
Chapter 12
Joint Pricing and Inventory Control with
Demand Learning

Boxiao Chen

12.1 Problem Formulation in General

Since the seminal paper of Whitin (1955), joint pricing and inventory control
problems have attracted tremendous attention and been studied by hundreds of
research papers in the literature. For a comprehensive review, see survey papers
Petruzzi and Dada (1999), Elmaghraby and Keskinocak (2003), Yano and Gilbert
(2005), and Chen and Simchi-Levi (2012). Traditional literature assumes the
demand distribution is known and takes this information as model input, which is
hardly satisfied in practice. In this chapter, we relax this assumption and discuss
online algorithms to learn the demand only from historical data. As time goes by,
the learning algorithms will learn the demand better and better, so that the solutions
prescribed by the algorithms converge to the true optimal solution had the demand
distribution been known.

In this section, we discuss the general setup for the problem of joint inventory
and pricing. Consider a periodic review system in which a firm (e.g., a retailer) sells
a non-perishable product over a planning horizon of T periods. At the beginning of
each period t , the firm observes on-hand inventory xt and determines an inventory
order-up-to level yt and a price pt , where yt ≥ xt , yt ∈ Y = [yl, yh] and pt ∈ P =
[pl, ph] with yl < yh and pl < ph. For simplicity we assume that the system is
initially empty, i.e., x1 = 0. Demand for period t , denoted by Dt(pt ), is stochastic
and price dependent. Demand is satisfied as much as possible by on-hand inventory,
and profits are collected by the firm. There might be a mismatch between supply
and demand. If yt > Dt(pt ), any leftover inventories will be carried over to the
next period, for each of which the firm pays a holding cost h. If yt < Dt(pt ),
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some demands are not fulfilled, and the firm pays a penalty cost b for any unit of
stockout. Per-unit ordering cost is normalized to 0 without loss of generality. The
firm’s objective is to maximize the T -period total profit.

If the distribution of Dt(pt ) is known a priori to the firm (complete information
scenario), then the optimization problem the firm wishes to solve is

max
(pt , yt ) ∈ P×Y

yt ≥ xt

T∑

t=1
v(pt , yt ), (12.1)

where v(pt , yt ) is the instantaneous reward during period t . Let V ∗ represent
the maximum T -period expected profit generated from the optimal policy under
complete information.

In practice, the demand distribution is unknown; therefore, the firm needs to
develop an admissible policy which prescribes pricing and ordering decisions for
each period. An admissible policy is represented by a sequence of prices and order-
up-to levels, {(pt , yt ), t ≥ 1}, where (pt , yt ) depends only on realized data and
decisions made prior to period t , and yt ≥ xt , i.e., (pt , yt ) is adapted to the filtration
generated by {(ps, ys), os : s = 1, . . . , t − 1}. Here os represents the observable
data of demand. Ideally, os = Ds(ps), meaning that demand is fully observable,
but in some cases demand data is censored, which yields os < Ds(ps). Given any
admissible policy π , the sequence of events for each period t is described as follows:

1. At the beginning of period t , the retailer observes the initial inventory level xt .
2. The retailer decides the selling price pt and the inventory level-up-to level yt ≥

xt . New orderings, if there is any, arrive instantaneously.
3. Demand realizes and is satisfied to the maximum extent using on-hand inventory.

Unsatisfied demand is backlogged or lost, and any leftover inventory is carried
to the next period. The retailer observes data ot .

4. At the end of period t , the retailer collects profit of the current period.

The firm’s objective is to find an admissible policy to maximize the T -period
total profit while learning the unknown demand distribution on the fly. The regret of
policy π , denoted by Rπ(T ), is defined as the total profit loss over T periods, which
is

Rπ(T ) = V ∗ − E

[
T∑

t=1
v(pt , yt )

]
.

The smaller the regret, the better the policy.
In this chapter, we will discuss a number of models under the framework of joint

inventory and pricing. These models differ in the following three dimensions.



12 Joint Pricing and Inventory Control with Demand Learning 307

1. Backlog versus lost-sales

• In a backlog system, if yt < Dt(pt ), any unsatisfied demands will be
backlogged and served in future periods, and xt+1 = yt −Dt(pt ).

• In a lost-sales system, unmet demands will leave the market without any
purchases, and xt+1 = (yt −Dt(pt ))

+.

2. Unlimited price changes versus limited price changes

• Most models we will discuss allow unlimited number of price changes, i.e.,
the retailer is allowed to change price every period.

• We will discuss one model where the firm is not allowed to make price
changes more than a certain number of times.

3. With versus without setup cost

• If a setup cost is present, a fixed amount of fee will be charged whenever a
positive amount of inventory is ordered.

In Sects. 12.2 and 12.3, we discuss the classic joint inventory and pricing problem
with backlogged demand and lost sales, respectively. In Sect. 12.4, we consider
scenarios with a limited number of price changes. In Sect. 12.5, we discuss the joint
pricing and inventory control problem with setup cost. In Sect. 12.6, we discuss
other models of joint pricing and inventory control that have been studied in the
literature.

12.2 Nonparametric Learning for Backlogged Demand

In this section, we discuss the joint pricing and inventory control problem with
backlogged demand, one of the most classical models under the topic of joint pricing
and inventory control. We will discuss the model, algorithm, regret convergence
results and proof sketch based on Chen et al. (2019).

Per-period demand can be either Dt(pt ) = λ(pt ) + εt (additive) or Dt(pt ) =
λ(pt ) εt (multiplicative), where λ(·) is a strictly decreasing deterministic function
and εt , t = 1, 2, . . . , T , are independent and identically distributed random
variables with probability density function f (·) and cumulative distribution function
F(·). Here we focus on the multiplicative demand form. Unsatisfied demands are
backlogged, and one has xt+1 = yt−Dt(pt ) for all t = 1, . . . , T . The instantaneous
reward for period t is G(pt , yt ) = ptE[Dt(pt )]−hE[yt −Dt(pt )]+−bE[Dt(pt )−
yt ]+.

By Sobel (1981), myopic policy is optimal for this problem. Therefore, to
optimize the T -period problem in (12.1), it suffices to solve the single-period
problem

max
(p, y) ∈ P×Y

G(p, y), (12.2)
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where

G(p, y) = pE[D(p)] − hE[y −D(p)]+ − bE[D(p)− y]+

= peλ(p)
E
[
eε
]−

{
hE
[
y − eλ(p)eε

]+ + bE
[
eλ(p)eε − y

]+}
.

Let Q(p, eλ(p)) := maxy∈Y G(p, y), then problem (12.2) can be re-written as

Problem CI :
max
p∈P

Q(p, eλ(p))

:= max
p∈P

{
peλ(p)

E
[
eε
]−min

y∈Y

{
hE
[
y − eλ(p)eε

]+ + bE
[
eλ(p)eε − y

]+} }
.

(12.3)

The inner optimization problem (minimization) determines the optimal order-up-to
level that minimizes the expected holding and backlog cost for a given price p, and
we denote it by y

(
eλ(p)

)
. The outer optimization solves for the optimal price p.

Because (p∗, y∗) is the optimal solution for (12.3), they satisfy y∗ = y(eλ(p∗)).
The firm knows neither the function λ(·) nor the distribution of random variable

εt . In the backlog system, true demand realizations can be observed. Therefore,
ot = Dt(pt ), and an admissible policy (pt , yt ) is adapted to the filtration generated
by {(ps, ys),Ds(ps) : s = 1, . . . , t − 1}.

Learning Algorithm A learning algorithm named DDA (shorthand for Data-
Driven Algorithm) is proposed in Chen et al. (2019). DDA approximates λ(p) by
an affine function, and it constructs empirical and dependent error samples from
the collected data, called centered samples. DDA divides the planning horizon
into stages whose lengths are exponentially increasing (in the stage index). At the
start of each stage, the firm sets two pairs of prices and order-up-to levels based
on its current linear estimation of the demand-price function and the constructed
centered samples of random error, and the collected demand data from this stage
are used to update the linear estimation of the demand-price function and the
empirical distribution of random error. These are then utilized to find the pricing and
inventory decision for the next stage. The detailed algorithm design is presented in
Algorithm 1.

As shown in Algorithm 1, for i = 1, 2, . . . in the DDA algorithm, iteration i

focuses on stage i that consists of 2Ii periods. The algorithm sets the ordering
quantity and selling price for each period in stage i derived from the previous
iteration. The first Ii periods (from ti + 1 to ti + Ii) try to implement order-up-
to ŷi,1 policy while the second Ii periods try to implement order-up-to ŷi,2 policy.
Because starting inventory level may be higher than the order-up-to level, ŷi,1 and
ŷi,2 may not be achieved, and one challenge is to identify the impact of the carryover
inventory constraint on the performance of a learning algorithm.
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Algorithm 1 Data-Driven Algorithm (DDA)

1: Input v > 1, ρ > 0 and I0 > 0, and p̂1, ŷ1,1, ŷ1,2. Compute I1 = �I0v�, δ1 = ρ(2I0)−
1
4 , and

p̂1 + δ1.
2: for i = 1, . . . , n do
3: for t = t + i + 1, . . . , ti + Ii do
4: Set pt = p̂i , yt = max {ŷi,1, xt }.
5: Let Dt = log D̃t (pt ).
6: end for
7: for t = ti + Ii + 1, . . . , ti + 2Ii do
8: Set pt = p̂i + δi , yt = max {ŷi,2, xt }.
9: Let Dt = log D̃t (pt ).
10: end for
11: Compute

(α̂i+1, β̂i+1) = argmin
α,β

{ ti+2Ii∑

t=ti+1

(
Dt − (α − βpt )

)2}
,

ηt = Dt − 1

Ii

ti+Ii∑

t=ti+1
Dt , for t = ti + 1, . . . , ti + Ii ,

ηt = Dt − 1

Ii

ti+2Ii∑

t=ti+Ii+1
Dt , for t = ti + Ii + 1, . . . , ti + 2Ii .

12: The data-driven optimization problem (Problem DD) is

max
(p,y)∈P×Y

GDD
i+1(p, y) = max

p∈P
QDD

i+1
(
p, eα̂i+1−β̂i+1p), (12.4)

where

GDD
i+1
(
p, y

) = peα̂i+1−β̂i+1p 1

2Ii

ti+2Ii∑

t=ti+1
eηt

− 1

2Ii

ti+2Ii∑

t=ti+1

(
h
(
y − eα̂i+1−β̂i+1p+ηt

)+ + b
(
eα̂i+1−β̂i+1p+ηt − y

)+)
,

and

QDD
i+1
(
p, eα̂i+1−β̂i+1p) = min

y∈Y
GDD

i+1
(
p, y

)
.

13: If β̂i+1 > 0, then solve problem DD and set the first pair of price and inventory level to

(p̂i+1, ŷi+1,1) = arg max
(p,y)∈P×Y

GDD
i+1(p, y);

otherwise, set

(p̂i+1, ŷi+1,1) =
(

pl + ph

2
,
yl + yh

2

)
.

Set p̂i+1,2 = p̂i+1 + δi+1 (in case p̂i+1 + δi+1 �∈ P, set p̂i+1,2 = p̂i+1 − δi+1), and

ŷi+1,2 = argmax
y∈Y

GDD
i+1(p̂i+1,2, y).

14: end for
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The algorithm applies the realized demand data and least-square method to
update the linear approximation, α̂i+1 − β̂i+1p, of λ(p) and computes a centered
sample ηt of random error εt , for t = ti+1, . . . , ti+2Ii . Note that ηt is not a sample
of the random error εt . This is because εt = Dt(pt )−λ(pt ) but 1/Ii

∑ti+Ii

k=t1+1 Dk �=
λ(pt ). For this reason, the constructed objective function for holding and shortage
costs is not a sample average of the newsvendor problem. In the traditional SAA,
mathematical expectations are replaced by true sample averages, see, e.g., Kleywegt
et al. (2002); Levi et al. (2007, 2015). When only biased samples are available,
techniques from statistics such as jackknife resampling can be applied to reduce
bias for SAA (Wu et al., 1986). In this work, samples of εt cannot be observed,
however,

ηt = Dt(pt )− 1

Ii

ti+Ii∑

k=t1+1
Dk = εt − 1

Ii

ti+Ii∑

k=t1+1
εk

can be obtained. Since E[εk] = 0, 1/Ii

∑ti+Ii

k=t1+1 εk converges to 0 in probability as
Ii grows, and one would expect ηt → εt in probability as t grows. Thus, DDA use ηt

in place of εt in computing proxy objectives. Since these samples are obtained from
the original i.i.d. samples after subtracting the sample average, we call ηt centered
samples, and {ηt , t = ti + 1, . . . , ti + 2Ii} are dependent.

A data-driven optimization problem is then constructed. When β̂i+1 > 0, the
algorithm solves an optimization problem of a jointly concave function. Technical
analyses in the paper show that the probability for β̂i+1 > 0 converges to 1 as i

grows.
The DDA algorithm integrates a process of earning (exploitation) and learning

(exploration) in each stage. The earning phase consists of the first Ii periods starting
at ti + 1, during which the algorithm implements the optimal strategy for the
proxy optimization problem GDD

i (p, y). In the next Ii periods of learning phase
that starts from ti + Ii + 1, the algorithm uses a different price p̂i + δi and its
corresponding order-up-to level. The purpose of this phase is to extract demand
sensitivity information around the selling price. Note that, even though the firm
deviates from the optimal strategy of the proxy problem in the second phase, the
policies, (p̂i + δi, ŷi,2) and (p̂i , ŷi,1), will be very close to each other as i increases.
Chen et al. (2019) show that they both converge to the clairvoyant optimal solution
and the loss of profit from this deviation converges to zero.

Regret Convergence An upper bound for regret of the DDA policy is provided as

RDDA(T ) = V ∗ − E

[∑T
t=1 G(pt , yt )

]
≤ C1T

1/2, for some constant C1 > 0. The

lower bound for regret is 
(T 1/2), which is implied by Keskin and Zeevi (2014).
This shows that the regret convergence rate for DDA is tight.

The intuitions for regret convergence are the following. Note that during cycle i,
two distinct prices got implemented, based on which demand data is generated. The
two prices are different by δi , which decreases to 0 as i increases. Therefore, the two
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prices are getting closer, and the linear function yielded by linear approximation
approaches the tangent line of λ(·), providing gradient information for future
decisions.

Proof Sketch To compare the DDA policy with the clairvoyant optimal policy, i.e.,
the optimal solutions of problem DD (12) and problem CI (12.3), note that these two
objective functions have significant differences. In problem CI, both λ(p) and the
distribution of ε are known, but in problem DD, λ(p) is approximated by a linear
function and distribution of ε is estimated using centered samples instead of true
samples. Therefore, to analyze DDA, the authors’ approach is to introduce several
“intermediate” bridging problems, and in each step we compare two “adjacent”
problems that differ along only one dimension.

First, for parameters α and β > 0, we introduce bridging problem B1 defined by

Bridging Problem B1 :
max
p∈P

Q(p, eα−βp)

:= max
p∈P

{
peα−βp

E
[
eε
]−min

y∈Y

{
hE
[
y − eα−βp+ε

]+ + bE
[
eα−βp+ε − y

]+}}
.

(12.5)

It is easy to see that, the only difference between problem B1 and problem CI
in (12.3) is that, in problem B1 we replace the demand-price function in CI by an
affine function α − βp. Let p

(
α, β

)
denote the optimal price for problem B1, and

for given p ∈ P, we let y(eα−βp) denote its optimal order-up-to level, which is the
optimal solution for the inner minimization problem in (12.5).

The second bridging problem, B2, is defined for each iteration i of the DDA
algorithm, and for any α and β > 0, it is given by

Bridging Problem B2 :

max
p∈P

Q̃i+1(p, eα−βp) := max
p∈P

{
peα−βp

⎛

⎝ 1

2Ii

ti+2Ii∑

t=ti+1
eεt

⎞

⎠ (12.6)

−min
y∈Y

{
1

2Ii

ti+2Ii∑

t=ti+1

(
h
(
y − eα−βp+εt

)+ + b
(
eα−βp+εt − y

)+)
}}

.

Compared with problem B1, it is seen that B2 is obtained from B1 after
replacing the expectations in B1 by sample averages, hence B2 is the sample average
approximation (SAA) of problem B1. Here εt , t = ti + 1, . . . , ti + 2Ii , represent
the realizations of random errors during stage i. Let p̃i+1 (α, β) denote the optimal
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price and ỹi+1(eα−βp) the optimal order-up-to level for problem B2, which is the
optimal solution for the inner minimization problem in (12.6).

The third bridging problem B3 is a variation of problem B2, which replaces the
true random error εt by a biased error sample ζt , t = ti + 1, . . . , ti + 2Ii . That is,
for

ζ
t1+Ii

t=ti+1 =
(
ζti+1, . . . , ζti+Ii

)
, ζ

t1+2Ii

t=ti+Ii+1 =
(
ζti+Ii+1, . . . , ζti+2Ii

)
,

and parameters α and β > 0, we define the third bridging problem B3 as

Bridging Problem B3 :

max
p∈P

Q̆i+1
(
p, eα−βp, ζ

t1+Ii

t=ti+1, ζ
t1+2Ii

t=ti+Ii+1
)
:= max

p∈P

{
peα−βp

⎛

⎝ 1

2Ii

ti+2Ii∑

t=ti+1
eζt

⎞

⎠

−min
y∈Y

{
1

2Ii

ti+2Ii∑

t=ti+1

(
h
(
y − eα−βp+ζt

)+ + b
(
eα−βp+ζt − y

)+)
}}

.

Note that when (α, β) = (α̂i+1, β̂i+1), and ζt = ηt for t = t1 + 1, . . . , ti + 2Ii ,
problem B3 reduces to problem DD (12) in the DDA algorithm. Thus, problem B3
serves as a bridge between problem B2 and problem DD. We denote the optimal
price of problem B3 by p̆i+1

(
(α, β), ζ

t1+Ii

t=ti+1, ζ
t1+2Ii

t=ti+Ii+1
)
and its optimal order-up-to

level, for given price p, by y̆i+1
(
eα−βp, ζ

t1+Ii

t=ti+1, ζ
t1+2Ii

t=ti+Ii+1
)
.

Based on their definitions, problem CI, bridging problems B1–B3, and problem
DD require less and less information about the demand process. Problem CI has
complete information about both λ(·) and the distribution of ε; problem B1 does
not know λ(·) but knows the distribution of ε; problem B2 does not know either
λ(·) or the distribution of ε but has access to true samples of ε; problems B3 and
DD do not have true samples and have to use biased samples. Chen et al. (2019)
prove convergence for each pair of adjacent problems, and eventually establish
convergence of problem DD to problem CI.

12.3 Nonparametric Learning for Lost-Sales System

Different from Sect. 12.2 that considers backlogged demand, in this section we
consider lost sales and censored demand. This scenario happens when, in case of
a stockout, rejected customers leave the store without purchasing. These customers
cannot be observed by the retailer, and demand data is thus truncated by inventory
levels. We will discuss the model, algorithms, and regret convergence results based
on Chen et al. (2021a, 2020b).
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Consider the additive demand model Dt(pt ) = λ(pt ) + εt with λ(·) being a
non-increasing deterministic function and εt , t = 1, 2, . . . , T , being i.i.d. random
variables with E[εt ] = 0. We denote the CDF of εt by F(·), which is assumed to
be continuous and differentiable, the PDF by f (·) such that f (εt ) < ∞ for any εt ,
and the standard deviation of εt by σ . For notational convenience, we use εt and ε

interchangeably because of the i.i.d. assumption. Demands are satisfied as much as
possible by on-hand inventory, and unsatisfied demands are lost and unobservable.
For system dynamics one has xt+1 = (yt − Dt(pt ))

+. The instantaneous reward
for period t is ptE[min{yt ,Dt (pt )}] − bE[Dt(pt ) − yt ]+ − hE[yt − Dt(pt )]+ =
ptE[Dt(pt )] − (b + pt )E[Dt(pt )− yt ]+ − hE[yt −Dt(pt )]+.

The firm knows neither the function λ(pt ) nor the distribution of the random
term εt a priori, which must be learned from censored demands collected over
time while maximizing the cumulative profit. In this system, demand is censored,
therefore, ot = min{Dt(pt ), yt }. For an admissible policy, (pt , yt ) is adapted
to the filtration generated by {(ps, ys),min {Ds(ps), ys} : s = 1, . . . , t − 1} under
censored demand.

If the underlying demand-price function λ(p) and the distribution of the error
term εt were known a priori, the clairvoyant optimal policy for this problem is a
myopic policy (refer to Sobel 1981). Define the single-period problem by

Q(p, y) = pE[D1(p)] − (b + p)E[D1(p)− y]+ − hE[y −D1(p)]+.

To find the optimal pricing and inventory decisions, it suffices to maximize the
single-period revenue Q(p, y), which can be expressed as

max
p,y

{
pE[D1(p)] − (b + p)E[D1(p)− y]+ − hE[y −D1(p)]+}

= max
p

{
pλ(p)−min

y

{
(b + p)E [λ(p)+ ε − y]+ + hE [y − λ(p)− ε]+

}}
.

Hence, we rewrite the clairvoyant problem as

max
p,y

Q(p, y) = max
p

G(p),

where G(p) = pλ(p)−min
y

{
(b + p)E [λ(p)+ε − y]+ + hE [y − λ(p)−ε]+

}
.

This problem was first studied in Chen et al. (2021a), whose learning method
and result will be briefly reviewed. Then we shift our focus to Chen et al. (2020b),
which studies the problem in a more general setting and improves the convergence
rate in Chen et al. (2021a).
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12.3.1 Algorithms and Results in Chen et al. (2021a)

Chen et al. (2021a) assume G(·) is concave and λ(p) is differentiable to a high
order. They provide a spline approximation based learning algorithm (SALA) under
an exploration-exploitation framework.

Algorithm for Concave G(·) The learning algorithm follows an exploration-
exploitation framework and is based on spline approximation.

We now formally describe how a spline approximation for the demand-price
function λ(·) is constructed. Before doing that, we first present a high-level view
of the approximation method.

Spline approximation needs two integer inputs, m > 0 and l > 0, and it requires
the specification of knots, basis functions, and coefficients. Knots, denoted as wi ,
i = 1, . . . , 2m + l, are equally spaced price points on the whole price interval,
and there are in total 2m + l of them. The more knots a model has, the more
observations of λ(·) the model uses to do estimation, which in general leads to a
more accurate spline approximation. Let Lλ(p) denote the spline approximation
operator of a deterministic function λ(p), and it can be represented as

Lλ(p) =
m+l∑

i=1
γ λ
i ·Nm

i (p), (12.7)

where Nm
i (p), i = 1, . . . , m + l, are the basis functions with coefficients γ λ

i .
The base function Nm

i (p) is polynomial in p with the highest order m − 1 and
is constructed based on knots wi, . . . , wi+m. The larger the m, the smoother the
Nm

i (p) and Lλ(p). The coefficient γ λ
i is computed based on some specific price

points on [wi,wi+m] and the corresponding values of λ(p) at these price points.
To be more specific, price points used here include wi, . . . , wi+m and τi1, . . . , τim

that will be defined shortly in Algorithm 2. The detailed procedure of spline
approximation is also presented in Algorithm 2.

It follows from Schumaker (2007) that for the basis function Nm
i (p), its

(m − 2)-th order derivative exists and is continuous. Together with Theorem 4.9
in Schumaker (2007), one can verify that the basis function Nm

i (p) = 0 for
p /∈ (wi, wi+m) and Nm

i (p) > 0 for p ∈ (wi, wi+m).
Given the detailed construction of the spline approximation, we are ready to

present the main learning algorithm termed SALA in Algorithm 3.
The learning algorithm SALA separates the planning horizon into a disjoint

exploration phase and exploitation phase.
The algorithm specifies the parameters m and l for determining the density for

spline approximation, the parameter � for determining the grid size for (sparse)
discrete optimization problem, and the parameter L for determining the length
of the exploration phase. Note that these parameters are determined “optimally”
via (12.10) to minimize the theoretical regret rate.
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Algorithm 2 Constructing a Spline Approximation (SA)
1: Let integers m ≥ 2 and l ≥ 1 be the inputs of a spline approximation. The (optimal) values of

m and l will be specified later.
2: Let the set of 2m+ l points {w1, . . . , w2m+l} be a partition of the interval

[
pl − ph − pl

l + 1
(m− 1), ph + ph − pl

l + 1
(m− 1)

]
,

where each point wi is defined by

wi = pl + ph − pl

l + 1
(i −m), for i = 1, . . . , 2m+ l.

Note that wm = pl and wm+l+1 = ph and there are l equally spaced points strictly between
pl and ph. Also, there are m− 1 extension points to the left of pl and m− 1 extension points
to the right of ph. Thus, there are in total 2m+ l equally spaced points for the above specified
interval.

3: for i = 1, 2, . . . , m+ l do
4: ϕim(x) = �m−1

r=1 (x − wi+r ).
5: for j = 1, 2, . . . , m do
6: τij = wi + (wi+m − wi)

j−1
m−1 .

7: ψij (x) = �
j−1
r=1 (x − τir ), with ψi1(x) ≡ 1.

8: Then define

αij =
j∑

r=1

(−1)r−1ϕ(m−r)
im (0)ψ(r−1)

ij (0)

(m− 1)! . (12.8)

9: end for
10: end for
11: Given a single variate real function λ(·) and a sequence of numbers x1 < x2 < · · · < xr+1, let

D[x1,...,xr+1]λ be the operator that gives the r-th order divided difference of λ(·), defined by

D[x1,...,xr+1]λ =
r+1∑

j=1

λ(xj )

�r+1
i=1,i �=j (xj − xi)

,

and if r = 0, D[x1]λ ≡ λ(x1).
12: for i = 1, . . . , m+ l do
13: The spline approximation coefficients are

γ λ
i =

m∑

j=1
αij ·D[τi1,...,τij ]λ.

Moreover, for p ∈ [pl, ph], define the m-th order spline approximation basis functions
associated with knots wi, . . . , wi+m by

Nm
i (p) = (−1)m(wi+m − wi)D[wi ,...,wi+m](max{0, p − w})m−1. (12.9)

In D[wi ,...,wi+m](max{0, p − w})m−1, the argument (max{0, p − w})m−1 is considered as a
function of w for given p, and the resulting basis function Nm

i (p) is a function of p.
14: end for
15: The spline approximation of function λ(p), denoted by Lλ(p), is given by (12.7)
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Algorithm 3 Spline Approximation Based Learning Algorithm (SALA)
1: Set input parameters

m = max
{
3, �(log T )

1
2 }, L = ⌈T

1
2+ 1

3√log T
⌉
, l = ⌈(log T )

3
2 T

1
4
√
log T

⌉
, � = T −

1
4 .

(12.10)
Define a sparse discretized set of prices by

S = {pl, pl +�,pl + 2�, . . . , ph}, (12.11)

which is the discrete search space for pricing decisions. We refer to S as the (sparse) grid.
2: for i = 1, . . . , l +m do
3: for j = 1, . . . , l do
4: for t = (i − 1)mL+ (j − 1)L+ 1, . . . , (i − 1)mL+ jL do
5: Implement the following pricing and order-up-to decisions: pt = τij , yt =
�logL log logL, where τij is defined in Algorithm 2 spline approximation.

6: end for
7: end for
8: end for
9: for i = 1, . . . , l +m do
10: for j = 1, . . . , l do

11: Let the average empirical sales be sij =
∑(i−1)mL+jL

t=(i−1)mL+(j−1)L+1 dt∧yt

L
.

12: end for
13: Let the empirical spline approximation coefficients be

βi = αi1si1 +
m∑

j=2

j∑

v=1

αij siv

�
j

r=1,r �=v(τiv − τir )
,

where αij is defined in (8).
14: end for
15: The spline approximation of function λ(p) using sales (or censored demand) is then given by

λ̂(p) =∑m+l
i=1 βiN

m
i (p), where the basis function Nm

i (p) is defined in (13).
16: for i = 1, . . . , l +m do
17: for j = 1, . . . , l do
18: for t = (i − 1)mL+ (j − 1)L+ 1, . . . , (i − 1)mL+ jL do
19: Let

ηt = dt ∧ yt − sij (12.12)

be the residual error, which is used to approximate the random error (with some biases).
20: end for
21: end for
22: end for
23: Solve the following surrogate optimization problem on a sparse grid S (based on sales and

spline approximation):

max
p,y

Q̂(p, y) � max
p∈S

Ĝ(p), where

Ĝ(p) � pλ̂(p)−min
y

{
(b + p)

∑L(m+l)m
t=1 [λ̂(p)+ ηt − y]+

L(m+ l)m
+ h

∑L(m+l)m
t=1 [y − λ̂(p)− ηt ]+

L(m+ l)m

}
.

Let (p̂, ŷ) = argmax Q̂(p, y).

24: for t = L(m+ l)m+ 1, . . . , T do
25: Set the price and target inventory level to pt = p̂, yt = xt ∨ ŷ.

26: end for



12 Joint Pricing and Inventory Control with Demand Learning 317

SALA then enters the exploration phase of total length of L(m + l)m periods,
which is roughly on the order of

√
T . The price space is discretized into equally

spaced prices {τij }’s (which will also be used for constructing a spline approxima-
tion). For each i and j , SALA offers the price τij , together with the pre-specified
target inventory level yt , for an equal number of periods. We note here that the high-
level reason for the target inventory level yt to be on the order of logL log logL is
to ensure that the bias caused by demand censoring is appropriately bounded.

SALA leverages the sales collected over prices {τij }’s to carry out an empirical
spline approximation λ̂(p) of the true demand-price function λ(p). Also, SALA
computes the so-called residual error ηt , which is used to approximate the random
error εt . It is important to note that λ̂(p) is constructed based on sales (or censored
demand) and, therefore, it suffers a bias in estimating λ(p), which must be
quantified in the regret analysis. Similarly, due to demand censoring, ηt is also a
biased representation of εt , in which the bias must also be quantified.

SALA essentially treats the empirical spline approximation λ̂(p) as the true
demand-price function λ(p) and the residual error ηt as the true random error
εt , and constructs the corresponding sample average approximation (SAA) based
surrogate optimization problem. Note that the surrogate optimization problem is
solved sequentially: the inner problem is to find the optimal inventory target level
for a given price, while the outer problem is to find the optimal price on the grid.
The inner problem is convex in the inventory target level, which can be efficiently
solved using first-order methods, whereas the outer problem is a one-dimensional
discretized problem but solved on a sparse grid.

Finally, SALA completes the exploration phase and enter the exploitation phase.
For the remaining planning horizon, SALA implements the optimal price and target
inventory level suggested by the (sampled) surrogate optimization problem. Note
that the length of the exploitation phase is T −L(m+ l)m, which is roughly on the
order of T −√T .

Regret Convergence In Chen et al. (2021a), it shows that the convergence of the

spline approximation can be bounded as P

{
‖λ′(p) − λ̂′(p)‖∞ ≤ C2T

−1/4
}

>

1 − T −2 and P

{
‖λ′(p) − λ̂′(p)‖∞ ≤ C2T

−1/4
}

> 1 − T −2 for some constant

C2 > 0 and any p ∈ P. Moreover, the convergence of error estimation is

shown as P

{∣∣∣E[ε − z∗(p)]+ − 1
L(m+l)m

∑L(m+l)m
t=1 (ηt − ẑ(p))+

∣∣∣ ≤ C3T
−1/4

}
>

1− 10T −2, where z∗(p) = F−1
(

b+p
b+p+h

)
and ẑ(p) = min

{
ηj :∑L(m+l)m

t=1 1(ηt ≤

ηj ) ≥ b+p
b+p+h

}
, for some constant C3 > 0 and any p ∈ P. Based on these

results, the regret convergence rate of SALA is upper bounded as RSALA(T ) ≤
C4T

1/2+ε(log T )3 log log T , where ε = 1/ 3
√
log T + 0.25/

√
log T and constant

C4 > 0. Here note that for any constant c > 0, one has log log T/ log T < ε < c

(or equivalently, log T < T ε < T c), for large enough T . Since the regret lower
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bound for this problem is 
(T 1/2), the SALA algorithm matches the lower bound
up to T ε.

12.3.2 Algorithms and Results in Chen et al. (2020b)

Chen et al. (2020b) consider both concave and non-concave G(·), provide learning
algorithms for the two scenarios, and show that the convergence rates of both
algorithms match the theoretical lower bounds, respectively.

12.3.2.1 Concave G(·)

In this section, we discuss the scenario with concave G(·).

Algorithm for Concave G(·) A different algorithm is proposed in Chen et al.
(2020b) for concave G(·), which approaches the optimal y using bisection and
optimal p using trisection. The detailed algorithm is presented in Algorithms 4, 5,
and 6.

With the SEARCHORDERUPTO routine in Algorithm 4, for every price p ∈
[p, p] one can estimate, using relatively few selling periods, the near-optimal order-
up-to level ŷn so that Q(p, ŷn) ≈ Q(p, y∗(p)) = G(p), where y∗(p) is the optimal
inventory level under price p. It is tempting to use a similar strategy onG(·)which is

Algorithm 4 Bisection search for order-up-to level y
1: function SEARCHORDERUPTO(p, n,C1)
2: Initialize: Lτ = 0, Uτ = ȳ, mτ = ȳ/2, τ = 0, gτ = 0;
3: Offer the lowest price p until current inventory level is below mτ ;*

4: while n review periods have not been reached do
5: Set order-up-to level at yt = mτ and price at pt = p;
6: Observe censored demand and update nτ ← nτ +1; gτ ← gτ +(b+p) if no inventory

is left; gτ ← gτ − h if positive inventory is left;
7: Construct confidence intervals [g(mτ ), g(mτ )] = ĝτ ±C1/

√
nτ , where ĝτ = gτ /nτ ;

8: if τ < �log2(nȳ) and g(mτ ) > 0 then
9: Update Lτ+1 = mτ ,Uτ+1 = Uτ ,mτ+1 = (Lτ+1 + Uτ+1)/2, nτ+1 = 0, τ ←

τ + 1;
10: Offer the lowest price p until current inventory level is below mτ ;*

11: else if τ < �log2(nȳ) and g(mτ ) < 0 then
12: Update Lτ+1 = Lτ ,Uτ+1 = mτ ,mτ+1 = (Lτ+1 + Uτ+1)/2, nτ+1 = 0, τ ←

τ + 1;
13: Offer the lowest price p until current inventory level is below mτ ;*

14: end if
15: end while
16: Return ŷn = mτ which is explored for the most number of times (largest nτ ).
17: end function
* Review periods in these steps do not count towards the total budget of n periods.
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Algorithm 5 Estimation of reward (G(·)) differences at p<p′
1: function ESTIMATEGDIFFERENCE(p, ŷ, p′, ŷ′, n)
2: Set prices and order-up-to levels at (p, ŷ) for n periods, and let {ot = min{λ(p) +

εt , ŷ}}t∈T1 be the censored demands, where T1 is the n periods in this step;
3: Set prices and order-up-to levels at (p′, ŷ′) for the next n periods, and let {o′t =

min{λ(p′)+ εt , ŷ
′}}t∈T2 be the censored demands, where T2 is the n periods in this step;

4: Define δt := ŷ − ot , δ′t := ŷ′ − o′t and let ν̂, ν̂′ be the empirical distributions of
{δt }t∈T1 , {δ′t }t∈T2 , respectively. Let Fν̂, Fν̂′ be the CDFs of ν̂, ν̂′. Find û such that

û := sup
{
u : Fν̂′ (u) ≤ h

b+p+h

}
;

5: Return the estimate reward difference �̂G(p, p′) as

�̂G(p, p′)

=
[
1

n

∑

t∈T2

p′o′t − hδ′t
]
−
[
1

n

∑

t∈T1

pot − hδt

]
+ b

⎡

⎣û× h

b + p + h
− 1

n

∑

t∈T2

δ′t1{0 < δ′t ≤ û}
⎤

⎦ .

6: end function

Algorithm 6 The main algorithm: trisection search on prices
1: Input: time horizon T , price range [p, p], parameters C1, C2 > 0.
2: Initialization: ζ = 0, Lζ = p,Uζ = p.
3: while T review periods have not been reached do
4: Set αζ = 2

3Lζ + 1
3Uζ , βζ = 1

3Lζ + 2
3Uζ , Nζ = �g(C2/(βζ − αζ )4); **

5: ŷζ ← SEARCHORDERUPTO(αζ ,Nζ , C1), ŷ′ζ ← SEARCHORDERUPTO(βζ ,Nζ , C1);

6: �̂G(αζ , βζ ) ← ESTIMATEGDIFFERENCE(αζ , ŷζ , βζ , ŷ′ζ , Nζ );

7: if �̂G(αζ , βζ ) > 0 then
8: Update Lζ+1 ← αζ , Uζ+1 ← Uζ , ζ ← ζ + 1;
9: else
10: Update Lζ+1 ← Lζ , Uζ+1 ← βζ , ζ ← ζ + 1;
11: end if
12: end while
** We use g(x) := (x + �log2(xȳ))�log2(x + �log2(xȳ)).

strongly concave to the price to find the optimal price p∗, which has been applied to
pure pricing without inventory replenishment problems in the literature (Wang et al.,
2014; Lei et al., 2014). Such an approach, however, encounters a major technical
hurdle that neither the reward G(·) nor its derivative can be directly observed or
even accurately estimated, due to the censoring of the demands and the lost-sales
component in the objective function.

In this section we present the key idea of this paper that overcomes this significant
technical hurdle. The important observation is that, in a bisection or trisection search
method, it is not necessary to estimate G(p) accurately. Instead, one only needs to
accurately estimate the difference of rewards G(p′) − G(p) at two prices p, p′ in
order to decide on how to progress, which can be accurately estimated even in the
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presence of censored demands and lost sales. We sketch and summarize this idea
below.

The Key Idea of Algorithm 5—“Difference Estimator” Let p < p′ be two
different prices and recall the definition that G(p) = pE[min{λ(p) + ε, y∗(p)}] −
bE[(ε + λ(p) − y∗(p))+] − hE[(y∗(p) − λ(p) − ε)+]. When y∗(p) is relatively
accurately estimated (from the previous section and Algorithm 4), the only term
in G(p) that cannot be directly observed without bias is the lost-sales penalty
−bE[(ε + λ(p) − y∗(p))+]. Hence, to estimate G(p′) − G(p) accurately (Chen
et al., 2020b) only need to estimate the difference

E[(ε + λ(p)− y∗(p))+] − E[(ε + λ(p′)− y∗(p′))+]. (12.13)

By the property of newsvendor solution, y∗(p) = λ(p)+zp where zp is such that
Fμ(zp) = ∫ zp

−∞ fμ(u)du = φ(p) = b+p
b+p+h

, and similarly y∗(p′) = λ(p′) + zp′

such that Fμ(zp′) = φ(p′) = b+p′
b+p′+h

. Since p < p′, we have zp < zp′ . Equation
(12.13) can be subsequently simplified to

E[(ε − zp)+] − E[(ε − zp′)
+]= E[(ε − zp)+ − (ε − zp′)

+]
= (zp′ − zp)× Pr[ε ≥ zp]︸ ︷︷ ︸

Part A

−E[(zp′ − ε)1{zp ≤ ε ≤ zp′ }]︸ ︷︷ ︸
Part B

.

(12.14)

For Part A of Eq. (12.14), the Pr[ε ≥ zp] term has the closed-form, known
formula of Pr[ε ≥ zp] = 1− Fμ(zp) = 1− φ(p) = h

b+p+h
. To estimate zp′ − zp,

which is nonnegative, (Chen et al., 2020b) use the following observation:

1− φ(p) = h

b + p + h
= Pr[ε ≥ zp] (∗)= Pr[(zp′ − ε)+ ≤ zp′ − zp]. (12.15)

Here the crucial Eq. (*) holds because zp′ > zp, and, therefore, the event ε ≥ zp is
equivalent to either ε > zp′ (for which (zp′ − ε)+ is zero), or ε ≤ zp′ and zp′ − ε ≤
zp′ − zp. Furthermore, the random variable (zp′ − ε)+ = (y∗(p′)− λ(p′)− ε)+ is
(approximately) observable when y∗(p′) is estimated accurately, because this is the
leftover inventory at ordering-up-to level y∗(p′) and posted price p′. Therefore, one
can collect samples of (zp′ − ε)+, construct an empirical cumulative distribution
function (CDF) and infer the value of zp′ − zp by inverting the empirical CDF at
h/(b + p + h). A similar approach can be taken to estimate Part B of Eq. (12.14),
by plugging in the empirical distribution of the random variable (zp′ − ε)+1{0 ≤
(zp′ − ε)+ ≤ zp′ − zp}.

A pseudo-code description of the reward difference estimation routine is given in
Algorithm 5. The design of Algorithm 5 roughly follows the key ideas demonstrated
in the previous paragraph. The ot and δt random variables correspond to the
censored demand and the leftover inventory at time period t , and the distribution
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of δt (or δ′t ) would be close to the distribution of (zp − ε)+ (or (zp′ − ε)+). Using
the observation in Eq. (12.15), û in Algorithm 5 would be a good estimate of zp′ −zp

by inverting the empirical CDFs.
As the last component and the main entry point of the algorithm framework,

(Chen et al., 2020b) describe a trisection search method to localize the optimal
price p∗ that maximizes G(·), based on the strong concavity of G(·) in p that
is assumed for this scenario. The trisection principle for concave functions itself
is not a new idea and has been explored in the existing literature on pure pricing
without inventory replenishment problems (Lei et al., 2014; Wang et al., 2014). A
significant difference, nevertheless, is that in this application the expected reward
function G(·) cannot be observed directly (even up to centered additive noise) due
to the presence of censored demands, and one must rely on the procedure described
in the previous section to estimate the reward difference function �G(·, ·) instead.
Below we describe the key idea for this component.

The Key Idea of Algorithm 6 Recall that G(p) = maxy∈[0,ȳ]Q(p, y) and
�G(p, p′) = G(p′) − G(p). A trisection search algorithm is used to locate p∗ ∈
[p, p] that maximizes G(·), under the assumption that G(·) is twice continuously
differentiable and strongly concave in p. The algorithm starts with I0 = [p, p] and
attempts to shorten the interval by 2/3 after each epoch ζ , without throwing away
the optimal price p∗ with high probability. Suppose at epoch ζ the interval Iζ =
[Lζ ,Uζ ] includes p∗, and let αζ , βζ be the trisection points of Iζ . Depending on the
location of p∗ relative to αζ , βζ , the updated, shrunk interval Iζ+1 = [Lζ+1, Uζ+1]
can be computed. The above discussion shows that trisection search updates can be
carried out by simply determining the signs of �G(αζ , βζ ). A complete pseudo-
code description of the procedure is given in Algorithm 6.

Regret Convergence for Concave G(·) The regret rate of the algorithm for
concave G(·) is upper bounded as R(T ) ≤ O

(
T 1/2(ln T )2

)
with probability

1 − O(T −1). This upper bound almost matches the theoretical lower bound of

(T 1/2).

12.3.2.2 Non-Concave G(·)

In this section, we discuss the scenario with non-concave G(·).

Algorithm for Non-Concave G(·) For non-concave G(·), (Chen et al., 2020b) still
rely on bisection to search for the optimal y, but for p, the previous trisection
framework cannot be applied anymore due to loss of concavity. They design an
active tournament algorithm based on the difference estimator to search for the
optimal p.

Key idea 1: discretization. The price interval [p, p] is first being partitioned

into J evenly spaced points {p(j)}j∈[J ], with J = �T 1/5. Because G(·) is twice
continuously differentiable (implied by the first condition in Chen et al. (2020b))
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and p∗ ∈ (p, p), there exists pj∗ for some j∗ ∈ [J ] such that G(p∗) − G(pj∗) ≤
O(|p∗ − pj∗ |2) ≤ O(J−2) = O(T −2/5), because G′(p∗) = 0. The problem then
reduces to a multiarmed bandit problem over the J arms of {pj }j∈[J ], with the
important difference of the actual reward of each arm not directly observable due to
the censored demands.

Key idea 2: active elimination with tournaments. With the sub-routines developed
in Algorithms 4 and 5 in the previous section, we can in principle estimate the
reward difference �G(p, p′) at two prices p < p′ up to an error on the order of
Õ(1/

√
n), with ≈ 2n review periods for each price and without incurring large

regret. In Algorithm 6, we successfully applied this “pairwise comparison” oracle
in a trisection approach to utilize the concavity of G(·). Without concavity of G(·),
we are going to use an active elimination with tournaments approach to find the
price with the highest rewards in {pj }j∈[J ].

More specifically, consider epochs γ = 1, 2, · · · with geometrically increasing
sample sizes nγ implied by geometrically decreasing accuracy levels �γ = 2−γ .
At the beginning of each epoch γ , the algorithm maintains an “active set” Sγ ⊆ [J ]
of prices such that for all p ∈ Sγ , G(pj∗)−G(p) ≤ �γ where �γ = Õ(1/

√
nγ ).

Chen et al. (2020b) use a “tournament” approach to eliminate prices in Sγ that have
large sub-optimality gaps. In particular, all prices in Sγ are formed into pairs and
each pair is allocated nγ samples to either eliminate the inferior price in the pair, or
to combine both prices into one and advance to the next round of the tournament.
The tournament ends once there is only one price left, p̂γ . Afterwards a separate
elimination procedure is invoked to retain all other prices that are close to p̂γ in
terms of performance. A detailed algorithm for non-concave G(·) is presented in
Algorithm 7.

Regret Convergence for Non-Concave G(·) The regret convergence rate for non-
concave G(·) is upper bounded as R(T ) ≤ O

(
T 3/5(ln T )2

)
with probability

1 − O(T −1). Chen et al. (2020b) then prove the lower bound for non-concave
G(·) and show that the upper bound matches the lower bound. They prove that
there exist a problem instance such that for any learning-while-doing policy π and
the sequential decisions {pt , yt }Tt=1 the policy π produces, it holds for sufficiently

large T that supλ E

[
V ∗ −∑T

t=1 Q(pt , yt )
]
≥ C5 × T 3/5/ln T for some constant

C5 > 0. The lower bound is established by a novel information-theoretical argument
based on generalized squared Hellinger distance, which is significantly different
from conventional arguments that are based on Kullback–Leibler divergence.

12.4 Parametric Learning with Limited Price Changes

Models discussed in Sects. 12.2 and 12.3 assume that price can be adjusted at the
beginning of every period. In practice, however, retailers may hesitate changing
prices too frequently. Cheung et al. (2017) discussed several practical reasons for not
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Algorithm 7 A discretization + tournament approach with non-concave G(·)
1: Input: time horizon T , discretization parameter J , parameters C1, C3 > 0;
2: Let {pj }Jj=1 be J prices that evenly partition [p, p]; S0 = [J ];
3: for γ = 0, 1, 2, · · · until T review periods are reached do
4: �γ ← 2−γ , nγ ← �g(C3/�

2
γ )***,Vγ,0 ← Sγ , � ← 0; � the tournament phase

5: while |Vγ,�| > 1 do
6: Group prices inVγ,� into pairs;
7: If |Vγ,�| is odd then transfer one arbitrary price to form Vγ,�+1; else setVγ,�+1 = ∅;
8: for each pair of prices p, p′ inVγ,� do
9: ŷ ← SEARCHORDERUPTO(p, nγ , C1), ŷ′ ← SEARCHORDERUPTO(p′, nγ , C1);

10: �̂G(p, p′) ← ESTIMATEGDIFFERENCE(p, ŷ, p′, ŷ′, nγ );
11: Update Vγ,�+1 ← Vγ,�+1 ∪ {p′} if �̂G(p, p′) > 0 and Vγ,�+1 ← Vγ,�+1 ∪ {p}

otherwise;
12: end for
13: � ← �+ 1;
14: end while
15: Obtain p̂γ as the only price inVγ,� and initialize Sγ+1 ← ∅;

� the elimination phase
16: for each p ∈ Sγ do
17: ŷ1 ← SEARCHORDERUPTO(p̂γ , nγ , C1), ŷ2 ← SEARCHORDERUPTO(p, nγ , C1);
18: �̂G(p̂γ , p) ← EstimateGDifference(p̂γ , p);
19: If �̂G(p̂γ , p) ≥ −�γ then update Sγ+1 ← Sγ+1 ∪ {p};
20: end for
21: end for
*** Recall that we use g(x) := (x + �log2(xȳ))�log2(x + �log2(xȳ)).

allowing frequent price changes, including customers’ negative responses (e.g., that
may cause confusion and affect the seller’s brand reputation) and the cost associated
with such changes (e.g., due to changing price labels in brick-and-mortar stores,
etc.). In this section, we introduce a constraint that only allows the retailer to change
prices no more than a certain number of times. Clearly, such a constraint limits the
firm’s ability to learn demand.

Demand in period t , t ∈ {1, 2, . . . , T }, is random and depends on the selling price
pt , and its distribution function belongs to some family parameterized by z ∈ Z ⊂
R

k, k ≥ 1, where Z is a compact and convex set. Let Dt(pt , z) be the demand in
period t with probability mass function f (·;pt , z), cumulative distribution function
F(·;pt , z), and support {dl, dl+1, . . . , dh} with dl being a nonnegative integer and
dh ≤ +∞, and let dt denote the realization of Dt(pt , z). The firm knows f (·;pt , z)
up to the parameter vector z, which has to be learned from sales data.

Chen and Chao (2019) consider the backlog system and (Chen et al., 2020a)
consider the lost-sales system with censored demand. This section will be mainly
devoted to discussing algorithms and results in Chen et al. (2020a), where the
firm can only observe sales data but not the actual demand when stockout occurs.
Therefore, ot = min{Dt(pt , z), yt }, and (pt , yt ) is adapted to the filtration generated
by {(ps, ys), os : s = 1, . . . , t − 1} under censored demand. Let pt ∈ P = [pl, ph]
and yt ∈ Y = {yl, yl + 1, . . . , yh}, where the bounds of support 0 ≤ pl ≤ ph <
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+∞ and 0 ≤ yl ≤ yh < +∞ are known. Assume for any pt ∈ P it holds that
E[Dt(pt , z)] > 0. The state transition is xt+1 = (yt −Dt(pt , z))+.

The expected total profit over the planning horizon, given an admissible policy
φ = ((p1, y1), (p2, y2), . . . , (pT , yT )), is

V φ(T , z) =
T∑

t=1

{
ptE[min{Dt(pt , z), yt }] (12.16)

− {
hE [yt −Dt(pt , z)]+ + bE [Dt(pt , z)− yt ]

+} }

and the prices need to satisfy the limited price change constraint for some given
integer m ≥ 1:

T−1∑

t=1
1(pt �= pt+1) ≤ m, (12.17)

where 1(A) is the indicator function taking value 1 if statement A is true and 0
otherwise.

The single-period objective function is

G(p, y, z)=pE[D(p, z)]−hE [y −D(p, z)]+ −(b + p)E [D(p, z)−y]+ , (12.18)

where D(p, z) is a generic random demand when the true parameter is z and the
price is p ∈ P. For the underlying system parameter vector z, let (p∗, y∗) be a
maximizer of G(p, y, z). If z is known, then the firm could set (p∗, y∗) every period
without changing the price, and this is the clairvoyant solution, for which the T -
period total profit is denoted as V ∗.

Demand models are categorized into two groups, (1) the well-separated case and
(2) the general case. Two probability mass functions are said to be identifiable if
they are not identically the same.

12.4.1 Well-Separated Demand

The family of distributions {f (·;p, z) : z ∈ Z} is called well-separated if for any
p ∈ P, the class of probability mass functions {f (·;p, z) : z ∈ Z} is identifiable,
i.e., f (·;p, z1) �= f (·;p, z2) for z1 �= z2 ∈ Z.

If a family of distributions is well-separated, then no matter what selling price
p is charged, the sales data will allow the firm to learn about the parameter z. This
shows that, in the well-separated case, pricing exploration can be a side benefit from
exploitation, thus no active pricing exploration is necessary.



12 Joint Pricing and Inventory Control with Demand Learning 325

Algorithm 8 m price changes for the well-separated case
1: Input p̂1, ŷ1.
2: Let Ii =

⌈
T i/(m+1)⌉, for i = 1, . . . , m, and Im+1 = T −∑m

i=1 Ii . Let t1 = 0, and ti =∑i−1
j=1 Ij for i = 2, . . . , m+ 2.

3: for stage i ≤ m+ 1 do
4: Set

ỹi =
{

ŷi , if ŷi > dl,

min{max{ŷi +�, yl}, yh}, if ŷi = dl .

5: for t = ti + 1, . . . , ti+1 do
6: pt = p̂i , yt = max{xt , ỹi}, xt+1 = max{yt − dt , 0}.
7: end for
8: Compute the MLE estimator for z by

ẑi = arg max
z∈Z

{ ∑

{t∈{ti+1,...,ti+1}:dt<yt }
log f (dt ; p̂i , z)

+
∑

{t∈{ti+1,...,ti+1}:dt≥yt }
log
(
1− F(yt − 1; p̂i , z)

)}
. (12.19)

9: Solve the data-driven optimization problem

(p̂i+1, ŷi+1) = arg max
(p, y) ∈ P×Y

G(p, y, ẑi ). (12.20)

10: end for

Chen et al. (2020a) consider two scenarios of limited-price constraint for well-
separated demand. The first scenario is that the number of price changes is restricted
to be no more than a given integer m ≥ 1 that is independent of the length of
planning horizon T , while for the second scenario, the number of allowed price
changes is at most β log T for the T -period problem for some constant β > 0.

Algorithm for m Price Changes Under Well-Separated Demand The main idea
of the algorithm is to estimate the known parameter z by maximum likelihood
estimation based on censored demand. The detailed algorithm is presented in
Algorithm 8.

As shown in Algorithm 8, exploration in the inventory space is needed. If ŷi

equals dl , then implementing ŷi will not yield any information about the demand.
Hence the algorithm imposes ỹi = ŷi + �, which ensures to reveal some demand
information with a positive probability. Then the algorithm constructs an MLE
estimator using censored data, min{dt , yt }, which are neither independent nor identi-
cally distributed. This is because, inventory level yt depends on carryover inventory
xt that is a function of earlier inventory level and demand, and earlier demand
depends on the pricing decisions. Assumption 1(i) in the paper guarantees that, with
a high probability (its complement has a probability decaying exponentially fast in
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Ii), the objective function in (12.19) is strictly concave, thus there exists a unique
global maximizer.

Regret Convergence for m Price Changes Under Well-Separated Demand
Chen et al. (2020a) provide both regret upper and lower bounds for well-separated

demand withm price changes. The regret upper bound isR(T ) ≤ C6 T
1

m+1 for some
constant C6 > 0. The lower bound is provided as following. There exist problem
instances such that the regret for any admissible learning algorithm that changes

price at most m times is lower bounded by R(T ) ≥ C7 T
1

m+1 for some constant
C7 > 0 and large enough T .

One fundamental challenge to prove this lower bound is that the times of price
changes are dynamically determined, i.e., they are increasing random stopping
times. An adversarial parameter class is constructed, among which a policy needs
to identify the true parameter. The parameter class is constructed in a hierarchical
manner such that when going further down the hierarchy the parameters are harder
to distinguish. A delicate information-theoretical argument is employed to prove the
lower bound. Here we only illustrate the high-level idea using a special case m = 2.

Chen et al. (2020a) construct a problem instance in which the inventory order-
up-to level for each period is fixed and high enough so that any realization of the
demand can be satisfied under any price. Therefore, the effect of lost sales and
censored data is eliminated and the original joint pricing and inventory control
problem is reduced to a dynamic pricing problem with fixed inventory control
strategies. Suppose the demand follows a Bernoulli distribution with a single
unknown parameter z ∈ [0, 1].

Let (p0, p1, p2) be the m+ 1 = 3 different prices of a policy π , (T0, T1, T2) be
the number of time periods each price is committed to, with T2 = T − T0− T1. The
paper constructs an adversarial parameter class consisting of 2m+1 = 8 parameters,
among which policy π needs to identify the true parameter. These parameters are
constructed in a hierarchical way. The 8 parameters are first partitioned into two 4-
parameter groups, with the parameters in each group being close to each other, and
the two groups are about 1/4 apart. Each 4-parameter group can then be divided into
two 2-parameter groups, with a distance of T −1/6 between them. Within each 2-
parameter group, the two parameters are T −1/3 apart. A policy needs to work down
the hierarchy levels to locate the true parameter, and the further it works down, the
harder to differentiate between groups/parameters.

The proof first shows the tradeoff in deciding (p0, T0) at the first hierarchy
level. Assume without loss of generality that z resides in the first branch of the
tree. Because policy π does not have any observations when deciding p0, there
is a constant probability that p0 is selected to favor the other branch. This high
risk yields that T0 cannot be longer than O(T 1/3), because otherwise the regret
accumulated during T0 would immediately imply an 
(T 1/3) regret.

If T0 is upper bounded byO(T 1/3), the tradeoff in deciding (p1, T1) is as follows.
With so few demand observations during T0, policy π will not be able to distinguish
groups on the second level. Therefore, assuming the true z resides in the first group,
it can (and will) be shown that p1 is selected to favor the wrong (second) group with
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a constant probability. Given this risk and that the parameters between the first and
second groups are distanced at T −1/6, T1 cannot be longer than O(T 2/3) to yield
an 
(T 1/3) regret. The same argument then carries over to the third level when
deciding p2. After summing up the regrets from all the three levels, it is shown that
the total regret of policy π cannot be better than 
(T 1/3).

In making real decisions it may happen that T is not clearly specified at the
beginning. The firm requires that the price change be not too often, but it usually
allows more price changes for longer planning horizon. Chen et al. (2020a) propose
a learning algorithm where the number of price changes is restricted to β log T for
some constant β > 0.

Algorithm for β log T Price Changes Under Well-Separated Demand The
algorithm runs very similarly to the one for m price changes, except that now the
number of periods in i is given by Ii =

⌈
I0v

i
⌉
, i = 1, 2 . . . , N , and there is a total

of N = O(log T ) iterations.

Regret Convergence for β log T Price Changes Under Well-Separated Demand
The regret convergence rate for the algorithm with less than β log T price changes
is upper bounded as R(T ) ≤ C8 log T , for a constant C8 > 0 and large enough T .
The lower bound is also provided. There exist problem instances such that the regret
for any learning algorithm satisfies R(T ) ≥ C9 log T for some constant C9 > 0 and
T ≥ 1.

12.4.2 General Demand

Now we consider the more general case that the parameters in probability mass
function f (·;p, z) is a k-dimensional vector, i.e., z = (z1, . . . , zk) ∈ Z ⊂ R

k

for some integer k ≥ 1. For a set of given prices p = (p1, . . . , pk) ∈ Pk , and
correspondingly realized demands d = (d1, . . . , dk) ∈ {dl, dl + 1, . . . , dh}k , define

Qp,z(d) =
k∏

j=1
f (dj ;pj , z).

The family of distributions {Qp,z(·) : z ∈ Z} is said to belong to the general case if
there exist k price points p̄ = (p̄1, . . . , p̄k) ∈ Pk such that the family of distributions
{Qp̄,z(·) : z ∈ Z} is identifiable, i.e., Qp̄,z1(·) �= Qp̄,z2(·) for any z1 �= z2 inZ.

Suppose we are allowed to make up to m price changes during the planning
horizon. We consider the case of m ≥ k in this section, as in the case of m < k

no algorithm will be able to identify the k unknown parameters and, therefore, the
regret would be linear in T .

Algorithm for General Demand The algorithm follows an exploration-
exploitation framework, and the unknown parameter vector z is estimated by MLE.
Detailed algorithm is presented in Algorithm 9.
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Algorithm 9 m ≥ k price changes for the general case
1: Input ȳ ∈ Y for the initial inventory order-up-to level, and constant s > 0.
2: Let I = ⌈T 1/2/k

⌉
.

3: for i = 1, · · · , k do
4: for t = (i − 1)I + 1, . . . , iI do
5: Set pt = p̄i .

6: end for
7: For t = (i − 1)I + 1, set yt = max{xt , ȳ}, thus xt+1 = max{yt − dt , 0};
8: for t = (i − 1)I + 2, . . . , iI do
9: Set

yt =
{

yt−1, if dt−1 < yt−1;
min

{
(1+ s)yt−1, �log T }, otherwise.

xt+1 = max{yt − dt , 0}.

10: end for
11: end for
12: Estimate z by the MLE estimator

ẑ = arg max
z∈Z

{ ∑

{t∈{1,...,kI }:yt>dt }
log f (dt ;pt , z)

+
∑

{t∈{1,...,kI }:yt≤dt }
log
(
1− F(yt − 1;pt , z)

)}
. (12.21)

13: Solve the data-driven optimization problem (p̂, ŷ) = max(p, y) ∈ P×Y G(p, y, ẑ).
14: for t = kI + 1, . . . , T do
15: pt = p̂, yt = max{xt , ŷ}, and xt+1 = max{0, yt − dt }.
16: end for

As shown in Algorithm 9, during the exploration phase, Algorithm-II experi-
ments with k prices (thus k − 1 price changes). Because of censored data, the
true demand realizations exceeding inventory level cannot be observed. To make
sure to receive sufficient demand data, every time a stockout occurs, the algorithm
increases the order-up-to level by a certainty percentage. Because dh may be infinity,
this does not mean that the data censoring issue will be totally resolved, but with
high probability. In the MLE step, the sales data min{dt , yt } are correlated and
non-identically distributed, because inventory levels yt are dependent through the
“raising inventory” decisions as well as the carryover inventories. Propositions in
Chen et al. (2020a) state that, despite the dependent data, the MLE possesses the
desired property. The empirical optimal solution is implemented for the rest of the
planning horizon, resulting in k price changes.

Regret Convergence for General Demand Chen et al. (2020a) provide the regret
upper bounded for the general demand case as follows: if the demand is unbounded
dh = +∞, then the regret for general demands is upper bounded by R(T ) ≤
C10T

1/2 log T ; if the demand is bounded dh < +∞, then the regret for general
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demands is upper bounded by R(T ) ≤ C10T
1/2, for some constant C10 > 0. The

theoretical lower bound for this problem is 
(T 1/2), which is established in Broder
and Rusmevichientong (2012) for a dynamic pricing problem with infinite initial
inventory.

12.5 Backlog System with Fixed Ordering Cost

In this section, we consider the presence of fixed ordering cost, which is a fixed cost
that is incurred by the firm whenever a positive amount of inventory is ordered.

Demand is modeled as D = D0(p) + β, where D0 : [0, 1] → [d0, d0] is the
(expected) demand function and β is the random noise with 0 mean. Unsatisfied
demands are backlogged. Chen et al. (2021b) consider both linear models and
generalized linear models for D0(p) with unknown parameters θ0. The distribution
for β is unknown in the nonparametric sense. Let k > 0 be the fixed ordering
cost, c > 0 be the variable ordering cost of ordering one unit of inventory, and
h : R → R

+ be the holding cost (when the remaining inventory level is positive)
or the backlogging cost (when the remaining inventory level is negative). The
instantaneous reward for period t is

rt = −k × 1{yt > xt } − c(yt − xt )+ pt (D0(pt )+ βt )− h(yt −D0(pt )− βt ),

and the firm would like to maximize the T -period total reward.
With known demand curve D0 and noise distribution μ0, the work of Chen and

Simchi-Levi (2004a) proves that, under mild conditions, for both the average and
discounted profit criterion there exists an (s, S,p) policy that is optimal in the long
run. Under an (s, S,p)-policy, the retailer will only order new inventories when
xt < s, and after the ordering of new inventories maintain yt = S. The function
p prescribes the pricing decision that depends on the initial inventory level of the
same period.

The performance of a particular (s, S,p) policy can be evaluated as follows.
Define H0(x, p;μ) as the expected immediate reward of pricing decision p at
inventory level x, without ordering new inventories. It is easy to verify that

H0(x, p;μ) = −Eμ[h(x −D0(p)− β)] + pD0(p)− cD0(p). (12.22)

For a certain (s, S,p) policy, define quantities I (s, x,p;μ) and M(s, x,p;μ) as
follows:

I (s, x,p;μ) =
{

H0(x,p(x);μ)+ Eμ[I (s, x −D0(p(x))− β,p;μ)], x ≥ s,

0, x < s;
(12.23)
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M(s, x,p;μ) =
{
1+ Eμ[M(s, x −D0(p(x))− β,p;μ)], x ≥ s,

0, x < s; (12.24)

Define r(s, S,p;μ) as

r(s, S,p;μ) = −k + I (s, S,p;μ)

M(s, S,p;μ)
. (12.25)

When I (s, S,p;μ0) and M(s, S,p;μ0) are bounded, Lemma 2 from Chen and
Simchi-Levi (2004a) shows that limT→∞ RT (π) = r(s, S,p;μ0).

Learning Algorithm The learning algorithm proposed in Chen et al. (2021b)
is based on an (s, S,p)-policy with evolving inventory levels (s, S) and pricing
strategies p. Because unsatisfied demands are backlogged, the decision maker can
observe true demand realizations. A regularized least-squares estimation is used to
estimate θ0, and a sample average approximation approach is used to construct an
empirical distribution for β.

Next we present the detailed learning algorithm. For linear models,
D(η(p)|θ0) = η(p)�θ0, and the unknown parameter θ0 is estimated by the
(regularized) least-squares estimation, i.e., let

θ̂Linear := argmin
θ∈Rd

{
1

2

∑

t∈H

∣∣dt − 〈η(pt ), θ〉
∣∣2 + 1

2
‖θ‖22

}
. (12.26)

For generalized linear models, D(η(p)|θ0) = υ(η(p)�θ0) for υ(·) as a given link
function. Let the unknown parameter θ0 be estimated by

θ̂GLM := argmin
θ∈�

∥∥∥∥∥
∑

t∈H
(υ(η(pt )

�θ)− dt )η(pt )

∥∥∥∥∥
�−1

. (12.27)

Let b ∈ {1, 2, · · · } be a particular epoch andHb−1 = B1∪· · ·∪Bb−1 be the union
of all epochs prior to b. For time period t ∈ Hb−1, let pt be the advertised price and
dt = D0(pt ) + βt be the realized demand. Let the estimate θ̂b of the unknown
regression parameter θ0 be computed by (12.26) if demand is linear or (12.27) if
demand is generalized linear given samples from Hb−1. Define �b := Id×d +∑

t∈Hb−1 η(pt )η(pt )
�. For every p ∈ [0, 1], define �b(p) as

�b(p) := γ

√
η(p)��−1b η(p),

where γ > 0 is the oracle-specific parameter. We then define an upper estimate of
D0, D̄b, as

D̄b(p) := min
{
d0, d0 + L2(1− p),D(η(p)|θ̂b)+�b(p)

}
, (12.28)
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where d0, d0 are maximum and minimum demands and L is the Lipschitz constant.
Note that the Lipschitz continuity of η(p) and �b  I imply the continuity of �b(·)
in p, which further implies the continuity of D̄b(·) in p.

One key challenge in the learning-while-doing setting is the fact that all of the
important quantities H0, I,M and r involve expectational evaluated under the noise
distribution μ0, an object which we do not know a priori. In this section, we give
details on how empirical distributions are used to approximate μ0.

At the beginning of epoch b, let E<b ⊆ B1 ∪ · · ·Bb−1 be a non-empty subset of
historical selling periods used to approximate the noise distribution μ0. We define
the empirical noise distribution μ̂b as

μ̂b := 1

|E<b|
∑

t∈E<b

I[dt −D(η(pt )|θ̂b(t))], (12.29)

where I[β ′] is the point mass at β ′ and b(t) denotes the epoch to which selling period
t belongs. Note that samples in {dt−D(η(pt )|θ̂b(t))}t are dependent because both pt

and θ̂b(t) are dependent across periods. Due to technical reasons, E<b is not chosen
to include all selling periods prior to epoch b. Instead, we construct E<b such that
all t ∈ E<b have small estimation errors of D0 on the advertised prices.

To further upper bound the deviation of H0(x, p; μ̂b) from H0(x, p;μ0), we
need to demonstrate that the empirical distribution μ̂b is close to the true noise
distribution μ0. Because such deviations must include the estimation errors of D0
by D̄b(t) themselves, it is crucial to select time periods t ∈ B1 ∪ · · ·Bb−1 during
which the error �b(t)(pt ) is small. To this end, we define E<b as

E<b :=
{
t ∈ B1 ∪ · · · ∪ Bb−1 : �b(t)(pt ) ≤ κ/

√
b
}

, (12.30)

where κ > 0 is a scaling algorithm parameter, set as κ = 2d−3/2dS
3/2

γ
√
d ln(T L2).

Note that κ will only depend logarithmically on T . As is shown in the proof
of the paper, the selection of κ leads to |E<b| ≥ b/2, meaning that the set is
non-empty, and, therefore, the definition in Eq. (12.30) is proper. The idea of the
construction of E<b in Eq. (12.30) is as follows. Note that dt − D(η(pt )|θ̂b(t)) =
βt + (D(η(pt )|θ0) − D(η(pt )|θ̂b(t))). While βt is the desired sample from the
noise distribution, D(η(pt )|θ0) − D(η(pt )|θ̂b(t)) is incurred due to the estimation
error of θ̂b(t), which may be very large. Also note that the absolute value of this
estimation error is upper bounded by �b(t)(pt ). Constructing E<b as in Eq. (12.30)
allows us to only exploit selling periods during which the estimation errors are
sufficiently small. This ensures that the obtained (approximate) noise samples
{dt −D(η(pt )|θ̂b(t))}t∈E<b

are of high quality.
With the upper-confidence bounds D̄b and the approximate noise distribution

μ̂b constructed at the beginning of epoch b, (Chen et al., 2021b) use the dynamic
programming approach detailed in the work of Chen and Simchi-Levi (2004a)
to obtain an approximately optimal strategy (sb, Sb,pb) to be carried out during
epoch b.
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First define an upper bound estimate H̄b(x, p; μ̂b) on H0(x, p; μ̂b) as

H̄b(x, p; μ̂b) := −Eμ̂b
[h(x− D̄b(p)− β)] +pD̄b(p)− cD̄b(p)+ (c+L′)�b(p),

(12.31)

where L′ is a constant defined in Assumption (A3) of the paper.
For any s ∈ [s, s], S ∈ [S, S], r ∈ R, demand function D : [0, 1] → [d,∞),

noise distribution μ and their associated H : R× [0, 1] → R, define

φ(s,S)(x;D, r, μ)

:=
{
supp∈[0,1]H(x, p;μ)− r + Eμ[φ(s,S)(x −D(p)− β;D, r, μ)], x ≥ s;
0, x < s.

(12.32)

With D = D̄b and H = H̄b(·, ·; μ̂b), the functions φ(s,S)(x; D̄b, r, μ̂b) can be
computed for every s ∈ [s, s], S ∈ [S, S] and r ∈ R, since both H(·, ·; μ̂b) and the
expectation with respect to μ̂b can be evaluated. For every (s, S), define

r̄b(s, S) := inf{r ∈ R : φ(s,S)(S; D̄b, r, μ̂b) = k} (12.33)

and let the pricing strategy p (associated with inventory levels s, S) be the optimal
solution to the φ(s,S)(·; D̄b, r̄b(s, S), μ̂b) dynamic programming; that is, p(x) is
defined such that φ(s,S)(x; D̄b, r̄b(s, S), μ̂b) = H̄b(x,p(x); μ̂b) − r̄b(s, S) +
Eμ̂b

[φ(s,S)(x − D̄b(p(x))− β; D̄b, r̄b(s, S), μ̂b)] for all x.
Comparing equations in (12.32)–(12.33) with those in (12.22)–(12.25), it is

easy to observe connections between them. r(s, S,p;μ) in (12.25) represents the
expected per-period profit, which includes both the immediate reward H and the
fixed ordering cost k. On the other hand, φ(s,S)(S;D, r, μ) in (12.32) accumulates
the immediate reward H over time and subtracts a constant r every period. If
the constant r in (12.32) equals the expected per-period profit involving both H

and k, intuitively one would expect φ(s,S)(S;D, r, μ) to be equal to k. Lemma
3 of Chen and Simchi-Levi (2004b) confirms this connection, which shows that
φ(s,S)(S;D, r∗(s, S), μ) = k, where r∗(s, S) = supp r(s, S,p;μ). Therefore,
r̄b(s, S) can be considered as an empirical approximation of r∗(s, S).

We finally remark that in practice, one may discretize the choices of s, S, x, and
p in the dynamic programming scheme described above with granularity T −1. This
leads to a computationally efficient algorithm. On the other hand, by the Lipschitz
property of Hb(·, ·; μ̂b), it can be shown that the error caused by discretization is at
most O(T −1), which does not affect the order of the overall regret.

The proposed algorithm is based on an (s, S,p)-policy with evolving inventory
levels (s, S) and pricing strategies p. As mentioned earlier, in the learning algorithm
the T time periods are partitioned into epochs, labeled as B1,B2, · · · . Re-stocking
only occurs at the first time period of each epoch Bb, b ∈ {1, 2, · · · }. Each epoch Bb

is also associated with inventory levels (sb, Sb) and pricing strategy pb, such that for
the first time period tb ∈ Bb, the re-stocked inventory level is ytb = Sb; the epoch
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Algorithm 10 The main algorithm: dynamic inventory control and pricing with
unknown demand
1: Input: problem parameters k, c, h, time horizon T , the regression-oracle-specific parameter

γ .
2: Output: inventory and pricing decisions yt , pt for each t ∈ [T ].
3: for epoch b = 1, 2, 3, · · · do
4: Compute the model estimate θ̂b using the regression oracle O and samples from Hb−1;
5: Construct upper-confidence bounds D̄b as in Eqs. (12.28, 12.31);
6: Construct μ̂b = 1

|E<b |
∑

t∈E<b
I[dt − D(η(pt )|θ̂b(t))], where E<b is constructed in

Eq. (12.30);
7: For every s ∈ [s, s], S ∈ [S, S] compute φ(s,S)(S; D̄b, r, μ̂b) as in Eq. (12.32) and find

r̄b(s, S) = inf{r ∈ R : φ(s,S)(S; D̄b, r, μ̂b) = k};
8: Select (sb, Sb) = argmaxs,S r̄b(s, S) and let pb be the optimal pricing decisions associated

with dynamic programming φ(sb,Sb)(·; D̄b, r̄b(sb, Sb), μ̂b);
9: For the first time period tb in epoch Bb set ytb = Sb and ptb = pb(Sb); for the rest of epoch

Bb set yt = xt and pt = pb(xt ); epoch Bb terminates once xt < sb;
10: end for

Bb terminates whenever xt < sb, and for all t ∈ Bb\{tb}, yt = xt and pt = pb(xt ).
Algorithm 10 gives a pseudo-code description of the proposed algorithm.

Updates of the (s, S,p) policies being implemented occur at the beginning of
each epoch, as detailed from Step 4 to Step 8 in Algorithm 10. More specifically,
at the beginning of epoch b when policy update is due, the algorithm first collects
all realized demand information from previous epochs to construct model estimate
θ̂b (of the demand-rate curve) and noise distribution μ̂b. With estimates θ̂b and μ̂b,
dynamic programming (reflected in φ(sb,Sb)(·; D̄b, r̄b, μ̂b)) is computed to obtain an
approximately optimal pricing function pb, as well as the inventory levels sb, Sb.

Regret Convergence Regret of the algorithm described above is upper bounded
by Õ(T 1/2) with probability 1 − O(T −1), where π∗ is the optimal policy that
maximizes r(s, S,p;μ0). In the Õ(·) notation we omit polynomial dependency on
log T and other problem parameters. With k = c = 0 and h(·) ≡ 0, the problem
becomes a pure pricing problem with unknown linear demand functions. As long as
τ > 1, the work of Broder and Rusmevichientong (2012) proves an 
(T 1/2) lower
bound for any admissible pricing policies. Therefore, the Õ(T 1/2) regret established
here is optimal.

In Algorithm 10, a dynamic programming needs to be carried out after each
epoch b to obtain a new policy (sb, Sb,pb). Because each epoch lasts at most S/d =
O(1) selling periods, the algorithm requires 
(T ) DP calculations which can be
computationally expensive. Chen et al. (2021b) then propose an improved algorithm
that only needs O(τ log T ) DP calculations to achieve virtually the same regret,
which is much more computationally efficient.

Algorithm with Infrequent DP Updates The detailed description is presented in
Algorithm 11.

Note that in Algorithm 11, a new (s, S,p) policy is computed only if 2ι,
ι ∈ {1, 2, · · · , } epochs are met, or the determinant of the sample covariance
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Algorithm 11 Dynamic inventory control and pricing with infrequent DP solutions
1: Input: problem parameters k, c, h, time horizon T , the regression-oracle-specific parameter

γ .
2: Output: inventory and pricing decisions yt , pt for each t ∈ [T ].
3: Initialize: θ̂0 = 0d, �1 = Id×d and ζ1 = 1;
4: for epoch b = 1, 2, 3, · · · do
5: if det(�b) ≥ 2ζb or b = 2ι for some ι ∈ N then
6: Update ζb+1 = det(�b) and compute the model estimate θ̂b using the regression oracle

O and samples from Hb−1;
7: Construct upper-confidence bounds D̄b as in Eqs. (12.28,12.31);
8: Construct μ̂b = 1

|E<b |
∑

t∈E<b
I[dt − D(η(pt )|θ̂b(t))], where E<b is constructed in

Eq. (12.30);
9: For every s, S ∈ [s, S] compute φ(s,S)(S; D̄b, r, μ̂b) as in Eq. (12.32) and find

r̄b(s, S) = inf{r ∈ R : φ(s,S)(S; D̄b, r, μ̂b) = k};
10: Select (sb, Sb) = argmaxs,S r̄b(s, S) and let pb be the optimal pricing decisions

associated with dynamic programming φ(sb,Sb)(·; D̄b, r̄b(sb, Sb), μ̂b);
11: else
12: Set θ̂b = θ̂b−1, ζb+1 = ζb, Db = Db−1, μ̂b = μ̂b−1,sb = sb−1, Sb = Sb−1 and

pb = pb−1;
13: end if
14: If the current inventory level exceeds Sb, set pt = 0 until inventory level falls below Sb; ∗

15: For the first time period tb in epoch Bb set ytb = Sb and ptb = pb(Sb); for the rest of
epoch Bb set yt = xt and pt = pb(xt ); epoch Bb terminates once xt < sb;

16: Update �b+1 = �b +∑t∈Bb
η(pt )η(pt )

�;
17: end for
∗ Note that this step may only happen when the policy changes. It does not belong to any epoch;
and since it happens very infrequently, its incurred regret can be bounded separately.

�b doubles. This greatly reduces the number of DP calculations from O(T ) to
O(τ log T ).

Regret Convergence for Infrequent DP Updates For the algorithm with infre-
quent DP updates, the regret is upper bounded by Õ(T 1/2) with probability
1−O(T −1).

12.6 Other Models

Burnetas and Smith (2000) is one of the earliest papers, if not the first one, that
studies joint pricing and inventory control with unknown demand distribution. They
assume the lost-sales cost is zero and inventory perishes at the end of each period.
The pricing mechanism is modeled as a multiarmed bandit problem, while the order
quantity decision is made based on a stochastic approximation procedure. Burnetas
and Smith (2000) proves policy convergence of their proposed algorithm. Katehakis
et al. (2020) consider the joint optimization problem with discrete backlogged
demand in different settings with or without a leading price. Keskin et al. (2021)
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study the joint pricing and inventory control problem with learning in a changing
environment under a parametric demand-rate function and assume lost sales are
observable. They provide learning algorithms whose convergence rates match the
theoretical lower bound.
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