
On Usefulness of Outlier Elimination
in Classification Tasks

Dušan Hetlerović1, Luboš Popeĺınský1, Pavel Brazdil2(B), Carlos Soares3,
and Fernando Freitas4

1 KD Lab, FI MU, Brno, Czechia
{445557,popel}@fi.muni.cz

2 LIAAD - INESC TEC/FEP, University of Porto, Porto, Portugal
pbrazdil@inesctec.pt

3 Fraunhofer Portugal AICOS and LIACC, Faculdade de Engenharia,
Universidade do Porto, Porto, Portugal

csoares@fe.up.pt
4 FEUP, University of Porto, Porto, Portugal

Abstract. Although outlier detection/elimination has been studied
before, few comprehensive studies exist on when exactly this technique
would be useful as preprocessing in classification tasks. The objective of
our study is to fill in this gap. We have performed experiments with 12
various outlier elimination methods and 10 classification algorithms on
50 different datasets. The results were then processed by the proposed
reduction method, whose aim is identify the most useful workflows for a
given set of tasks (datasets). The reduction method has identified that
just three OEMs that are generally useful for the given set of tasks. We
have shown that the inclusion of these OEMs is indeed useful, as it leads
to lower loss in accuracy and the difference is quite significant (0.5%) on
average.

Keywords: Outlier elimination · Metalearning · Average ranking ·
Reduction of portfolios

1 Introduction

One of the common problems machine learning users face is choosing an algo-
rithm for a specific task [23]. The motivation is to either maximize or minimize
a quantifiable measure, such as predictive accuracy. Apart from algorithm selec-
tion, users may achieve an improvement in performance by incorporating dif-
ferent data preprocessing methods and by selecting appropriate hyperparameter
settings for these components. The combination of these three factors consti-
tutes a workflow (pipeline) design problem. The search space of alternatives is
sometimes referred to as configuration space. As this space can be very large, we
need tools to help us identify the optimal one for the new task.

Many approaches focus on the issue of how to conduct the search in the
given configuration spaces [28]. Other approaches try to redesign this space first
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Bouadi et al. (Eds.): IDA 2022, LNCS 13205, pp. 143–156, 2022.
https://doi.org/10.1007/978-3-031-01333-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01333-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-01333-1_12


144 D. Hetlerović et al.

in order to facilitate the search to be conducted in the future. The work described
here falls into the second category. The space considered here includes different
machine learning algorithms and outlier elimination methods (OEMs), which
can be seen as a particular preprocessing method [25].

Various authors have shown that using outlier elimination as a preprocessing
method can improve accuracy [25,26], although this may not always be bene-
ficial. We have decided to investigate this issue. Our first aim was to identify
which OEMs are potentially useful when taking into account the given classifica-
tion algorithm and dataset. Our results show that, for some algorithms, such as
Naive Bayes, the improvement is quite significant. However, various workflows
that include OEMs have the opposite effect, namely they decrease the overall
performance. Therefore, we have decided to conduct a more thorough study to
determine whether the OEMs are truly useful when recommending algorithms
for new unseen datasets.

To determine this, we have adapted the approach of [2]. In this work,
the authors examined the usefulness of different algorithms (workflows) in a
given portfolio, while taking into account a given set of tasks. The algorithms
(workflows) that are unlikely to lead to a overall performance improvement are
dropped. So, the algorithms (workflows) that remain after the reduction are of
interest.

This study has shown that only three OEMs out of the initial set of twelve
OEMs are required for solving the given set of tasks. So, these three OEMs that
have been identified represent a generally useful knowledge that can be exploited
in the design of other, more complex, algorithm recommendation platforms.

2 Related Work

Outlier Detection End Elimination. One pioneering work in the area of
outlier detection and elimination was the work of John and Langley (1995) [16]
on the so-called robust decision trees, who studied the effects of label noise.
After learning a tree, all misclassified instances were removed from the learning
set and a new tree was learned. This was repeated until the learning set was
consistent. Although it did not result in accuracy increase, the resulting tree
was much smaller. A similar approach for kNN was presented elsewhere [29,33].

Smith and Martinez (2018) [25] explored filtering of misclassified instances.
Misclassification was studied both in conjunction with a single classifier or an
ensemble of classifiers. In total, 54 datasets were used in conjunction with
9 supervised learning algorithms from Weka [12]. In both cases, misclassified
instances were removed. When the same learning algorithm was used to filter
misclassified instances and to learn a model, only three algorithms displayed an
accuracy increase – LWL lazy learner, Neural net and Ripper. In all cases, using
an ensemble of learning algorithms for filtering resulted in a greater increase in
classification accuracy than when using a single learning algorithm. However, if
compared with majority voting ensemble of the 9 classifiers, the majority voting



On Usefulness of Outlier Elimination in Classification Tasks 145

ensemble reached, on average, the highest accuracy. An extensive and recent dis-
cussion of noise filters, as well as a particular solution for elimination of attribute
noise can be found in [24].

Workflow Recommendation with AutoML/Metalearning Systems.
Various approaches exist regarding how to identify the best possible work-
flow/pipeline (sequence of algorithms) for a given task and for a given configura-
tion space. Some simple ones include, for instance, grid search, random search,
and gradient descent method, which is often used in the task of configuring the
hyperparameters of neural networks. The approach known as sequential model-
based search/optimization (SMBO) exploits knowledge of past experiments on
the target dataset [14]. The so-called surrogate model permits to carry out a rela-
tively fast test to estimate the next best candidate to test. The system AutoWeka
[28], for instance, uses this kind of search to identify the potentially best workflow
configuration for a given task.

Metalearning approaches gather test results on various datasets and the
metaknowledge obtained is used to construct a model estimating the next best
candidate to test [5,32]. The metaknowledge gathered represents a set of work-
flows (pipelines) used in the past, some of which may be useful for the new
task. Each workflow (pipeline) can also be seen as a plan of different operations
to execute. So, one advantage of the metalearning approaches is that one does
not need to search for a new plan if a sufficiently rich set already exists. The
method called AR* [1] exploits an average ranking of workflows. It represents
a simple method that orders the workflows according to a given performance
measure (e.g., accuracy, a combined measure of accuracy and runtime). Hence,
this method allows us to evaluate the benefit of adding new workflows to a
given portfolio and thus obtain information about its marginal contribution to
performance [34].

Analysis and Reformulation of Given Configuration Space. Various
authors have investigated the issue of which parts of the given configuration
space are useful for a given set of tasks. Various works exist on the problem of
how to establish the relative importance of hyperparameters and their setting
(see e.g., [30,34]). Others tried to use the results of prior analysis to reformulate
the configuration space. As was mentioned earlier, [2] examined the usefulness
of different algorithms (workflows) for a given set of tasks. The results of this
analysis was used to reformulate the existing set (portofolio) of algorithms (work-
flows).

3 Research Questions and Methodology

Let us first list the main research questions that we wish to answer in this work:

RQ1: Can we use OEMs in workflows without restrictions?
RQ2: Are some OEMs potentially useful?
RQ3: Can we identify the most useful workflows with OEMs? If so, how?



146 D. Hetlerović et al.

The research question RQ1 is addressed in a study described in Sect. 5.1. The
method used to answer the research question RQ2 is discussed in Sect. 3.2 and
the results are presented in Sect. 5.2. The research question RQ3 is addressed in
Sect. 3.3 and the results are presented in Sect. 5.3.

3.1 Basic Concepts

Let us clarify the meaning of some basic concepts, starting with the notion
of outliers. Barnett and Lewis [4] define them as observations that deviate so
much from the rest of the data that it is likely that they are generated by a
different phenomenon than the one being analyzed. If we characterize the points
generated by a certain distribution, then outliers can be seen as the points that
do not belong to this distribution.

We can distinguish two kinds of noise in a dataset that may even influence
each other [35]. Class noise appears when instances are incorrectly labelled and
may be caused in a process of labelling by a human, while attribute noise cor-
responds to errors in attribute values - caused, for instance, by measurement
errors. While class noise may be eliminated by instance filtering, for attribute
noise it is not appropriate. The work presented here focuses on attribute noise.

Let us also clarify what we mean by initial and extended of workflows. The
initial workflows are of the form CLk represents a particular classification algo-
rithm with default settings. The set of classifiers used in the experiments is
shown in Sect. 4. The initial portfolio includes the set of these initial workflows.

The extended workflows are of the form OEMi,j , CLk, where OEMi,j rep-
resents the outlier elimination method i with configuration j. The set of outlier
elimination methods (OEMs) used in the experiments is shown in Sect. 4. The
extended portfolio includes both the initial and the extended workflows.

3.2 Determine Whether Some OEMs are Potentially Useful

Informally speaking, the extended workflow (OEMi,j , CLk) can be considered
to be potentially useful if it leads to increased performance on many datasets
when compared to its initial counterpart (CLk). The amount of the increase also
matters and so we also take this into account. The aim of our experiments are
twofold: first, determine whether all, or just some, of the extended workflows
with OEMs can be considered as useful. If at least some extended workflows are
identified as potentially useful, our aim is to identify the classification algorithm
and the datasets involved. The results of this study are presented in Sect. 5.2.

3.3 Identify the Most Useful Workflows with OEMs

Our aim is to compare the performance of a chosen algorithm selection method
on two different portfolios, the initial and the extended one, which may include
some workflows with OEMs. The aim of this comparison is to determine whether
it is advantageous to use the extended portfolio. However, we need to be careful,



On Usefulness of Outlier Elimination in Classification Tasks 147

as some workflows that include an OEM may result in a decrease of performance.
So, to avoid this, we use a reduction method based on [1] to select the most
competitive workflows. This way, the extended set is effectively reduced, by
pruning out the non-competitive variants. So one key question is the following:
will some of the OEMs “survive” this reduction phase? If so, which ones? Will the
final portfolio lead to competitive results? The aim of our experiments discussed
in Sect. 5 is to answer these questions and, this way, shed light on the usefulness
of outlier elimination methods.

Method for the Reduction of Portfolios of Workflows. The reduction
method used here is based on the method in [1], but includes various adapta-
tions. This method uses a given portfolio of algorithms (in general workflows)
and reduces it by removing non-competitive ones by exploiting the existing per-
formance metadata obtained in prior tests. This is followed by the elimination
of workflows that include infrequent OEMs.

Identifying the most competitive algorithm using a given performance mea-
sure (A3R, which combines accuracy and runtime) is straightforward. Identi-
fying all algorithms with equivalent performance could be done with recourse
to the Wilcoxon signed-ranks test, that exploits fold information of the cross-
validation procedure. As we do not have this data, we had to use a substitute
method instead. This method uses just the N% of top workflows as the most
competitive algorithms for a given dataset. Here we use the top 1% of workflows
based on A3R measure (combining accuracy and time) and another top 1% of
workflows based on accuracy only. All these workflows are passed to the second
phase.

The aim of this phase is to eliminate all workflows which include rather
infrequent OEM variants in this portfolio. If a particular OEM variant appears
in less than P% of workflows, the corresponding workflows with this variant is
marked for elimination. After processing all OEM variants, all corresponding
workflows are dropped.

Algorithm/Workflow Recommendation Method Used. Here, we have
chosen the method average ranking (AR*) [1] as the algorithm/workflow rec-
ommendation method. This method was chosen because it is relatively simple
and, consequently, it is easy to define different configurations that include all
required alternatives (selected classification algorithms with/without OEMs).
We have excluded AutoWeka [28], Auto-sklearn [10] or other systems from con-
sideration, as they not include all the OEMs we have considered here.

Method AR* requires that each portfolio of workflows is converted into a
ranking on the basis of available performance metadata. Each ranking is then
followed to generate recommendations for the dataset left out. This enables to
obtain its performance and to calculate how far it is from the best possible
performance, i.e., calculate the loss. This is repeated as many times as there are
datasets, following the leave-one-out (LOO) strategy. Sect. 5.3 shows the median
loss obtained across all folds of LOO cycles.



148 D. Hetlerović et al.

Evaluation Strategy. The evaluation strategy adopted here is a leave-one-
out (LOO) evaluation strategy. In each cycle, all datasets except one are used
to identify the portfolios discussed above. The recommendations of the chosen
algorithm selection method are used to calculate the loss on the dataset left out.

4 Experimental Setup

Our setup included 50 datasets from the cc18 benchmark set of OpenML [31]
(see Table 5 in the Appendix). We have not used datasets that were deemed to
be too easy (the accuracy reported was higher than 95%) or those that had more
than 50k instances.

In this study we have used 10 classifiers from the Weka toolkit that were used
in one previous study [26] (see Table 1). Obviously, other classifiers could have
been chosen (e.g., XGBoost, neural networks), but the choice made is useful for
comparisons. All algorithms were used with default parameter settings. Apart
from these, we have also used the default classifier that simply predicts the most
frequent class for each dataset.

Table 1. Classifiers used in the experiments

Classifier Description

IBk 5-Nearest Neighbors classifier [3]

J48 C4.5 Decision Tree classifier [22]

JRip RIPPER propositional rule learner [8]

LMT Classification trees with logistic regression at the leaves [18]

Logistic Logistic regression model with a ridge estimator [19]

SimpleLogistic Linear logistic regression model [27]

NaiveBayes Naive Bayes using estimator classes [17]

PART Generates rules based on partial Decision Tree leaves [11]

RandomForest Random Forest classifier [6]

SMO Sequential minimal optimization for SVM [21]

Twelve outlier detection and elimination methods (OEMs) have been used,
some of which are general (see Table 2), others class-based [20] (see Table 3), rep-
resenting a richer set than the one used in [25]. Each outlier elimination method
(OEM) also has one hyperparameter indicating the percentage of top outliers
to be eliminated (top 0.5, 1, 2, 3, 4 or 5%). All five values of this parameter
were used in the experiments. Consequently, the total number of OEMs and
its variants is 72, if we do not count the null method (12 OEMs, each with 6
hyperparameter settings).

The extended workflows have the format OEM i,j , CLk, where OEM i,j repre-
sents a particular outlier detection/elimination method i with a hyperparameter
j. The total number of extended workflows was 720 (72 OEMs x 10 CLs). As



On Usefulness of Outlier Elimination in Classification Tasks 149

Table 2. General outlier detection methods used

OD General outlier detection methods

LOF Local Outlier Factor [7]: Compares the density of instances to its
neighbors

NN Nearest Neighbors [26]: Uses distances to the k nearest neighbors

IF Isolation Forest [9]: Using forests, determines the outlyingness of
instances based on their path lengths from the root to the isolation node

DS Disjunct Size [26]: Outlyingness based on the size of leaf node of instances
in the decision tree

TD Tree Depth [26]: Outlyingness based on the depth of the leaf node using
single decision tree

TDwP Tree Depth with Pruning [26]: Same as TD but uses a pruned tree

each extended workflow was run on 50 datasets, the number of experiments was
36,000. To this, we need to also add the experiments with the initial workflows,
which totaled 500 (10 CLs × 50 datasets). Each experiment was performed using
5-fold cross-validation.

5 Results

5.1 Can We Use OEMs Without Restrictions (RQ1)?

Our results have shown that, on average,1 the workflows extended with outlier
elimination do not exceed the initial counterpart. The only exception is Naive
Bayes, whose performance, can, on average be improved by 0.316% by adding
OEMs. So, the main conclusion from this experiment is that the OEMs should
not be used blindly, without taking into account other aspects.

5.2 Determining Whether Some OEMs are Potentially Useful
(RQ2)

Following the methodology defined in Sect. 3, we seek extended workflows of
the type OEMi,j , CLk whose performance exceeds the initial workflow CLk on
many datasets. In other words, our aim is to identify outlier methods OEMi,j

that are potentially useful for a specific CLk.
Some results of these experiments are shown in Table 4. This table shows

some potentially useful workflows (Classifier, OEM ) and the hyperparameter
setting of the outlier method indicating how many elements should be left out
(column Out.). Column Init. shows the average accuracy of the initial workflow
(a particular classifier) on all datasets. The information in column Extend. is
similar; it is relative to the workflow extended with the particular OEM . Col-
umn Dif. shows the difference between the two values. Positive values indicate
1 The average is calculated by aggregating the accuracy across different OEMs and

datasets.



150 D. Hetlerović et al.

Table 3. Class-based outlier detection methods used

OD Class-based outlier detection methods

RF-OEX Random Forest (RF) Outlier Detection and Explanation [20]: Uses RF
to calculate the dissimilarity of instances to their own class, the
similarity to other classes and general outlyingness

CODB Class Outliers - Distance Based approach [13]: Uses nearest neighbors
to calculate the dissimilarity of instances to their own neighborhood,
the similarity to other classes and general outlyingness

KDN K Disagreeing Neighbors [26]: Uses class labels of k nearest neighbors
to calculate outlyingness

CLOF Class-based Local Outlier Factor: Combines the dissimilarity to its own
class, the similarity to other classes and general outlyingness:
LOF (sameclass) + 0.75 ∗ LOF (otherclasses) + 0.25 ∗ LOF (all)

CL Class Likelihood [26]: Calculates the probabilities of instances
belonging to their own class based on Kernel Densities and the number
of occurrences of features

CLD Class Likelihood Difference [26]: CL, but with probabilities of belonging
to different class also taken into account

Table 4. Some potentially useful workflows

Classifier OEM Out. Init. Extend. Dif. # Wins

Acc.% Acc.% Acc.% in 50

NaiveBayes CODB 4 72.816 73.430 0.615 31

NaiveBayes LOF 2 72.816 73.788 0.973 30

NaiveBayes CODB 3 72.816 73.389 0.573 30

NaiveBayes CODB 2 72.816 73.275 0.459 30

NaiveBayes KDN 4 72.816 73.194 0.379 30

IBk DS 5 79.490 79.659 0.169 30

LMT ClassLikelihood 1 83.475 83.579 0.104 30

LMT IsolationForest 0.5 83.475 83.554 0.079 30

SMO RF-OEX 1 79.898 79.939 0.041 30

NaiveBayes IsolationForest 2 72.816 73.793 0.978 29

that the particular OEM had a positive effect on performance. For instance,
the use of outlier methods CODB (with Out = 4), together with NaiveBayes
classifier, has led to an average increase of accuracy amounting to 0.615%. The
improvements were observed on 31 out of 50 datasets (column #Wins).

This analysis does not really show how to proceed. That is, if we selected
a particular combination of OEMi,j , CLk this would be a risky guess. As the
experiments have shown, it is not guaranteed that this workflow would lead to



On Usefulness of Outlier Elimination in Classification Tasks 151

a better performance. So, the only choice we have is to use the most promising
alternatives and conduct tests on a validation set. This topic is discussed in the
next section.

5.3 Constructing a Portfolio with the Most Useful Workflows
with OEMs (RQ3)

In this subsection, we address the question of whether some of the extended
workflows that include a particular OEM method are useful for algorithm rec-
ommendation.

As we explained in Sect. 3, we use the method based on average ranking
AR* [1]. This method uses a ranked portfolio of workflows to generate the rec-
ommendations to the user. This makes it possible to compare the benefit of
having workflows with OEMs in the portfolio. The results are shown in Fig. 1
showing the median curves that aggregate the data of different curves resulting
from different cycles of LOO procedure.

All curves start with default accuracy for each dataset corresponding to the
prediction of the most frequent class. The black loss curve (Baseline 10) includes
the 10 base workflows and can be considered as the baseline.

The blue loss curve (Full Ranking 710) includes all 730 workflows. Ten of
these are the initial workflows and 720 are the workflows that include OEMs
(10 base workflows × 10 OEMs × 6 parameter settings = 720). The advantage
of including OEMs is clearly visible. The corresponding curve reaches zero loss,
while the black one that uses only classifiers does not. The difference when
considering the median curves is rather significant - nearly 0.5%. The downside
is that we need to spend more time (around 103 s) testing different alternatives
before we encounter a good solution.

The red loss curve (Red Perc 1+1) shows the loss curve relative to the reduced
portfolio that includes about 306 workflows on average, i.e., 58% reduction, which
is quite significant. This portfolio was obtained by identifying the top performers
for each dataset, then joining them without repetitions and constructing a single
A3R ranking. The top performers include the top 1% of workflows based on
A3R measure (it combines accuracy and time) and another top 1% of workflows
based on accuracy only. So, this way, we identify 7+7 workflows per dataset.
This alternative achieved a somewhat better loss as the total set represented by
the blue curve. The advantage of this solution is that the portfolio includes fewer
workflows.

The green loss curve (Red Perc 1+1 Subset) uses an even smaller portfolio
when compared to the previous case (Red Perc 1+1). The portfolio Red Perc
1+1 is used as a starting point for this operation. The aim is to eliminate all
workflows which include rather infrequent OEM variants in this portfolio. If a
particular OEM variant appears in less than P% of workflows, the corresponding
workflows with this variant is marked for elimination. After processing all OEM
variants, all corresponding workflows are dropped. In this study, the threshold
of P = 10% was used. The reduction obtained this way is significant, as it
includes just 118 workflows (86% of reduction). Only 3 OEMs appeared in these
workflows: RF-OEX, TDWithPrunning and DS.



152 D. Hetlerović et al.

Fig. 1. Median loss curves of AR* relative to different portfolios of workflows (Color
figure online)

6 Future Work and Conclusions

Future Work. It would be possible to examine how reliable are the OEMs
identified in eliminating certain outliers. This could be done by injecting outliers
in a controlled manner and then by examining whether these would be eliminated
with the OEMs. Also, we could compare the effect of using OEMs with the noise
filters discussed by Saez et al. [24] (see Sect. 2).

We note that outliers are often defined with respect to a particular distribu-
tion (see Sect. 3). In this work we have assumed that the distribution is fixed.
It would be possible to extend the work presented here to be able to deal with
data following a specific distribution. In case of skewed distributions, suitable
transformations might help, e.g. Box-Cox, Yeo-Johnson or quantile-based trans-
formations [15].

Although the reduction method used here was applied to a particular setting
that includes OEMs, the method is quite general, as it can be applied in other
settings. These could include algorithm selection, selection of suitable hyperpa-
rameter settings and inclusion of other preprocessing methods. The configura-
tion space obtained with our specific workflow recommendation system can be
implanted into other more complex systems. We are planning to conduct other
studies in the future to demonstrate this.



On Usefulness of Outlier Elimination in Classification Tasks 153

Conclusions. Our aim was to examine the usefulness of outlier detec-
tion/elimination methods (OEMs) in classification. We have considered twelve
different OEMs in conjunction with different classifiers and formulated several
research questions. We have shown that it is not advisable to use OEMs in work-
flows without further restrictions. The performance of the workflows extended
with OEMs does not usually exceed the performance of the initial counterparts.
The workflows with Naive Bayes and OEMs represent an exception, although
the gain obtained by including OEMs is not large.

This result lead us to investigate how we could identify the most useful
workflows that include some OEMs only, and this way improve the performance.
The methodology adopted used a simple algorithm/workflow recommendation
system (AR*). We have investigated the effect of selecting different portfolios of
workflows in this setting. Our aim was to try to reduce the initial portfolio by
eliminating certain elements, without affecting the performance of the workflow
recommendation system.

Our results show that if we use OEMs, the results of the workflow recom-
mendation system will improve on average. The gain observed on a study with
50 datasets in a leave-one-out mode was rather significant (0.5%). Our most
important result involves the three OEMs identified with our approach, which
are RF-OEX, TDwP and DS. Besides, we showed that it is possible to eliminate
86% of the original workflows and still maintain the same loss.

Reducing the number of workflows can be regarded as a reduction of the
given configuration space. This topic is relevant to other researcher in AutoML,
as it can lead to substantial speed-ups of the search for effective solutions.

Acknowledgement. We thank Rita Ribeiro for her comments and suggestions, and
Robert Kolcún, Ondrej Kurák and Adam Bajger for the implementation of the testing
framework. This work was partially supported by the Faculty of Informatics, Masaryk
University, Brno. This work was also partially financed by National Funds through
the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within
project UIDB/50014/2020 and by the project Safe Cities - Inovação para Construir
Cidades Seguras, with the reference POCI-01-0247-FEDER-041435, co-funded by the
European Regional Development Fund (ERDF), through the Operational Programme
for Competitiveness and Internationalization (COMPETE 2020), under the PORTU-
GAL 2020 Partnership Agreement. We also thank the anonymous referees for their
useful comments which enabled us to improve the paper.



154 D. Hetlerović et al.

Appendix

Table 5. Datasets used in the experiments (total 50)

Dataset Inst. Feat. Clas. Dataset Inst. Feat. Clas.

dresses-sales 500 13 2 mfeat-fourier 2000 77 10

KC2 522 22 2 mfeat-karhunen 2000 65 10

climate-model-simulation-crashes 540 21 2 mfeat-morphological 2000 7 10

cylinder-bands 540 40 2 mfeat-pixel 2000 241 10

ilpd 583 11 2 mfeat-zernike 2000 48 10

balance-scale 625 5 3 KC1 2109 22 2

credit-rating 690 16 2 segment 2310 20 7

eucalyptus 736 20 5 ozone-level-8hr 2534 73 2

blood-transfusion-service 748 5 2 madelon 2600 501 2

pima-diabetes 768 9 2 dna 3186 181 3

analcatdata-dmft 797 5 6 splice 3190 61 3

vehicle 846 19 4 spambase 4601 58 2

tic-tac-toe 958 10 2 churn 5000 21 2

vowel 990 13 11 phoneme 5404 6 2

credit-g 1000 21 2 wall-robot-navigation 5456 25 4

qsar-biodeg 1055 42 2 texture 5500 41 11

cnae9 1080 857 9 optdigits 5620 65 10

PC1 1109 22 2 first-order-theorem 6118 52 6

pc4 1458 38 2 satimage 6430 37 6

cmc 1473 10 3 data.va3.gesture 9873 33 5

pc3 1563 38 2 JM1 10885 22 2

semeion 1593 257 10 letter 20000 17 26

car 1728 7 4 doushouqi-raw-egtb-2-pieces 44819 7 3

spf3 1941 28 7 bank-marketing-full 45211 17 2

mfeat-factors 2000 217 10 electricity 45312 9 2

References

1. Abdulrahman, S.M., Brazdil, P., van Rijn, J.N., Vanschoren, J.: Speeding up algo-
rithm selection using average ranking and active testing by introducing runtime.
Mach. Learn. 107(1), 79–108 (2017). https://doi.org/10.1007/s10994-017-5687-8

2. Abdulrahman, S.M., Brazdil, P., Zainon, W.M.N.W., Adamu, A.: Simplifying the
algorithm selection using reduction of rankings of classification algorithms. In:
ICSCA 2019 Proceedings of the 2019 8th International Conference on Software
and Computer Applications, pp. 140–148. ACM, New York (2019)

3. Aha, D., Kibler, D.: Instance-based learning algorithms. Mach. Learn. 6, 37–66
(1991)

4. Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, Hoboken (1978)
5. Brazdil, P., van Rijn, J.N., Soares, C., Vanschoren, J.: Metalearning: Applications

to Automated Machine Learning and Data Mining, 2nd edn. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-030-67024-5

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

https://doi.org/10.1007/s10994-017-5687-8
https://doi.org/10.1007/978-3-030-67024-5


On Usefulness of Outlier Elimination in Classification Tasks 155

7. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: ACM SIGMOD Record, vol. 29, pp. 93–104. ACM (2000)

8. Cohen, W.W.: Fast effective rule induction. In: Twelfth International Conference
on Machine Learning, pp. 115–123. Morgan Kaufmann (1995)

9. Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algo-
rithm for streaming data using sliding window. IFAC Proc. Vol. 46(20), 12–17
(2013)

10. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter,
F.: Auto-sklearn: efficient and robust automated machine learning. In: Hutter, F.,
Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp.
113–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5 6

11. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.
In: Shavlik, J. (ed.) Fifteenth International Conference on Machine Learning, pp.
144–151. Morgan Kaufmann (1998)

12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
Weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

13. Hewahi, N.M., Saad, M.K.: Class outliers mining: distance-based approach. Int. J.
Intell. Syst. Technol. 2, 5 (2007)

14. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. LION 5, 507–523 (2011)

15. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice, 3rd edn.
OTexts (2021)

16. John, G.H.: Robust decision trees: removing outliers from databases. In: Knowledge
Discovery and Data Mining, pp. 174–179. AAAI Press (1995)

17. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classi-
fiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345.
Morgan Kaufmann, San Mateo (1995)

18. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 59(1), 161–
205 (2005)

19. le Cessie, S., van Houwelingen, J.C.: Ridge estimators in logistic regression. Appl.
Stat. 41(1), 191–201 (1992)

20. Nezvalová, L., Popeĺınský, L., Torgo, L., Vacuĺık, K.: Class-based outlier detection:
staying zombies or awaiting for resurrection? In: Fromont, E., De Bie, T., van
Leeuwen, M. (eds.) IDA 2015. LNCS, vol. 9385, pp. 193–204. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24465-5 17

21. Platt, J.: Fast training of support vector machines using sequential minimal opti-
mization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel
Methods - Support Vector Learning. MIT Press (1998)

22. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
San Mateo (1993)

23. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
24. Sáez, J.A., Corchado, E.: ANCES: a novel method to repair attribute noise in

classification problems. Pattern Recogn. 121, 108–198 (2022)
25. Smith, M.R., Martinez, T.: The robustness of majority voting compared to filtering

misclassified instances in supervised classification tasks. Artif. Intell. Rev. 49(1),
105–130 (2016). https://doi.org/10.1007/s10462-016-9518-2

26. Smith, M.R., Martinez, T., Giraud-Carrier, C.: An instance level analysis of data
complexity. Mach. Learn. 95(2), 225–256 (2013). https://doi.org/10.1007/s10994-
013-5422-z

https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1007/978-3-319-24465-5_17
https://doi.org/10.1007/s10462-016-9518-2
https://doi.org/10.1007/s10994-013-5422-z
https://doi.org/10.1007/s10994-013-5422-z


156 D. Hetlerović et al.

27. Sumner, M., Frank, E., Hall, M.: Speeding up logistic model tree induction. In:
Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005.
LNCS (LNAI), vol. 3721, pp. 675–683. Springer, Heidelberg (2005). https://doi.
org/10.1007/11564126 72

28. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: Pro-
ceedings of the 19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 847–855. ACM (2013)

29. Tomek, I.: An experiment with the edited nearest-neighbor rule. IEEE Trans. Syst.
Man Cybern. 6, 448–452 (1976)

30. van Rijn, J.N., Hutter, F.: Hyperparameter importance across datasets. In: KDD
2018: The 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM (2018)

31. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. SIGKDD Explor. 15(2), 49–60 (2013)

32. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell.
Rev. 18(2), 77–95 (2002)

33. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning
algorithms. Mach. Learn. 38(3), 257–286 (2000)

34. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver
contributions to portfolio-based algorithm selectors. In: Cimatti, A., Sebastiani,
R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 228–241. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31612-8 18

35. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell.
Rev. 22, 177–210 (2004)

https://doi.org/10.1007/11564126_72
https://doi.org/10.1007/11564126_72
https://doi.org/10.1007/978-3-642-31612-8_18

	On Usefulness of Outlier Elimination in Classification Tasks
	1 Introduction
	2 Related Work
	3 Research Questions and Methodology
	3.1 Basic Concepts
	3.2 Determine Whether Some OEMs are Potentially Useful
	3.3 Identify the Most Useful Workflows with OEMs

	4 Experimental Setup
	5 Results
	5.1 Can We Use OEMs Without Restrictions (RQ1)?
	5.2 Determining Whether Some OEMs are Potentially Useful (RQ2)
	5.3 Constructing a Portfolio with the Most Useful Workflows with OEMs (RQ3)

	6 Future Work and Conclusions
	References




