S, then it will
receive a random reward rh ∈ � conditionally independently drawn from the reward
distribution r (·|sh, ah). Moreover, for period h < H , the agent will transit to state
s′ ∈ S in the next period h + 1 with probability P

(
s′∣∣sh, ah

)
. The finite-horizon

MDP will terminate after the agent receives reward rH at period H . To simplify the
exposition, we use r̄(s, a) to denote the mean of the reward distribution r(·|s, a) for
all state-action pair (s, a) ∈ S × A. We also define H = {1, 2, . . . , H } to denote
the set of time periods.

In a finite-horizon MDP, the agent’s goal is to maximize its expected total reward

E

[∑H
h=1 rh

]
(2.1)

by adaptively choosing action ah for each period h = 1, . . . , H based on its obser-
vations so far, which can be represented as (s1, a1, r1, s2, . . . , sh−1, ah−1, rh−1, sh).
Furthermore, since (s1, a1, r1, s2, . . . , sh−1, ah−1, rh−1) is conditionally indepen-
dent of future rewards and transitions given the current state sh and the period h

(the Markov property), the agent only needs to choose action ah based on the state-
period pair (sh, h). This motivates the notion of policy for a finite-horizon MDP.
Specifically, a (randomized) policy π : S×H → �A is defined as a mapping from
the state-period pairs to probability distributions over the action space A. Note that
�A denotes the set of probability distributions (i.e., the probability simplex) over
the action space A. Under a policy π , if the agent is at state sh at period h, then
it will choose action ah = a with probability π(a|sh, h). We say a policy π is
deterministic if π(a|s, h) ∈ {0, 1} for all action a ∈ A and all state-period pair
(s, h) ∈ S × H. That is, at all state-period pair (s, h), the agent will choose one
action with probability 1 under policy π . With a little bit abuse of notation, for a
deterministic policy π , sometimes we use π(s, h) to denote the action it chooses
with probability 1 at (s, h).

For each policy π , we define its state value function V π : S × H → � as

V π(s, h) = Eπ

[∑H
h′=h rh′

∣∣∣sh = s
]
, ∀(s, h) ∈ S × H, (2.2)

where the subscript π in notation Eπ indicates the expectation is taken under the
stochastic process defined by policy π . Notice that each policy π defines a stochastic
process evolving as follows: at each period h ∈ H with state sh, the agent first
chooses action ah ∼ π(·|sh, h), then it will receive a reward rh ∼ r(·|sh, ah), and
if h < H , it will transit to a new state sh+1 ∼ P(·|sh, ah) in the next period h + 1.
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V π(s, h) is the expected total future reward if the agent starts at state s at period h

and chooses actions according to policy π .
Similarly, we define the state-action value function Qπ : S × H × A for policy

π as

Qπ(s, h, a) = Eπ

[∑H
h′=h rh′

∣∣∣sh = s, ah = a
]
, ∀(s, h, a) ∈ S×H×A (2.3)

that is, Qπ(s, h, a) is the expected total future reward if the agent starts at state s at
period h, chooses action a at period h and chooses actions according to policy π for
all period h′ ≥ h + 1. By definition of V π and Qπ , we have the following equation
for any (s, h) ∈ S × H and (s, h, a) ∈ S × H × A:

V π(s, h) =
∑

a∈A
π(a|s, h)Qπ(s, h, a)

Qπ(s, h, a) =
{

r̄(s, a) + ∑
s′∈S P

(
s′∣∣s, a

)
V π(s′, h + 1) if h < H

r̄(s, a) if h = H
. (2.4)

Note that Eq. (2.4) is referred to as the Bellman equation under policy π . We can
rewrite the Bellman equation just in V π or Qπ , e.g.,

V π(s, h) =
{ ∑

a∈A π(a|s, h)
[
r̄(s, a) + ∑

s′∈S P
(
s′∣∣s, a

)
V π(s′, h + 1)

]
if h < H∑

a∈A π(a|s, h)r̄(s, a) if h = H
.

(2.5)

We also define the optimal state value function V ∗ : S × H → � as

V ∗(s, h) = max
π

V π(s, h), ∀(s, h) ∈ S × H, (2.6)

which is the maximum1 (optimal) expected total future reward if the agent starts
at state s at period h. Similarly, we define the optimal state-action value function
Q∗ : S × H × A → � as

Q∗(s, h, a) = max
π

Qπ(s, h, a), ∀(s, h, a) ∈ S × H × A, (2.7)

which is the maximum (optimal) expected total future reward if the agent starts at
state s at period h and chooses action a at period h. Similarly, we have the following
Bellman equation for the optimal value function V ∗ and Q∗:

V ∗(s, h) = max
a∈A Q∗(s, h, a)

1 Since we assume the time horizon and the cardinalities of S andA are all finite, the maximum is
always achieved.
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Q∗(s, h, a) =
{

r̄(s, a) + ∑
s′∈S P(s′|s, a)V ∗(s′, h + 1) if h < H

r̄(s, a) if h = H
. (2.8)

One can prove the above Bellman equation by backward induction, similar to
Proposition 1.3.1 in Bertsekas (2000).

We say a policy π ′ is optimal at a state-period pair (s, h) if

V π ′
(s, h) = V ∗(s, h).

It turns out that there exist policies that are simultaneously optimal for all state-
period pairs. Specifically, one such policy is a deterministic policy π∗ satisfying2

π∗(s, h) ∈ argmax
a∈A

Q∗(s, h, a), ∀(s, h) ∈ S × H,

recall that under a deterministic policy π∗, π∗(s, h) is the action chosen at state-
period pair (s, h). Note that by definition, we have

Q∗(s, h, π∗(s, h)) = max
a∈A Q∗(s, h, a) = V ∗(s, h), ∀(s, h) ∈ S × H.

To prove that π∗ is simultaneously optimal for all state-period pairs, we prove that
V π∗

(s, h) = V ∗(s, h) for all (s, h) ∈ S × H by backward induction in h:

• For h = H , we have Q∗(s, h, a) = r̄(s, a). Consequently, we have π∗(s, h) ∈
argmaxa∈A r̄(s, a), so we have

V π∗
(s, h) = r̄(s, π∗(s, h)) = Q∗(s, h, π∗(s, h)) = V ∗(s, h).

• For any h < H , assume that V π∗
(s, h+1) = V ∗(s, h+1) for all s ∈ S, we now

prove that V π∗
(s, h) = V ∗(s, h) for all s ∈ S. Note that

V π∗
(s, h) = Qπ∗

(s, h, π∗(s, h))

= r̄(s, π∗(s, h)) +
∑

s′∈S
P(s′|s, π∗(s, h))V π∗

(s′, h + 1)

= r̄(s, π∗(s, h)) +
∑

s′∈S
P(s′|s, π∗(s, h))V ∗(s′, h + 1)

= Q∗(s, h, π∗(s, h)) = V ∗(s, h), (2.9)

2 In general, a randomized policy π̃ is optimal if suppπ̃(·|s, h) ⊆ argmaxa∈A Q∗(s, h, a) for all
(s, h), where suppπ̃(·|s, h) is the support of the distribution π̃(·|s, h).
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where the first two equalities follow from the Bellman equation under π∗, the
third equality follows from the induction hypothesis, the fourth equality follows
from the Bellman equation for the optimal value function, and the last equality
follows from the definition of π∗, as discussed above.

2.2.1.1 Dynamic Programming Solution

Based on our discussion above, for a finite-horizon MDP MF, we can compute a
deterministic optimal policy π∗ based on the dynamic programming (DP) algorithm
below:

DP algorithm for finite-horizon MDP

Initialization: set V ∗(s,H + 1) = 0 for all s ∈ S
Step 1: for each h = H,H − 1, . . . , 1:
compute

Q∗(s, h, a) = r̄(s, a) +
∑

s′∈S
P(s′|s, a)V ∗(s′, h + 1) ∀(s, a) ∈ S × A

and

V ∗(s, h) = max
a∈A Q∗(s, h, a) ∀s ∈ S

Step 2: choose a deterministic policy π∗ s.t.

π∗(s, h) ∈ argmax
a∈A

Q∗(s, h, a) ∀(s, h) ∈ S × H

Return π∗

2.2.2 Discounted Markov Decision Process

An infinite-horizon discounted Markov decision process (MDP) is characterized by
a tupleMD = (S,A, P , r, γ, ρ), where S is a finite state space,A is a finite action
space, P and r , respectively, encode the transition model and the reward model,
γ ∈ (0, 1) is a discrete-time discount factor, and ρ is a probability distribution over
the state space S. At the first period t = 1, the initial state s1 is independently
drawn from the distribution ρ. Then, at each period t = 1, 2, . . ., if the agent takes
action at ∈ A at state st ∈ S, then it will receive a random reward rt ∈ [0, 1]
conditionally independently drawn from the reward distribution r (·|st , at ) and will
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transit to state s′ ∈ S in the next period t + 1 with probability P
(
s′∣∣st , at

)
. To

simplify the exposition, we use r̄(s, a) to denote the mean of the reward distribution
r(·|s, a) for all state-action pair (s, a) ∈ S × A. Notice that we assume the random
reward rt ∈ [0, 1] to simplify the exposition.

In an infinite-horizon discounted MDP, the agent’s goal is to maximize its
expected total discounted reward3

E
[∑∞

t=1 γ t−1rt
]

(2.10)

by adaptively choosing action at for period t = 1, 2, . . . based on its past observa-
tions. Similarly as the finite-horizon MDPs, the past observations are conditionally
independent of future rewards and transitions given the current state st (the Markov
property). Moreover, the discounted MDPs are also time-invariant in the sense that
for any τ ≥ 1 and any state s ∈ S,

maxE
[∑∞

t=1 γ t−1rt
∣∣s1 = s

]
and maxE

[∑∞
t=τ γ t−τ rt

∣∣sτ = s
]

are two equivalent problems. Thus, the agent only needs to choose action at based
on the current state st . This motivates the notion of policy for a discounted MDP.
Specifically, a (randomized) policy π : S → �A is defined as a mapping from the
state space to probability distributions over the action space A. Under a policy π ,
if the agent is at state st , then it will choose action at = a with probability π(a|st ).
Similarly, if π is a deterministic policy, we use π(s) to denote the action it chooses
with probability 1 at state s.

For each policy π , we define its state value function V π : S → � as

V π(s) = Eπ

[∑∞
t=1 γ t−1rt

∣∣s1 = s
]
, ∀s ∈ S, (2.11)

where the subscript π in notation Eπ indicates the expectation is taken under the
stochastic process defined by policy π . Specifically, note that each policy π defines
a stochastic process evolving as follows: at each period t ∈ 1, 2, . . . with state st , the
agent first chooses action at ∼ π(·|st ), then it will receive a reward rt ∼ r(·|st , at )

and transit to a new state st+1 ∼ P(·|st , at ) in the next time t + 1. V π(s) is the
expected total discounted reward if the agent starts at state s and chooses actions
according to policy π .

Similarly, we define the state-action value function Qπ : S × A for policy π as

Qπ(s, a) = Eπ

[∑∞
t=1 γ t−1rt

∣∣s1 = s, a1 = a
]
, ∀(s, a) ∈ S × A (2.12)

3 Notice that we choose the convention that t starts from 1, thus, the discount at time t is γ t−1. If t

starts from 0, then the discount at time t should be γ t . We choose the convention that t starts from
1 to be consistent with the finite-horizon MDPs.
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that is, Qπ(s, a) is the expected total discounted reward if the agent starts at state
s, chooses action a at the first time period, and chooses actions according to policy
π at subsequent time periods. By definition of V π and Qπ , we have the following
equation for any s ∈ S and (s, a) ∈ S × A:

V π(s) =
∑

a∈A
π(a|s)Qπ(s, a)

Qπ(s, a) = r̄(s, a) + γ
∑

s′∈S
P

(
s′∣∣s, a

)
V π(s′). (2.13)

Note that Eq. (2.13) is referred to as the Bellman equation under policy π for
discounted MDPs. We can rewrite the Bellman equation just in V π or Qπ , e.g.,

V π(s) = ∑
a∈A π(a|s) [

r̄(s, a) + γ
∑

s′∈S P
(
s′∣∣s, a

)
V π(s′)

]
. (2.14)

To simplify the exposition, we define the dynamic programming (DP) operator
under policy π , Tπ , as

(TπV )(s) = ∑
a∈A π(a|s) [

r̄(s, a) + γ
∑

s′∈S P
(
s′∣∣s, a

)
V (s′)

]
, (2.15)

where V : S → � is a real-valued function with domainS. Notice that by definition,
TπV : S → � is also a real-valued function with domain S. With the shorthand
notation Tπ , we can rewrite the Bellman equation 2.14 as V π = TπV π .

We also define the optimal state value function V ∗ : S → � as

V ∗(s) = max
π

V π(s), ∀s ∈ S, (2.16)

which is the maximum (optimal) expected total discounted reward if the agent starts
at state s. Similarly, we define the optimal state-action value functionQ∗ : S×A →
� as

Q∗(s, a) = max
π

Qπ(s, a), ∀(s, a) ∈ S × A, (2.17)

which is the maximum (optimal) expected total discounted reward if the agent starts
at state s and chooses action a at the first period. Similarly, we have the following
Bellman equation for the optimal value function V ∗ and Q∗:

V ∗(s) = max
a∈A Q∗(s, a)

Q∗(s, a) = r̄(s, a) + γ
∑

s′∈S
P(s′|s, a)V ∗(s′). (2.18)

Similarly, we can rewrite the above Bellman equation just in V ∗ or Q∗, e.g.,
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V ∗(s) = maxa∈A
[
r̄(s, a) + γ

∑
s′∈S P(s′|s, a)V ∗(s′)

]
. (2.19)

We define the DP operator T as

(TV )(s) = maxa∈A
[
r̄(s, a) + γ

∑
s′∈S P(s′|s, a)V (s′)

]
, (2.20)

where V is a real-valued function with domain S. With this shorthand notation, we
can rewrite the Bellman equation (2.19) as V ∗ = TV ∗.

We have shown that V ∗ = TV ∗, in other words, V ∗ is one solution of the
equation V = TV . We are also interested in if V ∗ is the unique solution of that
equation. It turns out that for the setting considered in this subsection, V ∗ is the
unique bounded function satisfying the equation V = TV . Interested readers might
refer to Proposition 1.2.3 in Bertsekas (2011) for a proof.4 Similarly, we can prove
that V π is the unique bounded function satisfying the equation V = TπV .

We say a policy π ′ is optimal at a state s ∈ S if

V π ′
(s) = V ∗(s).

It turns out that there exist policies that are simultaneously optimal for all states.
Specifically, one such policy is a deterministic policy π∗ satisfying

π∗(s) ∈ argmax
a∈A

Q∗(s, a), ∀s ∈ S

recall that under a deterministic policy π∗, π∗(s) is the action chosen at state s.
Interested readers might refer to Proposition 1.2.5 in Bertsekas (2011) for a proof.

In the remainder of this subsection, we briefly discuss two dynamic programming
algorithms for discounted MDPs: value iteration and policy iteration. Specifically,
value iteration can compute a good approximation of V ∗ in finite steps; and policy
iteration can compute an optimal policy π∗ in finite steps.

2.2.2.1 Value Iteration

Value iteration is one algorithm that asymptotically computes V ∗ and can compute
a good approximation of V ∗ in finite steps. It is based on the following two
observations: first, V ∗ is a fixed point of the DP operator T, since V ∗ = TV ∗. Also,
based on the discussion above, we know that it is the unique bounded fixed point.
Second, T is a contraction mapping with respect to the L∞ norm. Specifically, we
have that

4 Chapter 1 in Bertsekas (2011) considers a cost minimization setting, which is equivalent to the
reward maximization setting considered in this chapter if we define the cost as one minus the
reward.
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‖TV1 − TV2‖∞ ≤ γ ‖V1 − V2‖∞ , (2.21)

for any V1, V2 : S → �. Note that for any V : S → �, ‖V ‖∞ = maxs∈S |V (s)|.
To see why Eq. (2.21) holds, notice that for any s ∈ S, we have

|(TV1)(s) − (TV2)(s)| = ∣∣maxa∈A
[
r̄(s, a) + γ

∑
s′∈S P(s′|s, a)V1(s

′)
]

− maxa∈A
[
r̄(s, a) + γ

∑
s′∈S P(s′|s, a)V2(s

′)
]∣∣

≤ γ maxa∈A
∣∣∑

s′∈S P(s′|s, a)
(
V1(s

′) − V2(s
′)
)∣∣

≤γ maxa∈A
∑

s′∈S P(s′|s, a)
∣∣V1(s

′) − V2(s
′)
∣∣

≤γ maxa∈A
∑

s′∈S P(s′|s, a) ‖V1 − V2‖∞
= γ ‖V1 − V2‖∞ .

Consequently, we have

‖TV1 − TV2‖∞ = max
s∈S

|(TV1)(s) − (TV2)(s)| ≤ γ ‖V1 − V2‖∞ .

Similarly, we can prove that for any policy π , we have

‖TπV1 − TπV2‖∞ ≤ γ ‖V1 − V2‖∞

for any V1, V2 : S → �.
Moreover, notice that for any V : S → �, by definition, TV is also a real-valued

function with domain S. Thus, for any integer k ≥ 1, we can recursively define
T

k+1V = T
(
T

kV
)
. Since T is a contraction mapping with respect to the L∞ norm,

and V ∗ is the unique bounded fixed point of T, we have the following result:

Proposition 2.1 For any bounded function V : S → �, we have limk→∞ T
kV =

V ∗. Moreover, for any integer k = 1, 2, . . ., we have
∥∥TkV − V ∗∥∥∞ ≤ γ k‖V −

V ∗‖∞.

Proof Since T is a contraction mapping with respect to L∞ norm, for any integer
k = 1, 2, . . ., we have

∥∥∥TkV − V ∗
∥∥∥∞ =

∥∥∥T(Tk−1V ) − TV ∗
∥∥∥∞ ≤ γ

∥∥∥Tk−1V − V ∗
∥∥∥∞ .

Thus, by induction, we have
∥∥TkV − V ∗∥∥∞ ≤ γ k‖V − V ∗‖∞. This implies that

limk→∞
∥∥TkV − V ∗∥∥∞ = 0 and hence limk→∞ T

kV = V ∗. ��
The above proposition implies the following value iteration algorithm:
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Value iteration algorithm

Input: number of iterations K

Initialization: choose V0 : S → � s.t. V0(s) = 0 for all s ∈ S
Value Iteration: for each k = 1, 2, . . . , K , compute Vk ← TVk−1
Return VK

As we have discussed above, as K → ∞, VK returned by the value iteration
algorithm converges to V ∗. For a finite K , VK is an approximation of V ∗. Based on
Proposition 2.1, we have

‖VK − V ∗‖∞
(a)= ‖TKV0 − V ∗‖∞

(b)≤ γ K‖V0 − V ∗‖∞
(c)= γ K‖V ∗‖∞

(d)≤ γ K

1 − γ
,

where (a) follows from the definition of VK , (b) follows from Proposition 2.1, (c)
follows from the fact that V0(s) = 0 for all s ∈ S, and (d) follows from the fact
that rt ∈ [0, 1] and hence 0 ≤ V ∗(s) ≤ 1

1−γ
for all s ∈ S. Consequently, if we

choose a sufficiently large K , the value iteration algorithm will compute a good
approximation of V ∗.

Finally, we show that when K is sufficiently large, then VK induces a near-
optimal policy. Specifically, consider a policy πK satisfying5 TπK

VK = TVK , then
we have

‖V πK − V ∗‖∞ = ‖V πK − TπK
VK + TVK − V ∗‖∞

(a)≤ ‖V πK − TπK
VK‖∞ + ‖TVK − V ∗‖∞

= ‖TπK
V πK − TπK

VK‖∞ + ‖TVK − TV ∗‖∞
(b)≤ γ ‖V πK − VK‖∞ + γ ‖VK − V ∗‖∞
(c)≤ γ ‖V πK − V ∗‖∞ + 2γ ‖VK − V ∗‖∞,

where (a) and (c) follow from the triangular inequality, and (b) follows from the
contraction mapping. Consequently, we have

‖V πK − V ∗‖∞ ≤ 2γ

1 − γ
‖VK − V ∗‖∞ ≤ 2γ K+1

1 − γ
‖V ∗‖∞ ≤ 2γ K+1

(1 − γ )2
.

5 Note that one choice of such policies is a deterministic policy π ′ satisfying

π ′(s) ∈ argmaxa∈A r̄(s, a) + γ
∑

s′∈S P(s′|s, a)VK(s′).
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Note that ‖V πK − V ∗‖∞ = maxs∈S
[
V ∗(s) − V πK (s)

]
, thus, for sufficiently large

K , πK is near-optimal.

2.2.2.2 Policy Iteration

Policy iteration is one algorithm that computes an optimal policy π∗, which is
described as follows:

Policy iteration algorithm

Initialization: choose an arbitrary initial deterministic policy π0
Policy Iteration: for each k = 0, 1, 2, . . .
step 1: (policy evaluation) compute the state value function V πk for policy
πk by solving the system of linear equations

V = Tπk
V .

step 2: (policy improvement) compute a deterministic policy πk+1 satisfying

Tπk+1V
πk = TV πk

step 3: if V πk = TV πk , terminate and return πk

Recall that V πk is the unique bounded solution for the Bellman equation V =
Tπk

V . We also note that by definition, this Bellman equation is a system of linear
equations with |S| variables and |S| equations, where |S| is the cardinality of the
state space S. Thus, in the policy evaluation step, V πk can be computed by solving
linear equations. For the policy improvement step, we can choose a deterministic
policy πk+1 satisfying

πk+1(s) ∈ argmaxa∈A
[
r̄(s, a) + γ

∑
s′∈S P(s′|s, a)V πk (s′)

]
, ∀s ∈ S.

Notice that the policy iteration algorithm terminates if and only if V πk = V ∗, that
is, if and only if πk is optimal.

One can prove that the policy iteration algorithm will find an optimal policy
and terminate in a finite number of steps. Interested readers might refer to
Proposition 2.3.1 in Bertsekas (2011) for the proof. This is the main advantage of
policy iteration over value iteration. On the other hand, the policy evaluation step
in policy iteration requires solving a system of linear equations. This step can be
computationally expensive if the number of states |S| is large.
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2.3 Reinforcement Learning Algorithm Design

Based on the Markov decision process (MDP) frameworks discussed in Sect. 2.2,
in this section, we provide a high-level review of some core algorithm design issues
for reinforcement learning (RL), such as the choice of learning target, how to
design exploration schemes, and approximate solutions for large-scale RL problems.
Specifically, this section proceeds as follows: first, we formulate two standard RL
problems in Sect. 2.3.1 based on the finite-horizon MDP and the discounted MDP
discussed in the previous section. Then, in Sect. 2.3.2, we discuss the differences
between model-based RL and model-free RL, which correspond to different choices
of learning targets. We also review some classical RL algorithms, such as Q-
learning, Sarsa, and REINFORCE, in Sect. 2.3.2. Third, in Sect. 2.3.3, we review
some commonly used exploration schemes and discuss why data efficient RL agents
need to be able to accomplish “deep exploration”. Finally, in Sect. 2.3.4, we briefly
review approximate learning algorithms for large-scale RL problems, such as some
state-of-the-art deep reinforcement learning (DRL) algorithms (Silver et al., 2016,
2017b).

It is worth mentioning that RL has been an active research field in the past
few decades, and many different problem formulations and algorithms have been
developed. Due to the space limit, we can only discuss some core algorithm design
issues mentioned above and review a few classical algorithms. Interested readers
might refer to Sect. 2.4 for pointers to further reading.

2.3.1 Reinforcement Learning Problem Formulation

In this subsection, we formulate two RL problems based on the MDPs discussed in
Sect. 2.2: episodic RL in a finite-horizon MDP, and RL in a discounted MDP.

2.3.1.1 Episodic Reinforcement Learning in Finite-Horizon MDP

The first RL problem we consider is an episodic RL problem in a finite-horizon
MDP described in Sect. 2.2.1. Recall that a finite-horizon MDPMF is characterized
by a tuple MF = (S,A, P , r,H, ρ). In this episodic RL problem, we assume that
the agent knows the state space S, the action space A, and the time horizon H ; but
does not fully know the initial state distribution ρ, the transition model P , or the
reward model r . We also assume that the agent will repeatedly interact withMF for
T episodes. For any episode t = 1, . . . , T , and any period h = 1, . . . , H , we use
sth, ath, and rth to, respectively, denote the state, action, and reward at period h in
episode t .

Each episode t = 1, 2, . . . , T proceeds as follows: at the beginning of this
episode, the agent first observes an initial state st1, which is independently drawn
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from the initial state distribution ρ. Then, at each period h = 1, . . . , H , the agent
adaptively chooses an action ath ∈ A based on its prior knowledge and past
observations and observes and receives a reward rth ∼ r(·| sth, ath). If h < H , the
agent will also observe the next state st,h+1 ∼ P(·| sth, ath). Episode t terminates
once the agent receives the reward rtH at period H . The agent’s goal is to maximize
its expected cumulative reward in the first T episodes:

maxE
[∑T

t=1
∑H

h=1 rth

]
.

Many canonical or real-world RL problems can be formulated as either special
cases or extensions of the episodic RL problems described above. For example,
the classical multi-armed bandit problem (Lattimore & Szepesvári, 2020) can be
formulated as an episodic RL problem with one state and time horizon H = 1. On
the other hand, agents aiming to learn good strategies in computer games usually
need to interact with the games repeatedly, and each interaction can be viewed as an
episode. The computer game setting can be viewed as an extension of the episodic
RL problem described above, and the main difference is that the time horizon H in
computer games are usually random.6 Many research works have been dedicated to
episodic RL problems in the past decade (Dann et al. 2017; Wen & Van Roy, 2017;
Osband et al. 2013, 2019).

2.3.1.2 Reinforcement Learning in Discounted MDP

The second RL problem we consider is a RL problem in a discounted MDP MD,
which has been described in Sect. 2.2.2. Recall that a discounted MDP MD is
characterized by a tuple MD = (S,A, P , r, γ, ρ). In this RL problem, we assume
that the agent knows the state space S, the action space A, and the discrete-
time discount factor γ ; but does not fully know the initial state distribution ρ, the
transition model P , or the reward model r . For each time step t = 1, 2, . . ., we use
st , at , and rt to, respectively, denote the state, action, and reward at time period t .

This RL problem proceeds as follows: at the first time period t = 1, the agent
observes an initial state s1, which is independently drawn from the initial state
distribution ρ. Then, at each time step t = 1, 2, 3, . . ., the agent first adaptively
chooses an action at ∈ A based on its prior knowledge and past observations, and
then observes the reward rt ∼ r(·| st , at ) and the next state st+1 ∼ P(·| st , at ). The
agent’s goal is to maximize its expected total discounted reward

E
[∑∞

t=1 γ t−1rt
]
.

6 More precisely, the time horizon H in a computer game is usually a stopping time, rather than
deterministic.
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In other words, the RL problem described in this subsection is the same as the
dynamic optimization problem discussed in Sect. 2.2.2, except that the agent does
not fully know P , r , and ρ. Consequently, the agent cannot directly compute
an optimal or near-optimal policy via the value iteration algorithm or the policy
iteration algorithm described in Sect. 2.2.2. Instead, the agent needs to learn to take
optimal or near-optimal actions while interacting with MD. It is worth mentioning
that RL in discounted MDPs is one of the most classical RL problems, and many
classical RL algorithms, such as Q-learning (Watkins & Dayan, 1992), were first
developed under this problem formulation.

2.3.2 Model-Based vs. Model-Free Reinforcement Learning

As we have discussed above, in RL problems, the agent usually does not fully know
the environment. For instance, in the RL problems described in Sect. 2.3.1, the
agent does not know the reward model r and the transition model P . The agent may
observe the reward and possibly other observations (e.g., the next state) after taking
an action at each time period. The agent needs to learn an optimal or near-optimal
or even high-performance policy π† while interacting with the environment.

Note that the agent does not have to attempt to learn π† directly. Instead, it
can choose to learn a learning target χ (Lu et al., 2021) that contains sufficient
information7 to compute π†. We can classify the RL algorithms based on their
chosen learning target χ . For the RL problems described in Sect. 2.3.1, some
commonly chosen learning targets are:

1. the MDP model;
2. the optimal state-action value function Q∗;
3. an optimal policy π∗, or a near-optimal policy, or just a high-performance policy.

If an algorithm chooses the MDP model as its learning target, then we refer to
that algorithm as a model-based RL algorithm. On the other hand, if an algorithm
chooses Q∗, π∗, or a near-optimal policy as its learning target, then we refer to that
algorithm as a model-free RL algorithm, since it tries to learn an optimal or near-
optimal policy without learning the full MDP model. Specifically, if the learning
target of an algorithm is the optimal value function Q∗, then that algorithm is
referred to as a value learning algorithm. On the other hand, if the learning target is
an optimal policy, a near-optimal policy, or just a high-performance policy, then the
algorithm is referred to as a policy learning algorithm. As we will discuss below,
there are pros and cons between model-based RL algorithms and model-free RL
algorithms.

7 Mathematically, it means that π† = ψ(χ), where ψ is a function known to the agent.
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2.3.2.1 Model-Based Reinforcement Learning

A model-based RL algorithm chooses the MDP model as its learning target. To
simplify the exposition, let us consider the episodic RL problem described in
Sect. 2.3.1.1, and the model-based RL in discounted MDPs is similar. For the
episodic RL problem, a model-based RL algorithm maintains a “knowledge state”
about the MDP model MF, and updates it while interacting with the environment.
Depending on the algorithm, this knowledge state could be a point estimate of MF,
a confidence set of MF, or the posterior distribution over MF. In each episode, a
model-based RL algorithm chooses actions based on its knowledge state aboutMF.

One example of model-based RL algorithms is the posterior sampling for
reinforcement learning (PSRL) developed in Osband et al. (2013), which can be
viewed as a special case of Thompson sampling (Thompson, 1933; Russo et al.,
2017) and is described below.

Posterior sampling for reinforcement learning (PSRL)

Initialization: a prior distribution P0 over the environment MF
for each episode t = 1, 2, . . .
Step 1: sample a finite-horizon MDP model M̃t ∼ Pt−1
Step 2: compute πt , one optimal policy under M̃t

Step 3: apply πt in episode t , receive reward rt1, rt2, . . . , rtH , and observe the
state-action-reward trajectory Dt = (st1, at1, rt1, . . . , stH , atH , rtH )

Step 4: update the posterior Pt overMF using Bayes’ rule, based on Pt−1 and
observation Dt

Specifically, the PSRL algorithm maintains and updates a posterior distribution
Pt over the environmentMF. At each episode t , it first samples an MDP model M̃t

from the posterior, then it computes a policy πt that is optimal under the sampled
model M̃t . Third, it applies the policy πt in the true environment MF and observes
the state-action-reward trajectory Dt . Finally, it updates the posterior distribution
over the environment MF based on Dt , using the Bayes’ rule.

Compared with the model-free RL algorithms, one major disadvantage of model-
based RL algorithms, including PSRL described above, is that they tend to be
computationally expensive for large-scale RL problems. Specifically, a model-based
RL algorithm aims to learn the MDP model of the environment and needs to
maintain and update a knowledge state about the MDP model. Thus, to decide how
to choose actions, a model-based RL algorithm usually needs to compute a policy
based on its knowledge state about the MDP model. This step often requires solving
a dynamic programming problem. If the MDP model (environment) is large-scale,
then this step is usually computationally expensive.

Let us use the PSRL algorithm described above to further illustrate this. In
PSRL, the knowledge state about the MDP model is the posterior distribution Pt−1
over the MDP model. To choose actions in episode t , PSRL first samples a model
M̃t ∼ Pt−1, and then computes a policy πt that is optimal under the sampled model
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M̃t . Note that computing πt based on M̃t requires solving a dynamic programming
problem in the finite-horizon MDP M̃t . If the environment MF is a large-scale
problem and PSRL starts with an appropriately chosen prior, then M̃t is also likely
to be a large-scale MDP and hence computing πt can be computationally expensive.

On the other hand, for many RL problems, especially the large-scale RL
problems that require approximate solutions (see Sect. 2.3.4), it is usually easier to
develop provably data efficient model-based algorithms than provably data efficient
model-free algorithms. In particular, the PSRL algorithm described above is data
efficient under appropriate technical conditions (Osband et al., 2013), and we will
discuss this more in Sect. 2.3.3.

2.3.2.2 Q-Learning and SARSA

A widely used model-free RL algorithm is the classical Q-learning algorithm
(Watkins & Dayan, 1992). As its name indicates, the Q-learning algorithm chooses
the optimal state-action value function Q∗ as its learning target, and hence it is a
value learning algorithm. To simplify the exposition, let us consider a version of
Q-learning algorithm for the episodic RL problem described in Sect. 2.3.1.1, which
is detailed below.

Q-learning with ε-greedy exploration

Initialization: learning step size α ∈ (0, 1], exploration probability ε ∈ (0, 1],
and initialize Q(s, h, a) arbitrarily for all (s, h, a) ∈ S × H × A

for each episode t = 1, 2, . . .
observe the initial state st1 ∼ ρ

for each period h = 1, . . . , H :
Step 1 (ε-greedy exploration): with probability ε, choose action
ath uniformly randomly fromA; with probability 1 − ε, choose

ath ∼ unif

(
argmax

a∈A
Q(sth, h, a)

)

that is, ath is sampled uniformly randomly from argmaxa∈A Q(sth, h, a)

Step 2: take action ath, observe reward rth; if h < H , also observe the next
state st,h+1
Step 3: compute the temporal difference (TD) error

δth =
{

rth + maxa′ Q(st,h+1, h + 1, a′) − Q(sth, h, ath) if h < H

rth − Q(sth, h, ath) if h = H

(2.22)
Step 4: update Q(sth, h, ath) as

Q(sth, h, ath) ← Q(sth, h, ath) + αδth
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Roughly speaking, the above Q-learning algorithm maintains and updates an
estimate Q of the optimal state-action value function Q∗ and proceeds as follows:
at each period h in episode t , the agent first chooses an action ath based on the ε-
greedy exploration with current estimate Q. That is, with probability ε, it chooses
the action ath uniformly randomly fromA; and with probability 1−ε, it chooses ath

greedy8 to the current estimate Q in the sense that ath ∈ argmaxa∈A Q(sth, h, a).
Then, it takes action ath, observes the reward rth, and also observes the next state
st,h+1 if h < H . Finally, the agent computes the temporal-difference (TD) error
δth as specified in Eq. (2.22) and uses the TD error to update the value estimate
Q (sth, h, ath).

Note that the Q-learning algorithm above is a temporal-difference (TD) learning
algorithm, since it updates its estimate Q based on the TD error δth specified in
Eq. (2.22). To see why δth is referred to as a TD error, let us consider a period
h < H in episode t . Recall that rth ∼ r(·|sth, ath) and st,h+1 ∼ P(·|sth, ath), thus,
conditioning on sth and ath, rth +maxa′ Q(st,h+1, h+1, a′) is an unbiased estimate
of

r̄(sth, ath) +
∑

s′∈S
P(s′|sth, ath)max

a′∈A
Q(s′, h + 1, a′), (2.23)

and hence δth is an unbiased estimate of

r̄(sth, ath) +
∑

s′∈S
P(s′|sth, ath)max

a′∈A
Q(s′, h + 1, a′) − Q(sth, h, ath). (2.24)

If we view Q as an estimate of Q∗, then Q(sth, h, ath) is an estimate of
Q∗(sth, h, ath). On the other hand, based on Eq. (2.23), rth + maxa′ Q(st,h+1, h +
1, a′) is an estimate of

r̄(sth, ath) +
∑

s′∈S
P(s′|sth, ath)max

a′∈A
Q∗(s′, h + 1, a′) = Q∗(sth, h, ath),

where the equality follows from the Bellman equation. Thus, δth is the
difference between two estimates of Q∗(sth, h, ath): Q(sth, h, ath) and rth +
maxa′ Q(st,h+1, h + 1, a′). Since rth + maxa′ Q(st,h+1, h + 1, a′) is based on Q

in the next period (period h + 1), while Q(sth, h, ath) is based on Q in the current
period (period h), this difference is referred to as a temporal-difference (TD) error.

Let us briefly discuss why the Q-learning algorithm might be able to learn the
optimal state-action value function Q∗. Based on the value update equation

Q(sth, h, ath) ← Q(sth, h, ath) + αδth,

8 The algorithm breaks ties in a uniformly random manner, as specified in the pseudo-code.
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with an appropriately chosen learning step size α, the Q-learning algorithm updates
Q to minimize the absolute value (or square, which is equivalent) of the TD error
δth. As we have discussed above, the TD error δth is an unbiased estimate of
Eq. (2.24); and the absolute value of Eq. (2.24) is minimized when Q = Q∗. Thus,
under appropriate conditions, the Q-learning algorithm can learn Q∗. Rigorously
speaking, one can prove that if all state-period-action triples are visited infinitely
often, with a different choice of the learning step sizes that are episode-varying and
satisfy some standard stochastic approximation (Kushner & Yin, 2003) conditions,
Q will converge to Q∗ with probability 1. Please refer to Jaakkola et al. (1994) and
Tsitsiklis (1994) for the analysis.

The Q-learning algorithm is an off-policy learning algorithm, since it aims to
learn a policy different from that used to generate data. The policy used to generate
data is also known as the behavior policy. Specifically, the Q-learning algorithm
aims to learn the optimal state-action value function Q∗, or equivalently, the optimal
policy π∗. However, the behavior policy can be any policy that performs sufficient
exploration to ensure that all state-period-action triples are visited infinitely often.
In the algorithm above, the policy used to generate data is the ε-greedy policy with
respect to the current estimateQ. It can also be other policies, such as the Boltzmann
(softmax) exploration policy with respect to the current estimate Q (see Sect. 2.3.3,
and Cesa-Bianchi et al. (2017) and the references therein).

The following learning algorithm, which is referred to as Sarsa (Rummery &
Niranjan, 1994; Sutton 1996), is an on-policy variant of the Q-learning algorithm.
We say Sarsa is on-policy since it attempts to evaluate and improve the policy
that is used to make decisions (i.e., the behavior policy). The main difference
between Sarsa and Q-learning is the TD error for period h < H : in Sarsa,
the TD error is defined based on the state-action-reward-state-action quintuple9(
sth, ath, rth, st,h+1, at,h+1

)
:

δth = rth + Q(st,h+1, h + 1, at,h+1) − Q(sth, h, ath) .

Assume that the current behavior policy is π , and assume that at,h+1 is chosen under
π , i.e., at,h+1 ∼ π(·|st,h+1, h + 1). Similar to what we have discussed above, for
Sarsa, δth is an unbiased estimate of

r̄(sth, ath)+
∑

s′∈S
P(s′|sth, ath)

∑

a′∈A
π(a′|s′, h+1)Q(s′, h+1, a′)−Q(sth, h, ath),

whose absolute value is minimized by Q = Qπ . Consequently, Sarsa continually
aims to estimate Qπ for the current behavior policy π . Note that at the same time
Sarsa also updates π toward greediness with respect to Qπ , as detailed below.
Interested readers might refer to Singh et al. (2000) for the convergence analysis
of Sarsa.

9 This state-action-reward-state-action quintuple gives rise to the name Sarsa for the algorithm.
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Sarsa with ε-greedy exploration

Initialization: learning step size α ∈ (0, 1], exploration probability ε ∈ (0, 1],
and initialize Q(s, h, a) arbitrarily for all (s, h, a) ∈ S × H × A

for each episode t = 1, 2, . . .
observe the initial state st1 ∼ ρ

choose action at1 using ε-greedy policy with respect to Q

for each period h = 1, . . . , H :
Step 1: take action ath, observe reward rth; if h < H , also observe the next
state st,h+1, and choose action at,h+1 using ε-greedy policy with respect
to Q

Step 2: compute the temporal difference (TD) error

δth =
{

rth + Q(st,h+1, h + 1, at,h+1) − Q(sth, h, ath) if h < H

rth − Q(sth, h, ath) if h = H

(2.25)
Step 3: update Q(sth, h, ath) as

Q(sth, h, ath) ← Q(sth, h, ath) + αδth

Finally, it is worth mentioning that there are many variants and extensions of the
Q-learning algorithm and the Sarsa algorithm described above, such as the expected
Sarsa algorithm (Van Seijen et al., 2009), the double Q-learning algorithm (Hasselt,
2010), the n-step TD algorithms (see van Seijen (2016) and Chap. 7 in Sutton and
Barto (2018)) and the TD(λ) algorithms (see Sutton (1988), Dayan (1992), Tsitsiklis
(1994), and Chap. 12 in Sutton and Barto (2018)). Interested readers might refer
to these references for further reading. Also, this subsection has focused on the
episodic RL problem; it is straightforward to develop similar Q-learning and Sarsa
algorithms for RL in discounted MDPs described in Sect. 2.3.1.2.

2.3.2.3 Policy Gradient

Another class of widely used model-free RL algorithms are the policy gradient
methods (see Williams (1992), Marbach and Tsitsiklis (2001), Sutton et al. (2000),
and Chap. 13 in Sutton and Barto (2018)). As the name “policy gradient” indicates,
these methods choose an optimal policy π∗ as their learning target and aim to
learn a good approximation of π∗ with a parametric model, and hence they are
policy learning algorithms. To simplify the exposition, let us motivate and consider
a version of policy gradient method for the episodic RL problem described in
Sect. 2.3.1.1; a similar policy gradient method can be derived for RL in discounted
MDPs described in Sect. 2.3.1.2.
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Consider a policy πθ parameterized by θ ∈ �d , where d is the dimension
of θ . Note that the policy πθ can be parameterized in any way, as long as
πθ (a|s, h) is differentiable with respect to θ for all (s, h, a). One common kind
of parameterization is to parameterize the preference φθ (s, h, a) ∈ � for all state-
period-action triple (s, h, a), and define πθ via the softmax function:

πθ (a|s, h) = exp (φθ (s, h, a))
∑

a′∈A exp (φθ (s, h, a′))
.

For each θ ∈ �d , we define the expected total reward under policy πθ as

J (θ) = E
[
V πθ (s1, 1)

]
, (2.26)

where the expectation is over the initial state10 s1, which is drawn from the initial
state distribution ρ. Hence, the problem of finding the best policy in the policy class
� = {

πθ : θ ∈ �d
}
can be formulated as maxθ∈�d J (θ). Of course, one natural

method to maximize J (θ) is the gradient ascent algorithm based on ∇θJ (θ).
The following theorem is known as the policy gradient theorem, which is the

mathematical foundation for all policy gradient methods.

Theorem 2.1 (Policy Gradient Theorem) For J (θ) defined in Eq. 2.26, we have

∇θJ (θ) =
H∑

h=1

Eπθ

[
Qπθ (sh, h, ah)∇θ logπθ (ah|sh, h)

]
,

where the subscript πθ in notation Eπθ indicates that the expectation is taken under
the stochastic process defined by policy πθ .

Proof Note that V πθ (sh, h) = ∑
a∈A πθ (a|sh, h)Qπθ (sh, h, a), thus

∇θV
πθ (sh, h) =

∑

a∈A

[
Qπθ (sh, h, a)∇θπθ (a|sh, h) + πθ (a|sh, h)∇θQ

πθ (sh, h, a)
]
.

From the Bellman equation (2.4), we have ∇θQ
πθ (sh, h, a) = 0 if h = H and

∇θQ
πθ (sh, h, a) =

∑

s′∈S
P(s′|sh, a)∇θV

πθ (s′, h + 1) if h < H.

Since

10 In Sect. 2.3.2.3, to simplify the notation, we drop the episode subscript t if the discus-
sion/analysis is within one episode.
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∑

a∈A
πθ(a|sh, h)

∑

s′∈S
P(s′|sh, a)∇θV

πθ (s′, h + 1) = Eπθ

[∇θV
πθ (sh+1, h + 1)

∣∣sh
]

and

∑

a∈A
Qπθ (sh, h, a)∇θπθ (a|sh, h)

=
∑

a∈A
Qπθ (sh, h, a)πθ (a|sh, h)∇θ logπθ (a|sh, h)

=Eπθ

[
Qπθ (sh, h, ah)∇θ logπθ(ah|sh, h)

∣
∣sh

]
,

we have

∇θV
πθ (sh, h) =Eπθ

[
Qπθ (sh, h, ah)∇θ logπθ (ah|sh, h)

∣∣sh
]

+Eπθ

[∇θV
πθ (sh+1, h + 1)

∣∣sh
]
1(h < H).

Taking the expectation over sh, we have

Eπθ

[∇θV
πθ (sh, h)

] =Eπθ

[
Qπθ (sh, h, ah)∇θ logπθ (ah|sh, h)

]

+Eπθ

[∇θV
πθ (sh+1, h + 1)

]
1(h < H).

Hence we have

∇θJ (θ) =Eπθ

[∇θV
πθ (s1, 1)

] =
H∑

h=1

Eπθ

[
Qπθ (sh, h, ah)∇θ logπθ (ah|sh, h)

]
.

This concludes the proof. ��
We now motivate and discuss one policy gradient method, referred to as

REINFORCE (Williams, 1992), based on Theorem 2.1. First, note that we can
compute a stochastic gradient of J (θ) based on a state-action-reward trajectory
s1, a1, r1, . . . , sH , aH , rH under policy πθ . To see it, let us define Gh = ∑H

h′=h rh′
for any h, which is the total reward from period h to period H . We claim that∑H

h=1 Gh∇θ logπθ (ah|sh, h) is a stochastic gradient of J (θ). To see it, notice that

Eπθ

[
Gh∇θ logπθ (ah|sh, h)

] =Eπθ

[
Eπθ [Gh|sh, ah]∇θ logπθ (ah|sh, h)

]

=Eπθ

[
Qπθ (sh, h, ah)∇θ logπθ (ah|sh, h)

]
,

where the second equality follows from Qπθ (sh, h, ah) = Eπθ [Gh|sh, ah]. The
REINFORCE algorithm is described below. As we have discussed above, it is a
stochastic gradient ascent algorithm to maximize J (θ).
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REINFORCE

Initialization: differentiable policy parameterization πθ , initial θ
and learning step size α ∈ (0, 1]

for each episode t = 1, 2, . . .
Step 1: generate trajectory st1, at1, rt1, . . . stH , atH , rtH under policy πθ

Step 2: compute Gth = ∑H
h′=h rth′ for all h = 1, 2, . . . , H

Step 3: update θ ← θ + α
∑H

h=1 Gth∇θ logπθ (ath|sth, h)

It is worth mentioning that there are other policy gradient methods in addition to
the REINFORCE algorithm presented above. Such methods include REINFORCE
with baseline (Williams, 1992; Greensmith et al., 2004) and actor-critic methods
(Sutton, 1984; Degris et al., 2012). Interested readers might refer to the references
for further reading.

2.3.3 Exploration in Reinforcement Learning

In this subsection, we briefly review exploration in RL. As we have discussed
above, the exploration-exploitation trade-off is a key challenge in RL. Specifically,
balancing this trade-off is crucial for a RL algorithm to be data efficient, i.e., to learn
an optimal or near-optimal policy within few interactions with the environment.
Specifically, if an agent does not explore enough (under-exploration), then it might
get stuck in sub-optimal policies and never learn an optimal or near-optimal policy;
on the other hand, if an agent explores too much (over-exploration), then it might
choose sub-optimal actions in too many time steps and hence incur a huge reward
loss.

This subsection is organized as follows: we briefly review some commonly used
exploration schemes in Sect. 2.3.3.1; in Sect. 2.3.3.2, we motivate and discuss why
data efficient RL algorithms need to be able to accomplish “deep exploration”.

2.3.3.1 Exploration Schemes

We now briefly review some commonly used exploration schemes, including ε-
greedy exploration, Boltzmann exploration, exploration based on optimism in the
face of uncertainty (OFU), and Thompson sampling. To simplify the exposition,
we discuss these exploration schemes under the episodic RL problem discussed in
Sect. 2.3.1.1.

ε-Greedy Exploration ε-greedy exploration is probably the simplest exploration
scheme. In Sect. 2.3.2.2, we have presented two algorithms with ε-greedy explo-
ration: Q-learning with ε-greedy exploration and Sarsa with ε-greedy exploration.
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Roughly speaking, in value learning algorithms, ε-greedy exploration proceeds as
follows: assume that Q is a point estimate of the optimal state-action value function
Q∗, then at each period h in episode t , with probability 1 − ε, the agent chooses
an action greedy to the current estimate Q, i.e., ath ∈ argmaxa∈A Q(sth, h, a)

(exploitation); and with probability ε, it chooses a random action (exploration).
Similarly, in a model-based RL algorithm that maintains and updates a point
estimate of the MDP model, at each time step, the ε-greedy exploration chooses
an action greedy to the current model estimate with probability 1− ε and chooses a
random action with probability ε. Note that the choice of ε trades off the exploration
and exploitation.

Boltzmann (softmax) Exploration Boltzmann (softmax) exploration (Cesa-
Bianchi et al., 2017) is similar to ε-greedy exploration. In value learning algorithms,
Boltzmann exploration proceeds as follows: assume that Q is a point estimate of
Q∗, then at each period h in episode t , the agent chooses action a ∈ A with
probability

πB(a|sth, h) = exp (Q(sth, h, a)/η)
∑

a′∈A exp (Q(sth, h, a′)/η)
, (2.27)

where η > 0 is the temperature of Boltzmann exploration and trades off exploration
and exploitation. Specifically, as η → ∞, πB(·|sth, h) converges to the uniform
distribution over A (exploration only); as η → 0, Boltzmann exploration will
choose an action greedy to Q (exploitation only).

Optimism in the Face of Uncertainty (OFU) OFU is a class of exploration
schemes that are widely used to design provably data efficient RL algorithms. One
version of the OFU exploration scheme proceeds as follows: the agent maintains
and updates a confidence set over a learning target χ (e.g., the MDP model or Q∗);
then at the beginning of each episode, it uses this confidence set to assign each
state-period-action triple (s, h, a) an optimistically biased estimate Q̂(s, h, a) of
Q∗(s, h, a); finally, at each period h in the current episode t , it will choose action
ath greedy to Q̂, i.e., ath ∈ argmaxa∈A Q̂(sth, h, a).

Thompson Sampling (TS) Thompson sampling (Thompson, 1933; Russo et al.,
2017) is another exploration scheme widely used to design data efficient RL
algorithms. It proceeds as follows: the agent maintains and updates a posterior
distribution over a learning target χ (e.g., the MDP model or Q∗); then at the
beginning of each episode t , it samples a target χ̃t from the posterior distribution
and computes a policy πt optimal under the sampled target χ̃t ; finally, it chooses
actions in episode t based on πt . Note that the PSRL algorithm in Sect. 2.3.2.1 is a
TS algorithm whose learning target is the MDP model.

In general, the ε-greedy exploration and the Boltzmann exploration are compu-
tationally more efficient than OFU and TS, since they only require a point estimate
of the learning target (e.g., Q∗), while OFU requires maintaining and updating a
confidence set over the learning target and TS requires maintaining and updating
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a posterior distribution over the learning target. On the other hand, ε-greedy and
Boltzmann exploration can easily lead to data inefficient learning, while OFU and
TS are widely used to design mathematically provably data efficient RL algorithms
(Kearns & Singh, 2002; Brafman & Tennenholtz, 2002, Jaksch et al. 2010; Osband
et al. 2013; Wen et al. 2020). In the next subsection, we will use a simple example
to illustrate this.

There are other exploration schemes in addition to those mentioned above. One
of them that is particularly interesting is the information-directed sampling (IDS)
(Russo & Van Roy, 2014; Lu et al. 2021), which samples actions in a manner
that minimizes the ratio between the squared expected performance loss (known
as regret) and a measure of information gain. Interested readers might refer to the
references for further reading.

2.3.3.2 Deep Exploration

In this subsection, we motivate and discuss why data efficient RL algorithms need
to be able to accomplish “deep exploration” (Osband et al., 2019). As we have
discussed above, in RL, exploration means that the agent needs to try actions that
might provide some useful information feedback. In the special case of multi-armed
bandits (MABs) (Lattimore & Szepesvári, 2020), since there is only one state, if
the agent wants to gather some information by taking an action, it can always do
it. However, this might not be the case for general RL problems. Specifically, some
crucial information might only be obtained by trying an action at a particular state
s†; consequently, to obtain this information, the agent needs to learn to plan to visit
s† first.

Consequently, a reliably data efficient RL algorithm needs to be able to accom-
plish “deep exploration”. By this we mean that, the algorithm does not only consider
immediate information gain of taking an action but also the consequences of an
action or a sequence of actions on future learning. A deep exploration algorithm
could, for instance, choose to incur performance losses over a sequence of actions
while only expecting informative observations after multiple time steps. In the
remainder of this section, we use a simple example to illustrate the notion of deep
exploration and compare the data efficiencies of the PSRL algorithm described in
Sect. 2.3.2.1 and the Q-learning with ε-greedy exploration described in Sect. 2.3.2.2.

Let us consider an episodic RL problem with deterministic transitions and
rewards, which is illustrated in Fig. 2.2 and referred to as the “chain example”.
Specifically, in this problem, S = {1, 2, . . . , H } where H is the time horizon,
A = {1, 2}, and the initial state in each episode is always s1 = 1. When the agent
takes action a ∈ A in state s at period h:

• it will receive a deterministic reward z if s = H and a = 1; otherwise, it will
receive reward 0.

• it will transition to state min{s + 1,H } if a = 1 and h < H ; it will transition to
state max{s − 1, 1} if a = 2 and h < H .
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Fig. 2.2 Illustration of the “chain example” with H = 6. The nodes denote the states and the
arrows denote the possible state transitions. We use the green node to denote the fixed initial state
and use the red node to denote the “informative state”

We assume that the agent knows everything about this environment, except the
deterministic reward z at state-action pair (s = H, a = 1). We assume that the
agent’s prior over z is P0(z = 1) = P0(z = −1) = 0.5. Obviously, the optimal
policy π∗ depends on z. For example, if z = 1, the only optimal sequence of actions
is to always choose a = 1. The agent needs to visit state s = H and take action
a = 1 there to learn the crucial information z. If the agent plans a sequence of
actions to do so, we say it accomplishes the deep exploration in this example.

In this example, the data efficiency of an algorithm can be measured by the
expected number of episodes it takes for the algorithm to learn z. Let us consider
the PSRL algorithm first. Note that for this example, sampling an MDP model M̃t

is equivalent to sampling a deterministic reward z̃t ∈ {−1, 1} at state-action pair
(s = H, a = 1), since other parts of the environment are known. In episode
t = 1 with prior P0, the agent will sample z̃1 = ±1 with equal probability 0.5.
Note that with z̃1 = 1, the PSRL algorithm will choose a sequence of actions
at1 = at2 = . . . = atH = 1 in episode t = 1 and hence learn z; on the other
hand, with z̃1 = −1, the PSRL algorithm will not learn z in this episode. Thus, in
episode 1, the PSRL algorithm will learn z with probability 0.5. Since the PSRL
algorithm will not update its posterior before learning z, the expected number of
episodes it takes for PSRL to learn z is 2.

On the other hand, for Q-learning with ε-greedy exploration, we assume thatQ is
initialized as Q(s, h, a) = 0 for all (s, h, a). Note that under this algorithm, before
the agent observes z, Q(s, h, a) = 0, ∀(s, h, a) and the algorithm chooses actions
uniformly randomly at all state-period pairs. In such episodes, the agent will learn z

with probability 2−H . Hence, the expected number of episodes for this Q-learning
algorithm to learn z is 2H .

To sum up, in this example, Q-learning with ε-greedy exploration is highly
data inefficient compared to PSRL. This is because PSRL accomplishes deep
exploration: in each episode, it plans based on a sampled MDP model and hence
considers the consequences of a sequence of actions. On the other hand, the
Q-learning algorithm just chooses random actions before it observes the crucial
information z.
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2.3.4 Approximate Solution Methods and Deep Reinforcement
Learning

Many modern RL problems tend to have intractably large state space S and/or
action space A. For such large-scale RL problems, an algorithm that aims to
learn an optimal policy π∗ asymptotically will require not only an intractably
large memory space but also intractably many time steps for learning. Let us
still use the episodic RL problem to illustrate the ideas. Consider the Q-learning
algorithm with an exploration scheme that performs sufficient exploration (not
necessarily the ε-greedy exploration). As we have discussed in Sect. 2.3.2.2, under
appropriate conditions this algorithm learns Q∗ asymptotically. Notice that this
algorithm requires an O (|S||A|H) memory space to store the point estimate Q

of Q∗. Moreover, since the algorithm only updates its estimate Q(s, h, a) for state-
period-action triple (s, h, a) when it visits that triple, thus, to learn a good estimate
of Q∗, the algorithm needs to visit each state-period-action triple at least once. This
requires �(|S||A|) episodes, which is intractably many for large-scale problems.

Thus, for such large-scale RL problems, our goal is to learn a good approximate
solution with limited memory space and limited time steps. One such approach,
which is commonly used in practice, is to approximate the learning target (e.g.,
Q∗ or π∗) by a low-dimensional parametric model and learn the parameters of that
model. Note that if the parametric model can well approximate the learning target,
and the number of parameters to learn is much less than the “size” of the learning
target (e.g., the “size” of Q∗ is |S||A|H ), then learning with this parametric model
can significantly improve the data efficiency.

One such learning algorithm is the REINFORCE algorithm described in
Sect. 2.3.2.3. Recall that REINFORCE approximates its learning target π∗ by a
parametric model πθ and tries to learn a good parameter vector θ via stochastic
gradient ascent.

Similarly, many value learning algorithms for large-scale RL problems aim to
learn a good approximation of Q∗ via a parametric model Qθ , where θ is the
parameter vector to be learned. There are many difference choices of the parametric
model Qθ . One classical choice is to choose Qθ linear in the parameter vector
θ . Specifically, each state-period-action triple (s, h, a) is associated with a known
feature vector φ(s, h, a) ∈ �d , and for any θ ∈ �d ,

Qθ(s, h, a) = φ(s, h, a)T θ, (2.28)

where the superscript T denotes the vector transpose and d is the feature dimension.
This parametric model is known as the linear value function approximation in the
literature (see Chaps. 6 and 7 of Bertsekas (2011) and the references therein).

Another choice of the parametric model, which is widely used in the past decade,
is to choose Qθ as a (deep) neural network with fixed architecture and parameter
vector θ . Note that the parameter vector θ typically encodes the weights and the
biases in all layers of the neural network. Approximate solution methods based
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on a (deep) neural network (NN) model are also known as deep reinforcement
learning (DRL) algorithms (Arulkumaran et al., 2017; Li, 2017). One well-known
DRL algorithm is deep Q-learning with experience replay (Mnih et al., 2015), which
is also known as deep Q-network (DQN) and is described below.

Deep Q-learning with experience replay (DQN)

Initialization: architecture of NN Qθ , initial θ , exploration probability ε,
FIFO replay buffer D with capacity N , minibatch size B,
and a gradient-based optimization algorithm optimizer

for each episode t = 1, 2, . . .
set θ− ← θ

observe the initial state st1 ∼ ρ

for each period h = 1, . . . , H :
Step 1 (ε-greedy exploration): with probability ε, choose action
ath uniformly randomly fromA; with probability 1 − ε, choose

ath ∼ unif

(
argmax

a∈A
Qθ (sth, h, a)

)

that is, ath is sampled uniformly randomly from argmaxa∈A Qθ (sth, h, a)

Step 2: take action ath, observe reward rth; if h < H , also observe the next
state st,h+1
Step 3: store transition (sth, h, ath, rth, st,h+1) in the replay buffer D;
if h = H , set st,h+1 = null
Step 4: sample a random minibatch of transitions (sj , hj , aj , rj , s

′
j ) for

j = 1, 2, . . . , B fromD, and set

yj = rj + max
a′∈A

Qθ−(s′
j , hj + 1, a′) ∀j = 1, 2, . . . , B (2.29)

we set Qθ−(s′
j , hj + 1, a′) = 0 if s′

j = null
Step 5: define the loss function �(θ) and compute the gradient g

�(θ) = 1
2

∑B
j=1

(
Qθ(sj , hj , aj ) − yj

)2
, g = ∇θ �(θ),

and update θ ← optimizer(θ, g) to minimize �(θ)

Deep Q-learning with experience replay is similar to the Q-learning algorithm
described in Sect. 2.3.2.2. Specifically, its learning target is still the optimal state-
action value function Q∗, it still uses ε-greedy exploration, and it is still an
off-policy learning algorithm. However, there are two main differences: the first
difference is that the deep Q-learning algorithm approximates Q∗ by a neural
network Qθ and learns the parameter vector θ . The second difference is that it uses
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a technique known as experience replay (Lin, 1992) to enhance the data efficiency.
Specifically, the transitions are stored in a replay buffer D. At each period, a
minibatch of transitions are sampled with replacement from D, and the deep Q-
learning algorithm updates θ using a stochastic gradient computed based on this
minibatch. With experience replay, a transition (sth, h, ath, rth, st,h+1) is potentially
used in many parameter update steps, which allows for greater data efficiency.

We also would like to clarify some technical issues in the deep Q-learning
algorithm described above. First, how to choose the architecture of Qθ is highly
non-trivial and in general application-dependent. Second, due to the memory space
limit, the replay buffer D has a finite capacity N . Hence, when D is full and the
agent would like to store a new transition, it needs to either delete a transition from
D or discard the new transition. There are many ways to do it, and in the algorithm
above, the buffer uses a first in, first out (FIFO) buffer replacement strategy. Third,
it is worth mentioning that the optimization algorithm optimizer can be any
gradient-based algorithm (Ruder, 2016), such as the stochastic gradient descent
(SGD) algorithm and the Adam algorithm (Kingma & Ba, 2014). Note that some
optimizer like Adam also needs to update the optimizer state (e.g., the first and
second order moments in Adam), which is abstracted away from the pseudo-code
above. Finally, note that in Eq. (2.29), yj is computed based on θ− instead of θ .
Thus, the gradient g is

g = ∑B
j=1

(
Qθ(sj , hj , aj ) − yj

) ∇θQθ (sj , hj , aj ).

Also notice that though θ is updated in every period, θ− (and hence Qθ− , the
function used to compute the “target values” yj ’s) remains fixed within one episode.
Keeping θ− fixed within one episode might be crucial for the convergence of the
deep Q-learning algorithm in some applications.

Deep reinforcement learning (DRL) has been an active research area in the
past decade, and the deep Q-learning algorithm described above is one of the first
algorithms developed in this area. It is worth mentioning that one agent based on a
variant of it has achieved a level comparable to that of a professional human games
tester across 49 games of the challenging Atari 2600 games (Mnih et al., 2015).
More advanced DRL agents, such as AlphaGo (Silver et al., 2016) and MuZero
(Schrittwieser et al., 2020) have also been developed. Interested readers might refer
to the references for further reading.

2.4 Conclusion and Further Reading

In this chapter, we have briefly reviewed some fundamental concepts, standard
problem formulations, and classical algorithms of reinforcement learning (RL).
Specifically, in Sect. 2.2, we have reviewed Markov decision processes (MDPs)
and dynamic programming (DP), which provide mathematical foundations for
both the problem formulation and algorithm design for RL. In Sect. 2.3, we have
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classified the RL algorithms based on their learning targets and reviewed some
classical algorithms such as PSRL, Q-learning, Sarsa, and REINFORCE. We have
also reviewed the standard exploration schemes in RL in Sect. 2.3.3 and reviewed
approximate solution methods for large-scale RL problems in Sect. 2.3.4.

Before concluding this chapter, we would like to provide some pointers for
further reading. Due to the space limit, we have not covered many exciting topics in
RL, such as RL problems based on average-reward MDPs (see Mahadevan (1996)
and Chap. 5 of Bertsekas (2011)), hierarchical reinforcement learning (Pateria et al.,
2021; Al-Emran, 2015), multi-agent reinforcement learning (Busoniu et al., 2008;
Zhang et al., 2021), imitation learning (Hussein et al., 2017), partially observable
MDPs (Kaelbling et al., 1998), inverse reinforcement learning (Ng et al. 2000;
Arora & Doshi, 2021), and safe reinforcement learning (Garcıa & Fernández, 2015).
Interested readers might refer to the references for further reading. There are also
several classical textbooks on RL and related topics, such as Sutton and Barto
(2018), Bertsekas (2000, 2011, 2019), Szepesvári (2010), and Powell (2007). DRL
has been an active research area in the past decade, and there are also some recent
and more applied books on DRL (Lapan, 2018; Ravichandiran, 2018). Interested
readers might also refer to them for further reading.
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