
Springer Series in Supply Chain Management

The Elements of
Joint Learning
and Optimization
in Operations
Management

Xi Chen
Stefanus Jasin
Cong Shi Editors

Springer Series in Supply Chain Management

Volume 18

Series Editor

Christopher S. Tang, University of California, Los Angeles, CA, USA

Supply Chain Management (SCM), long an integral part of Operations Manage-
ment, focuses on all elements of creating a product or service, and delivering that
product or service, at the optimal cost and within an optimal timeframe. It spans
the movement and storage of raw materials, work-in-process inventory, and finished
goods from point of origin to point of consumption. To facilitate physical flows in
a time-efficient and cost-effective manner, the scope of SCM includes technology-
enabled information flows and financial flows.

The Springer Series in Supply Chain Management, under the guidance of
founding Series Editor Christopher S. Tang, covers research of either theoretical
or empirical nature, in both authored and edited volumes from leading scholars and
practitioners in the field – with a specific focus on topics within the scope of SCM.

This series has been accepted by Scopus.
Springer and the Series Editor welcome book ideas from authors. Potential

authors who wish to submit a book proposal should contact Ms. Jialin Yan,
Associate Editor, Springer (Germany), e-mail: jialin.yan@springernature.com

Xi Chen • Stefanus Jasin • Cong Shi
Editors

The Elements of Joint
Learning and Optimization
in Operations Management

Editors
Xi Chen
New York University
New York, NY, USA

Stefanus Jasin
University of Michigan–Ann Arbor
Ann Arbor, MI, USA

Cong Shi
University of Michigan–Ann Arbor
Ann Arbor, MI, USA

ISSN 2365-6395 ISSN 2365-6409 (electronic)
Springer Series in Supply Chain Management
ISBN 978-3-031-01925-8 ISBN 978-3-031-01926-5 (eBook)
https://doi.org/10.1007/978-3-031-01926-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

 -2016 39373 a -2016 39373
a

https://doi.org/10.1007/978-3-031-01926-5

To our parents:
Jianming Chen and Xiaohong Yu
Andi Wirawan Jasin and Sandra Widjaja
Xiping Shi and Qiong Yao

and to our families:
Yingze Wang and Andrew Chen
Yan Huang
Miao Ni and Janie Shi and Anna Shi

Preface

The last decade has seen an explosion of research at the intersection of operations
research and machine learning. While the classical operations research has focused
largely on optimizing the system under the assumption of known dynamics and
known parameters, in reality, the “known” are typically unknown and need to
be estimated from the continuously generated data. The later gives rise to the
problem of joint learning and optimization, which is one of the core research
topics in the machine learning community. However, while the machine learning
community has largely focused on solving problems that are directly relevant for
computer science applications, the operations research community has its own long
list of problems that are not typically considered in the context of joint learning
and optimization. This presents a wonderful opportunity for combining operations
research and machine learning techniques to solve some of the most fundamental
analytic problems.

This book consists of 15 chapters written by some of the world’s leading
experts on the subject, covering a wide range of topics such as price optimization,
assortment optimization, inventory optimization, and healthcare operations. As
noted above, the field has grown very quickly within the last decade, and it is not our
intention to provide a comprehensive overview of the field. Rather, we have a more
modest aim to introduce interested readers to some fundamental results that have
been developed in the field within the last decade. This book is a suitable reading for
graduate students (either PhD or advanced master’s) in operations research and/or
machine learning. It is also suitable for researchers in other fields who are interested
in the topic of joint learning and optimization.

For a better organization, we cluster the 15 chapters into five different parts:

Part I. Generic Tools The first part of the book consists of Chaps. 1–3 and covers
standard tools and concepts that are commonly used in the learning literature. Many
of the topics discussed in this part are also covered in more details in other more
specialized books. Our objective here is to quickly introduce readers to some of
the key tools and concepts. Chapter 1 discusses fundamental algorithms for multi-
armed bandit; Chap. 2 discusses fundamental algorithms for reinforcement learning;

vii

viii Preface

and Chap. 3 discusses optimal learning from the perspective of statistical design of
experiments.

Part II. Price Optimization The second part of the book consists of Chaps. 4–7
and covers a variety of topics on joint learning and price optimization. Chapter 4
discusses state-of-the-art parametric and non-parametric learning algorithms for
single-product and multiple-product settings; Chap. 5 discusses learning algorithms
in the presence of inventory constraints; Chap. 6 provides literature review on joint
learning and pricing in non-stationary environments; and Chap. 7 discusses learning
algorithms for high dimensional setting.

Part III. Assortment Optimization The third part of the book consists of
Chaps. 8–10 and covers a variety of topics on joint learning and assortment
optimization. Chapter 8 discusses recent advances in non-parametric estimation of
choice models; Chap. 9 discusses learning algorithms for assortment optimization
under the popular multinomial logit (MNL) choice model; and Chap. 10 discusses
learning algorithms for assortment optimization under non-MNL choice model.

Part IV. Inventory Optimization The fourth part of the book consists of
Chaps. 11–13 and covers a variety of topics on joint learning and inventory
optimization. Chapter 11 discusses state-of-the-art algorithms on inventory
optimization with censored demand; Chap. 12 discusses learning algorithms for the
joint inventory and price optimization problem where both the price and inventory
decisions need to be simultaneously optimized; and Chap. 13 discusses optimization
in the “small data, large scale” regime.

Part V. Healthcare Operations The fifth part of the book consists of Chaps. –
15 and covers topics related to healthcare operations. Chapter discusses bandit
algorithms/procedures for clinical trials and Chap. 15 provides an in-depth overview
of dynamic treatment regime.

This book would not have been possible without the excellent contribution of all
authors and the help of the team at Springer, for which we are forever grateful.

New York, NY, USA Xi Chen
Ann Arbor, MI, USA Stefanus Jasin
Ann Arbor, MI, USA Cong Shi

Contents

Part I Generic Tools

1 The Stochastic Multi-Armed Bandit Problem . 3
Shipra Agrawal

2 Reinforcement Learning . 15
Zheng Wen

3 Optimal Learning and Optimal Design . 49
Ilya O. Ryzhov

Part II Price Optimization

4 Dynamic Pricing with Demand Learning: Emerging Topics
and State of the Art . 79
Arnoud V. den Boer and Nuri Bora Keskin

5 Learning and Pricing with Inventory Constraints . 103
Qi (George) Chen, He Wang, and Zizhuo Wang

6 Dynamic Pricing and Demand Learning in Nonstationary
Environments . 137
Arnoud V. den Boer and Nuri Bora Keskin

7 Pricing with High-Dimensional Data . 151
Gah-Yi Ban

Part III Assortment Optimization

8 Nonparametric Estimation of Choice Models . 177
Srikanth Jagabathula and Ashwin Venkataraman

9 The MNL-Bandit Problem . 211
Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi

ix

x Contents

10 Dynamic Assortment Optimization: Beyond MNL Model 241
Yining Wang and Yuan Zhou

Part IV Inventory Optimization

11 Inventory Control with Censored Demand . 273
Xiangyu Gao and Huanan Zhang

12 Joint Pricing and Inventory Control with Demand Learning 305
Boxiao Chen

13 Optimization in the Small-Data, Large-Scale Regime 337
Vishal Gupta

Part V Healthcare Operations

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 365
Sofia S. Villar and Peter Jacko

15 Dynamic Treatment Regimes for Optimizing Healthcare 391
Nina Deliu and Bibhas Chakraborty

Editors and Contributors

About the Editors

Xi Chen is a professor in the Department of Technology, Operations, and Statistics
at Stern School of Business, New York University. He is also Professor of Computer
Science at the Center for Data Science at New York University. His research and
teaching have been recognized by numerous awards, including The World’s Best
40 under 40 MBA Professors by Poets & Quants, NSF CAREER Award, Forbes 30
Under 30, the Inaugural International Chinese Statistical Association Outstanding
Young Researcher Award, and Faculty Research Awards, and by a number of leading
technology and financial giants, such as Google, Facebook, Adobe, JPMorgan, and
Bloomberg. In addition, he is an elected member of the International Statistical
Institute (ISI) and an associate editor of Management Science, Operations Research,
and Annals of Statistics.

Stefanus Jasin is a professor in the Department of Technology and Operations at the
Ross School of Business, University of Michigan, Ann Arbor. His research focuses
on algorithmic and/or prescriptive business analytics and has been recognized
by numerous awards, including INFORMS Revenue Management and Pricing
Section Prize Award, and INFORMS eBusiness Section Best Paper Award. He is a
department editor of Production and Operations Management. In addition, he is also
an associate editor of Management Science, Operations Research, Manufacturing
and Service Operations Management, Production and Operations Management, and
Naval Research Logistics.

Cong Shi is a professor in the Department of Industrial and Operations Engineering
at the University of Michigan at Ann Arbor. His research and teaching have been
recognized by numerous awards, including INFORMS George Nicholson Paper
Competition, INFORMS JFIG Paper Competition, Amazon Research Award, UM

xi

xii Editors and Contributors

IOE Professor of the Year, and UM CoE Vulcans Education Excellence Award.
He is an associate editor of Management Science, Production and Operations
Management, IISE Transactions, and Operations Research Letters.

Contributors

Shipra Agrawal Department of Industrial Engineering and Operations Research,
Columbia University, New York, NY, USA

Vashist Avadhanula Facebook, Menlo Park, CA, USA

Gah-Yi Ban Department of Decision, Operations & Information Technologies,
Robert H. Smith Business School, University of Maryland, College Park, MD, USA

Bibhas Chakraborty Center for Quantitative Medicine, Duke-NUS Medical
School, National University of Singapore, Singapore, Singapore

Boxiao Chen College of Business Administration, University of Illinois Chicago,
Chicago, IL, USA

Qi (George) Chen Department of Management Science and Operations, London
Business School, London, UK

Nina Deliu MRC Biostatistics Unit, School of Clinical Medicine, University of
Cambridge, Cambridge, UK

Arnoud V. den Boer Department of Mathematics, University of Amsterdam,
Amsterdam, GE, Netherlands

Xiangyu Gao Department of Decision Sciences and Managerial Economics, The
Chinese University of Hong Kong, Hong Kong, China

Vineet Goyal Department of Industrial Engineering and Operations Research,
Columbia University, New York, NY, USA

Vishal Gupta Department of Data Science and Operations, Marshall School of
Business, University of Souther California, Los Angeles, CA, USA

Peter Jacko Department of Management Science, Lancaster University, Lan-
caster, UK

Berry Consultants, Abingdon, UK

Srikanth Jagabathula Department of Information, Operations & Management
Sciences, Leonard N. Stern School of Business, New York University, New York,
NY, USA

Nuri Bora Keskin Department of Operations Management, Fuqua School of
Business, Duke University, Durham, NC, USA

Editors and Contributors xiii

Ilya O. Ryzhov Department of Decision, Operations, and Information Technolo-
gies, Robert H. Smith School of Business, University of Maryland, College Park,
MD, USA

Ashwin Venkataraman Department of Operations Management, Naveen Jindal
School of Management, University of Texas at Dallas, Richardson, TX, USA

Sofia S. Villar MRC Biostatistics Unit, School of Clinical Medicine, University of
Cambridge, Cambridge, UK

He Wang H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA, USA

YiningWang Naveen Jindal School of Management, University of Texas at Dallas,
Richardson, TX, USA

Zizhuo Wang School of Data Science, The Chinese University of Hong Kong,
Shenzhen, China

Zheng Wen Google DeepMind, Mountain View, CA, USA

Assaf Zeevi Department of Decision, Risk, and Operations, Columbia Business
School, Columbia University, New York, NY, USA

Huanan Zhang Department of Strategy, Entrepreneurship, and Operations, Leeds
School of Business, University of Colorado Boulder, Boulder, CO, USA

Yuan Zhou Mathematical Sciences Center, Tsinghua University, Beijing, China

Part I
Generic Tools

Chapter 1
The Stochastic Multi-Armed Bandit
Problem

Shipra Agrawal

1.1 Introduction

Consider a decision maker picking one out of N available options repeatedly over
sequential rounds. The reward of each option is uncertain, and the (stochastic)
reward model is a priori unknown. Given the sequential nature of this problem, the
decision maker could benefit from using the observed rewards from the previous
rounds to learn the reward models and use those model predictions to improve
the decisions over time. However, in doing so, the decision maker faces a tradeoff
between learning and optimization: that is, whether to pick one of the less-explored
options in order to improve their reward predictions which could benefit future
decisions or exploit the option that is currently predicted to have the maximum
reward. This tradeoff, referred to as the exploration-exploitation tradeoff, lies at the
heart of the Multi-Armed Bandit (MAB) problem (e.g., Agrawal, 2019).

The basic formulation of the stochastic MAB problem considers the setting
where in every round the decision maker must pick a single option out of N discrete
options, referred to as the N arms. The rewards for each arm are independent
across time and are generated from an (a priori unknown) stationary distribution.
Importantly, observing the reward from one arm reveals no information about the
reward distribution of other arm(s). The goal is to maximize total reward over T
sequential rounds. More general versions of the stochastic MAB problem relax
several of these restrictions and allow for applications that are beyond the purview
of the classic N-armed bandit setting. This includes continuous space of arms with
parametric reward models (linear bandits), non-stationary and context-dependent

S. Agrawal (�)
Department of Industrial Engineering and Operations Research, Columbia University, New York,
NY, USA
e-mail: sa3305@columbia.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_1&domain=pdf

 885 55738 a 885 55738 a

mailto:sa3305@columbia.edu

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_1

4 S. Agrawal

reward models (contextual bandits), and choice over a combinatorial set of arms in
each round (combinatorial bandits).

However, even the seemingly restrictive setting of the N-armed bandit problem
has played an important role in developing the algorithmic techniques for the more
general versions. The basic N-armed setting in fact captures the fundamental chal-
lenge of handling exploration-exploitation tradeoff, and the algorithmic techniques
developed for this setting have formed the basis for many efficient algorithms for
the more advanced settings. In this chapter, we, therefore, first discuss the two
main algorithmic techniques developed for the N -armed bandit problem and then
briefly survey the extensions to the more complex settings of contextual bandits and
combinatorial bandits.

Notation Throughout this chapter, we useO(·) and Õ(·) notation for brevity when
discussing regret bounds. The big-Oh notation O(·) hides only the absolute con-
stants, whereas the tilde-Oh notation Õ(·) hides absolute constants and logarithmic
factors.

1.2 The N -Armed Bandit Problem

The stochastic N -armed bandit problem proceeds in discrete sequential rounds. In
each round t = 1, 2, 3, . . . , one of N arms (or actions) must be chosen to be pulled
(or played). Let It ∈ {1, . . . , N} denote the arm pulled at the t th time step. On
pulling arm It = i at time t , a random real-valued reward rt ∈ R is observed,
generated according to a fixed but unknown distribution associated with arm i,
and mean E[rt |It = i] = μi . The random rewards obtained from playing an arm
repeatedly are independent and identically distributed over time and independent
of the plays of the other arms. The reward is observed immediately after playing
an arm. An algorithm for the stochastic MAB problem must decide which arm to
play at each discrete time step (or round) t , based on the outcomes of the previous
t − 1 plays. The goal is to maximize the expected total reward at time T , i.e.,
E[∑T

t=1 μIt], where It is the arm played in step t . Here, the expectation is over the
random choices of It made by the algorithm, where the randomization can result
from any randomization in the algorithm as well as the randomness in the outcomes
of arm pulls, which may affect the algorithm’s sequential decisions.

To measure the performance of an algorithm for the MAB problem, it is common
to work with the measure of expected total regret, i.e., the amount lost because of
not playing the optimal arm in each step.

To formally define regret, let us introduce some notation. Let μ∗ := maxi μi , and
�i := μ∗ − μi . Let ni,t denote the total number of times arm i is played in rounds
1 to t ; thus ni,t is a random variable. Then the expected total regret in T rounds is
defined as

1 The Stochastic Multi-Armed Bandit Problem 5

R(T) := E

[
T∑

t=1

(μ∗ − μIt)
]

= E

[
N∑

i=1

ni,T �i

]

,

where expectation is taken with respect to both randomness in outcomes, which may
affect the sequential decisions made by the algorithm, and any randomization in the
algorithm.

Two kinds of regret bounds appear in the literature for the stochastic MAB
problem:

1. logarithmic problem-dependent (or instance-dependent) bounds that may have
dependence on problem parameters like μi or �i , and

2. sublinear problem-independent (or worst-case) bounds that provide uniform
bounds for all instances with N arms.

The above definition of regret is also referred to as the “frequentist” regret of
the algorithm, as opposed to the “Bayesian regret” which may be more useful if
there are good priors available on the distribution of instances of an MAB problem.
To differentiate between these different types of regret measures, let us use a more
detailed notation R(T ,�) to denote regret for problem instance �. Then, given a
prior P(�) over instances � of the stochastic MAB problem, Bayesian regret is
defined as the expected regret over instances sampled from this prior. That is,

Bayesian regret in time T = E�∼P [R(T ,�)]

Note that in comparison:

Frequentist problem-dependent regret in time T for instance � = R(T ,�)

Frequentist problem-independent regret in time T = max
�

R(T ,�)

In this chapter, we focus on the frequentist regret bounds (problem-dependent
and problem independent); however, some references to Bayesian regret bounds are
provided at relevant places.

Next, we briefly discuss two widely used algorithmic techniques for the multi-
armed bandit problems: (1) Optimism under uncertainty, or more specifically, the
Upper Confidence Bound (UCB) algorithm (Auer, 2002; Auer et al., 2002a), and
(2) Posterior sampling, or more specifically, the Thompson Sampling (TS) algorithm
(Thompson, 1933; Agrawal & Goyal, 2012a, 2017; Russo & Van Roy, 2014; Russo
et al., 2018). Some other prominent techniques include inverse propensity scoring
and multiplicative weight update algorithms, e.g., the EXP3 algorithm (Auer et al.,
2002b), epsilon greedy algorithm, and the successive elimination algorithm (see the
survey in Bubeck & Cesa-Bianchi, 2012).

6 S. Agrawal

1.2.1 Upper Confidence Bound (UCB) Algorithm

The UCB algorithm is based on the “optimism under uncertainty” principle.
Abstractly, the idea is to maintain an “optimistic” bound on the mean reward for
each arm, i.e., a quantity that is above the mean with high probability and converges
to the mean as more observations are made. In each round, the algorithm pulls the
arm with the largest UCB. Observations made on pulling the arm is used to update
its UCB.

The precise mechanics of the algorithm are as follows. As before, let ni,t denote
the number of times arm i was played until (and including) round t , It ∈ {1, . . . , N}
denote the arm pulled at time t , and rt ∈ [0, 1] denote the reward observed at time
t . Then, an empirical reward estimate of arm i at time t is defined as:

μ̂i,t =
∑t
s=1: Is=i rs
ni,t

(1.1)

The UCB algorithm computes the following quantity for each arm i at the end of
each round t :

UCBi,t := μ̂i,t + 2
√

ln t
ni,t

(1.2)

Then, the algorithm pulls the arm i that has the highest UCBi,t at time t . The
algorithm is summarized as Algorithm 1.

Here, for simplicity, it was assumed that T ≥ N , and the algorithm started by
playing every arm once. This algorithm enjoys a logarithmic problem-dependent
regret bound of O(

∑
i:μi �=μ∗

ln(T)
�i
) and a sublinear problem-independent regret

bound of O(NT ln(T)). Other variations of this algorithm along with detailed
proofs regret bounds can be found in Auer (2002), Bubeck and Cesa-Bianchi (2012).

1.2.2 Thompson Sampling (TS)

Thompson Sampling aka Bayesian posterior sampling is one of the oldest heuristic
for the multi-armed bandit problem. It first appeared in a 1933 article by W.

Algorithm 1 UCB algorithm for the stochastic N-armed bandit problem
1: for t = 1, . . . , N do
2: Play arm t
3: end for
4: for t = N + 1, N + 2 . . . , T do
5: Play arm It = arg maxi∈{1,...,N} UCBi,t−1.

6: Observe rt , compute UCBi,t
7: end for

1 The Stochastic Multi-Armed Bandit Problem 7

R. Thompson (1933). In the recent years, there have been significant advances
in theoretical regret based analysis of this algorithm for the N -armed stochastic
MAB problem, including worst-case near-optimal problem-dependent and problem-
independent bounds (Agrawal & Goyal, 2012a, 2013a; Kaufmann et al., 2012;
Agrawal & Goyal, 2017) and Bayesian regret bounds (Russo & Van Roy, 2014,
2016). The algorithm is based on a Bayesian philosophy of learning.

Consider the problem of learning from observations generated from a parametric
distribution. A frequentist approach assumes the parameters to be fixed, and
uses sample observations to learn point estimates and confidence intervals for
those parameters. On the other hand, a Bayesian learner maintains a probability
distribution (aka belief) to capture the uncertainty about the unknown parameter. At
the beginning (before seeing the samples), the prior distribution encodes the initial
belief of the learner about the value of the parameters. Upon seeing the data, the
learner updates the belief using Bayes rule. This updated distribution is called the
posterior distribution.

Thompson Sampling is a an algorithm for the multi-armed bandit problem based
on this Bayesian philosophy of learning. (In comparison, the UCB algorithm may
be viewed as an algorithm based on a frequentist approach to learning). Going back
to theN -armed bandit problem, suppose that for each arm i, the reward is generated
from some parametric distribution νi . Then, the overall structure of the Thompson
Sampling algorithm, as described in Thompson (1933), is as follows:

• For every arm i, start with a prior belief on the parameters of its reward
distribution.

• In every round t ,

– pull an arm with its probability of being the best arm according to the current
belief.

– use the observed reward to update the posterior belief distribution for the
pulled arm.

Given the prior distribution and the likelihood function, in some cases the posterior
distribution has a closed analytical form. In particular, given Bernoulli i.i.d. samples,
if the prior is a Beta distribution,1 then the posterior distribution is also given by
a Beta distribution. Also, given Gaussian i.i.d. samples, if the prior is a Gaussian
distribution, then the posterior is also given by a Gaussian distribution. This property
makes these distributions a convenient choice for implementation of Thompson
Sampling. Below, (in Algorithms 2 and 3) we give precise details of the TS

1 A Beta distribution has support (0, 1) with two parameters, (α, β) with probability density
function

f (x : α, β) = �(α + β)
�(α)�(β)

xα−1(1− x)β−1

Here, �(x) is called the Gamma function. For integers x ≥ 1, �(x) = (x − 1)!.

8 S. Agrawal

Algorithm 2 Thompson sampling for Bernoulli MAB using Beta priors
for t = 1, 2, . . . , T do

For each arm i = 1, . . . , N , independently sample θi,t ∼ Beta(Si,t−1 + 1, Fi,t−1 + 1).
Play arm It := arg maxi θi,t
Observe rt .

end for

Algorithm 3 Thompson sampling using Gaussian priors
for t = 1, 2, . . . , do

Independently for each arm i = 1, . . . , N , sample θi,t from N(μ̂i,t−1,
1

ni,t−1+1).
Play arm It := arg maxi θi,t
Observe reward rt .

end for

algorithm for the special cases of (a) Bernoulli reward distribution, and (b) Gaussian
reward distribution.

In the case of Bernoulli rewards, let Si,t−1, Fi,t−1 be the number of 1s and 0s,
respectively, seen for arm i over its plays in rounds {1, . . . , t−1}. Then, using Bayes
rule, on starting from prior Beta(1, 1), the Beta posterior distribution in round t is
Beta(Si,t−1 + 1, Fi,t−1 + 1). The posterior mean is Si,t−1+1

Si,t−1+Fi,t−1+1 which is close

to the empirical mean μ̂i,t−1. And, the posterior variance is inversely proportional
to Si,t−1 + Fi,t−1 + 2 = ni,t−1 + 2. Therefore, as the number of plays ni,t of an
arm increases, the variance of the posterior distribution decreases and the empirical
mean μ̂i,t converges to the true mean μ of the Bernoulli distribution. For arms with
small ni,t , the variance is high, which enables exploration of arms that have been
played less often and, therefore, have more uncertainty in their estimates.

These observations were utilized to derive optimal problem-dependent regret
bounds for the Bernoulli MAB in Kaufmann et al. (2012), Agrawal and Goyal
(2013a), Agrawal and Goyal (2017) that match the lower bound given by Lai and
Robbins (1985) for this problem. For Thompson Sampling with standard Gaussian
prior and Gaussian posteriors, Agrawal and Goyal (2013a), Agrawal and Goyal
(2017) also show near-optimal problem-dependent bounds of O(

∑
μi �=μ∗

ln(T)
�i
)

and problem-independent bounds ofO(
√
NT), assuming arbitrary bounded reward

distributions. Note that even though the Thompson Sampling algorithm is Bayesian
in nature, all the above-mentioned works derive frequentist regret bounds for this
algorithm. Furthermore, the algorithm does not assume the knowledge of true prior
distribution and uses a uniform distribution or standard normal prior instead. When
the true prior is known, Bayesian regret bounds have also been derived, interested
readers may refer to Russo and Van Roy (2014), Russo and Van Roy (2016) and the
related literature.

1 The Stochastic Multi-Armed Bandit Problem 9

1.3 Contextual Bandits

In many sequential decision making applications, including online recommendation
systems (Li et al., 2010a), online advertising (Tang et al., 2013), online retail (Cohen
et al., 2016), healthcare (Bastani & Bayati, 2015; Tewari & Murphy, 2017; Durand
et al., 2018), the decision in every round needs to be customized to the time-
varying features of the users being served and/or seasonal factors. The contextual
bandit problem (Langford & Zhang, 2007) extends the N -armed bandit problem to
incorporate these factors and features as the context or “side information” that the
algorithm can take into account before making the decision in every round.

The precise definition of this problem is as follows. In every round t , first the
context xi,t for every arm i = 1, . . . , N is observed and then the algorithm needs
to pick an arm It ∈ At ⊆ {1, . . . , N} to be pulled. The outcome of pulling an arm
depends on the context xIt ,t of the arm pulled.

A special case of this problem is the linear contextual bandit problem (Auer,
2002; Chu et al., 2011; Abbasi-yadkori et al., 2011), where the expected reward on
pulling an arm is a linear function of the context. Specifically, an instance of the
linear contextual bandit problem is defined by a d-dimensional parameter μ ∈ R

d

a priori unknown to the algorithm. The expected value of the observed reward rt on
pulling an arm i ∈ At with context vector xi,t is given by E[rt |It = i] = μ	xi,t . The
regret definition compares the performance of an algorithm to a clairvoyant policy
that picks the arm with highest expected reward in every round:

R(T) :=
T∑

t=1

(

max
i∈At

μ	xi,t
)

− E

[
T∑

t=1

rt

]

More generally, the contextual bandit problem is defined via a linear or nonlinear,
parametric or non-parametric contextual response function f (·), so that the expected
value of the observed reward rt on pulling an arm i with context vector xi,t is given
by E[rt |It = i] = f (xi,t). The function f is unknown to the decision maker and
may be learned using observations rt . For the special case of the linear contextual
bandit problem defined above f (xi,t) = μ	xi,t . A slight generalization is obtained
by using a Generalized Linear Model (GLM) (Filippi et al., 2010), where f (xi,t) =
g(μ	xi,t) for some g(·) : R → R. A significant generalization to Lipschitz bandits
was provided in Slivkins (2011), where the only assumption on f is that it satisfies
a Lipschitz condition with respect to a metric.

Both UCB and Thompson Sampling algorithms have been extended to the linear
contextual bandit problem. The LinUCB algorithm (Auer, 2002; Li et al., 2010b;
Abbasi-yadkori et al., 2011) has been shown to achieve an Õ(

√
dT logN) regret

bound.2 In case the number of arms is very large, a modified version of this
algorithm can also achieve am Õ(d

√
T) regret bound independent of the number

2 The Õ(·) notation hides logarithmic factors in T and d, in addition to the absolute constants.

10 S. Agrawal

of arms. These bounds match the available lower bound for this problem within
logarithmic factors in T and d (Bubeck & Cesa-Bianchi, 2012); however, the
LinUCB algorithm is not efficiently implementable when the number of arms is
large. Dani et al. (2008) show a modification to get an efficiently implementable
algorithm with regret bound of Õ(d3/2

√
T).

An extension of Thompson Sampling for linear contextual bandits was intro-
duced in Agrawal and Goyal (2013b), Agrawal and Goyal (2012b). The algorithm
is derived using a Gaussian likelihood function and a Gaussian prior on the unknown
parameter μ. In every round t , it generates a sample parameter μ̃t from the current
posterior (Gaussian) distribution and pulls the arm i that maximizes xTi,t μ̃t . A high

probability regret bound of Õ(d3/2
√
T) (or Õ(d

√
T log(N)) for finite number

of arms) was derived for this algorithm in Agrawal and Goyal (2012b). Note
that the best known regret bound for the Thompson Sampling algorithm has a
slightly worse dependence on d compared to the corresponding bounds for the
LinUCB algorithm. However, these bounds match the best available bounds for any
efficiently implementable algorithm for this problem, e.g., those given by Dani et al.
(2008).

1.4 Combinatorial Bandits

In many applications of sequential decision making, the decision in every round
can be best described as pulling of a set or “assortment” of multiple arms. For
example, consider the problem of choosing a set of ads to display on a page in
online advertising, or the assortment of products to recommend to a customer in
online retail. The decision maker needs to select a subset of items from a universe
of items. The objective may be of maximizing expected number of clicks or sales
revenue. Importantly, the customer response to the recommended assortment may
depend on the combination of items and not just the marginal utility of each
item, in the assortment. For example, two complementary items like bread and
milk may generate more purchase when presented together. On the other hand, an
item’s purchase probability may decrease when presented with a substitutable item
like another product with similar functionality but different brand/color/price; also
referred to as a substitution effect. Thus, pulling an arm (i.e., offering an item as
part of an assortment) no longer generates a reward from its marginal distribution
independent of other arms.

A general combinatorial bandit problem can be stated as the problem of selecting
a subset St ⊆ [N] in each of the sequential rounds t = 1, . . . , T . On selecting a
subset St , reward rt is observed with expected value E[rt |St] = f (St) where the
function f : RN → [0, 1] is unknown. The goal is to minimize regret against the
subset with maximum expected value:

1 The Stochastic Multi-Armed Bandit Problem 11

R(T) := Tf (S∗)− E

[
∑

t

rt

]

=
T∑

t=1

(f (S∗)− f (St)) (1.3)

where S∗ = maxS⊆[N] f (S). Unfortunately, it is easy to construct instances of
function f (·) such that the lower bounds for the MAB problem would imply a
regret at least exponential in N . Further, even if the expected reward f (S) is known
for all S, finding S∗ may still be computationally intractable. For this problem to
be tractable, some structural assumptions on f (·) must be utilized. Examples of
such structural assumptions include the linear model f (S) = μT 1S or Lipschitz
functions (metric bandits) discussed in the previous section. Another example is the
assumption of submodularity of function f , also known as the submodular bandit
problem. The algorithm for online submodular minimization in Hazan and Kale
(2012) can achieve a regret that is bounded byO(NT 2/3

√
log(1/δ) with probability

1 − δ, for the submodular bandit problem. Their results are in fact applicable to
the adversarial bandit problem, i.e., when rt = ft (St) for an arbitrary unknown
sequence of submodular functions f1, . . . , fT .

An important application of combinatorial bandits in revenue management is
for dynamic assortment optimization with learning. In assortment optimization, the
reward (revenue) f (S) on offering a set of items S is modeled using a consumer
choice model. Choice models capture substitution effects among products by
specifying the probability that a consumer selects a product from the offered set.
The multinomial logit (MNL) model is a natural and convenient way to specify
these distributions, giving one of the most widely used choice model for assortment
selection problems in retail settings. This model was introduced independently by
Luce (1959) and Plackett (1975); see also Train (2009), McFadden (1978), Ben-
Akiva and Lerman (1985) for further discussion and survey of other commonly
used choice models. Agrawal et al. (2016, 2017) formulate and study the MNL-
bandit problem: a combinatorial bandit setting based on the MNL-choice model.
They provide UCB and Thompson Sampling based algorithms, along with near-
optimal Õ(

√
NT) regret bounds for this problem. More discussion on the online

learning and multi-armed bandit problems resulting from different choice models in
assortment optimization appear in the subsequent chapters.

References

Abbasi-yadkori, Y., Pál, D., & Szepesvári, C. (2011). Improved algorithms for linear stochastic
bandits. InAdvances in Neural Information Processing Systems 24 (pp. 2312–2320)

Agrawal, S. (2019). Recent advances in multiarmed bandits for sequential decision making.
INFORMS TutORials in Operations Research, 167–168

Agrawal, S., Avadhanula, V., Goyal, V., & Zeevi, A. (2016). A near-optimal exploration-
exploitation approach for assortment selection. In Proceedings of the 2016 ACM Conference
on Economics and Computation (EC).

12 S. Agrawal

Agrawal, S., Avadhanula, V., Goyal, V., & Zeevi, A. (2017). Thompson sampling for the MNL-
Bandit. In Proceedings of the 30th Annual Conference on Learning Theory (COLT).

Agrawal, S., & Goyal, N. (2012a). Analysis of Thompson sampling for the multi-armed bandit
problem. In Proceedings of the 25th Annual Conference on Learning Theory (COLT).

Agrawal, S., & Goyal, N. (2012b). Thompson sampling for contextual bandits with linear payoffs.
CoRR abs/1209.3352. http://arxiv.org/abs/1209.3352

Agrawal, S., & Goyal, N. (2013a). Further optimal regret bounds for Thompson Sampling. In
Proceedings of the 16th International Conference on Artificial Intelligence and Statistics,
(AISTATS).

Agrawal, S., & Goyal, N. (2013b). Thompson sampling for contextual bandits with linear payoffs.
In Proceedings of the 30th International Conference on Machine Learning (ICML).

Agrawal, S., & Goyal, N. (2017). Near-optimal regret bounds for Thompson sampling. Journal of
ACM, 64(5), 1–30. https://doi.org/10.1145/3088510. http://doi.acm.org/10.1145/3088510

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of
Machine Learning Research, 3, 397–422.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002a). Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2–3), 235–256.

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (2002b). The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1), 48–77.

Bastani, H., & Bayati, M. (2015). Online decision-making with high-dimensional covariates. SSRN
Electronic Journal. https://doi.org/10.2139/ssrn.2661896

Ben-Akiva, M., & Lerman, S. (1985). Discrete choice analysis: Theory and application to travel
demand (Vol. 9). MIT Press.

Bubeck, S., & Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends in Machine Learning, 5(1), 1–122.

Chu, W., Li, L., Reyzin, L., & Schapire, R. E. (2011). Contextual bandits with linear payoff
functions. In Proceedings of the 14th International Conference on Artificial Intelligence and
Statistics, (AISTATS).

Cohen, M. C., Lobel, I., & Paes Leme, R. (2016). Feature-based dynamic pricing. In Proceedings
of the 2016 ACM Conference on Economics and, Computation., EC ’16 (pp. 817–817).

Dani, V., Hayes, T. P., & Kakade, S. M. (2008). Stochastic linear optimization under bandit
feedback. In Proceedings of The 21st Conference on Learning Theory (COLT) (pp. 355–366).

Durand, A., Achilleos, C., Iacovides, D., Strati, K., Mitsis, G. D., & Pineau, J. (2018). Contextual
bandits for adapting treatment in a mouse model of de novo carcinogenesis. In Proceedings of
the 3rd Machine Learning for Healthcare Conference (Vol. 85, pp. 67–82).

Filippi, S., Cappe, O., Garivier, A., & Szepesvári, C. (2010). Parametric bandits: The generalized
linear case. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, & A. Culotta (Eds.),
Advances in Neural Information Processing Systems (Vol. 23), Curran Associates. https://
proceedings.neurips.cc/paper/2010/file/c2626d850c80ea07e7511bbae4c76f4b-Paper.pdf

Hazan, E., & Kale, S. (2012). Online submodular minimization. Journal of Machine Learning
Research, 13(1), 2903–2922. http://dl.acm.org/citation.cfm?id=2503308.2503334

Kaufmann, E., Korda, N., & Munos, R. (2012). Thompson sampling: An asymptotically optimal
finite-time analysis. In Algorithmic Learning Theory - 23rd International Conference, ALT
(pp. 199–213).

Lai, T. L., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in
Applied Mathematics, 6, 4–22.

Langford, J., & Zhang, T. (2007). The epoch-greedy algorithm for contextual multi-armed bandits.
Advances in Neural Information Processing Systems (NIPS) 20 (pp. 817–824). http://dl.acm.
org/citation.cfm?id=2981562.2981665

Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010a). A contextual-bandit approach to person-
alized news article recommendation. In Proceedings of the 19th International Conference on
World Wide Web, WWW ’10 (pp. 661–670).

 8069 5228 a 8069 5228 a

http://arxiv.org/abs/1209.3352

 6602
12977 a 6602 12977 a

https://doi.org/10.1145/3088510

 19236 12977 a 19236
12977 a

http://doi.acm.org/10.1145/3088510

 6799 21833 a 6799 21833 a

https://doi.org/10.2139/ssrn.2661896

 32220 40651 a 32220
40651 a

https://proceedings.neurips.cc/paper/2010/file/c2626d850c80ea07e7511bbae4c76f4b-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/c2626d850c80ea07e7511bbae4c76f4b-Paper.pdf

 10684 43972 a 10684 43972 a

http://dl.acm.org/citation.cfm?id=2503308.2503334

 29816 51720 a 29816
51720 a

http://dl.acm.org/citation.cfm?id=2981562.2981665
http://dl.acm.org/citation.cfm?id=2981562.2981665

1 The Stochastic Multi-Armed Bandit Problem 13

Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010b). A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the Nineteenth International
Conference on World Wide Web (WWW-10) (pp. 661–670).

Luce, R. (1959). Individual choice behavior: A theoretical analysis. Wiley.
McFadden, D. (1978). Modeling the choice of residential location. Transportation Research

Record (673), 72–77.
Plackett, R. L. (1975). The analysis of permutations. Applied Statistics, 24(2), 193–202.
Russo, D., & Van Roy, B. (2014). Learning to optimize via posterior sampling. Mathematics of

Operations Research, 39(4), 1221–1243.
Russo, D., & Van Roy, B. (2016). An information-theoretic analysis of Thompson sampling.

Journal of Machine Learning Research, 17, 68:1–68:30.
Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., & Wen, Z. (2018). A tutorial on Thompson

sampling. Found Trends Mach Learn, 11(1), 1–96. https://doi.org/10.1561/2200000070
Slivkins, A. (2011). Multi-armed bandits on implicit metric spaces. In Advances in Neural

Information Processing Systems 24 (pp. 1602–1610). http://papers.nips.cc/paper/4332-multi-
armed-bandits-on-implicit-metric-spaces.pdf

Tang, L., Rosales, R., Singh, A., & Agarwal, D. (2013). Automatic ad format selection via
contextual bandits. In Proceedings of the 22nd ACM international Conference on Information
and Knowledge Management (CIKM) (pp. 1587–1594).

Tewari, A., & Murphy, S. A. (2017). From ads to interventions: Contextual bandits in mobile
health. In Mobile health - Sensors, analytic methods, and applications (pp 495–517).

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3–4), 285–294.

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge University Press.

 18767 12977 a 18767
12977 a

https://doi.org/10.1561/2200000070

 20036 15191
a 20036 15191 a

http://papers.nips.cc/paper/4332-multi-armed-bandits-on-implicit-metric-spaces.pdf
http://papers.nips.cc/paper/4332-multi-armed-bandits-on-implicit-metric-spaces.pdf

Chapter 2
Reinforcement Learning

Zheng Wen

2.1 Introduction

Reinforcement learning (RL) (Sutton & Barto, 2018) is a subfield of machine
learning concerned with how an agent (or decision-maker) should learn to take
actions to maximize some notion of cumulative reward while interacting with an
environment, as is illustrated in Fig. 2.1. Specifically, at each time step, the agent
first adaptively chooses an action based on its prior knowledge, past observations,
and past rewards; then, it will receive a new observation and a new reward from
the environment. In general, the agent’s observations and rewards are stochastic and
statistically dependent on its chosen action and its state in the environment. In most
RL problems, the environment is only partially known and the agent cannot compute
an optimal or near-optimal policy based on its prior knowledge. Consequently, it
needs to learn to take optimal or near-optimal actions while interacting with the
environment.

RL is one of the three basic machine learning (Friedman et al., 2001; Bishop,
2006) paradigms, alongside supervised learning and unsupervised learning. While
supervised learning and unsupervised learning algorithms aim to learn from labeled
or unlabeled datasets, in RL problems, the agent aims to learn to take good
actions from its interactions with a usually partially known environment. Due to
its generality, RL has also been studied in many other fields, such as operations
research, control theory, game theory, multi-agent systems, information theory, and
statistics. From the perspective of operations research and control theory, RL is
closely related to dynamic programming (DP), approximate dynamic programming
(ADP), and optimal control (Bertsekas, 2000, 2011; Powell, 2007). Specifically,

Z. Wen (�)
DeepMind, Mountain View, CA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_2&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_2

16 Z. Wen

Fig. 2.1 Illustration of reinforcement learning (RL) problems, in which the agent chooses actions
and receives the observations and rewards from the environment. In most RL problems, the agent’s
observation includes the next state it will transit to

similar to classical DP problems that aim to compute an optimal policy in Markov
decision processes (MDPs), basic RL problems are usually formulated as problems
that aim to learn an optimal or near-optimal policy in MDPs. The main difference
is that, in DP problems the agent is assumed to know the model of the MDP and
hence can compute an optimal policy based on that model; however, in most RL
problems the agent does not fully know the model and has to learn to take optimal
or near-optimal actions.

One key challenge that arises in RL, but not in supervised and unsupervised
learning, is the exploration-exploitation trade-off. Specifically, in RL, to obtain more
reward, an agent should prefer actions that it has found effective in producing reward
(exploitation). However, to discover such actions, the agent needs to try actions
that might be effective in producing reward, or actions that might provide useful
information about an optimal or near-optimal policy (exploration). In other words,
the agent needs to exploit what it has already learned to obtain reward, but it also
has to explore to make better action selections in the future. If an agent exclusively
pursues exploration or exploitation, then it can easily fail or lose a lot of reward in
some problems. A successful RL agent should carefully balance the exploration-
exploitation trade-off by designing an appropriate exploration scheme.

In addition to the exploration-exploitation trade-off, another challenge for RL is
that modern RL problems tend to have intractably large state space and/or action
space. For example, in an online recommendation system, the state might include
the inventory levels of all items, and the action might be an ordered list of items
chosen to display. Hence, both the cardinalities of the state space and the action
space can be enormous. For such large-scale RL problems, we cannot expect to learn
an optimal policy with limited time, data, and computational resources. Instead, our
goal is to learn a good approximate solution within limited time and using limited
data and computational resources. Many such agents have been built for large-scale
RL problems. In particular, deep reinforcement learning (DRL) is a subfield of RL

2 Reinforcement Learning 17

aiming to build agents based on (deep) neural networks that can learn approximate
solutions for large-scale RL problems.

RL has extensive applications in many fields, such as online recommendation
systems (Chen et al., 2019; Kveton et al., 2015), robotics (Kober et al., 2013),
information retrieval (Zhang et al., 2020), energy management systems (Kuznetsova
et al., 2013; Wen et al., 2015), revenue management (Gosavii et al., 2002), and
financial engineering (Fischer, 2018). In the past decade, several high-performance
DRL agents have been built for games like Go, Chess, and Atari games (Silver
et al., 2016, 2017b, 2017a; Schrittwieser et al., 2020). Many of them have achieved
a performance comparable to or even better than that of a professional human player.
In particular, the AlphaGo agent (Silver et al., 2016) beat a world champion in
the game of Go. Many researchers are working on extending these agents built for
games to other exciting application areas.

The remainder of this chapter is organized as follows: in Sect. 2.2, we briefly
review Markov decision processes (MDPs) and dynamic programming (DP) solu-
tions. In Sect. 2.3, we provide a high-level review of some classical RL algorithms.
We also discuss two key issues for RL algorithm design: exploration scheme
design and approximate solution methods for large-scale RL problems, in that
section. Finally, we conclude this chapter and provide pointers for further reading
in Sect. 2.4.

2.2 Markov Decision Process and Dynamic Programming

Markov decision processes (MDPs) are stochastic control processes used in a
variety of optimization and machine learning problems where the outcomes (e.g.,
rewards, next states) are partly random and partly controlled by the agent. They
provide a framework for modeling decision making in dynamic systems. As we have
mentioned in Sect. 2.1, basic RL problems can be formulated as problems in which
an agent aims to learn an optimal or near-optimal policy in partially known MDPs.
Several classes of MDPs, such as finite-horizon MDPs, infinite-horizon discounted
MDPs, and infinite-horizon average-reward MDPs, have been widely studied in the
literature. In this section, we will briefly review two classical classes of MDPs:
the finite-horizon MDPs in Sect. 2.2.1 and the infinite-horizon discounted MDPs
in Sect. 2.2.2. Interested readers might refer to (Bertsekas, 2000, 2011) for further
reading.

When the model of an MDP is completely known, its optimal policy can
be computed by dynamic programming (DP) algorithms. Though classical DP
algorithms are of limited utility in RL due to the assumption that the MDP model
is completely known, it does provide a foundation for understanding RL algorithms
described later in this chapter. In this section, we will also briefly review the DP
algorithms for the finite-horizon MDPs and the infinite-horizon discounted MDPs.

18 Z. Wen

2.2.1 Finite-Horizon Markov Decision Process

A finite-horizon MDP is characterized by a tuple MF = (S,A, P , r,H, ρ), where
S is a finite state space, A is a finite action space, P and r , respectively, encode
the transition model and the reward model, H is the finite time horizon, and ρ is
a probability distribution over the state space S. At the first period h = 1, the
initial state s1 is independently drawn from the distribution ρ. Then, at each period
h = 1, 2, . . . , H , if the agent takes action ah ∈ A at state sh ∈ S, then it will
receive a random reward rh ∈ � conditionally independently drawn from the reward
distribution r (·|sh, ah). Moreover, for period h < H , the agent will transit to state
s′ ∈ S in the next period h + 1 with probability P

(
s′
∣
∣sh, ah

)
. The finite-horizon

MDP will terminate after the agent receives reward rH at period H . To simplify the
exposition, we use r̄(s, a) to denote the mean of the reward distribution r(·|s, a) for
all state-action pair (s, a) ∈ S × A. We also define H = {1, 2, . . . , H } to denote
the set of time periods.

In a finite-horizon MDP, the agent’s goal is to maximize its expected total reward

E

[∑H
h=1 rh

]
(2.1)

by adaptively choosing action ah for each period h = 1, . . . , H based on its obser-
vations so far, which can be represented as (s1, a1, r1, s2, . . . , sh−1, ah−1, rh−1, sh).
Furthermore, since (s1, a1, r1, s2, . . . , sh−1, ah−1, rh−1) is conditionally indepen-
dent of future rewards and transitions given the current state sh and the period h
(the Markov property), the agent only needs to choose action ah based on the state-
period pair (sh, h). This motivates the notion of policy for a finite-horizon MDP.
Specifically, a (randomized) policy π : S×H→ �A is defined as a mapping from
the state-period pairs to probability distributions over the action space A. Note that
�A denotes the set of probability distributions (i.e., the probability simplex) over
the action space A. Under a policy π , if the agent is at state sh at period h, then
it will choose action ah = a with probability π(a|sh, h). We say a policy π is
deterministic if π(a|s, h) ∈ {0, 1} for all action a ∈ A and all state-period pair
(s, h) ∈ S × H. That is, at all state-period pair (s, h), the agent will choose one
action with probability 1 under policy π . With a little bit abuse of notation, for a
deterministic policy π , sometimes we use π(s, h) to denote the action it chooses
with probability 1 at (s, h).

For each policy π , we define its state value function V π : S×H→ � as

V π(s, h) = Eπ

[∑H
h′=h rh′

∣
∣
∣sh = s

]
, ∀(s, h) ∈ S×H, (2.2)

where the subscript π in notation Eπ indicates the expectation is taken under the
stochastic process defined by policy π . Notice that each policy π defines a stochastic
process evolving as follows: at each period h ∈ H with state sh, the agent first
chooses action ah ∼ π(·|sh, h), then it will receive a reward rh ∼ r(·|sh, ah), and
if h < H , it will transit to a new state sh+1 ∼ P(·|sh, ah) in the next period h + 1.

2 Reinforcement Learning 19

V π(s, h) is the expected total future reward if the agent starts at state s at period h
and chooses actions according to policy π .

Similarly, we define the state-action value function Qπ : S×H×A for policy
π as

Qπ(s, h, a) = Eπ

[∑H
h′=h rh′

∣
∣
∣sh = s, ah = a

]
, ∀(s, h, a) ∈ S×H×A (2.3)

that is,Qπ(s, h, a) is the expected total future reward if the agent starts at state s at
period h, chooses action a at period h and chooses actions according to policy π for
all period h′ ≥ h+ 1. By definition of V π andQπ , we have the following equation
for any (s, h) ∈ S×H and (s, h, a) ∈ S×H×A:

V π(s, h) =
∑

a∈A
π(a|s, h)Qπ(s, h, a)

Qπ(s, h, a) =
{
r̄(s, a)+∑

s′∈S P
(
s′
∣
∣s, a

)
V π(s′, h+ 1) if h < H

r̄(s, a) if h = H . (2.4)

Note that Eq. (2.4) is referred to as the Bellman equation under policy π . We can
rewrite the Bellman equation just in V π orQπ , e.g.,

V π(s, h) =
{∑

a∈A π(a|s, h)
[
r̄(s, a)+∑

s′∈S P
(
s′
∣
∣s, a

)
V π(s′, h+ 1)

]
if h < H

∑
a∈A π(a|s, h)r̄(s, a) if h = H .

(2.5)

We also define the optimal state value function V ∗ : S×H→ � as

V ∗(s, h) = max
π
V π(s, h), ∀(s, h) ∈ S×H, (2.6)

which is the maximum1 (optimal) expected total future reward if the agent starts
at state s at period h. Similarly, we define the optimal state-action value function
Q∗ : S×H×A→ � as

Q∗(s, h, a) = max
π
Qπ(s, h, a), ∀(s, h, a) ∈ S×H×A, (2.7)

which is the maximum (optimal) expected total future reward if the agent starts at
state s at period h and chooses action a at period h. Similarly, we have the following
Bellman equation for the optimal value function V ∗ andQ∗:

V ∗(s, h) = max
a∈AQ

∗(s, h, a)

1 Since we assume the time horizon and the cardinalities of S and A are all finite, the maximum is
always achieved.

20 Z. Wen

Q∗(s, h, a) =
{
r̄(s, a)+∑

s′∈S P(s′|s, a)V ∗(s′, h+ 1) if h < H
r̄(s, a) if h = H . (2.8)

One can prove the above Bellman equation by backward induction, similar to
Proposition 1.3.1 in Bertsekas (2000).

We say a policy π ′ is optimal at a state-period pair (s, h) if

V π
′
(s, h) = V ∗(s, h).

It turns out that there exist policies that are simultaneously optimal for all state-
period pairs. Specifically, one such policy is a deterministic policy π∗ satisfying2

π∗(s, h) ∈ arg max
a∈A

Q∗(s, h, a), ∀(s, h) ∈ S×H,

recall that under a deterministic policy π∗, π∗(s, h) is the action chosen at state-
period pair (s, h). Note that by definition, we have

Q∗(s, h, π∗(s, h)) = max
a∈AQ

∗(s, h, a) = V ∗(s, h), ∀(s, h) ∈ S×H.

To prove that π∗ is simultaneously optimal for all state-period pairs, we prove that
V π

∗
(s, h) = V ∗(s, h) for all (s, h) ∈ S×H by backward induction in h:

• For h = H , we have Q∗(s, h, a) = r̄(s, a). Consequently, we have π∗(s, h) ∈
arg maxa∈A r̄(s, a), so we have

V π
∗
(s, h) = r̄(s, π∗(s, h)) = Q∗(s, h, π∗(s, h)) = V ∗(s, h).

• For any h < H , assume that V π
∗
(s, h+1) = V ∗(s, h+1) for all s ∈ S, we now

prove that V π
∗
(s, h) = V ∗(s, h) for all s ∈ S. Note that

V π
∗
(s, h) =Qπ∗(s, h, π∗(s, h))

= r̄(s, π∗(s, h))+
∑

s′∈S
P(s′|s, π∗(s, h))V π∗(s′, h+ 1)

= r̄(s, π∗(s, h))+
∑

s′∈S
P(s′|s, π∗(s, h))V ∗(s′, h+ 1)

=Q∗(s, h, π∗(s, h)) = V ∗(s, h), (2.9)

2 In general, a randomized policy π̃ is optimal if suppπ̃(·|s, h) ⊆ arg maxa∈AQ∗(s, h, a) for all
(s, h), where suppπ̃(·|s, h) is the support of the distribution π̃(·|s, h).

2 Reinforcement Learning 21

where the first two equalities follow from the Bellman equation under π∗, the
third equality follows from the induction hypothesis, the fourth equality follows
from the Bellman equation for the optimal value function, and the last equality
follows from the definition of π∗, as discussed above.

2.2.1.1 Dynamic Programming Solution

Based on our discussion above, for a finite-horizon MDP MF, we can compute a
deterministic optimal policy π∗ based on the dynamic programming (DP) algorithm
below:

DP algorithm for finite-horizon MDP

Initialization: set V ∗(s,H + 1) = 0 for all s ∈ S
Step 1: for each h = H,H − 1, . . . , 1:

compute

Q∗(s, h, a) = r̄(s, a)+
∑

s′∈S
P(s′|s, a)V ∗(s′, h+ 1) ∀(s, a) ∈ S×A

and

V ∗(s, h) = max
a∈AQ

∗(s, h, a) ∀s ∈ S

Step 2: choose a deterministic policy π∗ s.t.

π∗(s, h) ∈ arg max
a∈A

Q∗(s, h, a) ∀(s, h) ∈ S×H

Return π∗

2.2.2 Discounted Markov Decision Process

An infinite-horizon discounted Markov decision process (MDP) is characterized by
a tuple MD = (S,A, P , r, γ, ρ), where S is a finite state space, A is a finite action
space, P and r , respectively, encode the transition model and the reward model,
γ ∈ (0, 1) is a discrete-time discount factor, and ρ is a probability distribution over
the state space S. At the first period t = 1, the initial state s1 is independently
drawn from the distribution ρ. Then, at each period t = 1, 2, . . ., if the agent takes
action at ∈ A at state st ∈ S, then it will receive a random reward rt ∈ [0, 1]
conditionally independently drawn from the reward distribution r (·|st , at) and will

22 Z. Wen

transit to state s′ ∈ S in the next period t + 1 with probability P
(
s′
∣
∣st , at

)
. To

simplify the exposition, we use r̄(s, a) to denote the mean of the reward distribution
r(·|s, a) for all state-action pair (s, a) ∈ S×A. Notice that we assume the random
reward rt ∈ [0, 1] to simplify the exposition.

In an infinite-horizon discounted MDP, the agent’s goal is to maximize its
expected total discounted reward3

E
[∑∞

t=1 γ
t−1rt

]
(2.10)

by adaptively choosing action at for period t = 1, 2, . . . based on its past observa-
tions. Similarly as the finite-horizon MDPs, the past observations are conditionally
independent of future rewards and transitions given the current state st (the Markov
property). Moreover, the discounted MDPs are also time-invariant in the sense that
for any τ ≥ 1 and any state s ∈ S,

maxE
[∑∞

t=1 γ
t−1rt

∣
∣s1 = s

]
and maxE

[∑∞
t=τ γ t−τ rt

∣
∣sτ = s

]

are two equivalent problems. Thus, the agent only needs to choose action at based
on the current state st . This motivates the notion of policy for a discounted MDP.
Specifically, a (randomized) policy π : S → �A is defined as a mapping from the
state space to probability distributions over the action space A. Under a policy π ,
if the agent is at state st , then it will choose action at = a with probability π(a|st).
Similarly, if π is a deterministic policy, we use π(s) to denote the action it chooses
with probability 1 at state s.

For each policy π , we define its state value function V π : S→ � as

V π(s) = Eπ

[∑∞
t=1 γ

t−1rt
∣
∣s1 = s

]
, ∀s ∈ S, (2.11)

where the subscript π in notation Eπ indicates the expectation is taken under the
stochastic process defined by policy π . Specifically, note that each policy π defines
a stochastic process evolving as follows: at each period t ∈ 1, 2, . . .with state st , the
agent first chooses action at ∼ π(·|st), then it will receive a reward rt ∼ r(·|st , at)
and transit to a new state st+1 ∼ P(·|st , at) in the next time t + 1. V π(s) is the
expected total discounted reward if the agent starts at state s and chooses actions
according to policy π .

Similarly, we define the state-action value functionQπ : S×A for policy π as

Qπ(s, a) = Eπ

[∑∞
t=1 γ

t−1rt
∣
∣s1 = s, a1 = a

]
, ∀(s, a) ∈ S×A (2.12)

3 Notice that we choose the convention that t starts from 1, thus, the discount at time t is γ t−1. If t
starts from 0, then the discount at time t should be γ t . We choose the convention that t starts from
1 to be consistent with the finite-horizon MDPs.

2 Reinforcement Learning 23

that is, Qπ(s, a) is the expected total discounted reward if the agent starts at state
s, chooses action a at the first time period, and chooses actions according to policy
π at subsequent time periods. By definition of V π and Qπ , we have the following
equation for any s ∈ S and (s, a) ∈ S×A:

V π(s) =
∑

a∈A
π(a|s)Qπ(s, a)

Qπ(s, a) = r̄(s, a)+ γ
∑

s′∈S
P
(
s′
∣
∣s, a

)
V π(s′). (2.13)

Note that Eq. (2.13) is referred to as the Bellman equation under policy π for
discounted MDPs. We can rewrite the Bellman equation just in V π or Qπ , e.g.,

V π(s) = ∑
a∈A π(a|s)

[
r̄(s, a)+ γ ∑s′∈S P

(
s′
∣
∣s, a

)
V π(s′)

]
. (2.14)

To simplify the exposition, we define the dynamic programming (DP) operator
under policy π , Tπ , as

(TπV)(s) = ∑
a∈A π(a|s)

[
r̄(s, a)+ γ ∑s′∈S P

(
s′
∣
∣s, a

)
V (s′)

]
, (2.15)

where V : S→ � is a real-valued function with domain S. Notice that by definition,
TπV : S → � is also a real-valued function with domain S. With the shorthand
notation Tπ , we can rewrite the Bellman equation 2.14 as V π = TπV

π .
We also define the optimal state value function V ∗ : S→ � as

V ∗(s) = max
π
V π(s), ∀s ∈ S, (2.16)

which is the maximum (optimal) expected total discounted reward if the agent starts
at state s. Similarly, we define the optimal state-action value functionQ∗ : S×A→
� as

Q∗(s, a) = max
π
Qπ(s, a), ∀(s, a) ∈ S×A, (2.17)

which is the maximum (optimal) expected total discounted reward if the agent starts
at state s and chooses action a at the first period. Similarly, we have the following
Bellman equation for the optimal value function V ∗ andQ∗:

V ∗(s) = max
a∈AQ

∗(s, a)

Q∗(s, a) = r̄(s, a)+ γ
∑

s′∈S
P(s′|s, a)V ∗(s′). (2.18)

Similarly, we can rewrite the above Bellman equation just in V ∗ orQ∗, e.g.,

24 Z. Wen

V ∗(s) = maxa∈A
[
r̄(s, a)+ γ ∑s′∈S P(s′|s, a)V ∗(s′)

]
. (2.19)

We define the DP operator T as

(TV)(s) = maxa∈A
[
r̄(s, a)+ γ ∑s′∈S P(s′|s, a)V (s′)

]
, (2.20)

where V is a real-valued function with domain S. With this shorthand notation, we
can rewrite the Bellman equation (2.19) as V ∗ = TV ∗.

We have shown that V ∗ = TV ∗, in other words, V ∗ is one solution of the
equation V = TV . We are also interested in if V ∗ is the unique solution of that
equation. It turns out that for the setting considered in this subsection, V ∗ is the
unique bounded function satisfying the equation V = TV . Interested readers might
refer to Proposition 1.2.3 in Bertsekas (2011) for a proof.4 Similarly, we can prove
that V π is the unique bounded function satisfying the equation V = TπV .

We say a policy π ′ is optimal at a state s ∈ S if

V π
′
(s) = V ∗(s).

It turns out that there exist policies that are simultaneously optimal for all states.
Specifically, one such policy is a deterministic policy π∗ satisfying

π∗(s) ∈ arg max
a∈A

Q∗(s, a), ∀s ∈ S

recall that under a deterministic policy π∗, π∗(s) is the action chosen at state s.
Interested readers might refer to Proposition 1.2.5 in Bertsekas (2011) for a proof.

In the remainder of this subsection, we briefly discuss two dynamic programming
algorithms for discounted MDPs: value iteration and policy iteration. Specifically,
value iteration can compute a good approximation of V ∗ in finite steps; and policy
iteration can compute an optimal policy π∗ in finite steps.

2.2.2.1 Value Iteration

Value iteration is one algorithm that asymptotically computes V ∗ and can compute
a good approximation of V ∗ in finite steps. It is based on the following two
observations: first, V ∗ is a fixed point of the DP operator T, since V ∗ = TV ∗. Also,
based on the discussion above, we know that it is the unique bounded fixed point.
Second, T is a contraction mapping with respect to the L∞ norm. Specifically, we
have that

4 Chapter 1 in Bertsekas (2011) considers a cost minimization setting, which is equivalent to the
reward maximization setting considered in this chapter if we define the cost as one minus the
reward.

2 Reinforcement Learning 25

‖TV1 − TV2‖∞ ≤ γ ‖V1 − V2‖∞ , (2.21)

for any V1, V2 : S → �. Note that for any V : S → �, ‖V ‖∞ = maxs∈S |V (s)|.
To see why Eq. (2.21) holds, notice that for any s ∈ S, we have

|(TV1)(s)− (TV2)(s)| =
∣
∣maxa∈A

[
r̄(s, a)+ γ ∑s′∈S P(s′|s, a)V1(s

′)
]

− maxa∈A
[
r̄(s, a)+ γ ∑s′∈S P(s′|s, a)V2(s

′)
]∣
∣

≤ γ maxa∈A
∣
∣
∑
s′∈S P(s′|s, a)

(
V1(s

′)− V2(s
′)
)∣
∣

≤γ maxa∈A
∑
s′∈S P(s′|s, a)

∣
∣V1(s

′)− V2(s
′)
∣
∣

≤γ maxa∈A
∑
s′∈S P(s′|s, a) ‖V1 − V2‖∞

= γ ‖V1 − V2‖∞ .

Consequently, we have

‖TV1 − TV2‖∞ = max
s∈S

|(TV1)(s)− (TV2)(s)| ≤ γ ‖V1 − V2‖∞ .

Similarly, we can prove that for any policy π , we have

‖TπV1 − TπV2‖∞ ≤ γ ‖V1 − V2‖∞
for any V1, V2 : S→ �.

Moreover, notice that for any V : S→ �, by definition, TV is also a real-valued
function with domain S. Thus, for any integer k ≥ 1, we can recursively define
T
k+1V = T

(
T
kV

)
. Since T is a contraction mapping with respect to the L∞ norm,

and V ∗ is the unique bounded fixed point of T, we have the following result:

Proposition 2.1 For any bounded function V : S → �, we have limk→∞ T
kV =

V ∗. Moreover, for any integer k = 1, 2, . . ., we have
∥
∥TkV − V ∗∥∥∞ ≤ γ k‖V −

V ∗‖∞.

Proof Since T is a contraction mapping with respect to L∞ norm, for any integer
k = 1, 2, . . ., we have

∥
∥
∥TkV − V ∗

∥
∥
∥∞ =

∥
∥
∥T(Tk−1V)− TV ∗

∥
∥
∥∞ ≤ γ

∥
∥
∥Tk−1V − V ∗

∥
∥
∥∞ .

Thus, by induction, we have
∥
∥TkV − V ∗∥∥∞ ≤ γ k‖V − V ∗‖∞. This implies that

limk→∞
∥
∥TkV − V ∗∥∥∞ = 0 and hence limk→∞ T

kV = V ∗. ��
The above proposition implies the following value iteration algorithm:

26 Z. Wen

Value iteration algorithm

Input: number of iterations K
Initialization: choose V0 : S→ � s.t. V0(s) = 0 for all s ∈ S
Value Iteration: for each k = 1, 2, . . . , K , compute Vk ← TVk−1
Return VK

As we have discussed above, as K → ∞, VK returned by the value iteration
algorithm converges to V ∗. For a finite K , VK is an approximation of V ∗. Based on
Proposition 2.1, we have

‖VK − V ∗‖∞ (a)= ‖TKV0 − V ∗‖∞
(b)≤ γK‖V0 − V ∗‖∞ (c)= γK‖V ∗‖∞

(d)≤ γK

1− γ ,

where (a) follows from the definition of VK , (b) follows from Proposition 2.1, (c)
follows from the fact that V0(s) = 0 for all s ∈ S, and (d) follows from the fact
that rt ∈ [0, 1] and hence 0 ≤ V ∗(s) ≤ 1

1−γ for all s ∈ S. Consequently, if we
choose a sufficiently large K , the value iteration algorithm will compute a good
approximation of V ∗.

Finally, we show that when K is sufficiently large, then VK induces a near-
optimal policy. Specifically, consider a policy πK satisfying5

TπKVK = TVK , then
we have

‖V πK − V ∗‖∞ =‖V πK − TπKVK + TVK − V ∗‖∞
(a)≤ ‖V πK − TπKVK‖∞ + ‖TVK − V ∗‖∞
=‖TπKV πK − TπKVK‖∞ + ‖TVK − TV ∗‖∞
(b)≤ γ ‖V πK − VK‖∞ + γ ‖VK − V ∗‖∞
(c)≤ γ ‖V πK − V ∗‖∞ + 2γ ‖VK − V ∗‖∞,

where (a) and (c) follow from the triangular inequality, and (b) follows from the
contraction mapping. Consequently, we have

‖V πK − V ∗‖∞ ≤ 2γ

1− γ ‖VK − V
∗‖∞ ≤ 2γK+1

1− γ ‖V
∗‖∞ ≤ 2γK+1

(1− γ)2 .

5 Note that one choice of such policies is a deterministic policy π ′ satisfying

π ′(s) ∈ arg maxa∈A r̄(s, a)+ γ
∑
s′∈S P(s′|s, a)VK(s′).

2 Reinforcement Learning 27

Note that ‖V πK − V ∗‖∞ = maxs∈S
[
V ∗(s)− V πK (s)], thus, for sufficiently large

K , πK is near-optimal.

2.2.2.2 Policy Iteration

Policy iteration is one algorithm that computes an optimal policy π∗, which is
described as follows:

Policy iteration algorithm

Initialization: choose an arbitrary initial deterministic policy π0
Policy Iteration: for each k = 0, 1, 2, . . .
step 1: (policy evaluation) compute the state value function V πk for policy
πk by solving the system of linear equations

V = TπkV .

step 2: (policy improvement) compute a deterministic policy πk+1 satisfying

Tπk+1V
πk = TV πk

step 3: if V πk = TV πk , terminate and return πk

Recall that V πk is the unique bounded solution for the Bellman equation V =
TπkV . We also note that by definition, this Bellman equation is a system of linear
equations with |S| variables and |S| equations, where |S| is the cardinality of the
state space S. Thus, in the policy evaluation step, V πk can be computed by solving
linear equations. For the policy improvement step, we can choose a deterministic
policy πk+1 satisfying

πk+1(s) ∈ arg maxa∈A
[
r̄(s, a)+ γ ∑s′∈S P(s′|s, a)V πk (s′)

]
, ∀s ∈ S.

Notice that the policy iteration algorithm terminates if and only if V πk = V ∗, that
is, if and only if πk is optimal.

One can prove that the policy iteration algorithm will find an optimal policy
and terminate in a finite number of steps. Interested readers might refer to
Proposition 2.3.1 in Bertsekas (2011) for the proof. This is the main advantage of
policy iteration over value iteration. On the other hand, the policy evaluation step
in policy iteration requires solving a system of linear equations. This step can be
computationally expensive if the number of states |S| is large.

28 Z. Wen

2.3 Reinforcement Learning Algorithm Design

Based on the Markov decision process (MDP) frameworks discussed in Sect. 2.2,
in this section, we provide a high-level review of some core algorithm design issues
for reinforcement learning (RL), such as the choice of learning target, how to
design exploration schemes, and approximate solutions for large-scale RL problems.
Specifically, this section proceeds as follows: first, we formulate two standard RL
problems in Sect. 2.3.1 based on the finite-horizon MDP and the discounted MDP
discussed in the previous section. Then, in Sect. 2.3.2, we discuss the differences
between model-based RL and model-free RL, which correspond to different choices
of learning targets. We also review some classical RL algorithms, such as Q-
learning, Sarsa, and REINFORCE, in Sect. 2.3.2. Third, in Sect. 2.3.3, we review
some commonly used exploration schemes and discuss why data efficient RL agents
need to be able to accomplish “deep exploration”. Finally, in Sect. 2.3.4, we briefly
review approximate learning algorithms for large-scale RL problems, such as some
state-of-the-art deep reinforcement learning (DRL) algorithms (Silver et al., 2016,
2017b).

It is worth mentioning that RL has been an active research field in the past
few decades, and many different problem formulations and algorithms have been
developed. Due to the space limit, we can only discuss some core algorithm design
issues mentioned above and review a few classical algorithms. Interested readers
might refer to Sect. 2.4 for pointers to further reading.

2.3.1 Reinforcement Learning Problem Formulation

In this subsection, we formulate two RL problems based on the MDPs discussed in
Sect. 2.2: episodic RL in a finite-horizon MDP, and RL in a discounted MDP.

2.3.1.1 Episodic Reinforcement Learning in Finite-Horizon MDP

The first RL problem we consider is an episodic RL problem in a finite-horizon
MDP described in Sect. 2.2.1. Recall that a finite-horizon MDP MF is characterized
by a tuple MF = (S,A, P , r,H, ρ). In this episodic RL problem, we assume that
the agent knows the state space S, the action space A, and the time horizon H ; but
does not fully know the initial state distribution ρ, the transition model P , or the
reward model r . We also assume that the agent will repeatedly interact with MF for
T episodes. For any episode t = 1, . . . , T , and any period h = 1, . . . , H , we use
sth, ath, and rth to, respectively, denote the state, action, and reward at period h in
episode t .

Each episode t = 1, 2, . . . , T proceeds as follows: at the beginning of this
episode, the agent first observes an initial state st1, which is independently drawn

2 Reinforcement Learning 29

from the initial state distribution ρ. Then, at each period h = 1, . . . , H , the agent
adaptively chooses an action ath ∈ A based on its prior knowledge and past
observations and observes and receives a reward rth ∼ r(·| sth, ath). If h < H , the
agent will also observe the next state st,h+1 ∼ P(·| sth, ath). Episode t terminates
once the agent receives the reward rtH at periodH . The agent’s goal is to maximize
its expected cumulative reward in the first T episodes:

maxE
[∑T

t=1
∑H
h=1 rth

]
.

Many canonical or real-world RL problems can be formulated as either special
cases or extensions of the episodic RL problems described above. For example,
the classical multi-armed bandit problem (Lattimore & Szepesvári, 2020) can be
formulated as an episodic RL problem with one state and time horizon H = 1. On
the other hand, agents aiming to learn good strategies in computer games usually
need to interact with the games repeatedly, and each interaction can be viewed as an
episode. The computer game setting can be viewed as an extension of the episodic
RL problem described above, and the main difference is that the time horizon H in
computer games are usually random.6 Many research works have been dedicated to
episodic RL problems in the past decade (Dann et al. 2017; Wen & Van Roy, 2017;
Osband et al. 2013, 2019).

2.3.1.2 Reinforcement Learning in Discounted MDP

The second RL problem we consider is a RL problem in a discounted MDP MD,
which has been described in Sect. 2.2.2. Recall that a discounted MDP MD is
characterized by a tuple MD = (S,A, P , r, γ, ρ). In this RL problem, we assume
that the agent knows the state space S, the action space A, and the discrete-
time discount factor γ ; but does not fully know the initial state distribution ρ, the
transition model P , or the reward model r . For each time step t = 1, 2, . . ., we use
st , at , and rt to, respectively, denote the state, action, and reward at time period t .

This RL problem proceeds as follows: at the first time period t = 1, the agent
observes an initial state s1, which is independently drawn from the initial state
distribution ρ. Then, at each time step t = 1, 2, 3, . . ., the agent first adaptively
chooses an action at ∈ A based on its prior knowledge and past observations, and
then observes the reward rt ∼ r(·| st , at) and the next state st+1 ∼ P(·| st , at). The
agent’s goal is to maximize its expected total discounted reward

E
[∑∞

t=1 γ
t−1rt

]
.

6 More precisely, the time horizon H in a computer game is usually a stopping time, rather than
deterministic.

30 Z. Wen

In other words, the RL problem described in this subsection is the same as the
dynamic optimization problem discussed in Sect. 2.2.2, except that the agent does
not fully know P , r , and ρ. Consequently, the agent cannot directly compute
an optimal or near-optimal policy via the value iteration algorithm or the policy
iteration algorithm described in Sect. 2.2.2. Instead, the agent needs to learn to take
optimal or near-optimal actions while interacting with MD. It is worth mentioning
that RL in discounted MDPs is one of the most classical RL problems, and many
classical RL algorithms, such as Q-learning (Watkins & Dayan, 1992), were first
developed under this problem formulation.

2.3.2 Model-Based vs. Model-Free Reinforcement Learning

As we have discussed above, in RL problems, the agent usually does not fully know
the environment. For instance, in the RL problems described in Sect. 2.3.1, the
agent does not know the reward model r and the transition model P . The agent may
observe the reward and possibly other observations (e.g., the next state) after taking
an action at each time period. The agent needs to learn an optimal or near-optimal
or even high-performance policy π† while interacting with the environment.

Note that the agent does not have to attempt to learn π† directly. Instead, it
can choose to learn a learning target χ (Lu et al., 2021) that contains sufficient
information7 to compute π†. We can classify the RL algorithms based on their
chosen learning target χ . For the RL problems described in Sect. 2.3.1, some
commonly chosen learning targets are:

1. the MDP model;
2. the optimal state-action value functionQ∗;
3. an optimal policy π∗, or a near-optimal policy, or just a high-performance policy.

If an algorithm chooses the MDP model as its learning target, then we refer to
that algorithm as a model-based RL algorithm. On the other hand, if an algorithm
choosesQ∗, π∗, or a near-optimal policy as its learning target, then we refer to that
algorithm as a model-free RL algorithm, since it tries to learn an optimal or near-
optimal policy without learning the full MDP model. Specifically, if the learning
target of an algorithm is the optimal value function Q∗, then that algorithm is
referred to as a value learning algorithm. On the other hand, if the learning target is
an optimal policy, a near-optimal policy, or just a high-performance policy, then the
algorithm is referred to as a policy learning algorithm. As we will discuss below,
there are pros and cons between model-based RL algorithms and model-free RL
algorithms.

7 Mathematically, it means that π† = ψ(χ), where ψ is a function known to the agent.

2 Reinforcement Learning 31

2.3.2.1 Model-Based Reinforcement Learning

A model-based RL algorithm chooses the MDP model as its learning target. To
simplify the exposition, let us consider the episodic RL problem described in
Sect. 2.3.1.1, and the model-based RL in discounted MDPs is similar. For the
episodic RL problem, a model-based RL algorithm maintains a “knowledge state”
about the MDP model MF, and updates it while interacting with the environment.
Depending on the algorithm, this knowledge state could be a point estimate of MF,
a confidence set of MF, or the posterior distribution over MF. In each episode, a
model-based RL algorithm chooses actions based on its knowledge state about MF.

One example of model-based RL algorithms is the posterior sampling for
reinforcement learning (PSRL) developed in Osband et al. (2013), which can be
viewed as a special case of Thompson sampling (Thompson, 1933; Russo et al.,
2017) and is described below.

Posterior sampling for reinforcement learning (PSRL)

Initialization: a prior distribution P0 over the environment MF
for each episode t = 1, 2, . . .
Step 1: sample a finite-horizon MDP model M̃t ∼ Pt−1
Step 2: compute πt , one optimal policy under M̃t

Step 3: apply πt in episode t , receive reward rt1, rt2, . . . , rtH , and observe the
state-action-reward trajectory Dt = (st1, at1, rt1, . . . , stH , atH , rtH)
Step 4: update the posterior Pt over MF using Bayes’ rule, based on Pt−1 and
observation Dt

Specifically, the PSRL algorithm maintains and updates a posterior distribution
Pt over the environment MF. At each episode t , it first samples an MDP model M̃t

from the posterior, then it computes a policy πt that is optimal under the sampled
model M̃t . Third, it applies the policy πt in the true environment MF and observes
the state-action-reward trajectory Dt . Finally, it updates the posterior distribution
over the environment MF based on Dt , using the Bayes’ rule.

Compared with the model-free RL algorithms, one major disadvantage of model-
based RL algorithms, including PSRL described above, is that they tend to be
computationally expensive for large-scale RL problems. Specifically, a model-based
RL algorithm aims to learn the MDP model of the environment and needs to
maintain and update a knowledge state about the MDP model. Thus, to decide how
to choose actions, a model-based RL algorithm usually needs to compute a policy
based on its knowledge state about the MDP model. This step often requires solving
a dynamic programming problem. If the MDP model (environment) is large-scale,
then this step is usually computationally expensive.

Let us use the PSRL algorithm described above to further illustrate this. In
PSRL, the knowledge state about the MDP model is the posterior distribution Pt−1
over the MDP model. To choose actions in episode t , PSRL first samples a model
M̃t ∼ Pt−1, and then computes a policy πt that is optimal under the sampled model

32 Z. Wen

M̃t . Note that computing πt based on M̃t requires solving a dynamic programming
problem in the finite-horizon MDP M̃t . If the environment MF is a large-scale
problem and PSRL starts with an appropriately chosen prior, then M̃t is also likely
to be a large-scale MDP and hence computing πt can be computationally expensive.

On the other hand, for many RL problems, especially the large-scale RL
problems that require approximate solutions (see Sect. 2.3.4), it is usually easier to
develop provably data efficient model-based algorithms than provably data efficient
model-free algorithms. In particular, the PSRL algorithm described above is data
efficient under appropriate technical conditions (Osband et al., 2013), and we will
discuss this more in Sect. 2.3.3.

2.3.2.2 Q-Learning and SARSA

A widely used model-free RL algorithm is the classical Q-learning algorithm
(Watkins & Dayan, 1992). As its name indicates, the Q-learning algorithm chooses
the optimal state-action value function Q∗ as its learning target, and hence it is a
value learning algorithm. To simplify the exposition, let us consider a version of
Q-learning algorithm for the episodic RL problem described in Sect. 2.3.1.1, which
is detailed below.

Q-learning with ε-greedy exploration

Initialization: learning step size α ∈ (0, 1], exploration probability ε ∈ (0, 1],
and initializeQ(s, h, a) arbitrarily for all (s, h, a) ∈ S×H×A

for each episode t = 1, 2, . . .
observe the initial state st1 ∼ ρ
for each period h = 1, . . . , H :

Step 1 (ε-greedy exploration): with probability ε, choose action
ath uniformly randomly from A; with probability 1− ε, choose

ath ∼ unif

(

arg max
a∈A

Q(sth, h, a)

)

that is, ath is sampled uniformly randomly from arg maxa∈AQ(sth, h, a)
Step 2: take action ath, observe reward rth; if h < H , also observe the next
state st,h+1
Step 3: compute the temporal difference (TD) error

δth =
{
rth +maxa′ Q(st,h+1, h+ 1, a′)−Q(sth, h, ath) if h < H
rth −Q(sth, h, ath) if h = H

(2.22)
Step 4: updateQ(sth, h, ath) as

Q(sth, h, ath)← Q(sth, h, ath)+ αδth

2 Reinforcement Learning 33

Roughly speaking, the above Q-learning algorithm maintains and updates an
estimate Q of the optimal state-action value function Q∗ and proceeds as follows:
at each period h in episode t , the agent first chooses an action ath based on the ε-
greedy exploration with current estimate Q. That is, with probability ε, it chooses
the action ath uniformly randomly from A; and with probability 1−ε, it chooses ath
greedy8 to the current estimate Q in the sense that ath ∈ arg maxa∈AQ(sth, h, a).
Then, it takes action ath, observes the reward rth, and also observes the next state
st,h+1 if h < H . Finally, the agent computes the temporal-difference (TD) error
δth as specified in Eq. (2.22) and uses the TD error to update the value estimate
Q(sth, h, ath).

Note that the Q-learning algorithm above is a temporal-difference (TD) learning
algorithm, since it updates its estimate Q based on the TD error δth specified in
Eq. (2.22). To see why δth is referred to as a TD error, let us consider a period
h < H in episode t . Recall that rth ∼ r(·|sth, ath) and st,h+1 ∼ P(·|sth, ath), thus,
conditioning on sth and ath, rth+maxa′ Q(st,h+1, h+1, a′) is an unbiased estimate
of

r̄(sth, ath)+
∑

s′∈S
P(s′|sth, ath)max

a′∈A
Q(s′, h+ 1, a′), (2.23)

and hence δth is an unbiased estimate of

r̄(sth, ath)+
∑

s′∈S
P(s′|sth, ath)max

a′∈A
Q(s′, h+ 1, a′)−Q(sth, h, ath). (2.24)

If we view Q as an estimate of Q∗, then Q(sth, h, ath) is an estimate of
Q∗(sth, h, ath). On the other hand, based on Eq. (2.23), rth + maxa′ Q(st,h+1, h +
1, a′) is an estimate of

r̄(sth, ath)+
∑

s′∈S
P(s′|sth, ath)max

a′∈A
Q∗(s′, h+ 1, a′) = Q∗(sth, h, ath),

where the equality follows from the Bellman equation. Thus, δth is the
difference between two estimates of Q∗(sth, h, ath): Q(sth, h, ath) and rth +
maxa′ Q(st,h+1, h + 1, a′). Since rth + maxa′ Q(st,h+1, h + 1, a′) is based on Q
in the next period (period h + 1), while Q(sth, h, ath) is based on Q in the current
period (period h), this difference is referred to as a temporal-difference (TD) error.

Let us briefly discuss why the Q-learning algorithm might be able to learn the
optimal state-action value functionQ∗. Based on the value update equation

Q(sth, h, ath)← Q(sth, h, ath)+ αδth,

8 The algorithm breaks ties in a uniformly random manner, as specified in the pseudo-code.

34 Z. Wen

with an appropriately chosen learning step size α, the Q-learning algorithm updates
Q to minimize the absolute value (or square, which is equivalent) of the TD error
δth. As we have discussed above, the TD error δth is an unbiased estimate of
Eq. (2.24); and the absolute value of Eq. (2.24) is minimized when Q = Q∗. Thus,
under appropriate conditions, the Q-learning algorithm can learn Q∗. Rigorously
speaking, one can prove that if all state-period-action triples are visited infinitely
often, with a different choice of the learning step sizes that are episode-varying and
satisfy some standard stochastic approximation (Kushner & Yin, 2003) conditions,
Q will converge toQ∗ with probability 1. Please refer to Jaakkola et al. (1994) and
Tsitsiklis (1994) for the analysis.

The Q-learning algorithm is an off-policy learning algorithm, since it aims to
learn a policy different from that used to generate data. The policy used to generate
data is also known as the behavior policy. Specifically, the Q-learning algorithm
aims to learn the optimal state-action value functionQ∗, or equivalently, the optimal
policy π∗. However, the behavior policy can be any policy that performs sufficient
exploration to ensure that all state-period-action triples are visited infinitely often.
In the algorithm above, the policy used to generate data is the ε-greedy policy with
respect to the current estimateQ. It can also be other policies, such as the Boltzmann
(softmax) exploration policy with respect to the current estimateQ (see Sect. 2.3.3,
and Cesa-Bianchi et al. (2017) and the references therein).

The following learning algorithm, which is referred to as Sarsa (Rummery &
Niranjan, 1994; Sutton 1996), is an on-policy variant of the Q-learning algorithm.
We say Sarsa is on-policy since it attempts to evaluate and improve the policy
that is used to make decisions (i.e., the behavior policy). The main difference
between Sarsa and Q-learning is the TD error for period h < H : in Sarsa,
the TD error is defined based on the state-action-reward-state-action quintuple9
(
sth, ath, rth, st,h+1, at,h+1

)
:

δth = rth +Q(st,h+1, h+ 1, at,h+1)−Q(sth, h, ath) .

Assume that the current behavior policy is π , and assume that at,h+1 is chosen under
π , i.e., at,h+1 ∼ π(·|st,h+1, h + 1). Similar to what we have discussed above, for
Sarsa, δth is an unbiased estimate of

r̄(sth, ath)+
∑

s′∈S
P(s′|sth, ath)

∑

a′∈A
π(a′|s′, h+1)Q(s′, h+1, a′)−Q(sth, h, ath),

whose absolute value is minimized by Q = Qπ . Consequently, Sarsa continually
aims to estimate Qπ for the current behavior policy π . Note that at the same time
Sarsa also updates π toward greediness with respect to Qπ , as detailed below.
Interested readers might refer to Singh et al. (2000) for the convergence analysis
of Sarsa.

9 This state-action-reward-state-action quintuple gives rise to the name Sarsa for the algorithm.

2 Reinforcement Learning 35

Sarsa with ε-greedy exploration

Initialization: learning step size α ∈ (0, 1], exploration probability ε ∈ (0, 1],
and initializeQ(s, h, a) arbitrarily for all (s, h, a) ∈ S×H×A

for each episode t = 1, 2, . . .
observe the initial state st1 ∼ ρ
choose action at1 using ε-greedy policy with respect toQ
for each period h = 1, . . . , H :

Step 1: take action ath, observe reward rth; if h < H , also observe the next
state st,h+1, and choose action at,h+1 using ε-greedy policy with respect
toQ
Step 2: compute the temporal difference (TD) error

δth =
{
rth +Q(st,h+1, h+ 1, at,h+1)−Q(sth, h, ath) if h < H
rth −Q(sth, h, ath) if h = H

(2.25)
Step 3: updateQ(sth, h, ath) as

Q(sth, h, ath)← Q(sth, h, ath)+ αδth

Finally, it is worth mentioning that there are many variants and extensions of the
Q-learning algorithm and the Sarsa algorithm described above, such as the expected
Sarsa algorithm (Van Seijen et al., 2009), the double Q-learning algorithm (Hasselt,
2010), the n-step TD algorithms (see van Seijen (2016) and Chap. 7 in Sutton and
Barto (2018)) and the TD(λ) algorithms (see Sutton (1988), Dayan (1992), Tsitsiklis
(1994), and Chap. 12 in Sutton and Barto (2018)). Interested readers might refer
to these references for further reading. Also, this subsection has focused on the
episodic RL problem; it is straightforward to develop similar Q-learning and Sarsa
algorithms for RL in discounted MDPs described in Sect. 2.3.1.2.

2.3.2.3 Policy Gradient

Another class of widely used model-free RL algorithms are the policy gradient
methods (see Williams (1992), Marbach and Tsitsiklis (2001), Sutton et al. (2000),
and Chap. 13 in Sutton and Barto (2018)). As the name “policy gradient” indicates,
these methods choose an optimal policy π∗ as their learning target and aim to
learn a good approximation of π∗ with a parametric model, and hence they are
policy learning algorithms. To simplify the exposition, let us motivate and consider
a version of policy gradient method for the episodic RL problem described in
Sect. 2.3.1.1; a similar policy gradient method can be derived for RL in discounted
MDPs described in Sect. 2.3.1.2.

36 Z. Wen

Consider a policy πθ parameterized by θ ∈ �d , where d is the dimension
of θ . Note that the policy πθ can be parameterized in any way, as long as
πθ (a|s, h) is differentiable with respect to θ for all (s, h, a). One common kind
of parameterization is to parameterize the preference φθ (s, h, a) ∈ � for all state-
period-action triple (s, h, a), and define πθ via the softmax function:

πθ (a|s, h) = exp (φθ (s, h, a))
∑
a′∈A exp (φθ (s, h, a′))

.

For each θ ∈ �d , we define the expected total reward under policy πθ as

J (θ) = E
[
V πθ (s1, 1)

]
, (2.26)

where the expectation is over the initial state10 s1, which is drawn from the initial
state distribution ρ. Hence, the problem of finding the best policy in the policy class
� = {

πθ : θ ∈ �d
}

can be formulated as maxθ∈�d J (θ). Of course, one natural
method to maximize J (θ) is the gradient ascent algorithm based on ∇θJ (θ).

The following theorem is known as the policy gradient theorem, which is the
mathematical foundation for all policy gradient methods.

Theorem 2.1 (Policy Gradient Theorem) For J (θ) defined in Eq. 2.26, we have

∇θJ (θ) =
H∑

h=1

Eπθ

[
Qπθ (sh, h, ah)∇θ logπθ (ah|sh, h)

]
,

where the subscript πθ in notation Eπθ indicates that the expectation is taken under
the stochastic process defined by policy πθ .

Proof Note that V πθ (sh, h) =∑
a∈A πθ (a|sh, h)Qπθ (sh, h, a), thus

∇θV πθ (sh, h) =
∑

a∈A

[
Qπθ (sh, h, a)∇θπθ (a|sh, h)+ πθ (a|sh, h)∇θQπθ (sh, h, a)

]
.

From the Bellman equation (2.4), we have ∇θQπθ (sh, h, a) = 0 if h = H and

∇θQπθ (sh, h, a) =
∑

s′∈S
P(s′|sh, a)∇θV πθ (s′, h+ 1) if h < H.

Since

10 In Sect. 2.3.2.3, to simplify the notation, we drop the episode subscript t if the discus-
sion/analysis is within one episode.

2 Reinforcement Learning 37

∑

a∈A
πθ(a|sh, h)

∑

s′∈S
P(s′|sh, a)∇θV πθ (s′, h+ 1) = Eπθ

[∇θV πθ (sh+1, h+ 1)
∣
∣sh

]

and

∑

a∈A
Qπθ (sh, h, a)∇θπθ (a|sh, h)

=
∑

a∈A
Qπθ (sh, h, a)πθ (a|sh, h)∇θ logπθ (a|sh, h)

=Eπθ

[
Qπθ (sh, h, ah)∇θ logπθ(ah|sh, h)

∣
∣sh

]
,

we have

∇θV πθ (sh, h) =Eπθ

[
Qπθ (sh, h, ah)∇θ logπθ (ah|sh, h)

∣
∣sh

]

+Eπθ

[∇θV πθ (sh+1, h+ 1)
∣
∣sh

]
1(h < H).

Taking the expectation over sh, we have

Eπθ

[∇θV πθ (sh, h)
] =Eπθ

[
Qπθ (sh, h, ah)∇θ logπθ (ah|sh, h)

]

+Eπθ

[∇θV πθ (sh+1, h+ 1)
]
1(h < H).

Hence we have

∇θJ (θ) =Eπθ

[∇θV πθ (s1, 1)
] =

H∑

h=1

Eπθ

[
Qπθ (sh, h, ah)∇θ logπθ (ah|sh, h)

]
.

This concludes the proof. ��
We now motivate and discuss one policy gradient method, referred to as

REINFORCE (Williams, 1992), based on Theorem 2.1. First, note that we can
compute a stochastic gradient of J (θ) based on a state-action-reward trajectory
s1, a1, r1, . . . , sH , aH , rH under policy πθ . To see it, let us define Gh = ∑H

h′=h rh′
for any h, which is the total reward from period h to period H . We claim that∑H
h=1Gh∇θ logπθ (ah|sh, h) is a stochastic gradient of J (θ). To see it, notice that

Eπθ

[
Gh∇θ logπθ (ah|sh, h)

] =Eπθ

[
Eπθ [Gh|sh, ah]∇θ logπθ (ah|sh, h)

]

=Eπθ

[
Qπθ (sh, h, ah)∇θ logπθ (ah|sh, h)

]
,

where the second equality follows from Qπθ (sh, h, ah) = Eπθ [Gh|sh, ah]. The
REINFORCE algorithm is described below. As we have discussed above, it is a
stochastic gradient ascent algorithm to maximize J (θ).

38 Z. Wen

REINFORCE

Initialization: differentiable policy parameterization πθ , initial θ
and learning step size α ∈ (0, 1]

for each episode t = 1, 2, . . .
Step 1: generate trajectory st1, at1, rt1, . . . stH , atH , rtH under policy πθ
Step 2: compute Gth =∑H

h′=h rth′ for all h = 1, 2, . . . , H
Step 3: update θ ← θ + α∑H

h=1Gth∇θ logπθ (ath|sth, h)

It is worth mentioning that there are other policy gradient methods in addition to
the REINFORCE algorithm presented above. Such methods include REINFORCE
with baseline (Williams, 1992; Greensmith et al., 2004) and actor-critic methods
(Sutton, 1984; Degris et al., 2012). Interested readers might refer to the references
for further reading.

2.3.3 Exploration in Reinforcement Learning

In this subsection, we briefly review exploration in RL. As we have discussed
above, the exploration-exploitation trade-off is a key challenge in RL. Specifically,
balancing this trade-off is crucial for a RL algorithm to be data efficient, i.e., to learn
an optimal or near-optimal policy within few interactions with the environment.
Specifically, if an agent does not explore enough (under-exploration), then it might
get stuck in sub-optimal policies and never learn an optimal or near-optimal policy;
on the other hand, if an agent explores too much (over-exploration), then it might
choose sub-optimal actions in too many time steps and hence incur a huge reward
loss.

This subsection is organized as follows: we briefly review some commonly used
exploration schemes in Sect. 2.3.3.1; in Sect. 2.3.3.2, we motivate and discuss why
data efficient RL algorithms need to be able to accomplish “deep exploration”.

2.3.3.1 Exploration Schemes

We now briefly review some commonly used exploration schemes, including ε-
greedy exploration, Boltzmann exploration, exploration based on optimism in the
face of uncertainty (OFU), and Thompson sampling. To simplify the exposition,
we discuss these exploration schemes under the episodic RL problem discussed in
Sect. 2.3.1.1.

ε-Greedy Exploration ε-greedy exploration is probably the simplest exploration
scheme. In Sect. 2.3.2.2, we have presented two algorithms with ε-greedy explo-
ration: Q-learning with ε-greedy exploration and Sarsa with ε-greedy exploration.

2 Reinforcement Learning 39

Roughly speaking, in value learning algorithms, ε-greedy exploration proceeds as
follows: assume thatQ is a point estimate of the optimal state-action value function
Q∗, then at each period h in episode t , with probability 1 − ε, the agent chooses
an action greedy to the current estimate Q, i.e., ath ∈ arg maxa∈AQ(sth, h, a)
(exploitation); and with probability ε, it chooses a random action (exploration).
Similarly, in a model-based RL algorithm that maintains and updates a point
estimate of the MDP model, at each time step, the ε-greedy exploration chooses
an action greedy to the current model estimate with probability 1− ε and chooses a
random action with probability ε. Note that the choice of ε trades off the exploration
and exploitation.

Boltzmann (softmax) Exploration Boltzmann (softmax) exploration (Cesa-
Bianchi et al., 2017) is similar to ε-greedy exploration. In value learning algorithms,
Boltzmann exploration proceeds as follows: assume that Q is a point estimate of
Q∗, then at each period h in episode t , the agent chooses action a ∈ A with
probability

πB(a|sth, h) = exp (Q(sth, h, a)/η)
∑
a′∈A exp (Q(sth, h, a′)/η)

, (2.27)

where η > 0 is the temperature of Boltzmann exploration and trades off exploration
and exploitation. Specifically, as η → ∞, πB(·|sth, h) converges to the uniform
distribution over A (exploration only); as η → 0, Boltzmann exploration will
choose an action greedy toQ (exploitation only).

Optimism in the Face of Uncertainty (OFU) OFU is a class of exploration
schemes that are widely used to design provably data efficient RL algorithms. One
version of the OFU exploration scheme proceeds as follows: the agent maintains
and updates a confidence set over a learning target χ (e.g., the MDP model or Q∗);
then at the beginning of each episode, it uses this confidence set to assign each
state-period-action triple (s, h, a) an optimistically biased estimate Q̂(s, h, a) of
Q∗(s, h, a); finally, at each period h in the current episode t , it will choose action
ath greedy to Q̂, i.e., ath ∈ arg maxa∈A Q̂(sth, h, a).

Thompson Sampling (TS) Thompson sampling (Thompson, 1933; Russo et al.,
2017) is another exploration scheme widely used to design data efficient RL
algorithms. It proceeds as follows: the agent maintains and updates a posterior
distribution over a learning target χ (e.g., the MDP model or Q∗); then at the
beginning of each episode t , it samples a target χ̃t from the posterior distribution
and computes a policy πt optimal under the sampled target χ̃t ; finally, it chooses
actions in episode t based on πt . Note that the PSRL algorithm in Sect. 2.3.2.1 is a
TS algorithm whose learning target is the MDP model.

In general, the ε-greedy exploration and the Boltzmann exploration are compu-
tationally more efficient than OFU and TS, since they only require a point estimate
of the learning target (e.g., Q∗), while OFU requires maintaining and updating a
confidence set over the learning target and TS requires maintaining and updating

40 Z. Wen

a posterior distribution over the learning target. On the other hand, ε-greedy and
Boltzmann exploration can easily lead to data inefficient learning, while OFU and
TS are widely used to design mathematically provably data efficient RL algorithms
(Kearns & Singh, 2002; Brafman & Tennenholtz, 2002, Jaksch et al. 2010; Osband
et al. 2013; Wen et al. 2020). In the next subsection, we will use a simple example
to illustrate this.

There are other exploration schemes in addition to those mentioned above. One
of them that is particularly interesting is the information-directed sampling (IDS)
(Russo & Van Roy, 2014; Lu et al. 2021), which samples actions in a manner
that minimizes the ratio between the squared expected performance loss (known
as regret) and a measure of information gain. Interested readers might refer to the
references for further reading.

2.3.3.2 Deep Exploration

In this subsection, we motivate and discuss why data efficient RL algorithms need
to be able to accomplish “deep exploration” (Osband et al., 2019). As we have
discussed above, in RL, exploration means that the agent needs to try actions that
might provide some useful information feedback. In the special case of multi-armed
bandits (MABs) (Lattimore & Szepesvári, 2020), since there is only one state, if
the agent wants to gather some information by taking an action, it can always do
it. However, this might not be the case for general RL problems. Specifically, some
crucial information might only be obtained by trying an action at a particular state
s†; consequently, to obtain this information, the agent needs to learn to plan to visit
s† first.

Consequently, a reliably data efficient RL algorithm needs to be able to accom-
plish “deep exploration”. By this we mean that, the algorithm does not only consider
immediate information gain of taking an action but also the consequences of an
action or a sequence of actions on future learning. A deep exploration algorithm
could, for instance, choose to incur performance losses over a sequence of actions
while only expecting informative observations after multiple time steps. In the
remainder of this section, we use a simple example to illustrate the notion of deep
exploration and compare the data efficiencies of the PSRL algorithm described in
Sect. 2.3.2.1 and the Q-learning with ε-greedy exploration described in Sect. 2.3.2.2.

Let us consider an episodic RL problem with deterministic transitions and
rewards, which is illustrated in Fig. 2.2 and referred to as the “chain example”.
Specifically, in this problem, S = {1, 2, . . . , H } where H is the time horizon,
A = {1, 2}, and the initial state in each episode is always s1 = 1. When the agent
takes action a ∈ A in state s at period h:

• it will receive a deterministic reward z if s = H and a = 1; otherwise, it will
receive reward 0.

• it will transition to state min{s + 1,H } if a = 1 and h < H ; it will transition to
state max{s − 1, 1} if a = 2 and h < H .

2 Reinforcement Learning 41

Fig. 2.2 Illustration of the “chain example” with H = 6. The nodes denote the states and the
arrows denote the possible state transitions. We use the green node to denote the fixed initial state
and use the red node to denote the “informative state”

We assume that the agent knows everything about this environment, except the
deterministic reward z at state-action pair (s = H, a = 1). We assume that the
agent’s prior over z is P0(z = 1) = P0(z = −1) = 0.5. Obviously, the optimal
policy π∗ depends on z. For example, if z = 1, the only optimal sequence of actions
is to always choose a = 1. The agent needs to visit state s = H and take action
a = 1 there to learn the crucial information z. If the agent plans a sequence of
actions to do so, we say it accomplishes the deep exploration in this example.

In this example, the data efficiency of an algorithm can be measured by the
expected number of episodes it takes for the algorithm to learn z. Let us consider
the PSRL algorithm first. Note that for this example, sampling an MDP model M̃t

is equivalent to sampling a deterministic reward z̃t ∈ {−1, 1} at state-action pair
(s = H, a = 1), since other parts of the environment are known. In episode
t = 1 with prior P0, the agent will sample z̃1 = ±1 with equal probability 0.5.
Note that with z̃1 = 1, the PSRL algorithm will choose a sequence of actions
at1 = at2 = . . . = atH = 1 in episode t = 1 and hence learn z; on the other
hand, with z̃1 = −1, the PSRL algorithm will not learn z in this episode. Thus, in
episode 1, the PSRL algorithm will learn z with probability 0.5. Since the PSRL
algorithm will not update its posterior before learning z, the expected number of
episodes it takes for PSRL to learn z is 2.

On the other hand, for Q-learning with ε-greedy exploration, we assume thatQ is
initialized as Q(s, h, a) = 0 for all (s, h, a). Note that under this algorithm, before
the agent observes z, Q(s, h, a) = 0, ∀(s, h, a) and the algorithm chooses actions
uniformly randomly at all state-period pairs. In such episodes, the agent will learn z
with probability 2−H . Hence, the expected number of episodes for this Q-learning
algorithm to learn z is 2H .

To sum up, in this example, Q-learning with ε-greedy exploration is highly
data inefficient compared to PSRL. This is because PSRL accomplishes deep
exploration: in each episode, it plans based on a sampled MDP model and hence
considers the consequences of a sequence of actions. On the other hand, the
Q-learning algorithm just chooses random actions before it observes the crucial
information z.

42 Z. Wen

2.3.4 Approximate Solution Methods and Deep Reinforcement
Learning

Many modern RL problems tend to have intractably large state space S and/or
action space A. For such large-scale RL problems, an algorithm that aims to
learn an optimal policy π∗ asymptotically will require not only an intractably
large memory space but also intractably many time steps for learning. Let us
still use the episodic RL problem to illustrate the ideas. Consider the Q-learning
algorithm with an exploration scheme that performs sufficient exploration (not
necessarily the ε-greedy exploration). As we have discussed in Sect. 2.3.2.2, under
appropriate conditions this algorithm learns Q∗ asymptotically. Notice that this
algorithm requires an O (|S||A|H) memory space to store the point estimate Q
of Q∗. Moreover, since the algorithm only updates its estimate Q(s, h, a) for state-
period-action triple (s, h, a) when it visits that triple, thus, to learn a good estimate
ofQ∗, the algorithm needs to visit each state-period-action triple at least once. This
requires �(|S||A|) episodes, which is intractably many for large-scale problems.

Thus, for such large-scale RL problems, our goal is to learn a good approximate
solution with limited memory space and limited time steps. One such approach,
which is commonly used in practice, is to approximate the learning target (e.g.,
Q∗ or π∗) by a low-dimensional parametric model and learn the parameters of that
model. Note that if the parametric model can well approximate the learning target,
and the number of parameters to learn is much less than the “size” of the learning
target (e.g., the “size” of Q∗ is |S||A|H), then learning with this parametric model
can significantly improve the data efficiency.

One such learning algorithm is the REINFORCE algorithm described in
Sect. 2.3.2.3. Recall that REINFORCE approximates its learning target π∗ by a
parametric model πθ and tries to learn a good parameter vector θ via stochastic
gradient ascent.

Similarly, many value learning algorithms for large-scale RL problems aim to
learn a good approximation of Q∗ via a parametric model Qθ , where θ is the
parameter vector to be learned. There are many difference choices of the parametric
model Qθ . One classical choice is to choose Qθ linear in the parameter vector
θ . Specifically, each state-period-action triple (s, h, a) is associated with a known
feature vector φ(s, h, a) ∈ �d , and for any θ ∈ �d ,

Qθ(s, h, a) = φ(s, h, a)T θ, (2.28)

where the superscript T denotes the vector transpose and d is the feature dimension.
This parametric model is known as the linear value function approximation in the
literature (see Chaps. 6 and 7 of Bertsekas (2011) and the references therein).

Another choice of the parametric model, which is widely used in the past decade,
is to choose Qθ as a (deep) neural network with fixed architecture and parameter
vector θ . Note that the parameter vector θ typically encodes the weights and the
biases in all layers of the neural network. Approximate solution methods based

2 Reinforcement Learning 43

on a (deep) neural network (NN) model are also known as deep reinforcement
learning (DRL) algorithms (Arulkumaran et al., 2017; Li, 2017). One well-known
DRL algorithm is deep Q-learning with experience replay (Mnih et al., 2015), which
is also known as deep Q-network (DQN) and is described below.

Deep Q-learning with experience replay (DQN)

Initialization: architecture of NNQθ , initial θ , exploration probability ε,
FIFO replay buffer D with capacity N , minibatch size B,
and a gradient-based optimization algorithm optimizer

for each episode t = 1, 2, . . .
set θ− ← θ

observe the initial state st1 ∼ ρ
for each period h = 1, . . . , H :

Step 1 (ε-greedy exploration): with probability ε, choose action
ath uniformly randomly from A; with probability 1− ε, choose

ath ∼ unif

(

arg max
a∈A

Qθ (sth, h, a)

)

that is, ath is sampled uniformly randomly from arg maxa∈AQθ (sth, h, a)
Step 2: take action ath, observe reward rth; if h < H , also observe the next
state st,h+1
Step 3: store transition (sth, h, ath, rth, st,h+1) in the replay buffer D;
if h = H , set st,h+1 = null
Step 4: sample a random minibatch of transitions (sj , hj , aj , rj , s′j) for
j = 1, 2, . . . , B from D, and set

yj = rj + max
a′∈A

Qθ−(s
′
j , hj + 1, a′) ∀j = 1, 2, . . . , B (2.29)

we setQθ−(s
′
j , hj + 1, a′) = 0 if s′j = null

Step 5: define the loss function �(θ) and compute the gradient g

�(θ) = 1
2

∑B
j=1

(
Qθ(sj , hj , aj)− yj

)2
, g = ∇θ �(θ),

and update θ ← optimizer(θ, g) to minimize �(θ)

Deep Q-learning with experience replay is similar to the Q-learning algorithm
described in Sect. 2.3.2.2. Specifically, its learning target is still the optimal state-
action value function Q∗, it still uses ε-greedy exploration, and it is still an
off-policy learning algorithm. However, there are two main differences: the first
difference is that the deep Q-learning algorithm approximates Q∗ by a neural
network Qθ and learns the parameter vector θ . The second difference is that it uses

44 Z. Wen

a technique known as experience replay (Lin, 1992) to enhance the data efficiency.
Specifically, the transitions are stored in a replay buffer D. At each period, a
minibatch of transitions are sampled with replacement from D, and the deep Q-
learning algorithm updates θ using a stochastic gradient computed based on this
minibatch. With experience replay, a transition (sth, h, ath, rth, st,h+1) is potentially
used in many parameter update steps, which allows for greater data efficiency.

We also would like to clarify some technical issues in the deep Q-learning
algorithm described above. First, how to choose the architecture of Qθ is highly
non-trivial and in general application-dependent. Second, due to the memory space
limit, the replay buffer D has a finite capacity N . Hence, when D is full and the
agent would like to store a new transition, it needs to either delete a transition from
D or discard the new transition. There are many ways to do it, and in the algorithm
above, the buffer uses a first in, first out (FIFO) buffer replacement strategy. Third,
it is worth mentioning that the optimization algorithm optimizer can be any
gradient-based algorithm (Ruder, 2016), such as the stochastic gradient descent
(SGD) algorithm and the Adam algorithm (Kingma & Ba, 2014). Note that some
optimizer like Adam also needs to update the optimizer state (e.g., the first and
second order moments in Adam), which is abstracted away from the pseudo-code
above. Finally, note that in Eq. (2.29), yj is computed based on θ− instead of θ .
Thus, the gradient g is

g =∑B
j=1

(
Qθ(sj , hj , aj)− yj

)∇θQθ (sj , hj , aj).

Also notice that though θ is updated in every period, θ− (and hence Qθ− , the
function used to compute the “target values” yj ’s) remains fixed within one episode.
Keeping θ− fixed within one episode might be crucial for the convergence of the
deep Q-learning algorithm in some applications.

Deep reinforcement learning (DRL) has been an active research area in the
past decade, and the deep Q-learning algorithm described above is one of the first
algorithms developed in this area. It is worth mentioning that one agent based on a
variant of it has achieved a level comparable to that of a professional human games
tester across 49 games of the challenging Atari 2600 games (Mnih et al., 2015).
More advanced DRL agents, such as AlphaGo (Silver et al., 2016) and MuZero
(Schrittwieser et al., 2020) have also been developed. Interested readers might refer
to the references for further reading.

2.4 Conclusion and Further Reading

In this chapter, we have briefly reviewed some fundamental concepts, standard
problem formulations, and classical algorithms of reinforcement learning (RL).
Specifically, in Sect. 2.2, we have reviewed Markov decision processes (MDPs)
and dynamic programming (DP), which provide mathematical foundations for
both the problem formulation and algorithm design for RL. In Sect. 2.3, we have

2 Reinforcement Learning 45

classified the RL algorithms based on their learning targets and reviewed some
classical algorithms such as PSRL, Q-learning, Sarsa, and REINFORCE. We have
also reviewed the standard exploration schemes in RL in Sect. 2.3.3 and reviewed
approximate solution methods for large-scale RL problems in Sect. 2.3.4.

Before concluding this chapter, we would like to provide some pointers for
further reading. Due to the space limit, we have not covered many exciting topics in
RL, such as RL problems based on average-reward MDPs (see Mahadevan (1996)
and Chap. 5 of Bertsekas (2011)), hierarchical reinforcement learning (Pateria et al.,
2021; Al-Emran, 2015), multi-agent reinforcement learning (Busoniu et al., 2008;
Zhang et al., 2021), imitation learning (Hussein et al., 2017), partially observable
MDPs (Kaelbling et al., 1998), inverse reinforcement learning (Ng et al. 2000;
Arora & Doshi, 2021), and safe reinforcement learning (Garcıa & Fernández, 2015).
Interested readers might refer to the references for further reading. There are also
several classical textbooks on RL and related topics, such as Sutton and Barto
(2018), Bertsekas (2000, 2011, 2019), Szepesvári (2010), and Powell (2007). DRL
has been an active research area in the past decade, and there are also some recent
and more applied books on DRL (Lapan, 2018; Ravichandiran, 2018). Interested
readers might also refer to them for further reading.

References

Al-Emran, M. (2015). Hierarchical reinforcement learning: A survey. International Journal of
Computing and Digital Systems, 4(02). https://dx.doi.org/10.12785/IJCDS/040207

Arora, S., & Doshi, P. (2021). A survey of inverse reinforcement learning: Challenges, methods
and progress. Artificial Intelligence, 297, 103500.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement
learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26–38.

Bertsekas, D. (2019). Reinforcement and optimal control. Belmont: Athena Scientific
Bertsekas, D. P. (2000). Dynamic programming and optimal control (Vol. 1). Belmont: Athena

scientific.
Bertsekas, D. P. (2011). Dynamic programming and optimal control (Vol. II, 3rd ed.). Belmont:

Athena scientific.
Bishop, C. M. (2006). Pattern recognition and machine learning (Information science and

statistics). Berlin, Heidelberg: Springer.
Brafman, R. I., & Tennenholtz, M. (2002). R-max-a general polynomial time algorithm for near-

optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct), 213–231.
Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent

reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-
cations and Reviews), 38(2), 156–172.

Cesa-Bianchi, N., Gentile, C., Lugosi, G., & Neu, G. (2017). Boltzmann exploration done right.
Preprint. arXiv:170510257.

Chen, X., Li, S., Li, H., Jiang, S., Qi, Y., & Song, L. (2019). Generative adversarial user model
for reinforcement learning based recommendation system. In International Conference on
Machine Learning, PMLR (pp. 1052–1061).

Dann, C., Lattimore, T., & Brunskill, E. (2017). Unifying PAC and regret: Uniform PAC bounds
for episodic reinforcement learning. Preprint. arXiv:170307710.

Dayan, P. (1992). The convergence of td (λ) for general λ. Machine Learning, 8(3–4), 341–362.

14236 31222 a 14236 31222 a

https://dx.doi.org/10.12785/IJCDS/040207

46 Z. Wen

Degris, T., White, M., & Sutton, R. S. (2012). Off-policy actor-critic. Preprint. arXiv:12054839.
Fischer, T. G. (2018). Reinforcement Learning in Financial Markets—A Survey. Tech. rep., FAU

Discussion Papers in Economics.
Friedman, J., Hastie, T., Tibshirani, R., et al. (2001). The elements of statistical learning. Springer

series in statistics. New York: Springer.
Garcıa, J., & Fernández, F. (2015). A comprehensive survey on safe reinforcement learning.

Journal of Machine Learning Research, 16(1), 1437–1480.
Gosavii, A., Bandla, N., & Das, T. K. (2002). A reinforcement learning approach to a single

leg airline revenue management problem with multiple fare classes and overbooking. IIE
Transactions, 34(9), 729–742.

Greensmith, E., Bartlett, P. L., & Baxter, J. (2004). Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research, 5(9), 1471–1530.

Hasselt, H. (2010). Double q-learning. Advances in Neural Information Processing Systems, 23,
2613–2621.

Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2), 1–35.

Jaakkola, T., Jordan, M. I., & Singh, S. P. (1994). On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6(6), 1185–1201.

Jaksch, T., Ortner, R., & Auer, P. (2010). Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11(4), 1563–1600.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101(1–2), 99–134.

Kearns, M., & Singh, S. (2002). Near-optimal reinforcement learning in polynomial time. Machine
Learning, 49(2), 209–232.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. Preprint.
arXiv:14126980.

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11), 1238–1274.

Kushner, H., & Yin, G. G. (2003). Stochastic approximation and recursive algorithms and
applications (Vol. 35). New York: Springer Science & Business Media.

Kuznetsova, E., Li, Y. F., Ruiz, C., Zio, E., Ault, G., & Bell, K. (2013). Reinforcement learning for
microgrid energy management. Energy, 59, 133–146.

Kveton, B., Szepesvari, C., Wen, Z., & Ashkan, A. (2015). Cascading bandits: Learning to rank in
the cascade model. In International Conference on Machine Learning, PMLR (pp. 767–776)

Lapan, M. (2018). Deep reinforcement learning hands-on: Apply modern RL methods, with deep
Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more. Birmingham:
Packt Publishing Ltd.

Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Cambridge: Cambridge University
Press.

Li, Y. (2017). Deep reinforcement learning: An overview. Preprint. arXiv:170107274.
Lin, L. J. (1992). Reinforcement learning for robots using neural networks. Pittsburgh: Carnegie

Mellon University.
Lu, X., Van Roy, B., Dwaracherla, V., Ibrahimi, M., Osband, I., & Wen, Z. (2021). Reinforcement

learning, bit by bit. Preprint. arXiv:210304047.
Mahadevan, S. (1996). Average reward reinforcement learning: Foundations, algorithms, and

empirical results. Machine Learning, 22(1), 159–195.
Marbach, P., & Tsitsiklis, J. N. (2001). Simulation-based optimization of Markov reward processes.

IEEE Transactions on Automatic Control, 46(2), 191–209.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,

Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015) Human-level control through deep
reinforcement learning. Nature, 518(7540), 529–533.

Ng, A. Y., Russell, S. J., et al. (2000). Algorithms for inverse reinforcement learning. In ICML
(Vol. 1, p. 2).

2 Reinforcement Learning 47

Osband, I., Russo, D., & Van Roy, B. (2013). (More) Efficient reinforcement learning via posterior
sampling. Preprint. arXiv:13060940.

Osband, I., Van Roy, B., Russo, D. J., Wen, Z., et al. (2019) Deep exploration via randomized value
functions. Journal of Machine Learning Research, 20(124), 1–62.

Pateria, S., Subagdja, B., Tan, A. H., & Quek, C. (2021). Hierarchical reinforcement learning: A
comprehensive survey. ACM Computing Surveys (CSUR), 54(5), 1–35.

Powell, W. B. (2007). Approximate dynamic programming: Solving the curses of dimensionality
(Vol. 703). New York: Wiley.

Ravichandiran, S. (2018). Hands-on reinforcement learning with Python: Master reinforcement
and deep reinforcement learning using OpenAI gym and tensorFlow. Birmingham: Packt
Publishing Ltd.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. Preprint.
arXiv:160904747.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist systems (Vol. 37).
Citeseer.

Russo, D., & Van Roy, B. (2014). Learning to optimize via information-directed sampling.
Advances in Neural Information Processing Systems, 27, 1583–1591.

Russo, D., Van Roy, B., Kazerouni, A., Osband, I., & Wen, Z. (2017). A tutorial on Thompson
sampling. Preprint. arXiv:170702038.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A.,
Lockhart, E., Hassabis, D., Graepel, T., et al. (2020). Mastering Atari, Go, chess and shogi
by planning with a learned model. Nature, 588(7839), 604–609.

van Seijen, H. (2016). Effective multi-step temporal-difference learning for non-linear function
approximation. Preprint. arXiv:160805151.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587), 484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,
Kumaran, D., Graepel, T., et al. (2017a). Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. Preprint. arXiv:171201815.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker,
L., Lai, M., Bolton, A., et al. (2017b). Mastering the game of go without human knowledge.
Nature, 550(7676), 354–359.

Singh, S., Jaakkola, T., Littman, M. L., & Szepesvári, C. (2000). Convergence results for single-
step on-policy reinforcement-learning algorithms. Machine Learning, 38(3), 287–308.

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning. PhD thesis,
University of Massachusetts Amherst.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3(1), 9–44.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In Advances in neural information processing systems (pp. 1038–1044).
Cambridge: MIT Press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. Cambridge: MIT
Press.

Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (2000). Policy gradient methods
for reinforcement learning with function approximation. In Advances in neural information
processing systems (pp. 1057–1063).

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 4(1), 1–103.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4), 285–294.

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and q-learning. Machine Learning,
16(3):185–202.

48 Z. Wen

Van Seijen, H., Van Hasselt, H., Whiteson, S., & Wiering, M. (2009). A theoretical and empirical
analysis of expected Sarsa. In 2009 IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning (pp. 177–184). New York: IEEE.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.
Wen, Z., & Van Roy, B. (2017). Efficient reinforcement learning in deterministic systems with

value function generalization. Mathematics of Operations Research, 42(3), 762–782.
Wen, Z., O’Neill, D., & Maei, H. (2015). Optimal demand response using device-based reinforce-

ment learning. IEEE Transactions on Smart Grid, 6(5), 2312–2324.
Wen, Z., Precup, D., Ibrahimi, M., Barreto, A., Van Roy, B., & Singh, S. (2020). On efficiency

in hierarchical reinforcement learning. Advances in Neural Information Processing Systems
(Vol. 33)

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3), 229–256.

Zhang, K., Yang, Z., & Başar, T. (2021). Multi-agent reinforcement learning: A selective overview
of theories and algorithms. In Handbook of reinforcement learning and control (pp. 321–384).

Zhang, W., Zhao, X., Zhao, L., Yin, D., Yang, G. H., & Beutel, A. (2020). Deep reinforcement
learning for information retrieval: Fundamentals and advances. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information Retrieval
(pp. 2468–2471)

Chapter 3
Optimal Learning and Optimal Design

Ilya O. Ryzhov

3.1 Introduction

Suppose that μ1, μ2 are two population means—perhaps the average clickthrough
rates or average session durations for two different designs of an e-commerce
website. The firm’s online marketing team wishes to know if one design is more
effective than the other; to that end, N customers have been randomly selected
for an A/B test. The two respective designs are shown to N1 and N2 randomly
chosen customers, with N1 +N2 = N , and sample means θ1, θ2 (empirical average
clickthrough rates or session durations) are obtained.

Under the usual normality assumptions, we calculate the two-sample test statistic

zN = θ1 − θ2
√
σ 2

1
N1
+ σ 2

2
N2

, (3.1)

where σ1, σ2 are the population standard deviations for the two designs. (For
simplicity, let us suppose that these are known.) As is taught in every statistics
course, the statistic (3.1) is used to test the null hypothesis that μ1 = μ2.

The expression in (3.1) also appears in another context, however. Suppose that,
in reality, μ1 > μ2. The results of the A/B test will be used to select one design
for adoption. The selection decision will be incorrect if θ2 > θ1, that is, the second
design seems to be better than the first. As N increases, the probability of incorrect
selection will be reduced, and it is possible to characterize the rate at which it
vanishes to zero very precisely. Suppose thatN →∞, but N1

N
→ p1, and N2

N
→ p2,

I. O. Ryzhov (�)
Robert H. Smith School of Business, University of Maryland, College Park, MD, USA
e-mail: iryzhov@umd.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_3&domain=pdf

 885
55738 a 885 55738 a

mailto:iryzhov@umd.edu

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_3

50 I. O. Ryzhov

with p1 + p2 = 1 and p1, p2 > 0. In other words, the design is tested on more and
more customers, but a fixed proportion of the total number N is assigned to each
design. Then, one can obtain the so-called large deviations law

lim
N→∞

1

N
logP (θ2 > θ1) = −�,

where

� = (μ1 − μ2)
2

2

(
σ 2

1
p1
+ σ 2

2
p2

) . (3.2)

That is, the probability of incorrect selection behaves like e−�·N , where � > 0
is a fixed constant determined by the various population parameters, as well as by
the proportions of customers assigned to each design. It is easy to see that (3.2)

is none other than limN→∞ 1
2N

(
zN

)2
, where zN is the test statistic from (3.1). A

quantity that we are used to seeing in the context of testing for differences between
populations also plays a second role in the evaluation of decisions made as a result
of the test (in this case, the decision to select the design with the highest sample
mean).

This interpretation opens the door to the study of optimal designs. The probability
of incorrect selection will vanish more quickly as� increases, but we have the ability
to influence � by varying p1 and p2. Since the numerator of (3.2) is constant, we
can maximize � by minimizing the denominator, giving rise to the problem

min
σ 2

1

p1
+ σ

2
2

p2
(3.3)

subject to p1 + p2 = 1 and p1, p2 ≥ 0. It is easy to see that the solution to (3.3) is
characterized by

p1

p2
= σ1

σ2
, (3.4)

so the population with higher variance should receive a larger proportion of the
customers. The ratio (3.4) is well-known in the statistics literature (see, e.g.,
Dannenberg et al., 1994) in the context of the original two-sample test.

This chapter will explore connections between statistics and optimization that
arise in optimal learning. A major focus will be on statistical design of experiments,
a classical area that is only now being connected to decision problems. As we saw
in the preceding example, the statistical problem of choosing sample sizes for a
two-sample test (or, in different words, the problem of allocating a learning budget
between two alternatives) has direct implications for the probability of making a
suboptimal decision based on the results of the sample. We will show a more general

3 Optimal Learning and Optimal Design 51

form of this problem, known under the name of ranking and selection, and discuss
the connections between optimal budget allocations and state-of-the-art learning
algorithms. We will also discuss some more general challenges in the design of
statistical models for learning problems.

The types of applications for which these mathematical and algorithmic devel-
opments are most useful can be seen as generalizations of the A/B testing problem
described above. Often, the goal is to choose the best among a finite set of
alternatives, with the total number of possible choices being too large for exhaustive
experimentation. For example, suppose that, instead of just two competing website
designs, we plan to offer personalized content to each user depending on the user’s
past purchases or preferences. Perhaps an “alternative” could be a set of products
or search results, in which case the number of alternatives becomes combinatorially
large; such assortment planning problems will be discussed in more detail in Chaps.
8–10. Alternately, an alternative could represent a multi-attribute decision, e.g., in a
medical context, where a doctor chooses not only a drug but a dosage level, perhaps
customized to patient attributes (see, e.g., Nasrollahzadeh & Khademi, 2020).

It is also possible to have continuous-valued alternatives. Such problems often
arise in simulation optimization, where the performance of a complex engineering
system may be represented by an expensive simulator that requires days or weeks
of machine time in order to evaluate a single scenario. System performance depends
on multiple continuous-valued design parameters. For example, as discussed in Qu
et al. (2015), the energy output of a wind farm depends on the locations of the
individual wind turbines, the lengths of the turbine blades, the wind speed and
altitude, and other such factors, and one would like to identify the most (or least)
favorable scenario before the wind farm is built. Similar issues also commonly arise
in hyperparameter tuning for machine learning models (Eitrich & Lang, 2006),
where the performance (predictive power) of the model is a function of a high-
dimensional hyperparameter vector.

Our discussion here is mainly motivated by applications where the goal is to
identify the best alternative as efficiently as possible under a limited budget. We are
not necessarily interested in the outcomes of the individual experiments themselves
as long as they lead us to a good selection at the end. In this way, the problems
we consider are different from multi-armed bandit problems, which almost always
focus on maximizing cumulative reward. Within the bandit literature, the substream
that studies “best-arm identification” problems (Garivier & Kaufmann, 2016) is
closest to our focus here.

This chapter is organized as follows. Section 3.2 gives a brief overview of
key concepts from the classical literature on statistical design of experiments.
Section 3.3 then develops a bridge between optimal design and learning using the
ranking and selection model for illustration. We explain the meaning of an optimal
design in a context where the goal is to select the best alternative and contrast it
with the classical meaning. Section 3.4 then shows how this concept of optimal
design arises in two popular methodologies for sequential learning, sometimes in
unexpected ways. We argue that optimal designs can be directly used to develop

52 I. O. Ryzhov

such methods. Section 3.5 describes two instances of very recent research where
this concept of optimality was developed in settings that fall outside the scope of
ranking and selection. Specifically, we discuss linear regression, the classical setting
of the design of experiments literature, and contrast the value-based design with
traditional ones; we also briefly touch on an interesting application of these ideas
to approximate dynamic programming. Section 3.6 concludes. At the end of each
section, we provide additional references on related topics for interested readers.

3.2 Statistical Design of Experiments

The experimental design problem has a long history in statistics (see, e.g., Kiefer,
1971). Typically, one begins with a least squares regression model

y = β	x + ε,

where β ∈ R
d is a vector of unknown regression coefficients, x ∈ R

d is a vector of
features obtained from historical data, and ε is an independent zero-mean residual
noise. One obtains the dataset

XN =
⎡

⎢
⎣

x1
1 . . . x

1
d

...
. . .

...

xN1 . . . xNd

⎤

⎥
⎦ , YN =

⎡

⎢
⎣

y1

...

yN

⎤

⎥
⎦

and fits the ordinary least squares (OLS) estimator θN =
((

XN
)	

XN
)−1

YN ,

where it is worth noting that

(
XN

)	
XN =

N∑

n=1

(
xn
) (
xn
)	
. (3.5)

For arbitrary x, the quantity x	θN is the predicted value of the expected response
with x as the features. One can then use the prediction to make decisions; for
example, arg maxx∈X x	θN will give us the set of features, among all elements of
some finite or infinite set X, that is predicted to have the highest value. In other
words, a single x vector represents a certain decision, with the components of x
describing its attributes, and we wish to identify the best decision.

However, the classical literature on this subject generally does not associate
feature vectors with decisions and thus does not have a notion of the “best” decision
or the “value” of a feature vector. Instead, the following approach is adopted. One
observes that the covariance matrix of the least squares estimator θN is proportional

to
(
AN

)−1
, where

3 Optimal Learning and Optimal Design 53

AN = 1

N

(
XN

)	
XN (3.6)

is the average information matrix. In a broad sense, this matrix quantifies our
uncertainty about every possible x value. That is, for any x, V ar

(
x	θN

)
depends

on AN (and also on x, but the statistician does not have any preference regarding
which x are more important). The statistician then designs the data XN in a way that

makes AN “large” or, alternately, makes
(
AN

)−1
“small,” thus reducing the overall

uncertainty of the predictions (but not necessarily the uncertainty at a certain fixed
x value). There are many possible ways to formalize what it means for AN to be
large, leading to such “alphabet-optimal” criteria (Dette, 1997) as:

• A-optimal: maximize tr
(
AN

)
.

• D-optimal: maximize det
(
AN

)
.

• G-optimal: minimize maxx∈X x	
(
AN

)−1
x.

• M-optimal: maximize minj ANjj .

This is not an exhaustive list; for example, Goos et al. (2016) argue in favor of a
different criterion called “I-optimal,” which minimizes the average (rather than the
maximum) variance of the prediction across the space of possible x. In any case,
all of these criteria are only meaningful if some restrictions are imposed on AN

so that the above optimization problems are not unbounded. Often, one assumes
that samples can only be collected from some finite set y1, . . . , yM ∈ R

d . In other
words, every xn in (3.5) must correspond to one of these M pre-specified feature
vectors. In this case, one can rewrite (3.6) as

AN =
M∑

m=1

pm
(
ym

) (
ym

)	
,

where pm = 1
N

∑N
n=1 1{xn=ym} is the proportion of the total number N of data

points that we have assigned to sampling the mth data vector. The optimal design
problem can now be solved using convex optimization methods. For example, the
D-optimal problem can be formulated (Lu et al., 2018) using the concave objective
function

max log det

(
M∑

m=1

pm
(
ym

) (
ym

)	
)

(3.7)

subject to the linear constraints
∑M
m=1 pm = 1 and p ≥ 0 on the decision

variable p ∈ R
M . Similar approaches can be designed for the A-optimal problem

(Ahipaşaoğlu, 2015) and others.
There is also a family of optimal designs based purely on the geometry of the

design space (set of allowable x), with no explicit connection to the prediction error.

54 I. O. Ryzhov

These are often called “space-filling” designs, since they seek to space out the rows
of XN uniformly in the design space. For example, Johnson et al. (1990) proposed
the maximin design, obtained by solving

max
x1,...,xN∈X

(

min
n �=n′

‖xn − xn′ ‖
)

,

which places each data point as far away from the others as possible. Latin
hypercube designs (see, e.g., Morris & Mitchell, 1995) also fall into this category. A
statistician who adopts such a design may be completely agnostic with regard to the
structure of the response variable (i.e., whether it is generated by a linear model or
something else) and may opt to use an interpolation model such as Gaussian process
regression (Rasmussen & Williams, 2006) to construct the prediction. In this case
a space-filling design will also have the effect of reducing one’s overall uncertainty
about the response as a function of x.

All of these streams of research continue to be active, and there is still no
consensus on which design criterion is the “best.” One can find very recent papers
arguing, e.g., that A-optimal is better than D-optimal for certain problem classes
(Jones et al., 2020). In some settings, some criteria may be equivalent (O’Brien &
Funk, 2003). Others have turned out to be connected to learning theory: for example,
the G-optimal criterion is studied by Soare et al. (2014) in the context of best-arm
identification in linear bandits. Computation is also an area of active interest; see,
e.g., Sagnol and Harman (2015) or Rodriguez et al. (2010) on exact computation of
D-optimal and G-optimal designs, respectively.

In general, however, experimental design is solving a different problem from
optimal learning. The statistician wants to estimate the regression coefficients
accurately and thus focuses on reducing the variance of the OLS estimator in
different ways. For us, however, it matters which value we are estimating: we do
not necessarily need to reduce the variance of x	θN if x itself is unimportant. We
are primarily concerned with accurately distinguishing between higher- and lower-
valued decisions.

At the same time, the underlying philosophy of experimental design will turn
out to be quite useful to us. A problem such as (3.7) is similar, in principle, to the
problem we saw in Sect. 3.1 of dividing a sample between two populations: we are
pre-allocating the budget ahead of time, and the optimal allocation may turn out to
be simple to implement and insightful, as in (3.4). This is different from how most
learning algorithms work—they are typically implemented sequentially, so that each
new decision is based on updated and more accurate information—but we will soon
see that there are deep connections between static optimal designs and dynamic
sequential learning methods, and that the former can provide valuable guidance for
the latter.

3 Optimal Learning and Optimal Design 55

3.3 The Ranking and Selection Problem

This section focuses on the ranking and selection (R&S) problem, a fundamental
model in the study of information collection. R&S has a long history, especially
in the simulation literature; many introductory tutorials can be found in the
Proceedings of the Winter Simulation Conference, with two examples being Hong
and Nelson (2009) and Chau et al. (2014). Chen et al. (2015) also provide a good
overview of this research area.

Section 3.3.1 briefly describes the basic formalism of R&S. Section 3.3.2
provides a short overview of key results from large deviations theory, which are
used to develop an experimental design-like approach (essentially a new optimality
criterion) to the R&S problem. Section 3.3.3 illustrates these ideas using a simple
example with normal distributions. Section 3.3.4 then shows how this approach can
be leveraged to characterize optimal allocations of a learning budget.

3.3.1 Model

Suppose that there arem alternatives with unknown values μ1, . . . μM , and we wish
to find arg maxm μm. We can collect independent observations of the form Wm ∼
Fm, where the distribution Fm satisfies E (Wm) = μm.

As in the very first example in Sect. 3.1, we will divide N samples between M
alternatives. Only one alternative can be sampled at a time—the main tradeoff in this
problem is that allocating more samples to learn about any particularm leaves fewer
samples to learn about other choices. Since we will take n → ∞ in our analysis,
the allocation will be represented by a vector p of proportions, much like in the
experimental design problem from (3.7). Thus, the number of samples allocated to
m is approximately Nm ≈ pm · N . For finite N , this number may not be integer-
valued, but since we will be passing to an asymptotic regime shortly, this is not a
major issue.

Given a fixed allocation p, we obtain Nm i.i.d. draws from each distribution Fm
and calculate sample averages θNm , which are indexed by N to indicate the total
number of samples that have been used. Once the learning budget has been used up,
our selection decision will be m∗,N = arg maxm θNm . Letting m∗ = arg maxm μm
denote the index of the true best alternative (which we assume to be unique),
we say that an incorrect selection occurs if m∗,N �= m∗. Just as in Sect. 3.1, we
can minimize (in a certain asymptotic sense) the error probability P

(
m∗,N �= m∗)

through the allocation p.

56 I. O. Ryzhov

3.3.2 Large Deviations Analysis

Much of the following discussion is taken from the seminal paper by Glynn and
Juneja (2004), which first formalized this approach to the R&S problem. Let
E = {

m∗,N �= m∗} denote the “error event,” with P (E) being the error probability.
Observe that

E =
{
∃m �= m∗ : θNm ≥ θNm∗

}
.

That is, an incorrect selection is made if and only if there exists some suboptimal
alternative m �= m∗ whose sample mean is higher than that of m∗. It is clear that
P (E) → 0 as N → ∞ as long as the allocation satisfies pm > 0 for any m. The
question is how quickly this convergence happens. It is fairly intuitive (and also can
be proved) that, asymptotically, P (E) ∼ maxm P (Em), where

Em =
{
θNm > θ

N
m∗
}
, m = 1, . . . ,M.

In order to characterize the probability of falsely selecting any suboptimal alter-
native, we should examine each individual pairwise comparison between m∗ and
some specific m. The probabilities P (Em) decay at different rates, and the slowest
of these is the one that governs the asymptotic behavior of P (E). Thus, if we can
show that

lim
N→∞

1

N
logP (Em) = −�m, m = 1, . . . ,M, (3.8)

with �m > 0, it will automatically follow that

lim
N→∞

1

N
logP (E) = −min

m
�m.

Results of the form (3.8) are known as large deviations laws and can be
derived using the Gärtner-Ellis theorem (Dembo & Zeitouni, 2009). Omitting some
technical nuances that in any case will not be important for the present setting, we
briefly sketch out the general outline of this analysis.

Let {Yn}∞n=1 be a sequence of random vectors (not necessarily independent or

identically distributed) taking values in R
d . Denote by �n (γ) = logE

(
eγ

	Yn
)

the

log of the moment-generating function of Yn. Now suppose that the limit

� (γ) = lim
n→∞

1

n
�n (γ n) (3.9)

of a certain scaling of {�n} exists. Then, let

3 Optimal Learning and Optimal Design 57

I (u) = sup
γ
γ	u−� (γ)

be the Fenchel-Legendre transform of �. For certain choices of E ⊆ R
d , one can

then obtain rates of the form (3.8) through the result

lim
N→∞

1

N
logP

(
YN ∈ E

)
= − inf

u∈E I (u) . (3.10)

These derivations are greatly simplified in the special case where each Yn is a
sample average of n i.i.d. observations from the distribution F . In this case, (3.9)
reduces to

� (γ) = logE
(
eγW

)
, (3.11)

where W is a single sample from the distribution F . The rate function I can
then be computed directly from (3.11) without explicitly considering the scaling.
If one is seeing large deviations theory for the first time, (3.11) is actually very
counterintuitive, because one is used to thinking of sample averages in light of
the central limit theorem—that is, one expects that they will behave like normally
distributed random variables. Equation (3.11) shows that this is not true for error
probabilities. Asymptotically, the behavior of P

(
YN ∈ E

)
is governed by the

distribution of a single observation, as long as E (W) /∈ E. To put it another way, the
central limit theorem describes the rate at which the sample average converges to the
population mean, but not the convergence rate of the “tail probability” of the sample
average being outside a neighborhood of the population mean. The scaling (3.9)
cancels out the effects of sample averaging.

In the context of R&S, I can be computed in closed form for virtually
any commonly used distributional family. In our context, YN = (

θNm , θ
N
m∗
)

for
some fixed m �= m∗, and E = {(um, um∗) : um ≥ um∗}. Another substantial
simplification is possible because θNm and θNm∗ are independent—this is because the
allocation p is chosen ahead of time, before any samples are observed. Then, letting
γ = (γm, γm∗), we have

logE
(
eγ

	YN
)
= logE

(
eγmθ

N
m

)
+ logE

(
eγm∗θ

N
m∗
)
,

so the logs of the moment-generating functions of the two alternatives can be scaled
separately. But since both θNm and θNm∗ are sample averages, one can also benefit from
the simplification of (3.11). The only nuance is that, in R&S, θNm is not a sample
average of N observations, but rather a sample average of pm ·N observations. This
results in an extra factor pm appearing in the scaling, i.e.,

lim
N→∞

1

N
logE

(
eγ ·N ·θNm

)
= pm logE

(
e
γ
pm
Wm

)
. (3.12)

58 I. O. Ryzhov

Thus, the shape of the rate function is still determined by the distribution F of a
single observation, but it is also affected by the allocation p. The same allocation
will produce completely different convergence rates when the sampling distribution
is, say, exponential as opposed to normal. But, by the same token, the same sampling
distribution will produce different rates under different allocations.

3.3.3 Example: Normal Sampling Distributions

With these facts, let us briefly go over the case where F is a N
(
μ, σ 2

)
distribution

(Example 1 of Glynn & Juneja, 2004). Then, it is easy to see that

logE
(
eγW

)
= γμ+ 1

2
γ 2σ 2,

leading to the rate function

sup
γ
γ u− logE

(
eγW

)
= (u− μ)2

2σ 2 . (3.13)

Let us apply this result to an R&S problem with Fm ∼ N
(
μm, σ

2
m

)
. Using the

independence of θNm and θNm∗ , and recalling (3.12), we obtain

� (γ) = pm
(
γm

pm
μm + 1

2

γ 2
m

p2
m

σ 2
m

)

+ pm∗
(
γm∗

pm∗
μm∗ + 1

2

γ 2
m∗

p2
m∗
σ 2
m∗

)

=
(

γmμm + 1

2

γ 2
m

pm
σ 2
m

)

+
(

γm∗μm∗ + 1

2

γ 2
m∗
pm∗

σ 2
m∗

)

. (3.14)

The expression in (3.14) is separable, so we can apply (3.13) to each term, whence

I (um, um∗) = 1

2

(

pm
(um − μm)2

σ 2
m

+ pm∗ (um∗ − μm∗)
2

σ 2
m∗

)

. (3.15)

We wish to study the error probability P
(
θNm ≥ θNm∗

)
, so by (3.10), we must compute

min I (um, um∗) subject to the linear constraint um ≥ um∗ . Since μm∗ > μm, the
first term on the right-hand side of (3.15) is increasing when um ≥ μm, while the
second term is decreasing when um∗ ≤ μm∗ . For this reason, we must have um =
um∗ at optimality. It is, therefore, sufficient to minimize

I (u) = 1

2

(

pm
(u− μm)2
σ 2
m

+ pm∗ (u− μm∗)
2

σ 2
m∗

)

.

3 Optimal Learning and Optimal Design 59

After a bit of algebra, we arrive at the large deviations law

lim
N→∞

1

N
logP

(
θNm ≥ θNm∗

)
= − (μm − μm∗)2

2

(
σ 2
m

pm
+ σ 2

m∗
pm∗

) , (3.16)

which again involves an expression very similar to the two-sample test statistic
from (3.1).

One can analogously derive rate exponents for non-normal distributions. Glynn
and Juneja (2004) provide the derivation for Bernoulli distributions, while Gao and
Gao (2016) consider exponential distributions. Chi-square distributions, which arise
when we wish to identify the largest variance rather than the largest population
mean, are handled in Hunter and McClosky (2016). Shin et al. (2016) considered
the problem of finding largest quantiles. Very recently, Zhou and Ryzhov (2022)
derived a large deviations law for the ordinary least squares estimator under
normally distributed residual noise; we will return to this setting in Sect. 3.5.1. These
references are left to the interested reader, and our discussion will now turn to how
large deviations laws may be used to optimize allocations.

3.3.4 Optimal Allocations

As discussed previously, results of the form (3.8) imply that

lim
N→∞

1

N
logP (E) = −min

m
�m (p) ,

where we have made the dependence of �m on p explicit. The error probability
vanishes faster when the rate exponent increases. Consequently, the best possible
convergence rate is achieved by solving the optimization problem

max
p

min
m
�m (p)

subject to the linear constraints
∑M
m=1 pm = 1 and p ≥ 0 on p ∈ R

M . Since
there are finitely many alternatives, one can use a standard technique to linearize the
objective and obtain the problem

maxp,z z

s.t. z ≤ �m (p) , m �= m∗,
∑M
m=1 pm = 1,

pm ≥ 0, m = 1, . . . ,M.

(3.17)

60 I. O. Ryzhov

It can be shown that the rate exponent �m is a concave function of p (for general
sampling distributions), so (3.17) is a concave optimization problem. Therefore, the
optimal p is unique and obeys the first-order optimality conditions

∑

m�=m∗
∂�m (p) /∂pm∗

∂�m (p) /∂pm
= 1, (3.18)

�m (p) = �m′ (p) , m,m′ �= m∗. (3.19)

Equations (3.19) follow intuitively from the max-min objective of (3.17). Increasing
pm will improve �m since the pairwise comparison between m and m∗ becomes
more accurate, but simultaneously �m′ will become worse for other m′ �= m∗
since fewer samples remain for those comparisons. Thus, every pairwise comparison
should have the same rate exponent at optimality. Equation (3.18) determines how
large this exponent can be, as a result of the normalization constraint on p. We
call (3.18)–(3.19) the “total” and “individual” balance conditions, respectively.

Let us see once more how the general forms of these conditions simplify in the
case where Fm is N

(
μm, σ

2
m

)
. Then, (3.18)–(3.19) become

p2
m∗

σ 2
m∗

=
∑

m�=m∗
p2
m

σ 2
m

, (3.20)

(μm − μm∗)2
σ 2
m

pm
+ σ 2

m∗
pm∗

= (μm′ − μm∗)2
σ 2
m′
pm′

+ σ 2
m∗
pm∗

, m,m′ �= m∗. (3.21)

Note that, in the special case whereM = 2, the optimality conditions reduce to (3.4),
which we have already seen. Furthermore, in the case where pm∗ � pm for all
m �= m∗, (3.21) reduces to

pm

pm′
= σ 2

m (μm′ − μm∗)2
σ 2
m′ (μm − μm∗)2

. (3.22)

Equation (3.22) is widely known in the simulation literature as the OCBA (Optimal
Computing Budget Allocation) ratio, first derived by Chen et al. (2000) using an
approximation of the error probability. An entire literature on OCBA is available;
the monograph by Chen and Lee (2010) offers a summary.

None of these conditions, however, gives us a budget allocation that we can
implement directly. In order to solve (3.20)–(3.21), we must know the true values
μm (also the variances σ 2

m), but these are precisely the quantities that we are trying to
learn. The standard workaround adopted in Chen and Lee (2010) and related papers
is described in Fig. 3.1. For simplicity, suppose that the variances σ 2

m are known
and we only need to estimate the means. Essentially, this procedure numerically
solves (3.20)–(3.21) using plug-in estimators of the unknown parameters and uses

3 Optimal Learning and Optimal Design 61

Fig. 3.1 Description of sequential OCBA algorithm for normal sampling distributions

the resulting approximate proportions to allocate a portion of the budget consisting
of � samples. This process is repeated; as θnm → μm, the approximate proportions
also converge to the true optimal allocation.

The algorithm in Fig. 3.1 is cumbersome, as it requires us to solve a sequence
of difficult root-finding problems. However, it illustrates an important concept: the
theoretical characterization of the optimal solution of (3.17) is used to guide a
sequential algorithm that learns this solution over time. We will see later on that
the optimal allocation also underlies some algorithms that had not been designed
with it in mind.

It is worth noting that, conceptually, the approach presented here is not greatly
different from classical design of experiments as described in Sect. 3.2. Prob-
lem (3.17) is quite similar to (3.7), except that it uses a different optimality criterion.
But, as we have seen, the literature on design of experiments also considers a wide
variety of criteria. The main distinction here is that, through large deviations theory,
we have obtained a criterion that explicitly depends on the value of an alternative
(that is, �m depends on μm as well as pm), a notion that is generally absent from
classical design of experiments. The optimal allocation can be expressed as the
solution to a static optimization problem, much as experimental designs are obtained
from a single mathematical program. However, since we do not actually know the
values of the alternatives, the optimal design begins to play a different role: instead
of giving us a directly implementable course of action, it provides a goal to work
toward as we gradually learn the values.

Large deviations theory can be used to characterize optimal budget allocations
for problems that go beyond the R&S framework. Pasupathy et al. (2014) were an
important advance in this direction, together with other related papers by Hunter and
Pasupathy (2013), Zhang et al. (2016), and Applegate et al. (2020). Such problems
continue to be an active area of research.

3.4 Sequential Algorithms

This section will discuss R&S algorithms that, on the surface, do not seem to
be connected to the large deviations analysis described in Sect. 3.3. Nonetheless,
such connections exist and will become apparent as the discussion progresses. Two

62 I. O. Ryzhov

popular methodologies will be discussed: Sect. 3.4.1 covers value of information
methods, while Sect. 3.4.2 focuses on Thompson sampling. Finally, Sect. 3.4.3
will discuss rate-balancing procedures that are more explicitly inspired by optimal
designs, and Sect. 3.4.4 will discuss important nuances of how these procedures
perform relative to the optimal designs themselves.

3.4.1 Value of Information Methods

The value of information methodology dates back to at least Gupta and Miescke
(1996) and Jones et al. (1998) and is one of the most enduring and popular
algorithmic concepts for R&S. This approach uses a Bayesian statistical model, in
which the unknown values are modeled as random variables. Focusing on normal

distributions for simplicity, let us suppose that μm ∼ N
(
θ0
m,

(
σ 0
m

)2
)

, with μm
independent of μm′ for any m �= m′. Given a sequence {mn}∞n=0 of alternatives,

we observe
{
Wn+1
mn

}∞
n=0

, with each Wn
m = μm + εnm and εnm ∼ N

(
0, σ 2

m

)
being an

independent noise term. Again, to keep the presentation simple we assume that σ 2
m

is known. Information is collected sequentially: thus, every mn may depend on the

information set Fn =
{
m1,W 1

m1 , . . . , m
n−1,Wn

mn−1

}
. Our state of knowledge about

μm is represented by the posterior mean and variance of this quantity given Fn.
Under the non-informative prior θ0

m ≡ 0, σ 0
m ≡ ∞, this statistical model becomes

almost identical to the one we used earlier. Let Nnm = ∑n−1
n′=0 1{

mn
′=m

} be the

number of samples of alternativem collected up to time n. Given Fn, the conditional
distribution of μm is normal with parameters

θnm =
1

Nnm

n−1∑

n′=0

Wn′+1
mn

′ 1{
mn

′=m
},

σ nm =
σ 2
m

Nnm
,

which are identical to the usual frequentist sample mean and its variance. In other
words, the true values are estimated in exactly the same way by the Bayesian model
as by the earlier frequentist one. The difference is in how the Bayesian model makes
predictions: given Fn, the posterior distribution of μm assigns a precise numerical
quantity to the likelihood with which μm takes on any value.

This probabilistic prediction can be used to design sampling criteria. Perhaps the
best-known of these is the expected improvement criterion of Jones et al. (1998).
Letting m∗,n = arg maxm θnm be the index of the alternative believed to be the best
at time n, we compute

3 Optimal Learning and Optimal Design 63

νnm = E
(
max

{
μm − θnm∗,n , 0

} | Fn, mn = m) , (3.23)

which measures the amount by which μm is expected (based on the most recent
information) to exceed the current estimate of the highest value. The larger this
quantity, the more likely it is that alternative m is better than we think. We then
allocate the next sample to mn = arg maxm νnm, observeWn+1

mn , update our posterior
parameters, and repeat the process.

Equation (3.23) is attractive as a sampling criterion because it can be computed
in closed form, with

νnm = σnmf
(

−
∣
∣θnm − θnm∗,n

∣
∣

σnm

)

, (3.24)

and f (z) = z� (z)+ φ (z), with φ,� being the standard normal density and CDF.
The allocation decision at time n can thus be computed very efficiently, but unlike
the optimal allocations studied in Sect. 3.3, it is completely myopic, using only a
rough forecast of μm based only on the information available at that moment. At
first glance, it is difficult to see how it might be related to the optimal allocation or
to the analysis we have previously developed.

Nonetheless, there is such a connection. Ryzhov (2016) showed that, form,m′ �=
m∗, expected improvement leads to

Nnm

Nn
m′
→ σ 2

m (μm′ − μm∗)2
σ 2
m′ (μm − μm∗)2

,

which is exactly identical to (3.22). Although the expected improvement criterion
was not developed with experimental design in mind, it nonetheless provably
converges to the same allocation as the OCBA approach discussed in Sect. 3.3.4.
The reason for this is because the expected improvement quantity (3.23) is reduced
to zero with enough samples, i.e., νnm → 0 as n → ∞. Since we always allocate
the next measurement to the alternative with the largest expected improvement, this
has the effect of forcing νnm to decline to zero at the same rate across all m. But the
declining behavior of νnm is determined by the tails of the function f in (3.24). In
order for νnm to converge at the same rate, the arguments of f in (3.24) have to be
approximately equal, meaning that

∣
∣θnm − θnm∗

∣
∣

σnm
≈

∣
∣θn
m′ − θnm∗

∣
∣

σn
m′

for large values of n (when m∗,n = m∗). But since σnm = σm√
Nnm

, this leads to

the same result as in (3.22). Thus, it appears that the myopic structure of expected
improvement is really another way of achieving the same goal as sequential methods
that are based on optimal designs. In fact, if we can modify (3.24) so that the tails of

64 I. O. Ryzhov

f vanish at the same rates as the error probabilities in Sect. 3.3, the above arguments
suggest that we may be able to recover the optimal allocation.

Recent work has shown that this is indeed the case. Salemi et al. (2014) proposed
a variant of expected improvement in which (3.23) is replaced by

ν̄nm = E
(
max {μm − μm∗,n , 0} | Fn, mn = m

)
,

=
√
(
σnm

)2 + (
σnm∗,n

)2
f

⎛

⎝−
∣
∣θnm − θnm∗,n

∣
∣

√(
σnm

)2 + (
σnm∗,n

)2

⎞

⎠ . (3.25)

This version of the sampling criterion includes uncertainty in the values of both m
and m∗,n. From (3.25), it is clear that the argument of f now behaves like the rate
exponent �m that we derived for normal distributions in (3.16). Chen and Ryzhov
(2019b) then integrated this criterion into a simple algorithm, described in Fig. 3.2,
which is guaranteed to converge to the solution of (3.20)–(3.21) as n→∞.

Unlike the algorithm in Fig. 3.1, this procedure is trivial to implement. It does
not require us to run any nonlinear optimization (or root-finding) method, and has
no tunable parameters. The notion of an optimal allocation now becomes more
powerful—although we cannot implement the solution to (3.17) directly, we can
efficiently learn it over time. Furthermore, value of information methods are known
to yield superlative practical performance even for small learning budgets, as has
been repeatedly observed by Branke et al. (2007), Chick et al. (2010), Han et al.
(2016), and others. Thus, a static allocation derived through experimental design
provides useful guidance for a sequential method that also performs well for small
sampling budgets.

3.4.2 Thompson Sampling

The idea behind Thompson sampling dates back to Thompson (1933), but this
method has enjoyed a recent surge in popularity due to the seminal paper of Russo

(3.26)

(3.26)
(3.25).

Fig. 3.2 Modified expected improvement algorithm of Chen and Ryzhov (2019b)

3 Optimal Learning and Optimal Design 65

and Van Roy (2014). Like value of information, Thompson sampling is based on
Bayesian statistics, so we can carry over the setting of Sect. 3.4.1 unchanged.

Rather than taking expectations, as in (3.23), we adopt a randomized approach.

Given Fn, let μ̂nm ∼ N
(
θnm,

(
σnm

)2
)

be a sample from the current posterior

distribution of μm. The next allocation decision is then made using

mn = arg max
m
μ̂nm.

We deliberately introduce a certain amount of noise into our decision; however,
all else being equal, alternatives with larger θnm and/or larger σnm will be more
likely to be sampled. Value of information methods have much the same regularity,
since (3.23) and similar criteria also favor alternatives with better estimated values
(because they appear to be good) or higher uncertainty (because they are more likely
to be better than we think). Thompson sampling has the advantage of being very
user-friendly, because it is often much easier to sample from a posterior distribution
than it is to take expectations over it.

As n increases, the posterior distribution of alternativem will concentrate around
μm. Supposing that μm > μm′ , the event that μ̂nm ≤ μ̂n

m′ again occurs on the
tail of the joint distribution of

(
μ̂nm, μ̂

n
m′
)
. This again suggests a connection with

the previous large deviations-theoretic analysis. Indeed, Russo (2020) showed that
a modified Thompson sampling procedure (“top-two Thompson sampling”) also
provably converges to the optimal solution of (3.17). This algorithm is given in
Fig. 3.3.

Like the modified expected improvement algorithm in Fig. 3.2, top-two Thomp-
son sampling introduces special logic, not present in the original Thompson
sampling procedure, to decide whether to sample m∗,n. In Fig. 3.3, this is done
by simply flipping a biased coin with some fixed probability ρ. If we decide not
to sample m∗,n, we can then use Thompson sampling (or value of information, in
Fig. 3.2) to choose among the suboptimal alternatives. The main difference between
the algorithms is that, in Fig. 3.2, the decision to sample m∗,n was automated using
condition (3.26), whereas in top-two Thompson sampling it is necessary to pre-
specify ρ. The algorithm will then converge to the solution of (3.20)–(3.21) if this
parameter is chosen correctly, but it requires tuning.

Fig. 3.3 Top-two Thompson sampling algorithm of Russo (2020)

66 I. O. Ryzhov

Neither expected improvement nor Thompson sampling is able to learn the
optimal allocation in its original, unmodified version. Both criteria are effective
in choosing between suboptimal alternatives, but in both cases, additional logic is
needed to decide between m∗,n and some m �= m∗,n. This reflects the fact that, in
the original optimal design problem, a separate total balance condition (3.18) has
to be satisfied in addition to the individual balance conditions (3.19). Essentially,
the original versions of both sequential algorithms are able to satisfy (3.19), but
modifications are needed in order to handle (3.18).

3.4.3 Rate-Balancing Methods

Having now seen two completely different methodologies that both arrive at the
same destination (despite starting from very different origins), we might ask if any
of these criteria—value of information, Thompson sampling, or something else—is
really necessary. If we are to end up at the optimal design, we can reach it more
easily by reverse-engineering (3.18)–(3.19) directly.

For normal sampling distributions, the way to do this is already suggested by the
structure of Fig. 3.2. Indeed, Shin et al. (2018) proposed precisely such an algorithm.
At time n, one first checks (3.26), exactly as in Fig. 3.2. If this inequality holds, we
assign mn = m∗,n as before. If the inequality does not hold, we assign

mn = arg min
m

(
θnm − θnm∗,n

)2

σ 2
m

Nnm
+ σ 2

m∗,n
Nn
m∗,n

. (3.27)

The function f in (3.23) and (3.25) is monotonic, so there is no real difference
between maximizing f and minimizing its argument—which, again, is none other
than the two-sample test statistic for comparing the values of m and m∗,n. As n
increases, the value of this statistic also tends to increase, so by choosing m for
which this statistic has the smallest value, we can ensure that all of the statistics
increase at the same rate, thus satisfying (3.21) asymptotically. Condition (3.26) is
needed to handle (3.20).

Chen and Ryzhov (2019a) explained how this concept could be used to
solve (3.18)–(3.19), the general form of the optimality conditions. We now make the
dependence of �m on the population means explicit: let �m (p ; θ) be the value of
the mth rate exponent under allocation p and with θ standing in for the true values.
Then, �m (p ; μ) is the true rate exponent, and �m (p ; θn) uses plug-in estimates of
the population means. As shown in Fig. 3.4, we first use condition (3.28), analogous
to (3.26) in the normal case, to determine whether to sample m∗,n. If we do not
do so, we then use (3.29), by analogy with (3.27), as the criterion for selecting a
suboptimal alternative. Chen and Ryzhov (2022) prove that this algorithm always
learns the solution to (3.18)–(3.19), without tuning.

3 Optimal Learning and Optimal Design 67

(3.28)

(3.28)

(3.29)

Fig. 3.4 Balancing Optimal Large Deviations (BOLD) algorithm of Chen and Ryzhov (2019a)

One limitation of this approach (which, however, it shares with the vast majority
of existing algorithms for this problem) is that it requires us to know the distri-
butional family of the samples. This is necessary in order to be able to evaluate
�m and its partial derivatives. If the distributional family is unknown, the problem
becomes far more difficult. Gao et al. (2017) sketches out a similar algorithm, based
on an estimator of the moment-generating function described in Glynn and Juneja
(2004), that potentially could be applied in a setting where no information about the
distributional family is available, but this paper does not give a convergence proof.
Conversely, Russo (2020) handles general distributional families, but this comes at
the cost of having to tune a parameter. Regardless of the theoretical issues, however,
it is not clear that any algorithm would be practical in a setting where one must
store and update empirical estimators of the sampling distribution (or its moment-
generating functions). Even an algorithm like Thompson sampling, which is among
the easiest to run, would require a complicated Markov chain Monte Carlo model to
store the posterior distribution. Most R&S algorithms that are used in practice, such
as OCBA (Lin et al., 2013), simply assume normal distributions.

In any case, the preceding discussion shows that we are now completely free of
any need to solve sequences of convex programs or root-finding problems. We can
first use the philosophy of design of experiments to derive an optimal allocation, and
then construct a sequential procedure along the lines of Fig. 3.4 to adaptively learn
it over time. Sections 3.4.1 and 3.4.2 show that, essentially, sequential methods are
just trying to learn this allocation in different ways, which lends support to the idea
of cutting out the middleman and simply learning it directly.

3.4.4 Discussion

The theoretical framework in Sect. 3.3.2 hinges on the assumption that the allocation
p is static (pre-specified). Only then is the log of the moment-generating function of

68 I. O. Ryzhov

(
θNm , θ

N
m∗
)

separable inm andm∗, leading to the exponential convergence rate e−�·N
for the error probability P (E). One naturally wonders if this result is preserved
under a sequential algorithm that only learns the optimal p asymptotically. Under
such an algorithm, the sample means are no longer independent because the decision
to sample m at time n is based on all of the information in Fn, so such a rate cannot
be straightforwardly obtained from the arguments we have presented.

In fact, it appears that exponential convergence is lost when we pass from
a static to a dynamic allocation. Wu and Zhou (2018) show examples where
an sequential OCBA-like allocation leads to polynomial, rather than exponential,
convergence. Nonetheless, the optimal static allocation still plays an important
role in characterizing the performance of a dynamic procedure. Qin et al. (2017)
and Russo (2020) find that, while convergence to the optimal p is not sufficient
for optimal performance in a sequential setting, it is necessary. Thus, whatever
limitations the design of experiments approach to R&S may have, the optimal static
allocation obtained through this approach continues to underlie virtually all of the
state-of-the-art algorithmic work on this problem.

3.5 Recent Advances

In this section, we discuss two examples of very recent research where the concepts
we presented earlier are used outside of R&S. Section 3.5.1 describes a new large
deviations analysis of linear regression models, thus returning to the classical setting
of design of experiments. Section 3.5.2 describes a recently proposed idea for budget
allocation in approximate dynamic programming.

3.5.1 A New Optimal Design for Linear Regression

Let us return to the setting of Sect. 3.2, but now, let us interpret the expected response
β	x as the “value” of the feature vector x. We suppose that higher values are
better, introducing a notion of priority into our optimal design. We are no longer
interested in reducing the variance of every prediction uniformly—we only care
about accurately identifying the “best” feature vector out of some set of interest. We
will assume that the residual noise is i.i.d. N

(
0, σ 2

)
, the most classical OLS setting.

The following discussion is a summary of the work by Chen and Ryzhov (2022).
We make the crucial assumption that AN → A, where AN is as in (3.6), and A

is a symmetric positive definite matrix. This condition is sufficient for consistency
of the OLS estimator θN (Lai & Wei, 1982), and can be viewed as a “law of large
numbers” for the sequence {xn} of data vectors. In the language of Sect. 3.3, this
condition is analogous to requiring pm > 0 for allm. We treat {xn} as a deterministic
sequence, similarly to how Sect. 3.3 views p as a fixed, deterministic vector. One

3 Optimal Learning and Optimal Design 69

can equivalently view it as a sequence of random vectors sampled independently
from a distribution with E

(
xx	

) = A. All of the following results will also hold
under this interpretation, as long as this sampling distribution is independent of the
observations {yn}.

With these assumptions, Zhou and Ryzhov (2021) derive the rate function of θN

as

I (u) = 1

2σ 2 (u− β)	 A (u− β) .

Recall that the asymptotic behavior of a probability P
(
θN ∈ E

)
can be character-

ized by minimizing I (u) over u ∈ E. In this setting, the error event is constructed
as follows. Let x∗ ∈ R

d be a fixed vector representing some sort of “reference,”
relative to which other choices of x are evaluated. It may be that x∗ is the solution
to some optimization problem, but we will not model any such problem explicitly.
We are only concerned with correctly identifying x∗ relative to other x for which
β	 (x∗ − x) > 0, that is, these x have lower values than x∗.

Letting v = x∗ − x, we can define Ev =
{
u : u	v ≤ 0

}
to be the set of all

possible values of θN that lead us to falsely identify x as being higher-valued than
x∗. For any such v, we proceed along the lines of Sect. 3.3.2 and obtain the large
deviations law

lim
N→∞

1

N
logP

(
θN ∈ Ev

)
= − 1

2σ 2

(
β	v

)2

v	A−1v
,

which is readily seen to be a generalization of (3.16). Note that the rate exponent
is invariant with respect to the magnitude of v, so we can restrict ourselves to the
unit sphere ‖v‖ = 1 without loss of generality. By analogy with Sect. 3.3.4, one can
define an optimal design as the solution to the problem

max
A:tr(A)=1

min
v∈Vδ

(
β	v

)2

v	A−1v
, (3.30)

where the design itself is completely characterized by the limiting matrix A, and
Vδ =

{
v : β	v ≥ δ, ‖v‖ = 1

}
. The goal is to maximize the smallest rate exponent

among all possible v. In a continuous design space, however, it is possible to find x
whose value is arbitrarily close to x∗, so we introduce a threshold δ to make (3.30)
well-defined. The constraint on the trace of A is likewise imposed to normalize the
problem, so that we are not able to make A arbitrarily large.

Since A is positive definite, we can write

A =
d∑

j=1

pjζj ζ
	
j ,

70 I. O. Ryzhov

where (ζ1, . . . , ζd) comprise an orthonormal basis for Rd . Zhou and Ryzhov (2021)
characterizes the optimal A as follows. First, we set ζ1 = β, which determines the
remaining basis vectors up to multiplication by ±1. We then let

p1 =
√
(d − 1)�

(d − 1)+√(d − 1)�
, (3.31)

pj = 1

(d − 1)+√(d − 1)�
, j = 2, . . . , d, (3.32)

where � = δ2

1−δ2 . Thus, if we view A as an expected value, the optimal design can
be viewed as assigning a proportion pj of the learning budget to the basis vector ζj .

It is interesting to compare this design with the classical D-optimal method.
When tr (A) = 1, a D-optimal A matrix can easily be obtained by sampling the data
from a uniform distribution on the unit sphere. The large deviations-based design,
however, is almost uniform, but we sample less often along the direction β. This
offers a clean illustration of how the introduction of the notion of the value of x
changes the priority with which we wish to learn about different x vectors. It is
also worth noting that, in (3.30), the denominator of the rate exponent is connected
to the variance of prediction, and is essentially the G-optimal design criterion (a
connection also made by Fiez et al., 2019). However, the vector β, which determines
the value of x, is present in the numerator, which again shows how standard optimal
design concepts are modified when the notion of value is introduced.

Another interesting and unusual insight is that neither the convergence rate of
the error probability nor the optimal design (3.31)–(3.32) depends on x∗ in any
way. The convergence rate is only affected by the gap x∗ − x, not by x∗ itself. In a
manner of speaking, our design provides the same amount of information about any
(x, x∗) pair with the same x∗ −x value. This is quite different from R&S, where we
had a separate optimality condition (3.18) governing the proportion of the learning
budget to assign to alternative m∗. In order to satisfy this condition, we also had to
identify m∗. The sequential methods discussed in Sect. 3.4 all replace m∗ by m∗,n,
the alternative believed to be the best at time n. This introduces additional error
into finite-time performance, as our approximate solution of (3.18)–(3.19) will be
completely wrong if m∗,n �= m∗.

In linear regression, however, this issue never arises because we do not even
need to know what x∗ is. We do not need to assign any part of the learning budget
to sampling x∗ directly. Instead of allocating the budget to different x values, we
instead divide it between the basis vectors (β, ζ2, . . . , ζd). We handle the continuous
design space by refocusing the problem around the finite set of basis vectors. In the
optimal design, the only unknown quantity is β itself—the probabilities pj are given
in closed form, and the other basis vectors are easily found from β. Thus, the optimal
design becomes exceptionally easy to implement sequentially, using θN in place of
β, completing an orthonormal basis from θN , and randomly choosing a basis vector
according to (3.31)–(3.32).

3 Optimal Learning and Optimal Design 71

3.5.2 Optimal Budget Allocation in Approximate Dynamic
Programming

A very interesting perspective on OCBA was recently put forth by Zhu et al. (2019)
in the context of approximate dynamic programming. We give a brief description of
this research, which connects optimal learning, optimal design, and reinforcement
learning in novel ways.

Consider a classical Markov decision process model (Puterman, 2014) with finite
state space S, finite action space A, and transition probabilities P

(
s′ | s, a) for

s, s′ ∈ S and a ∈ A. Let C : S × A → R be a reward function. The goal in
dynamic programming is to solve

sup
π∈�

∞∑

n=0

γ nC
(
sn, π

(
sn
))
,

where s0 and 0 < γ < 1 are given, � is the space of functions π which map s ∈ S
to π (s) ∈ A, and sn+1 = s with probability P (s | sn, π (sn)) for all s ∈ S and all
n > 0. It is well-known that the optimal policy π∗ satisfies

π∗ (s) = arg max
a∈A C (s, a)+ γ

∑

s′∈S
P
(
s′ | s, a)V (

s′
)
,

where V is the unique solution to Bellman’s equation:

V (s) = max
a∈A C (s, a)+ γ

∑

s′∈S
P
(
s′ | s, a)V (

s′
)
. (3.33)

In virtually any practical application, the sum over transition probabilities in (3.33)
is intractable. Often, the transition probabilities themselves are unknown, though
it is possible to sample from the transition distribution in a black-box fashion. In
such situations, V may be learned asymptotically using the Q-learning algorithm
(Tsitsiklis, 1994). We first define

Q(s, a) = C (s, a)+ γ
∑

s′∈S
P
(
s′ | s, a)V (

s′
)

= C (s, a)+ γ
∑

s′∈S
P
(
s′ | s, a)max

a′∈A
Q
(
s′, a′

)
. (3.34)

Suppose that we are given some approximation Q̄ of Q, as well as some fixed
(s, a). We do not know the transition probabilities, but can simulate a new state
ŝ′ according to the distribution P

(
ŝ′ = s′) = P (

s′ | s, a) for all s′ ∈ S. Then, the
quantity

72 I. O. Ryzhov

Fig. 3.5 Basic Q-learning algorithm

q̂ = C (s, a)+ γ max
a′∈A

Q̄
(
ŝ′, a′

)
(3.35)

can be viewed as an approximate observation of Q(s, a). If we can collect many
such observations and average them, this can be viewed as a Monte Carlo estimator
of the expected value over the transition distribution in (3.34). However, the
estimator is biased because, in (3.34), this expectation is of Q

(
s′, a′

)
, and Q is

precisely what we wish to find. We use Q̄ as a stand-in for Q, for lack of anything
better. Through the max operator in (3.35), however, we believe that q̂ will provide
us with useful information about Q(s, a) that can be averaged in with our old
estimate Q̄ (s, a).

Figure 3.5 formally states this algorithm. In every iteration, Steps 2–4 describe
the process we have just discussed. Given (sn, an), we simulate a “downstream”
state ŝ, compute the approximate (biased!) observation q̂n, and average it in with an
existing approximation Q̄n (sn, an) using the stepsize αn, which is chosen to satisfy
the usual conditions imposed on stochastic approximation methods (Kushner & Yin,
2003). The profound insight of Tsitsiklis (1994) is that the bias in the observations
is attenuated over time, leading to Q̄n → Q.

It is important to note that, once q̂n has been computed, the simulated state ŝ has
served its purpose. In particular, the next state sn+1 that we visit need not be the state
ŝ generated in the previous iteration. We can discard ŝ and generate

(
sn+1, an+1

)

from some completely unrelated distribution; the results of Tsitsiklis (1994) hold as
long as every state-action pair (s, a) is visited infinitely often. Potentially, we can
view the state-action pairs as “alternatives” in an R&S-like problem, which leads to
the question of allocating a learning budget (i.e., deciding how often we visit (s, a)
over time).

Zhu et al. (2019) approach this problem by first deriving a central limit theorem

on the approximation Q̄n. It is shown that
√
n
(
Q̄n −Q) d⇒ N (0, �), where

the covariance matrix � depends in a complicated way on the proportions of
iterations in which we observe certain states, actions, or state-action pairs. By
extending the analysis from Sects. 3.3.3–3.3.4, one can choose these proportions
in a way that minimizes the probability that Q̄n (s, a) ≥ Q̄n (s, π∗ (s)) for a �=

3 Optimal Learning and Optimal Design 73

π∗ (s). In other words, the error event here is the event that we falsely identify
action a as being better than the optimal action. Although, as we have discussed,
the central limit theorem may not give an accurate picture of the asymptotic
convergence rates of tail probabilities, the asymptotic normality established in Zhu
et al. (2019) offers a way to make the problem tractable; as we have mentioned, most
practical implementations of OCBA or other R&S policies tend to assume normal
distributions for ease of computation. In this way, the concepts of optimal design
are finding new applications far beyond the domain that originally motivated their
development.

3.6 Conclusion

We hope that we have successfully made the case that optimal learning and optimal
design are much more closely connected than might seem at first glance. Even
though optimal learning is “sequential” while optimal design is “static,” in fact
a certain kind of optimal design can be viewed as the end goal for virtually any
rigorous sequential method. The principles of design of experiments can also serve
as a starting point for a learning problem—if one can characterize the optimal
design, one can then construct a sequential method to learn it.

Section 3.5 has only given a very brief glimpse of the various research direc-
tions for this area. In Sect. 3.5.1, we saw how ideas from ranking and selection
(specifically, the notion of value used to compare alternatives, and the ensuing
definition of error events) can be brought back into the most classical setting of
the design of experiments literature. There are many more opportunities along these
lines, a major one being the development of optimal designs for continuous black-
box optimization using Gaussian process regression. Some ideas from design of
experiments, such as D-optimal designs, have been extended to Gaussian process
models (Harari & Steinberg, 2014), but the focus of all this work has remained on
uncertainty reduction or geometric space-filling. In many applications of Gaussian
process regression, however (such as hyperparameter tuning), the goal is not merely
to accurately interpolate the data but also to identify an optimal solution. The notion
of an “optimal design” in such a context has yet to be characterized.

An important direction for further work is to remove the need for distributional
assumptions, which we had imposed in Sect. 3.4.3. Essentially, one would have
to estimate and simultaneously balance the large deviations rate functions based
purely on samples. At the heart of this problem is the challenge of efficiently esti-
mating moment-generating functions, which is currently unaddressed. Of course,
parametric methods would likely continue to be widely used, due to their reduced
computational cost and ease of implementation.

74 I. O. Ryzhov

References

Ahipaşaoğlu, S. D. (2015). A first-order algorithm for the A-optimal experimental design problem:
A mathematical programming approach. Statistics and Computing, 25(6), 1113–1127.

Applegate, E. A., Feldman, G., Hunter, S. R., & Pasupathy, R. (2020). Multi-objective ranking
and selection: Optimal sampling laws and tractable approximations via SCORE. Journal of
Simulation, 14(1), 21–40.

Branke, J., Chick, S. E., & Schmidt, C. (2007). Selecting a selection procedure. Management
Science, 53(12), 1916–1932.

Chau, M., Fu, M. C., Qu, H., & Ryzhov, I. O. (2014). Simulation optimization: a tutorial overview
and recent developments in gradient-based methods. In A. Tolk, S. Y. Diallo, I. O. Ryzhov,
L. Yilmaz, S. Buckley, & J. A. Miller (Eds.), Proceedings of the 2014 Winter Simulation
Conference (pp. 21–35).

Chen, C. H., Chick, S. E., Lee, L. H., & Pujowidianto, N. A. (2015). Ranking and selection:
Efficient simulation budget allocation. In M. C. Fu (Ed.), Handbook of simulation optimization
(pp. 45–80). Springer.

Chen, C. H., & Lee, L. H. (2010). Stochastic simulation optimization: An optimal computing
budget allocation. World Scientific.

Chen, C. H., Lin, J., Yücesan, E., & Chick, S. E. (2000). Simulation budget allocation for further
enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems, 10(3), 251–
270.

Chen, Y., & Ryzhov, I. O. (2019a). Balancing optimal large deviations in ranking and selection. In
N. Mustafee, K. H. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, & Y. J. Son (Eds.),
Proceedings of the 2019 Winter Simulation Conference (pp. 3368–3379).

Chen, Y., & Ryzhov, I. O. (2019b). Complete expected improvement converges to an optimal
budget allocation. Advances in Applied Probability, 51(1), 209–235.

Chen, Y. & Ryzhov, I. O. (2022). Balancing optimal large deviations in sequential selection.
Management Science (to appear).

Chick, S. E., Branke, J., & Schmidt, C. (2010). Sequential sampling to myopically maximize the
expected value of information. INFORMS Journal on Computing, 22(1), 71–80.

Dannenberg, O., Dette, H., & Munk, A. (1994). An extension of Welch’s approximate t-solution
to comparative bioequivalence trials. Biometrika, 81(1), 91–101.

Dembo, A., & Zeitouni, O. (2009). Large Deviations Techniques and Applications (2nd ed.).
Springer.

Dette, H. (1997). Designing experiments with respect to ‘standardized’ optimality criteria. Journal
of the Royal Statistical Society, B59(1), 97–110.

Eitrich, T., & Lang, B. (2006). Efficient optimization of support vector machine learning param-
eters for unbalanced datasets. Journal of Computational and Applied Mathematics, 196(2),
425–436.

Fiez, T., Jain, L., Jamieson, K. G., & Ratliff, L. (2019). Sequential experimental design for
transductive linear bandits. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 32,
pp. 10667–10677).

Gao, F., & Gao, S. (2016). Optimal computing budget allocation with exponential underlying
distribution. In T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, & S. E.
Chick (Eds.), Proceedings of the 2016 Winter Simulation Conference (pp. 682–689).

Gao, S., Chen, W., & Shi, L. (2017). A new budget allocation framework for the expected
opportunity cost. Operations Research, 65(3), 787–803.

Garivier, A., & Kaufmann, E. (2016). Optimal best arm identification with fixed confidence. In
V. Feldman, A. Rakhlin, & O. Shamir (Eds.), Proceedings of the 29th Annual Conference on
Learning Theory (pp. 998–1027).

3 Optimal Learning and Optimal Design 75

Glynn, P. W., & Juneja, S. (2004). A large deviations perspective on ordinal optimization. In R.
Ingalls, M. D. Rossetti, J. S. Smith, & B. A. Peters (Eds.), Proceedings of the 2004 Winter
Simulation Conference (pp. 577–585).

Goos, P., Jones, B., & Syafitri, U. (2016). I-optimal design of mixture experiments. Journal of the
American Statistical Association, 111(514), 899–911.

Gupta, S. S., & Miescke, K. J. (1996). Bayesian look ahead one-stage sampling allocations for
selection of the best population. Journal of Statistical Planning and Inference, 54(2), 229–244.

Han, B., Ryzhov, I. O., & Defourny, B. (2016). Optimal learning in linear regression with
combinatorial feature selection. INFORMS Journal on Computing, 28(4), 721–735.

Harari, O., & Steinberg, D. M. (2014). Optimal designs for Gaussian process models via spectral
decomposition. Journal of Statistical Planning and Inference, 154, 87–101.

Hong, L. J., & Nelson, B. L. (2009). A brief introduction to optimization via simulation. In M.
Rosetti, R. Hill, B. Johansson, A. Dunkin, & R. Ingalls (Eds.), Proceedings of the 2009 Winter
Simulation Conference (pp. 75–85).

Hunter, S. R., & McClosky, B. (2016). Maximizing quantitative traits in the mating design problem
via simulation-based Pareto estimation. IIE Transactions, 48(6), 565–578.

Hunter, S. R., & Pasupathy, R. (2013). Optimal sampling laws for stochastically constrained
simulation optimization on finite sets. INFORMS Journal on Computing, 25(3), 527–542.

Johnson, M. E., Moore, L. M., & Ylvisaker, D. (1990). Minimax and maximin distance designs.
Journal of Statistical Planning and Inference, 26(2), 131–148.

Jones, B., Allen-Moyer, K., & Goos, P. (2020). A-optimal versus D-optimal design of screening
experiments. Journal of Quality Technology, 53(4), 369–382.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4), 455–492.

Kiefer, J. (1971). The role of symmetry and approximation in exact design optimality. In S. S.
Gupta, & J. Yackel (Eds.), Statistical decision theory and related topics (pp. 109–118).

Kushner, H., & Yin, G. (2003). Stochastic approximation and recursive algorithms and applica-
tions (2nd ed.). Springer Science and Business Media.

Lai, T. L., & Wei, C. Z. (1982). Least squares estimates in stochastic regression models with
applications to identification and control of dynamic systems. The Annals of Statistics, 10(1),
154–166.

Lin, J. T., Chen, C. M., Chiu, C. C., & Fang, H. Y. (2013). Simulation optimization with
PSO and OCBA for semiconductor back-end assembly. Journal of Industrial and Production
Engineering, 30(7), 452–460.

Lu, H., Freund, R. M., & Nesterov, Y. (2018). Relatively smooth convex optimization by first-order
methods, and applications. SIAM Journal on Optimization, 28(1), 333–354.

Morris, M. D., & Mitchell, T. J. (1995). Exploratory designs for computational experiments.
Journal of Statistical Planning and Inference, 43(3), 381–402.

Nasrollahzadeh, A. A., & Khademi, A. (2020). Optimal stopping of adaptive dose-finding trials.
Service Science, 12(2–3), 80–99.

O’Brien, T. E., & Funk, G. M. (2003). A gentle introduction to optimal design for regression
models. The American Statistician 57(4), 265–267.

Pasupathy, R., Hunter, S. R., Pujowidianto, N. A., Lee, L. H., & Chen, C. H. (2014). Stochastically
constrained ranking and selection via SCORE. ACM Transactions on Modeling and Computer
Simulation, 25(1), 1:1–1:26.

Puterman, M. L. (2014). Markov decision processes: Discrete stochastic dynamic programming.
Wiley.

Qin, C., Klabjan, D., & Russo, D. (2017). Improving the expected improvement algorithm. In: I.
Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett
(Eds.), Advances in Neural Information Processing Systems (Vol. 30). Curran Associates.

Qu, H., Ryzhov, I. O., Fu, M. C., & Ding, Z. (2015). Sequential selection with unknown correlation
structures. Operations Research, 63(4), 931–948.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT
Press.

76 I. O. Ryzhov

Rodriguez, M., Jones, B., Borror, C. M., & Montgomery, D. C. (2010). Generating and assessing
exact G-optimal designs. Journal of Quality Technology, 42(1), 3–20.

Russo, D. (2020). Simple Bayesian algorithms for best-arm identification. Operations Research,
68(6), 1625–1647.

Russo, D., & Van Roy, B. (2014). Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4), 1221–1243.

Ryzhov, I. O. (2016). On the convergence rates of expected improvement methods. Operations
Research, 64(6), 1515–1528.

Sagnol, G., & Harman, R. (2015). Computing exact D-optimal designs by mixed integer second-
order cone programming. The Annals of Statistics, 43(5), 2198–2224.

Salemi, P., Nelson, B. L., & Staum, J. (2014). Discrete optimization via simulation using Gaussian
Markov random fields. In A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, & J. A.
Miller (Eds.), Proceedings of the 2014 Winter Simulation Conference (pp. 3809–3820).

Shin, D., Broadie, M., & Zeevi, A. (2016). Tractable sampling strategies for quantile-based ordinal
optimization. In T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, & S. E.
Chick (Eds.), Proceedings of the 2016 Winter Simulation Conference (pp. 847–858).

Shin, D., Broadie, M., & Zeevi, A. (2018). Tractable sampling strategies for ordinal optimization.
Operations Research, 66(6), 1693–1712.

Soare, M., Lazaric, A., & Munos, R. (2014). Best-arm identification in linear bandits. In Z.
Ghahramani, M. Welling, C. Cortes, N. Lawrence, & K. Q. Weinberger (Eds.), Advances in
Neural Information Processing Systems (Vol. 27, pp. 828–836). Curran Associates.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3–4), 285–294.

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning. Machine Learn-
ing, 16(3), 185–202.

Wu, D., & Zhou, E. (2018). Analyzing and provably improving fixed budget ranking and selection
algorithms. Preprint arXiv:181112183.

Zhang, S., Lee, L. H., Chew, E. P., Xu, J., & Chen, C. H. (2016). A simulation budget allocation
procedure for enhancing the efficiency of optimal subset selection. IEEE Transactions on
Automatic Control, 61(1), 62–75.

Zhou, J., & Ryzhov, I. O. (2021). A new rate-optimal design for linear regression. Technical
Report, University of Maryland.

Zhou, J. & Ryzhov, I. O. (2022). A new rate-optimal sampling allocation for linear belief models.
Operations Research (to appear).

Zhu, Y., Dong, J., & Lam, H. (2019). Efficient inference and exploration for reinforcement learning.
Preprint arXiv:191005471.

Part II
Price Optimization

Chapter 4
Dynamic Pricing with Demand Learning:
Emerging Topics and State of the Art

Arnoud V. den Boer and Nuri Bora Keskin

4.1 Introduction

Trying to determine the “right” or “optimal” price for a product is an activity
that probably exists since the time that mankind started to engage in trading
commodities. More recently—that is, only a few centuries ago—people started to
document in some detail how product quantity correlated with its market price;
a well-known example is the so-called King-Davenant law (Davenant, 1699) that
documents how deficiencies in the yearly supply of corn affected its price relative to
the common rate. Clearly, accurate information about the relation between demand,
supply, and selling price are essential when one aims to optimize decisions such as
price or production quantity. For centuries, obtaining high-quality data to underpin
these decisions has in many contexts been a challenging and highly non-trivial task,
with the consequence that “learning” optimal selling prices from data was simply
not possible.

In contrast, taking a big leap to the 21st century, abundant availability of
information is perhaps one of the key characteristics of our time. Using cookies
and other techniques, sellers continuously collect detailed data on the browsing
and shopping behavior of their customers; not only on an aggregate but even on
an individual level, enabling firms to personalize product recommendations and
discounts. Furthermore, the fact that decisions such as selling prices are not static

A. V. den Boer
Korteweg-de Vries Institute for Mathematics and Amsterdam Business School, University of
Amsterdam, Amsterdam, GE, Netherlands
e-mail: boer@uva.nl

N. B. Keskin (�)
Duke University, Fuqua School of Business, Durham, NC, USA
e-mail: bora.keskin@duke.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_4&domain=pdf

 885 51863 a 885 51863 a

mailto:boer@uva.nl

 885 55738 a 885 55738 a

mailto:bora.keskin@duke.edu

 -2016 61494
a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_4

80 A. V. den Boer and N. B. Keskin

decisions but can often be changed any moment, without any additional costs,
enables sellers to dynamically learn how the demand for their products is affected by
selling prices and respond to this stream of statistical information by continuously
and dynamically updating their prices.

Given the complexity of the task of taking optimal, data-driven pricing decisions,
it may come as no surprise that algorithms play a key role in this process. A
substantial stream of academic literature has emerged in recent years that designs
and analyzes such algorithms that learn optimal selling prices from accumulating
sales data. The goal of this chapter is to summarize a number of recent results in this
area. In addition, since learning-and-earning is far from a finished research topic, we
point to a number of emerging topics in the pricing-and-learning literature that may
become important research directions in the upcoming years.

4.2 Model

We consider a seller who is selling a single type of product and who needs to
determine the selling price of the product during subsequent discrete periods. That
is, at the beginning of each period t ∈ N, the seller determines a selling price
pt ∈ [pmin, pmax], where pmin and pmax are given lower and upper bounds,
respectively, on the possible selling prices, and 0 ≤ pmin < pmax. After setting the
selling price, the seller observes the demand Dt that is realized during that period,
collects revenue ptDt , and moves on to the next period. The demand is of the form

Dt = d(pt)+ εt for all t ∈ N,

where

d : [pmin, pmax] → [0,∞)

is a continuous and nonincreasing mapping called the demand function, and {εt :
t ∈ N} is comprised of light-tailed random variables that are independent of
pt+1, pt+2, . . . for all t ∈ N and satisfy E[εt | p1, . . . , pt] = 0 a.s. and
supt∈N E[ε2

t | p1, . . . , pt] ≤ σ 2 a.s. for some σ > 0. Thus, d(p) is the expected
demand given selling price p, and εt is a random demand shock in period t . Observe
that the demand noise terms {εt : t ∈ N} are not necessarily identically distributed.
This allows their distribution to depend on the charged price; an example is where
each Dt is Bernoulli distributed with mean d(pt).

The seller is interested in determining a price that maximizes the expected
revenue function

r(p) := pd(p) for p ∈ [pmin, pmax].

4 Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art 81

For ease of exposition we assume that the marginal costs of the product are equal
to zero, so that revenue is equal to profit. Non-zero marginal costs c can be
incorporated in the model by maximizing (p − c)d(p) instead of pd(p). We also
assume that all demand can be satisfied by the seller, so that stock-outs do not occur.
Models with inventory restrictions are considered in the next chapter of this book.

Crucially, the demand function d(·) is assumed to be unknown to the seller,
so that the revenue function r(·) cannot be maximized directly. Instead, the seller
faces the task of learning an optimal price from accumulating sales data in an
efficient way. To this end, the seller needs to determine for each possible data set
or history (p1,D1, . . . , pt−1,Dt−1) of previously used prices and corresponding
demand observations, which price will be charged in the next period t , for all t ∈ N.
Prices may be random, and thus have a distribution: we denote by π(· | h) the
probability distribution of pt conditional on (p1,D1, . . . , pt−1,Dt−1) = h, for all
histories h in the set of possible histories

H :=
⋃

t∈N

{
[pmin, pmax] ×D

}t−1
,

where D ⊂ R denotes the set of values that demand can attain (for example, if Dt
is Bernoulli distributed for all t ∈ N, then D = {0, 1}). The pricing decisions of the
seller are fully specified by the collection {π(· | h) : h ∈ H)}. This collection is
called an admissible policy, and we denote by� the space of all admissible policies.
Note that the empty set ∅ is an element of H , corresponding to the distribution
π(· | ∅) of the first price p1 (which is determined when no sales data are available).

It is worth mentioning that policies are usually not specified in a completely
formal way. For example, if a policy stipulates “p1 = pmin,” then this should be
interpreted as π(· | ∅) being a degenerate distribution that puts all probability mass
on pmin. Furthermore, it is possible that each π(· | h) is a degenerate distribution
that puts all probability mass on a single price. In this case π is called a deterministic
or non-random policy: each history then uniquely determines the next price that will
be charged, and the policy can be construed as a mapping π : H → [pmin, pmax]
from histories to prices. Policies that are not deterministic are called random or
randomized policies. To emphasize that the distribution of the price and demand
vector (pt ,Dt : t ∈ N) depends both on the policy π and the demand function
d(·), we denote the probability measure governing this distribution by Pπd {·} and the
associated expectation operator by Eπd {·}.

Because the seller is interested in maximizing the expected revenue function r(·),
we measure the quality of a policy by the expected revenue loss caused by charging
sub-optimal prices. Formally, the regret of an admissible policy π after T periods is
defined as

Rπd (T) := T max
p∈[pmin,pmax]

{r(p)} − Eπd
[
T∑

t=1

ptDt

]

for T ∈ N.

82 A. V. den Boer and N. B. Keskin

Regret is always non-negative, and the better the policy, the lower the regret.
Ideally, the seller would be able to determine a policy π ∈ � that minimizes its

regret Rπd (T) for a given T ∈ N and for a large class of demand functions d(·).
However, this turns out to be an intractable problem: except for very simple cases
(e.g., with T = 1), it is generally not possible to compute an optimal policy. For this
reason, much research focuses on determining a policy π for which the growth rate
of the regret, as a function of T , is as small as possible. Such policies are then called
asymptotically optimal. Determining asymptotically optimal policies involves two
tasks: proving a lower bound on the regret of any admissible policy, and constructing
a particular admissible policy and proving an upper bound on its regret that matches
the growth rate of the lower bound in T .

Remark 4.1 The model described above adopts a frequentist approach to uncer-
tainty: it is assumed that there is a single, fixed, non-random demand function
d(·) that (partly) determines how expected demand depends on price. Alternatively
one could adopt a Bayesian approach and assume that d(·) itself is randomly
selected from a set of possible demand functions. A typical approach is then to
start with a prior distribution F0 on d(·), update this distribution using Bayes’
rule to compute the posterior distribution Ft of d(·) after having observed the data
p1,D1, . . . , pt ,Dt , and determine pt+1 based on this posterior distribution. The
quality of a policy in the Bayesian framework is usually measured by the Bayesian
regret Ed∼F0[Rπd (T)]: the expectation of regret with respect to the prior distribution
of d(·). This chapter focuses predominantly on frequentist approaches—however,
in Sect. 4.3.3, we point to a number of important Bayesian contributions.

Remark 4.2 It is worth emphasizing that the model described above differs in
a number of ways from traditional multi-armed bandit settings. First, the set of
feasible actions is not finite but an interval, [pmin, pmax]. Second, the expected
reward function has a particular structure of the form r(p) = pd(p), where d(·)
is a continuous and nonincreasing function, and often more assumptions added
to ensure that r(·) has a unique maximizer. Third, observations are made on the
demand instead of the revenue. In the single-product setting above, this may seem
like a minor difference, but in multi-product extensions, observing the demand for
each product separately instead of only observing the aggregate revenue makes a
substantial difference.

4.3 Asymptotically Optimal Pricing Policies

In this section, we discuss different approaches to the pricing-and-learning prob-
lem described in the previous section. Parametric approaches are described in
Sect. 4.3.1, nonparametric approaches in Sect. 4.3.2, and references for important
extensions and generalizations are given in Sect. 4.3.3.

4 Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art 83

4.3.1 Parametric Approaches

4.3.1.1 Model and Estimation

Several papers study the learning-and-earning problem under the additional assump-
tion that the demand function is linear. This means that

d(p) = θ1 + θ2p for p ∈ [pmin, pmax],

where θ1 and θ2 are unknown parameters. We write θ = (θ1, θ2) and assume that
θ lies in a compact set � := [θ1,min, θ1,max] × [θ2,min, θ2,max] for some known
parameter bounds θ1,min, θ1,max, θ2,min, θ2,max satisfying 0 < θ1,min < θ1,max and
θ2,min < θ2,max < 0. In addition, we occasionally write

r(p, ϑ) := p(ϑ1 + ϑ2p) for p ∈ [pmin, pmax] and ϑ = (ϑ1, ϑ2) ∈ �,

to emphasize the dependence of the revenue function on both the price and the
parameters. If needed, we could assume that θ1,min + θ2,minpmax ≥ 0 to ensure that
the expected demand is always non-negative, but from a mathematical perspective
this assumption is not always necessary. For ease of exposition, we do assume,
however, that ϑ1/(−2ϑ2) ∈ (pmin, pmax) for (ϑ1, ϑ2) ∈ �. This assumption ensures
that the price ψ(ϑ) that maximizes r(p, ϑ) with respect to p, given by

ψ(ϑ) := ϑ1

−2ϑ2
for ϑ ∈ �,

lies in the interior of the feasible price range. Because the unknown demand function
is completely characterized by the parameter vector θ , we use in this subsection
P
π
θ {·} and Eπθ {·} instead of Pπd {·} and Eπd {·}, respectively.

The unknown parameters of the linear demand model can conveniently be
estimated using ordinary least squares (OLS). The unconstrained OLS estimator
ϑ̂(t) of θ , based on data from the first t periods, is given by

ϑ̂(t) := arg min
ϑ∈R2

{
t∑

s=1

(Ds − ϑ1 − ϑ2ps)
2

}

for all t ∈ N (4.1)

and is well-defined if not all prices p1, . . . , pt are the same. Because there are no
guarantees that all components of ϑ̂(t) have the correct sign, and because the true
parameter vector θ lies in �, we project the unconstrained OLS estimator to �:

θ̂ (t) :=
(
P[θ1,min,θ1,max]ϑ̂1(t)

P[θ2,min,θ2,max]ϑ̂2(t)

)

for all t ∈ N, (4.2)

where P[l,u](x) := min{u,max{l, x}} for all l, u, x ∈ R with l ≤ u.

84 A. V. den Boer and N. B. Keskin

4.3.1.2 Certainty-Equivalence Pricing and Incomplete Learning

Perhaps the most intuitive pricing policy would be to simply always set the price that
is optimal with respect to the available parameter estimates. More formally, choose
p1, p2 ∈ [pmin, pmax] with p1 �= p2 to ensure that the OLS estimator is defined,
and for all t ≥ 3, set

pt = ψ(θ̂(t − 1)).

Thus, this policy simply uses the estimated optimal decision ψ(θ̂(t − 1)) in all
periods except the first two that are meant for initializing the OLS estimator. Observe
that our assumptions on � ensure that pt ∈ [pmin, pmax] for all t .

The principle of always choosing an action that maximizes the estimated
objective function (except in a few initial periods) can be viewed as a myopic or
greedy policy, also known as passive learning or certainty-equivalence control in
general. This principle is very simple, and in some settings, its performance is
excellent (see Broder & Rusmevichientong, 2012, section 4; den Boer & Zwart,
2015, section 3; Keskin & Zeevi, 2018, section 4.2.4; Keskin & Birge, 2019,
section 5). However, in many settings such as the dynamic pricing-and-learning
problem described above, this approach unfortunately performs very poorly (see,
e.g., Lai & Robbins, 1982, section 2; Harrison et al. 2012, section 4; den Boer &
Zwart, 2014, section 3.1; Keskin & Zeevi, 2014, section 3, den Boer & Keskin,
2022, section 4.4). Building on the analysis of Lai and Robbins (1982), den Boer
and Zwart (2014) show that prices generated by the certainty-equivalence policy
may converge to a price different from the optimal price, leading to linearly growing
regret.

Proposition 4.1 (den Boer and Zwart (2014, proposition 1)) Under the
certainty-equivalence pricing policy, pt converges with positive probability to a
price different from the optimal price ψ(θ) as t →∞.

In Fig. 4.1, we show sample paths of prices from several simulations of the
certainty-equivalence pricing policy. The figure illustrates that the prices do not
converge to the optimal price ψ(θ) as t → ∞, and that the limit price is in fact
random. Figure 4.2 shows the limit values of the OLS estimates in these simulations,
represented by small circles. The limit values all lie on the curve defined by

θ1 + θ2ψ(ϑ) = ϑ1 + ϑ2ψ(ϑ). (4.3)

For parameter estimates ϑ ∈ � that satisfy (4.3), the true expected demand under
the estimated optimal price ψ(ϑ) is equal to the estimated expected demand under
this price. In other words, the observed expected demand when using price ψ(ϑ)
seems to “confirm” the correctness of the estimates ϑ , even though ϑ might be
different from the true parameter θ .

The phenomenon that parameter estimates in a dynamic decision problem with
parameter uncertainty converge with positive probability to an incorrect value is

4 Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art 85

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
3

3.5

4

4.5

5

5.5

6

6.5

7

Fig. 4.1 Sample paths of prices from different simulations of the certainty-equivalence pricing
policy, with θ1 = 10, θ2 = −1, pmin = 0, pmax = 25, p1 = 3, p2 = 7, θ1,min = 1, θ1,max = 20,
θ2,min = −2, θ2,max = −0.5, and εt ∼ N(0, σ 2) with σ = 0.5. Observe that pmin < ψ(ϑ) ≤
θ1,max/(−2θ2,max) < pmax for all ϑ ∈ �. The optimal price in this instance is ψ(10,−1) = 5

6 7 8 9 10 11 12 13

1

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

2

Fig. 4.2 Each red dot represents the limit value of θ̂ (t) for a simulation of the certainty-
equivalence pricing policy, with same parameters as in Fig. 4.1. The solid line represents solutions
to (4.3)

86 A. V. den Boer and N. B. Keskin

called incomplete learning, and certainty-equivalence pricing is an example where
this phenomenon occurs (see Keskin & Zeevi, 2018).

4.3.1.3 Asymptotically Optimal Policies

An intuitive explanation for why, under the certainty-equivalence policy, the
parameter estimates θ̂ (t) do not converge to the true parameter θ (and the prices
ψ(θ̂(t)) do not converge to the true optimal priceψ(θ)) is that certainty-equivalence
pricing does not induce sufficient price dispersion: in a sense, the prices converge
“too fast.”

Dispersion in the covariates is crucial for the consistency of OLS. This is easily
seen in a simple, one-dimensional model: let yt = γ xt + εt for all t ∈ N, where
{εt : t ∈ N} are i.i.d. standard Gaussian random variables, and {xt : t ∈ N} are
non-random real numbers not all equal to zero. The OLS estimate γ̂ (t) of γ based
on the data {(xs, ys) : 1 ≤ s ≤ t} is equal to γ̂ (t) = (

∑
s≤t xsys)/(

∑
s≤t x2

s),
which is normally distributed with mean γ and variance 1/(

∑
s≤t x2

s). Thus, γ̂ (t)
converges in probability to γ as t →∞ if and only if

∑∞
s=1 x

2
s = ∞. For example,

if xt = 1/t2 for all t ∈ N, then the covariates converge “too quickly” to zero, so that∑∞
s=1 x

2
s <∞, and γ̂ (t) does not converge in probability to γ as t →∞.

In our pricing problem, the (unconstrained) OLS estimates ϑ̂(t) are given by

ϑ̂(t) = θ +J−1
t

(∑t
s=1 εs∑t
s=1 psεs

)

for all t ≥ 3,

where

Jt :=
(
t

∑t
s=1 ps∑t

s=1 ps
∑t
s=1 p

2
s

)

.

The variation of prices is measured by the smallest eigenvalue λmin(Jt) of this
matrix. For practitioners, this quantity might be difficult to interpret. It is related,
however, to a quantity that is more intuitive to interpret, namely the variance of
p1, . . . , pt , as follows:

tVar(p1, . . . , pt)

(1+ p2
max)

≤ det(Jt)/t
tr(Jt)/t

≤ det(Jt)
λmax(Jt)

= λmin(Jt),

and

λmin(Jt) = det(Jt)
λmax(Jt)

≤ t
2Var(p1, . . . , pt)

tr(Jt)/2
≤ tVar(p1, . . . , pt)

(1+ p2
min)/2

,

4 Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art 87

so that tVar(p1, . . . , pt) � λmin(Jt). The following result shows that a guaranteed
lower bound on λmin(Jt), or equivalently, on tVar(p1, . . . , pt), implies a high-
probability bound on the OLS estimation error:

Proposition 4.2 (Keskin and Zeevi (2014, lemma 3)) There exist positive con-
stants ρ and k such that, under any pricing policy π ,

P
π
θ (||ϑ(t)− θ || > δ and λmin(Jt) ≥ m) ≤ kt exp(−ρmin(δ, δ2)m),

for all δ,m > 0 and all t ≥ 2.

Proposition 4.2 implies that a pricing policy that induces a sufficient amount of price
dispersion throughout all periods (i.e., ensuring that λmin(Jt) or tVar(p1, . . . , pt)

grows sufficiently fast) will generate consistent estimates θ̂ (t) of θ . If, in addition,
the policy ensures that the charged prices pt are also “sufficiently close” to the
estimated optimal price ψ(θ̂(t − 1)) for all t , then prices pt will converge in
probability to the optimal price ψ(θ). The following result makes this condition
more precise and also establishes an upper bound on the resulting regret of the
policy:

Theorem 4.1 (Keskin and Zeevi (2014, theorem 2)) Let κ0, κ1 be positive
constants, and let π be a pricing policy that satisfies

(i) λmin(Jt) ≥ κ0
√
t ,

(ii)
∑t
s=t0

(
ψ(θ̂(s))− ps+1

)2 ≤ κ1
√
t ,

almost surely for some t0 ∈ N and all t ≥ t0. Then, there exists a constant C > 0
such that Rπθ (T) ≤ C

√
T log T for all T ≥ 3.

The regret growth rate Rπθ (T) of
√
T log T can hardly be improved. It can be

shown by application of the van Trees inequality (Gill & Levit, 1995), a multivariate
and Bayesian generalization of the Cramér–Rao lower bound, that

√
T is the best

possible growth rate of regret:

Theorem 4.2 (Keskin and Zeevi (2014, theorem 1)) There is a c > 0 such that,
for all policies π and all T ≥ 3,

sup
θ∈�

Rπθ (T) ≥ c
√
T .

An alternative proof of this result, based on inequalities in hypothesis testing, can
be found in Broder and Rusmevichientong (2012, theorem 3.1).

Thus, any policy that satisfies the conditions in Theorem 4.1 is asymptotically
optimal in the sense that the growth rate of the regret is optimal, up to logarithmic
factors.

We now give three concrete examples of pricing policies that satisfy the criteria
for asymptotic optimality. The first example is “controlled variance pricing” (den

88 A. V. den Boer and N. B. Keskin

Boer & Zwart, 2014), which is also called “constrained iterated least squares”
(Keskin & Zeevi, 2014).

Controlled variance pricing

Let c1 > 0 and c2 ∈ (0, (pmax − pmin)/2).
Let p1, p2 ∈ [pmin, pmax] with p1 �= p2.

For all t ≥ 3:

- Write ψt := ψ(θ̂(t − 1)).
- If Var(p1, . . . , pt−1, ψt) ≥ c1t

−1/2 then choose pt = ψt ;
- Otherwise, choose pt = ψt ± c2t

−1/4 such that pt ∈ [pmin, pmax].

The key idea of this policy is to charge the estimated optimal price ψt at each
period t ≥ t0, except when this price induces insufficient price dispersion to ensure
that Var(p1, . . . , pt) is at least c1t

−1/2; in this case, a small perturbation of c2t
−1/4

is added to or subtracted from ψt .
Our second example of an asymptotically optimal pricing policy is “MLE-cycle”

pricing (Broder & Rusmevichientong, 2012) and is also known under the name “ILS
with deterministic testing” (Keskin & Zeevi, 2014). The policy description uses the
notation θ̂ (T), for T ⊂ N, which denotes the projected OLS estimate based only
on the data from the periods in T. Thus, with this notation, θ̂ (t) is shorthand for
θ̂ ({1, . . . , t}).

MLE-cycle

Let T1 and T2 be disjoint subsets of N such that 1 ∈ T1, 2 ∈ T2, and

inf
t≥3,i∈{1,2}

{
t−1/2|Ti ∩ {1, . . . , t}|

}
> 0.

For all t ∈ N:

- If t ∈ T1, choose pt = p1;
- If t ∈ T2, choose pt = p2;
- If t /∈ T1 ∪ T2, choose pt = ψ(θ̂({s ∈ T1 ∪ T2 : s ≤ t − 1})).

This policy ensures sufficient price dispersion by devoting predetermined por-
tions of the time horizon to price experiments: for all t ∈ T1, the price is set to a
fixed price p1, and for all t ∈ T2, the price is set to a fixed price p2 �= p1. In all other
periods, the estimated optimal price ψ(θ̂(t − 1)) is charged. The sets T1 and T2 are

4 Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art 89

chosen such that the number of exploration periods in periods 1 through t is at least
a positive constant times

√
t . This can, for example, be achieved by choosing, as in

Broder and Rusmevichientong (2012),

T1 =
{

1+ 2c + 1

2
c(c + 1)c1 : c ∈ N ∪ {0}

}

, (4.4)

T2 =
{

2+ 2c + 1

2
c(c + 1)c1 : c ∈ N ∪ {0}

}

, (4.5)

for some c1 ∈ N. The estimate of θ at each t /∈ T1 ∪ T2 is based only on the
data from the exploration periods {s ∈ T1 ∪ T2 : s ≤ t − 1}. This simplifies the
mathematical analysis of the estimator. It is also possible to estimate θ based on all
available data, by replacingψ(θ̂({s ∈ T1∪T2 : s ≤ t−1})) in the policy description
with pt = ψ(θ̂(t−1)). This modification of MLE-cycle is called “MLE-cycle-s” in
Broder and Rusmevichientong (2012). Intuitively one might expect that including
more data can only improve the quality of estimators, but this is not true in general
(den Boer, 2013).

Our third example of an asymptotically optimal pricing policy is the “semi-
myopic pricing scheme” introduced in Besbes and Zeevi (2015). We here call it
the “geometric-cycle” policy, since the policy keeps the prices fixed during periods
of geometrically increasing duration.

Geometric-cycle

Let c1 > 1, c2 ∈ (0, pmax − pmin)/2), and θ̂ (0) ∈ �.
For all c ∈ N, let nc := "cc1#, Nc :=

∑c−1
k=1 2nk , and δc := c2n

−1/4
c . Let

N0 := 0

For all t ∈ N:

pt = max{pmin, ψc−1 − δc} for all t = Nc−1 + 1, . . . , Nc−1 + nc,
pt = min{pmax, ψc−1 + δc} for all t = Nc−1 + nc + 1, . . . , Nc,

where

ψc−1 := ψ(θ̂({Nc−2 + 1, . . . , Nc−1})) for c ≥ 2,

and ψ0 := ψ(θ̂ (0)).

The geometric-cycle policy divides the time horizon into consecutive cycles
indexed by c ∈ N. The selling price during the first half of the cycle is fixed
at the estimated optimal price minus a small perturbation, and to the estimated

90 A. V. den Boer and N. B. Keskin

0 1000 2000 3000 4000 5000

T

0

100

200

300

400

500

600

700

800

R
eg

re
t(

T
)

Certainty-equivalence pricing
Controlled variance pricing
MLE-cycle
MLE-cycle-s
Geometric-cycle
Geometric-cycle-s

Fig. 4.3 Regret as function of T , for six different pricing policies: certainty-equivalence pricing,
controlled variance pricing, MLE-cycle, MLE-cycle-s, geometric-cycle, and geometric-cycle-s,
with same parameters as in Fig. 4.1. The pricing policies are implemented with hyper-parameters
p1 = 3 and p2 = 7 for certainty-equivalence pricing; p1 = 3, p2 = 7, c1 = 2, and c2 = 4 for
controlled variance pricing; p1 = 3, p2 = 7, and T1, T2 as in (4.5) with c1 = 40 for MLE-cycle
and MLE-cycle-s; c1 = 1, c2 = 1, and θ̂ (0) drawn uniformly at random from � for geometric-
cycle; and c1 = 1, c2 = 0.5, and θ̂ (0) determined similarly for geometric-cycle-s

optimal price plus a small perturbation in the second half of the cycle. Exploration
and exploitation are balanced by optimally tuning the length of the cycles, nc, and
the magnitude of perturbation from the estimated optimal price, δc. The estimated
optimal price ψc−1 is based only on the data from cycle c − 1; this simplifies
analysis of the OLS estimator and can be beneficial in scenarios where the sales
data is believed to misspecified or contaminated. It is possible to include all
available data in the estimator, by replacing ψc−1 in the policy description with
ψc−1 = ψ(θ̂(Nc−1)).

Figure 4.3 shows the regret as function of T for the six policies described
above, namely certainty-equivalence pricing, controlled variance pricing, MLE-
cycle, MLE-cycle-s, geometric-cycle, and a variant of geometric-cycle that uses
all available data to compute the OLS estimates—we call this policy “geometric-
cycle-s.” The figure illustrates that the regret of certainty-equivalence pricing grows
linearly in T , while the regret of the other policies grows akin to

√
T . The regret of

MLE-cycle and geometric-cycle policies are higher than that of their counterparts
that use all available data to compute the OLS estimates. The performance of
the policies might be further improved by fine-tuning the hyper-parameters of the
policies.

4 Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art 91

4.3.1.4 Extensions to Generalized Linear Models

All results in the preceding section can be extended to the case where the demand
follows a generalized linear model (GLM) instead of a linear one. This means that
the expected demand is a general function of θ1 + θ2p, and the variance of demand
is a function of its mean:

E[Dt | pt = p] = h(θ1 + θ2p),

Var(Dt | pt = p) = v(h(θ1 + θ2p)),

for all t ∈ N and p ∈ [pmin, pmax], and for some sufficiently smooth known
functions h and v. The inverse of the function h(·) is usually called the link function
of the GLM. Examples that are captured by this model are (i) Bernoulli distributed
demand with logit demand function: h(x) = 1/(1 + exp(−x)), v(x) = x(1 − x),
(ii) Poisson distributed demand with exponential demand function: h(x) = exp(x),
v(x) = x, and (iii) normally distributed demand with linear demand function:
h(x) = x, v(x) = σ 2 for some σ > 0. The unknown parameter vector of the model,
(θ1, θ2), can be estimated by maximum likelihood estimation, and concentration
inequalities such as Proposition 4.2 remains valid; the same holds for the upper
bound on regret in Theorem 4.1. The proof of this bound uses the fact that, for linear
demand functions, the instantaneous revenue loss caused by using an estimated
optimal price instead of the true optimal price is quadratic in the estimation error:

ψ(θ)d(ψ(θ))− ψ(θ̂)d(ψ(θ̂)) = O(||θ̂ − θ ||2). (4.6)

This property, and, therefore, the bound in Theorem 4.1, remains valid if the linear
demand model is replaced by a generalized linear model.

4.3.1.5 Extensions to Multiple Products

The results in Sect. 4.3.1.3 can be extended to the settings where the seller has
multiple products for sale. Let i ∈ {1, . . . , n} be an index to denote n different
products, and write [n] := {1, . . . , n}, where n ∈ N. The set of feasible prices
is of the form

∏n
i=1[pi,min, pi,max] such that for all i ∈ [n], pi,min and pi,max are

given lower and upper bounds, respectively, which satisfy 0 ≤ pi,min < pi,max.
We here discuss the case of linear demand functions, but extensions can be made
to generalized linear models (see den Boer, 2014) or multinomial logit models, by
replacing the OLS estimator with the maximum likelihood estimator. In each period
t , the vector of demands for products 1 through n, D(t) = (D1(t), . . . ,Dn(t))

	, is
given by

D(t) = d(p(t))+ ε(t) for all t ∈ N,

92 A. V. den Boer and N. B. Keskin

with

d(p) := a+ Bp for p ∈
n∏

i=1

[pi,min, pi,max],

where a is an unknown vector with strictly positive components, B = (bij) is
an unknown n × n matrix with strictly negative diagonal elements, and |bii | >∑
j �=i |bij | for all i ∈ [n], p(t) = (p1(t), . . . , pn(t)) is the vector of prices for

products 1, . . . , n in period t , and ε(t) is a vector of light-tailed random disturbance
terms that satisfy E[ε(t) | p(1), . . . ,p(t)] = 0 a.s. and supt∈N E[||ε(t)||2 |
p(1), . . . ,p(t)] ≤ σ 2 a.s. for some σ > 0. The expected revenue function, which is
given by

r(p) := p	d(p) for p ∈
n∏

i=1

[pi,min, pi,max],

is then strictly concave, with unique maximizer (B+B)−1a. Extending the single-
product definitions, an admissible policy in the multiple product setting, denoted
as π(· | h), is a collection of probability distributions on the feasible price set∏n
i=1[pi,min, pi,max] for each history h = (p(1),D(1), . . . ,p(t − 1),D(t − 1)).
The regret Rπd (T) of a policy π after T periods, with unknown demand function

d, is defined as

Rπd (T) = T max
p∈∏n

i=1[pi,min,pi,max]
{r(p)} − Eπd

[
T∑

t=1

p(t)	D(t)
]

.

If we write xp(t) := [1 p(t)]	 for all t ∈ N and θ i := [ai bi,1 . . . bi,n]	 for all
i ∈ [n], then for all i ∈ [n], the OLS estimator of θ i based on the transaction data
collected in the first t periods is equal to

ϑ̂ i (t) := arg min
ϑ∈Rn+1

{
t∑

s=1

(
Di(s)− ϑ	xp(s)

)2
}

,

which is well-defined if the matrix

J(t) :=
t∑

s=1

xp(s)x
	
p(s)

is invertible. Let θ be the matrix whose i-th row is equal to θ	i for all i ∈ [n], and
similarly let ϑ̂(t) denote the matrix whose i-th row is equal to ϑ̂ i (t)

	 for all i ∈ [n].
Let � be a compact set of feasible parameter values containing θ such that for all
θ̃ = [ã B̃] ∈ �, the corresponding optimal price vector,

4 Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art 93

ψ(θ̃) := (B̃+ B̃)−1ã,

is well-defined and lies in the feasible price set
∏n
i=1[pi,min, pi,max]. Finally, let

θ̂(t) denote the entrywise projection of the matrix ϑ̂(t) onto � for all t ∈ N. For all
θ̃ ∈ �, it holds similarly to (4.6) that instantaneous revenue losses are quadratic in
the estimation error. In addition, the squared estimation error ||θ̂(t) − θ ||2 is again
closely related to the smallest eigenvalue of J(t) (den Boer, 2014, proposition 4),
similar to the single-product case. As a result of these observations, it can be shown
that analogous to Theorem 4.1, if a pricing policy is such that there are κ0 > 0,
κ1 > 0, and t0 ∈ N satisfying

λmin(J(t)) ≥ κ0
√
t,

and

t∑

s=t0
||ψ(θ̂(t))− p(s + 1)||2 ≤ κ1

√
t,

almost surely for all t ≥ t0, then the regret of the policy isO(
√
T log T) (see Keskin

and Zeevi (2014, theorem 6), for a proof within a class of “orthogonal” policies).
An example of a policy that satisfies these requirements is the “adaptive pricing

policy” (den Boer, 2014), also known as “multivariate CILS” (Keskin & Zeevi,
2014), which extends controlled variance pricing to multiple dimensions:

Multivariate CILS for n products

Let p1, . . . , pn+1 ∈∏n
i=1[pi,min, pi,max] such that J(n+ 1) is invertible.

Let c1 ∈
(
0, (n+ 1)−1/2λmin(J(n+ 1))

)
.

For all t ≥ n+ 2:

- Write ψt := ψ(θ̂(t − 1)) and

St :=
{

p ∈
n∏

i=1

[pi,min, pi,max] : λmin

(
J(t − 1)+ pp	

)
≥ c1t

1/2

}

.

- If St �= ∅, then choose

p(t) ∈ arg min{||ψt − p||2 : p ∈ St }. (4.7)

- Otherwise, choose p(t) = p(t − 1).

94 A. V. den Boer and N. B. Keskin

The description above is a simplification from the original policy given in den
Boer (2014). There, instead of ensuring a lower bound on the smallest eigenvalue
of J(t), a lower bound on the inverse of the trace of the inverse of J(t) is ensured;
this is based on the fact that tr(A−1)−1 ∈ [λmin(A),mλmin(A)] for a symmetric
positive definite d× d matrix A. An advantage of this alternative characterization is
computational tractability: while it may not be obvious how to solve p(t) in (4.7),
the condition based on the trace of the inverse of J(t) implies that the price can
be determined by solving a quadratic optimization problem with a single, non-
convex quadratic constraint. This type of problems can be solved efficiently (Boyd
& Vandenberghe, 2004, appendix B).

It is also possible to extend the ILS/MLE-cycle policy to multiple prod-
ucts. Instead of two different test prices, we now use n + 1 test price vectors
p(1), . . . ,p(n+1) that are linearly independent.

Multivariate ILS with deterministic testing for n products

Let T1, . . . ,Tn+1 be disjoint subsets of N such that i ∈ Ti for all i ∈ [n+ 1],
and

inf
t≥n+2,i∈{1,...,n+1}

{
t−1/2|Ti ∩ {1, . . . , t}|

}
> 0.

Let p(1), . . . ,p(n+1) ∈∏n
i=1[pi,min, pi,max] such that

λmin

(
n+1∑

s=1

xp(s)x
	
p(s)

)

> 0.

For all t ∈ N:

- If t ∈ Ti , choose p(t) = p(i), for all i ∈ [n];
- If t /∈⋃

i∈[n] Ti , choose p(t) = ψ(θ̂(t − 1)).

The geometric-cycle policy from Sect. 4.3.1.3 can also be extended to multiple
products. The perturbations ±δc around the estimated optimal price ψc−1 should
then be extended to all dimensions, for example, by using each of the prices ψc−1±
δce1, . . . , ψc−1± δcen in total nc times during cycle c, where e1, . . . , en are the unit
vectors in Rn. Yang et al. (2020) study this type of policy in a nonparametric setting
with competition.

4 Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art 95

4.3.2 Nonparametric Approaches

Instead of assuming that the expected demand function has a particular parametric
form (e.g., a linear or generalized linear model, with finitely many unknown
parameters), it is also possible to take a nonparametric approach and only assume
certain smoothness and regularity conditions on the demand and revenue function.

An important class of policies designed to maximize a function (in this case, the
revenue function) is known as gradient ascent policies. These policies are based
on the intuitive idea of “hill-climbing”: taking successive steps in the direction
where the objective function is increasing, i.e., in the direction of the gradient. In
price optimization problems, this gradient is not directly observable from sales data
and, therefore, has to be estimated. The literature on the analysis of these types of
algorithms, starting with the seminal work by Kiefer and Wolfowitz (1952), is very
rich. The following policy description is based on Hong et al. (2020), who present
and analyze the Kiefer–Wolfowitz recursion in a pricing context. Let ej denote the
j -th unit vector in Rn, and let PA(x) denote the projection of x on A. Consider the
same setting and notation as in Sect. 4.3.1.5, but without assuming that the demand
function d is linear. For t ∈ N, let rt := D(t)	p(t) denote the revenue earned in
period t .

Kiefer–Wolfowitz policy for n products

Let {ak}k∈N and {ck}k∈N be sequences of positive numbers.
Let p̂(0) ∈∏n

i=1[pi,min, pi,max].
For all k ∈ N ∪ {0}, let

p(t) = p̂(k) if t = (n+ 1)k + 1,

p(t) = p̂(k)+ ckej if t = (n+ 1)k + 1+ j for some j ∈ {1, . . . , n}.

If t is a multiple of (n+ 1), then compute

Ĝ(k) = 1

ck

(
r(n+1)k+2 − r(n+1)k+1, . . . , r(n+1)k+1+n − r(n+1)k+1

)

and choose

p̂(k + 1) = P∏n
i=1[pi,min,pi,max]

{
p̂(k)− akĜ(k)

}
.

If the sequences {ak}k∈N and {ck}k∈N are carefully tuned, then the price p̂(k)
converges in mean squared error to the optimal price, and the regret is O(

√
T):

96 A. V. den Boer and N. B. Keskin

Theorem 4.3 (Hong et al. 2020, theorem 3) Let π correspond to the Kiefer–
Wolfowitz policy with step sizes {ak}k∈N and {ck}k∈N. Suppose that
(i) d(p) is twice continuously differentiable with

max
p′∈∏n

i=1[pi,min,pi,max]
E[||D(t)||2 | p(t) = p′] <∞;

(ii) there is a B1 > 0 such that, for all p,p′ ∈∏n
i=1[pi,min, pi,max],

r(p′) ≤ r(p)+∇r(p)	(p′ − p)− 1

2
B1||p′ − p||2;

(iii) r has unique maximizer p∗ ∈∏n
i=1(pi,min, pi,max);

(iv) ak = αk−1 and ck = γ k−1/4 for all k ∈ N and some α, γ > 0 satisfying
(4B1)

−1 < α < (2B1)
−1.

Then, there are positive constants κ0, κ1 such that

E[||̂p(k)− p∗||2] ≤ κ0k
−1/2,

for all k ∈ N, and

Rπd (T) ≤ κ1T
1/2,

for all T ∈ N.
Alternative conditions on the objective function that ensure similar rates of conver-
gence can be found in Broadie et al. (2011).

The continuous-armed bandit literature proposes several alternative policies to
learn the maximum of an objective function, which can also be applied to maximize
the expected revenue or profit as function of price: see, e.g., Kleinberg and Leighton
(2003), Auer et al. (2007), Cope (2009), Combes and Proutiere (2014), Trovò et al.
(2018), Misra et al. (2019). The algorithms proposed in these papers usually make
regularity assumptions on the unknown demand function that implies existence of
a unique optimal price vector. An exception is Wang et al. (2021), who analyze the
case where the revenue function may have multiple local maxima.

4.3.3 Extensions and Generalizations

The literature on dynamic pricing with incomplete information is vast and growing;
countless variants and generalizations to the “base” problem described above have
been studied. For example, Cheung et al. (2017) determine asymptotically optimal
policies in case the seller is allowed to make only a bounded number of price

4 Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art 97

changes; Birge et al. (2019) consider markdown pricing strategies for forward-
looking customers; den Boer and Keskin (2020); Cesa-Bianchi et al. (2019) allow
for discontinuities in the demand function; Nyarko (1991), Besbes and Zeevi (2015),
Nambiar et al. (2019) study the effect of various forms of model misspecification.
We refer to the survey papers by Chen and Chen (2014) and den Boer (2015)
for more references to important pricing problems. Our discussion focuses on a
frequentist approach; important contributions from a Bayesian viewpoint include
Rothschild (1974), McLennan (1984), Cope (2007), Harrison et al. (2012), Kao et al.
(2020). Robust optimization approaches to demand uncertainty are also considered;
see Bergemann and Schlag (2011). Other important variants of the problem are
pricing with finite inventory, contextual information, or changing environments;
these three topics are discussed in detail in other chapters of this book.

4.4 Emerging Topics and Generalizations

4.4.1 Product Differentiation

Joint management of pricing and product differentiation offers ample opportunities
for companies to tailor their products and services to their customers’ needs and
thereby increase their profits. Inspired by this, an emerging area of research is
concerned with the generalization of dynamic pricing-and-learning problems to
allow for product differentiation. Studies in this area focus on either horizontal or
vertical differentiation strategies.

Ulu et al. (2012) and den Boer et al. (2020) consider the problem of optimally
pricing and positioning horizontally differentiated products, based on a locational
choice model (Hotelling, 1929; Lancaster, 1966, 1975). In such choice models,
customers and products are represented by a point on the unit interval, and a
customer’s utility of purchasing a product depends on its price and its distance to
the customer. Ulu et al. (2012) assume discrete support and construct a Bayesian
dynamic program to determine the optimal price and locations; den Boer et al.
(2020) adopt a frequentist approach, allow customers and products to be located
on the whole continuum, and design asymptotically optimal decision policies.

Keskin and Birge (2019) and Keskin and Li (2020) study the optimal pricing
of vertically differentiated product offerings in the presence of model uncertainty
and learning. Motivated by insurance, consumer lending, and telecommunications
applications in practice, Keskin and Birge (2019) consider a dynamic learning
problem where a firm faces uncertainty about the cost of service quality and analyze
how this cost uncertainty influences the firm’s vertically differentiated menu of
products. Keskin and Li (2020) study the dynamic pricing of vertically differentiated
products in a Markov-modulated demand environment.

98 A. V. den Boer and N. B. Keskin

4.4.2 Online Marketplaces

Another emerging area of research considers the design and management of online
marketplaces, which enable a multitude of sellers and buyers to conduct business
with each other (see, e.g., Cachon et al., 2017; Bai et al., 2018; Taylor, 2018;
Gurvich et al., 2019; Bernstein et al., 2021; Huang et al., 2020). Within this research
area, the optimal design of pricing-and-learning strategies for marketplaces has
recently attracted attention. For example, Birge et al. (2021), Birge et al. (2021)
investigate how strategic interactions between marketplace participants influence a
market maker’s pricing-and-learning strategy.

Two possible directions for future research involve expanding this literature to
consider investment strategies (see, e.g., Johari et al., 2010) and matching decisions
(see, e.g., Özkan & Ward, 2020). Other directions worth investigating in the context
of marketplaces include big data applications (Ban & Keskin, 2021; Keskin et al.
2020), inventory constraints (den Boer et al. 2018; Keskin et al. 2022; Avramidis &
den Boer, 2021), and seller collusion (Meylahn & den Boer, 2022).

4.4.3 Continuous-Time Approximations

An interesting direction to expand the theory of dynamic pricing with demand
learning is the analysis of Brownian models. Using stochastic control theory (see,
e.g., Harrison & Sunar, 2015; Sunar et al. 2019, 2021, it is possible to characterize
optimal pricing-and-learning policies in certain continuous-time approximations
(Keller & Rady, 1999; Keskin 2014). One way to expand the above literature is
to study the Brownian counterparts of the aforementioned problems and investigate
whether continuous-time approximation offers new insights for policy design.

References

Auer, P., Ortner, R., & Szepesvári, C. (2007). Improved rates for the stochastic continuum-armed
bandit problem. In N. Bshouty & C Gentile (Eds.) Learning Theory. COLT 2007. Lecture Notes
in Computer Science (Vol. 4539, pp. 454–468). Berlin, Heidelberg: Springer.

Avramidis, A. N., & den Boer, A. V. (2021). Dynamic pricing with finite price sets: A non-
parametric approach. Mathematical Methods of Operations Research, 94(1), 1–34.

Bai, J., So, K. C., Tang, C. S., Chen, X., & Wang, H. (2018). Coordinating supply and demand on
on-demand service platform with impatient customers. Manufacturing and Service Operations
Management, 21(3), 556–570.

Ban, G. Y., & Keskin, N. B. (2021). Personalized dynamic pricing with machine learning: High
dimensional features and heterogeneous elasticity. Management Science, 67(9), 5549–5568.

Bergemann, D., & Schlag, K. (2011). Robust monopoly pricing. Journal of Economic Theory,
146(6), 2527–2543.

4 Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art 99

Bernstein, F., DeCroix, G. A., & Keskin, N. B. (2021). Competition between two-sided platforms
under demand and supply congestion effects. Manufacturing & Service Operations Manage-
ment, 23(5), 1043–1061.

Besbes, O., & Zeevi, A. (2015). On the (surprising) sufficiency of linear models for dynamic
pricing with demand learning. Management Science, 61(4), 723–739.

Birge, J. R., Chen, H., & Keskin, N. B. (2019). Markdown policies for demand learning with
forward-looking customers. https://ssrn.com/abstract=3299819

Birge, J. R., Feng, Y., Keskin, N. B., & Schultz, A. (2021). Dynamic learning and market making
in spread betting markets with informed bettors. Operations Research, 69(6), 1746–1766.

Birge, J. R., Chen, H., Keskin, N. B., & Ward, A. (2021). To interfere or not to interfere:
Information revelation and price-setting incentives in a multiagent learning environment.
https://ssrn.com/abstract=3864227

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University
Press.

Broadie, M., Cicek, D., & Zeevi, A. (2011). General bounds and finite-time improvement for
the Kiefer-Wolfowitz stochastic approximation algorithm. Operations Research, 59(5), 1211–
1224.

Broder, J., & Rusmevichientong, P. (2012). Dynamic pricing under a general parametric choice
model. Operations Research, 60(4), 965–980.

Cachon, G. P., Daniels, K. M., & Lobel, R. (2017). The role of surge pricing on a service platform
with self-scheduling capacity. Manufacturing & Service Operations Management, 19(3), 368–
384.

Cesa-Bianchi, N., Cesari, T., & Perchet, V. (2019). Dynamic pricing with finitely many unknown
valuations. In A. Garivier & S. Kale (Eds.) Algorithmic Learning Theory, ALT 2019, Proceed-
ings of Machine Learning Research, PMLR (Vol. 98, pp. 247–273)

Chen, M., & Chen, Z. L. (2014). Recent developments in dynamic pricing research: Multiple prod-
ucts, competition, and limited demand information. Production and Operations Management,
24(5), 704–731.

Cheung, W. C., Simchi-Levi, D., & Wang, H. (2017). Dynamic pricing and demand learning with
limited price experimentation. Operations Research, 65(6), 1722–1731.

Combes, R., & Proutiere, A. (2014). Unimodal bandits: Regret lower bounds and optimal
algorithms. In E. P. Xing & T. Jebara (Eds.) Proceedings of the 31st International Conference
on International Conference on Machine Learning, PMLR (Vol. 32, pp. 521–529).

Cope, E. (2007). Bayesian strategies for dynamic pricing in e-commerce. Naval Research
Logistics, 54(3), 265–281.

Cope, E. (2009). Regret and convergence bounds for a class of continuum-armed bandit problems.
IEEE Transactions on Automatic Control, 54(6), 1243–1253.

Davenant, C. (1699). An essay upon the probable methods of making a people gainers in the
balance of trade. London: James Knapton.

den Boer, A. V. (2013). Does adding data always improve linear regression estimates? Statistics &
Probability Letters, 83(3), 829–835.

den Boer, A. V. (2014). Dynamic pricing with multiple products and partially specified demand
distribution. Mathematics of Operations Research, 39(3), 863–888.

den Boer, A. V. (2015). Dynamic pricing and learning: Historical origins, current research, and
new directions. Surveys in Operations Research and Management Science, 20(1), 1–18.

den Boer, A. V., & Keskin, N. B. (2020). Discontinuous demand functions: Estimation and pricing.
Management Science, 66(10), 4516–4534.

den Boer, A. V., & Keskin, N. B. (2022). Dynamic pricing with demand learning and reference
effects. Management Science (in press).

den Boer, A. V., & Zwart, B. (2014). Simultaneously learning and optimizing using controlled
variance pricing. Management Science, 60(3), 770–783.

den Boer, A. V., & Zwart, B. (2015). Dynamic pricing and learning with finite inventories.
Operations Research, 63(4), 965–978.

 9991
6335 a 9991 6335 a

https://ssrn.com/abstract=3299819

 -687 11870 a -687 11870 a

https://ssrn.com/abstract=3864227

100 A. V. den Boer and N. B. Keskin

den Boer, A., Perry, O., & Zwart, B. (2018). Dynamic pricing policies for an inventory model with
random windows of opportunities. Naval Research Logistics (NRL), 65(8), 660–675.

den Boer, A. V., Chen, B., & Wang, Y. (2020). Pricing and positioning of horizontally differentiated
products with incomplete demand information. https://ssrn.com/abstract=3682921

Gill, R. D., & Levit, B. Y. (1995). Applications of the van Trees inequality: A Bayesian Cramér-
Rao bound. Bernoulli, 1(1/2), 59.

Gurvich, I., Lariviere, M., & Moreno, A. (2019). Operations in the on-demand economy: Staffing
services with self-scheduling capacity. In M. Hu (Ed.) Sharing Economy. Springer Series in
Supply Chain Management (Vol. 6, pp. 249–278). Cham: Springer.

Harrison, J. M., & Sunar, N. (2015). Investment timing with incomplete information and multiple
means of learning. Operations Research, 63(2), 442–457.

Harrison, J. M., Keskin, N. B., & Zeevi, A. (2012). Bayesian dynamic pricing policies: Learning
and earning under a binary prior distribution. Management Science, 58(3), 570–586.

Hong, L. J., Li, C., & Luo, J. (2020). Finite-time regret analysis of Kiefer-Wolfowitz stochastic
approximation algorithm and nonparametric multi-product dynamic pricing with unknown
demand. Naval Research Logistics, 67(5), 368–379.

Hotelling, H. (1929). Stability in competition. The Economic Journal, 39(153), 41.
Huang, H., Sunar, N., & Swaminathan, J. M. (2020). Do noisy customer reviews discourage

platform sellers? Empirical analysis of an online solar marketplace. https://ssrn.com/abstract=
3645605

Johari, R., Weintraub, G. Y., & Van Roy, B. (2010). Investment and market structure in industries
with congestion. Operations Research, 58(5), 1303–1317.

Kao, Y. M., Keskin, N. B., & Shang, K. (2020). Bayesian dynamic pricing and subscription period
selection with unknown customer utility. https://ssrn.com/abstract=3722376

Keller, G., & Rady, S. (1999). Optimal experimentation in a changing environment. The Review of
Economic Studies, 66(3), 475–507.

Keskin, N. B. (2014). Optimal dynamic pricing with demand model uncertainty: A squared-
coefficient-of-variation rule for learning and earning. https://ssrn.com/abstract=2487364

Keskin, N. B., & Birge, J. R. (2019). Dynamic selling mechanisms for product differentiation and
learning. Operations Research, 67(4), 1069–1089.

Keskin, N. B., & Li, M. (2020). Selling quality-differentiated products in a Markovian market with
unknown transition probabilities. https://ssrn.com/abstract=3526568

Keskin, N. B., & Zeevi, A. (2014). Dynamic pricing with an unknown demand model: Asymptoti-
cally optimal semi-myopic policies. Operations Research, 62(5), 1142–1167.

Keskin, N. B., & Zeevi, A. (2018). On incomplete learning and certainty-equivalence control.
Operations Research, 66(4), 1136–1167.

Keskin, N. B., Li, Y., & Sunar, N. (2020). Data-driven clustering and feature-based retail electricity
pricing with smart meters. https://ssrn.com/abstract=3686518

Keskin, N. B., Li, Y., & Song, J. S. J. (2022). Data-driven dynamic pricing and ordering with
perishable inventory in a changing environment. Management Science, 68(3), 1938–1958.

Kiefer, J., & Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function.
Annals of Mathematical Statistics, 23(3), 462–466.

Kleinberg, R., & Leighton, T. (2003). The value of knowing a demand curve: Bounds on regret
for online posted-price auctions. In Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’03 (pp. 594–605). Washington, DC: IEEE Computer
Society.

Lai, T., & Robbins, H. (1982). Iterated least squares in multiperiod control. Advances in Applied
Mathematics, 3(1), 50–73.

Lancaster, K. J. (1966). A new approach to consumer theory. Journal of Political Economy, 74(2),
132–157.

Lancaster, K. J. (1975). Socially optimal product differentiation. American Economic Review,
65(4), 567–585.

McLennan, A. (1984). Price dispersion and incomplete learning in the long run. Journal of
Economic Dynamics and Control, 7(3), 331–347.

 17241 3014 a 17241
3014 a

https://ssrn.com/abstract=3682921

25130 19619 a 25130 19619 a

https://ssrn.com/abstract=3645605
https://ssrn.com/abstract=3645605

 14857 25153
a 14857 25153 a

https://ssrn.com/abstract=3722376

 19463 29581 a 19463
29581 a

https://ssrn.com/abstract=2487364

 11991 34009 a 11991 34009
a

https://ssrn.com/abstract=3526568

 9426 40651 a 9426 40651 a

https://ssrn.com/abstract=3686518

4 Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art 101

Meylahn, J., & den Boer, A. (2022). Learning to collude in a pricing duopoly. Manufacturing &
Service Operations Management (in press).

Misra, K., Schwartz, E. M., & Abernethy, J. (2019). Dynamic online pricing with incomplete
information using multiarmed bandit experiments. Marketing Science, 38(2), 226–252.

Nambiar, M., Simchi-Levi, D., & Wang, H. (2019). Dynamic learning and pricing with model
misspecification. Management Science, 65(11), 4980–5000.

Nyarko, Y. (1991). Learning in mis-specified models and the possibility of cycles. Journal of
Economic Theory, 55(2), 416–427.

Özkan, E., & Ward, A. R. (2020). Dynamic matching for real-time ride sharing. Stochastic Systems,
10(1), 29–70.

Rothschild, M. (1974). A two-armed bandit theory of market pricing. Journal of Economic Theory,
9(2), 185–202.

Sunar, N., Birge, J. R., & Vitavasiri, S. (2019). Optimal dynamic product development and launch
for a network of customers. Operations Research, 67(3), 770–790.

Sunar, N., Yu, S., & Kulkarni, V. G. (2021). Competitive investment with Bayesian learning:
Choice of business size and timing. Operations Research, 69(5), 1430–1449.

Taylor, T. (2018). On-demand service platforms. Manufacturing and Service Operations Manage-
ment, 20(4), 704–720.

Trovò, F., Paladino, S., Restelli, M., & Gatti, N. (2018). Improving multi-armed bandit algorithms
in online pricing settings. International Journal of Approximate Reasoning, 98, 196–235.

Ulu, C., Honhon, D., & Alptekinoğlu, A. (2012). Learning consumer tastes through dynamic
assortments. Operations Research, 60(4), 833–849.

Wang, Y., Chen, B., & Simchi-Levi, D. (2021). Multimodal dynamic pricing. Management Science,
67(10), 6136–6152.

Yang, Y., Lee, Y. C., & Chen, P. A. (2020). Competitive demand learning: A data-driven pricing
algorithm. https://arxiv.org/abs/2008.05195

 3442 27367 a 3442 27367 a

https://arxiv.org/abs/2008.05195

Chapter 5
Learning and Pricing with Inventory
Constraints

Qi (George) Chen, He Wang, and Zizhuo Wang

5.1 Introduction

In this chapter, we consider learning and pricing problems with inventory con-
straints: given an initial inventory of one or multiple products and finite selling
season, a seller must choose prices dynamically to maximize revenue over the course
of the season. Inventory constraints are prevalent in many business settings. For
most goods and services, there is limited inventory due to supply constraint, sellers’
budget constraint, or limited storage space. Therefore, one must consider the impact
of inventory constraints when learning demand functions and setting prices.

Dynamic pricing with inventory constraints has been extensively studied in
the revenue management literature, often under the additional assumption that the
demand function (i.e., the relationship between demand and price) is known to the
seller prior to the selling season. However, when the demand function is unknown,
the seller faces a trade-off commonly referred to as the exploration–exploitation
trade-off. Toward the beginning of the selling season, the seller may offer different
prices to try to learn and estimate the demand rate at each price (“exploration”
objective). Over time, the seller can use these demand rate estimates to set prices that

Q. (George) Chen
London Business School, London, UK
e-mail: gchen@london.edu

H. Wang (�)
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, USA
e-mail: he.wang@isye.gatech.edu

Z. Wang
School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
e-mail: wangzizhuo@cuhk.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_5

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_5&domain=pdf

 885 46882 a 885 46882 a

mailto:gchen@london.edu

 885
51863 a 885 51863 a

mailto:he.wang@isye.gatech.edu

 885
55738 a 885 55738 a

mailto:wangzizhuo@cuhk.edu.cn

 -2016 61494
a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_5

104 Q. (George) Chen et al.

maximize revenue throughout the remainder of the selling season (“exploitation”
objective). With limited inventory, pursuing the exploration objective comes at the
cost of not only lowering revenue but also diminishing valuable inventory. Simply
put, if inventory is depleted while exploring different prices, there is no inventory
left to exploit the knowledge gained.

In this chapter, we will study how one should design learning algorithm in the
presence of inventory constraints. Specifically, we will study how one can overcome
the additional challenges brought forth by the limited inventory and still design
efficient algorithms for learning demand functions with regret guarantees. In what
follows, we will first discuss the simplest case in this setting in Sect. 5.2, i.e., the
learning and pricing problem of a single product with an inventory constraint. Then,
in Sect. 5.3, we discuss the problem of learning and pricing with multiple products
under inventory constraints. Finally, in Sect. 5.4, we consider a Bayesian learning
setting with inventory constraints. In each of the sections, we describe the model
and the challenges and then present the algorithms and analysis for respective
problems. In Sect. 5.5, we present concluding remarks and some further readings
for this chapter.

5.2 Single Product Case

In this section, we consider the problem of a monopolist selling a single product
in a finite selling season T . We assume that the seller has a fixed inventory x
at the beginning and no replenishment can be made during the selling season.
During the selling season, customers arrive according to a Poisson process with an
instantaneous demand rate λt at time t .1 In our model, we assume that λt is solely
dependent on the price the seller offers at time t . That is, we can write λt = λ(p(t)),
where p(t) is the price offered at time t . The sales will be terminated at time T , and
there is no salvage value for the remaining items.

In our model, we assume that the set of feasible prices is an interval [p, p] with
an additional cut-off price p∞ such that λ(p∞) = 0. The demand rate function λ(p)
is assumed to be strictly decreasing in p and has an inverse function p = γ (λ). We
define a revenue rate function r(λ) = λγ (λ), which captures the expected revenue
when the price is chosen such that the demand is λ. We further assume r(λ) is
concave in λ. These assumptions on demand functions are quite standard and are
called the regular assumptions in the revenue management literature (Gallego and
van Ryzin, 1994).

In addition to the above, we make the following assumptions on the demand rate
function λ(p) and the revenue rate function r(λ):

Assumption 1 For some positive constantsM , K , mL, and mU ,

1 Our analysis and result also work if we discretize the time horizon and assume at each time period
t , there is a probability λt such that a customer arrives.

5 Learning and Pricing with Inventory Constraints 105

1. Boundedness: |λ(p)| ≤ M for all p ∈ [p, p].
2. Lipschitz continuity: λ(p) and r(λ(p)) are Lipschitz continuous with respect

to p with factor K . Also, the inverse demand function p = γ (λ) is Lipschitz
continuous in λ with factor K .

3. Strict concavity and differentiability: r ′′(λ) exists and −mL ≤ r ′′(λ) ≤ −mU <
0 for all λ in the range of λ(p) for p ∈ [p, p].
In the following, we use � = �(M,K,mL,mU) to denote the set of demand

functions satisfying the above assumptions with the corresponding coefficients. In
our model, the seller does not know the true demand function λ. The only knowledge
the seller has is that the demand function belongs to �. Note that � does not need
to have any parametric representation. We note that Assumption 1 is quite mild, and
it is satisfied for many commonly used demand function classes including linear,
exponential, and logit demand functions.

To evaluate the performance of any pricing algorithm, we adopt the minimax
regret objective. We call a pricing policy π = (p(t) : 0 ≤ t ≤ T) admissible if
(1) it is a non-anticipating price process that is defined on [p, p] ∪ {p∞} and (2) it

satisfies the inventory constraint, that is,
∫ T

0 dN
π(s) ≤ x,with probability 1, where

Nπ(t) = N
(∫ t

0 λ(p(s))ds
)

denotes the cumulative demand up to time t using

policy π .
We denote the set of admissible pricing policies by P. We define the expected

revenue generated by a policy π by

Jπ(x, T ; λ) = E
[∫ T

0
p(s)dNπ(s)

]

. (5.1)

Given a demand rate function λ, there exists an optimal admissible policy π∗ that
maximizes (5.1). In our model, since we do not know λ in advance, we seek π ∈ P
that performs as close to π∗ as possible.

However, even if the demand function λ is known, computing the expected
value of the optimal policy is computationally prohibitive. It involves solving a
continuous-time dynamic program exactly. Fortunately, as shown in Gallego and
van Ryzin (1994), there exists an upper bound for the expected value of any policy
based on the following deterministic optimization problem:

JD(x, T ; λ) = sup
∫ T

0
r(λ(p(s)))ds

s.t.
∫ T

0
λ(p(s))ds ≤ x (5.2)

p(s) ∈ [p, p] ∪ {p∞}, ∀s ∈ [0, T].

Gallego and van Ryzin (1994) showed that JD(x, T ; λ) provides an upper bound
on the expected revenue generated by any admissible pricing policy π , that is,

106 Q. (George) Chen et al.

Jπ(x, T ; λ) ≤ JD(x, T ; λ), for all λ ∈ � and π ∈ P. With this upper bound,
we define the regret Rπ(x, T ; λ) for any given demand function λ ∈ � and policy
π ∈ P by

Rπ(x, T ; λ) = 1− Jπ(x, T ; λ)
JD(x, T ; λ) . (5.3)

Clearly, Rπ(x, T ; λ) is always greater than 0. Furthermore, the smaller
Rπ(x, T ; λ) is, the closer the performance of π is to that of the optimal policy.
However, since the decision-maker does not know the true demand function, it is
attractive to have a pricing policy π that achieves small regrets across all possible
underlying demand functions λ ∈ �. To capture this, we consider the worst-case
regret. Specifically, the decision-maker chooses a pricing policy π , and the nature
picks the worst possible demand function for that policy and our goal is to minimize
the worst-case regret:

inf
π∈P sup

λ∈�
Rπ(x, T ; λ). (5.4)

Unfortunately, it is hard to evaluate (5.4) for any finite size problem. In order
to obtain theoretical guarantee of proposed policies, we adopt a widely used
asymptotic performance analysis. Particularly, we consider a regime in which
both the size of the initial inventory and the demand rate grow proportionally.
Specifically, in a problem with size n, the initial inventory and the demand function
are given by

xn = nx and λn(·) = nλ(·).

Define JDn (x, T ; λ) = JD(nx, T , nλ) = nJD(x, T , λ) to be the optimal value
to the deterministic problem with size n and Jπn (x, T ; λ) = Jπ(nx, T , nλ) to be
the expected value of a pricing policy π when it is applied to a problem with size n.
The regret for the size-n problem Rπn (x, T ; λ) is therefore

Rπn (x, T ; λ) = 1− Jπn (x, T ; λ)
JDn (x, T ; λ)

,

and our objective is to study the asymptotic behavior of Rπn (x, T ; λ) as n grows
large and design an algorithm with small asymptotic regret.

5.2.1 Dynamic Pricing Algorithm

In this section, we introduce a dynamic pricing algorithm, which achieves near-
optimal asymptotic regret for the aforementioned problem. To start with, we first

5 Learning and Pricing with Inventory Constraints 107

consider the full-information deterministic problem (5.2). As shown in Besbes and
Zeevi (2009), the optimal solution to (5.2) is given by

p(t) = pD = max{pu, pc} (5.5)

where

pu = arg max
p∈[p,p]

{r(λ(p))}, pc = arg min
p∈[p,p]

∣
∣
∣λ(p)− x

T

∣
∣
∣ . (5.6)

The following important lemma is proved in Gallego and van Ryzin (1994).

Lemma 1 Let pD be the optimal deterministic price when the underlying demand
function is λ. Let πD be the pricing policy that uses the deterministic optimal
price pD throughout the selling season until there is no inventory left. Then,
Rπ

D

n (x, T , λ) = O(n−1/2).

Lemma 1 states that if one knows pD in advance, then simply applying this price
throughout the entire time horizon can achieve asymptotically optimal performance.
Therefore, the idea of our algorithm is to find an estimate of pD that is close enough
to the true one efficiently, using empirical observations on hand. In particular, under
Assumption 1, we know that if pD = pu > pc, then

∣
∣
∣r(p)− r(pD)

∣
∣
∣ ≤ 1

2
mL(p − pD)2 (5.7)

for p close to pD , while if pD = pc ≥ pu, then

∣
∣
∣r(p)− r(pD)

∣
∣
∣ ≤ K

∣
∣
∣p − pD

∣
∣
∣ (5.8)

for p close to pD . In the following discussion, without loss of generality, we assume
pD ∈ (p, p). Note that this can always be achieved by choosing a large interval of
[p, p].

We now state the main result in this section. We use the notation f (n) =
O∗(g(n)) to denote there is a constant C and k such that f (n) ≤ C · g(n) · logk n.

Theorem 1 Let Assumption 1 hold for � = �(M,K,mL,mU). Then, there exists
an admissible policy π generated by Algorithm 1, such that for all n ≥ 1,

sup
λ∈�
Rπn (x, T ; λ) = O∗ (n−1/2

)
.

A corollary of Theorem 1 follows from the relationship between the nonparamet-
ric model and the parametric one:

Corollary 1 Assume that � is a parameterized demand function family satisfying
Assumption 1. Then, there exists an admissible policy π generated by Algorithm 1,
such that for all n ≥ 1,

108 Q. (George) Chen et al.

sup
λ∈�
Rπn (x, T ; λ) = O∗ (n−1/2

)
.

Now, we explain the meaning of Theorem 1 and Corollary 1. First, as we will
show a matching lower bound in Theorem 2, the result in Theorem 1 is the best
asymptotic regret that one can achieve in this setting. Another consequence of our
result is that it shows that there is no performance gap between parametric and
nonparametric settings in the asymptotic sense, implying that the value of knowing
the parametric form of the demand function is marginal in this problem when the
best algorithm is adopted. In this sense, our algorithm could save firms’ efforts in
searching for the right parametric form of the demand functions.

Now, we describe the dynamic pricing algorithm. As mentioned earlier, we aim
to learn pD through price experimentations. Specifically, the algorithm will be
able to distinguish whether pu or pc is optimal. Meanwhile, it keeps a shrinking
interval containing the optimal price with high probability until a certain accuracy
is achieved.

Now, we explain the ideas behind the Algorithm 1. In the algorithm, we divide
the selling season into a carefully selected set of time periods. In each time period,
we test a set of prices within a certain price interval. Based on the empirical
observations, we shrink the price interval to a smaller subinterval that still contains
the optimal price with high probability and enter the next time period with a smaller
price range. We repeat the shrinking procedure until the price interval is small
enough so that the desired accuracy is achieved.

Recall that the optimal deterministic price pD is equal to the maximum of pu

and pc, where pu and pc are solved from (5.6). As shown in (5.7) and (5.8), the
local behavior of the revenue rate function is quite different around pu and pc: the
former one resembles a quadratic function, while the latter one resembles a linear
function (this is an important feature due to the inventory constraint). This difference
requires us to use different shrinking strategies for the cases when pu > pc and
pc > pu. This is why we have two learning steps (Steps 2 and 3) in our algorithm.
Specifically, in Step 2, the algorithm works by shrinking the price interval until
either a transition condition (5.10) is triggered or the learning phase is terminated.
We show that when the transition condition (5.10) is triggered, with high probability,
the optimal solution to the deterministic problem is pc. Otherwise, if we terminate
learning before the condition is triggered, we know that pu is either the optimal
solution to the deterministic problem or it is close enough so that using pu can yield
a near-optimal revenue. When (5.10) is triggered, we switch to Step 3, in which we
use a new set of shrinking and price testing parameters. Note that in Step 3, we start
from the initial price interval rather than the current interval obtained. This is not
necessary but solely for the ease of analysis. Both Step 2 and Step 3 (if it is invoked)
must terminate in a finite number of iterations.

In the end of the algorithm, a fixed price is used for the remaining selling season
(Step 4) until the inventory runs out. In fact, instead of applying a fixed price in

5 Learning and Pricing with Inventory Constraints 109

Algorithm 1 Dynamic pricing algorithm (DPA)
Step 1. Initialization:

(a) Consider a sequence of τui , κ
u
i , i = 1, 2, . . . , Nu and τ ci , κ

c
i , i = 1, 2, . . . , Nc (τ and κ

represent the length of each learning period and the number of different prices to be tested
in each learning period, respectively. Their values along with the values of Nu and Nc are
defined in (5.22)–(5.27), (5.17) and (5.21)). Define pu

1
= pc

1
= p and pu1 = pc1 = p. Define

tui =
∑i
j=1 τ

u
j , for i = 0 to Nu and tci =

∑i
j=1 τ

c
j , for i = 0 to Nc;

Step 2. Learn pu or determine pc > pu:
For i = 1 to Nu do

(a) Divide [pu
i
, pui] into κui equally spaced intervals and let {pui,j , j = 1, 2, . . . , κui } be the left

endpoints of these intervals;
(b) Divide the time interval [tui−1, t

u
i] into κui equal parts and define

�ui =
τui

κui
, tui,j = tui−1 + j�ui , j = 0, 1, . . . , κui ;

(c) For j from 1 to κui , apply pui,j from time tui,j−1 to tui,j . If inventory runs out, then apply p∞
until time T and STOP;

(d) Compute

d̂(pui,j) =
total demand over [tui,j−1, t

u
i,j)

�ui
, j = 1, . . . , κui ;

(e) Compute

p̂ui = arg max
1≤j≤κui

{pui,j d̂(pui,j)} and p̂ci = arg min
1≤j≤κui

∣
∣
∣d̂(pui,j)− x/T

∣
∣
∣ ; (5.9)

(f) If

p̂ci > p̂
u
i + 2

√
log n · p

u
i − pui
κui

(5.10)

then break from Step 2, enter Step 3 and set i0 = i;
Otherwise, set p̂i = max{p̂ci , p̂ui }. Define

pu
i+1

= p̂i − log n

3
· p

u
i − pui
κui

and pui+1 = p̂i +
2 log n

3
· p

u
i − pui
κui

. (5.11)

And define the price range for the next iteration

Iui+1 = [pu
i+1
, pui+1].

Here we truncate the interval if it does not lie inside the feasible set [p, p];
(g) If i = Nu, then enter Step 4(a);

(continued)

110 Q. (George) Chen et al.

Algorithm 1 (continued)
Step 3. Learn pc when pc > pu:
For i = 1 to Nc do

(a) Divide [pc
i
, pci] into κci equally spaced intervals and let {pci,j , j = 1, 2, . . . , κci } be the left

endpoints of these intervals;
(b) Define

�ci =
τ ci

κci
, tci,j = tci−1 + j�ci + tui0 , j = 0, 1, . . . , κci ;

(c) For j from 1 to κci , apply pci,j from time tci,j−1 to tci,j . If inventory runs out, then apply p∞
until time T and STOP;

(d) Compute

d̂(pci,j) =
total demand over [tci,j−1, t

c
i,j)

�ci
, j = 1, . . . , κci ;

(e) Compute

q̂i = arg min
1≤j≤κci

∣
∣
∣d̂(pci,j)− x/T

∣
∣
∣ . (5.12)

Define

pc
i+1

= q̂i − log n

2
· p

c
i − pci
κci

and pci+1 = q̂i +
log n

2
· p

c
i − pci
κci

. (5.13)

And define the price range for the next iteration

I ci+1 = [pc
i+1
, pci+1].

Here, we truncate the interval if it does not lie inside the feasible set of [p, p];
(f) If i = Nc, then enter Step 4(b);

Step 4. Apply the learned price:

(a) Define p̃ = p̂Nu + 2
√

log n · p
u
Nu
−pu

Nu

κu
Nu

. Use p̃ for the rest of the selling season until the

inventory runs out;
(b) Define q̃ = q̂Nc . Use q̃ for the rest of the selling season until the inventory runs out.

Step 4, one may continue learning using our shrinking strategy. However, it will not
further improve the asymptotic performance of our algorithm.

In the following, we define τui , κ
u
i , N

u, τ ci , κ
c
i andNc. Without loss of generality,

we assume T = 1 and p− p = 1 in the following discussion. We first provide a set
of relations we want (τui , κ

u
i) and (τ ci , κ

c
i) to satisfy. Then, we explain the meaning

of each relations and derive a set of parameters that satisfy these relations. We use
the notation f ∼ g to mean that f and g are of the same order in n.

The relations that we want (τui , κ
u
i)
Nu

i=1 to satisfy are

5 Learning and Pricing with Inventory Constraints 111

(
pui − pui
κui

)2

∼
√
κui

nτui
, ∀i = 2, . . . , Nu, (5.14)

pui+1 − pui+1
∼ log n · p

u
i − pui
κui

, ∀i = 1, . . . , Nu − 1, (5.15)

τui+1 ·
(
pui − pui
κui

)2

·√log n ∼ τu1 , ∀i = 1, . . . , Nu − 1. (5.16)

Also, we define

Nu = min
l

⎧
⎨

⎩
l :

(
pul − pul
κul

)2
√

log n < τu1

⎫
⎬

⎭
. (5.17)

Next, we state the set of relations we want (τ ci , κ
c
i)
Nc

i=1 to satisfy

pci − pci
κci

∼
√
κci

nτ ci
, ∀i = 2, . . . , Nc, (5.18)

pci+1 − pci+1
∼ log n · p

c
i − pci
κci

, ∀i = 1, . . . , Nc − 1, (5.19)

τ ci+1 ·
pci − pci
κci

·√log n ∼ τ c1 , ∀i = 1, . . . , Nc − 1. (5.20)

Also, we define

Nc = min
l

{

l : p
c
l − pcl
κcl

√
log n < τc1

}

. (5.21)

To understand the above relations, it is useful to examine the source of revenue
losses in our algorithm. First, there is an exploration loss in each period—the prices
tested are not optimal, resulting in suboptimal revenue rate or suboptimal inventory
consumption rate. The magnitude of such losses in each period is roughly the
deviation of the revenue rate (or the inventory consumption rate) multiplied by the
time length of the period. Second, there is a deterministic loss due to the limited
learning capacity—we only test a grid of prices in each period and may never use
the exact optimal price. Third, since the demand follows a stochastic process, the
observed demand rate may deviate from the true underlying demand rate, resulting
in a stochastic loss. Note that these three losses also exist in the learning algorithm

112 Q. (George) Chen et al.

proposed in Besbes and Zeevi (2009). However, in dynamic learning, the loss in one
period does not simply appear once, it may have impact on all the future periods.
The design of our algorithm tries to balance these losses in each step to achieve the
maximum efficiency of learning. With these in mind, we explain the meaning of
each equation above in the following:

• The first relation (5.14) ((5.18), respectively) balances the deterministic loss

induced by only considering the grid points (the grid granularity is
pui −pui
κui

(
pci−pci
κci

,

resp.)) and the stochastic loss induced in the learning period which will be shown

to be

√
κui
nτui

(

√
κci
nτ ci

, respectively). Due to the relation in (5.7) and (5.8), the loss

is quadratic in the price granularity in Step 2 and linear in Step 3.
• The second relation (5.15) ((5.19), respectively) makes sure that with high

probability, the price intervals Iui (I ci , respectively) contain the optimal price pD .
This is necessary, since otherwise a constant loss will be incurred in all periods
afterward.

• The third relation (5.16) ((5.20), respectively) bounds the exploration loss for
each learning period. This is done by considering the multiplication of the
revenue rate deviation (also demand rate deviation) and the length of the learning

period, which in our case can be upper bounded by τui+1

√
log n ·

(
pui −pui
κui

)2

(τ ci+1

√
log n · p

c
i−pci
κci

, respectively). We want this loss to be of the same order

for each learning period (and all equal to the loss in the first learning period,
which is τ1) to achieve the maximum efficiency of learning.

• Formula (5.17) ((5.21), respectively) determines when the price we obtain is
close enough to optimal such that we can apply this price in the remaining selling

season. We show that
√

log n·
(
pul −pul
κul

)2
(
√

log n· p
c
l−pcl
κcl

, respectively) is an upper

bound of the revenue rate and demand rate deviations of price p̂l . When this is
less than τ1, we can simply apply p̂l and the loss will not exceed the loss of the
first learning period.

Now, we solve the relations (5.14)–(5.16) and obtain a set of parameters that satisfy
them:

τu1 = n−
1
2 · (log n)3.5 and τui = n−

1
2 ·(3

5)
i−1 · (log n)5, ∀i = 2, . . . , Nu, (5.22)

κui = n
1
10 ·(3

5)
i−1 · log n, ∀i = 1, 2, . . . , Nu. (5.23)

As a by-product, we have

pui − pui = n−
1
4 (1−(3

5)
i−1), ∀i = 1, 2, . . . , Nu. (5.24)

5 Learning and Pricing with Inventory Constraints 113

Similarly, we solve the relations (5.18)–(5.20) and obtain a set of parameters that
satisfy them:

τ c1 = n−
1
2 · (log n)2.5 and τ ci = n−

1
2 ·(2

3)
i−1 · (log n)3, ∀i = 2, . . . , Nc, (5.25)

κci = n
1
6 ·(2

3)
i−1 · log n, ∀i = 1, 2, . . . , Nc (5.26)

and

pci − pci = n−
1
2 (1−(2

3)
i−1), ∀i = 1, . . . , Nc. (5.27)

Note that by (5.24) and (5.27), the price intervals defined in our algorithm indeed
shrink in each iteration.

5.2.2 Lower Bound Example

In the last section, we proposed a dynamic pricing algorithm and proved an upper
bound of O∗(n−1/2) on its regret in Theorem 1. In this section, we show that there
exists a class of demand functions satisfying our assumptions such that no pricing
policy can achieve an asymptotic regret less than O∗(n−1/2). This lower bound
example provides a clear evidence that the upper bound is tight. Therefore, our
algorithm achieves nearly the best performance among all possible algorithms and
closes the performance gap for this problem. Because our algorithm and the lower
bound example apply for both parametric and nonparametric settings, it also closes
the gap for the problem with a known parametric demand function.

Theorem 2 (Lower Bound Example) Let λ(p; z) = 1/2 + z − zp, where z is a
parameter taking values in Z = [1/3, 2/3] (we denote this demand function set by
). Let p = 1/2, p = 3/2, x = 2, and T = 1. Then, we have the following:

• This class of demand function satisfies Assumption 1. Furthermore, for any z ∈
[1/3, 2/3], the optimal price pD always equals pu and pD ∈ [7/8, 5/4].

• For any admissible pricing policy π and all n ≥ 1,

sup
z∈Z
Rπn (x, T ; z) ≥

1

12(48)2
√
n
.

We first explain some intuitions behind this example. Note that all the demand
functions in cross at one common point, that is, when p = 1, λ(p; z) = 1/2. Such
a price is called an uninformative price in Broder and Rusmevichientong (2012).
When there exists an uninformative price, experimenting at that price will not gain

114 Q. (George) Chen et al.

information about the demand function. Therefore, in order to learn the demand
function (i.e., the parameter z) and determine the optimal price, one must at least
perform some price experiments at prices away from the uninformative price; on
the other hand, when the optimal price is indeed the uninformative price, doing
price experiments away from the optimal price will incur some revenue losses. This
tension is the key reason for such a lower bound for the loss, and mathematically it
is reflected in statistical bounds on hypothesis testing. For the proof of Theorem 2,
we refer the readers to Wang et al. (2014).

5.3 Multiproduct Setting

In this section, we consider a multiple product and multiple resource generalization
of the problem introduced in the previous section. This more general problem, also
known as the price-based Network Revenue Management (NRM) problem with
learning, considers a setting in which a seller sells to incoming customers n types
of products, each of which is made up from a subset of m types of resources,
during a finite selling season which consists of T decision periods. Denote by
A = [Aij] ∈ Rm×n+ the resource consumption matrix, which indicates that a
single unit of product j requires Aij units of resource i. Denote by C ∈ Rm+ the
vector of initial capacity levels of all resources at the beginning of the selling
season which cannot be replenished and have zero salvage value at the end of
the selling season. At the beginning of period t ∈ [T], the seller first decides the
price pt = (pt,1; . . . ;pt,n) for his products, where pt is chosen from a convex
and compact set P = ⊗nl=1[pl, p̄l] ⊆ Rn of feasible price vectors. Let Dt(pt) =
(Dt,1(pt); . . . ;Dt,n(pt)) ∈ D := {(d1; . . . ; dn) ∈ {0, 1}n : ∑n

i=1 di ≤ 1} denote
the vector of realized demand in period t under price pt . For simplicity, we assume
that at most one sale for one of the products occurs in each period. We assume that
the purchase probability vector for all products under any price pt , i.e., λ∗(pt) :=
E [Dt(pt)] is unknown to the seller, and this relationship λ∗(.), also known as the
demand function, needs to be estimated from the data the seller observes during the
finite selling season. Define the revenue function r∗(p) := p · λ∗(p) to be the one-
period expected revenue that the seller can earn under price p. It is typically assumed
in the literature that λ∗(.) is invertible (see the regularity assumptions below). By
abuse of notation, we can then write r∗(p) = p · λ∗(p) = λ · p∗(λ) = r∗(λ) to
emphasize the dependency of revenue on demand rate instead of on price. We make
the following regularity assumptions about λ∗(.) and r∗(.) which can be viewed as
multidimensional counterparts of Assumption 1.

Regularity Assumptions

R1. λ∗(.) is twice continuously differentiable and it has an inverse function p∗(.)
which is also twice continuously differentiable.

5 Learning and Pricing with Inventory Constraints 115

R2. There exists a set of turnoff prices p∞j ∈ R+ ∩ {∞} for j = 1, . . . , n such that
for any p = (p1; . . . ;pn), pj = p∞j implies that λ∗j (p) = 0.

R3. r∗(.) is bounded and strongly concave in λ.

Compared to the single product setting, the NRM setting imposes two challenges:
first, the nice solution structure for single product setting breaks down in the
presence of multiple types of products and resources, and second, the approach
of estimating the deterministic optimal prices and then applying this learned price
may not be sufficient to get tight regret bound since ensuring the same estimation
error of the deterministic optimal prices in multidimensional setting requires
significantly more observations which in turn affects the best achievable regret
bound of this approach. The goal of this section is twofold. First, we introduce two
settings of NRM where the demand function possesses some additional structural
properties, i.e., the parametric setting where demand function comes from a family
of functions parameterized by a finite number of parameters and the nonparametric
setting where demand function is sufficiently smooth. Second, we introduce an
adaptive exploitation pricing scheme which help achieve tight regret bound for the
two settings. In the remainder of this section, after introducing some additional
preliminary results in Sect. 5.3.1, we will first investigate parametric setting in
Sect. 5.3.2 and then investigate the nonparametric setting in Sect. 5.3.3.

5.3.1 Preliminaries

Let D1:t := (D1,D2, . . . , Dt) denote the history of the demand realized up to and
including period t . Let Ht denote the σ -field generated byD1:t . We define a control
π as a sequence of functions π = (π1, π2, . . . , πT), where πt is a Ht−1-measurable
real function that maps the history D1:t−1 to ⊗nj=1[pj , p̄j] ∪ {p∞j }. This class of

controls is often referred to as non-anticipating controls because the decision in
each period depends only on the accumulated observations up to the beginning of the
period. Under policy π , the seller sets the price in period t equal to pπt = πt (D1:t−1)

almost surely (a.s.). Let � denote the set of all admissible controls:

� :=
{

π :
T∑

t=1

ADt(p
π
t) % C and pπt = πt (Ht−1) a.s.

}

.

Note that even though the seller does not know the underlying demand function, the
existence of the turnoff prices p∞1 , . . . , p∞n guarantees that this constraint can be
satisfied if the seller applies p∞j for product j as soon as the remaining capacity
at hand is not sufficient to produce one more unit of product j . Let Pπt denote the
induced probability measure ofD1:t = d1:t under an admissible control π ∈ �, i.e.,

116 Q. (George) Chen et al.

Pπt (d1:t) =
t∏

s=1

⎡

⎢
⎢
⎣

⎛

⎝1−
n∑

j=1

λ∗j (pπs)

⎞

⎠

(
1−∑n

j=1 ds,j

)

n∏

j=1

λ∗j (pπs)ds,j

⎤

⎥
⎥
⎦ ,

where pπs = πs(d1:s−1) and ds = [ds,j] ∈ D for all s = 1, . . . , t . (By definition
of λ∗(.), the term 1 − ∑n

j=1 λ
∗
j (p

π
s) can be interpreted as the probability of no-

purchase in period s under price pπs .) Denote by Eπ the expectation with respect to
the probability measure Pπt . The total expected revenue under π ∈ � is then given
by

Rπ = Eπ
[
T∑

t=1

pπt ·Dt(pπt)
]

.

The multidimensional version of the deterministic problem in the previous
section can be formulated as follows:

(P) JD := max
pt ,t∈[T]

{
T∑

t=1

r∗(pt) :
T∑

t=1

Aλ∗(pt) % C

}

,

or equivalently, (Pλ) JD := max
λt ,t∈[T]

{
T∑

t=1

r∗(λt) :
T∑

t=1

Aλt % C

}

.

By assumption R3, Pλ is a convex program and it can be shown that JD is an
upper bound for the total expected revenue under any admissible control, i.e., Rπ ≤
JD for all π ∈ �. This allows us to define the regret of an admissible control
π ∈ � as ρπ := JD − Rπ . Let λD denote the optimal solution of Pλ, and let
pD = p∗(λD) denote the corresponding optimal deterministic price. (Since r∗(λ)
is strongly concave with respect to λ, by Jensen’s inequality, the optimal solution is
static, i.e., λt = λD for all t .) Let Ball(x, r) be a closed Euclidean ball centered at
x with radius r . We state our fourth regularity assumption below which essentially
states that the static price should neither be too low that it attracts too much demand
nor too high that it induces no demand:

R4. There exists φ > 0 such that Ball(pD, φ) ⊆ P.

Finally, we will consider a sequence of problems where the length of the selling
season and the initial capacity levels are scaled proportionally by a factor k > 0.
One can interpret k as the size of the problem. One can show that the optimal
deterministic solution in the scaled problems remains λD . Let ρπ(k) denote the
regret under an admissible control π ∈ � for the problem with scaling factor k. We
use the asymptotic order of ρπ(k) as the metric for heuristic performance.

5 Learning and Pricing with Inventory Constraints 117

5.3.2 Parametric Case

In the parametric setting, the functional form of the demand is known, but the finite
parameters which pin down the function are unknown. Mathematically, let � be a
compact subset of Rq , where q ∈ Z++ is the number of unknown parameters. Under
the parametric demand case, the seller knows that the underlying demand function
λ∗(.) equals λ(.; θ) for some θ ∈ �. Although the function λ(.; θ) is known, the
true parameter vector θ∗ is unknown and needs to be estimated from the data.
The one-period expected revenue function is given by r(p; θ) := p · λ(p; θ). To
leverage the parametric structure of the unknown function, we will focus primarily
on Maximum Likelihood (ML) estimation which not only has certain desirable
theoretical properties but is also widely used in practice. As shown in the statistics
literature, to guarantee the regular behavior of ML estimator, certain statistical
conditions need to be satisfied. To formalize these conditions in our context, it is
convenient to first consider the distribution of a sequence of demand realizations
when a sequence of q̃ ∈ Z++ fixed price vectors p̃ = (p̃(1), p̃(2), . . . , p̃(q̃)) ∈ Pq̃
have been applied. For all d1:q̃ ∈ Dq̃ , we define

Pp̃,θ (d1:q̃) :=
q̃∏

s=1

⎡

⎢
⎢
⎣

⎛

⎝1−
n∑

j=1

λj (p̃
(s); θ)

⎞

⎠

(
1−∑n

j=1 ds,j

)

n∏

j=1

λj (p̃
(s); θ)ds,j

⎤

⎥
⎥
⎦

and denote by Ep̃θ the expectation with respect to Pp̃,θ . In addition to the regularity
assumptions R1–R4, we impose additional properties to ensure that the function
class {λ(.; θ)}θ∈� is well-behaved.

Parametric Family Assumptions

A1 λ(p; θ) and
∂λj
∂pi
(p; θ) for all i, j ∈ [n] and i �= j are continuously

differentiable in θ .
A2 R1 and R3 hold for all θ ∈ �.
A3 There exists p̃ = (p̃(1), p̃(2), . . . , p̃(q̃)) ∈ Pq̃ such as for all θ ∈ �,

i. Pp̃,θ (.) �= Pp̃,θ
′
(.) for all θ ′ ∈ � and θ ′ �= θ .

ii. For all k ∈ [q̃] and j ∈ [n], λj (p̃(k); θ) > 0 and
∑n
j=1 λj (p̃

(k); θ) < 1.
iii. The minimum eigenvalue of the matrix I(p̃, θ) := [Ii,j (p̃, θ)] ∈ Rq×q

where

Ii,j (p̃, θ) = Ep̃θ

[

− ∂2

∂θi∂θj
logPp̃,θ (D1:q̃)

]

is bounded from below by a positive number.

118 Q. (George) Chen et al.

Note that A1 and A2 are quite natural assumptions satisfied by many demand
functions such as linear, multinomial logit, and exponential demand. We call p̃
in A3 exploration prices. A3 ensures that there exists a set of price vectors (e.g.,
p̃), which, when used repeatedly, would allow the seller to use ML estimator to
statistically identify the true demand parameter. Note that the symmetric matrix
I(p̃, θ) defined in A3-iii is known as the Fisher information matrix in the literature,
and it captures the amount of information that the seller obtains about the true
parameter vector using the exploration prices p̃. A3-iii requires the Fisher matrix to
be strongly positive definite; this is needed to guarantee that the seller’s information
about the underlying parameter vector strictly increases as he observes more demand
realizations under p̃. We want to point out that it is easy to find exploration prices
for the commonly used demand function families. For example, for linear and
exponential demand function families, any q̃ = n+1 price vectors p̃(1), . . . , p̃(n+1)

constitute a set of exploration prices if (a) they are all in the interior of P and
(b) the vectors (1; p̃(1)), . . . , (1; p̃(n+1)) ∈ Rn+1 are linearly independent. For
the multinomial logit demand function family, any q̃ = 2 price vectors p̃(1), p̃(2)

constitute a set of exploration prices if (a) they are both in the interior of P and (b)
p̃
(1)
i �= p̃(2)i for all i = 1, . . . , n.

Next, we develop a heuristic called Parametric Self-adjusting Control (PSC).
In PSC, the selling season is divided into an exploration stage followed by an
exploitation stage. The exploration stage lasts for L periods (L is a tuning parameter
to be selected by the seller) where the seller alternates among exploration prices to
learn the demand function. At the end of the exploration stage, the seller computes
his ML estimate of θ∗, denoted by θ̂L (in case the maximum of the likelihood
function is not unique, take any maximum as the ML estimate), based on all his
observations so far, and solves Pλ(θ̂L) for its solution λD(θ̂L) as an estimate of
the deterministically optimal demand rate λD(θ∗). Then, for the remaining (T −L)-
period exploitation stage, the seller uses price vectors according to a simple adaptive
rule which we explain in more detail below. Define �̂t (pt ; θ̂L) := Dt − λ(pt ; θ̂L),
and let Ct denote the remaining capacity at the end of period t . The complete PSC
procedure is given in Algorithm 2.

In contrast to many proposed heuristics that use the learned deterministic optimal
price for exploitation, PSC uses the adaptive price adjustment rule in (5.28) for
exploitation. To see the idea behind this design, suppose the estimate of the
parameter vector is accurate (Jasin, 2014). In that setting, �̂t equals the stochastic
variability in demand arrivals �t := Dt − λ(pt ; θ∗), and the pricing rule in (5.28)
reduces to adjusting the prices in each period t to achieve a target demand rate,
i.e., λD(θ∗)−∑t−1

s=L+1
�s
T−s . The first part of this expression, λD(θ∗), is the optimal

demand rate if there were no stochastic variability, and we use it as a base rate;
the second part of the expression, on the other hand, works as a fine adjustment
to the base rate in order to mitigate the observed stochastic variability. To see how
such adjustment works, consider the case with a single product: if there is more
demand than what the seller expects in period s, i.e., �s > 0, then the pricing rule
automatically accounts for it by reducing the target demand rate for all remaining

5 Learning and Pricing with Inventory Constraints 119

Algorithm 2 Parametric self-adjusting control (PSC)
Tuning Parameter: L

1. Stage 1 (Exploration)

a. Determine the exploration prices {p̃(1), p̃(2), . . . , p̃(q̃)}.
b. For t = 1 to L, do:

• If Ct−1 & Aj for all j , apply price pt = p̃('(t−1)q̃/L(+1) in period t .
• Otherwise, apply price pt ′,j = p∞j for all j and t ′ ≥ t ; then terminate PSC.

c. At the end of period L:

• Compute the ML estimate θ̂L based on p1:L and D1:L
• Solve Pλ(θ̂L) for λD(θ̂L).

2. Stage 2 (Exploitation)
For t = L+ 1 to T , compute:

p̂t = p
(

λD(θ̂L)−
t−1∑

s=L+1

�̂s(ps; θ̂L)
T − s ; θ̂L

)

. (5.28)

• If Ct−1 & Aj , and p̂t ∈ P, apply price pt = p̂t in period t
• Otherwise, for product j = 1 to n, do:

– If Ct−1 ≺ Aj , apply price pt,j = p∞j .
– Otherwise, apply price pt,j = pt−1,j

(T − s)-period; moreover, the target demand rate adjustment is made uniformly
across all (T−s)-period so as to minimize unnecessary price variations. Jasin (2014)
has shown that the ability to accurately mitigate the stochastic variability allows
this self-adjusting pricing rule be effective when the parameter vector is known.
However, as one can imagine, such precise adjustment is not possible when the
parameter vector is subject to estimation error. Indeed, when θ̂L �= θ∗, the seller can
only adjust target demand rate based on an estimate of �s , i.e., �̂s ; moreover, the
seller can no longer correctly find out the price vector that accurately induces (on
average) the target demand rate since the inverse demand function is also subject
to estimation error. Can this pricing rule work well when the underlying demand
parameter is subject to estimation error? The answer is yes, and the key observation
is that these two sources of systematic biases push the price decisions on opposing
directions and their impact is thus reduced. To see that, consider a single product
case where the seller overestimates demand for all prices, i.e., λ(p; θ̂L) > λ(p; θ∗)
for all p: on the one hand, since the seller would underestimate the stochastic
variation that he needs to adjust (i.e., �̂s = Ds−λ(ps; θ̂L) < Ds−λ(ps; θ∗) = �s),
this would push up the target demand rate (which would push down the price) than
if there were no estimation error; on the other hand, since p(λ; θ̂L) > p(λ; θ∗), for

120 Q. (George) Chen et al.

a given target demand rate, the presence of estimation error would push the price
up. Quite interestingly, these opposing mechanisms are sufficient for PSC to achieve
the optimal rate of regret.

Theorem 3 Suppose that R1–R4 and A1–A3 hold. Set L = "√kT #. Then, there
exists a constantM1 > 0 independent of k ≥ 1 such that ρPSC(k) ≤ M1

√
k for all

k ≥ 1.

Note that in light of the lower bound example in the previous section, PSC
achieves the best achievable regret. The reason PSC achieves this tight bound can be
briefly explained as follows. First, it leverages the fact that the demand model is fully
determined by a finite-dimensional vector θ∗, which can be efficiently estimated
by ML estimation. Under ML, roughly speaking, to obtain an estimation error in
the order of ε, the seller needs to spend roughly �(ε−2) periods exploring the
demand curve with exploration prices which are not necessarily optimal. Second,
the self-adjusting pricing rule in (5.28) helps reduce the impact of estimation error
on revenue obtained during exploitation compared to using the learned deterministic
price directly. To see that, suppose that the true parameter vector is misestimated by
a small error ε, then one can show that λD(θ̂L) is roughly ε away from λD(θ∗). If
the seller simply uses the learned deterministic optimal price pD(θ̂L) throughout
the exploitation stage, then the one-period regret is roughly r(λD(θ∗); θ∗) −
r(λD(θ̂L); θ∗) ≈ ∇λr(λD(θ∗); θ∗) · (λD(θ∗)−λD(θ̂L)) ≈ �(ε) (note that a tighter
bound cannot be obtained since the gradient at the constrained optimal solution is
not necessarily zero). In PSC, as mentioned above, the pricing rule (5.28) introduces
opposing mechanisms to mitigate the impact of systematic error ε on regret which
results in a one-period regret of�(ε2). Thus, the total regret in both exploration and
exploitation is bounded by �(L) + �(ε2(kT − L)) = O(ε−2 + ε2kT), which is
bounded by O(

√
kT) after optimally tuning ε (or equivalently, L).

5.3.3 Nonparametric Case

The setting in Sect. 5.3.2 assumes that the seller has a good prior knowledge of
the functional form of the demand function which may not be appropriate in
cases such as new product launch where no historically relevant data is available.
Blindly assuming a parametric demand model may be inappropriate and could
potentially result in significant revenue loss if the parametric form is misspecified,
e.g., a seller who uses linear model to fit the data generated by a logit model.
An alternative setting, also known as the nonparametric approach, is one where
the seller has no prior knowledge of the functional form but tries to estimate the
demand directly. The challenge of this approach is that, instead of estimating a
finite number of parameters, the seller now needs to directly estimate the demand
function value at different price vectors to get an idea of the shape of the demand
curve; thus, the number of point estimates needed to ensure low estimation error
increases exponentially as the number of products increases. To keep the estimation

5 Learning and Pricing with Inventory Constraints 121

problem tractable, a common assumption made in the statistics literature for
nonparametric approaches is to impose smoothness conditions of the underlying
demand functions (Gyorfi et al., 2002). To that end, let s̄ denote the largest integer
such that |∂a1,...,anλ∗j (p)/∂p

a1
1 . . . ∂p

an
n | is uniformly bounded for all j ∈ [n] and

0 ≤ a1, . . . , an ≤ s̄. We call s̄ the smoothness index. We make the following
smoothness assumptions:

Nonparametric Function Smoothness Assumptions

N1. s̄ ≥ 2.

N2.

∣
∣
∣
∣
∂a1,...,anλ∗j (p)
∂p
a1
1 ...∂p

an
n

∣
∣
∣
∣ is uniformly bounded for all j ∈ [n], p ∈ P, 0 ≤ a1, . . . , an ≤ s̄.

The above assumptions are fairly mild and are satisfied by most commonly
used demand functions, including linear, polynomial with higher degree, logit, and
exponential with a bounded domain of feasible prices. The smoothness index s̄
indicates the level of difficulty in estimating the corresponding demand function:
the larger the value of s̄, the smoother the demand function, and the easier it is to
estimate its shape because its value cannot have a drastic local change.

The idea of the nonparametric approach to be introduced later in this section is
to replace the ML estimator in PSC by a nonparametric estimation procedure. One
such approach is to use a linear combination of spline functions to approximate
the underlying demand function which we introduce below. Spline functions have
been widely used in engineering to approximate complicated functions, and their
popularity is primarily due to their flexibility in effectively approximating complex
curve shapes (Schumaker, 2007). This flexibility lies in the piecewise nature of
spline functions—a spline function is constructed by attaching piecewise polyno-
mial functions with a certain degree, and the coefficients of these polynomials are
computed in such a way that a sufficiently high degree of smoothness is ensured
in the places where the polynomials are connected. More formally, for all l ∈ [n],
let p

l
= xl,0 < xl,1 · · · < xl,d < xl,d+1 = p̄l be a partition that divides [p

l
, p̄l]

into d + 1 subintervals of equal length where d ∈ Z++. Let G := ⊗nl=1Gl denote
a set of grid points, where Gl = {xl,i}d+1

i=0 . We define the function space of tensor-
product polynomial splines of order (s; . . . ; s) ∈ Rn with a set of grid points G
as S(G, s) := ⊗nl=1Sl (Gl , s), where Sl (Gl , s) := {f ∈ Cs−2([p

l
, p̄l]) : f is

a single-variate polynomial of degree s − 1 on each subinterval [xl,i−1, xl,i), for
all i ∈ [d] and [xl,d , xl,d+1]}. One of the key questions that spline approximation
theory addresses is the following: given an arbitrary function λ that satisfies N1-
N2, find a spline function g∗ ∈ S(G, s) that approximates λ well. Among the
various approaches, one of the most popular approximations is using the so-called
tensor-product B-Spline basis functions (Schumaker, 2007). This approach is based
on using the linear combinations of a collection of (s + d)n tensor-product B-
Spline basis functions, denoted by {Ni1,...,in (x1, . . . , xn)}s+d,...,s+di1=1,...,in=1, which span
the functional space S(G, s), to approximate the target function λ. Therefore, the
problem of finding g∗ is reduced to the problem of computing the coefficients for

122 Q. (George) Chen et al.

representing g∗. Schumaker (2007) proposed an explicit formula for computing
these coefficients when the value of λ is perfectly observable, and the coefficients
depend on λ(.) only via its function value evaluated on a finite number of price
vectors in P (i.e., the (s + d)nsn price vectors in G̃ defined in Algorithm 3); the
details for the formula are bit technical, but we provide these in Algorithm 3 for
completeness. In our problem setting, finding an approximation for λ∗j (.) for all
j ∈ [n] is more challenging since we observe noisy observations of the function
value, so we use empirical mean of demand realizations as a surrogate for λ∗j (p)
and propose the following Spline Estimation algorithm in Algorithm 4 to estimate
the demand, which involves observing L̃0 := L0(s + d)nsn samples.

Let λ̃(.) denote the spline function computed via Algorithm 4. It can be shown
that with high probability, the approximation error of λ̃(.) converges to zero at a
slightly slower rate than the ML estimator in the parametric case. While one may
be tempted to directly apply the exploitation method in PSC, i.e., the pricing rule
in (5.28), the analysis of such approach is quite difficult since, given the nature
of B-spline functions and the estimation procedure, λ̃(.) may lose some of the
regularity properties that λ∗(.) possesses. Thus, we introduce two more functional
approximations on λ̃(.) before applying the self-adjusting pricing procedure for
exploitation. To that end, we introduce a quadratic program approximation of P

Algorithm 3 Spline approximation

Input function: λ ∈ C0(P) and λ satisfies N1 and N2
Output function: g∗ ∈ S(G, s)

1. For l ∈ [n], i ∈ [s + d], define {yl,i}2s+di=1 as follows

yl,1 = · · · = yl,s = xl,0,
yl,s+1 = xl,1, yl,s+2 = xl,2, . . . , yl,s+d = xl,d ,
yl,s+d+1 = · · · = yl,2s+d = xl,d+1;

moreover, compute the following:

τl,i,j = yl,i + (yl,i+s − yl,i) j−1
s−1 and βl,i,j =∑j

v=1
(−1)v−1

(s−1)! φ
(s−v)
l,i,s (0)ψ

(v−1)
l,i,j (0), for j ∈ [s],

where φl,i,s (t) = ∏s−1
r=1(t − yl,i+r), ψl,i,j (t) =

∏j−1
r=1 (t − τl,i,r), ψl,i,1(t) ≡ 1. Let G̃ :=

{(τ1,i1,j1 ; . . . ; τn,in,jn) : il ∈ [s + d], jl ∈ [s] for all l ∈ [n]}.
2. Define g∗ as follows:

g∗(x1, . . . , xn) =
s+d∑

i1=1

· · ·
s+d∑

in=1

γi1,...,inNi1,...,in (x1, . . . , xn),

where γi1,...,in =
s∑

j1=1

j1∑

r1=1

· · ·
s∑

jn=1

jn∑

rn=1

λ(τ1,i1,r1 , . . . , τn,in,rn)
∏n
l=1 βl,il ,jl

∏n
l=1

∏jl
sl=1,sl �=rl (τl,il ,rl − τl,il ,sl)

5 Learning and Pricing with Inventory Constraints 123

Algorithm 4 Spline estimation
Input Parameter: L0, n, s Tuning Parameter: d

1. Estimate λ∗(p) at points p ∈ G̃. For each p ∈ G̃

a. Apply price p L0 times
b. Let λ̃(p) be the sample mean of the L0 observations

2. Construct spline approximation

a. For all j ∈ [1, n] and il ∈ [1, s + d], l ∈ [1, n], calculate coefficients cji1,...,in as:

c
j
i1,...,in

=
s∑

j1=1

j1∑

r1=1

· · ·
s∑

jn=1

jn∑

rn=1

λ̃j (τ1,i1,r1 , . . . , τn,in,rn)
∏n
l=1 βl,il ,jl

∏n
l=1

∏jl
sl=1,sl �=rl (τl,il ,rl − τl,il ,sl)

.

b. Construct a tensor-product spline function λ̃(p) = (λ̃1(p); . . . ; λ̃n(p)), where

λ̃j (p) =
s+d∑

i1=1

· · ·
s+d∑

in=1

c
j
i1,...,in

Ni1,...,in (p).

in which we approximate the constraints of P with linear functions and its objective
with a quadratic function. First, to linearize the constraints of P, since the capacity
constraints form an affine transformation of the demand function, we will simply
linearize the demand function. For any a ∈ Rn, B ∈ Rn×n, let B1, . . . , Bn be the
columns ofB and define θι = (a;B1; . . . ;Bn) ∈ Rn2+n, where the subscript ι stands
for linear demand. We denote a linear demand function by λ(p; θι) = a+B ′p. Next,
we explain how we use a quadratic function to approximate the objective of P. For
anyE ∈ R, F ∈ Rn,G ∈ Rn×n, letG1, . . . ,Gn denote the columns ofG and define
θo = (E;F ;G1; . . . ;Gn) ∈ Rn2+n+1, where the subscript o stands for objective.
We denote the resulting quadratic function by q(p; θo) = E+F ′p+ 1

2p
′Gp. Finally,

let θ = (θo; θι) ∈ R2n2+2n+1. For any θ ∈ R2n2+2n+1, δ ∈ Rm, we can define a
quadratic program QP(θ; δ) as follows:

(QP(θ; δ)) max
p∈P

{
q(p; θo) : Aλ(p; θι) % C

T
− δ} .

It can be shown that quadratic program will have the same optimal solution as
P and will possess some very useful stability properties if the parameters of the
quadratic and linear functions are chosen as follows: for linear demand function, let
θ∗ι = (a∗;B∗1 ; . . . ;B∗n), where B∗ := ∇λ∗(pD) and a∗ := λD − (B∗)′pD; for the
quadratic objective function, let θ∗o = (E∗;F ∗;G∗1; . . . ;G∗n) where

E∗ := 1

2
(pD)′H ∗pD, F ∗ := a∗ −H ∗pD, G∗ := B∗ + (B∗)′ +H ∗,

124 Q. (George) Chen et al.

where H ∗ is an n by n symmetric matrix defined as H ∗ := B∗∇2r∗λ(λD)(B∗)′ −
B∗ − (B∗)′. Finally, let θ∗ := (θ∗o ; θ∗ι). Note that QP(θ∗; 0) is a very intuitive
approximation of P since the function λ(p; θ∗ι) = a∗ + (B∗)′p = λD + (B∗)′(p −
pD) can be viewed as a linearization of λ∗(.) at pD . Note also that the gradients of
the objective function and the constraints in QP(θ∗; 0) at pD coincide with those in
P. By Karush–Kuhn–Tucker (KKT) optimality conditions, it can be shown that the
optimal solution of QP(θ∗; 0) is the same as the optimal solution of P.

We are now ready to describe Nonparametric Self-adjusting Control (NSC) and
discuss its asymptotic performance. NSC consists of an exploration procedure and
an exploitation procedure. The exploration procedure uses the Spline Estimation
algorithm in Algorithm 4 to construct a spline approximation λ̃(.) of the underlying
demand function λ∗(.). This function λ̃(.) is then used to construct a linear function
λ(.; θ̂ι) that closely approximates λ(.; θ∗ι) in the neighborhood of pD and a quadratic
program that closely approximates P. During the exploitation phase, we use the
optimal solution of the approximate quadratic program as baseline control and
automatically adjust the price according to a version of (5.28). Further details will
be provided below. Recall that L̃0 is the duration of the Spline Estimation algorithm.
Let Ct denote the remaining capacity at the end of period t . Let θ̂ := (θ̂o; θ̂ι), where
θ̂ι := (â; B̂1; . . . ; B̂n), θ̂o := (Ê; F̂ ; Ĝ1; . . . ; Ĝn) and

B̂ := ∇λ̃(p̃D), â := λ̃− B̂ ′p̃D, Ê := 1
2 (p̃

D)′Ĥ p̃D, F̂ := â − Ĥ p̃D,
Ĝ := B̂ + B̂ ′ + Ĥ , and

Ĥ = [Ĥij] where Ĥij :=−û′ij B̂−1λ̃D and ûij :=
[
∂2λ̃1(p̃

D)

∂pi∂pj
; . . . ; ∂

2λ̃n(p̃
D)

∂pi∂pj

]

.

(Note that p̃D is the deterministic optimal solution of a version of P, where λ∗ is
replaced by λ̃.) The details of NSC is given in Algorithm 5.

The following result states that the performance of NSC is close to the best
achievable (asymptotic) performance bound.

Theorem 4 Suppose that s ≥ 4, L0 = "(kT)(s+n/2)/(2s+n−2)

(log(kT))(2s+n−4)/(2s+n−2)# and d = "(L1/2
0 / log(kT))1/(s+n/2)#. There exists

a constantM1 > 0 independent of k > 3 such that for all s ≥ 4, we have

ρNSC(k) ≤ M1k
1
2+ε(n,s,s̄) log k, where ε(n, s, s̄) = 1

2

(
2s − 2(s ∧ s̄)+ n+ 2

2s + n− 2

)

.

Note that since most commonly used demand functions such as polynomial with
arbitrary degree, logit, and exponential are infinitely differentiable (i.e., s̄ can be
arbitrarily large), for any fixed ε > 0, we can select integers s ≥ (n+2)/(4ε)−(n−
2)/2 such that the performance under NSC is O(k1/2+ε log k). Theoretically, this
means that the asymptotic performance of NSC is very close to the best achievable
performance lower bound of �(

√
k). By comparing the algorithm and the analysis

5 Learning and Pricing with Inventory Constraints 125

Algorithm 5 Nonparametric self-adjusting control (NSC)
Input Parameters: n, s Tuning Parameter: d, L0

1. Stage 1 (Exploration Phase 1 - Spline Estimation)

a. For t = 1 to L̃0 ∧ T
• If Ct−1 ≺ Aj for some j = 1, . . . , n, set pt,j = p∞j for all j = 1, . . . , n.
• Otherwise, follow Step 1 in Spline Estimation algorithm.

b. At the end of period L̃0 ∧ T , do:

• If L̃0 ≥ T , terminate NSC.
• If L̃0 < T and C

L̃0
≺ Aj for some j = 1, . . . , n:

– For all t > L̃0, set pt,j = p∞j for all j = 1, . . . , n.
– Terminate NSC.

• If L̃0 < T and C
L̃0
& Aj for all j = 1, . . . , n:

– Follow Step 2 in Spline Estimation algorithm to get λ̃(.).
– Go to Stage 2 below.

2. Stage 2 (Exploration Phase 2 - Function Approximation)

a. Solve P̃ and obtain the optimizer p̃D .
b. Let δ := C/T − C

L̃0
/(T − L̃0).

c. Compute â, B̂, Ê, F̂ , Ĝ, Ĥ and θ̂ = (θ̂o; θ̂ι).
• If B̂ is invertible, go to Stage 2(d) below.
• Otherwise, for t = L̃0 + 1 to T :

– If Ct−1 & Aj for j = 1, . . . , n, apply pt = p̃D .
– Otherwise, for product j = 1 to n, do:

· If Ct−1 ≺ Aj , set pt,j = p∞j .
· Otherwise, set pt,j = pt−1,j .

d. Solve QP(θ̂; δ) for its static price pDδ (θ̂).

3. Stage 3 (Exploitation)
For t = L̃0 + 1 to T :

• Compute: p̂t = pDδ (θ̂)− ∇λp(λDδ (θ̂); θ̂ι) ·
∑t−1
s=L̃0+1

�̃s
T−s , where �̃t := Dt − λ(pt ; θ̂ι).

• If p̂t ∈ P and Ct−1 & Aj for j = 1, . . . , n, apply pt = p̂t .
• Otherwise, for product j = 1 to n, do:

– If Ct−1 ≺ Aj , set pt,j = p∞j .
– Otherwise, set pt,j = pt−1,j .

of PSC and NSC, the extra ε in the exponent of the regret bound of NSC is driven by
the slightly slower rate of convergence of the nonparametric approach for estimating

126 Q. (George) Chen et al.

demand function. It remains an open question whether there exists a nonparametric
approach for the NRM setting with a continuum of feasible price vectors which
attains a regret bound of O(

√
k).

5.4 Bayesian Learning Setting

The multi-armed bandit (MAB) problem is often used to model the exploration–
exploitation trade-off in the dynamic learning and pricing model without inventory
constraints (see Chap. 1 for an overview of the MAB problem). In one of the earliest
papers on the multi-armed bandit problem, Thompson (1933) proposed a novel
randomized Bayesian algorithm, which has since been referred to as the Thompson
sampling algorithm. The basic idea of Thompson sampling is that at each time
period, random numbers are sampled according to the posterior distributions of
the reward for each action, and then the action with the highest sampled reward
is chosen. In a revenue management setting, each “action” or “arm” is a price, and
“reward” refers to the revenue earned by offering that price. Thus, in the original
Thompson sampling algorithm—in the absence of inventory constraints—random
numbers are sampled according to the posterior distributions of the mean demand
rates for each price, and the price with the highest sampled revenue (i.e., price times
sampled demand) is offered.

In this section, we develop a class of Bayesian learning algorithms for the
multiproduct pricing problem with inventory constraints. This class of algorithms
extends the powerful machine learning technique known as Thompson sampling
to address the challenge of balancing the exploration–exploitation trade-off under
the presence of inventory constraints. We focus on a model with discrete price sets
and present two algorithms (the algorithm can also be used for continuous price
sets, see Ferreira et al. (2018)). The first algorithm adapts Thompson sampling by
adding a linear programming (LP) subroutine to incorporate inventory constraints.
The second algorithm builds upon our first; specifically, in each period, we modify
the LP subroutine to further account for the purchases made to date. Both of the
algorithms contain two simple steps in each iteration: sampling from a posterior
distribution and solving a linear program. As a result, the algorithms are easy to
implement in practice.

5.4.1 Model Setting

We consider a retailer who sellsN products, indexed by i ∈ [N], over a finite selling
season. (Below, we denote by [x] the set {1, 2, . . . , x}.) These products consumeM
resources, indexed by j ∈ [M]. Specifically, we assume that one unit of product i
consumes aij units of resource j , where aij is a fixed constant. The selling season
is divided into T periods. There are Ij units of initial inventory for each resource

5 Learning and Pricing with Inventory Constraints 127

j ∈ [M], and there is no replenishment during the selling season. We define Ij (t)
as the inventory at the end of period t , and we denote Ij (0) = Ij . In each period
t ∈ [T], the following sequence of events occurs:

1. The retailer offers a price for each product from a finite set of admissible price
vectors. We denote this set by {p1, p2, . . . , pK }, where pk (∀k ∈ [K]) is a vector
of lengthN specifying the price of each product. More specifically, we have pk =
(p1k, . . . , pNk), where pik is the price of product i, for all i ∈ [N]. Following
the tradition in dynamic pricing literature, we also assume that there is a “shut-
off” price p∞ such that the demand for any product under this price is zero with
probability one. We denote by P(t) = (P1(t), . . . , PN(t)) the prices chosen by
the retailer in this period, and require that P(t) ∈ {p1, p2, . . . , pK, p∞}.

2. Customers then observe the prices chosen by the retailer and make purchase
decisions. We denote byD(t) = (D1(t), . . . ,DN(t)) the demand of each product
at period t . We assume that given P(t) = pk , the demandD(t) is sampled from a
probability distribution on RN+ with joint cumulative distribution function (CDF)
F(x1, . . . , xN ;pk, θ), indexed by a parameter (or a vector of parameters) θ that
takes values in the parameter space � ⊂ Rl . The distribution is assumed to be
subexponential; note that many commonly used demand distributions such as
normal, Poisson, exponential and all bounded distributions belong to the family
of subexponential distributions. We also assume that D(t) is independent of the
history Ht−1 = (P (1),D(1), . . . , P (t − 1),D(t − 1)) given P(t).

Depending on whether there is sufficient inventory, one of the following
events happens:

(a) If there is enough inventory to satisfy all demand, the retailer receives an
amount of revenue equal to

∑N
i=1Di(t)Pi(t), and the inventory level of each

resource j ∈ [M] diminishes by the amount of each resource used such that
Ij (t) = Ij (t − 1)−∑N

i=1Di(t)aij .
(b) If there is not enough inventory to satisfy all demand, the demand is partially

satisfied and the rest of demand is lost. Let D̃i(t) be the demand satisfied
for product i. We require D̃i(t) to satisfy three conditions: 0 ≤ D̃i(t) ≤
Di(t),∀i ∈ [N]; the inventory level for each resource at the end of this
period is nonnegative: Ij (t) = Ij (t − 1) −∑N

i=1 D̃i(t)aij ≥ 0,∀j ∈ [M];
there exists at least one resource j ′ ∈ [M]whose inventory level is zero at the
end of this period, i.e. Ij ′(t) = 0. Besides these natural conditions, we do not
require any additional assumption on how demand is specifically fulfilled.
The retailer then receives an amount of revenue equal to

∑N
i=1 D̃i(t)Pi(t) in

this period.

We assume that the demand parameter θ is fixed but unknown to the retailer at the
beginning of the season, and the retailer must learn the true value of θ from demand
data. That is, in each period t ∈ [T], the price vector P(t) can only be chosen based
on the observed history Ht−1, but cannot depend on the unknown value θ or any
event in the future. The retailer’s objective is to maximize expected revenue over
the course of the selling season given the prior distribution on θ .

128 Q. (George) Chen et al.

We use a parametric Bayesian approach in our model, where the retailer has
a known prior distribution of θ ∈ � at the beginning of the selling season.
However, our model allows the retailer to choose an arbitrary prior. In particular,
the retailer can assume an arbitrary parametric form of the demand CDF, given by
F(x1, . . . , xN ;pk, θ). This joint CDF parametrized by θ can parsimoniously model
the correlation of demand among products. For example, the retailer may specify
products’ joint demand distribution based on some discrete choice model, where θ
is the unknown parameter in the multinomial logit function. Another benefit of the
Bayesian approach is that the retailer may choose a prior distribution over θ such
that demand is correlated for different prices, enabling the retailer to learn demand
for all prices, not just the offered price. e selling season as inventory is depleted; this
latter idea is incorporated into the second algorithm that we will present later.

5.4.2 Thompson Sampling with Fixed Inventory Constraints

We now present the first version of the Thompson sampling-based pricing algorithm.
For each resource j ∈ [M], we define a fixed constant cj := Ij /T . Given any
demand parameter ρ ∈ �, we define the mean demand under ρ as the expectation
associated with CDF F(x1, . . . , xN ;pk, ρ) for each product i ∈ [N] and price
vector k ∈ [K]. We denote by d = {dik}i∈[N],k∈[K] the mean demand under the
true model parameter θ .

The Thompson sampling with Fixed Inventory Constraints (TS-fixed) algorithm
is shown in Algorithm 6. Here, “TS” stands for Thompson sampling, while “fixed”
refers to the fact that we use fixed constants cj for all time periods as opposed
to updating cj over the selling season as inventory is depleted; this latter idea is
incorporated into the second algorithm that we will present later.

Steps 1 and 4 are based on the Thompson sampling algorithm for the classical
multi-armed bandit setting, whereas Steps 2 and 3 are added to incorporate inventory
constraints. In Step 1 of the algorithm, we randomly sample parameter θ(t)
according to the posterior distribution of unknown demand parameter θ . This step
is motivated by the original Thompson sampling algorithm for the classical multi-
armed bandit problem. The key idea of the Thompson sampling algorithm is to
use random sampling from the posterior distribution to balance the exploration–
exploitation trade-off. The algorithm differs from the ordinary Thompson sampling
in Steps 2 and 3. In Step 2, the retailer solves a linear program, LP(d(t)), which
identifies the optimal mixed price strategy that maximizes expected revenue given
the sampled parameters. The first constraint specifies that the average resource
consumption in this time period cannot exceed cj , the average inventory available
per period. The second constraint specifies that the sum of probabilities of choosing
a price vector cannot exceed one. In Step 3, the retailer randomly offers one of the
K price vectors (or p∞) according to probabilities specified by the optimal solution
of LP(d(t)). Finally, in Step 4, the algorithm updates the posterior distribution of θ
given Ht . Such Bayesian updating is a simple and powerful tool to update belief

5 Learning and Pricing with Inventory Constraints 129

Algorithm 6 Thompson sampling with fixed inventory constraints (TS-fixed)
Repeat the following steps for all periods t = 1, . . . , T :

1. Sample Demand: Sample a random parameter θ(t) ∈ � according to the posterior distribution
of θ given history Ht−1. Let the mean demand under θ(t) be d(t) = {dik(t)}i∈[N],k∈[K].

2. Optimize Prices given Sampled Demand: Solve the following linear program, denoted by
LP(d(t)):

LP(d(t)) : max
x

K∑

k=1

(

N∑

i=1

pikdik(t))xk

subject to
K∑

k=1

(

N∑

i=1

aij dik(t))xk ≤ cj , ∀j ∈ [M]

K∑

k=1

xk ≤ 1

xk ≥ 0, k ∈ [K].

Let x(t) = (x1(t), . . . , xK(t)) be the optimal solution to LP(d(t)).
3. Offer Price: Offer price vector P(t) = pk with probability xk(t), and choose P(t) = p∞ with

probability 1−∑K
k=1 xk(t).

4. Update Estimate of Parameter: Observe demand D(t). Update the history Ht = Ht−1 ∪
{P(t),D(t)} and the posterior distribution of θ given Ht .

probabilities as more information—customer purchase decisions in our case—
becomes available. By employing Bayesian updating in Step 4, we are ensured that
as any price vector pk is offered more and more times, the sampled mean demand
associated with pk for each product i becomes more and more centered around the
true mean demand, dik .

We note that the LP defined in Step 2 is closely related to the LP used by Gallego
and Van Ryzin (1997), where they consider a network revenue management problem
in the case of known demand. Essentially, their pricing algorithm is a special case
of Algorithm 6 where they solve LP(d), i.e., LP(d(t)) with d(t) = d, in every time
period.

Next, we illustrate the application of our TS-fixed algorithm by providing
one concrete example. For simplicity, in this example, we assume that the prior
distribution of demand for different prices is independent; however, the definition
of TS-fixed is quite general and allows the prior distribution to be arbitrarily
correlated for different prices. As mentioned earlier, this enables the retailer to
learn the mean demand not only for the offered price but also for prices that are
not offered.

Example (Bernoulli Demand with Independent Uniform Prior) We assume that for
all prices, the demand for each product is Bernoulli distributed. In this case, the
unknown parameter θ is just the mean demand of each product. We use a beta

130 Q. (George) Chen et al.

posterior distribution for each θ because it is conjugate to the Bernoulli distribution.
We assume that the prior distribution of mean demand dik is uniform in [0, 1] (which
is equivalent to a Beta(1, 1) distribution) and is independent for all i ∈ [N] and
k ∈ [K]. In this example, the posterior distribution is very simple to calculate. Let
Nk(t − 1) be the number of time periods that the retailer has offered price pk in the
first t − 1 periods, and let Wik(t − 1) be the number of periods that product i is
purchased under price pk during these periods. In Step 1 of TS-fixed, the posterior
distribution of dik is Beta(Wik(t−1)+1, Nk(t−1)−Wik(t−1)+1), so we sample
dik(t) independently from a Beta(Wik(t − 1) + 1, Nk(t − 1) − Wik(t − 1) + 1)
distribution for each price k and each product i. In Steps 2 and 3, LP(d(t))
is solved and a price vector pk′ is chosen; then, the customer demand Di(t) is
revealed to the retailer. In Step 4, we then update Nk′(t) ← Nk′(t − 1) + 1,
Wik′(t)← Wik′(t−1)+Di(t) for all i ∈ [N]. The posterior distributions associated
with the K − 1 unchosen price vectors (k �= k′) are not changed.

5.4.3 Thompson Sampling with Inventory Constraint Updating

Now, we propose the second Thompson sampling-based algorithm. Recall that in
TS-fixed, we use fixed inventory constants cj in every period. Alternatively, we
can update cj over the selling season as inventory is depleted, thereby incorporating
real-time inventory information into the algorithm.

In particular, we recall that Ij (t) is the inventory level of resource j at the
end of period t . Define cj (t) = Ij (t − 1)/(T − t + 1) as the average inventory
for resource j available from period t to period T . We then replace constants
cj with cj (t) in LP(d(t)) in step 2 of TS-fixed, which gives us the Thompson
sampling with Inventory Constraint Updating algorithm (TS-update for short)
shown in Algorithm 7. The term “update” refers to the fact that in every iteration,
the algorithm updates inventory constants cj (t) in LP(d(t)) to incorporate real-time
inventory information.

In the revenue management literature, the idea of using updated inventory rates
like cj (t) has been previously studied in various settings (Jasin and Kumar, 2012;
Jasin, 2014). TS-update is an algorithm that incorporates real-time inventory
updating when the retailer faces an exploration–exploitation trade-off with its
pricing decisions. Although intuitively incorporating updated inventory information
into the pricing algorithm should improve the performance of the algorithm, Cooper
(2002) provides a counterexample where the expected revenue is reduced after the
updated inventory information is included. Therefore, it is not immediately clear
if TS-update would achieve higher revenue than TS-fixed. We will rigorously
analyze the performance of both TS-fixed and TS-update in the next section;
our numerical simulation shows that in fact there are situations where TS-update
outperforms TS-fixed and vice versa.

5 Learning and Pricing with Inventory Constraints 131

Algorithm 7 Thompson sampling with inventory constraint updating (TS-update)Repeat the following steps for all periods t = 1, . . . , T :

1. Sample Demand: Sample a random parameter θ(t) ∈ � according to the posterior distribution
of θ given history Ht−1. Let the mean demand under θ(t) be d(t) = {dik(t)}i∈[N],k∈[K].

2. Optimize Prices given Sampled Demand: Solve the following linear program, denoted by
LP(d(t), c(t)):

LP(d(t), c(t)) : max
x

K∑

k=1

(

N∑

i=1

pikdik(t))xk

subject to
K∑

k=1

(

N∑

i=1

aij dik(t))xk ≤ cj (t), ∀j ∈ [M]

K∑

k=1

xk ≤ 1

xk ≥ 0, k ∈ [K].

Let x(t) = (x1(t), . . . , xK(t)) be the optimal solution to LP(d(t), c(t)).
3. Offer Price: Offer price vector P(t) = pk with probability xk(t), and choose P(t) = p∞ with

probability 1−∑K
k=1 xk(t).

4. Update Estimate of Parameter: Observe demand D(t). Update the history Ht = Ht−1 ∪
{P(t),D(t)} and the posterior distribution of θ given Ht .

5.4.4 Performance Analysis

To evaluate the proposed Bayesian learning algorithms, we compare the retailer’s
revenue with a benchmark where the true demand distribution is known a priori. We
define the retailer’s regret over the selling horizon as

Regret(T , θ) = E[Rev∗(T) | θ] − E[Rev(T) | θ],

where Rev∗(T) is the revenue achieved by the optimal policy if the demand
parameter θ is known a priori, and Rev(T) is the revenue achieved by an algorithm
that may not know θ . The conditional expectation is taken on random demand
realizations given θ and possibly on some external randomization used by the
algorithm (e.g., random samples in Thompson sampling). In words, the regret is
a nonnegative quantity measuring the retailer’s revenue loss due to not knowing the
latent demand parameter.

We also define the Bayesian regret (also known as Bayes risk) by

BayesRegret(T) = E[Regret(T , θ)],

where the expectation is taken over the prior distribution of θ .

132 Q. (George) Chen et al.

We now prove regret bounds for TS-fixed and TS-update under the realistic
assumption of bounded demand. Specifically, in the following analysis, we further
assume that for each product i ∈ [N], the demand Di(t) is bounded by Di(t) ∈
[0, d̄i] under any price vector pk , ∀k ∈ [K]. However, the result can be generalized
when the demand is unbounded and follows a sub-Gaussian distribution. We also
define the constants

pmax := max
k∈[K]

N∑

i=1

pikd̄i , p
j
max := max

i∈[N]:aij �=0,k∈[K]
pik

aij
, ∀j ∈ [M],

where pmax is the maximum revenue that can possibly be achieved in one period,
and pjmax is the maximum revenue that can possibly be achieved by adding one unit
of resource j , ∀j ∈ [M].
Theorem 5 The Bayesian regret of TS-fixed is bounded by

BayesRegret(T) ≤
⎛

⎝18pmax + 37
N∑

i=1

M∑

j=1

p
j
maxaij d̄i

⎞

⎠
√
TK logK.

Theorem 6 The Bayesian regret of TS-update is bounded by

BayesRegret(T) ≤
⎛

⎝18pmax + 40
N∑

i=1

M∑

j=1

p
j
maxaij d̄i

⎞

⎠
√
TK logK + pmaxM.

The results above state that the Bayesian regrets of both TS-fixed and TS-
update are bounded by O(

√
TK logK), where K is the number of price vectors

that the retailer is allowed to use and T is the number of time periods. Moreover,
the regret bounds are prior-free as they do not depend on the prior distribution
of parameter θ ; the constants in the bounds can be computed explicitly without
knowing the demand distribution.

It has been shown that for a multi-armed bandit problem with reward in [0, 1]—a
special case of our model with no inventory constraints—no algorithm can achieve
a prior-free Bayesian regret smaller than �(

√
KT) (see Theorem 3.5, Bubeck and

Cesa-Bianchi 2012). In that sense, the above regret bounds are optimal with respect
to T and cannot be improved by any other algorithm by more than

√
logK .

Note that the regret bound of TS-update is slightly worse than the regret
bound of TS-fixed. Although intuition would suggest that updating inventory
information in TS-update will lead to better performance than TS-fixed, this
intuition is somewhat surprisingly not always true—we can find counterexamples
where updating inventory information actually deteriorates the performance for any
given horizon length T .

5 Learning and Pricing with Inventory Constraints 133

The detailed proofs of Theorems 5 and 6 are omitted. We briefly summarize
the intuition behind the proofs. For both Theorems 5 and 6, we first assume an
“ideal” scenario where the retailer is able to collect revenue even after inventory
runs out. We show that if prices are given according to the solutions of TS-fixed
or TS-update, the expected revenue achieved by the retailer is within O(

√
T)

compared to the optimal revenue Rev∗(T). However, this argument overestimates
the expected revenue. In order to compute the actual revenue given constrained
inventory, we should account for the amount of revenue that is associated with
lost sales. For Theorem 5 (TS-fixed), we prove that the amount associated with
lost sales is no more than O(

√
T). For Theorem 6 (TS-update), we show that the

amount associated with lost sales is no more than O(1).

5.5 Remarks and Further Reading

The content of Sect. 5.2 is based on Wang (2012) and Wang et al. (2014). For the
proofs of the main results, the readers are referred to Wang et al. (2014). In Wang
et al. (2014), there are also implementation suggestions for the proposed algorithms.
Note that in practical implementation, the algorithm can be made more efficient
by relaxing some requirements stated in the Algorithm 1. Extensive numerical
experiments and comparison with other algorithms can be found in Wang (2012)
and Wang et al. (2014). Later, Lei et al. (2014) improve the result of Theorem 1
to remove the logarithmic factor in the worst-case regret using a bisection type of
method. For details of the algorithm and the analysis, we refer the readers to Lei
et al. (2014).

Section 5.3 is adapted from Chen et al. (2019) and Chen et al. (2021), which
contain full proofs of the theorems presented and additional numerical studies. Chen
et al. (2021) further considers a well-separated condition of demand functions and
derive a much sharperO(log2 k) regret than theO(

√
k) regret in the general demand

case.
Section 5.4 is primarily based on Ferreira et al. (2018). The definition of Bayesian

regret used in this section is a standard metric for the performance of online
Bayesian algorithms, see Russo and Van Roy (2014). Ferreira et al. (2018) also
developed the Thompson sampling algorithms for the linear demand case and the
bandits with knapsack problem, see Badanidiyuru et al. (2013).

Other methods have been proposed in the literature to address learning and
pricing problems in the constrained inventory setting. One approach is to separate
the selling season (T periods) into a disjoint exploration phase (say, from period
1 to τ) and exploitation phase (from period τ + 1 to T) (Besbes and Zeevi, 2009,
2012). One drawback of this strategy is that it does not use purchasing data after
period τ to continuously refine demand estimates. Furthermore, when there is very
limited inventory, this approach is susceptible to running out of inventory during the
exploration phase before any demand learning can be exploited. Another approach
is to use multi-armed bandit methods such as the upper confidence bound (UCB)

134 Q. (George) Chen et al.

algorithm (Auer et al., 2002) to make pricing decisions in each period. The UCB
algorithm creates a confidence interval for unknown demand using purchase data
and then selects a price that maximizes revenue among all parameter values in the
confidence set. We refer the readers to Badanidiyuru et al. (2013) and Agrawal and
Devanur (2014) for UCB algorithms with constrained inventory.

Acknowledgments This chapter is partially based on material copyrighted by INFORMS and is
republished with permission.

References

Agrawal, S., & Devanur, N. R. (2014). Bandits with concave rewards and convex knapsacks. In
Proceedings of the Fifteenth ACM Conference on Economics and Computation (pp. 989–1006)

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2–3), 235–256.

Badanidiyuru, A., Kleinberg, R., & Slivkins, A. (2013). Bandits with knapsacks. In IEEE 54th
Annual Symposium on Foundations of Computer Science (FOCS) (pp. 207–216).

Besbes, O., & Zeevi, A. (2009). Dynamic pricing without knowing the demand function: Risk
bounds and near-optimal algorithms. Operations Research, 57(6), 1407–1420.

Besbes, O., & Zeevi, A. (2012). Blind network revenue management. Operations Research, 60(6),
1537–1550.

Broder, J., & Rusmevichientong, P. (2012). Dynamic pricing under a general parametric choice
model. Operations Research, 60(4), 965–980.

Bubeck, S., & Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends in Machine Learning, 5(1), 1–122.

Chen, Q., Jasin, S., & Duenyas, I. (2019). Nonparametric self-adjusting control for joint learning
and optimization of multiproduct pricing with finite resource capacity. Mathematics of Opera-
tions Research, 44(2), 601–631.

Chen, Q., Jasin, S., & Duenyas, I. (2021). Joint learning and optimization of multi-product pricing
with finite resource capacity and unknown demand parameters. Operations Research, 69(2),
560–573.

Cooper, W. L. (2002). Asymptotic behavior of an allocation policy for revenue management.
Operations Research, 50(4), 720–727.

Ferreira, K. J., Simchi-Levi, D., & Wang, H. (2018). Online network revenue management using
Thompson sampling. Operations Research, 66(6), 1586–1602.

Gallego, G., & van Ryzin, G. (1994). Optimal dynamic pricing of inventories with stochastic
demand over finite horizons. Management Science, 40(8), 999–1029.

Gallego, G., & Van Ryzin, G. (1997). A multiproduct dynamic pricing problem and its applications
to network yield management. Operations Research, 45(1), 24–41.

Gyorfi, L., Kohler, M., Krzyzak, A., & Walk, H. (2002). A distribution-free theory of nonparamet-
ric regression. Springer.

Jasin, S. (2014). Reoptimization and self-adjusting price control for network revenue management.
Operations Research, 62(5), 1168–1178.

Jasin, S., & Kumar, S. (2012). A re-solving heuristic with bounded revenue loss for network
revenue management with customer choice. Mathematics of Operations Research, 37(2), 313–
345.

Lei, Y. M., Jasin, S., & Sinha, A. (2014). Near-optimal bisection search for nonparametric dynamic
pricing with inventory constraint, in Working Paper.

5 Learning and Pricing with Inventory Constraints 135

Russo, D., & Van Roy, B. (2014). Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4), 1221–1243.

Schumaker, L. (2007). Spline functions: Basic theory (3rd ed.). Cambridge University Press.
Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view

of the evidence of two samples. Biometrika, 25(3/4), 285–294.
Wang, Z. (2012). Dynamic learning mechanism in revenue management problems. PhD thesis,

Stanford University, Palo Alto.
Wang, Z., Deng, S., & Ye, Y. (2014). Close the gaps: A learning-while-doing algorithm for single-

product revenue management problems. Operations Research, 62(2), 318–331.

Chapter 6
Dynamic Pricing and Demand Learning
in Nonstationary Environments

Arnoud V. den Boer and Nuri Bora Keskin

6.1 Introduction

The demand for a seller’s product can be nonstationary in many business settings.
This could be due to exogenous factors such as macroeconomic issues and fashion
trends. It could also be based on an endogenous mechanism that depends on pricing
decisions—examples of this include reference-price effects and price competition.

As noted in preceding chapters, learning the relationship between price and
demand while simultaneously trying to earn revenues is a key challenge, even
in stationary demand environments. In nonstationary demand environments, this
challenge would also entail judiciously filtering obsolete historical information.
There are several ways to accomplish this task, depending on the nature of changes.
For exogenous changes, statistical filtering methods such as change-point detection
and smoothing can be useful. For endogenous changes, the seller would need to
take additional care in controlling the price process. The goal of this chapter is to
provide an overview of the state-of-the-art models and methods for dynamic pricing
and demand learning in different kinds of changing demand environments, as well
as to provide some research directions for future work.

A. V. den Boer
Korteweg-de Vries Institute for Mathematics and Amsterdam Business School, University of
Amsterdam, Amsterdam, Netherlands
e-mail: boer@uva.nl

N. B. Keskin (�)
Fuqua School of Business, Duke University, Durham, NC, USA
e-mail: bora.keskin@duke.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_6

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_6&domain=pdf

 885 51863 a 885 51863 a

mailto:boer@uva.nl

 885
55738 a 885 55738 a

mailto:bora.keskin@duke.edu

 -2016 61494
a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_6

138 A. V. den Boer and N. B. Keskin

6.2 Problem Formulation

The distinguishing feature of the problem formulations we consider in this chapter
is the non-stationarity of the demand environment. We consider a seller offering a
product for sale over a discrete time horizon. In each period t ∈ N, the seller first
chooses a selling price pt ∈ [pmin, pmax] for the product, where 0 ≤ pmin < pmax.
After that, the seller observes the demand Dt realized in response to price pt and
collects revenue ptDt . The demand realizations are given by

Dt = dt (pt)+ εt for all t ∈ N,

where

d := {dt (·) : t ∈ N}

is a sequence of demand functions such that for all t ∈ N, dt : [pmin, pmax] →
[0,∞) is a continuous and nonincreasing mapping, and {εt : t ∈ N} is a sequence
of unobservable demand shocks. Suppose that {εt : t ∈ N} consists of independent
and identically distributed random variables with zero mean and variance equal to
σ 2 for some σ > 0, and that there exists x0 > 0 satisfying E[exp(xεt)] < ∞ for
all |x| ≤ x0 and all t . In this construction, dt (p) represents the expected demand
in period t as a function of price p. Accordingly, the seller’s expected revenue in
period t , as a function of price p, is

rt (p) := pdt (p) for p ∈ [pmin, pmax].

The sequence of demand functions, d = {dt (·) : t ∈ N}, is unknown to the seller.
Therefore, to earn higher revenues, the seller needs to learn the demand function
sequence. As discussed below, different studies consider different nonstationary
families of demand function sequences, resulting in several distinct ways to balance
learning and earning. To choose the selling price pt in period t , the seller uses
the history (p1,D1, . . . , pt−1,Dt−1) of past prices and demand realizations. To be
precise, we let π(· | ht−1) be the probability distribution of pt conditional on the
history ht−1 = (p1,D1, . . . , pt−1,Dt−1) ∈ H = ⋃

t∈N{[pmin, pmax] × D}t−1,
where D ⊂ R is the set of all possible demand realizations. The seller’s price
decisions over the time horizon are characterized by the collection {π(· | h) :
h ∈ H }. We refer to this collection as an admissible policy, and let � denote
the space of all admissible policies. The vector of prices and demand realizations,
(pt ,Dt : t ∈ N), has a distribution that depends on both the policy π and the
demand function sequence d . We write Pπd {·} to denote the probability measure
governing this distribution and Eπ

d
[·] to denote the associated expectation operator.

The seller aims to minimize the expected revenue loss due to not knowing the
underlying demand function sequence d. In accordance with this, we measure the
performance of a policy by its regret after T periods, which is defined as

6 Dynamic Pricing and Demand Learning in Nonstationary Environments 139

Rπd (T) :=
T∑

t=1

max
p∈[pmin,pmax]

{rt (p)} − Eπd
[
T∑

t=1

ptDt

]

for T ∈ N.

Note that lower values of regret are more desirable to the seller. Due to the high-
dimensionality of the dynamic pricing problem in changing environments, it is
prohibitively difficult to obtain an exactly optimal policy except in a few special
cases. Consequently, we are primarily interested in finding asymptotically optimal
policies that minimize the growth rate of regret in T under different assumptions on
the sequence of demand functions.

In what follows, we examine various approaches used for modeling nonsta-
tionary demand environments. At a high level, the non-stationarity of a demand
environment can be of two forms: the environment can change either exogenously
or endogenously, depending on whether the changes are independent of the seller’s
pricing decisions or not. Exogenously changing demand environments include
change-point detection models, finite-state-space Markov chains, and autoregres-
sive models. Recent studies also consider more general exogenously changing
environments that encapsulate the aforementioned settings. On the other hand,
endogenously changing demand environments are concerned with dynamic pricing
in the presence of reference effects, competition, multi-agent learning, and forward-
looking customers. We discuss all of these cases in the following two sections.

6.3 Exogenously Changing Demand Environments

6.3.1 Change-Point Detection Models

Change-point detection research focuses on identifying changes in a time series.
The early statistics literature on this subject is primarily motivated by military and
quality control applications; see the surveys by Lai (1995) and Shiryaev (2010).
In the context of dynamic pricing, the change-point detection framework can be
generalized to identify temporal shifts in a demand function. Suppose that the
demand function sequence d = {dt (·) : t ∈ N} introduced in the preceding section
is a constant sequence except at one period. That is, there exists a period τ0 ∈ N and
two distinct demand functions f0(·) and f1(·) such that for all t ∈ N,

dt (·) ≡
{
f0(·) if t < τ0,

f1(·) if t ≥ τ0.

Besbes and Zeevi (2011) consider a version of this problem where f0(·) and f1(·)
are known to the seller but τ0 is unknown. They show that it is possible to achieve
a T -period regret in the order of log T , which is the smallest possible growth rate
of regret in their setting. To be precise, Besbes and Zeevi (2011) propose a passive

140 A. V. den Boer and N. B. Keskin

detection policy π that repeatedly checks whether there is a statistically significant
shift in the expected demand under a fixed price. They prove that there is a finite
and positive constant C such that Rπd (T) ≤ C log T for all T = 2, 3, . . . (Besbes
& Zeevi, 2011, section 4.2). They also provide a lower bound on regret of matching
order, indicating that passive detection is asymptotically optimal in this setting
(Besbes & Zeevi, 2011, section 4.3).

Keskin and Zeevi (2017) study a generalized version of the above problem
where multiple change points are allowed and the seller knows neither the possible
demand functions, nor when the changes happen, nor the number of changes. As
a result, the seller needs to simultaneously learn the demand functions and detect
potential changes. Keskin and Zeevi (2017) design a joint learning-and-detection
policy and show that this policy achieves a T -period regret in the order of

√
T , up

to logarithmic terms (Keskin & Zeevi, 2017, section 4.2). Based on earlier lower
bounds on regret (e.g., Keskin & Zeevi, 2014, section 3.1), this establishes that the
joint learning-and-detection policy of Keskin and Zeevi (2017) is asymptotically
optimal.

In a recent study, den Boer and Keskin (2020) generalize this research stream to
analyze discontinuous demand functions, which arise in network pricing problems
as well as online marketplaces featuring price-based rankings (den Boer & Keskin,
2020, section 1.2). They consider demand functions with multiple discontinuities
whose locations and magnitudes are unknown and may change over time. den Boer
and Keskin (2020) develop a policy that efficiently estimates potential disconti-
nuities in the demand function, while jointly learning the demand function and
detecting potential changes. They prove that the T -period regret of this policy is of
order

√
T , up to logarithmic terms (den Boer & Keskin, 2020, section 4). Thus, the

generalized discontinuity-estimation policy of den Boer and Keskin (2020) achieves
exhibits asymptotically optimal regret performance, in light of the aforementioned
lower bound of Keskin and Zeevi (2014, section 3.1).

Keskin et al. (2022) further extend this literature to the case of joint pricing
and inventory decisions. The introduction of inventory management to this problem
formulation makes the seller’s regret more sensitive to the assumptions on temporal
demand shocks, {εt : t ∈ N}. Keskin et al. (2022) consider both nonparametric and
parametric demand shock distributions and develop a distinct regret bound for each
case (Keskin et al., 2022, section 4.1).

6.3.2 Finite-State-Space Markov Chains

A common way to model a nonstationary environment is to use a Markov chain.
Consider two distinct demand functions f0(·) and f1(·), and a demand function
sequence d = {dt (·) : t ∈ N} that evolves as a discrete-time Markov chain on the
state space {f0(·), f1(·)}. To be more precise, let

Mt := I{dt (·) ≡ f1(·)} for all t ∈ N,

6 Dynamic Pricing and Demand Learning in Nonstationary Environments 141

where I{·} denotes the indicator function (i.e., given condition A, I{A} = 1 if A
holds and 0 otherwise). Suppose that under any admissible policy π ,

P
π
d {Mt+1 = j | Mt = i} = ρi,j for all t ∈ N,

where ρi,j ∈ (0, 1) for i, j ∈ {0, 1} such that
∑
j∈{0,1} ρi,j = 1 for i ∈ {0, 1}.

Rustichini and Wolinsky (1995) consider a seller who receives demand in the
form of a step function; i.e., for all t ∈ N and p ∈ [pmin, pmax], dt (p) = I{wt ≥ p}
for some wt > 0. They assume that the sequence {wt : t ∈ N} follows a two-
state discrete-time Markov chain and examine the structural properties of the seller’s
optimal Bayesian policy. Keller and Rady (1999) consider linear demand functions
in a continuous-time version of this Markovian setting; i.e., for all t ∈ N and p ∈
[pmin, pmax], dt (p) = αt − βtp for some αt , βt > 0, and {(αt , βt) : t ∈ N} evolves
as a two-state continuous-time Markov chain. Using stochastic control theory, Keller
and Rady (1999) characterize the optimal Bayesian policy and study how this policy
uses experimentation in different scenarios.

As the state space of the underlying Markov chain grows, it becomes pro-
hibitively difficult to compute an optimal policy. Because of this, Aviv and Pazgal
(2005) focus on developing approximately optimal pricing policies when the
Markovian demand environment has a larger state space. In particular, they derive
an upper bound on the seller’s optimal cumulative revenue, and use this upper bound
to construct an approximately optimal policy based on dynamic programming. Chen
and Farias (2013) consider a continuous-time formulation in which the market size
evolves as a Gaussian process while the price sensitivity of demand does not change
over time. In this setting, they show that a policy that frequently reoptimizes prices
based on most recent information can perform well. In a recent study, Keskin and Li
(2020) analyze dynamic pricing in a Markovian demand environment with unknown
transition probabilities. They prove that bounding the seller’s belief process can
yield asymptotically optimal regret performance. Specifically, Keskin and Li (2020)
establish that the T -period regret of their bounded learning policy is of order

√
nT ,

where n is an upper bound the expected number of changes. They also show that
the T -period regret of any admissible policy must be at least in the order of

√
nT ,

which indicates that the bounded learning policy is asymptotically optimal (Keskin
& Li, 2020, section 4).

One possible way to extend the above literature is to investigate the impact of
Markov-modulated unit costs on the regret results for dynamic pricing and inventory
management with demand learning (e.g., as in den Boer et al., 2018).

6.3.3 Autoregressive Models

Non-stationarity can also be modeled via a parametric demand function whose
parameters follow an autoregressive process. Suppose that for all t ∈ N, the demand
function in period t satisfies

142 A. V. den Boer and N. B. Keskin

dt (p) = f (p, θt) for p ∈ [pmin, pmax],

where f (·) is a known parametric function, and

θ := {θt : t ∈ N}

is a sequence of unknown demand parameter vectors in Rd for some d ∈ N.
An important special case of this setting is the linear demand model with time-

varying parameters: for all t ∈ N and p ∈ [pmin, pmax], dt (p) = f (p, θt) =
αt − βtp for some θt = (αt , βt) with αt , βt > 0. Balvers and Cosimano (1990)
consider a variant of this case in which the intercept sequence {αt : t ∈ N} is a
first-order autoregressive process (i.e., αt = ραt−1 + ξt for t = 2, 3, . . . , where
ρ ∈ (0, 1] and {ξt : t ∈ N} is a sequence of independent noise terms) and the
slope sequence {βt : t ∈ N} is a Gaussian random walk. In this setting, Balvers and
Cosimano (1990) derive an implicit expression for optimal pricing decisions and
use this expression to generate insights on the optimal policy.

Beck and Wieland (2002) consider another variant in which demand realizations
follow a first-order autoregressive process; i.e., dt = αt − βtpt + ρdt−1 + εt for
t = 2, 3, . . . , where the intercept sequence {αt : t ∈ N} is constant over time, the
slope sequence {βt : t ∈ N} is a Gaussian random walk, and ρ ∈ (0, 1]. Beck and
Wieland (2002) characterize the optimal policy in their setting and compare it with
different heuristic policies.

An interesting direction for future research is developing asymptotically optimal
policies for dynamic pricing and demand learning when the unknown demand
parameters evolve according to a general autoregressive process.

6.3.4 General Changing Environments

Recent studies on dynamic pricing consider more general frameworks for nonsta-
tionary demand environments. For example, den Boer (2015b) analyzes a demand
environment in which the market size is unknown and nonstationary whereas the
price sensitivity of demand is known. He develops policies that hedge against
potential demand changes, deriving upper bounds on the long-run average regret
of these policies.

Keskin and Zeevi (2017) study a general changing environment where both the
market size and the price sensitivity are unknown and nonstationary. In the setting
of Keskin and Zeevi (2017), the underlying changes are allowed to have any pattern
that satisfies a cumulative variation budget. Without knowing the variation budget,
the seller needs to learn the demand function while filtering obsolete information.
Keskin and Zeevi (2017) show that in this environment, the T -period regret of the
seller is at least in the order of T 2/3 (Keskin & Zeevi, 2017, section 3.1). They
also design policies that use moving window and decaying weights to discount

6 Dynamic Pricing and Demand Learning in Nonstationary Environments 143

older information to achieve a T -period regret of order T 2/3, which corresponds
to asymptotically optimal regret performance (Keskin & Zeevi, 2017, section 3.3).

Another issue investigated by Keskin and Zeevi (2017) is how regret depends
on whether the underlying changes are gradual or abrupt. It turns out that this
distinction can significantly affect asymptotically optimal performance (Keskin
& Zeevi, 2017, section 4). Chen et al. (2019) further investigate this issue by
developing a unified approach that combines change-point detection with upper
confidence bound (UCB) policies seen in the bandit literature (Chen et al., 2019,
section 4). They also prove that their approach exhibits asymptotically optimal
regret performance (Chen et al., 2019, section 5).

The aforementioned developments in dynamic pricing in general nonstationary
environments also influence the recent work on other operations problems. Chen
(2021) applies this approach to dynamic inventory control, deriving asymptotically
optimal regret bounds. Keskin and Li (2020) formulate and study a nonstationary
newsvendor problem, extending the earlier work on data-driven learning in station-
ary newsvendor problems (see, e.g., Besbes & Muharremoglu, 2013; Levi et al.,
2015).

While usually viewed as a challenge, nonstationary environments occasionally
improve a policy’s performance. For instance, due to a lack of forced exploration,
passive learning policies typically suffer from incomplete learning in stationary
environments (Lai & Robbins, 1982; Harrison et al., 2012; den Boer & Zwart,
2014; Keskin & Zeevi, 2018). However, Keskin and Zeevi (2018) show that passive
learning policies do not suffer from this issue in certain nonstationary environments
that evolve in an unbounded manner (Keskin & Zeevi, 2018, sections 4.2.3 and
4.2.4). They also show that incomplete learning persists in boundedly changing
environments (Keskin & Zeevi, 2018, section 4.2.1).

6.3.5 Contextual Pricing

Another cause of exogenous changes in demand environments is contextual infor-
mation that varies over time. Examples include detailed information on the cus-
tomers and products of an online retailer. Such contextual information typically
leads to high-dimensional pricing problems based on stochastic features (see, e.g.,
Nambiar et al., 2019; Ban & Keskin, 2021; Miao et al., 2022; Keskin et al.,
2020). We refer readers to the next chapter of this book for a discussion on high-
dimensional pricing problems.

144 A. V. den Boer and N. B. Keskin

6.4 Endogenously Changing Demand Environments

6.4.1 Reference-Price Effects

The demand for a product can sometimes be subject to customers’ behavioral biases;
e.g., the customers may form a price expectation in the form of a reference price.
In this case, the customers view price increases/decreases relative to the reference
price as losses/gains, which subsequently influences demand. Since reference-
price formation depends on past prices, dynamic pricing with reference effects
leads to endogenous changes in a demand environment. Optimal control of these
endogenous changes is extensively studied in the dynamic pricing literature (see,
e.g., Fibich et al., 2003; Popescu & Wu, 2007; Chen et al., 2017, and the references
therein). In a recent study, den Boer and Keskin (2022) extend this literature to the
case of demand learning. They show that if the customers are loss-averse, then a
slow-moving pricing policy is asymptotically optimal (den Boer & Keskin, 2022,
section 3). On the other hand, if the customers are gain-seeking, then a cyclical
pricing policy is asymptotically optimal, and the best achievable performance and
the optimal cycle length are parameter-dependent (den Boer & Keskin, 2022, section
5). An interesting extension to this work would be the analysis of more general
reference-price formation processes that capture different degrees of customer
memory.

6.4.2 Competition and Collusion

Competitors changing their prices cause non-stationarity in a demand environment.
There is a vast literature on pricing with incomplete information in a competitive
market, which roughly can be classified into theoretical studies that analyze the
convergence behavior of pricing algorithms, and simulation studies that assess
the numerical performance of policies. An in-depth discussion of this literature is
beyond the scope of this chapter; for a review, we refer readers to den Boer (2015a,
section 6.2).

A key part in analyzing the performance of a dynamic pricing-and-learning
policy in the presence of competition is the assumptions on competitors’ actions.
It is often assumed that all players in a market use the same policy (see, e.g.,
Yang et al., 2020). A drawback of this assumption that it does not address the
case where competitors might use different pricing policies. One can also take an
adversarial approach, e.g., by discretizing prices and using an adversarial-bandit
algorithm as in Auer et al. (2002). A potential drawback of this approach is that this
may generate prices that are too conservative because, in practice, sellers usually
maximize their own profits rather than trying to minimize competitors’ profits. The
third approach is to simply ignore the presence of competitors in a market, acting
as a “monopolist” who is oblivious to competition. Cooper et al. (2015) show that

6 Dynamic Pricing and Demand Learning in Nonstationary Environments 145

if two sellers in a duopoly use an iterated least squares policy that neglects the
presence of a competitor, then the limit prices are random and potentially higher or
lower than the Nash-equilibrium prices. On the other hand, Meylahn and den Boer
(2022) show that the prices generated by a Kiefer-Wolfowitz recursion that does
not take competition into account still converge to a Nash equilibrium if used by
both players. They also prove that if the competitor’s actions are determined by a
reaction function, the aforementioned Kiefer-Wolfowitz price process converges to
a best response to the competitor’s price. These results indicate that under certain
conditions, ignoring the presence of competition is not necessarily harmful. Apart
from the above, the fourth approach is to use one of the methods designed for
exogenously changing environments discussed in the preceding section.

A question of recent attention is whether self-learning algorithms are capable of
learning to collude instead of compete with each other. Legal scholars are worried
that algorithmic pricing could result in supra-competitive prices that are harmful
for consumer welfare and that existing competition law is ill-suited to deal with
algorithmic collusion (Ezrachi & Stucke, 2016, 2020; Gal, 2018, 2019; Harrington,
2018; Mehra, 2016; Smejkal, 2017), although some economists are skeptical about
the need to change the law (Kühn & Tadelis, 2017; Schrepel, 2017; Schwalbe,
2018). Simulations by Cooper et al. (2015), building on the work by Kirman (1975),
indicate that a greedy iterated least squares policy used by both players in a duopoly
generates limit prices and profits that, with positive probability, are component-wise
larger than competitive Nash-equilibrium prices and profits. Similar observations
are made on simulation studies of Q-learning (Calvano et al., 2020; Klein, 2018).
Figures 6 and 7 of Cooper et al. (2015) show that the converse can also happen:
limit prices and profits that, with positive probability, are component-wise smaller
than Nash-equilibrium prices and profits. Instead of “accidentally” arising supra-
competitive limit prices, Meylahn and den Boer (2022) show that algorithms may
also be explicitly designed to learn to collude: they construct such an algorithm for a
duopoly and prove convergence results that guarantee supra-competitive prices and
profits when the algorithm is used by both players in a duopoly and the cartel price
limit is mutually beneficial.

One way to expand this literature is to examine joint pricing and capacity
expansion in the presence of competition and demand learning. In a recent study,
Sunar et al. (2021b) study competitive capacity expansion with dynamic learning,
generalizing the earlier work by Harrison and Sunar (2015) and Qi et al. (2017).
Analyzing the extension to capture pricing decisions and developing asymptotically
optimal policies in this setting is a possible direction for future research.

6.4.3 Platforms and Multi-Agent Learning

The increasing prevalence of online marketplace platforms in practice makes them
a focus of attention in the pricing literature (see, e.g., Weyl, 2010; Banerjee et al.,
2015; Bai et al., 2018; Taylor, 2018; Bimpikis et al., 2019; Bernstein et al., 2021;

146 A. V. den Boer and N. B. Keskin

Huang et al., 2020). Data-driven learning in such platforms creates an endogenously
changing demand environment. The reason is that many online marketplaces
have a large number of participants, and simultaneous decision making of these
participants leads to a nonstationary market environment where past decisions of
participants can influence future payoffs. This type of intertemporal dependencies
are usually studied in the literature on multi-agent learning (see, e.g., Zhou et al.,
2018; Mertikopoulos & Zhou, 2019).

In a recent study on learning in platforms, Feng et al. (2020) consider a two-sided
mobile-promotion platform where online advertisers and publishers participate.
The platform dynamically receives online ad campaigns from the advertisers and
procures impressions from the publishers to fulfill campaigns through real-time
bidding. The probability of winning an impression as a function of bid price is
unknown to the platform and must be learned from data. In this setting, Feng et al.
(2020) design a cyclical policy that dynamically allocates bids while learning the
win probabilities, and prove that this policy is asymptotically optimal.

Birge et al. (2021) analyze an online marketplace setting where a platform and
its sellers have limited information on how demand depends on the sellers’ prices.
They show that sharing no information with the sellers does not necessarily result
in poor revenue performance for the platform. Birge et al. (2021) also prove that
the platform can avoid large losses by sharing all of its demand information with
the sellers. Based on these results, they design a policy that strategically reveals
the platform’s demand information to the sellers to achieve asymptotically optimal
performance in general.

A possible direction for future research is expanding this literature to consider
provider and customer networks in online marketplaces. With regard to recent
related work, see, e.g., Sunar et al. (2019) for optimal product development and
launch for a customer network, and Kao et al. (2020) for optimal design and pricing
of subscription services for a finite population of customers.

6.4.4 Forward-Looking and Patient Customers

Customer patience is another source of endogenous changes in a demand envi-
ronment. A customer’s willingness to wait for multiple sales opportunities from
a seller results in an intertemporal dependency between price and demand. When
customers look forward and evaluate future sales opportunities, the seller’s price
affects the demand function for subsequent sales, leading to a nonstationary demand
environment.

There is a rich literature on pricing with patient customers (see, e.g., Besbes &
Lobel, 2015; Liu & Cooper, 2015; Lobel, 2020) with a recent stream of research
extending this literature to dynamic learning (see, e.g., Zhang & Jasin, 2022; Birge
et al., 2019). Zhang and Jasin (2022) analyze cyclical pricing-and-learning policies
in the presence of patient customers. They show that a cyclical price skimming
policy can exhibit asymptotically optimal regret performance. Birge et al. (2019)

6 Dynamic Pricing and Demand Learning in Nonstationary Environments 147

study the design of markdown pricing policies for patient customers in the presence
of limited demand information. They show that customer memory plays a significant
role in determining the best achievable revenue performance in this context.

Recent work also studies the case of patient customers who act rationally (see
Birge et al., 2021; Golrezaei et al., 2019, 2021). Birge et al. (2021) study the
dynamic pricing problem of a market maker facing an informed and strategic
market participant. They design an inertial policy that uses small price increments
over time, proving that this policy can help the market maker guard against
potential manipulations of the strategic market participant. Golrezaei et al. (2019,
2021) analyze dynamic learning in repeated contextual second-price auctions. They
construct learning policies that are robust to strategic bidding behavior, and show
that their policies exhibit near-optimal revenue performance. An interesting future
direction for this area is the analysis of how forward-looking customers might
impose externalities on each other in dynamic pricing-and-learning settings, and
especially, how this interaction affects social welfare (e.g., as in Sunar et al., 2021a).

References

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (2002). The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1), 48–77.

Aviv, Y., & Pazgal, A. (2005) A partially observed Markov decision process for dynamic pricing.
Management Science, 51(9), 1400–1416.

Bai, J., So, K. C., Tang, C. S., Chen, X., & Wang, H. (2018). Coordinating supply and demand on
on-demand service platform with impatient customers. Manufacturing and Service Operations
Management, 21(3), 556–570.

Balvers, R. J., & Cosimano, T. F. (1990). Actively learning about demand and the dynamics of
price adjustment. The Economic Journal, 100(402), 882–898.

Ban, G. Y., & Keskin, N. B. (2021). Personalized dynamic pricing with machine learning: High
dimensional features and heterogeneous elasticity. Management Science, 67(9), 5549–5568.

Banerjee, S., Johari, R., & Riquelme, C. (2015). Pricing in ride-sharing platforms: A queueing-
theoretic approach. In M. Feldman, T. Roughgarden, & M. Schwarz (Eds.), Proceedings of the
Sixteenth ACM Conference on Economics and Computation (p. 639). ACM.

Beck, G. W., & Wieland, V. (2002). Learning and control in a changing economic environment.
Journal of Economic Dynamics and Control, 26(9–10), 1359–1377.

Bernstein, F., DeCroix, G. A., & Keskin, N. B. (2021). Competition between two-sided platforms
under demand and supply congestion effects. Manufacturing & Service Operations Manage-
ment, 23(5), 1043–1061.

Besbes, O., & Lobel, I. (2015). Intertemporal price discrimination: Structure and computation of
optimal policies. Management Science, 61(1), 92–110.

Besbes, O., & Muharremoglu, A. (2013). On implications of demand censoring in the newsvendor
problem. Management Science, 59(6), 1407–1424.

Besbes, O., & Zeevi, A. (2011). On the minimax complexity of pricing in a changing environment.
Operations Research, 59(1), 66–79.

Bimpikis, K., Candogan, O., & Saban, D. (2019). Spatial pricing in ride-sharing networks.
Operations Research, 67(3), 744–769.

Birge, J. R., Chen, H., & Keskin, N. B. (2019). Markdown policies for demand learning with
forward-looking customers. https://ssrn.com/abstract=3299819

 9991 57109 a 9991 57109 a

https://ssrn.com/abstract=3299819

148 A. V. den Boer and N. B. Keskin

Birge, J. R., Chen, H., Keskin, N. B., & Ward, A. (2021). To interfere or not to interfere:
Information revelation and price-setting incentives in a multiagent learning environment.
https://ssrn.com/abstract=3864227

Birge, J. R., Feng, Y., Keskin, N. B., & Schultz, A. (2021). Dynamic learning and market making
in spread betting markets with informed bettors. Operations Research, 69(6), 1746–1766.

Calvano, E., Calzolari, G., Denicolò, V., & Pastorello, S. (2020). Artificial intelligence, algorithmic
pricing, and collusion. American Economic Review, 110(10), 3267–3297.

Chen, B. (2021). Data-driven inventory control with shifting demand. Production and Operations
Management, 30(5), 1365–1385.

Chen, X., Hu, P., &Hu, Z. (2017). Efficient algorithms for the dynamic pricing problem with
reference price effect. Management Science, 63(12), 4389–4408.

Chen, Y., & Farias, V. F. (2013). Simple policies for dynamic pricing with imperfect forecasts.
Operations Research, 61(3), 612–624.

Chen, Y., Wen, Z., & Xie, Y. (2019). Dynamic pricing in an evolving and unknown marketplace.
https://ssrn.com/abstract=3382957

Cooper, W. L., Homem-de Mello, T., & Kleywegt, A. J. (2015). Learning and pricing with models
that do not explicitly incorporate competition. Operations Research, 63(1), 86–103.

den Boer, A., Perry, O., & Zwart, B. (2018). Dynamic pricing policies for an inventory model with
random windows of opportunities. Naval Research Logistics (NRL), 65(8), 660–675.

den Boer, A. V. (2015a). Dynamic pricing and learning: Historical origins, current research, and
new directions. Surveys in Operations Research and Management Science, 20(1), 1–18.

den Boer, A. V. (2015b). Tracking the market: Dynamic pricing and learning in a changing
environment. European Journal of Operational Research, 247(3), 914–927.

den Boer, A. V., & Keskin, N. B. (2020). Discontinuous demand functions: Estimation and pricing.
Management Science, 66(10), 4516–4534.

den Boer, A. V., & Keskin, N. B. (2022). Dynamic pricing with demand learning and reference
effects. Management Science, (in press).

den Boer, A. V., & Zwart, B. (2014). Simultaneously learning and optimizing using controlled
variance pricing. Management Science, 60(3), 770–783.

Ezrachi, A., & Stucke, M. (2016). Virtual competition: The promise and perils of the algorithm-
driven economy. Cambridge, Massachusetts: Harvard University Press.

Ezrachi, A., & Stucke, M. E. (2020). Sustainable and unchallenged algorithmic tacit collusion.
Northwestern Journal of Technology and Intellectual Property, 17(2), 217–260.

Feng, Z., Dawande, M., Janakiraman, G., & Qi, A. (2020). An asymptotically tight learning
algorithm for mobile-promotion platforms. https://ssrn.com/abstract=3523491

Fibich, G., Gavious, A., & Lowengart, O. (2003). Explicit solutions of optimization models and
differential games with nonsmooth (asymmetric) reference-price effects. Operations Research,
51(5), 721–734.

Gal, M. S. (2018). Illegal pricing algorithms. Communications of the ACM, 62(1), 18–20.
Gal, M. S. (2019). Algorithms as illegal agreements. Berkeley Technology Law Journal, 34(1), 67.
Golrezaei, N., Jaillet, P., & Liang, J. C. N. (2019). Incentive-aware contextual pricing with non-

parametric market noise. https://arxiv.org/abs/1911.03508
Golrezaei, N., Javanmard, A., & Mirrokni, V. (2021). Dynamic incentive-aware learning: Robust

pricing in contextual auctions. Operations Research, 69(1), 297–314.
Harrington Jr, J. (2018). Developing competition law for collusion by autonomous price-setting

agents. Journal of Competition Law and Economics, 14(3), 331–363.
Harrison, J. M., Keskin, N. B., & Zeevi, A. (2012). Bayesian dynamic pricing policies: Learning

and earning under a binary prior distribution. Management Science, 58(3), 570–586.
Harrison, J. M., & Sunar, N. (2015). Investment timing with incomplete information and multiple

means of learning. Operations Research, 63(2), 442–457.
Huang, H., Sunar, N., & Swaminathan, J. M. (2020). Do noisy customer reviews discourage

platform sellers? Empirical analysis of an online solar marketplace. https://ssrn.com/abstract=
3645605

 -687 1907 a -687 1907 a

https://ssrn.com/abstract=3864227

-687 15191 a -687 15191 a

https://ssrn.com/abstract=3382957

15700 37330 a 15700 37330 a

https://ssrn.com/abstract=3523491

 8867 45079 a 8867 45079 a

https://arxiv.org/abs/1911.03508

25130 56148 a 25130 56148 a

https://ssrn.com/abstract=3645605
https://ssrn.com/abstract=3645605

6 Dynamic Pricing and Demand Learning in Nonstationary Environments 149

Kao, Y. M., Keskin, N. B., & Shang, K. (2020). Bayesian dynamic pricing and subscription period
selection with unknown customer utility. https://ssrn.com/abstract=3722376

Keller, G., & Rady, S. (1999). Optimal experimentation in a changing environment. The Review of
Economic Studies, 66(3), 475–507.

Keskin, N. B., & Li, M. (2020). Selling quality-differentiated products in a Markovian market with
unknown transition probabilities. https://ssrn.com/abstract=3526568

Keskin, N. B., Li, Y., & Song, J. S. J. (2022). Data-driven dynamic pricing and ordering with
perishable inventory in a changing environment. Management Science, 68(3), 1938–1958.

Keskin, N. B., Li, Y., & Sunar, N. (2020). Data-driven clustering and feature-based retail electricity
pricing with smart meters. https://ssrn.com/abstract=3686518

Keskin, N. B., Min, X., & Song, J. S. J. (2021). The nonstationary newsvendor: Data-driven
nonparametric learning. https://ssrn.com/abstract=3866171

Keskin, N. B., & Zeevi, A. (2014). Dynamic pricing with an unknown demand model: Asymptoti-
cally optimal semi-myopic policies. Operations Research, 62(5), 1142–1167.

Keskin, N. B., & Zeevi, A. (2017). Chasing demand: Learning and earning in a changing
environment. Mathematics of Operations Research, 42(2), 277–307.

Keskin, N. B., & Zeevi, A. (2018). On incomplete learning and certainty-equivalence control.
Operations Research, 66(4), 1136–1167.

Kirman, A. P. (1975). Learning by firms about demand conditions. In R. H. Day, & T. Groves
(Eds.), Adaptive Economic Models (pp. 137–156). Elsevier.

Klein, T. (2018). Assessing autonomous algorithmic collusion: Q-learning under short-run price
commitments. Amsterdam Law School Research Paper No. 2018-15, Amsterdam Center for
Law & Economics Working Paper No. 2018-05.

Kühn, K. U., & Tadelis, S. (2017). Algorithmic Collusion. https://www.ebos.com.cy/cresse2013/
uploadfiles/2017_sps5_pr2.pdf

Lai, T., & Robbins, H. (1982). Iterated least squares in multiperiod control. Advances in Applied
Mathematics, 3(1), 50–73.

Lai, T. L. (1995). Sequential changepoint detection in quality control and dynamical systems.
Journal of the Royal Statistical Society: Series B (Methodological), 57(4), 613–644.

Levi, R., Perakis, G., & Uichanco, J. (2015). The data-driven newsvendor problem: New bounds
and insights. Operations Research, 63(6), 1294–1306.

Liu, Y., & Cooper, W. L. (2015). Optimal dynamic pricing with patient customers. Operations
Research, 63(6), 1307–1319.

Lobel, I. (2020). Dynamic pricing with heterogeneous patience levels. Operations Research, 68(4),
1038–1046.

Mehra, S. (2016). Antitrust and the Robo-Seller: Competition in the time of algorithms. Minnesota
Law Review, 100, 1323–1375.

Mertikopoulos, P., & Zhou, Z. (2019). Learning in games with continuous action sets and unknown
payoff functions. Mathematical Programming, 173(1), 465–507.

Meylahn, J., & den Boer, A. (2022). Learning to collude in a pricing duopoly. Manufacturing &
Service Operations Management (in press).

Miao, S., Chen, X., Chao, X., Liu, J., & Zhang, Y. (2022). Context-based dynamic pricing with
online clustering. Production and Operations Management (in press).

Nambiar, M., Simchi-Levi, D., & Wang, H. (2019). Dynamic learning and pricing with model
misspecification. Management Science, 65(11), 4980–5000.

Popescu, I., & Wu, Y. (2007). Dynamic pricing strategies with reference effects. Operations
Research, 55(3), 413–429.

Qi, A., Ahn, HS., & Sinha, A. (2017). Capacity investment with demand learning. Operations
Research, 65(1), 145–164.

Rustichini, A., & Wolinsky, A. (1995). Learning about variable demand in the long run. Journal of
Economic Dynamics and Control, 19(5–7), 1283–1292.

Schrepel, T. (2017). Here’s why algorithms are NOT (really) a thing. Concurrentialiste. https://
leconcurrentialiste.com/algorithms-based-practices-antitrust

 14919 800 a 14919 800 a

https://ssrn.com/abstract=3722376

 11991 5228 a 11991 5228 a

https://ssrn.com/abstract=3526568

 9426 9656 a 9426 9656 a

https://ssrn.com/abstract=3686518

 8536 11870 a 8536 11870
a

https://ssrn.com/abstract=3866171

 20615 25153 a 20615 25153 a

https://www.ebos.com.cy/cresse2013/uploadfiles/2017_sps5_pr2.pdf
https://www.ebos.com.cy/cresse2013/uploadfiles/2017_sps5_pr2.pdf

 32220 56148 a 32220
56148 a

https://leconcurrentialiste.com/algorithms-based-practices-antitrust
https://leconcurrentialiste.com/algorithms-based-practices-antitrust

150 A. V. den Boer and N. B. Keskin

Schwalbe, U. (2018). Algorithms, machine learning and collusion. Journal of Competition Law &
Economics, 14(4), 568–607.

Shiryaev, A. N. (2010) Quickest detection problems: Fifty years later. Sequential Analysis, 29(4),
345–385.

Smejkal, V. (2017). Cartels by robots – Current antitrust law in search of an answer.
InterEULawEast. Journal for the International and European Law, Economics and Market
Integrations, 4(2), 1–18.

Sunar, N., Birge, J. R., & Vitavasiri, S. (2019). Optimal dynamic product development and launch
for a network of customers. Operations Research, 67(3), 770–790.

Sunar, N., Tu, Y., & Ziya, S. (2021a). Pooled vs. dedicated queues when customers are delay-
sensitive. Management Science, 67(6), 3785–3802.

Sunar, N., Yu, S., & Kulkarni, V. G. (2021b). Competitive investment with Bayesian learning:
Choice of business size and timing. Operations Research, 69(5), 1430–1449.

Taylor, T. (2018). On-demand service platforms. Manufacturing and Service Operations Manage-
ment, 20(4), 704–720.

Weyl, E. G. (2010). A price theory of multi-sided platforms. American Economic Review, 100(4),
1642–1672.

Yang, Y., Lee, Y. C., & Chen, P. A. (2020). Competitive demand learning: A data-driven pricing
algorithm. https://arxiv.org/abs/2008.05195

Zhang, H., & Jasin, S. (2022). Online learning and optimization of (some) cyclic pricing policies in
the presence of patient customers. Manufacturing & Service Operations Management, 24(2),
1165–1182.

Zhou, Z., Mertikopoulos, P., Bambos, N., Glynn, P., & Tomlin, C. (2018). Multi-agent online
learning with imperfect information. Working paper, Stanford University.

 3442 19619 a 3442 19619 a

https://arxiv.org/abs/2008.05195

Chapter 7
Pricing with High-Dimensional Data

Gah-Yi Ban

7.1 Introduction

From the mid-1990s, companies that acquire and interact with customers primarily
online were born. Many of these companies are now household names, such as
Amazon (est. 1994), Netflix (est. 1997), Google (est. 1998), Facebook (est. 2004),
and Airbnb (est. 2008), having disrupted many traditional industries including retail,
advertising, and entertainment.

The resulting decades of e-commerce has led to an explosion of business-
generated data, which in turn have been used to further enhance and grow
the business. A celebrated example of using such data is for personalization
of recommendations—be it for products, advertisements, or consumable media.
More recently, the Operations Research/Management Science community has been
exploring the use of potentially large amounts of data beyond recommendation
systems, e.g., for inventory and supply chain decisions (Ban and Rudin, 2019;
Ban et al., 2019; Mandl and Minner, 2020), medical decision-making (Bastani and
Bayati, 2020), and pricing and revenue optimization (Ferreira et al., 2016; Qing and
Bayati, 2016; Javanmard and Nazerzadeh, 2019; Qu et al., 2020; Cohen et al., 2020;
Chen et al., 2022; Ban and Keskin, 2021; Chen et al., 2020).

In this chapter, we review recent theoretical developments in using high-
dimensional data (usually, information pertaining to customers and/or the product)
in pricing. The chapter is structured as follows. In Sect. 7.2, we provide a brief
background on high-dimensional statistics. In Sects. 7.3 and 7.4, respectively, we
review a static and a dynamic pricing model that incorporate high-dimensional data.
In Sect. 7.5, we discuss future directions for research in this sphere.

G.-Y. Ban (�)
Robert H. Smith School of Business, University of Maryland, College Park, MD, USA
e-mail: gban@umd.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_7

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_7&domain=pdf

 885 55738 a 885 55738
a

mailto:gban@umd.edu

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_7

152 G.-Y. Ban

7.2 Background: High-Dimensional Statistics

High-dimensional statistics is the study and analysis of data where the number of
dimensions observed (typically denoted by d or p, here we use d) is comparable to,
or exceeds, the number of observations (typically denoted by n). This contrasts with
classical statistics, where d is assumed fixed and small compared to n.

Even before the availability of large datasets in many domains, interest in
high-dimensional statistics grew from the 1950s when researchers such as Rao,
Wigner, Kolmogorov, and Huber (to name a few) recognized that standard statistical
methods and theory may fail in a high-dimensional regime. To illustrate, consider
the classical ordinary least-squares regression problem, with where n response
observations y1, . . . , yn are regressed on d-dimensional regressors (also known as
explanatory or independent variables, covariates, or features) x1, . . . , xn:

min
α∈R,β∈Rd

n∑

i=1

(yi − α − β	xi)2. (7.1)

Equation (7.1) is a convex optimization problem, so the optimal coefficient estimates
(α̂, β̂) ∈ R× Rd can be found by solving the first-order optimality equations

∑n
i=1 2(yi − α − β	xi) = 0

∑n
i=1 2(yi − α − β	xi)xi1 = 0

...
...

∑n
i=1 2(yi − α − β	xi)xid = 0,

which in matrix form is

X	X

⎛

⎜
⎜
⎜
⎝

α

β1
...

βd

⎞

⎟
⎟
⎟
⎠
= X	

⎛

⎜
⎝

y1
...

yn

⎞

⎟
⎠ , (7.2)

where X is the n× (d + 1) matrix given by

X =
⎛

⎜
⎝

1 x11 . . . x1d
...
...

...

1 xn1 . . . xnd

⎞

⎟
⎠ .

Thus, the existence of a unique solution (α̂, β̂) ∈ R × Rd depends on the rank of
X. If d + 1 > n, then the rank of X is at most n, so X	X is not invertible and a
unique solution to (7.2) cannot be found. In the current age of “big data,” it is fairly
common to have a large d as data collection and recording has become cheap and

7 Pricing with High-Dimensional Data 153

easy. Furthermore, if interaction and nonlinear effects of a starting set of features
are considered, then the number of regressors can quickly grow, even if the starting
set may not be too large.

A popular remedy that has emerged for doing regression with high-dimensional
data is by perturbing the objective in (7.1) by a regularization function:

min
α∈R,β∈Rd

n∑

i=1

(yi − α − β	xi)2 + λR(α,β), (7.3)

where λ ≥ 0 is a constant that controls the degree of regularization, and R(·) :
R
d+1 → R+ is a positive penalty function. The most popular choice for the

regularization function is the L1 norm penalty (R(z) = ‖z‖1), referred to as “lasso
regression.” More broadly, when lasso regularization is used in general estimation
problems (not just least-squares regression), it leads to sparse coefficient estimates
because lasso is a convex relaxation of the L0 norm (which counts the number of
nonzero elements of a vector). This in turn leads to more interpretable models; as
such, lasso regularization has been the focus of intense research in recent decades
(Hastie et al., 2009; Bühlmann and Van De Geer, 2011; Wainwright, 2019). In
pricing, Qu et al. (2020), Chen et al. (2022), and Ban and Keskin (2021) exemplify
using lasso regularization in real-data case studies; Qu et al. (2020) for estimating
the demand for multiple, heterogeneous products in business-to-business pricing,
Chen et al. (2022) for customized pricing for airline priority seating, and Ban and
Keskin (2021) for estimating the demand for car loans at the individual customer
level for an auto loan company.

Alternatively, non-parametric “machine learning” methods of discovering the
relationship between a response variable and high-dimensional explanatory vari-
ables have also emerged in recent decades. In particular, tree-based methods such
as random forest (Breiman, 2001) are proving to be very effective “off-the-shelf”
methods for prediction accuracy. In pricing, Ferreira et al. (2016) found regression
trees with bagging (which is similar to random forests but more interpretable) to
be superior to a number of other methods (least squares, principal components,
partial least squares, multiplicative, and semi-logarithmic regression) for predicting
the demand for new products in a real-data case study for a fashion retailer.

This is just one illustration of how high-dimensional data revolutionized a
classical statistical method (least-squares regression), leading to new methods,
empirical insights, and theory. We refer to Hastie et al. (2009), Bühlmann and Van
De Geer (2011), and Wainwright (2019) for the readers interested in learning further
about high-dimensional statistics. In the rest of this chapter, we review the theory of
pricing with high-dimensional data.

154 G.-Y. Ban

7.3 Static Pricing with High-Dimensional Data

In this section, we review the theoretical results in Chen et al. (2022), which
analyzes a static pricing problem with high-dimensional data using statistical
learning theory.

7.3.1 Feature-Dependent Choice Model

Consider a firm selling a set J of J products. Prior to pricing the items, the firm
observes a d-dimensional vector, z ∈ Z ⊂ Rd of customer features (characteristics),
which are assumed to be normalized so that ‖z‖∞ ≤ ∞. Once z is observed, the
firm chooses a price pj ∈ [pmin, pmax] =: P for each product j ∈ J. Let p :=
[p1, . . . , pJ] denote the vector of prices for all J products.

For each product j ∈ J, Chen et al. (2022) proposes the following personalized
utility model for a customer with feature vector z:

Uj (z, pj , θj) = Vj (z, pj , θj)+ εj , (7.4)

where Vj (pj , z, θj), the deterministic part of the utility model, is specified to be
linear in the customer features and the price:

Vj (z, pj , θj) = γ	j z+ β	j pj , (7.5)

for some constants γj ∈ Rd and βj ∈ R, captured together by θj := [γj , βj] ∈
R
d+1, and εj , independent across the j ’s, are specified to follow the Gumbel

distribution.
By discrete-choice theory (Train, 2009), this leads to a personalized logit

function for the probability of the customer purchasing product j ∈ J:

P(j ; z,p, θ) = eVj (z,pj ,θj)

1+∑J
k=1 e

Vk(z,pk,θk)
, (7.6)

where θ := {θ1, . . . , θJ }.
Denote the customer’s decision with y, where y ∈ {0, 1, . . . , J } such that y = j

corresponds to the purchase of product j , and y = 0 denotes no purchase.
The firm’s decision objective is to find the personalized price that maximizes the

expected revenue, r(p, z, θ):

p∗(z) = argmax
p∈P

r(z,p, θ) :=
∑

j∈J
pjP(j ; z,p, θ). (7.7)

It is straightforward to show that (7.7) is a convex optimization problem.

7 Pricing with High-Dimensional Data 155

7.3.2 Estimation Method

In practice, a firm would not know the true parameters θ . Suppose the decision-
maker has access to n past customer features, prices, and purchase decisions, D =
{(z1,p1, y1), . . . , (zn,pn, yn)}. Chen et al. (2022) considers a static learning setting,
meaning all n periods of past data are available at once, and the prices were not
personalized in the past—i.e., the price sequence {p1, . . . ,pn} is independent of the
customer feature sequence {z1, . . . , zn}. This would reflect a scenario where a firm
did not personalize prices in the past and is considering doing so now. Alternatively,
this also reflects a scenario where a firm already does some personalized pricing,
but not for all, and so D would capture a subset of historical data for which prices
were blind to the customer features.

In such a setting, Chen et al. (2022) proposes estimating θ by maximum
likelihood estimation with L1 regularization:

θ̂(R) = argmin
θ∈�

�n(D, θ) = −1

n

n∑

i=1

logP(yi;pi , zi , θ)

s.t.

‖θ‖1 ≤ R, (7.8)

where R > 0 is a tuning parameter that controls the model complexity. Equa-
tion (7.8) is a convex optimization problem, so can be solved efficiently using widely
available solvers.

The firm can thus estimate the optimal personalized price p̂(z) by plugging-in
θ̂(R) to the pricing problem (7.7):

p̂(z) = argmax
p∈P

∑

j∈J
pjP(j ;p, z, θ̂(R)). (7.9)

In Chen et al. (2022), the estimation method above is numerically evaluated on
simulated data and real data from a European airline carrier. In the rest of this
section, however, we focus on the theoretical performance analysis.

7.3.3 Performance Guarantees

A central question for a firm considering implementing the estimation method from
Sect. 7.3.2 would be how close the revenue of the estimated price p̂(z) would be
to the optimal revenue from p∗(z). Chen et al. (2022) provides high-probability
guarantees for the difference using the theory of M-estimation from classical
statistics. First, the following assumptions are needed.

156 G.-Y. Ban

Assumption 1 (Conditional Independence of Purchase Decisions) The purchase
decisions, yi , i = 1, . . . , n, are independent of each other given each zi and pi . ��

Now, let xij := (zi , pij)	 be a (d + 1)-dimensional composite vector for j ∈ J
and i ∈ Z+. Also, let� := n−1 ∑n

i=1 E[xij x	ij], and let λmin(·) denote the minimum
eigenvalue function.

Assumption 2

(a) For each j ∈ J, the vectors {xij }ni=1 are independent across i.
(b) For each j ∈ J, the vectors {xij }ni=1 are sub-Gaussian with the uniform sub-

Gaussian norm ψ given by

ψ(X) := inf
{
t ≥ 0 : E

[
exp

(
X2/t2

)
≤ 2

]}
.

(c) There exists a constant ρ > 0 such that λmin(�) ≥ ρ for all j ∈ J.
Furthermore,

max
i,j
λmin

(
E[xij x	ij]

)
> 0.

Remarks on Assumptions 1 and 2 Assumption 1 is standard in the revenue
management literature. Assumption 2 (a) means customers arrive independently of
each other and is a standard assumption in statistical learning. Assumption 2 (b)
is common in regression analysis because it captures a wide range of multivariate
distributions. Finally, Assumption 2 (c) stipulates that the feature vectors and the
pricing decisions are not collinear.

The following performance guarantee can be shown for p̂(z):

Theorem 1 (Theorem 2, Chen et al., 2022) Under Assumptions 1 and 2, for
n ≥ 4C(ψ,R) log(n)

min(ρ,1)2
and any feature vector z, the expected revenue gap between the

optimal personalized price p∗(z) and its estimate p̂(z) can be bounded with high
probability as follows:

r(z,p∗, θ)− r(z, p̂, θ) ≤ C(ψ,R)
ρ

J 4(d + 1)

√
log(2nJ (d + 1))

n
, (7.10)

where C(ψ,R) is a constant depending only on ψ and R.
Theorem 1 shows that the estimation approach described in Sect. 7.3.2 is well-

justified, because the expected revenue of the estimated personalized price p̂
converges to that of the optimal price p∗ at

√
n rate, up to logarithmic factors.

Theorem 1 also makes explicit the effect of key parameters on the revenue bound,
which can guide practice. For example, a firm with a given number of relevant data
n may wish to try personalized pricing first on a smaller number of products first,
as the effect of J on the revenue bound is so large. Theorem 1 also makes the

7 Pricing with High-Dimensional Data 157

effect of the dimensionality explicit; note that the bound in (7.10) can be very loose
if (d + 1)/n is large. In such a high-dimensional setting, the bound (7.10) could
be tightened by making a sparsity assumption such as ‖θ‖1 ≤ R (which implies
‖θ‖0 ≤ R), with R < (d + 1), in which case (d + 1) could be replaced by R with a
slight change to the preamble to the theorem.

The proof of Theorem 1 relies on the following two results.

Lemma 1 (Proposition 1, Chen et al., 2022) For n ≥ 4C(ψ,R) log(n)
min(ρ,1)2

and for any
price vector p ∈ P, the error in the revenue forecast as a fraction of the maximal
price can be bounded with high probability as follows:

|r(z,p, θ)− r(z,p, θ̂(R))| ≤ C(ψ,R)
2ρ

J 4(d + 1)

√
log(2nJ (d + 1))

n
.

Proof (of Lemma 1) We have

|r(z,p, θ)− r(z,p, θ̂(R))| (i)≤
∑

j∈J
pj |P(j ; z,p, θ)− P(j ; z,p, θ̂(R))|

(ii)≤
∑

j∈J

1

4
pj‖θ − θ̂‖1

(iii)≤ Jpmax

4
‖θ − θ̂‖1

(iv)≤ Jpmax

4

√
J (d + 1)‖θ − θ̂‖2,

where (i) is due to the triangle inequality; (ii) results from the fact that

‖∇P(j ; z,p, θ)‖∞ ≤ 1/4

since we can show, for each j ∈ J,

δ

δθjk
P(j ; z,p, θ) ≤ 1

4
‖z‖∞ ≤ 1

4
∀ k ∈ J, z ∈ Z, θ ∈ �;

(iii) is simply upper-bounding pj ’s by pmax and adding up the sum; and (iv) is due
to the Cauchy–Schwarz inequality. ��

Theorem 2 (Theorem 1, Chen et al., 2022) Under Assumptions 1 and 2 and for

n ≥ 4Cψ log(n)
min(ρ,1)2

for some constant Cψ , the following holds with probability at least
[1− (1+ 2J)/n)]:

158 G.-Y. Ban

‖θ − θ̂‖2 ≤ 2
[1+ exp(−R)+ (J − 1) exp(R)]2

exp(−R)ρ
√

2J (d + 1) log(2J (d + 1))

n
.

The proof of Theorem 2 is rather long, so we defer the reader to Chen et al. (2022)
for the details.
Proof (of Theorem 1) By adding and subtracting the same expression r(z, p̂, θ̂(R)),
we can rewrite the revenue difference into two separate differences, which can be
bounded as follows:

r(z,p∗, θ)−r(z, p̂, θ) = [r(z,p∗, θ)−r(z, p̂, θ̂(R))]+[r(z, p̂, θ̂(R))−r(z, p̂, θ)]
≤ [r(z,p∗, θ)−r(z,p∗, θ̂(R))]+[r(z, p̂, θ̂(R))−r(z, p̂, θ)]

≤ C(ψ,R)
ρ

J 4(d + 1)

√
log(2nJ (d + 1))

n
,

where the first inequality results from the fact that p̂ is the maximal price for
r(z, ·, θ̂(R)), and the final inequality results from applying Lemma 1 and Theorem 2
twice. ��

7.4 Dynamic Pricing with High-Dimensional Data

In many situations, a company that wishes to use high-dimensional data (whether it
be customer characteristics or product features) for pricing decisions may not have
collected such data in the past. In this situation, the static setting of Sect. 7.3 does
not apply, and so the company would need to balance data collection and learning
about the best price to charge (exploration) with charging the best current estimate
of the optimal price (exploitation).

Several recent works (Qing and Bayati, 2016; Javanmard and Nazerzadeh, 2019;
Cohen et al., 2020; Ban and Keskin, 2021) investigate the problem of dynamic
pricing with high-dimensional data. In this section, we first review the theoretical
results in Ban and Keskin (2021), then discuss how this work contrasts with the
others. Note any notations introduced in this section are independent of notations
used in previous sections.

7.4.1 Feature-Dependent Demand Model

Ban and Keskin (2021) consider a firm that offers a product for sale to T customers
who arrive sequentially. Each sales opportunity is considered to be a separate time

7 Pricing with High-Dimensional Data 159

period and the firm has a discrete time horizon of T periods and can dynamically
adjust the product’s price over the time horizon.

At the beginning of period t = 1, 2, . . . , T , the firm observes a d-dimensional
vector of features pertaining to the customer arriving in period t . Ban and Keskin
(2021) denote this random vector by Zt = (Zt1, Zt2, . . . , Ztd) and assumes that
{Zt , t = 1, 2, . . . , T } are independent and identically distributed with a compact
support Z ⊆ B0(zmax) ⊂ Rd , where B0(zmax) is the d-dimensional ball of radius
zmax > 0, and E[Zt] is, without loss of generality, assumed to be normalized to 0.
Denote by �Z = E[ZtZT

t] the covariance matrix of {Zt } and assume that �Z is a
symmetric and positive definite matrix. Note that the firm need not know �Z.

Ban and Keskin (2021) allow Zt to include individual customer characteristics,
features about the product, and macroeconomic factors that may be both categorical
(e.g., postal code and income bracket) and continuous (e.g., credit score). This
means that some components of Zt are continuous random variables and others
discrete random variables. For the features modeled as continuous random variables,
the only assumption Ban and Keskin (2021) make is that they have positive measure
in the interior of their domains and zero on the boundary.

For convenience, let Xt :=
[1
Zt

] ∈ Rd+1. Accordingly, denote the support of Xt
by X = {1} ×Z and the expectation over the product measure on X1 × · · · × XT
by EX{·}.

Upon observing Xt = xt , the firm chooses a price pt ∈ [�, u] to be offered to the
customer arriving in period t , where 0 < � < u < ∞. Then, the firm observes this
customer’s demand in response to pt , which is given by

Dt = g
(
α · xt + (β · xt) pt

)+ εt for t = 1, 2, . . . , T , (7.11)

where α, β ∈ Rd+1 are demand parameter vectors unknown to the firm, g(·) is
a known function, εt is the unobservable and idiosyncratic demand shock of the
customer arriving in period t , and u · v = ∑d+1

i=1 uivi denotes the inner product
of vectors u and v. Note that the demand model (7.11) captures feature-dependent
customer taste and potential market size (through α ·xt) as well as feature-dependent
price sensitivity (through β · xt).

Let θ := (α, β) be the vector of all unknown demand parameters and � be a
compact rectangle in R2(d+1) from which the value of θ is chosen. The dimension
d is allowed to be large, possibly larger than the selling horizon T , but it is
also assumed that a smaller subset of the d features have a sizable effect in the
demand model. Ban and Keskin (2021) denote this sparsity structure as follows:
Sα := {i = 1, . . . , d + 1 : αi �= 0}, Sβ := {i = 1, . . . , d + 1 : βi �= 0}, and
S := Sα ∪ Sβ . Note that S contains the indices of all nonzero components of α
and β. For notational convenience, use the set S to express the sparsity structure
in the unknown parameter vector θ = (α, β). (If the nonzero components of α
and β are distinct, one could use Sα and Sβ to express the sparsity structures in
α and β separately; the analysis is valid for that case because S already includes
all components that influence demand.) Define αS = (αi)i∈S and βS = (βi)i∈S as
the vectors consisting of the components of α and β, respectively, whose indices

160 G.-Y. Ban

are in S, and θS = (αS, βS). Note that θS is a compressed vector that contains all
nonzero components of θ ; hence, refer to θS as the compressed version of θ . Let
s ∈ {1, . . . , d + 1} be the cardinality of S, and denote the compressed versions of
the key quantities defined earlier with a subscript S. Thus, the compressed version
of� is�S = {θS : θ ∈ �} ⊂ R2s . For t = 1, . . . , T , the compressed versions of Zt
and Xt are ZS,t ∈ ZS ⊂ Rs and XS,t =

[1
ZS,t

] ∈ XS ⊂ Rs+1, respectively, where
ZS = {(zi)i∈S : z ∈ Z} and XS = {1} ×ZS. The firm is not assumed to know the
sparsity structure a priori.

The demand function in (7.11) is known as a generalized linear model (GLM)
because, given x ∈ X, the function that maps price p to expected demand is the
composition of the function g : R→ R and the linear function p ,→ α ·x+(β ·x) p.
In this relationship, the function g(·) is referred to as the “link” function that
captures potential nonlinearities in the demand–price relationship. Ban and Keskin
(2021) assume that g(·) is differentiable and increasing; this is satisfied for a broad
family of functions including linear, logit, probit, and exponential demand functions.
It also implies that the link function has bounded derivatives over its compact
domain.1

Ban and Keskin (2021) assume that {εt , t = 1, 2, . . .} is a sub-Gaussian
martingale difference sequence; that is, E[εt |Ft−1] = 0, and there exist positive
constants σ0 and η0 such that E[ε2

t |Ft−1] ≤ σ 2
0 and E[eηεt |Ft−1] < ∞ for all η

satisfying |η| < η0, where Ft = σ(p1, . . . , pt , ε1, . . . , εt , X1, . . . , Xt+1) and the
construction of admissible price sequences {pt , t = 1, 2, . . .} is specified below.
(A simple example of this setting is where {εt } are bounded and have zero mean.)
We note that the distribution of εt can depend on price and feature observations.
This implies that the idiosyncratic demand shocks of customers are allowed to be
dependent on prices and customer features in this formulation, which contrasts
with the static pricing model of Sect. 7.3. Also note that the generality of the
above demand-shock distribution allows for continuous as well as discrete demand
distributions. A noteworthy example within discrete demand distributions is the
binary customer response model, where {εt } are such that Dt ∈ {0, 1} for all t . In
this case, the event {Dt = 1} corresponds to a sale at the offered price pt , whereas
{Dt = 0} corresponds to no sale.

Given θ = (α, β) ∈ � and x = [
1
z

] ∈ X, the firm’s expected single-period
revenue is

r(p, θ, x) = p[g(α · x + (β · x)p)] for p ∈ [�, u]. (7.12)

Let ϕ(θ, x) = argmaxp{r(p, θ, x)} denote the unconstrained revenue-maximizing
price in terms of θ ∈ � and x ∈ X. Ban and Keskin (2021) assume that ϕ(θ, x) is
in the interior of the feasible set [�, u] for all θ ∈ � and x ∈ X.

1 That is, there exist �̃, ũ ∈ R satisfying 0 < �̃ ≤ |g′(ξ)| ≤ ũ < ∞ for all ξ = α · x + (β · x) p
such that (α, β) ∈ �, x ∈ X, and p ∈ [�, u] (here and later, a prime denotes a derivative).

7 Pricing with High-Dimensional Data 161

7.4.2 Learning-and-Earning Algorithm

Let H0 = X1, and for t = 1, 2, . . . , T , let Ht be a vector consisting of the
observations until just after the beginning of period t + 1, when the feature vector
for period t + 1 has been revealed but before the pricing decision; i.e., Ht =
(p1, . . . , pt ,D1, . . . , Dt ,X1, . . . , Xt+1). Define an admissible policy as a sequence
of functions π = (π1, π2, . . .), where πt : R(d+3)t−2 → [�, u] is a measurable
function that maps Ht−1 to the price to be offered in period t . Thus, pt = πt (Ht−1)

for all t = 1, 2, . . . , T , under policy π . Denote by� the set of all admissible pricing
policies. Given π ∈ � and θ = (α, β) ∈ �, define a probability measure Pπθ {·} on
the sample space of demand sequences D = (D1,D2, . . .) such that

P
π
θ {D1 ∈ dξ1, . . . , DT ∈ dξT } =

T∏

t=1

Pε

{
g
(
α ·Xt+(β ·Xt)pt

)+εt ∈ dξt
∣
∣Ht−1

}

for ξ1, ξ2, . . . , ξT ∈ R,

where Pε{·} is the probability measure governing {εt , t = 1, 2, . . .}. The firm’s
conditional expected revenue loss in T periods relative to a clairvoyant who knows
the underlying demand parameter vector θ is defined as

�πθ (T ;XT) = Eπθ
{ T∑

t=1

[
r∗(θ,Xt)− r(pπt , θ,Xt)

] ∣∣
∣XT

}

(7.13)

for θ ∈ �, π ∈ �, and XT = (X1, . . . , XT) ∈ XT , where Eπθ {·} is the expectation
operator associated with Pπθ {·}, r∗(θ, x) = r(ϕ(θ, x), θ, x) is the maximum single-
period revenue function, and pπt is the price charged in period t under policy
π . This performance metric is the firm’s T -period conditional regret, which is a
random variable that depends on the realization of XT = (X1, . . . , XT). The firm’s
objective is to minimize its T -period expected regret, given by

�πθ (T) = EX
{
�πθ (T ;XT)

}
(7.14)

for θ ∈ � and π ∈ �, where EX{·} is the expectation operator associated with
the probability measure governing {Xt, t = 1, 2, . . .}. Throughout the sequel, we
use the expectation notation EπX,θ {·} := EX{Eπθ {·}}, and let PπX,θ {·} be the probability
measure associated with EπX,θ {·}. Finally, Ban and Keskin (2021) focus on the firm’s
worst-case expected regret, defined as �π(T) = sup{�πθ (T) : θ ∈ �} to analyze
the complexity of the learning problem.

Given a history of feature vectors (X1, . . . , Xt) = (x1, . . . , xt), let

Qt(θ̃, λ̃) :=
t∑

k=1

χk

∫ g(θ̃ ·uk)

Dk

Dk − y
ν(y)

dy − λ̃‖θ̃‖1 for θ̃ ∈ R2(d+1) and λ̃ ≥ 0,

(7.15)

162 G.-Y. Ban

where χk = I{k ∈ M} and uk =
[

1
pk

] ⊗ xk for k ∈ {1, 2, . . .}, ν(y) = g′(g−1(y)
)

for y ∈ R, and ‖θ̃‖1 = ∑2(d+1)
i=1 |θ̃i | denotes the �1-norm of θ̃ . The function

Qt(·, ·) in (7.15) is a lasso-regularized quasi-likelihood function for the firm’s
observations in the first t periods (for a reference on maximum quasi-likelihood
estimation, see Nelder and Wedderburn (1972)). This function subsumes the lasso
regression estimation objective and standard maximum likelihood estimation with
lasso regularization. It is also worth noting that, given λ̃ ≥ 0, the mapping θ̃ ,→
Qt(θ̃ , λ̃) is strictly concave and has a unique maximizer.

Ban and Keskin (2021) propose the following learning-and-earning algorithm,
called iterated lasso-regularized quasi-likelihood regression with price experimen-
tation (abbreviated ILQX). Upon observing the feature vector Xt = xt in period t ,
the ILQX policy with nonnegative parameters m1 and m2, and λ = (λ1, λ2, . . .),
denoted by ILQX(m1,m2,λ), charges the price

pt =
⎧
⎨

⎩

m1 if t ∈ M1,

m2 if t ∈ M2,

ϕ
(
ϑ̂
(lasso)
t (λt), xt

)
otherwise,

(7.16)

where ϑ̂ (lasso)
t (λt) is given by the following maximum quasi-likelihood estimation:

θ̂
(lasso)
t+1 (λ̃) = argmaxθ̃∈R2(d+1)

{
Qt(θ̃ , λ̃)

}
, (7.17)

with ϑ̂ (lasso)
t+1 (λ̃) being the truncated estimate satisfying ϑ̂ (lasso)

t+1 (λ̃) = P�{θ̂ (lasso)
t+1 (λ̃)}

for λ̃ ≥ 0, where P� : R2(d+1) → � denotes the projection mapping from R2(d+1)

onto �.
The prices m1 and m2 are two distinct experimental prices in [�, u], such that

the number of price experiments conducted over periods {1, 2, . . . , t} is at least in
the order of

√
t , the reason for which will be made clear in Sect. 7.4.3. For instance,

the following scheme would work: for i ∈ {1, 2}, the set of periods in which the
experimental price mi is charged could be

Mi = {t = L2 + i − 1 : L = 1, 2, . . .}. (7.18)

Denote by M = M1 ∪ M2 the set of all experimentation periods. This price
experimentation scheme ensures that, for all t ≥ 5, each experimental price is
charged at least 1

4

√
t times. This scheme uses two prices for experimentation—one

needs at least two distinct experimental prices to ensure that regression estimates
are well defined in all periods. Ban and Keskin (2021) use two experimental
prices throughout the paper; however, all the results remain valid if more than two
experimental prices are used.

In Ban and Keskin (2021), the demand model (7.11) and the learning-and-earning
algorithm ILQX are numerically evaluated on simulated data and real data from an
online car loan company. In what follows, however, we focus on the theoretical
performance analysis. Specifically, we present the bounds on the expected regret
derived in Ban and Keskin (2021). In contrast to Sect. 7.3, here we are able to
present both a lower bound and an upper bound on the revenue gap. The lower

7 Pricing with High-Dimensional Data 163

bound is universal in that it specifies a limit to how fast any admissible pricing policy
could learn the optimal personalized price, for any differentiable and increasing
link function g(·) in the demand model (7.11). The upper bound is specific to the
ILQX algorithm described in Sect. 7.4.2, but it matches the universal lower bound to
logarithmic terms, so by deduction, the ILQX algorithm must be rate-optimal with
respect to measuring the performance by expected regret.

7.4.3 A Universal Lower Bound on the Regret

To characterize the complexity of the problem in terms of the best achievable regret
performance, Ban and Keskin (2021) focus on a special case of the general demand
model (7.11) by letting the expected demand be a linear function of the price; i.e.,
g(ξ) = ξ for all ξ ∈ R. In this case, the demand in period t is given by

Dt = α · xt + (β · xt) pt + εt for t = 1, 2, . . . , T . (7.19)

Note that (7.19) is a high-dimensional personalized version of the well-known
linear demand model. Also, note that the unconstrained revenue-maximizing price
is ϕ(θ, x) = −(α · x)/(2β · x) for θ = (α, β) ∈ � and x ∈ X.

Ban and Keskin (2021) derive the following lower bound on the firm’s expected
regret under any admissible policy.

Theorem 3 (Theorem 1, Ban and Keskin, 2021) Let {Dt } be given by the linear
demand model (7.19), and εt , t ∈ Z+, are independent and identically distributed
from an exponential family of distributions. Then, there exists a finite positive
constant c such that

�π(T) ≥ cs√T for all π ∈ � and T ≥ 2.

We note that the restriction to the linear demand model in the statement of
Theorem 3 is not prohibitive because the result implies

sup
g∈G

inf
π∈�{�

g,π (T)} ≥ cs√T , ∀T ≥ 2,

where G denotes the set of all differentiable and increasing functions, and �g,π (T)
is the T -period expected regret of policy π , with its dependence on the link function
g(·) expressed explicitly. Thus, the lower bound in Theorem 3 is a worst-case lower
bound on the minimum regret for a broad class of link functions.

Theorem 3 characterizes the complexity of the personalized dynamic pricing
problem of Ban and Keskin (2021). It states that the expected regret of any
admissible policy must grow at least in the order of s

√
T . It is worth mentioning

here that, due to the sparsity assumption, this limit to the rate of learning does not
depend on d.

The proof of Theorem 3 requires the following lemma.

164 G.-Y. Ban

Lemma 2 (Lemma EC.1, Ban and Keskin, 2021) There exist finite positive
constants c0 and c1 such that

sup
θ∈�

{
T∑

t=2

EXE
π
θ [(pt − ϕ(θ,Xt))2]

}

≥
T∑

t=2

c0

c1 + supθ∈�
{
EX

[
Ct(θ,Xt)E

π
θ [Jt−1(Xt−1)]Ct(θ,Xt)T

]} ,

where Ct(· , ·) is a 2(d + 1)-dimensional function on �× Xt such that

Ct(θ, xt) =
[−∑t

k=1 ϕ(θ, xk) v
T
k

∑t
k=1 v

T
k

]
,

and vk ∈ Rd+1 are (column) vectors constructed as follows: for k = 1, . . . , t, let
vk :=∑t

�=1 γk� x�, where {γk�, � = 1, . . . , t} solve the following t equations:
t∑

�=1

γk� x
T
� x�′ =

{
1 if �′ = k,
0 otherwise.

Proof (of Lemma 2) Let μ be an absolutely continuous density on �, taking
positive values on the interior of � and zero on its boundary, and let Eμ{·} be
the expectation operator associated with the density μ. We consider estimating the
vector [ϕ(θ,X1), . . . , ϕ(θ,XT)].

Given that the components of Xt are continuous random variables, with positive
measure in the interior of X and zero on the boundary, the multivariate van Trees
inequality (Gill and Levit, 1995) implies that

Eμ,X

{
E
π
θ

[
(pt − ϕ(θ,Xt))2

]}
≥

(
Eμ,X{tr[Ct(θ,Xt)(∂ϕ(θ,Xt)/∂θ)T]}

)2

Eμ,X{tr[Ct(θ,Xt)Iπt−1(Xt)Ct (θ,Xt)
T]} + Ĩ(μ)

,

(7.20)

where Ĩ(μ) is a constant that depends on μ, and Eμ,X = Eμ{EX(·)}. Since

∂ϕ(θ, xt)

∂θ
=
[

− xt

2β · xt − ϕ(θ, xt)xt
β · xt

]

,

we have

tr
[

Ct(θ, xt)
∂ϕ(θ, xt)

T

∂θ

]

= −ϕ(θ, xt)
2β · xt .

7 Pricing with High-Dimensional Data 165

By (7.22), we have Iπt−1(Xt) = ζ(φ)Eπθ [Jt−1(Xt)] = ζ(φ)Eπθ [Jt−1(Xt−1)].
Using these facts and summing up over t = 2, . . . , T ,

T∑

t=2

Eμ,X

{
E
π
θ

[
(pt − ϕ(θ,Xt))2

]}

≥
T∑

t=2

(

Eμ,X

[
ϕ(θ,Xt)

2β ·Xt
])2

ζ(φ)Eμ,X{tr[Ct(θ,Xt)Eπθ [Jt−1(Xt−1)]Ct(θ,Xt)T]} + Ĩ(μ)
,

and since Eμ{·} is a monotone operator,

sup
θ∈�

T∑

t=2

EX{Eπθ [(pt − ϕ(θ,Xt))2]}

≥
T∑

t=2

inf
θ∈� EX

(
ϕ(θ,Xt)

2β ·Xt
)2

ζ(φ) sup
θ∈�
EX{tr

[
Ct(θ,Xt)E

π
θ [Jt−1(Xt−1)]Ct(θ,Xt)T

]} + Ĩ(μ)
.

Because 0 < � ≤ ϕ(θ, x) for all θ and x, the numerator of the right-hand side of the
preceding inequality is greater than or equal to �2/[4β2

max(max{1, zmax})2], where
βmax = max(α,β)∈�{‖β‖}. Thus, letting c0 = �2/[4ζ(φ)β2

max(max{1, zmax})2] and
c1 = Ĩ(μ)/ζ(φ), we arrive at the desired result. ��
Proof (of Theorem 3) First, assume that all components of Xt are continuous
random variables, with positive measure in the interior of X and zero on the
boundary, and show at the end that this can be generalized to Xt with discrete
components.

Ban and Keskin (2021) derive the lower bound for the more general case where
the distribution of {εt } is from the exponential family of distributions; that is, {εt }
are independent and identically distributed random variables whose density has the
following parametric form: fε(ξ |φ) = eφ·T (ξ)−A(φ)+B(ξ), where φ ∈ Rn is the
vector of distribution parameters, T : R → R

n, A : Rn → R, and B : R → R

are differentiable functions, and n is a natural number that represents the number

of distribution parameters. Note that the case where εt
iid∼ N(0, σ 2

0) is a special
case of the above setting, obtained by letting n = 1, φ = − 1

2σ 2
0

, T (ξ) = ξ2 and

B(ξ) = − 1
2 log(2π) for all ξ , and A(φ) = 1

2 log
(− 1

2φ

)
for all φ.

Given θ = (α, β) ∈ � and conditional on XT = xT , the density of the history
vector Ht = (p1, . . . , pt ,D1, . . . , Dt ,X1, . . . , Xt+1) is given by

166 G.-Y. Ban

�t (Ht , θ, xT) =
t∏

k=1

fε
(
Dk − α · xk − (β · xk)pk

∣
∣φ

)
for t = 1, 2, . . . , T .

(7.21)

By elementary analysis, (7.21) implies that Ht has the following Fisher information
matrix under any given admissible policy π ∈ �:

Iπt (xT) : = Eπθ
{[
∂ log �t (Ht , θ, xT)

∂θ

]T [
∂ log �t (Ht , θ, xT)

∂θ

]}

= ζ(φ)Eπθ [Jt (xT)], (7.22)

where ζ(φ) = Eπθ [φ·∇T (ε1)+B ′(ε1)],∇T (ξ) = (
∂
∂ξ

T 1(ξ),
∂
∂ξ

T 2(ξ), . . . ,
∂
∂ξ

T n(ξ)
)

and B ′(ξ) = ∂
∂ξ
B(ξ) for all ξ , Jt (xT) is the empirical Fisher information matrix

given by

Jt (xT) =
[∑t

k=1 xkx
T
k

∑t
k=1 pkxkx

T
k∑t

k=1 pkxkx
T
k

∑t
k=1 p

2
kxkx

T
k

]

=
t∑

k=1

([
1
pk

] · [1
pk

]T)⊗ xkxTk ,

and ⊗ denotes the Kronecker product of matrices. In the remainder of the proof, we
consider two cases:

Case 1: d + 1 ≥ T . In this case, we use the following lemma.
For each k = 1, . . . , t, the constants {γk�, � = 1, . . . , t} in Lemma 2 are found
by solving the following system of linear equations:

XT
t Xt γk = ek, (7.23)

where Xt = [x1, . . . , xt] is the (d + 1) × t matrix of feature vectors up to time
t , γk = (γk1, . . . , γkt) ∈ Rt , and ek ∈ Rt is the k-th basis vector in Rt . Because
d + 1 ≥ T , the matrix XT

t Xt is full-rank; hence, there exists a unique solution
for γk . Note that

Ct(θ, xt)Jt−1(xt) Ct (θ, xt)
T

= [
−∑t

k=1 ϕ(θ, xk) v
T
k

∑t
k=1 v

T
k

]
[∑t−1

k=1 xkx
T
k

∑t−1
k=1 pkxkx

T
k∑t−1

k=1 pkxkx
T
k

∑t−1
k=1 p

2
kxkx

T
k

]

×
[−∑t

k=1 ϕ(θ, xk)vk∑t
k=1 vk

]

= [
−∑t

k=1 ϕ(θ, xk) v
T
k

∑t
k=1 v

T
k

]
[

−∑t−1
k=1

∑t
k′=1{ϕ(θ, xk′)xkxTk vk′ + pkxkxTk vk′ }

−∑t−1
k=1

∑t
k′=1{pkϕ(θ, xk′)xkxTk vk′ + p2

kxkx
T
k vk′ }

]

7 Pricing with High-Dimensional Data 167

(a)= [−∑t
k=1 ϕ(θ, xk) v

T
k

∑t
k=1 v

T
k

]
[−∑t−1

k=1{ϕ(θ, xk)xk + pkxk}
−∑t−1

k=1{pkϕ(θ, xk)xk + p2
kxk}

]

=
t∑

k′=1

t−1∑

k=1

{ϕ(θ, xk′)ϕ(θ, xk)vTk′xk − 2pkϕ(θ, xk′)v
T
k′xk + p2

kv
T
k′xk}

(b)=
t−1∑

k=1

{pk − ϕ(θ, xk)}2,

where (a) and (b) follow because, by construction, vT
k′xk = 0 unless k = k′, in

which case vTkxk = 1. Thus,

Ct(θ, xt)E
π
θ [Jt−1(xt)]Ct(θ, xt)T = Eπθ [Ct(θ, xt)Jt−1(xt)Ct (θ, xt)

T]

=
t−1∑

k=1

E
π
θ

[
{pk − ϕ(θ, xk)}2

]
.

Consequently, we have

�π(T) = sup
θ∈�

{
T∑

t=1

EXE
π
θ

[
−(βTXt)(pt − ϕ(θ,Xt))2

]
}

(c)≥ |βmin| sup
θ∈�

{
T∑

t=1

EX

{
||XS,t ||1Eπθ

[
(pt − ϕ(θ,Xt))2

]}
}

≥ |βmin| sup
θ∈�

{
T∑

t=1

EX

{
XminE

π
θ

[
(pt − ϕ(θ,Xt))2

]}
}

,

where βmin = min(α,β)∈�{‖β‖}, ||XS,t ||1 = ∑s
i=1 |XiS,t | is the �1-norm of

the compressed feature vector XS,t ; XiS,t is the i-th component of XS,t for
i = 1, . . . , s, Xmin := min{||XS,1||1, . . . , ||XS,T ||1}, and (c) follows because

β̃ = |βmin|[sgnX1
S,t , . . . , sgnXsS,t]

is a feasible solution to the supremum problem in the first line. Now, since no
component of XS,t is almost surely zero, there is a positive constant

cmin = min
i∈{1,...,s}{E|X

i
S,t |}.

Then, Xmin ≥ cmins, and we get

168 G.-Y. Ban

�π(T) ≥ |βmin| cmin s sup
θ∈�

{
T∑

t=1

EXE
π
θ

[
(pt − ϕ(θ,Xt))2

]
}

.

Combining the above with Lemma 2, we can lower bound the worst-case regret
by

�π(T) ≥ β2
minc

2
mins

2
T∑

t=2

c0

c1|βmin|cmins +�π(t − 1)
.

Letting K1 = c0β
2
min and K2 = c1|βmin|, we further obtain the following:

�π(T)
(d)≥ K1c

2
mins

2(T − 1)

K2cmins +�π(T)
(e)≥ sK1c

2
mins

2T

2�π(T)(K2cmins/�π(T)+ 1)
,

where (d) follows because �π(T) ≥ �π(t − 1) for t ∈ {1, . . . , T }, and (e)
follows because T ≥ 2. Now,

�π(T) ≥ �π(1) ≥ |βmin|cmins(u− �)2/4.

Thus, letting K3 = K2
|βmin|(u−�)2/4 + 1, we get

�π(T) ≥ (
K1

2K3

)1/2
cmins

√
T .

Case 2: d + 1 < T . In this case, the t systems of linear equations (7.23) may
become inconsistent by the Rouché–Capelli theorem, because the right-hand
side of (7.23) spans the entire Rt space, but the rank of XT

t Xt may be less
than t . To avoid such inconsistencies, we consider instead augmented feature
vectors, x̃k ∈ RT , where the first d + 1 elements of x̃k equal xk and the rest
are determined by the requirement X̃t = [x̃1, . . . x̃t] be of rank t . With this
augmentation, the proof of Theorem 3 in this case follows by the same arguments
for the preceding case. This concludes the proof when the components of Xt are
continuous random variables.

Finally, if some components of Xt are discrete random variables, we can take
the conditional expectation over all possible realizations of the discrete components
first and then apply (7.20) for each realization. To illustrate, let D denote the set of
all realizations of the discrete components of Xt ; e.g., if Xt ∈ R3, with X1

t = 1
almost surely, X2

t = ±1/2 with probability 1/2 (half male, half female), and X3
t a

continuous random variable, then D = {[1, 1/2], [1,−1/2]}. For d ∈ D, let XC
t (d)

denote the conditioned random variable where the discrete components of Xt are
set to the values in d. Then, we have

7 Pricing with High-Dimensional Data 169

Eμ,X

{
E
π
θ

[
(pt − ϕ(θ,Xt))2

]}

=
∑

d∈D
PX

{
Xt = XC

t (d)
}
Eμ,XC

{
E
π
θ

[
(pt − ϕ(θ,Xt))2 |Xt = XC

t (d)
]}
,

where Eμ,XC denotes taking expectation over μ and the reduced feature vector
that only contains the continuous components. Applying the multivariate van Trees
inequality on Eμ,XC

{
E
π
θ

[
(pt − ϕ(θ,Xt))2 |Xt = XC

t (d)
]}

for each d ∈ D, we
arrive at the same conclusion as before by following the same proof arguments for
the conditional regret

�π,C(T) := sup
θ∈�

{ T∑

t=1

E
π
XC,θ

[
−(βTXt)(pt − ϕ(θ,Xt))2 |Xt = XC

t (d)
] }

for each d ∈ D. ��

7.4.4 Performance of ILQX

Ban and Keskin (2021) prove that the ILQX algorithm described in Sect. 7.4.2,
which balances price experimentation with price optimization, is rate-optimal by
the following result.

Theorem 4 (Theorem 3, Ban and Keskin, 2021) Let π = ILQX(m1,m2,λ),
where λ = (λ1, λ2, . . .) with λt+1 = c̃t1/4√log d + log t for all t , and c̃ is a positive
constant independent of s, d, T . Then, there exists a finite and positive constant C̃
such that

�πθ (T) ≤ C̃s
√
T (log d + log T) for all θ ∈ � and T ≥ 2.

Theorem 4 shows that the lasso-based ILQX policy achieves the lowest possible
growth rate of regret presented in Theorem 3 (up to logarithmic terms) and is
therefore first-order optimal. In addition, Theorem 4 makes the effect of the
dimensions (s and d) explicit; the sparsity dimension has a linear scaling effect
on the regret upper bound, whereas the input dimension d has a logarithmic effect
on it. Theorem 4 also dictates how the regularization parameter should be chosen
over time, up to a constant factor c̃. In practice, one would need to experiment
with different values of c̃ through cross-validation, as it affects the finite-sample
performance of the algorithm.

The proof of Theorem 4 relies on the following lemma, which character-
izes the convergence rate for the squared norm of the estimation error under
ILQX(m1,m2,λ).

Lemma 3 (Lemma 3, Ban and Keskin, 2021) Let π = ILQX(m1,m2,λ), where
λ = (λ1, λ2, . . .) with λt+1 = c̃t1/4

√
log d + log t for all t , and c̃ is a positive

170 G.-Y. Ban

constant. Then, there exist finite and positive constants κ3, ρ3, and t1 such that

P
π
X,θ

{

‖θ̂ (lasso)
t+1 (λt+1)− θ‖2 ≤ ρ3 s(log d + log t)√

t

}

≥ 1− κ3 s(log d + log t)√
t

(7.24)
for all θ ∈ � and t ≥ t1, where ‖ · ‖ denotes the Euclidean norm.

The proof of Lemma 3 is very long, so we refer the interested reader to Appendix
EC.3 of Ban and Keskin (2021) for full details.

Proof (of Theorem 4) Fix π = ILQX(m1,m2,λ). For p ∈ [�, u], θ ∈ �, and
x ∈ X, consider the Taylor series expansion of r(p, θ, x) around the revenue-
maximizing price, ϕ(θ, x), noting that there exists a price p̃ between p and ϕ(θ, x)
such that

r(p, θ, x) = r(ϕ(θ, x), θ, x)+ ∂
∂p
r
(
ϕ(θ, x), θ, x

)(
p − ϕ(θ, x))

+ 1
2
∂2

∂p2 r
(
p̃, θ, x

)(
p − ϕ(θ, x))2

. (7.25)

Because ∂
∂p
r
(
ϕ(θ, x), θ, x

) = 0 for all θ ∈ � and x ∈ X, (7.25) implies that

r∗(θ, x)− r(p, θ, x) = r(ϕ(θ, x), θ, x)− r(p, θ, x) ≤ C3
(
ϕ(θ, x)− p)2

(7.26)

for all θ ∈ � and x ∈ X, where C3 = max{ 1
2
∂2

∂p2 r
(
p, θ, x

) : p ∈ [�, u], θ ∈ �, x ∈
X}. We deduce from (7.26) that, given θ ∈ �,

�πθ (T) = EX
{

E
π
θ

{ T∑

t=1

[
r∗(θ,Xt)− r(pt , θ,Xt)

] ∣∣
∣XT

}}

≤
T∑

t=1

E
π
X,θ

{
C3

[
ϕ(θ,Xt)− pt

]2} (7.27)

for T ≥ 2, where EπX,θ {·} = EX{Eπθ {· |XT }}.
Now,

T∑

t=1

E
π
X,θ

{
C3

[
ϕ(θ,Xt)− pt

]2} =
T∑

t=1

E
π
X,θ

{
C3

[
ϕ(θ,Xt)− pt

]2
I{t ∈ M}}

+
T∑

t=1

E
π
X,θ

{
C3

[
ϕ(θ,Xt)− pt

]2
I{t �∈ M}}

(7.28)

7 Pricing with High-Dimensional Data 171

for T ≥ 2. With regard to the first term on the right-hand side of (7.28), note that∑T
t=1 χt =

∑T
t=1 I{t ∈ M} ≤ 2

√
T under π = ILQX(m1,m2,λ). Thus,

T∑

t=1

E
π
X,θ

{
C3

[
ϕ(θ,Xt)− pt

]2
I{t ∈ M}} ≤ C4

√
T (7.29)

for T ≥ 2, where C4 = 2C3(u − �)2. With regard to the second term on the right-
hand side of (7.28),

T∑

t=1

E
π
X,θ

{
C3

[
ϕ(θ,Xt)− pt

]2
I{t �∈ M}}

(a)=
T∑

t=2

E
π
X,θ

{
C3

[
ϕ(θ,Xt)− ϕ

(
ϑ̂
(lasso)
t (λt), Xt

)]2
I{t �∈ M}}

≤ C0

T∑

t=2

E
π
X,θ

{[
ϕ(θ,Xt)− ϕ

(
ϑ̂
(lasso)
t (λt), Xt

)]2
I{t �∈ M}}

(b)≤ C0K0

T∑

t=2

E
π
X,θ

{‖θ − ϑ̂ (lasso)
t (λt)‖2

I{t �∈ M}}

(c)≤ C0K0

T∑

t=2

E
π
X,θ

{‖θ − ϑ̂ (lasso)
t (λt)‖2} (7.30)

for T ≥ 2, where K0 = max{‖∇θ ϕ(θ, x)‖2 : θ ∈ �, x ∈ X}; (a) follows
because 1 ∈ M and pt = ϕ

(
ϑ̂
(lasso)
t , Xt

)
for t �∈ M , under π = ILQX(m1,m2,λ);

(b) follows by the mean value theorem; and (c) follows because I{t �∈ M} ≤ 1.
Furthermore,

C0K0

T∑

t=2

E
π
X,θ

{‖θ − ϑ̂ (lasso)
t (λt)‖2}

≤ C5

(
t1d

2
�
+
T−1∑

t=t1
P
π
X,θ {Act } d2

�
+
T−1∑

t=t1
E
π
X,θ

{‖θ − ϑ̂ (lasso)
t+1 (λt+1)‖2

I{At }
})

(7.31)

for T ≥ 2, where

At =
{

‖θ − θ̂ (lasso)
t+1 (λt+1)‖2 ≤ ρ3s(log d + log t)√

t

}

,

172 G.-Y. Ban

C5 = C3 max{‖∇θ ϕ(θ, x)‖2 : θ ∈ �, x ∈ X}, d� = max{‖ϑ− ϑ̃‖ : ϑ, ϑ̃ ∈ �}, and
P
π
X,θ {·} is the probability measure associated with EπX,θ {·}. Lemma 3 implies that

P
π
X,θ {Act } ≤ κ3s(log d+log t)√

t
for t ≥ t1, from which we deduce

T−1∑

t=t1
P
π
X,θ {Act } ≤ 2κ3s

√
T (log d + log T).

We thus arrive at

T∑

t=1

E
π
X,θ

{
C3

[
ϕ(θ,Xt)− pt

]2
I{t �∈ M}} ≤ C6s

√
T (log d + log T), (7.32)

for T ≥ 2, where C6 = C5(t1d
2
�
+ 2κ3d

2
�
+ 4ρ3).

Putting everything together, we have the desired result

�πθ (T) ≤ C̃s
√
T (log d + log T)

for T ≥ 2, where C̃ = C4 + C6. ��

7.4.5 Discussion

As there are several competing works on dynamic pricing with high-dimensional
data in the recent literature, let us clarify the differences between them. Qing and
Bayati (2016) assume the demand follows a linear function of the prices and features
and applies a myopic policy based on least-square estimations which achieves a
regret of O(log(T)). Javanmard and Nazerzadeh (2019) consider dynamic pricing
with (product) features under a binary choice model and construct a regularized
maximum likelihood policy which achieves a regret of O(s log(d) log(T)). Cohen
et al. (2020) study dynamic pricing of differentiated products on a homogeneous
customer base, where the market value of each product is a linear function
of the feature vector. The authors assume that the feature vectors are selected
adversarially and introduce an ellipsoid-based algorithm which obtains a regret of
O(d2 log(T /d)). Ban and Keskin (2021) generalize the linear model of Qing and
Bayati (2016) to include a feature-dependent price sensitivity term and to allow for
nonlinear transformations of the underlying linear model.

Apart from the differences in the demand model, Qing and Bayati (2016), Javan-
mard and Nazerzadeh (2019), and Cohen et al. (2020) can achieve a logarithmic
regret because the demand feedback is assumed to be a deterministic function of
some unknown parameter. This contrasts with the square root regret of Ban and
Keskin (2021), where the error term in the demand model is assumed to follow a

7 Pricing with High-Dimensional Data 173

sub-Gaussian Martingale difference sequence, not a specific parametric distribution.
See Kleinberg and Leighton (2003) for a discussion of this distinction and lower
bounds in both settings.

7.5 Directions for Future Research

In this chapter, we reviewed recent theoretical developments in using high-
dimensional customer and/or product information data in pricing. In particular,
we focused on the static pricing study of Chen et al. (2022) and the dynamic pricing
study of Ban and Keskin (2021).

Future research can extend the growing number of recent works in the following
directions. First, consideration of objectives other than pure revenue optimization
would be more appropriate for many businesses. Examples include consideration of
long-term customer satisfaction, or simply, customer growth (perhaps even at the
expense of revenue, which is the case for ambitious start-ups). For such objectives,
the problem would be cast as offering personalized discounts, rather than prices,
although mathematically speaking, charging personalized prices is equivalent to
offering personalized discounts. Further elaboration on different objectives is to
consider various business constraints; so far, all papers that analyze the performance
of pricing with high-dimensional data only consider a simple interval constraint on
the price. This can lead to interesting yet challenging problems, especially if the
constraints also depend on high-dimensional data.

Second, there is much scope for investigating novel solution methods, com-
paring across different estimation paradigms (non-parametric, parametric, semi-
parametric, and Bayesian) and gaining deeper understanding of their advantages
and disadvantages. There is also room for better understanding the theoretical per-
formance of some of these methods beyond pure empirical comparisons. Ultimately,
the goal would be to generate a library of knowledge in aiding businesses with their
price decisions in a variety of situations.

Finally, an important yet understudied area is in legal and ethical concerns of
pricing with high-dimensional data (Gerlick and Liozu, 2020). The main concerns
identified are data privacy and fairness issues. At the time of writing, Chen et al.
(2020) and Lei et al. (2020) are two works known to us that construct and analyze
privacy-preserving pricing algorithms; other works are sure to follow.

References

Ban, G. Y., & Keskin, N. B. (2021). Personalized dynamic pricing with machine learning: High-
dimensional features and heterogeneous elasticity. Management Science, 67(9), 5549–5568.

Ban, G. Y., & Rudin, C. (2019). The big data newsvendor: Practical insights from machine learning.
Operations Research, 67(1), 90–108.

174 G.-Y. Ban

Ban, G. Y., Gallien, J., & Mersereau, A. J. (2019). Dynamic procurement of new products
with covariate information: The residual tree method. Manufacturing & Service Operations
Management, 21(4), 798–815.

Bastani, H., & Bayati, M. (2020). Online decision making with high-dimensional covariates.
Operations Research, 68(1), 276–294.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Bühlmann, P., & Van De Geer, S. (2011). Statistics for high-dimensional data: methods, theory

and applications. Springer Science & Business Media.
Chen, X., Simchi-Levi, D., & Wang, Y. (2020). Privacy-preserving dynamic personalized pricing

with demand learning. Available at SSRN 3700474.
Chen, X., Owen, Z., Pixton, C. & Simchi-Levi, D. (2022). A statistical learning approach to

personalization in revenue management. Management Science, 68(3), 1923–1937.
Cohen, M. C., Lobel, I., & Paes Leme, R. (2020). Feature-based dynamic pricing. Management

Science, 66(11), 4921–4943.
Ferreira, K. J., Lee, B. H. A., & Simchi-Levi, D. (2016). Analytics for an online retailer: Demand

forecasting and price optimization. Manufacturing & Service Operations Management, 18(1),
69–88.

Gerlick, J. A., & Liozu, S. M. (2020). Ethical and legal considerations of artificial intelligence
and algorithmic decision-making in personalized pricing. Journal of Revenue and Pricing
Management, 19, 85–98.

Gill, R. D., & Levit, B. Y. (1995). Applications of the van trees inequality: a Bayesian Cramér-Rao
bound. Bernoulli, 1(1/2), 59–79.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining,
inference, and prediction. Springer Science & Business Media.

Javanmard, A., & Nazerzadeh, H. (2019). Dynamic pricing in high-dimensions. The Journal of
Machine Learning Research, 20(9), 1–49.

Kleinberg, R., & Leighton, T. (2003). The value of knowing a demand curve: Bounds on regret for
online posted-price auctions. In Proceedings of 44th Annual IEEE Symposium on Foundations
of Computer Science (pp. 594–605). IEEE.

Lei, Y. M., Miao, S., & Momot, R. (2020). Privacy-preserving personalized revenue management.
Available at SSRN 3704446.

Mandl, C., & Minner, S. (2020) Data-Driven Optimization for Commodity Procurement Under
Price Uncertainty. Manufacturing & Service Operations Management. https://pubsonline.
informs.org/doi/abs/10.1287/msom.2020.0890.

Nelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal
Statistical Society: Series A (General), 135(3), 370–384.

Qian, S., & Bayati, M. (2016). Dynamic pricing with demand covariates. Available at SSRN
2765257.

Qu, H., Ryzhov, I. O., Fu, M. C., Bergerson, E., Kurka, M., & Kopacek, L. (2020). Learning
demand curves in b2b pricing: A new framework and case study. Production and Operations
Management, 29(5), 1287–1306.

Train, K. E. (2009). Discrete choice methods with simulation (2nd ed.). Cambridge University
Press.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint (Vol. 48).
Cambridge University Press.

 27855 35116 a 27855 35116
a

https://pubsonline.informs.org/doi/abs/10.1287/msom.2020.0890
https://pubsonline.informs.org/doi/abs/10.1287/msom.2020.0890

Part III
Assortment Optimization

Chapter 8
Nonparametric Estimation of Choice
Models

Srikanth Jagabathula and Ashwin Venkataraman

8.1 Introduction

Firms rely on demand predictions to make critical operational decisions. For
example, firms need to know how customers respond to price changes in order
to optimize the prices it charges. Traditionally, operational decision models relied
on what is known as the “independent” demand model. As its name implies, an
independent demand model assumes that the demand observed for a product is
independent of the availability or characteristics, such as price, of other products.
That is, the model ignores any cross-product cannibalization effects. Ignoring cross-
product effects is hard to justify when products are close substitutes of each other;
for example, products belonging to the same product category (e.g., different brands
of toothpaste), different fare classes of an airline itinerary, different transportation
modes (e.g., car, bus, train, etc.) are all close substitutes of each other. In such cases,
ignoring the cross-product effects lead to biased demand estimates, especially when
product prices and availability change over time. To deal with such cross-product
effects, choice-based demand models have gained in popularity over the last couple
of decades.

In the most general form, a choice model specifies the probability that a customer
purchases a product from a given subset, or offer set, of products. If there are
N products, then the model specifies choice probabilities for each of the 2N

subsets. Because the model is intractable in such a general form, existing literature

S. Jagabathula
Stern School of Business, New York University, New York, NY, USA
e-mail: sjagabat@stern.nyu.edu

A. Venkataraman (�)
Jindal School of Management, University of Texas at Dallas, Richardson, TX, USA
e-mail: ashwin.venkataraman@utdallas.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_8

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_8&domain=pdf

 885 51863 a 885 51863
a

mailto:sjagabat@stern.nyu.edu

 885 55738 a 885 55738 a

mailto:ashwin.venkataraman@utdallas.edu

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_8

178 S. Jagabathula and A. Venkataraman

has studied various model sub-classes with varying degrees of tractability. The
most studied sub-class, by far, is the random utility maximization (RUM) class of
models (McFadden, 1981). These models specify a joint distribution over product
utilities and assume that each customer samples a utility vector from the underlying
joint distribution and purchases the available product with the maximum utility. A
special case of the RUM class that has received the most attention in the literature is
the multinomial logit (MNL) model (see, e.g., Ben-Akiva et al., 1985; Train, 2009).
Other special cases include the nested logit model, the d-level nested logit or the tree
logit model (Li et al., 2015), the generalized extreme value (GEV) model, the mixed
logit model, etc. These special cases differ in the assumptions they impose on the
structure of the joint utility distribution. We refer the reader to Train’s book (Train,
2009) and the overview by Gallego and Topaloglu (2019) for a detailed introduction
to these and related choice models studied in the operations literature.

In this book chapter, we discuss recent developments in the literature on
estimating the RUM class of models from observed sales transaction data. Sales
transaction data provide historical choice observations: the product chosen and
the other products on offer when the choice was made. These data are regularly
collected by firms through their point-of-sale (POS) and inventory systems. Our
focus will be specifically on nonparametric estimation techniques, which differ from
the traditional, and more prevalent, parametric model estimation techniques. In the
context of choice models, parametric models restrict the joint utility distribution to
belong to a parametrized class of distributions. This additional structure lends them
tractability, and the model parameters are typically estimated using standard model
fitting techniques, such as the maximum likelihood estimation (MLE) technique.
While parametric restrictions lend tractability, they typically also result in model
misspecification, which occurs when the imposed restrictions exclude the ground-
truth data generating distribution. Model misspecification leads to biased parameter
estimates and inaccurate demand predictions. To alleviate this issue, nonparametric
techniques do not restrict the joint utility distribution and allow it to be described by
any member of the RUM model class. They then use sophisticated mathematical
techniques to search for the model that has the best fit to the observed data.
Nonparametric techniques generally work best when the volume of data is “large,”
which has increasingly been the case in the recent past because of firms’ ability to
collect highly fine-grained data.

We focus our discussion on broadly two types of techniques. The first technique
deals with the so-called rank-based choice model (Mahajan and Van Ryzin, 2001).
In this model, each product is treated as a bundle of features (e.g., color, weight,
size, price, etc.), which remain fixed and do not vary. The model is fit on transaction
data in which only the offer sets vary, and the trained model is used to predict
demand for a heretofore unseen offer set. The model can accommodate varying
product features by treating each product variant (e.g., the same product but with
different prices) as a separate product. This modeling approach is ideal when
product feature representations are not readily available (e.g., when purchases are
driven by hedonistic features, such as taste, feel, etc.; see, for instance, Hoyer and

8 Nonparametric Estimation of Choice Models 179

Ridgway, 1984; Kahn and Lehmann, 1991) and firms want to predict demand for
various offer sets of their existing products, for which sufficient observed data
exist. For example, airlines have existing transactions on customer bookings, which
contain information on the purchase fare class and the corresponding offered fare
classes for a set of customers. The airline wants to use this data to predict the
expected demand for each combination of offered fare classes in order to determine
the optimal collection of fare classes to open. Similarly, retailers (both online and
offline) want to optimize the offered assortments of existing products to customers.
One limitation of the rank-based model is that it cannot extrapolate demand to new
products or new variants of existing products.

The second technique we discuss addresses the inability of the rank-based choice
model to extrapolate demand. It deals with what we call the nonparametric mixture
of closed logit model (NPMXCL model), which was considered in Jagabathula et al.
(2020b).1 This model assumes that all products have consistent feature representa-
tions and specifies a flexible functional form relating product features to choice
probabilities. When trained on existing transaction data with “sufficient” variation in
features, the model can extrapolate demand to heretofore unseen products or product
variants. This model subsumes the rank-based model as a special case and is ideally
suited for estimating price elasticities, optimizing discount levels and promotion
mix, and determining the cannibalization effects of introducing new products.

Both techniques above formulate the estimation problem as a large-scale con-
strained convex optimization problem and build on recent developments within the
machine learning (ML) literature to propose efficient algorithms for model estima-
tion. We also discuss some of the theoretical guarantees that can be established for
these methods.

The rest of the chapter is organized as follows. We first present an overview of
the setup, notation, and the data model. We then discuss the model assumptions and
the details of the corresponding estimation techniques for the rank-based model and
the NPMXCL model. We then briefly review other nonparametric choice models
proposed in the literature and conclude with some thoughts on future directions in
nonparametric choice modeling.

Notation We first summarize notation that is common to the rest of the chapter.
For any positive integer m, we let [m] denote the set {1, 2, . . . , m}, 0m denote the
all-zeros vector in Rm, and Δm denote the unit m-simplex in Rm+1. Vectors are
denoted by lower-case bold letters such as x,g, etc. For any multivariate function
h(·) on the Euclidean space, ∇h(·) denotes the gradient of h(·), i.e., the vector of
partial derivatives with respect to each of the input variables. We let ‖x‖ denote
the L2-norm of any vector x in the Euclidean space. When we write x1 > x2 for
vectors x1 �= x2, we mean that each element of x1 is greater than the corresponding
element in x2. For any set A, |A| denotes its cardinality. Finally, 〈·, ·〉 denotes the
standard inner product in the Euclidean space.

1 However, they did not introduce this nomenclature.

180 S. Jagabathula and A. Venkataraman

8.2 General Setup

We consider the setting of a firm whose offerings belong to a universe [N] =
{1, 2, . . . , N} of N products. The firm collects choice data over a collection M
of offer sets, where each offer set is a subset of the product universe [N] offered
to the customers. For each subset S ∈ M, we let yi,S ∈ [0, 1] denote the observed
fraction of customers who purchased product i when S was offered. Typically, the
customer can leave without making a purchase, which is represented by a special
product called the no-purchase or outside option. In our development below, the no-
purchase option can be treated as any other product and consequently, we suppose
that the product universe [N] and the offer sets already include the no-purchase
option. Note that we are implicitly assuming here that the firm can keep track of
customers who visited with an intent to purchase but did not make a purchase.
This can be done to a certain extent in the online e-commerce settings, but in
the offline settings, the no-purchase observations are typically censored. We do not
explicitly deal with this issue in this book chapter and suppose that the demand has
been uncensored using other means.2 We represent the observed data as the vector

yM = (yi,S : i ∈ S, S ∈ M). Let M
def= ∑

S∈M |S| denote the total number of
choice observations, so that yM ∈ [0, 1]M .

As mentioned earlier, a choice model specifies the probability that a customer
purchases a product from a given offer set. For the collection M, we represent the
collection of choice probabilities under a given model as the vector gM = (gi,S : i ∈
S, S ∈M)where gi,S ∈ [0, 1] is the probability of choosing product i from offer set
S specified by the choice model. Estimating a model typically involves finding the
model parameters that best fit the observed data, where the model misfit is measured
using a loss function. More specifically, we measure the degree of model misfit using
a non-negative loss function gM ,→ loss(yM,gM) that measures the “distance”
between the observed choice fractions yM and model predicted choice probabilities
gM. We consider loss functions loss(yM, ·) that are (strictly) convex in the second
argument and have the property that loss(yM,gM) = 0 if and only if yM = gM.
Letting G denote the set of all choice probability vectors (for the observed offer set
collection) that can be generated by the choice model family of interest, we solve
the following estimation problem:

min
gM∈G

loss(yM,gM). (GENERAL ESTIMATION PROBLEM)

2 There are numerous papers that explicitly account for the demand censoring issue while
estimating the choice model; see, for instance, Haensel and Koole (2011), Newman et al. (2014),
and Abdallah and Vulcano (2020).

8 Nonparametric Estimation of Choice Models 181

The following are two commonly used loss functions:

Example 1 (Log-Likelihood/Kullback–Leibler (KL) Divergence Loss Function)
This loss function is defined as follows:

loss(yM,gM) = −
∑

S∈M
MS

∑

i∈S
yi,S log

(
gi,S/yi,S

)
,

where the weight MS > 0 associated with offer set S ∈ M is equal to the
number of customers who were offered the assortment S. Note that if yi,S =
0 for some (i, S) pair, then the corresponding term is dropped from the loss
objective. It can be verified that this loss function is non-negative since it is
a weighted sum (with non-negative weights) of individual KL-divergence terms
−∑

i∈S yi,S log(gi,S/yi,S) between the distributions
(
yi,S : i ∈ S

)
and

(
gi,S : i ∈ S

)

for each S ∈M, which are always non-negative. For the same reason, we also have
that loss(yM,gM) = 0 if and only if yi,S = gi,S for all i ∈ S and S ∈ M.
The loss function is strictly convex in the second argument, provided that the
observed fractions for all choice observations are strictly positive, i.e., yM > 0M .
This follows from the strict concavity of the logarithm function. Because the terms
involving the observed choice fractions (yi,S : i ∈ S, S ∈ M) are constants for
the optimization problem, it can be shown that minimizing the KL-divergence loss
function is equivalent to maximizing the log-likelihood. Therefore, employing this
loss function in the GENERAL ESTIMATION PROBLEM results in the maximum
likelihood estimate (MLE).

Example 2 (Squared Norm Loss Function) This loss function is defined as

loss(yM,gM) =
∥
∥yM − gM

∥
∥2
.

It is easy to see that the squared norm loss function is non-negative and takes a value
of 0 if and only if yM = gM. Further, it is strictly convex in gM for any fixed yM.

Having introduced the general setup for the estimation problem, we now
discuss in more detail two choice model families, the rank-based model and the
NPMXCL model.

8.3 Estimating the Rank-Based Model

The rank-based choice model is the most general representation of the RUM class
of models. Recall that a RUM model assumes that customers sample a utility
for each of the products and choose the available product with the highest utility
value. For finitely many products, it is clear that as far as the customer’s choice is
concerned, the actual utility values do not matter—only the preference ordering
induced by the sampled utilities matter; see, for instance, Block and Marschak

182 S. Jagabathula and A. Venkataraman

(1960) and Mas-Colell et al. (1995). The rank-based choice model recognizes this
and models the preferences of each customer as a ranking or preference ordering of
the products. The preferences of a population of customers are, as a result, modeled
as a probability distribution over rankings.

The rank-based choice model has origins in the classical preference and utility
theory in economics and psychology (Block and Marschak, 1960; Manski, 1977;
Falmagne, 1978; Barberá and Pattanaik, 1986). Most of the work in this area has
focused on establishing theoretical properties of the model. For instance, Falmagne
(1978) shows that a system of choice probabilities defined over all possible offer
sets is consistent with a rank-based model if and only if all the Block–Marschak
polynomials are non-negative; see also Barberá and Pattanaik (1986). McFadden
(2005) provides additional necessary and sufficient conditions in the form of
systems of linear inequalities, and shows how the different conditions relate to one
another. For much of its history, the rank-based choice model has mostly served
as a theoretical construct because estimating it from choice data is a significant
computational challenge. Therefore, the literature on choice modeling has largely
focused on specific parametric models, which impose additional structure on
the utility distributions to trade off the restrictiveness of the models with the
computational tractability of estimating them. Farias et al. (2013) was one of the
first papers within the operations literature to tackle the computational challenge
of estimating the rank-based model from choice data. They used ideas in linear
programming to propose tractable techniques to predict revenues for new offer
sets. Subsequent work (van Ryzin and Vulcano, 2015, 2017; Jagabathula and
Rusmevichientong, 2017) further built on this paper to make the rank-based model
operationally tractable, some of which has focused on estimating the model and
solving the subsequent operational decision, such as the assortment or the pricing
decision.

Before discussing the estimation of the rank-based model, we formally define
the model. Let P denote the set of all permutations (or linear preference orders) of
the N products, so that |P| = N ! (N factorial). Each element σ ∈ P is a ranking
of the N products, and for all i ∈ [N], we let σ(i) denote the rank of product
i. We assume that if σ(i) < σ(j), then product i is preferred over product j in
the ranking σ . Given any offer set S, a customer chooses the product that is most
preferred under her ranking σ . Let 1[σ, i, S] denote the indicator variable that takes
a value of 1 if and only if product i is the most preferred product in S under σ ;
that is, 1[σ, i, S] = 1 if and only if σ(i) < σ(j) for all j ∈ S, j �= i. The choice
behavior of the customer population is then modeled as a probability distribution
λ : P → [0, 1] over the permutations with λ(σ) denoting the probability that a
customer uses the ranking σ when making a purchase. Because λ is a probability
distribution, we have that λ(σ) ≥ 0 for all σ ∈P and

∑
σ∈P λ(σ) = 1.

Given any distribution over rankings λ, the vector of choice probabilities for the
offer set collection M under the rank-based model is given by:

gM(λ) = (gi,S(λ) : i ∈ S, S ∈M) where gi,S(λ) =
∑

σ∈P
1[σ, i, S] · λ(σ).

(8.1)

8 Nonparametric Estimation of Choice Models 183

The set of all such probability vectors consistent with a rank-based model is
denoted by G(P):

G(P) =
⎧
⎨

⎩
gM(λ) | λ :P → [0, 1],

∑

σ∈P
λ(σ) = 1

⎫
⎬

⎭
. (8.2)

The estimation problem for the rank-based model can then be formulated by
plugging in G = G(P) in the GENERAL ESTIMATION PROBLEM. However, solving
the problem in this form poses some difficulties. This is because the loss function
depends on the distribution λ only through the predicted choice probability vector
gM(λ), and, therefore, the underlying distribution is not directly identifiable in
general. In fact, Sher et al. (2011) showed that if N ≥ 4, there are multiple
distributions over rankings that are consistent with any given collection of choice
probabilities. The idea is that the choice probabilities impose O(2N) degrees of
freedom (corresponding to all the subsets of [N]) whereas the space of distributions
has O(N !) = O(2N logN) degrees of freedom.

To see this fact more explicitly, we consider an alternate representation of G(P).
For each σ ∈ P , let f (σ) ∈ {0, 1}M be the vector of indicators that determine
whether product i is chosen from offer set S under ranking σ :

f (σ) = (1[σ, i, S] : S ∈M, i ∈ S) , (8.3)

and let F(P) def= {f (σ) : σ ∈P} denote the set of all such indicator vectors. Now,
consider the convex hull of the set F(P), which we denote as conv(F(P)), defined
as:

conv (F(P)) =
⎧
⎨

⎩

∑

f∈F(P)

αf f : αf ≥ 0 ∀f ∈ F(P),
∑

f∈F(P)

αf = 1

⎫
⎬

⎭
.

Then, using the above equations it can be verified that G(P) = conv(F(P)). This
shows that G(P) is a convex polytope in RM . While G(P) as defined in (8.2)
appears to have a dependence on N ! variables, in practice the number of extreme
points of G(P) = conv(F(P)) can be (significantly) smaller thanN ! (N factorial).
This is because two different rankings σ �= σ ′ may result in the same vector of
indicators f (σ) = f (σ ′) as in the following example:

Example 3 (Complexity ofG(P)Under Market Shares Data) Suppose that the firm
collects only market shares data, so that the offer set collection M = {[N]}. In this
case M = N and it follows that each f (σ) ∈ {0, 1}N with f (σ1) = f (σ2) for
any two rankings σ1, σ2 in which the top-ranked product is the same. Consequently,
|F(P)| = N / N ! (N factorial). Moreover, it can be verified that the number of
extreme points of conv(F(P)) is, in fact, N .

184 S. Jagabathula and A. Venkataraman

More generally, the number of extreme points of conv(F(P)), which is at most
|F(P)|, depends on the variation amongst offer sets in M. Therefore, conv(F(P))
is a more succinct representation of G(P).

With the above development, the GENERAL ESTIMATION PROBLEM for the rank-
based model takes the form:

min
g∈conv(F(P))

loss(g), (RANK-BASED MODEL ESTIMATION PROBLEM)

where we drop the explicit dependence of the set collection M on the predicted
choice probabilities, and the observed choice fractions yM on the loss function
for notational convenience. Since the constraint set is a convex polytope and the
objective function is convex, the RANK-BASED MODEL ESTIMATION PROBLEM is
a constrained convex program. In theory, it can be solved using standard methods for
convex optimization. The challenge, however, is two-fold: (a) the constraint poly-
tope may not have an efficient description and (b) decomposing a candidate solution
g into the corresponding proportions α (and, therefore, the underlying distribution
λ) is itself a hard problem. Note that the distribution is required so that out-of-
sample choice predictions can be made. To address these issues, Jagabathula and
Rusmevichientong (2019) (henceforth JR) used the conditional gradient algorithm,
which, as we will see shortly, transforms the convex optimization problem into
solving a series of linear optimization problems. But first, we show that the RANK-
BASED MODEL ESTIMATION PROBLEM has a unique optimal solution:

Theorem 1 (Unique Optimal Solution) For any strictly convex loss function
loss(·) over the domain conv(F(P)), the RANK-BASED MODEL ESTIMATION

PROBLEM has a unique optimal solution.

Proof We prove this result by contradiction. Suppose, if possible, there exist two
optimal solutions g∗1 �= g∗2 and let loss∗ = loss(g∗1) = loss(g∗2). By strict
convexity of loss(·), it follows that for any δ ∈ (0, 1):

loss(δg∗1 + (1− δ)g∗2) < δ · loss(g∗1)+ (1− δ) · loss(g∗2)
= δ · loss∗ + (1− δ) · loss∗ = loss∗.

Since, by definition, conv(F(P)) is convex, it follows that δg∗1 + (1 − δ)g∗2 ∈
conv(F(P)) is a feasible solution to the RANK-BASED MODEL ESTIMATION

PROBLEM. But this contradicts the assumption that loss∗ is the optimal objective
and, therefore, the optimal solution must be unique. ��

8 Nonparametric Estimation of Choice Models 185

8.3.1 Estimation via the Conditional Gradient Algorithm

As mentioned above, JR proposed to solve the RANK-BASED MODEL ESTIMA-
TION PROBLEM using the conditional gradient algorithm. We begin with some
background on the algorithm and then discuss its application for estimating the rank-
based choice model.

Background The conditional gradient (hereafter CG) algorithm (aka Frank–
Wolfe) algorithm (Clarkson, 2010; Jaggi, 2013) is an iterative method for solving
optimization problems of the form

min
x∈Dh(x), (8.4)

where h(·) is a differentiable convex function and D is a compact convex region in
the Euclidean space. It is in fact a generalization of the original algorithm proposed
by Frank and Wolfe (1956), who considered solving quadratic programming
problems with linear constraints. Starting from an arbitrary feasible point x(0) ∈ D,
in each iteration k ≥ 1, the algorithm finds a descent direction d(k) such that〈
∇h(x(k−1)), d(k)

〉
< 0 and takes a suitable step in that direction. The algorithm

computes such a descent direction by optimizing the linear approximation of h(·) at
the current iterate x(k−1) over the feasible domain D. That is, it solves the following
problem:

v(k) ∈ arg min
v∈D

h(x(k−1))+
〈
∇h(x(k−1)), v − x(k−1)

〉
. (FRANK–WOLFE STEP)

Because the objective function in the FRANK–WOLFE STEP is linear in v, the
optimal solution v(k) is an extreme point of D. Having found the extreme point

v(k), the algorithm updates the solution by taking a step along the direction d(k)
def=

v(k) − x(k−1)obtaining x(k) = x(k−1) + γ (k) · d(k) for some step size γ (k) ∈ [0, 1].
Since d(k) is a descent direction, it can be shown that for a suitable choice of γ (k),
we have h(x(k)) < h(x(k−1)) so that moving in the direction of v(k) ensures an
improving solution; see, e.g., Nocedal and Wright (2006).3 In the classical Frank–
Wolfe algorithm, the step size was fixed to γ (k) = 2/(k+ 2). A standard alternative
is to do a line-search for the optimal step size in each iteration to obtain

γ (k) ∈ arg min
γ∈[0,1]

h
(
x(k−1) + γ · d(k)

)
.

3 This is true as long as
〈∇h(x(k−1)), v(k) − x(k−1)

〉
< 0. If

〈∇h(x(k−1)), v(k) − x(k−1)
〉 ≥ 0, then

the convexity of h(·) implies that h(x) ≥ h(x(k−1)) for all x ∈ D and consequently, x(k−1) is an
optimal solution.

186 S. Jagabathula and A. Venkataraman

Note that the new iterate x(k) remains feasible; this follows because x(k) is a convex
combination of x(k−1) and v(k) and D is convex. Such feasibility of new iterates is
the main benefit of the CG algorithm compared to other classical algorithms such as
gradient descent, which may take infeasible steps that are then projected back onto
the feasible region; such projection steps are usually computationally expensive.
Another feature of the algorithm is that the solution at any iteration k is a convex
combination of the initial solution x(0) and the extreme points v(1), v(2), . . . , v(k).

The CG algorithm is particularly attractive when solving the FRANK–WOLFE

STEP is “easy”—for instance, if D is a polyhedron, it reduces to an LP. The
CG algorithm has generated tremendous interest in the ML community for solv-
ing large-scale convex optimization problems in the recent past because of its
“projection-free” property and ability to deal with structured constraint sets. The
interested reader is referred to Jaggi’s excellent thesis (Jaggi, 2011) for a more
thorough development of the algorithm along with example applications.

We now apply the CG algorithm to solve the RANK-BASED MODEL ESTIMATION

PROBLEM. This problem is exactly in the form (8.4) above with h(·) = loss(·)
and D = conv(F(P)). We initialize the algorithm by selecting an initial set
of rankings P(0) ⊆ P and proportions α(0) ∈ Δ|P(0)|−1, and setting g(0) =
∑
σ∈P(0) α

(0)
σ f (σ), which by definition belongs to conv(F(P)).4 However, we

need to ensure that the initial loss objective loss(g(0)) and its gradient ∇ loss(g(0))
are both bounded; this aspect is discussed in more detail in Sect. 8.3.1.3 below. Then,
in each iteration k ≥ 1, the FRANK–WOLFE STEP is of the form:

min
v∈conv(F(P))

loss(g(k−1))+
〈
∇ loss(g(k−1)), v − g(k−1)

〉
. (8.5)

As mentioned earlier, the optimal solution to the above subproblem occurs at an
extreme point of the feasible set conv(F(P)). Because this set is the convex hull
of the vectors in F(P), the set of extreme points must be a subset of F(P).
Consequently, problem (8.5) is equivalent to the following:

min
v∈F(P)

〈
∇ loss(g(k−1)), v − g(k−1)

〉
≡ min
σ∈P

〈
∇ loss(g(k−1)),f (σ)− g(k−1)

〉
,

(8.6)
where the equivalence follows from the definition of F(P). Let σ (k) ∈ P
denote an optimal solution to (8.6); we discuss how to solve it in more detail
in Sect. 8.3.1.1 below. This means that the CG algorithm is iteratively adding
rankings σ (1), σ (2), . . . to the support of the distribution. Consequently, we term
subproblem (8.6) as the SUPPORT FINDING STEP.

As mentioned above, the standard variant of the CG algorithm does a line-
search to compute the optimal step size, which results in maximum improvement
in the objective value. An alternative is the “fully corrective” Frank–Wolfe (FCFW)

4 We abuse notation and denote αf (σ) as ασ for any σ ∈P in the remainder of this section.

8 Nonparametric Estimation of Choice Models 187

Algorithm 1 CG algorithm for solving the RANK-BASED MODEL ESTIMATION

PROBLEM

1: Initialize: k ← 0; P(0) ⊆ P; α(0) ∈ Δ|P(0)|−1; g(0) = ∑
σ∈P(0) α

(0)
σ f (σ) s.t.

loss(g(0)),∇ loss(g(0)) are bounded
2: while stopping condition is not met do
3: k← k + 1
4: Compute σ (k) ∈ arg minσ∈P

〈∇ loss(g(k−1)),f (σ)− g(k−1)
〉

(SUPPORT FINDING STEP)
5: Update support of rankings P(k) ←P(k−1) ∪ {

σ (k)
}

6: Compute α(k) ∈ arg minα∈Δ|P(k)|−1
loss

(∑
σ∈P(k) ασf (σ)

)

(PROPORTIONS UPDATE STEP)

7: Update support of rankings P(k) ←
{
σ ∈P(k) : α(k)σ > 0

}

8: Update g(k) ←∑
σ∈P(k) α

(k)
σ f (σ)

9: end while
10: Output: rankings P(k) and proportions (α(k)σ : σ ∈P(k))

variant (Shalev-Shwartz et al., 2010), which after finding the extreme point v(k)

in the FRANK–WOLFE STEP, re-optimizes the objective function over the con-
vex hull conv(

{
x(0), v(1), . . . , v(k)

}
) of the initial solution and extreme points

found so far. When applied to our context, the algorithm computes weights
α(k) = (α

(k)
σ : σ ∈ P(k)) that minimize the loss function loss(·) over the set

conv
({

f (σ) : σ ∈P(k)
})

, where P(k) is the set of rankings recovered up to
iteration k (see the notation in Algorithm 1). It then obtains the next iterate as
g(k) := ∑

σ∈P(k) α
(k)
σ f (σ). The weights α(k) represent the proportions of each

ranking and consequently, we call this the PROPORTIONS UPDATE STEP. The fully
corrective variant of the CG algorithm makes more progress (in terms of the
improvement in the objective value) in each iteration than the line-search variant
and is, therefore, most suited when the FRANK–WOLFE STEP is hard to solve. The
entire procedure is summarized in Algorithm 1.

Remark We note that van Ryzin and Vulcano (2015) proposed a market discovery
algorithm for obtaining the MLE of the rank-based choice model using a column
generation procedure. Though the authors derived their algorithm using duality
arguments, it can be verified that their procedure is identical to the one obtained from
solving the RANK-BASED MODEL ESTIMATION PROBLEM with the KL-divergence
loss function using the CG algorithm.

Next, we discuss the details of how to solve each of the SUPPORT FINDING and
PROPORTIONS UPDATE STEPS.

8.3.1.1 Solving the SUPPORT FINDING STEP

Noting that f (σ) = (1[σ, i, S] : S ∈ M, i ∈ S), the SUPPORT FINDING STEP can
be written as follows:

188 S. Jagabathula and A. Venkataraman

min
σ∈P

∑

S∈M

∑

i∈S

(
∇ loss(g(k−1))

)

i,S
· 1[σ, i, S]. (8.7)

This problem requires us to find a ranking with the minimum “cost,” which is
referred to as the rank aggregation problem in the ranking literature (Dwork et al.,
2001) and is known to be NP-hard; see, for instance, van Ryzin and Vulcano (2015)
and Jagabathula and Rusmevichientong (2019). In practice, subproblem (8.7) does
not need to be solved to optimality and any feasible solution that generates a
descent direction is sufficient to ensure an improving solution in Algorithm 1. Below
we discuss a few different approaches that can be used to obtain an approximate
solution.

Mixed Integer Program (MIP) Formulation van Ryzin and Vulcano (2015,
Section 4.3.2) formulated a special case of the rank aggregation subproblem (8.7),
which they referred to as the “Type Discovery Subproblem,” as an MIP. In
particular, they considered the case of individual purchase transactions where a
single transaction is observed for each offer set. The same formulation extends to
the aggregated data setting, which we present below.5

To simplify the formulation, we let μi,S =
(∇ loss(g(k−1)

)
i,S

. We encode the
ranking σ using binary decision variables bij ∈ {0, 1} for all i, j ∈ [N], i �= j ,
defined so that bij = 1 if and only if product i is preferred to product j , i.e.,
σ(i) < σ(j). Further, we let wi,S = 1[σ, i, S] and denote the collection of decision
variables as b = (bij : i, j ∈ [N], i �= j), and w = (wi,S : S ∈ M, i ∈ S). Then,
subproblem (8.7) is equivalent to the following MIP:

min
b,w

∑

S∈M

∑

i∈S
μi,S · wi,S (8.8a)

s.t. bij + bji = 1 ∀ i, j ∈ [N], i < j (8.8b)

bij + bjl + bli ≤ 2 ∀ i, j, l ∈ [N], i �= j �= l (8.8c)

wj,S ≤ bji ∀S ∈M,∀i, j ∈ S, i �= j (8.8d)
∑

j∈S
wj,S = 1 ∀S ∈M (8.8e)

bij ∈ {0, 1} ∀ i, j ∈ [N], i �= j (8.8f)

wi,S ∈ {0, 1} ∀ S ∈M, i ∈ S. (8.8g)

The constraint (8.8b) ensures that either product i is preferred to product j or j
is preferred to i in the ranking. The second constraint (8.8c) enforces transitivity
amongst any three products in the ranking: if product i is preferred to j and j is

5 Mišić (2016) also proposed a similar formulation for estimating the rank-based choice model
with an L1-norm loss function using a column generation approach.

8 Nonparametric Estimation of Choice Models 189

preferred to l, then i must be preferred to l. The third constraint (8.8d) encodes the
consistency of the indicator variables 1[σ, i, S]; in particular, if wj,S = 1, then it
means that product j is the most preferred product from offer set S. This implies
that we must have bji = 1 for all i ∈ S \ {j}, i.e., j is preferred over all other
products in S. The fourth constraint (8.8e) ensures that only one of the indicator
variables 1[σ, i, S] is non-zero for each offer set S. The objective function (8.8a) is
exactly the objective in (8.7). The formulation hasO(N2+M) binary variables, and
O(N3+N2 |M|) constraints. Again, note that MIP (8.8) does not need to be solved
to optimality, all we need is a feasible solution that generates a descent direction.
Given any feasible solution (b,w), the corresponding ranking σ can be computed
by setting σ(i) = 1+∑

j �=i bji for all i ∈ [N].
Leverage Structure in Observed Offer Set Collection Though the rank aggrega-
tion subproblem (8.7) is NP-hard in general, JR showed that if the observed offer set
collection M possesses certain structures, it can be solved efficiently. The structure
is captured via a choice graph over the observed offer sets: each offer set is a vertex
and the edges capture relationships amongst the most preferred products (under any
ranking) in the different offer sets. They show that subproblem (8.7), which they
refer to as the RANK AGGREGATION LP, can be formulated as a DP or LP over
the choice graph with linear or polynomial complexity (in N and |M|) for offer
set collections that commonly arise in retail and revenue management settings. See
Section 3 in JR for more details.

Local Search Heuristic A simple method to find an approximate solution to (8.7)
is the local search heuristic that was proposed in Mišić (2016) and Jagabathula and
Rusmevichientong (2017). This heuristic starts with a randomly chosen ranking and
then tries to find a better solution by evaluating all “neighboring” rankings obtained
by swapping the positions of any two products. The procedure is repeated until no
neighboring ranking yields a smaller objective value for (8.7), resulting in a locally
optimal solution σ̂ . If σ̂ does not produce an improving solution in Algorithm 1,
which can be verified by checking if f (σ̂) − g(k−1) is a descent direction, i.e.,〈∇ loss(g(k−1)),f (σ̂)− g(k−1)

〉
< 0, then we redo the search starting from a

different ranking, until we exhaust a limit on the number of tries.

8.3.1.2 Solving the PROPORTIONS UPDATE STEP

When compared to the SUPPORT FINDING STEP, THE PROPORTIONS UPDATE STEP

is easier to solve because the corresponding subproblem is itself a convex program
over the unit simplex Δ|P(k)|−1. It can be solved via the “away steps” variant of
the CG algorithm described in Sect. 8.4.1.2, which promotes recovery of sparse
distributions. Note that in line 7 in Algorithm 1, we drop the rankings with zero
probability mass from the support, decreasing the support size and resulting in a
sparser distribution. Another approach to solving the PROPORTIONS UPDATE STEP

is to use the expectation-maximization (EM) algorithm proposed by van Ryzin and
Vulcano (2017), which was utilized by the same authors in their market discovery

190 S. Jagabathula and A. Venkataraman

algorithm (van Ryzin and Vulcano, 2015) for estimating the rank-based choice
model. An appealing feature of this approach is that the M-step involves closed-
form updates for the proportions α and, therefore, is simple to implement.

8.3.1.3 Initialization and Stopping Criterion

Line 1 in Algorithm 1 specifies that the initial collection of rankings P(0) should
be chosen such that the loss function and its gradient are bounded. In particular,
for the KL-divergence loss function, choosing P(0) = {

σ (0)
}

(and α(0) = (1))

is not possible since this results in g(0)i,S = 0 for any (i, S) where 1[σ (0), i, S] =
0, making the initial loss objective loss(g(0)) unbounded. van Ryzin and Vulcano
(2015) initialized their method with N rankings, with each product i ∈ [N] being
the top-ranked product in exactly one ranking.6 This ensures that g(0) > 0M so
that both loss(g(0)) and the gradient ∇ loss(g(0)) are bounded. Jagabathula and
Rusmevichientong (2017) considered an alternative approach where they start with
a ‘sales ranking’ in which products are ranked according to their aggregate sales
(across all offer sets), with higher sales products being more preferred in the ranking.
Then, they obtain N rankings by modifying the sales ranking: ranking i is obtained
by moving product i to the top-rank while the remaining products are shifted down
in the ranking. Again, this initialization ensures that g(0) > 0M .

Depending on the end goal, different stopping conditions may be used to
terminate the algorithm. If the objective is to get the best possible fit to the data,
then ideally we would like to run the algorithm until we are “close” to the optimal
solution g∗ of the RANK-BASED MODEL ESTIMATION PROBLEM. If the SUPPORT

FINDING STEP can be solved optimally in each iteration, then its solution can be
used to construct an upper bound on the optimality gap of the current solution g(k),
defined as loss(g(k)) − loss(g∗); see Jaggi (2011) for details. Consequently, we
can choose to terminate the algorithm when loss(g(k)) − loss(g∗) ≤ ε for some
small ε > 0. An alternative approach is to stop when the absolute (or relative)
change in the loss function objective is smaller than some pre-defined threshold. On
the other hand, if the objective is to achieve good predictive performance out-of-
sample, then the above approach may not work well as the final support may have
a large number of rankings and thus overfit to the observed choice data. In such
cases, standard information-theoretic measures proposed in the mixture modeling
literature (McLachlan and Peel, 2004) such as Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), etc. that penalize overly complex mixture
models or ML techniques such as cross-validation can be used for model selection.
The approach used in Jagabathula et al. (2020b) was to limit the number of iterations
of the algorithm based on an upper bound on the support size of rankings that one

6 The remaining products in each ranking can be chosen arbitrarily.

8 Nonparametric Estimation of Choice Models 191

is interested in finding. This idea is inspired by the early stopping rule in the ML
literature (Yao et al., 2007; Prechelt, 2012).

8.3.2 Convergence Guarantee for the Estimation Algorithm

We can establish a convergence rate guarantee for the iterates g(k) generated by
Algorithm 1. Since the guarantee is identical to the case of the NPMXCL model
discussed below, we do not repeat it here and refer the reader to Sect. 8.4.2 for the
formal result. However, an interesting question is whether the special structure of
the polytope conv(F(P)) can be leveraged to come up with stronger convergence
rates. Of course, the result does not address recovery of the underlying distribution
over rankings since it is not identifiable in general, as discussed earlier. To identify
the distribution, additional constraints need to be imposed. One such approach
was taken by Farias et al. (2013) where the goal was to find a distribution over
rankings compatible with observed transaction data that produces the worst-case
revenue for a given fixed assortment. The authors showed that such a distribution
is approximately the sparsest rank-based choice model that explains the observed
data.

8.4 Estimating the Nonparametric Mixture of Closed Logit
(NPMXCL) Model

The rank-based model does not have the ability to extrapolate demand to new prod-
ucts or newer variants of existing products. One approach to address this issue was
considered in Jagabathula and Rusmevichientong (2017). These authors extended
the rank-based model to accommodate products with varying prices by adding a
random consideration set layer on top of the rank-based model. Their consideration
set model assumes that customers sample a threshold parameter and consider for
purchase only those products who prices are less than the sampled threshold. From
among the considered products, the customers then choose according to a rank-
based choice model. In this model, the consideration set layer captures the impact
of price changes on preferences and the rank-based model layer captures the impact
of assortment changes on the preferences. The authors proposed an EM method to
estimate the parameters of this generalized model and also showed how to use this
model to jointly optimize product prices and the assortment offered to customers.
However, this approach does not directly extend to capturing the variation in other
product features.

For that, Jagabathula et al. (2020b) (henceforth JSV) generalize the rankings in
the rank-based model to have a more flexible functional form that can incorporate
product features. More formally, suppose that each product is represented by a

192 S. Jagabathula and A. Venkataraman

D-dimensional feature vector in some feature space Z ⊆ RD . Example features
include the price, brand, color, size, weight, etc. We let ziS denote the feature vector
of product i in offer set S, allowing product features (such as prices) to change
over time/location with each offer set. If one of the products is the no-purchase
option, then its feature vector is set to 0D in all offer sets.7 For any offer set S, let
ZS = (ziS : i ∈ S). Then we denote the collection of all observed feature vectors as
ZM = (ZS : S ∈M).

The population preferences are modeled as a distribution over customer types,
defined as follows. We first consider the standard multinomial logit (MNL) types,
whose choice behavior is governed by the MNL model. In particular, given a
parameter (or “taste”) vector β ∈ RD , the MNL model specifies that a customer
purchases product i from offer set S with probability

fi,S(β;ZS) = exp (β	ziS)
∑
j∈S exp (β	zjS)

, (MNL CHOICE PROBABILITY FUNCTION)

where we have made the dependence on the set of feature vectors ZS explicit.
The taste vector β captures the “value” that a customer places on each of the
product features in deciding which product to purchase. Each standard logit type
is represented using the vector f (β;ZM) ∈ (0, 1)M which specifies the choice
probabilities for the observed offer set collection:

f (β;ZM) = (fi,S(β;ZS) : i ∈ S, S ∈M). (8.9)

Denote the set of all standard logit types as FMNL(ZM)
def= {

f (β;ZM) : β ∈ RD}.
A key limitation of standard logit types is that they always assign a non-zero
purchase probability to every product in every offer set. As a result, they cannot
capture rank-based preferences, which allow for zero probabilities of purchase.
To address this limitation, JSV allow the customer types to be also described by
what they call boundary logit types, which include types on the “boundary” of the
set FMNL(ZM). Formally, these types arise when the parameter vector β becomes
unbounded, as we see below. Including the boundary types results in a model that
is a distribution over the closed logit types FMNL(ZM), which is the closure of the
set FMNL(ZM) in RM ; we consider closure with respect to the standard Euclidean
topology on RM .

The following lemma establishes that the closed logit types contain rankings as
special cases, showcasing that the rank-based choice model is subsumed by this
model.

Lemma 1 For any offer set collection M, there exists a feature specification ZM
such that F(P) ⊂ FMNL(ZM).

7 In this case, the feature vector for other products would typically include a constant feature 1 to
allow for general no-purchase market shares.

8 Nonparametric Estimation of Choice Models 193

Proof Recall that F(P) = {f (σ) : σ ∈P}, where f (σ) is defined in (8.3).
Suppose that the feature representation of each product j ∈ [N] is set to the one-hot
encoded vector, so that, zjS = ej for all offer sets S, where ej ∈ RN is a vector of
all zeros except 1 at the j th position. Note that the number of features D = N in
this case. Letting ES = (ej : j ∈ S) and EM = (ES : S ∈ M), we will show that
f (σ) ∈ FMNL(EM) for all σ ∈P .

Given any ranking σ , define βσ
def= (−σ(1),−σ(2), · · · ,−σ(N)) and consider

the sequence of standard logit types f (r · βσ ;EM) for each r ∈ N. Using the MNL

CHOICE PROBABILITY FUNCTION, it follows that for any S ∈M and any i ∈ S:

lim
r→∞ fi,S(r · βσ ;ES) = lim

r→∞
exp (r · (β	σ ei))

∑
j∈S exp (r · (β	σ ej))

= lim
r→∞

exp (−r · σ(i))
∑
j∈S exp (−r · σ(j))

= lim
r→∞

1

1+∑
j∈S\{i} exp (r · (σ (i)− σ(j)))

= 1[σ, i, S],

where the last equality follows from the definition of 1[σ, i, S]. Letting

limr→∞ f (r · βσ ;EM)
def= (

limr→∞ fi,S(r · βσ ;ES) : i ∈ S, S ∈M
)
, it follows

that limr→∞ f (r · βσ ;EM) = f (σ). Since the closure of a set contains all limit
points, f (σ) ∈ FMNL(EM) and the claim follows. ��

In the remainder of the section, we leave the dependence of the closed logit types
on the observed feature vectors implicit and use fi,S(β) and f (β), respectively, to
denote the choice probability under an MNL model and a standard logit type, and

FMNL to denote the set of closed logit types. We also use BMNL
def= FMNL \ FMNL

to denote the set of boundary logit types. Further, because the parameter vector β

for a boundary logit type is not well-defined, we refer to a general customer type in
FMNL simply as f = (fi,S : i ∈ S, S ∈M).

Now, as mentioned above, the population is described by a distribution over the

customer types FMNL. Let Q def=
{
Q : Q is a distribution over FMNL

}
denote the

space of all distributions over FMNL.8 Given any distribution Q ∈ Q, the vector of
choice probabilities for the offer set collection M is given by:

gM(Q)=(gi,S(Q) : i ∈ S, S ∈M) where gi,S(Q)=
∫

FMNL

fi,S dQ(f).

(8.10)

8 Our development here is closely related to that in JSV but with slight differences.

194 S. Jagabathula and A. Venkataraman

Then, defining G(Q) def= {
gM(Q) : Q ∈ Q

}
, the goal is to solve the GENERAL

ESTIMATION PROBLEM with G = G(Q). Unlike the rank-based model, however,
where the distribution λ was over the finite set of permutations P , the distribution
Q is now defined over an infinite set of customer types FMNL, and consequently it is
more challenging to describe the constraint set G(Q). Despite this, JSV showed that
G(Q) does permit an alternative representation that is easier to handle. For instance,
suppose that Q is a discrete distribution with finite support. Then, it is easy to see
that gM(Q) must belong to the convex hull of the set FMNL, defined as:

conv(FMNL)

=
⎧
⎨

⎩

∑

f∈F
αf f : F ⊂ FMNL is finite and

∑

f∈F
αf = 1, αf ≥ 0 ∀f ∈ F

⎫
⎬

⎭
.

More generally, since FMNL is a compact subset of RM (it is closed by definition
and bounded since each f ∈ [0, 1]M), it follows from existing results (see,
e.g., Lindsay, 1983) that the set conv(FMNL) contains vectors gM(Q) generated by
any distribution Q over FMNL, so in fact G(Q) = conv(FMNL). This is the reason
we term this model the nonparametric mixture of closed logit (NPMXCL) model,
since it does not impose any parametric assumptions on the mixing distributionQ.

With the above development, the GENERAL ESTIMATION PROBLEM for the
NPMXCL model takes the form:

min
g∈conv(FMNL)

loss(g), (NPMXCL MODEL ESTIMATION PROBLEM)

where again we drop the explicit dependence of the predicted choice probability
vector gM on the offer set collection M, and of the loss function on yM. It can be
verified that the NPMXCL MODEL ESTIMATION PROBLEM is a convex program with
a compact constraint set; see Lemma 1 in JSV. Moreover, the strict convexity of the
loss function again ensures that the NPMXCL MODEL ESTIMATION PROBLEM has a
unique optimal solution (the proof is identical to that of Theorem 1 earlier).

Relation to the Mixed Logit Models The mixture of logit or mixed logit
model (Hensher and Greene, 2003; Train, 2009) assumes that customer preferences
are modeled as a distribution over standard logit types, that is, as a distribution over
FMNL.9 This model is designed to capture heterogeneity in customer preferences
and also to overcome the restrictive independence of irrelevant alternatives (IIA)
property of the MNL model (Luce, 1959) to allow for complex substitution patterns.
In fact, McFadden and Train (2000) showed that any model in the RUM class can

9 Technically, the distribution is modeled over the parameter vector β as opposed to its “type”
representation f (β).

8 Nonparametric Estimation of Choice Models 195

be approximated to arbitrary degree of accuracy by a mixed logit model with an
appropriate specification for the product features and the mixing distribution.

While the mixed logit model is stated in this general form, it is rarely estimated as
such. Traditionally, for purposes of tractability, the mixing distribution is restricted
to belong to some parametric family Q(Θ) of distributions defined over parameter

space Θ such that Q(Θ) def= {Qθ : θ ∈ Θ} and Qθ is the mixing distribution over
the MNL taste vector β corresponding to the parameter vector θ ∈ Θ . Analogous
to (8.10), the predicted choice probability vector gM(Qθ) corresponding to mixing
distributionQθ is given by:

gM(Qθ)=(gi,S(Qθ) : i ∈ S, S ∈M) where gi,S(Qθ)=
∫

R
D
fi,S(β) dQθ (β).

(8.11)
The best fitting distribution from the family Q(Θ) is then obtained by solving the

following MLE problem:10

max
θ∈Θ

∑

S∈M
MS

∑

i∈S
yi,S log

(
gi,S(Qθ)

)
. (8.12)

Different assumptions for the family Q(Θ) lead to different mixed logit models.
The most standard assumption is that the mixing distribution follows a multi-

variate normal distribution N(μ,Σ), parametrized by θ = (μ,Σ), where μ is the
mean and Σ is the covariance matrix of the distribution. The resulting model is
referred to as the random parameters logit (RPL) model (Train, 2009). Under the
RPL model, computing the choice probabilities in (8.11) requires the evaluation
of an integral, which is often approximated through a Monte Carlo simulation.
This results in a maximum simulated likelihood estimator (MSLE). Since the log-
likelihood objective is typically non-convex in the parameters θ , gradient-based
optimization routines are used to reach a local optimal solution. Often, additional
structure is imposed on the covariance matrix (such as a diagonal matrix) to reduce
the dimensionality of the parameter space. The interested reader is referred to
Chapters 8 and 9 in Train (2009) for an overview of such estimation procedures.

The other common assumption is that the mixing distribution has a finite support
of size K . The distribution is then parametrized by θ = (α1, . . . , αK,β1, . . . ,βK),
where (β1, . . . ,βK) denotes the support of the distribution and (α1, . . . , αK)

denotes the corresponding mixture proportions, so that
∑
k∈[K] αk = 1 and

αk ≥ 0 for all k ∈ [K]. The resulting model is referred to as the latent class
MNL (LC-MNL) model (Bhat, 1997; Boxall and Adamowicz, 2002; Greene and
Hensher, 2003). In this case, the predicted choice probabilities in (8.11) simplify to
gi,S(Qθ) = ∑K

k=1 αkfi,S(βk). However, direct optimization of the log-likelihood
objective is challenging since it is non-convex in the parameters θ and further, the

10 This is equivalent to minimizing the KL-divergence loss function and is the standard choice
when estimating the mixed logit model.

196 S. Jagabathula and A. Venkataraman

number of parameters scales with the number of mixture components: for a K class
LC-MNL model, we need to estimateK ·D+K − 1 parameters. Consequently, the
EM algorithm is employed to solve the MLE problem, which reduces the original
problem into iteratively fitting K MNL models on weighted transformations of the
observed sales fractions yM. We refer the reader to Chapter 14 in Train (2009) for
a detailed description of the EM algorithm for estimating LC-MNL models.

The NPMXCL model differs from the traditional mixed logit model in two key
ways: it allows (a) individual customer types to be boundary logit types, as opposed
to only standard logit types, and (b) the mixing distribution to be an arbitrary
distribution. By allowing for boundary logit types, it subsumes the rank-based
model (as shown in Lemma 1 above). In addition, by allowing for arbitrary mixing
distributions, it mitigates the model misspecification issue. Both the RPL and the
LC-MNL models are susceptible to model misspecification, which occurs when the
ground-truth mixing distribution is not contained in the search space Q(Θ). Model
misspecification can result in biased estimates for the parameters (Train, 2008) as
well as poor goodness-of-fit (Fox et al., 2011). These issues are mitigated by the
NPMXCL model.

8.4.1 Estimation via the Conditional Gradient Algorithm

We now discuss how to estimate the model parameters from observed choice data.
The development of this section closely follows that of the rank-based model
above. Since the NPMXCL MODEL ESTIMATION PROBLEM is a constrained convex
program, in theory, we can use any standard method for convex optimization to
solve it. However, similar to estimating the rank-based model earlier, there are two
challenges: (a) the constraint region conv(FMNL) lacks an efficient description; and
(b) decomposing any candidate solution g into the underlying mixing distribution
Q, which is needed so that out-of-sample predictions can be made, is a hard
problem. In particular, note that conv(FMNL) may not be a convex polytope as it
could have infinitely many extreme points. JSV showed that the conditional gradient
(CG) algorithm is again the ideal candidate to address both of these challenges.

As in the case of the rank-based model, we start with a distribution on an initial
set of types F(0) ⊆ FMNL such that both the loss objective loss(g(0)) and its gradient
∇ loss(g(0)) are bounded (see the discussion in Sect. 8.4.1.3 below). Then, using
analogous arguments as in Sect. 8.3.1, the FRANK–WOLFE STEP in iteration k ≥ 1
can be shown to be of the form:

min
v∈FMNL

〈
∇ loss(g(k−1)), v − g(k−1)

〉
. (8.13)

Let f (k) denote an optimal solution to (8.13); we discuss how to solve it in
Sect. 8.4.1.1 below. Again, we observe that the CG algorithm is iteratively adding
customer types f (1),f (2), . . . to the support of the mixing distribution. As before,

8 Nonparametric Estimation of Choice Models 197

we use the FCFW variant that re-optimizes the loss objective over the support of the
customer types recovered so far to promote recovery of sparser mixing distributions.
Algorithm 2 summarizes the estimation procedure.

Algorithm 2 CG algorithm for solving the NPMXCL MODEL ESTIMATION PROB-
LEM

1: Initialize: k ← 0; F(0) ⊆ FMNL; α(0) ∈ Δ∣
∣
∣F(0)

∣
∣
∣−1

; g(0) = ∑
f∈F(0) α

(0)
f f s.t.

loss(g(0)),∇ loss(g(0)) are bounded
2: while stopping condition is not met do
3: k← k + 1
4: Compute f (k) ∈ arg minv∈FMNL

〈∇ loss(g(k−1)), v − g(k−1)
〉

(SUPPORT FINDING STEP)

5: Update support of types F(k) ← F(k−1) ∪
{
f (k)

}

6: Compute α(k) ∈ arg minα∈Δ|F(k)|−1
loss

(∑
f∈F(k) αf f

)
(PROPORTIONS UPDATE STEP)

7: Update support of types F(k) ←
{
f ∈ F(k) : α(k)f > 0

}

8: Update g(k) ←∑
f∈F(k) α

(k)
f f

9: end while
10: Output: customer types F(k) and proportions (α(k)f : f ∈ F(k))

Below, we discuss how to solve the SUPPORT FINDING STEP and PROPORTIONS

UPDATE STEP in more detail.

8.4.1.1 Solving the SUPPORT FINDING STEP

Recall that FMNL = {
f (β) : β ∈ RD} and f (β) = (fi,S(β) : S ∈ M, i ∈ S).

By plugging in the MNL CHOICE PROBABILITY FUNCTION and ignoring constant
terms, it follows that:

min
v∈FMNL

〈
∇ loss(g(k−1)), v − g(k−1)

〉

≡ min
β∈RD

∑

S∈M

∑

i∈S

(
∇ loss(g(k−1))

)

i,S
· exp (β	ziS)
∑
j∈S exp (β	zjS)

. (8.14)

The optimal solution to the above problem may be unbounded. Such unbounded
solutions are instances of the boundary logit types BMNL = FMNL \ FMNL, as we
show in Sect. 8.4.3 below.

Even if the optimal solution is bounded, finding it may be intractable because
the objective in (8.14) is non-convex in the parameter β (see Online Appendix D
in JSV). However, in practice, we only need to find a feasible descent direction to
ensure an improving solution in Algorithm 2 and, therefore, general-purpose non-
linear program solvers can be employed to obtain approximate solutions to (8.14).

198 S. Jagabathula and A. Venkataraman

JSV reported favorable performance of the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method (Nocedal and Wright, 2006, Section 6.1) in generating improving
solutions, although other methods could also be explored.

8.4.1.2 Solving the PROPORTIONS UPDATE STEP

As in the case of the rank-based model, the PROPORTIONS UPDATE STEP is a
convex program over the unit simplex Δ∣

∣
∣F(k)

∣
∣
∣−1

. While in principle any method

can be used to solve it, a particular variant of the CG algorithm is ideally suited.
This variant (Guélat and Marcotte, 1986) compares two opposing steps to update
the estimate in each iteration: the FRANK–WOLFE STEP that finds a descent
direction, and an “away” step that reduces probability mass—possibly to zero—
from a previously found extreme point (one amongst v(1), . . . , v(k)) or the initial
solution x(0). Observe that the FRANK–WOLFE STEP can be solved exactly for
the PROPORTIONS UPDATE STEP by searching over the extreme points of the unit
simplex Δ∣

∣
∣F(k)

∣
∣
∣−1

. The next iterate x(k) is determined by the step (Frank–Wolfe

or away) that results in larger improvement in the objective value; see Krishnan
et al. (2015, Appendix B.1) for the precise description of this variant. The presence
of away steps implies that the algorithm can ‘drop’ customer types, i.e., assign
zero probability mass to, found in previous iterations from the support of the
mixing distribution, resulting in sparser solutions. This is implemented in line 7
of Algorithm 2.

8.4.1.3 Initialization and Stopping Criterion

Algorithm 2 can be initialized with any g(0) ∈ FMNL such that both the initial
loss loss(g(0)) and its gradient ∇ loss(g(0)) are bounded. For instance, we could
choose F(0) = {

f (βMNL)
}

and α(0) = (1), resulting in g(0) = f (βMNL); where
βMNL is the parameter estimate obtained by fitting an MNL model to the data. The
MNL log-likelihood objective is globally concave in β and there exist efficient
algorithms (Hunter, 2004; Jagabathula and Venkataraman, 2020) that exhibit fast
convergence in practice. Another option is to fit an LC-MNL model with a “small”
number of classes using the EM algorithm.

The same stopping criterion listed in Sect. 8.3.1.3 can also be adopted for
Algorithm 2.

8.4.2 Convergence Guarantee for the Estimation Algorithm

JSV established a sublinear convergence guarantee for Algorithm 2. We state here a
simplified version of their result (ignoring the derived constants) and the interested
reader is referred to Section 5.1 in JSV for the precise guarantee:

8 Nonparametric Estimation of Choice Models 199

Theorem 2 (Sublinear Convergence of the CG Algorithm) For both loss func-
tions defined in Sect. 8.2, the iterates generated by Algorithm 2 satisfy:

loss(g(k))− loss(g∗) = O
(

1

k

)

for all k ≥ K̄,

where g∗ is an optimal solution to the NPMXCL MODEL ESTIMATION PROBLEM

and K̄ ≥ 1 is some index.

Proof For the detailed proof, please see Online Appendix A.2 in JSV; here we
provide a sketch of the proof. Jaggi (2013) showed that the CG algorithm converges
at an O(1/k) rate if the (non-negative) curvature constant is bounded from above.
The curvature constant is bounded if the constraint set is bounded and the hessian
of the objective function is bounded from above. For the NPMXCL MODEL ESTIMA-
TION PROBLEM, the domain conv(FMNL) ⊆ [0, 1]M is bounded. For the squared
norm loss function (Example 2 in Sect. 8.2), the hessian is also bounded from above
and so the convergence guarantee follows from existing results. However, it can be
verified that the hessian of the KL-divergence loss function (Example 1 in Sect. 8.2)
becomes unbounded close to the boundary of the domain conv(FMNL), i.e., when g

has entries that are close to 0, and thus, the existing guarantee does not apply. JSV
showed that each iterate g(k) generated by Algorithm 2 has entries that are bounded
from below by a data-dependent constant ξmin > 0. In other words, the iterates do
not get too close to the boundary of the domain and they exploit this fact to establish
the O(1/k) convergence rate for the KL-divergence loss function as well, with the
constant scaling in 1/ξ2

min. ��
While the above result establishes convergence of loss(g(k)) to the opti-

mal objective loss(g∗), it does not say anything regarding convergence to the
true mixing distribution from which the data was generated. Without additional
assumptions, establishing convergence to the ground-truth mixing distribution is
challenging since g∗ can be decomposed into many underlying distributions in
general. JSV showed through a simulation study that Algorithm 2 does recover
good approximations to different ground-truth mixing distributions when there is
sufficient variation in the observed choice data. Identifying conditions under which
the CG algorithm recovers the ground-truth mixing distribution is an interesting
direction for future work.

To gain further insights, JSV also analyzed the support of the mixing distribution
recovered by the CG algorithm, which is determined by the structure of the optimal
solutions to the SUPPORT FINDING STEP. We discuss this next.

8.4.3 Characterizing the Choice Behavior of Closed Logit
Types

As alluded to earlier, the optimal solution to the SUPPORT FINDING STEP can
either be a standard logit type or a boundary logit type. Standard logit types are

200 S. Jagabathula and A. Venkataraman

characterized by their corresponding taste parameters β, which can be used to make
out-of-sample predictions on new offer sets. However, it is not immediately clear
how to think of boundary logit types, since by definition there exists no parameter
β that can describe such types. To address this issue, JSV provided the following
concise characterization of boundary logit types (see Online Appendix A.3 in JSV
for the proof):

Theorem 3 (Characterization of Boundary Logit Types) Any boundary logit
type f ∈ BMNL satisfies fi,S = 0 for at least one (i, S) pair in the observed offer
set collectionM. Moreover, we can find parameters β0,ω ∈ RD such that, for each
S ∈M and all i ∈ S (with r ∈ N below):

fi,S = lim
r→∞

exp
(
(β0 + r · ω)	ziS

)

∑
j∈S exp

(
(β0 + r · ω)	zjS

) .

The result establishes that boundary logit types assign zero probability to at least
one data point in the observed offer set collection M, compared to standard logit
types that assign non-zero probabilities to all observations. Moreover, boundary
logit types arise as a result of limiting MNL models, obtained as the parameter
vector β is pushed to infinity. In particular, for any boundary logit type f , there
exist parameters (β0,ω) such that f = limr→∞ f (β0 + r · ω), where recall that
f (β0 + r ·ω) corresponds to a standard logit type with parameter vector β0 + r ·ω.
Thus, unlike standard logit types that are described by a single parameter vector,
boundary types are characterized by a pair of parameters. In fact, boundary logit
types can be considered as natural generalizations of rankings to capture the impact
of changing product features, as we show next.

The above characterization reveals a preference ordering over the products
induced by the parameter vector ω, that determines which product is chosen from
a given offer set. For ease of exposition, suppose that product features do not vary
with the offer set, so that we can write zj instead of zjS for the feature vector of
product j in each offer set S. The preference order is determined by product utilities

uj
def= ω	zj for each product j ∈ [N]. In particular, the utilities induce a preference

order � among the products such that j � j ′, read as “product j is weakly preferred
over product j ′,” if and only if uj ≥ uj ′ . The relation � is in general a weak (or
partial) ordering and not a strict (or complete) ordering because utilities of two
products may be equal. Consequently, we write j 0 j ′ if uj > uj ′ and j ∼ j ′ if
uj = uj ′ . Note that such a preference order differs from a ranking in two ways: (a)
it can be a partial ordering, and (b) the ordering depends on the values of the product
features.

Similar to rankings, it can be shown that when offered any set S ⊆ [N], boundary
logit types choose only amongst the most preferred products in S, determined
according to the preference order �. To see that, let C(S) denote the set of most
preferred products in S, so that for all j ∈ C(S), we have j ∼ � if � ∈ C(S) and

j 0 � if � ∈ S \ C(S). Let u∗ def= max
{
uj : j ∈ S

}
denote the maximum utility

8 Nonparametric Estimation of Choice Models 201

among the products in S. From the definition of �, it follows that u∗ = uj for all
j ∈ C(S) and u∗ > uj for all j ∈ S\C(S). Note it is possible that C(S) = S in case
all the product utilities are equal. Now to determine which products will be chosen
from S, we first multiply the numerator and denominator of the choice probabilities
defined in Theorem 3 by e−r·u∗ . Then, it follows that for any j ∈ S:

exp
(
(β0 + r · ω)	zj

)

∑
�∈S exp

(
(β0 + r · ω)	z�

)

= e−r·(u∗−uj) · exp(β	0 zj)
∑
�∈C(S) exp(β	0 z�)+∑

�∈S\C(S) e−r·(u
∗−u�) · exp(β	0 z�)

, (8.15)

where we plugged in ω	z� = u� for each � ∈ S. Taking the limit r →∞, it follows
that each of the terms e−r·(u∗−u�), � ∈ S \ C(S), goes to zero since u� < u∗. As
a result, the denominator in (8.15) converges to

∑
�∈C(S) exp(β	0 z�). On the other

hand, the numerator converges to exp(β	0 zj) if j ∈ C(S) and 0 if j ∈ S \ C(S).
Combining the two, we obtain the following choice probability prediction for any
product j in offer set S from Theorem 3:

fj,S(β0,ω) =
⎧
⎨

⎩

exp(β	0 zj)/
(∑

�∈C(S) exp(β	0 z�)
)
, if j ∈ C(S) and

0, if j ∈ S \ C(S),

where we abuse notation and let fj,S(β0,ω) denote the probability of choosing
product j from offer set S under the boundary logit type described by (β0,ω).
This implies that only products that are within C(S) are considered for purchase.
Algorithm 3 outlines the above procedure for the general case.

Note the contrasting roles of the parameters ω and β0 in defining the choice
probabilities for a boundary logit type. The parameter vector ω (through the
preference ordering � it induces) determines the consideration set C(S)—the subset
of products that the customer considers for purchase—whereas the parameter vector

Algorithm 3 Predicting choice probabilities for boundary logit type described by
parameters (β0,ω)

1: Input: Offer set S with product features zjS ∈ RD for each j ∈ S
2: Compute utilities uj = ω	zjS for each j ∈ S.
3: Form consideration set C(S) = {

j ∈ S | uj = max�∈S u�
}

4: For any j /∈ C(S), fj,S(β0,ω)← 0
5: For any j ∈ C(S),

fj,S(β0,ω)←
exp (β	0 zjS)

∑
�∈C(S) exp (β	0 z�S)

6: Output: Choice probabilities (fj,S(β0,ω) : j ∈ S)

202 S. Jagabathula and A. Venkataraman

β0 determines the choice probabilities from within the consideration set, governed
by an MNL model. In particular, the parameter vector ω dictates how a product’s
features impact its inclusion into the consideration set. For instance, suppose that
product j with utility uj < u∗ is not in consideration currently, where recall
that u∗ is the maximum utility of a product in offer set S. Further, suppose one
of the features is price and the corresponding coefficient in parameter vector ω is
ωp < 0. Then, product j will enter into consideration only if its price is sufficiently
reduced so that its resulting utility is at least u∗ (assuming all other features are held

constant). In other words, the price should be dropped by at least
u∗−uj
−ωp to ensure

consideration of product j . Such a dependence cannot be modeled via rankings
since they do not capture the impact of changing product features on the choice
probabilities. Consequently, boundary logit types can be viewed as generalizations
of rankings that account for more nuanced dependence of the choice behavior on
the product features.

The choice behavior of boundary logit types is consistent with prior literature,
which establishes that customers often consider a subset of the products on offer
before making the choice; see, e.g., Hauser (2014), Jagabathula and Rusmevichien-
tong (2017), and Aouad et al. (2020b). For further insights, we refer the reader to
Section 5.3 in JSV where the authors analyze the consideration sets of the boundary
logit types recovered by the CG algorithm.

8.5 Other Nonparametric Choice Models

There is growing interest in developing nonparametric methods to estimate choice
models, and our discussion above has but scratched the surface. In this section, we
briefly discuss other nonparametric choice models that have received attention in
the operations literature.

Choice Model Trees Aouad et al. (2020a) propose choice model trees, a novel
choice model which leverages a decision tree to segment the customer population
based on observable characteristics like demographics and prior purchase history,
and then fits an MNL model for each segment, where the segments correspond to the
leaf/terminal nodes in the tree. The tree splits are recursively chosen to maximize the
log-likelihood of the observed choice data, which is obtained by summing over the
log-likelihoods for each leaf node. Their approach can be viewed as a nonparametric
variant of the LC-MNL model introduced in Sect. 8.4, since the decision tree splits
can be used to capture flexible mappings from customer characteristics to segments.
Moreover, choice model trees assign each customer to exactly one segment,
unlike the classical LC-MNL model that outputs a probabilistic assignment over
the different segments. The authors show that their proposed model outperforms
natural benchmarks in predictive accuracy, while also providing an interpretable
segmentation of the population.

8 Nonparametric Estimation of Choice Models 203

Nonparametric Tree Choice Model Paul et al. (2018) propose a general tree
choice model where the customer demand is modeled via a rooted (undirected)
binary tree in which each node corresponds to a product, and the set of all possible
customer types is characterized by the set of all linear paths—paths that move
either progressively toward or away from the root node—in the tree. Since each
path can be viewed as a preference ordering of the products appearing on the path,
their model can be viewed as a special case of the rank-based choice model as it
considers only a subset of all possible rankings.11 Their model generalizes the one
proposed in Honhon et al. (2012), which only considered paths that start or end at
the root node. To estimate the model, Paul et al. (2018) propose a greedy heuristic
that incrementally adds nodes to the existing tree with the goal of maximizing the
number of customer types that is consistent with the observed choice data, and
prevents overfitting by controlling the depth of the tree. Having estimated the tree
and, therefore, the set of customer types, they solve the MLE problem for estimating
the distribution λ over these types (recall the notation in Sect. 8.3). Since the log-
likelihood objective is concave in the ranking probabilities λ(σ) and the number of
customer types isO(N2), the MLE problem can be solved efficiently using standard
non-linear solvers. They also propose tractable algorithms for several assortment
and pricing problems under the proposed choice model.

Mixture of Mallows Model One limitation of the rank-based choice model is
that it assigns zero probability to any choice that is not consistent with any of the
rankings in its support. This can be problematic since typically sparse models are
chosen that have “small” support sizes. One remedy to this is the NPMXCL model
of Jagabathula et al. (2020b) that we discussed above. An alternative approach was
recently proposed by Désir et al. (2021), who consider a smoothed generalization of
(sparse) rank-based models by assuming that the underlying probability distribution
over rankings is specified as a mixture of Mallows models, with the number of
mixture components equal to the support size of the rank-based model. The Mallows
model (Mallows, 1957) assumes that consumer preferences are concentrated around
a central ranking τ and the probability of sampling a ranking σ different from τ

falls exponentially with the Kendall-Tau distance d(σ, τ), defined as the number
of pairwise disagreements between σ and τ . In other words, the Mallows model
creates a smoothing property around the central ranking τ . Therefore, the mixture
of Mallows model provides a natural generalization of the rank-based choice model,
assigning a non-zero probability to every possible choice. Désir et al. (2021)
propose an EM algorithm to estimate the mixture of Mallows model, where the M-
step involves solving a MIP. Moreover, they propose several practical approaches
for solving the assortment optimization problem and show that Mallows-based
smoothing can improve both the prediction as well as decision accuracy compared
to the rank-based model.

11 The rank-based model can allow for the number of products in a ranking to be strictly smaller
than the size of the product universe, in which case the customer selects the no-purchase option if
none of the products in the ranking is part of the offer set.

204 S. Jagabathula and A. Venkataraman

DAG-Based Choice Model The existing work on choice-based demand models in
the operations literature has largely focused on using aggregate sales transaction
data for estimation, and this has been the focus of our discussion in this book
chapter as well. However, with the increasing availability of individual-level
transaction data (also referred to as panel data), there is an opportunity to capture
and estimate individual preferences. One of the first steps in this direction was
taken by Jagabathula and Vulcano (2018) who introduced a nonparametric choice
model in which each customer is characterized by a directed acyclic graph (DAG)
representing a partial order among products in a category. A directed edge from node
i to node j in the DAG indicates that the customer prefers the product corresponding
to node i over the product corresponding to node j . The DAG captures the fact that
customer preferences are acyclic or transitive. Unlike a full preference ordering,
a DAG specifies pairwise preferences for only a subset of product pairs; therefore,
it represents a partial order. When visiting the store, the customer samples a full
preference ordering (ranking) consistent with her DAG according to a pre-specified
distribution, forms a consideration set and then purchases the most preferred
product (according to the sampled ranking) amongst the ones she considers. The
authors provide a procedure to construct the DAG for each customer based on her
store visits, and they define several behavioral models to form consideration sets.
Then, they estimate the distribution over rankings that best explains the observed
purchasing patterns of the customers. Using real-world panel data on grocery store
visits, the authors show that their proposed approach provides more accurate and
fine-grained predictions for individual purchase behavior compared to state-of-the-
art benchmark methods. Recently, Jagabathula et al. (2020a) consider a refinement
of this choice model with the objective of designing personalized promotions.

Models Beyond the RUM Class Our discussion has focused primarily on the
RUM model class as it has been the de-facto choice model in the operations and
revenue management literature for the past two decades. However, the recent work
of Jagabathula and Rusmevichientong (2019) on the limit of stochastic rationality
(LoR) provides evidence for the need to go beyond the RUM class. Recall from
Sect. 8.2 that the global minimum of the loss function is achieved when yM = gM,
resulting in zero loss and a perfect fit to the observed choice data. However, this
may not be achievable if the observed choice data is inconsistent with the RUM
model, so that yM /∈ G. Using a case study on grocery stores sales transaction
data, Jagabathula and Rusmevichientong (2019) showed that the rationality loss,
which they define as the best fit achievable using a model in the RUM class,
i.e., loss(yM,g

∗) where g∗ is the optimal solution to the RANK-BASED MODEL

ESTIMATION PROBLEM, can be high for many product categories, suggesting
the need for more sophisticated choice models. In their paper, the authors show
that fitting a latent class generalized attraction model (LC-GAM) (Gallego et al.,
2015), a parametric choice model that lies outside the RUM class, can help to
breach the LoR for many categories. Since then, there has been significant progress
in developing nonparametric models that extend the RUM class: the generalized
stochastic preference (GSP) choice model (Berbeglia, 2018), the decision forest

8 Nonparametric Estimation of Choice Models 205

choice model (Chen and Mišić, 2019) and the binary choice forest model (Chen
et al., 2019) to name a few. This is an emerging research area and we expect a lot
more work in this space.

8.6 Concluding Thoughts

Developing nonparametric methods for estimating choice models is an active area of
research, with substantial interest both from academics and practitioners. With the
availability of large volumes of increasingly granular data and corresponding access
to flexible large-scale computing, nonparametric methods are not only possible but
also necessary for attaining a high degree of prediction accuracy. We expect firms
to continue to invest in implementing these methods to improve automated decision
making.

We note that while the focus of this chapter has been on estimating choice
models, there is a parallel stream of literature on using these models to solve
operational decision problems of interest to firms; see Strauss et al. (2018) for
a recent review. Two decision problems that have received significant attention
within the literature are the assortment and the price optimization problems. In these
decision problems, the firm wants to find the assortment (or offer set) and prices to
offer to its customers, respectively, to maximize expected revenue or profit. Because
of the cross-product cannibalization effects, firms must use choice models to solve
these decision problems. Finding the optimal assortment or prices is significantly
more difficult in nonparametric choice models because of the lack of exploitable
structure. Existing literature has taken the approach of proposing efficient algo-
rithms, sometimes using recent developments in solving mixed integer programs
(MIPs), to approximate the optimal solution, see, e.g., Rusmevichientong et al.
(2014), Jagabathula and Rusmevichientong (2017), Paul et al. (2018), Bertsimas
and Mišić (2019), Aouad et al. (2020b), and Désir et al. (2021). We expect this
parallel development to continue for the newer (and often, more general) choice
models being proposed in the literature.

The design of general methods to effectively estimate large-scale choice models
is taking place within the larger context of broader developments in artificial intelli-
gence (AI) and machine learning (ML). The areas of AI/ML and operations research
(OR) overlap significantly especially when it comes to model estimation. There is
a healthy cross-pollination of ideas across these two communities (for example,
the conditional gradient algorithm, which is a classical OR algorithm for solving
quadratic programs, has recently gained in popularity in the ML community), and
we expect this cross-pollination to push more of the model developments. As an
example, consider that the methods discussed in this book chapter focused on
generalizing the distributions over individual customer types. Each customer type
in the NPMXCL model can be made more complex by allowing product utility
values to depend on the features in a non-linear fashion. Linear specification is most
common, partly driven by tractability reasons and partly by behavioral reasons (as

206 S. Jagabathula and A. Venkataraman

model parameters could then be conceived as marginal utilities, see, e.g., Ben-Akiva
et al., 1985). Misspecified utility functions result in biased parameter estimates and
low predictive accuracy. Popular ML approaches (such as random forests, neural
networks, etc.) are well-suited for this purpose as they can learn highly non-linear
representations of the utility, without imposing any a priori structures. Recent work
has taken this approach in the context of transportation mode choices (see Han et al.,
2020; Sifringer et al., 2020 and the references therein), and we expect this to be a
fruitful future direction to pursue.

In addition, ML techniques can leverage unstructured data sources such as text,
image, and video to construct feature representations, which can then be plugged
into the utility specification along with other observed features such as price.
Leveraging such sources is especially important in the context of online retail and
e-commerce, where signals such as the image quality of the product, the (textual)
reviews posted by prior customers, etc. are critical indicators of customer choice;
see Liu et al. (2019, 2020) for some recent work using such types of data. We believe
this is an exciting direction for the field and look forward to reading papers within
this theme.

References

Abdallah, T., & Vulcano, G. (2020). Demand estimation under the multinomial logit model from
sales transaction data. Manufacturing & Service Operations Management, 23, 1005–1331.

Aouad, A., Elmachtoub, A. N., Ferreira, K. J., & McNellis, R. (2020a). Market segmentation trees.
arXiv:1906.01174.

Aouad, A., Farias, V., & Levi, R. (2020b). Assortment optimization under consider-then-choose
choice models. Management Science, 67, 3321–3984.

Barberá, S., & Pattanaik, P. K. (1986). Falmagne and the rationalizability of stochastic choices in
terms of random orderings. Econometrica: Journal of the Econometric Society, 54, 707–715.

Ben-Akiva, M. E., Lerman, S. R., & Lerman, S. R. (1985). Discrete choice analysis: Theory and
application to travel demand (vol. 9). Cambridge: MIT Press.

Berbeglia, G. (2018). The generalized stochastic preference choice model. Available at SSRN
3136227.

Bertsimas, D., & Mišić, V. V. (2019). Exact first-choice product line optimization. Operations
Research, 67(3), 651–670.

Bhat, C. R. (1997). An endogenous segmentation mode choice model with an application to
intercity travel. Transportation Science, 31(1), 34–48.

Block, H. D., & Marschak, J. (1960). Random orderings and stochastic theories of responses.
Contributions to Probability and Statistics, 2, 97–132.

Boxall, P. C., & Adamowicz, W. L. (2002). Understanding heterogeneous preferences in random
utility models: A latent class approach. Environmental and Resource Economics, 23(4), 421–
446.

Chen, N., Gallego, G., & Tang, Z. (2019). The use of binary choice forests to model and estimate
discrete choices. Available at SSRN 3430886.

Chen, Y. C., & Mišić, V. (2019). Decision forest: A nonparametric approach to modeling irrational
choice. Available at SSRN 3376273.

Clarkson, K. L. (2010). Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Transactions on Algorithms, 6(4), 63.

8 Nonparametric Estimation of Choice Models 207

Désir, A., Goyal, V., Jagabathula, S., & Segev, D. (2021). Mallows-smoothed distribution over
rankings approach for modeling choice. Operations Research, 69, 1015–1348.

Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for the web.
In Proceedings of the 10th International Conference on World Wide Web (pp. 613–622). New
York: ACM.

Falmagne, J. C. (1978). A representation theorem for finite random scale systems. Journal of
Mathematical Psychology, 18(1), 52–72.

Farias, V. F., Jagabathula, S., & Shah, D. (2013). A nonparametric approach to modeling choice
with limited data. Management Science, 59(2), 305–322.

Fox, J. T., il Kim, K., Ryan, S. P., & Bajari, P. (2011). A simple estimator for the distribution of
random coefficients. Quantitative Economics, 2(3), 381–418.

Frank, M., & Wolfe, P. (1956). An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3(1–2), 95–110.

Gallego, G., Ratliff, R., & Shebalov, S. (2015). A general attraction model and sales-based linear
program for network revenue management under customer choice. Operations Research, 63(1),
212–232.

Gallego, G., & Topaloglu, H. (2019). Introduction to choice modeling. In Revenue management
and pricing analytics (pp. 109–128). Berlin: Springer.

Greene, W. H., & Hensher, D. A. (2003). A latent class model for discrete choice analysis:
Contrasts with mixed logit. Transportation Research Part B: Methodological, 37(8), 681–698.

Guélat, J., & Marcotte, P. (1986). Some comments on wolfe’s ‘away step’. Mathematical
Programming, 35(1), 110–119.

Haensel, A., & Koole, G. (2011). Estimating unconstrained demand rate functions using customer
choice sets. Journal of Revenue and Pricing Management, 10(5), 438–454.

Han, Y., Zegras, C., Pereira, F. C., & Ben-Akiva, M. (2020). A neural-embedded choice
model: Tastenet-mnl modeling taste heterogeneity with flexibility and interpretability.
arXiv:200200922.

Hauser, J. R. (2014). Consideration-set heuristics. Journal of Business Research, 67(8), 1688–
1699.

Hensher, D. A., & Greene, W. H. (2003). The mixed logit model: The state of practice.
Transportation, 30(2), 133–176.

Honhon, D., Jonnalagedda, S., & Pan, X. A. (2012). Optimal algorithms for assortment selection
under ranking-based consumer choice models. Manufacturing & Service Operations Manage-
ment, 14(2), 279–289.

Hoyer, W. D., & Ridgway, N. M. (1984). Variety seeking as an explanation for exploratory purchase
behavior: A theoretical model. In T. C. Kinnear (Ed.), NA - Advances in consumer research (vol.
11, pp. 114–119). Provo: ACR North American Advances.

Hunter, D. R. (2004). MM algorithms for generalized bradley-terry models. Annals of Statistics,
32, 384–406.

Jagabathula, S., & Rusmevichientong, P. (2017). A nonparametric joint assortment and price choice
model. Management Science, 63(9), 3128–3145.

Jagabathula, S., Mitrofanov, D., & Vulcano, G. (2020a). Personalized retail promotions through a
dag-based representation of customer preferences. Operations Research, 70, 641–1291.

Jagabathula, S., & Rusmevichientong, P. (2019). The limit of rationality in choice modeling:
Formulation, computation, and implications. Management Science, 65(5), 2196–2215.

Jagabathula, S., Subramanian, L., & Venkataraman, A. (2020b). A conditional gradient approach
for nonparametric estimation of mixing distributions. Management Science, 66(8), 3635–3656.

Jagabathula, S., & Venkataraman, A. (2020). An MM algorithm for estimating the MNL model
with product features. Available at SSRN: https://ssrncom/abstract=3733971

Jagabathula, S., & Vulcano, G. (2018). A partial-order-based model to estimate individual
preferences using panel data. Management Science, 64(4), 1609–1628.

Jaggi, M. (2011). Sparse convex optimization methods for machine learning. Ph.D. Thesis, ETH
Zürich.

https://ssrn.com/abstract=3733971

208 S. Jagabathula and A. Venkataraman

Jaggi, M. (2013). Revisiting frank-wolfe: Projection-free sparse convex optimization. In Proceed-
ings of the 30th International Conference on Machine Learning (ICML-13) (pp. 427–435).

Kahn, B. E., & Lehmann, D. R. (1991). Modeling choice among assortments. Journal of Retailing,
67(3), 274–300.

Krishnan, R. G., Lacoste-Julien, S., & Sontag, D. (2015). Barrier frank-wolfe for marginal
inference. In Advances in Neural Information Processing Systems (vol. 28, pp. 532–540)

Li, G., Rusmevichientong, P., & Topaloglu, H. (2015). The d-level nested logit model: Assortment
and price optimization problems. Operations Research, 63(2), 325–342.

Lindsay, B. G. (1983). The geometry of mixture likelihoods: A general theory. The Annals of
Statistics, 11, 86–94.

Liu, L., Dzyabura, D., & Mizik, N. (2020). Visual listening in: Extracting brand image portrayed
on social media. Marketing Science, 39(4), 669–686.

Liu, X., Lee, D., & Srinivasan, K. (2019). Large-scale cross-category analysis of consumer review
content on sales conversion leveraging deep learning. Journal of Marketing Research, 56(6),
918–943.

Luce, R. D. (1959). Individual Choice Behavior: A Theoretical analysis. New York: Wiley.
Mahajan, S., & Van Ryzin, G. (2001). Stocking retail assortments under dynamic consumer

substitution. Operations Research, 49(3), 334–351.
Mallows, C. L. (1957). Non-null ranking models. I. Biometrika, 44(1–2), 114–130.
Manski, C. F. (1977). The structure of random utility models. Theory and Decision, 8(3), 229–254.
Mas-Colell, A., Whinston, M. D., Green. J. R. (1995). Microeconomic theory (vol 1). New York:

Oxford University Press.
McFadden, D. (1981). Econometric models of probabilistic choice. In: Structural analysis of

discrete data with econometric applications (pp. 198–272). Cambridge: MIT Press.
McFadden, D., & Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied

Econometrics, 15, 447–470.
McFadden, D. L. (2005). Revealed stochastic preference: A synthesis. Economic Theory, 26(2),

245–264.
McLachlan, G., & Peel, D. (2004). Finite mixture models. Hoboken: Wiley.
Mišić, V. V. (2016). Data, models and decisions for large-scale stochastic optimization problems.

Ph. D. Thesis, Massachusetts Institute of Technology, chapter 4: Data-driven Assortment
Optimization.

Newman, J. P., Ferguson, M. E., Garrow, L. A., & Jacobs, T. L. (2014). Estimation of choice-based
models using sales data from a single firm. Manufacturing & Service Operations Management,
16(2), 184–197.

Nocedal, J., & Wright, S. J. (2006). Numerical optimization (2nd edn.). Berlin: Springer.
Paul, A., Feldman, J., & Davis, J. M. (2018). Assortment optimization and pricing under a

nonparametric tree choice model. Manufacturing & Service Operations Management, 20(3),
550–565.

Prechelt, L. (2012). Early stopping—but when? In Neural networks: Tricks of the trade (pp. 53–
67), Berlin: Springer.

Rusmevichientong, P., Shmoys, D., Tong, C., & Topaloglu, H. (2014). Assortment optimization
under the multinomial logit model with random choice parameters. Production and Operations
Management, 23(11), 2023–2039.

Shalev-Shwartz, S., Srebro, N., & Zhang, T. (2010). Trading accuracy for sparsity in optimization
problems with sparsity constraints. SIAM Journal on Optimization, 20(6), 2807–2832.

Sher, I., Fox, J. T., il Kim, K., & Bajari, P. (2011). Partial identification of heterogeneity in
preference orderings over discrete choices. Tech. Rep., National Bureau of Economic Research.

Sifringer, B., Lurkin, V., & Alahi, A. (2020). Enhancing discrete choice models with representation
learning. Transportation Research Part B: Methodological, 140, 236–261.

Strauss, A. K., Klein, R., & Steinhardt, C. (2018). A review of choice-based revenue management:
Theory and methods. European Journal of Operational Research, 271(2), 375–387.

Train, K. E. (2008). EM algorithms for nonparametric estimation of mixing distributions. Journal
of Choice Modelling, 1(1), 40–69.

8 Nonparametric Estimation of Choice Models 209

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge: Cambridge University
Press.

van Ryzin, G., & Vulcano, G. (2015). A market discovery algorithm to estimate a general class of
nonparametric choice models. Management Science, 61(2), 281–300.

van Ryzin, G., & Vulcano, G. (2017). An expectation-maximization method to estimate a rank-
based choice model of demand. Operations Research, 65(2), 396–407.

Yao, Y., Rosasco, L., & Caponnetto, A. (2007). On early stopping in gradient descent learning.
Constructive Approximation, 26(2), 289–315.

Chapter 9
The MNL-Bandit Problem

Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi

9.1 Introduction

One fundamental problem in revenue management that arises in many settings
including retail and display-based advertising is assortment optimization. Here,
the focus is on understanding how consumers select from a large number of
substitutable items and identifying the optimal offer set to maximize revenues.
Typically, for tractability, we assume a model that captures consumer preferences
and focus on computing the optimal offer set. However, model selection and
estimating the parameters is a challenging problem. In many e-commerce settings
such as fast fashion retail, products have short selling seasons. Therefore, the data
on consumer choices is either limited or nonexistent. The retailer needs to learn
consumer preferences by offering different assortments and observing purchase
decisions, but short selling seasons limit the extent of experimentation. There is
a natural trade-off in these settings, where the retailer needs to learn consumer
preferences and also maximizes cumulative revenues simultaneously. Finding the
right balance between exploration and exploitation is a challenge. This chapter
focuses on designing tractable robust algorithms for managing this trade-off in

S. Agrawal (�) · V. Goyal
Department of Industrial Engineering and Operations Research, Columbia University, New York,
NY, USA
e-mail: sa3305@columbia.edu; vgoyal@ieor.columbia.edu

V. Avadhanula
Facebook, Menlo Park, CA, USA

A. Zeevi
Decision, Risk and Operations, Columbia Business School, New York, NY, USA
e-mail: assaf@gsb.columbia.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_9

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_9&domain=pdf

 885 49096 a 885 49096 a

mailto:sa3305@columbia.edu

 10010 49096 a 10010 49096 a

mailto:vgoyal@ieor.columbia.edu

 885
55738 a 885 55738 a

mailto:assaf@gsb.columbia.edu

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_9

212 S. Agrawal et al.

sequential decision-making under uncertainty for assortment optimization, which
is a key component in many revenue management applications.

Organization We first provide an overview of assortment planning and the multi-
nomial logit model (MNL), which is the most popular predictive model for
this application domain in Sect. 9.2. In Sect. 9.3, we introduce the “MNL-Bandit
problem” (term first coined in Agrawal et al. (2019)) that formulates the problem
of dynamic assortment optimization and learning under the MNL choice model.
In Sect. 9.4, we discuss approaches based on the principle of optimism under
uncertainty from Agrawal et al. (2016) that bridges the aforementioned gap between
theory and practice. In Sect. 9.5, discuss the Thompson Sampling (TS)-based
approach from Agrawal et al. (2017) with similar theoretical guarantees. This
approach motivated by the growing popularity of TS approaches in practice due to
their attractive empirical performance. In Sect. 9.6, we discuss fundamental limits
on the performance of any dynamic learning algorithm for the MNL-Bandit problem
which establishes that the algorithms discussed in this chapter are near-optimal. We
conclude in Sect. 9.7 with some discussion on recent progress on the extensions of
MNL-Bandit problem to settings involving contextual features and a large number
of products.

9.2 Choice Modeling and Assortment Optimization

In many settings, a decision-maker is faced with the problem of identifying an
optimal mix of items from a large feasible set. For example, an online retailer
needs to select a subset (assortment) of products to display to its shoppers. Due
to substitution effects, the demand for an individual product is influenced by
other products in the assortment presented to the shopper. In display-based online
advertising, a publisher needs to select a set of advertisements to display to its users,
and due to competition between the ads, the click rates for an individual ad depends
on the assortment of ads displayed. A movie recommendation system like the one
used by Netflix or Amazon must determine a small subset of items to suggest
to its users from a large pool of similar alternatives, and the user response may
depend on the overall attractiveness of the recommended set. Furthermore, in all
these settings, different items may be valued differently from the decision-maker’s
perspective. Therefore, the assortment of items offered to users has significant
impact on revenues. In order to identify the ideal set to offer, the decision-maker
must understand the substitution patterns of users.

Choice models capture these substitution effects among items by specifying the
probability with which a user selects an item from an offered set of items. More
specifically, let N = {1, · · · , N} be the set of all available items for the decision-
maker to choose from. For any subset S ⊂ N and any item i ∈ S, a choice model
describes the probability of a random consumer preferring item i in the set S as

9 The MNL-Bandit Problem 213

π(i, S) = Pr(customer selects item i from offer set S).

We refer to π(i, S) as choice probabilities. Using these choice probabilities, one can
compute the expected revenue associated with an offer set as the weighted sum of
revenues of items in the offer set and the choice probabilities. Specifically, if the
value (revenue) associated with item i ∈ N is given by ri , then the expected revenue
R(S) of any assortment S ⊂ N can be written as

R(S) =
∑

i∈S
ri · π(i, S).

Then, the decision-maker can identify an optimal set by computing the set with
highest expected revenue, resulting in an optimization problem commonly referred
to as the assortment optimization problem and formulated as

max
S⊆N

R(S). (9.1)

More generally, assortment optimization problems also allow for constraints that
arise in practice, e.g., budget for inventory, product purchasing, display capacity,
etc.

A fundamental problem in assortment planning is (choice) model selection.
There is a trade-off between working with models that have greater predictive
power vs. simple models that allow greater tractability. Given a large number
of alternatives, estimating choice probabilities from transactional data is a highly
nontrivial task. As an extreme case, one may consider a choice model that makes
no structural assumptions on the choice probabilities π(i, S) and therefore can
represent any customer choice behavior. Learning and optimizing under such a
choice model would require estimating 2N parameters and solving an intractable
combinatorial optimization problem. The trade-offs between the representation
power and the tractability of a choice model are an important consideration for
the decision-maker in its deployment, particularly in settings where one needs to
constantly estimate and optimize the model.

The Multinomial Logit Model (MNL), owing primarily to its tractability, is one
of the most widely used choice models for assortment selection problems. Recently,
large-scale field experiments by Alibaba Feldman et al. (2021) have demonstrated
the efficacy of the MNL model in boosting revenues. In this chapter, we use the
MNL choice model to model customer preferences and develop efficient approaches
that learn the model while simultaneously optimizing revenue.

Under the MNL model, the probability that a consumer purchases product i when
offered an assortment S ⊂ {1, . . . , N} is given by πMNL(i, S) = vi

v0+∑j∈S vj
,where

vi is the attraction parameter for product i in the MNL model. Without loss of
generality, we can assume that v0 = 1, and therefore, the choice probabilities can
be reformulated as

214 S. Agrawal et al.

πMNL(i, S) = vi

1+∑
j∈S vj

, (9.2)

and the expected revenue for any assortment S is given by

R(S, v) =
∑

i∈S
ri

vi

1+∑
j∈S vj

. (9.3)

From the choice probabilities, we can see that the ratio of choice probabilities
of two items, πMNL(i, S) and πMNL(j, S), is independent of the offer set S. This
property is known as the independent of irrelevant attributes (IIA) property (Ben-
Akiva and Lerman, 1985) and is a limitation of the MNL model. Other random
utility-based choice models like Nested Logit (NL) (Williams, 1977) and Mixed
Logit model (mMNL) (McFadden and Train, 2000) generalize the MNL model
and are not restricted by the IIA property. However, estimation of these models
and the corresponding assortment planning problems involved are often intractable
highlighting the challenges involved in model selection. See Désir et al. (2021) for
further discussion on tractability of choice models. The closed-form expression of
the choice probabilities makes the MNL model extremely tractable from estimation
and optimization point of view (see Talluri and Van Ryzin (2004).) The tractability
of the model in decision-making is the primary reason MNL has been extensively
used in practice (Greene, 2003; Ben-Akiva and Lerman, 1985; Train, 2009).

Traditionally, assortment decisions are made at the start of the selling period
based on a choice model that has been estimated from historical data; see (Kok
and Fisher, 2007) for a detailed review. In many business applications such as
fast fashion and online retail, new products can be introduced or removed from
the offered assortments in a fairly frictionless manner, and the selling horizon
for a particular product can be short. Therefore, the traditional approach of first
estimating the choice model and then using a static assortment based on the
estimates is not practical in such settings. Rather, it is essential to experiment
with different assortments to learn consumer preferences, while simultaneously
attempting to maximize immediate revenues. Suitable balancing of this exploration–
exploitation trade-off is the focus of the remainder of this chapter.

9.3 Dynamic Learning in Assortment Selection

As alluded to above, many instances of assortment optimization problems com-
mence with very limited or even no a priori information about consumer prefer-
ences. Traditionally, due to production considerations, retailers used to forecast
the uncertain demand before the selling season starts and decide on an optimal
assortment to be held throughout. There are a growing number of industries like
fast fashion and online display advertising where demand trends change constantly
and new products (or advertisements) can be introduced (or removed) from offered

9 The MNL-Bandit Problem 215

assortments in a fairly frictionless manner. In such situations, it is possible to
experiment by offering different assortments and observing resulting purchases. Of
course, gathering more information on consumer choice in this manner reduces the
time remaining to exploit the said information.

Motivated by aforementioned applications, let us consider a stylized dynamic
optimization problem that captures some salient features of the above application
domain. The goal is to develop an exploration–exploitation policy that balances
between gaining new information for learning the model and exploiting past
information for optimizing revenue. In particular, consider a constrained assortment
selection problem under the multinomial logit (MNL) model with N substitutable
products and a “no purchase” option. The objective is to design a policy that
adaptively selects a sequence of history-dependent assortments (S1, S2, . . . , ST) ∈
ST so as to maximize the cumulative expected revenue,

E

(
T∑

t=1

R(St , v)

)

, (9.4)

where R(S, v) is the revenue corresponding to assortment S as defined as in (9.3).
We measure the performance of a decision-making policy via its regret. The
objective then is to design a policy that approximately minimizes the regret defined
as

Reg(T , v) =
T∑

t=1

R(S∗, v)− E[R(St , v)], (MNL-Bandit)

where S∗ = argmax
S∈S

R(S, v), with S being the set of feasible assortments.

This exploration–exploitation problem, which is referred to as the MNL-Bandit
problem, is the focus of this chapter.

Constraints Over Assortment Selection The literature considers several naturally
arising constraints over the assortments that the retailer can offer. The simplest
form of constraints is cardinality constraints, i.e., an upper bound on the number
of products that can be offered in the assortment. Other more general constraints
include partition matroid constraints (where the products are partitioned into
segments and the retailer can select at most a specified number of products from
each segment) and joint display and assortment constraints (where the retailer needs
to decide both the assortment and the display segment of each product in the
assortment and there is an upper bound on the number of products in each display
segment). More generally, consider the set of totally unimodular (TU) constraints
on the assortments. Let x(S) ∈ {0, 1}N be the incidence vector for assortment
S ⊆ {1, . . . , N}, i.e., xi(S) = 1 if product i ∈ S and 0 otherwise. The approaches
discussed here extend to constraints of the form

S = {S ⊆ {1, . . . , N} | A x(S) ≤ b, 0 ≤ x ≤ 1} , (9.5)

216 S. Agrawal et al.

where A is a totally unimodular matrix and b is integral (i.e., each component of
the vector b is an integer). The totally unimodular constraints model a rich class
of practical assortment planning problems including the examples discussed above.
We refer the reader to Davis et al. (2013) for a detailed discussion on assortment
and pricing optimization problems that can be formulated under the TU constraints.

Algorithmic Approaches Some initial works that consider the problem of min-
imizing regret under the MNL choice model include (Rusmevichientong et al.,
2010; Sauré and Zeevi, 2013). Both these works present an “explore first and
exploit later” approach. In particular, a selected set of assortments are explored
until parameters can be estimated to a desired accuracy, and then the optimal
assortment corresponding to the estimated parameters is offered for the remaining
selling horizon. More specifically, when the expected revenue difference between
the optimal and next best assortments is �, existing approaches uniformly explore
all the products for O(log T/�) time periods and use the obtained data to estimate
the optimal assortment. The exploration period that depends on the knowledge
of the revenue gap, �, is to ensure that the algorithm can identify the optimal
assortment with “high probability.” Following this approach, (Sauré and Zeevi,
2013) show an asymptotic O(N log T/�) regret bound, while (Rusmevichientong
et al., 2010) establish an O(N2 log2 T/�) regret bound; recall N is the number
of products and T is the time horizon. However, as highlighted above, their
algorithm relies crucially on a priori knowledge of the revenue gap, �, which is
not readily available in practice. In Sect. 9.4.4, we will highlight via numerical
simulations how lack of this knowledge can result in settings where these algorithms
perform quite poorly. In the remainder of the chapter, we focus on approaches that
simultaneously explore and exploit demand information. Specifically, we discuss
a UCB (upper confidence bound)-based approach from Agrawal et al. (2016,
2019) and a Thompson Sampling-based approach from Agrawal et al. (2017). An
advantage of these adaptive approaches is that they do not require any a priori
knowledge or assumptions, and their performance is in some sense best possible
(matches the worst-case lower bound), thereby, making these approaches more
universal in its scope.

9.4 A UCB Approach for the MNL-Bandit

In this section, we discuss an algorithm from Agrawal et al. (2016, 2019) that
adapts the popular upper confidence bounds (UCBs) approach to the MNL-
Bandit problem. After presenting the details of the algorithm, in Sect. 9.4.2, we
present the regret analysis that shows that this algorithm achieves a worst-case regret
bound of O(

√
NT logNT) under a mild assumption, namely that the no purchase

9 The MNL-Bandit Problem 217

is the most “frequent” outcome. In Sect. 9.4.3, we also present the instance-
dependent regret bounds that show that for “well separated” instances, the regret
of the policy is bounded by O

(
min

(
N2 logNT /�,

√
NT logNT

))
, where � is

the “separability” parameter discussed in the previous section. This is comparable
to the regret bounds, O (N log T/�) and O

(
N2 log2 T/�

)
, established in Sauré

and Zeevi (2013) and Rusmevichientong et al. (2010), respectively, even though the
policy does not require any prior information on� unlike the aforementioned work.
Finally, in Sect. 9.4.4, we present a computational study from Avadhanula (2019)
that highlights several salient features of the UCB-based policy. In particular, the
study tests the performance of the proposed algorithm over instances with varying
degrees of separability between optimal and suboptimal solutions and observe that
the performance is bounded irrespective of the “separability parameter.” In contrast,
the approach of Sauré and Zeevi (2013) “breaks down” and results in linear regret
for some values of the “separability parameter.”

Challenges and Overview
A key difficulty in applying standard multi-armed bandit techniques to this problem
is that the response observed on offering a product i is not independent of other
products in assortment S. Therefore, the N products cannot be directly treated as N
independent arms. The algorithm presented here utilizes the specific properties of
the dependence structure in MNL model to obtain an efficient algorithm with order√
NT regret.
The algorithm is based on a nontrivial extension of the UCB algorithm in Auer

et al. (2002), which is predicated on Lai and Robbins (1985). It uses the past
observations to maintain increasingly accurate upper confidence bounds for the
MNL parameters {vi, i = 1, . . . , N} and also uses these to (implicitly) maintain
an estimate of expected revenue R(S, v) for every feasible assortment S. In every
round, the algorithm picks the assortment S with the highest optimistic revenue.
There are two main challenges in implementing this scheme. First, the customer
response to being offered an assortment S depends on the entire set S and does
not directly provide an unbiased sample of demand for a product i ∈ S. In order
to obtain unbiased estimates of vi for all i ∈ S, we offer a set S multiple times:
specifically, it is offered repeatedly until a no purchase occurs. We show that
proceeding in this manner, the average number of times a product i is purchased
provides an unbiased estimate of the parameter vi . The second difficulty is the
computational complexity of maintaining and optimizing revenue estimates for each
of the exponentially many assortments. To this end, we use the structure of the MNL
model and define our revenue estimates such that the assortment with maximum
estimated revenue can be efficiently found by solving a simple optimization
problem. This optimization problem turns out to be a static assortment optimization
problem with upper confidence bounds for vi’s as the MNL parameters, for which
efficient solution methods are available.

218 S. Agrawal et al.

9.4.1 Algorithmic Details

The algorithm divides the time horizon into epochs, where in each epoch we offer
an assortment repeatedly until a no purchase outcome occurs. Specifically, in each
epoch �, we offer an assortment S� repeatedly. Let E� denote the set of consecutive
time steps in epoch �. E� contains all time steps after the end of epoch � − 1, until
a no purchase happens in response to offering S�, including the time step at which
no purchase happens. The length of an epoch |E�| conditioned on S� is a geometric
random variable with success probability defined as the probability of no purchase
in S�. The total number of epochs L in time T is implicitly defined as the minimum
number for which

∑L
�=1 |E�| ≥ T .

At the end of every epoch �, we update our estimates for the parameters of MNL,
which are used in epoch �+ 1 to choose assortment S�+1. For any time step t ∈ E�,
let ct denote the consumer’s response to S�, i.e., ct = i if the consumer purchased
product i ∈ S�, and 0 if no purchase happened. We define v̂i,� as the number of
times a product i is purchased in epoch �,

v̂i,� :=
∑

t∈E�
1(ct = i). (9.6)

For every product i and epoch � ≤ L, we keep track of the set of epochs before �
that offered an assortment containing product i and the number of such epochs. We
denote the set of epochs by Ti (�) and the number of epochs by Ti(�); that is,

Ti (�) = {τ ≤ � | i ∈ Sτ } , Ti(�) = |Ti (�)|. (9.7)

We compute v̄i,� as the number of times product i was purchased per epoch,

v̄i,� = 1

Ti(�)

∑

τ∈Ti (�)
v̂i,τ . (9.8)

We show that for all i ∈ S�, v̂i,� and v̄i,� are unbiased estimators of the MNL
parameter vi (see Corollary 6). Using these estimates, we compute the upper
confidence bounds, vUCBi,� , for vi as

vUCBi,� := v̄i,� +
√

v̄i,�
48 log (

√
N�+ 1)

Ti(�)
+ 48 log (

√
N�+ 1)

Ti(�)
. (9.9)

We establish that vUCBi,� is an upper confidence bound on the true parameter vi , i.e.,

vUCBi,� ≥ vi , for all i, � with high probability (see Lemma 1). The role of the upper
confidence bounds is akin to their role in hypothesis testing; they ensure that the
likelihood of identifying the parameter value is sufficiently large. We then offer the
optimistic assortment in the next epoch, based on the previous updates as follows:

9 The MNL-Bandit Problem 219

S�+1 := argmax
S∈S

max
{
R(S, v̂) : v̂i ≤ vUCBi,�

}
, (9.10)

where R(S, v̂) is as defined in (9.3). We later show that the above optimization
problem is equivalent to the following optimization problem:

S�+1 := argmax
S∈S

R̃�+1(S), (9.11)

where R̃�+1(S) is defined as

R̃�+1(S) :=

∑

i∈S
riv

UCB
i,�

1+
∑

j∈S
vUCBj,�

. (9.12)

We summarize the precise steps of this UCB-based algorithm in Algorithm 1.
Finally, we may remark on the computational complexity of implement-

ing (9.10). The optimization problem (9.10) is formulated as a static assortment
optimization problem under the MNL model with TU constraints, with model
parameters being vUCBi,� , i = 1, . . . , N (see (9.11)). There are efficient polynomial
time algorithms to solve the static assortment optimization problem under

Algorithm 1 Exploration–Exploitation algorithm for MNL-Bandit

1: Initialization: vUCBi,0 = 1 for all i = 1, . . . , N
2: t = 1 ; � = 1 keeps track of the time steps and total number of epochs, respectively
3: while t < T do

4: Compute S� = argmax
S∈S

R̃�(S) =

∑

i∈S
riv

UCB
i,�−1

1+
∑

j∈S
vUCBj,�−1

5: Offer assortment S�, observe the purchasing decision, ct of the consumer
6: if ct = 0 then
7: compute v̂i,� =∑

t∈E� 1(ct = i), no. of consumers who preferred i in epoch �, for all
i ∈ S�

8: update Ti (�) = {τ ≤ � | i ∈ S�} , Ti(�) = |Ti (�)|, no. of epochs until � that offered
product i

9: update v̄i,� =
1

Ti(�)

∑

τ∈Ti (�)
v̂i,τ , sample mean of the estimates

10: update vUCBi,� =v̄i,� +
√

v̄i,�
48 log (

√
N�+ 1)

Ti(�)
+ 48 log (

√
N�+ 1)

Ti(�)
; � = �+ 1

11: else
12: E� = E� ∪ t , time indices corresponding to epoch �
13: end if
14: t = t + 1
15: end while

220 S. Agrawal et al.

MNL model with known parameters (see Avadhanula et al. 2016; Davis et al.
2013; Rusmevichientong et al. 2010). We will now briefly comment on how
Algorithm 1 is different from the existing approaches of Sauré and Zeevi (2013) and
Rusmevichientong et al. (2010) and also why other standard “bandit techniques”
are not applicable to the MNL-Bandit problem.

Remark 1 (Universality) Note that Algorithm 1 does not require any prior knowl-
edge/information about the problem parameters v (other than the assumption
vi ≤ v0, refer to Avadhanula (2019) for discussion on designing algorithms for
settings when vi > v0). This is in contrast with the approaches of Sauré and
Zeevi (2013) and Rusmevichientong et al. (2010), which require the knowledge
of the “separation gap,” namely, the difference between the expected revenues of
the optimal assortment and the second best assortment. Assuming knowledge of
this “separation gap,” both these existing approaches explore a predetermined set
of assortments to estimate the MNL parameters within a desired accuracy, such
that the optimal assortment corresponding to the estimated parameters is the (true)
optimal assortment with high probability. This forced exploration of predetermined
assortments is avoided in Algorithm 1, which offers assortments adaptively, based
on the current observed choices. The confidence regions derived for the parameters
v and the subsequent assortment selection ensure that Algorithm 1 judiciously
maintains the balance between exploration and exploitation that is central to the
MNL-Bandit problem.

Remark 2 (Estimation Approach) Because the MNL-Bandit problem is parameter-
ized with parameter vector (v), a natural approach is to build on standard estimation
approaches like maximum likelihood (MLE), where the estimates are obtained by
optimizing a loss function. However, the confidence regions for estimates resulting
from such approaches are either asymptotic and are not necessarily valid for
finite time with high probability or typically depend on true parameters, which
are not known a priori. For example, finite time confidence regions associated
with maximum likelihood estimates require the knowledge of sup

v∈V
I (v) (see

Borovkov 1984), where I is the Fisher information of the MNL choice model
and V is the set of feasible parameters (that is not known a priori). Note that
using I (vMLE) instead of sup

v∈V
I (v) for constructing confidence intervals would

only lead to asymptotic guarantees and not finite sample guarantees. In contrast, in
Algorithm 1, the estimation problem is resolved by a sampling method designed to
give us unbiased estimates of the model parameters. The confidence bounds of these
estimates and the algorithm do not depend on the underlying model parameters.
Moreover, our sampling method allows us to compute the confidence regions
by simple and efficient “book keeping” and avoids computational issues that are
typically associated with standard estimation schemes such as MLE. Furthermore,
the confidence regions associated with the unbiased estimates also facilitate a
tractable way to compute the optimistic assortment (see (9.10), (9.11), and Step
4 of Algorithm 1), which is less accessible for the MLE estimate.

9 The MNL-Bandit Problem 221

9.4.2 Min–Max Regret Bounds

For the regret analysis, we make the following assumptions.

Assumption 1

1. The MNL parameter corresponding to any product i ∈ {1, . . . , N} satisfies vi ≤
v0 = 1.

2. The family of assortments S is such that S ∈ S andQ ⊆ S implies thatQ ∈ S.

The first assumption is equivalent to the “no purchase option” being the most likely
outcome. We note that this holds in many realistic settings, in particular, in online
retailing and online display-based advertising. The second assumption implies that
removing a product from a feasible assortment preserves feasibility. This holds for
most constraints arising in practice including cardinality and matroid constraints
more generally. We would like to note that the first assumption is made for ease of
presentation of the key results and is not central to deriving bounds on the regret.
The main result is the following upper bound on the regret of the policy stated in
Algorithm 1.

Theorem 1 (Performance Bounds for Algorithm 1) For any instance v =
(v0, . . . , vN) of the MNL-Bandit problem with N products, ri ∈ [0, 1], and
Assumption 1, the regret of the policy given by Algorithm 1 at any time T is bounded
as

Regπ(T , v) ≤ C1
√
NT logNT + C2N log2NT ,

where C1 and C2 are absolute constants (independent of problem parameters).

Proof Outline
In this section, we briefly discuss an outline of different steps involved in proving
Theorem 1. We refer the interested readers to Agrawal et al. (2019) and Avadhanula
(2019) for detailed proofs.

Confidence Intervals The first step in the regret analysis is to prove the following
two properties of the estimates vUCBi,� computed as in (9.9) for each product i.

Specifically, that vi is bounded by vUCBi,� with high probability and that as a product

is offered an increasing number of times, the estimates vUCBi,� converge to the true
value with high probability. Specifically, we have the following result.

Lemma 1 For every � = 1, · · · , L, we have:
1. vUCBi,� ≥ vi with probability at least 1− 6

N�
for all i = 1, . . . , N .

2. There exist constants C1 and C2 such that

vUCBi,� − vi ≤ C1

√
vi log (

√
N�+ 1)

Ti(�)
+ C2

log (
√
N�+ 1)

Ti(�)
,

with probability at least 1− 7
N�

.

222 S. Agrawal et al.

Intuitively, these properties establish vUCBi,� as upper confidence bounds con-
verging to actual parameters vi , akin to the upper confidence bounds used in the
UCB algorithm for MAB in Auer et al. (2002). These properties follow from an
observation that is conceptually equivalent to the IIA (independence of irrelevant
alternatives) property of MNL and shows that in each epoch τ , v̂i,τ (the number of
purchases of product i) provides independent unbiased estimates of vi . Intuitively,
v̂i,τ is the ratio of probabilities of purchasing product i to preferring product 0 (no
purchase), which is independent of Sτ . This also explains why we choose to offer
Sτ repeatedly until no purchase occurs. Given these unbiased i.i.d. estimates from
every epoch τ before �, we apply a multiplicative Chernoff–Hoeffding bound to
prove concentration of v̄i,�.

Validity of the Optimistic Assortment The product demand estimates vUCBi,�−1 were

used in (9.12) to define expected revenue estimates R̃�(S) for every set S. In the
beginning of every epoch �, Algorithm 1 computes the optimistic assortment as S� =
arg maxS R̃�(S) and then offers S� repeatedly until no purchase happens. The next
step in the regret analysis is to leverage the fact that vUCBi,� is an upper confidence
bound on vi to prove similar, though slightly weaker, properties for the estimates
R̃�(S). First, we note that estimated revenue is an upper confidence bound on the
optimal revenue, i.e., R(S∗, v) is bounded by R̃�(S�) with high probability. The
proof for these properties involves careful use of the structure of MNL model to
show that the value of R̃�(S�) is equal to the highest expected revenue achievable
by any feasible assortment, among all instances of the problem with parameters in
the range [0, vUCBi], i = 1, . . . , n. Since the actual parameters lie in this range with
high probability, we have that R̃�(S�) is at least R(S∗, v) with high probability. In
particular, we have the following result.

Lemma 2 Suppose S∗ ∈ S is the assortment with highest expected revenue, and
Algorithm 1 offers S� ∈ S in each epoch �. Then, for every epoch �, we have

R̃�(S�) ≥ R̃�(S∗) ≥ R(S∗, v) with probability at least 1− 6

�
.

Bounding the Regret The final part of the analysis is to bound the regret in each
epoch. First, we use the fact that R̃�(S�) is an upper bound on R(S∗, v) to bound
the loss due to offering the assortment S�. In particular, we show that the loss
is bounded by the difference between the “optimistic” revenue estimate, R̃�(S�),
and the actual expected revenue, R(S�). We then prove a Lipschitz property of
the expected revenue function to bound the difference between these estimates in
terms of errors in individual product estimates |vUCBi,� − vi |. Finally, we leverage the

structure of the MNL model and the properties of vUCBi,� to bound the regret in each
epoch. Lemma 3 provides the precise statements of above properties.

9 The MNL-Bandit Problem 223

Lemma 3 If ri ∈ [0, 1], there exist constants C1 and C2 such that for every � =
1, · · · , L, we have

(1+∑
j∈S� vj)(R̃�(S�)− R(S�, v)) ≤ C1

√
vi log (

√
N�+1)

|Ti (�)| + C2
log (

√
N�+1)

|Ti (�)| ,

with probability at least 1− 13
�
.

9.4.3 Improved Regret Bounds for “Well Separated” Instances

In this section, we consider the problem instances that are “well separated” and
present an improved logarithmic regret bound. More specifically, we present an
O(log T) regret bound for Algorithm 1 for instances that are “well separated.” In
Sect. 9.4.2, we established worst-case regret bounds for Algorithm 1 that hold for
all problem instances satisfying Assumption 1. While the algorithm ensures that the
exploration–exploitation trade-off is balanced at all times, we demonstrate that it
quickly converges to the optimal solution for the problem instances that are “well
separated,” leading to even better regret bounds. More specifically, we consider
problem instances where the optimal assortment and “second best” assortment
are sufficiently “separated” and derive an O(log T) regret bound that depends
on the parameters of the instance. Note that, unlike the regret bound derived in
Sect. 9.4.2 that holds for all problem instances satisfying Assumption 1, the bound
we derive here only holds for instances having certain separation between the
revenues corresponding to optimal and second best assortments. In particular, let
�(v) denote the difference between the expected revenues of the optimal and second
best assortment, i.e.,

�(v) = min
{S∈S|R(S,v) �=R(S∗,v)}

{R(S∗, v)− R(S)}. (9.13)

We have the following result.

Theorem 2 (Performance Bounds for Algorithm 1 in “Well Separated” Case)
For any instance v = (v0, . . . , vN) of the MNL-Bandit problem with N products,
ri ∈ [0, 1], and Assumption 1, the regret of the policy given by Algorithm 1 at any
time T is bounded as

Reg(T , v) ≤ B1

(
N2 log T

�(v)

)

+ B2,

where B1 and B2 are absolute constants.

Proof Outline We provide a proof outline here. We refer the interested readers
to Avadhanula (2019) for a detailed proof. In this setting, we analyze the regret

224 S. Agrawal et al.

by separately considering the epochs that satisfy certain desirable properties and the
ones that do not. Specifically, we denote epoch � as a “good” epoch if the parameters
vUCBi,� satisfy the following property:

0 ≤ vUCBi,� − vi ≤ C1

√
vi log (

√
N�+ 1)

Ti(�)
+ C2

log (
√
N�+ 1)

Ti(�)
,

and we call it a “bad” epoch otherwise, where C1 and C2 are constants as defined
in Lemma 1. Note that every epoch � is a good epoch with high probability
(1 − 13

�
), and we show that regret due to “bad” epochs is bounded by a constant

(see Lemma 1). Therefore, we focus on “good” epochs and show that there exists a
constant τ , such that after each product has been offered in at least τ “good” epochs,
Algorithm 1 finds the optimal assortment. Based on this result, we can then bound
the total number of “good” epochs in which a suboptimal assortment can be offered
by our algorithm. Specifically, let

τ = 4NC logNT

�2(v)
, (9.14)

where C = max{C2
1 , C2}. Then, we have the following result.

Lemma 4 Let � be a “good” epoch and S� be the assortment offered by Algorithm 1
in epoch �. If every product in assortment S� is offered in at least τ “good epochs,”
i.e., Ti(�) ≥ τ for all i, then we have R(S�, v) = R(S∗, v).

The next step in the analysis is to show that Algorithm 1 will offer a small
number of suboptimal assortments in “good” epochs. More specifically, we have
the following result:

Lemma 5 Algorithm 1 cannot offer suboptimal assortments in more than Nτ
“good” epochs.

It should be noted that the bound obtained in Theorem 2 is similar in magnitude
to the regret bounds obtained by Sauré and Zeevi (2013) and is strictly better than
the regret bound O(N2 log2 T) established by Rusmevichientong et al. (2010).
Moreover, the algorithm does not require the knowledge of �(v), unlike the
aforementioned papers that build on a conservative estimate of �(v) to implement
their proposed policies.

9.4.4 Computational Study

In this section, we present insights from numerical experiments in Avadhanula
(2019) that test the empirical performance of our policy and highlight some of its
salient features. We study the performance of Algorithm 1 from the perspective of

9 The MNL-Bandit Problem 225

robustness with respect to the “separability parameter” of the underlying instance.
In particular, we consider varying levels of separation between the revenues
corresponding to the optimal assortment and the second best assortment and perform
a regret analysis numerically. We contrast the performance of Algorithm 1 with the
approach in Sauré and Zeevi (2013) for different levels of separation. We observe
that when the separation between the revenues corresponding to optimal assortment
and second best assortment is sufficiently small, the approach in Sauré and Zeevi
(2013) breaks down, i.e., incurs linear regret, while the regret of Algorithm 1 only
grows sub-linearly with respect to the selling horizon.

9.4.4.1 Robustness of Algorithm 1

Here, we present a study that examines the robustness of Algorithm 1 with
respect to the instance separability. We consider a parametric instance (see (9.15)),
where the separation between the revenues of the optimal assortment and the next
best assortment is specified by the parameter ε and compare the performance of
Algorithm 1 for different values of ε.

Experimental Setup We consider the parametric MNL setting with N = 10, K =
4, ri = 1 for all i, and utility parameters v0 = 1 and for i = 1, . . . , N ,

vi =
{

0.25+ ε, if i ∈ {1, 2, 9, 10}
0.25, else ,

(9.15)

where 0 < ε < 0.25, specifies the difference between revenues corresponding to the
optimal assortment and the next best assortment. Note that this problem has a unique
optimal assortment {1, 2, 9, 10} with an expected revenue of 1+ 4ε/2+ 4ε and
the next best assortment has revenue of 1+ 3ε/2+ 3ε. We consider four different
values for ε, ε = {0.05, 0.1, 0.15, 0.25}, where higher value of ε corresponds to
larger separation and hence an “easier” problem instance.

Results Figure 9.1 summarizes the performance of Algorithm 1 for different values
of ε. The results are based on running 100 independent simulations, and the standard
errors are within 2%. Note that the performance of Algorithm 1 is consistent across
different values of ε, with a regret that exhibits sub-linear growth. Observe that as
the value of ε increases, the regret of Algorithm 1 decreases. While not immediately
obvious from Fig. 9.1, the regret behavior is fundamentally different in the case
of “small” ε and “large” ε. To see this, in Fig. 9.2, we focus on the regret for
ε = 0.05 and ε = 0.25 and fit to log T and

√
T , respectively. (The parameters

of these functions are obtained via simple linear regression of the regret vs log T
and

√
T , respectively). It can be observed that the regret is roughly logarithmic

when ε = 0.25 and in contrast roughly behaves like
√
T when ε = 0.05. This

illustrates the theory developed in Sect. 9.4.3, where we showed that the regret grows
logarithmically with time, if the optimal assortment and the next best assortment are
“well separated,” while the worst-case regret scales as

√
T .

226 S. Agrawal et al.

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

1000

2000

3000

4000

5000

6000

7000

T

Re
gr
et

= 0 .05 = 0 .1 = 0 .15 = 0 .25

Fig. 9.1 Performance of Algorithm 1 measured as the regret on the parametric instance (9.15).
The graphs illustrate the dependence of the regret on T for “separation gaps” ε =
0.05, 0.1, 0.15, and 0.25, respectively

Fig. 9.2 Best fit for the regret of Algorithm 1 on the parametric instance (9.15). The graphs (a)
and (b) illustrate the dependence of the regret on T for “separation gaps” ε = 0.05 and 0.25,
respectively. The best y = β1 log T + β0 fit and the best y = β1

√
T + β0 fit are superimposed on

the regret curve

9.4.4.2 Comparison with Existing Approaches

In this section, we present a computational study comparing the performance of
our algorithm to that of Sauré and Zeevi (2013). To be implemented, their approach
requires certain a priori information of a “separability parameter”; roughly speaking,
measuring the degree to which the optimal and next best assortments are distinct
from a revenue standpoint. More specifically, their algorithm follows an explore-
then-exploit approach, where every product is offered for a minimum duration of
time that is determined by an estimate of said “separability parameter.” After this
mandatory exploration phase, the parameters of the choice model are estimated
based on the past observations, and the optimal assortment corresponding to the
estimated parameters is offered for the subsequent consumers. If the optimal assort-
ment and the next best assortment are “well separated,” then the offered assortment

9 The MNL-Bandit Problem 227

()

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

5000

10000

15000

T

R
e
g
re
t

= 0 .05

Algorithm 1

Saure and Zeevi

()

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

5000

10000

15000

T

R
e
g
re
t

= 0 .1

Algorithm 1

Saure and Zeevi

()

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

5000

10000

15000

T

R
e
g
re
t

= 0 .15

Algorithm 1

Saure and Zeevi

()

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

5000

10000

15000

T

R
e
g
re
t

= 0 .25

Algorithm 1

Saure and Zeevi

Fig. 9.3 Comparison with the algorithm of Sauré and Zeevi (2013). The graphs (a), (b), (c),
and (d) compare the performance of Algorithm 1 to that of Sauré and Zeevi (2013) on problem
instance (9.15), for ε = 0.05, 0.1, 0.15, and 0.25 respectively

is optimal with high probability, otherwise, the algorithm could potentially incur
linear regret. Therefore, the knowledge of this “separability parameter” is crucial.
For our comparison, we consider the exploration period suggested by Sauré and
Zeevi (2013) and compare it with the performance of Algorithm 1 for different
values of separation (ε). We will see that for any given exploration period, there
is an instance where the approach in Sauré and Zeevi (2013) “breaks down” or in
other words incurs linear regret, while the regret of Algorithm 1 grows sub-linearly
(O(

√
T), more precisely) for all values of ε as asserted in Theorem 1.

Experimental Setup and Results We consider the parametric MNL setting as
described in (9.15) and for each value of ε ∈ {0.05, 0.1, 0.15, 0.25}. Since the
implementation of the policy in Sauré and Zeevi (2013) requires knowledge of the
selling horizon and minimum exploration period a priori, we take the exploration
period to be 20 log T as suggested in Sauré and Zeevi (2013) and the selling horizon
T = 106. Figure 9.3 compares the regret of Algorithm 1 with that of Sauré and
Zeevi (2013). The results are based on running 100 independent simulations with
standard error of 2%. We observe that the regret for Sauré and Zeevi (2013) is better
than the regret of Algorithm 1 when ε = 0.25 but is worse for other values of
ε. This can be attributed to the fact that for the assumed exploration period, their
algorithm fails to identify the optimal assortment within the exploration phase with
sufficient probability and hence incurs a linear regret for ε = 0.05, 0.1, and 0.15.
Specifically, among the 100 simulations we tested, the algorithm in Sauré and Zeevi

228 S. Agrawal et al.

(2013) identified the optimal assortment for only 7%, 40%, 61%, and 97% cases,
when ε = 0.05, 0.1, 0.15, and 0.25, respectively. This highlights the sensitivity to
the “separability parameter” and the importance of having a reasonable estimate for
the exploration period. Needless to say, such information is typically not available
in practice. In contrast, the performance of Algorithm 1 is consistent across different
values of ε, insofar as the regret grows in a sub-linear fashion in all cases.

9.5 Thompson Sampling for the MNL-Bandit

Motivated by the attractive empirical properties, in this section, we focus on
a Thompson Sampling (TS)-based approach to the MNL-Bandit problem, first
presented in Agrawal et al. (2017). In Sect. 9.5.1, we present the details of TS-
based policy. In particular, we describe how to leverage the sampling technique
introduced in Chap. 9.4 and design a prior distribution on the parameters of the MNL
model such that the posterior update under the MNL-bandit feedback is tractable.
In Sect. 9.5.4, we prove that the proposed algorithm achieves an Õ(

√
NT log TK)

regret upper bound. Here, we also highlight the key ingredient of the TS-based
approach, a two-moment approximation of the posterior, and the ability to judicially
correlate samples, which is done by embedding the two-moment approximation in a
normal family. Section 9.5.5 demonstrates the empirical efficiency of our algorithm
design.

9.5.1 Algorithm

In this section, we describe the posterior sampling (aka Thompson Sampling)-based
algorithm for the MNL-Bandit problem. The basic structure of Thompson Sampling
involves maintaining a posterior on the unknown problem parameters, which is
updated every time new feedback is obtained. At the beginning of every round,
a sample set of parameters is generated from the current posterior distribution,
and the algorithm selects the best offer set according to these sample parameters.
In the MNL-Bandit problem, there is one unknown parameter vi associated with
each item. To adapt the TS algorithm for this problem, we would need to maintain
a joint posterior for (v1, . . . , vN). However, updating such a joint posterior is
nontrivial since the feedback observed in every round is a choice sampled from
the multinomial distribution. This depends on the subset S offered in that round. In
particular, even if we initialize with an independent prior from a popular analytical
family such as multivariate Gaussian, the posterior distribution after observing
the MNL choice feedback will have a complex description. As a first step in
addressing this challenge, we attempt to design a Thompson Sampling algorithm

9 The MNL-Bandit Problem 229

with independent priors. In particular, we leverage a sampling technique introduced
in Sect. 9.4 that allows us to decouple individual parameters from the MNL choice
feedback and provide unbiased estimates of these parameters. We can utilize these
unbiased estimates to efficiently maintain independent conjugate Beta priors for the
parameters vi for each i. We present the details in Algorithm 1 below.

9.5.2 A TS Algorithm with Independent Beta Priors

Here, we present the first version of the Thompson sampling algorithm, which will
serve as an important building block for the main algorithm in Sect. 9.5.3. In this
version, we maintain a Beta posterior distribution for each item i = 1, . . . , N ,
which is updated as we observe users’ choice of items from the offered subsets. A
key challenge here is to choose priors that can be efficiently updated on observing
user choice feedback, to obtain increasingly accurate estimates of parameters {vi}.
To address this, we use the sampling technique introduced in the previous section
to decouple estimates of individual parameters from the complex MNL feedback.
The idea is to offer a set S multiple times; in particular, a chosen set S is offered
repeatedly until the “outside option” is picked (in the online advertising application
discussed earlier, this corresponds to displaying the same subset of ads repeatedly
until we observe a user who does not click on any of the displayed ads). Proceeding
in this manner, due to the structure of the MNL model, the average number of times
an item i is selected provides an unbiased estimate of parameter vi . Moreover, the
number of times an item i is selected is also independent of the displayed set and
is a geometric distribution with success probability 1/(1 + vi) and mean vi . This
observation is used as the basis for the epoch-based algorithmic structure and the
choice of prior/posterior, as a conjugate to this geometric distribution.

Epoch-Based Offerings Similar to the UCB approach, the algorithm proceeds in
epochs � = 1, 2, . . . An epoch is a group of consecutive time steps, where a set S�
is offered repeatedly until the outside option is picked in response to offering S�.
The set S� to be offered in epoch � is picked at the beginning of the epoch based
on the sampled parameters from the current posterior distribution; the construction
of these posteriors and choice of S� is described in the next paragraph. We denote
the group of time steps in an epoch as E�, which includes the time step at which
an outside option was preferred. The following lemmas provide important building
blocks for our construction. Refer to Avadhanula (2019) for detailed proofs.

Lemma 6 (Unbiased Estimate) Let ṽi,� be the number of times an item i ∈ S� is
picked when the set S� is offered repeatedly until the outside option is picked. Then,
for any � and i, ṽi,� are i.i.d. geometric random variables with success probability

1
1+vi and expected value vi .

Lemma 7 (Conjugate Priors) For any α > 3, β > 0, and Yα,β ∼ Beta(α, β),
let Xα,β = 1

Yα,β−1 and fα,β denote the probability distribution of random variable

230 S. Agrawal et al.

Xα,β . If the prior distribution of vi is fα,β , then after observing ṽi,�, a geometric
random variable with success probability 1

vi+1 , the posterior distribution of vi is
given by

P

(
vi

∣
∣
∣ṽi,� = m

)
= fα+1,β+m(vi).

Construction of Conjugate Prior/Posterior From Lemma 6, we have that for any
epoch � and for any item i ∈ S�, the estimate ṽi,�, the number of picks of item i in
epoch � is geometrically distributed with success probability 1/(1+ vi). Therefore,
if we use the distribution of 1/Beta(1, 1)− 1 as the initial prior for vi , and then, in
the beginning of epoch �, from Lemma 7, we have that the posterior is distributed
as 1

Beta(ni (�),Vi (�))
− 1, with ni(�) being the number of epochs the item i has been

offered before epoch � (as part of an assortment) and Vi(�) being the number of
times it was picked by the user.

Selection of Subset to be Offered To choose the subset to be offered in epoch �,
the algorithm samples a set of parameters μ1(�), . . . , μN(�) independently from the
current posteriors and finds the set that maximizes the expected revenue as per the
sampled parameters. In particular, the set S� to be offered in epoch � is chosen as

S� := argmax
|S|≤K

R(S,μ(�)). (9.16)

The details of the above procedure are provided in Algorithm 2.

Algorithm 2 A TS algorithm for MNL-Bandit with Independent Beta priors

Initialization: For each item i = 1, · · · , N , Vi = 1, ni = 1.

t = 1, keeps track of the time steps

� = 1, keeps count of total number of epochs

while t ≤ T do

(a) (Posterior Sampling) For each item i = 1, · · · , N , sample θi(�) from the Beta(ni , Vi)
and compute μi(�) = 1

θi (�)
− 1

(b) (Subset Selection) Compute S� = argmax
|S|≤K

R(S,μ(�)) =
∑
i∈S riμi (�)

1+∑j∈S μj (�)

(c) (Epoch-based offering)
repeat

Offer the set S�, and observe the user choice ct ;

Update E� = E� ∪ t , time indices corresponding to epoch �; t = t + 1

until ct = 0 ot t = T
(d) (Posterior update)

For each item i ∈ S�, compute ṽi,� = ∑
t∈E� I(ct = i), number of picks of item i in

epoch �.

Update Vi = Vi + ṽi,�, ni = ni + 1, � = �+ 1.

end while

9 The MNL-Bandit Problem 231

Algorithm 2 presents some unique challenges for theoretical analysis. A worst-
case regret analysis of Thompson Sampling-based algorithms for MAB typically
relies on showing that the best arm is optimistic at least once every few steps,
in the sense that the parameter sampled from the posterior is better than the true
parameter. Due to the combinatorial nature of our problem, such a proof approach
requires showing that every few steps, all the K items in the optimal offer set
have sampled parameters that are better than their true counterparts. However,
Algorithm 2 samples the posterior distribution for each parameter independently
in each round. This makes the probability of being optimistic exponentially small
in K . In Sect. 9.5.3, we modify Algorithm 2 to address these challenges and in a
manner amenable to theoretical analysis.

9.5.3 A TS Algorithm with Posterior Approximation and
Correlated Sampling

In this section, we present a variant of TS with correlated sampling that achieves
provably near-optimal regret bounds. We address the challenge associated with the
combinatorial nature of the MNL-Bandit by employing correlated sampling across
items. To implement correlated sampling, we find it useful to approximate the Beta
posterior distribution by a Gaussian distribution with approximately the same mean
and variance as the former, what was referred to in the introduction as a two-
moment approximation. This allows us to generate correlated samples from the N
Gaussian distributions as linear transforms of a single standard Gaussian random
variable. Under such correlated sampling, we can guarantee that the probability
that all K optimal items are simultaneously optimistic is constant, as opposed to
being exponentially small (in K) in the case of independent sampling. However,
such correlated sampling reduces the overall variance of the maximum of N
samples severely, thus inhibiting exploration. We “boost” the variance by taking
K samples instead of a single sample of the standard Gaussian. The resulting
variant of Thompson Sampling, therefore, has three main modifications: posterior
approximation through a Gaussian distribution, correlated sampling, and taking
multiple samples (for “variance boosting”). We elaborate on each of these changes
below.

Posterior Approximation First, we present the following result that helps us in
approximating the posterior.

Lemma 8 (Moments of the Posterior Distribution) If X is a random variable
distributed as Beta(α, β), then

E

(
1
X
− 1

)
= β
α−1 , and Var

(
1
X
− 1

)
=

β
α−1

(
β
α−1+1

)

α−2 .

232 S. Agrawal et al.

We approximate the posterior distributions used in Algorithm 2 for each MNL
parameter vi , by a Gaussian distribution with approximately the same mean and
variance given in Lemma 8. In particular, let

v̂i (�) := Vi(�)

ni(�)
, σ̂i(�) :=

√
50v̂i (�)(v̂i(�)+ 1)

ni(�)
+ 75

√
log TK

ni(�)
, � = 1, 2, . . .

(9.17)

where ni(�) is the number of epochs item i has been offered before epoch �,
and Vi(�) being the number of times it was picked by the user. We will use
N
(
v̂i (�), σ̂

2
i (�)

)
as the posterior distribution for item i in the beginning of epoch �.

The Gaussian approximation of the posterior facilitates efficient correlated sampling
from posteriors that plays a key role in avoiding the theoretical challenges in
analyzing Algorithm 2.

Correlated Sampling Given the posterior approximation by Gaussian distribu-
tions, we correlate the samples by using a common standard normal variable and
constructing our posterior samples as an appropriate transform of this common
standard normal. More specifically, in the beginning of an epoch �, we generate
a sample from the standard normal distribution, θ ∼ N (0, 1), and the posterior
sample for item i is generated as v̂i (�) + θσ̂i(�). Intuitively, this allows us to
generate sample parameters for i = 1, . . . , N that are either simultaneously large or
simultaneously small, thereby, boosting the probability that the sample parameters
for all the K items in the best offered set are optimistic (i.e., the sampled parameter
values are higher than the true parameter values).

Multiple (K) Samples The correlated sampling decreases the joint variance of the
sample set. More specifically, if θi were sampled independently from the standard
normal distribution for every i, then for any epoch �, we have that

Var
(

max
i=1,··· ,N

{
v̂i (�)+ θσ̂i(�)

}
)

≤ Var
(

max
i=1,··· ,N

{
v̂i (�)+ θi σ̂i(�)

}
)

.

In order to boost this joint variance and ensure sufficient exploration, we modify
the procedure to generate multiple sets of samples. In particular, in the beginning of
an epoch �, we now generate K independent samples from the standard normal
distribution, θ(j) ∼ N(0, 1), j = 1, . . . , K . And then for each j , a sample
parameter set is generated as

μ
(j)
i (�) := v̂i (�)+ θ(j)σ̂i (�), i = 1, . . . , N.

Then, we use the largest valued samples

μi(�) := max
j=1,··· ,K μ

(j)
i (�),∀i,

9 The MNL-Bandit Problem 233

Algorithm 3 TS algorithm with Gaussian approximation and correlated sampling
Input parameters: α = 50, β = 75
Initialization: t = 0, � = 0, ni = 0 for all i = 1, · · · , N .

for each item, i = 1, · · · , N do

Offer item i to users until the user selects the “outside option”. Let ṽi,1 be the number of
times item i was offered. Update: Vi = ṽi,1 − 1, t = t + ṽi,1, � = �+ 1 and ni = ni + 1.

end for
while t ≤ T do

(a) (Correlated Sampling) for j = 1, · · · ,K
Sample θ(j)(�) from the distribution N (0, 1) and let θmax(�) = max

j=1,··· ,Kθ
(j)(�);

update v̂i = Vi
ni

.

For each item i ≤ N , compute μ(j)i (�) = v̂i + θmax(�) ·
(√

αv̂i (v̂i+1)
ni

+ β
√

log TK
ni

)

.

end

(b) (Subset selection) Same as step (b) of Algorithm 2.

(c) (Epoch-based offering) Same as step (c) of Algorithm 2.

(d) (Posterior update) Same as step (d) of Algorithm 2.

end while

to decide the assortment to offer in epoch �,

S� := arg max
S∈S

{R(S,μ(�))} .

We describe the algorithmic details formally in Algorithm 3.
Intuitively, the second-moment approximation provided by Gaussian distribution

and the multiple samples taken in Algorithm 3 may make the posterior converge
slowly and increase exploration. However, the correlated sampling may compensate
for these effects by reducing the variance of the maximum of N samples and
therefore reducing the overall exploration. In Sect. 9.5.5, we illustrate some of these
insights through numerical simulations. Here, correlated sampling is observed to
provide significant improvements as compared to independent sampling and while
posterior approximation by Gaussian distribution has little impact.

9.5.4 Regret Analysis

The following bound on the regret of Algorithm 3 was proven in Agrawal et al.
(2017).

234 S. Agrawal et al.

Theorem 3 For any instance v = (v0, · · · , vN) of the MNL-Bandit problem with
N products, ri ∈ [0, 1], and satisfying Assumption 1, the regret of Algorithm 3 in
time T is bounded as

Reg(T , v) ≤ C1
√
NT log TK + C2N log2 TK,

where C1 and C2 are absolute constants (independent of problem parameters).

Proof Outline
We provide a proof sketch for Theorem 3. We break down the expression for total
regret

Reg(T , v) := E
[
T∑

t=1

R(S∗, v)− R(St , v)
]

,

into regret per epoch, and rewrite it as follows:

Reg(T, v) = E
[
L∑

�=1

|E�|
(
R(S∗, v)− R(S�,μ(�))

)
]

︸ ︷︷ ︸
Reg1(T,v)

+E
[
L∑

�=1

|E�| (R(S�,μ(�))− R(S�, v))
]

︸ ︷︷ ︸
Reg2(T,v)

,

where |E�| is the number of periods in epoch �, and S� is the set repeatedly offered
by our algorithm in epoch �. We bound the two terms: Reg1(T , v) and Reg2(T , v)

separately.
Since S� is chosen as the optimal set for the MNL instance with parameters

μ(�), the first term Reg1(T , v) is essentially the difference between the optimal
revenue of the true instance and the optimal revenue of the sampled instance. This
term contributes no regret if the revenues corresponding to the sampled instances
are optimistic, i.e., if R(S�,μ(�)) ≥ R(S∗, v). Unlike optimism under uncertainty
approaches such as UCB, this property is not directly ensured by the Thompson
Sampling-based algorithm. To bound this term, we utilize the anti-concentration
properties of the posterior, as well as the dependence between samples for different
items. In particular, we use these properties to prove that at least one of the K
sampled instances is optimistic “often enough.”

The second term Reg2(T , v) captures the difference in reward from the offered
set S� when evaluated on sampled parameters in comparison to the true parameters.
We bound this by utilizing the concentration properties of the posterior distributions.

9 The MNL-Bandit Problem 235

It involves showing that for the sets that are played often, the posterior will converge
quickly so that revenue on the sampled parameters will be close to that on the true
parameters.

In what follows, we elaborate on the anti-concentration properties of the posterior
distribution required to prove Theorem 3.

Anti-Concentration of the Posterior Distribution The last and important compo-
nent of our analysis is showing that revenues corresponding to the sampled instances
are not optimistic, i.e., if R(S�,μ(�)) < R(S∗, v) only in a “small number” of
epochs. We utilize the anti-concentration properties of the posterior to prove that
one of the K sampled instances corresponds to higher expected revenue. We then
leverage this result to argue that the Reg1(T , v) is small.

We will refer to an epoch � as optimistic if the expected revenue of the optimal
set corresponding to the sampled parameters is higher than the expected revenue
of the optimal set corresponding to true parameters, i.e., R(S∗,μ(�)) ≥ R(S∗, v).
Any epoch that is not optimistic is referred to as a non-optimistic epoch. Since S�
is an optimal set for the sampled parameters, we have R(S�,μ(�)) ≥ R(S∗,μ(�)).
Hence, for any optimistic epoch �, the difference between the expected revenue
of the offer set corresponding to sampled parameters R(S�,μ(�)) and the optimal
revenue R(S∗, v) is bounded by zero. This suggests that as the number of optimistic
epochs increases, the term Reg1(T , v) decreases.

The central technical component of our analysis is showing that the regret
over non-optimistic epochs is “small.” More specifically, we prove that there are
only a “small” number of non-optimistic epochs. From the restricted monotonicity
property of the optimal revenue (see Lemma 2), we have that an epoch � is optimistic
if every sampled parameter, μi(�), is at least as high as the true parameter vi for
every item i in the optimal set S∗. Recall that each posterior sample, μ(j)i (�), is
generated from a Gaussian distribution, whose mean concentrates around the true
parameter vi . We can use this observation to conclude that any sampled parameter
will be greater than the true parameter with constant probability, i.e., μ(j)i (�) ≥ vi .
However, to show that an epoch is optimistic, we need to show that sampled
parameters for all the items in S∗ are larger than the true parameters. This is
where the correlated sampling feature of our algorithm plays a key role. We use
the dependence structure between samples for different items in the optimal set and
variance boosting (by a factor ofK) to prove an upper bound of roughly 1/K on the
number of consecutive epochs between two optimistic epochs. More specifically,
we have the following result.

Lemma 9 (Spacing of Optimistic Epochs) Let EAn(τ) denote the set of consecu-
tive epochs between an optimistic epoch τ and the subsequent optimistic epoch τ ′.
For any p ∈ [1, 2], we have

E

[∣
∣
∣EAn(τ)

∣
∣
∣
p] ≤

(
e12

K
+ 301/p

)p

.

236 S. Agrawal et al.

9.5.5 Empirical Study

In this section, we test the various design components of the Thompson Sampling-
based approach through numerical simulations. The aim is to isolate and understand
the effect of individual features of our algorithm like Beta posteriors vs. Gaussian
approximation, independent sampling vs. correlated sampling, and single sample
vs. multiple samples, on the practical performance.

We simulate an instance of the MNL-Bandit problem with N = 1000, K =
10, and T = 2 × 105, when the MNL parameters {vi}i=1,...,N are generated
randomly from Unif[0, 1]. And, we compute the average regret based on 50
independent simulations over the randomly generated instance. In Fig. 9.4, we report
the performance of the following different variants of TS:

(i) Algorithm 2: Thompson Sampling with independent Beta priors, as described
in Algorithm 2.

(ii) TSIID Gauss: Algorithm 2 with Gaussian posterior approximation and inde-
pendent sampling. More specifically, for each epoch � and for each item i,
we sample a Gaussian random variable independently with the mean and
variance equal to the mean and variance of the Beta prior in Algorithm 2
(see Lemma 9.17).

(iii) TSGauss Corr: Algorithm 3 with Gaussian posterior approximation and corre-
lated sampling. In particular, for every epoch �, we sample a standard normal
random variable. Then, for each item i, we obtain a corresponding sample by
multiplying and adding the preceding sample with the standard deviation and
mean of the Beta prior in Algorithm 2 (see Step (a) in Algorithm 3). We use
the values α = β = 1 for this variant of Thompson Sampling.

(iv) Algorithm 3: Algorithm 1 with Gaussian posterior approximation with corre-
lated sampling and boosting by using multiple (K) samples. This is essentially
the version with all the features of Algorithm 3. We use the values α = β = 1
for this variant of Thompson Sampling.

For comparison, we also present the performance of UCB approach discussed in
the previous section. The performance of all the variants of TS is observed to be
better than the UCB approach in our experiments, which is consistent with the other
empirical evidence in the literature.

Figure 9.4 shows the performance of the TS variants. Among the TS variants,
the performance of Algorithm 2, i.e., Thompson Sampling with independent
Beta priors is similar to TSIID Gauss, the version with independent Gaussian
(approximate) posteriors, indicating that the effect of posterior approximation is
minor. The performance of TSGauss Corr, where we generate correlated samples
from the Gaussian distributions, is significantly better than the other variants of the
algorithm. This is consistent with our remark earlier that to adapt the Thompson
sampling approach of the classical MAB problem to our setting, ideally, we would
like to maintain a joint prior over the parameters {vi}i=1,...,N and update it to a joint
posterior using the Bandit feedback. However, since this can be quite challenging,

9 The MNL-Bandit Problem 237

Fig. 9.4 Regret growth with T for various heuristics on a randomly generated MNL-
Bandit instance with N = 1000,K = 10

and intractable in general, we use independent priors over the parameters. The
superior performance of TSGauss Corr demonstrates the potential benefits of consid-
ering a joint (correlated) prior/posterior in settings with a combinatorial structure.
Finally, we observe that the performance of Algorithm 3, where an additional
“variance boosting” is provided through K independent samples, is worse than
TSGauss Corr. Note that while “variance boosting” facilitates theoretical analysis,
it also results in a longer exploration period explaining the observed degradation of
performance in comparison to the TS variant without “variance boosting.” However,
Algorithm 3 performs significantly better than the independent Beta posterior
version Algorithm 2. Therefore, significant improvements in performance due to the
correlated sampling feature of Algorithm 3 compensate for the slight deterioration
caused by boosting.

9.6 Lower Bound for the MNL-Bandit

In this section, we present the fundamental theoretical limits that any policy must
incur a regret of �(

√
NT). More precisely, (Chen and Wang, 2017) established the

following result.

Theorem 4 (Lower Bound on Achievable Performance (Chen andWang, 2017))
There exists a (randomized) instance of the MNL-Bandit problem with v0 ≥ vi , i =
1, . . . , N , such that for any N and K , and any policy π that offers assortment Sπt ,
|Sπt | ≤ K at time t , we have for all T ≥ N that

238 S. Agrawal et al.

Reg(T , v) := Eπ

(
T∑

t=1

R(S∗, v)− R(Sπt , v)
)

≥ C√NT ,

where S∗ is (at-most) K-cardinality assortment with maximum expected revenue,
and C is an absolute constant.

Theorem 4 is proved by a reduction to a parametric multi-armed bandit (MAB)
problem, for which a lower bound is known. We refer the interested readers to
Chen and Wang (2017) for a detailed proof. Note that Theorem 4 establishes
that Algorithms 1 and 3 achieve near-optimal performance without any a priori
knowledge of problem parameters. Furthermore, these algorithms are adaptive in
the sense that their performance is near-optimal in the “well separated” case.

9.7 Conclusions and Recent Progress

In this chapter, we studied the dynamic assortment selection problem under the
widely used multinomial logit (MNL) choice model. Formulating the problem
as a parametric multi-arm bandit problem, we discussed algorithmic approaches
that learn the parameters of the choice model while simultaneously maximizing
the cumulative revenue. We focused on UCB and Thompson Sampling-based
algorithms that are universally applicable, and whose performance (as measured
by the regret) is provably nearly optimal.

However, the approaches presented here only considered the settings where
every product has its own utility parameter and has to be estimated separately.
Such approaches can handle only a (small) finite number of products. Many real
application settings involve a large number of products essentially described by a
small of features, via what is often referred to as a factor model. Recently, several
works (Chen et al., 2019, 2020, 2021; Cheung and Simchi-Levi, 2017; Saha and
Gopalan, 2019; Feng et al., 2018; Miao and Chao, 2021, 2019; Oh and Iyengar,
2021, 2019) have considered extensions of the approaches presented here to those
more complex settings.

The works of Chen et al. (2020); Miao and Chao (2019); Oh and Iyengar (2021)
consider the more general contextual variant of the MNL-Bandit problem. These
papers build upon (Agrawal et al., 2016, 2019) to develop UCB-based approaches
and establish worst-case regret bounds of Õ(d

√
T), where d is the dimension of

contexts, with some additional dependencies on certain problem parameters.
The works of Cheung and Simchi-Levi (2017); Miao and Chao (2021); Oh and

Iyengar (2019) developed Thompson Sampling-based approaches for contextual
variations of the MNL-Bandit problem. These works achieve a Bayesian regret
bound of Õ(d

√
T) that are dependent on problem parameters. Feng et al. (2018)

and Saha and Gopalan (2019) consider the best arm identification variant of the
MNL-Bandit problem, where the focus is only on exploration to identify the best K

9 The MNL-Bandit Problem 239

items. Chen et al. (2019) consider a variant of the MNL-Bandit where feedback from
a small fraction of users is not consistent with the MNL choice model. They present
a near-optimal algorithm with a worst-case regret bound of Õ(εK2T + √

NKT),
where ε is the fraction of users for whom the feedback is corrupted.

Disclaimer This work was done when Vashist (one of the authors) was at Columbia
University.

References

Agrawal, S., Avadhanula, V., Goyal, V., & Zeevi, A. (2016). A near-optimal exploration-
exploitation approach for assortment selection. In Proceedings of the 2016 ACM conference
on economics and computation (pp. 599–600).

Agrawal, S., Avadhanula, V., Goyal, V., & Zeevi, A. (2017). Thompson sampling for the MNL-
bandit. In Conference on learning theory (pp. 76–78). PMLR.

Agrawal, S., Avadhanula, V., Goyal, V., & Zeevi, A. (2019). MNL-Bandit: A dynamic learning
approach to assortment selection. Operations Research, 67(5), 1453–1485.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2), 235–256.

Avadhanula, V. (2019). The MNL-Bandit problem: Theory and applications. New York: Columbia
University.

Avadhanula, V., Bhandari, J., Goyal, V., & Zeevi, A. (2016). On the tightness of an lP relaxation
for rational optimization and its applications. Operations Research Letters, 44(5), 612–617.

Borovkov, AA. (1984). Mathematical statistics. (estimation of parameters, testing of hypotheses).
Ben-Akiva, M., & Lerman, S. (1985). Discrete choice analysis: Theory and application to travel

demand. MIT Press, Cambridge.
Chen, X., & Wang, Y. (2017). A note on tight lower bound for MNL-bandit assortment selection

models. arXiv preprint arXiv:170906192.
Chen, X., Krishnamurthy, A., & Wang, Y. (2019). Robust dynamic assortment optimization in the

presence of outlier customers. arXiv preprint arXiv:191004183.
Chen, X., Wang, Y., & Zhou, Y. (2020). Dynamic assortment optimization with changing

contextual information. Journal of Machine Learning Research, 21, 216–221.
Chen, X., Shi, C., Wang, Y., & Zhou, Y. (2021). Dynamic assortment planning under nested logit

models. Production and Operations Management, 30(1), 85–102.
Cheung, W., & Simchi-Levi, D. (2017). Thompson sampling for online personalized assortment

optimization problems with multinomial logit choice models. Available at SSRN 3075658.
Davis, J., Gallego, G., & Topaloglu, H. (2013). Assortment planning under the multinomial logit

model with totally unimodular constraint structures. New York: Cornell University. Technical
Report.

Désir, A., Goyal, V., & Zhang, J. (2021). Capacitated assortment optimization: Hardness and
approximation. Operations Research, 70(2), 893–904.

Feldman, J., Zhang, D., Liu, X., & Zhang, N. (2021). Customer choice models versus machine
learning: Finding optimal product displays on Alibaba. Operations Research, 70(1), 309–328.

Feng, Y., Caldentey, R., & Ryan, C. (2018). Robust learning of consumer preferences. Available at
SSRN 3215614.

Greene, W. H. (2003). Econometric analysis (5th ed.). Prentice Hall.
Kok, A. G., & Fisher, M. L. (2007). Demand estimation and assortment optimization under

substitution: Methodology and application. Operations Research, 55(6), 1001–1021.
Lai, T., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in

Applied Mathematics, 6(1), 4–22.

240 S. Agrawal et al.

McFadden, D., & Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied
Econometrics, 15(5), 447–470.

Miao, S., & Chao, X. (2019). Fast algorithms for online personalized assortment optimization in a
big data regime. Available at SSRN 3432574.

Miao, S., & Chao, X. (2021). Dynamic joint assortment and pricing optimization with demand
learning. Manufacturing and Service Operations Management, 23(2), 525–545.

Oh, M., & Iyengar, G. (2019). Thompson sampling for multinomial logit contextual bandits.
Advances in Neural Information Processing Systems, 32, 3151–3161.

Oh, M., & Iyengar, G. (2021). Multinomial logit contextual bandits: Provable optimality and
practicality. In Proceedings of the AAAI conference on artificial intelligence (vol 35, pp 9205–
9213).

Rusmevichientong, P., Shen, Z. J. M., & Shmoys, D. B. (2010). Dynamic assortment optimization
with a multinomial logit choice model and capacity constraint. Operations Research, 58(6),
1666–1680.

Saha, A., & Gopalan, A. (2019). Regret minimisation in multinomial logit bandits. arXiv preprint
arXiv:190300543v1.

Sauré, D, & Zeevi, A. (2013). Optimal dynamic assortment planning with demand learning.
Manufacturing and Service Operations Management, 15(3), 387–404.

Talluri, K., & Van Ryzin, G. (2004). Revenue management under a general discrete choice model
of consumer behavior. Management Science, 50(1), 15–33.

Train, K. (2009). Discrete choice methods with simulation (2nd ed.). Cambridge Books.
Williams, H. (1977). On the formation of travel demand models and economic evaluation measures

of user benefit. Environment and Planning A, 9(3), 285–344.

Chapter 10
Dynamic Assortment Optimization:
Beyond MNL Model

Yining Wang and Yuan Zhou

10.1 Overview

Dynamic assortment optimization with demand learning is a fundamental question
in online data-driven revenue management research. It captures the two usually
conflicting tasks in revenue management: the learning or estimation of consumers’
demand behaviors, and the efficient optimization of assortments for maximized
expected revenue.

Mathematically, the dynamic assortment optimization with demand learning
question is usually formulated as follows. The retailer has in stock N substitutable
products and needs to offer assortments S1, · · · , ST ⊆ [N] to T sequentially
arriving customers. Since the products are substitutable, the customer arriving at
time t will purchase at most one product it ∈ St (for which the retailer gains
a profit rit > 0) or leave without making any purchase (denoted as it = 0, for
which the retailer gains nothing). The retailer needs to learn or estimate consumers’
discrete choice probabilities P(·|S), while at the same time aims at maximizing
his/her expected revenue R(St) = E[rit |St] =

∑
i∈St riP(i|St).

To make the learning and optimization problems feasible, it is clear that
structures and assumptions need to be imposed on the (family) of unknown choice
models P(·|S). In the work of Rusmevichientong et al. (2010) as well as many
more follow-up results (see the previous chapter for more details), it is assumed
that P(·|S) admits the form of the multinomial logit (MNL) choice model:

Y. Wang (�)
Naveen Jindal School of Management, University of Texas at Dallas, Richardson, TX, USA
e-mail: yxw220006@utdallas.edu

Y. Zhou
Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
e-mail: yuan-zhou@tsinghua.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_10

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_10&domain=pdf

 885 51863
a 885 51863 a

mailto:yxw220006@utdallas.edu

 885
55738 a 885 55738 a

mailto:yuan-zhou@tsinghua.edu.cn

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_10

242 Y. Wang and Y. Zhou

P(i|S) = vi

v0 +∑
j∈S vj

, ∀i ∈ S ∪ {0}, (10.1)

where v0, v1, · · · , vN > 0 are unknown mean utility parameters.
While the MNL choice model has classical econometrical motivations (McFad-

den, 1973) and has amenable estimation and optimization properties, such models
also exhibit several limitations and disadvantages. Below we list several well-known
limitations of the MNL model in Eq. (10.1) in the context of dynamic assortment
optimization:

1. It can be shown that Eq. (10.1) corresponds to consumers’ randomized utilities
distributed as centered, homoscedastic Gumbel random variables (see Example 1
in Sect. 10.2). Needless to say, such a model could be mis-specified in practice
when consumers’ utilities are not distributed as extreme-value distributions, and
it is valuable to study more general distributions of stochastic utility parameters.

2. The MNL model has the property that the consumers’ preferences between two
products are independent from other product choices (i.e., P[i|S]/P[j |S] =
vi/vj is constant for all assortments S consisting of i, j), known as the
independence of irrelevant alternatives (IIA) property. The IIA property is,
however, frequently violated in application scenarios (Train, 2009), calling for
more sophisticated discrete choice models.

3. The MNL model in Eq. (10.1) in the context of dynamic assortment optimization
essentially assumes that the T sequentially arriving customers are homogeneous
with shared mean utility parameters, and the products’ popularity remains
stationary too. In reality, however, it is very common that customer’s preferences
and products’ popularity are non-stationary and change with time, usually
together with identifiable features. Therefore, extending the MNL model to the
non-stationary setting is of great theoretical and practical importance.

In the rest of this chapter we give an overview of existing literature on dynamic
assortment optimization with demand learning beyond the MNL choice model that
partially addresses the above-mentioned limitations from different perspectives.
In Sect. 10.2 we present results that are applicable to general utility distributions
beyond extreme-value distributions (Sauré and Zeevi, 2013). In Sect. 10.3 we
present results for the nested multinomial logit choice model, which alleviates
concerns over the IIA property of MNL (Chen et al., 2021). In Sect. 10.4 we present
results on dynamic assortment optimization with non-stationary demand/choice
models, such as with contextual consumer features (Cheung and Simchi-Levi,
2017; Miao and Chao, 2019; Oh and Iyengar, 2019; Chen et al., 2020). Finally, in
Sect. 10.5 we conclude the chapter by discussing interesting future directions under
the general theme of dynamic assortment planning beyond MNL model.

10 Dynamic Assortment Optimization: Beyond MNL Model 243

10.2 General Utility Distributions

It is a common practice in econometrics theory to derive discrete choice models
from consumers’ randomized utilities. Suppose consumers’ utility for product i
is randomly distributed as ui = μi + ξi , where μi is a certain fixed mean

utility parameter and ξ1, · · · , ξN i.i.d∼ F are i.i.d. centered random variables. Given
assortment S ⊆ [N], the customer would purchase product i ∈ S with the largest ui
value or leave without purchasing any product if maxi∈S ui ≤ u0 with u0 = μ0 +
ξ0 = ξ0 as μ0 = 0. Clearly, the mean utility vector μ = (μ1, · · · , μN) corresponds
to the popularity of different substitutable products, and the probabilistic distribution
F dictates the form of the discrete choice model P(·|S).
Example 1 Suppose F is the standard Gumbel distribution (i.e., F(t) = Pr[ξi ≤
t] = e−e−t for all t ∈ R). Then P(i|S,μ) = vi/(v0 +∑

j∈S vj), where vi = eμi .
The purpose of this section is to study dynamic assortment optimization with

demand learning when the underlying distribution F is not necessarily the Gumbel
distribution.

10.2.1 Model Formulation and Assumptions

With the mean utility vector μ ∈ R
N and the utility distribution F fixed, the discrete

choice model P(·|S) takes the form of

P(i|S,μ) =
∫ ∞

−∞

[∏

j∈S∪{0}\{i}
F(x−μj)

]

dF(x−μi), ∀i ∈ S∪{0}, (10.2)

where F(·) is the CDF of the centered distribution F .
It is assumed that the retailer has full knowledge of the utility distribution F(·)

and the profit margin parameters {ri}Ni=1 but does not know the mean utility vector
μ. At time t a potential customer comes, the retailer offers an assortment St ⊆ [N]
subject to the capacity constraint |St | ≤ K ≤ N , and observes a random purchase
activity it ∼ P(·|St , μ) realized from Eq. (10.2). A retailer’s policy π is admissible
if at every time period t , the (potentially random) assortment St is measurable with
respect to the filtration of {Sτ , iτ }τ<t from previous time periods. Let P denote
the class of all admissible policies. The objective is to design an admissible policy
π ∈ P that achieves a high expected cumulative revenue

Jπ(T , μ) := E
π

[
T∑

t=1

R(St , μ)

]

where R(S,μ) :=
∑

i∈S
riP(i|S,μ).

244 Y. Wang and Y. Zhou

To understand and analyze the performance Jπ(T , μ) in a relative manner, it is
instructive to compare Jπ(T , μ) with the expected revenue of a simpler, clairvoyant
optimal policy. Let S∗ be the “optimal assortment” defined as

S∗ := arg max|S|≤K R(S,μ).

In the rest of the section we will also write S∗ = S∗(μ) to emphasize that S∗
depends on the mean utility vector μ ∈ R

N . The optimal reward benchmark
J ∗(T , μ) is defined as

J ∗(T , μ) := T × R(S∗(μ), μ).

Clearly, Jπ(T , μ) ≤ J ∗(T , μ) for all admissible policy π ∈ P. It is thus beneficial
to study the competitive ratio between Jπ(T , μ) and J ∗(T , μ), defined as

Rπ (T , μ) := 1− J
π(T , μ)

J ∗(T , μ)
. (10.3)

The competitive ratio Rπ (T , μ) is always between 0 and 1, and the larger Rπ (T , μ),
the better π performs.

To ensure identifiability, throughout this section we impose the following
assumption on the model F and the unknown mean utility vector μ.

Assumption (identifiability of general choice models)

For any vector ρ ∈ R
N+ such that

∑N
i=1 ρi < 1, there exists a unique vector

η(ρ) ∈ R
N such that P(i|[N], η(ρ)) = ρi for all i ∈ [N]. Additionally,

P(i|[N], ·) is Lipschitz continuous for all i, and [η(·)]i is Lipschitz continuous in
the neighborhood of ρ, when ρi > 0.

Intuitively, the above assumption asserts that for any marginal distribution
P(·|[N]) ≡ ρ, there exists a unique parameterization η(ρ) that delivers such a
marginal distribution, with the parameterization map η(·) further satisfying certain
Lipschitz continuity conditions. This ensures that the underlying mean utility
parameter μ = η(ρ) is identifiable and estimable from empirical observations of
consumers’ purchase decisions.

10.2.2 Algorithm Design

The work of Sauré and Zeevi (2013) proposed two policies, one simpler and the
other more sophisticated but with better regret guarantees. We will introduce both
policies here and explain their design motivations.

10 Dynamic Assortment Optimization: Beyond MNL Model 245

Algorithm 1 π1 = π1(κ1, T ,K): separate exploration and exploitation
Exploration. Offer each assortment Aj ∈ A to "κ1 ln T # customers;
Estimation. Compute estimates μ̂ of μ using maximum-likelihood estimation;
Exploitation. Offer S∗(μ̂) for the rest of the customers.

Because of the capacity constraint |St | ≤ K ≤ N , the designed policy could
not offer all products at once in a single assortment. Therefore, the entire set of N
products is partitioned into "N/K# “test assortments” as

A = {A1, · · · , A"N/K#} where Aj = {(j − 1)K + 1, · · · ,min(jK,N)}.

Algorithm 1 gives the pseudocode of the first policy.
At a higher level, Algorithm 1 uses the strategy of separated exploration

and exploitation, by first exploring all test assortments A1, · · · , A"N/K# ∈ A
each for "κ1 ln T # times to obtain mean utility estimate μ̂, and then committing
to (exploiting) the near-optimal assortment S∗(μ̂) calculated using the utility
estimates μ̂. The estimate μ̂ could be obtained via the classical maximum-likelihood
estimation (MLE) approach, see, e.g., Daganzo (2014, pp. 118). The algorithm
parameter κ1 > 0 characterizes the length of the exploration phase and needs to be
set appropriately: too small κ1 results in insufficient exploration and subsequently
inaccurate utility estimate μ̂ and worse exploitation assortment S∗(μ̂), while, on
the other hand, a κ1 value too large would lead to large regret from the exploration
phase. The next section gives detailed theoretical and practical choices of the κ1
value in Algorithm π1(κ1, T ,K).

The first policy π1 completely separates exploration and exploitation of assort-
ments, which is less ideal. It is possible to design a more refined policy that jointly
combine exploration and exploitation phases, which also attains lower overall regret.
To introduce the refined policy we need to define some notations. Define

N(μ) := {j ∈ [N] : ∃γ ∈ R
N, γi = μi∀i ∈ S∗(μ), such that j ∈ S∗(γ)}

(10.4)
as the set of potentially optimal products under μ. Intuitively, j ∈ [N] is potentially
optimal if it is possible to change the mean utility parameters of products not
belonging to S∗(μ) so that j becomes optimal. Clearly, S∗(μ) ∈ N(μ) by definition
but N(μ) could contain products other than S∗(μ). One can similarly define

N(μ) := [N]\N(μ) (10.5)

as the set of strictly sub-optimal products. The design of the second improved policy
π2 is motivated from the following observation:

Proposition 1 For any μ ∈ R
N , there exists ω(μ) ≤ R(S∗(μ), μ) such that

N(μ) = {i ∈ [N] : ri < ω(μ)}.

246 Y. Wang and Y. Zhou

Algorithm 2 π2 = π2(κ2, ω(·), T ,K): joint exploration and exploitation
1: Initialization. Offer each Bj ∈ B to a single customer.
2: for each remaining customer t do
3: Compute estimate μ̂t = (μ̂t1, · · · , μ̂tN) and ωt = ω(μ̂t);
4: Compute Bt = {Bj ∈ B : max{ri : i ∈ Bj } ≥ ωt };
5: if there exists Bj ∈ Bt that has been offered to fewer than κ2 ln t customers then
6: Offer assortment Bj to customer t ;
7: else
8: Offer assortment S∗(μ̂t) to customer t ;
9: end if

10: end for

It is in general a difficult question to calculate or analyze the threshold function
ω(μ). In some special cases, however, ω(·) takes a simpler form. For example, if
F(·) is the standard Gumbel distribution (corresponding to the MNL model), then
setting ω(μ) := R(S∗(μ), μ) would satisfy Proposition 1 (Sauré and Zeevi, 2013,
Sec. 5.3).

Algorithm 2 gives a complete pseudocode description of the improved policy
π2 = π2(κ2, ω(·), T ,K). Note that this policy uses a different test assortment
structure from π1, defined as

B = {B1, · · · , B"N/K#} where Bj = {i(j−1)K+1, · · · , imin(jK,T)},

where i� is the product with the �th largest value of ri .
The second policy π2 jointly combines exploration and exploitation, by adap-

tively removing assortments containing strictly sub-optimal products. More specif-
ically, the policy maintains “active” assortment subsets Bt , which could be much
smaller than the entire set of test assortment B if many products have low profit
margins ri which are removed by the test max{ri : i ∈ Bj } ≥ ωt . This has the
potential of greatly lowering the cumulative regret of the policy, as we shall see in
more detail in the next section.

10.2.3 Theoretical Analysis

In the first part of the theoretical analysis we state and discuss (asymptotic) regret
upper bounds of the two policies π1 and π2. We first state the regret upper bound of
the first policy π1.

Regret upper bound of policy π1

Theorem 1 For any μ ∈ R
N , there exists a constant C1 < ∞ independent of N

and T , such that if policy π1 = π1(κ1, T ,K) is executed with parameter κ1 ≥ C1,
then

10 Dynamic Assortment Optimization: Beyond MNL Model 247

lim sup
T→∞

Rπ1(T , μ)

ln T
≤ κ1N

K
,

where Rπ (T , μ) is defined in Eq. (10.3).

While the above result does not hint on how κ1 ≥ C1 could be chosen, in practice
it suffices to use asymptotically larger exploration phases (e.g., |A|κ1(ln T)1+a
instead of |A|κ1 ln T for some small a > 0), to achieve lim supT→∞

Rπ1 (T ,μ)

ln1+a T ≤
κ1N
K

.
We next state the regret upper bound for the improved policy π2.

Regret upper bound of policy π2

Theorem 2 For any μ ∈ R
N , there exists a constant C2 < ∞ independent of N

and T , such that if policy π2 = π2(κ2, ω, T ,K) is executed with parameter κ2 ≥ C2
and ω(·) satisfying Proposition 1, then

lim sup
T→∞

Rπ2(T , μ)

ln T
≤ κ2|N(μ)|

K
.

Note that |N(μ)| ≤ N always holds since N(μ) ⊆ [N]. This implies that the
regret of π2 is asymptotically lower than π1, especially in the case when the majority
of the products have low profit margins and are, therefore, strictly sub-optimal as
defined in Eqs. (10.4) and (10.5). This shows the advantage of joint exploration and
exploitation.

Finally, we give an information-theoretical lower bound on the fundamental limit
of regret attainable by any good policies. To formally state the lower bound we need
some notations. We say an admissible policy π ∈ P is consistent if for all a > 0
and μ ∈ R

N it holds that

lim
T→∞

Rπ (T , μ)
T a

= 0.

We also define the set of potentially optimal products unilateral utility changes as

Ñ(μ) := {i ∈ [N] : ∃γ = (μ1, · · · , μi−1, v, μi+1, · · · , μN) for v ∈ R such that i ∈ S∗(γ)}.

Comparing the definition of Ñ(μ) with one of the N(μ) in Eq. (10.4), i ∈
Ñ(μ)\S∗(μ) is only allowed to change the utility parameter of product i, which
is much more restrictive than i ∈ N(μ) which is allowed to change the util-
ity parameter of any product not in S∗(μ). Hence, it holds by definition that

248 Y. Wang and Y. Zhou

Ñ(μ)\S∗(μ) ⊆ N(μ). The following regret lower bound can then be established, by
using change-of-measure tools from the seminal work of Lai and Robbins (1985).

Regret lower bound of all consistent policies

Theorem 3 Let Pc ⊆ P denote the class of all consistent admissible policies. Then
for μ ∈ R

N , there exists a constant C3 > 0 independent of N and T , such that

inf
π∈Pc

lim inf
T→∞

Rπ (T , μ)
ln T

≥ C3|Ñ(μ)\S∗(μ)|
K

.

10.2.4 Bibliographic Notes and Discussion of Future
Directions

The majority of the results in this section was developed in the work of Sauré
and Zeevi (2013), which is also built upon the earlier work of Rusmevichientong
et al. (2010) focused exclusively on MNL choice models. Sauré and Zeevi (2013)
also include the design and analysis of a policy for the special case of the MNL
choice model, with more practical algorithmic designs and improved theoretical
results. The general model for assortment selection (or combinatorial bandit) has
also been studied in the computer science literature, most often under a much more
informative semi-bandit feedback model when unbiased utility observations of all
products in an offered assortment are available (Chen et al., 2013, 2016). Such
feedback models are less relevant in online revenue management questions.

It is worth pointing out that both the works of Sauré and Zeevi (2013); Rus-
mevichientong et al. (2010) adopt the pointwise asymptotic analytical framework,
in the sense that all analytical constants (C1, C2, C3 in the previous section) depend
on the underlying mean utility vector μ ∈ R

N . This is in contrast to the minimax
asymptotic analytical framework adopted in many recent works (Agrawal et al.,
2019, 2017; Chen and Wang, 2018; Chen et al., 2018, 2021), which generally exhibit
Õ(
√
NT) type regret. This motivates the following research question for future

studies:

•? Minimax regret under general choice models

For a general choice model induced by a distribution F , can we design an admissible
policy π such that, for a reasonable compact� ⊆ R

N and a finite exponent a <∞,
there exists a constant C <∞ such that

lim sup
T→∞

sup
μ∈�

Rπ (T , μ)√
NT lna(NT)

≤ C?

10 Dynamic Assortment Optimization: Beyond MNL Model 249

The
√
NT lna(NT) asymptotic regret rate is motivated by the results from

Agrawal et al. (2019). A positive answer to the above question, however, is likely
to require new ideas and insights from both the works of Sauré and Zeevi (2013)
and Agrawal et al. (2019), as explore-then-commit type policies are in general sub-
optimal in the minimax sense (Bubeck and Cesa-Bianchi, 2012), and epoch-based
approaches adopted in Agrawal et al. (2019, 2017) are unlikely to succeed when
the underlying choice model is not MNL. Specifically, it is of great interest to see
whether the C constant in the above question contains any polynomial K factors
when the underlying choice model no longer satisfies the IIA property.

10.3 Nested Logit Models

The nested logit model is another popular form to generalize the MNL model.
It models a customer’s choice in a hierarchical way: a customer first selects a
category of products and iteratively proceeds to select sub-categories under the
current category (or sub-category), until the current category (or sub-category) only
contains products and a product is selected. The categories, sub-categories, and
products form a tree structure, where the leaf nodes correspond to products and the
internal nodes correspond to categories and sub-categories, which are also known
as the nests. The nested logit model is considered as “the most widely used member
of the GEV (generalized extreme value) family” and “has been applied by many
researchers in a variety of situations” (see Chapter 4 from Train (2009)). The model
also relaxes the IIA assumption on alternatives in different nests and thus provides
a richer set of substitution patterns. In this section, we will detail the recent research
progress on the dynamic assortment planning question under the two-level nested
logit model, where the depth of the corresponding tree structure is 2. We will discuss
both algorithmic results and lower bounds. Due to the complicated structure of the
nested logit models, the problem on general nested model remains widely open and
will be discussed in Sect. 10.3.5.

10.3.1 Model Formulation and Assumptions

In a two-level nested logit model, the customer first selects a nest among the M
nests, and then chooses a product in the selected nest. We use [M] = {1, 2, · · · ,M}
to label the M nests. For each nest i ∈ [M], we label the products in nest i by
[Ni] = {1, 2, · · · , Ni}. Each product j ∈ [Ni] is associated with a known revenue
parameter rij and an unknown mean utility parameter vij . We assume each nest has
an equal number of products, i.e., N1 = · · · = NM = N . Further, let {γi}i∈[M] ⊆
[0, 1] be a collection of unknown correlation parameters for different nests. Each

250 Y. Wang and Y. Zhou

parameter γi is a measure of the degree of independence among the products in nest
i: a larger value of γi indicates less correlation.

At each time period t ∈ {1, 2, · · · , T }, the retailer offers the arriving customer
an assortment S(t)i ∈ Si = 2[N] for every nest i ∈ [M], conveniently denoted

as S(t) = (S
(t)
1 , · · · , S(t)M). The retailer then observes a nest-level purchase option

it ∈ [M] ∪ {0}. If it ∈ [M], a product jt ∈ [N] is purchased within the nest it . On
the other hand, it = 0 means no purchase occurs at time t . The probabilistic model
for the purchasing option (it , jt) can be formulated as below:

Pr
[
it = i|S(t)

]
= Vi(S

(t)
i)

γi

V0 +∑M
i′=1 Vi′(S

(t)

i′)
γi′
, ∀i ∈ [M] ∪ {0}, (10.6)

Pr
[
jt = j |it = i,S(t)

]
= vij

∑
j ′∈S(t)i vij

′
, ∀j ∈ S(t)i , (10.7)

where V0 = 1 and Vi(S
(t)
i) =

∑
j∈S(t)i vij . Note that when γi = 1 for all i ∈ [M],

the nested logit model reduces to the standard MNL model.
The retailer then collects revenue rit ,jt provided that it �= 0. The expected

revenue R(S(t)) given the assortment combination S(t) can then be written as

R(S(t)) =
M∑

i=1

Pr
[
it = i|S(t)

] ∑

j∈S(t)i

rij Pr
[
jt = j |it = i,S(t)

]

=
∑M
i=1 Ri(S

(t)
i)Vi(S

(t)
i)

γi

1+∑M
i=1 Vi(S

(t)
i)

γi
, where Ri(S

(t)
i) =

∑
j∈S(t)i rij vij∑
j∈S(t)i vij

.

(10.8)

Let ψ = {rij , vij , γi}M,Ni,j=1 denote all model parameters. We shall also write R(S,ψ)
when we would like to emphasize that the expected revenue of an assortment
combination S depends on the underlying model parameter ψ . The objective of
the seller is to design an admissible policy π ∈ P so as to minimize expected
(accumulated) regret, defined as

Rπ (T ,ψ) :=
T∑

t=1

max
S∈S

R(S,ψ)− E
π
[
R(S(t),π)

]
. (10.9)

It is easy to verify that Rπ (T ,π) is always non-negative, and the smaller the regret,
the better the performance of the policy π is.

Throughout this section, we make the following boundedness assumptions on
revenue and utility parameters:

10 Dynamic Assortment Optimization: Beyond MNL Model 251

Boundedness assumptions on model parameters

1. The revenue parameters satisfy 0 ≤ rij ≤ 1 for all i ∈ [M] and j ∈ [N].
2. The utility parameters satisfy 0 < vij ≤ CV for all i ∈ [M] and j ∈ [N] with

some constant CV ≥ 1.

Note that both assumptions can be regarded as without loss of generality as the
parameter values could be normalized.

10.3.2 Assortment Space Reductions

For nested logit models, the complete assortment selection space (a.k.a. action
space) S = S1 × S2 × · · ·×SM is extremely large, consisting of an exponential
number of candidate assortment selections (on the order of (2N)M). Existing bandit
learning approaches treating each assortment set in S independently would easily
incur a regret also exponentially large. To address this challenge, the work of Chen
et al. (2021) proposed to leverage the structure of optimal S to reduce the number of
candidate assortment sets in S, which will be detailed as follows.

To introduce the structural property of the optimal S, we consider the level sets
Li (θi) := {j ∈ [N] : rij ≥ θi} for each nest i. In other words, Li (θi) is the set
of products in nest i with revenue larger than or equal to a given threshold θi ≥ 0.
Define Pi := {Li (θi) : θi ≥ 0} ⊆ Si to be all the possible level sets of Si and let

P := P1 × P2 × · · · × PM ⊆ S. (10.10)

The following lemma formally states the structural property of the optimal S.
It shows that one can restrict the assortment selections to P without loss of any
optimality in terms of expected revenue.

Lemma 1 (Davis et al. (2014); Li et al. (2015)) There exists level set threshold
parameters (θ∗1 , . . . , θ∗M) and S∗ = (L1(θ

∗
1), · · · ,LM(θ∗M)) ∈ P such that

R(S∗,ψ) = maxS∈S R(S,ψ).

The lemma shows that the optimal assortments are “revenue-ordered” within each
nest. Compared to the original action space S, the reduced “level set” space P is
much smaller, with each Pi consisting of N instead of 2N candidate assortments.

With Lemma 1, an assortment combination S = (S1, · · · , SM) ∈ P can then be
parameterized without loss of optimality by a vector θ = (θ1, · · · , θM) ∈ ([0, 1] ∪
{∞})M , such that S(θ) = (L1(θ1), · · · ,LM(θM)). Note that Li (∞) = ∅ indicates
the empty set for nest i. Denote Ki = [0, 1] ∪ {∞}, and for any i ∈ [M], θi ∈ Ki
define

ui,θi := Vi(Li (θi))γi and φi,θi := Ri(Li (θi)), (10.11)

252 Y. Wang and Y. Zhou

where Vi(·) and Ri(·) are nest-level utility parameter and expected revenue associ-
ated with the level set Li (θi) (see definitions of Vi and Ri in Eqs. (10.6) and (10.8),
respectively). By the boundedness assumptions, it is easy to verify that φi,θi ∈ [0, 1]
and ui,θi ∈ [0, (NCV)γi] ⊆ [0, NCV] for all i ∈ [M] and θi ∈ Ki . Furthermore,
because each nest consists of at most N products, the sets Ki can be made finite by
considering only levels θi corresponding to revenue parameters of the N products.
Finally, using elementary algebra, the expected revenue R(S(θ),ψ) can be written
as

R(S(θ),ψ) =
∑M
i=1 φi,θi ui,θi

1+∑M
i=1 ui,θi

=: R′(θ ,ψ).

Consequently, the question of learning and optimizing maxS∈S R(S,ψ) can
be reduced to learning and optimizing maxθ∈K1×···×KM R′(θ,ψ), which is much
easier and simpler both statistically and computationally. We will introduce a UCB-
based policy and its analysis to accomplish precisely the question of learning and
maximizing R′(θ,ψ) in the next section.

10.3.3 Algorithm Design and Regret Analysis

We now introduce the dynamic planning policy for the two-level nested logit model
using the upper confidence bound (UCB) approach. The policy was proposed in
Chen et al. (2021) and leverages the level set space reduction results introduced
in the previous subsection. The detailed pseudocode of the policy is given in
Algorithm 3. The policy is titled πN−UCB in this section with N standing for
“Nested.”

The high-level idea behind Algorithm 3 is as follows: for every nest i and level
set θ ∈ Ki , a pair of upper confidence estimates φi,θ and ui,θ are constructed
and maintained, respectively, estimating following the nest-level revenue and utility
parameters φi,θ and ui,θ defined in Eq. (10.11). For every potential customer,
an optimal assortment combination based on current (upper) parameter estimates
φi,θ , ui,θ is computed, which is then offered to the customers repetitively until a
no-purchase action occurs. All the time steps during this repetitive offering period
constitute an epoch, and the step of time steps in the τ -th epoch is denoted by Eτ .
After an epoch has finished, the parameter estimates φi,θ , ui,θ are updated for all
assortments provided in each nest, and the dynamic assortment planning procedure
continues until a total of T customers are served.

Below we give more detailed explanations for the key lines in Algorithm 3. First,
in the assortment combination θ τ = θ for the current epoch τ is computed at
Line 3. We note that the optimization task at this line is an instance of the fractional
programming problems (Megiddo, 1978) and can be solved efficiently by a binary
search method. For more details about the binary search algorithm, interested

10 Dynamic Assortment Optimization: Beyond MNL Model 253

Algorithm 3 Policy πN−UCB(K1, · · · ,KM,CV , T) for nested logit model
1: Initialization: τ = 1, {Eτ }∞τ=1 = ∅, t = 1; for every i ∈ [M] and θ ∈ Ki , set T(i, θ) = ∅,
T (i, θ) = 0, φ̂i,θ = φi,θ = 1, ûi,θ = ui,θ = U ; for all i ∈ [M] and θ ∈ Ki corresponding to
the empty assortment (i.e., Li (θ) = ∅), set φi,θ = φi,θ = ui,θ = ui,θ = 0;

2: while t ≤ T do

3: Find θ̂
(τ) = θ̂ ← arg maxθ∈K1×···×KM R

′
(θ), where R

′
(θ) =

∑M
i=1 φi,θi

ui,θi

1+∑M
i=1 ui,θi

;

4: repeat
5: Pick θ (t) = θ̂ and observe it , rt ;
6: Update Eτ ← Eτ ∪ {t}, t ← t + 1;
7: until it−1 = 0 or t > T ;
8: for each i ∈ [M] with Li (θ̂i) �= ∅ do
9: Compute n̂i,τ =∑

t ′∈Eτ 1{it ′ = i} and r̂i,τ =∑
t ′∈Eτ rt ′1{it ′ = i};

10: Let θ = θ̂i (for notational simplicity);
11: Update: T(i, θ)← T(i, θ) ∪ {τ }, T (i, θ)← T (i, θ)+ 1;
12: Update the utility and mean revenue estimates and their associated confidence bounds:

ûi,θ = 1
T (i,θ)

∑
τ ′∈T(i,θ) n̂i,τ ′ , φ̂i,θ =

∑
τ ′∈T(i,θ) r̂i,τ ′∑
τ ′∈T(i,θ)̂n

i,τ ′
;

13: if T (i, θ) ≥ 96 ln(2MTK) then

14: ui,θ = min{U, ûi,θ +
√

96 max(̂ui,θ ,̂u2
i,θ) ln(2MTK)

T (i,θ)
+ 144 ln(2MTK)

T (i,θ)
},

15: φi,θ = min{1, φ̂i,θ +
√

ln(2MTK)
T (i,θ)̂ui,θ

};
16: else
17: ui,θ = U, φi,θ = 1;
18: end if
19: end for
20: τ ← τ + 1;
21: end while

readers may refer to Chen et al. (2021); similar approach was also introduced in
Rusmevichientong et al. (2010) for the dynamic assortment optimization under the
MNL model.

At Line 4–7 in Algorithm 3, the same assortment combination θ is offered until
the no-purchase action is observed (or the time horizon has reached). And during
this iteration, the τ -th epoch Eτ is constructed. We further explain a few additional
notations: we use T(i, θ) to denote the indices of epochs in which θ ∈ Ki is supplied
in nest i; and use T (i, θ) = |T(i, θ)| to denote the cardinality of T(i, θ). We also use
n̂i,τ to denote the number of iterations in the epoch τ (i.e., Eτ) in which a product in
nest i is purchased; and use r̂i,τ to denote the total revenue collected for all iterations
in Eτ in which a product in nest i is purchased.

We remark that the epoch-based strategy (i.e., offering the same assortment until
no purchase is observed) in Algorithm 3 was first introduced by Agrawal et al.
(2019) for the dynamic assortment planning problem under the MNL model. Such
an epoch-based strategy is motivated by the observation that the observations n̂i,τ
and r̂i,τ are unbiased statistics of certain model parameters, or more specifically
E[̂ni,τ] = ui,θ̂i and E[̂ri,τ |̂ni,τ] = n̂i,τ φi,θ̂i (see, e.g., Chen et al. (2021, Lemma

254 Y. Wang and Y. Zhou

2)), which enables construction of upper confidence bounds using concentration
inequalities as the observations {̂ni,τ , r̂i,τ } are unbiased and independent across
epochs.

Below we state the main regret theorem for Algorithm 3.

Regret upper bound of policy πN−UCB

Theorem 4 Suppose policy π = πN−UCB is executed with Ki = {rij : j ∈ [Ni]}.
Then it holds that

sup
ψ∈�

Rπ (T ,ψ) ≤ O(√MKT log(MKT)+MKU log2(MKT)), (10.12)

where � is the set of all model parameters satisfying all stated assumptions, K =
maxi |Ki | and U = maxi∈[M] maxθ∈Ki ui,θ .

As a corollary, with K = |Ki | = N + 1 (for any i ∈ [M]) and U ≤ NCV , the
regret upper bound in Theorem 4 can be simplified to

Rπ (T ,ψ) ≤ O(√MNT log(MNT)+MN2CV log2(MNT))

= Õ(√MNT +MN2). (10.13)

On the above regret upper bound, we remark that in online and bandit learning
literature, the time horizon T is usually considered to be the dominating term
asymptotically. Therefore, when T > M and the number of items per nest N is
small as compared to T , the dominating term in Eq. (10.13) is Õ(

√
MNT). This

matches the lower bound result �(
√
MT) in Theorem 5 in the next section within

a factor of
√
N .

10.3.4 Regret Lower Bound

It is possible to establish a regret lower bound showing that dependency on the
number of nestsM is necessary. Below we state a lower bound on the regret of any
dynamic assortment planning policy under nested Logit models, proved in Chen
et al. (2021, Theorem 2).

Regret lower bound of any policy

Theorem 5 Suppose the number of nestsM is divisible by 4 and γ1 = · · · = γM =
0.5. Assume also that the parameter boundedness assumptions hold. Then there
exists a numerical constant C0 > 0 such that for any admissible policy π ∈ P,

10 Dynamic Assortment Optimization: Beyond MNL Model 255

sup
ψ∈�

Rπ (T ,ψ) ≥ C0
√
MT .

We note that the condition that M is divisible by 4 is only a technical condition
and does not affect the main message delivered in Theorem 5, which shows
necessary dependency onM asymptotically whenM is large. The proof of the above
lower bound result involves careful construction of two types (categories) of nests
that result in an exponential number of possible nest configurations, yielding a lower
bound that scales polynomially withM . Interested readers should refer to Chen et al.
(2021, Sec. 4) for details and complete proofs.

Comparing Theorem 5 with the regret upper bound Õ(
√
MNT + MN2)

established in the previous section, we notice that when T (time horizon) is
large compared to M (the number of nests), both regret bounds have an O(

√
M)

dependency on M . This suggests that the policy πN−UCB and its regret analysis
deliver optimal dependency of regret on the number of nestsM in a dynamic nested
assortment planning problem.

However, when comparing the upper and lower bounds, we also notice that there
is a gap of

√
N factor. It was conjectured in Chen et al. (2021) that the upper

bound analysis for πN−UCB with an additional O(
√
N) factor is in fact tight.

Actually, because πN−UCB treats each “level set” assortments (within each nest)
as standalone estimation units, it is intuitive to see that the regret that πN−UCB
incurs has to scale polynomially with N . Furthermore, it was also conjectured in
Chen et al. (2021) that any possible dynamic strategy for nested logit models has to
suffer at least an �(

√
N) term in regret bound.

10.3.5 Bibliographic Notes and Discussion of Future
Directions

Most of the learning-while-doing results in this section were developed in the work
of Chen et al. (2021), inspired by the epoch-based exploration strategies originated
from Agrawal et al. (2019). The work of Chen et al. (2021) also discussed a
discretization heuristic that attains lower regret when each nest consists of a large
number of available products. Some structural results for the optimal solution in a
nested Logit choice model were proved in Davis et al. (2014) and Li et al. (2015).

We remark that in the original nested Logit choice model (Davis et al., 2014),
it is allowed that γi > 1 and furthermore there is a no-purchase option within
each nest. In this section, we assumed γi ≤ 1 because it is the setting in which
the full-information combinatorial optimization problem is easy to solve, which is
the foundation of the theoretical regret analysis. Indeed, when γi exceeds one, it is
proved in Davis et al. (2014) that the combinatorial optimization question (when

256 Y. Wang and Y. Zhou

all parameters are known) is NP-hard, and only approximation algorithms can be
developed.

For future directions, an intriguing question is to close the gap between the
Õ(
√
NMT) regret upper bound and the �(MT) lower bound for the two-level

nested logit model. As discussed in the lower bound subsection, it is conjectured
that the lower bound may be improved for N � M . However, the tight dependence
on N remains a mystery.

It is also worthwhile to study the dynamic assortment planning problem for the
general d-level nested logit model. While the static optimization problem was well
studied in Li et al. (2015), little is known about the regret bounds in the dynamic
learning setting. Answering the following question may be the first step to reveal
the tight regret for the general d-level nested logit model.

•? Diminishing average regret for the general d-level nested logit model

Suppose there are N products and M nests in a d-level nested logit model.1 We
further suppose that the revenue parameter parameters of products are known to the
seller, while the utility parameters of the products and the correlation parameters
of the nests are unknown. Is there a policy π such that the regret at time horizon
T is at most poly(N,M, d, ln T) × T c, where c is a constant strictly less than 1?
Furthermore, is it possible to achieve c = 0.5?

A positive answer to the above question means that we are able to achieve a
diminishing average regret (a.k.a., no regret) for the d-level nested logit model, and
the next step would be to pin down the optimal value for c, as well as the optimal
dependence on N ,M , and d.

10.4 MNL Model with Contextual Features

In the conventional setup of dynamic assortment optimization with demand learn-
ing, it is usually assumed that the retailer offers assortments to a large number of
potential customers during a selling season and the pool of customers share the
same preference/choice model which allows the retailer to learn or estimate the
customers’ preferences. In reality, however, it is rarely the case that consumers’
preferences are homogeneous. Instead, different customers with different personal
profiles such as gender, age, geographical location, and past purchase activities
typically display different product preferences or purchasing behaviors.

1 In other words, there are N leaves and (M−1) internal nodes in the corresponding tree structure.

10 Dynamic Assortment Optimization: Beyond MNL Model 257

In this section we overview existing works on dynamic assortment optimization
with demand learning when the retailer has access to consumer features, which
enables modeling of heterogeneous consumer preferences of substitutable products.

10.4.1 Model Formulation and Assumptions

The retailer has N substitutable products and offers assortments S1, · · · , ST ⊆ [N]
subject to the capacity constraint |St | ≤ K ≤ N for each of T sequentially
arriving customers. At the beginning of time period t , a potential customer arrives
and reveals his/her feature vector xt ∈ R

d to the retailer. The feature vector
consists of personal information of the arriving customer such as his/her gender, age,
geographical location, credit worthiness, and past purchase activities. The retailer
then offers an assortment St ⊆ [N], |St | ≤ K to the incoming customer and
observes a randomized purchase activity it ∈ St ∪ {0}. The purchase activity it
is governed by a personalized or contextualized MNL choice model, as

P(i|St , xt , θ) = ex
	
t θi

1+∑
j∈St e

x	t θj
, ∀i ∈ St ∪ {0}, (10.14)

with unknown contextual models θ1, · · · , θN ∈ R
d , and the understanding that θ0 =

0, abbreviated as θ = (θ1, · · · , θN). The involvement of consumer feature vector xt
in Eq. (10.14) clearly implies the heterogeneity of the choice models from different
consumer pools.

A policy π is admissible if at every time period t , the distribution of the offered
assortment St is supported on {S ⊆ [N] : |S| ≤ K} and is measurable with
respect to the filtration of {Sτ , iτ , xτ }τ<t ∪ {xt }. We use P to denote the class of all
admissible policies. The consumer features x1, · · · , xN ∈ R

d are generated from
an unknown underlying process PX such that xt is measurable with respect to the
filtration of {Sτ , iτ , xτ }τ<t . For any admissible policy π ∈ P and unknown θ , its
regret is defined as

Rπ (T , θ) := E
π

[
T∑

t=1

max|S|≤K R(S|xt , θ)− R(St |xt , θ)
]

, (10.15)

where x1, · · · , xT ∼ PX and R(S|x, θ) := ∑
i∈S riP(i|S, x, θ) is the expected

revenue of assortment S with consumer feature x. Here {ri}Ni=1 are the profit margin
parameters of each product which are assumed to be known to the retailer a priori.
Clearly, Rπ (T , θ) is always non-negative and it is the objective to design admissible
policy π ∈ P that minimizes Rπ (T , θ) as much as possible.

Remark 1 In some existing works (Chen et al., 2020; Oh and Iyengar, 2019) the
model is formulated slightly differently, with the retailer having access to product

258 Y. Wang and Y. Zhou

features {xt,i}T ,Nt,i=1 and the mean utility of product i is 〈xt,i , θ〉 for a single,

unknown model θ ∈ R
d . This “product feature” model encapsulates the above

“consumer feature” model as a special case. To see this, let {xt }Tt=1 ⊆ R
d and

θ = (θ1, · · · , θN) ∈ R
dN be a problem instance in the consumer feature model.

Define xt,i := (0, · · · , 0, xt , 0, · · · , 0) ∈ R
dN for each i ∈ [N]. Then it is easy to

verify that 〈xt , θi〉 ≡ 〈xt,i , θ〉.
Throughout this section we make the following assumptions. Note that some

individual algorithms/policies designed require additional assumptions or condi-
tions, which will be stated later when we introduce such algorithms.

Assumptions for contextual assortment with consumer features

1. There exists a constant L <∞ such that 0 ≤ rti ≤ 1, ‖θi‖2 ≤ L and ‖xt‖2 ≤ L
with probability 1 for all i ∈ [N] and t ∈ [T];

2. There exists a constant Υ > 0 such that for all S ⊆ [N], |S| ≤ K and x, θ =
{θi}i∈S ⊆ R

d with ‖x‖2, ‖θi‖2 ≤ L, it holds that mini∈S∪{0} P(i|S, x, θ) ≥ Υ .

10.4.2 Algorithm Design: Thompson Sampling

Thompson sampling (Thompson, 1933) is a generic algorithmic idea valuable
to sequential decision making within an underlying Bayesian framework. In a
Bayesian treatment, the unknown model parameters θ = (θ1, · · · , θN) are sampled
from a known prior distribution�0, which captures the a priori belief/knowledge of
the retailer about the model uncertainty. The posterior distribution �t of the model
parameters θ conditioned on the observations Ht := {Sτ , iτ , xτ }τ<t can then be
computed using the Bayes rule:

�t(θ |Ht) ∝ �0(θ)×
∏

τ<t

P(it |St , xt , θ). (10.16)

The Thompson sampling principle would then sample a parameter estimate θ t at
time period t from its posterior �t(·|Ht), and then make assortment optimization
decisions based on θ t . This results in a careful tradeoff between exploration and
exploitation, with the exploitation achieved by taking into account the collected data
Ht and the exploration from the inherent uncertainty of θ from the prior distribution.
With a model parameter θ t randomly sampled, the assortment St can be computed
by maximizing the expected revenue with respect to θ t . A complete pseudocode
description is given in Algorithm 4.

Before presenting the theoretical properties of the Thompson sampling policy, it
is important to remark on computational strategies of certain steps in Algorithm 4
that are seemingly computationally intractable. Step 4 is a combinatorial opti-

10 Dynamic Assortment Optimization: Beyond MNL Model 259

Algorithm 4 Thompson sampling policy π = πT S(�0, T ,K)

1: for t = 1, 2, · · · , T do
2: Observe feature vector xt ∈ R

d of the incoming customer;
3: Sample θ t ∼ �t(·|Ht) with �t defined in Eq. (10.16);
4: Offer assortment St = arg max|S|≤K

∑
i∈S riP(i|S, xt , θ t);

5: end for

mization question involving approximately
(
N
K

)
assortment choices. While directly

solving the optimization is computationally intractable, the problem can be solved
efficiently by using fractional programming techniques. See Rusmevichientong
et al. (2010); Davis et al. (2013) for details and (Megiddo, 1978) for the general
fractional programming principle.

Step 3 of Algorithm 4, on the other hand, requires more efforts to mitigate
its computational burden. Because the MNL choice model lacks conjugate priors
and each observation point (Sτ , iτ , xτ) involves multiple products, the posterior
distribution �t(·|Ht) is unlikely to be decomposable, making exact computation
and sampling from �t(·|Ht) intractable. It is proposed in Cheung and Simchi-
Levi (2017) to use Metropolis-Hasting Markov-chain Monte Carlo (MH-MCMC)
(Andrieu et al., 2003) to approximately sample from the complex joint distribution
�t(·|Ht). For implementation details we refer the readers to Cheung and Simchi-
Levi (2017, Appendix D).

The performance of the Thompson sampling policy πT S , assuming the sampling
step θ t ∼ �t(·|Ht) is executed exactly, can be analyzed by the following result
from Cheung and Simchi-Levi (2017, Theorem 3.3).

Bayes regret upper bound of πT S

Theorem 6 Fix an arbitrary prior distribution�0. There exists a universal numer-
ical constant C <∞ such that for sufficiently large T ,

Eθ∼�1

[
RπT S (T , θ)

]
≤ C × (Υ −1

√
d + L2)N

√

dKT ln2(NT).

The above theorem upper bounds the average regret of the Thompson sampling
policy πT S over θ distributed from the known prior distribution �1, also known as
the Bayes regret. Such Bayes regret guarantees are in general weaker than worst-
case minimax regret guarantees, except when �1 is taken to be the least favorable
prior which is in general difficult to identify. The proof of the theorem draws
machinery from the work of Russo and Van Roy (2014) that upper bounds the Bayes
regret of Thompson sampling using a sequence of confidence interval sums, and
self-normalized empirical process arguments that are the foundations of existing
works on generalized linear bandit (Filippi et al., 2010; Li et al., 2017). Interested
readers are referred to Cheung and Simchi-Levi (2017, Sec. 4.2) for proof ideas and
details.

260 Y. Wang and Y. Zhou

Algorithm 5 Optimistic sampling policy π = πOT S(M, α,�0, T ,K)

1: for t = 1, 2, · · · , T do
2: Observe feature vector xt ∈ R

d of the incoming customer;
3: Compute the MAP estimate θ̂ t = arg maxθ∈� �t (θ |Ht);
4: for each product i = 1, 2, · · · , N do
5: Compute Vt,i = I +∑

τ<t :i∈Sτ xτ x
	
τ ;

6: ObtainM i.i.d. samples θ(1)t,i , · · · , θ(M)t,i ∼ N(θ̂t,i , α2V −1
t,i);

7: Compute ût,i = max1≤�≤M x	t θ
(�)
t,i ;

8: end for
9: Offer assortment St = arg max|S|≤K

∑
i∈S riP(i|S, ût), where P(i|S, ût) = e

ût,i

1+∑j∈S e
ût,j

;

10: end for

The upper bound of the πT S policy in Theorem 6 is only applicable to the Bayes
regret. It is argued in Oh and Iyengar (2019) that the worst-case regret of the πT S

policy is likely to scale exponentially with assortment capacity K , rendering the
policy less useful when the worst-case regret is of interest. To address this issue,
the work of Oh and Iyengar (2019) proposed an optimistic sampling variant of the
Thompson sampling policy when the prior distribution of θ is the standard Normal
distribution. More specifically, let

θ ∼ �0 : θ1, · · · , θN i.i.d.∼ N(0, λId×d).

The optimistic Thompson sampling policy is described in Algorithm 5.
Comparing with the Thompson sampling policy πT S , the major difference

is that in πOT S , instead of directly sampling θ t from the posterior distribution
�t(·|Ht), we use a multi-variate Gaussian distribution N(̂θ t , α2V −1

t) centered
around the maximum a posteriori (MAP) estimate θ̂ t to approximate the true
posterior distribution. This not only has the advantage of making the posterior
sampling step computationally tractable but also enables the policy to have worst-
case regret guarantees, as shown below.

Worst-case regret upper bound of πOT S

Theorem 7 Suppose the optimistic sampling policy π = πOT S(M, α,�0, T ,K)

is executed with M � 1 + ln(K), α = Υ −1(
√
dN ln(1+NT) + √

λ) and �0 =
N(0, λI) with λ ≥ 1. Then there exists a universal numerical constant C <∞ and
a positive constant a > 0 such that for sufficiently large T ,

sup
θ∈�

Rπ (T , θ) ≤ C(Υ −1λL ln(NT))a × (dN)3/2√T .

10 Dynamic Assortment Optimization: Beyond MNL Model 261

Comparing Theorem 7 with Theorem 6, we notice that the πOT S policy enjoys
Õ(
√
T) worst-case regret but has worse regret dependency on N and d (i.e.,

Õ((dN)3/2) instead of Õ(dN)). This is likely due to the Gaussian approximation
error of the posterior distributions.

10.4.3 Algorithm Design: Upper Confidence Bounds

In this section we introduce frequentist algorithms built upon upper confidence
bounds, which easily enjoy worst-case regret guarantees that only scale squarely
with the number of productsN . The key difference of these types of algorithms from
the Thompson sampling algorithm introduced from the previous section is that, at
time t with history Ht = {iτ , Sτ , xτ }τ<t , instead of calculating and sampling from
the posterior distribution of θ , one obtains the maximum-likelihood estimate

θ̂ t = arg max
θ∈�

∑

τ<t

lnP(it |St , xt , θ), (10.17)

where � = {θ = (θ1, · · · , θN) ⊆ R
d : ‖θi‖2 ≤ L,∀i}. With the MLE θ̂ t ,

assortment St for customer arriving at time t is calculated using upper confidence
estimates of the expected revenue based on incoming customer’s preferences. A
complete pseudocode description is given in Algorithm 6.

Note that, apart from the difference of the use of MLE in πUCB instead of a
posteriori sampling in πT S , another significant difference is that the policy πUCB

needs to construct upper confidence estimates of customers’ utility parameters vt,i

Algorithm 6 π = πUCB(α, T ,K) for MNL with contextual features
1: Offer an arbitrary assortment to the first customer;
2: for t = 2, 3, · · · , T do
3: Observe feature vector xt ∈ R

d of the incoming customer;
4: Compute the MLE θ̂ t using Eq. (10.17);
5: For each product i ∈ [N] calculate upper confidence estimate vt,i as

vt,i = ex	t θ̂ t + α
√

x	t V
−1
t,i xt

where V t,i = Id×d +∑
τ<t :i∈Sτ

xτ x
	
τ|Sτ | ;

6: Offer assortment St = arg max|S|≤K R(S|xt , {vt,i}) where

R(S|xt , {vt,i}) =
∑
i∈S rivt,i

1+∑
i∈S vt,i

;

7: end for

262 Y. Wang and Y. Zhou

before the assortment maximizing step. This is because the MLE θ̂ t alone does
not offer exploration, and, therefore, remaining uncertainty of θ t must be manually
calculated and enforced through the upper confidence bound approach.

Unlike the Thompson sampling policy πT S in the previous section, the UCB
policy πUCB is fully computationally efficient, because the MLE formulation in
Eq. (10.17) amounts to convex optimization and can be solved using standard
first-order methods, and the combinatorial optimization step of calculating St can
be efficiently solved using fractional programming techniques (Rusmevichientong
et al., 2010; Davis et al., 2013; Megiddo, 1978).

The following result upper bounds the worst-case regret of the UCB policy,
provided that the algorithm parameter α is appropriately chosen.

Worst-case regret upper bound of πUCB

Theorem 8 Suppose the UCB policy π = πUCB(α, T ,K) is executed with
parameter α � K

√
dN ln2(NT). There exists a universal numerical constant

C <∞ such that, for sufficiently large T ,

sup
θ∈�

RπUCB (T , θ) ≤ C × Υ −2.5LdNK

√

T ln2(NT).

Comparing the above result for the UCB policy with the one for the Thompson
sampling policy, the UCB policy has two major advantages: that it is completely
computationally efficient in contrast to πT S that needs MCMC approximate com-
puting strategies, and the UCB policy has regret upper bound that uniformly holds
for all bounded model parameters θ while Thompson sampling only has Bayes
regret upper bounds. On the other hand, the UCB policy has worse regret bounds in
terms of dependency on Υ −1 and K when compared to Theorem 6.

The work of Chen et al. (2020) shows that it is possible to further improve
the dependency on K in Theorem 8, by using more complicated upper confidence
bound structures. We name the improved policy πMLE−UCB , with a pseudocode
description given in Algorithm 7. Comparing πMLE−UCB with the previous UCB
policy πUCB , we note that the major difference is in constructing the upper
confidence bounds: in πUCB the UCBs of vt,i = ex	t θi are first constructed and then
used in the St optimization problem; in contrast, the πMLE−UCB policy constructs
UCB for the entire expected revenue function R(S|xt , θ) and is, therefore, more
statistically efficient in exploiting the uncertainty structures in the underlying
parameter estimates {̂θ t }.

The St = arg max|S|≤K Rt(S) step in Algorithm 7 is computationally challenging
because the upper confidence bound components destroy the MNL choice model
structure, making fractional programming techniques not applicable. It is, however,
possible to design computationally tractable approximation algorithms that approxi-

10 Dynamic Assortment Optimization: Beyond MNL Model 263

Algorithm 7 π = πMLE−UCB(T0, ρ0, α, T ,K) for MNL with contextual features
1: For the first T0 customers, offer St consisting of K products sampled uniformly at random

from {1, 2, · · · , N}, and record purchasing actions {it }t≤T0 ;
2: Compute pilot estimator θp = arg maxθ∈�

∑
t≤T0

lnP(it |St , xt , θ);
3: for t = T0 + 1, T0 + 2, · · · , T do
4: Observe the feature vector xt ∈ R

d for the incoming customer;
5: Let zt,i ∈ R

dN be defined as zt,i = (0, · · · , 0, xt , 0, · · · , 0) for all i ∈ [N];
6: Compute local MLE θ̂ t = arg max‖θ−θp‖2≤ρ0

∑
τ<t lnP(iτ |Sτ , xτ , θ);

7: Compute St = arg max|S|≤K Rt (S), where

• Rt (S) =∑
i∈S riP(i|S, xt , θ̂ t)+min{1, α

√

‖Î−1/2
t (̂θ t)M̂t (̂θ t |S)Î−1/2

t (̂θ t)‖op};
• M̂t (θ |S) =∑

i∈S P(i|S, xt , θ)zt,iz	t,i−(
∑
i∈S P(i|S, xt , θ)zt,i)(

∑
i∈S P(i|S, xt , θ)zt,i)	;

• Ît (θ) =∑
τ<t M̂τ (θ |Sτ);

8: Offer assortment St to the incoming customer and record purchasing action it ∈ St ∪ {0};
9: end for

mate the optimal solution of the combinatorial optimization problem well. See Chen
et al. (2020, Sec. 5) for details.

The πMLE−UCB policy, unlike the other policies introduced in this section,
also requires a “warm-up” phase that offers random assortments to the first few
customers in order to obtain a good “pilot” estimator θp. For the purpose of this
procedure, the policy requires an additional non-degeneracy assumption imposed
on the generating process of the context vectors xt , as shown below:

• {xt }Tt=1 are i.i.d. generated from an unknown underlying distribution μ supported
on {x ∈ R

d : ‖x‖2 ≤ L} with density μ satisfying λmin(Eμ[(x− a)(x− a)]) ≥
λ0 > 0 for all a ∈ R

d , ‖a‖2 ≤ L.

With the above non-degeneracy assumption, together with the two assumptions
imposed in Sect. 10.4.1, the worst-case regret of policy πMLE−UCB can be upper
bounded as follows.

Worst-case regret upper bound of πMLE−UCB

Theorem 9 Suppose policy π = πMLE−UCB(T0, ρ0, α, T ,K) is executed with
T0 = "√T #, ρ0 = T −1/8 and α = √

dN ln(T K). Then there exists a universal
numerical constant C < ∞ and some positive number a > 0 such that, for
sufficiently large T ,

sup
θ∈�

Rπ (T , θ) ≤ C(Υ −1L)a × dN√T ln(λ−1
0 TK).

264 Y. Wang and Y. Zhou

Comparing the regret upper bound in Theorem 9 with the one in Theorem 8
that applies to the πMLE policy, we observe that Theorem 9 saves an O(K) factor,
because πMLE−UCB uses more sophisticated upper confidence bound constructions
for entire expected revenues of assortments.

10.4.4 Lower Bounds

We present two versions of information-theoretical lower bounds to the contextual
assortment optimization problem with demand learning and consumer features.

The first lower bound is obtained by reducing the contextual assortment opti-
mization problem to standard assortment optimization and learning with the MNL
model. Consider the problem setting of d = 1, xt ≡ 1 and θi = vi ∈ [0, 1]. Then
P(i|St , xt , θ) = evi

1+∑j∈St vj
reduces to the standard MNL choice model without

contextual vectors. The result of Chen and Wang (2018) subsequently yields the
following lower bound.

Dimension-independent lower bound for contextual MNL

For T ≥ N , and N ≥ K/4, there is an �(
√
NT) lower bound for the worst-case

regret of any admissible policy.

The above lower bound does not involve the feature vector dimension d, which
is sub-optimal when feature vectors are long and involve many factors. To address
this issue, the work of Miao and Chao (2019, Theorem 2) establishes the following
dimension-independent lower bound for contextual MNL optimization with demand
learning.

Dimension-dependent lower bound for contextual MNL

For L = 1, d ≥ 4, N ≥ dK and T ≥ Nd/144, there is an �(
√
dNT /K) lower

bound for the worst-case regret of any admissible policy.

The above lower bound result clearly involves the dimension factor d, showing
that the worst-case regret of any admissible policy should grow as the policy deals
with longer feature vectors (i.e., larger d values). On the other hand, the lower bound
has an undesirable 1/K factor due to technical limitations.

10 Dynamic Assortment Optimization: Beyond MNL Model 265

10.4.5 Bibliographic Notes and Discussion of Future
Directions

The majority results in this section are developed in the works of Cheung and
Simchi-Levi (2017); Miao and Chao (2019); Chen et al. (2020); Oh and Iyengar
(2019). The work of Cheung and Simchi-Levi (2017) also studied the more flexible
setting in which the candidate subsets of assortments are personalized as well.
The work of Miao and Chao (2019) provides several important improvements
and extension to the πUCB policy, including a more computationally efficient
algorithm based on Newton step updates and random projection methods for high-
dimensional and sparse consumer features. The tools of linearly or generalized
linearly parameterized bandits are essential in the development of the results in this
section (Li et al., 2017; Filippi et al., 2010; Rusmevichientong and Tsitsiklis, 2010;
Abbasi-Yadkori, 2011).

There are two obvious questions regarding the optimality of the regret upper
bounds2 in the problem of contextual MNL with consumer features. The first
question concerns the optimality gap in terms of dependency of L, the upper bound
on the �2 norm of {θi}. Because of the exponentiating operator, the Υ constant
defined in the assumption typically scales as e−R , meaning that both regret upper
bounds in Theorems 6 and 8 would scale exponentially with respect to L. It is an
interesting question whether it is possible to design a policy whose regret scales
polynomially with R and other problem parameters, as formulated below:

•? Question on polynomial-L regret

Suppose L,N,K, d → ∞ as T → ∞ at a reasonable asymptotic scale. Is it
possible to design a policy class π = {πT }T such that, for some constant a ≥ 0,

lim sup
T→∞

sup
‖θi‖2≤L

RπT (T , θ)√
T (dKNL ln(NT))a

<∞?

Remark 2 Under the MNL model, the above question essentially asks whether it is
possible to design a policy with regret scaling polynomially with respect to ln(1/Υ).

A positive answer to the above question requires careful exploration strategies so
that the Fisher’s information on explored assortments will not be too degenerated. It
is an open question at the time of the writing of this chapter.

2 In terms of either the worst-case regret or the Bayes regret. We shall adopt the worst-case regret
formulation here as it is more popular.

266 Y. Wang and Y. Zhou

The second question concerns the optimality of the dependency of N and K
parameters. The previous section shows an�(

√
NT) lower bound of the contextual

assortment optimization problem with consumer features. It is clear that there is
an O(

√
N) term and potentially many polynomial K terms between the established

upper and lower bounds. It is an open question how the gap is to be closed, especially
the gap on the number of products N as N is usually very large for online retailers.

•? Question on optimality gap of N and K

Fix d, L, and Υ and suppose N,K → ∞ as T → ∞ at a reasonable asymptotic
scale. Is it possible to design a policy class π = {πT }T such that, for some constants
a, b ≥ 0, it holds that

lim sup
T→∞

sup
θ∈�

RπT (T , θ)√
NTKa lnb(NT)

<∞?

Furthermore, what is the smallest possible constant a in the above inequality?

To achieve the improved O(
√
N) term it is likely that SupLinUCB type

algorithms and analysis need to be applied (Li et al., 2017; Chu et al., 2011; Auer,
2002). To identify the Ka dependency it is likely that much more insights into the
upper confidence structure need to be gained to achieve tight K dependency.

10.5 Conclusion

In this chapter we give an overview of the majority body of works on learning-while-
doing in the dynamic assortment optimization question when the underlying demand
or discrete choice model is governed by ones beyond the classical multinomial Logit
(MNL) model. The choice models studied in the literature including general choice
models with independent utility distributions beyond the Gumbel distribution, the
nested Logit choice model that incorporates certain “nest” structures in consumers’
decision making process, and contextual MNL models with contextual or feature
vectors available for each customer or product. We have also mentioned several
detailed open questions and future research directions based on the existing
literature that would further complete the study of the mentioned general choice
models beyond the MNL.

To conclude this section we mention two potential directions to further extend
this line of research, from a higher level of view.

1. From a modeling perspective, what other types of discrete choice models
beyond the MNL could be studied and analyzed under the learning-while-
doing framework? A notable example is the mixed logit models (McFadden and

10 Dynamic Assortment Optimization: Beyond MNL Model 267

Train, 2000), whose parameter estimation properties have been explored in Train
(2008); Jagabathula et al. (2020b). More interesting models are those that model
the consumers’ discrete choices as DAGs (Jagabathula et al., 2020a) or Markov
chains Feldman and Topaloglu (2017), extends significantly beyond all choice
models studied in this section that model consumers’ utility as random variables
that are independent among substitutable products;

2. From a methodological perspective, what other algorithmic frameworks could
be useful in study dynamic assortment selection with demand learning, apart
from the Thompson sampling and Upper-Confidence-Bound strategies that are
used in the majority of existing works. For example, it is interesting to explore
first-order optimization methods such as stochastic/estimating gradient descent
based potentially on continuous relaxation of discrete choice optimization prob-
lems (Davis et al., 2013), or EXP-family methods based on online mirror descent
(Bubeck and Cesa-Bianchi, 2012; Auer et al., 1995) that could potentially be
applied to dynamic assortment problems with non-stationary or even adversarial
choice models.

Acknowledgments We would like to thank the editors for their invitation and helpful guidelines
on the writing of this chapter. We would also like to thank Sentao Miao for his suggestions that
greatly helped the writing of Sect. 10.4.

References

Abbasi-Yadkori, Y., Pál, D., & Szepesvári, C. (2011). Improved algorithms for linear stochastic
bandits. In Proceedings of the 25th Conference on Advances in Neural Information Processing
Systems (NeurIPS) (pp. 2312–2320).

Agrawal, S., Avadhanula, V., Goyal, V., & Zeevi, A. (2017). Thompson sampling for the MNL-
bandit. In Proceedings of the 30th Conference on Learning Theory (COLT) (pp. 76–78). PMLR

Agrawal, S., Avadhanula, V., Goyal, V., & Zeevi, A. (2019). MNL-bandit: A dynamic learning
approach to assortment selection. Operations Research, 67(5), 1453–1485.

Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to MCMC for
machine learning. Machine Learning, 50(1), 5–43.

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of
Machine Learning Research, 3(Nov), 397–422.

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (1995). Gambling in a rigged casino: The
adversarial multi-armed bandit problem. In Proceedings of IEEE 36th Annual Foundations of
Computer Science (FOCS) (pp. 322–331). New York: IEEE.

Bubeck, S., & Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends in Machine Learning, 5(1), 1–122.

Chen, W., Wang, Y., & Yuan, Y. (2013). Combinatorial multi-armed bandit: General framework
and application. In Proceedings of the 30th International Conference on Machine Learning
(ICML) (pp. 151–159).

Chen, W., Hu, W., Li, F., Li, J., Liu, Y., & Lu, P. (2016). Combinatorial multi-armed bandit
with general reward functions. In Proceedings of the 30th Conference on Advances in Neural
Information Processing Systems (NeurIPS)

Chen, X., & Wang, Y. (2018). A note on a tight lower bound for capacitated MNL-bandit
assortment selection models. Operations Research Letters, 46(5), 534–537.

268 Y. Wang and Y. Zhou

Chen, X., Wang, Y., & Zhou, Y. (2018). An optimal policy for dynamic assortment planning under
uncapacitated multinomial logit models. Mathematics of Operations Research (in press). arXiv
preprint arXiv:1805.04785.

Chen, X., Wang, Y., & Zhou, Y. (2020). Dynamic assortment optimization with changing
contextual information. Journal of Machine Learning Research, 21(216), 1–44.

Chen, X., Shi, C., Wang, Y., & Zhou, Y. (2021). Dynamic assortment planning under nested logit
models. Production and Operations Management, 30(1), 85–102.

Cheung, W. C., & Simchi-Levi, D. (2017). Thompson sampling for online personalized assortment
optimization problems with multinomial logit choice models. Available at SSRN 3075658.

Chu, W., Li, L., Reyzin, L., & Schapire, R. (2011). Contextual bandits with linear payoff functions.
In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics
(AISTATS) (pp. 208–214). JMLR Workshop and Conference Proceedings.

Daganzo, C. (2014). Multinomial probit: The theory and its application to demand forecasting.
Amsterdam: Elsevier.

Davis, J., Gallego, G., & Topaloglu, H. (2013). Assortment planning under the multinomial logit
model with totally unimodular constraint structures. Work in Progress.

Davis, J. M., Gallego, G., Topaloglu, H. (2014). Assortment optimization under variants of the
nested logit model. Operations Research, 62(2), 250–273.

Feldman, J. B., & Topaloglu, H. (2017). Revenue management under the Markov chain choice
model. Operations Research, 65(5), 1322–1342.

Filippi, S., Cappe, O., Garivier, A., & Szepesvári, C. (2010). Parametric bandits: The generalized
linear case. In Proceedings of the 24th conference on advances in neural information processing
systems (NeruIPS) (pp. 586–594).

Jagabathula, S., Mitrofanov, D., & Vulcano, G. (2020a). Personalized retail promotions through a
DAG-based representation of customer preferences. Available at SSRN 3258700.

Jagabathula, S., Subramanian, L., & Venkataraman, A. (2020b). A conditional gradient approach
for nonparametric estimation of mixing distributions. Management Science, 66(8), 3635–3656.

Lai, T. L., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in
Applied Mathematics, 6(1), 4–22.

Li, G., Rusmevichientong, P., & Topaloglu, H. (2015). The d-level nested logit model: Assortment
and price optimization problems. Operations Research, 63(2), 325–342.

Li, L., Lu, Y., & Zhou, D. (2017). Provably optimal algorithms for generalized linear contextual
bandits. In Proceedings of the 34th International Conference on Machine Learning (ICML)
(pp. 2071–2080). PMLR.

McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In Frontiers in
Econometrics (pp. 105–142)

McFadden, D., Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied
Econometrics, 15(5), 447–470.

Megiddo, N. (1978). Combinatorial optimization with rational objective functions. In Proceedings
of the annual ACM symposium on Theory of computing (STOC)

Miao, S. & Chao, X. (2019). Fast algorithms for online personalized assortment optimization in a
big data regime. Available at SSRN 3432574.

Oh, M. h., & Iyengar, G. (2019). Thompson sampling for multinomial logit contextual bandits.
In Proceedings of the 33rd conference on advances of neural information processing systems
(NeurIPS) (pp. 3145–3155).

Rusmevichientong, P., & Tsitsiklis, J. N. (2010). Linearly parameterized bandits. Mathematics of
Operations Research, 35(2), 395–411.

Rusmevichientong, P., Shen, Z. J. M., & Shmoys, D. B. (2010). Dynamic assortment optimization
with a multinomial logit choice model and capacity constraint. Operations Research, 58(6),
1666–1680.

Russo, D., & Van Roy, B. (2014). Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4), 1221–1243.

Sauré, D., & Zeevi, A. (2013). Optimal dynamic assortment planning with demand learning.
Manufacturing and Service Operations Management, 15(3), 387–404.

10 Dynamic Assortment Optimization: Beyond MNL Model 269

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4), 285–294.

Train, K. E. (2008). EM algorithms for nonparametric estimation of mixing distributions. Journal
of Choice Modelling, 1(1), 40–69.

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge: Cambridge University
Press.

Part IV
Inventory Optimization

Chapter 11
Inventory Control with Censored
Demand

Xiangyu Gao and Huanan Zhang

11.1 Introduction

Inventory control problems have long been one of the most important topics in
operations and supply chain management since the seminal study on the newsvendor
problem. It captures some of the fundamental trade-offs when matching demand
with supply. Firms typically need to make inventory control decisions over time,
where the revenue and cost depend on the current system states and realizations of
random demand and other uncertainties. Most existing research papers on inventory
control problems assume that firms have complete knowledge about the distribution
of uncertainties. They have characterized the structures of optimal polices and
developed efficient algorithms for a large number of inventory models.

However, the study of joint learning and optimization problems when the
demand distribution is not known a priori is relatively new in the field of inventory
management. As the business world is rapidly changing and a huge amount of data
becomes available, it is paramount for firms to make good use of data and design
joint learning and optimization algorithms that can update demand information
based on observed data to make better inventory control decisions. In this chapter,
we will discuss the recent development in studying nonparametric joint learning and
optimization algorithms for inventory models which do not involve pricing decisions
since joint inventory and pricing models and Bayesian inventory models will be
covered in the later chapters.

X. Gao
The Chinese University of Hong Kong, Hong Kong, China
e-mail: xiangyu@cuhk.edu.hk

H. Zhang (�)
University of Colorado Boulder, Boulder, CO, USA
e-mail: huanan.zhang@colorado.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_11

273

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_11&domain=pdf

 885 51863
a 885 51863 a

mailto:xiangyu@cuhk.edu.hk

 885 55738 a 885 55738 a

mailto:huanan.zhang@colorado.edu

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_11

274 X. Gao and H. Zhang

One of the main challenges in designing efficient joint learning and optimization
algorithms for inventory control models is the censored demand due to lost-sales.
Because of the censored demand, the well-known exploration and exploitation
trade-off in most online learning algorithm needs to be balanced. Note that there
are research papers studying inventory models where the demand is not known a
priori, but demand observations are uncensored. In this case, the sample average
approximation method is commonly used, see Levi et al. (2007, 2015); Cheung
and Simchi-Levi (2019). These papers typically study the offline problem about
how many samples of demand data are needed to generate a demand estimation
before making inventory decisions. Besbes and Muharremoglu (2013) studied a
repeated newsvendor problem with censored discrete demand and showed that
active exploration is needed. Huh and Rusmevichientong (2009) studied a lost-sales
inventory system with zero lead time by proposing a stochastic gradient-descent
(SGD) method. They proved that the regret of their SGD algorithm is upper bounded
by O(

√
T) through the online convex programming theory. The idea of designing

algorithms based on SGD was later adopted in various papers. Shi et al. (2016)
proposed an SGD-based algorithm for multiproduct systems under a warehouse
capacity constraint. Zhang et al. (2018) designed a cycle-update SGD algorithm for
a perishable inventory system. Besides the SGD-type algorithms, (Huh et al., 2011)
applied the concept of Kaplan–Meier estimator to develop a data-driven algorithm
for a repeated newsvendor problem with censored demand.

Another challenge for joint learning and optimization inventory control problems
is positive lead times. It is well known that it is difficult to solve an inventory control
problem with positive lead times and lost-sales even when the demand distribution
is known. The positive lead times result in a high-dimensional state space due to
the need to keep track of all pipeline orders. Huh et al. (2009a) was the first to
consider the learning algorithms for lost-sales inventory system with positive lead
times and proved a regret bound of O(T 2/3). Later, (Zhang et al., 2020) improved
the regret bound of this problem to

√
T . Both of these two papers designed their

algorithms based on SGD. Agrawal and Jia (2019) applied a different approach
based on interval reduction of stochastic convex bandit problems to the lost-sales
system with positive lead times. Due to the convexity of cost function when a base-
stock policy is used, they developed a line search method with a confidence interval
estimate of costs. Their algorithm’s regret bound depends linearly on lead time L,
which improves the previously best-known result where the dependence on L was
exponential.

The third challenge for designing joint learning and optimization algorithms for
inventory models is the high-dimensional decision space. Note that for inventory
models with positive lead times, the state space is high dimensional. However, the
action space is still one-dimensional since only base-stock policies are considered
(see Huh et al., 2009a; Zhang et al., 2020; Agrawal and Jia, 2019). This enables the
use of the line search method. Moreover, the cost function is convex with respect to
the decision, which is a key property utilized in SGD-type algorithms. Therefore,
it becomes increasingly challenging to consider an inventory problem with multi-
dimensional decision space without the convexity property of the cost function.

11 Inventory Control with Censored Demand 275

Yuan et al. (2021) considered an inventory problem with fixed setup cost. Although
it is well known that the celebrated (s, S) policy is optimal under full demand
distributional information, designing a learning algorithm is not straightforward
due to lack of convexity. Combining the ideas from bandit controls and SGD, they
developed an algorithm using policy elimination with SGD. Chen and Chao (2019)
studied a multiproduct inventory control problems with stock-out substitutions
where the substitution behavior is captured by substitution probabilities between
each pair of product and demand. They designed an algorithm with multiple cycles.
In each cycle, there is an exploration phase consisting of multiple intervals followed
by an exploitation phase. Both the primary demand and substitution probabilities are
learned and updated during the exploration phase. Gao and Zhang (2021) introduced
a learning framework for multiproduct inventory systems with customer choices.
They developed two improvements to the UCB-type algorithm to utilize the sales
information better.

Table 11.1 provides a partial summary of papers in the Operations Management
Literature on joint learning and inventory control with censored demand. In this
table, we briefly list the model each paper considered, the primary method its
algorithm used, and the order of regret on time horizon T . This list is nowhere
near exhaustive, especially due to a large number of working papers. We hope that
this table can provide a steppingstone for navigating in this fast-developing field.
The remaining of this chapter is organized as follows. Section 11.2 establishes the
lower bound for inventory learning problems with censored demand. Section 11.3
demonstrates how to deal with censored demand through a perishable inventory

Table 11.1 Partial summary of literature on joint learning and inventory control with censored
demand

Paper Model Method Regret

Huh and
Rusmevichientong (2009)

Lost-sales with zero lead
time

SGD O(
√
T)

Shi et al. (2016) Multi-product with
warehouse capacity

SGD O(
√
T)

Zhang et al. (2018) Perishable inventory SGD O(
√
T)

Huh et al. (2009a) Lost-sales with positive lead
times

SGD O(T 2/3)

Zhang et al. (2020) Lost-sales with positive lead
times

SGD O(
√
T)

Agrawal and Jia (2019) Lost-sales with positive lead
times

Line search O(L
√
T)

Huh et al. (2011) Repeated newsvendor Kaplan–Meier estimator N/A

Yuan et al. (2021) Inventory with fixed set up
cost

Policy elimination with SGD O(
√
T)

Gao and Zhang (2021) High-dimensional
(substitution)

Tailored UCB O(
√
T)

Chen and Chao (2019) Inventory with stock-out
substitution

Explore than exploit O(
√
T)

276 X. Gao and H. Zhang

system. Section 11.4 discusses three different algorithms for the inventory learning
model with last-sales and positive lead times. Section 11.5 shows a learning
algorithm for a multiproduct inventory model with customer choices where the
decision space is high dimensional.

11.2 Regret Lower Bound for Inventory Models with
Censored Demand

Perhaps the simplest inventory learning problem with censored demand is the
repeated newsvendor problem with censored demand considered in Besbes and
Muharremoglu (2013), this work first studies the lower bound of the regret rate
and then constructs a learning algorithm to match this lower bound. In this section,
we focus on the lower bound results in Besbes and Muharremoglu (2013).

11.2.1 Model Formulation

In the classic (one-period) newsvendor problem, the decision-maker is facing a
random demand D from a given distribution with cdf F(·) and needs to decide
the ordering quantity x at the beginning of the period. The decision-maker faces
two types of cost at the end of the period: a per-unit overage cost h and a per-unit
shortage cost p. The per-unit purchase cost is sunk to 0. The expected cost in this
period is given by

C(x) = E[h(x −D)+ + p(D − x)+],

where (a)+ denotes max(0, a). The well-known newsvendor optimal order quantity
is given by x∗F = min{x : F(x) ≥ β}, where β = b

h+b . For the learning problem
with censored demand in the repeated newsvendor problem, the decision-maker
does not know the distribution F(·) a priori and has to relay on the sales data
observed in each period t to make ordering decisions. We denote the ordering
quantity in each period as xt and the demand as Dt . The sales data is min(xt ,Dt).
The goal of the learning problem is to minimize the T -period regret of the learning
algorithm π , which is defined as

RT (F) =
T∑

t=1

E
[
Cπt

]− T C(x∗F).

Note that the regret in Besbes and Muharremoglu (2013) is defined as the worst-
case regret for any given distribution. We use this simpler definition to be consistent
with other sections in this chapter.

11 Inventory Control with Censored Demand 277

11.2.2 Strictly Convex and Well-Separated Cases

When the demand distribution satisfies the following conditions, the lower bound of
the regret rate is shown to be �(log T).

Assumption 1 Assumptions on demand distribution F(x):

• x∗(F) ≤ M for someM > 0.
• If demand is continuous, F(·) is differentiable, and F ′(x) ≥ ε for some ε > 0

for all x ≥ 0.
• If demand is discrete, |F(x)− β| > ε for x = x∗F − 1, x∗F .

The first condition ensures a bounded optimal order quantity. For continuous
demand, the second condition is about a strictly convex cost function, and the last
condition for the discrete demand gives a minimal separation around the optimal
condition. Under either continuous or discrete demand distributions, the worst-case
regret with censored demand observation is lower bounded by �(log T). The proof
for the continuous case is by the construction of a family of uniform distributed
demand between [θ, 1], where θ varies between [0, 1/2], and the proof for the
discrete case is by constructing two very close Bernoulli distributions, where the
optimal order qualities for them are 0 and 1, respectively. One difference between
the continuous and discrete demand is that the lower bound �(log T) is proved
under full demand observation for the continuous demand, but under censored
demand observation for the discrete demand. Actually, it was shown that when the
demand is discrete and satisfies the minimal separation condition, the worst-case
regret can be upper bounded by O(1) with full demand observation.

11.2.3 Worst-Case Regret Under General Demand
Distributions

One may view this repeated newsvendor problem with censored demand as a variant
of the Multi-Armed Bandit problem, where the decision-maker polls an arm and
observes the one-period profit and also the sales information. Motivated by the lower
bound results of the MAB problem, one may anticipate that the similar �(

√
T) rate

should also hold under the inventory learning problems. The answer is correct for
both the continuous and discrete demand. In Besbes and Muharremoglu (2013), the
following example is provided as a counterexample when Assumption 1 does not
hold for discrete distribution.

Example 1 For a T -period problem with large enough T , consider the following
two distributions:

Fa(k) =
{
β + 1/

√
T if k = 0,

1 if k ≥ 1; Fa(k) =
{
β − 1/

√
T if k = 0,

1 if k ≥ 1.

278 X. Gao and H. Zhang

Table 11.2 Regret rate lower bound for repeated newsvendor problems

Distribution type Demand observation Assumption 1 holds Assumption 1 does not hold

Continuous Full �(log T) �(
√
T)

Censored �(log T) �(
√
T)

Discrete Full �(1) �(
√
T)

Censored �(log T) �(
√
T)

In this example, the optimal order quantity for Fa is 0 and 1 for Fb. As T
increases, the two distributions will be closer to each other. Even with full demand
observation, it is not possible to distinguish the two distributions in T -periods. The
error due to a wrong inventory decision shrinks linearly with 1/

√
T . Hence, it can

be shown that an �(
√
T) regret rate is inevitable for any policy.

For continuous demand, we can easily transform the above example to a
continuous distribution, say by adding a very small uniformly distributed random
number to the demand, which is not affecting the structure of the difference between
Fa and Fb, and this additional small number is also not giving any new information
for the learning algorithm. The detailed description can be found in Proposition 1
in Zhang et al. (2020). And the same �(

√
T) lower bound holds under continuous

demands. We summarize the lower bound of the regret rate in Table 11.2.
In Table 11.2, we can see that from the lower bound perspective, the demand

censoring has some effects but not critical. But the challenge is, with full demand
information, one may simply use the empirical data and keep following the
empirical optimal policy to converge to the optimal policy. With demand censoring,
a good learning algorithm has to carefully balance the learning-and-earning trade-
offs to converge to the optimal policy, especially when the underlying inventory
system is complicated. In the next section, we will discuss the design and analysis
of learning algorithms for perishable inventory systems with censored demand.

11.3 Censored Demand Example: Perishable Inventory
System

Periodic-review perishable inventory system is an indispensable part of our soci-
ety. For example, managing meat, vegetable, and frozen products in supermar-
ket/grocery stores, and managing pharmaceuticals and blood products in the
healthcare industry all belongs to the perishable inventory system. It is known to
be a challenging inventory problem even with full demand distribution information.
Early works on perishable inventory system include (Nahmias, 1975; Fries, 1975)
that proved that the optimal policy is complex even when the product lifetime is only

11 Inventory Control with Censored Demand 279

2 periods. Recently, (Chen et al., 2014; Li and Yu, 2014) derived some new propriety
of the optimal policy using the L#-convexity and multimodularity, respectively.

Another line of researches focus on the development of heuristics for perishable
inventory system, including (Nahmias, 1976, 1977a,b; Nandakumar and Morton,
1993; Cooper, 2001; Chao et al., 2015; Zhang et al., 2016; Chao et al., 2018; Zhang
et al., 2019). One of the simple efficient heuristics is the base-stock policy, i.e.,
ignoring the age difference between the on-hand inventory, and only order up to the
base-stock level. This is a near-optimal and widely adopted policy. In this section,
we focus on how to converge to the best base-stock policy without prior demand
information using only sales data, as discussed in Zhang et al. (2018).

11.3.1 Model Formulation

In the perishable product system, each product is assumed to have a fixed lifetime
of m ≥ 2 periods. The demand in each period t , denoted as Dt , is assumed
to be an i.i.d. continuous random variable. We focus on base-stock policies with
first-in first-out (FIFO) issuing policy. Denote the base-stock level as S. The
FIFO issuing policy means we always try to use older inventory to meet the
demand. The lead time is assumed to be negligible in the problem. To keep track
of on-hand products with different remaining lifetime, we use the vector xt =
[xt,1, . . . , xt,i , . . . , xt,m−1, xt,m], where each xt,i represents the total inventory in
period t with remaining lifetime ≤ i. We have xt,i ≤ xt,i+i for i = 1, . . . , m − 1,
and specifically, xt,m−1 is the total on-hand inventory at the beginning of period t
before ordering, and xt,m−1 is the total on-hand inventory at the beginning of period
t after ordering, which is S when there is no overshoot from the previous period.

The unmet demand is assumed to be lost and censored. At the end of each period
t , apart from the typical holding and shortage cost h(xt,m−Dt)++p(Dt−xt,m)+, all
the product with remaining lifetime 1 will expire if they fail to meet the demand in
this period, and each unit would incur a unit outdating cost of θ . The unit purchasing
cost is sunk to 0 without loss of generality. We summarize the one-period cost and
inventory dynamics as follows:

Ct = h(xt,m −Dt)+ + p(Dt − xt,m)+ + θ(xt,1 −Dt)+,
xt+1,j =

(
xt,j+1 −Dt − (xt,1 −Dt)+

)+
, for 1 ≤ j ≤ m− 1,

xt+1,m = min(S, xt+1,m−1).

Our goal is to develop a nonparametric learning algorithm that can converge
to the (clairvoyant) optimal base-stock policy S∗, which minimizes the long-run
average cost, i.e.,

280 X. Gao and H. Zhang

S∗ = inf
S

{

lim sup
T→∞

1

T
E

[
T∑

t=1

C
π(S)
t

]}

,

where π(S) denotes the base-stock policy with base-stock level S. Recall that as
shown in Table 11.2, the lower bound of the regret for inventory learning problem
is �(

√
T), which also applies to the perishable inventory system. The target of

the learning algorithm is to achieve the lower bound rate with censored demand
information.

11.3.2 Challenges and Preliminary Results

Unlike in a typical online learning problem where each period the cost is only a
function of the decision, in the perishable inventory system, we can see that the cost
Ct is a function of xt and S, where xt is affected by the previous orders. On the other
hand, that means all the inventory decisions have long-lasting effects on the cost. We
have to consider these effects when adjusting decisions under censored data.

To enable further discussions on stochastic gradient-descent methods, we first
need to show the convexity of the total cost with respect to the base-stock level S.
Unfortunately, it can be shown that the one-period cost Cπ(S)t may not be convex
for each sample path. This further confirms that we cannot directly apply stochastic
gradient-descent methods to this problem. Luckily, if we consider the total cost over
a T -period problem, the convexity is back, as stated in the following theorem.

Theorem 1 For the perishable inventory system operating under a base-stock
policy π(S), if the system begin with empty inventory, then for any realization of
demand ω = (d1, d2, . . .), the T -period total cost is convex in S for any T ≥ 1.

The proof of this theorem is based on a linear programming reformulation of the
problem and is similar in spirit to the one developed by Janakiraman and Roundy
(2004) for the lost-sales inventory system with lead times. As a by-product of this
theorem, it can be shown that under the same conditions except for the inventory
perishability, the optimal base-stock level for a perishable inventory system is lower
than the optimal base-stock level for the nonperishable counterpart.

11.3.3 Learning Algorithm Design: Cycle-Update Policy

In this subsection, we introduce the learning algorithm developed in Zhang et al.
(2018). The algorithm can be considered as a variant of the stochastic (online)
gradient-descent method. Like a typical gradient-descent algorithm, it is assumed
that there is a known compact set [0, S̄] that contains the optimal policy S∗. As its
name suggests, the Cycle-Update Policy updates the inventory decisions in cycles,

11 Inventory Control with Censored Demand 281

Algorithm Cycle-Update Policy (CUP)
1: Initialization. Set τ1 = 1, and the initial base-stock level S1 for period 1 is arbitrarily chosen

from (0, S̄). Set x1,m−1 = S1, and the cycle counter to k = 1.
2: for each period t ≥ 2 do
3: if the starting inventory level xt,m−1 > 0 (i.e., lost-sales did not occur in period t−1) then
4: Keep the same base-stock level as in period t − 1, i.e., order up to Sk in period t so that
xt,m = Sk . Go to the next period.

5: else
6: Set τk+1 = t at the beginning of a new cycle k + 1, and update the base-stock level
Sk+1 by

Sk+1 = P[0,S̄]
(
Sk − ηk∇1G(Sk, (τk, τk+1);ω)

)
, (11.1)

where the step size ηk = γ /
√
k for some positive constant γ , and ∇1G(Sk, (τk, τk+1);ω) is a

subgradient of the k-th cycle cost with respect to Sk (by fixing τk and τk+1). Order up to Sk+1
for period t so that xt,m ≥ Sk+1, and set k := k + 1. Go to the next period. ��

7: end if
8: end for

instead of in each period. The complexity of the problem is mainly due to the
inventory carryover and the high-dimensional state space introduced by the lead
times. Even we know the total amount of starting inventory, it is not enough, as we
also need to know their age distribution. The only exception is when there is a stock-
out from the previous periods, and all the inventory is hence cleared. Together with
the convexity results, we see that the stock-out event can be considered as a clear
start of a new cycle and also preserves the convexity property of the cycle cost. We
present the Cycle-Update Policy (CUP) as follows.

The subgradient ∇1G(Sk, (τk, τk+1);ω) can be computed efficiently by only
using censored demand data. We refer the interested reader to Zhang et al. (2018) for
a detailed description of the computation of the subgradient. We see that the design
of the CUP algorithm is not complicated, as basically it updates the base-stock level
every time a stock-out (Dt ≥ Sk) happens. One may think that we can also design
cycles based on the event {Dt ≥ S̄}, as all the policies (within [0, S̄]) would stock-
out and be “refreshed.” However, this is not possible as the learning algorithm only
observes the sales data.

11.3.4 Regret Analysis of CUP Algorithm

Following the conventional notation of regret, we define the T -period regret of CUP,
RCUP
T (ω), as

RCUP
T (ω) = E

[
T∑

t=1

(
C
π(St)
t (ω)− Cπ(S∗)t (ω)

)
]

,

282 X. Gao and H. Zhang

where St is the base-stock level prescribed by the CUP algorithm, and S∗ is the
(clairvoyant) optimal base-stock level. We present the regret upper bound of CUP
in the following theorem.

Theorem 2 Under the assumption that there is a known finite number S̄ such that
S∗ ≤ S̄, and P(Dt ≥ S̄) > 0, for each problem instance of the perishable inventory
system, the regret of the Cycle-Update Policy (CUP) satisfies

RCUP
T ≤ K1

√
T , for all T ≥ 1,

where K1 is a positive constant not affected by the problem instance.

First, we see that the regret rate is tight, and the assumptions are quite mild. We
need to have the compact interval for the CUP algorithm, just like for other SGD
methods. The P(Dt ≥ S̄) > 0 condition ensures that the CUP algorithm will not be
stuck at a very high inventory level.

We discuss the regret analysis of the CUP algorithm as follows.

A Bridging Policy—Replacement of Old Inventories (ROI) To prove Theo-
rem 2, we compare and bound the difference between the kth (k = 1, 2, . . .) cycle
costs of CUP and the clairvoyant optimal policy, OPT. As it is possible that the OPT
may not have a fresh start at the beginning of every cycle k of the CUP algorithm,
this comparison is not immediate. The key idea of the analysis is to introduce a
bridging policy, called the replacement of old inventories (ROI for short), between
CUP and the optimal base-stock policy π(S∗). For each sample path, similar to the
optimal policy, the bridging policy ROI uses S∗ as its base-stock level. However, at
the beginning of τk (k = 1, 2, . . .), ROI replaces all its inventory units (regardless
of their ages) with brand new inventory units with remaining lifetimem. Intuitively,
the ROI has the same holding and lost-sales cost as the OPT, given that their base-
stock levels are the same (S∗), and the holding/lost-sales cost is only determined by
the base-stock level. For the outdating costs, as the ROI has a fresher inventory, the
ROI would have a lower total outdating cost. The next proposition confirms that, for
each sample path, the total cost incurred by ROI gives a lower bound on the total
cost incurred by the optimal base-stock policy π(S∗), and it provides a bridge in
comparing the total costs of CUP and the optimal policy.

Proposition 1 For each problem instance of the perishable inventory system, given
any sample path ω = {d1, d2, . . .} and any T ≥ 1, the total cost incurred by the
bridging policy ROI is less than or equal to the total cost incurred by the optimal
base-stock policy π(S∗).

With Proposition 1, when analyzing the regret of CUP, instead of directly
comparing with OPT, we can compare with the ROI policy, and that will serve as
an upper bound of the regret. The proof of Theorem 2 is based on comparing the
cost difference between CUP and ROI. Consider, at the beginning of each cycle k,
both policies start from zero inventory, and CUP operates at the base-stock level Sk ,
and ROI operates at the base-stock level S∗. Within cycle k, define the total cost

11 Inventory Control with Censored Demand 283

under base-stock level S (with empty starting inventory) as Gk(S). By Theorem 1,
Gk(S) is a convex function. We can adopt the regret analysis of the SGD algorithm
to analyze the regret of CUP. One remaining difference is that functionGk(S) is not
bounded in every sample path. We need to bound the expectation ofGk(S) (and also
the gradient of Gk(S)). We refer the interested reader to Zhang et al. (2018) for the
detailed proof.

11.3.5 Strongly Convex Extension

As shown in Besbes and Muharremoglu (2013), the lower bound of the inventory
learning problem with censored demand is �(log T), when the demand satisfies
some conditions. And for the continuous demand considered in Zhang et al. (2018),
the condition is strongly convex. In inventory systems, a sufficient condition to
ensure the strongly convexity if the expected cost is a lower bound on the support of
the probability density function. We state the following assumption for the strongly
convex extension:

Assumption 2 There exist three known finite numbers S̄, S, and λ, such that

(i) 0 ≤ S < S̄, λ > 0.

(ii) S ≤ S∗ ≤ S̄, and P(Dt ≥ S̄) > 0.

(iii) The probability density function f (x) of single-period demand D satisfies
infx∈[S,S̄] f (x) ≥ λ.

Under Assumption 2, the long-run average cost
{

lim supT→∞ 1
T
E

[∑T
t=1

C
π(S)
t

]}
is strongly convex w.r.t. the base-stock level S with parameter λ(h + p)

between [S, S̄]. Under this assumption, the (modified) CUP achieves a logarithmic
regret rate, as stated in the following theorem.

Theorem 3 For perishable inventory system, we modify CUP as follows:

1. Use the projection operator P[S,S̄], instead of using P[0,S̄].
2. Change the step size to ηk =

(
1

λ(h+p)
)

1
k
, k = 1, 2,

Then, under Assumption 2, there exists some positive constant K2, such that for any
T ≥ 1, the expected cumulative regret of CUP for any problem instance satisfies
RCUP
T ≤ K2 log T .

We can see that the regret matches the lower bound results stated in Besbes and
Muharremoglu (2013) for the case where the demand is continuous and has bounded
support.

284 X. Gao and H. Zhang

11.4 Lead Times Example: Lost-Sales System with Lead
Times

In this section, we discuss the lost-sales inventory system with positive lead times.
This is one of the most fundamental inventory systems, and it is known to be
a challenging inventory problem, even from the pure optimization perspective.
The problem suffers from the well-known curse-of-dimensionality, and the optimal
policy is proved to be complex (see Zipkin 2008). A stream of research focused
on the design of online learning algorithm for this problem, including (Huh et al.,
2009a; Zhang et al., 2020; Agrawal and Jia, 2019). We discuss their learning
algorithms in this section.

11.4.1 Model Formulation

We first rigorously define the lost-sales inventory system with positive lead times.
Similar to the previous section, we also consider i.i.d. continuous random demands,
{D1,D2, . . . , Dt , . . .}, and censored demand observation. The lead time is denoted
as L, which means any new order will stay in the pipeline for L-periods before
arrival. To keep track of all the pipeline orders together with the on-hand inventory,
we need to use an (L+ 1)-dimensional vector for the inventory state:

xt = [qt−1, . . . , qt−L+1, It] ,

where It is the on-hand inventory at the beginning of period t , and qk is the order
placed in period t . Denote yt = [qt , qt−1, . . . , qt−L+1, It] as the inventory after
ordering in period t .

In every period, the sequence of events in each period t is defined as follows:

1. At the beginning of period t , the firm observes the starting inventory vector xt
and determines the ordering quantity qt ≥ 0.

2. Then, the demand is realized as dt . The demand is satisfied using on-hand
inventory It to the maximum extent, and the firm observes the sales min(dt , It).

3. The one-period cost is

Ct = h(It − dt)+ + p(dt − It)+.

And the system proceeds to the next period with starting state

xt+1 =
[
qt , . . . , qt−L+2, It+1 = qt−L+1 + (It − dt)+

]
. (11.2)

11 Inventory Control with Censored Demand 285

Later, we also have a learning algorithm that considers the profit maximization
equivalent version of the problem. We replace Ct as Qt = pmin(dt , It) − h(It −
dt)

+ in this case. Following the conventional assumption, we consider the starting
inventory vector is empty, i.e., x1 = 0. The goal of the learning algorithm is to find
an ordering policy, based on the sales information, that can minimize the T -period
regret against the clairvoyant optimal policy.

11.4.2 Base-Stock Policy and Convexity Results

Due to the complexity of the problem, it is challenging to use the optimal policy as
the benchmark. One of the widely adopted policies is the base-stock policy (e.g.,
see Zipkin 2008). Under a base-stock policy with base-stock level S, every period
the decision-maker orders qt = (S − It −∑L−1

k=1 qt−k)+ to bring the total inventory
position, i.e., the sum of on-hand inventory and pipeline inventory, up to S. For
lost-sales inventory system with lead times, although the base-stock policy is not
optimal, it is shown in Huh et al. (2009b) that it is asymptomatic optimal, when the
lost-sales penalty cost goes to infinity. Like the base-stock policy for the perishable
inventory system, it was shown in Janakiraman and Roundy (2004) that the “cycle”
cost under a base-stock policy is convex for a T -period problem.

11.4.3 Challenges from Lead Times

The convexity results remind us of the use of SGD for the perishable problem. We
can think of also constructing cycles to follow the gradient direction to update the
cycle base-stock levels. However, in the presence of the lead times, this is becoming
much more challenging.

Consider we are following this direction and construct cycles with base-stock
level Sk for each cycle k; then, we need to adjust this base-stock level between
cycles. Because ultimately we compare the learning system with the optimal base-
stock level S∗ that uses S∗ from the first period, and in the regret analysis, the policy
that uses Sk from the first period till the end of this cycle will naturally be a bridging
policy. Denote the inventory vector of policy Sk as xSkt for each period t and the
beginning of each cycle k as t (k). If we can “magically” adjust the inventory vector
at the beginning of each cycle, then we want to adjust it to xSkt (k) at the beginning
of cycle k, and then using the gradient of the cycle cost to update the base-stock
level from Sk to Sk+1, and so on, and we can easily build an SGD-type algorithm
in this way. However, in practice, we cannot adjust the inventory vector freely. We
can only control the ordering quantity in each period. One may think that this means
we would need at most L-periods to adjust the inventory vector to be the same at
the Sk-system. However, this is not guaranteed with random demands and censored

286 X. Gao and H. Zhang

demand observations. For example, suppose at the beginning of cycle k, the learning
algorithm has an inventory vector [3, 2, 1] and the Sk policy has an inventory vector
[2, 2, 2] (actually, this information would not be available to the learning algorithm,
but we assume it for simplicity), and the demand realized to be greater than or
equal to 3 for all the future periods for a long time. In the first period, the learning
algorithm only observes a sales of 1 and hence will not be able to know that is
the sales under system Sk . Hence, either ordering 1 or ordering 2 could be wrong.
And if the learning algorithm just follows the base-stock policy, 6 in this case, then
the learning algorithm system will just be repeating [3, 2, 1], [1, 3, 2], and [2, 1, 3],
while the Sk-system is always [2, 2, 2], and they will not converge.

For this problem, the lead times give us a high-dimensional inventory state, while
we can only work on the last dimension, and let the remaining entries interact with
the demand. This also means we have indirect control over the information observed
from the sales. In the next two subsections, we will discuss three different methods
to overcome these challenges.

11.4.4 Gradient Methods

A Black-Box Method with Increasing Cycle Length The first paper that studies
this problem is Huh et al. (2009a). Their approach can be considered as a “black-
box” approach that mainly uses one property of the inventory system—it will
eventually converge over time. Despite the complexity of the inventory system, the
expected cost under an inventory system is determined by the stationary distribution
of the on-hand inventory under the base-stock level S, denoted as I∞(S). We can
write the expected average cost as C(I∞(S)). If we can observe the gradient of
C(I∞(·)), then the problem is solved. However, as we would need infinite periods
to converge to the stationary on-hand inventory, we cannot observe C(I∞(·)).

The solution offered by Huh et al. (2009a) is to replace the gradient of C(I∞(·))
using a single-period cost gradient. The single-period cost gradient can be computed
in the following way.

Theorem 4 Let S ≥ 0 be the base-stock level of the inventory system and x1 be
the initial inventory vector. Under the base-stock policy S, define V (S, x1) as the
first time that the total inventory position drops below S under initial inventory x1.
In each period t , denote the derivatives of the order quantity as Q′

t (S) and the on-
hand inventory as I ′t (S). Define I ′0(S) and Q′

t (S) = 0 for t ≥ 0. Then we have

• Q′
t (S) ∈ {0, 1} and I ′t (S) ∈ {0, 1}.

• Q′
t (S) =

⎧
⎨

⎩

0 if 1 ≤ t < V (S, x1),

1 if t = V (S, x1),

I ′t−1 · 1[Dt−1 ≥ It−1] if t > V (S, x1).

• I ′t (S) = I ′t−1(S) · 1[Dt−1 < It−1] +Q′
t−L(S).

• With probability 1, I ′t (S)+
∑t
k=t−L+1Q

′
k(S) = 1.

11 Inventory Control with Censored Demand 287

With the above theorem, we can keep track of the I ′t (S) in every period, and
hence we can easily compute the gradient of the cost in each period as a function
of S.

The algorithm in Huh et al. (2009a) requires the decision-maker to know an
interval [S, S̄] such that S∗ ∈ [S, S̄]. We briefly introduce the algorithm in Huh
et al. (2009a), with some details omitted, as follows:

Algorithm Adaptive Algorithm

1: Initialization. Initialize the starting base-stock level S1 as any number within [S, S̄]. Assume
the starting inventory vector is empty. The length of cycle k, denoted as Tk , is defined by

Tk :=
⌈√
k
⌉

.

2: for each cycle k with base-stock level Sk , do
3: Adopt base-stock level Sk for every period, keep track of the derivative of the on-hand

inventory.
4: At the end of the cycle, use the derivative of the last period’s cost, Hk(Sk), to update the
Sk , following

Sk+1 = P[S,S̄]
(
Sk − c√

k
·Hk(Sk)

)
,

where c is a constant determined by problem parameters, P[S,S̄](x) is the projection function

to project x back to the interval [S, S̄], and Hk(Sk) is the one-period cost gradient in the last
period of the cycle. ��

5: end for

We can see that the algorithm uses the one-period cost gradient in period Tk as
a proxy of the one-period cost gradient in period ∞. It can be shown that when
Tk →∞, the one-period cost gradient in period Tk will converge to the one-period
cost gradient in period ∞ in distribution, under mild conditions. Hence, to ensure
convergence, the cycle length Tk has to be increasing. Despite the simplicity of this
approach, the downside is the convergence rate. Because the algorithm will update
less and less frequently, the worst-case convergence rate is not tight in T but is
Õ(T 2/3).

A More Complicated Method with Stable Cycle Length The second paper that
studies this problem (Zhang et al., 2020), closed this gap with a more sophisticated
SGD-type algorithm. Unlike (Huh et al., 2009a) that takes a black-box approach of
the underlying inventory system, the algorithm (Zhang et al., 2020) takes a closer
look at the inventory dynamics and the information structure of the system.

The main idea of the algorithm is to deliberately control the start of each new
cycle, instead of using a predetermined cycle length, so that we can control the
starting state of the system. The first observation is that, consider the S-system, i.e.,
the system with the lowest base-stock level between [S, S̄], and another system with
S > S. Focus on the same sample path of demands. Then, it can be easily shown
that the inventory vector of the S system will be no less than the inventory vector

288 X. Gao and H. Zhang

of the S-system, in every entry in every period. This means if the S-system has no
stock-out for a period t , then all the other systems with a higher base-stock level
will also have no stock-out for this period, and the ordering quantity for period t+1
will be Dt . Following this path, if the S-system has no stock-out for L consecutive
periods, then all the systems with a higher base-stock level will have the same
pipeline inventory vector, and the only difference will be the on-hand inventory.
We can set the beginning of each cycle to be when the S-system has no stock-out
for L consecutive periods, denote this period as a “triggering period.” This can help
us calibrate the computation of the gradient, as one of the challenges of the learning
algorithm is to compute (estimate) the gradient of the Sk-system using censored
demand data, while the inventory vector of the learning system could be different
from the Sk-system.

The downside of setting the beginning of each cycle to be a triggering period
instead of a predetermined cycle length is the requirement of knowledge of the
triggering period. To know if the S-system has no stock-out for each period, the
learning algorithm has to be able to “simulate” the S-system in the back end. In
order to simulate the S-system, the learning algorithm π has to ensure that the

inventory vector xπt dominates xSt in every period. This requires a careful design
of the learning algorithm, especially when decreasing the base-stock level between
cycles. For example, when we decrease the base-stock level by a large amount,
the learning algorithm may not order for several periods, while the S-system could
still be ordering for these periods. To overcome this issue, (Zhang et al., 2020)
introduced the idea of “withheld inventory,” to slow down the decrease of base-stock
levels and ensure the simulation of the S-system. When some on-hand inventory is
marked as withheld, it is not included when the ordering quantity is computed using
the base-stock level. The base-stock system pretends the withheld inventory does
not exist, and it is only used to meet demand when all the other on-hand inventory
have been used to meet demand in each period. Due to the space limit, we omit the
details of the withheld inventory.

The second challenge of the learning algorithm is the computation of the gradient
information. Unlike (Huh et al., 2009a) that relays on the natural convergence of
the system with increasing cycle length, (Zhang et al., 2020) uses a stable cycle
length, determined by the triggering period, and in this case, the learning algorithm
needs to be able to get a more accurate gradient information with censored demand
observation. Note that the learning algorithm’s observation is based on xπt , and we
need to get the cycle cost gradient of xSkt . Recall that at the beginning of cycle k,
call it period τk , by the definition of the triggering period, the inventory vector of the
Sk-system would be [dτk−1, . . . , dτk−L+1, Sk −∑τk−1

i=τk−L+1 di], while the learning

system could be [dτk−1 + Sk − Sk−1, . . . , dτk−L+1, Sk−1 −∑τk−1
i=τk−L+1 di], we can

see that when Sk > Sk−1, the learning system will have a lower on-hand inventory
level than the Sk-system. In this case, we will not be able to guarantee that we can
simulate the Sk-system. For example, if the learning system faces stock-out in period
τk , then we cannot tell the gradient in this period for the Sk-system. To overcome

11 Inventory Control with Censored Demand 289

this issue, (Zhang et al., 2020) proposed a two-phase design of a cycle. Still consider
the Sk-system and the learning system in period τk , with starting inventory vector

[dτk−1, . . . , dτk−L+1, Sk −
τk−1∑

i=τk−L+1

di],

and

[dτk−1 + Sk − Sk−1, . . . , dτk−L+1, Sk−1 −
τk−1∑

i=τk−L+1

di],

respectively.
It can be seen that when Sk > Sk−1, the learning algorithm has more inventory

in the pipeline, which is not yet arrived. The trickily part is that even we wait for
L-periods for those inventory to arrive, we cannot guarantee the two systems will
converge. For example, suppose the demand is very high for the next L-periods
and both systems face stock-out in all the L-period, then the inventory vector of
both systems will keep shuffling and goes back to the same as in period τk after
L-periods. Intuitively, high demands will keep the two systems from converging.
And we shall think of demands realized to be low, which remind us of the event we
defined before: the triggering period. Indeed, if the learning algorithm keeps using
base-stock level Sk and waits for another triggering period, the two systems will be
the same, and after that, the learning algorithm could use the sales to estimate the
gradient in this second part of the cycle and wait for another triggering period to
update the base-stock level. This is the two-phase design of a cycle. First, wait for
another triggering period to ensure the inventory vector to be the same as the Sk-
system, and then use the cost gradient from the second triggering period to the last
triggering period in the cycle to update the base-stock level, following the gradient
direction from Sk to Sk+1.

As the detailed algorithm, denoted as the Simulated Cycle-Update (SCU)
algorithm, description in Zhang et al. (2020) is more than one-page long, we just
summarize the main ideas of the algorithm as follows:

• The SCU algorithm maintains the same base-stock level, Sk within each cycle
k. The length of each cycle is not predetermined but begins with a “triggering
period.” Each triggering period is defined as when the S-system, the system that
uses base-stock level S from period 1, has no stock-out forL consecutive periods.

• In order to know the triggering periods, the SCU algorithm needs to simulate
the S-system in each period t . To ensure the inventory vector of the SCU-system
dominates the S-system, the SCU algorithm marks some on-hand inventory as
withheld when dropping the base-stock level and gradually releases them to avoid
sudden drops of the base-stock level and to sustain the simulation.

290 X. Gao and H. Zhang

• In each cycle, there are two phases. Each phase begins with a triggering period:
the first phase is used for the inventory vector to converge to the Sk-system, and
in the second phase, when the learning system has the same inventory vector
(excluding the withheld inventory part) as the Sk-system, the algorithm can
compute the gradient of the Sk-system and use that to update the base-stock level
following the gradient-descent method.

Regret Analysis To analyze the regret of the SCU algorithm, i.e., the cost differ-
ence between the SCU-system and the S∗-system, (Zhang et al., 2020) introduced
two bridging systems: the SCU-system and theG-system. Both bridging systems are
imaginary systems that are not implementable and are only used for regret analysis
purposes. The SCU-system has the same inventory vector as the SCU-system in
every period, except that the withheld inventory pays no holding cost in the SCU-
system. So, the gap between the SCU-system and the SCU-system contains the
holding cost of the withheld inventory, which can be shown to be O(

√
T). The

second bridging system, the G-system, is defined as the system that uses Sk within
each cycle, and the starting inventory in τk is changed to be the same as the Sk-
system, i.e.,

[dτk−1, . . . , dτk−L+1, Sk −
τk−1∑

i=τk−L+1

di].

The gap between the SCU-system and the G-system is the cost difference in the
first phase of each cycle between the learning system and theG-system, when Sk >
Sk−1. This part can be shown to be O(

√
T). The remaining gap is the gap between

theG-system and the optimal S∗-system. This part is similar to the gap between the
ROI system and the optimal base-stock system in the perishable inventory system in
Zhang et al. (2018). As both theG-system and the optimal S∗-system incur a convex
cycle cost within each cycle, theG-system updates the base-stock level using correct
gradient information (gathered in the SCU-system). This gap is also O(

√
T). We

summarize the structure of the regret analysis in Fig. 11.1.
From Fig. 11.1, we can see the challenge introduced by lead times. With lead

times, the high-dimensional inventory state can only be affected by the inventory
decisions indirectly. And with censored demand observation, there could be chal-
lenges in both increasing and decreasing the base-stock level. Zhang et al. (2020)
designed a quite complicated algorithm to overcome these issues. However, there
is still one drawback of the algorithm—the exponential dependency on L for the
regret bound. Because the cycles are constructed with triggering periods and the
cycle length is exponential in the lead time L, the regret is inevitably exponential in
the lead time L.

11 Inventory Control with Censored Demand 291

Free withheld
inventory

holding cost

Gap due to overshooting

Gap due to undershooting

Can adjust starting
 inventory vector to

Sk system in each cycleSimilar to the standard
SGD/OGD regret

Fig. 11.1 Illustration of the regret analysis of the SCU algorithm

11.4.5 A Ternary Search Method

Agrawal and Jia (2019) proposed a learning algorithm that can avoid the exponential
dependency on L in Zhang et al. (2020). The algorithm takes a different approach
than Huh et al. (2009a); Zhang et al. (2020). Instead of utilizing the convexity of
the problem, (Agrawal and Jia, 2019) makes use of the fact that the decision space
is single-dimensional, and the expected cost is unimodal. These enable the use of
ternary search methods.

The challenges from censored demand observation, positive lead times, and
demand randomness remain the same when applying ternary search methods. With
censored demand observation, the cost is not fully observable. As a common
approach in the literature, the paper transformed the cost minimization problem it
into the equivalent profit maximization problem (called as pseudo-cost in the paper).
Censored demand observation also contributes to the learning-and-earning trade-off.
With uncensored demand observation, we can directly use the observed demand data
to test the cost under a different policy, but with censored demand information, the
learning algorithm in Agrawal and Jia (2019) has to test each point separately.

To overcome the challenge of positive lead times, the major breakthrough in
Agrawal and Jia (2019) is to prove that for the lost-sales inventory system with
positive lead times under base-stock policies, the cost difference from different
initial inventory vectors is bounded by a term that is linear in L. More precisely,
they have shown the following proposition (originally presented as Lemma 2.5 in
the paper):

Proposition 2 Consider a base-stock level S > 0, planning horizon T , and two
starting inventory vectors x and x′ with

∑
x ≤ S and

∑
x′ ≤ S. For any given

sample path, the T -period total cost for the two systems, denoted as CT (x, S) and
CT (x′, S), satisfies

∣
∣CT (x, S)− CT (x′, S)

∣
∣ ≤ 36 max(h, p)LS.

292 X. Gao and H. Zhang

Note that the gap between the cost of the two systems and the profit of the two
system is the same for any sample path. From Proposition 2, we can see that the bias
introduced from different initial inventory vectors is bounded by O(L) and is not
increasing with T . This result removes the necessity of carefully designing the initial
state of each cycle and enables an O(LT) regret rate of the learning algorithm.

The last challenge is on the demand randomness. The usual ternary search
methods only apply to deterministic problems, as random observations could lead
to wrong trimming directions and ultimately lead to a wrong result. Agrawal and
Jia (2019) proposed a UCB-/LCB-based method to avoid this with high probability.
Recall that the goal is to find the base-stock level S∗ with the highest long-run
expected profit. Instead of comparing the profit value at two different S values
to determine which interval to trim, the learning algorithm in Agrawal and Jia
(2019) constructed the UCB and the LCB (with a concentration lemma based on
Proposition 2) at each point, and if the UCB of the long-run expected profit at point
S is lower than the LCB of the long-run expected profit at point S’, then we can
conclude that the S is dominated by S’, with a very high probability, and we can
trim the intervals accordingly. We present the learning algorithm in Agrawal and Jia
(2019) as follows:

Algorithm Learning Algorithm in Agrawal and Jia (2019)

1: Initialization. Initialize the algorithm with the initial interval of base-stock levels [0, S̄], the
lead time L, and the planning horizon T . Set l1 = 0, r1 = S̄.

2: for epochs k = 1, 2, . . . , do
3: Let wk = rk − lk , xl = lk + wk/4, xc = lk + wk/2, xr = lk + 3wk/4.
4: for round i = 1, 2, . . . , do
5: Let γi = 2−i and N = log T

γ 2
i

.

6: If the initial inventory position (total inventory) is higher than xl , order nothing and
wait until it drops below xl .

7: Test the base-stock level xl for N -periods and observe the N -period’s average profit as
Cl . Construct the LCB and UCB of xl as

LBl = Cl − Hγ
2 UBl = Cl + Hγ

2 ,

where H = 576 max(h, p)(L + 1)U . Repeat the same for xc and xr to get the LBc, UBc,
LBr , and UBr . If the total planning horizon T has been reached, then stop.

8: if min(UBl, UBr) ≤ max(LBl, LBc, LBr) then
9: if UBl ≤ UBr then

10: lk+1 = xl , rk+1 = rk .
11: else
12: lk+1 = lk , rk+1 = xr .
13: end if
14: Goes to next epoch k + 1. ��
15: else
16: Goes to next round i + 1.
17: end if
18: end for
19: end for

11 Inventory Control with Censored Demand 293

We can see that the algorithm gradually shrinks the interval [lk, rk] in each epoch,
by testing in each round i, with an increasing test length until a tie is broken. Note
that we present the algorithm in terms of profit maximization instead of the pseudo-
cost minimization version as in their paper. The regret of the algorithm is O(LT),
and we omit the regret analysis of the learning algorithm. We can see that the search
method with the right concentration propriety can also be an efficient method for
the single-dimensional learning problem.

11.5 High Dimensionality Example: Multiproduct Inventory
Model with Customer Choices

We start with a general multiproduct periodic-review inventory model. When a
customer arrives and decides what to purchase, her decision can depend on the
availability of multiple products. For instance, if one customer intends to buy
product A which is out of stock, then she may purchase product B, which is a
substitute for A. Or, if another customer plans to purchase both A and C at the
same time, but product C is not available, then she may decide not to purchase
at all. Notice that in this model, the customers’ purchase decisions depend on the
availability of more than one product. If customers are heterogeneous in their choice
preferences, then customers’ arrival sequence will also influence the demand.

Consider I types of products. From period t = 1, . . . , T , the initial inventory
level is denoted by X. The firm needs to decide the order-up-to level Y . Note that X
and Y are vectors. In each period, a random number of customers arrive sequentially.
Let N denote the total number of customers on a sample path. Each customer n =
1, . . . , N may choose from the products that are available at the moment she arrives.
The vector of inventory levels observed by customer n isXn = (xn1 , . . . , xnI). At the
beginning of period t , the inventory level is X1 = Y . At the end of period t , the
inventory level is XN+1. We use An to represent the availability of products faced
by the n-th customer. Hence,An is a vector with binary entries. For all i = 1, . . . , I ,
Ani = 1 if xni > 0, otherwise Ani = 0. Denote the type of the n-th customer by Un.
The purchasing decision of the n-th customer is denoted by d(An,Un) ∈ {0, 1}I ,
which is affected by the customer’s type and the inventory availability faced by this
customer. Let ω = {Un : n = 1, . . . , N} denote the sample path. We assume ω is a
sample from some probability distribution space (�,F, P) with P(N < ∞) = 1.
In any period t , the firm determines the target inventory level Yt ≥ Xt based on the
starting inventory Xt = XN+1

t−1 . The firm’s optimization problem can be formulated
as a dynamic program. For t = 1, . . . , T , we have

G∗t (Xt) = max
Yt≥Xt ,Yt∈Y

ρ(Yt)+ E
[
G∗t+1(X

N+1
t)

]
. (11.3)

In each period, the order-up-to level Y may be restricted by some constraints. For
example, the total inventory cannot exceed the warehouse capacity. These restraints

294 X. Gao and H. Zhang

are captured by the constraint set Y. Given inventory level Yt and demand outcome
ω, the sample path profit in each period is f (Yt , ω), which includes the total revenue
minus the holding cost and possibly some other cost terms. The per-period expected
profit is given by

ρ(Yt) = Eω [f (Yt , ω)] . (11.4)

The state transition can be computed recursively using Xn+1
t = Xnt −

d(An,Un), n = 1, . . . , N . The boundary condition is given by G∗T+1(·) ≡ 0.
Since the demand is identically distributed in each period, the optimal policy of

this problem is a myopic one, as formally stated in the following proposition. The
proof follows Theorem 6.1 of Porteus (2002).

Proposition 3 Let Y ∗ be an optimal solution of maxY∈Y ρ(Y). The optimal policy
of problem (11.3) uses Y ∗ as base-stock level for all t = 1, . . . , T .

If we have full information about demand, we can solve the optimization problem
maxY∈Y ρ(Y) and apply the optimal base-stock policy Y ∗ in each period. However,
in practice, the decision-maker does not know the distribution of ω or the functional
form of d(·, ·) and needs to learn them on the fly. This is the focus of this subsection.

Before we present the algorithms for solving this online inventory control
problem, we first point out the two major difficulties. One difficulty is that the
demand observations are both censored and partial. Censored demand observations
are due to lost-sales, which is similar to other inventory models discussed in this
chapter. Here, we focus on explaining why the demand observations are partial.
When we observe a customer’s purchasing decision, it is only for one particular
inventory state. We cannot observe this customer’s purchasing decisions with all
possible inventory states. For example, suppose a customer who wants to purchase
product 1 may purchase product 2 as a substitute if product 1 is not available. If
we have no inventory for product 1 and one unit of inventory for product 2, we
can observe that this customer ends up purchasing one unit of product 2. However,
we do not know that if we had one unit of inventory for product 1, this customer
would purchase product 1 instead. Therefore, we cannot observe this customer’s
true preferences even if we do not encounter lost-sales.

The other difficulty is the high dimensionality of this problem. Since we do not
assume any explicit parametric form for the customer choice model, the purchasing
decision function d(·, ·) can be extremely complex and difficult to learn. The action
space can also be huge, even with a moderate number of products. To see this,
suppose we naively apply the multi-armed bandit algorithm and treat each feasible
inventory level as one arm, the total number of arms will increase exponentially with
the number of products. A naive implementation of the UCB algorithm is given as
follows:

11 Inventory Control with Censored Demand 295

Algorithm
1: Initialization: Select each policy Y ∈ Y once.
2: In each period t , use nt (Y) and ρ̄t (Y) to construct the optimistic reward for each Y :

ρ̄t (Y)+ β
√

2 ln t

nt (Y)
,

where β is an algorithm parameter.
3: Select policy:

Yt ∈ arg max
Y∈Y

{

ρ̄t (Y)+ β
√

2 ln t

nt (Y)

}

.

4: Update nt (Yt) and ρ̄t (Yt). Go to Step 2. ��

Due to the high dimensionality of Y , this naive-UCB algorithm may have
an extremely slow convergence rate. Suppose there are four products where the
inventory level of each product can be 1, 2, . . . , 10. There are 10,000 arms in total,
and this naive-UCB algorithm needs to use 10,000 periods to select each arm at
least once to initialize.

In order to expedite the learning, we need to make better use of the sales data.
However, the censored and partial observation of demand seems to make it very
difficult. In the following, we will present two improvement ideas.

Improvement idea 1: In any period t , after an inventory level Y is implemented
and a sample path profit f (Y, ω) is observed, we identify f (Y ′, ω) with Y ′ �= Y
which can be simulated without any bias. For example, consider a single-product
inventory system; once we use the base-stock level Y = 10 for one period and
observe f (Y, ω), we can also simulate f (Y ′, ω) for all Y ′ = 1, . . . , 9. In this
way, every time we observe a sample path profit with a certain inventory level,
we can update the sample path profit associated with other inventory levels as
well and thus improve the usage of sales data.
Improvement idea 2: When we calculate the expected profit with inventory
level Y , we gather the information from all the Y ′ that is “close enough” to Y
as an approximation. As we have more information, we can gradually shrink
the distance between Y and Y ′. For example, consider a two-product system, the
sequence of sales data under policy Y = (10, 10)might be used to approximately
estimate the profit under policy Y ′ = (9, 11).

Figure 11.2 illustrates how these two improvements fit into the learning algo-
rithm. Generally speaking, the implementation of a UCB algorithm consists of four
steps. The two steps below are the inventory dynamics, while the two steps above
are how the algorithm stores and uses the data. The first idea focuses on improving
the information obtained from each demand observation. We make use of the
simulated system to provide us unbiased estimations. Hence, all the data stored in
the “database” of the UCB algorithm are always unbiased. The second idea focuses
on improving how to use the unbiased data stored in the database. In particular, for

296 X. Gao and H. Zhang

Improvement 1 Improvement 2

Learning algorithm

Inventory dynamic
Profit
observation

Update data Determine
optimal policy

Implement
policy

Fig. 11.2 How Improvements 1 and 2 fit into the learning algorithm

each inventory level, we take the data from all inventory levels that are close by and
combine them together to construct the UCB term. These two improvement ideas
can be integrated together to improve the efficiency of the UCB algorithm. However,
the caveat is that we need to keep the independence of random samples to ensure
that the UCB algorithm remains valid. This is because the first improvement idea
introduces multiple data points based on one particular sample path. We need to
make sure that when we calculate the expected profit associated with any inventory
level, we cannot use multiple observations generated from the same sample paths.
In the following, we will demonstrate how to integrate these two ideas effectively
while maintaining independent samples with an inventory substitution model.

11.5.1 Inventory Substitution

In this subsection, we consider a specific customer choice model where a customer
can purchase a substitute product if the product she initially wants is not available.
This is often called a customer-driven, stock-out-based inventory substitution model
(see Mahajan and Van Ryzin, 2001). We use [I] to denote the set of product
{1, . . . , I }. The per-unit price for these products is p1, . . . , pi, . . . , pI , respectively.
Demands arrive at the beginning of each period t . If any product’s demand cannot
be satisfied, the customer can choose to buy a different product as a substitute.

We adopt a very general choice model to capture this stock-out-based substitution
behavior: the ranking-based choice rule (see Mahajan and Van Ryzin, 2001; Honhon
et al., 2010, 2012; Honhon and Seshadri, 2013, among others). Each customer
n has a customer type Un = (Un0 , U

n
1 , . . . , U

n
I), where each Uni is the utility

assigned to product i, and Un0 is the utility of no purchase. Customer n makes the
purchase decision d(An,Un) according to her utility vector Un and the availability
of products. Specifically, d(An,Un) = 0 if Un0 ≥ Uni for all i = 1, . . . , I .
Otherwise di(An,Un) = 1 for i = arg maxi≥1,Ani =1 U

n
i , and di(An,Un) = 0 for all

other i. This choice rule means that if a customer has a personal rank for all products.
When she arrives, she will first check whether her favorite product is available. If
it is available, she will purchase this product; otherwise, she will continue to see

11 Inventory Control with Censored Demand 297

whether her second favorite product is available. She will continue this process until
she purchases a product to leave without purchasing. Many existing customer choice
models, such as the locational choice model or the multi-nomial logit model, can be
viewed as special cases of this ranking-based choice rule.

After a customer has made a purchase decision, the firm observes the sale.
Note that the firm cannot observe anything if the customer does not purchase at
all. The firm can only observe the customer’s final purchase decision, but not
the substitution thinking process in the customer’s mind. Let ui(Y, ω) denote the
number of products i sold on the sample path ω given initial inventory levels Y .
Define a vector u(Y, ω) = (u1(Y, ω), . . . , uI (Y, ω)). Let ξni (X, ω) denote the total
sales of product i up to customer n given the inventory level observed by customer
n is X and the demand sample path is ω. We have ξ0

i = 0, X1 = Y . The sales and
inventory dynamics can be computed as follows:

ξni (X
n, ω) = di(An,Un)+ ξn−1

i (Xn−1, ω),

Xn+1 = Xn − d(An,Un).

The total sales of each product are ui(Y, ω) = ξNi (Y, ω), ∀ i ∈ [I]. The sample
path profit f (Y, ω) is given by

f (Y, ω) = pᵀu(Y, ω)− hᵀ(Y − u(Y, ω)),

where p = (p1, . . . , pI)
ᵀ is the unit price vector and h = (h1, . . . , hI)

ᵀ is the unit-
holding cost vector. The firm wants to maximize the total expected profit ρ(Y) =
E[f (Y, ω)].

The optimization of the multiproduct inventory system with ranking-based
substitutions has been studied in the literature. As our focus is on the learning
algorithm for this model, we refer the interested reader to Mahajan and van Ryzin
(2001); Honhon et al. (2010, 2012); Honhon and Seshadri (2013); Chen and Gong
(2018) for detailed discussions on the optimization of this model. One important
point worth mentioning is that, as shown by Theorem 2 in Mahajan and Van Ryzin
(2001), the profit function is not component-wise concave. The lack of concavity
renders tools such as the stochastic gradient approach powerless for the online
learning version of this model. Therefore, we turn to use the UCB-type learning
algorithm by treating each possible order-up-to inventory level as an arm. For this
purpose, assume that the order-up-to level for each product Yi is chosen from
a finite set of admissible levels {y1, . . . , yk, . . . , yK }, where yK is the highest
feasible level. Let Y denote this set of all admissible arms. Therefore, there are
KI arms in the feasible set Y. The high dimensionality of this problem leads to
an exponentially large number of arms. This will make a naive implementation of
the UCB algorithm extremely slow to converge. In the following, we present the
improved-UCB algorithm.

298 X. Gao and H. Zhang

Algorithm Improved-UCB for Inventory Substitution
1: Input: γ
2: Initialization: t = 1, t� = 0 (starting period of episode �)
3: for episodes � = 1, 2, . . ., do
4: t� ← t , γt� = γ√

t�
.

5: (Improvement 2) Let the virtual counter n̂i,t (Y) =∑
Y ′ :Y ′i=Yi , ‖Y ′−Y‖1≤γt� ni,t (Y

′) for all

i ∈ [I], y ∈ Y.
The corresponding estimator is

ρ̂i,t� (Y) =
∑
Y ′ :Y ′i=Yi ,|Y ′−Y |1≤γt� ni,t (Y

′) · ρi,t (Y ′)
n̂i,t� (Y)

. (11.5)

6: The UCB is given by Ut� (Y) =
∑
i∈[I][ρ̂i,t� (Y)+ ĉi,t� (Y)], where ĉi,t� (Y) = yK · (p̄+ h̄) ·√

2 ln t�
n̂i,t� (Y)

for all Y ∈ Y, i ∈ [I], p̄ = maxi∈[I] pi, h̄ = maxi∈[I] hi . Pick Y� = arg maxUt� (Y).

This order-up-to level Y� will be used in the whole episode �.
7: while nt (Y) ≤ 2nt� (Y) for all Y ∈ Y do
8: Apply the target order-up-to level Y�. If this is not feasible, then use Y = min{Y�,Xt }

as the target order-up-to level.
9: t ← t + 1

10: Update the relevant counter nt (Y).
11: (Improvement 1) Update the counters ni,t (Y) for all i ∈ [I]. Update the estimator

ρi,t (Y) using the observed sample path profit in this period.
Update the counters ni,t (Y ′) for all i ∈ [I] where Y ′i < Yi, Y

′−i = Y−i . Update the
estimator ρi,t (Y ′) using the simulated sample path profit.

12: end while
13: end for

The algorithm proceeds in episodes of increasing length. Within each episode �,
the target order-up-to level is the same, denoted by Y�. For each possible inventory
level Y ∈ Y, we use nt (Y) to count the number of times this inventory level Y is
chosen before time t . An episode is ended if at least one counter gets doubled. There
are two reasons why we use episodes instead of simply updating the target inventory
level in every period. One reason is that new target order-up-to inventory levels may
not be reachable if the current inventory level is higher than it. Using the same
target inventory level in the entire episode ensures that the target order-up-to level
is reached for the majority of the time. The second reason is that the computational
time can be reduced since we do not update the policy too frequently without a
significant performance loss. Within each episode, steps 4 to 6 are about generating
the UCB and finding the new order-up-to level for the episode, while steps 8–11 are
for updating relevant counters and estimators after observing the sample path profit.

We will firstly discuss steps 8–11. Step 8 sets the inventory level to the
target order-up-to level Y� unless it is lower than the current inventory level, in
which case the inventory level remains unchanged. Step 11 is a critical step that
utilizes Improvement Idea 1. First of all, we keep records of the counters, sample
path profits, and expected profits for each product i ∈ [I], with a subscript
i in the corresponding notation. In each time period t , if an order-up-to level

11 Inventory Control with Censored Demand 299

Y = (Y1, . . . , YI) is applied, we can observe the sample path profit for each
product i ∈ [I], denoted by fi(Y, ω). Then, obviously we can update the counter
ni,t (Y) and the estimator ρi,t (Y) using the sample path profit fi(Y, ω). Moreover,
we will also update counters ni,t+1(Y

′) and estimators ρi,t+1(Y
′), where Y ′i <

Yi, Y
′−i = Y−i using the simulated sample path profit, denoted by f̂i (Y ′;Y, ω).

Notice that the simulated sample path profit f̂i (Y ′;Y, ω) is unbiased in the sense
that f̂i (Y ′;Y, ω) = fi(Y ′, ω). This is because before product i runs out of stock, all
customers’ choices when the order-up-to level is Y ′ are the same as those when the
order-up-to level is Y .

For instance, suppose that Y = (4, 3), which means that the inventory level is
4 for products 1 and 3 for product 2. Then, given some demand sample path ω,
we can observe the sample path profit f1(Y, ω) and f2(Y, ω). We can also obtain
the unbiased simulated sample path profit f̂1(Y

′;Y, ω) for Y ′ = (3, 3). Since
f̂1(Y

′;Y, ω) = f1(Y
′, ω), we can use this simulated sample path profit to update the

profit estimator ρ1(Y
′). In other words, after setting the inventory level to (4, 3) and

observing sales, we can have a better estimation of profits generated from product
1 if the inventory level was (3, 3) as well. This helps us extract more information
from the sales data.

Step 4 sets a parameter γt� used in Step 5, which is another critical step utilizing
Improvement Idea 2. To generate the estimator as inputs for the UCB in period t , for
each product i the algorithm includes all observations associated with ni,t (Y ′) such
that Y ′i = Yi and ‖Y ′ − Y‖1 ≤ γt� . This is because although these observations are
biased, the biases are bounded due to the Lipchitz property of the profit function.
We formally state this in the following proposition.

Proposition 4 Given initial inventory levels Y and Y ′, if ‖Y ′ − Y‖1 ≤ γ , then we
have

∣
∣ρi(Y)− ρi(Y ′)

∣
∣ ≤ γ ·max{pi, hi} for any product i ∈ [I].

To prove Proposition 4, define ηni (Y, ω) as the total sales of product i from
customer n to the last customer given the inventory level observed by consumer
n is Y and the demand sample path is ω. We have ηni (X

n, ω) = di(A
n,Un) +

ηn+1
i (Xn+1, ω),Xn+1 = Xn − d(An,Un), ηN+1

i = 0, X1 = Y . Let ui(Y, ω) = η1
i .

Then, it is not difficult to show that if Y ′ = Y + ei , then ui(Y, ω) ≤ ui(Y ′, ω) ≤
ui(Y, ω) + 1 for any sample path ω. If Y ′ = Y + ej , j �= i, then ui(Y, ω) − 1 ≤
ui(Y

′, ω) ≤ ui(Y, ω) for any sample paths ω. Thus,
∣
∣ui(Y, ω)− ui(Y ′, ω)

∣
∣ ≤

γ ∀ω if
∣
∣Y ′ − Y ∣∣1 ≤ γ . Since fi(Y, ω) = piui(Y, ω) − hi(Yi − ui(Y, ω)), we

have |fi(Y, ω) − fi(Y ′, ω)| ≤ max{pi, hi}γ for any sample path ω. Therefore,∣
∣ρi(Y)− ρi(Y ′)

∣
∣ ≤ max{pi, hi}γ .

In Step 5, we require that Y ′i = Yi , which is not needed in Proposition 4. This
additional condition is to ensure that all the observations are independent. Due
to Step 11, for each product i, we may update multiple estimators in one period.
Then, in Step 5, we need to ensure that no estimators included have been updated
simultaneously in any historical periods.

300 X. Gao and H. Zhang

Theorem 5 There exists a non-empty set of parameters γ , such that the regret of
Algorithm in Sect. 11.5.1 is bounded above by

min
{
C1 · I ·

√
KI · T · ln T , C2 · I ·

√
K · T · ln T +�s · T

}
, (11.6)

where C1 and C2 do not depend on K , I , or T , and�s does not depend on K or T .

Theorem 5 demonstrates the theoretical performance guarantee of the algorithm.
The average regret is upper bounded by the minimum of two terms. These two terms
represent the trade-off from choosing a proper γ . When γ is relatively small, we
introduce less bias in Step 5 of the algorithm but at the same use fewer data points
for estimation. In this case, the regret is bounded above byC1·I ·

√
KI · T · ln T . The

term KI is largely due to not using enough data points for estimation, which may
lead to slow convergence. On the other hand, when γ is very large, the algorithm
almost ignores the substitution effect in the system and tries to learn and optimize
for each product independently. In this case, the algorithm uses more data points
for estimation but inevitably introduces more biases into the estimation. This leads
to the second term in (11.6). Note that �s captures the regret due to the biases
introduced. It can be further showed that �s does not depend on K or T and �s is
upper bound by O(I 2) (Gao and Zhang, 2021).

11.5.2 Numerical Example

In order to have an efficient convergence, the algorithm needs to strike a balance by a
proper choice on γ . In the following, we will show the performance of our algorithm
with different choices of γ and problem parameters of the inventory substitution
problem.

Experiment Settings Consider an inventory system with three substitutable prod-
ucts: {A,B,C}. Assume that each customer has a preference list. In this numerical
experiment, there are 15 types of customers with the preference lists {A}, {B}, {C},
{A,B}, {A,C}, {B,A}, {B,C}, {C,B},{A,B,C}, {A,C,B}, {B,A,C}, {B,C,A},
{C,A,B},{C,B,A}. If a customer has the preference list {A}, she will only
purchase product A and will not substitute to B or C. A customer with preference
list {A,B,C} will first try to purchase A, and when facing the stock-out of A,
she will try to purchase B, and when facing the stock-out of both A and B, she
will try to purchase C. Each type of customer arrives according to a Poisson
process, with randomly generated rates. The unit-holding cost is {1, 2, 3} for the
three products. There are four possible price schemes for the three products:
{5, 10, 15}, {10, 20, 30}, {20, 40, 60}, and {40, 80, 120}. Denote them as Case 1 to
4, respectively. The maximum inventory level is assumed to be 10. We use 5000
sample paths to estimate the average regret of the algorithm. Motivated by Russo and
Van Roy (2014), we also tune the algorithm with a parameter λ, which is multiplied

11 Inventory Control with Censored Demand 301

Table 11.3 Expected Average Regret for Algorithm in Sect. 11.5.1 at T = 50, 100, 100, 500,
1000, and 5000

Case γ T = 50 100 200 500 1000 5000 Optimal Policy

1 0 20.41% 18.28% 13.06% 12.13% 11.10% 10.79% (3,4,5)

26 13.46% 14.88% 12.59% 10.15% 8.14% 6.53%

28 13.29% 11.95% 10.74% 9.75% 9.32% 5.56%

210 13.96% 12.21% 11.04% 10.03% 9.53% 8.67%

∞ 13.28% 11.68% 10.51% 9.32% 8.81% 7.94%

2 0 16.26% 15.40% 10.56% 7.46% 7.02% 6.79% (3,4,6)

26 9.30% 9.66% 7.86% 6.55% 5.44% 4.79%

28 10.06% 9.53% 9.22% 8.53% 8.02% 4.08%

210 10.40% 9.78% 9.20% 8.41% 7.94% 7.12%

∞ 10.36% 9.99% 9.53% 8.91% 8.49% 7.57%

3 0 10.08% 7.05% 6.69% 6.02% 5.90% 5.33% (3,5,6)

26 8.42% 8.06% 5.86% 4.81% 3.79% 3.76%

28 8.50% 8.51% 8.42% 7.90% 7.43% 3.23%

210 8.56% 8.47% 8.25% 7.86% 7.52% 6.88%

∞ 8.81% 8.72% 8.40% 8.02% 7.66% 6.96%

4 0 9.10% 6.72% 6.42% 5.41% 5.19% 3.97% (5,6,7)

26 7.40% 6.76% 4.31% 3.07% 2.25% 2.58%

28 6.59% 6.73% 6.63% 6.28% 5.75% 2.04%

210 6.32% 6.37% 6.32% 6.08% 5.75% 5.23%

∞ 7.03% 6.93% 6.73% 6.46% 6.08% 5.51%

to the UCB term, which is set to be 2−6 for all the cases. In order to test how the
performance depends on the choice of parameter γ , we set γ ∈ {0, 26, 28, 210,∞}
for all four cases.

Convergence Results Table 11.3 summarizes the numerical results of all the
testing instances. For each case, the best γ is highlighted in boldface. Note that
a γ with value 0 or ∞ never achieves the best performance in any of the cases we
tested. This shows the importance of choosing a proper γ . For all four cases, we can
observe that the convergence is faster when the profit/holding cost ratio is larger.
In practice, the per-unit profit is usually much higher than the per-unit one-period
holding cost. In conclusion, we can see that our algorithm combining Improvement
Ideas 1 and 2 speeds up the convergence of the algorithm. For a problem with 1000
feasible inventory policies, the expected average regret for T = 50 periods is around
10% and keeps decreasing as T increases.

References

Agrawal, S., & Jia, R. (2019). Learning in structured MDPs with convex cost functions: Improved
regret bounds for inventory management. In Proceedings of the 2019 ACM conference on
economics and computation (pp. 743–744).

302 X. Gao and H. Zhang

Besbes, O., & Muharremoglu, A. (2013). On implications of demand censoring in the newsvendor
problem. Management Science, 59(6), 1407–1424.

Chao, X., Gong, X., Shi, C., & Zhang, H. (2015). Approximation algorithms for perishable
inventory systems. Operations Research, 63(3), 585–601.

Chao, X., Gong, X., Shi, C., Yang, C., Zhang, H., & Zhou, S. X. (2018). Approximation algorithms
for capacitated perishable inventory systems with positive lead times. Management Science,
64(11), 5038–5061.

Chen, B., & Chao, X. (2019). Dynamic inventory control with stockout substitution and demand
learning. Management Science, 66(11), 5108–5127.

Chen, T., & Gong, X. (2018). Optimal control policy for stochastic inventory models with two
substitutable products, working paper. Available at SSRN: https://ssrn.com/abstract=3217017.

Chen, X., Pang, Z., & Pan, L. (2014). Coordinating inventory control and pricing strategies for
perishable products. Operations Research, 62(2), 284–300.

Cheung, W. C., & Simchi-Levi, D. (2019). Sampling-based approximation schemes for capacitated
stochastic inventory control models. Mathematics of Operations Research, 44(2), 668–692.

Cooper, W. L. (2001). Pathwise properties and performance bounds for a perishable inventory
system. Operations Research, 49(3), 455–466.

Fries, B. (1975). Optimal ordering policy for a perishable commodity with fixed lifetime.
Operational Research, 23(1), 46–61.

Gao, X., & Zhang, H. (2021). An efficient learning framework for multi-product inventory systems
with customer choices. Available at SSRN 3775303.

Honhon, D., & Seshadri, S. (2013). Fixed vs. random proportions demand models for the
assortment planning problem under stockout-based substitution. Manufacturing and Service
Operations Management, 15(3), 378–386.

Honhon, D., Gaur, V., & Seshadri, S. (2010). Assortment planning and inventory
decisions under stockout-based substitution. Operations Research, 58(5), 1364–1379.
doi:10.1287/opre.1090.0805.

Honhon, D., Jonnalagedda, S., & Pan, X. A. (2012). Optimal algorithms for assortment selection
under ranking-based consumer choice models. Manufacturing and Service Operations Man-
agement, 14(2), 279–289.

Huh, W. H., & Rusmevichientong, P. (2009). A non-parametric asymptotic analysis of inventory
planning with censored demand. Mathematics of Operations Research, 34(1), 103–123.

Huh, W. T., Janakiraman, G., Muckstadt, J. A., & Rusmevichientong, P. (2009a). An adaptive
algorithm for finding the optimal base-stock policy in lost sales inventory systems with
censored demand. Mathematics of Operations Research, 34(2), 397–416.

Huh, W. T., Janakiraman, G., Muckstadt, J. A., & Rusmevichientong, P. (2009b). Asymptotic
optimality of order-up-to policies in lost sales inventory systems. Management Science, 55(3),
404–420.

Huh, W. H., Rusmevichientong, P., Levi, R., & Orlin, J. (2011). Adaptive data-driven inventory
control with censored demand based on Kaplan-Meier estimator. Operations Research, 59(4),
929–941.

Janakiraman, G., & Roundy, R. O. (2004). Lost-sales problems with stochastic lead times:
Convexity results for base-stock policies. Operations Research, 52(5), 795–803.

Levi, R., Pál, M., Roundy, R. O., & Shmoys, D. B. (2007). Approximation algorithms for stochastic
inventory control models. Mathematics of Operations Research, 32, 284–302.

Levi, R., Perakis, G., & Uichanco, J. (2015). The data-driven newsvendor problem: New bounds
and insights. Operations Research, 63(6), 1294–1306.

Li, Q., & Yu, P. (2014). Multimodularity and its applications in three stochastic dynamic inventory
problems. Manufacturing and Service Operations Management, 16(3), 455–463.

Mahajan, S., & van Ryzin, G. (2001). Stocking retail assortments under dynamic consumer
substitution. Operations Research, 49(3), 334–351.

Mahajan, S., & Van Ryzin, G. (2001). Stocking retail assortments under dynamic consumer
substitution. Operations Research, 49(3), 334–351.

 21451 10763 a 21451 10763 a

https://ssrn.com/abstract=3217017
http://dx.doi.org/10.1287/opre.1090.0805

11 Inventory Control with Censored Demand 303

Nahmias, S. (1975). Optimal ordering policies for perishable inventory-II. Operational Research,
23(4), 735–749.

Nahmias, S. (1976). Myopic approximations for the perishable inventory problem. Management
Science, 22(9), 1002–1008.

Nahmias, S. (1977a). Comparison between two dynamic perishable inventory models. Operations
Research, 25(1), 175–184.

Nahmias, S. (1977b). Higher order approximations for the perishable inventory problem. Opera-
tions Research, 25(4), 630–640.

Nandakumar, P., & Morton, T. E. (1993). Near myopic heuristics for the fixed-life perishability
problem. Management Science, 39(12), 1490–1498.

Porteus, E. L. (2002). Foundations of stochastic inventory theory. California: Stanford University
Press.

Russo, D., & Van Roy, B. (2014). Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4), 1221–1243.

Shi, C., Chen, W., & Duenyas, I. (2016). Nonparametric data-driven algorithms for multiproduct
inventory systems with censored demand. Operations Research, 64(2), 362–370.

Yuan, H., Luo, Q., & Shi, C. (2021). Marrying stochastic gradient descent with bandits: Learning
algorithms for inventory systems with fixed costs. Management Science, 67(10), 6089–6115.

Zhang, H., Shi, C., & Chao, X. (2016). Technical note—approximation algorithms for perishable
inventory systems with setup costs. Operations Research, 64(2), 432–440.

Zhang, H., Chao, X., & Shi, C. (2018). Technical note—perishable inventory systems: Convexity
results for base-stock policies and learning algorithms under censored demand. Operations
Research, 66(5), 1276–1286.

Zhang, C., Ayer, T., & White, C. C. (2019). 2-approximation policies for perishable inventory
systems when FIFO is an optimal issuing policy. Available at SSRN 3469852.

Zhang, H., Chao, X., & Shi, C. (2020). Closing the gap: A learning algorithm for lost-sales
inventory systems with lead times. Management Science, 66(5), 1962–1980.

Zipkin, P. (2008). On the structure of lost-sales inventory models. Operations Research, 56(4),
937–944.

Chapter 12
Joint Pricing and Inventory Control with
Demand Learning

Boxiao Chen

12.1 Problem Formulation in General

Since the seminal paper of Whitin (1955), joint pricing and inventory control
problems have attracted tremendous attention and been studied by hundreds of
research papers in the literature. For a comprehensive review, see survey papers
Petruzzi and Dada (1999), Elmaghraby and Keskinocak (2003), Yano and Gilbert
(2005), and Chen and Simchi-Levi (2012). Traditional literature assumes the
demand distribution is known and takes this information as model input, which is
hardly satisfied in practice. In this chapter, we relax this assumption and discuss
online algorithms to learn the demand only from historical data. As time goes by,
the learning algorithms will learn the demand better and better, so that the solutions
prescribed by the algorithms converge to the true optimal solution had the demand
distribution been known.

In this section, we discuss the general setup for the problem of joint inventory
and pricing. Consider a periodic review system in which a firm (e.g., a retailer) sells
a non-perishable product over a planning horizon of T periods. At the beginning of
each period t , the firm observes on-hand inventory xt and determines an inventory
order-up-to level yt and a price pt , where yt ≥ xt , yt ∈ Y = [yl, yh] and pt ∈ P =
[pl, ph] with yl < yh and pl < ph. For simplicity we assume that the system is
initially empty, i.e., x1 = 0. Demand for period t , denoted by Dt(pt), is stochastic
and price dependent. Demand is satisfied as much as possible by on-hand inventory,
and profits are collected by the firm. There might be a mismatch between supply
and demand. If yt > Dt(pt), any leftover inventories will be carried over to the
next period, for each of which the firm pays a holding cost h. If yt < Dt(pt),

B. Chen (�)
College of Business Administration, University of Illinois Chicago, Chicago, IL, USA
e-mail: bbchen@uic.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_12

305

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_12&domain=pdf

 885
55738 a 885 55738 a

mailto:bbchen@uic.edu

 -2016 61494
a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_12

306 B. Chen

some demands are not fulfilled, and the firm pays a penalty cost b for any unit of
stockout. Per-unit ordering cost is normalized to 0 without loss of generality. The
firm’s objective is to maximize the T -period total profit.

If the distribution of Dt(pt) is known a priori to the firm (complete information
scenario), then the optimization problem the firm wishes to solve is

max
(pt , yt) ∈ P×Y

yt ≥ xt

T∑

t=1

v(pt , yt), (12.1)

where v(pt , yt) is the instantaneous reward during period t . Let V ∗ represent
the maximum T -period expected profit generated from the optimal policy under
complete information.

In practice, the demand distribution is unknown; therefore, the firm needs to
develop an admissible policy which prescribes pricing and ordering decisions for
each period. An admissible policy is represented by a sequence of prices and order-
up-to levels, {(pt , yt), t ≥ 1}, where (pt , yt) depends only on realized data and
decisions made prior to period t , and yt ≥ xt , i.e., (pt , yt) is adapted to the filtration
generated by {(ps, ys), os : s = 1, . . . , t − 1}. Here os represents the observable
data of demand. Ideally, os = Ds(ps), meaning that demand is fully observable,
but in some cases demand data is censored, which yields os < Ds(ps). Given any
admissible policy π , the sequence of events for each period t is described as follows:

1. At the beginning of period t , the retailer observes the initial inventory level xt .
2. The retailer decides the selling price pt and the inventory level-up-to level yt ≥
xt . New orderings, if there is any, arrive instantaneously.

3. Demand realizes and is satisfied to the maximum extent using on-hand inventory.
Unsatisfied demand is backlogged or lost, and any leftover inventory is carried
to the next period. The retailer observes data ot .

4. At the end of period t , the retailer collects profit of the current period.

The firm’s objective is to find an admissible policy to maximize the T -period
total profit while learning the unknown demand distribution on the fly. The regret of
policy π , denoted by Rπ(T), is defined as the total profit loss over T periods, which
is

Rπ(T) = V ∗ − E
[
T∑

t=1

v(pt , yt)

]

.

The smaller the regret, the better the policy.
In this chapter, we will discuss a number of models under the framework of joint

inventory and pricing. These models differ in the following three dimensions.

12 Joint Pricing and Inventory Control with Demand Learning 307

1. Backlog versus lost-sales

• In a backlog system, if yt < Dt(pt), any unsatisfied demands will be
backlogged and served in future periods, and xt+1 = yt −Dt(pt).

• In a lost-sales system, unmet demands will leave the market without any
purchases, and xt+1 = (yt −Dt(pt))+.

2. Unlimited price changes versus limited price changes

• Most models we will discuss allow unlimited number of price changes, i.e.,
the retailer is allowed to change price every period.

• We will discuss one model where the firm is not allowed to make price
changes more than a certain number of times.

3. With versus without setup cost

• If a setup cost is present, a fixed amount of fee will be charged whenever a
positive amount of inventory is ordered.

In Sects. 12.2 and 12.3, we discuss the classic joint inventory and pricing problem
with backlogged demand and lost sales, respectively. In Sect. 12.4, we consider
scenarios with a limited number of price changes. In Sect. 12.5, we discuss the joint
pricing and inventory control problem with setup cost. In Sect. 12.6, we discuss
other models of joint pricing and inventory control that have been studied in the
literature.

12.2 Nonparametric Learning for Backlogged Demand

In this section, we discuss the joint pricing and inventory control problem with
backlogged demand, one of the most classical models under the topic of joint pricing
and inventory control. We will discuss the model, algorithm, regret convergence
results and proof sketch based on Chen et al. (2019).

Per-period demand can be either Dt(pt) = λ(pt) + εt (additive) or Dt(pt) =
λ(pt) εt (multiplicative), where λ(·) is a strictly decreasing deterministic function
and εt , t = 1, 2, . . . , T , are independent and identically distributed random
variables with probability density function f (·) and cumulative distribution function
F(·). Here we focus on the multiplicative demand form. Unsatisfied demands are
backlogged, and one has xt+1 = yt−Dt(pt) for all t = 1, . . . , T . The instantaneous
reward for period t isG(pt , yt) = ptE[Dt(pt)]−hE[yt −Dt(pt)]+−bE[Dt(pt)−
yt]+.

By Sobel (1981), myopic policy is optimal for this problem. Therefore, to
optimize the T -period problem in (12.1), it suffices to solve the single-period
problem

max
(p, y) ∈ P×Y

G(p, y), (12.2)

308 B. Chen

where

G(p, y) = pE[D(p)] − hE[y −D(p)]+ − bE[D(p)− y]+

= peλ(p)E[eε]−
{
hE

[
y − eλ(p)eε]+ + bE[eλ(p)eε − y]+

}
.

LetQ(p, eλ(p)) := maxy∈YG(p, y), then problem (12.2) can be re-written as

Problem CI :
max
p∈P

Q(p, eλ(p))

:= max
p∈P

{
peλ(p)E

[
eε
]−min

y∈Y

{
hE

[
y − eλ(p)eε]+ + bE[eλ(p)eε − y]+

} }
.

(12.3)

The inner optimization problem (minimization) determines the optimal order-up-to
level that minimizes the expected holding and backlog cost for a given price p, and
we denote it by y

(
eλ(p)

)
. The outer optimization solves for the optimal price p.

Because (p∗, y∗) is the optimal solution for (12.3), they satisfy y∗ = y(eλ(p∗)).
The firm knows neither the function λ(·) nor the distribution of random variable

εt . In the backlog system, true demand realizations can be observed. Therefore,
ot = Dt(pt), and an admissible policy (pt , yt) is adapted to the filtration generated
by {(ps, ys),Ds(ps) : s = 1, . . . , t − 1}.

Learning Algorithm A learning algorithm named DDA (shorthand for Data-
Driven Algorithm) is proposed in Chen et al. (2019). DDA approximates λ(p) by
an affine function, and it constructs empirical and dependent error samples from
the collected data, called centered samples. DDA divides the planning horizon
into stages whose lengths are exponentially increasing (in the stage index). At the
start of each stage, the firm sets two pairs of prices and order-up-to levels based
on its current linear estimation of the demand-price function and the constructed
centered samples of random error, and the collected demand data from this stage
are used to update the linear estimation of the demand-price function and the
empirical distribution of random error. These are then utilized to find the pricing and
inventory decision for the next stage. The detailed algorithm design is presented in
Algorithm 1.

As shown in Algorithm 1, for i = 1, 2, . . . in the DDA algorithm, iteration i
focuses on stage i that consists of 2Ii periods. The algorithm sets the ordering
quantity and selling price for each period in stage i derived from the previous
iteration. The first Ii periods (from ti + 1 to ti + Ii) try to implement order-up-
to ŷi,1 policy while the second Ii periods try to implement order-up-to ŷi,2 policy.
Because starting inventory level may be higher than the order-up-to level, ŷi,1 and
ŷi,2 may not be achieved, and one challenge is to identify the impact of the carryover
inventory constraint on the performance of a learning algorithm.

12 Joint Pricing and Inventory Control with Demand Learning 309

Algorithm 1 Data-Driven Algorithm (DDA)

1: Input v > 1, ρ > 0 and I0 > 0, and p̂1, ŷ1,1, ŷ1,2. Compute I1 = 'I0v(, δ1 = ρ(2I0)− 1
4 , and

p̂1 + δ1.
2: for i = 1, . . . , n do
3: for t = t + i + 1, . . . , ti + Ii do
4: Set pt = p̂i , yt = max {ŷi,1, xt }.
5: Let Dt = log D̃t (pt).
6: end for
7: for t = ti + Ii + 1, . . . , ti + 2Ii do
8: Set pt = p̂i + δi , yt = max {ŷi,2, xt }.
9: Let Dt = log D̃t (pt).

10: end for
11: Compute

(α̂i+1, β̂i+1) = argmin
α,β

{ ti+2Ii∑

t=ti+1

(
Dt − (α − βpt)

)2
}

,

ηt = Dt − 1

Ii

ti+Ii∑

t=ti+1

Dt , for t = ti + 1, . . . , ti + Ii ,

ηt = Dt − 1

Ii

ti+2Ii∑

t=ti+Ii+1

Dt , for t = ti + Ii + 1, . . . , ti + 2Ii .

12: The data-driven optimization problem (Problem DD) is

max
(p,y)∈P×Y

GDDi+1(p, y) = max
p∈P

QDDi+1

(
p, eα̂i+1−β̂i+1p

)
, (12.4)

where

GDDi+1

(
p, y

) = peα̂i+1−β̂i+1p
1

2Ii

ti+2Ii∑

t=ti+1

eηt

− 1

2Ii

ti+2Ii∑

t=ti+1

(

h
(
y − eα̂i+1−β̂i+1p+ηt

)+ + b
(
eα̂i+1−β̂i+1p+ηt − y

)+)
,

and

QDDi+1

(
p, eα̂i+1−β̂i+1p

) = min
y∈Y

GDDi+1

(
p, y

)
.

13: If β̂i+1 > 0, then solve problem DD and set the first pair of price and inventory level to

(p̂i+1, ŷi+1,1) = arg max
(p,y)∈P×Y

GDDi+1(p, y);

otherwise, set

(p̂i+1, ŷi+1,1) =
(
pl + ph

2
,
yl + yh

2

)

.

Set p̂i+1,2 = p̂i+1 + δi+1 (in case p̂i+1 + δi+1 �∈ P, set p̂i+1,2 = p̂i+1 − δi+1), and

ŷi+1,2 = arg max
y∈Y

GDDi+1(p̂i+1,2, y).

14: end for

310 B. Chen

The algorithm applies the realized demand data and least-square method to
update the linear approximation, α̂i+1 − β̂i+1p, of λ(p) and computes a centered
sample ηt of random error εt , for t = ti+1, . . . , ti+2Ii . Note that ηt is not a sample
of the random error εt . This is because εt = Dt(pt)−λ(pt) but 1/Ii

∑ti+Ii
k=t1+1Dk �=

λ(pt). For this reason, the constructed objective function for holding and shortage
costs is not a sample average of the newsvendor problem. In the traditional SAA,
mathematical expectations are replaced by true sample averages, see, e.g., Kleywegt
et al. (2002); Levi et al. (2007, 2015). When only biased samples are available,
techniques from statistics such as jackknife resampling can be applied to reduce
bias for SAA (Wu et al., 1986). In this work, samples of εt cannot be observed,
however,

ηt = Dt(pt)− 1

Ii

ti+Ii∑

k=t1+1

Dk = εt − 1

Ii

ti+Ii∑

k=t1+1

εk

can be obtained. Since E[εk] = 0, 1/Ii
∑ti+Ii
k=t1+1 εk converges to 0 in probability as

Ii grows, and one would expect ηt → εt in probability as t grows. Thus, DDA use ηt
in place of εt in computing proxy objectives. Since these samples are obtained from
the original i.i.d. samples after subtracting the sample average, we call ηt centered
samples, and {ηt , t = ti + 1, . . . , ti + 2Ii} are dependent.

A data-driven optimization problem is then constructed. When β̂i+1 > 0, the
algorithm solves an optimization problem of a jointly concave function. Technical
analyses in the paper show that the probability for β̂i+1 > 0 converges to 1 as i
grows.

The DDA algorithm integrates a process of earning (exploitation) and learning
(exploration) in each stage. The earning phase consists of the first Ii periods starting
at ti + 1, during which the algorithm implements the optimal strategy for the
proxy optimization problem GDDi (p, y). In the next Ii periods of learning phase
that starts from ti + Ii + 1, the algorithm uses a different price p̂i + δi and its
corresponding order-up-to level. The purpose of this phase is to extract demand
sensitivity information around the selling price. Note that, even though the firm
deviates from the optimal strategy of the proxy problem in the second phase, the
policies, (p̂i + δi, ŷi,2) and (p̂i , ŷi,1), will be very close to each other as i increases.
Chen et al. (2019) show that they both converge to the clairvoyant optimal solution
and the loss of profit from this deviation converges to zero.

Regret Convergence An upper bound for regret of the DDA policy is provided as

RDDA(T) = V ∗ − E
[∑T

t=1G(pt , yt)
]
≤ C1T

1/2, for some constant C1 > 0. The

lower bound for regret is �(T 1/2), which is implied by Keskin and Zeevi (2014).
This shows that the regret convergence rate for DDA is tight.

The intuitions for regret convergence are the following. Note that during cycle i,
two distinct prices got implemented, based on which demand data is generated. The
two prices are different by δi , which decreases to 0 as i increases. Therefore, the two

12 Joint Pricing and Inventory Control with Demand Learning 311

prices are getting closer, and the linear function yielded by linear approximation
approaches the tangent line of λ(·), providing gradient information for future
decisions.

Proof Sketch To compare the DDA policy with the clairvoyant optimal policy, i.e.,
the optimal solutions of problem DD (12) and problem CI (12.3), note that these two
objective functions have significant differences. In problem CI, both λ(p) and the
distribution of ε are known, but in problem DD, λ(p) is approximated by a linear
function and distribution of ε is estimated using centered samples instead of true
samples. Therefore, to analyze DDA, the authors’ approach is to introduce several
“intermediate” bridging problems, and in each step we compare two “adjacent”
problems that differ along only one dimension.

First, for parameters α and β > 0, we introduce bridging problem B1 defined by

Bridging Problem B1 :
max
p∈P

Q(p, eα−βp)

:= max
p∈P

{

peα−βpE
[
eε
]−min

y∈Y

{

hE
[
y − eα−βp+ε

]+ + bE
[
eα−βp+ε − y

]+}}
.

(12.5)

It is easy to see that, the only difference between problem B1 and problem CI
in (12.3) is that, in problem B1 we replace the demand-price function in CI by an
affine function α − βp. Let p

(
α, β

)
denote the optimal price for problem B1, and

for given p ∈ P, we let y(eα−βp) denote its optimal order-up-to level, which is the
optimal solution for the inner minimization problem in (12.5).

The second bridging problem, B2, is defined for each iteration i of the DDA
algorithm, and for any α and β > 0, it is given by

Bridging Problem B2 :

max
p∈P

Q̃i+1(p, e
α−βp) := max

p∈P

{

peα−βp
⎛

⎝ 1

2Ii

ti+2Ii∑

t=ti+1

eεt

⎞

⎠ (12.6)

−min
y∈Y

{
1

2Ii

ti+2Ii∑

t=ti+1

(
h
(
y − eα−βp+εt)+ + b(eα−βp+εt − y)+

)}}

.

Compared with problem B1, it is seen that B2 is obtained from B1 after
replacing the expectations in B1 by sample averages, hence B2 is the sample average
approximation (SAA) of problem B1. Here εt , t = ti + 1, . . . , ti + 2Ii , represent
the realizations of random errors during stage i. Let p̃i+1 (α, β) denote the optimal

312 B. Chen

price and ỹi+1(e
α−βp) the optimal order-up-to level for problem B2, which is the

optimal solution for the inner minimization problem in (12.6).
The third bridging problem B3 is a variation of problem B2, which replaces the

true random error εt by a biased error sample ζt , t = ti + 1, . . . , ti + 2Ii . That is,
for

ζ
t1+Ii
t=ti+1 =

(
ζti+1, . . . , ζti+Ii

)
, ζ

t1+2Ii
t=ti+Ii+1 =

(
ζti+Ii+1, . . . , ζti+2Ii

)
,

and parameters α and β > 0, we define the third bridging problem B3 as

Bridging Problem B3 :

max
p∈P

Q̆i+1

(
p, eα−βp, ζ t1+Iit=ti+1, ζ

t1+2Ii
t=ti+Ii+1

)
:= max

p∈P

{

peα−βp
⎛

⎝ 1

2Ii

ti+2Ii∑

t=ti+1

eζt

⎞

⎠

−min
y∈Y

{
1

2Ii

ti+2Ii∑

t=ti+1

(
h
(
y − eα−βp+ζt)+ + b(eα−βp+ζt − y)+

)}}

.

Note that when (α, β) = (α̂i+1, β̂i+1), and ζt = ηt for t = t1 + 1, . . . , ti + 2Ii ,
problem B3 reduces to problem DD (12) in the DDA algorithm. Thus, problem B3
serves as a bridge between problem B2 and problem DD. We denote the optimal
price of problem B3 by p̆i+1

(
(α, β), ζ

t1+Ii
t=ti+1, ζ

t1+2Ii
t=ti+Ii+1

)
and its optimal order-up-to

level, for given price p, by y̆i+1
(
eα−βp, ζ t1+Iit=ti+1, ζ

t1+2Ii
t=ti+Ii+1

)
.

Based on their definitions, problem CI, bridging problems B1–B3, and problem
DD require less and less information about the demand process. Problem CI has
complete information about both λ(·) and the distribution of ε; problem B1 does
not know λ(·) but knows the distribution of ε; problem B2 does not know either
λ(·) or the distribution of ε but has access to true samples of ε; problems B3 and
DD do not have true samples and have to use biased samples. Chen et al. (2019)
prove convergence for each pair of adjacent problems, and eventually establish
convergence of problem DD to problem CI.

12.3 Nonparametric Learning for Lost-Sales System

Different from Sect. 12.2 that considers backlogged demand, in this section we
consider lost sales and censored demand. This scenario happens when, in case of
a stockout, rejected customers leave the store without purchasing. These customers
cannot be observed by the retailer, and demand data is thus truncated by inventory
levels. We will discuss the model, algorithms, and regret convergence results based
on Chen et al. (2021a, 2020b).

12 Joint Pricing and Inventory Control with Demand Learning 313

Consider the additive demand model Dt(pt) = λ(pt) + εt with λ(·) being a
non-increasing deterministic function and εt , t = 1, 2, . . . , T , being i.i.d. random
variables with E[εt] = 0. We denote the CDF of εt by F(·), which is assumed to
be continuous and differentiable, the PDF by f (·) such that f (εt) < ∞ for any εt ,
and the standard deviation of εt by σ . For notational convenience, we use εt and ε
interchangeably because of the i.i.d. assumption. Demands are satisfied as much as
possible by on-hand inventory, and unsatisfied demands are lost and unobservable.
For system dynamics one has xt+1 = (yt − Dt(pt))+. The instantaneous reward
for period t is ptE[min{yt ,Dt (pt)}] − bE[Dt(pt) − yt]+ − hE[yt − Dt(pt)]+ =
ptE[Dt(pt)] − (b + pt)E[Dt(pt)− yt]+ − hE[yt −Dt(pt)]+.

The firm knows neither the function λ(pt) nor the distribution of the random
term εt a priori, which must be learned from censored demands collected over
time while maximizing the cumulative profit. In this system, demand is censored,
therefore, ot = min{Dt(pt), yt }. For an admissible policy, (pt , yt) is adapted
to the filtration generated by {(ps, ys),min {Ds(ps), ys} : s = 1, . . . , t − 1} under
censored demand.

If the underlying demand-price function λ(p) and the distribution of the error
term εt were known a priori, the clairvoyant optimal policy for this problem is a
myopic policy (refer to Sobel 1981). Define the single-period problem by

Q(p, y) = pE[D1(p)] − (b + p)E[D1(p)− y]+ − hE[y −D1(p)]+.

To find the optimal pricing and inventory decisions, it suffices to maximize the
single-period revenueQ(p, y), which can be expressed as

max
p,y

{
pE[D1(p)] − (b + p)E[D1(p)− y]+ − hE[y −D1(p)]+

}

= max
p

{

pλ(p)−min
y

{
(b + p)E [λ(p)+ ε − y]+ + hE [y − λ(p)− ε]+}

}

.

Hence, we rewrite the clairvoyant problem as

max
p,y

Q(p, y) = max
p
G(p),

where G(p) = pλ(p)−min
y

{
(b + p)E [λ(p)+ε − y]+ + hE [y − λ(p)−ε]+} .

This problem was first studied in Chen et al. (2021a), whose learning method
and result will be briefly reviewed. Then we shift our focus to Chen et al. (2020b),
which studies the problem in a more general setting and improves the convergence
rate in Chen et al. (2021a).

314 B. Chen

12.3.1 Algorithms and Results in Chen et al. (2021a)

Chen et al. (2021a) assume G(·) is concave and λ(p) is differentiable to a high
order. They provide a spline approximation based learning algorithm (SALA) under
an exploration-exploitation framework.

Algorithm for Concave G(·) The learning algorithm follows an exploration-
exploitation framework and is based on spline approximation.

We now formally describe how a spline approximation for the demand-price
function λ(·) is constructed. Before doing that, we first present a high-level view
of the approximation method.

Spline approximation needs two integer inputs, m > 0 and l > 0, and it requires
the specification of knots, basis functions, and coefficients. Knots, denoted as wi ,
i = 1, . . . , 2m + l, are equally spaced price points on the whole price interval,
and there are in total 2m + l of them. The more knots a model has, the more
observations of λ(·) the model uses to do estimation, which in general leads to a
more accurate spline approximation. Let Lλ(p) denote the spline approximation
operator of a deterministic function λ(p), and it can be represented as

Lλ(p) =
m+l∑

i=1

γ λi ·Nmi (p), (12.7)

where Nmi (p), i = 1, . . . , m + l, are the basis functions with coefficients γ λi .
The base function Nmi (p) is polynomial in p with the highest order m − 1 and
is constructed based on knots wi, . . . , wi+m. The larger the m, the smoother the
Nmi (p) and Lλ(p). The coefficient γ λi is computed based on some specific price
points on [wi,wi+m] and the corresponding values of λ(p) at these price points.
To be more specific, price points used here include wi, . . . , wi+m and τi1, . . . , τim
that will be defined shortly in Algorithm 2. The detailed procedure of spline
approximation is also presented in Algorithm 2.

It follows from Schumaker (2007) that for the basis function Nmi (p), its
(m − 2)-th order derivative exists and is continuous. Together with Theorem 4.9
in Schumaker (2007), one can verify that the basis function Nmi (p) = 0 for
p /∈ (wi, wi+m) and Nmi (p) > 0 for p ∈ (wi, wi+m).

Given the detailed construction of the spline approximation, we are ready to
present the main learning algorithm termed SALA in Algorithm 3.

The learning algorithm SALA separates the planning horizon into a disjoint
exploration phase and exploitation phase.

The algorithm specifies the parameters m and l for determining the density for
spline approximation, the parameter � for determining the grid size for (sparse)
discrete optimization problem, and the parameter L for determining the length
of the exploration phase. Note that these parameters are determined “optimally”
via (12.10) to minimize the theoretical regret rate.

12 Joint Pricing and Inventory Control with Demand Learning 315

Algorithm 2 Constructing a Spline Approximation (SA)
1: Let integers m ≥ 2 and l ≥ 1 be the inputs of a spline approximation. The (optimal) values of
m and l will be specified later.

2: Let the set of 2m+ l points {w1, . . . , w2m+l} be a partition of the interval

[

pl − p
h − pl
l + 1

(m− 1), ph + p
h − pl
l + 1

(m− 1)

]

,

where each point wi is defined by

wi = pl + p
h − pl
l + 1

(i −m), for i = 1, . . . , 2m+ l.

Note that wm = pl and wm+l+1 = ph and there are l equally spaced points strictly between
pl and ph. Also, there are m− 1 extension points to the left of pl and m− 1 extension points
to the right of ph. Thus, there are in total 2m+ l equally spaced points for the above specified
interval.

3: for i = 1, 2, . . . , m+ l do
4: ϕim(x) = �m−1

r=1 (x − wi+r).
5: for j = 1, 2, . . . , m do
6: τij = wi + (wi+m − wi) j−1

m−1 .

7: ψij (x) = �j−1
r=1 (x − τir), with ψi1(x) ≡ 1.

8: Then define

αij =
j∑

r=1

(−1)r−1ϕ
(m−r)
im (0)ψ(r−1)

ij (0)

(m− 1)! . (12.8)

9: end for
10: end for
11: Given a single variate real function λ(·) and a sequence of numbers x1 < x2 < · · · < xr+1, let

D[x1,...,xr+1]λ be the operator that gives the r-th order divided difference of λ(·), defined by

D[x1,...,xr+1]λ =
r+1∑

j=1

λ(xj)

�r+1
i=1,i �=j (xj − xi)

,

and if r = 0, D[x1]λ ≡ λ(x1).
12: for i = 1, . . . , m+ l do
13: The spline approximation coefficients are

γ λi =
m∑

j=1

αij ·D[τi1,...,τij]λ.

Moreover, for p ∈ [pl, ph], define the m-th order spline approximation basis functions
associated with knots wi, . . . , wi+m by

Nmi (p) = (−1)m(wi+m − wi)D[wi ,...,wi+m](max{0, p − w})m−1. (12.9)

In D[wi ,...,wi+m](max{0, p − w})m−1, the argument (max{0, p − w})m−1 is considered as a
function of w for given p, and the resulting basis function Nmi (p) is a function of p.

14: end for
15: The spline approximation of function λ(p), denoted by Lλ(p), is given by (12.7)

316 B. Chen

Algorithm 3 Spline Approximation Based Learning Algorithm (SALA)
1: Set input parameters

m = max
{
3, "(log T)

1
2 #}, L = ⌈

T
1
2+ 1

3√log T
⌉
, l = ⌈

(log T)
3
2 T

1
4
√

log T
⌉
, � = T − 1

4 .

(12.10)
Define a sparse discretized set of prices by

S = {pl, pl +�,pl + 2�, . . . , ph}, (12.11)

which is the discrete search space for pricing decisions. We refer to S as the (sparse) grid.
2: for i = 1, . . . , l +m do
3: for j = 1, . . . , l do
4: for t = (i − 1)mL+ (j − 1)L+ 1, . . . , (i − 1)mL+ jL do
5: Implement the following pricing and order-up-to decisions: pt = τij , yt =
"logL log logL#, where τij is defined in Algorithm 2 spline approximation.

6: end for
7: end for
8: end for
9: for i = 1, . . . , l +m do

10: for j = 1, . . . , l do

11: Let the average empirical sales be sij =
∑(i−1)mL+jL
t=(i−1)mL+(j−1)L+1 dt∧yt

L
.

12: end for
13: Let the empirical spline approximation coefficients be

βi = αi1si1 +
m∑

j=2

j∑

v=1

αij siv

�
j

r=1,r �=v(τiv − τir)
,

where αij is defined in (8).
14: end for
15: The spline approximation of function λ(p) using sales (or censored demand) is then given by

λ̂(p) =∑m+l
i=1 βiN

m
i (p), where the basis function Nmi (p) is defined in (13).

16: for i = 1, . . . , l +m do
17: for j = 1, . . . , l do
18: for t = (i − 1)mL+ (j − 1)L+ 1, . . . , (i − 1)mL+ jL do
19: Let

ηt = dt ∧ yt − sij (12.12)

be the residual error, which is used to approximate the random error (with some biases).
20: end for
21: end for
22: end for
23: Solve the following surrogate optimization problem on a sparse grid S (based on sales and

spline approximation):

max
p,y

Q̂(p, y) � max
p∈S

Ĝ(p), where

Ĝ(p) � pλ̂(p)−min
y

{

(b + p)
∑L(m+l)m
t=1 [λ̂(p)+ ηt − y]+

L(m+ l)m + h
∑L(m+l)m
t=1 [y − λ̂(p)− ηt]+

L(m+ l)m
}

.

Let (p̂, ŷ) = arg max Q̂(p, y).
24: for t = L(m+ l)m+ 1, . . . , T do
25: Set the price and target inventory level to pt = p̂, yt = xt ∨ ŷ.
26: end for

12 Joint Pricing and Inventory Control with Demand Learning 317

SALA then enters the exploration phase of total length of L(m + l)m periods,
which is roughly on the order of

√
T . The price space is discretized into equally

spaced prices {τij }’s (which will also be used for constructing a spline approxima-
tion). For each i and j , SALA offers the price τij , together with the pre-specified
target inventory level yt , for an equal number of periods. We note here that the high-
level reason for the target inventory level yt to be on the order of logL log logL is
to ensure that the bias caused by demand censoring is appropriately bounded.

SALA leverages the sales collected over prices {τij }’s to carry out an empirical
spline approximation λ̂(p) of the true demand-price function λ(p). Also, SALA
computes the so-called residual error ηt , which is used to approximate the random
error εt . It is important to note that λ̂(p) is constructed based on sales (or censored
demand) and, therefore, it suffers a bias in estimating λ(p), which must be
quantified in the regret analysis. Similarly, due to demand censoring, ηt is also a
biased representation of εt , in which the bias must also be quantified.

SALA essentially treats the empirical spline approximation λ̂(p) as the true
demand-price function λ(p) and the residual error ηt as the true random error
εt , and constructs the corresponding sample average approximation (SAA) based
surrogate optimization problem. Note that the surrogate optimization problem is
solved sequentially: the inner problem is to find the optimal inventory target level
for a given price, while the outer problem is to find the optimal price on the grid.
The inner problem is convex in the inventory target level, which can be efficiently
solved using first-order methods, whereas the outer problem is a one-dimensional
discretized problem but solved on a sparse grid.

Finally, SALA completes the exploration phase and enter the exploitation phase.
For the remaining planning horizon, SALA implements the optimal price and target
inventory level suggested by the (sampled) surrogate optimization problem. Note
that the length of the exploitation phase is T −L(m+ l)m, which is roughly on the
order of T −√T .

Regret Convergence In Chen et al. (2021a), it shows that the convergence of the

spline approximation can be bounded as P
{
‖λ′(p) − λ̂′(p)‖∞ ≤ C2T

−1/4
}
>

1 − T −2 and P
{
‖λ′(p) − λ̂′(p)‖∞ ≤ C2T

−1/4
}
> 1 − T −2 for some constant

C2 > 0 and any p ∈ P. Moreover, the convergence of error estimation is

shown as P

{∣
∣
∣E[ε − z∗(p)]+ − 1

L(m+l)m
∑L(m+l)m
t=1 (ηt − ẑ(p))+

∣
∣
∣ ≤ C3T

−1/4
}

>

1− 10T −2, where z∗(p) = F−1
(
b+p
b+p+h

)
and ẑ(p) = min

{

ηj :∑L(m+l)m
t=1 1(ηt ≤

ηj) ≥ b+p
b+p+h

}

, for some constant C3 > 0 and any p ∈ P. Based on these

results, the regret convergence rate of SALA is upper bounded as RSALA(T) ≤
C4T

1/2+ε(log T)3 log log T , where ε = 1/ 3
√

log T + 0.25/
√

log T and constant
C4 > 0. Here note that for any constant c > 0, one has log log T/ log T < ε < c
(or equivalently, log T < T ε < T c), for large enough T . Since the regret lower

318 B. Chen

bound for this problem is �(T 1/2), the SALA algorithm matches the lower bound
up to T ε.

12.3.2 Algorithms and Results in Chen et al. (2020b)

Chen et al. (2020b) consider both concave and non-concave G(·), provide learning
algorithms for the two scenarios, and show that the convergence rates of both
algorithms match the theoretical lower bounds, respectively.

12.3.2.1 Concave G(·)

In this section, we discuss the scenario with concave G(·).

Algorithm for Concave G(·) A different algorithm is proposed in Chen et al.
(2020b) for concave G(·), which approaches the optimal y using bisection and
optimal p using trisection. The detailed algorithm is presented in Algorithms 4, 5,
and 6.

With the SEARCHORDERUPTO routine in Algorithm 4, for every price p ∈
[p, p] one can estimate, using relatively few selling periods, the near-optimal order-
up-to level ŷn so thatQ(p, ŷn) ≈ Q(p, y∗(p)) = G(p), where y∗(p) is the optimal
inventory level under price p. It is tempting to use a similar strategy onG(·)which is

Algorithm 4 Bisection search for order-up-to level y
1: function SEARCHORDERUPTO(p, n,C1)
2: Initialize: Lτ = 0, Uτ = ȳ, mτ = ȳ/2, τ = 0, gτ = 0;
3: Offer the lowest price p until current inventory level is below mτ ;*

4: while n review periods have not been reached do
5: Set order-up-to level at yt = mτ and price at pt = p;
6: Observe censored demand and update nτ ← nτ +1; gτ ← gτ +(b+p) if no inventory

is left; gτ ← gτ − h if positive inventory is left;
7: Construct confidence intervals [g(mτ), g(mτ)] = ĝτ ± C1/

√
nτ , where ĝτ = gτ /nτ ;

8: if τ < "log2(nȳ)# and g(mτ) > 0 then
9: Update Lτ+1 = mτ ,Uτ+1 = Uτ ,mτ+1 = (Lτ+1 + Uτ+1)/2, nτ+1 = 0, τ ←
τ + 1;

10: Offer the lowest price p until current inventory level is below mτ ;*

11: else if τ < "log2(nȳ)# and g(mτ) < 0 then
12: Update Lτ+1 = Lτ ,Uτ+1 = mτ ,mτ+1 = (Lτ+1 + Uτ+1)/2, nτ+1 = 0, τ ←

τ + 1;
13: Offer the lowest price p until current inventory level is below mτ ;*

14: end if
15: end while
16: Return ŷn = mτ which is explored for the most number of times (largest nτ).
17: end function
* Review periods in these steps do not count towards the total budget of n periods.

12 Joint Pricing and Inventory Control with Demand Learning 319

Algorithm 5 Estimation of reward (G(·)) differences at p<p′
1: function ESTIMATEGDIFFERENCE(p, ŷ, p′, ŷ′, n)
2: Set prices and order-up-to levels at (p, ŷ) for n periods, and let {ot = min{λ(p) +
εt , ŷ}}t∈T1 be the censored demands, where T1 is the n periods in this step;

3: Set prices and order-up-to levels at (p′, ŷ′) for the next n periods, and let {o′t =
min{λ(p′)+ εt , ŷ′}}t∈T2 be the censored demands, where T2 is the n periods in this step;

4: Define δt := ŷ − ot , δ′t := ŷ′ − o′t and let ν̂, ν̂′ be the empirical distributions of
{δt }t∈T1 , {δ′t }t∈T2 , respectively. Let Fν̂, Fν̂′ be the CDFs of ν̂, ν̂′. Find û such that

û := sup
{
u : Fν̂′ (u) ≤ h

b+p+h
}
;

5: Return the estimate reward difference �̂G(p, p′) as

�̂G(p, p
′)

=
[

1

n

∑

t∈T2

p′o′t − hδ′t
]

−
[

1

n

∑

t∈T1

pot − hδt
]

+ b
⎡

⎣û× h

b + p + h −
1

n

∑

t∈T2

δ′t1{0 < δ′t ≤ û}
⎤

⎦ .

6: end function

Algorithm 6 The main algorithm: trisection search on prices
1: Input: time horizon T , price range [p, p], parameters C1, C2 > 0.
2: Initialization: ζ = 0, Lζ = p,Uζ = p.
3: while T review periods have not been reached do
4: Set αζ = 2

3Lζ + 1
3Uζ , βζ = 1

3Lζ + 2
3Uζ , Nζ = "g(C2/(βζ − αζ)4)#; **

5: ŷζ ← SEARCHORDERUPTO(αζ ,Nζ , C1), ŷ′ζ ← SEARCHORDERUPTO(βζ ,Nζ , C1);

6: �̂G(αζ , βζ)← ESTIMATEGDIFFERENCE(αζ , ŷζ , βζ , ŷ
′
ζ , Nζ);

7: if �̂G(αζ , βζ) > 0 then
8: Update Lζ+1 ← αζ , Uζ+1 ← Uζ , ζ ← ζ + 1;
9: else

10: Update Lζ+1 ← Lζ , Uζ+1 ← βζ , ζ ← ζ + 1;
11: end if
12: end while
** We use g(x) := (x + "log2(xȳ)#)"log2(x + "log2(xȳ)#)#.

strongly concave to the price to find the optimal price p∗, which has been applied to
pure pricing without inventory replenishment problems in the literature (Wang et al.,
2014; Lei et al., 2014). Such an approach, however, encounters a major technical
hurdle that neither the reward G(·) nor its derivative can be directly observed or
even accurately estimated, due to the censoring of the demands and the lost-sales
component in the objective function.

In this section we present the key idea of this paper that overcomes this significant
technical hurdle. The important observation is that, in a bisection or trisection search
method, it is not necessary to estimate G(p) accurately. Instead, one only needs to
accurately estimate the difference of rewards G(p′) − G(p) at two prices p, p′ in
order to decide on how to progress, which can be accurately estimated even in the

320 B. Chen

presence of censored demands and lost sales. We sketch and summarize this idea
below.

The Key Idea of Algorithm 5—“Difference Estimator” Let p < p′ be two
different prices and recall the definition that G(p) = pE[min{λ(p) + ε, y∗(p)}] −
bE[(ε + λ(p) − y∗(p))+] − hE[(y∗(p) − λ(p) − ε)+]. When y∗(p) is relatively
accurately estimated (from the previous section and Algorithm 4), the only term
in G(p) that cannot be directly observed without bias is the lost-sales penalty
−bE[(ε + λ(p) − y∗(p))+]. Hence, to estimate G(p′) − G(p) accurately (Chen
et al., 2020b) only need to estimate the difference

E[(ε + λ(p)− y∗(p))+] − E[(ε + λ(p′)− y∗(p′))+]. (12.13)

By the property of newsvendor solution, y∗(p) = λ(p)+zp where zp is such that
Fμ(zp) =

∫ zp
−∞ fμ(u)du = φ(p) = b+p

b+p+h , and similarly y∗(p′) = λ(p′) + zp′
such that Fμ(zp′) = φ(p′) = b+p′

b+p′+h . Since p < p′, we have zp < zp′ . Equation
(12.13) can be subsequently simplified to

E[(ε − zp)+] − E[(ε − zp′)+]= E[(ε − zp)+ − (ε − zp′)+]
= (zp′ − zp)× Pr[ε ≥ zp]
︸ ︷︷ ︸

Part A

−E[(zp′ − ε)1{zp ≤ ε ≤ zp′ }]
︸ ︷︷ ︸

Part B

.

(12.14)

For Part A of Eq. (12.14), the Pr[ε ≥ zp] term has the closed-form, known
formula of Pr[ε ≥ zp] = 1 − Fμ(zp) = 1− φ(p) = h

b+p+h . To estimate zp′ − zp,
which is nonnegative, (Chen et al., 2020b) use the following observation:

1− φ(p) = h

b + p + h = Pr[ε ≥ zp] (∗)= Pr[(zp′ − ε)+ ≤ zp′ − zp]. (12.15)

Here the crucial Eq. (*) holds because zp′ > zp, and, therefore, the event ε ≥ zp is
equivalent to either ε > zp′ (for which (zp′ − ε)+ is zero), or ε ≤ zp′ and zp′ − ε ≤
zp′ − zp. Furthermore, the random variable (zp′ − ε)+ = (y∗(p′)− λ(p′)− ε)+ is
(approximately) observable when y∗(p′) is estimated accurately, because this is the
leftover inventory at ordering-up-to level y∗(p′) and posted price p′. Therefore, one
can collect samples of (zp′ − ε)+, construct an empirical cumulative distribution
function (CDF) and infer the value of zp′ − zp by inverting the empirical CDF at
h/(b + p + h). A similar approach can be taken to estimate Part B of Eq. (12.14),
by plugging in the empirical distribution of the random variable (zp′ − ε)+1{0 ≤
(zp′ − ε)+ ≤ zp′ − zp}.

A pseudo-code description of the reward difference estimation routine is given in
Algorithm 5. The design of Algorithm 5 roughly follows the key ideas demonstrated
in the previous paragraph. The ot and δt random variables correspond to the
censored demand and the leftover inventory at time period t , and the distribution

12 Joint Pricing and Inventory Control with Demand Learning 321

of δt (or δ′t) would be close to the distribution of (zp − ε)+ (or (zp′ − ε)+). Using
the observation in Eq. (12.15), û in Algorithm 5 would be a good estimate of zp′ −zp
by inverting the empirical CDFs.

As the last component and the main entry point of the algorithm framework,
(Chen et al., 2020b) describe a trisection search method to localize the optimal
price p∗ that maximizes G(·), based on the strong concavity of G(·) in p that
is assumed for this scenario. The trisection principle for concave functions itself
is not a new idea and has been explored in the existing literature on pure pricing
without inventory replenishment problems (Lei et al., 2014; Wang et al., 2014). A
significant difference, nevertheless, is that in this application the expected reward
function G(·) cannot be observed directly (even up to centered additive noise) due
to the presence of censored demands, and one must rely on the procedure described
in the previous section to estimate the reward difference function �G(·, ·) instead.
Below we describe the key idea for this component.

The Key Idea of Algorithm 6 Recall that G(p) = maxy∈[0,ȳ]Q(p, y) and
�G(p, p

′) = G(p′) − G(p). A trisection search algorithm is used to locate p∗ ∈
[p, p] that maximizes G(·), under the assumption that G(·) is twice continuously
differentiable and strongly concave in p. The algorithm starts with I0 = [p, p] and
attempts to shorten the interval by 2/3 after each epoch ζ , without throwing away
the optimal price p∗ with high probability. Suppose at epoch ζ the interval Iζ =
[Lζ ,Uζ] includes p∗, and let αζ , βζ be the trisection points of Iζ . Depending on the
location of p∗ relative to αζ , βζ , the updated, shrunk interval Iζ+1 = [Lζ+1, Uζ+1]
can be computed. The above discussion shows that trisection search updates can be
carried out by simply determining the signs of �G(αζ , βζ). A complete pseudo-
code description of the procedure is given in Algorithm 6.

Regret Convergence for Concave G(·) The regret rate of the algorithm for
concave G(·) is upper bounded as R(T) ≤ O

(
T 1/2(ln T)2

)
with probability

1 − O(T −1). This upper bound almost matches the theoretical lower bound of
�(T 1/2).

12.3.2.2 Non-Concave G(·)

In this section, we discuss the scenario with non-concave G(·).

Algorithm for Non-ConcaveG(·) For non-concaveG(·), (Chen et al., 2020b) still
rely on bisection to search for the optimal y, but for p, the previous trisection
framework cannot be applied anymore due to loss of concavity. They design an
active tournament algorithm based on the difference estimator to search for the
optimal p.

Key idea 1: discretization. The price interval [p, p] is first being partitioned

into J evenly spaced points {p(j)}j∈[J], with J = "T 1/5#. Because G(·) is twice
continuously differentiable (implied by the first condition in Chen et al. (2020b))

322 B. Chen

and p∗ ∈ (p, p), there exists pj∗ for some j∗ ∈ [J] such that G(p∗) − G(pj∗) ≤
O(|p∗ − pj∗ |2) ≤ O(J−2) = O(T −2/5), because G′(p∗) = 0. The problem then
reduces to a multiarmed bandit problem over the J arms of {pj }j∈[J], with the
important difference of the actual reward of each arm not directly observable due to
the censored demands.

Key idea 2: active elimination with tournaments. With the sub-routines developed
in Algorithms 4 and 5 in the previous section, we can in principle estimate the
reward difference �G(p, p′) at two prices p < p′ up to an error on the order of
Õ(1/

√
n), with ≈ 2n review periods for each price and without incurring large

regret. In Algorithm 6, we successfully applied this “pairwise comparison” oracle
in a trisection approach to utilize the concavity of G(·). Without concavity of G(·),
we are going to use an active elimination with tournaments approach to find the
price with the highest rewards in {pj }j∈[J].

More specifically, consider epochs γ = 1, 2, · · · with geometrically increasing
sample sizes nγ implied by geometrically decreasing accuracy levels �γ = 2−γ .
At the beginning of each epoch γ , the algorithm maintains an “active set” Sγ ⊆ [J]
of prices such that for all p ∈ Sγ , G(pj∗)−G(p) ≤ �γ where �γ = Õ(1/√nγ).
Chen et al. (2020b) use a “tournament” approach to eliminate prices in Sγ that have
large sub-optimality gaps. In particular, all prices in Sγ are formed into pairs and
each pair is allocated nγ samples to either eliminate the inferior price in the pair, or
to combine both prices into one and advance to the next round of the tournament.
The tournament ends once there is only one price left, p̂γ . Afterwards a separate
elimination procedure is invoked to retain all other prices that are close to p̂γ in
terms of performance. A detailed algorithm for non-concave G(·) is presented in
Algorithm 7.

Regret Convergence for Non-ConcaveG(·) The regret convergence rate for non-
concave G(·) is upper bounded as R(T) ≤ O

(
T 3/5(ln T)2

)
with probability

1 − O(T −1). Chen et al. (2020b) then prove the lower bound for non-concave
G(·) and show that the upper bound matches the lower bound. They prove that
there exist a problem instance such that for any learning-while-doing policy π and
the sequential decisions {pt , yt }Tt=1 the policy π produces, it holds for sufficiently

large T that supλ E
[
V ∗ −∑T

t=1Q(pt , yt)
]
≥ C5 × T 3/5/ln T for some constant

C5 > 0. The lower bound is established by a novel information-theoretical argument
based on generalized squared Hellinger distance, which is significantly different
from conventional arguments that are based on Kullback–Leibler divergence.

12.4 Parametric Learning with Limited Price Changes

Models discussed in Sects. 12.2 and 12.3 assume that price can be adjusted at the
beginning of every period. In practice, however, retailers may hesitate changing
prices too frequently. Cheung et al. (2017) discussed several practical reasons for not

12 Joint Pricing and Inventory Control with Demand Learning 323

Algorithm 7 A discretization + tournament approach with non-concave G(·)
1: Input: time horizon T , discretization parameter J , parameters C1, C3 > 0;
2: Let {pj }Jj=1 be J prices that evenly partition [p, p]; S0 = [J];
3: for γ = 0, 1, 2, · · · until T review periods are reached do
4: �γ ← 2−γ , nγ ← "g(C3/�

2
γ)#***, Vγ,0 ← Sγ , �← 0; 4 the tournament phase

5: while |Vγ,�| > 1 do
6: Group prices in Vγ,� into pairs;
7: If |Vγ,�| is odd then transfer one arbitrary price to form Vγ,�+1; else set Vγ,�+1 = ∅;
8: for each pair of prices p, p′ in Vγ,� do
9: ŷ ← SEARCHORDERUPTO(p, nγ , C1), ŷ′ ← SEARCHORDERUPTO(p′, nγ , C1);

10: �̂G(p, p
′)← ESTIMATEGDIFFERENCE(p, ŷ, p′, ŷ′, nγ);

11: Update Vγ,�+1 ← Vγ,�+1 ∪ {p′} if �̂G(p, p′) > 0 and Vγ,�+1 ← Vγ,�+1 ∪ {p}
otherwise;

12: end for
13: �← �+ 1;
14: end while
15: Obtain p̂γ as the only price in Vγ,� and initialize Sγ+1 ← ∅;

4 the elimination phase
16: for each p ∈ Sγ do
17: ŷ1 ← SEARCHORDERUPTO(p̂γ , nγ , C1), ŷ2 ← SEARCHORDERUPTO(p, nγ , C1);
18: �̂G(p̂γ , p)← EstimateGDifference(p̂γ , p);
19: If �̂G(p̂γ , p) ≥ −�γ then update Sγ+1 ← Sγ+1 ∪ {p};
20: end for
21: end for
*** Recall that we use g(x) := (x + "log2(xȳ)#)"log2(x + "log2(xȳ)#)#.

allowing frequent price changes, including customers’ negative responses (e.g., that
may cause confusion and affect the seller’s brand reputation) and the cost associated
with such changes (e.g., due to changing price labels in brick-and-mortar stores,
etc.). In this section, we introduce a constraint that only allows the retailer to change
prices no more than a certain number of times. Clearly, such a constraint limits the
firm’s ability to learn demand.

Demand in period t , t ∈ {1, 2, . . . , T }, is random and depends on the selling price
pt , and its distribution function belongs to some family parameterized by z ∈ Z ⊂
R
k, k ≥ 1, where Z is a compact and convex set. Let Dt(pt , z) be the demand in

period t with probability mass function f (·;pt , z), cumulative distribution function
F(·;pt , z), and support {dl, dl+1, . . . , dh} with dl being a nonnegative integer and
dh ≤ +∞, and let dt denote the realization ofDt(pt , z). The firm knows f (·;pt , z)
up to the parameter vector z, which has to be learned from sales data.

Chen and Chao (2019) consider the backlog system and (Chen et al., 2020a)
consider the lost-sales system with censored demand. This section will be mainly
devoted to discussing algorithms and results in Chen et al. (2020a), where the
firm can only observe sales data but not the actual demand when stockout occurs.
Therefore, ot = min{Dt(pt , z), yt }, and (pt , yt) is adapted to the filtration generated
by {(ps, ys), os : s = 1, . . . , t − 1} under censored demand. Let pt ∈ P = [pl, ph]
and yt ∈ Y = {yl, yl + 1, . . . , yh}, where the bounds of support 0 ≤ pl ≤ ph <

324 B. Chen

+∞ and 0 ≤ yl ≤ yh < +∞ are known. Assume for any pt ∈ P it holds that
E[Dt(pt , z)] > 0. The state transition is xt+1 = (yt −Dt(pt , z))+.

The expected total profit over the planning horizon, given an admissible policy
φ = ((p1, y1), (p2, y2), . . . , (pT , yT)), is

V φ(T , z) =
T∑

t=1

{
ptE[min{Dt(pt , z), yt }] (12.16)

− {
hE [yt −Dt(pt , z)]+ + bE [Dt(pt , z)− yt]+

} }

and the prices need to satisfy the limited price change constraint for some given
integer m ≥ 1:

T−1∑

t=1

1(pt �= pt+1) ≤ m, (12.17)

where 1(A) is the indicator function taking value 1 if statement A is true and 0
otherwise.

The single-period objective function is

G(p, y, z)=pE[D(p, z)]−hE [y −D(p, z)]+ −(b + p)E [D(p, z)−y]+ , (12.18)

where D(p, z) is a generic random demand when the true parameter is z and the
price is p ∈ P. For the underlying system parameter vector z, let (p∗, y∗) be a
maximizer ofG(p, y, z). If z is known, then the firm could set (p∗, y∗) every period
without changing the price, and this is the clairvoyant solution, for which the T -
period total profit is denoted as V ∗.

Demand models are categorized into two groups, (1) the well-separated case and
(2) the general case. Two probability mass functions are said to be identifiable if
they are not identically the same.

12.4.1 Well-Separated Demand

The family of distributions {f (·;p, z) : z ∈ Z} is called well-separated if for any
p ∈ P, the class of probability mass functions {f (·;p, z) : z ∈ Z} is identifiable,
i.e., f (·;p, z1) �= f (·;p, z2) for z1 �= z2 ∈ Z.

If a family of distributions is well-separated, then no matter what selling price
p is charged, the sales data will allow the firm to learn about the parameter z. This
shows that, in the well-separated case, pricing exploration can be a side benefit from
exploitation, thus no active pricing exploration is necessary.

12 Joint Pricing and Inventory Control with Demand Learning 325

Algorithm 8 m price changes for the well-separated case
1: Input p̂1, ŷ1.
2: Let Ii =

⌈
T i/(m+1)

⌉
, for i = 1, . . . , m, and Im+1 = T −∑m

i=1 Ii . Let t1 = 0, and ti =
∑i−1
j=1 Ij for i = 2, . . . , m+ 2.

3: for stage i ≤ m+ 1 do
4: Set

ỹi =
{
ŷi , if ŷi > dl,

min{max{ŷi +�, yl}, yh}, if ŷi = dl .

5: for t = ti + 1, . . . , ti+1 do
6: pt = p̂i , yt = max{xt , ỹi}, xt+1 = max{yt − dt , 0}.
7: end for
8: Compute the MLE estimator for z by

ẑi = arg max
z∈Z

{ ∑

{t∈{ti+1,...,ti+1}:dt<yt }
log f (dt ; p̂i , z)

+
∑

{t∈{ti+1,...,ti+1}:dt≥yt }
log

(
1− F(yt − 1; p̂i , z)

)}

. (12.19)

9: Solve the data-driven optimization problem

(p̂i+1, ŷi+1) = arg max
(p, y) ∈ P×Y

G(p, y, ẑi). (12.20)

10: end for

Chen et al. (2020a) consider two scenarios of limited-price constraint for well-
separated demand. The first scenario is that the number of price changes is restricted
to be no more than a given integer m ≥ 1 that is independent of the length of
planning horizon T , while for the second scenario, the number of allowed price
changes is at most β log T for the T -period problem for some constant β > 0.

Algorithm for m Price Changes Under Well-Separated Demand The main idea
of the algorithm is to estimate the known parameter z by maximum likelihood
estimation based on censored demand. The detailed algorithm is presented in
Algorithm 8.

As shown in Algorithm 8, exploration in the inventory space is needed. If ŷi
equals dl , then implementing ŷi will not yield any information about the demand.
Hence the algorithm imposes ỹi = ŷi + �, which ensures to reveal some demand
information with a positive probability. Then the algorithm constructs an MLE
estimator using censored data, min{dt , yt }, which are neither independent nor identi-
cally distributed. This is because, inventory level yt depends on carryover inventory
xt that is a function of earlier inventory level and demand, and earlier demand
depends on the pricing decisions. Assumption 1(i) in the paper guarantees that, with
a high probability (its complement has a probability decaying exponentially fast in

326 B. Chen

Ii), the objective function in (12.19) is strictly concave, thus there exists a unique
global maximizer.

Regret Convergence for m Price Changes Under Well-Separated Demand
Chen et al. (2020a) provide both regret upper and lower bounds for well-separated

demand withm price changes. The regret upper bound isR(T) ≤ C6 T
1
m+1 for some

constant C6 > 0. The lower bound is provided as following. There exist problem
instances such that the regret for any admissible learning algorithm that changes

price at most m times is lower bounded by R(T) ≥ C7 T
1
m+1 for some constant

C7 > 0 and large enough T .
One fundamental challenge to prove this lower bound is that the times of price

changes are dynamically determined, i.e., they are increasing random stopping
times. An adversarial parameter class is constructed, among which a policy needs
to identify the true parameter. The parameter class is constructed in a hierarchical
manner such that when going further down the hierarchy the parameters are harder
to distinguish. A delicate information-theoretical argument is employed to prove the
lower bound. Here we only illustrate the high-level idea using a special casem = 2.

Chen et al. (2020a) construct a problem instance in which the inventory order-
up-to level for each period is fixed and high enough so that any realization of the
demand can be satisfied under any price. Therefore, the effect of lost sales and
censored data is eliminated and the original joint pricing and inventory control
problem is reduced to a dynamic pricing problem with fixed inventory control
strategies. Suppose the demand follows a Bernoulli distribution with a single
unknown parameter z ∈ [0, 1].

Let (p0, p1, p2) be the m+ 1 = 3 different prices of a policy π , (T0, T1, T2) be
the number of time periods each price is committed to, with T2 = T − T0 − T1. The
paper constructs an adversarial parameter class consisting of 2m+1 = 8 parameters,
among which policy π needs to identify the true parameter. These parameters are
constructed in a hierarchical way. The 8 parameters are first partitioned into two 4-
parameter groups, with the parameters in each group being close to each other, and
the two groups are about 1/4 apart. Each 4-parameter group can then be divided into
two 2-parameter groups, with a distance of T −1/6 between them. Within each 2-
parameter group, the two parameters are T −1/3 apart. A policy needs to work down
the hierarchy levels to locate the true parameter, and the further it works down, the
harder to differentiate between groups/parameters.

The proof first shows the tradeoff in deciding (p0, T0) at the first hierarchy
level. Assume without loss of generality that z resides in the first branch of the
tree. Because policy π does not have any observations when deciding p0, there
is a constant probability that p0 is selected to favor the other branch. This high
risk yields that T0 cannot be longer than O(T 1/3), because otherwise the regret
accumulated during T0 would immediately imply an �(T 1/3) regret.

If T0 is upper bounded byO(T 1/3), the tradeoff in deciding (p1, T1) is as follows.
With so few demand observations during T0, policy π will not be able to distinguish
groups on the second level. Therefore, assuming the true z resides in the first group,
it can (and will) be shown that p1 is selected to favor the wrong (second) group with

12 Joint Pricing and Inventory Control with Demand Learning 327

a constant probability. Given this risk and that the parameters between the first and
second groups are distanced at T −1/6, T1 cannot be longer than O(T 2/3) to yield
an �(T 1/3) regret. The same argument then carries over to the third level when
deciding p2. After summing up the regrets from all the three levels, it is shown that
the total regret of policy π cannot be better than �(T 1/3).

In making real decisions it may happen that T is not clearly specified at the
beginning. The firm requires that the price change be not too often, but it usually
allows more price changes for longer planning horizon. Chen et al. (2020a) propose
a learning algorithm where the number of price changes is restricted to β log T for
some constant β > 0.

Algorithm for β log T Price Changes Under Well-Separated Demand The
algorithm runs very similarly to the one for m price changes, except that now the
number of periods in i is given by Ii =

⌈
I0v

i
⌉

, i = 1, 2 . . . , N , and there is a total
of N = O(log T) iterations.

Regret Convergence for β log T Price Changes Under Well-Separated Demand
The regret convergence rate for the algorithm with less than β log T price changes
is upper bounded as R(T) ≤ C8 log T , for a constant C8 > 0 and large enough T .
The lower bound is also provided. There exist problem instances such that the regret
for any learning algorithm satisfies R(T) ≥ C9 log T for some constant C9 > 0 and
T ≥ 1.

12.4.2 General Demand

Now we consider the more general case that the parameters in probability mass
function f (·;p, z) is a k-dimensional vector, i.e., z = (z1, . . . , zk) ∈ Z ⊂ Rk
for some integer k ≥ 1. For a set of given prices p = (p1, . . . , pk) ∈ Pk , and
correspondingly realized demands d = (d1, . . . , dk) ∈ {dl, dl + 1, . . . , dh}k , define

Qp,z(d) =
k∏

j=1

f (dj ;pj , z).

The family of distributions {Qp,z(·) : z ∈ Z} is said to belong to the general case if
there exist k price points p̄ = (p̄1, . . . , p̄k) ∈ Pk such that the family of distributions
{Qp̄,z(·) : z ∈ Z} is identifiable, i.e., Qp̄,z1(·) �= Qp̄,z2(·) for any z1 �= z2 in Z.

Suppose we are allowed to make up to m price changes during the planning
horizon. We consider the case of m ≥ k in this section, as in the case of m < k

no algorithm will be able to identify the k unknown parameters and, therefore, the
regret would be linear in T .

Algorithm for General Demand The algorithm follows an exploration-
exploitation framework, and the unknown parameter vector z is estimated by MLE.
Detailed algorithm is presented in Algorithm 9.

328 B. Chen

Algorithm 9 m ≥ k price changes for the general case
1: Input ȳ ∈ Y for the initial inventory order-up-to level, and constant s > 0.
2: Let I = ⌈

T 1/2/k
⌉

.
3: for i = 1, · · · , k do
4: for t = (i − 1)I + 1, . . . , iI do
5: Set pt = p̄i .
6: end for
7: For t = (i − 1)I + 1, set yt = max{xt , ȳ}, thus xt+1 = max{yt − dt , 0};
8: for t = (i − 1)I + 2, . . . , iI do
9: Set

yt =
{
yt−1, if dt−1 < yt−1;
min

{
(1+ s)yt−1, "log T #}, otherwise.

xt+1 = max{yt − dt , 0}.

10: end for
11: end for
12: Estimate z by the MLE estimator

ẑ = arg max
z∈Z

{ ∑

{t∈{1,...,kI }:yt>dt }
log f (dt ;pt , z)

+
∑

{t∈{1,...,kI }:yt≤dt }
log

(
1− F(yt − 1;pt , z)

)}

. (12.21)

13: Solve the data-driven optimization problem (p̂, ŷ) = max(p, y) ∈ P×Y G(p, y, ẑ).
14: for t = kI + 1, . . . , T do
15: pt = p̂, yt = max{xt , ŷ}, and xt+1 = max{0, yt − dt }.
16: end for

As shown in Algorithm 9, during the exploration phase, Algorithm-II experi-
ments with k prices (thus k − 1 price changes). Because of censored data, the
true demand realizations exceeding inventory level cannot be observed. To make
sure to receive sufficient demand data, every time a stockout occurs, the algorithm
increases the order-up-to level by a certainty percentage. Because dh may be infinity,
this does not mean that the data censoring issue will be totally resolved, but with
high probability. In the MLE step, the sales data min{dt , yt } are correlated and
non-identically distributed, because inventory levels yt are dependent through the
“raising inventory” decisions as well as the carryover inventories. Propositions in
Chen et al. (2020a) state that, despite the dependent data, the MLE possesses the
desired property. The empirical optimal solution is implemented for the rest of the
planning horizon, resulting in k price changes.

Regret Convergence for General Demand Chen et al. (2020a) provide the regret
upper bounded for the general demand case as follows: if the demand is unbounded
dh = +∞, then the regret for general demands is upper bounded by R(T) ≤
C10T

1/2 log T ; if the demand is bounded dh < +∞, then the regret for general

12 Joint Pricing and Inventory Control with Demand Learning 329

demands is upper bounded by R(T) ≤ C10T
1/2, for some constant C10 > 0. The

theoretical lower bound for this problem is �(T 1/2), which is established in Broder
and Rusmevichientong (2012) for a dynamic pricing problem with infinite initial
inventory.

12.5 Backlog System with Fixed Ordering Cost

In this section, we consider the presence of fixed ordering cost, which is a fixed cost
that is incurred by the firm whenever a positive amount of inventory is ordered.

Demand is modeled as D = D0(p) + β, where D0 : [0, 1] → [d0, d0] is the
(expected) demand function and β is the random noise with 0 mean. Unsatisfied
demands are backlogged. Chen et al. (2021b) consider both linear models and
generalized linear models for D0(p) with unknown parameters θ0. The distribution
for β is unknown in the nonparametric sense. Let k > 0 be the fixed ordering
cost, c > 0 be the variable ordering cost of ordering one unit of inventory, and
h : R → R

+ be the holding cost (when the remaining inventory level is positive)
or the backlogging cost (when the remaining inventory level is negative). The
instantaneous reward for period t is

rt = −k × 1{yt > xt } − c(yt − xt)+ pt (D0(pt)+ βt)− h(yt −D0(pt)− βt),

and the firm would like to maximize the T -period total reward.
With known demand curve D0 and noise distribution μ0, the work of Chen and

Simchi-Levi (2004a) proves that, under mild conditions, for both the average and
discounted profit criterion there exists an (s, S,p) policy that is optimal in the long
run. Under an (s, S,p)-policy, the retailer will only order new inventories when
xt < s, and after the ordering of new inventories maintain yt = S. The function
p prescribes the pricing decision that depends on the initial inventory level of the
same period.

The performance of a particular (s, S,p) policy can be evaluated as follows.
Define H0(x, p;μ) as the expected immediate reward of pricing decision p at
inventory level x, without ordering new inventories. It is easy to verify that

H0(x, p;μ) = −Eμ[h(x −D0(p)− β)] + pD0(p)− cD0(p). (12.22)

For a certain (s, S,p) policy, define quantities I (s, x,p;μ) and M(s, x,p;μ) as
follows:

I (s, x,p;μ) =
{
H0(x,p(x);μ)+ Eμ[I (s, x −D0(p(x))− β,p;μ)], x ≥ s,
0, x < s;

(12.23)

330 B. Chen

M(s, x,p;μ) =
{

1+ Eμ[M(s, x −D0(p(x))− β,p;μ)], x ≥ s,
0, x < s; (12.24)

Define r(s, S,p;μ) as

r(s, S,p;μ) = −k + I (s, S,p;μ)
M(s, S,p;μ) . (12.25)

When I (s, S,p;μ0) and M(s, S,p;μ0) are bounded, Lemma 2 from Chen and
Simchi-Levi (2004a) shows that limT→∞ RT (π) = r(s, S,p;μ0).

Learning Algorithm The learning algorithm proposed in Chen et al. (2021b)
is based on an (s, S,p)-policy with evolving inventory levels (s, S) and pricing
strategies p. Because unsatisfied demands are backlogged, the decision maker can
observe true demand realizations. A regularized least-squares estimation is used to
estimate θ0, and a sample average approximation approach is used to construct an
empirical distribution for β.

Next we present the detailed learning algorithm. For linear models,
D(η(p)|θ0) = η(p)	θ0, and the unknown parameter θ0 is estimated by the
(regularized) least-squares estimation, i.e., let

θ̂Linear := arg min
θ∈Rd

{
1

2

∑

t∈H

∣
∣dt − 〈η(pt), θ〉

∣
∣2 + 1

2
‖θ‖2

2

}

. (12.26)

For generalized linear models, D(η(p)|θ0) = υ(η(p)	θ0) for υ(·) as a given link
function. Let the unknown parameter θ0 be estimated by

θ̂GLM := arg min
θ∈�

∥
∥
∥
∥
∥

∑

t∈H
(υ(η(pt)

	θ)− dt)η(pt)
∥
∥
∥
∥
∥
 −1

. (12.27)

Let b ∈ {1, 2, · · · } be a particular epoch and Hb−1 = B1∪· · ·∪Bb−1 be the union
of all epochs prior to b. For time period t ∈ Hb−1, let pt be the advertised price and
dt = D0(pt) + βt be the realized demand. Let the estimate θ̂b of the unknown
regression parameter θ0 be computed by (12.26) if demand is linear or (12.27) if
demand is generalized linear given samples from Hb−1. Define b := Id×d +∑
t∈Hb−1

η(pt)η(pt)
	. For every p ∈ [0, 1], define �b(p) as

�b(p) := γ
√

η(p)	 −1
b η(p),

where γ > 0 is the oracle-specific parameter. We then define an upper estimate of
D0, D̄b, as

D̄b(p) := min
{
d0, d0 + L2(1− p),D(η(p)|θ̂b)+�b(p)

}
, (12.28)

12 Joint Pricing and Inventory Control with Demand Learning 331

where d0, d0 are maximum and minimum demands and L is the Lipschitz constant.
Note that the Lipschitz continuity of η(p) and b & I imply the continuity of�b(·)
in p, which further implies the continuity of D̄b(·) in p.

One key challenge in the learning-while-doing setting is the fact that all of the
important quantitiesH0, I,M and r involve expectational evaluated under the noise
distribution μ0, an object which we do not know a priori. In this section, we give
details on how empirical distributions are used to approximate μ0.

At the beginning of epoch b, let E<b ⊆ B1 ∪ · · ·Bb−1 be a non-empty subset of
historical selling periods used to approximate the noise distribution μ0. We define
the empirical noise distribution μ̂b as

μ̂b := 1

|E<b|
∑

t∈E<b
I[dt −D(η(pt)|θ̂b(t))], (12.29)

where I[β ′] is the point mass at β ′ and b(t) denotes the epoch to which selling period
t belongs. Note that samples in {dt−D(η(pt)|θ̂b(t))}t are dependent because both pt
and θ̂b(t) are dependent across periods. Due to technical reasons, E<b is not chosen
to include all selling periods prior to epoch b. Instead, we construct E<b such that
all t ∈ E<b have small estimation errors of D0 on the advertised prices.

To further upper bound the deviation of H0(x, p; μ̂b) from H0(x, p;μ0), we
need to demonstrate that the empirical distribution μ̂b is close to the true noise
distribution μ0. Because such deviations must include the estimation errors of D0
by D̄b(t) themselves, it is crucial to select time periods t ∈ B1 ∪ · · ·Bb−1 during
which the error �b(t)(pt) is small. To this end, we define E<b as

E<b :=
{
t ∈ B1 ∪ · · · ∪ Bb−1 : �b(t)(pt) ≤ κ/

√
b
}
, (12.30)

where κ > 0 is a scaling algorithm parameter, set as κ = 2d−3/2dS
3/2
γ
√
d ln(T L2).

Note that κ will only depend logarithmically on T . As is shown in the proof
of the paper, the selection of κ leads to |E<b| ≥ b/2, meaning that the set is
non-empty, and, therefore, the definition in Eq. (12.30) is proper. The idea of the
construction of E<b in Eq. (12.30) is as follows. Note that dt − D(η(pt)|θ̂b(t)) =
βt + (D(η(pt)|θ0) − D(η(pt)|θ̂b(t))). While βt is the desired sample from the
noise distribution, D(η(pt)|θ0) − D(η(pt)|θ̂b(t)) is incurred due to the estimation
error of θ̂b(t), which may be very large. Also note that the absolute value of this
estimation error is upper bounded by �b(t)(pt). Constructing E<b as in Eq. (12.30)
allows us to only exploit selling periods during which the estimation errors are
sufficiently small. This ensures that the obtained (approximate) noise samples
{dt −D(η(pt)|θ̂b(t))}t∈E<b are of high quality.

With the upper-confidence bounds D̄b and the approximate noise distribution
μ̂b constructed at the beginning of epoch b, (Chen et al., 2021b) use the dynamic
programming approach detailed in the work of Chen and Simchi-Levi (2004a)
to obtain an approximately optimal strategy (sb, Sb,pb) to be carried out during
epoch b.

332 B. Chen

First define an upper bound estimate H̄b(x, p; μ̂b) on H0(x, p; μ̂b) as

H̄b(x, p; μ̂b) := −Eμ̂b [h(x− D̄b(p)− β)] +pD̄b(p)− cD̄b(p)+ (c+L′)�b(p),
(12.31)

where L′ is a constant defined in Assumption (A3) of the paper.
For any s ∈ [s, s], S ∈ [S, S], r ∈ R, demand function D : [0, 1] → [d,∞),

noise distribution μ and their associated H : R× [0, 1] → R, define

φ(s,S)(x;D, r, μ)

:=
{

supp∈[0,1]H(x, p;μ)− r + Eμ[φ(s,S)(x −D(p)− β;D, r, μ)], x ≥ s;
0, x < s.

(12.32)

With D = D̄b and H = H̄b(·, ·; μ̂b), the functions φ(s,S)(x; D̄b, r, μ̂b) can be
computed for every s ∈ [s, s], S ∈ [S, S] and r ∈ R, since both H(·, ·; μ̂b) and the
expectation with respect to μ̂b can be evaluated. For every (s, S), define

r̄b(s, S) := inf{r ∈ R : φ(s,S)(S; D̄b, r, μ̂b) = k} (12.33)

and let the pricing strategy p (associated with inventory levels s, S) be the optimal
solution to the φ(s,S)(·; D̄b, r̄b(s, S), μ̂b) dynamic programming; that is, p(x) is
defined such that φ(s,S)(x; D̄b, r̄b(s, S), μ̂b) = H̄b(x,p(x); μ̂b) − r̄b(s, S) +
Eμ̂b [φ(s,S)(x − D̄b(p(x))− β; D̄b, r̄b(s, S), μ̂b)] for all x.

Comparing equations in (12.32)–(12.33) with those in (12.22)–(12.25), it is
easy to observe connections between them. r(s, S,p;μ) in (12.25) represents the
expected per-period profit, which includes both the immediate reward H and the
fixed ordering cost k. On the other hand, φ(s,S)(S;D, r, μ) in (12.32) accumulates
the immediate reward H over time and subtracts a constant r every period. If
the constant r in (12.32) equals the expected per-period profit involving both H
and k, intuitively one would expect φ(s,S)(S;D, r, μ) to be equal to k. Lemma
3 of Chen and Simchi-Levi (2004b) confirms this connection, which shows that
φ(s,S)(S;D, r∗(s, S), μ) = k, where r∗(s, S) = supp r(s, S,p;μ). Therefore,
r̄b(s, S) can be considered as an empirical approximation of r∗(s, S).

We finally remark that in practice, one may discretize the choices of s, S, x, and
p in the dynamic programming scheme described above with granularity T −1. This
leads to a computationally efficient algorithm. On the other hand, by the Lipschitz
property of Hb(·, ·; μ̂b), it can be shown that the error caused by discretization is at
most O(T −1), which does not affect the order of the overall regret.

The proposed algorithm is based on an (s, S,p)-policy with evolving inventory
levels (s, S) and pricing strategies p. As mentioned earlier, in the learning algorithm
the T time periods are partitioned into epochs, labeled as B1,B2, · · · . Re-stocking
only occurs at the first time period of each epoch Bb, b ∈ {1, 2, · · · }. Each epoch Bb
is also associated with inventory levels (sb, Sb) and pricing strategy pb, such that for
the first time period tb ∈ Bb, the re-stocked inventory level is ytb = Sb; the epoch

12 Joint Pricing and Inventory Control with Demand Learning 333

Algorithm 10 The main algorithm: dynamic inventory control and pricing with
unknown demand
1: Input: problem parameters k, c, h, time horizon T , the regression-oracle-specific parameter
γ .

2: Output: inventory and pricing decisions yt , pt for each t ∈ [T].
3: for epoch b = 1, 2, 3, · · · do
4: Compute the model estimate θ̂b using the regression oracle O and samples from Hb−1;
5: Construct upper-confidence bounds D̄b as in Eqs. (12.28, 12.31);
6: Construct μ̂b = 1

|E<b |
∑
t∈E<b I[dt − D(η(pt)|θ̂b(t))], where E<b is constructed in

Eq. (12.30);
7: For every s ∈ [s, s], S ∈ [S, S] compute φ(s,S)(S; D̄b, r, μ̂b) as in Eq. (12.32) and find
r̄b(s, S) = inf{r ∈ R : φ(s,S)(S; D̄b, r, μ̂b) = k};

8: Select (sb, Sb) = arg maxs,S r̄b(s, S) and let pb be the optimal pricing decisions associated
with dynamic programming φ(sb,Sb)(·; D̄b, r̄b(sb, Sb), μ̂b);

9: For the first time period tb in epoch Bb set ytb = Sb and ptb = pb(Sb); for the rest of epoch
Bb set yt = xt and pt = pb(xt); epoch Bb terminates once xt < sb;

10: end for

Bb terminates whenever xt < sb, and for all t ∈ Bb\{tb}, yt = xt and pt = pb(xt).
Algorithm 10 gives a pseudo-code description of the proposed algorithm.

Updates of the (s, S,p) policies being implemented occur at the beginning of
each epoch, as detailed from Step 4 to Step 8 in Algorithm 10. More specifically,
at the beginning of epoch b when policy update is due, the algorithm first collects
all realized demand information from previous epochs to construct model estimate
θ̂b (of the demand-rate curve) and noise distribution μ̂b. With estimates θ̂b and μ̂b,
dynamic programming (reflected in φ(sb,Sb)(·; D̄b, r̄b, μ̂b)) is computed to obtain an
approximately optimal pricing function pb, as well as the inventory levels sb, Sb.

Regret Convergence Regret of the algorithm described above is upper bounded
by Õ(T 1/2) with probability 1 − O(T −1), where π∗ is the optimal policy that
maximizes r(s, S,p;μ0). In the Õ(·) notation we omit polynomial dependency on
log T and other problem parameters. With k = c = 0 and h(·) ≡ 0, the problem
becomes a pure pricing problem with unknown linear demand functions. As long as
τ > 1, the work of Broder and Rusmevichientong (2012) proves an �(T 1/2) lower
bound for any admissible pricing policies. Therefore, the Õ(T 1/2) regret established
here is optimal.

In Algorithm 10, a dynamic programming needs to be carried out after each
epoch b to obtain a new policy (sb, Sb,pb). Because each epoch lasts at most S/d =
O(1) selling periods, the algorithm requires �(T) DP calculations which can be
computationally expensive. Chen et al. (2021b) then propose an improved algorithm
that only needs O(τ log T) DP calculations to achieve virtually the same regret,
which is much more computationally efficient.

Algorithm with Infrequent DP Updates The detailed description is presented in
Algorithm 11.

Note that in Algorithm 11, a new (s, S,p) policy is computed only if 2ι,
ι ∈ {1, 2, · · · , } epochs are met, or the determinant of the sample covariance

334 B. Chen

Algorithm 11 Dynamic inventory control and pricing with infrequent DP solutions1: Input: problem parameters k, c, h, time horizon T , the regression-oracle-specific parameter
γ .

2: Output: inventory and pricing decisions yt , pt for each t ∈ [T].
3: Initialize: θ̂0 = 0d, 1 = Id×d and ζ1 = 1;
4: for epoch b = 1, 2, 3, · · · do
5: if det(b) ≥ 2ζb or b = 2ι for some ι ∈ N then
6: Update ζb+1 = det(b) and compute the model estimate θ̂b using the regression oracle

O and samples from Hb−1;
7: Construct upper-confidence bounds D̄b as in Eqs. (12.28,12.31);
8: Construct μ̂b = 1

|E<b |
∑
t∈E<b I[dt − D(η(pt)|θ̂b(t))], where E<b is constructed in

Eq. (12.30);
9: For every s, S ∈ [s, S] compute φ(s,S)(S; D̄b, r, μ̂b) as in Eq. (12.32) and find
r̄b(s, S) = inf{r ∈ R : φ(s,S)(S; D̄b, r, μ̂b) = k};

10: Select (sb, Sb) = arg maxs,S r̄b(s, S) and let pb be the optimal pricing decisions
associated with dynamic programming φ(sb,Sb)(·; D̄b, r̄b(sb, Sb), μ̂b);

11: else
12: Set θ̂b = θ̂b−1, ζb+1 = ζb, Db = Db−1, μ̂b = μ̂b−1,sb = sb−1, Sb = Sb−1 and

pb = pb−1;
13: end if
14: If the current inventory level exceeds Sb, set pt = 0 until inventory level falls below Sb; ∗
15: For the first time period tb in epoch Bb set ytb = Sb and ptb = pb(Sb); for the rest of

epoch Bb set yt = xt and pt = pb(xt); epoch Bb terminates once xt < sb;
16: Update b+1 = b +∑

t∈Bb η(pt)η(pt)
	;

17: end for
∗ Note that this step may only happen when the policy changes. It does not belong to any epoch;
and since it happens very infrequently, its incurred regret can be bounded separately.

 b doubles. This greatly reduces the number of DP calculations from O(T) to
O(τ log T).

Regret Convergence for Infrequent DP Updates For the algorithm with infre-
quent DP updates, the regret is upper bounded by Õ(T 1/2) with probability
1−O(T −1).

12.6 Other Models

Burnetas and Smith (2000) is one of the earliest papers, if not the first one, that
studies joint pricing and inventory control with unknown demand distribution. They
assume the lost-sales cost is zero and inventory perishes at the end of each period.
The pricing mechanism is modeled as a multiarmed bandit problem, while the order
quantity decision is made based on a stochastic approximation procedure. Burnetas
and Smith (2000) proves policy convergence of their proposed algorithm. Katehakis
et al. (2020) consider the joint optimization problem with discrete backlogged
demand in different settings with or without a leading price. Keskin et al. (2021)
study the joint pricing and inventory control problem with learning in a changing
environment under a parametric demand-rate function and assume lost sales are

12 Joint Pricing and Inventory Control with Demand Learning 335

observable. They provide learning algorithms whose convergence rates match the
theoretical lower bound.

References

Broder, J., & Rusmevichientong, P. (2012), Dynamic pricing under a general parametric choice
model. Operations Research, 60(4), 965–980.

Burnetas, A. N., & Smith, C. E. (2000). Adaptive ordering and pricing for perishable products.
Operations Research, 48(3), 436–443.

Chen, B., & Chao, X. (2019). Parametric demand learning with limited price explorations in a
backlog stochastic inventory system. IISE Transactions, 51(6), 605–613.

Chen, X., & Simchi-Levi, D. (2004a). Coordinating inventory control and pricing strategies with
random demand and fixed ordering cost: The finite horizon case. Operations Research, 52(6),
887–896.

Chen, X., & Simchi-Levi, D. (2004b). Coordinating inventory control and pricing strategies with
random demand and fixed ordering cost: The infinite horizon case. Mathematics of Operations
Research, 29(3), 698–723.

Chen, B., Chao, X., & Ahn, H. S, (2019). Coordinating pricing and inventory replenishment with
nonparametric demand learning. Operations Research, 67(4), 1035–1052.

Chen, B., Chao, X., & Wang, Y. (2020a). Data-based dynamic pricing and inventory control with
censored demand and limited price changes. Operations Research, 68(5), 1445–1456.

Chen, B., Wang, Y., & Zhou, Y. (2020b). Optimal policies for dynamic pricing and inventory
control with nonparametric censored demands. Available at SSRN 3750413.

Chen, B., Chao, X., & Shi, C. (2021a). Nonparametric learning algorithms for joint pricing and
inventory control with lost-sales and censored demand. Mathematrics of Operations Research,
46(2), 726–756.

Chen, B., Simchi-Levi, D., Wang, Y., & Zhou, Y. (2021b). Dynamic pricing and inventory
control with fixed ordering cost and incomplete demand information. Management Science,
forthcoming.

Chen, X., & Simchi-Levi, D. (2012). Pricing and inventory management. The Oxford Handbook of
Pricing Management, 1, 784–824.

Cheung, W. C., Simchi-Levi, D., & Wang, H. (2017). Dynamic pricing and demand learning with
limited price experimentation. Operations Research, 65(6), 1722–1731.

Elmaghraby, W., & Keskinocak, P. (2003). Dynamic pricing in the presence of inventory con-
siderations: Research overview, current practices, and future directions. Management Science,
49(10), 1287–1309.

Katehakis, M. N., Yang, J., & Zhou, T. (2020). Dynamic inventory and price controls involving
unknown demand on discrete nonperishable items. Operations Research, 68(5), 1335–1355.

Keskin, N. B., & Zeevi, A. (2014). Dynamic pricing with an unknown demand model: Asymptoti-
cally optimal semi-myopic policies. Operations Research, 62(5), 1142–1167.

Keskin, N. B., Li, Y., & Song, J. S. J. (2021). Data-driven dynamic pricing and ordering with
perishable inventory in a changing environment. Management Science, 68(3), 1938–1958.

Kleywegt, A. J., Shapiro, A., & Homem-de Mello, T. (2002). The sample average approximation
method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2), 479–502.

Lei, Y. M., Jasin, S., & Sinha, A. (2014). Near-optimal bisection search for nonparametric dynamic
pricing with inventory constraint. Ross School of Business Paper (1252)

Levi, R., Roundy, R. O., & Shmoys, D. B. (2007). Provably near-optimal sampling-based policies
for stochastic inventory control models. Mathematics of Operations Research, 32(4), 821–839.

Levi, R., Perakis, G., & Uichanco, J. (2015). The data-driven newsvendor problem: New bounds
and insights. Operations Research, 63(6), 1294–1306.

336 B. Chen

Petruzzi, N. C., & Dada, M. (1999). Pricing and the newsvendor problem: A review with
extensions. Operations Research, 47(2), 183–194.

Schumaker, L. (2007). Spline functions: Basic theory. Cambridge, UK: Cambridge University
Press.

Sobel, M. J. (1981). Myopic solutions of Markov decision processes and stochastic games.
Operations Research, 29(5), 995–1009.

Wang, Z., Deng, S., & Ye, Y. (2014). Close the gaps: A learning-while-doing algorithm for single-
product revenue management problems. Operations Research, 62(2), 318–331.

Whitin, T. M. (1955). Inventory control and price theory. Management Science, 2(1), 61–68.
Wu, C. F. J., et al. (1986). Jackknife, bootstrap and other resampling methods in regression analysis.

The Annals of Statistics, 14(4), 1261–1295.
Yano, C. A., & Gilbert, S. M. (2005). Coordinated pricing and production/procurement decisions:

A review. Managing Business Interfaces (pp. 65–103).

Chapter 13
Optimization in the Small-Data,
Large-Scale Regime

Vishal Gupta

13.1 Why Small Data?

Despite the promises of Big Data, data in modern operations research applications
can be scarce. Worse, this data scarcity is typically unavoidable. For example, in
some systems, such as financial markets, data are rapidly time-varying. Conse-
quently, only the most recent data are indicative of current conditions and obtaining
additional relevant data is impossible. In other settings, data collection can be
expensive, either financially or operationally. For example, when optimizing early
childhood interventions to prevent adult obesity, it might take years to observe a
single data point. Finally, in some settings such as medicine and education, data
are highly regulated by privacy laws. These laws prohibit decision-makers from
directly accessing protected data, leaving them instead to work with either (1)
coarser, aggregated “summary” data (see, e.g., Gupta et al., 2020 for discussion)
or (2) anonymized data that are deliberately contaminated to protect privacy (see,
e.g., Dwork, 2008). In all these settings, we either cannot access as much data as we
would ideally like or cannot access the kind of data we would ideally like. In this
sense, data are fundamentally scarce, and any estimates of uncertain parameters in
the system necessarily have low precision.

In the context of operations management, specifically, data scarcity sometimes
arises as a result of personalization or customization. Indeed, real-world applica-
tions often require making thousands of separate decisions simultaneously, each
customized to a particular, person, product, and instant of time. Such personalization
exacerbates data scarcity, since there may only be a few similar people, products,
and times historically from which to draw.

V. Gupta (�)
USC Marshall School of Business, Los Angeles, CA, USA
e-mail: guptavis@usc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_13

337

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_13&domain=pdf

 885 55738 a 885 55738 a

mailto:guptavis@usc.edu

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_13

338 V. Gupta

This “personalization induced data scarcity” is not simply a pathological pos-
sibility, but rather a commonplace occurrence. For example, Gupta and Rus-
mevichientong (2021) studies data from a large online retailer that sells hundreds
of thousands of products per quarter. The authors show that even among the most
popular product categories, half of all product types sold have fewer than 10 total
sales in the last quarter. Similarly, the MovieLens25M dataset (Harper and Konstan,
2015) consists of 25 million ratings of 62,000 movies by 162,000 users. Despite this
size, 60% of movies have 10 or fewer ratings. Finally, Liu and Li (2017) observe
that even when using real-time GPS traffic data from millions of drivers, many arcs
in urban road network are traveled relatively infrequently, leading to “stale” data
that are too old to be meaningful. Similar examples, with large datasets describing
a huge number of uncertain parameters but where most parameters have a fairly
limited amount of relevant data, abound throughout operation research.

In the absence of strong modeling assumptions, data scarcity limits our ability
to estimate uncertain quantities effectively. Hence, most uncertain parameters in
these settings necessarily admit, at best, low-precision estimates. We term decision-
making settings with these features—i.e., many uncertain parameters, each with a
low-precision estimate—the small-data, large-scale regime.

Despite the prevalence of applications in the small-data, large-scale regime,
however, most data-driven optimization methods are inspired by and analyzed in
the large-sample regime, i.e., the setting where the available data are increasing,
and all uncertain parameters admit increasingly precise estimates. Many data-driven
algorithms behave very differently in these two regimes, suggesting provably good
theoretical performance in the large-sample regime might tell us nothing about an
algorithm’s practical performance in the small-data, large-scale regime.

Consequently, this chapter focuses on the small-data, large-scale regime, with
particular emphasis on unique phenomena not typically seen in the large-sample
regime. Our goal is twofold: (1) understand how these phenomena impact the
performance of certain “traditional” data-driven optimization algorithms and (2)
exploit these new phenomena to design better algorithms tailored to applications
in this regime.

Philosophically, the distinction between large-sample and small-data, large-scale
regimes mirrors the distinction between the macroscopic and molecular scales
in physics. We now know that certain phenomena, like statistical and quantum
mechanical effects, are essentially negligible when modeling everyday objects at the
macroscopic scale such as cars, people, and buildings. However, at the molecular
scale, these forces dominate other forces such as gravity and friction, and hence
objects at this scale behave in “unintuitive” ways. Indeed, the guiding principle of
nanotechnology is that one can engineer systems at the molecular scale to directly
exploit these unintuitive phenomena to achieve performance not possible at the
macroscopic sale.

Our goal in studying the small-data, large-scale regime is similar. We seek
to describe and understand the new “unintuitive” phenomena that emerge in this
regime in order to exploit them in the aforementioned applications, much in the
same way nanotechnology does for the molecular scale.

13 Optimization in the Small-Data, Large-Scale Regime 339

13.1.1 Structure

The remainder of this chapter is organized as follows: we first introduce a somewhat
stylized data-driven optimization model that allows us to easily contrast the small-
data, large-scale and large-sample regimes. We then highlight unique phenomena
arising in this regime and show that algorithms designed with large-sample intuition
can have very poor behavior in the small-data, large-scale regime. In the second part
of the chapter, we develop an alternative approach based on debiasing to illustrate
that there do exist—at least in our stylized model—simple algorithms that have
excellent behavior in both regimes.

13.2 Contrasting the Large-Sample and Small-Data,
Large-Scale Regimes

13.2.1 Model

We begin with the optimization model

x∗ ∈ arg min
x∈X

μ	x, (13.1)

where X ⊆ R
n is a known, feasible region, and μ ∈ R

n is an unknown,
deterministic vector representing uncertain parameters. Throughout, we assume that
we observe a random variable Z ∈ R

n representing an estimate of μ such that

E [Z] = μ, and E

[
(Zj − μj)2

]
= 1/νj j = 1, . . . , n. (13.2)

In words, Zj is an unbiased estimator of μj with precision νj . (Recall precision
is the reciprocal of variance.) We make no assumptions on the convexity or shape
of X ; it may be a discrete set or involve nonlinear, non-convex constraints. For
convenience, we define νmin ≡ minj νj and νmax ≡ maxj νj .

Albeit stylized, Problem (13.1) subsumes network optimization applications with
uncertain edge costs such as minimum spanning tree, shortest path, the traveling
salesman, and matching on graphs (Bertsimas and Tsitsiklis, 1997). As noted
in Elmachtoub and Grigas (2021), with a clever reformulation, Problem (13.1)
also subsumes some inventory optimization applications with uncertain demands
like the economic lot-sizing problem. Finally, through nonlinear transformations
(which may introduce non-convexities in X), Problem (13.1) can also model certain
multiproduct pricing problems and portfolio optimization problems (Gupta et al.,
2021). In this sense, Problem (13.1) represents a general setting under which to
study the small-data, large-scale regime.

340 V. Gupta

Our use of the probabilistic model, Eq. (13.2), however, deviates somewhat from
the traditional operations literature. Equation 13.2 abstracts away from the data
generation mechanism and instead focuses on the properties of the estimators Zj
built from that data. Importantly, this framework allows us to describe and analyze
both the large-sample and small-data, large-scale regimes in a variety of data settings
with a minimal amount of mathematical overhead.

Namely, instances of Problem (13.1) under Eq. (13.2) fall under the small-
data, large-scale regime when n is very large relative to νmax (a large number
of uncertainties, but all estimates are imprecise). By contrast, such instances fall
under the large-sample regime when n is small relative to νmin (a fixed number of
uncertainties, and all estimates are very precise). One can formalize these definitions
by introducing an asymptotic sequence of instances of Problem (13.1) (see Gupta
and Rusmevichientong, 2021 for details), but the extra formalism offers little insight
in what follows, and, hence, we prefer these loose descriptions.

We next provide some examples illustrating how these definitions of both regimes
in terms of n, νmin and νmax, provide a unified framework for analyzing several
different data settings.

Independent, Identically Distributed (I.I.D) Data

Following Gupta and Rusmevichientong (2021), suppose that for each j =
1, . . . , n, we observe {ξj1, . . . , ξj,Nj } i.i.d. draws of a random variable ξj with

mean μj . A natural estimator for μj is the sample average Zj ≡ N−1
j

∑Nj
k=1 ξk,Nj ,

which is unbiased. Notice the precision of Zj is proportional to Nj . Thus, our
intuitive notion of large-sample asymptotics, i.e., Nj →∞ for all j , corresponds to
νmin → ∞. By contrast, our intuitive notion of small-data, i.e., Nj small and fixed
for all j , corresponds to νmax small and fixed. Large-scale naturally corresponds to
large n. In this way, both large-sample and small-data, large-scale regimes can be
described entirely by the precisions and dimension n in Eq. (13.2) without explicitly
modeling the i.i.d. sampling.

Weakly Stationary Time Series

Building on our previous example, suppose now that the sequence (ξj1, . . . , ξj,Nj)

is not i.i.d. for each j but follows a weakly stationary time series. One can confirm
that sample mean is still an unbiased estimate for μj , but its precision depends not
only onNj but also on the auto-covariance structure of the time series. In particular,
for a highly autocorrelated time series, information accumulates slowly, and Nj
must be fairly large before one can learn μj precisely.

Fortunately, we can still discuss both regimes without explicitly specifying this
covariance structure by again appealing to the precisions νmin and νmax. In the large
sample setting, νmin will be large relative to n, while in the small-data, large-scale
setting, νmax will be small relative to n, and n will be large.

13 Optimization in the Small-Data, Large-Scale Regime 341

Regression Settings with Contextual Information

Finally, suppose that we observe independent observations (ξj ,W j) for j =
1, . . . , n, where E

[
ξj
] = μj and W j ∈ R

p is a fixed covariate that is informative
for the j th uncertain parameter. For example, in logistics and routing applications,
μj might represent the travel time on road j , and W j might encode relevant
information like the speed limit and length of road j . In such a setting, it is common
to estimate μj by Zj ≡ W	

j βOLS, j = 1, . . . , n, where

βOLS ∈ arg min
β

n∑

j=1

(ξj −W	
j β)2

is the ordinary least-squares fit, perhaps after transforming the covariates W j .
The behavior of these estimates depend subtly on the interplay between n, p,

and the eigenspectrum of the matrix W = (W	
1 , . . . ,W

	
n)

	 ∈ R
n×p. However,

under the usual homoscedastic assumptions, the precision of Zj is known to be
proportional to

νj ∝
(

W	
j

(
W	W

)−1
W j

)−1

.

Hence, we can still describe the large-sample and small-data, large-scale regimes
without explicitly having to specify details about the structure of W . Namely, this
model is in the large-sample regime if νmin is large relative to n and is in the small-
data, large-scale regime if n is large relative to νmax.

Finally, we note that we have not assumed that Z is multivariate Gaussian, but
in many of the estimation settings described above, one would expect intuitively
that Z is approximately distributed as a multivariate Gaussian. Hence, we will often
consider this special case to develop intuition.

We next use our above model to highlight a first important difference in these
regimes.

13.2.2 Failure of Sample Average Approximation (SAA)

Sample average approximation (SAA), also called empirical risk minimization
(ERM) in the machine learning literature, is arguably the most fundamental
data-driven optimization procedure. Many other popular procedures including

342 V. Gupta

regularized ERM and distributionally robust optimization are, at least intuitively,
motivated as refinements of SAA.

In our setting, the SAA procedure plugs in the estimator Z for the unknown μ in
Problem (13.1) and returns the resulting solution:

xSAA(Z) ∈ arg min
x∈X

Z	x. (13.3)

Under fairly mild assumptions, SAA has excellent performance in the large-sample
regime. In our setting specifically, one can prove the following:

Theorem 1 (SAA in Large-Sample Regime) Consider an instance of Prob-
lem (13.1) under Eq. (13.2) where X ⊆ [0, 1]n. The expected sub-optimality of
SAA relative to the full-information optimum satisfies

0 ≤ E

[
μ	xSAA(Z)

]
− μ	x∗ ≤ 2n√

νmin
.

In particular, in large-sample settings when νmin is large relative to n, SAA performs
comparably to the full-information solution. For clarity, recall in the i.i.d. setting
of our previous example, νmin ∝ minj Nj , and hence Theorem 1 shows expected
performance of SAA converges to the full-information optimum at the “usual” rate
of O(N−1/2

min). The proof of Theorem 1 is quite standard and, hence, omitted.
Since νmax ≥ νmin, the above bound is vacuous in the small-data, large-scale

regime, i.e., when n is large relative to νmax. This is not merely a weakness in
analysis; SAA can have very poor performance in this regime, as seen in the
following example:

Poor Performance of SAA in Small-Data, Large-Scale Regime

Consider an instance of Problem (13.1) under Eq. (13.2) where Zj ∼ N(μj , 1/νj)
is normally distributed,

(μj , νj) =
{
(0, 0.01) if j is odd,

(−1, 1) if j is even,

and

X =
⎧
⎨

⎩
x ∈ [0, 1]n :

n∑

j=1

xj = 0.01n

⎫
⎬

⎭
.

For convenience, assume 0.01n is an integer. In words, the problem seeks to identify
the worst 1% of the μj given the noisy estimates Zj . The full-information optimal
value is −0.01n obtained by choosing any .01n even components.

13 Optimization in the Small-Data, Large-Scale Regime 343

The SAA solution xSAAj = I
{
Zj ≤ qn

}
, where qn is any solution to the equation

1

n

n∑

j=1

I
{
Zj ≤ q

} = .01.

Write

1

n

n∑

j=1

I
{
Zj ≤ q

} = 1

2
· 2

n

∑

j :j odd

I
{
Zj ≤ q

}+ 1

2
· 2

n

∑

j :j even

I
{
Zj ≤ q

}
,

and note each sum consists of n/2 terms. Since the Zj are i.i.d. for odd j , we have
by the uniform law of large numbers that

2

n

∑

j :j odd

I
{
Zj ≤ q

}→p P (Z1 ≤ q) = Φ
(
q
√
ν1
) = Φ(0.1q),

uniformly in q as n → ∞, where Φ(·) is the standard normal cumulative distri-
bution function. Similarly, 2

n

∑
j :j even I

{
Zj ≤ q

}→p P (Z2 ≤ q) = Φ(q + 1) as
n→∞. Hence, qn →p q

∗, where

1

2
Φ
(
0.1q∗

)+ 1

2
Φ
(
q∗ + 1

) = 0.01.

The value q∗ can be determined numerically as q∗ ≈ −20.54. Then, an entirely
analogous argument shows the scaled performance of SAA satisfies

1

n
μ	xSAA(Z)→p

1

2
· 0 · P (Z1 ≤ q∗

)+ 1

2
· 1 · P (Z2 ≤ q∗

)
.

Hence, the relative performance of SAA to the full-information optimum satisfies

μ	xSAA(Z)

μ	x∗
→p

P (Z2 < q
∗)

−0.02
< −10−83,

a negligibly small fraction.
Worse, had we simply chosen a feasible solution at random, our expected

performance would be −0.005n, yielding 50% relative performance to the full-
information optimum. Thus, SAA performs substantively worse than random
guessing in this example.

344 V. Gupta

A clever reader might argue that the crux of the issue in the preceding example is
that SAA does not leverage the precision information νj and hence is “tricked” into
selecting many of the odd components. A more clever algorithm that leveraged this
information could avoid such a mistake.

Although this intuition is partially true, it is not the whole story. Indeed, Gupta
and Rusmevichientong (2021) establishes the following theorem which shows that
no data-driven algorithm exists which can achieve more than a fraction of the
full-information performance in the small-data, large-scale regime. This behavior
sharply contrasts Theorem 1.

Theorem 2 (Full-Information Optimum Is Unattainable) Given any data-
driven algorithm x(·) such that x(Z) ∈ [0, 1]n almost surely, there exists an
instance of Problem (13.1) with X = [0, 1]n, and νj = 1, μj ∈ {−1,+1} and
Zj ∼ N (μj , 1/νj) for all j , such that

E
[
μ	x(Z)

]

μ	x∗
< 0.842.

The bound is not tight but already highlights a distinct phenomenon in the small-
data, large-scale regime, not present in the large-sample regime. No algorithm, even
one with knowledge of the precisions, can expect to achieve a large fraction of full-
information performance for all instances.

13.2.3 Best-in-Class Performance

Since full-information performance is not generally achievable, we instead establish
a different benchmark to assess data-driven procedures. To this end, we next define
a notion of “best-in-class” performance for a given policy class. For simplicity of
exposition, we focus our discussion on plug-in policies:

Definition 1 (Plug-In Policy) Given functions fj : R ,→ R, we define the plug-in
policy xf (Z) corresponding to f (·) = (f1(·), . . . , fn(·))	 to be

xf (Z) ∈ arg min
x∈X

f (Z)	x, (13.4)

where f (Z) ∈ R
n is the vector with j th component fj (Zj). Given a set of

functions F , we further define the corresponding class of plug-in polices to
be

{
xf (Z) : f ∈ F}

.

We stress that the component functions fj (Zj) in the definition may differ by j or
depend on auxiliary information.

Plug-in policies are computationally attractive because computing the policy
for a fixed f (·) requires solving an optimization problem of the same form as

13 Optimization in the Small-Data, Large-Scale Regime 345

Problem (13.1). Thus, if there exists a specialized algorithm for solving Prob-
lem (13.1)—as is the case with many transportation, inventory management, and
pricing problems—the same algorithm can be used to evaluate xf (Z).

We next consider some examples:

Sample Average Approximation (SAA) as a Plug-In Policy

SAA is an example of a plug-in policy where fj (Zj) = Zj .

Plug-Ins for Linear Classes

Consider our previous regression setup where W j encodes (known) covariate
information for μj . A classical predict-then-optimize approach might first find the
ordinary least-squares estimate βOLS and then solve Problem (13.1) after replacing
μj by W	

j βOLS. This policy is not a plug-in policy in the sense of Definition 1

because the vector βOLS = βOLS(Z) itself depends on the entire data vector Z.
However, with probability 1, this policy is a member of the corresponding plug-in
policy class for linear functions:

FLinear = {Z ,→ (W	
1 β, . . . ,W	

n β)	 : β ∈ R
p}.

In Elmachtoub and Grigas (2021), the authors argue that there exist plug-in policies
in this larger class that significantly outperform the plug-in policy corresponding to
βOLS.

Observe that members of FLinear are constant valued (they do not depend on Z),
and, hence, the corresponding plug-in policies also do not depend on Z. We call
such classes of plug-in policies non-data-driven. Non-data-driven policy classes are
common in machine learning but do not cover all examples of interest in data-driven
optimization. For example, the SAA policy does depend on Z and hence does not
belong to the non-data-driven plug-in policy class corresponding to FLinear.

We next describe a data-driven plug-in policy class that does contain SAA as a
member:

Plug-Ins Based on Mixed-Effects Regression

Define

FME =
{

Z ,→
(ν1

ν1 + τ Z1 + τ

ν1 + τW	
1 β, . . . ,

νn

νn + τ Zn +
τ

νn + τW	
n β

)	

: τ ∈ R+,β ∈ R
p

}

.

346 V. Gupta

In words, the members of FME proxy each μj as an interpolation between
Zj and a linear fit based on β, where τ controls the degree of interpolation and
the precision νj attenuates the effect. This form of interpolation arises naturally
in a mixed-effects regression model of the unknown μ where we assume W j

corresponds to some shared (fixed) effects and there is some unknown, random
effect for each j . Moreover, the plug-in policy corresponding to τ = 0 is xSAA(Z)

(cf. Problem (13.3)), and the plug-in policies corresponding to τ = ∞ exactly
recover the plug-in policies corresponding to FLinear. Thus, FME strictly generalizes
FLinear.

Given any plug-in policy class, we define its “best” member, depending on the
data Z.

Definition 2 (Oracle Policy) Given a class F of functions, the oracle plug-in
policy xOR(Z) is defined by

xOR(Z) = xf OR(Z) where f OR ∈ arg min
f∈F

μ	xf (Z). (13.5)

The oracle policy minimizes the true performance, similar to the full-information
solution x∗ (cf. Problem (13.1)). However, unlike x∗, the oracle policy is restricted
to use a member of the given class. We stress that the oracle policy is defined with
respect to a particular realization of the data Z and is, thus, random.

By construction, no plug-in policy from F outperforms its oracle member. In
particular, this statement holds even for policies which are not themselves plug-in
policies but are (with probability 1) contained in a plug-in policy class, such as the
predict-then-optimize policy with βOLS. In this sense, the oracle policy is a strong
benchmark. On the other hand, computing xOR(Z) seemingly requires knowledge
of μ, so it is not clear that we can identify a member of the given class with
performance comparable to xOR(Z) using only the data at hand. (We show later
that this is indeed possible in certain cases.)

Importantly, oracle policies for well-chosen policy classes often enjoy favorable
properties. For example, the element of FME corresponding to parameters (τ,β)
can be interpreted as the posterior mean estimate of μ assuming the data are drawn
from the following Bayesian model:

μj ∼ N (W	
j β, 1/τ) independently across j = 1, . . . , n,

Zj | μ ∼ N (μj , 1/νj) independently across j = 1, . . . , n.

Consequently, the corresponding plug-in policy is the Bayes optimal policy for this
model. A standard result in Bayesian statistics is that under very mild assumptions,
Bayes polices are admissible, i.e., no other data-driven policy Pareto-dominates their
performance across all values of μ, whether or not the prior is correctly specified.

13 Optimization in the Small-Data, Large-Scale Regime 347

Hence, since the oracle policy must perform at least as well as each element of the
class, it too inherits this favorable property and is non-dominated.

In this sense, comparing the performance of a given data-driven algorithm
to performance of an oracle policy from a suitable policy class is arguably
a more natural approach than comparing to the (unachievable) full-information
optimal performance. Indeed, much of the existing literature in small-data, large-
scale optimization focuses on identifying policies with performance comparable
to an oracle policy, i.e., near-best-in-class performance, and we will do the same
throughout the remainder.

13.2.4 Shortcomings of Cross-Validation

To summarize, we have reduced our study to the problem of identifying a policy
with near-best-in-class performance. A standard approach to such problems is cross-
validation. In this section, we show that the performance of cross-validation in the
small-data, large-scale regime is complex; in general, it might perform quite poorly,
however, in some special cases it has provably good performance. These two distinct
behaviors sharply contrast with the strong performance of cross-validation in the
large-sample regime, highlighting yet another new phenomenon that emerges in the
small-data, large-scale regime.

While there are many variants of cross-validation, we focus below on hold-out
validation for simplicity. At a high-level, hold-out validation uses half the available
data, i.e., training data, to train a policy and then estimates the performance of
that policy on the remaining half of the data, i.e., hold-out data. One typically
then compares the performance of different policies on the hold-out data to select
a member of a policy class. The hope is that this procedure identifies a policy with
near-best-in-class performance.

Since our general model Eq. (13.2) abstracts away from the data generation pro-
cedure to model hold-out validation, we will need some additional assumptions and
notation. Our setup will mirror our previous example of “Independent, Identically
Distributed (I.I.D.)” from Sect. 13.2.1.

Specifically, we assume that we observe

{ξj,1, . . . , ξj,Nj } drawn i.i.d. such that E
[
ξj,1

] = μj , j = 1, . . . , n. (13.6)

(For convenience, assume Nj is even for each j .) We then estimate μj by

Zj ≡ 1
Nj

∑Nj
k=1 ξj,k. Our estimate of μj based on the training data is Ztrain

j ≡
2
Nj

∑
k≤Nj /2 ξj,k . Similarly, our estimate of μj based on the hold-out set is Zhold

j ≡
2
Nj

∑
k>Nj /2 ξj,k .

348 V. Gupta

With this notation, given a class F , policy selected by hold-out cross-validation is

xHO(Z) = xf HO(Z) where f HO ∈ arg min
f∈F

ZHO	xf (Ztrain). (13.7)

Intuitively, the objective function of Problem (13.7) is meant to estimate μ	xf (Z),
i.e., the objective defining the oracle policy in Problem (13.5).

The next example adapted from Gupta et al. (2021) shows that in the small-
data, large-scale regime, this procedure might provide a poor estimate of oracle
performance for a fixed policy and, hence, might fail to identify the best-in-class
policy.

Cross-Validation Can Perform Poorly

Consider an instance of Problem (13.1) under Eq. (13.2) in which X = [0, 1]n.
Suppose Nj = 2 for all j and

ξj ∼
{
N (−1, 1) if j ≤ 0.14n

N (1, 1) otherwise.

Thus, the precision of each Zj is 2, and Ztrain
j = ξj1 while Zhold

j = ξj2. For
convenience, assume 0.14n is an integer.

Finally, take F = {Z ,→ 1,Z ,→ Z} to have only two members. The
corresponding plug-in policies are (1) the zero policy that has all components equal
to zero and (2) the SAA solution xSAA(Z).

By inspection, the oracle performance of the zero policy is 0. On the other hand,
following an argument entirely analogous to our example in Sect. 13.2.2, one can
see that as n→∞, the scaled, oracle performance of xSAA(Z) converges to

1

n
μ	xSAA(Z)→p −0.14Φ(

√
2)+ 0.86Φ(−√2) ≈ −0.0614.

Hence, an oracle would prefer SAA.
Next, consider hold-out cross-validation. Cross-validation correctly estimates the

performance of the zero policy to be 0. On the other hand, the scaled cross-validation
performance of SAA is

1

n

n∑

j=1

ξj2I
{
ξj1 ≤ 0

}→p −0.14Φ(1)+ 0.86φ(−1) ≈ 0.0186.

13 Optimization in the Small-Data, Large-Scale Regime 349

This is a very poor estimate of the oracle SAA performance. Moreover, hold-
out cross-validation incorrectly suggests choosing the zero policy as best-in-class
almost surely as n→∞.

In summary, hold-out cross-validation fails in two ways in the previous example:
First, it provides a poor estimate of the SAA policy that remains poor even as n→
∞. This shortcoming alone would not be enough to dismiss cross-validation as an
inviable approach. Indeed, if cross-validation misestimated the performance of all
policies by the same constant amount, it could still be used to identify a best-in-
class policy. However, as seen above, cross-validation also fails in a second way; it
misestimates differently for different policies and hence picks a poor policy from
the policy class.

As discussed in Gupta et al. (2021), the key issue behind the shortcoming
of cross-validation in this setting is that the hold-out objective Problem (13.7)
does not actually estimate the oracle objective μ	xf (Z) but rather estimates the
objective μ	xf (Ztrain). In the large-sample regime where precisions are high,
xf (Z) and xf (Ztrain) are reasonably close, so cross-validation is an effective
strategy. However, in the small-data, large-scale regime where precisions are low,
sacrificing half that precision when training the policy causes xf (Z) and xf (Ztrain)

to be quite different. Hence, cross-validation does not identify a near-best-in-class
policy.

That said, as mentioned, there are special cases where cross-validation does
identify a best-in-class policy in the small-data, large-scale regime. Indeed, the
above intuition suggests that for non-data-driven plug-in policy classes, e.g., the
class induced by FLinear, cross-validation might correctly identify a best-in-class
policy since xf (Z) = xf (Ztrain) for all data realizations. This intuition is made
formal in the following theorem:

Theorem 3 (Cross-Validation for Non-data Driven Plug-in Classes) Consider a
non-data-driven plug-in policy class induced by the set of functions F . Assume

(i) 2 ≤ |F | <∞.
(ii) The data sets {ξj,k : k = 1, . . . , Nj } are independent across j .
(iii) ξj,k − μj is a sub-Gaussian random variables with variance proxy at most σ 2

for all j and k.

Then, there exists an absolute constant C such that for any 0 < ε < 1
2 and any

instance of Problem (13.1) where X ⊆ [0, 1]n, with probability at least 1 − ε, we
have that

0 ≤ μ	xHO(Z)− μ	xOR(Z) ≤ Cσ
√
n log |F | log(1/ε).

Proof Since the plug-in policies do not depend on Z, we write xf instead of xf (Z).
Similarly, we write xOR and xHO.

350 V. Gupta

The first inequality is immediate from the definition of xOR. For the second,
observe that

μ	xHO − μ	xOR =
(
μ− ZHO

)	
xHO + ZHO	 (

xHO − xOR
)

+
(
ZHO − μ

)	
xOR

≤
(
μ− ZHO

)	
xHO +

(
ZHO − μ

)	
xOR

≤ 2 sup
f∈F

∣
∣
∣
∣

(
ZHO − μ

)	
xf

∣
∣
∣
∣ ,

where the first inequality follows from the definition of xHO. For a fixed f ,

the random variable
(
ZHO − μ

)	
xf is mean zero and sub-Gaussian. From our

independence assumption, its variance proxy is at most

σ 2
n∑

j=1

(x
f
j)

2 ≤ σ 2n,

since X ⊆ [0, 1]n. Thus, our upper bound is the supremum of at most 2 |F | mean-
zero, sub-Gaussian random variables. By Massart’s lemma (Wainwright, 2019, eq.
2.67), we can bound

E

[

2 sup
f∈F

∣
∣
∣
∣

(
ZHO − μ

)	
xf

∣
∣
∣
∣

]

≤ 4σ
√
n log |F |.

To prove the stronger high-probability result claimed in the theorem, we need to
show that the supremum concentrates at this value. To that end, (Pollard, 1990,
Lemma 3.2) shows1 that there exists an absolute constant C1 such that

E

⎡

⎢
⎣exp

⎛

⎝
2 supf∈F

∣
∣
∣
(
ZHO − μ

)	
xf

∣
∣
∣

C1σ
√
n log |F |

⎞

⎠

2⎤

⎥
⎦ ≤ 5.

Applying Markov’s inequality and collecting constants then completes the proof.
��

1 Pollard (1990) states this result in terms of the Ψ -Orlicz norm. Recall for any random variable
Y , we define ‖Y‖Ψ = inf{C > 0 : E [

exp(Y 2/C2)
] ≤ 5}. The Ψ -Orlicz norm is closely related to

the sub-Gaussian parameter of a random variable. See, e.g., (Gupta and Rusmevichientong, 2021,
Appendix A) or Rivasplata (2012).

13 Optimization in the Small-Data, Large-Scale Regime 351

Theorem 3 asserts the sub-optimality of cross-validation scales like Op(
√
n).

In most settings of interest, the oracle performance μ	xOR(Z) scales like Op(n).
Thus, Theorem 3 proves that in these settings the relative sub-optimality of the
policy chosen by cross-validation relative to the oracle policy is vanishing at a rate
of Op(1/

√
n). In this sense, cross-validation identifies a near-best-in-class policy

asymptotically in the small-data, large-scale regime for non-data-driven plug-in
policy classes.

Most of the regularity conditions in Theorem 3 can be weakened. For example,
by leveraging classical results for suprema of sub-Gaussian processes, we can relax
the finiteness of F to requiring that F has finite metric entropy. In this way, one can
show that hold-out cross-validation does asymptotically select a best-in-class policy
from F linear in the small-data, large-scale regime, provided the dimension of Wj is
not too large.

Theorem 3 contrasts with the behavior in our previous example; cross-validation
does not fail in either of the two aforementioned ways. The above proof bounds
the error over all policies in the policy class simultaneously. Hence, with high
probability, cross-validation asymptotically correctly estimates the performance of
every policy in the policy class and can identify a best-in-class policy asymptotically.
This contrasting behavior when treating data-driven and non-data-driven plug-
in policies highlights a subtlety of cross-validation in the small-data, large-scale
regime that is not present in the large-sample regime.

Finally, while somewhat beyond the scope of this chapter, we remark that Gupta
and Kallus (2021) have shown additional new phenomenon for cross-validation in a
slightly different setting. Loosely, they show that if we randomize the amount of data
Nj for each component in a particular fashion, then cross-validation does allow us to
identify a best-in-class policy for many data-driven policy classes in the small-data,
large-scale regime with high probability. However, even with this randomization,
cross-validation does not correctly estimate the oracle performance of any given
policy in those classes; rather it uniformly misestimates their performance by
an unknown multiplicative constant. In this sense, randomizing the amount of
data appears to be a “middle-ground” between our earlier counterexample and
Theorem 3, addressing one of the failures of cross-validation but not the other.

Developing a complete theory of cross-validation in the small-data, large-scale
regime remains an open question. In the next section, we pursue an entirely different
avenue for policy selection.

13.3 Debiasing In-Sample Performance

Since the shortcomings of cross-validation stem from sacrificing part of the data
when training and part of the data when evaluating the performance of a policy, one
might consider instead selecting a policy by optimizing

352 V. Gupta

min
f∈F

Z	xf (Z), (13.8)

so that all the data are used in both steps. Unfortunately, for most interesting policy
classes, this strategy fails, due to the well-known in-sample bias or “over-fitting”
problem. The next theorem illustrates the issue:

Theorem 4 (SAAOptimizes a Biased Objective) Suppose there exists an f SAA ∈
F such that xf SAA(Z) = xSAA(Z). Then,

f SAA ∈ arg min
f∈F

Z	xf (Z).

Proof Write

Z	xSAA(Z) ≥ min
f∈F

Z	xf (Z) ≥ min
x∈X

Z	x = Z	xSAA(Z),

where the first inequality follows because xSAA(Z) = xf SAA(Z), the second
inequality follows because xf (Z) ∈ X for all f ∈ F by construction, and the
last equality follows by definition of xSAA(Z). Thus, we have equality throughout,
proving the theorem. ��
Consequently, for any sufficiently rich plug-in policy class, optimizing Prob-
lem (13.8) returns the SAA solution, which we have already seen can perform quite
poorly in the small-data, large-scale regime.

Some reflection shows that at least part of the issue here is that Z	xf (Z) is a
biased estimate of the oracle objective μ	xf (Z) whenever xf (Z) depends on Z

(i.e., for truly data-driven plug-in classes).
Hence, our approach to identifying a best-in-class policy will be to first debias

this estimator.

13.3.1 Stein Correction

We leverage a classical result for Gaussian distributions attributed to Charles Stein
and frequently called Stein’s lemma:

Lemma 1 (Stein’s Lemma) Suppose Y ∼ N (μ, σ 2). Then, for any function g :
R ,→ R that is almost everywhere differentiable and for which both expectations
are defined, we have

E [(Y − μ)g(Y)] = σ 2
E
[
g′(Y)

]
.

13 Optimization in the Small-Data, Large-Scale Regime 353

Proof We first treat the case where μ = 0 and σ = 1. Then, using integration by
parts,

E [Yg(Y)] = 1√
2π

∫

R

yg(y)e−y2/2dy = 1√
2π

∫

R

g′(y)e−y2/2dy = E
[
f ′(Y)

]
,

proving the special case. For general (μ, σ), define the function g(t) = g(μ+ σ t),
so that

E [Yg(Y)] = E [(μ+ σξ)g(ξ)] = E [μg(ξ)]+ σE [ξg(ξ)] ,

where ξ ∼ N (0, 1). Applying the lemma to the last expectation yields

E [Yg(Y)] = E [μg(ξ)]+ σE [
g′(ξ)

] = E [μg(Y)]+ σ 2
E
[
g′(Y)

]
.

Rearranging completes the proof. ��
Stein’s lemma provides a tool to estimate the bias of Z	xf (Z) when Z is a

multivariate Gaussian; namely, write,

E

[
(Z − μ)	xf (Z)

]
=

n∑

j=1

E

[
(Zj − μj)E

[
x

f
j (Z) | Zj

]]
.

Define the function gj (t) ≡ E

[
x

f
j (Z) | Zj = t

]
. Then, applying Stein’s lemma to

each element of the sum shows

E

[
(Z − μ)	xf (Z)

]
=

n∑

j=1

1

νj
E

[
g′j (Zj)

]
.

Of course, the challenge is that we do not have a simple expression for g′(Zj).
Instead, we approximate this derivative by a central finite step difference, i.e., we
heuristically argue that for small h,

g′j (Zj) =
gj (Zj + h)− gj (Zj − h)

2h
+O(h2).

Hence, we might expect that

E

[
(Z − μ)	xf (Z)

]
=

n∑

j=1

E
[
gj (Zj + h)− gj (Zj − h)

]

2hνj
+O(nh2)

=
n∑

j=1

E

[
x

f
j (Z + hej)− xf

j (Z − hej)
]

2hνj
+O(nh2),

where ej is the j th coordinate vector.

354 V. Gupta

Gupta and Rusmevichientong (2021) makes the above heuristic argument rigor-
ous by dealing with potential points of non-differentiability and precisely quantify-
ing the remainder. Indeed, they prove a slightly stronger theorem which applies
when Z is possibly not multivariate Gaussian but is well-approximated by a
multivariate Gaussian. For simplicity of exposition, we summarize their result in
the Gaussian case only:

Theorem 5 (Bias of the Stein Correction for Gaussian Estimates) Suppose that
for each j = 1, . . . , n, we have that Zj ∼ N (μj , 1/νj), independently across j .
Finally, let

Bf (Z, h) ≡
n∑

j=1

x
f
j (Z + hej)− xf

j (Z − hej)
2hνj

. (13.9)

Then, for any 0 < h < 1
2 and any plug-in policy xf (Z), we have that

∣
∣
∣E

[
μ	xf (Z)

]
− E

[
Z	xf (Z)

]
+ Bf (Z, h)

∣
∣
∣ ≤ 4h2n.

Theorem 5 asserts that by choosing h small enough, we can estimate the per-
formance μ	xf (Z) of a plug-in policy in an almost unbiased fashion by the
bias-corrected quantity Z	xf (Z) − Bf (Z). At first glance, this analysis suggests
choosing h arbitrarily small. As we will see, h controls a bias-variance trade-off for
our estimator; small h does induce small bias but comes at the cost of large variance.

Given the central role of Stein’s lemma in its derivation, we term Bf (Z)

the Stein Correction. Evaluating Bf (Z) from the data is straightforward but
computationally cumbersome, since in principle we must compute 2n different plug-
in policies corresponding to the ±h perturbations of the n components. Gupta and
Rusmevichientong (2021) and Gupta et al. (2021) each discuss possible refinements
that exploit either duality or the sensitivity analysis of the underlying Problem (13.1)
to speed up the computation.

Finally, we remark that in the non-Gaussian case, Gupta and Rusmevichientong
(2021) generalize the above result so that the error term contains an additional term
that does not vanish as h → 0 and depends on the degree to which Z is non-
Gaussian.

13.3.2 From Unbiasedness to Policy Selection

Theorem 5 suggests the following procedure for identifying a near-best-in-class
policy: choose some small h > 0, and then select

xStein(Z) = xf Stein(Z) where f Stein ∈ arg min
f∈F

Z	xf (Z)−Bf (Z, h). (13.10)

13 Optimization in the Small-Data, Large-Scale Regime 355

Unfortunately, Theorem 5 alone is not enough to ensure that this procedure
identifies a near-best-in-class policy, even asymptotically in the small-data, large-
scale regime. Namely, since Theorem 5 only treats the bias of our estimator, we need
also to establish that certain random quantities concentrate at their expectations.

More specifically, let f Stein,f OR ∈ F be the functions such that xStein(Z) =
xf Stein(Z) and xOR(Z) = xf OR(Z). Then, write

μ	
(
xStein(Z)− xOR(Z)

)

= (μ− Z)	 xStein(Z)+ Bf Stein(Z, h)

+ Z	xStein(Z)− Bf Stein(Z, h)− Z	xOR(Z)+ Bf OR(Z, h) (13.11)

+ (Z − μ)	 xOR(Z)− Bf OR(Z, h)

≤ (μ− Z)	 xStein(Z)+ Bf Stein(Z, h)+ (Z − μ)	 xOR(Z)

− Bf OR(Z, h),

where the inequality follows from the definition of xStein(Z) (cf. Problem (13.10)).
Rearranging and upper bounding by the worst case in the policy class shows

μ	
(
xStein(Z)− xOR(Z)

)
≤ 2 sup

f∈F

∣
∣
∣(Z − μ)	 xf (Z)+ Bf (Z, h)

∣
∣
∣ .

≤ 2 sup
f∈F

∣
∣
∣(Z − μ)	 xf (Z)

∣
∣
∣+ 2 sup

f∈F

∣
∣
∣Bf (Z, h)

∣
∣
∣

≤ 2 sup
f∈F

∣
∣
∣(Z−μ)	 xf (Z)−E

[
(Z−μ)	 xf (Z)

]∣
∣
∣

+ 2 sup
f∈F

∣
∣
∣Bf (Z, h)− E

[
Bf (Z, h)

]∣
∣
∣

+ 2 sup
f∈F

∣
∣
∣E

[
(Z − μ)	 xf (Z)− Bf (Z, h)

]∣
∣
∣ .

Theorem 5 bounds the last term. Thus,

μ	
(
xStein(Z)− xOR(Z)

)

︸ ︷︷ ︸
Sub-Optimality of Our Procedure

≤ 2 sup
f∈F

∣
∣
∣(Z − μ)	 xf (Z)− E

[
(Z − μ)	 xf (Z)

]∣
∣
∣ (13.12a)

+ 2 sup
f∈F

∣
∣
∣Bf (Z, h)− E

[
Bf (Z, h)

]∣
∣
∣

+ 4h2n. (13.12b)

356 V. Gupta

To prove that xStein(Z) has near-best-in-class performance, we must argue that
the above two suprema are vanishingly small in the small-data, large-scale regime
relative to the oracle performance.

When can we expect these suprema to be vanishingly small? To develop some
intuition, we first study a special case in which Problem (13.1) decouples into n
separate optimization problems.

Theorem 6 (Near-Best-In-Class Performance for Decoupled Feasible Regions)
Consider an instance of Problem (13.1) under Eq. (13.2) where the feasible region
admits a factorization of the form X = X1 × · · ·×Xn for some sets Xj ⊆ [0, 1] for
j = 1, . . . n. Suppose further that Z is a multivariate Gaussian with independent
components. Finally, consider a plug-in policy class induced by the function class
F where 2 < |F | < ∞. Then, there exists a constant C not depending on h, n, or
F such that for any 0 < ε < 1

2 ,

0 ≤ μ	
(
xStein(Z)− xOR(Z)

)

︸ ︷︷ ︸
Sub-Optimality of Our Procedure

≤ C log(1/ε)
√

log |F | ·
√
n

h
+ Cnh2.

In particular, if we let h = O(n−1/6), then the sub-optimality of our procedure is
Op(n

2/3).

Recall that in most applications, we expect that μ	xOR(Z) itself will scale like
Op(n). Hence, in these applications, the lemma proves that the relative sub-
optimality of our procedure is vanishing in the small-data, large-scale limit.
Proof Our approach will be to bound the two suprema in Eq. (13.12). We first write
them explicitly

Eq. (13.12a) = sup
f∈F

∣
∣
∣
∣
∣
∣

n∑

j=1

(Zj − μj)xf
j (Z)− E

[
(Zj − μj)xf

j (Z)
]
∣
∣
∣
∣
∣
∣
,

Eq. (13.12b) = sup
f∈F

∣
∣
∣
∣
∣
∣

n∑

j=1

xj (Z + hej)− xj (Z − hej)− E
[
xj (Z + hej)− xj (Z − hej)

]

2hνj

∣
∣
∣
∣
∣
∣
.

The argument of each suprema is the sum of mean-zero random variables. Under
our assumption on X , the j th component of the solution xj (Z) only depends on Zj
but does not depend onZk for k �= j . Thus, the terms of these sums are independent.
This observation is crucial. Said differently, both suprema can be interpreted as
suprema of an empirical process and hence analyzed with standard techniques (see,
e.g., Pollard (1990) for a canonical reference).

To that end, we first bound the supremum in Eq. (13.12b). For a fixed f , each
term in the sum has magnitude at most 1

hνmin
. Hence, each term is sub-Gaussian

with variance proxy at most 1
hνmin

. Since the terms are independent, the entire sum

(for a fixed f) is sub-Gaussian with variance proxy at most n
hνmin

. Finally, since the

13 Optimization in the Small-Data, Large-Scale Regime 357

suprema is over a finite set, we expect the supremum cannot grow too large. Indeed,
by Massart’s lemma (Wainwright, 2019, Eq. (2.67)), we know that

E

[

sup
f∈F

∣
∣
∣Bf (Z, h)− E

[
Bf (Z, h)

]∣
∣
∣

]

≤ 2

√
n log |F |
hνmin

.

To prove a stronger, high-probability bound, we invoke the discussion leading up
to (Pollard, 1990, Eq. (7.4)). This discussion shows that there exists a constant C1

such that with probability at least 1−ε/2, this supremum is at most C1 log(1/ε)
√
n
h
·

√
log |F |. (See also Theorem A.1 of Gupta et al., 2021 for clarification.)
We now treat the supremum in Eq. (13.12a). Intuitively, the analysis is similar,

but it is more tedious to establish that each term of the sum is sub-Gaussian. Instead,
we invoke a generic result from empirical process theory that encapsulates the

relevant argument. Specifically, note that
∣
∣
∣(Zj − μj)xf

j (Z)

∣
∣
∣ ≤ ∣

∣Zj − μj
∣
∣. Hence,

the vector |Z − μ| with j th component
∣
∣Zj − μj

∣
∣ is an envelope for the process.

Moreover, by Lemma A.1, Part (iv) of Gupta and Rusmevichientong (2021), the

Orlicz norm2 ‖‖ |Z − μ| ‖2‖Ψ is at most
√

2n
νmin

. Hence, by Theorem A.1 of Gupta

et al. (2021), there exists a constant C2 such that with probability at least 1 − ε/2,
Eq. (13.12a) is at most C2 log(1/ε)

√
n log |F |.

Combining both bounds and collecting constants proves the theorem. ��
Theorem 6 already highlights the aforementioned trade-off with h. As we let

h → 0, the error due to misestimating the bias vanishes, but the stochastic error
stemming from Eq. (13.12b) blows up.

Using fairly standard machinery from empirical process theory, it is straight-
forward to generalize Theorem 6 to the setting where |F | is infinite, but F has
finite metric entropy. We refer the interested reader to Pollard (1990). Similarly,
our analysis of the two suprema above only required that the components Zj were
sub-Gaussian and independent. Hence, by leveraging the more general form of
Theorem 5 in Gupta and Rusmevichientong (2021), one can also easily generalize
Theorem 6 to the case where Z is only approximately Gaussian.

Unfortunately, for more interesting optimization problems where X does not
factorize, the proof of Theorem 6 breaks down. The issue is that even for a fixed f ,
the terms of the sums composing the suprema are not independent because xf

j (Z)

potentially depends on the entire vector Z. The nature of this dependence hinges on
the structure of X in Problem (13.1) in a potentially complex way.

2 See footnote 1 for details on the Orlicz-norm.

358 V. Gupta

Nonetheless, Theorem 6 provides a blueprint for how one might analyze these
cases; namely,

1. Use the structure of X to argue that the terms xf
j (Zj) are only “weakly

dependent” across j . More precisely, we must argue that the sums inside the
suprema of Eq. (13.12) each concentrate at a rate op(n) for a fixed f ∈ F .

2. Use empirical process theory to bound each of the suprema with these weakly
dependent sums in terms of the “size” of F , i.e., either its cardinality |F | or its
metric entropy.

Although not trivial, this blueprint underlies the more advanced results in Gupta
and Rusmevichientong (2021). Indeed, therein the authors consider the special case
where X is polyhedral of the special form {x ∈ [0, 1]n : Ax ≤ bn}, where A ∈
R
m×n. When m / n, the authors use a duality argument to show that the relevant

terms of the sum are not too dependent, and hence the above program goes through
as described. For a different debiasing procedure, Gupta et al. (2021) also follows a
similar blueprint for problems that suitably decouple after fixing a small number of
decision variables or removing a small number of constraints. Summarizing these
results is beyond the scope of this chapter.

13.3.3 Stein Correction in the Large-Sample Regime

Interestingly, although we motivated xStein(Z) by the need for debiasing in the
small-data, large-scale regime, this policy has excellent performance in the large-
sample regime, as well:

Theorem 7 (Stein Correction Achieves Full-Information in Large Sample
Regime) Consider an instance of Problem (13.1) under Eq. (13.2) such that
X ⊆ [0, 1]n. Suppose there exists f SAA ∈ F such that xf SAA(Z) = xSAA(Z). Then,

0 ≤ E

[
μ	(xStein(Z)− x∗)

]

︸ ︷︷ ︸
Expected Sub-Optimality to Full-Info.

≤ 1

hνmin
+ 2n√

νmin
.

The result should be compared to Theorem 1. Indeed, the Stein Correction adds
at most 1

hνmin
to the expected error compared to SAA. Moreover, in the large-

sample limit, νmin → 0, so this term is negligibly small compared to the SAA
error. In other words, the Stein Correction enjoys performance comparable to the
SAA performance in the large-sample regime.
Proof The first inequality follows from the definition of x∗ in Problem (13.1). Let
f Stein ∈ F be the optimizer of Problem (13.10).

13 Optimization in the Small-Data, Large-Scale Regime 359

Then, write

μ	(xStein(Z)− x∗) = (μ− Z)	xStein(Z)+ Z	(xStein(Z)− xSAA(Z))

+ Z	(xSAA(Z)− x∗)+ (Z − μ)	x∗.

By optimality of xSAA(Z) in Problem (13.3), the third term above is non-positive.
We can use the Cauchy–Schwarz inequality to upper bound the first and last terms
by ‖Z − μ‖1 since x∗, xStein(Z) ∈ X ⊆ [0, 1]n. Thus,

μ	(xStein(Z)− x∗) ≤ 2‖Z − μ‖1 + Z	(xStein(Z)− xSAA(Z)).

= 2‖Z − μ‖1 + Bf Stein(Z, h)− Bf SAA(Z, h)

+ Z	xStein(Z)− Bf Stein(Z, h)− Z	xSAA(Z))

+ Bf SAA(Z, h).

By the optimality of f Stein in Problem (13.10), the last line of the last inequality is
non-positive. Moreover, supf∈F

∣
∣Bf (Z, h)

∣
∣ ≤ 1

2hνmin
by construction. Combining

shows

μ	(xStein(Z)− x∗) ≤ 2‖Z − μ‖1 + 1

hνmin
.

To complete the proof, take expectations of both sides and observe that by
Jensen’s inequality,

E [‖Z − μ‖1]=
n∑

j=1

E
[∣
∣Zj − μj

∣
∣
] ≤

n∑

j=1

√
E
[
(Zj − μj)2

]=
n∑

j=1

1√
νj

≤ n√
νmins

.

Substituting above completes the proof. ��
Theorem 7 is a heartening result. It shows that it is possible to design algorithms

with provably good performance in both large-sample and small-data, large-scale
regimes.

13.3.4 Open Questions

The debiasing approach to optimization in the small-data, large-scale regime is still
nascent. At time of writing, there are a number of exciting open questions. For what
kinds of optimization problems might we expect that the components of the solution
x

f
j (Z) are only weakly dependent? Is this weak-dependence strictly necessary in

order to construct provably good procedures, or is it an artifact of our analysis?

360 V. Gupta

From a computational perspective, how should we efficiently solve Prob-
lem (13.10)? In general, this problem is discontinuous and non-convex. If the space
of functions F is fairly complex, simple enumeration may not be feasible. How then
should we identify good policies?

More generally, are there better debiasing schemes than the Stein Correction?
Gupta et al. (2021) considers the special case of affine plug-in policies and provides
an alternate debiasing scheme that explicitly leverages optimization structure via
Danskin’s theorem. What are the benefits and drawbacks of these various schemes?
Might we design even better schemes for particular, specialized optimization
problems in inventory or revenue management? What other approaches beyond
debiasing exist to attack problems in this new setting?

13.4 Conclusion

As the degree of personalization and customization increases in operations manage-
ment and operations research applications, the ubiquity of the small-data, large-scale
regime will only increase. Our goal in this chapter was to highlight some new
phenomena that emerge in this regime and to argue that these new phenomena
can dramatically affect our intuition about and the performance of data-driven
optimization algorithms for these applications. While developing a comprehensive
theory for this regime remains outstanding, we hope that our initial steps will further
motivate researchers to develop customized algorithms for these new, exciting
applications that explicitly leverage these phenomena.

References

Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization (vol. 6). Belmont:
Athena Scientific.

Dwork, C. (2008). Differential privacy: A survey of results. In International Conference on Theory
and Applications of Models of Computation (pp. 1–19). Berlin: Springer.

Elmachtoub, A. N., & Grigas, P. (2021). Smart “predict, then optimize”. Management Science.
https://doi.org/10.1287/mnsc.2020.3922

Gupta, V., Han, B. R., Kim, S. H., & Paek, H. (2020). Maximizing intervention effectiveness.
Management Science, 66(12), 5576–5598.

Gupta, V., Huang, M., & Rusmevichientong, P. (2021). Debiasing in-sample policy performance
for small-data, large-scale optimization. https://arxiv.org/abs/2107.12438

Gupta, V., & Kallus, N. (2021). Data pooling in stochastic optimization. Management Science.
https://doi.org/10.1287/mnsc.2020.3933

Gupta, V., & Rusmevichientong, P. (2021). Small-data, large-scale linear optimization with
uncertain objectives. Management Science, 67(1), 220–241.

Harper, F. M., & Konstan, J. A. (2015). The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems, 5(4), 1–19.

Liu, Y., & Li, Z. (2017). A novel algorithm of low sampling rate GPS trajectories on map-matching.
EURASIP Journal on Wireless Communications and Networking, 2017(1), 1–5.

 -687 44964 a -687 44964 a

https://doi.org/10.1287/mnsc.2020.3922

 14556 49391 a 14556 49391 a

https://arxiv.org/abs/2107.12438

 -687 51605 a -687 51605 a

https://doi.org/10.1287/mnsc.2020.3933

13 Optimization in the Small-Data, Large-Scale Regime 361

Pollard, D. (1990). Empirical processes: Theory and applications. In NSF-CBMS Regional
Conference Series in Probability and Statistics, JSTOR (pp. i–86)

Rivasplata, O. (2012). Subgaussian random variables: An expository note. https://doi.org/10.
13140/RG.2.2.36288.23040. http://www.stat.cmu.edu/~arinaldo/36788/subgaussians.pdf

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint (vol. 48).
Cambridge: Cambridge University Press.

 28107 1907 a 28107 1907
a

https://doi.org/10.13140/RG.2.2.36288.23040
https://doi.org/10.13140/RG.2.2.36288.23040

 10290 3014 a 10290 3014
a

http://www.stat.cmu.edu/~arinaldo/36788/subgaussians.pdf

Part V
Healthcare Operations

Chapter 14
Bandit Procedures for Designing
Patient-Centric Clinical Trials

Sofia S. Villar and Peter Jacko

14.1 Introduction

Multi-armed bandit problems (MABPs) define a special class of an optimal control
problem. The MABP is a well-studied and a well-suited framework to model
resource allocation under uncertainty in a wide variety of contexts. As Whittle
(1980) put it: The multi-armed bandit problem (as it has become known) is
important as one of the simplest non-trivial problems in which one must face the
conflict between taking actions which yield immediate reward and taking actions
(such as acquiring information, or preparing the ground) whose benefit will come
only later. It has proved difficult enough to become a classic, and has now a large
literature.

The MABP has developed over its history as a key example of a problem that
has attracted considerable attention from both the Operations Research (OR) and
Machine Learning (ML) literature, thus having an exceptional potential to act as
a bridge between these two communities. As well, the MABP had its origins in
the medical statistics literature, when Thompson (1933) published his work back
in the 1930s, and one can easily argue today that its potential to improve health
applications is high (Villar et al., 2015; Press, 2009).

S. S. Villar
MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
e-mail: sofia.villar@mrc-bsu.cam.ac.uk

P. Jacko (�)
Department of Management Science, Lancaster University, Lancaster, UK

Berry Consultants, Abingdon, UK
e-mail: p.jacko@lancaster.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_14

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_14&domain=pdf

 885
50203 a 885 50203 a

mailto:sofia.villar@mrc-bsu.cam.ac.uk

 885 55738 a 885 55738
a

mailto:p.jacko@lancaster.ac.uk

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_14

366 S. S. Villar and P. Jacko

However, despite the great theoretical attention from both OR and ML literature
and the considerable potential of its application in practice, both the links between
OR and ML as well as the uptake in practice remain relatively under-explored.
The potential of the MABP to act as bridge between the OR and ML communities
remains low because the perspective in tackling the problem has had a markedly
different focus in the two fields. While in OR, formulations based on optimizing
expected discounted (or average) rewards are the most common, in ML the dominant
goal is that suggested by Robbins where the average regret is minimized. In both
cases, the most common horizon considered is infinite, and the focus usually is on
asymptotic forms of optimality. Second, the uptake of so-called bandit methods in
healthcare practice, and specially in clinical trials, is still virtually non-existing. This
may very well be surprising to the reader as across all of this theoretical literature,
the use of bandit models to optimally design clinical trials is posited as the typical
motivating application. Yet, as it was explored in Villar et al. (2015) and we will
further discuss in this chapter, little of the resulting theory has ever been used in the
actual design and analysis of clinical trials. The focus on infinite horizon problems
for OR and ML is one of the reasons for lack of practical impact but (as we will
discuss later) not the only one.

At this point, the reader may also wonder why could a MABP be a perfect fit
to optimize the design of clinical trials. The development of a drug or medical
therapy follows a regulated and lengthy process which may take between 10 and 15
years (from discovery to being available for patients). Drugs are tested in humans
only after laboratory testing, and it is divided into a series of successive clinical
trials traditionally known as phase I, II, III, and IV trials. These phases are usually
separate clinical studies, and each has a unique objective. Typically, Phase I trials
establish safety and tolerability in healthy volunteers, Phase II trials study the drugs’
efficacy and adverse effects at different dosages in patients, Phase III trials establish
the effectiveness and safety of the drug compared with placebo or standard of care,
and Phase IV trials determine general risks and benefits after approval.

A clinical trial is an experiment designed to produce data in order to answer
a specific question about a medical intervention (e.g., a drug’s superiority versus
a standard of care). A typical Phase III clinical trial would compare a single new
intervention to a standard of care (which could be simply placebo) with the aim
of establishing superiority (or non-inferiority) in terms of a certain efficacy metric.
Many Phase II trials compare multiple variants of the same intervention (e.g., drug
dosages, treatment durations, or treatment combinations), while some recent Phase
II trials include and compare multiple (independent) interventions in one trial.
Currently, there is a growing number of trials which might not be easily categorized
into these four phases, and even the regulators seem to tend to move away from such
strict definitions, and instead, talk about exploratory and confirmatory trials. Some
trials might even answer several questions and/or run across various phases, such as
the so-called seamless Phase II/III trials or platform trials.

Bandit problems formalize the tension between two goals when collecting data
to aid decision-making under uncertainty. Those goals are, the desire to learn (or
explore) about the different alternatives (i.e., to learn about the new interventions)

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 367

and that to earn (or, exploit) from that learning to achieve a certain overall objective
(i.e., to treat more patients effectively). Therefore, one could argue that in a
confirmatory clinical trial, there could be an aim of balancing two separate goals:
(1) to correctly identify the best intervention (learning) and (2) to treat patients as
effectively as possible during the trial (earning). These two goals may appear to
some as naturally complementary, but for those familiar with the MAPB it should
be clear that this is not the case. If one is considering the case of a finite population
of patients, then correctly identifying the best intervention requires some patients to
be allocated to all interventions, and therefore the former acts to limit the possibility
of treating more patients with a superior intervention.

As we will describe in this chapter, designing a clinical trial using a MABP
solution will entail defining a so-called response-adaptive allocation procedure,
which (together with specification of other aspects, e.g., statistical analysis methods
to be used at the end of the trial) would be part of an adaptive design of a clinical
trial. Traditional clinical trials, which have been the dominant design paradigm until
the very last decade, follow a linear schematic: design, conduct and analysis of data
according to a pre-specified plan. This approach allows for no form of change to
the experiment based on the accumulated data. In contrast to this, adaptive designs
permit pre-planned changes (or adaptations) to occur after interim looks of the trials
data. The key element is that while one can be flexible and adapt based on the
observed data, this should be done without undermining its integrity or validity.
This latter part and the difficulties it poses for new designs will play a key role
explaining the lower uptake of bandit results in practice. The interested reader may
read Pallmann et al. (2018); Burnett et al. (2020) for a non-technical introduction to
adaptive designs.

While adaptive designs broadly defined have generated a lot of interest in the
clinical trials community recently, particularly after the COVID-19 crisis (Stallard
et al., 2020), bandit models, methods and algorithms as a class of procedures
potentially very useful to deliver adaptive designs for patient-centric trials remain
largely unused in practice. Recent work has discussed the reasons for this lower
uptake in detail (Villar et al., 2015), discussing what the potential benefits of their
use can be as well as the challenges to its application in clinical trial practice. In
this chapter, we revisit the ideas presented in the work above and build on them to
explain what has changed since and what still calls for further research.

The structure of this chapter is as follows. In the following section, we introduce
terminology, assumptions and notation. In this chapter, we shall follow the conven-
tion (for simplicity of presentation only) that two-arm clinical trials represent typical
Phase III (confirmatory) trials, while multi-armed trials reflect Phase II (exploratory)
trials. This is an oversimplification as one could imagine two-armed trials that are
exploratory or multi-armed ones that are confirmatory, but it would aid presentation
of statistical and design concepts that are relevant in one case more than in another.

368 S. S. Villar and P. Jacko

14.2 The Bayesian Beta-Bernoulli MABP

In this section, we present a Bayesian formulation of a finite-horizon multi-
armed problem with binary outcomes as a collection of Markov decision processes
(MDPs), which provides a framework for finding the Bayes-optimal allocation
procedure by dynamic programming. Our problem of interest has the following
defining elements: time, arms (interventions), and each arm is modelled as an MDP
with states (information), actions (allocations), transition probabilities and expected
one-period rewards (patient outcomes).

Time
Patients arrive (i.e., are recruited) sequentially (i.e., one by one) at random moments
in continuous time. Since we do not discount the future, we can without loss of
generality focus only on the moments of patients’ arrivals, which we call discrete
time epochs and see as regularly spaced. That is, equivalently, we can consider that
patients arrive at time epochs t ∈ T := {0, 1, 2, . . . , T − 1}, where T < +∞ is
the number of patients in the trial, i.e., the trial size. To clarify, the (t + 1)-st patient
arrives at time epoch t . Note that t = T is the time epoch denoting the end of the
trial, when the outcome of the last patient is observed and no patient arrives.

Arms
We consider arms (or, interventions) labelled by k ∈ K := {0, 1, . . . , K}, where arm
k = 0 refers to a control intervention (typically, a standard of care for the studied
disease), and arms k = 1, . . . , K refer to novel (experimental) interventions. A
patient must be allocated to exactly one intervention (although this intervention may
well be defined as a combination therapy), and such allocation results in a binary
type of outcome from that intervention: 0 (failure) or 1 (success). The outcome
set is denoted by O = {0, 1}. In a clinical trial context, the success outcome
represents, e.g., response to intervention, remission of tumor, etc. Patient outcomes
are uncertain, i.e., modelled as Bernoulli-distributed with parameter pk (the success
probability), independent across arms. Taking the Bayesian approach, the initial
prior for the success probability of arm k is Beta distribution with parameters
(̃sk(0), f̃k(0)), which can be interpreted as the number of pseudo-successes and
pseudo-failures observed before making the first allocation in the experiment. The
rewards are immediate, meaning that the outcome of an allocated patient is observed
before the next decision needs to be made.

States
The state space for arm k, Xk := {xk := (sk, fk) ∈ �T ∪ {T })2 : sk + fk ≤ T },
represents all the possible two-dimensional vectors of available information on
the unknown parameter pk at any time during the trial. Note that we exclude
the prior information (i.e., pseudo-observations) from the state definition because
it does not change over time and because in this way the model is as small as
possible, which is beneficial from the computational point of view. However, to
simplify some expressions, we also define the pseudo-state x̃k := (̃sk, f̃k) with
s̃k := s̃k(0)+ sk, f̃k := f̃k(0)+ fk .

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 369

Actions
The action set Ak for arm k is a binary set representing the action of drawing a
sample observation from arm k (ak = 1) or not (ak = 0). In a clinical context, the
action variable stands for the choice of allocating next patient to arm k or not.

Transition Probabilities
The Markovian transition law Pk(x′k|xk, ak) describing the evolution of the infor-
mation state variable on arm k in state xk under action ak from one time epoch to
the next is given by

x′k =

⎧
⎪⎪⎨

⎪⎪⎩

(sk + 1, fk) , if ak = 1 w.p. s̃k
s̃k+f̃k ,

(sk, fk + 1) , if ak = 1 w.p. f̃k
s̃k+f̃k ,

xk, if ak = 0 w.p. 1,

(14.1)

where w.p. stands for “with probability”. Note that under action 1, the transition
probabilities are defined by the mean of the current posterior distribution, which,
due to conjugacy, is a Beta distribution with parameters

(
s̃k, f̃k

)
.

Expected One-Period Reward
The expected reward on arm k in state xk under action ak is

Rakk,xk =
s̃k

s̃k + f̃k
ak, (14.2)

where in accordance with the above specified dynamics, expected reward is the
Bayes-expected number of successes from the current patient, computed using the
current posterior Beta distribution.

Note that both the transition law and the rewards depend on the prior distri-
butions, although we do not indicate it in the notation. The system dynamics is
captured by the joint state process (xk(t))k∈K for all t ∈ T ∪ {T } and by the
joint action process (ak(t))k∈K for all t ∈ T. The actions are restricted by the
fact that every patient in the trial must be allocated to one and only one arm, i.e.,∑
k∈K ak(t) = 1 for all t ∈ T. This restriction implies a restriction on the joint state

process so that
∑
k∈K(sk(t)+ fk(t)) = t for all t ∈ T ∪ {T }.

A rule is required to operate the resulting (sometimes called weakly coupled)
MDP, which indicates which action to take for each arm k ∈ K for every possible
combination of states of the arms at every time t ∈ T. Such a rule forms a sequence
of actions resulting in a joint action process (ak(t))k∈K and it is known as a policy,
denoted by π ∈ �, where� is the set of all the feasible policies satisfying the above
action constraint.

To complete the specification of the multi-armed bandit model as an optimal
control model, the problem’s objective function must be selected. The typical
performance objective in the Bayesian Beta-Bernoulli MABP in a trial with T
patients is to maximize the Bayes-expected number of successes. For a feasible

370 S. S. Villar and P. Jacko

policy π ∈ �, the Bayes-expected number of successes is, i.e., the total value
function conditional on the initial joint prior parameters x̃(0),

ENSπx̃(0) = Eπx̃(0)
[
∑

t∈T

∑

k∈K
Rak(t)k,xk(t)

]

= Eπx̃(0)
[
∑

t∈T

∑

k∈K

s̃k(t)

s̃k(t)+ f̃k(t)
ak(t)

]

,

(14.3)
where Eπx̃(0)[·] denotes Bayesian expectation with joint Beta prior parameters
x̃(0) := (̃xk(0))k∈K under policy π . The multi-armed bandit optimal control
problem is mathematically summarized as the problem of finding an optimal policy
π∗, i.e., a feasible policy (π∗ ∈ �) that optimizes the performance objective.
Formally, the optimal policy is

π∗ = argmax
π∈�

ENSπx̃(0), (14.4)

and the optimal Bayes-expected number of successes is

ENS∗x̃(0) = max
π∈� ENSπx̃(0). (14.5)

Note that the right-hand side of (14.4) suggests that π∗ should depend on the prior
x̃(0), but the MDP theory implies that there is an optimal policy which is stationary
(i.e., it prescribes joint action (ak(t))k∈K only as a function of the posterior joint
state x̃(t) := (

s̃k(t), f̃k(t)
)
k∈K without a direct dependence on t), and thus we

assume π∗ is such and drop its dependence on the prior parameters.
The optimal policy π∗ is, nevertheless, in general different for different trial sizes

T , because larger T tends, for a given state, to lead to an allocation that provides a
larger amount of learning about the arms’ unknown success probability parameters
in order to increase the expected number of successes from the remaining patients.

14.2.1 Discussion of the Model

The above model is probably the simplest model for the multi-armed bandit problem
cast as an optimization problem. Analogous modelling approach can in theory be
employed for other distribution of outcomes (discrete, continuous, etc.), although
the state would need to be redefined as an appropriate sufficient statistic, and the
transition law and reward would need to be adjusted correspondingly (see, e.g.,
Williamson and Villar, 2020). However, in practice, these often quickly become
computationally unfeasible to be solved by dynamic programming, and approximate
approaches need to be employed.

The action set can be generalized by making the actions randomized and/or
by specifying an action to take when the original two actions are equivalent. In
some states, one could modify the action set to either have a single action (for
instance, allowing only allocation to a pre-specified arm or allowing only equal fixed

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 371

randomization in the initial stage of the trial) or have more actions (for instance,
allowing for stopping of the trial if the treatment difference seems to be large).

The model can be extended to include discounting of the future patients’
outcomes and/or to be optimized over an infinite horizon using standard approaches
from the theory of Markov decision processes, but we believe that the undiscounted
finite-horizon formulation is the most relevant for healthcare applications.

The rewards can be generalized, for instance, by including penalties in some
undesirable states in order to improve a particular statistical operating characteristic,
such as in those that would lead to an extremely unbalanced allocation in order to
improve power and estimation (as in Williamson et al., 2017, 2021) or by using any
other utility function of interest.

The above-defined model thus requires only the horizon T and the prior
parameters to be set by the trial designer. The standard choice in the bandit literature
is to set the horizon equal to the size of the trial, but in clinical trials it may
sometimes be more reasonable to optimize over the size of the patient population,
assuming that one of the arms is chosen at the end of the trial and is applied to
the after-trial patients. The standard choice for the prior parameters is the so-called
Bayes’ prior

(
s̃k(0), f̃k(0)

) = (1, 1), which is considered non-informative, although
other priors with mean 0.5 are also considered uninformative, e.g., Jeffrey’s prior
(0.5, 0.5) or Haldane’s prior (0, 0). Note that Haldane’s prior essentially reduces the
optimization problem to a frequentist objective, where the posterior mean equals the
sample mean, which is the maximum likelihood estimator of the mean, as shown in
Bowden and Trippa (2017).

14.3 Metrics for Two-Armed Problem (Confirmatory Trials)

The two-armed bandit problem with binary outcomes is probably the most studied
version of all the bandit problems, intriguing researchers from several disciplines
for almost a century (for a review, see, e.g., Jacko, 2019b). At the same time,
clinical trials with two arms are probably the most common setup of clinical trials in
practice, especially used for confirmatory trials which are typically defined with an
objective of generating convincing evidence of efficacy (and safety) in order to seek
regulatory approval. These are traditionally referred to as the randomized controlled
trials, where “controlled” indicates that a novel intervention is being concurrently
compared to another one (typically, the current standard of care), i.e., there are at
least two arms, in order to control for seasonality effects, time trends, population
changes and other shocks, and “randomized” indicates that patients are allocated to
interventions using a procedure which ensures that patients and their doctors are not
able to predict with certainty which intervention will be allocated next, in order to
help avoiding the selection bias and other types of biases (see, e.g. Rosenberger and
Lachin, 2015, for a discussion of importance of randomization). Throughout this
section, we assume K = 1, having a control arm k = 0 and an experimental arm
k = 1.

372 S. S. Villar and P. Jacko

Traditionally, the randomization ratio is taken as 1:1, called the equal fixed
randomization (EFR). This is done without any rigorous justification, often relying
on a widespread myth that the 1:1 ratio maximizes statistical power, which is
however true only under the assumption of equal variances of the efficacy of the two
arms. That might be a somewhat reasonable assumption in some cases of continuous
outcomes modelled using the normal distribution, but it is not appropriate for binary
outcomes as the variance of the Bernoulli distribution is dependent on its mean
(Robertson et al., 2021) and also for other types of outcomes such as time-to-
event (Sverdlov et al., 2011). Clinical trials might also be too small to invoke the
recommended conditions for approximation of binomial samples by the normal
distribution. Understanding of that and consideration of patient outcome (e.g., for
deadly diseases that have no current treatment) lead some clinical trial designers
to implement other fixed ratios in an ad hoc manner, e.g., 2:1, typically allocating
higher probability to the novel intervention. Note that the 1:1 randomization ratio
is often interpreted in the academic literature as that every patient’s allocation
is randomized with probability of 0.5 to either arm, but the ratio is in practice
implemented essentially as a permutation of allocations within blocks of patients,
e.g., in every block of 60 patients, there are 30 patients allocated to each arm, i.e.,
in practice it is a per-block allocation ratio rather than a per-patient randomization
probability.

Several stakeholders are involved in confirmatory trials, and thus several metrics
are of interest: the regulatory agencies would constrain the Type I error (typically
at the one-sided level of 0.025), intervention sponsors would require high statistical
power (typically at the level of 0.8 or 0.9) and small trial size (or, more generally, a
good balance of expected trial costs and expected post-approval revenues), patient
organizations would require high patient benefit (i.e., health benefit for in-trial
patients) and health economics agencies and clinicians would require accurate and
precise estimation of the interventions efficacy (or of their difference).

14.3.1 Accurate and Precise Estimation

Unequal fixed (i.e., not adaptive to observed successes and failures on each arm)
randomization is well understood in the biostatistics literature, but the researchers
in other disciplines and practitioners seem to be largely unaware of those results. For
the two-armed setting, there are closed formulae that give ratios that are optimal for
different objectives. Any fixed procedure that allocates at least one patient to each
intervention provides basis for an unbiased estimation of the efficacy of each arm
using the maximum likelihood estimator (MLE), which equals the mean of observed
successes, and for statistical testing (Rosenberger et al., 2019).

While perfect accuracy (i.e., unbiased estimation) can be achieved by fixed
randomization, using the MLE after an adaptive procedure always leads to a bias

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 373

(Bowden and Trippa, 2017), which is typically negative but can also be positive
(Nie et al., 2018). In that case, improving accuracy by using other estimators that
are unbiased can be done at a cost of decreased precision (e.g., the mean-squared
error). To the best of our knowledge, maximization of the precision using adaptive
procedures is not well understood, but there are some promising recent research
lines (Hadad et al., 2021), although existing estimation methods typically do not
apply to deterministic allocation procedures. Note also that it is linked to the
maximization of statistical power. In practice, the block randomization is sometimes
implemented in a stratified way and/or using the so-called minimization algorithms
that balance the covariates in order to increase the precision of estimators.

14.3.2 Statistical Errors

Statistical hypothesis testing is usually required by the regulators at the end of a
confirmatory trial in order to apply for a marketing approval. This is usually done in
a frequentist approach (but Bayesian approaches are also sometimes allowed after
a discussion with the regulator). For one-sided test comparing two proportions, we
specify the null hypothesis and the alternative hypothesis as follows:

H0 : p1 ≤ p0 (14.6)

H1 : p1 > p0 (14.7)

One-sided testing is more appropriate than two-sided testing whenever the regulator
is interested in limiting the probability of approving the novel intervention (arm 1)
despite being worse than or equal to the control intervention (arm 0), which is called
the Type I error, formally defined as the probability of rejecting the null hypothesis
if it is true. On the other hand, the sponsor of the novel intervention is interested in
achieving a high probability of getting the novel intervention approved if it is indeed
better than the control intervention, which is called the statistical power, formally
defined as the probability of rejecting the null hypothesis if it is false.

A variety of tests have been proposed for a comparison of proportions of
two binomial distributions, including z-tests (unpooled or pooled; with or without
continuity correction), Fisher’s exact test (and its modifications such as Boschloo’s
test) or simulation-based randomization tests. However, there is no consensus on
which test is the most appropriate because they all have certain disadvantages. The
z-tests are based on approximation of binomial distribution by normal distribution
and therefore are suitable for large samples; typically, it is suggested that there
should be a minimum number of both successes and failures on each arm (5
or 10). Fisher’s exact test is considered too conservative, yielding the Type I
error sometimes notably below the given significance level. Other tests, including
randomization tests, become computationally intractable for large samples.

374 S. S. Villar and P. Jacko

For a given Type I error, the ratio that maximizes the statistical power if using
the (unpooled) z-test is Neyman’s allocation ratio

√
θC(1− θC) : √θD(1− θD)

(Melfi and Page, 1998), which is the ratio of standard deviations of Bernoulli
distributions with means θC and θD (we remark a connection with optimal designs
of ranking and selection problems presented in Ryzhov, 2021, equation (4)). We
can see that Neyman’s allocation coincides with 1:1 when the efficacies of the
two interventions are either equal (i.e., θC = θD) or equally distant from 0.5 (i.e.,
θC = 1− θD). The monotonicity properties of the standard deviation formula imply
that the intervention whose efficacy is closer to 0.5 is allocated more patients. So,
the inferior intervention, which might be considered undesirable from the patient-
benefit perspective, is allocated more patients if and only if θC > 1 − θD . For
instance, if θC = 0.5 and θD = 0.2 (or 0.8), the ratio that maximizes the statistical
power is 5:4, while θD = 0.1 (or 0.9) gives the ratio 5:3; ratio 2:1 is optimal
for instance if θC = 0.5 and θD ≈ 0.067 (or 0.933) or if θC = 0.2 (or 0.8)
and θD ≈ 0.042 (or 0.958). However, as Neyman’s allocation ratio depends on
the efficacies of the two arms, which are unknown, it needs to be implemented
adaptively in a “learning by doing” fashion, typically by adaptively estimating the
efficacies using the accumulating observations (Rosenberger et al., 2001).

14.3.3 Patient Benefit

In order to measure the benefit for patients in the trial, we define the expected
number of successes under procedure π if the probabilities of success are p,

ENSπ
p = Eπ

p

[
T−1∑

t=0

K∑

k=0

pkak(t)

]

, (14.8)

whereEπ
p [·] denotes expectation under procedure π ∈ � prescribing the vector a(t)

of allocation processes ak(t) ∈ {0, 1} if the probabilities of success are p. (Note the
slight abuse of notation, with (14.3) being a Bayesian expectation depending on
the prior parameters, while (14.8) being a frequentist expectation depending on the
true success probabilities.) An alternative measure of patient benefit is the expected
proportion of allocations on the superior arm under procedure π if the probabilities
of success are p,

EPASAπ
p =

1

T
Eπ

p

[
T−1∑

t=0

ak∗(t)

]

, (14.9)

where k∗ := min argmaxk∈{0,...,K} pk is the lexicographically first of all the superior
arms in the trial. The means of EPASA and ENS are linear transformations (so,
produce an equivalent performance ordering of procedures) in the case of two arms,

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 375

but their variability is not so easily linked (and they are not equivalent in the case of
more than two arms because EPASA does not capture how the allocations are split
among the non-superior arms).

Kelly (1981) derived an allocation procedure which is optimal to be used at
the beginning of a trial (assuming an infinite trial size) with the objective of
providing the maximum Bayes-expected patient benefit. It is known as the least
failures first (LFF) rule, and it sequentially allocates patients to the intervention
with fewer observed failures, breaking the ties in favour of the intervention with
more observed successes (breaking the double ties arbitrarily). It is easy to see
that this procedure continues allocating patients to the same intervention as long
as observing successes and it switches to the other intervention after the first or
after the second observed failure since the last switch. See also Jacko (2019b) for
a discussion of its similarity to the “stay-with-a-winner&switch-on-a-loser” rule
known in the biostatistics literature as the “Play-the-winner” rule (Zelen, 1969).
This procedure in the long term converges to the ratio (1 − θD) : (1 − θC), which
is the same asymptotic ratio as of the “Play-the-winner” rule (Zelen, 1969) and of
a specific configuration of the “Randomized play-the-winner” with its parameter
α = 0 (Wei and Durham, 1978; Rosenberger, 1999). For instance, if θC = 0.5 and
θD = 0.2 (or 0.8), the ratio is 8:5 (or 2:5), while θD = 0.1 (or 0.9) gives the ratio 9:5
(or 1:5); ratio 2:1 is optimal for instance if θC = 0.5 and θD = 0.0 or if θC = 0.8
and θD = 0.6.

For a finite trial size, the maximum Bayes-expected patient benefit can be
obtained only computationally, using dynamic programming (DP) methods such
as the exact (optimal) method of backward recursion or approximate (near-optimal)
methods such as the Whittle index rule and the Gittins index rule. All these methods
result in allocation procedures which are not only adaptive (to observed successes
and failures on each arm) but also non-myopic meaning that they depend on the
trial size T . The backward recursion and the Whittle index rule have this dependence
direct by defining the (remaining) time horizon of the optimization problem at every
moment by the (remaining) trial size. The Gittins index rule has this dependence
only indirectly by choosing the discount factor which should reflect the trial size.
Jacko (2019b); Pilarski et al. (2021) illustrated that efficient coding in performance-
oriented programming languages (such as Julia and C++) allows for using these
computational methods for offline calculation of the allocation procedures (stored
in lookup tables) for trials sizes of up to several thousand on standard computers.
The backward recursion method is only practical when the number of arms is small,
but the sub-optimality of some index rules is practically negligible (see Sect. 14.4).

Other allocation ratios that are patient-benefit optimal given a constraint on
the variance of a function comparing the two interventions were developed in
Rosenberger et al. (2001).

376 S. S. Villar and P. Jacko

14.3.4 Trial Size

While all the above approaches try to optimize a metric for a given trial size, a very
common approach in practice is actually to minimize the trial size given (some of)
the above metrics as constraints. This is because shorter trials are cheaper (recent
studies report a cost of over $100,000 per in-trial patient for some diseases) and, if
approved, lead to a longer patent-protected marketing period.

14.3.5 Multiple Metrics

Besides the single-metric optimization, typically subject to a single constraint,
researchers have developed procedures that come close to optimizing several
metrics. These are usually tunable procedures, in which some parameters can be
set to (directly or indirectly) give higher or lower weight to a particular metric. We
will discuss two such families of procedures: the tunable Upper Confidence Bound
(αUCB) procedures and the Constrained Randomized Dynamic Programming
(CRDP) procedures.

Following Bubeck and Cesa-Bianchi (2012, Section 2), we consider the popular
αUCB procedure which allocates each arm once in the initial two periods and then
deterministically allocates every patient to the arm with currently the largest index
(breaking ties randomly) of the form

sk(t)

sk(t)+ fk(t) +
√
α · ln(t + 1)

sk(t)+ fk(t) (14.10)

where α ≥ 0. The original procedure introduced in Auer et al. (2002) used α = 2.
Theoretical upper bounds currently exist for α > 1, but researchers have noticed
empirically that lower values of α typically lead to better performance and some
used α = 1, see, e.g., Cserna et al. (2017). Numerical experiments of finite trials
have revealed that approximately the best patient benefit is robustly achieved with
α = 0.18 (Jacko, 2019b) or α = 0.19 (Pilarski et al., 2021). Note that setting α = 0
recovers the (frequentist) myopic procedure which at every period selects the arm
with highest sample mean.

Williamson et al. (2017) proposed an extension of the DP procedure called
CRDP in which (i) the original identity between selected actions and arm allo-
cations is disrupted by a random perturbation (i.e., adding randomization) and (ii)
it is allowed to introduce penalties in undesirable end-of-trial states (i.e., adding
constraining). They proposed that a good trade-off between patient benefit and
statistical properties may be achieved by setting the randomization parameter to 0.9
and by penalizing the states with less than 0.15T observations on either arm. Note
that DP is recovered by setting the randomization parameter to 1.0, while EFR is
recovered by setting it to 0.5 (and not penalizing any states).

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 377

14.4 Illustrative Results for Two-Armed Problem

We re-examine the experimental setting presented in Villar et al. (2015, Section 5.1),
and we reprint results from the original Villar et al. (2015, Table 5) in Table 14.1
(adapting the notation and terminology to this chapter) for easy reference. The
table shows the results for a variety of two-arm procedures under both the null and
alternative hypotheses. The size of the trial was set to be T = 148 to ensure that a
traditional balanced design with EFR attains at least 80% power when rejecting H0
with a (maximum) one-sided 5% Type-I error rate using the z-test.

In Table 14.2, we re-evaluate the measures of the trials designed using some
of these procedures. The table presents results in the same scenarios as originally
presented in Table 14.1, but it makes several extensions, improvements and correc-
tions. First, we complement the results presented originally by including additional
procedures and provide a more robust picture due to the employment of several
statistical tests and confidence levels. While the original table was obtained by
simulations, the results presented here are for all the procedures obtained by exact
calculations using the backward recursion (and are thus accurate up to a computer’s
numerical precision), as proposed in Jacko (2019b). A few measures are also
calculated slightly differently. EPASA originally included the prior (i.e., 2 pseudo-
allocations on each arm), so it slightly underestimated the value of EPASA reported
here, which is based on observed (or realized) allocations only. Hypothesis testing
is performed using both a z-test and Fisher’s exact test for comparing two binomial
distributions. The z-test was originally based on uncorrected variances (in order
to allow for calculation of the variance even for arms with a single observation),
while here we use it with corrected variances (using Bessel’s correction to obtain
an unbiased variance estimator); we moreover require that each arm has at least
one observed success and at least one observed failure at the end of the trial in

Table 14.1 Comparison of procedures in a two-arm trial of size T = 148 by simulation. 1.645: the
critical value used in z-test (two-sided; confidence level approximately 0.9); Fa : Fisher’s adjusted
test (two-sided). TS: Thompson sampling; RBI: randomized belief index; RGI: randomized
Gittins index; CB: current belief; WI: Whittle index; GI: Gittins index (with discount factor 0.99.
Reprinted (adapted) from Villar et al. (2015, Table 5)

Crit. H0 : p0 = p1 = 0.3 H1 : p0 = 0.3 , p1 = 0.5

value Type I E EPASA (SD) ENS (SD) Power EPASA (SD) ENS (SD)

EFR 1.645 0.052 0.500 (0.04) 44.34 (5.62) 0.809 0.501 (0.04) 59.17 (6.03)

TS 1.645 0.066 0.499 (0.10) 44.39 (5.58) 0.795 0.685 (0.09) 64.85 (6.62)

2UCB 1.645 0.062 0.499 (0.10) 44.30 (5.60) 0.799 0.721 (0.07) 66.03 (6.57)

RBI 1.645 0.067 0.502 (0.14) 44.40 (5.57) 0.763 0.737 (0.07) 66.43 (6.54)

RGI 1.645 0.063 0.500 (0.11) 44.40 (5.61) 0.785 0.705 (0.07) 65.46 (6.40)

CB Fa 0.046 0.528 (0.44) 44.34 (5.55) 0.228 0.782 (0.35) 67.75 (12.0)

WI Fa 0.048 0.499 (0.35) 44.37 (5.59) 0.282 0.878 (0.18) 70.73 (8.16)

GI Fa 0.053 0.501 (0.26) 44.41 (5.58) 0.364 0.862 (0.11) 70.21 (7.11)

378 S. S. Villar and P. Jacko

Ta
bl
e
14
.2

C
om

pa
ri

so
n

of
di

ff
er

en
tt

w
o-

ar
m

pr
oc

ed
ur

es
fo

r
a

tr
ia

lo
f

si
ze
T
=

14
8

by
ex

ac
tc

al
cu

la
tio

n;
al

lv
al

ue
s

ar
e

ro
un

de
d

to
th

re
e

di
gi

ts
.T

he
fir

st
tw

o
co

lu
m

ns
re

po
rt

th
e

Ty
pe

I
er

ro
r

un
de

r
th

e
nu

ll
hy

po
th

es
is

an
d

po
w

er
un

de
r

th
e

al
te

rn
at

iv
e

hy
po

th
es

is
,r

es
pe

ct
iv

el
y,

of
on

e-
si

de
d

te
st

s.
F-

te
st

:
Fi

sh
er

’s
ex

ac
t

te
st

;{0
.9

1,
0.

95
,
0.

98
}:o

ne
-s

id
ed

co
nfi

de
nc

e
le

ve
ls

;S
D

:u
nc

or
re

ct
ed

st
an

da
rd

de
vi

at
io

n.
N

ot
e

th
at

E
N

S
(S

D
)

un
de

r
th

e
nu

ll
hy

po
th

es
is

is
44

.4
00

(5
.5

75
)

fo
r

al
lp

ro
ce

du
re

s

H
0
:p

0
=
p

1
=

0.
3

H
1
:p

0
=

0.
3
,
p

1
=

0.
5

z-
te

st
F-

te
st

z-
te

st
F-

te
st

0.
95

0.
98

0.
91

0.
95

E
PA

SA
(S

D
)

0.
95

0.
98

0.
91

0.
95

E
PA

SA
(S

D
)

E
N

S
(S

D
)

E
F
R

0.
05

1
0.

02
1

0.
05

8
0.

02
4

0.
50

0
(0

.0
41

)
0.

80
5

0.
67

6
0.

75
5

0.
58

9
0.

50
0

(0
.0

41
)

59
.2

00
(5

.9
60

)

LF
F

0.
05

4
0.

02
3

0.
05

7
0.

02
4

0.
50

0
(0

.0
29

)
0.

80
4

0.
67

2
0.

74
6

0.
56

7
0.

58
6

(0
.0

33
)

61
.7

35
(6

.1
99

)

2U
C
B

0.
06

3
0.

03
1

0.
06

8
0.

03
3

0.
50

0
(0

.1
01

)
0.

78
6

0.
63

7
0.

70
7

0.
49

7
0.

72
7

(0
.0

77
)

65
.9

15
(6

.5
43

)

1U
C
B

0.
07

3
0.

03
8

0.
07

9
0.

04
0

0.
50

0
(0

.1
42

)
0.

75
1

0.
58

1
0.

65
2

0.
43

2
0.

78
5

(0
.0

90
)

67
.6

38
(6

.7
24

)

0.
5U

C
B

0.
08

9
0.

04
9

0.
09

5
0.

05
0

0.
50

0
(0

.1
99

)
0.

65
0

0.
44

2
0.

54
7

0.
30

8
0.

83
8

(0
.1

03
)

69
.2

19
(6

.8
94

)

0.
25

U
C
B

0.
09

7
0.

05
1

0.
10

5
0.

05
1

0.
50

0
(0

.2
71

)
0.

46
2

0.
24

3
0.

37
9

0.
17

3
0.

87
2

(0
.1

34
)

70
.2

21
(7

.2
99

)

0.
18

U
C
B

0.
09

1
0.

04
7

0.
10

1
0.

04
7

0.
50

0
(0

.3
08

)
0.

35
6

0.
15

8
0.

30
8

0.
10

4
0.

87
7

(0
.1

63
)

70
.3

56
(7

.7
40

)

0U
C
B

0.
00

1
0.

00
0

0.
00

1
0.

00
0

0.
50

0
(0

.4
83

)
0.

01
2

0.
00

7
0.

01
1

0.
00

4
0.

69
2

(0
.4

45
)

64
.8

83
(1

4.
51

)

37
C
+
0.
8R

D
P

0.
06

3
0.

03
0

0.
06

8
0.

03
1

0.
50

0
(0

.1
81

)
0.

74
6

0.
60

0
0.

66
3

0.
47

8
0.

71
4

(0
.0

60
)

65
.5

27
(6

.2
40

)

22
C
+
0.
9R

D
P

0.
07

7
0.

04
0

0.
08

5
0.

04
0

0.
50

0
(0

.2
59

)
0.

65
0

0.
49

2
0.

56
5

0.
37

1
0.

80
1

(0
.0

97
)

68
.1

16
(6

.6
96

)

15
C
+
0.
95

R
D
P

0.
09

1
0.

04
8

0.
10

1
0.

04
9

0.
50

0
(0

.2
98

)
0.

58
0

0.
41

2
0.

50
4

0.
31

4
0.

84
0

(0
.1

18
)

69
.2

70
(7

.0
21

)

0.
95

R
D
P

0.
09

0
0.

04
7

0.
10

4
0.

04
8

0.
50

0
(0

.3
13

)
0.

51
1

0.
34

6
0.

45
4

0.
26

4
0.

85
6

(0
.1

44
)

69
.7

26
(7

.4
55

)

0.
99

R
D
P

0.
07

7
0.

03
1

0.
09

7
0.

03
4

0.
50

0
(0

.3
44

)
0.

32
3

0.
17

0
0.

30
8

0.
12

3
0.

88
2

(0
.1

66
)

70
.5

04
(7

.8
49

)

37
C
+
D
P

0.
06

3
0.

03
0

0.
06

8
0.

03
1

0.
50

0
(0

.2
09

)
0.

71
5

0.
57

5
0.

63
4

0.
46

1
0.

73
4

(0
.0

50
)

66
.1

28
(6

.1
59

)

30
C
+
D
P

0.
06

8
0.

03
2

0.
07

3
0.

03
6

0.
50

0
(0

.2
44

)
0.

67
5

0.
52

3
0.

58
6

0.
40

7
0.

77
6

(0
.0

66
)

67
.3

71
(6

.3
20

)

22
C
+
D
P

0.
07

6
0.

04
0

0.
08

6
0.

03
9

0.
50

0
(0

.2
82

)
0.

60
4

0.
45

3
0.

52
2

0.
34

4
0.

82
0

(0
.0

89
)

68
.6

82
(6

.6
00

)

15
C
+
D
P

0.
09

2
0.

04
7

0.
10

5
0.

04
7

0.
50

0
(0

.3
13

)
0.

53
6

0.
37

6
0.

46
7

0.
28

8
0.

85
4

(0
.1

14
)

69
.6

66
(6

.9
62

)

7C
+
D
P

0.
08

9
0.

02
9

0.
11

6
0.

03
2

0.
50

0
(0

.3
43

)
0.

41
1

0.
25

0
0.

36
9

0.
21

9
0.

88
0

(0
.1

51
)

70
.4

41
(7

.5
90

)

D
P

0.
07

3
0.

02
6

0.
09

4
0.

02
8

0.
50

0
(0

.3
52

)
0.

26
3

0.
11

6
0.

26
2

0.
07

8
0.

88
8

(0
.1

72
)

70
.6

96
(7

.9
64

)

W
I

0.
06

5
0.

02
2

0.
09

0
0.

02
4

0.
50

0
(0

.3
63

)
0.

23
3

0.
10

2
0.

24
0

0.
06

9
0.

88
7

(0
.1

84
)

70
.6

67
(8

.1
85

)

O
R
A
C
L
E

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
50

0
(0

.5
00

)
0.

00
0

0.
00

0
0.

00
0

0.
00

0
1.

00
0

(0
.0

00
)

74
.0

00
(6

.0
83

)

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 379

order for the z-test to be employed, otherwise the null hypothesis is not rejected;
and we use the exact critical value instead of the rounded 1.645. The Fisher test
was originally two-sided, while here we report a one-sided variant, which might
not be fully equivalent due to the asymmetry of this test; moreover, the one-sided
significance level was originally adjusted (increased) to achieve the one-sided Type I
error of around 0.05, while here we present results for significance levels of 0.05 and
0.09 (i.e., confidence levels of 0.95 and 0.91). Both the original and our table report
standard deviation, even though the original table in Villar et al. (2015) referred to
it as “s.e.”.

As discussed in Villar et al. (2015), if one compares a traditional EFR procedure
to response-adaptive procedures (including bandit procedures) in the two-armed set-
ting, the first realization is that power is always higher in EFR, but its patient benefit
metrics are always lower. Adaptive procedures have their power reduced because
they induce correlation among intervention allocations; for the deterministic policies
like the DP and UCB, this effect is the most severe because they almost permanently
skew intervention allocation towards an intervention as soon as one exhibits a certain
advantage over the other arms. This table shows the tension between learning (high
power) and earning (high EPASA and ENS) and how different procedures settle for
a different balance between these two objectives.

Both tables show that even EFR leads to an inflated Type I error using the z-test
because of not having at least a certain number of both successes and failures on
each arm in order for the normal distribution to be an acceptable approximation of
the binomial distribution. Academic literature typically recommends that number to
be 5 or 10. In this scenario, we would need to require to have at least 11 successes
and 11 failures on each arm in order to obtain a Type I error below the significance
level of 0.05 (giving Type I error 0.0497 and power 0.8033). Looking at Table 14.2,
LFF also leads to a slightly inflated Type I error under the z-test, but the power
is almost the same as that of EFR, while bringing a notable patient benefit of
2.535 additional expected successes. Under the F-test, the Type I errors of these
two procedures are practically identical and notably below the significance level,
while the power of LFF is slightly lower.

Table 14.2 also includes ORACLE, which is the procedure that assumes that the
success probabilities are known, so it allocates all the patients to the superior arm;
in case of a tie (i.e., under the null hypothesis), it randomly picks one of the arms
at the beginning of the trial and sticks to it. Under the alternative hypothesis, this
procedure provides an upper bound for EPASA and ENS and a benchmark for SD of
ENS (which is almost the same as that of EFR). Under the null hypothesis, it leads
to the highest SD of EPASA of 0.500. Note that 0UCB comes close to it (0.483)
because this procedure is essentially a (frequentist) myopic procedure allocating the
patients to the arm with the currently highest sample mean. A Bayesian version
of the myopic procedure is CB in Table 14.1, which allocates using the current
belief (the mean of the posterior distribution). All the three procedures are extremely
aggressive and they almost never end the trial with at least 1 success and 1 failure
on each arm, and so their Type I error and power are extremely low (unless the
significance level is adjusted). We also see that under the alternative hypothesis,

380 S. S. Villar and P. Jacko

both 0UCB and CB are outperformed by many other procedures, and their SDs of
ENS and of EPASA are notably larger than those of all the other procedures. It is
thus clear that these two procedures are not good choices.

In terms of patient benefit, we look at both tables and focus on ENS under
the alternative hypothesis (because EPASA was calculated slightly differently, as
described above). The highest ENS is achieved by DP (70.696), closely followed
by WI (70.667) in Table 14.2. We believe that WI (70.73) in Table 14.1 is better
than DP only due to simulation error, but we do highlight that WI is an excellent
approximation to the DP. There are several runners-up with less than 1% ENS
suboptimality: 0.99RDP (70.504), 7C+DP (70.441), 0.18UCB (70.356) and GI
(70.21). This patient benefit suboptimality comes with higher Type I error and
higher power, but there are notable differences between these procedures, depending
on the test and confidence level used, with no overall winner. For instance, in three
out of the four tests, 7C+DP has lower Type I error than 0.18UCB, but notably
higher power and higher ENS; in three out of the four tests, 0.99RDP has higher or
equal power and higher ENS than 0.18UCB, but notably lower Type I error; and in
the two tests at higher confidence level, 7C+DP has lower Type I error and higher
power than 0.99RDP, but lower ENS.

Table 14.2 illustrates the flexibility of each of the three families of procedures:
UCB, CRDP and CDP. For the CDP family, we increase the constraining param-
eter by approximately 0.05T , penalizing if there are fewer than 7, 15, 22, 30, 37
observations on each arm. For the CRDP family, we include 0.99RDP and
0.95RDP to illustrate the performance of unconstrained procedures, and then
we set the constraining parameter by approximately 0.05 above the complement
of the randomization parameter (e.g., for 37C+0.8RDP, the complement of the
randomization parameter 0.8 is 0.2, so we set the constraining parameter to 0.25T).
Note that varying the parameters of CRDP and CDP leads to a monotone change
in ENS, but varying the α in the UCB leads to a concave change, as there is a
maximum around α = 0.18, and lower values quickly deteriorate the performance.
For all three families, we can see that the Type I error is concave, while power is
monotone. These non-monotonicities give scope for parameter optimization if the
designer knows the relative importance of the three metrics.

In order to compare among these three families, note that 2UCB, 37C+0.8RDP
and 37C+DP are quite similar in the Type I error, under all four tests, and also
quite similar in ENS, but there seems to be a mild difference in the power, with
2UCB dominating the other two. Another triple for comparison would be 0.5UCB,
15C+0.95RDP and 15C+DP, for which the conclusion would be similar, except
for the F-test at 0.95 confidence level, at which 15C+0.95RDP becomes the best in
power. Finally, comparing 0.18UCB, 0.99RDP and 7C+DP, 7C+DP is the best in
power for all tests. Note however that 37C+0.8RDP 15C+0.9RDP and 0.99RDP
are randomized procedures, while the other two families are deterministic.

We note that TS in Table 14.1 performs relatively poorly in ENS, outperforming
only EFR and LFF, while losing only a bit of power and inflating the Type I error
comparing to these two procedures. This may be surprising for the reader, but we

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 381

note that the table reports a finite sample performance of this asymptotically optimal
procedure.

In terms of statistical testing (excluding 0UCB and ORACLE from this discussion
due to their extremely low Type I errors), there are important differences between
the z-test and F-test at confidence level 0.95. The Type I error (expected to be
0.05) of the z-test is inflated by all the procedures, from 0.051 (EFR) up to 0.097
(0.25UCB), while that of the F-test is controlled well (the only inflation is to
0.051 of 0.25UCB), showing its most extreme conservatism for EFR (0.024), LFF
(0.024) and DP (0.028). In general, there is a strong correlation of Type I errors
between these two tests, z-test achieving approximately twice the Type I error of the
F-test. There are also notable differences in power, as the F-test achieves power of
between 0.185 and 0.342 lower than the z-test. For the z-test at 0.98, the Type I error
is also inflated by all the procedures, from 0.021 (EFR) up to 0.051 (0.25UCB). An
attentive reader however might notice that the Type I errors reported for z-test at 0.98
and for F-test at 0.95 are very similar across all the procedures. In fact, except for
22C+DP, for which the relation is opposite by 0.001, the former always leads to
a lower or equal Type I error. At the same time, it always leads to a higher power.
Similarly, z-test at 0.95 is better than F-test at 0.91 as it always results in a lower
Type I error and in a notably higher power. The F-test is often cited as conservative,
however, Table 14.2 shows that at 0.91 confidence level that is not always true,
especially for some of the more aggressive procedures, which can even inflate the
Type I error. To the best of our knowledge, this is the first time that inflation of
the Type I error by Fisher’s exact test has been reported in the literature. These
observations suggest that in the null and alternative hypotheses scenarios we have
presented, it might be preferable to use z-test over F-test. However, we emphasize
that we have discussed only a single pair of scenarios of the null and alternative
hypotheses, the performance of statistical tests for binomial samples is very sensitive
to the specific scenario parameters and the appropriateness of using these tests is
highly dependent on the specifics of each procedure, so we would refrain from any
generalizations. In practice, the trial designer could replicate our analysis and study
a variety of plausible scenarios. In theory, inference with data obtained by adaptive
procedures remains an important open question and requires further research. Some
recent examples of work in this area include (Hadad et al., 2021; Zhang et al., 2020;
Deliu et al., 2021).

The tables do not include any measures related to estimation, because that on its
own has trade-offs between precision and accuracy, which has been left out of this
chapter.

14.5 Discussion

In this section, we close the chapter by discussing how (and when) bandit models
can be specified to design a clinical trial beyond the traditional assumptions
considered in here. These include the presence or possibility of delayed responses,

382 S. S. Villar and P. Jacko

other practicalities such as dropouts (or patients lost to follow up) and/or missing
responses, safety concerns, early evidence of efficacy or futility and unavailability
of prior distributions. We also discuss how bandit models as those reviewed
here, which are typically defined for binary outcomes, can be used in practice
to accommodate for a primary endpoint that is non-binary through the use of
an appropriate surrogate endpoint. Finally, we discuss how the computational
limitations of optimal bandit approaches (i.e., those like CRDP for finite size trials)
can be mitigated by using an efficient programming language and a more effective
coding syntax to allow for designing and evaluating trials with several thousands of
patients.

For many of the practicalities discussed below, we discuss how the MDP model
of CRDP could be amended, as some of these have been recently explored in the
literature. We are not aware of how other procedures perform in the presence of
them or how could they be adjusted to incorporate each practicality.

14.5.1 Safety Concerns

Many trials in practice are forced to stop recruitment due to safety concerns by
observing secondary endpoints or adverse events, which have nothing to do with
the observed (primary endpoint) outcomes on which a response-adaptive procedure
is typically based. A designer using a response-adaptive procedure may need to
incorporate the possibility of stopping for safety concerns to introduce more control
over the number of observations from each arm. This can be done by incorporating
the probability of such stopping in the MDP model of the DP and CRDP procedures
(which we jointly refer to as (CR)DP) and by specifying constraints or by keeping
the degree of randomization relatively balanced in early stages. We are not aware of
how that could be incorporated to procedures, which are agnostic to the trial size,
apart from UCB in which we could perhaps adaptively change the parameter α as
the trial evolves.

14.5.2 Prior Distributions

All the results presented in this chapter assume for each arm Bayes’ prior
Beta(1, 1), which is the uniform distribution and is commonly considered non-
informative. This is the standard choice for binary outcomes in methodological
papers using Bayesian framework. Trial designers can however consider an
informative one based on data from previous trials. The (CR)DP easily allows
also for implementing a decreasingly informative prior (Donahue and Sabo, 2021)
by modifying the rewards and transition probabilities between states.

In some situations, there is no previous reliable data or willingness to specify the
prior distributions for each arm. In that case, the trial could have an initial phase

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 383

in which a non-adaptive randomization procedure is used, and bandit approach is
employed only after that phase accumulates sufficient amount of information, which
will be taken as the prior distribution for the (CR)DP procedures. In Williamson
and Villar (2020), some sensitivity analysis for different informative priors in a
continuous endpoint case paired with a randomized index procedure is illustrated.

14.5.3 Delayed Responses

Williamson et al. (2021) evaluated how the (CR)DP procedure performs in two-
armed trials with both fixed and random delays in responses (i.e., in observations
of outcomes). This is an important question in practice which is natural to ask
about any response-adaptive procedure. To summarize, they illustrated that one
gains slightly in terms of power and bias through the delay, so in that sense delay
could be viewed as a positive attribute from the statistical point of view (which
seems somewhat counter-intuitive), but one loses in terms of patient benefit which
is the main advantage of using such response-adaptive procedures over alternatives.
However, this loss is not overly concerning and for a relatively large, fixed delay
length, for example, one-third of the sample size 75, the percentage of patients on the
superior arm when p0 = 0.5 and p1 = 0.1 is approximately 23% higher for CRDP
and 30% higher for DP than the traditional approach of EFR. Furthermore, when
compared to the performance of the most commonly studied procedure for delayed
responses scenarios (Hardwick et al., 2006), namely the Delayed Randomized
Play-the-Winner Rule (DRPWR), there are still considerable improvements with
respect to the patient benefit for (CR)DP. Therefore, this evaluation has shown that
the (CR)DP procedures perform well in trials with delayed responses since they
continue to dominate in terms of the patient benefit over other procedures for a
range of (expected) delay lengths.

The investigation in Williamson et al. (2021) leads to a conclusion that it may
not be necessary to adjust the CRDP optimization horizon (i.e., to decrease T by
the delay length d) if the delay is large enough to satisfy the desired constraints
already by the equal fixed-randomization of the first d + 1 patients, and essentially
such constraints may not need to be included in the optimization model at all. For
smaller delays, if the designer decides to adjust the horizon, it might be beneficial for
fine-tuning of the procedure to also appropriately adjust the constraining parameters
taking into account the observations of the patients which will be revealed after the
recruitment of the last patient. Another option the designer has is to reach the desired
trial design objectives for statistical operating characteristics (high power, small
bias) by modifying the randomization probabilities, either for the early patients that
are fixed-randomized before the first observation or for the remaining patients that
are allocated using the CRDP procedure or both.

Special attention needs to be paid if there is a possibility of overly delayed
responses so that these are not observed by the time of the final analysis. In that case,

384 S. S. Villar and P. Jacko

(CR)DP with non-adjusted horizon may not even reach the final stage in which the
constraints are specified, so adjusting the horizon seems to be a preferred approach.

14.5.4 Dropouts and Missing Responses

When designing a randomized controlled trial, the designer needs to account for the
possibility of dropouts and missing responses, i.e., patients who are recruited and
get allocated to one of the arms, but we fail to observe their response, either because
they leave the trial or because their outcome is erroneous. A simple approach the
designers can take is to estimate the probability of missing responses and inflate
the trial size so that the expected number of observations excluding the missing
responses is the desired one. With (CR)DP, we can take this possibility into account
by adjusting the procedure optimization horizon by a constant, e.g., for a trial size
T , taking the procedure horizon T − m, where m is an estimate of the number of
missing responses, and correspondingly specify the constraints for the final stage
T −m. It is also possible to consider a random number of missing responses, which
would keep the procedure horizon T but would include constraints not only in the
final stage but also in previous stages which we would like to avoid. In that case, the
state-transition probabilities of the MDP model of the (CR)DP procedure could be
modified to account for the probability of observed dropouts or erroneous outcomes.

14.5.5 Early Evidence of Efficacy or Futility

Although the trial size is usually planned based on existing data and/or expert
opinion about the expected intervention effect (i.e., difference between the two
intervention success probabilities), such estimates likely come with a large variance
and bias. Both frequentist and Bayesian concepts have been developed to identify
situations during the trial which would identify sufficient evidence of efficacy or
futility of an intervention. In case of evidence of futility of a novel intervention,
recruitment to this arm should be stopped to keep patient benefit for the remaining
in-trial patients at least at the level of the current standard of care. In case of evidence
of efficacy of a novel intervention, there are two common design approaches: (1) a
decision as a result of an interim analysis is made to stop the recruitment to the novel
arm, and the intervention to “graduate” to another separate trial to confirm efficacy,
or (2) the trial seamlessly transforms to such a confirmatory trial without an explicit
interim analysis.

Both cases can be incorporated in the MDP model of the CRDP procedure. For
instance, consider a state of the trial with 5 observations on each arm, with the most
extreme data: 5 successes and 0 failures on one arm and 0 successes and 5 failures
on the other arm. Fisher’s exact test would give a one-tailed p-value of 0.004 based
on this data, showing evidence of difference between the two arms. In case of an

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 385

interim analysis which would stop recruitment for futility of the novel arm, the MDP
model of the CRDP procedure can be modified by assuming that all the remaining
in-trial patients will be allocated to the control arm, i.e., by modifying the reward of
that state and by modifying the state-transition probabilities to “jump” to the end of
the trial. In case of an interim analysis which would stop recruitment for efficacy of
the novel arm, the MDP model can be modified by assuming that all the remaining
in-trial patients will be randomized in the new separate trial, i.e., by modifying the
reward of that state and by modifying the state-transition probabilities to “jump” to
the end of the trial. In case of a seamless transformation of the trial, the degree of
randomization of the subsequent states can be defined differently from the degree of
randomization of the subsequent states that do not show such a strong evidence, so,
effectively, further generalizing the CRDP procedure to allow for randomization p
to depend not only on arm j and time stage t as in Williamson et al. (2021) but also
on the state (i.e., numbers of successes and failures) itself.

14.5.6 Non-binary Outcomes

Development of an analogous randomization procedure to (CR)DP when the
primary endpoint is non-binary is theoretically possible but computationally will
become infeasible for much smaller trial sizes than the current variant for binary
outcomes. The designer could still however employ the binary outcomes (CR)DP
by using a dichotomization of the primary endpoint or by using an auxiliary
endpoint correlated with the primary endpoint. Although dichotomization may not
lead to as high patient benefit as theoretically achievable using the original endpoint,
if meaningfully defined it could lose only a negligible amount and thus still bring
important patient benefit over alternative response-adaptive procedures. The degree
of randomization could be adjusted in order to reflect the designer’s confidence
in the correlation between the primary and auxiliary endpoints. See, for instance,
Williamson and Villar (2020) for such an investigation for normally distributed
outcomes.

14.5.7 Exploratory Trials

In a two-armed setting, we discussed and illustrated the conflict between patient
benefit (patient outcomes) and relevant statistical features (error levels and estima-
tion metrics). In the two-arm setting, there is little scope for a bandit procedure to
be superior to EFR in terms of the latter metrics. In a multi-armed setting (as for
example large platform trials are), this is not necessarily the case, and depending
on the main objective of the trial (e.g., the specific statistical power definition used)
and the type of bandit procedure, one can find alternatives that may be superior to
EFR in both the statistical features and patient benefit. Exploratory trials, which are

386 S. S. Villar and P. Jacko

Table 14.3 Comparison of procedures in a four-arm trial of size T = 423 by simulation. Fa :
Fisher’s adjusted test; Type I E: family-wise Type I error; CGI: controlled Gittins index. Reprinted
(adapted) from Villar et al. (2015, Table 6)

Crit. H0 : p0 = p1 = p2 = p3 = 0.3 H1 : p0 = p1 = p2 = 0.3, p3 = 0.5

value Type I E EPASA (SD) ENS (SD) Power EPASA (SD) ENS (SD)

EFR 2.128 0.047 0.250 (0.02) 126.86 (9.41) 0.814 0.250 (0.02) 148.03 (9.77)

TS 2.128 0.056 0.251 (0.07) 126.93 (9.47) 0.884 0.529 (0.09) 172.15 (13.0)

2UCB 2.128 0.055 0.251 (0.06) 126.97 (9.41) 0.877 0.526 (0.07) 171.70 (11.9)

RBI 2.128 0.049 0.250 (0.03) 126.77 (9.40) 0.846 0.368 (0.04) 158.34 (10.4)

RGI 2.128 0.046 0.250 (0.03) 126.80 (9.36) 0.847 0.358 (0.03) 157.26 (10.3)

CB Fa 0.047 0.269 (0.39) 126.89 (9.61) 0.213 0.677 (0.41) 184.87 (36.8)

GI Fa 0.048 0.248 (0.18) 126.68 (9.40) 0.428 0.831 (0.10) 198.25 (13.7)

CGI 2.128 0.034 0.250 (0.02) 127.16 (9.46) 0.925 0.640 (0.08) 182.10 (12.3)

ORACLE 0.000 0.250 (0.43) 126.90 (9.42) 0.000 1.000 (0.00) 211.50 (10.3)

often multi-armed, are moreover not meant to directly lead to a regulatory approval
and thus may not need to perform in statistical operating characteristics as strictly
as confirmatory trials would need to.

This was illustrated in Villar et al. (2015, Table 6) reproduced here as Table 14.3
for easy reference. The results in there show how some randomized and semi-
randomized bandit procedures (i.e., TS, 2UCB, RBI, RGI) exhibit an advantage
over EFR both in the achieved power and in ENS. These procedures continue to
allocate patients to all arms during the trial while skewing allocation to the best
performing arm, hence, ensuring that by the end of the trial the control arm will
have a similar number of observations as with EFR, while the best arm will (in
expectation) have a larger number. Among these procedures, TS and 2UCB exhibit
the best performance in power and ENS as they are both greater than those achieved
by EFR, although they cause a slight inflation of the Type I error. While RBI and
RGI were performing somewhat similarly to TS and 2UCB in the two-armed setting
shown in Table 14.1, their performance in ENS terms is notably inferior in the multi-
armed setting shown in Table 14.3.

The deterministic index-based procedures CB and GI increase the advantage in
ENS over EFR even more, while the Type I error is controlled using an adjusted
Fisher test. However, this conservative test causes a severe reduction in power of
these procedures. A simple way to overcome the severe loss of statistical power of
the deterministic procedures in the multi-armed setting introduced in Villar et al.
(2015) suggests to use a composite procedure in which the (random) allocation
to the control arm is protected and the allocation to experimental arms is guided
by a deterministic procedure. For example, in Table 14.3, results are shown for
a procedure in which one in every K patients (note that K is the number of
experimental arms) is allocated to the control group, while the allocation of the
remaining patients among the experimental treatments is done using the Gittins
index procedure. This procedure was referred in there as the controlled Gittins index
(CGI) procedure. Simulation results show that a simple procedure like CGI manages

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 387

to solve the trade-off quite successfully, in the sense that it achieves the highest
power, lowest Type I error and an ENS very close to that achieved by the myopic
CB procedure but with a third of the variability that CB exhibits.

14.5.8 Large Trials

Williamson et al. (2017) developed the (CR)DP procedure in the context of rare
diseases and thus focused on relatively small trial sizes. They provided an “efficient
algorithm” for (CR)DP implemented in the statistical software R and reported
that the maximum time horizon that “can be computed on a standard laptop using
R is T = 215” and that computations are “feasible on a standard performance
workstation (1 TB of RAM) for 215 < T < 600”. Jacko (2019b,a) however
showed that much larger horizons are possible to compute on standard computer
(with 32 GB RAM) if using a more efficient programming language (Julia) and
a more effective coding syntax, with up to T = 4500 for online calculation and
T = 1500 for offline calculation (storing the whole (CR)DP procedure allocations
in an array for saving on a hard disk).

The (CR)DP procedure could be in theory generalized to more than 2 arms, but
in practice that might lead to computationally infeasible model. Alternatives that
closely approximate the DP procedure are the Whittle index and the Gittins index
(Villar et al., 2015; Villar, 2018; Jacko, 2019b). However, their modifications to
include constraints like in the CRDP procedure have not been developed yet and
may not always be possible, especially for constraints that depend on more than one
arm, because the Whittle and Gittins indices crucially function by decomposing
the trial-level optimization problem into single-arm optimization subproblems.
Nevertheless, single-arm constraints such as about the number of observations from
each arm should be implementable. If constraints are not required, then the degree of
randomization can be easily implemented using the Whittle or Gittins index instead
of the DP procedure in the alternative interpretation described in Williamson et al.
(2021).

References

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2–3), 235–256.

Bowden, J., & Trippa, L. (2017). Unbiased estimation for response adaptive clinical trials.
Statistical Methods in Medical Research, 26(5), 2376–2388.

Bubeck, S., & Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends® in Machine Learning, 5(1), 1–122.

Burnett, T., Mozgunov, P., Pallmann, P., Villar, S. S., Wheeler, G. M., & Jaki, T. (2020). Adding
flexibility to clinical trial designs: an example-based guide to the practical use of adaptive
designs. BMC Medicine, 18(1), 1–21.

388 S. S. Villar and P. Jacko

Cserna, B., Petrik, M., Russel, R. H., & Ruml, W. (2017). Value directed exploration in multi-
armed bandits with structured priors. In Proceedings of the 33rd Conference on Uncertainty in
Artificial Intelligence.

Deliu, N., Williams, J. J., & Villar, S. S. (2021). Efficient inference without trading-off regret in
bandits: An allocation probability test for Thompson sampling. Preprint arXiv:2111.00137.

Donahue, E., & Sabo, R. T. (2021). A natural lead-in approach to response-adaptive allocation for
continuous outcomes. Pharmaceutical Statistics, 20, 1–10.

Hadad, V., Hirshberg, D. A., Zhan, R., Wager, S., & Athey, S. (2021). Confidence intervals for
policy evaluation in adaptive experiments. Proceedings of the National Academy of Sciences,
118(15), e2014602118.

Hardwick, J., Oehmke, R., & Stout, Q. F. (2006). New adaptive designs for delayed response
models. Journal of Statistical Planning and Inference, 136, 1940–1955.

Jacko, P. (2019a). BinaryBandit: An efficient Julia package for optimization and evaluation of
the finite-horizon bandit problem with binary responses. Management Science Working Paper
2019:4, Lancaster University Management School.

Jacko, P. (2019b). The finite-horizon two-armed bandit problem with binary responses: A
multidisciplinary survey of the history, state of the art, and myths. Management Science
Working Paper 2019:3, Lancaster University Management School. arXiv:1906.10173.

Kelly, F. (1981). Multi-armed bandits with discount factor near one: the Bernoulli case. Annals of
Statistics, 9(5), 987–1001

Melfi, V., & Page, C. (1998). Variability in adaptive designs for estimation of success probabilities.
In New developments and applications in experimental design, Lecture Notes-Monograph
Series (Vol. 34, pp. 106–114).

Nie, X., Tian, X., Taylor, J., & Zou, J. (2018). Why adaptively collected data have negative bias
and how to correct for it. In International Conference on Artificial Intelligence and Statistics
(pp. 1261–1269). PMLR.

Pallmann, P., Bedding, A. W., Choodari-Oskooei, B., Dimairo, M., Flight, L., Hampson, L. V.,
Holmes, J., Mander, A. P., Sydes, M. R., Villar, S. S., Wason, J. M. S., Weir, C. J., Wheeler, G.
M., Yap, C. & Jaki, T. (2018). Adaptive designs in clinical trials: why use them, and how to
run and report them. BMC Medicine, 16(1), 1–15.

Pilarski, S., Pilarski, S., & Varró, D. (2021). Optimal policy for Bernoulli bandits: Computation
and algorithm gauge. IEEE Transactions on Artificial Intelligence, 2(1), 2–17.

Press, W. H. (2009). Bandit solutions provide unified ethical models for randomized clinical trials
and comparative effectiveness research. Proceedings of the National Academy of Sciences,
106(52), 22387–22392.

Robertson, D. S., Lee, K. M., Lopez-Kolkovska, B. C., & Villar, S. S. (2021). Response-
adaptive randomization in clinical trials: From myths to practical considerations. Preprint
arXiv:2005.00564.

Rosenberger, W. F. (1999). Randomized play-the-winner clinical trials: Review and recommenda-
tions. Controlled Clinical Trials, 20(4), 328–342.

Rosenberger, W. F., & Lachin, J. M. (2015). Randomization in clinical trials: Theory and practice.
Wiley.

Rosenberger, W. F., Stallard, N., Ivanova, A., Harper, C. N., & Ricks, M. L. (2001). Optimal
adaptive designs for binary response trials. Biometrics, 57(3), 909–913.

Rosenberger, W. F., Uschner, D., & Wang, Y. (2019). Randomization: The forgotten component of
the randomized clinical trial. Statistics in Medicine, 38(1), 1–12.

Ryzhov, I. O. (2021). Optimal learning and optimal design. In The elements of joint learning and
optimization in operations management. Berlin: Springer.

Stallard, N., Hampson, L., Benda, N., Brannath, W., Burnett, T., Friede, T., Kimani, P. K., Koenig,
F., Krisam, J., Mozgunov, P., Posch, M., Wason, J., Wassmer, G., Whitehead, J., Williamson,
S. F., Zohar, S., Jaki, T. (2020). Efficient adaptive designs for clinical trials of interventions for
COVID-19. Statistics in Biopharmaceutical Research, 12(4), 483–497.

Sverdlov, O., Tymofyeyev, Y., & Wong, W. K. (2011). Optimal response-adaptive randomized
designs for multi-armed survival trials. Statistics in Medicine, 30(24), 2890–2910.

14 Bandit Procedures for Designing Patient-Centric Clinical Trials 389

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4), 285–294.

Villar, S. S. (2018). Bandit strategies evaluated in the context of clinical trials in rare life-
threatening diseases. Probability in the Engineering and Informational Sciences, 32, 229–245.

Villar, S. S., Bowden, J., & Wason, J. (2015). Multi-armed bandit models for the optimal design
of clinical trials: Benefits and challenges. Statistical Science, 30(2), 199–215.

Wei, L. J., & Durham, S. (1978). The randomized play-the-winner rule in medical trials. Journal
of the American Statistical Association, 73(364), 840–843.

Whittle, P. (1980). Multi-armed bandits and the Gittins index. Journal of the Royal Statistical
Society, Series B, 42(2), 143–149.

Williamson, S. F., Jacko, P., & Jaki, T. (2022). Generalisations of a Bayesian decision-theoretic
randomisation procedure and the impact of delayed responses. Computational Statistics and
Data Analysis, 174, 107407.

Williamson, S. F., Jacko, P., Villar, S. S., & Jaki, T. (2017). A Bayesian adaptive design for clinical
trials in rare diseases. Computational Statistics and Data Analysis, 113C, 136–153.

Williamson, S. F., & Villar, S. S. (2020). A response-adaptive randomization procedure for multi-
armed clinical trials with normally distributed outcomes. Biometrics, 76(1), 197–209.

Zelen, M. (1969). Play the winner rule and the controlled clinical trial. Journal of the American
Statistical Association, 64(325), 131–146.

Zhang, K., Janson, L., & Murphy, S. (2020). Inference for batched bandits. In H. Larochelle, M.
Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in Neural Information Processing
Systems, (Vol. 33, pp. 9818–9829). Curran Associates.

Chapter 15
Dynamic Treatment Regimes for
Optimizing Healthcare

Nina Deliu and Bibhas Chakraborty

15.1 Introduction

Treatment of diseases or disorders, including both chronic conditions and acute
illnesses, often involves a series of decisions over time to address evolving
characteristics of patients’ conditions. For example, treatment of cancer involves
a succession of decisions at key milestones in the disease progression: initially,
patients are generally treated with a powerful chemotherapy, known as induction
therapy, to induce remission of the disease; then, if the patient responds (i.e., shows
sign of remission), the clinician tries to maintain remission for as long as possible by
prescribing a maintenance therapy, otherwise, the clinician prescribes a second-line
or salvage induction therapy to try to induce remission. Of course there exist many
possible induction and maintenance therapies. The specific sequence of possible
therapies is generally chosen by a clinician in order to elicit the best outcome
possible, e.g., long survival with little toxicity, or to maximize a single outcome
of interest. Similarly, management of mental health and behavioral disorders, or

N. Deliu (�)
MRC - Biostatistics Unit, University of Cambridge, Cambridge, UK

Department of Methods and Models for Economics, Territory and Finance, Sapienza University
of Rome, Rome, Italy
e-mail: nina.deliu@uniroma1.it

B. Chakraborty
Centre for Quantitative Medicine and Program in Health Services and Systems Research,
Duke-NUS Medical School, National University of Singapore (NUS), Singapore, Singapore

Department of Statistics and Data Science, NUS, Singapore, Singapore

Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
e-mail: bibhas.chakraborty@duke-nus.edu.sg

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Chen et al. (eds.), The Elements of Joint Learning and Optimization in
Operations Management, Springer Series in Supply Chain Management 18,
https://doi.org/10.1007/978-3-031-01926-5_15

391

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01926-5_15&domain=pdf

 885 47436 a 885 47436
a

mailto:nina.deliu@uniroma1.it

 885 55738 a 885 55738 a

mailto:bibhas.chakraborty@duke-nus.edu.sg

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-01926-5_15

392 N. Deliu and B. Chakraborty

other medical conditions such as obesity, requires a series of decisions in which
the physician may start, stop, maintain, modify, or adjust interventions on the basis
of a patient’s response and other characteristics. To the patient, this sequence of
treatments seems like standard treatment; to the clinician, it represents a series
of decisions, based on information from previous patients with similar treatment
history, characteristics, and behaviors; and to the statistician, this constitutes a
dynamic treatment regime or regimen (Murphy et al., 2001; Murphy, 2003; Lavori
and Dawson, 2004; Chakraborty and Moodie, 2013; Chakraborty and Murphy,
2014). Dynamic treatment regimes (DTRs) offer a vehicle to operationalize the
sequential decision making process involved in the personalized clinical practice,
and thereby a potential way to improve it. Thus, conceptually, a DTR can also be
viewed as a decision support system of a clinician (or more generally, any decision
maker), described as a key element of the chronic care model (Wagner et al., 2001).

DTRs are known by a variety of different names, with adaptive interven-
tions (Collins et al., 2004; Nahum-Shani et al., 2012a), treatment strategies (Lavori
et al., 2000; Thall et al., 2007b), adaptive treatment strategies (Murphy, 2005a;
Murphy et al., 2007; Lavori and Dawson, 2008), and treatment policies (Lunceford
et al., 2002; Wahed and Tsiatis, 2004; Dawson and Lavori, 2012) being the most
common ones. In the context of multi-stage decision making, a DTR is defined
as a sequence of decision rules, one per stage of intervention, that dictate how
to personalize treatments to patients based on their baseline and evolving history
(time-varying, dynamic state), repeatedly adjusting over time in response to ongoing
performance (Almirall et al., 2014; Nahum-Shani et al., 2018). Thus, treatment
regime is “dynamic” within a person over time, varying because the person or
disease is changing, with the goal of obtaining the best results for that individual.
Note that some authors have used dynamic treatment regime to refer to the fact
that a regime involves multiple decision points, without regard to the nature of its
rules, thus tacitly implying that a single decision regime is “nondynamic.” Here,
we follow the original definition of Murphy et al. (2001), in which “dynamic”
refers to a regime with decision rules incorporating baseline and evolving patient
information. This definition is thus consistent with the view of any single-stage
regime as “nondynamic,” but at the same time with “nondynamic” multi-stage
decisions that do not incorporate time-varying information (but uses only baseline).

Existing frameworks for DTRs (Almirall et al., 2014; Collins et al., 2004)
highlight four components that play an important role in designing these interven-
tions: (i) the critical decision points, specifying the time points at which patients’
outcomes (e.g., response), are assessed and decisions are made to continue, alter,
add, or subtract treatment; at each of this points, (ii) the treatment options; (iii)
the tailoring variables to personalize treatment; and (iv) a decision rule which
links the tailoring variables to specific interventions. Treatment options are not
limited to different medications or drugs but can also include different dosages
(duration, frequency, or amount (Voils et al., 2012)), modes of delivery (e.g., oral
or injection), timing schedules, behavioral interventions, or no further treatment.
Tailoring variables refer to patient and treatment information available up to the
time of the critical decision and may include previous treatment and disease history,

15 Dynamic Treatment Regimes for Optimizing Healthcare 393

genetic information, diagnostic test results, etc. Once the four elements are defined,
each decision rule takes a subject’s individual characteristics and treatment history
observed up to that stage as inputs and outputs a recommended treatment strategy
at that stage. However, one should take into account that any combination of the
four elements mentioned above does not provide a sufficient set for developing a
practical DTR. Indeed, a DTR must be constructed with thought and be a treatment
regimen either used by physicians in the past or that physicians would consider
using. Furthermore, it is exceedingly important that the DTR be viable (Wang
et al., 2012), realistic (van der Laan and Petersen, 2007a), and feasible (Robins,
1986, 2004) to capture those that may experience common contingencies in the
course of treatment. For instance, aggressive initial treatment may set the stage for
better overall success or lead to toxicities or other side effects which may hinder
success of subsequent treatment; thus, the trade-off between short term and long-
term outcomes should occupy a central place. In addition, because of the tremendous
heterogeneity among people and within diseases, the same treatment may not be the
best treatment for everyone or may not even be the best treatment for an extended
period of time for a single person.

The study of evidence-based (i.e., data-driven) DTRs comprises an emerging
and important line of methodological research within the domain of personalized
medicine, a medical paradigm that transitions from the one-size-fits-all ideology,
emphasizing systematic use of individual characteristics to optimize that individ-
ual’s health care. In contrast with traditional single-stage treatments in which all
individuals are assigned the same level and type of treatment, DTRs explicitly
incorporate the heterogeneity in treatment across individuals and the heterogeneity
in treatment across time within an individual (Murphy, 2003), providing an attractive
framework of personalized treatments in longitudinal settings. In addition, by treat-
ing only subjects who show a need for treatment, DTRs hold the promise of reducing
non-compliance by subjects due to overtreatment or undertreatment (Lavori et al.,
2000; Collins et al., 2004), and at the same time are attractive to public policy
makers, allowing a better allocation of public and private funds for more intensive
treatment of the needy (Murphy, 2003).

The main research goals in this personalized treatments arena concern: (i) to
construct optimal DTRs, i.e., to identify the sequence of treatments that result in the
most favorable outcome of interest possible (i.e., with the highest utility) and (ii)
to compare two or more preconceived DTRs in terms of their utility. In the current
literature, a DTR is usually said to be optimal if it optimizes a mean long-term
outcome (e.g., an outcome observed at the end of the final stage of intervention).
However, at least in principle, other utility functions (e.g. median or other quantiles,
or some other feature of the outcome distribution) can be employed as optimization
criteria. Thus, any attempt to achieve the above goals in a data-driven way essen-
tially requires knowing or estimating the utility functions (or some variations). For
example, Murphy (2003) defines multiple stage-specific regret (i.e., loss) functions,
and Robins (2004) defines stage-specific blip functions (alternatively known as
welfare contrasts in econometrics). In their proposed framework of structural nested
mean models, they provided methodologies to estimate the parameters of regret

394 N. Deliu and B. Chakraborty

or blip functions and thereby to identify the optimal DTR. On the other hand, Q-
learning, a reinforcement learning (RL) method originally developed in computer
science but later adapted to statistics, targets estimating and maximizing the utility
function (conditional expectation of the primary outcome), rather than minimizing
the regret or any other blip. All these approaches will be discussed in great details
in Sect. 15.4, along with their relative merits and demerits.

With the above broad picture of DTRs in mind, in this chapter we aim to
provide a comprehensive overview of this cutting-edge area of research. We start
with a mathematical formalization of the DTRs problems, followed by existing
methodologies and solutions, which includes the RL framework as well, and end
with statistical and practical considerations when dealing with DTRs in real life.

15.2 Mathematical Framework

We now present a more formal definition of dynamic treatment regimes, introducing
the basic mathematical framework of DTRs as a general decision making problem
and presenting conventions and notations we adopt throughout this chapter.

Traditionally, personalized medicine concerns single-stage decision making,
where the clinician has to decide on the optimal treatment for an individual patient,
given their baseline or study-entry (nondynamic) covariates. Suppose the clinician
observes a certain random characteristic (e.g., a demographic variable, a biomarker,
the result of a diagnostic test, or other clinical values) of the patient, which we
denote with x1, and based on that has to decide whether to prescribe treatment
a or treatment a′. A decision rule, say d, could be, for example: “give treatment
a′ to the patient if their individual characteristic X1 is higher than a pre-specified
threshold, and treatment a′ otherwise.” Throughout this chapter, we will use case
letters to denote a realized/observed variable, and capital letters for the (unobserved)
random variable. In this simple setting, d is a mapping from currently available
information X1, sometimes also referred to as state, into the space of possible
decisions, or actions, say A .= {a, a′}. In the treatment regimes literature, this
single-stage decision rule is known as individualized treatment regime (Zhao et al.,
2012a) or individualized treatment rule (Qian and Murphy, 2011). Any decision,
medical or otherwise, is then statistically evaluated in terms of its utility, say U(A),
which refers to the utility of taking a random action A ∈ A. The utility function
can be specified in various ways, depending on the specific problem; it can be a
summary of one outcome of interest, or a composite outcome: for example, in Wang
et al. (2012) the utility is a compound score numerically combining information
on treatment efficacy, toxicity, and the risk of disease progression. However, one
of the most common ways would be to set U(A,X1)

.= E(Y |A,X1), i.e., the
conditional expectation of outcome Y given the stateX1 and action A. The outcome
Y is generally a function of the baseline covariates X1, the selected treatment A,
and the new set of patient’s covariates, say X1, evaluated after giving treatment A.
Alternatively, one can define U(A,X1)

.= E(YA|X1), where YA is the potential

15 Dynamic Treatment Regimes for Optimizing Healthcare 395

outcome of decision A; we will introduce this notion in Sect. 15.2.1. Clearly, the
primary goal is to find the optimal decision rule, i.e., the one that outputs the action
that maximizes the utility at the given state X; this is personalized decision making
since the optimal decision depends on the state.

This decision-theoretic framework is adopted also in other literatures different
from treatment regimes. For instance, in econometrics literature (Manski, 2000,
2002, 2004; Dehejia, 2005; Hirano and Porter, 2009), a similar framework is used
for the evaluation of social welfare programs, where the role of a clinician is
replaced by a social planner, different welfare programs serve as different treatment
choices, and the state again consists of individual characteristics.

Constructing DTRs involves solving, or estimating quantities relevant in, a multi-
stage decision problem. Thus, the focus of this chapter is multi-stage decision
problems rather than the considerably simpler single-stage problems, for which
interested readers may consult Hirano and Porter (2009) and Qian and Murphy
(2011). However, we will use the single-stage decision framework at times to
develop certain ideas to be ultimately used in the more complicated setting of
multiple decisions.

Formally, a DTR is a sequence of decision rules, say d .= {d}t≥1, indexed by a
finite or indefinite number T of decision points at which a treatment must be selected
from among a set of available, feasible options; and decisions have to be made based
on the time-varying (dynamic) covariates of an individual. Given the stage or time
of intervention t (here we assume a discrete time space, i.e., t ∈ N), we denote
with Xt , At , and Yt the patient’s covariates, the treatment option, and the outcome
at time t , respectively. The full data trajectory of a single patients is represented as a
sequence of covariates, treatments received and outcomes observed after treatment
assignment, i.e., T .= {Xt,At , Yt+1}t≥1. We assume that {Yt }t>1 are continuous
variables that are coded so that higher values are preferred. In some problems, there
may only be an end-of-study outcome of interest Y

.= YT+1 instead of multiple
intermediate outcomes; for example, in the attention deficit hyperactivity disorder
(ADHD) study (Pelham et al., 2002) for evaluating the effects of a treatment on
children with ADHD, the target outcome was school performance score at the end
of study.

Define now Xt
.= (X1, . . . , Xt), At

.= (A1, . . . , At) and Yt
.= (Y2, . . . , Yt), and

similarly xt, at, and yt, where again the upper and lower case letters denote random
variables and their particular realization, respectively. Also define the history Ht as
all the information available at time t prior to decisionAt , i.e., Ht

.= (Xt,At−1,Yt);
similarly ht. Generally, the outcome Yt+1 at next time step t + 1 is conceptualized
as a known function of the history Ht at time t , the current decision At and the
subsequent stateXt+1 once decision is made, i.e., Yt+1 = Yt+1(Ht, At ,Xt+1). Note
that, by definition, H1 = X1. Let Ht

.= X1 ×∏t
τ=2 Xτ ×Aτ−1 ×Yτ denote the

support of Ht, for t ∈ N, with Xt , At and Yt the support of the state, the set of
available options and the support of the outcome variable at time t .

Armed with this notation, we can now more formally define a dynamic treatment
regime as a set of decision rules, also known as policy

396 N. Deliu and B. Chakraborty

d .= {dt }t≥1 = {d1, d2 . . . } = {d1(X1), d2(H2), . . . }, (15.1)

where each stage-t rule dt is a function that maps an individual’s history Ht ∈ Ht

to a treatment option in At , that is, dt : Ht → At , for all t ≥ 1.
An important distinction in the formulation of a treatment regime relates to the

deterministic (or nonrandom) vs random set of decision rules. A rule dt (Ht) is said
to be nonrandom if, at each time t ≥ 1, given history Ht, it assigns one and only
one treatment option from among those in At ; while a random policy will assign
treatments according to some pre-specified probabilities depending on Ht. In the
vast majority of applications, as well as in this chapter, interest is restricted to
nonrandom regimes. We refer to Murphy et al. (2001) for discussion of random
regimes.

The optimal DTR is the set of decision rules, denoted by d∗ = {d∗t }t≥1, that
maximizes the expected utility. If we denote, as mentioned before, the utility as a
conditional expectation of an outcome given action A and the initial state (let us
assume for now we only have a final outcome of interest Y

.= YT+1), the optimal
regime d∗ = {d∗t }t=1,...,T , is given by

d∗ .= arg max
d

Ed [U(A,X1)] .= arg max
d

Ed [Y |X1], (15.2)

where the expectation is taken with respect to the probability distribution of full
data trajectory T induced by assigning treatment according to policy d, which we
denoted by Ed .

This expected utility is also known as the (state) value of a specific treatment
regime d for an individual with baseline information or state X1, so that to
incorporate the notion of personalization. Other authors may refer to this value as
the marginal expectation of Y , i.e., Ed [Y], with marginalization occurring over the
space of all possible baseline information X1. We will clearly make the distinction
in this work, by using the terms value, state value, and action value (which will be
introduced later), referring to the marginal expectation, the expectation conditioned
on the state as in (15.2), and the expectation conditioned on both state and action,
respectively.

15.2.1 Potential Outcomes Framework

In order to understand the methods for constructing and estimating DTRs we
will be discussing later in Sect. 15.4, and to allow the quantification of treatment
effects from observational or experimental data, we present the foundations for
the underlying potential outcomes or counterfactual framework. The potential out-
comes framework was first introduced to analyze causal effects of time-independent
treatments in randomized trials (Neyman, 1923) and then extended to observational
studies (Rubin, 1974) and time-dependent treatments in observational and random-

15 Dynamic Treatment Regimes for Optimizing Healthcare 397

ized studies (Robins, 1986). By far, it represents the most popular approach to
mathematically defining a causal effect and constitutes a basis for the modern causal
inference.

Potential outcomes are the set of all possible values of a state or outcome variable
for an individual, each of which is associated with a unique treatment regime
(sequence). Thus, it also includes those regimes different from the one they were
actually observed to follow (hence, counter to fact). In a simple one-stage study
in which subjects can receive either treatments a and a′, we denote the set of
(unobserved) potential outcomes for an individual with baseline information X1 by(
Xa2 , Y

a
2 , X

a′
2 , Y

a′
2

)
, where Xa2 and Ya2 refer to the potential state and outcome that

were to be observed if assigned to treatment a. Clearly, in line with what we saw at
the beginning of this section, Ya2

.= Y2(X1, a,X
a
2). This framework applies to the

study of DTRs as well as to other different areas where estimating causal effects are
of central interest. For instance, in educational sciences, one may want to understand
how an educational intervention (e.g., an online course format) changes student
achievement relative to other levels of the intervention (e.g., in-person course
format). In this case, a student will have one potential outcome (achievement) when
assigned to an online course and another one when assigned to an in-person course;
even if for an individual only one outcome will be observed (the one associated with
the assigned intervention), they are all possible if they could have been assigned to a
different option. The difference between the student’s potential outcome with their
assigned intervention (say online format) and the potential outcome for a different
intervention (in-person attendance) is the causal effect of the online intervention
relative to the in-person alternative.

In order to define what we mean by a causal effect, for each individual (or
subject, or unit) we thus assume the existence of the potential outcomes, Ya2 , Y

a′
2 ,

corresponding to what value the outcome would take if we did assign a or a′,
respectively. Then, to calculate the causal effect on a given individual we would
need to somehow compute the so-called individual-level causal parameter given
by Ya2 − Ya

′
2 . However, since we cannot observe all the potential outcomes on the

same individual, typically population-level causal parameter (e.g., E[Ya2]−E[Ya
′

2])
is considered instead. In order to connect the potential outcomes with observed
data, ensuring Ê[Y2|A = a] is an unbiased estimate of E[Ya2], the following three
assumptions about the assignment mechanism must hold.

1. Stable unit treatment value assumption (SUTVA), which assumes that each
participant’s potential outcome is not influenced by the treatment applied to
other participants (Rubin, 1978, 1980). This assumption connects the potential
outcomes to the observed data such that, for each t , Xat

t = Xt(at)
.= Xt and

Y
at
t = Y (at)

.= Yt , when regime at
.= (a1, . . . , at) is actually followed. This

agreement between potential outcomes under the observed treatment and the
observed data is sometimes referred to as axiom of consistency.

398 N. Deliu and B. Chakraborty

2. No unmeasured confounders (NUC), which states that conditional on the
patient’s history Ht up to time t , the treatment assignment At at time t is
independent of future potential outcomes of the individual (Robins, 1997). That
is, for any regime at,

At ⊥
(
X

at
t+1, Y

at
t+1, X

at+1
t+2 , Y

at+1
t+1 , . . .

) ∣∣
∣Ht, ∀t ≥ 1. (15.3)

This assumption always holds under either complete or sequential randomiza-
tion, but must be evaluated on subject matter grounds in observational studies.

3. Positivity, which defines the set of feasible regimes so that for every covariate-
treatment history up to time t that has a positive probability of being observed,
there must be a positive probability that the corresponding treatment dictated by
the treatment regime will be observed (Robins, 1994). Formally, if we denote
with π the probability distribution of actions given the history, a feasible regime
d(h) = a satisfies

πt (dt (Ht)|Ht = ht) > 0, ∀ht ∈ Ht ,∀t ≥ 1. (15.4)

That is, feasibility requires some subjects to follow regime d to guarantee non-
parametric estimation of its performance.

As we will see later in Sect. 15.4.2, the notation “π” is not arbitrary. It
translates the notion of “exploration policy” meant for the action process
generation, and in a case of a randomized trial it consists of the randomization
probabilities.

Under the consistency, sequential randomization, and positivity assumptions,
the conditional distributions of the observed data are the same as the conditional
distributions of the potential outcomes. It follows that an optimal treatment regime
may be obtained using the observed data.

15.3 Data Sources for Constructing DTRs

For the study of DTRs, either for developing new regimes or for evaluat-
ing/comparing existing regimes, three sources of data have been generally
considered the in literature: (1) longitudinal observational studies, (2) sequentially
randomized studies, and (3) dynamical systems models. While research based on the
first type of data, i.e., observational studies, have been the focus of the majority of
real-life studies conducted so far, experimental data source is experiencing a period
of rapid growth and currently represents the gold standard for developing DTRs. The
third data source has received much less attention in the study of DTRs; however, it
represents a common choice in the statistics and machine learning literature aiming
at developing and improving existing DTRs methodologies. Despite their artificial

15 Dynamic Treatment Regimes for Optimizing Healthcare 399

nature, dynamical systems strongly rely on biological or behavioral models to
simulate patient trajectories under different DTRs.

In this section we review these different types of data sources, their advantages
and drawbacks, and practical considerations to account for in the development or
evaluation of a DTR, in relation also with the causal inference assumptions required
to perform valid analysis. In doing so, we present and discuss some key examples.

15.3.1 Longitudinal Observational Data

Observational studies are the most common source of data to shed light on
potential DTRs, representing a particularly preferred option in scenarios in which
a trial would be either cost-prohibitive or of concern from an ethical or logistical
perspective (e.g., in several chronic diseases such as diabetes or HIV). In addition,
they offer the potential to inform construction of promising regimes to be tested in
a confirmatory trial (Kidwell, 2015).

Observational data sources include electronic medical records and other admin-
istrative (e.g., hospital) databases (Rosthøj et al., 2006; Cain et al., 2010; Cotton and
Heagerty, 2011), randomized encouragement trials (Moodie et al., 2009), and cohort
studies (van der Laan and Petersen, 2007b). In all these cases the treatments are not
randomized within the study; in particular, the reasons why different individuals
receive differing treatments or the reasons why one individual receives different
treatments at different times are not known with certainty. The main limitation
of observational data is their inability to draw reliable causal inference due to
the potential presence of time-varying confounders and intermediate effects. We
briefly remind that, given a covariate X, and a response variable Y , a mediating or
intermediate variable is a third hypothetical variable, say Z, which is influenced
by X and in turn causes changes in Y , influencing thus the relationship between
X and Y (MacKinnon et al., 2012). For example, psychotherapy (X) may result
in an increased outcome (Y) because it improves compliance with anti-depressant
medication (Z), which in turn acts on the outcome (Y). In contrast, a variable Z
is said to confound a relationship between a treatment X and an outcome Y if it
is a common cause of both the treatment and the outcome, thus causing a spurious
association (Pearl, 2000). If the effect of Z on both X and Y is not accounted for, it
may appear that there is a relationship between X and Y when actually their pattern
of association may be due entirely to changes in Z. For example, the hypothesis
that drinking coffee (X) causes heart disease (Y) may be explained by another
factor. Coffee drinkers may smoke more cigarettes (Z) than non-coffee drinkers,
so smoking is a confounding variable in the study of the association between coffee
drinking and heart disease. The increase in heart disease may be due to the smoking
and not the coffee. Actually, recent studies have shown coffee drinking to have
substantial benefit in heart health (Stevens et al., 2021).

Typical methods employed in observational settings include G-estimation (Robins,
2004, 1994, 1989) and inverse probability of treatment weighting (IPTW) of

400 N. Deliu and B. Chakraborty

marginal structural models (Rosthøj et al., 2006; Cotton and Heagerty, 2011;
Moodie et al., 2009; van der Laan and Petersen, 2007b; Robins et al., 2008),
in which the study of confounders and their potential risk of affecting future
treatments plays a central role. Indeed, most DTR research in statistics has
concentrated on how best to use observational data to make causal inferences, as it
can be particularly tricky and relies critically on all the (unverifiable) assumptions
discussed in Sect. 15.2.1.

More recently, a relevant number of studies proposed the use of deep learning
models (Liu et al., 2017a; Raghu et al., 2017; Atan et al., 2018; Liu et al., 2019),
which have the potential to automatically perform feature extraction and deal
with the high dimensionality in the observational setting. Nevertheless, despite the
causal inference limitation, observational data may better reflect the heterogeneity
of both patient populations and treatment implementation. Therefore, this data
source may represent actual treatment practice better than trial data (Mahar et al.,
2021). Notably, some authors suggest that optimal DTR-based treatment decisions
should be estimated using observational data, where possible, before proceeding to
a randomized design stage (Chakraborty and Moodie, 2013; Wallace and Moodie,
2014), which may be neither feasible nor ethical. However, given this high-
dimensional setting (in both number of treatments and patient information), standard
statistical methods are difficult to implement or require a relevant simplification
(using domain knowledge) in the number of stages and actions.

All the mentioned statistical strategies will be formally covered in depth later in
Sect. 15.4. Now, we present two study examples for evaluating optimal DTR based
on an observational data source: considering the same registry data, the first study
applies common DTR modelling techniques, which uses more traditional statistics
(regression), while the second example considers deep learning methods.

15.3.1.1 The CIBMTR Registry: Two Study Examples for Constructing
DTRs with Observational Data

The Center for International Blood and Marrow Transplant Research (CIBMTR)
maintains one of the world’s largest observational databases of clinical information
on hematopoietic cell transplantation (HCT), including nearly all allogeneic trans-
plants and approximately 80% of the autologous transplants performed in the USA.
Information on the CIBMTR’s history, structure, and all the variables collected
can be found in Horowitz (2008). These data are available for clinical decision
making, and research purposes, and have been used by many researchers for DTR
construction.

Example 1 For instance, in the context of acute graft-versus-host disease
(GVHD), a frequent complication of allogeneic hematopoietic cell transplantation
(AHCT), Krakow et al. (2017) proposed a DTR for immunosuppressive
management for maximizing disease-free survival 2 years post-AHCT. In AHCT,
immunosuppressive therapeutics are often administered sequentially to prevent
and (if needed) treat GVHD. Because of limited monetary resources, logistical

15 Dynamic Treatment Regimes for Optimizing Healthcare 401

challenges, and the heterogeneity (yet relative scarcity) of patients who develop
the most severe post-transplant complications, there is a dearth of large RCTs for
guiding practice. Thus, registry data have the potential to allow the exploration
for developing precision medicine approaches. Krakow et al. (2017) used Q-
learning, a widely used reinforcement learning (RL) algorithm (traditionally
based on a regression model), plus other statistical tools, for evaluating the
construction of optimal DTR. In doing this, they simplified the problem to
avoid computational complexity and model instability as follows. First, their
analysis carefully defined and focused on 2 stages of treatment only: (1) first-
line GVHD prophylaxis and (2) second-line salvage or treatment for persons who
developed GVHD and experienced unsuccessful first-line treatment. Second, they
reduced the action space to two treatment options at each stage: A1 ∈ A1 =
{a1,1 = “nonspecific, highly T-cell lymphodepleting” (NHTL) prophylaxis; a1,2 =
“standard” prophylaxis}; then, if GVHD that requires salvage, A2 ∈ A2 = {a2,1 =
NHTL salvage; a2,2 = “standard” salvage}. Finally, all covariates were tested
for interaction with the treatments and included in the model when necessary,
and important domain variables were a priori added in order to account for
confounding. Thus, several considerations for transparently developing a DTR
using non-randomized data with “standard” statistical approaches need to be made:

• Pre-analysis considerations: (1) establish clear inclusion/exclusion criteria that
should match when a training and validation cohort is used; (2) determine how
lost to follow-up patients are handled; (3) determine how missing data are
handled; (4) determine the choice and form of the model(s) and of the variables
to be entered into the model; (5) clearly define the stages for the multi-stage
decision making.

• Analysis considerations: define the step-by-step analysis process, e.g., the
iterative process of a Q-learning algorithm.

• Post-analysis considerations: (1) assess model fit within the current data set; (2)
assess model stability (for example, describe the stability of recommendations
across sets of patients who share similar salient covariates); (3) evaluate whether
the study is adequately powered; (4) assess robustness and external validity (with
a validation data set).

• Clinical translation: (1) assess whether the projected magnitude of benefit (and
harms or costs) from implementing the DTR on a population level would justify
moving forward with its implementation; (2) prospectively test the developed
DTR in a randomized trial (if the DTR shows statistical validity and clinical
worth).

Example 2 Taking into account the same registry, context, and problem, Liu et al.
(2017a, 2019) applied a different statistical framework, i.e., deep reinforcement
learning, for obviating some of the pre-analysis considerations required in the
previous example (Krakow et al., 2017). The framework is indeed particularly suit-
able for (i) automatically extracting and organizing the discriminative information

402 N. Deliu and B. Chakraborty

from the data, and (ii) exploring the high-dimensional action and state spaces and
make personalized treatment recommendations. Thus, it has a distinctive feature
compared to traditional statistical and reinforcement learning techniques to be
highly scalable for large state spaces (without requiring a model selection) and
action space (that requires, however, to be enumerable). In the actual CIBMTR
registry action space, the GVHD prophylaxis contains 127 drug combinations (of 14
drugs), and the 100-day acute GVHD treatment contains 283 drug combinations (of
18 drugs); in addition multiple stages are present. The authors considered 5 stages,
include in the deep model all the contextual information, and used only actions with
highest probabilities, since actions with small probability have too small number of
samples in the observational medical data sets. While their approach requires less
data pre-processing and are able to provide great exploratory evidence to generate
new hypotheses for subsequent research, it cannot directly dictate treatment to
new patients, due to lack of interpretability. As Zhang et al. (2018) points out,
an estimated treatment regime that is interpretable in a domain context may be
of greater value than an unintelligible treatment regime built using “black-box”
estimation methods (as deep learning models).

15.3.2 Sequentially Randomized Studies

As discussed so far, observational data offer a cost-acceptable option and reflect
the population’s heterogeneity, but they also present several challenges that make
estimation non-trivial and often subject to various hidden biases. Hence, randomized
data, when available, are preferable for more accurate estimation and stronger statis-
tical inference (Rubin, 1974; Holland, 1986; Rosenbaum, 1991). This is especially
important when dealing with DTRs since the hidden biases can compound over
stages. Randomized trials are the “gold standard” in study design, as randomization
coupled with compliance allows causal interpretations to be drawn from statistical
association. However, the scope of usual randomized controlled trials is to evaluate
or confirm the efficacy of newly developed treatments, not for developing treatment
regimens per se. In addition, they are not effective when there are two or more
decision times since a sequence of randomizations is needed to best infer the optimal
treatment sequence (Chakraborty and Moodie, 2013).

A special class of randomized designs, tailor-made for the purpose of developing
optimal DTRs, is represented by sequential multiple assignment randomized trial
(SMART) designs (Lavori and Dawson, 2004; Murphy, 2005a). By far, SMARTs
are the most effective designs in these multi-stage medical settings, providing the
highest-quality evidence of regimen efficacy by reducing confounding bias through
randomization. However, SMARTs are more complex to design and implement than
standard trial designs and, therefore, are resource intensive.

A SMART design is characterized by multiple stages of treatment, each stage
corresponding to one of the critical decision time point in which a randomization

15 Dynamic Treatment Regimes for Optimizing Healthcare 403

may occur. At each subsequent stage, re-randomizations may depend on information
collected after previous treatments, but prior to assigning the new treatment, e.g.,
how well the patient responded to the previous treatment. Based on the extent
of multiple randomizations, different types of SMARTs can be defined. These
include SMARTs in which only non-responders are re-randomized and SMARTs
in which both responders and non-responders are re-randomized. In addition,
randomization could be made only to one of the initial treatment or to all the initial
treatments. A more thorough discussion is given in Lei et al. (2012). Independently
on the randomization process of a SMART, each randomization must be ethically
acceptable, meaning that, given the history, the treatments or actions among which
the patient is being randomized must be equally desirable. This criterion, applied
at each stage, is the same as the usual requirement of equipoise in conventional
randomized trials (Thall, 2015). If the goal of a study is to evaluate multi-stage
DTRs rather than individual treatments (by using a SMART design), it is essential
to define in advance the actual regimes that will be studied, ensuring these are
viable (Wang et al., 2012). Practical considerations for designing such trials were
discussed in Lavori and Dawson (2004), while several examples are proposed in Lei
et al. (2012). In this work we discuss a more recent example in the context of weight
loss management.

15.3.2.1 The SMART Weight Loss Management Study

In order to make the discussion more concrete, we now report the context and the
schematic of a recent SMART for weight loss management developed in Pfammatter
et al. (2019). The study addresses two main primary aims: (1) to determine the
optimal first-line weight loss treatment for a population of adults with obesity, and
(2) to determine the optimal treatment augmentation tactic for early non-responders.
For achieving this, the study is designed as follows. At program entry, all individuals
are uniformly randomized to one of two first-stage interventions: either mobile app
alone (App) or mobile app combined with coaching (App + Coaching). Participants
achieving in 12 weeks < 0.5 lbs weight loss on average per week are classified as
non-responders and re-randomized to one of two second-stage augmentation tactics:
either modest augmentation, which consists of adding a supportive text messages
(TXT), or vigorous augmentation, consisting in adding a TXT combined with
Coaching or meal replacement (MR). Re-randomization following non-response
occurs only once per participant. Responders continue the initial treatment option,
and weight is assessed for all individuals at baseline, 3, 6, and 12 months, with
weight change from baseline to 6 months being the primary outcome. A schematic
of this SMART design is presented in Fig. 15.1.

Because different subsequent intervention options are considered for responders
(continue) and non-responders (modest vs. vigorous augmentation), response status
is embedded as a tailoring variable in this SMART by design. Such multi-stage
restricted randomizations give rise to several DTRs that are embedded in the
SMART. These allow the investigator to estimate the values or utility of the regimes

404 N. Deliu and B. Chakraborty

Fig. 15.1 Schematic of the design of the sequential multiple assignment randomized trial
(SMART) Weight Loss Management Study. App denotes a mobile app, TXT a supportive text
message and MR meal replacement. Response is defined as a weight loss of at least 0.5 lb on
average per week

“embedded” in the study (these are also known as exploration policies in the RL
literature). For instance, one of the secondary aims of the SMART Weight Loss
study is to determine the optimal sequence of treatment tactics by comparing
effects on 6 month weight loss and cost-effectiveness. This can only be achieved
by comparing the four treatment sequences embedded in the SMART design. For
more details on embedded regimes through SMARTs, we point to Chakraborty and
Moodie (2013).

The SMART example discussed above involves two stages of treatment and/or
experimentation. In general it may involve as many as wanted. In this regard, it bears
similarity with some other common designs, including the adaptive designs, widely
discussed in Berry (2001, 2004), and more recently in Bhatt and Mehta (2016) and
Burnett et al. (2020).

Adaptive trial designs have been proposed as a means to improve the quality,
speed, cost, and efficiency of randomized clinical trials by modifying one or more
aspects of a trial based on interim data (Bhatt and Mehta, 2016). The fundamental
characteristic of an adaptive clinical trial is to dynamically adjust the design of the
ongoing trial while more patients are enrolled. For example, one may prematurely
stop the trial due to safety, futility, and/or efficacy (i.e., group sequential designs,
Jennison and Turnbull, 2000, 2013) or may change the randomization probability
in order to allow the allocation of a higher number of participants to the potential
best treatment (i.e., response-adaptive randomization (RAR) designs, Rosenberger
and Lachin, 2015). While both adaptive designs and SMARTs involve multiple
stages at which a change in the design (e.g., randomization) occur, an important
distinction exists. In a SMART design, each subject moves through multiple stages
of treatment, while in adaptive designs each stage involves different subjects (e.g.,
in a SMART the same patient is randomized multiple times, while in RAR designs,

15 Dynamic Treatment Regimes for Optimizing Healthcare 405

it is randomized only once with a probability that depends on data collected on
previous patients). Thus, SMART designs involve within-subject adaptation of
treatment, while adaptive designs involve between-subject adaptation. A SMART
design can thus be employed for developing DTRs that could benefit future patients
(not participants of the current trial), while RAR designs try to provide the most
efficacious treatment to each patient in the trial. In addition, in a SMART, unlike in
an adaptive design, the design elements such as the final sample size, randomization
probabilities, and treatment options are pre-specified.

Other design similarities could be found with classical crossover trial designs
and factorial designs. See Chakraborty and Moodie (2013) and Kidwell (2015) for
a discussion on the main differences between SMARTs and these types of design,
as well as for a thorough descriptions and characterization of SMARTs in general.
More recently, there have also been proposed some works for incorporating adaptive
design elements into the SMART design framework (see e.g., Cheung et al., 2015).

15.3.3 Dynamical Systems Models

An indirect approach to constructing optimal DTRs, by providing a basis for
improving the design and implementation of a regime, is to use a tool from
control engineering, known as dynamical systems models (Ogunnaike and Ray,
1994; Seborg et al., 2016). By dynamical systems models we mean a multivariate
time-varying process, in which changes to input variables (some of which can be
manipulated) lead to changes in output variables that affect outcomes of interest.
The idea of this approach is, first, to develop a dynamical systems model, which can
then be used to build an artificial data set and finally to employ algorithms from
control theory, such as dynamic programming (DP) or constrained optimization
algorithms to construct an optimal DTR (Rivera et al., 2007). To develop such
a model in an attractive way, aligning its process with biological, behavioral, or
social theories, one may use observational or sequentially randomized data sets,
or, alternatively, experts’ opinion. See, for instance, Bennett and Hauser (2013), in
which a framework for simulating clinical decision making from electronic medical
records data is proposed.

While dynamical system models constitute a common approach in engineering,
economics, and business, their use has now spread to areas of the behavioral and
medical sciences as well, with time-varying treatment regimes representing a key
example. In Thall et al. (2007a) a Bayesian framework is adopted in simple, low
dimensional problems, while Rosenberg et al. (2007), Banks et al. (2011), and Kwon
et al. (2014) discuss the use of ordinary differential equations for building dynamical
systems models in the context of AIDS treatment. Within behavioral sciences,
Rivera et al. (2007) and Navarro-Barrientos et al. (2011) show how dynamical
systems models might be used to describe behavioral dynamics and thus form the
basis for DTRs in obesity and addiction treatment, and, more recently, the value

406 N. Deliu and B. Chakraborty

they may provide in evaluating effective smoking cessation treatments (Bekiroglu
et al., 2017).

To briefly illustrate the benefits of dynamical systems, let us begin with a regime
aimed at substance use treatment (a more complex example is discussed later in
this section). In such a case, the outcome (substance use) varies over time and is
influenced by numerous time-varying variables, e.g., stress, or, most notably, the
assigned treatment. Differently from variable “stress” (intrinsic characteristic of
the individual), the treatment can be decided by the researcher. Thus, this variable
can be manipulated in a dynamical model for understanding how changes in this
variable may influence changes in the outcome of interest. The main question in
DTR literature is in fact how to choose a DTR so as to optimize the outcome. A
complex dynamical systems model, in conjunction with adequate algorithms and
computer simulations, may give support in answering this question and improve
the DTR construction process. Indeed, a control design with subsequent computer
simulations provides a means for exploring various scenarios, by varying not only
the decision rules, but also other design variables or characteristics of the experiment
participants, in order to investigate the likely effects on key outcomes. Results
provided by these extensive simulations offer valuable information that can be
used to choose decision rules and other aspects of the design so as to optimize
the intervention (Rivera et al., 2007). As in the case of observational studies, the
resulting optimized intervention can then be evaluated in a randomized clinical trial
or SMART.

15.3.3.1 A Dynamical Systems Model for Behavioral Weight Change

The example we report here is developed in Navarro-Barrientos et al. (2011) in the
context of obesity and weight loss. The primary goal of their work is to improve
the understanding of behavioral weight change interventions by expressing these as
dynamical systems. More specifically, they develop a dynamical system for daily
weight change incorporating both a physiological and a psychological dynamical
aspect. The former, which we name “energy balance model,” describes the net
effect of energy intake from food minus energy consumption (physical activity).
This three-compartment model was validated using data from the Minnesota
Semi-Starvation Experiment (Keys et al., 1950). The latter focuses on behavior,
explaining how intentions, subjective norms, attitudes, and other system variables
that may be impacted by an intervention, can result in healthy eating habits and
increased physical activity over time. The authors use the widely accepted Theory
of Planned Behavior (TPB) for this model (Ajzen and Madden, 1986), which we call
“behavioral model.” The general conceptual diagram for the integrated dynamical
system model is reported in Fig. 15.2.

As suggested earlier, a key benefit of dynamic modelling is to evaluate how
the outcome of interest (weight change) responds to changes in intervention or
other input variables (e.g., intervention dosages, exogeneous influences) over time.
In addition, these kind of mathematical models can be used to answer questions

15 Dynamic Treatment Regimes for Optimizing Healthcare 407

Fig. 15.2 General input-output block diagram representation of the dynamical system model for
body mass. It is conceived as a combination of two theoretical models, i.e., the “energy balance
model” and the “behavioral model,” based on the Theory of Planned Behavior (TPB) model,
that can be decomposed in an “energy intake” and a “physical activity” part. Primary inputs
to the overall model consist of interventions that act upon components of the TPB model. The
latter influence the “diet” (comprised of carbohydrate intake (CI), fat intake (FI), protein intake
(PI) and sodium intake (Na)) and “physical activity,” which in turn, determines the outcome
components. The output compartments consist of “lean mass” (LM), “fat mass” (FM), and
“extracellular fluid” (ECF), whose sum gives as the “body mass” (BM)

regarding what variables to measure, how often, and the speed and functional form
of the outcome responses as a result of decisions regarding the timing, spacing,
and dosage levels of intervention components (Navarro-Barrientos et al., 2011).
Indeed, by defining the functional form of the outcome in terms of its inputs and
intermediate components, it is possible to calculate how small variations of each of
the input components would diffuse over the functional form and would affect the
outcome. The authors define the weight at time t as the body mass at time t (BM(t))
and express BM(t) = FM(t) + ECF(t) + LM(t). Each of the three components
depends on the previous components (as illustrated in Fig. 15.2). More particularly,
each of them is defined by its own differential equation; for instance,

dFM(t)

dt
= (1− p(t)) f (CI (t), F I (t), P I (t), Na(t), PA(t))

ρ(FM)
,

where FM denotes the “fat mass” outcome component, CI , FI , PI , Na and PA
the intermediate input components, standing for “carbohydrate intake,” “fat intake,”
“protein intake,” “sodium intake,” and “physical activity,” which are modelled
through an appropriate biological function f . The term ρ(FM) is a constant equal
to 9400 kcal/kg, while p(t) is the p-ratio parameter that assigns a percentage of
the imbalance to the compartments “fat mass” (FM) and “fat-free mass” (FFM),
respectively (Dugdale and Payne, 1977). As the reader may expect, both “physical
activity” and “diet” are determined in turn by the behavioral model through other
adequate functional forms based on an underlying behavioral theory. Now, once
all the relationships are determined based on a well-established theory, the model

408 N. Deliu and B. Chakraborty

represents a static (i.e., steady-state) system that does not capture any changing
behavior over time. In order to include dynamic effects, and generate the dynamical
systems description, the authors propose the use of a fluid analogy which parallels
the problem of inventory management in supply chains (Schwartz et al., 2006),
and the principle of conservation of mass. By analyzing the first (and higher
order) derivatives, one can understand through simulations the effects over time
of different interventions on an outcome in different participants and estimate a
suitable alternative for the participant under study. We point readers interested in
the topic to the original paper of Navarro-Barrientos et al. (2011) who developed
this dynamical systems model.

15.4 Methods for Constructing DTRs

In this section we present a review of the many existing approaches for constructing
DTRs, while also affording space to discuss more general issues that relate to
the estimation problem. We start with a brief digression on DTRs’ origins, within
the causal inference literature, and then move to more novel and currently widely
employed reinforcement learning based techniques.

15.4.1 Origins and Development of DTRs

The study of dynamic treatment regimes has his origins in the causal inference
literature. It was pioneered by Robins (1986, 1997, 1994), with the introduction
of structural nested mean models (SNMMs) and a number of estimating equation-
based methods for finding optimal time-varying treatment regimes. SNMMs, which
model the difference in the mean outcomes under different treatment regimes, rather
than the full outcome model, were designed for estimating the joint effect of a
sequence of treatments in the presence of confounding variables (Robins, 1986). In
this setting, standard regression methods, which attempt to estimate causal effects
simultaneously are inappropriate, whether or not one adjusts for or conditions on the
confounders. Over an extended period of time, three basic approaches for dealing
with such confounding were introduced by Robins: the parametric G-formula or G-
computation (Robins, 1986), the structural nested models (SNMs), which include
SNMMs as a subclass, with the associated method of G-estimation (Robins, 1989,
1994) and the marginal structural models (MSMs) with the associated method of
inverse probability of treatment weighting (Robins, 2000). In spite of advantages
and strong connections with popular estimation methods, SNMs and G-estimation
are not as popular as MSMs and the associated IPW methods; possible reasons are
extensively discussed in Vansteelandt et al. (2014).

A number of methods have subsequently been proposed within statistics, includ-
ing frequentist and Bayesian likelihood-based approaches (Thall et al., 2000, 2002,

15 Dynamic Treatment Regimes for Optimizing Healthcare 409

2007b). However, all these methods first estimate the data-generation process via
a series of parametric conditional models, then estimate the optimal DTRs based
on the inferred data distributions. These approaches easily suffer from model
misspecification due to the inherent difficulty of modeling accumulative time-
dependent and high-dimensional information in the models (Zhao et al., 2015).

In 2003 and 2004, the first semi-parametric methods for estimating the optimal
DTR (from longitudinal data) were proposed by Murphy (2003), immediately
followed by Robins (2004). Their methods use approximate dynamic programming
(ADP) techniques and can thus be somehow considered as the first prototypes
of reinforcement learning approaches for estimating optimal DTRs. Subsequently,
reinforcement learning, previously confined to computer science and control the-
ory, was fully introduced into the DTR literature, with the work of Murphy
(2005b), who proposed the well-known Q-learning with function approximation
approach (Watkins and Dayan, 1992; Sutton and Barto, 2018), which we will be
discussing shortly.

15.4.2 Reinforcement Learning: A Potential Solution

Reinforcement learning (RL), perfectly resembling the sequential decision making
problem, represents one of the main current approach for developing DTRs. Gener-
ally speaking, RL is an area of machine learning (ML) concerned with determining
optimal action selection policies in sequential decision making processes (Sutton
and Barto, 2018; Bertsekas, 2019). As introduced in Chap. 2 of this Book, the
general framework is based on continuous interactions between a decision maker
or learning agent and the environment it wants to learn about. At each interaction
stage or time step t the agent receives some representation of the environment’s state
or context, Xt ∈ Xt , which is used for making a decision, or selecting an action At
from a set of admissible actions At . As a result, one time step later, the environment
responds to the agent’s action by making a transition into a new state Xt+1 ∈ Xt+1
and (typically) providing a reward Yt+1 ∈ Yt+1 ⊂ R. By repeating this process for
each t ∈ N = {1, 2, . . . , }, the result is a trajectory of states visited, actions pursued,
and rewards received.

Using the same notation as in Sect. 15.2, we denote the context, the actions,
the rewards, and the histories as Xt

.= (X1, . . . , Xt), At
.= (A1, . . . , At), Yt

.=
(Y2, . . . , Yt), and Ht

.= (Xt,At−1,Yt). We assume that these longitudinal histories
are sampled independently according to a fixed distribution Pπ given by:

p1(x1)
∏

t≥1

πt (at |ht)pt+1(xt+1, yt+1|ht, at), (15.5)

410 N. Deliu and B. Chakraborty

where:

• p1 is the initial probability distribution specifying the initial state X1.
• π

.= {πt }t≥1 represents the exploration policy and it determines the sequence of
actions generated throughout the decision making process. More specifically, πt
maps histories of length t , ht, to a probability distribution over the action space
At , i.e., πt (·|ht). The “|” in the middle of πt (·|ht) merely reminds that it defines
a probability distribution over At for each ht ∈ Ht . Sometimes, the action At
to take at each time step t is uniquely determined by the history, therefore, πt is
a simple function of ht, i.e., π(ht) = at . In other words, policy πt as a step in
a sequence of decision rules {πt }t≥0 is an action. We call it deterministic policy,
in contrast with the stochastic policy where an action to take is probabilistically
determined.

• {pt }t≥1 are the unknown transition probability distributions and they completely
characterize the dynamics of the environment. At each time t ∈ N, the transition
probability pt assigns to each state-action-reward sequence (xt−1, at−1, yt−1) =
(ht−1, at−1) of the trajectory up to time t−1 a probability measure over Xt×Yt ,
i.e., pt (·, ·|ht−1, at−1).

Generally, the reward Yt+1 at next time step t + 1 is conceptualized as a known
function of the history Ht at time t , the current action At and the next state Xt+1,
i.e., Yt+1 = Yt+1(Ht, At ,Xt+1).

The goal of the RL problem is learning an optimal way of choosing the set of
actions or learning an optimal policy, so as to maximize the expected future return,
say Rt, where with the latter we refer to the cumulative sum of immediate rewards,
or, more generally, a discounted version of it, i.e., Rt

.= Yt+1 + γ Yt+2 + γ 2Yt+3 +
· · · = ∑

τ≥t γ τ−t Yτ+1, t ∈ N. If γ = 1, the return is well defined (finite) as long
as the time-horizon is finite, i.e., t ∈ [0, T], with T < ∞; if T is fixed and known
in advance, e.g., in clinical trials, the agent faces a finite-horizon problem; if T is
not pre-specified and can be arbitrarily large (the typical case of EHRs), but finite,
we call it indefinite-horizon problem. The term infinite-horizon problem is used for
T = ∞.

More formally, denoted with d∗t
.= {d∗t }τ≥t the optimal policy at time t , the goal

is to find d∗t such that

d∗
t = arg max

dt

Ed [Rt] = arg max
dt

Ed

[
∑

τ≥t
γ τ−t Yτ+1

]

, ∀t ∈ N, (15.6)

where the expectation is meant with respect to a trajectory distribution analogous
to (15.5), say Pd, where the fixed exploration policy π that generated the data is
replaced by an arbitrary policy d we use to estimate the data. Indeed, in many
decision problems, the target policy or estimation policy we want to learn about,
say d, might be different from the exploration policy π that generated the data. This
happens, for instance, when we use trajectories generated from another trial. The set
of decision rules d = {dt }t≥1, or policy, is typically referred to as DTR, and each
trajectory from the decision process corresponds to the complete history Ht ∈ Ht of

15 Dynamic Treatment Regimes for Optimizing Healthcare 411

Table 15.1 Notation and
terminology of reference in
reinforcement learning (RL)
and dynamic treatment
regimes (DTRs)

Terminology

Notation RL DTRs

i Trajectory Patient

t Time Stage/Interval

X State/Context Covariates

A Action/Arm Treatment/Intervention

Y Reward Outcome

H History Time-Varying History

π /d Policy Dynamic Treatment Regime

baseline and time-varying covariates, assigned treatments, and observed outcomes
of a single patient. Table 15.1 serves as a reference for the correspondence between
RL and DTR terminologies.

While several methods exist for policy learning (Sutton and Barto, 2018), by
optimal policy we generally mean the one with the greatest value, i.e., the greatest
expected return by following it when starting from a given state (state-value or
simply value) or a given state-action pair (action-value or Q-value). Thus, efficiently
estimating the value function is one of the most important component of almost
all RL algorithms, and it occupies a central place in the medical decision making
paradigm.

The stage t state-value function or value function of a fixed policy dt maps a
starting history ht (with terminal state Xt = xt) to the expected return. Formally,
∀t ∈ N and ∀ht ∈ Ht , we denote it by Vt

.= Vdt
: Ht → R and define it as

Vt (ht)
.= Vdt

(ht)
.= Ed [Rt|ht = ht] = Ed

[
∑

τ≥t
γ τ−t Yτ+1

∣
∣
∣
∣
∣
ht = ht

]

. (15.7)

To ensure that the conditional expectation in Vt (ht) is well defined, each history
ht ∈ Ht should have positive probability (P(ht = ht) > 0). Note that, by definition,
at stage t = 1, V1(h1) = Vd1(x1)

.= V (x1); while for the terminal stage, if any, the
state-value function is 0.

Similarly, we define the stage t action-value function for policy dt , also known
as Q-value or Q-function, as the expected return at time t , when starting from a
history ht, taking an action at and following the policy dt thereafter. Denoting it by
Qt

.= Qdt
: Ht ×At → R, we have that, ∀t ∈ N, ∀ht ∈ Ht , and ∀at ∈ At ,

Qt(ht, at)
.= Ed [Rt|ht = ht, At = at] = Ed

[
∑

τ≥t
γ τ−t Yτ+1

∣
∣
∣
∣
∣
ht = ht, At = at

]

,

(15.8)

where, analogous to (15.7), ht and At are randomly selected such that P(ht = ht) >
0 and P(At = at) > 0. At stage t , the optimal Q-function Q∗

t
.= Qd∗

t
and the

optimal value function V ∗t
.= Vd∗

t
for policy dt are defined as follows:

412 N. Deliu and B. Chakraborty

Q∗
t (ht, at)

.= max
dt

Qt(ht, at), ∀ht ∈ Ht ,∀at ∈ At , (15.9)

V ∗t (ht)
.= max

dt

Vt (ht)
.= max
at∈At

Q∗
t (ht, at), ∀ht ∈ Ht . (15.10)

Because an optimal state-value function is optimal for any fixed ht ∈ Ht , it
follows that the optimal policy at time t must satisfy d∗t (ht) ∈ arg maxdt

Vt (ht) =
arg maxat∈At Q

∗
t (ht, at). A fundamental property of value functions used through-

out RL is that they satisfy particular recursive relationships, known as Bellman
equations. For any policy d, the following consistency condition, expressing the
relationship between the value of a state and the values of successor states, holds:

Vt (ht) = Ed

[
Yt+1 + γVt+1(ht+1)|ht = ht

]
, ∀ht ∈ Ht ,∀t ∈ N. (15.11)

Based on this property and the definitions given in (15.9)–(15.10), at each time t ,
and ∀ht ∈ Ht and ∀at ∈ At , with discrete state and action spaces, the following
rules, known as Bellman optimality equations (Bellman, 1965), are satisfied:

V ∗t (ht) = E
[
Yt+1 + γV ∗t+1(Ht+1) | ht = ht

]
, (15.12)

Q∗
t (ht, at) = E

[

Yt+1 + γ max
at∈At

Q∗
t (ht, at) | ht = ht, At = at

]

. (15.13)

Here, the expectation is taken with respect to the transition distribution pt+1 only,
which does not depend on the policy, thus the subscript d can be omitted. This
property allows estimation of value functions recursively, from T backwards in
time. In finite-horizon dynamic programming (DP), this technique is known as
backward induction and represents one of the main methods in for solving the
Bellman equation.

15.4.3 Taxonomy of Existing Methods

Methodology for constructing optimal DTRs, i.e., the ones that, if followed,
yield the most favorable (typically long-term) mean outcome, is of considerable
interest within the domain of precision medicine and comprises a growing body of
research in both computer science and statistics (Chakraborty and Moodie, 2013).
If from one side, DTRs problems, perfectly resembling the RL design, attracted
the attention of ML researchers, from the other side, the necessity of quantifying
causal relationships, rather than mere associations, called for the intervention of
causal inference community. Indeed, the main challenge in DTRs is that, since
the underlying system dynamics are often unknown, inferring the consequences of
executing a policy d = {dt }t≥1 and understanding the causal effects on an outcome
is not immediate.

15 Dynamic Treatment Regimes for Optimizing Healthcare 413

Most of the current work in DTRs relies on the finite-horizon setting (T < ∞,
and known in advanced), and the strongly connected offline learning procedures.
Typically, in finite-horizon problems, estimation of the optimal DTR is obtained
from offline data assuming we have access to the collection of observed trajectories
for all patients (offline learning). Only recently, the indefinite-horizon setting,
particularly suitable for chronic diseases where the number of stages cannot be
a-priori specified and can be arbitrarily large, has been addressed by the DTR
literature. Note that we use the term “indefinite,” and not “infinite,” in line with
the finite life expectancy of an individual. Generally speaking, there are two
fundamental learning mechanisms for deriving optimal policies: direct and indirect
methods. Direct methods seek optimal policies by directly looking for the policy
that maximizes an objective (typically the expected return or value function) within
a class of policies. On the contrary, indirect methods attempt, first, to estimate
a value function, and then to determine an optimal policy based on the learned
value function. In the computer science literature, direct and indirect methods are
sometimes referred to as model-free and model-based algorithms (Sutton and Barto,
2018), even if more subtle classifications (Sugiyama, 2015) tend to make a clearer
division between the two categories.

Given the rich literature on methods for developing DTRs, before diving into
some of those, we provide the reader with a roadmap in Fig. 15.3 that may serve as
a guide for moving within this major section.

Fig. 15.3 Schematic of existing methods (in a temporal line) for developing Dynamic Treatment
Regimes (DTRs) in both finite and indefinite horizon. Grey colored blocks denote direct methods,
i.e., the ones based on Inverse Probability of Treatment Weighting (IPTW); while white dot-
ted blocks denote indirect approaches. AIPTW = Augmented IPTW; OWL = Outcome Weighted
Learning; BOWL = Backward OWL; SOWL = Simultaneous OWl; FA = Function Approximation;
RL = Reinforcement Learning; SVR = Support Vector Regression; ERT = Extremely randomized
Tree; GGQ = Greedy-Gradient Q-learning; MDPs = Markov Decision Processes

414 N. Deliu and B. Chakraborty

15.4.4 Finite-Horizon DTRs

Most of the existing methods in the DTRs literature fall in the finite-horizon
setting. These are designed to optimize a utility function over a fixed period
of time, say T . More specifically, given a finite-horizon trajectory T .=
{(X1, A1, Y2, . . . , XT ,AT , YT+1)}, with X1 some pre-treatment information,
X2, . . . , XT the evolving information, A1, . . . , AT the assigned treatments, and
Y2, . . . , YT the intermediate and the final (YT+1) outcomes, a sample (or batch) of
N finite-horizon available patients’ trajectories, each of the above form, is used for
estimating an optimal DTR d∗ = {d∗t }t≥1. Throughout this section, we consider
deterministic policies, which map histories h directly into actions or decisions, i.e.,
d(h) = a.

15.4.4.1 Indirect Methods

With indirect methods we refer to a class of methods that focus on estimating
an optimal objective function (typically, an expectation of the outcome variable
such as the Q-function), and then get the associated policy, rather than directly
looking for an optimal policy (e.g., within a class). These methods are mainly
based on iterative techniques such as dynamic programming (DP) and approximate
dynamic programming (ADP) and include Q-learning (Murphy, 2005b), where the
conditional mean outcome is modelled, and other approaches that model contrasts
of conditional mean outcomes, for which we use the term Advantage-learning (A-
learning). The latter has as an example the SNMMs with the G-estimation proposal
of Robins (2004). Traditional statistical likelihood-based methods (Thall et al.,
2000, 2002), including the parametric G-computation (Robins, 1986) and Bayesian
methods (Thall et al., 2007b), also fall into this category. We point to Vansteelandt
et al. (2014) and Tsiatis et al. (2019) for readers interested in these traditional
approaches.

Q-Learning with Function Approximation Q-learning (Watkins and Dayan,
1992) represents one of the most popular (off-policy) temporal-difference (TD)
approaches (Sutton and Barto, 2018) and probably the most common strategy
employed in DTRs research. In particular, a more recent version of Q-learning,
i.e., Q-learning with function approximation (FA), offers a powerful and scalable
tool to overcome both the modelling requirements and the computational burden for
solving an RL problem through backward induction or dynamic programming.

The main idea of Q-learning with FA is first, to estimate the Q-functions using
an approximator, e.g., regression models, neural networks or decision trees, and
then to derive the estimated policy based on the estimated Q-functions. More
specifically, we start by assuming an approximation space for each of the T Q-
functions in (15.8), e.g., Qt

.= {Qt(ht, at ; θt) : θt ∈ �t }, with parameter space �t
being a subset of the Euclidean space. According to the results shown in Sect. 15.4.2,
estimating an optimal stage-t policy is equivalent to estimating an optimal Q-

15 Dynamic Treatment Regimes for Optimizing Healthcare 415

function, or in this case, an optimal parameter θ̂t , i.e.,

d̂∗t (ht) = arg max
at∈At

Q̂∗
t (ht, at)

.= arg max
at∈At

Q∗
t (ht, at ; θ̂t) .= d∗t (ht; θ̂t)), t = 1, . . . , T .

Then, according to Bellman optimality, we estimate an optimal regime d̂∗ =
(d∗1 (x1; θ̂1), d

∗
2 (h2; θ̂2), . . . , d

∗
T (ht; θ̂T)) by recursively estimating Q∗

t backwards
through time t = T , T − 1, . . . , 1. Formally, defining Q∗

T+1
.= 0, we proceed

as follows:

Q∗
T (ht, aT ; θ̂T) .= Ê[YT+1|ht = ht, AT = aT] (15.14)

d∗T (ht; θ̂T)) = arg max
aT ∈AT

Q∗
T (ht, aT ; θ̂T)

Q∗
T−1(hT−1, aT−1; θ̂T−1)

.= Ê[YT
+ max
aT ∈AT

Q∗
T (ht, aT ; θ̂T)|HT−1=hT−1, AT−1=aT−1]

d∗t−1(ht−1; θ̂t−1)) = arg max
aT−1∈AT−1

Q∗
T−1(hT−1, aT−1; θ̂T−1)

. . .

Q∗
1(x1, a1; θ̂1)

.= Ê[Y2 + max
a2∈A2

Q∗
2(h2, a2; θ̂2)|X1 = x1, A1 = a1]

d∗1 (x1; θ̂1)) = arg max
a1∈A1

Q∗
1(x1, a1; θ̂1).

We sometimes refer to this procedure as batch Q-learning, as learning occurs only
after the collection of a set of N trajectories.

Several Q-learning function approximators have been proposed in the literature,
with the regression modeling being a natural approach given that Q-functions are
conditional expectations. Letting θt

.= (βt , ψt), we can parameterize the t-th stage
optimal Q-function as

Q∗
t (ht, At ;βt , ψt) = βTt Ht0 + (ψTt Ht1)At , t = 1, . . . , T , (15.15)

where Ht0 and Ht1 are two (possibly different) vector summaries of the his-
tory Ht, with Ht0 denoting the “main effect of history” and Ht1 denoting the
“treatment effect of history.” The collections of variables Ht0 are often termed
predictive, while Ht1 are said prescriptive or tailoring variables. Parameters’
estimates θ̂t

.= (β̂t , ψ̂t) are obtained by solving suitable estimating equations
such as ordinary least squares (OLS) or weighted least squares (WLS). Given
a sample

{
X1i , A1i , Y2i , . . . , XT i, AT i, Y(T+1)i , X(T+1)i

}N
i=1 of i.i.d. trajectories,

416 N. Deliu and B. Chakraborty

WLS (whose choice might be dictated by heteroscedastic errors) will estimate θ̂t
by solving

0 =
N∑

i=1

∂Q∗
t (Hti, Ati; θt)
∂θt

�−1
t (Hti, Ati)

× [Y(t+1)i + max
a(t+1)i∈A(t+1)i

Q∗
t+1(H(t+1)i, a(t+1)i; θ̂t+1)−Q∗

t (Hti, Ati; θt)],

where�t is a working variance-covariance matrix. Taking�t to be a constant yields
the OLS estimator.

In order for d̂∗ to be a consistent estimator for the true optimal regime d∗, it is
important to recognize that all the models for the Q-functions should be correctly
specified (Schulte et al., 2014). For addressing this problem, several FA alternatives
to the simple linear one in (15.15), such as support vector regression and extremely
randomized trees (Zhao et al., 2009), or deep neural networks (Liu et al., 2017a;
Raghu et al., 2017; Atan et al., 2018) have been proposed. We now illustrate the
latter approximation technique, which has gained a relevant attention in the recent
years.

Deep Q-Learning The tremendous success achieved in recent years by Q-learning,
and more generally RL, in many complex domains has been largely enabled
by the use of advanced FA techniques such as deep neural networks (Mnih
et al., 2015; Jonsson, 2019). We call this approach deep Q-learning (DQL). In
DQL, a neural network (Goodfellow et al., 2016) is used to approximate the
Q-function. More specifically, at each time t , a DNN is used to fit a model
for the Q-function in a supervised way: states and actions {(Ht,i , At,i)}i=1,...,N
are given as inputs, and the Q-values of all possible actions are generated as
outputs {Qt(Ht,i , At,i; Ŵ, b̂)}i=1,...,N , leading to a labelled set of data D =
{(Ht,i , At,i),Qt (Ht,i , At,i; Ŵ, b̂)}i=1,...,N . W and b represent the unknown weight
and bias parameters of the DNN, respectively. Figure 15.4 shows a schematic of
a feed-forward neural network (FFNN) used within RL. It is characterized by a
set of neurons, structured in layers, where each neuron processes the information
forward from one layer to the next one. Collected data D is stored and continuously
updated by the user in memory for updating Q-function parameters’ estimates.
Next action is determined by an exploration scheme (typically ε-greedy) which
probabilistically chooses between the action with the highest Q-value and a random
action. For updating the Q-network, we minimize a loss function, generally the MSE
between our target Q-value and our current Q-output, and this is efficiently done by
a technique known as back-propagation or stochastic gradient descent (Goodfellow
et al., 2016).

Within the DTR literature, DQL implementations for estimating optimal regimes
have been proposed in Liu et al. (2017a) and Raghu et al. (2017), for the graft-
versus-host disease after transplantation and sepsis treatment, respectively. Both
works use observational medical data and are built on the DQN developed in Mnih

15 Dynamic Treatment Regimes for Optimizing Healthcare 417

Fig. 15.4 Representation of a feed-forward neural network with four layers used within Q-
learning. In the first (input) layer, we introduce our input data, covariates X1t , . . . , Xpt and
treatment At at time t , which are non-linearly transformed according to their weights W(1) and a
bias parameter b(1) through the neurons of the first hidden layer. The final (output) layer, generates
the predicted outcome value (reward) ŶW,b

t+1 (Xt , At), with W and b representing the parameters of
the deep neural network

et al. (2015). More recently, Atan et al. (2018) proposed a more sophisticated
approach for constructing effective treatment policies when the observed data is
biased and lacks counterfactual information. Here, the problem is separated into
two stages: first the bias is reduced by learning a representation map using an
auto-encoder architecture (Goodfellow et al., 2016) for the neural network, then
a FFNN is used on the transformed data to estimate an optimal DTR. An alternative
DRL approach was also proposed in Wang et al. (2020), who, rather than using a
supervised learning, illustrated the use of a more recent DL architecture, namely the
adversarial networks (Goodfellow et al., 2016).

As already mentioned in Sect. 15.3, these deep structures allow for model flexi-
bility and process features without the need of domain knowledge, being particularly
suitable for real-life complexity, high dimensionality, and adaptivity. Compared to
their shallow counterpart, they are more capable of automatic feature representation
and capturing complicated relationships. However, one general limitation of indirect
methods such as Q- and A-learning (which we will discuss shortly), independently
on the FA, is that the optimal DTRs are estimated in a two-step procedure: one
estimates either the Q-functions or the contrast/regret functions using the data; then
these functions are either maximized or minimized to infer the optimal DTR. In
the presence of high-dimensional information, even with flexible non-parametric
techniques such as SVR and DL, it is possible that these conditional functions
are poorly fitted, and thus the derived DTR may be far from optimal. Moreover,
this approach may not necessarily result in maximal long-term clinical benefit, as

418 N. Deliu and B. Chakraborty

demonstrated by Zhao et al. (2012a) who shifted to parameterize and estimate the
treatment rule directly.

A-Learning with Function Approximation A-learning (Murphy, 2003; Robins,
2004; Blatt et al., 2004), where “A” stands for the “advantage” in response incurred
if the optimal treatment were given instead of the one actually given, is a general
term used to describe a class of alternative methods to Q-learning, predicated on
the fact that the entire Q-functions need not to be specified to estimate the optimal
regime. Models can be posited only for parts of the expectation involving contrasts
among treatments, as opposed to modeling the conditional expectation itself as in Q-
learning. Recalling that d∗ .= {d∗t }t=1,...,T denotes the optimal DTR, and denoting
with d∗t

.= {d∗τ }τ=t,...,T the optimal regime from t onwards, dref .= {dref
t }t=1,...,T

a regime of reference we want to make comparisons with, and with 0 the “zero-
treatment” (standard or placebo), popular contrast examples include:

g
(
E[Y at−1

t+1 , at ,d
∗
t+1|ht = ht]

)− g
(
E[Y at−1

t+1 , d
ref
t ,d

∗
t+1|ht = ht]

)
, (15.16)

g
(
E[Y at−1

t+1 , at ,d
∗
t+1|ht = ht]

)− g (E[Y at−1
t+1 , 0,d

∗
t+1|ht = ht]

)
, (15.17)

g
(
E[Y at−1

t+1 , at ,d
∗
t+1|ht = ht]

)− g (E[Y at−1
t+1 , d

∗
t ,d

∗
t+1|ht = ht]

)
, (15.18)

where g(·) is a known link function, typically taken to be the identity link. Optimal
blip-to-reference in (15.16) and optimal blip-to-zero in (15.17) evaluate removal
of an amount (“blip”) of treatment at stage t on the subsequent average outcome,
when optimal treatment regime d∗t+1 is followed from t + 1 onwards: “blips” are
represented by the treatment of reference dref

t and the “zero-treatment,” respectively.
These are used in Robins’ work (Robins, 2004), in which G-estimation was
introduced. On the other side, the regret function in (15.18), proposed by Murphy
(2003), evaluates the increase in the benefit-to-go that we forego by making decision
at rather than the optimal decision d∗t at time t .

While Robins (2004) advocates optimal blip functions and Murphy (2003)
regrets, one can notice that they are mathematically equivalent (Moodie et al., 2007).
In addition, they both propose SNMM-type parameterization of the conditional
intermediate causal effects, or contrasts, which, without loss of generality, for
t = 1, . . . , T , has the form γt (ht, at ;ψt), with γt a known (T − t + 1)-dimensional
function smooth inψt . For all ht, at , the parameterization requires γt (ht, 0;ψt) = 0,
and typically, is chosen to be such that γt (ht, at ; 0) = 0, so that ψt = 0
encodes the null hypothesis of no treatment effect. As in Q-learning, to estimate the
optimal treatment regime, an approximation space for the t-th advantage functions
is assumed. However, it is important to note that, while the model formulation is
equivalent, the estimation technique differs. In Robins (2004), an optimal DTR,
under some assumptions (Chakraborty and Moodie, 2013), is estimated through
backward recursive G-estimation; in Murphy (2003) a technique known as iterative
minimization of regrets (IMOR) is proposed. We point to original authors’ works
(Robins, 2004; Murphy, 2003) for readers interested in these approaches, and to

15 Dynamic Treatment Regimes for Optimizing Healthcare 419

the more general work of Schulte et al. (2014) for a comparison between their
approaches and Q-learning. In an extensive two-stage simulation study, Schulte et al.
(2014) found that Q-learning is more efficient than A-learning when: (i) all models
are correctly specified (nearly twice more efficient estimating the second-stage
parameters, and modestly so for first-stage parameters; and (ii) when the propensity
model required in A-learning is misspecified. However, if the Q-functions were
misspecified, there were values of the parameters for which gains in efficiency
exhibited by Q-learning were clearly outweighed by the bias incurred, making A-
learning preferable in terms of mean squared error.

Bayesian Approaches Several Bayesian methods have been studied and used in
practice to identify optimal DTRs (Thall et al., 2007b; Murray et al., 2018; Arjas and
Saarela, 2010; Zajonc, 2012; Xu et al., 2016). The majority of these are likelihood-
based methods, requiring thus a joint estimation of data trajectory, and then either
apply DP or a full numerical search of the action space to identify the optimal
DTR. An alternative approach, which bridges the gap between Bayesian inference
and existing RL-based DTR approaches, such as Q-learning, was proposed by
Murray et al. (2018) with the so-called Bayesian Machine Learning (BML). This
approach allows both for patient’s preferences and physician’s expert knowledge
to be incorporated in the model, and the flexibility of novel ADP techniques.
The BML proposal fits a series of Bayesian regression models (the authors
recommend using Bayesian non-parametric regression models), one for each stage,
in reverse sequential order. One distinguishing feature of BML is that it treats the
counterfactual response variables as missing values, and multiply imputes them
from their posterior predictive distribution, which is derived from the previously
fitted regression models. A detailed presentation of Bayesian methodologies and
the many modeling choices required for a Bayesian estimation of a DTR is beyond
the scope of this chapter; however, a great number of resources are available to the
interested reader (see, e.g., Chen et al., 2010).

15.4.4.2 Direct RL Methods

Direct methods seek to maximize the return (i.e., the discounted sum of future
rewards, see Sect. 15.4.2) by learning the optimal policy or value directly, without
involving intermediate quantities such as Q-functions. These methods typically
do not assume models for conditional means or other aspects of the conditional
distributions of the outcomes; in this sense they are called “non-parametric.”
However, they may consider a parametrization of the class of policies.

In direct methods, indeed, first a class of policies or regimes D, often indexed
by a parameter, say ψ ∈ �, is pre-specified. Then, for each candidate regime
d ∈ D, an estimate V̂d = V̂d(X1) of the corresponding value is obtained. Recall
from Sect. 15.4.2 that the value is the mean of the return marginalized over all
observations that might be impacted by the treatment; see (15.7). The regime that
maximizes this value function represents the optimal treatment regime d∗

420 N. Deliu and B. Chakraborty

d̂∗ .= arg max
d∈D

V̂d = arg max
ψ∈�

V̂dψ . (15.19)

For a simple example of a parametric class of policies, consider DTRs that use
a suitable summary of the available history (tailoring variable) to indicate when
to change treatment: if the tailoring variable falls below/above a threshold ψ ,
treatment is changed. Another common example is given by the soft-max class of
functions D .= {π(ak|x, ψ) = e−xT ψk /

∑K
j=1 e

−xT ψj : ψ ∈ �, k = 1, . . . , K},
where a1, . . . , aK denote the K possible treatments and ψ

.= (ψT1 , . . . , ψ
T
K) the

vector of parameters for the K treatments indexing the class of policies.
Most of the statistical work in this area is based on the IPTW technique (Robins,

1994). It is used, for instance, in estimating MSMs (Robins, 2000) or value functions
(Zhang et al., 2012a, 2013); in classification-based frameworks, such us outcome
weighted learning (Zhao et al., 2012a, 2015; Liu et al., 2018), and in combination
with ML approaches, such as decision trees (Laber and Zhao, 2015; Tao et al., 2018;
Sun and Wang, 2021).

Inverse Probability of Treatment Weighting IPTW is a general technique that
can be used in DTRs for inferring causal effects from observational data, under the
standard assumptions for causal inference reported in Sect. 15.2.1.

In case of primary analysis of a randomized trial, particularly a SMART design
(see Sect. 15.3), often the target policy d we want to learn about corresponds
to the fixed exploration policy π that generated the trajectories: it consists in
the randomization probabilities and is known by design. Thus, estimating an
optimal regime based on (15.19) is relatively straightforward. In contrast, when
this information is not available, as in the case of the most common observational
studies, the value function has to be estimated for an arbitrary treatment policy
d using an empirical sample of N trajectories (off-policy learning). Making use
of the importance sampling technique, which assumes Pd absolutely continuous
with respect to Pπ , we change the distribution under which we compute the value
function. In doing that, we basically weight our returns according to the relative
probability of their trajectories occurring under the target and exploration policies:

Vd = Ed [Y] =
∫

YdPd =
∫

Y

(
dPd

dPπ

)

dPπ = (15.20)

=
∫ (

T∏

t=1

I[At = dt (Ht)]
πt (At |Ht)

)

YdPπ
.=
∫

wd,πYdPπ .

Estimating an optimal regime means estimating an optimal value. This is achieved
with the mean estimator, i.e., V̂d

.= PN
[
wd,πY

]
, where PN denotes the empirical

average over N patients’ trajectories. This estimator is known to be an unbiased
estimator, but its variance is unbounded. To this purpose, to obtain a more stable
estimator, the weights wd,π are normalized by their sample mean, leading to the
IPTW estimator (Robins, 2000)

15 Dynamic Treatment Regimes for Optimizing Healthcare 421

V̂ IPTWd

.= PN
[
wd,πY

]

PN

[
wd,π

] . (15.21)

When π is known (e.g., SMART design), the IPW estimator is consistent.
However, it is highly variable due to the presence of the non-smooth indicator
functions inside the weights.

An alternative version, which integrates the properties of the IPTW estimator
with those of the regression based estimator, assuming models for both the
propensity score and the (conditional) mean outcome, is the augmented inverse
probability of treatment weighting (AIPTW) estimator (Zhang et al., 2013, 2012b;
Tao and Wang, 2017; Zhang and Zhang, 2018a), where, with models posited for
either Q-functions or contrast functions, a Q-learning or A-learning strategy was
combined with the IPTW estimation. By requiring only one of the two models to be
correctly specified, it ensures a double robustness property which enjoys protection
against model misspecification and performance at least comparable to that of the
competing methods.

IPTW represents a basis for other existing direct methods. For instance, it
constitutes one of the most common approach for estimating MSMs, introduced
in the causal inference literature for controlling for confounding through assigning
each participant a weight (Robins, 2000), and it allowed the development of the
general framework proposed by Zhang et al. (2012b) and Zhao et al. (2012b), who
recast the estimation of the optimal decision rule as a classification problem. We
illustrate now this framework and the specific OWL approach (Zhao et al., 2012b),
with some of the subsequent developments.

Outcome Weighted Learning As an alternative direct approach, Zhao et al.
(2012b) reformulated the problem of optimal DTR estimation as a weighted clas-
sification problem, with weights retrospectively determined from clinical outcomes
(from here “Outcome Weighted Learning”); and proposed to solve it with tools from
the ML literature.

In the case of two treatments, expressed asA ∈ {−1, 1}, Qian and Murphy (2011)
first showed that the problem can be formulated as a weighted 0–1 loss in a weighted
binary classification problem, where d∗ can be estimated as

d̂∗ .= arg max
d∈D

V̂d = arg max
d∈D

PN

[
I[A = d(H)]
π(A|H) Y

]

= arg min
d∈D

PN

[
I[A �= d(H)]
π(A|H) Y

]

.

However, as solving the problem is hard due to the discontinuous indicator
function, Zhao et al. (2012b) proposed to address it with a convex surrogate loss
function for the 0–1 loss, which corresponds to the hinge loss used for support
vector machine (SVM) optimization (Hastie et al., 2009). Considering that d(H)

422 N. Deliu and B. Chakraborty

can always be represented as sign(f (H)) for some suitable function f , the
corresponding minimization problem proposed by the authors can be given as

f̂ ∗ .= arg min
f∈F

PN

[
Y

π(A|H)φ(Af (H))+ λN ||f (H)||
2
]

, (15.22)

where λN is a tuning penalty parameter that can be chosen via cross-validation, and
φ(x)

.= max(1− x, 0) is the hinge loss.
Although the seminal work of Zhao et al. (2012b) allows the use of different

loss functions, the specific settings (non-negative rewards, single stage, binary
treatments) opened many problems for its practical employment, some of which
have been addressed by subsequent DTR literature (see, for instance, the recent
work of Zhang et al., 2020). Among these, Zhao et al. (2015) and Liu et al. (2018)
proposed an extension to multiple stages, integrating the OWL estimator with a RL
framework.

Tree-Based Methods Again, by integrating tools from the ML literature, first
Laber and Zhao (2015), in the context of individualized (single stage) treatment
regimes, and then Tao et al. (2018) and Sun and Wang (2021) for dynamic regimes,
proposed the tree-based approach (Breiman, 2001) for directly estimating optimal
DTRs. The underlying idea of Tao et al. (2018) is, first, to define and estimate a
purity, i.e., a target measure or output which needs to be optimized, and then, to
improve the purity with a decision tree. Improvement is performed by splitting a
parent node into child nodes repeatedly, and by choosing a split among all possible
splits at each node so that the resulting child nodes are the purest (e.g., having
the lowest misclassification rate). The mean outcome (or value function) is used as
purity measure, and its estimation is carried out with the IPTW estimator (Robins,
2000), or alternatively a kernel smoother in the case of continuous treatments (Laber
and Zhao, 2015), and the AIPTW estimator (Zhang et al., 2012b), respectively.
Differently, Sun and Wang (2021) proposed a stochastic tree-based reinforcement
learning which uses Bayesian additive regression trees, and then stochastically
constructs an optimal regime using a Markov chain Monte Carlo (MCMC) tree
search algorithm. In the multi-stage setting, estimation is implemented recursively
using backward induction, starting from t = T + 1 and using the outcome YT+1
directly.

By combining the properties of a tree-based learning (straightforward to under-
stand and interpret, and capable of handling various types of data without distribu-
tional assumptions) with those of the AIPTW (semi-parametric robust estimator),
the tree-based approaches are robust, efficient and more interpretable and flexible
(compared to the OWL, or the DQL, for instance) in the identification of optimal
DTRs.

15 Dynamic Treatment Regimes for Optimizing Healthcare 423

15.4.5 Indefinite-Horizon DTRs

While in computer science, a vast literature on estimating optimal policies over an
increasing time horizon exists (Szepesvári, 2010; Sugiyama, 2015), this scenario is
rare in the DTR literature. By adopting backward induction, most of the existing
methods cannot extrapolate beyond the time horizon in the observed data. However,
for some chronic conditions, or those with very short time steps, the time horizon is
not definite, in the sense that treatment decisions are made continually throughout
the life of the patient, with no fixed time point for the final treatment decision.

To the best of our knowledge, only two proposals (Ertefaie and Strawderman,
2018; Luckett et al., 2020) have been advanced in DTR literature for indefinite-
horizon tasks. We now illustrate these methods; they are both developed under
a time-homogeneous Markov behavior, and, while the V-learning technique of
Luckett et al. (2020) directly maximizes the policy (direct RL), the alternative
Greedy-Gradient Q-learning (GGQ) of Ertefaie and Strawderman (2018) uses
indirect methods.

Greedy-Gradient Q-Learning The first extension of DTRs estimation in
indefinite-horizon problems was introduced by Ertefaie and Strawderman (2018).
Motivated by the original GGQ algorithm of Maei et al. (2010), they proposed
a generalization of the GGQ imposing a time-homogeneous Markov assumption
on the state-action sequences for each subject. Although not imposed by other
DTR methods, this assumption exemplifies estimation and inference by working
with time-independent Q-functions and optimal regimes, and avoiding the need for
backward induction, which has time-horizon limitations.

We adopt similar notation as in the previous sections, with the introduction of an
absorbing state c representing, for instance, a death event. We assume that at each
time t patients’ covariates Xt take values in the state space X0 .= X ∪ {c}, with X ∩
{c} = ∅. We remind that in time-homogeneous Markov Decision Processes (MDPs),
transition probabilities {pt }t≥1, states and actions spaces are time-independent. Let
also the state and action spaces be finite, with the action space Ax defined by the
covariates’ information. Ax consists of 0 < mx ≤ m treatments, with m the total
number of available treatments during all the steps. For any t such that Xt = c,
let Ax = Ac = {u}, where u denotes “undefined”; this implies that p(Xt+1 =
c,At+1 = u|Xt = c,At = y) = 1.

Now, denoted with T̃
.= inf{t > 0 : Xt = c} a stopping time (death, for

example), individual trajectories, including also the last final state, will be given
by (X1, A1, Y2, . . . , XT̃−1, AT̃−1, YT̃ , XT̃). Note that P(T̃ < ∞|X1, A1) = 1,
regardless of (X1, A1).

Based on these specifications, under the standard causal inference assumptions,
one can define the infinite time horizon stage t action-value function for a specified
deterministic regime π(ht) = π(xt) = π(x), for x ∈ X, as

424 N. Deliu and B. Chakraborty

Q(x, a)
.= Eπ [Rt|Xt = xt , At = at] = Eπ

[∞∑

τ=1

γ τ−t Yτ+1

∣
∣
∣
∣
∣
Xt = xt , At = at

]

.

For estimating an optimal regime, Ertefaie and Strawderman (2018) proposed
to estimate the optimal Q-function Q∗(x, a) with linear FA (as illustrated in
Sect. 15.4.4.1). Let Q(x, a; θ∗) be a parametric model for Q∗(x, a) indexed by
θ∗ ∈ � ⊆ Rq , and suppose a linear model with interactions, i.e., Q(x, a; θ∗) =
θ∗T ψ(x, a), with ψ(x, a) being a known q-dimensional vector of features sum-
marizing the state and treatment pair. To ensure Q∗(c, a) = 0, we also need
ψ(c, a) = 0. Now, the Bellman optimality equation suggests and motivates the
following unbiased estimating function for θ∗

D̂(θ∗) = PN
{
T∑

t=1

(

Yt+1 + γ max
a′∈AXt+1

Q(Xt+1, a
′; θ∗)−Q(Xt ,At ; θ∗)

)

ψ(Xt ,At)

}

,

(15.23)

where PN denote the empirical average on N i.i.d. trajectories, and ψ(Xt ,At)
.=

∇θ∗Q(Xt ,At ; θ∗).
V-Learning In the GGQ method of Ertefaie and Strawderman (2018), the esti-
mated policy is based on the estimating equation in (15.23), which contains a
non-smooth max operator that makes estimation difficult without large amounts
of data (Laber et al., 2014a), and, depending directly on θ̂∗, it requires modeling
the transition probabilities. Motivated by a mobile health application, where policy
estimation is continuously updated in real time as data accumulate (starting with
small sample sizes), an alternative method, which directly maximizes estimated
values over a class of policies, was proposed in Luckett et al. (2020).

Under the same causal inference and time-homogeneous MDP assumptions
of Ertefaie and Strawderman (2018), and provided interchange of the sum and
integration is justified, the targeted state-value function of policy d in state xt is

V (xt) =
∑

τ≥t
E

[

γ τ−t Yτ+1

(
τ∏

v=1

d(Av|Xv)
πv(Av|Sv)

∣
∣
∣
∣
∣
Xt = xt

)]

,

where πν is and exploration policy, which can be seen as the randomization
probability in an RCT, and d an arbitrary policy which we want to learn about.

In light of the Bellman equation in (15.11) for the value function, it follows that,
for any function ψ defined on the state space Xt , the state-value function satisfies

0 = E
[
d(At |Xt)
πt (At |St) (Yt+1 + γV (Xt+1)− V (Xt)) ψ(Xt)

]

,

which represents an importance-weighted variant of the Bellman optimality (Sutton
and Barto, 2018).

15 Dynamic Treatment Regimes for Optimizing Healthcare 425

Now let V (x; θ), with θ ∈ � ⊆ Rq , denote a model for V (x). Assuming that
V (x; θ) is differentiable everywhere in θ , for fixed x and d, let ψ(x) be the gradient
of V (x; θ), i.e., ψ(x)

.= ∇θV (x; θ), and define the alternative estimating equation
function as

 ̂(θ) = PN
[
T∑

t=1

d(At |Xt)
πt (At |St) (Yt+1 + γV (Xt+1; θ)− V (Xt ; θ))∇θV (Xt ; θ)

]

.

V-learning only requires modeling the policy and the value function, rather than
the data-generating process. In addition, by directly maximizing the estimated value
over a class of policies (Luckett et al., 2020) it avoids the non-smooth max operator
in (15.23). The developed RL method is applicable over indefinite horizons and is
suitable for both offline and online learning.

15.5 Inference in DTRs

Statistical inference plays a key role in a wide range of problems arising in
DTRs. These include, for instance: (i) comparing two or more pre-specified and/or
estimated regimes; (ii) evaluating the performance and potential benefits of an
estimated optimal treatment regime; or (iii) identifying key tailoring variables that
may matter in making high-quality treatment recommendations. In these problems
one can think of inference for mainly two types of quantities: (1) inference for the
parameters indexing the theoretically optimal regime, which helps understand the
relevance of different predictors on making an optimal decision, and (2) inference
for the value function of a regime, either a regime that was pre-specified, or one
that was estimated. The latter helps in evaluating alternative regimes and comparing
them with a gold standard, i.e., a regime with a maximally achievable expected
performance (or value).

Although there exists a rich literature on development and estimation of optimal
DTRs, the associated inference problem has received less or only secondary
attention, with a main focus on confidence intervals (CIs). An effervescent interest in
the topic characterized the novel DTRs literature around a decade ago, highlighting
how inference represents an open problem with several technical challenges, with
a major one caused by the phenomenon of non-regularity (Robins, 2004). Briefly,
by non-regularity we mean the lack of locally uniform convergence; as discussed
in Lizotte and Tahmasebi (2017), it can be a result of the sampling distributions
of corresponding estimators changing abruptly as a function of the true underlying
parameters. We refer to Chakraborty and Moodie (2013) for a rich discussion on the
topic and the inclusion of several examples. In DTRs, this may occur, for instance,
when two or more treatments produce (nearly) the same mean optimal outcome.

We now aim to provide an overview of the different aspects of inference in DTRs.
Because the problem involves asymptotic theoretical results, which makes the nature

426 N. Deliu and B. Chakraborty

of its discussion admittedly more technical, our goal is to only introduce, our goal is
to only introduce the salient features of inference in DTRs, particularly in presence
of non-regularity. All readers interested to cover this topic more in depth may refer
to Chakraborty and Moodie (2013), Laber et al. (2014b) and the recent book of
Tsiatis et al. (2019).

15.5.1 Inference for Parameters Indexing the Optimal Regime

Standard approaches to perform inference in many statistical problems rely on
known asymptotic approximations to the sampling distribution of an estimator
for the targeted estimand. However, as introduced above, in DTRs, inference
is complicated by the presence of non-regularity. This phenomenon has several
practical implications for both of the two statistical inference areas, i.e., estimation
(point and interval) and hypothesis testing. First, estimators of these quantities
are necessarily non-regular and asymptotically biased (Van Der Vaart, 1991;
Robins, 2004; Hirano and Porter, 2012). Second, traditional asymptotic theory for
approximating the sampling distributions of non-regular estimators, such as normal
approximations or the bootstrap, can be quite poor. Thus, traditional tools may not
be used directly to derive reliable CIs or to guarantee desirable properties in the
context of hypothesis testing. This means that any inference technique that aims to
provide good frequentist properties such as nominal Type-I error rate and/or nominal
coverage rate of CIs in small samples has to seriously address the problem of non-
regularity.

Asymptotic Bias As shown by a large number of authors, presence of asymptotic
bias may be indicative of bias in small samples and may influence nominal Type-I
error levels in hypothesis testing and coverage rates of CIs (Blumenthal and Cohen,
1968; Casella and Strawderman, 1981; Robins, 2004; Chakraborty et al., 2010;
Moodie and Richardson, 2010). Thus, much attention has been given to characterize
and reduce it. To cite, Moodie and Richardson (2010) studied the bias problem
in the context of the indirect G-estimation, proposing a method called Zeroing
Instead of Plugging In for reducing it. This is referred to as the hard-threshold
estimator by Chakraborty et al. (2010), who proposed an alternative version,
named soft-threshold estimator, in the context of Q-learning. Both techniques were
demonstrated to reduce bias in small samples.

In a similar spirit, Song et al. (2015) and Goldberg et al. (2013) proposed
minimizing a penalized version of the objective in the first step of a two-stage
Q-learning analysis. Indeed, in many indirect methods, first Robins (2004) for G-
estimation, and later Chakraborty et al. (2010) for Q-learning, pointed out that the
treatment effect parameters at any stage prior to the last can be non-regular under
certain longitudinal distributions of the data. For instance, if we consider again the
two-stage two-treatment model for the Q-functions proposed in (15.15), we have
that the optimal DTR is given by

15 Dynamic Treatment Regimes for Optimizing Healthcare 427

d∗t (Ht) = arg max
at∈At

(ψTt Ht1)At = sign(ψTt Ht1), t = 1, 2,

where sign(x) = 1 if x > 0 and −1 otherwise.
Inference for ψ2, the stage 2 parameters, is straightforward since this falls in the

framework of standard linear regression. In contrast, inference for ψ1, the stage 1
parameters, is complicated by the non-regularity resulting from the underlying non-
smooth maximization operation in the estimation procedure. More specifically, the
inferential problem arises when the quantity ψTt Ht1 is close to zero with positive
probability (i.e., for at least some subjects with history Ht1), as non-differentiable
in that point. Under mild assumptions, Laber et al. (2014b) characterized the
asymptotic bias of the first-stage estimator, which is indeed non-zero when the
second-stage treatment effect has a positive probability of being zero.

More recently, Fan et al. (2019) proposed the smoothed Q-learning, dictated
by the use of a modified version of ψ̂Tt Ht1 in the above model. This is given by
(
ψ̂Tt Ht1

)
Kα(ψ̂

T
t Ht1), with K(·) a kernel function that admits a probability density

function defined as Kα(x)
.= K(x/α), where α > 0 is the smoothing parameter.

Confidence Intervals The practical use of optimal DTRs for informing clinical
decision making or future research needs to be accompanied by reliable measures
of uncertainty. Thus, CIs have received a remarkably central attention in the
DTR literature. Indeed, if CIs of parameters associated with some of the tailoring
variables included in the statistical models contain zero, then those variables may
need not be collected, and, alternatively, the length of a CI may indicate the extent
of variability, thus uncertainty around the estimate of an important variable. Such
CIs can be useful in exploratory data analysis from observational data when trying
to interactively find a suitable model for, say, the Q-functions, before starting a
SMART, with consequent improvement of the data collection burden and cost in a
future implementation. Thus, CIs can also be viewed as a tool, albeit one that is not
very sophisticated, for doing variable selection (Chakraborty and Moodie, 2013).

Notably, estimators and methods mentioned above (Chakraborty et al., 2010;
Song et al., 2015; Goldberg et al., 2013) have been originally suggested for
constructing high-quality CIs. However, in general, despite the direct connection
between CIs and estimators, one should notice that: (1) there is no strict requirement
of unbiasedness in the estimators for obtaining CIs that deliver the desired level of
confidence and allow for valid inference, and (2) there are no guarantees that an
asymptotically unbiased estimator will lead to a high-quality CI. Indeed, bias only
reflects the mean of the sampling distribution whereas CIs require estimation of the
tails of the sampling distribution; thus, reducing asymptotic bias is not sufficient
for having reliable inference. To illustrate, the estimators proposed in Chakraborty
et al. (2010), Song et al. (2015), Goldberg et al. (2013), by involving additional
non-smooth operations of the data, lead to inconsistent CIs under local alternatives.

Construction of confidence sets for parameters indexing the optimal DTR has
received its due attention from a broad DTR literature. Orellana et al. (2010) studied
the problem in the context of direct IPTW-based methods; in this case, confidence

428 N. Deliu and B. Chakraborty

sets are based on standard Taylor series arguments, and are asymptotically valid
under a set of smoothness assumptions. Even in the case of OWL methods (Zhao
et al., 2012b, 2015, 2019; Chen et al., 2016; Zhou et al., 2017; Liu et al., 2018),
which originally involved a (non-convex) 0–1 loss function, by replacing the latter
with a convex surrogate for solving the optimization problem, an automatic solution
for inference was provided as well. Under specific surrogates (some examples are
discussed in Tsiatis et al., 2019), the OWL estimator is shown to be consistent,
normally distributed and with superior performance as compared to the standard
hinge loss in some contexts (Zhao et al., 2019; Jiang et al., 2019).

For indirect methods such as Q-learning, proposals for constructing reliable
CIs include the adjusted projection confidence intervals of Robins (2004), where
a joint CI for all of the parameters (of all stages) is formed based on inverting
hypothesis tests; the m-out-of-n bootstrap of Chakraborty et al. (2013), where a
practically convenient adaptive method for bootstrapping under non-regularity is
presented, and the novel locally consistent adaptive confidence intervals of Laber
et al. (2014b). We refer to Chakraborty and Murphy (2014) for a discussion on
these techniques. Alternative proposals include the interactive Q-learning method
of Laber et al. (2014a), where the maximization step in Q-learning is delayed,
enabling the estimation to be performed before the non-smooth, non-monotone
transformation; and more recently, the LASSO-based procedure of Jeng et al.
(2018). The latter, in the context of A-learning, proposes an asymptotically unbiased
estimator and derives its limiting distribution in presence of a high number of
covariates and interactions as well.

Hypothesis Testing While a broad DTRs literature focusing on estimation (partic-
ularly CIs) exists, less attention has been given to hypothesis testing. One plausible
reason for this could lie in the primary role of DTRs studies, more specifically
SMARTs, in which estimation and inference about an optimal treatment regime is
usually a secondary or exploratory analysis intended to generate new hypotheses for
subsequent research and not to directly dictate treatment to new patients (Murphy,
2005a; Zhang et al., 2018). Consequently, hypothesis testing around estimation of
an optimal regime is not generally central to sample size, as we will also see in
Sect. 15.6.

15.5.2 Inference for the Value Function of a Regime

Estimation Under Non-regularity Similar to inference for model parameters,
inference for the optimal value is challenging due to non-regularity. In general non-
regularity arises in the case of exceptional laws (Robins, 2004), that is, probability
distributions where there exists a strata of history covariates that occurs with positive
probability and for which treatment is neither beneficial nor harmful, thus when the
probability that the optimal rule is not unique is positive.

15 Dynamic Treatment Regimes for Optimizing Healthcare 429

A first solution for performing inference for value functions of DTRs was
proposed by Zhang et al. (2012b), based on which inference is restricted to a class
of regimes indexed by a finite-dimensional vector. At non-exceptional laws, the
authors showed that their estimator is (up to a negligible term) equal to the estimator
under regularity conditions. In the same regular setting, Wu and Wang (2021)
developed a smoothed robust estimator with asymptotically normal distribution,
suitable for both model parameters and value function inference. Although the
theoretical background is based on regularity conditions, the authors show that their
bootstrap CIs for the optimal value function displays a fair degree of robustness
when non-regularity occurs.

However, restricting inference to non-exceptional laws is limiting as often a
zero-treatment effect may characterize patients of some strata of history variables.
Chakraborty et al. (2014) proposed using the m-out-of-n double bootstrap to obtain
inference for the value of an estimated DTR in a more general setting. When the
treatment mechanism is known or is estimated according to a correctly specified
parametric model, valid inference could be performed with IPTW or AIPTW
(see Sect. 15.4). In non-regular problems, under certain conditions, the m-out-of-n
bootstrap yields valid inference, however, at the cost of wider CIs.

More recently, Luedtke and Van Der Laan (2016) developed interesting theory
for inference for the value function under exceptional laws, and proposed an alter-
native approach based on an online one-step estimator and split sampling. Although
asymptotically valid, the resulting CI for the value function, similar to Chakraborty
et al. (2014), can be wide due to using partial sample for inference. For correcting
this issue, and at the same time allowing for high number of covariates to be included
in the model, Zhu et al. (2019) proposed a hard-thresholding high-dimensional
Q-learning. This method allows simultaneously estimating the optimal DTR and
selecting the variables that have an important contribution to the individual outcome.
The asymptotic properties of the optimal value function estimator as well as the
parameter estimators are then established by adjusting the bias by thresholding.

Hypothesis Testing In SMARTs, hypothesis testing is generally conducted for
comparing different embedded DTRs in a trial. Methods have been proposed for
both: (i) superiority tests, i.e., testing whether one embedded regime yields better
primary outcome on average than another (Nahum-Shani et al., 2012b); and (ii) non-
inferiority and equivalence tests, i.e., testing whether one embedded regime yields
benefits that are non-inferior or equivalent to those produced by (active) standard of
care (Ghosh et al., 2020).

To illustrate, an important scientific question motivating the SMART for weight
loss management study (Pfammatter et al., 2019) introduced in Sect. 15.3, concerns
the comparison of say DTR1, which recommends initiating treatment with App, and
then to augment it vigorously (App + TXT + Coaching) as soon as the individual
exhibits early signs of non-response, and continue with App alone as long as the
individual is responding; and DTR2, which recommends to initiate treatment with
App + Coaching, and then to vigorously augment it (App + Coatching + TXT +
MR) as soon as the individual exhibits early signs of non-response, and to continue

430 N. Deliu and B. Chakraborty

with App + Coaching as long as the individual is responsive. The rationale for
this comparison relates to cost and burden. Because DTR2 recommends coaching
throughout, it is likely to be effective, yet relatively costly and burdensome. DTR1,
on the other hand, offers coaching only to those individuals who seem to need it most
(i.e., early non-responders), hence it is hypothesized to be non-inferior, namely no
less effective than DTR2. If DTR1 is equally or more beneficial in terms of ultimate
weight loss compared to DTR2, then the former should be selected for real-world
implementation.

Ghosh et al. (2020) discuss the problem of hypothesis testing for non-inferiority
and equivalence testing. The authors propose a test statistic based on the means
of the embedded DTRs and a pre-specified non-inferiority margin (in the case of
non-inferiority tests), considering a single continuous primary outcome. By design,
the mean of each DTR is a weighted average of primary outcomes of patients
having treatment trajectories consistent with that regime (Nahum-Shani et al.,
2012b; Oetting and Levy, 2007). The weighted average derives from a structural
imbalance between responders and non-responders; thus, the IPTW method is a
natural technique to be used for accounting for this imbalance. The test statistic
has asymptotic normal distribution, which can thus be used for rejecting the null
hypothesis and performing power analysis.

15.6 Practical Considerations and Final Remarks

In the previous sections we focused on the methodological aspects for developing
DTRs, including data sources, existing techniques and inferential aspects. These
arguments were mainly introduced and studied within the statistical and ML
literature, and generally evaluated through simulations. Now, we want to provide
a more concrete idea of the study of optimal DTR in real-world settings, as found
in clinical literature. At the same time, we want to illustrate the main practical
challenges that clinical researchers face in applying these methods, and some of
the proposed solutions, if any.

In Mahar et al. (2021), a detailed overview of how DTRs are optimized with
observational data in practice is provided. Using the PubMed database, the authors
identified 63 eligible studies, mostly published after 2005 (up to October 2020),
and almost half (25, 45%) in the last 5 years), showing thus that the practical
field development is quite recent. Identified studies are most concentrated in the
chronic disease area: HIV/AIDS (27, 43%), followed by cancer (8, 13%), and
diabetes (6, 10%). Common statistical approaches illustrated in Sect. 15.4 were
implemented. IPTW-based methods were the most commonly used, followed by
parametric G-formula related methods and Q-learning. Yet, there was a lack of
transparency regarding some of the specific methodological approaches used across
many studies, particularly in relation to either missing data, model evaluation,
model selection, or model sensitivity, and only eight studies described all four
methodological approaches. The most commonly used statistical software were R

15 Dynamic Treatment Regimes for Optimizing Healthcare 431

Table 15.2 Some of the existing R packages for developing Dynamic Treatment Regimes

R package name Functions and methods

DynTxRegime (Holloway et al., 2020) owl (Outcome Weighted Learning; (Zhao et al.,
2012a)); bowl (Backwards Outcome Weighted
Learning; (Zhao et al., 2015); rwl (Residual
Weighted Learning; (Zhou et al., 2017)); qLearn
(Q-Learning Algorithm; (Murphy, 2005b));
iqLearn (Interactive Q-Learning; (Laber et al.,
2014a)); optimalSeq (Augmented Inverse
Probability Weighting; (Zhang et al., 2012b, 2013))

DTRreg (Wallace et al., 2020) method = "gest" (G-estimation; (Robins,
2004)); method = "dwol" (Dynamic Weighted
Ordinary Least Squares; (Wallace and Moodie,
2015); method = "qlearn" (Q-learning;
(Murphy, 2005b))

iqLearn (Linn et al., 2015) Interactive Q-Learning (Laber et al., 2014a)

qLearn (Xin et al., 2012) Q-Learning (Murphy, 2005b)

GGQ (Ertefaie and Strawderman, 2018)—code in
authors’ Supplementary material

V-learning (Luckett et al., 2020)—code based on
optim function

Bayesian Machine Learning (Murray et al., 2018)—
code in authors’ Supplementary material

and SAS, with only 21 studies providing the code used for performing data analysis.
In Table 15.2, we report a list of existing R packages (and respective functions)
associated with the methods illustrated in Sect. 15.4, some of which were also
employed by the reviewed papers.

We believe that the lack of reporting methodological details in relation to the
above mentioned problems may be caused by either an underestimation of the
problem or a lack of existing (recognized) statistical tools for the specific DTR
context. Thus, we acknowledge that there is an enormous research-practice gap in
the area, and we encourage readers interested in advancing methodological tools
to support this endeavor to advocate strongly to domain science collaborators. In
what follows we want to report some of the few existing work in the field for which
enormous space for improvement exists. This may help both clinicians in carrying
our estimation of optimal DTR more transparently, and methodological researchers
in developing and/or improving existing techniques with specific considerations
about the DTR area.

15.6.1 Model Choice and Variable Selection

A first practical challenge when estimating optimal regimes is related to the choice
of the statistical model, including the form of dependency of the outcome variables

432 N. Deliu and B. Chakraborty

on the independent covariates (e.g., linear vs non-linear) and all the relevant patient
information that should be considered (and their relationship; e.g., interactions).
Most of the methods discussed in Sect. 15.4 focus on estimation, and implicitly
assume that the models upon which they rely are correctly (or over-) specified.
Thus, they are not designed for variable selection with the objective of optimizing
treatment decisions. In clinical trials and more important in observational studies,
numerous variables are collected and variable selection is essential for guaranteeing
stability end reliability. The alternative technique of deep learning, as discussed
in Sect. 15.3, may overcame this problem and automatically perform variable
selection. However, the interpretability limitation of the latter represents a major
barrier for performing inference and drawing conclusions.

In statistics, the identification of the so-called tailoring variables can be viewed
as a problem of variable selection. However, despite the vast literature on variable
selection in regression (which may be useful for Q-learning), these methods are
largely focused on minimizing prediction error; that is, identifying predictive
variables, i.e., those that are important for high-quality predictions. In DTR, in
addition to the prediction-quality, the interest is also in identifying prescriptive
variables, i.e., those that have a qualitative interaction with treatment and thus
are critical for high-quality decision making (Peto, 1982). Thus, in the framework
of optimal DTRs estimation, methods incorporating this selection criterion are an
important adjunct to standard variable selection methods.

Existing works that focused on variable selection in DTR are limited but
cover several interesting DTR frameworks discussed in Sect. 15.4. These include
ranking methods (Gunter et al., 2011a), regression based methods (Fan et al.,
2016), weighted classification type learning methods (Zhang and Zhang, 2018b),
to mention a few. Notably, a few works also proposed formal hypothesis testing
procedures that take variable selection into account. Here we briefly illustrate some
of the existing methods (Shi et al., 2019; Qian et al., 2021). In the latter, the aim is to
identify (among a large set of candidates) covariates that interact with treatment, via
a sequential testing procedure. As our focus is on prescriptive variables in general,
we now briefly illustrates some of the existing techniques.

One of the first works in the DTR context (Biernot and Moodie, 2010), is
motivated by a real-world randomized study, the STAR*D, with a binary outcome
(remission) and only discrete covariates. Here, the authors compare some already
existing strategies, i.e., the S-scores proposed in Gunter et al. (2007) and the
reducts (Swiniarski and Skowron, 2003), adopted form computer science, showing
the unsatisfactory performance of the latter. Other works include Gunter’s contri-
butions (Gunter et al., 2011a,b,c), which integrate Lasso, the Bayesian Information
Criterion (BIC), bootstrap sampling and thresholding, and S-score ranking, leading
to a complex and computationally intensive approach, but subsequently also propose
a more simple stepwise selection method that surprisingly seems to work well
compared to the more complex one. The authors also discuss and define a new
method for variable selection that is able to control for the number of false
discoveries (Gunter et al., 2011c).

15 Dynamic Treatment Regimes for Optimizing Healthcare 433

Building on the work of Gunter et al. (2011b), an alternative approach based on a
modified S-score is proposed by Fan et al. (2016). Their method selects qualitatively
interacted variables sequentially (based on the notion of sequential advantage),
and hence excludes marginally important but jointly unimportant variables or vice
versa. The authors show that this method can handle a large amount of covariates
even if sample size is small, and by introducing a stopping criteria that tunes the
cut-off can efficiently achieve the goal of maximizing the expected outcome of
the treatment regime. This stopping criteria, based on proportion of incremental
sequential advantages, is used to decide how many variables to be included for
decision making.

In a different framework, i.e., the classification framework, more specifically
C-learning (Zhang and Zhang, 2018a), Zhang and Zhang (2018b) propose a new
method to select important prescriptive variables (among a high number) for esti-
mating the optimal treatment regimes. The general procedure is based on forward
sequentially minimizing the weighted misclassification error rate and, as Fan et al.
(2016), in each step it takes into account previously selected variables. In a two-
stage decision problem setting, with linear models assumed for the outcome, this
novel proposal selects less variables yet with better value than the other methods
evaluated in Fan et al. (2016).

An alternative idea, focused on the model choice is presented in Wallace et al.
(2019). In model choice the goal is to select a model among a set of candidate
models (which may differ in terms of the included variables) based on a certain
performance measure. In the context of SNNMs and G-estimation, Wallace et al.
(2019) adapt the performance metric of quasi-likelihood information criterion
(QIC) and compares it with common Wald-type selection methods. The authors
assume linear treatment models, and always correctly specified in terms of the
proposed linear regression. In their simulation study, comparing eight different blip
models corresponding to possible combinations of three predictors at each stage
(using none, one, two, or all three), the authors show that QIC, with its guarantee
of consistency, performs at least as well than simpler Wald-type approaches for
continuous outcomes, particularly when the sample or effect sizes are small, or there
is correlation between candidate covariates.

15.6.2 Sample Size Considerations and Power Analysis

Ensuring an adequate power to detect statistical significance, by determining the
optimal sample size, is a critical step in the design of a planned research protocol
for an experimental trial, such as a SMART. Most of the power analysis and
sample size considerations have indeed focused on SMART designs and pilot
SMARTs (Almirall et al., 2012), whose primary analysis is generally related to
hypothesis-generating analyses such as estimation of an optimal treatment regime.
Tsiatis et al. (2019) extensively discuss different ways of performing sample size
calculations and empowering a SMART design based on the different goals of the

434 N. Deliu and B. Chakraborty

study. In general, SMARTs can be more sample size efficient than standard RCTs.
However, the sample size can drastically inflate with the increase of the number of
treatment components.

Depending on the primary analyses of a trial, sample size and power considera-
tions could be more or less straightforward. For example, for many SMARTs, the
primary analysis specified in the protocol consists in the comparison of response
rates among first-stage treatment options or comparison of fixed treatment regimes
embedded in the SMART. In this case the sample size formulae are known or
quite simple, and rely on asymptotic theory; while empower of a SMART is
based on the Bonferroni correction (Aickin and Gensler, 1996) when multiple
comparisons are made. An extensive overview of these computations are provided
in Chapter 9.3 of Tsiatis et al. (2019). Alternatively, the original works of Murphy
(2005b) and Kidwell and Wahed (2013) illustrate sample size calculation for the
terminal outcome comparison of two fixed regimes that are “non-overlapping”
or “overlapping,” i.e., if regimes differ in the first-stage treatment option or not,
respectively. In most cases, these fixed regimes will be embedded in the SMART;
however, this does not affect the sample size calculations. The additional works
of Ertefaie et al. (2016) and Artman et al. (2020) also give an idea on sample
size methodology on identifying an optimal embedded regime(s) from among those
represented in the SMART.

Although estimation of an optimal DTR typically is considered a secondary and
hypothesis-generating analysis (thus, not factored into sample size calculations),
recently the practical interest of precision medicine has placed the estimation of
an optimal regimes in the primary analysis of a SMART (Laber et al., 2016). As a
result, the need of sample size calculation has brought a surge of attention within
the DTR literature. The problem is principally tackled to ensure: (i) sufficient power
for detecting a clinically meaningful difference in the values under an optimal
treatment regime and under some comparator regime; and (ii) estimated optimal
DTR value within a pre-specified tolerance (of that under a true optimal regime)
with high probability. In such a setting, because of the non-smooth functional
of the underlying generative data model (as illustrated in Sect. 15.5) standard
large sample methods for inference cannot be applied without modification or
strong assumptions. Two procedures for sample size calculations can be found: (1)
normality-based procedures, which rely of assumptions that are sufficiently strong
to appeal to standard inference; and (2) non-parametric projection-based methods.
We refer again to the general work of Tsiatis et al. (2019) for an overview of formal
derivations of sample sizes in this setting; and to the more specific work of Rose
et al. (2019) for further discussion of evaluation of performance and implications
for practice.

Despite increasing popularity, the concept of DTR is still relatively novel for
being used in experimental SMART designs. In addition, there is also a considerably
fewer literature, compared to the observational counterpart, on the use and practical
application of existing methodologies in this setting. It was thus suggested that
researchers could benefit from conducting a pilot SMART to assess the feasibility
and acceptability concerns of the DTRs and consequently the full-scale SMART

15 Dynamic Treatment Regimes for Optimizing Healthcare 435

trial (Almirall et al., 2012; Kim et al., 2016; Yan et al., 2021). Although the primary
feasibility and acceptability goal of pilot studies, the authors also proposed different
ways to operationalize sample size calculation specifically for the pilot SMART.
For example, in Almirall et al. (2012), the team sizes the pilot SMART from
an operational perspective, by ensuring a minimal number of participants in the
smallest subgroup of a SMART design, so that at least all subgroups in a SMART
can be observed. An alternative proposal suggests the use of a precision-based
approach that allows the researchers to observe the response or non-response rate,
by ensuring the rate is confined within a pre-specified margin of error (Kim et al.,
2016). We make it clear that the precision-based sample size does not relates to
power (and effect sizes), but is based on the width of the CI (the precision). More
recently, this idea was extended by Yan et al. (2021) for different outcome types as
well. Their approach has the benefit of information on the marginal mean estimates
of the DTR within a meaningful pre-specified margin of error and has performances
comparable to those of Almirall et al. (2012).

15.6.3 Missing Data

Missing data and dropout are central problems in almost any healthcare domain
when it comes to data analyses. In the context of DTRs, they complicate sta-
tistical analysis and results’ generalizability because participants who drop out
do not experience the entire sequence of decision points of an observational or
experimental trial. Specifically focusing on SMARTs, in Shortreed et al. (2014) a
multiple imputation technique under the assumption that missingness is at random is
proposed, while Liu et al. (2017b) discusses a stage-wise enrichment design for two-
stage SMARTs that may address problems of attrition after the first stage. However,
in general, there is relatively little literature on methodology for handling missing
information in DTRs estimation.

15.6.4 Additional Issues and Final Remarks

The content above highlights and summarizes an increasing progress and interest
in the development of DTRs. However, despite remarkable theoretical results,
their application in real life is very limited. The majority of existing studies are
methodological investigations and typically only tackle a simplified real-world
setting, or not even mention a potential setting. This obviously causes a number
of practical limitations when it comes to develop DTR in real life. To illustrate, an
exciting open problem is related to the formalization of suitable and context specific
relationships between patients’ covariates, interventions, and outcomes variables.
This is particularly true for the outcome function, whose formalization sometimes
requires combining multiple and possibly competing outcomes. This task may

436 N. Deliu and B. Chakraborty

only be performed under adequate prior knowledge of the specific domain, e.g.,
with clinicians, and/or patients’ preference, elicitation. See Butler et al. (2018) and
Luckett et al. (2021) for a discussion on the topic.

In addition, despite the simpler setting of proposed methods compared to the
complex real-world scenarios, many of the proposed methodological strategies may
be difficult for clinical readers and researchers to employ and interpret, due to,
e.g., complex estimating equations, Monte Carlo simulations, and/or ML tools
such as neural networks. While, for instance, some software packages exist for
implementing many of the reviewed algorithms (as reported in Table 15.2), they
may require both adaptation to the setting under study (e.g., from categorical to
continuous outcome variables) and users’ knowledge about the specific software. To
this end, we believe that user-friendly and readily usable by non-experts software
(e.g., Shiny apps) would make the real-world implementation easier for applied
scientists and improve the real-world development of DTRs, with a consequent
practical benefit to patients, clinicians, and healthcare systems.

We conclude by noticing that this chapter aims to provide an overview of the
study of DTRs, including its fundamental mathematical framework, the proposed
methodologies for developing DTRs (to which a major focus was dedicated),
existing data sources, the issue of inference, and other practical considerations.
We do not cover in detail the recent advances for all the specific problems,
providing only some useful references for interested readers. We hope to endow
the reader with a foundation for further study of the expansive literature on this
topic, acknowledging that there is an enormous research-practice gap to be bridged.

References

Aickin, M., & Gensler, H. (1996). Adjusting for multiple testing when reporting research results:
the Bonferroni vs Holm methods. American Journal of Public Health, 86(5), 726–728.

Ajzen, I., & Madden, T. J. (1986). Prediction of goal-directed behavior: Attitudes, intentions, and
perceived behavioral control. Journal of Experimental Social Psychology, 22(5), 453–474.

Almirall, D., Compton, S. N., Gunlicks-Stoessel, M., Duan, N., & Murphy, S. A. (2012). Designing
a pilot sequential multiple assignment randomized trial for developing an adaptive treatment
strategy. Statistics in Medicine, 31(17), 1887–1902.

Almirall, D., Nahum-Shani, I., Sherwood, N. E., & Murphy, S. A. (2014). Introduction to smart
designs for the development of adaptive interventions: with application to weight loss research.
Translational Behavioral Medicine, 4, 260–274.

Arjas, E., & Saarela, O. (2010). Optimal dynamic regimes: presenting a case for predictive
inference. The International Journal of Biostatistics, 6(2): Article 10.

Artman, W. J., Nahum-Shani, I., Wu, T., Mckay, J. R., & Ertefaie, A. (2020). Power analysis in
a smart design: sample size estimation for determining the best embedded dynamic treatment
regime. Biostatistics, 21(3), 432–448.

Atan, O., Jordon, J., & van der Schaar, M. (2018). Deep-treat: Learning optimal personalized
treatments from observational data using neural networks. In Thirty-Second AAAI Conference
on Artificial Intelligence.

15 Dynamic Treatment Regimes for Optimizing Healthcare 437

Banks, H. T., Jang, T., & Kwon, H. D. (2011). Feedback control of HIV antiviral therapy with
long measurement time. Tech. rep., North Carolina State University. Center for Research in
Scientific Computation.

Bekiroglu, K., Russell, M. A., Lagoa, C. M., Lanza, S. T., & Piper, M. E. (2017). Evaluating
the effect of smoking cessation treatment on a complex dynamical system. Drug and Alcohol
Dependence, 180, 215–222.

Bellman, R. (1965). Dynamic programming (Vol. 1 ed.). Princeton University Press.
Bennett, C. C., & Hauser, K. (2013). Artificial intelligence framework for simulating clinical

decision-making: A Markov decision process approach. Artificial Intelligence in Medicine,
57(1), 9–19.

Berry, D. A. (2001). Adaptive trials and Bayesian statistics in drug development. Biopharmaceuti-
cal Report, 9(2), 1–11.

Berry, D. A. (2004). Bayesian statistics and the efficiency and ethics of clinical trials. Statistical
Science, 19(1), 175–187.

Bertsekas, D. (2019). Reinforcement learning and optimal control. Athena Scientific.
Bhatt, D. L., & Mehta, C. (2016). Adaptive designs for clinical trials. New England Journal of

Medicine, 375(1), 65–74.
Biernot, P., & Moodie, E. E. (2010). A comparison of variable selection approaches for dynamic

treatment regimes. The International Journal of Biostatistics, 6(1): Article 6.
Blatt, D., Murphy, S. A., & Zhu, J. (2004). A-learning for approximate planning. Ann Arbor, 1001,

48109–2122.
Blumenthal, S., & Cohen, A. (1968). Estimation of the larger of two normal means. Journal of the

American Statistical Association, 63(323), 861–876.
Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the

author). Statistical Science, 16(3), 199–231.
Burnett, T., Mozgunov, P., Pallmann, P., Villar, S. S., Wheeler, G. M., & Jaki, T. (2020). Adding

flexibility to clinical trial designs: an example-based guide to the practical use of adaptive
designs. BMC Medicine, 18(1), 1–21.

Butler, E. L., Laber, E. B., Davis, S. M., & Kosorok, M. R. (2018). Incorporating patient
preferences into estimation of optimal individualized treatment rules. Biometrics, 74(1), 18–
26.

Cain, L. E., Robins, J. M., Lanoy, E., Logan, R. W., Costagliola, D., & Hernán, M. A. (2010).
When to start treatment? a systematic approach to the comparison of dynamic regimes using
observational data. The International Journal of Biostatistics, 6(2): Article 18.

Casella, G., & Strawderman, W. E. (1981). Estimating a bounded normal mean. The Annals of
Statistics, 9(4), 870–878.

Chakraborty, B., & Moodie, E. E. M. (2013). Statistical methods for dynamic treatment regimes:
Reinforcement learning, causal inference, and personalized medicine. Springer.

Chakraborty, B., & Murphy, S. A. (2014). Dynamic treatment regimes. Annual Review of Statistics
and Its Application, 1, 447–464.

Chakraborty, B., Murphy, S., & Strecher, V. (2010). Inference for non-regular parameters in
optimal dynamic treatment regimes. Statistical Methods in Medical Research, 19(3), 317–343.

Chakraborty, B., Laber, E. B., & Zhao, Y. (2013). Inference for optimal dynamic treatment regimes
using an adaptive m-out-of-n bootstrap scheme. Biometrics, 69(3), 714–723.

Chakraborty, B., Laber, E. B., & Zhao, Y. Q. (2014). Inference about the expected performance of
a data-driven dynamic treatment regime. Clinical Trials, 11(4), 408–417.

Chen, G., Zeng, D., & Kosorok, M. R. (2016). Personalized dose finding using outcome weighted
learning. Journal of the American Statistical Association, 111(516), 1509–1521.

Chen, M. H., Müller, P., Sun, D., Ye, K., & Dey, D. K. (2010). Frontiers of statistical decision
making and Bayesian analysis: In Honor of James O. Berger. Springer Science & Business
Media.

Cheung, Y. K., Chakraborty, B., & Davidson, K. W. (2015). Sequential multiple assignment
randomized trial (smart) with adaptive randomization for quality improvement in depression
treatment program. Biometrics, 71(2), 450–459.

438 N. Deliu and B. Chakraborty

Collins, L. M., Murphy, S. A., & Bierman, K. L. (2004). A conceptual framework for adaptive
preventive interventions. Prevention Science, 5, 185–196.

Cotton, C. A., & Heagerty, P. J. (2011). A data augmentation method for estimating the causal
effect of adherence to treatment regimens targeting control of an intermediate measure.
Statistics in Biosciences, 3, 28–44.

Dawson, R., & Lavori, P. W. (2012). Efficient design and inference for multistage randomized trials
of individualized treatment policies. Biostatistics, 13(1), 142–152.

Dehejia, R. H. (2005). Program evaluation as a decision problem. Journal of Econometrics, 125(1–
2), 141–173.

Dugdale, A., & Payne, P. (1977). Pattern of lean and fat deposition in adults. Nature, 266(5600),
349–351.

Ertefaie, A., & Strawderman, R. L. (2018). Constructing dynamic treatment regimes over indefinite
time horizons. Biometrika, 105(4), 963–977.

Ertefaie, A., Wu, T., Lynch, K. G., & Nahum-Shani, I. (2016). Identifying a set that contains the
best dynamic treatment regimes. Biostatistics, 17(1), 135–148.

Fan, A., Lu, W., & Song, R. (2016). Sequential advantage selection for optimal treatment regime.
The Annals of Applied Statistics, 10(1), 32.

Fan, Y., He, M., Su, L., & Zhou, X. H. (2019). A smoothed q-learning algorithm for estimating
optimal dynamic treatment regimes. Scandinavian Journal of Statistics, 46(2), 446–469.

Ghosh, P., Nahum-Shani, I., Spring, B., & Chakraborty, B. (2020). Noninferiority and equivalence
tests in sequential, multiple assignment, randomized trials (smarts). Psychological Methods,
25(2), 182.

Goldberg, Y., Song, R., & Kosorok, M. R. (2013). Adaptive q-learning. In From probability to
statistics and back: High-dimensional models and processes–A Festschrift in honor of Jon A.
Wellner (pp. 150–162). Institute of Mathematical Statistics.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Gunter, L., Zhu, J., & Murphy, S. (2007). Variable selection for optimal decision making. In

Conference on Artificial Intelligence in Medicine in Europe (pp. 149–154). Springer.
Gunter, L., Chernick, M., & Sun, J. (2011a). A simple method for variable selection in regression

with respect to treatment selection. Pakistan Journal of Statistics and Operation Research, 7,
363–380.

Gunter, L., Zhu, J., & Murphy, S. (2011b). Variable selection for qualitative interactions. Statistical
Methodology, 8(1), 42–55.

Gunter, L., Zhu, J., & Murphy, S. (2011c). Variable selection for qualitative interactions in per-
sonalized medicine while controlling the family-wise error rate. Journal of Biopharmaceutical
Statistics, 21(6), 1063–1078.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining,
inference, and prediction. Springer Science & Business Media.

Hirano, K., & Porter, J. R. (2009). Asymptotics for statistical treatment rules. Econometrica, 77(5),
1683–1701.

Hirano, K., & Porter, J. R. (2012). Impossibility results for nondifferentiable functionals. Econo-
metrica, 80(4), 1769–1790.

Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical
Association, 81(396), 945–960.

Holloway, S., Laber, E., Linn, K., Zhang, B., Davidian, M., & Tsiatis, A. (2020). Dyntxregime:
Methods for estimating optimal dynamic treatment regimes. R package version 49 3.

Horowitz, M. (2008). The role of registries in facilitating clinical research in bmt: examples from
the center for international blood and marrow transplant research. Bone Marrow Transplanta-
tion, 42(1):S1–S2.

Jeng, X. J., Lu, W., & Peng, H. (2018). High-dimensional inference for personalized treatment
decision. Electronic Journal of Statistics, 12(1), 2074.

Jennison, C., & Turnbull, B. W. (2000). Group sequential methods with applications to clinical
trials. Chapman & Hall/CRC Press.

15 Dynamic Treatment Regimes for Optimizing Healthcare 439

Jennison, C., & Turnbull, B. W. (2013). Interim monitoring of clinical trials: Decision theory,
dynamic programming and optimal stopping. Kuwait Journal of Science, 40(2), 43–49.

Jiang, B., Song, R., Li, J., & Zeng, D. (2019). Entropy learning for dynamic treatment regimes.
Statistica Sinica, 29(4), 1633.

Jonsson, A. (2019). Deep reinforcement learning in medicine. Kidney Diseases, 5(1), 18–22.
Keys, A., Brožek, J., Henschel, A., Mickelsen, O., & Taylor, H. L. (1950). The biology of human

starvation (2 Vols.). Univ. of Minnesota Press.
Kidwell, K. M. (2015). Chapter 2: DTRs and SMARTs: Definitions, designs, and applications. In

Adaptive treatment strategies in practice: Planning trials and analyzing data for personalized
medicine (pp. 7–23). SIAM.

Kidwell, K. M., & Wahed, A. S. (2013). Weighted log-rank statistic to compare shared-path
adaptive treatment strategies. Biostatistics, 14(2), 299–312.

Kim, H., Ionides, E. L., & Almirall, D. (2016). A sample size calculator for smart pilot studies.
SIAM Undergraduate Research Online, 9, 229–250.

Krakow, E. F., Hemmer, M., Wang, T., Logan, B., Arora, M., Spellman, S., Couriel, D., Alousi,
A., Pidala, J., Last, M., et al. (2017). Tools for the precision medicine era: how to develop
highly personalized treatment recommendations from cohort and registry data using q-learning.
American Journal of Epidemiology, 186(2), 160–172.

Kwon, H. D., Lee, J., & Yoon, M. (2014). An age-structured model with immune response of HIV
infection: Modeling and optimal control approach. Discrete & Continuous Dynamical Systems-
B, 19(1), 153.

Laber, E. B., & Zhao, Y. Q. (2015). Tree-based methods for individualized treatment regimes.
Biometrika, 102(3), 501–514.

Laber, E. B., Linn, K. A., & Stefanski, L. A. (2014a). Interactive model building for q-learning.
Biometrika, 101(4), 831–847.

Laber, E. B., Lizotte, D. J., Qian, M., Pelham, W. E., & Murphy, S. A. (2014b). Dynamic treatment
regimes: Technical challenges and applications. Electronic Journal of Statistics, 8(1), 1225.

Laber, E. B., Zhao, Y. Q., Regh, T., Davidian, M., Tsiatis, A., Stanford, J. B., Zeng, D., Song, R.,
& Kosorok, M. R. (2016). Using pilot data to size a two-arm randomized trial to find a nearly
optimal personalized treatment strategy. Statistics in Medicine, 35(8), 1245–1256.

Lavori, P. W., & Dawson, R. (2004). Dynamic treatment regimes: practical design considerations.
Clinical Trials, 1, 9–20.

Lavori, P. W., & Dawson, R. (2008). Adaptive treatment strategies in chronic disease. Annual
Review of Medicine, 59, 443–453.

Lavori, P. W., Dawson, R., & Rush, A. J. (2000). Flexible treatment strategies in chronic disease:
clinical and research implications. Biological Psychiatry, 48, 605–614.

Lei, H., Nahum-Shani, I., Lynch, K., Oslin, D., & Murphy, S. A. (2012). A “smart” design for
building individualized treatment sequences. Annual Review of Clinical Psychology, 8, 21–48.

Linn, K. A., Laber, E. B., & Stefanski, L. A. (2015). iqlearn: Interactive q-learning in r. Journal of
Statistical Software, 64(1), 1–25.

Liu, N., Liu, Y., Logan, B., Xu, Z., Tang, J., & Wang, Y. (2019). Learning the dynamic treatment
regimes from medical registry data through deep q-network. Scientific Reports, 9(1), 1–10.

Liu, Y., Logan, B., Liu, N., Xu, Z., Tang, J., & Wang, Y. (2017a). Deep reinforcement learning for
dynamic treatment regimes on medical registry data. In 2017 IEEE International Conference
on Healthcare Informatics (ICHI) (pp. 380–385). IEEE.

Liu, Y., Wang, Y., & Zeng, D. (2017b). Sequential multiple assignment randomization trials with
enrichment design. Biometrics, 73(2), 378–390.

Liu, Y., Wang, Y., Kosorok, M. R., Zhao, Y. Q., & Zeng, D. (2018). Augmented outcome-weighted
learning for estimating optimal dynamic treatment regimens. Statistics in Medicine, 37(26),
3776–3788.

Lizotte, D. J., & Tahmasebi, A. (2017). Prediction and tolerance intervals for dynamic treatment
regimes. Statistical Methods in Medical Research, 26(4), 1611–1629.

440 N. Deliu and B. Chakraborty

Luckett, D. J., Laber, E. B., Kahkoska, A. R., Maahs, D. M., Mayer-Davis, E., & Kosorok, M. R.
(2020). Estimating dynamic treatment regimes in mobile health using v-learning. Journal of
the American Statistical Association, 115(530), 692–706.

Luckett, D. J., Laber, E. B., Kim, S., & Kosorok, M. R. (2021). Estimation and optimization of
composite outcomes. Journal of Machine Learning Research, 22(167), 1–40.

Luedtke, A. R., & Van Der Laan, M. J. (2016). Statistical inference for the mean outcome under a
possibly non-unique optimal treatment strategy. Annals of Statistics, 44(2), 713.

Lunceford, J. K., Davidian, M., & Tsiatis, A. A. (2002). Estimation of survival distributions of
treatment policies in two-stage randomization designs in clinical trials. Biometrics, 58(1), 48–
57.

MacKinnon, D. P., Cheong, J., & Pirlott, A. G. (2012). Statistical mediation analysis. American
Psychological Association.

Maei, H. R., Szepesvári, C., Bhatnagar, S., & Sutton, R. S. (2010). Toward off-policy learning
control with function approximation. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10).

Mahar, R. K., McGuinness, M. B., Chakraborty, B., Carlin, J. B., IJzerman, M. J., & Simpson, J. A.
(2021). A scoping review of studies using observational data to optimise dynamic treatment
regimens. BMC Medical Research Methodology, 21(1), 1–13.

Manski, C. F. (2000). Identification problems and decisions under ambiguity: Empirical analysis
of treatment response and normative analysis of treatment choice. Journal of Econometrics, 95,
415–442.

Manski, C. F. (2002). Treatment choice under ambiguity induced by inferential problems. Journal
of Statistical Planning and Inference, 105(1), 67–82.

Manski, C. F. (2004). Statistical treatment rules for heterogeneous populations. Econometrica,
72(4), 1221–1246.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through
deep reinforcement learning. Nature, 518(7540), 529–533.

Moodie, E. E., & Richardson, T. S. (2010). Estimating optimal dynamic regimes: Correcting bias
under the null. Scandinavian Journal of Statistics, 37(1), 126–146.

Moodie, E. E., Richardson, T. S., & Stephens, D. A. (2007). Demystifying optimal dynamic
treatment regimes. Biometrics, 63(2), 447–455.

Moodie, E. E. M., Platt, R. W., & Kramer, M. S. (2009). Estimating response-maximized decision
rules with applications to breastfeeding. Journal of the American Statistical Association, 104,
155–165.

Murphy, S. A. (2003). Optimal dynamic treatment regimes. Journal of The Royal Statistical Society
Series B-statistical Methodology, 65, 331–355.

Murphy, S. A. (2005a). An experimental design for the development of adaptive treatment
strategies. Statistics in Medicine, 24(10), 1455–1481.

Murphy, S. A. (2005b). A generalization error for q-learning. Journal of Machine Learning
Research, 6, 1073–1097.

Murphy, S. A., van der Laan, M., & Robins, J. M. (2001). Marginal mean models for dynamic
regimes. Journal of the American Statistical Association, 96, 1410–1423.

Murphy, S. A., Lynch, K. G., Oslin, D. W., McKay, J. R., & Tenhave, T. R. (2007). Developing
adaptive treatment strategies in substance abuse research. Drug and Alcohol Dependence,
88(Suppl 2), S24–30.

Murray, T. A., Yuan, Y., & Thall, P. F. (2018). A Bayesian machine learning approach for
optimizing dynamic treatment regimes. Journal of the American Statistical Association,
113(523), 1255–1267.

Nahum-Shani, I., Qian, M., Almirall, D., Pelham, W. E., Gnagy, B., Fabiano, G. A., Waxmonsky,
J. G., Yu, J., & Murphy, S. A. (2012a). Experimental design and primary data analysis methods
for comparing adaptive interventions. Psychological Methods, 17(4), 457–477.

15 Dynamic Treatment Regimes for Optimizing Healthcare 441

Nahum-Shani, I., Qian, M., Almirall, D., Pelham, W. E., Gnagy, B., Fabiano, G. A., Waxmonsky
J. G, Yu, J., & Murphy, S. A. (2012b). Experimental design and primary data analysis methods
for comparing adaptive interventions. Psychological Methods, 17(4), 457.

Nahum-Shani, I., Smith, S. N., Spring, B. J., Collins, L. M., Witkiewitz, K. A., Tewari, A.,
& Murphy S. A. (2018). Just-in-time adaptive interventions (jitais) in mobile health: Key
components and design principles for ongoing health behavior support. Annals of Behavioral
Medicine: A Publication of the Society of Behavioral Medicine, 52, 446–462.

Navarro-Barrientos, J. E., Rivera, D. E., & Collins, L. M. (2011). A dynamical model for describing
behavioural interventions for weight loss and body composition change. Mathematical and
Computer Modelling of Dynamical Systems, 17(2), 183–203.

Neyman, J. S. (1923). On the application of probability theory to agricultural experiments. Essay
on principles. section 9. (translated and edited by DM Dabrowska and TP speed, statistical
science (1990), 5, 465–480). Annals of Agricultural Sciences, 10, 1–51.

Oetting, A. I., & Levy, J. A. (2007). Statistical methodology for a smart design in the development
of adaptive treatment strategies. In Causality and Psychopathology. Oxford University Press.

Ogunnaike, B. A., & Ray, W. H. (1994). Process dynamics, modeling, and control. Oxford
University Press.

Orellana, L., Rotnitzky, A., & Robins, J. M. (2010). Dynamic regime marginal structural mean
models for estimation of optimal dynamic treatment regimes, part I: main content. The
International Journal of Biostatistics, 6(2): Article 8.

Pearl, J. (2000). Chapter 6: Simpson’s paradox, confounding, and collapsibility. In Causality:
Models, reasoning and inference (pp. 173–200). Cambridge University Press.

Pelham, W. E., Hoza, B., Pillow, D. R., Gnagy, E. M., Kipp, H. L., Greiner, A. R., Waschbusch,
D. A., Trane, S. T., Greenhouse, J. B., Wolfson, L. J., & FitzPatrick, E. R. (2002). Effects of
methylphenidate and expectancy on children with ADHD: Behavior, academic performance,
and attributions in a summer treatment program and regular classroom settings. Journal of
Consulting and Clinical Psychology, 70(20), 320–335.

Peto, R. (1982). Statistical aspects of cancer trials. In Treatment of cancer (pp. 867–871). Chapman
and Hall.

Pfammatter, A. F., Nahum-Shani, I., DeZelar, M., Scanlan, L., McFadden, H. G., Siddique, J.,
Hedeker, D., & Spring, B. (2019). Smart: Study protocol for a sequential multiple assignment
randomized controlled trial to optimize weight loss management. Contemporary Clinical
Trials, 82, 36–45.

Qian, M., & Murphy, S. A. (2011). Performance guarantees for individualized treatment rules.
Annals of Statistics, 39(2), 1180–1210.

Qian, M., Chakraborty, B., Maiti, R., & Cheung, Y. K. (2021). A sequential significance test for
treatment by covariate interactions. Statistica Sinica, 31, 1–22.

Raghu, A., Komorowski, M., Celi, L. A., Szolovits, P., & Ghassemi, M. (2017). Continuous state-
space models for optimal sepsis treatment: a deep reinforcement learning approach. In Machine
Learning for Healthcare Conference (pp. 147–163). PMLR.

Rivera, D. E., Pew, M. D., & Collins, L. M. (2007). Using engineering control principles to inform
the design of adaptive interventions: A conceptual introduction. Drug and Alcohol Dependence,
88, S31–S40.

Robins, J., Orellana, L., & Rotnitzky, A. (2008). Estimation and extrapolation of optimal treatment
and testing strategies. Statistics in Medicine, 27(23), 4678–4721.

Robins, J. M. (1986). A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor effect. Mathematical
Modelling, 7, 1393–1512.

Robins, J. M. (1989). The analysis of randomized and non-randomized aids treatment trials
using a new approach to causal inference in longitudinal studies. In Health service research
methodology: A focus on AIDS (pp. 113–159).

Robins, J. M. (1994). Correcting for non-compliance in randomized trials using structural nested
mean models. Communications in Statistics-Theory and Methods, 23(8), 2379–2412.

442 N. Deliu and B. Chakraborty

Robins, J. M. (1997). Causal inference from complex longitudinal data. In Latent variable
modeling and applications to causality (pp. 69–117). Springer.

Robins, J. M. (2000). Marginal structural models versus structural nested models as tools for causal
inference. In Statistical models in epidemiology, the environment, and clinical trials (pp. 95–
133). Springer.

Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In
Proceedings of the second Seattle Symposium in Biostatistics (pp. 189–326). Springer.

Rose, E. J., Laber, E. B., Davidian, M., Tsiatis, A. A., Zhao, Y. Q., & Kosorok, M. R. (2019).
Sample size calculations for smarts. NC State University Department of Statistics Technical
Report 1, 1–30.

Rosenbaum, P. R. (1991). Discussing hidden bias in observational studies. Annals of Internal
Medicine, 115(11), 901–905.

Rosenberg, E. S., Davidian, M., & Banks, H. T. (2007). Using mathematical modeling and control
to develop structured treatment interruption strategies for HIV infection. Drug and Alcohol
Dependence, 88, S41–S51.

Rosenberger, W. F., & Lachin, J. M. (2015). Randomization in clinical trials: Theory and practice.
John Wiley & Sons.

Rosthøj, S., Fullwood, C., Henderson, R., & Stewart, S. (2006). Estimation of optimal dynamic
anticoagulation regimes from observational data: a regret-based approach. Statistics in
Medicine, 25, 4197–215.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized
studies. Journal of Educational Psychology, 66, 688–701.

Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. Annals of
Statistics, 6, 34–58.

Rubin, D. B. (1980). Randomization analysis of experimental data: The fisher randomization test
comment. Journal of the American Statistical Association, 75(371), 591–593.

Schulte, P. J., Tsiatis, A. A., Laber, E. B., & Davidian, M. (2014). Q-and a-learning methods for
estimating optimal dynamic treatment regimes. Statistical Science: A Review Journal of the
Institute of Mathematical Statistics, 29(4), 640.

Schwartz, J., Wang, W., & Rivera, D. (2006). Optimal tuning of process control-based decision
policies for inventory management in supply chains. Automatica, 42, 1311–1320.

Seborg, D. E., Edgar, T. F., Mellichamp, D. A., & Doyle III, F. J. (2016). Process dynamics and
control. John Wiley & Sons.

Shi, C., Song, R., & Lu, W. (2019). On testing conditional qualitative treatment effects. Annals of
Statistics, 47(4), 2348–2377.

Shortreed, S. M., Laber, E., Scott Stroup, T., Pineau, J., & Murphy, S. A. (2014). A multiple impu-
tation strategy for sequential multiple assignment randomized trials. Statistics in Medicine,
33(24), 4202–4214.

Song, R., Wang, W., Zeng, D., & Kosorok, M. R. (2015). Penalized q-learning for dynamic
treatment regimens. Statistica Sinica, 25(3), 901.

Stevens, L. M., Linstead, E., Hall, J. L., & Kao, D. P. (2021). Association between coffee intake
and incident heart failure risk: A machine learning analysis of the FHS, the ARIC study, and
the CHS. Circulation: Heart Failure, 14(2), e006799.

Sugiyama, M. (2015). Statistical reinforcement learning: modern machine learning approaches.
CRC Press.

Sun, Y., & Wang, L. (2021). Stochastic tree search for estimating optimal dynamic treatment
regimes. Journal of the American Statistical Association, 116(533), 421–432.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
Swiniarski, R. W., & Skowron, A. (2003). Rough set methods in feature selection and recognition.

Pattern Recognition Letters, 24(6), 833–849.
Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis Lectures on Artificial

Intelligence and Machine Learning, 4(1), 1–103.
Tao, Y., & Wang, L. (2017). Adaptive contrast weighted learning for multi-stage multi-treatment

decision-making. Biometrics, 73(1), 145–155.

15 Dynamic Treatment Regimes for Optimizing Healthcare 443

Tao, Y., Wang, L., & Almirall, D. (2018). Tree-based reinforcement learning for estimating optimal
dynamic treatment regimes. The Annals of Applied Statistics, 12(3), 1914.

Thall, P. F. (2015). Chapter 4: Smart design, conduct, and analysis in oncology. In Adaptive
treatment strategies in practice: Planning trials and analyzing data for personalized medicine
(pp. 41–54). SIAM.

Thall, P. F., Millikan, R. E., & Sung, H. G. (2000). Evaluating multiple treatment courses in clinical
trials. Statistics in Medicine, 19(8), 1011–1028.

Thall, P. F., Sung, H. G., & Estey, E. H. (2002). Selecting therapeutic strategies based on
efficacy and death in multicourse clinical trials. Journal of the American Statistical Association,
97(457), 29–39.

Thall, P. F., Logothetis, C., Pagliaro, L. C., Wen, S., Brown, M. A., Williams, D., & Millikan, R. E.
(2007a). Adaptive therapy for androgen-independent prostate cancer: a randomized selection
trial of four regimens. Journal of the National Cancer Institute, 99(21), 1613–1622.

Thall, P. F., Wooten, L. H., Logothetis, C. J., Millikan, R. E., & Tannir, N. M. (2007b). Bayesian and
frequentist two-stage treatment strategies based on sequential failure times subject to interval
censoring. Statistics in Medicine, 26(26), 4687–4702.

Tsiatis, A. A., Davidian, M., Holloway, S. T., & Laber, E. B. (2019). Dynamic treatment regimes:
Statistical methods for precision medicine. Chapman & Hall/CRC Press.

van der Laan, M., & Petersen, M. (2007a). Causal effect models for realistic individualized
treatment and intention to treat rules. The International Journal of Biostatistics, 3(1): Article 3.

van der Laan, M., & Petersen, M. (2007b). Statistical learning of origin-specific statically optimal
individualized treatment rules. The International Journal of Biostatistics, 3(1): Article 6.

Van Der Vaart, A. (1991). On differentiable functionals. Annals of Statistics, 19 (1), 178–204.
Vansteelandt, S., Joffe, M., et al. (2014). Structural nested models and g-estimation: The partially

realized promise. Statistical Science, 29(4), 707–731.
Voils, C. I., Chang, Y., Crandell, J. L., Leeman, J., Sandelowski, M. J., & Maciejewski, M. L.

(2012). Informing the dosing of interventions in randomized trials. Contemporary Clinical
Trials, 33(6), 1225–1230.

Wagner, E. H., Austin, B. T., Davis, C., Hindmarsh, M. F., Schaefer, J. K., & Bonomi, A. E. (2001).
Improving chronic illness care: Translating evidence into action. Health Affairs, 20(6), 64–78.

Wahed, A. S., & Tsiatis, A. A. (2004). Optimal estimator for the survival distribution and
related quantities for treatment policies in two-stage randomization designs in clinical trials.
Biometrics, 60(1), 124–133.

Wallace, M., Moodie, E., Stephens, D., & Simoneau, G. (2020). DTRreg: DTR estimation
and inference via g-estimation, dynamic WOLS, q-learning, and dynamic weighted survival
modeling (DWSurv). R package version 17.

Wallace, M. P., & Moodie, E. E. (2014). Personalizing medicine: a review of adaptive treatment
strategies. Pharmacoepidemiology and Drug Safety, 23(6), 580–585.

Wallace, M. P., & Moodie, E. E. (2015). Doubly-robust dynamic treatment regimen estimation via
weighted least squares. Biometrics, 71(3), 636–644.

Wallace, M. P., Moodie, E. E., & Stephens, D. A. (2019). Model selection for g-estimation of
dynamic treatment regimes. Biometrics, 75(4), 1205–1215.

Wang, L., Rotnitzky, A., Lin, X., Millikan, R. E., & Thall, P. F. (2012). Evaluation of viable
dynamic treatment regimes in a sequentially randomized trial of advanced prostate cancer.
Journal of the American Statistical Association, 107, 493–508.

Wang, L., Yu, W., He, X., Cheng, W., Ren, M. R., Wang, W., Zong, B., Chen, H., & Zha, H. (2020).
Adversarial cooperative imitation learning for dynamic treatment regimes. In Proceedings of
The Web Conference 2020 (pp. 1785–1795).

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3), 279–292.
Wu, Y., & Wang, L. (2021). Resampling-based confidence intervals for model-free robust inference

on optimal treatment regimes. Biometrics, 77(2), 465–476.
Xin, J., Chakraborty, B., & Laber, E. (2012). qlearn: Estimation and inference for q-learning. R

package version 10 1.

444 N. Deliu and B. Chakraborty

Xu, Y., Müller, P., Wahed, A. S., & Thall, P. F. (2016). Bayesian nonparametric estimation for
dynamic treatment regimes with sequential transition times. Journal of the American Statistical
Association, 111(515), 921–950.

Yan, X., Ghosh, P., & Chakraborty, B. (2021). Sample size calculation based on precision for pilot
sequential multiple assignment randomized trial (smart). Biometrical Journal, 63(2), 247–271.

Zajonc, T. (2012). Bayesian inference for dynamic treatment regimes: Mobility, equity, and
efficiency in student tracking. Journal of the American Statistical Association, 107(497), 80–
92.

Zhang, B., & Zhang, M. (2018a). C-learning: A new classification framework to estimate optimal
dynamic treatment regimes. Biometrics, 74(3), 891–899.

Zhang, B., & Zhang, M. (2018b). Variable selection for estimating the optimal treatment regimes
in the presence of a large number of covariates. The Annals of Applied Statistics, 12(4), 2335–
2358.

Zhang, B., Tsiatis, A. A., Davidian, M., Zhang, M., & Laber, E. (2012a). Estimating optimal
treatment regimes from a classification perspective. Stat, 1(1), 103–114.

Zhang, B., Tsiatis, A. A., Laber, E. B., & Davidian, M. (2012b). A robust method for estimating
optimal treatment regimes. Biometrics, 68(4), 1010–1018.

Zhang, B., Tsiatis, A. A., Laber, E. B., & Davidian, M. (2013). Robust estimation of optimal
dynamic treatment regimes for sequential treatment decisions. Biometrika, 100(3), 681–694.

Zhang, C., Chen, J., Fu, H., He, X., Zhao, Y. Q., & Liu, Y. (2020). Multicategory outcome weighted
margin-based learning for estimating individualized treatment rules. Statistica Sinica, 30, 1857.

Zhang, Y., Laber, E. B., Davidian, M., & Tsiatis, A. A. (2018). Interpretable dynamic treatment
regimes. Journal of the American Statistical Association, 113(524), 1541–1549.

Zhao, Y., Kosorok, M. R., & Zeng, D. (2009). Reinforcement learning design for cancer clinical
trials. Statistics in Medicine, 28(26), 3294–3315.

Zhao, Y., Zeng, D., Rush, A. J., & Kosorok, M. R. (2012a). Estimating individualized treatment
rules using outcome weighted learning. Journal of the American Statistical Association, 107,
1106–1118.

Zhao, Y. Q., Zeng, D., Rush, A. J., Kosorok, M. R. (2012b). Estimating individualized treatment
rules using outcome weighted learning. Journal of the American Statistical Association,
107(499), 1106–1118.

Zhao, Y. Q., Zeng, D., Laber, E. B., & Kosorok, M. R. (2015). New statistical learning methods for
estimating optimal dynamic treatment regimes. Journal of the American Statistical Association,
110(510), 583–598.

Zhao, Y. Q., Laber, E. B., Ning, Y., Saha, S., & Sands, B. E. (2019). Efficient augmentation and
relaxation learning for individualized treatment rules using observational data. The Journal of
Machine Learning Research, 20(1), 1821–1843.

Zhou, X., Mayer-Hamblett, N., Khan, U., & Kosorok, M. R. (2017). Residual weighted learning
for estimating individualized treatment rules. Journal of the American Statistical Association,
112(517), 169–187.

Zhu, W., Zeng, D., & Song, R. (2019). Proper inference for value function in high-dimensional
q-learning for dynamic treatment regimes. Journal of the American Statistical Association,
114(527), 1404–1417.

	Preface
	Contents
	Editors and Contributors
	About the Editors
	Contributors

	Part I Generic Tools
	1 The Stochastic Multi-Armed Bandit Problem
	1.1 Introduction
	1.2 The N-Armed Bandit Problem
	1.2.1 Upper Confidence Bound (UCB) Algorithm
	1.2.2 Thompson Sampling (TS)

	1.3 Contextual Bandits
	1.4 Combinatorial Bandits
	References

	2 Reinforcement Learning
	2.1 Introduction
	2.2 Markov Decision Process and Dynamic Programming
	2.2.1 Finite-Horizon Markov Decision Process
	2.2.1.1 Dynamic Programming Solution

	2.2.2 Discounted Markov Decision Process
	2.2.2.1 Value Iteration
	2.2.2.2 Policy Iteration

	2.3 Reinforcement Learning Algorithm Design
	2.3.1 Reinforcement Learning Problem Formulation
	2.3.1.1 Episodic Reinforcement Learning in Finite-Horizon MDP
	2.3.1.2 Reinforcement Learning in Discounted MDP

	2.3.2 Model-Based vs. Model-Free Reinforcement Learning
	2.3.2.1 Model-Based Reinforcement Learning
	2.3.2.2 Q-Learning and SARSA
	2.3.2.3 Policy Gradient

	2.3.3 Exploration in Reinforcement Learning
	2.3.3.1 Exploration Schemes
	2.3.3.2 Deep Exploration

	2.3.4 Approximate Solution Methods and Deep Reinforcement Learning

	2.4 Conclusion and Further Reading
	References

	3 Optimal Learning and Optimal Design
	3.1 Introduction
	3.2 Statistical Design of Experiments
	3.3 The Ranking and Selection Problem
	3.3.1 Model
	3.3.2 Large Deviations Analysis
	3.3.3 Example: Normal Sampling Distributions
	3.3.4 Optimal Allocations

	3.4 Sequential Algorithms
	3.4.1 Value of Information Methods
	3.4.2 Thompson Sampling
	3.4.3 Rate-Balancing Methods
	3.4.4 Discussion

	3.5 Recent Advances
	3.5.1 A New Optimal Design for Linear Regression
	3.5.2 Optimal Budget Allocation in Approximate Dynamic Programming

	3.6 Conclusion
	References

	Part II Price Optimization
	4 Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art
	4.1 Introduction
	4.2 Model
	4.3 Asymptotically Optimal Pricing Policies
	4.3.1 Parametric Approaches
	4.3.1.1 Model and Estimation
	4.3.1.2 Certainty-Equivalence Pricing and Incomplete Learning
	4.3.1.3 Asymptotically Optimal Policies
	4.3.1.4 Extensions to Generalized Linear Models
	4.3.1.5 Extensions to Multiple Products

	4.3.2 Nonparametric Approaches
	4.3.3 Extensions and Generalizations

	4.4 Emerging Topics and Generalizations
	4.4.1 Product Differentiation
	4.4.2 Online Marketplaces
	4.4.3 Continuous-Time Approximations

	References

	5 Learning and Pricing with Inventory Constraints
	5.1 Introduction
	5.2 Single Product Case
	5.2.1 Dynamic Pricing Algorithm
	5.2.2 Lower Bound Example

	5.3 Multiproduct Setting
	5.3.1 Preliminaries
	5.3.2 Parametric Case
	5.3.3 Nonparametric Case

	5.4 Bayesian Learning Setting
	5.4.1 Model Setting
	5.4.2 Thompson Sampling with Fixed Inventory Constraints
	5.4.3 Thompson Sampling with Inventory Constraint Updating
	5.4.4 Performance Analysis

	5.5 Remarks and Further Reading
	References

	6 Dynamic Pricing and Demand Learning in Nonstationary Environments
	6.1 Introduction
	6.2 Problem Formulation
	6.3 Exogenously Changing Demand Environments
	6.3.1 Change-Point Detection Models
	6.3.2 Finite-State-Space Markov Chains
	6.3.3 Autoregressive Models
	6.3.4 General Changing Environments
	6.3.5 Contextual Pricing

	6.4 Endogenously Changing Demand Environments
	6.4.1 Reference-Price Effects
	6.4.2 Competition and Collusion
	6.4.3 Platforms and Multi-Agent Learning
	6.4.4 Forward-Looking and Patient Customers

	References

	7 Pricing with High-Dimensional Data
	7.1 Introduction
	7.2 Background: High-Dimensional Statistics
	7.3 Static Pricing with High-Dimensional Data
	7.3.1 Feature-Dependent Choice Model
	7.3.2 Estimation Method
	7.3.3 Performance Guarantees

	7.4 Dynamic Pricing with High-Dimensional Data
	7.4.1 Feature-Dependent Demand Model
	7.4.2 Learning-and-Earning Algorithm
	7.4.3 A Universal Lower Bound on the Regret
	7.4.4 Performance of ILQX
	7.4.5 Discussion

	7.5 Directions for Future Research
	References

	Part III Assortment Optimization
	8 Nonparametric Estimation of Choice Models
	8.1 Introduction
	8.2 General Setup
	8.3 Estimating the Rank-Based Model
	8.3.1 Estimation via the Conditional Gradient Algorithm
	8.3.1.1 Solving the Support Finding Step
	8.3.1.2 Solving the Proportions Update Step
	8.3.1.3 Initialization and Stopping Criterion

	8.3.2 Convergence Guarantee for the Estimation Algorithm

	8.4 Estimating the Nonparametric Mixture of Closed Logit (NPMXCL) Model
	8.4.1 Estimation via the Conditional Gradient Algorithm
	8.4.1.1 Solving the Support Finding Step
	8.4.1.2 Solving the Proportions Update Step
	8.4.1.3 Initialization and Stopping Criterion

	8.4.2 Convergence Guarantee for the Estimation Algorithm
	8.4.3 Characterizing the Choice Behavior of Closed Logit Types

	8.5 Other Nonparametric Choice Models
	8.6 Concluding Thoughts
	References

	9 The MNL-Bandit Problem
	9.1 Introduction
	9.2 Choice Modeling and Assortment Optimization
	9.3 Dynamic Learning in Assortment Selection
	9.4 A UCB Approach for the MNL-Bandit
	9.4.1 Algorithmic Details
	9.4.2 Min–Max Regret Bounds
	9.4.3 Improved Regret Bounds for ``Well Separated'' Instances
	9.4.4 Computational Study
	9.4.4.1 Robustness of Algorithm 1
	9.4.4.2 Comparison with Existing Approaches

	9.5 Thompson Sampling for the MNL-Bandit
	9.5.1 Algorithm
	9.5.2 A TS Algorithm with Independent Beta Priors
	9.5.3 A TS Algorithm with Posterior Approximation and Correlated Sampling
	9.5.4 Regret Analysis
	9.5.5 Empirical Study

	9.6 Lower Bound for the MNL-Bandit
	9.7 Conclusions and Recent Progress
	References

	10 Dynamic Assortment Optimization: Beyond MNL Model
	10.1 Overview
	10.2 General Utility Distributions
	10.2.1 Model Formulation and Assumptions
	10.2.2 Algorithm Design
	10.2.3 Theoretical Analysis
	10.2.4 Bibliographic Notes and Discussion of Future Directions

	10.3 Nested Logit Models
	10.3.1 Model Formulation and Assumptions
	10.3.2 Assortment Space Reductions
	10.3.3 Algorithm Design and Regret Analysis
	10.3.4 Regret Lower Bound
	10.3.5 Bibliographic Notes and Discussion of Future Directions

	10.4 MNL Model with Contextual Features
	10.4.1 Model Formulation and Assumptions
	10.4.2 Algorithm Design: Thompson Sampling
	10.4.3 Algorithm Design: Upper Confidence Bounds
	10.4.4 Lower Bounds
	10.4.5 Bibliographic Notes and Discussion of Future Directions

	10.5 Conclusion
	References

	Part IV Inventory Optimization
	11 Inventory Control with Censored Demand
	11.1 Introduction
	11.2 Regret Lower Bound for Inventory Models with Censored Demand
	11.2.1 Model Formulation
	11.2.2 Strictly Convex and Well-Separated Cases
	11.2.3 Worst-Case Regret Under General Demand Distributions

	11.3 Censored Demand Example: Perishable Inventory System
	11.3.1 Model Formulation
	11.3.2 Challenges and Preliminary Results
	11.3.3 Learning Algorithm Design: Cycle-Update Policy
	11.3.4 Regret Analysis of CUP Algorithm
	11.3.5 Strongly Convex Extension

	11.4 Lead Times Example: Lost-Sales System with Lead Times
	11.4.1 Model Formulation
	11.4.2 Base-Stock Policy and Convexity Results
	11.4.3 Challenges from Lead Times
	11.4.4 Gradient Methods
	11.4.5 A Ternary Search Method

	11.5 High Dimensionality Example: Multiproduct Inventory Model with Customer Choices
	11.5.1 Inventory Substitution
	11.5.2 Numerical Example

	References

	12 Joint Pricing and Inventory Control with Demand Learning
	12.1 Problem Formulation in General
	12.2 Nonparametric Learning for Backlogged Demand
	12.3 Nonparametric Learning for Lost-Sales System
	12.3.1 Algorithms and Results in chen2017nonparametric
	12.3.2 Algorithms and Results in chen2020optimal
	12.3.2.1 Concave G(·)
	12.3.2.2 Non-Concave G(·)

	12.4 Parametric Learning with Limited Price Changes
	12.4.1 Well-Separated Demand
	12.4.2 General Demand

	12.5 Backlog System with Fixed Ordering Cost
	12.6 Other Models
	References

	13 Optimization in the Small-Data, Large-Scale Regime
	13.1 Why Small Data?
	13.1.1 Structure

	13.2 Contrasting the Large-Sample and Small-Data, Large-Scale Regimes
	13.2.1 Model
	13.2.2 Failure of Sample Average Approximation (SAA)
	13.2.3 Best-in-Class Performance
	13.2.4 Shortcomings of Cross-Validation

	13.3 Debiasing In-Sample Performance
	13.3.1 Stein Correction
	13.3.2 From Unbiasedness to Policy Selection
	13.3.3 Stein Correction in the Large-Sample Regime
	13.3.4 Open Questions

	13.4 Conclusion
	References

	Part V Healthcare Operations
	14 Bandit Procedures for Designing Patient-Centric Clinical Trials
	14.1 Introduction
	14.2 The Bayesian Beta-Bernoulli MABP
	14.2.1 Discussion of the Model

	14.3 Metrics for Two-Armed Problem (Confirmatory Trials)
	14.3.1 Accurate and Precise Estimation
	14.3.2 Statistical Errors
	14.3.3 Patient Benefit
	14.3.4 Trial Size
	14.3.5 Multiple Metrics

	14.4 Illustrative Results for Two-Armed Problem
	14.5 Discussion
	14.5.1 Safety Concerns
	14.5.2 Prior Distributions
	14.5.3 Delayed Responses
	14.5.4 Dropouts and Missing Responses
	14.5.5 Early Evidence of Efficacy or Futility
	14.5.6 Non-binary Outcomes
	14.5.7 Exploratory Trials
	14.5.8 Large Trials

	References

	15 Dynamic Treatment Regimes for Optimizing Healthcare
	15.1 Introduction
	15.2 Mathematical Framework
	15.2.1 Potential Outcomes Framework

	15.3 Data Sources for Constructing DTRs
	15.3.1 Longitudinal Observational Data
	15.3.1.1 The CIBMTR Registry: Two Study Examples for Constructing DTRs with Observational Data

	15.3.2 Sequentially Randomized Studies
	15.3.2.1 The SMART Weight Loss Management Study

	15.3.3 Dynamical Systems Models
	15.3.3.1 A Dynamical Systems Model for Behavioral Weight Change

	15.4 Methods for Constructing DTRs
	15.4.1 Origins and Development of DTRs
	15.4.2 Reinforcement Learning: A Potential Solution
	15.4.3 Taxonomy of Existing Methods
	15.4.4 Finite-Horizon DTRs
	15.4.4.1 Indirect Methods
	15.4.4.2 Direct RL Methods

	15.4.5 Indefinite-Horizon DTRs

	15.5 Inference in DTRs
	15.5.1 Inference for Parameters Indexing the Optimal Regime
	15.5.2 Inference for the Value Function of a Regime

	15.6 Practical Considerations and Final Remarks
	15.6.1 Model Choice and Variable Selection
	15.6.2 Sample Size Considerations and Power Analysis
	15.6.3 Missing Data
	15.6.4 Additional Issues and Final Remarks

	References

