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Abstract. In supervised Machine Learning (ML), Artificial Neural Net-
works (ANN) are commonly utilized to analyze signals or images for a
variety of applications. They are increasingly performing as a strong tool
to establish the relationships among data and being successfully applied
in science due to their generalization ability, noise and fault tolerance.
One of the most difficult aspects of using the learning process is opti-
mization of the network weights.

A gradient-based technique with a back-propagation strategy is com-
monly used for this optimization stage. Regularization is commonly
employed for the benefit of efficiency. This optimization gets difficult
when non-smooth regularizers are applied, especially to promote sparse
networks. Due to differentiability difficulties, traditional gradient-based
optimizers cannot be employed.

In this paper, we propose an MCMC-based optimization strategy
within a Bayesian framework. An effective sampling strategy is designed
using Hamiltonian dynamics. The suggested strategy appears to be effec-
tive in allowing ANNs with modest complexity levels to achieve high
accuracy rates, as seen by promising findings.

Keywords: Artificial neural networks · Optimization · Deep learning ·
LSTM · MCMC · Hamiltonian dynamics

1 Introduction

Machine learning (ML) [1] is an artificial intelligence subfield (AI). It has
expanded at an incredible rate, drawing a large number of academics inter-
ested in studying how a system may learn to do a task. In reality, an ML system
does not follow instructions but instead learns from experience, such as making
predictions or decisions based on data and continuously improving performance
by reviewing new data. ML research achieved outstanding results on several
complex cognitive tasks, including Computer Vision [2–5], Medical diagnoses [6–
9], Signal Processing [10,11], recommendation systems [12], etc. Deep Learning
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(DL) [13,14] architectures have proved their capacity to deal with progressively
voluminous data during the previous two decades. Furthermore, it has gradually
become the most extensively employed computational strategy in the field of
machine learning, generating exceptional results on a variety of cognitive tasks,
equal or even surpassing human performance in some cases. The capacity to
learn from huge volumes of data is one of the benefits and challenges of deep
learning.

In a similar vein, Convolutional neural networks (CNN) [2,15,16] are one of
the state-of-art deep learning techniques. CNNs are designed to automatically
and adaptively learn spatial hierarchies of features through backpropagation
[17,18] by using multiple building blocks, such as convolution layers, pooling
layers, and fully connected layers. However, training a CNN is a challenging task,
especially for deep architecture involving a high number of parameters (model
weights) to be estimated. Sophisticated optimization algorithms need therefore
to be used. This is indeed the key step in order to fit a given architecture to
learning data in order to minimize the error between ground truth and estimates.

Many optimization techniques have been presented in recent years [19]. The
convexity and differentiability of the target loss function have a significant impact
on the performance of the deployed algorithms. Hence, choosing an optimiza-
tion strategy that seeks to find the global optima in the learning stage is gen-
erally challenging, especially when the number of parameters is large. A non-
appropriate optimization technique may for instance lead the network to lie in
a local minimum during training phase. Speeding up the optimization process is
also a challenging issue for large databases.

In this context, Bayesian approaches have made significant progress in a
number of areas over the years, and there are several practical benefits. The
core concept is to use probabilities to represent all uncertainties throughout
the model. One of the most significant benefits is the ability to incorporate
prior information. Indeed, recent developments in Markov Chain Monte Carlo
(MCMC) methods [20–24] facilitate the implementation of Bayesian analyses
of complex data sets containing missing observations and handling multidimen-
sional outcomes. The main goal of this paper is to highlight a Bayesian model
for the minimization of the target cost function of a learning model through
hyperparameters adjustment.

Specifically, we propose a Bayesian optimization method to minimise the tar-
get cost function and derive the optimal weights vector. Indeed, we demonstrate
that using the proposed method leads to high accuracy results, which cannot be
reached using competing.

The rest of this paper is organized as follows. The addressed problem is
formulated in Sect. 2. The proposed efficient Bayesian optimization scheme is
developed in Sect. 3 and validated in Sect. 4. Finally, conclusions and future
work are drawn in Sect. 5.
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2 Problem Formulation

It is well known that weights optimization is one of the key steps to design an
efficient artificial neural network. For instance, if we consider a classification
problem, the ANN weight vector W is updated during the learning phase by
minimizing an error between the ground truth and the labels estimated using
the network. An iterative procedure is generally performed, and gradient-based
optimization procedures are used. For the sake of efficiency, regularization can
also be performed in order to have a more accurate weights configuration. In this
sense, smooth regularizers such as the �2 norm are used. In this case, gradient-
based algorithms could still be used. However, if one aims at promoting sparse
networks, sparse regularizations such as the �1 norm should be used, which makes
the use of gradient-based algorithms inefficient since the error to be minimized
in this case is no longer differentiable.

In this paper, we propose a method to allow weights optimization under non-
smooth regularizations. Let us denote by x an input to be presented to the ANN.
The estimated label will be denoted by ŷ(x,W ) as a non-linear function of the
input x and the weights vector W ∈ R

N , while the ground truth label will be
denoted by y.

Using a quadratic error with an �1 regularization with M input data for the
learning step, the weights vector can be estimated as:

̂W = arg min
W

L(W )

= arg min
W

M
∑

m=1

‖ŷ(xm;W ) − y(m)‖22 + λ‖W‖1
(1)

where λ is a regularization parameter balancing the solution between the data
fidelity and regularization terms, and M is the number of learning data.

Since the optimization problem in (1) is not differentiable, the use of gradient-
based algorithms with back-propagation is not possible. In this case, the learning
process is costly and very complicated.

In Sect. 3 we present a method to efficiently estimate the weights vector
without increase of learning complexity. The optimization problem in (1) is for-
mulated and solved in a Bayesian framework.

3 Bayesian Optimization

As stated above, the weights optimization problem is formulated in a Bayesian
framework. In this sense, the problem parameters and hyperparameters are
assumed to follow probability distributions. More specifically, a likelihood dis-
tribution is defined to model the link between the target weights vector and the
data, while a prior distribution is defined to model the prior knowledge about
the target weights.
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3.1 Hierarchical Bayesian Model

According to the principle of minimizing the error between the reference label y
and the estimated one ŷ, and assuming a quadratic error (first term in (1)), we
define the likelihood distribution as

f (y;W,σ) ∝
M
∏

m=1

exp
(

− 1
2σ2

‖ŷ(xm;W ) − y(m)‖2
)

, (2)

where σ2 is a positive parameter to be set.
As regards the prior knowledge on the weights vector W , we propose the use

of a Laplace distribution in order to promote the sparsity of the neural network:

f(W ;λ) ∝
N
∏

k=1

exp
(

−‖W [k]‖1
λ

)

, (3)

where λ is a hyperparameter to be fixed or estimated.
By adopting a Maximum A Posteriori (MAP) approach, we first need to

express the posterior distribution. Based on the defined likelihood and prior,
this posterior writes:

f(W ; y, σ, λ) ∝ f(y;W,σ)f(W ;λ)

∝
M
∏

m=1

exp
(

− 1
2σ2

‖ŷ(xm;W ) − y(m)‖2
) N

∏

k=1

exp
(

−‖W [k]‖1
λ

)

. (4)

It is clear that this posterior is not straightforward to handle in order to derive
a closed-form expression of the estimate ̂W . For this reason, we resort to a
stochastic sampling approach in order to numerically approximate the posterior,
and hence to calculate an estimator for ̂W . The following Section details the
adopted sampling procedure.

3.2 Hamiltonian Sampling

Let us denote α =
λ

σ2
and θ = {σ2, λ}. For a weight W k we define the following

energy function

Ek
θ (W k) =

α

2

M
∑

m=1

‖ŷ(xm;W ) − y(m)‖22 + ‖W k‖1. (5)

The posterior in (4) can therefore be reformulated as

f(W ; y, θ) ∝ exp

(

−
N

∑

k=1

Ek
θ (W k)

)

. (6)

To sample according to this exponential posterior, and since direct sampling is
not possible due to the form of the energy function Ek

θ , Hamiltonian sampling
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is adopted. Indeed, Hamiltonian dynamics [25] strategy has been widely used in
the literature to sample from high dimensional vectors. However, sampling using
Hamiltonian dynamics requires computing the gradient of the energy function,
which is not possible in our case due to the �1 term. To overcome this difficulty, we
resort to a non-smooth Hamiltonian Monte Carlo (ns-HMC) strategy as proposed
in [26]. More specifically, we use the plug and play procedure developed in [27].
Indeed, this strategy requires to calculate the proximity operator only at an
initial point, and uses the shift property [28,29] to deduce the proximity operator
during the iterative procedure [27, Algorithm 1].

As regards the proximity operator calculation, let us denote by GL(W k) the
gradient of the quadratic term of the loss function L with respect to the weight
W k. Let us also denote by ϕ(W k) = ‖W k‖1. Following the standard definition
of the proximity operator [28,29], we can write for a point z

proxEk
θ
(z) = p ⇔z − p ∈ ∂Ek

θ (p). (7)

Straightforward calculations lead to the following expression of the proximity
operator:

proxEk
θ
(z) = proxϕ

(

z − α

2
GL(W k)

)

. (8)

Since proxϕ is nothing but the soft thresholding operator [29], the proximity
operator in (8) can be easily calculated once a single gradient step is applied
(back-propagation) to calculate GL(W k).

The main steps of the proposed method are detailed in Algorithm 1.

Algorithm 1: Main steps of the proposed Bayesian optimization.
- Fix the hyperparameters λ and σ;
- Initialize with some W0;
- Perform one back-propagation step to provide an initialization for GL(W0);
- Compute proxEθ

(W0) according to (8);

- Use the Gibbs sampler in [27, Algorithm 1] until convergence;

After convergence, Algorithm 1 provides chains of coefficients sampled
according to the target distribution of each W k. These chains can be used to
compute an MMSE (minimum mean square error) estimator (after discarding
the samples corresponding to the burn-in period).

It is worth noting that hyperprior distributions can be put on λ and σ in order
to integrate them in the hierarchical Bayesian model. These hyperparameters
can therefore be estimated from the data at the expense of some additional
complexity.
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4 Experimental Validation

In order to validate the proposed method, two image classification experiments
are conducted using two different datasets: COVID-19 dataset including Com-
puted tomography (CT) images [30], and a standard dataset, namely, CIFAR-10
[31]. For the sake of comparison, two kinds of optimizers are used: i) MCMC-
based method, precisely the standard Metropolis-Hastings (MH) algorithm and
the random walk Metropolis Hastings (rw-MH) [32], and ii) the most popular
optimization techniques used in DL. : Adam and Adagrad [33]. One of the key
hyper-parameters to set in optimizers in order to train a neural network is the
learning rate. This parameter scales the magnitude of the weight updates in
order to minimize the network’s loss function. In the experiments, the learning
rate is equal to 10−3. In addition, the hyper-parameters β1 and β2 are equals
to 0.9 and 0.999 respectively. They stand for the initial decay rates used when
estimating the first and second moments of the gradient. As regards coding, we
used python programming language with Keras and Tensorflow libraries on an
Intel(R) Core(TM) i7-2720QM CPU 2.20 GHZ architecture with 16 Go memory.
The same behavior with the computational time and accuracy which justify the
effectiveness of our proposed MCMC method.

4.1 ConvNet Models

Two CNN architectures are used in this study. Like the LeNet model [34],
the first one (CNN 1) includes three convolutional (Conv3× 3-32, Conv3 × 3-64,
Conv3 × 3-128), and two fully-connected (FC-64 and FC-softmax). The second
one (CNN 2) has five convolutional (Conv3× 3-32, Conv3 × 3-32, Conv3 × 3-64,
Conv3 × 3-64, Conv3 × 3-128, Conv3 × 3-128) and three FC layers (FC-128,FC-
64,FC-softmax) that are organized similarly to VGG-Net [35]. All of them involve
convolutional layers with 3 × 3 Kernel filters in addition to 2 × 2 max-pooling,
with stride size equal to 1. All layers in the different configurations used ReLU
as an activation function except the output layer.

As deep neural networks can easily overfit when trained with small datasets,
the used CNNs are extended with three regularizing techniques [33]:

– Batch Normalization: deals with the feature space distribution variability
during the training. The input of the layer is normalized to be zero-mean with
unitary variance. This step not only acts as a regularizer, but also allows faster
training, higher learning rates, and less sensitivity to weights initialization.

– �1 Regularization: �1 regularization is the preferred choice when having a high
number of features as it provides sparse solutions. In our case, the regular-
ization parameter was set to λ = 0.001.

– Dropout : random disabling of neurons during training with rate p. Tem-
porarily ignoring some activation forces the other neurons to learn a more
robust representation of the input data while reducing the sensitivity of spe-
cific neurons. In our study, the dropout rate is set by cross validation to
p = 0.35.
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4.2 Experiment 1: Challenging Case

A challenging classification case is addressed in this experiment. The same CNNs
are used for CT images classification to identify Covid-19 infections from other
pneumonia. This task is challenging due to the rich content of CT images and
similarity between Covid-19 infection and other pneumonia. The COVID-CT
dataset contains 349 CT images positive for COVID-19 belonging to 216 patients
and 397 CT images that are negative for COVID-19. The dataset is open-sourced
to the public. We used 566 images for the train and 180 images for the test with
size of 230 × 230.

The reported scores in Table 1 indicate that the proposed method clearly out-
performs the competing optimizers in training both models to solve this challeng-
ing classification problem. Moreover, severe performance decrease is observed for
some optimizers like Adagrad. This is mainly due to the challenging classifica-
tion, which leads to a more complex learning process.

Table 1. Experiment 1: results for CT image classification using CNN 1 and CNN 2.

Optimizers CNN 1 CNN 2

Comp. time (hrs) Accuracy Loss Comp. time (hrs) Accuracy Loss

ns-HMC 0.40 0.84 0.26 0.51 0.88 0.22

MH 1.19 0.73 0.36 1.54 0.76 0.33

rw-MH 0.59 0.76 0.34 1.58 0.77 0.31

Adam 0.58 0.70 0.43 1.35 0.73 0.36

Adagrad 0.55 0.66 0.44 1.43 0.68 0.41

In order to confirm this performance decrease, Figs. 1 and 2 shows loss and
accuracy curves obtained using the competing optimizers, and this for CNN 1
and CNN 2, respectively. The displayed curves clearly indicate an overfitting
effect for classical optimizers, in contrast to the proposed method.

4.3 Experiment 2: CIFAR-10 Image Classification

In this scenario, the learning performance using the competing optimization
algorithms is evaluated using the standard CIFAR-10 dataset. The CIFAR-10
dataset consists of 60000 32 × 32 colour images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test images. The dataset
is divided into five training batches and one test batch, each with 10000 images.
The test batch contains exactly 1000 randomly-selected images from each class.
The training batches contain the remaining images in random order, but some
training batches may contain more images from one class than another. Between
them, the training batches contain exactly 5000 images from each class.

The reported scores in Table 2 indicate that the proposed method outper-
forms the competing optimizers in terms of learning precision, and hence clas-
sification performance. Furthermore, the competing optimizers do not perform
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(a): ns-HMC (b):MH (c): rw-MH

(d): Adam (e): Adagrad

Fig. 1. Experiment 1: train and test curves using CNN 1.

(a): ns-HMC (b):MH (c): rw-MH

(d): Adam (e): Adagrad

Fig. 2. Experiment 1: train and test curves using CNN 2.

well to learn both CNNs on the CIFAR-10 dataset. This confirms the ability of
the proposed method to allow different networks reaching high accuracy levels,
in contrast to standard optimizers, even when regularization is use. The gain in
terms of computational time using the proposed method is more important on
this experiment.
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Table 2. Experiment 2: results for CIFAR-10 image classification using CNN 1 and
CNN 2.

Optimizers CNN 1 CNN 2

Comp. time (hrs) Accuracy Loss Comp. time (hrs) Accuracy Loss

ns-HMC 1.17 0.92 0.22 5.13 0.93 0.19

MH 2.77 0.86 0.35 12.43 0.87 0.33

rw-MH 3.06 0.88 0.33 13.29 0.88 0.31

Adam 2.60 0.90 0.46 7.40 0.92 0.32

SGD 2.73 0.88 0.71 7.54 0.89 0.56

Adagrad 2.78 0.75 0.81 7.22 0.78 0.64

5 Conclusion

In this paper, we proposed a new Bayesian optimization method for fitting
weights for artificial neural networks. The suggested method uses Hamiltonian
dynamics to solve the problem of sparse regularization optimization. Our results
demonstrated the good performance of the proposed method in comparison with
standard optimizers, as well as classical Bayesian ones. Moreover, the proposed
technique allows simple networks to enjoy high accuracy and generalization prop-
erties. Future work will focus on testing our proposed optimizer with larger
datasets, as well as proposing a distributed or parallel implementation.
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