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Preface

We are delighted to introduce the proceedings of the 20th International Symposium on
Intelligent Data Analysis (IDA 2022).

IDA is aworldwide scientific event that aims at exploiting new ideas and applications
for intelligent data analysis. We were delighted that the community decided to have IDA
2022 in France, especially after being deprived of face-to-face relationships during the
COVID-19 pandemic for almost two years.

IDA is traditionally limited to a small-scale, single-track meeting, allowing a fruit-
ful discussion without parallel spreading of researchers, but with a research-oriented
program that aims at being a forum for high quality, novel research in intelligent data
analysis. This year, we again followed this tradition. The research program also included
four invited speakers, namely Dominique Lavenier, Cynthia C. S. Liem, Michèle Sebag,
and Julia Stoyanovich, one PhD track, and the well-renowned Frontier Prize. The event
received 73 paper submissions, of which 31 (42%) were accepted for inclusion in the
symposium after a round of blind reviewing, where we managed to collect at least
three independent, high-quality reviews per paper. Papers were evaluated on the basis
of common scientific criteria such as novelty, technical quality, scholarship, and signifi-
cance, though always keeping inmind IDA’smission to promote potential breakthroughs
and game-changing ideas over elaboration to the last detail. This volume contains the
full papers accepted for presentation at the symposium meeting. The scientific pro-
gram resulted from continuous collaboration between the general chair and the program
co-chairs.

We would also like to acknowledge Albrecht Zimmermann for his helpful advice
and publicity work, Jaakko Hollmén for choosing and delivering the Frontier Prize
(sponsored by Knime), and Panče Panov for managing the PhD track. Throughout we
had the unfaltering support of the local organizers and in particular Edith Blin, Nathalie
Lacaux, and Gaëlle Tworkowski from Inria. The quality of IDA 2022 was only possible
due to the tremendous efforts of the Program Committee—our sincere thanks for all the
great work and patience to make these proceedings possible. Last but not least, we would
like to sincerely thank all the authors who submitted their work to the symposium. We
are convinced this volume of proceedings will allow you to remember the fruitful and
everlasting event that was held in Rennes.

February 2022 Tassadit Bouadi
Elisa Fromont

Eyke Hüllermeier
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Multi-modal Ensembles of Regressor
Chains for Multi-output Prediction

Ekaterina Antonenko1,2(B) and Jesse Read1

1 LIX, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
ekaterina.antonenko@polytechnique.edu

2 Digitalent lab (Moteur Intelligence Artificielle), Paris, France

Abstract. Multi-target regression is a predictive task involving multi-
ple numerical outputs per instance. In the domain of multi-label clas-
sification there exist a large number of techniques that successfully
model outputs together. Classifier Chains is one such example that is
naturally extendable to the multi-target regression task (as Regressor
Chains). However, although this method is straightforward to adapt
to the regression setting, large improvements over independent models
(as seen already in the multi-label classification context over the recent
decade) have not as of yet been obtained from Regressor Chains. One
of the reasons for this is the adoption of squared-error-based loss met-
rics which do not require consideration of joint-target modeling. In this
paper, we consider cases where the predictive distribution can be multi-
modal. Such a scenario, which easily manifests in real-world tasks involv-
ing uncertainty, motivates a different loss metric and, thereby, a differ-
ent approach. We thus present a new method for multi-target regression:
Multi-Modal Ensemble of Regressor Chains (mmERC), which performs
competitively on datasets exhibiting a multi-modal distribution, both
against independent regressors and state-of-the-art ensembles of regres-
sor chains. We argue that such distributions are not sufficiently consid-
ered in the regression and particularly multi-target regression literature.

Keywords: Multi-target regression · Regressor chains · Multi-modal
prediction

1 Introduction

Multi-target prediction refers to machine learning models predicting values for
multiple variables for each test instance. Such techniques can be a solution to
the nowadays extensively growing number of multi-output data science problems
across academy and industry areas [18,19]. Multi-label classification, which refers
to the multi-output case with binary variables, has made a significant progress
in the previous decade. Within this area, Classifier Chains is a family of methods
that have proved to have high predictive performance [3,15]. Compared to the
naive approach with an independent classifier per label (known in the literature

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Bouadi et al. (Eds.): IDA 2022, LNCS 13205, pp. 1–13, 2022.
https://doi.org/10.1007/978-3-031-01333-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01333-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-01333-1_1


2 E. Antonenko and J. Read

as binary relevance), advanced methods such as Classifier Chains outperform
w.r.t. most metrics. This has been widely attributed to their ability to extract
and exploit the dependencies between the targets, as well as other factors linked
to multi-target modeling [15,18].

Chaining methods can be adapted in a straightforward way to the regression
context, however, their performance on regression tasks shows relatively few
advantages compared to individual regression models.

There has been recent work attempting to unravel some of the explana-
tions for Regressor Chains underperforming. It has been identified that Clas-
sifier Chains perform well with respect to the 0/1-loss, i.e., in the probabilistic
sense, by seeking out a posterior mode. However, in the case of Regressor Chains,
an almost-ubiquitous choice of loss metric is the mean squared error (MSE) or
its variants; as also for regular regression problems. By definition, minimizing
MSE is the same as maximizing the likelihood of a Gaussian distribution; it will
thus correspondingly incur a posterior mean-seeking behaviour. This may be
inadequate if the posterior is bi-modal or (more generally) multi-modal, as may
be invoked by uncertainty under a multi-modal data distribution; a prediction
may be placed between two modes not corresponding to the ground truth. This
situation is illustrated in Fig. 1.

There are plentiful real-world examples of multi-modal outputs; e.g., in agri-
culture [17], evolution biology [6], and gene expression [12]. For instance, [6]
considers a finch (Geospiza fortis) population that shows bi-modality in beak
size, an important trait in this taxon, while [12] studies bi-modality in gene
expression for certain pheromones, which allows a cell population to diversify
its transcriptional response. In such cases, an estimate under MSE and under
uncertainty can be inappropriate.

Naturally, this discussion of multi-modality relates to regression tasks in gen-
eral, but it becomes particularly crucial in many multi-target regression prob-
lems due to the effect of error propagation [14] and the potential presence and
complexity of modes.

This paper introduces a novel method, Multi-Modal Ensemble of Regres-
sor Chains (mmERC), which combines an ensemble approach for Regressor
Chains [16] and a novel mechanism designed to recognise the multi-modality and
produce the predictions taking it into account. We argue that multi-modal sce-
narios are not widely studied in machine learning research (as opposed to statis-
tics), while taking them into account can significantly boost power of machine
learning methods. Our experimental results show the improvement of the per-
formance of Regressor Chains with the novel technique. In particular, we show
that mmERC can outperform independent regressors.

The rest of the paper is organized as follows. After summarizing background
and related work in Sect. 2, we present our method in Sect. 3. We describe
our implementation and the setup for comparison to independent regressors and
standard Regressor Chains in Sect. 4. The results and their discussion are in
Sect. 5. In Sect. 6, we draw the conclusions.
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Fig. 1. A distribution of actual target labels vs predictions by Random Forest; both
provided via a KDE estimate. Most predictions – when provided under uncertainty
(inputs are poorly informative) – are in the space highly likely to be incorrect.

2 Background and Related Work

In a multi-target regression, we are given a dataset D = {(xi,yi)}N
i=1 of N sam-

ples, each instance xi = [xi
1, ..., x

i
M ] is associated with a vector yi = [yi

1, ..., y
i
L]

of real numbers. One can build an independent model hj for each target yj and
(for test instance x) produce predictions

ŷ = [ŷ1, ..., ŷL] = [h1(x), ..., hL(x)].

This approach is graphically represented in Fig. 2a. In the classification con-
text, this approach is known as the binary relevance method and it has been
widely improved upon by models which model targets together. For example, the
method of Classifier Chains [15] arranges per-target (base) models in a chain,
such that the prediction of one model becomes an additional feature for the
subsequent models, obtaining predictions via:

ŷ = [ŷ1, ..., ŷL] = [h1(x), h2(x, ŷ1), ..., hL(x, ŷ1, ..., ŷL−1)].

This approach is demonstrated in Fig. 2b. It is observed that performance
of Regressor Chains can suffer from sensitivity to the chain order. Different
approaches have been suggested to optimize chain order including evolution-
ary algorithms [11] and using correlation to build the best structure [9]. One of
state-of-the-art solutions to overcome this issue is using an Ensemble of Regres-
sor Chains (ERC) [16], where n random chains are trained independently and
then the final predictions are obtained as the means of the n estimates for each
target. The same mechanism is used, for example, in Random Forests [7], which
output the average mean of a number of Decision Trees. However, we observe
that while Ensembles of Regressor Chains work on average better than standard
Regressor Chains, they may produce inadequate results in case of multi-modal
distributions, and the improvement is neither as significant as in the classification
scenario. This brings our interest to multi-modal regression.
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y4y3y2y1

x

(a) Independent regressors

y4y3y2y1

x

(b) Regressor chain

Fig. 2. Two approaches to a multi-target regression problem with L = 4 targets.

In taking a squared-error loss metric such as MSE, conventional regression
models predict their estimated mean of the distribution. This approach may
produce inadequate results if the data distribution is bi-modal or multi-modal
(recall the example in Fig. 1) or whenever the mode is not close to the mean.
Modal regression (e.g., [20]) is by definition more likely to capture a mode;
values that are – in those settings – more likely to occur in practice. Multi-modal
regression has been approached previous due to its properties of robustness to
outliers and heavy tail distributions [4].

Mode estimation has been studied in the Bayesian statistics literature [1,2].
These methods suggest, in particular, optimizing the Uniform Cost Function
(which we have denoted below in Eq. (2)), as an approximation of 0/1 loss. We
recall that Classifier Chains are a natural choice if the 0/1-loss is to be used,
yet this metric cannot be directly optimized in the regression context where
an exact match is unlikely to be obtained on the continuous spectrum. In any
case, these mentioned works do not consider the multi-target regression case.
Multi-modality was considered in the context of multi-target regression in [14],
but specifically to probabilistic models, therefore their study could not include
methods such as decision trees; and results were not strong. In our experiments,
decision trees show competitive performance both as independent methods and
as base models for Regressor Chains.

3 Multi-modal Ensemble of Regressor Chains

We present our novel method based on Ensembles of Regressor Chains, which
targets the Uniform Cost Function (UCF) in order to provide successful outputs
in the context of multi-modal predictive distributions; in two mechanisms.

3.1 Mechanism 1: Base Estimator Training

Using UCF as a loss function promotes mode-seeking by entailing a uniform
penalty when the correct mode is not found; unlike MSE which entails a
quadratic penalty (compare under Fig. 3). We select correntropy [5]

corr(yi, ŷi) = 1 − e−(yi−ŷi)2 , i = 1, . . . , N (1)

as a smooth approximation of UCF, allowing fine-grained threshold selection.
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Fig. 3. Comparison of MSE, UCF, and
correntropy errors; for single target
estimate where true y = 5.

Fig. 4. mmERC, mechanism 2: average
of the largest cluster gives the predic-
tion closer to the ground truth.

Algorithm 1. mmERC: Training hj for target yj (done for j = 1, . . . , L)
1: procedure Fit(hj , {x, yj}) � Train Base Estimator hj for target yj on {x, yj}
2: ˜hj ← clone of hj

3: fit ˜hj on {(x, yj)} � First training phase (full training set)

4: ypred ← ˜hj(x) � Prediction of ˜hj on x

5: corr ← 1 − e−(yj−ypred)
2

� Correntropy; See Eq. 1
6: {x′, y′

j} ⊂ {x, yj} � Top s-instances wrt (lowest) corr, 0 < s < 1
7: fit hj on {(x′, y′

j)} � Second training phase
8: return hj � Return the trained model

In the vein of regressor chains, we train one target (corresponding to one
base estimator) at a time; yj |j = 1, . . . , L. However we propose a second step,
in which we select a portion 0 < s < 1 of instances {(xi, yi)} with the lowest
correntropy corr(yi − ŷi) and train a second regressor on this reduced dataset.

This process bears some resemblance to iteratively reweighted least squares
or expectation maximization (EM) as mentioned in [20] for the context of single-
target regression; however, here we only take a single step rather than an iterative
EM-like procedure. The mechanism is summarized as pseudocode in Algorithm 1;
where s is a hyper-parameter.

3.2 Mechanism 2: Ensemble Mode Prediction

We train an ensemble of Regressor Chains, each with a random order. Most
ensemble methods (e.g., Random Forests [7] and ERC [16]) use mean aver-
aging to obtain the final predictions. But we would like to fit our models on
datasets with a multi-modal distribution (and have them identify a mode).
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Therefore, instead of averaging, we first apply K-means clustering [8] in order to
identify modes, and then produce the mean of the largest cluster as an estimate
of the mode of the predictive distributions. An example is given in Fig. 4. We
select 10 Regressor Chains in ensemble as a standard trade-off between accuracy
of prediction and computation time.

4 Experiments

4.1 Methods

Table 1 summarizes the methods used in the experiments; all of which as imple-
mented in Scikit-Learn [13]. We experimented with different base estimators for
multi-target methods (as indicated in the table). The implementation of our
novel approach (Multi-Modal Ensemble of Regressor Chains; mmERC) is pub-
licly available at https://github.com/ekaantonenko/mmERC.

Table 1. Regression methods compared in the experiments

(Meta)Method Base estimator

DT Multi-output Decision Tree

RF Multi-output Random Forest

IR (dt) Independent Regressors Decision Tree

IR (rf) Independent Regressors Random Forest

IR (svr) Independent Regressors Support Vector Regression

RC (dt) Regressor Chain Decision Tree

RC (rf) Regressor Chain Random Forest

RC (svr) Regressor Chain Support Vector Regression

ERC (dt) Ensembles of Regressor Chains Decision Tree

ERC (rf) Ensembles of Regressor Chains Random Forest

ERC (svr) Ensembles of Regressor Chains Support Vector Regression

mmERC (dt) Multi-Modal Ensembles of Regressor Chains Decision Tree

mmERC (rf) Multi-Modal Ensembles of Regressor Chains Random Forest

mmERC (svr) Multi-Modal Ensembles of Regressor Chains Support Vector Regression

4.2 Evaluation

We used two evaluation metrics: average Relative Root Mean Squared Error
(aRRMSE), which is common to use in multi-target regression;

aRRMSE =
1
L

L∑

j=1

√√√√
∑N

i=1(y
i
j − ŷi

j)2∑N
i=1(y

i
j − yj)2

,

https://github.com/ekaantonenko/mmERC
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(where ȳj is the mean value of the j-th target in the training data); and UCF [2]
– an analog of the 0/1 loss for regression problems within given neighbourhood
δ of the true values:

UCF(δ) =
1
N

N∑

i=1

{
0 if ‖yi − ŷi‖2 < δ

2 ,

1 otherwise,
(2)

where δ is an adjustable parameter. For the experiments we take δ = 1.0 for the
targets scaled normally.

All the methods were evaluated using a 10-fold cross-validation.

4.3 Datasets

We evaluated our algorithm on 40 synthetic datasets and one real-world dataset.
We generate 40 = 8 · 5 synthetic datasets as pairwise combinations of 8 dis-

tributions for target variables y1, y2 and 5 distributions for a feature variable x.
The distributions of target variables are Gaussian mixtures, forming a variety
of shapes (Fig. 5). The feature variable x is designed to provide little informa-
tion about the targets and thus invoke high predictive uncertainty, so that the
dependencies between the targets are even more useful for the model than the
feature. Different distributions of x reflect different degrees of uncertainty about
which cluster the model should choose for a particular sample (Table 2).

A real-world dataset (432 instances) was taken from the R package agrico-
lae [10] and refers to a native plant of the Peruvian Andes called yacon (Smallan-
thus sonchifolius). As targets, we consider two multi-modally distributed features
from the dataset: degrees brix ( density or sugar concentration ) and height of
the plant. We add feature x ∼ N (0, 1). The distributions of the targets are
demonstrated in Fig. 6.

Table 2. Distributions of the feature x in synthetic datasets

A: ∼ U(0, 1) where U stands for uniform distribution

B: ∼ {0, 1} (according to the cluster)

C: {∼ U(0, 1), ∼ U(1, 2)} (according to the cluster)

D: {∼ N (0, 1), ∼ N (1, 1)} (according to the cluster)

E: ∼ N (0, 1)

5 Results and Discussion

An initial investigation indicates that mmERCs achieves generally the best per-
formance with a parameter value s = 0.5 in Algorithm 1, i.e. taking a half of
the training dataset in the second training phase (see Fig. 7). The subsequent
experiments in this paper were conducted with s = 0.5.
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Fig. 5. Distributions of the targets y1, y2 in synthetic datasets

Fig. 6. Distributions of the targets in the yacon dataset.

Fig. 7. Averaged UCF for mmERC method, measured across all Synthetic datasets
and grouped by value of the s parameter, s ∈ (0, 1]

The experimental results for UCF metrics (Table 3a) show that our method,
mmERC, on average outperforms the independent regressors as well as standard
Regressor Chains with a sequential cascade order. This is already an important
result not found in other Regressor Chains implementations. Moreover, our pro-
posed mechanism to deal with multi-modal distributions improves Ensembles of
Regressor Chains for all base estimators in most of the scenarios.

As expected, the results under aRRMSE are opposite (Table 3b). However,
we show (Fig. 8) that mmERCs recognize clustered distributions better than
ERCs both for Decision Trees and Random Forests as base estimators. The
same situation is observed for the other datasets and other base estimators.
We propose the following explanation: MSE-based metrics penalize choosing the



Multi-modal Ensembles of Regressor Chains for Multi-output Prediction 9

Table 3. Experimental results. For simplicity of presentation, we show results for
synthetic datasets grouped and averaged by type of x feature distribution as they reflect
different degrees of uncertainty. This simplification does not affect average values of
metrics and average ranks. The boldfaced numbers in the tables correspond to the best
value per dataset. The results are rounded to 2 decimal points to display, so minor
differences may be not seen in this representation.

Regressor A B C D E Average AvgRank

DT 0.71 0.50 0.50 0.70 0.73 0.63 ± 0.01 7.9

RF 0.84 0.47 0.45 0.78 0.84 0.67 ± 0.04 10.2

IR (dt) 0.79 0.50 0.52 0.74 0.78 0.66 ± 0.02 11.1

IR (rf) 0.86 0.47 0.47 0.79 0.87 0.69 ± 0.04 11.0

IR (svr) 0.72 0.40 0.52 0.70 0.72 0.61 ± 0.02 6.0

RC (dt) 0.74 0.50 0.51 0.70 0.72 0.63 ± 0.01 8.6

RC (rf) 0.81 0.45 0.45 0.75 0.82 0.66 ± 0.03 8.8

RC (svr) 0.70 0.40 0.51 0.67 0.71 0.60 ± 0.02 4.2

ERC (dt) 0.78 0.50 0.49 0.72 0.76 0.65 ± 0.02 8.6

ERC (rf) 0.83 0.44 0.44 0.76 0.83 0.66 ± 0.04 8.6

ERC (svr) 0.71 0.40 0.50 0.67 0.72 0.60 ± 0.02 5.0

mmERC (dt) 0.72 0.50 0.51 0.69 0.71 0.63 ± 0.01 8.2

mmERC (rf) 0.69 0.43 0.44 0.63 0.67 0.57 ± 0.02 2.2

mmERC (svr) 0.69 0.40 0.52 0.67 0.68 0.59 ± 0.02 4.6

(a) UCF results for the synthetic datasets.

DT 1.46 0.64 0.67 1.38 1.48 1.13 ± 0.19 12.4

RF 1.17 0.55 0.55 1.11 1.17 0.91 ± 0.11 6.2

IR (dt) 1.47 0.64 0.69 1.38 1.47 1.13 ± 0.18 12.8

IR (rf) 1.17 0.55 0.55 1.11 1.17 0.91 ± 0.11 6.8

IR (svr) 1.10 0.46 0.60 1.02 1.10 0.86 ± 0.09 2.8

RC (dt) 1.46 0.64 0.69 1.40 1.47 1.13 ± 0.18 12.6

RC (rf) 1.29 0.53 0.54 1.21 1.30 0.97 ± 0.16 7.4

RC (svr) 1.13 0.46 0.60 1.05 1.12 0.87 ± 0.10 3.6

ERC (dt) 1.35 0.63 0.64 1.28 1.36 1.05 ± 0.14 10.0

ERC (rf) 1.17 0.51 0.52 1.09 1.17 0.90 ± 0.12 4.8

ERC (svr) 1.12 0.46 0.59 1.03 1.11 0.86 ± 0.10 2.6

mmERC (dt) 1.42 0.63 0.71 1.40 1.45 1.12 ± 0.17 12.2

mmERC (rf) 1.20 0.49 0.53 1.11 1.20 0.91 ± 0.13 5.8

mmERC (svr) 1.16 0.47 0.61 1.06 1.16 0.89 ± 0.11 5.0

(b) aRRMSE results for the synthetic datasets.
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(c) UCF results for the Yacon dataset.



10 E. Antonenko and J. Read

(a) DT (b) IR (dt) (c) RC (dt)

(d) RF (e) IR (rf) (f) RC (rf)

(g) ERC (dt) (h) mmERC (dt)

(i) ERC (rf) (j) mmERC (rf)

Fig. 8. Models based on DTs and RFs on one of synthetic datasets with a feature
x ∼ N (0, 1). Black lines connect pairwise true and predicted values. Black dashed
ellipses represent size of δ-neighborhood used in UCF metrics.

wrong cluster more than putting estimations in-between of actual clusters since
the distance between prediction and the actual value is bigger in the former case.
Thus, when a model recognizes a multi-modal distribution but fails to choose
the right cluster for some points, it can perform worse under MSE-based metrics
than models fitting to a single Gaussian distribution. We therefore argue that
this standard choice of the aRRMSE metrics may be inappropriate in the case
of multi-modal distributions and requires further investigation.

In general, Decision Trees and DT-based models recognize well clustered dis-
tributions, but in lack of informative features they assign clusters randomly. This
can be seen on Random Forests (which are an average of a number of random
Decision Trees) results: all models, based on Random Forests, put the predic-
tions between the real clusters. Furthermore, Decision Trees are formed as sets
of decision boundaries and thus are not smooth. Random Forests should be able
to solve this issue, but, as we mentioned above, do not work well for recognising
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(a) mmERC (rf) (b) DT

(c) Comparison of mmERC (rf) and DT models on
yacon dataset. The mmERC (rf) method performs
better (w.r.t. UCF) on blue dots and worse on vio-
let dots. On grey dots both methods have the same
UCF values.

Fig. 9. Performance of two models on Yacon dataset.

multi-modal nature. Our method, mmERC, improves the performance of Ran-
dom Forests methods and outputs a smooth function at the same time.

In the Yacon dataset, we observe the best predictive performance under UCF
for the mmERC models (see Table 3c). Figure 9a and 9b illustrate performance
of the two models, mmERC (based on Random Forests) and Decision Trees.
Though graphically it seems that Decision Trees better mimic the clusters dis-
tribution, from the UCF comparison we imply that they assign these clusters
in a more random way. Figure 9c compares precision of predictions of these two
models per sample. It shows that our method is more precise on some of the
clusters. Though we have not observed a significant advantage of our method
on real-world datasets, we argue that it performs well on some datasets with
explicit multi-modality, particularly on some subsets of samples.

6 Conclusions and Future Work

In this work we have developed a new method, multi-modal Ensembles of
Regressor Chains (mmERC), for multi-target regression. As opposed to the
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conventional approaches assuming a uni-modal predictive distribution approx-
imating Gaussians, our approach is better able to capture the modes of the
distribution.

In results mmERC achieves important performance improvement across the
multi-modal distributed datasets, outperforming baseline and state-of-the-art
improvements, which we modeled using the UCF metric. This is unlike the
vast majority of multi-target (and standard single-target) regression approaches
which target squared-error based metrics. Our study hints that this metric
deserves further investigation.

In future work we will look at additional evaluation schemas, such as allowing
multiple multi-output predictions (hypotheses) for a single instance. This would
allow a greater chance of capturing the true mode, even when uncertainty is
high. We will also work on adding more sophisticated structure of the chains in
the ensembles in order to better exploit dependencies between the targets and
achieve better predictive results.
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Abstract. Knowledge Graphs (KG) offer easy-to-process information.
An important issue to build a KG from texts is the Relation Extraction
(RE) task that identifies and labels relationships between entity men-
tions. In this paper, to address the RE problem, we propose to combine
a deep learning approach for relation detection, and a symbolic method
for relation classification. It allows to have at the same time the per-
formance of deep learning methods and the interpretability of symbolic
methods. This method has been evaluated and compared with state-of-
the-art methods on TACRED, a relation extraction benchmark, and has
shown interesting quantitative and qualitative results.

1 Introduction

Knowledge Graphs (KG) [10] have the advantage to offer easy-to-process infor-
mation. However, most available information is still in the form of texts. A
key problem is therefore the extraction of KGs from text, which amounts to
identify named entities and relationships [16]. Relation Extraction (RE) [9] is
the sub-problem of identifying and labelling relationships, assuming that the
named entities have already been identified. Currently, the best scores on RE
are achieved by deep learning methods, such as LUKE [22] or BERT [4]. While
their scores have recently increased significantly (e.g., F1-score 72.7 for LUKE),
the KGs that would result from their systematic application would still be noisy
and incomplete to a large extent (e.g., 30% incorrect triples, and 25% missing
triples for LUKE). Therefore, a completely automated process does not seem
realistic if we aim at reliable and complete KGs and the RE task is too tedious
to perform by hand only.

It seems necessary to introduce some human control in the extraction process
while providing support for automation. Our idea is to base the automation on
an increasing set of extraction rules, which are generated from previous exam-
ples and validated by humans. Human validation ensures the reliability of the
extracted KG, and the generic aspect of rules supports the automation of the
information extraction process. In this paper, we focus on the sub-task of gener-
ating extraction rules from examples, i.e. sentences in which relationships have
already been identified and labelled. Unfortunately, deep learning methods only
predict relationships at the instance level, they do not provide information that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Bouadi et al. (Eds.): IDA 2022, LNCS 13205, pp. 14–25, 2022.
https://doi.org/10.1007/978-3-031-01333-1_2
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can be leveraged into general and interpretable extraction rules. In previous
work [1] a symbolic approach based on Concepts of Neighbours [5] was proposed
to provide explainable predictions. Those explanations have the potential to be
translated into extraction rules. However, it only solves the sub-problem of rela-
tion classification, i.e. when the relationships have already been detected and
only remains to be labelled. Indeed, explanations can be found for the label of a
relationship but hardly for the absence of a relationship as there are many ways
for two entities not to be in relationship.

To address the RE problem, we propose to combine a deep learning app-
roach for relation detection, and the symbolic approach based on Concepts of
Neighbours for relation classification. It allows to have at the same time the per-
formance of deep learning methods and the interpretability of symbolic meth-
ods. We conducted experiments showing that in terms of F1-score on the full
RE task, our composite approach is comparable to deep learning approaches
using the same kind of information from texts (i.e., syntactic structure, lexical
semantics), namely GCN and C-GCN [23]. In contrast to deep learning methods,
our approach generates explanations for each prediction, and convert them into
extraction rules. Those extraction rules exhibit rich structures, mixing different
levels of information from texts: lexical, syntactical, and semantic. In addition,
they are generalizations of the current prediction, which makes them useful for
the automation of future extractions.

2 Related Works

Most approaches addressing the Relation Extraction task use deep learning
methods. Historically, convolutional neural networks [19] and LSTM [21] were
used first, then were replaced by graph convolution networks methods [23], which
allow to take into account the syntactic structure of sentences. Currently, the
approaches that give the best results for the RE task use pre-trained language
models such as BERT [4] and its variants [11,22]. However, the performance of
those approaches (with an F-score between 70 and 75% on the TACRED bench-
mark [24]) are still too low to allow a full automation. In addition, those fully
statistical approaches lack of explanations for their predictions, which limits the
possibilities of introducing human control in the process to improve reliability.

Symbolic approaches have also been proposed for the RE task. Their per-
formance are often lower than deep learning methods, but by definition they
provide interpretable results that can be used in a process with human con-
trol. The first symbolic approaches use rules such as regular expressions [8]
or syntactic patterns [7]. However, these rules are handcrafted and thus those
approaches are time consuming and often devoted to a specific corpus. Some sym-
bolic approaches automatically learn the linguistic rules. For instance [3] uses
pattern mining techniques to automatically extract those rules. The method pre-
sented in [2] combines symbolic and machine learning techniques and proposes
to learn patterns from a list of seed terms, i.e. pairs of entities known to be in
some target relation. More recently, two symbolic approaches based on Formal
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Fig. 1. Example of concepts of neighbours

Concept Analysis (FCA) have been proposed to populate a KG from texts [1,12].
The latter is based on Concepts of Neighbours, which have also been used for
KG completion [6].

3 Relation Classification with Concepts of Neighbours

In this section, we describe the use of Concepts of Neighbours for the problem
of explainable relation classification. Given a sentence (e.g., “Berlin became the
capital of Germany in 1990”), two named entities in the sentence (e.g., “Berlin”
and “Germany”), and the assumption that there is a relationship between the
two entities, the problem is to predict the label of the relationship (e.g., “is the
capital of”), and to provide interpretable explanations for the predicted label.
The work presented in this section is developed in more details in [1].

3.1 Concepts of Neighbours

Concepts of Neighbours [5] is a graph mining method for entity-relation graphs
that aims, for a given tuple of entities, to compute which are the most similar
tuples of entities. It can be seen as a symbolic form of the k-nearest neighbours
method, where numeric distances are replaced by common graph patterns. The
bigger the common graph pattern between two tuples, the closer they are. For
example, suppose that we want to find couple of entities similar to (Berlin,
Germany) in a graph about geography. Concepts of Neighbours hierarchically
clusters all couples of entities into concepts according to their similarity with
(Berlin, Germany). Figure 1 shows the set of concepts as a Venn diagram. Each
concept is defined by its intension, which is a graph pattern with distinguished
variables, and its extension, which is the set of couples matching the intension.
It can be seen that (Roma, Italy) is a close neighbour as it shares the “capital
of” relation, while (New York,USA) is a farther neighbour because New York is
only a city of USA. The proper extension of a concept is defined as the subset
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Fig. 2. Example of sentence modeling

of tuples of its extension that are not in the extension of more specific concepts.
The extensional distance is defined as the size of its extension, and can be used
as a numerical distance.

3.2 Application to Text

In order to apply Concepts of Neighbours to texts, we first need to model a text
as an entity-relation graph. Figure 2 shows the modeling of the sentence “The
University of Rennes is French”. We rely on NLP tools and resources to extract
syntactic and semantic information from text1.

The graph representing each sentence is defined as follows. Tokens are used
as entities, and are linked by the dependency relations. Lemmas, named entity
types and part-of-speech (POS) tags are then added as entity labels.

From there we apply a few enhancements to the graph. First, some named
entities extend over several tokens but have a syntactic and semantic unity: e.g.
“University of Rennes” is split in three tokens. We decided to merge those tokens
into a single entity in our graph representation, and to label it with the concate-
nation of tokens instead of using the lemmas, considering them as proper nouns.
Second, we enrich the graph labelling following syntactic and semantic infer-
ences. The objective is to help finding common graph patterns with Concepts
of Neighbours. For instance, on the syntactic side, singular nouns have POS
tag NN whereas plural nouns have POS tag NNS. To relax the singular/plural
distinction, we infer POS tag NN for every entity that has POS tag NNS. On
the semantic side, given an entity labelled with some lemma (e.g. “school”), we
infer labels for the synonyms and hypernyms of the lemma (e.g., “educational
institution”)2. The Concepts of Neighbours method is capable of handling such
inferences efficiently, without having to materialize them in the graph, by relying
on a partial ordering over the entity and relation labels.

3.3 Application to Relation Classification

Given the graph modeling of a text, and the choice of a couple of named entities
(subject, object), Concepts of Neighbours can compute a set a concepts of neigh-
bours, each concept being associated with a set of neighbour couples (the proper
1 We decided to use the Stanford CoreNLP toolkit [15].
2 We used WordNet [18] to do so.
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extension), and to an extensional distance. From there, a label of the relation
from subject to object can be predicted by looking at the relationships holding
for the neighbour couples of each concept c. Intuitively, the more neighbours in
the proper extension of c hold some relation r, and the smaller the extensional
distance of c, then the stronger the prediction for relation r is. This is formal-
ized as the confidence of the rule Rr,c : Pc → r(s, o), where (s, o) ← Pc is the
intension of concept c.

conf(Rr,c) =
|{(s, o) | r(s, o)} ∩ ext(c)|

ext dist(c)

To aggregate the rules from all concepts to all relations and to get a ranking of
predicted relations, we use Maximum Confidence [17], which was applied with
success for link prediction [6,17]. Informally, the predicted relation is the relation
which has the higher maximal confidence. In case of equality, the predicted
relation is the one with the higher second maximal confidence, and so on.

In practice, the generic prediction method presented above is specialized
to the settings of relation extraction benchmarks like TACRED. First, neigh-
bours are only searched among the couples of entities that are annotated by a
relation that is compatible with the entity types, according to the RECENT
paradigm [13]. Second, we apply the pruning strategy proposed in [23], where
only tokens that are at a maximal distance k of the path between the subject
and object are kept in the representation of a sentence.

4 A Two-Step Approach for Relation Extraction

The method presented in the previous section works by similarity, classifying test
examples among the different relations according to similar training examples.
If it works for deciding which relation exists between a subject and an object, it
does not work for knowing if a relation exists. Indeed, there is no reason for a
negative example (i.e. an example with no relation) to look like other negative
examples. Therefore, this method can perform relation classification but cannot
perform relation detection. However, those two steps are necessary to perform
proper relation extraction.

The idea is to combine two methods, one for relation detection only, and
the method presented in the above section for relation classification. Figure 3
presents how such a system works: the method for relation detection discrim-
inates the positive examples from the negative examples, and our neighbours-
based method classifies the positive examples among the compatible relation
types. Such a two-step approach has already been exploited with promising
results [14].

4.1 Relation Detection with Deep Learning

As there is no efficient symbolic or fully explainable method for relation detection
that we know of, we decided to favor performance and therefore to use a state-of-
the-art deep learning approach. Moreover, there is not much need to explain the
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Fig. 3. Two-step relation classification process

non-existence of a relation, and an explanation for a type of relation is also an
explanation for the existence of a relation. Today, the state-of-the-art in relation
extraction is dominated by pre-trained language models such as BERT [4] and
its variants. One of those variants, LUKE [22], has the particularity to handle
both single words and multi-word entities, and has shown impressive results on
diverse NLP tasks, including relation extraction. We decided to use this model
as a relation detector.

We consider several configurations of LUKE for relation detection. The first
one, called luke-base, simply consists in reusing the fully trained model for rela-
tion extraction and post-process the output in order to merge all the positive
predictions into one class. A second configuration, called luke-detect consists in
specializing LUKE for relation detection. We remove LUKE’s last classification
layer, and replace it by two layers: a fully connected layer of size n and an output
neuron with a sigmoid activation function. Then the model is fine-tuned in order
for it to predict 1 on the positive examples and 0 on the negative examples.

4.2 Explainability

The main asset of this two-step method is its explainability: for a given pre-
diction, if this prediction is not no relation, the method is able to provide an
explanation. This limitation to positive prediction may seem odd, but this can
be understood by the fact that if it is easy to imagine how to explain why there
is a relation between two examples (by giving other annotated examples looking
like the given example), it is more complicated to explain why a given example
has no relation between its subject and its object, as negative examples do not
have to look like other negative examples.

For a given example annotated as positive, the raw explanation that can
be given is the whole set of Concepts of Neighbours of this example. However,
whereas it is a complete explanation, it is hardly readable for a non-expert. How-
ever, among this set of concepts, only a few ones are used to make a prediction:
the ones that have an intension which was used to create a rule of maximum
confidence. Therefore, by displaying those intensions and the examples matching
it, we obtain a short and readable explanation (only a few graph patterns and
the related sentences).
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Table 1. Precision, recall and F-score for relation detection methods

Approach P R F1

luke-base 74.8 79.9 77.3

luke-reprod 76.8 75.2 76.0

luke-redetect 73.1 80.1 76.4

5 Experiments and Results

In this section, we present the different experiments made with our relation
extraction system and the subsequent results. Those experiments can be divided
in three parts: 1) the LUKE-based Relation Detection module, 2) the Concepts
of Neighbours-based Relation Classification module, and 3) the whole system.

All experiments were made on the TACRED dataset [24], one of the most
used dataset for Relation Extraction. This dataset is made of 106,264 examples,
split into a training corpus (68,124 examples), a development corpus (22,631
examples) and a test corpus (15,509 examples). Each example of this dataset
is a sentence with two entity mentions (a subject and an object), each mention
being typed among 23 possible types, and annotated with a relation type among
41 effective classes plus a no relation class representing the absence of relation
between the subject and the object. For greater accuracy compared to random
pairs of entity mentions occurring in real-world sentences, 79.5% of the examples
are in the no relation class.

5.1 Relation Detection

We evaluate the different configurations of LUKE [22] presented in Sect. 4.1, in
order to choose the best one for relation detection.

Experiment Design. As presented in Sect. 4.1, several configuration of LUKE
were tested. In addition to luke-base and luke-detect, a third configuration, called
luke-reprod has been tested. Theoretically equivalent to luke-base, it consists into
reproducing the fine-tuning on TACRED to see if this fine-tuning is reproducible,
and to have another comparison point for luke-redetect. Concerning luke-detect,
several values have been tested for the size of the hidden layer, and best results
have been obtained with n = 400. The implementation is freely accessible3, and
the experiments were run using a Tesla V100 GPU.

Results. Table 1 shows the performance for the three detailed configurations.
It can be read that, contrary to our expectations, luke-reprod does not repro-
duce the results from luke-base, by having an F-score inferior by 1.3 points.
LUKE’s implementation being in Python, this is probably due to a problem in
dependency versioning. However, even if the reproduction was a failure, we can
3 See https://gitlab.inria.fr/hayats/luke-redect.

https://gitlab.inria.fr/hayats/luke-redect
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observe that luke-detect ’s F-score is superior by 0.4 points to luke-reprod ’s one.
Therefore, it can be hoped that if we were able to reproduce perfectly luke-base,
luke-detect would have a better F-score.

It is interesting to point out that if luke-base has an overall better F-score,
luke-reprod outperforms its precision and luke-redetect outperforms its recall.
However, having a lower recall means having more false-negative examples, which
means missing some examples expressing a relation, which we want to avoid,
while having a lower precision means trying to classify a relation on examples
that express none, which is also problematic. This is why we prefer F-score over
precision or recall, and therefore we use luke-base as a relation detection module
in the following experiments.

5.2 Relation Classification

We now evaluate our Concepts of Neighbours-based module individually on the
Relation Classification task.

Experiment Design. These experiments are made on the positive examples of
TACRED, i.e. the examples that have an annotation other than no relation.
As our method does not have any use of a development corpus, we merge this
corpus with the training one. We finally obtain a dataset composed of 18,446
training examples and 3,325 test examples. The quality measure usually used on
TACRED is the micro-averaged F-score. However, as there is no negative class
on this task, this measure does not make sense, and therefore we use accuracy.

In these experiments, as we work on a subset of TACRED we cannot compare
this approach directly to other existing methods. Therefore, we compare our
approach to a basic baseline in the RECENT paradigm. This baseline simply
predicts, for given subject and object types, the relation type that appears the
most among the training examples with the same subject and object types.

As the algorithm for the computation of Concepts of Neighbours is anytime,
we have to choose a timeout for our experiments. In order to see how the time-
out influences the classification task, several timeouts were tested between 10
and 1200 seconds. Concerning the dependency tree pruning, several values of k
were tested, and the best results have been obtained with k = 1. Our approach
was implemented in Java4 and uses ConceptualKNN 5 for the computation of
Concepts of Neighbours, which is based on Apache Jena6, a Java library for the
semantic web.

Results. Table 2 presents the accuracy for the baseline and for our approach.
First it can be observed that the baseline has an accuracy of 80.4%, which is
particularly high, which means that the dataset leaves little space for progress.
Then, it can be read that for any timeout, the proposed approach has a better
accuracy than the baseline, surpassing it by 2.2 points for a timeout of over 300 s.
4 Accessible here: https://gitlab.inria.fr/hayats/conceptualknn-relex.
5 https://gitlab.inria.fr/hayats/jena-conceptsofneighbours.
6 https://jena.apache.org/.

https://gitlab.inria.fr/hayats/conceptualknn-relex
https://gitlab.inria.fr/hayats/jena-conceptsofneighbours
https://jena.apache.org/
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Table 2. Accuracy for relation classification, compared to the baseline.

Timeout (s) 10 20 30 60 120 300 600 1200

Ours 82.0 82.1 82.7 82.9 83.4 83.6 83.6 83.6

Baseline 80.4

Table 3. F-score for several Relation Extraction methods on TACRED

Method F1 score

LUKE [22] 72.7

BERT-LSTM-Base [20] 67.8

Ours 66.9

C-GCN [23] 66.4

GCN [23] 64.0

In addition, this table clearly shows a saturation phenomenon: there is an
important gain when timeout gets from 10 s to 120 s, gain that is far smaller
from 120 s to 1200 s. It can be intuited that this comes from the fact that most
concepts are computed before 120 s, and only a few concepts are added after
120 s. This also can be seen in the proportion of examples for which the full set
of Concepts of Neighbours is computed: of less than 30% for a timeout of 10 s,
it rises to over 80% for a timeout of 120 s and to over 99% for a timeout of over
600 s. This shows that despite the anytime algorithm, most of the prediction is
made on the real set of Concepts of Neighbours, and not an approximation.

5.3 Relation Extraction

Now that we have shown that our Concepts of Neighbours-based method is a
valid approach for relation classification and that we have chosen a deep learning
relation detection module, both can be assembled to form a full relation extrac-
tion method. In this subsection we present the experimental process to evaluate
this method, as well as both quantitative and qualitative results.

Experiment Design. We evaluate our two-step approach on the full TACRED
dataset in order to compare it to previous approaches. To do so, according to
the structure presented in Fig. 3, we process the test examples of TACRED
with luke-base, and obtain examples classified as positive or negative. Then,
each example classified as positive is processed by our Concept-of-Neighbours
module for relation classification.

Quantitative Results. Table 3 compares our method with previous Relation
Extraction methods. It shows that although our method is not competitive with
pre-trained language models such as BERT or LUKE, it outperforms approaches
based on graph convolution networks. Indeed, our method beats by 2.9 F-score
points the basic graph convolution network (GCN) and by 0.5 points the con-
textualized graph convolution network (C-GCN). This is interesting because our
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Fig. 4. Example of rule body

method and those two methods are conceptually close: both are based on the
representation of sentences as a graph, both use the pruned dependency tree of
the sentences, and both add to this modeling a semantic layer (a word embedding
for GCN and C-GCN, WordNet for our approach). The difference between those
approaches is that ours aims to provide explanations for the examples classified
as positive.

Qualitative Results. As mentioned above, the main advantage of our approach
is its explainability. Let us take for example the sentence “Sollecito has said he
was at his own apartment in Perugia , working at his computer.” luke-base pre-
dicts that there is a relation between the subject (his) and the object (Perugia).
As the subject is a person and the object a city, there are only three com-
patible relations: per:cities of residence, per:city of death or per:city of birth.
After computation of the Concepts of Neighbours, we observe that the relation
per:city of residence is predicted, as six rules of confidence 1 predict it, while
only one rule each predicts the other two compatible relations. Figure 4 shows
the body of one of those rules. It can be read as:

– The subject has lemma he and is the possessor of an apartment;
– The object is the name of a city in which there is something.

Even if this pattern is too specific to form a general rule, it can be infered
that, knowing there is a relation between the subject and the object, we
can be pretty sure that any sentence following this pattern has the relation
per:cities of residence between its subject and its object. To complete this expla-
nation, we can look at the training examples matching this rule. In our case,
there is one sentence matching it: “Wilbert Gibson walked from his apartment
to the grocery store earlier this week – that’s what people do in New York City
– and thought this must be what it’s like to be a celebrity.” We can see that
this sentence effectively expresses the relation per:cities of residence, but quite
implicitly. Therefore, this is interesting to see that this kind of pattern can be
captured and exploited by our approach.

In practice, we observe that the rules of maximum confidence have system-
atically a confidence equal to 1. This is due to the fact that Concepts of Neigh-
bours compute rules specific enough to match a few cases, and therefore to
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have a low extensional distance. After reviewing the explanations for ten ran-
domly chosen correct predictions, we can observe that 56% of the 172 graph
patterns seem reliable. Most of those reliable explanations are considered as
such because of a lemma or a synset appearing in the graph pattern (for exam-
ple the word daughter to characterize the relation per:children). In addition, we
observe that the reliability of the explanations depends on the relation type.
For example it can be pointed out that for an example predicting the relation
per:top member/employee, most of the explanations are invalid. This is caused
by the fact that there is a great variety of words or formulations expressing this
relation, and therefore the same one is rarely used several times. In addition, it
appears that most of graph patterns are disconnected, but, as we could hope,
most of the connected ones are valid.

6 Conclusion

In this article, we presented a new method for relation extraction. The core
idea of this method is to combine an explainable and symbolic approach for
relation classification with a deep learning method for relation detection. More
precisely, we present a FCA-based approach that has shown promising results
on relation classification, and we couple it with a state-of-the-art pre-trained
language model fine-tuned for relation detection. Experiments have shown that
this two-step approach gives promising results. In addition, this new method
explains each positive prediction with interpretable rules.

In the future, work has to be made on the FCA-based relation classifier, on
the modeling, by adding sequentiality for example, as well as on the concepts of
neighbours, in order to use more expressive and flexible patterns. There is also
work to do on the explainability, on how to display those explanations in order
to make them easily readable, in order to allow for interaction with the user.
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Abstract. The automation of taxonomy construction has increased in
popularity recently. Such an interest for the domain has been motivated
by the large number of new scientific papers published each year that
implies a growing difficulty in following the new topics of the different
scientific domains and their importance in the topic hierarchy. In this
paper, we propose a way to automatically construct topic taxonomies
from millions of scientific article abstracts and ways to automatically
evaluate this construction. While, to our knowledge, other approaches
rely on pipelines of models and human evaluation to validate them, we
chose to rely on simple models that are easier to evaluate automatically
and, thus, promote the improvement of our models thanks to a large
number of iterations. The contribution of this paper is threefold: 1) the
proposition of a new method to construct taxonomies from a large set
of scientific papers, 2) a method to precompile taxonomy information
into matrices that will be quickly queried, and 3) an objective method
to automatically evaluate the constructed taxonomies without requiring
human evaluation.

Keywords: Topic taxonomy construction · Knowledge extraction ·
Automatic evaluation · Text mining

1 Introduction

The number of scientific articles published by the research community is growing
rapidly. It has become nearly impossible to navigate through the scientific liter-
ature without limiting oneself to a very specific topic in the literature, or a sub-
set of conferences, journals and authors. Search platforms like Google Scholar1,
Microsoft Academic2 or Semantic Scholar3 are specialized in exploring the scien-
tific literature but topic keywords or author names are still the main entry point.
1 https://scholar.google.com.
2 https://academic.microsoft.com.
3 https://www.semanticscholar.org.
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This creates the risk of introducing biases towards the most visible research
papers.

In the same way as scientific articles, new topic keywords appear frequently
and their usage change through time. It is especially true in a fast-growing
domain like neural networks. This makes any systematic literature review,
related-work analysis and state-of-the-art documentation a more and more
tedious and time-consuming task for academic as well as corporate researchers,
peer-reviewers, experts, and scientific advisors. This issue is widely recognized
and approaches emerged to help with topic discovery [6,17]. Among them, topic
taxonomy construction methods [5,9,10,12,14,18,19] are promising approaches
allowing the user to navigate in a graph of topics from a known topic to the new
topics to discover.

The most recent approaches focus on pipelines in which it is potentially dif-
ficult to assert the effectiveness of each component, and their validation rely
solely on human evaluation. This is inevitable due to the lack of gold standard
taxonomies to compare against, but it has several flaws that make it difficult
to really assess the whole taxonomy generation. First of all, the evaluation is
difficult to reproduce as the humans selected for the evaluations are different
from a method to another and, as the appreciation of a taxonomy can be sub-
jective, the reasons why an evaluator preferred the results of a method from
another are unknown. Secondly, it is not possible to ask a user to evaluate the
entire generated taxonomy and small subsets have to be chosen to be evaluated.
These chosen subsets are potentially not representative of the whole taxonomy,
in terms of quality or affinity with the evaluators, but also subjectively selected
and different from the evaluation of an approach to another. A good example of
these problems is the evaluation of TaxoGen [19] and NetTaxo [9] that are two
methods sharing authors but that seemed to be evaluated by different people and
on different topics. It becomes then difficult to compare these approaches even
if their evaluations were produced in similar environments. Thus, the automa-
tion of taxonomy construction is hampered by the lack of automation of its
evaluation.

To tackle the difficulties of reproducible and automatable evaluations, we
propose to use a general scientific classification system constructed by human
experts. This approach would allow us to automatically determine the need for
specific components in any taxonomy construction pipelines. We use the 2012
ACM Computing Classification System4 that is already used to sort computer
science papers and the classification5 used by the European Commission to cate-
gorize research projects. Such a comparison allows us to independently evaluate
the topic generation from different papers and the taxonomy generation as we
attempt to reconstruct the dataset classification using the same topics. We dis-
cuss the pros and cons of this approach but, nonetheless, the use of these datasets
is a step towards the creation of a gold standard for topic taxonomy construc-

4 https://www.acm.org/publications/class-2012.
5 https://ec.europa.eu/research/participants/data/call/trees/portal keyword tree.

json.

https://www.acm.org/publications/class-2012
https://ec.europa.eu/research/participants/data/call/trees/portal_keyword_tree.json
https://ec.europa.eu/research/participants/data/call/trees/portal_keyword_tree.json
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tion. The closest work attempting to propose an automatic evaluation [3] is,
however, limited to a specific domain of topics constructing its taxonomies using
a contrastive set of documents containing all the documents not belonging to
the targeted domain. Furthermore, their evaluation, while automatic, is based
on a score that is a trade-off between a term frequency measure which is already
used in their topic extraction method and the depth of the taxonomy, making
their results difficult to interpret.

Our contribution in this paper is, thus, threefold: 1) we propose a new effi-
cient way to construct taxonomies from a huge set of scientific papers that favors
its evaluation, 2) we propose a method to precompile taxonomy information
into matrices for efficient querying, and 3) we introduce an objective method
to automatically assess the constructed taxonomies without requiring human
evaluation and, thus, favor iterations. The following sections are organized as
follows: Section 2 presents the data structure and the taxonomy construction
based on it, Sect. 3 presents the visualization concepts to help users navigate the
constructed taxonomies and, Sect. 4 presents different results of our evaluation
and a comparison with TaxoGen, an approach from the state-of-the-art. To con-
clude, we will discuss our results in Sect. 5 and present different perspectives we
want to explore after this work.

2 Method

In this paper, we present an approach of taxonomy construction based on three
levels of publicly available information and one additional level of generated
information. Such a choice is motivated by the willingness to use as much infor-
mation as possible from the scientific papers, in a homogeneous format and in
an easy reproducible way. The structure of the data is as follows:

– Document nodes representing a corpus D and associated to the whole articles
and their metadata.

– Author nodes representing the authors of the documents and gathered as the
author set A.

– Field of study nodes that represent the field of study of the venue or journal
in which the document has been published from the set F .

– Topic nodes that are terms generated or extracted from the documents and
gathered in the topic set T .

Every type of node that is not a document is represented by a sparse co-
occurrence matrix O in which Oi,j is true if and only if the node i occurs in
the paper j. In the following sections, we denote OA, OT , and OF the matri-
ces O representing the authors, topics, and fields of study, respectively. Such
a representation allows us to store all the data in memory and apply matrix
operations on the different types of nodes to compute the matrices that we will
use to construct our taxonomies quickly. As an extension, we denote OX ,Y the
co-occurrence matrix of the nodes X and Y where OX ,Y = (OYT .OX )b where
the result matrix is binarized.
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Example 1. Let neural network (that will be abbreviated nn) and lstm be two
example topics from T and Sofia be an author from A. The number of docu-
ments of D containing an occurrence of neural network is |OT nn|, the number
of documents of D containing an occurrence of lstm is |OT lstm| and the number
documents of D containing an occurrence of Sofia is |OASofia|. The number of
documents containing lstm and authored by Sofia is then |OT ,Alstm,Sofia| and
the number of documents containing neural network and authored by Sofia is
|OT ,Ann,Sofia|.

2.1 Topic Generation

In this section, we present our approach to automatically generate useful topics
from scientific articles. Instead of using traditional topic extraction approaches,
which rely on hand-crafted features and heuristics [2,11,16] (such as Tf-idf
weight, PageRank or part-of-speech models), we use a state-of-the-art scientific
topic generator based on the transformer architecture [13] proposed by Meng
et al. [7]. In fact, the main drawback of traditional topic extraction is that it
can only extract topics that appear in the source text, whereas neural network-
based architectures are more flexible, i.e. they can generate diverse, coherent and
high-quality topics based only on the semantic content of the input document
(not necessarily using the exact words that appear in the source text). More
precisely, the model of [7] is based on an encoder-decoder transformer architec-
ture and is trained to conditionally generate a set of keyphrases/topics from an
input scientific text (concatenation of the title and abstract). Model learning is
performed by teacher forcing and inference by a beam search algorithm. For a
detailed description of the model, please refer to the original paper [7].

2.2 Taxonomy Construction

From the occurrence matrices, we defined two types of computed matrices that
are used for the construction. Subsumption matrices represent the subsump-
tion of nodes regarding their co-occurrences in the documents. We denote SX ,Y
the subsumption matrix for the nodes X with respect to the nodes Y where the
subsumption of Xi by Xj is SX ,Y i,j =

|OX ,Yi
∩ OX ,Yj

|
|Xi| , i.e., SX ,Y i,j = 1 if all nodes

Y co-occurring with the node Xi co-occur with the node Xj and SX i,j = 0 if it
does not exist a node from Y co-occurring with Xi that co-occurs with Xj . Such
a matrix can simply be computed as SX ,Y = OT

X ,Y .OX ,Y/diag(OX ,Y) where
diag(OX ) is the diagonal of the occurrence matrix. Similarly to the occurrence
matrix, we denote SX = SX ,D.

Example 2. Based on our previous example, ST lstm,nn represents the fraction
of documents containing lstm that also contain neural network while ST nn,lstm

represents the fraction of documents containing neural network that also contain
lstm. As lstm is a subtopic of neural network, ST lstm,nn should be close to 1 as a
document describing an lstm approach is very likely to refer to neural networks.
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On the contrary, ST nn,lstm should be much smaller because a paper describing
a neural network approach should not necessarily refer to LSTMs. In a similar
way, ST ,Alstm,nn and ST ,Ann,lstm are the fraction of authors that have written
at least one paper about LSTMs that have also written a paper about neural
networks and the fraction of authors that have written at least one paper about
neural networks that have also written a paper about LSTMs, respectively.

Similarity matrices represent the similarity between two nodes of the same
type based on direction of the vector of co-occurrences with another type, i.e.,

the cosine similarity between these two vectors. We denote CX ,Y = ̂OX ,Y
T
.̂OX ,Y

the similarity matrix between the nodes from X regarding to their co-occurrences
with the node from Y where ̂OX ,Y denotes the normalized matrix obtained from
OX ,Y , i.e., the sum of the vectors representing the nodes from Y equals to 1.

To build a taxonomy from these sets of matrices, we chose to compile all
the matrices relative to the topics as a weighted sum of matrices. We denote
W the result matrix where W =

∑
Z∈{S,C},Y∈{A,D,T ,F} wZ,Y .ZS,Y and wZ,Y

is used to weight the importance of ZS,Y in this sum. The taxonomy is then
simply constructed by using a maximum spanning tree algorithm on W. As the
similarity matrices are asymmetric matrices, the result of this computation is
an undirected graph. To obtain a proper taxonomy in which the relationship
between the parents and children are clear, we propose two different methods to
reorient the undirected result. The first method is to simply use the subsumption
matrices used to create the taxonomy. Indeed, if the subsumption of a topic i
by a topic j is greater than the subsumption of the same topic j by the topic i,
this matrix suggests that the topic j is the parent of i. The second method is to
designate a root in the taxonomy and to propagate the relationships from it.

3 Visualization

Because the main goal of our approach is to allow the exploration of a scientific
topic taxonomy by a user to help with topic discovery, the visualization of the
constructed taxonomies is a crucial point. Indeed, it enables us to experiment and
observe different use cases, from free topic exploration to related-work analysis
in actual research studies to technology scouting in an open innovation context,
etc. Furthermore and in a similar way to the other approaches of the state-of-the-
art, visualizing our results allows us to qualitatively evaluate them and discover
problems in parts of the taxonomy in which we have enough knowledge.

Visualize from an Entry Point. Our tool allows us to select a topic as an
entry point and explore the taxonomy around it. As the computation of a new
taxonomy is nearly instantaneous, we manage to construct subtaxonomies based
on the topics that are the closest to the entry point. Such a behavior allows to
detect topics that are distant from each other in the global taxonomy but quite
close in a specific context, as for example, “network” which is used in diverse
scientific fields but is a direct parent of “neural network” in a subtaxonomy where
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the entry point is “lstm”. To choose which topics should be in the subtaxonomy,
we use simple thresholds on the matrices presented in the previous section. For
example, we can choose the topics that occur in more than 5% of the documents
containing the entry point topic and the topics for which the entry point topic
occurs in more than 5% of the documents in which they occur. Also thanks
to the taxonomy computation speed, the user may easily use simple cursors
to adjust these parameters and show the right amount of topics they desire.
Figure 1 represents a fraction of the subtaxonomy we computed for the entry
point “lstm” with the previous parameters. Leaves under “lstm” are mainly
applications where its parents start from “paper” to stop at “recurrent neural
network”. Sibling branches are also interesting to understand the context of the
topic. In such a case, topic taxonomy construction allows the user to quickly order
the information as a small graph containing all the interesting topics relative to
a topic familiar to them or at least in which the user may want to dive.

Visualize from the Root. The second option of our tool is to visualize the
whole taxonomy from the root. The user sees a small graph centered on “paper”
the root and its children such as “design”, “application”, “algorithm” or “time”.
Then, they can expand the node of their interest to show its children and, after
several iterations of expansion, discover topics of interest. Such a method allows
the user to guide themselves into the taxonomy without being flooded by the
large number of its topics and alleviate the computation load of the visualization
client.

4 Evaluation and Experiments

4.1 Datasets

To proceed with the evaluation of our taxonomy construction method, we chose
two public scientific corpora to compare with: 1) The 2012 ACM Computing
Classification System6 is a subject classification used by computer scientists for
ACM publications. In the following sections, we refer to it as ACM. This clas-
sification contains 2299 nodes representing topics with unique names and 2390
edges linking them. Such a difference between the number of nodes and edges,
while the classification is a tree, is due to nodes such as “Visualization” that
are shared by several branches. And 2) the classification7 used by the European
Commission to categorize research projects. In the following sections, we refer
to it as Europa. This classification contains 3546 nodes and 3559 edges linking
them.

To build the taxonomies presented in the previous section, we used the
S2ORC8 (Semantic Scholar Open Research Corpus) from which, in a first part,
6 https://cran.r-project.org/web/classifications/ACM-2012.html.
7 https://ec.europa.eu/research/participants/data/call/trees/portal keyword tree.

json.
8 https://github.com/allenai/s2orc.

https://cran.r-project.org/web/classifications/ACM-2012.html
https://ec.europa.eu/research/participants/data/call/trees/portal_keyword_tree.json
https://ec.europa.eu/research/participants/data/call/trees/portal_keyword_tree.json
https://github.com/allenai/s2orc
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Fig. 1. Representation of a taxonomy related to the topic “lstm” generated using our
prototype.

we generated the topics and in a second part we computed the occurrences of the
topics, authors and venues in the 76 million documents containing an abstract
in their metadata. Data and code are available on GitHub9.

4.2 Evaluation Measures

Different measures have been used to evaluate our taxonomies and determine
which part of the handmade taxonomies we wanted to keep or not. To our
knowledge, this is different to the state-of-the-art as recent approaches focus on
human evaluation of small result quality to validate their whole model. This
further justifies our approach based on several automated evaluation iterations.

– Common edges (#edges): This is the number of common edges between
the original and extracted taxonomies. Such a measure does not take into
account the direction of the edges but only evaluates the direct relationships
in the constructed taxonomy.

– Average distance (avg): To complete the common edges measure, the aver-
age distance between two nodes linked by an edge in the original taxonomy
and computed in the constructed one has been used to evaluate both the
differences of depth and the distance failure that can be generated.

9 https://github.com/ydauxais/TATTC.

https://github.com/ydauxais/TATTC
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Table 1. On top, the 5 best results obtained while optimizing common edges for ACM
ordered then by directed paths. On bottom, the 5 best results obtained while optimizing
directed paths for ACM ordered then by common edges.

wCT ,A wST ,A wCT ,F wST ,F wCT wST #edges #paths avg avg

57.60 13.01 10.01 0.79 46.76 100.00 195 276 8.12 2.27

67.50 12.17 11.62 0.71 45.41 99.87 195 274 8.15 2.32

66.58 15.62 10.95 −1.52 47.56 99.76 195 271 8.14 2.30

58.25 14.51 10.56 −1.41 41.26 92.98 195 269 8.30 2.32

62.91 9.72 9.95 0.02 41.64 94.18 195 266 8.23 2.31

92.33 65.27 6.26 22.63 28.16 62.29 152 467 11.16 7.11

89.38 63.20 4.27 18.81 22.65 46.37 149 466 11.08 7.16

93.74 66.54 4.42 20.11 24.77 34.64 148 466 11.02 7.07

99.93 71.73 2.63 21.14 26.35 −11.46 144 466 10.87 7.14

94.09 71.79 5.74 23.59 31.52 53.18 152 465 11.01 7.08

– Directed paths (#paths): As the common edges measure does not take
into account the direction of the edges, this measure is useful to evaluate if
a parent and a child in the original taxonomy have the same relationship of
predecessor/successor in the constructed one.

– Average distance of directed paths (avg): Similar to the precedent mea-
sure of average distance, we computed the average distance of the paths that
are well oriented between a parent and its child in the original taxonomy.

4.3 Results

Taxonomy Evaluation and Iterations. We initially ran some naive taxon-
omy computation based on the topic subsumption matrix and the author sim-
ilarity matrix and observed that ACM and Europa contain both nodes of the
type “X and Y” that are parents of the nodes “X” and “Y”. As these nodes are
redundant, we decided to remove them and directly attach the children to the
first remaining ancestor. Based on this choice, we obtained two new taxonomies
containing 1999 nodes and 2830 nodes for ACM and Europa, respectively.

Through a random search of 10000 trials optimizing the common edges and
another optimizing the directed paths for weights in the range [−100, 100], we
obtained the 5 best results for each represented in Table 1 on ACM and the 5
best results for each represented in Table 2 on Europa. We can observe from
these results that the method is very stable and does not depend on a heavy
fine-tuning to obtain the best results, in terms of common edges or directed
paths. Field similarity and subsumption matrices are often less used than the
others, the weight of the subsumption one is even optimized to be close to 0
which means it is not really useful to obtain such results. It does not mean it
could not be useful but as matrices carry redundant information between them,
the optimization process does not need it.
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Table 2. On top, the 5 best results obtained while optimizing common edges for
Europa ordered then by directed paths. On bottom, the 5 best results obtained while
optimizing directed paths for Europa ordered then by common edges.

wCT ,A wST ,A wCT ,F wST ,F wCT wST #edges #paths avg avg

−7.20 71.15 37.78 −2.55 86.81 83.37 179 230 7.09 2.20

−8.87 68.31 36.07 −2.73 82.72 94.59 179 230 7.16 2.21

−33.88 70.35 33.22 −1.44 86.33 87.76 179 229 7.12 2.17

−16.41 69.17 36.26 −2.29 83.12 93.20 179 229 7.13 2.21

−17.32 58.52 33.39 −2.58 76.10 96.27 179 229 7.12 2.21

0.96 76.54 5.64 6.31 21.91 59.60 161 273 9.14 3.40

4.79 80.92 4.03 6.02 19.04 54.68 161 272 9.71 3.53

14.25 91.71 6.79 1.26 11.83 67.20 158 272 10.05 3.50

14.71 99.84 9.36 1.45 13.55 69.45 150 272 9.92 3.58

6.07 82.07 0.46 1.64 4.80 64.10 147 274 11.70 4.30

Evaluation of the Classification Reconstruction. It is worth noticing that
1639 and 1496 pairs of nodes sharing an edge in ACM and Europa, respectively,
was found in the documents and, thus, these numbers are the ceilings for the
number of common edges and directed paths. Thus, the optimization of the com-
mon edges for ACM obtained a score of 11.90% of common edges and 16.84% of
directed paths while the optimization of the directed edges for the same classifi-
cation obtained a score of 9.27% of common edges and 28.49% of directed paths.
For the Europa classification, these scores are 11.97% of common edges and
15.37% of directed paths while optimizing common edges and 10.76% of com-
mon edges and 18.25% of directed paths while optimizing the directed paths.
The low average distance for directed paths is also a good point to validate our
directed path results. Indeed, a bad way to optimize the directed paths measure
without taking into account the quality of the taxonomy is to create a single
path containing every topic. Such an optimization would lead to an increase of
the average distance between the nodes of the directed paths. As the average
distance between the nodes are low, our method only reorganize some topics to
have a stronger relationship than being just siblings. For example, it is the case
with the ACM classification where every technology topics are children of the
“technologies” topic but our method find that the topic “AJAX” can be the child
of the topic “javascript” which is also true. In this example, we lose a common
edge for a directed edge that belongs to a valid alternative classification.

To evaluate the reusability of the optimized parameter sets and the level of
over-tuning these results implied, we computed the results for a classification
using the best parameters obtained for the other. As a result we obtained 168
common edges and 188 directed paths using the best parameters for ACM opti-
mizing the common edges on Europa which represent a loss of 0.74% common
edges and 2.81% of directed paths; 158 common edges and 196 directed paths
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using the best parameters for ACM optimizing the directed paths on Europa
which represent a loss of 0.20% common edges and 5.15% of directed paths; 176
common edges and 252 directed paths using the best parameters for Europa opti-
mizing the common edges on ACM which represent a loss of 1.16% common edges
and 1.46% of directed paths; finally, 151 common edges and 217 directed paths
using the best parameters for Europa optimizing the directed paths on ACM
which represent a loss close to 0% common edges and 15.25% of directed paths.
It shows that the optimized parameter sets obtained through the optimization
of the common edges provide stable results from a classification to another. The
highest loss obtained on the parameter set relative to the directed paths are
potentially due to a difference in construction between the ACM and Europa
classification. For example, the ACM classification contains a node whose chil-
dren are technologies and another whose children are authors while the Europa
classification is more homogeneous and refers to scientific project domains. A
good approach to improve the stability of the results between different classifi-
cation is to use L1-regularization through the optimization process. However, we
discovered that the regularization worked better while considering the common
edges and directed paths together which implies to add weights to leverage the
importance of both measures. As an example, for our purpose, we found that
using a score of 4#edges+#paths−L1 produced the best results but it probably
depends of which results are expected.

Comparison with the State of the Art. We focused on TaxoGen [19] as a
comparison for our state-of-the-art evaluation. Such a method is a good compar-
ison as it focuses on a pipeline of heavier methods than ours like clustering and
rely on human evaluation. Some other approaches could also have been suitable
such as NetTaxo [9] as it is more recent and builds on TaxoGen but its imple-
mentation is not available at this time and it would be difficult to reproduce the
assumptions made to obtain the same results. The TaxoGen approach requires
two main inputs to extract a taxonomy: a map between the topics and their
embeddings and the documents represented by the topics occurring in them.

The original approach computes the embeddings of the topics using a
Word2Vec [8] model trained on their data, however, since pre-trained language
models such as BERT [4] or SciBERT [1] have become the de facto method
for computing text embedding, we decided to encode the topics using Phrase-
BERT [15], a variant of BERT which has been optimized for phrase-level embed-
ding. More specifically, their code recompute the embeddings of the topics with
Word2Vec for the inner levels and we decided to modify it as little as possible
which makes the use of these new embeddings interesting only for the first level
of topics. The occurrences of the topics in the documents were already calculated
for our approach and TaxoGen simply requires a different formatting of the OT
matrix. Such a similarity allows us to directly compare the two approaches on
the same topics and their occurrences which helped us with their evaluation.

Running TaxoGen is not as simple as our approach because it requires some
hyperparameters which require an intuition of the best results to be optimized.
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Table 3. Comparison results between our method and TaxoGen for the topic taxonomy
constructions based on the ACM and Europa classification topics. Size refers here to
the number of pairs of nodes sharing an edge that are also in the constructed taxonomy.

Dataset Size #edges #paths avg avg #clusters

Ours ACM 1639 195 276 8.12 2.27

152 467 11.16 7.11

Europa 1496 179 230 7.09 2.20

161 273 9.14 3.40

Random (Ours) ACM 1639 1.6 2.4 31.27 3.1

±0.49 ±0.80 ±4.06 ±0.58

Europa 1496 1.6 4.2 32.62 3.03

±0.80 ±2.04 ±2.48 ±0.69

TaxoGen ACM 1461 79.8 136.8 4.39 2.31 116.8

±116.12 ±28.69 ±20.41 ±0.30 ±0.16 ±20.41

Europa 1283.2 128 96.4 2.95 2.17 350.2

±4.45 ±36.92 ±17.12 ±0.47 ±0.22 ±84.92

Random (TaxoGen) ACM 1461 21.35 25.45 4.85 1.61 10.45

±116.12 ±5.57 ±16.97 ±0.23 ±0.16 ±3.47

Europa 1283.2 18.68 19.4 4.90 1.55 8.6

±4.45 ±4.00 ±7.33 ±0.11 ±0.24 ±3.74

The most important parameters for this comparison are the maximum number
of branches a node can have, which is represented by the number of clusters
to compute and the maximal depth of the taxonomy. We decided to use the
default parameters of their implementation to compute the ACM and Europa
taxonomies that are 5 clusters and a depth of 3. It theoretically leads to 155
nodes different from the root and most topics will be grouped with other topics
in the same cluster. Thus, we adapted our measures to represent the different
relationships of the topics with the addition of this cluster level.

The results presented by Table 3 for TaxoGen were obtained on a 5-cross-
validation for each classification. We computed taxonomies for fewer edges shared
with the ACM and Europa classifications as we did not succeed to complete the
run with TaxoGen, the actual implementation tending to crash while clustering
rare topics. Nevertheless, the numbers of topics handled by both approaches are
similar and that will allow us to compare them.

To evaluate the gap in complexity between the construction of a hierarchy
of clusters and the construction of a complete taxonomy, we also compared
the random generations of taxonomies containing as many topics as ours and
hierarchies of 155 clusters with a depth of 3 under the root and where parent
clusters have 5 children. To generate the first random taxonomy, we generated a
matrix of random weights between the nodes and applied the minimum spanning
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tree algorithm as usual. For the other one, we randomly split the topics in the
hierarchy of clusters. The results, presented by Table 3 capture the difference
in difficulty between both tasks. This difference is emphasized by the interest
of the clusters to improve the measures but not the quality of the taxonomy.
Indeed, ACM and Europa topics are meant to represent themselves and merging
them into clusters implies losing a lot of information. Extracted clusters also
contain lots of errors, grouping unrelated topics which is partially due to the
rigid parameters forcing the maximal child number and the maximal depth of
the taxonomy. Finally, even with these differences in difficulty and information
representation, our approach is able to compete with the results of TaxoGen,
generating more common and directed paths and even compete with the count
of cluster edges as common and directed paths on ACM. It is worth noticing
that it had been impossible to optimize the hyperparameters of TaxoGen as we
did for our approach as a TaxoGen run takes several hours to be computed while
our method can run thousands of iterations in the same time.

5 Conclusion and Perspectives

In this paper, we proposed a new efficient way to automatically construct topic
taxonomies from millions of documents and a way to automatically evaluate
them through the comparison with human-constructed scientific classifications.
Thanks to this evaluation, we showed that our taxonomy construction com-
petes with state-of-the-art approaches and can outperform TaxoGen, especially
in terms of possible iterations. Specifically, we based our taxonomy construction
on a public open research corpus containing more than 76 million documents and
more than 46 million authors. It is designed in a way that allows us to query it
nearly instantaneously to build taxonomy based preference parameters.

In future work, our method could be improved by adding new levels of infor-
mation, as for example, the venues and journals of the documents which should
lead to an improvement over just the field of study, and, moreover, enable a gener-
alization of the combination of the subsumption and similarity matrices. Indeed,
the weighted sum was the easiest way to combine them but other approaches
could help us to find better combinations, as for example if the weights are more
relative to the topics or their frequencies than the matrices themselves. Finally,
the improvement of the measures to compare different approaches and the use
of different datasets will pave the way to a gold standard for topic taxonomy
construction. Indeed, we consider that contributions in this domain will help
the scientific community explore knowledge related to their work, bring a bet-
ter understanding of the most recent discoveries and emerging concepts, and
accelerate innovation processes in businesses and administrations.
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Abstract. This study applies a data-driven anomaly detection frame-
work based on a Long Short-Term Memory (LSTM) autoencoder network
for several subsystems of a public transport bus. The proposed frame-
work efficiently detects abnormal data, significantly reducing the false
alarm rate compared to available alternatives. Using historical repair
records, we demonstrate how detection of abnormal sequences in the sig-
nals can be used for predicting equipment failures. The deviations from
normal operation patterns are detected by analysing the data collected
from several on-board sensors (e.g., wet tank air pressure, engine speed,
engine load) installed on the bus. The performance of LSTM autoencoder
(LSTM-AE) is compared against the multi-layer autoencoder (mlAE)
network in the same anomaly detection framework. The experimental
results show that the performance indicators of the LSTM-AE network,
in terms of F1 Score, Recall, and Precision, are better than those of the
mlAE network.

Keywords: Fault detection · Outliers · Time series · LSTM ·
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1 Introduction

In many industries, maintenance is a significant part of the operation. As an
example, a key parameter for bus operators is vehicle downtime, namely when-
ever a vehicle is needed but not available [17]. Analysing the time buses from a
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particular fleet spend in a workshop (or on the way there) is vital for understand-
ing the efficiency of operations, especially for follow-up on any improvements. An
essential next step is to develop systems that can automatically detect faults, i.e.,
analyse the data on-board vehicles and identify anomalous behaviour. A fault
prevents the bus from operating. One of the reasons for the surprisingly large
amount of (costly) time buses spend at workshops is the waiting time – even
though there is no work being done on it. The bus operator cannot optimally
plan their operation since much of this waiting time is insufficient planning.
Unexpected failures typically lead to long waiting times. The framework pro-
posed in this paper aims to support the automotive industry in more efficient
planning.

Anomalies are good indicators of malfunctions in a system. In the era of big
data, considerable research efforts focus on designing online algorithms capa-
ble of detecting anomalies from streaming data. To detect anomalies in a given
system, it is necessary to define a “normal system behaviour”. However, when
the volumes of data and the complexity of systems are continuously growing,
it becomes infeasible for human experts to build an exhaustive definition of
each system’s normal behaviour. Moreover, the definition of normal is dynamic,
as sensors generate data that is subject to change over time due to external
conditions (i.e., normal data samples are drawn from a non-stationary distri-
bution). In a real-world application domain, we monitor one bus operating in
typical conditions in Sweden. We are particularly interested in detecting devia-
tions that identify faults during a bus’s operation. In this paper, we implement
a fault detection framework based on deep learning (DL) to detect failures of
bus air system. Our goal is to identify abnormal behaviours in the data stream
obtained from sensors installed in the system while the bus is in operation. The
objective is to predict if a failure evolves using unsupervised methods based on
deep learning.

The remainder of the paper is structured as follows: an overview of the related
work in the context of anomaly detection is provided in Sect. 2. Section 3 dis-
cusses the problem description. In Sect. 4 we present fault detection methodol-
ogy and proposed failure detection framework. The case study, pre-processing
and data cleaning, feature generation, and anomaly detection are discussed in
Sect. 5. Section 6 contains experimental results obtained by the LSTM autoen-
coder (LSTM-AE) and multi-layer autoencoder (mlAE), and finally, the con-
cluding remarks are provided in Sect. 7.

2 Related Work

The current industrial solution for vehicle on-board fault detection and diag-
nostic systems, e.g., [15], still rely heavily on domain knowledge from a human
expert and is essentially based on either building a pattern recognition classi-
fier or a reference model. This paradigm requires domain experts such as field
engineers to drive the development, i.e., modelling the physical process involved,
determining potential faults or risky events, conducting controlled experiments,
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and collecting relevant data for analysis. Relevant reviews can be found in [6–
8,18]. While this paradigm has proven effective for predefined faults by domain
experts, unexpected faults occurred post-deployment in the field not covered by
the system, which is developed prior to the deployment.

An alternative approach is to monitor systems on-board vehicles and
autonomously captured key characteristics of the operation (in model space)
for anomalous event detection: the reference system representation is learned
with unsupervised models (e.g., LSTM or AE networks) on data stream com-
ing from machines working under normal conditions. In contrast, an abnormal
machine would yield a deviation in the model space and a higher reconstruction
error. Similar concepts are studied in, e.g., [3,10].

Deep learning methods have been employed for many different real-world
applications. Fan et al. [5] utilised echo state network to capture air system
dynamics and perform conformal anomaly detection with learned features for
detecting compressor faults. Munir et al. [13] presented a DL approach to detect a
range of anomalies (point anomalies, contextual anomalies and discords) in time
series data. Michau et al. [12] used AE network for unsupervised feature parame-
ter learning and integrated it with a one-class classifier that is only trained with
samples of healthy conditions for fault detection. Davari et al. [4] proposed a
data-driven predictive maintenance framework for the air production unit sys-
tem of a train by deep learning based on a sparse AE network that efficiently
detects abnormal data and considerably reduces the false alarm rate.

The anomaly detection techniques for time series sequence based on DL
algorithms augmented with LSTMs are used in several studies (e.g., [9,19]).
Chauhan et al. [1] applied recurrent neural network (RNN) and LSTM to detect
anomalies in ECG signals. Nguyen et al. [14] proposed a LSTM based method
for forecasting multivariate time series data and an LSTM AE combined with
a one-class support vector machine algorithm for detecting anomalies in sales.
Maleki et al. [11] introduced a probability criterion based on the central limit the-
orem to evaluate the likelihood of a data point that is drawn from an unknown
probability distribution for the goal of data labelling. Then, normal data is
passed to train an LSTM autoencoder that distinguishes anomalies when the
reconstruction error exceeds a threshold.

This paper proposes a framework based on LSTM autoencoder to address
the challenges and limitations of anomaly detection. The contribution of this
study is a multivariate time series anomaly detection method based on LSTM
autoencoder with the application to data from a Volvo bus in regular operation.

3 Problem Description

Data Description. The data used in this study were collected from buses
operated in traffic around a city on the west coast of Sweden. Four vehicles
were year model 2009, one was 2008, and the remaining was produced in 2007.
On-board data collection took place from August 2011 until the end of 2017,
in regular operation, where each bus was driven approximately 100 000 km per
year.
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Data from the J1587 diagnostic bus and two CAN buses (the vehicle and the
powertrain CANs) were sampled once per second, collecting approximately one
hundred sensor and control signal values. An in-house developed system called
the Volvo Analysis and Communication Tool (VACT) was used in the study;
it uses a telematics gateway for communication and can wirelessly receive new
sampling configurations.

In addition, we have analysed an off-board database containing Vehicle Ser-
vice Record (VSR) information. Each entry in this database contains informa-
tion about repair and maintenance services done on the vehicles, including date,
mileage and unique part identifiers. There are, unfortunately, frequent quality
issues with the data since the VSR is primarily manually entered by mainte-
nance personnel. Given that the primary purpose is accounting and invoicing,
the detailed information about the repairs, especially the degree of component
deterioration and root cause analysis, is less than perfect. This data was partly
curated using vehicle GPS data and bus operator’s internal operation notebooks.

Fault Detection. The key to reducing downtime is building a system capable of
detecting early symptoms of wear and faults. If the operator and workshop per-
sonnel become alerted before they become real problems or failures, i.e., before
they take the bus out of commission, they can be handled much more efficiently.
Optimally, one could solve these problems during the next planned maintenance
visit. In our study, we have noticed that vehicles would spend, on average, almost
1.5 months per year in workshops. Early discovery of faults and improved diag-
nostics is expected to decrease the waiting time, incorrect repairs significantly,
and other similar issues, conservatively reducing the total downtime by 50% or
more.

In this study, we aim to detect periods of abnormal vehicle operation, i.e.,
quantify the “strangeness” of sensor data, compared to what is expected. Many
current approaches for equipment monitoring require (semi-)manual creation of
some model of what is expected. On the other hand, our goal is to automatically
monitor a wide range of complex equipment with many possible faults. This
goal requires autonomously constructed knowledge from the data, with very
little reliance on human experts. In particular, one cannot assume that a list of
all possible faults can be provided for training.

4 Fault Detection Methodology

This experimental fault detection framework aims to predict and detect faults
by cleaning and extracting time series data features in an optimal sliding time
window and feeding them into a deep LSTM-AE network that performs a clas-
sification task.

LSTM Encoder-Decoder. An autoencoder is an unsupervised neural network
(NN) trained to reconstruct the inputted time-series data as its output. The
encoder learns to compress a high-dimensional input to a low-dimensional latent
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space, and the decoder then attempts to reconstruct the output with minimal
error faithfully. The general form of multivariate time-series at the sliding time
window i can be expressed as X(i) = X(i)

1 ,X(i)
2 , . . . ,X(i)

j , ..,X(i)
m of length m,

where m is the number of time series variables (number of sensors) and X(i)
j is

an observation vector of readings from jth sensor at the sliding time window i.
The difference between the input vector X(i) and the reconstructed vector

X̂
(i)

is called the reconstruction error e(i)r . The trained network tries to minimise
the reconstruction error as its objective function. A common metric for this
error is Mean Squared Error (MSE): e(i)r = ‖X(i) − X̂(i)‖2 which measures the
proximity of the reconstructed input to the original input.

The trained LSTM Encoder-Decoder model reconstructs the normal mul-
tivariate time series. The reconstruction errors of the training data are then
compared to test data, i.e., an anomaly score for each dataset in a sliding time
window is calculated, and identifies whether it follows the normal distribution
of the time series. The higher the anomaly score, the more likely is it that the
given data time window should be considered an anomaly.

Figure 1 illustrates the steps of the LSTM-AE network for a time-series data
consisting of n sliding time windows, in which hE

i and hD
i are the hidden state of

the encoder and decoder, respectively, at the sliding time windows i = 1, . . . , n.
The LSTM encoder learns an input time series and generates an encoded

state while the LSTM decoder produces the reconstructed data at the sliding
time window i by applying the hidden decoding state at sliding time window
i and the predicted time series at the sliding time window (i − 1). In order to
reconstruct the time series, the encoder and decoder parts are jointly trained.

In order to obtain the hidden state of the encoder at sliding time window i,
X(i) at sliding time window i and the hidden state of the encoder at sliding time
window (i − 1), ( hE

i−1) are used. The hidden state of the encoder at the end of
the input sequence, hE

n , is used as the initial state of the decoder, hE
n = hD

n . The
decoder uses hidden state hD

i and the predicted value of time series at sliding

time window i, (i.e., X̂
(i)

) to produce the next hidden state.

The Proposed Framework. The time-series dataset includes normal and
abnormal observations. We split the normal data into two sets: training and
validation. The training dataset is used to learn the LSTM-AE network, while
the validation dataset is used for an early stop in the autoencoder training (i.e.,
when the validation loss does not improve and the generalisation error begins to
degrade). The root mean square of reconstruction error for the training dataset
(RMSEtrain

r ) is used to estimate a threshold value (through a Boxplot anal-
ysis) for labelling test data. The training dataset is assumed to have normal
behaviour, so as we can consider, the RMSEtrain

r follows a normal distribution.
However, if there are some outliers in the training dataset, the distribution will
be asymmetric; i.e., the methods work based on normality assumption may not
be useful. Boxplot is useful as a consistent method to display the distribution of
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Fig. 1. An LSTM-AE network for a sequence with length n

the dataset. Extreme observations can be easily ignored, thus, it can be used to
set the threshold of RMSE of test data (RMSEtest

r ).
Next, the test data that contain normal and abnormal samples is employed

to validate the network performance. If RMSEtest
r is larger than the thresh-

old value, then the data is considered as an anomalous observation; other-
wise, it is a normal one. In this paper, the anomalies are detected as a clas-
sification problem, where the classification labels “0” and “1” indicate normal
and anomaly observations, respectively. The maximum and minimum values
of the Boxplot are obtained from 1.5 ∗ IQR above the third quartile (Q3) and
1.5∗IQR below the first quartile (Q1), respectively; where IQR is the interquar-
tile range, i.e. the difference between the upper and the lower quartiles. The
interval [Q1 + 1.5 ∗ IQR, Q3 + 1.5 ∗ IQR] contains 99.3% of data. Therefore,
points outside this interval are considered as an anomaly [16].

Finally, the above output is post-processed using a low-pass filter through
which the sudden variations are removed, decreasing the number of false alarms
[16]. The flow chart of the framework is shown in Fig. 2.

5 Case Study

A data-driven fault detection framework is developed that issues an alert when-
ever one of the key components in a specific bus exhibits an abnormal behaviour.
The focus of the study is on the readings from ten sensors (e.g., wet tank air
pressure, engine speed, engine load) installed on the bus by which real-time data
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Fig. 2. Flow chart of fault detection framework.

was logged at 1 Hz frequency by an on-board embedded device. The anomaly
detection framework performs data pre-processing, learns a network to combine
several sensors readings, and identifies anomalies in sensor readings that can be
symptoms of imminent faults. In order to evaluate the performance of the pro-
posed framework, we compare the alarms raised by the framework against bus
repair records.

Analysis and Cleaning of the Input Data. To reduce the influence of noisy
data and outliers, we remove the high-frequency noises through a low pass filter
(LPF) in pre-processing stage of data [2]. It encourages training data distri-
bution to be close to the Gaussian distribution. In other words, the goal is to
reconstruct the noisy data so that its distribution becomes similar to the normal
distribution. Figure 3 shows the measured data of “engine speed” sensor during
a short duration. The blue curve shows the raw data before filtering, and the
data after filtering is shown in red. It is visible that the variations of raw data
over time are very noisy, which can be further smoothed by the LPF.
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Fig. 3. The raw and filtered data of engine speed over time (Color figure online)
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Fig. 4. The Probability Density Function - PDF (left) the Fast Fourier Transformation
- FFT (right) for raw and filtered engine speed data. (Color figure online)

Fast Fourier Transform (FFT) of the raw and filtered data on the frequency
domain is shown in the right part of Fig. 4. It shows that the raw data with fre-
quencies less than 0.1 Hz have higher FFT values while the data with frequencies
higher than 0.1 Hz have almost similar low FFT values indicating the specifica-
tion of white noise. Figure 4 left shows the Probability Density Function (PDF)
for the raw and the filtered engine speed data. The PDF of raw data (blue curve)
shows a sideband peak around the main peak, which can be removed through
filtering (red curve).

Feature Extraction. After cleaning, the raw data must be parsed to extract rel-
evant information that could allow us to detect suspicious behaviours. Although
the autoencoder reduces the dimension of multivariate data points to improve
the network’s performance, raw data with a large learning dimension cannot be
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Fig. 5. The Boxplot analysis of the RMSE of training dataset.

directly applied. Therefore, statistical values of the multivariate time series in an
selected sliding time window are used as input into the network. These statistical
values (features) for jth sensor include mean, x(1)

j , standard deviation, x(2)
j , skew-

ness, x(3)
j , kurtosis, x(4)

j , quantiles, {x(5)
j , . . . , x

(8)
j }, and deciles {x(9)

j , .., x
(18)
j },

approximating the original raw data. Thus, through the pre-processing, for each
sensor in a sliding time window 18 statistical features are computed; i.e., the
dimension of the input to the network is 180 for 10 sensors. This conversion
reduces the dimensionality and better expresses the characteristics of the data.

Anomaly Detection. As mentioned earlier in Sect. 4, through the Boxplot
analysis, the distribution of all RMSEtrain

r is obtained, and its maximum value
is set as a threshold (thr) with which normal and abnormal data in the test
dataset are labelled as 0 and 1, respectively. Alternatively, the RMSE could
be computed using a separate validation dataset, however, we found it does not
make a significant difference. Figure 5 shows the Boxplot of all RMSEtrain

r . Note
that thr is calculated for the training dataset to identify abnormal behaviours of
the test dataset, i.e., if RMSEtest

r > thr then the respective sliding time window
is detected as an anomaly.

6 Experimental Results

This section presents and discusses the experimental results of the case study
introduced in Sect. 5. We consider two different downtimes of the bus: unplanned
and planned interruptions. The former occurs when one of the bus systems fails;
i.e., the vehicle may be inoperable and towed to the workshop for repair, while
the latter happens when the workshop personnel determines that a system is not
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functioning satisfactorily and decides to repair or replace it. A failure report pro-
vided by the company (see Table 3) describe repair information, particularly the
date and operations performed and some comments. These off-board data makes
it possible to evaluate true and false, positive and negative, alarms raised by the
proposed anomaly detection framework. In order to evaluate the performance of
the proposed solution, we report the following metrics: Recall, Precision, and F1
Score (%).

Impact of Size of Sliding Window. Here, we evaluate the impacts of dif-
ferent sizes (ranges from a smaller window size 1 min to a larger window size of
10 min) of the sliding time window on the performance of the proposed frame-
work. Note that the sliding time window with the same size is applied for the
training and test datasets. Table 1 shows the metrics for the framework using
W1, W2,.., W10, i.e., sliding time windows with length 1 min, 2 min, ..., 10 min,
respectively. The results shown (in bold) indicate that the sliding time window
of size 4 min (W4) leads to the largest value of TP and the lowest value of FP .
Generally speaking, the value of TP decreases with increasing the sliding time
window length but the FP s increases alongside.

Table 1. Effect of sliding time window size in performance of LSTM-AE

Metrics W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

TP 14 17 18 22 19 16 14 12 11 12

FP 5 4 4 3 4 6 6 4 7 8

FN 12 9 8 4 7 10 12 14 15 14

Recall (%) 53.8 65.4 69.2 84.6 73.1 61.5 53.8 46.1 42.3 46.1

Precision (%) 73.7 80.9 81.8 88.0 82.6 72.7 70.0 75.0 61.1 60.0

F1 Score (%) 62.7 72.3 75.1 86.2 77.5 66.6 60.8 57.1 49.9 52.1

Comparison of LSTM-AE and mlAE. For evaluation purposes, we exper-
imentally studied and tuned different LSTM-AE settings, and then the perfor-
mance of the LSTM-AE was compared versus the mlAE. Since the network
topology needs to be consistent with the experimental settings, we explored sev-
eral structures for the network and selected the one that leads to optimal per-
formance in the learning and prediction stages. The parameters are summarised
in Table 2.



Fault Detection by LSTM Autoencoder of Volvo Bus Data 49

Table 2. Parameters of the LSTM-AE and mlAE.

Parameter LSTM-AE mlAE

Nodes in input layer 160 160

Neurons in the 1st hidden layer 120 100

Neurons in the 2nd hidden layer 60 50

Neurons in the 3rd hidden layer 30 25

Neurons in the Bottleneck layer 15 –

Dropout 20% –

Learning rate 1e−3 1e−3

Batch size 100 50

Number of epochs 300 300

Figure 6 illustrates the estimated normal data and anomalies, over time,
for the LSTM-AE and the mlAE. The x and y axes, respectively, represent
date/time and the value of RMSEr, changes between one (anomaly) and zero
(normal). The areas highlighted in pink and light green rectangles, respectively,
show the unplanned and the planned failures reported by the company (see
Table 3, columns “Mode”, “Start time” and “End time”). Since detecting a
specific anomaly is not sufficient to conclude a persistent failure, the network
generates an alarm when a sequence of anomalies is predicted at least for two
hours. The predicted alarms by the proposed framework are reported under the
“Failure alarm” column in Table 3.

Fig. 6. The output of LPF over-time for the LSTM-AE (green) and mlAE (red); data
above 0.5 (empirically set) are predicted as anomalies. The pink and light green rect-
angles indicate the unplanned and planned failures reported by the company. (Color
figure online)
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Table 3. Failures reported by the company and start time of failure alarm.

Nr. Mode Start time End time Failure alarm

#1 planned 2012-02-02 2012-02-09 2012-02-01

#2 planned 2012-03-01 2012-03-02 2012-02-29

#3 unplanned 2012-03-05 2012-03-05 2012-03-03

#4 unplanned 2012-03-16 2012-03-19 2012-03-14

#5 unplanned 2012-04-01 2012-04-13 2012-03-31

#6 planned 2012-05-29 2012-05-29 2012-05-29

#7 unplanned 2012-07-10 2012-07-23 2012-07-10

#8 planned 2012-08-21 2012-08-23 2012-08-21

#9 unplanned 2012-10-08 2012-10-08 2012-10-08

#10 planned 2012-12-27 2012-12-28 2012-12-25

#11 planned 2013-02-19 2013-03-06 2013-02-19

#12 unplanned 2013-04-23 2013-04-24 2013-04-22

#13 unplanned 2013-04-29 2013-04-29 –

#14 unplanned 2013-07-11 2013-07-19 2013-07-11

#15 planned 2013-08-12 2013-08-16 2013-08-12

#16 unplanned 2013-12-11 2013-12-19 2013-12-10

#17 planned 2014-01-09 2014-01-09 2014-01-09

#18 planned 2014-01-31 2014-02-11 2014-01-31

#19 unplanned 2014-02-23 2014-02-23 2014-02-22

#20 unplanned 2014-03-13 2014-03-20 2014-03-12

#21 unplanned 2014-04-14 2014-04-14 2014-04-13

#22 unplanned 2014-04-20 2014-04-20 –

#23 unplanned 2014-06-08 2014-06-08 2014-06-05

#24 unplanned 2014-08-14 2014-08-15 –

#25 planned 2014-09-03 2014-09-05 2014-09-03

#26 planned 2014-11-28 2014-11-28 –

From the table, we observe that the predicted date for some of the failures is
the same as the date reported for failure (“Start date”) by the company. Since
it is not available at a specific time during the day for the reported failures, it
is not possible to compute the exact time (in hours) of the alarms prior to the
failures. A detailed comparison between the performance of the two networks is
reported in Table 4 where the LSTM-AE obtains a higher Recall, Precision, and
F1 Score than those using mlAE.
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Table 4. Performance comparison of LSTM-AE and mlAE

Metric Threshold = 0.5 Threshold = 0.7

Multi-layer AE LSTM AE Multi-layer AE LSTM AE

TP 19 22 20 22

FP 8 5 4 3

FN 7 4 6 4

Recall(%) 73 84 76 84

Precision(%) 70 81 83 88

F1 Score(%) 71 82 84 86

7 Conclusions

We propose a data-driven anomaly detection framework based on deep learn-
ing for multivariate time series. We compared two networks, the LSTM-AE and
mlAE, which fuse the real-valued data from sensors installed in a bus, com-
press them and reconstruct to detect anomalies. Raw data are pre-processed
to remove noisy data and outliers. Then, statistical parameters of the data are
used as features to detect sequences of abnormal operation, since detecting a
single instance of abnormal reading is not sufficient to make conclusions about
a component failure. Results from analysing the data collected over a period of
approximately three years shows that the LSTM-AE has performance superior
over that of the mlAE.

Future work includes experiments on rule-based models to explain detected
faults and empirically investigate larger datasets, for example from a fleet of
vehicles.
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5. Fan, Y., Nowaczyk, S., Rögnvaldsson, T., Antonelo, E.A.: Predicting air compressor
failures with echo state networks. In: Third European Conference of the Prognostics
and Health Management Society 2016, Bilbao, Spain, 5–8 July 2016, pp. 568–578.
PHM Society (2016)



52 N. Davari et al.

6. Hines, J., Garvey, D., Seibert, R., Usynin, A.: Technical review of on-line mon-
itoring techniques for performance assessment. Volume 2: Theoretical issues
(NUREG/CR-6895, vol. 2) (2008)

7. Hines, J., Seibert, R.: Technical review of on-line monitoring techniques for per-
formance assessment. Volume 1: State-of-the-art (NUREG/CR-6895) (2006)

8. Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection
to Fault Tolerance. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-
30368-5

9. Lei, J., Liu, C., Jiang, D.: Fault diagnosis of wind turbine based on long short-term
memory networks. Renew. Energy 133, 422–432 (2019)

10. Lindemann, B., Maschler, B., Sahlab, N., Weyrich, M.: A survey on anomaly detec-
tion for technical systems using LSTM networks. Comput. Ind. 131, 103498 (2021)

11. Maleki, S., Maleki, S., Jennings, N.R.: Unsupervised anomaly detection with LSTM
autoencoders using statistical data-filtering. Appl. Soft Comput. 108, 107443
(2021)
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Abstract. As bats are an important indicator for the health of their
habitat, projects in multiple countries monitor bat populations by col-
lecting audio recordings of bat calls. Analysing these recordings is how-
ever a tedious task and there is a need for systems that accurately and
efficiently detect and classify bat calls. While earlier studies focused on
detection and classification separately, in this paper we propose a first
approach that combines these two tasks. Moreover, we aim to build a
multi-label classifier that is able to detect if multiple bat species are
present in the same audio recording. One of the challenges we face is
that the available data focuses either on detection or single-label classi-
fication, but not on the combined task of detection and multi-label clas-
sification. We propose to address this by a data augmentation approach,
and demonstrate that the resulting approach achieves the objectives of
being accurate and efficient.

Keywords: Acoustic event detection and classification · Multi-label
classification · Acoustic bat monitoring

1 Introduction

Bats are mammals that are very sensitive to their environmental changes and
are, therefore, often used as a bioindicator of the health of their habitat [8].
Nowadays, one out of three species in Europe suffers from a sharp population
decline, which is, among others, due to the destruction of the bats’ roosting
and hunting sites, the poisoning of insects with chemicals and the collisions of
bats with built infrastructures such as wind farms [15]. That is why various
organisations monitor the evolution of bats’ population and the different species
present on given sites. Bats can be monitored using portable recorders that start
to record when hearing sounds above a fixed frequency threshold. The obtained
recordings then have to be analysed to identify the calls and the species that
emitted them. This tedious task is very time-consuming and requires a good
knowledge of bats.

As the number of available recordings constantly increases and not all study
groups have a chiropterologist available, there is a clear need for an automated
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analysis of these audio recordings. Some commercial products exist, such as
SonoChiro, SonoBat and Kaleidoscope, but these are expensive and, as shown
in [11,14], not highly accurate.

The motivation for our work is that there is a need for open software that
meets the following challenges:

C1 It should be able to detect at which moments in audio signals a bat is present;
C2 It should be able to classify which types of bats are present at those moments;
C3 It should be able to perform multi-label classification, i.e., it should identify

multiple bats in the scenarios in which more than one bat species emit calls
simultaneously, which happens regularly in nature;

C4 It should perform its task accurately;
C5 It should perform its task with low computational resources, as the final goal

is to analyse the recordings on the devices that collect the data.

Some research projects have already studied the analysis of bat recordings. In
particular, Bat detective [9] studied the detection of bats; BatNet [5] studied the
classification of bat calls. However, none of these projects meets all challenges
C1–C5. The goal of this paper is to propose a first approach to meet all these
challenges.

Meeting these challenges is not straightforward. A major concern is the lack
of available data. We only have access to two different types of data:

Detection data: these are audio recordings in which labels are present to indi-
cate when a bat call is present, but the bat species are not known;

Classification data: these are audio recordings for calls of individual bat
species; however, there is no label to indicate the timing of the bat calls.

To complicate the situation further, these data sets are from different locations,
where the distribution of bat species may be different.

In this paper, we propose to address these challenges by using a data aug-
mentation approach, in which the existing data sources are used to create new
multi-label training data. This data is subsequently used to train a machine
learning model. This machine learning model is a combination of a Convolution
Neural Network (CNN) and an XGBoost, for which we will show that, on the
combination of detection and multi-label classification tasks, the overall perfor-
mance on the different challenges is better than that of architectures used in
earlier work.

The rest of the paper is structured as follows: Sect. 2 gives an overview of
the related work on this topic. Section 3 presents the input data available, the
data augmentation and the architecture of our proposed model. The datasets
used, the evaluation methods, the models used for comparison and the different
results obtained are presented in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Related Work

The first methods developed to automatically classify bat calls are based on
features that are also used when the classification is performed manually from
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Table 1. Characteristics fulfilled by the presented related works

C1: detect C2: classify C3: multi-label C4: accuracy C5: resources

Bat detective Yes No No Yes Yes

Schwab et al. No Yes No Yes No

Tabak et al. No Yes No Yes No

Zualkernan et al. No Yes No Yes Yes

Chen et al. No Yes No Yes No

the spectrograms of the recordings, such as the peak frequency, the duration and
frequency band of each call [1,2,10]. The Bat detective project [9] then showed
that it was possible to apply models like CNNs to obtain good performance in
the audio monitoring of bats. More importantly, it showed that it was possible
to use raw audio as input instead of the precomputed features. Bat detective’s
program detects the positions of bat calls in audio files and achieves an average
precision of approximately 0.88 and a recall at 0.95 precision of about 0.75. To do
so, it uses a simple CNN with three convolutional and two dense layers, which
receives spectrograms as input and outputs, for each window, the probability
that it contains a call.

Some other projects then focused on the classification of bat calls to their
corresponding species using CNNs. A first example is the work of Schwab et
al. [12] that classifies the calls of bats present in Germany. They first imple-
mented a small algorithm that identifies the position of calls in recordings, but
they do not evaluate this detection in terms of performance. They compared
four algorithms on the classification task and obtained the best mean accuracy
(0.96) when using a modified version of ResNet50 [7] that takes spectrograms as
input. Instead of using classical full-spectrum recordings, Tabak et al. [14] use
zero-crossing acoustic data to perform the classification of bat calls. The calls
were detected by finding sequences of consecutive decreasing frequency, and the
images of the generated spectrograms were used as input features. The model
used is ResNet18 and has an average accuracy of 0.92 and an average F1-score
of 0.91. Some other works tried to avoid the use of too deep and heavy networks
like ResNets. Zualkernan et al. [17], for instance, developed a CNN that has only
220K parameters and has an average accuracy of 0.9751 and average F1-score of
0.9578. The network receives Mel-scaled filter banks as input features. Finally,
Chen et al. [5] implemented a network called BatNet to recognise 36 tropical
bat species. Their particularity is that they have a “weak” label for all calls,
no matter the species, that are not strong enough and could be misidentified.
BatNet is composed of twenty-two convolutional layers and eight shortcut con-
nections. The input of BatNet consists of the spectral image of the audio files.
BatNet was compared to ResNet v2, VggNet [13] as well as to a CNN inspired
by Bat detective, and BatNet has the best AUC and overall accuracy among
all. To have a global view of the characteristics of the related works, we present
in Table 1 an overview of which of our defined challenges are fulfilled by the
different projects presented in this section.
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All these papers mainly focus on the classification without performing or
evaluating the detection step. Furthermore, they all have to discard from their
training set the recordings where more than one species is present. Only Schwab
et al. [12] provide circumstantial evidence that shows that for one of their record-
ings with two species present in it, their model gives a high probability for both
species, but no specific evaluation is made on that topic. It is, however, impor-
tant to be able to recognise calls in a multi-label context as it is common that,
on the same observation site, more than one species is present and therefore, the
different calls overlap in the recordings. That is why the model we propose in
this paper focuses on making correct multi-label predictions in addition to the
detection of bat calls.

To train models for detection and classification tasks, labelled training data is
needed. Two types of labelled data can be distinguished in the aforementioned
studies. The first type is audio recordings in which the time intervals during
which a bat call is present are indicated; the second type is audio recordings
for which it is indicated which bat type is present in that recording, without
indicating the time interval of the calls. Hence, a challenge is that there is no
single labelled data set that can be used to train a model for both detection and
multi-label classification at the same time.

3 Approach

This section introduces the details of our contribution.

3.1 Input Data

All datasets consist of audio recordings; to turn these data into training data,
a window is slid over these recordings and, for each window, a spectrogram is
calculated following the approach of Bat detective [9].

The available data differs in the label information that is available for each
audio recording. In detection datasets, a label is known for each window that
indicates whether or not a bat call is present in that window. In classification
datasets, there is no label for the time windows, but only one label per time
series is given, indicating the bat type present in that time series.

3.2 Data Augmentation

To train a model that is capable of both detection and multi-label classification,
we propose to use an approach of data augmentation, where we create new data
in which each window is labelled with the bat species present in it; if no bat
species is indicated, no bat is assumed to be present in that window.

The process to create such data is presented in Fig. 1. First, we train a Bat
detective model on a detection dataset. Subsequently, we use this model to indi-
cate windows at which a call is present in a classification dataset. Then, we label
the windows with the species of bat of the audio recording; as a result, we have a
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Pip35
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Training of Bat detective Application of detector on 
classification dataset
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Pip35 + Plesp

Fig. 1. Process to create the augmented multi-label dataset.

dataset with time series in which windows are labelled with the presence of indi-
vidual bat species. Finally, a new dataset is created by artificially superimposing
time series for different bat species on top of each other; this yields windows in
which multiple bat species are present, and the identity of these species are
known. On this new dataset, we propose to train a multi-label classifier, which
for a given window predicts all species present in that window.

Note that the evaluation of the resulting model is complex, as we have no
ground truth for the multi-label classifier. As we will discuss in more detail
later, we propose to resolve this by evaluating our algorithm in 3 different ways:
(1) by evaluating its performance on the augmented data; (2) by evaluating its
performance as a detector on the original detection data; (3) by evaluating its
performance as a classifier on the original classification data. The challenge is to
find a model that performs well across these different metrics.

3.3 Proposed Architecture

One of the most common architectures used in detection and classification tasks
is the simple CNN, as it is for instance the case for the Bat detective tool. How-
ever, this simple network limits the level of performance that can be reached
in complex tasks due to the small number of layers that are used. A common
method to overcome this limitation is to use very deep convolutional networks
instead. Indeed, it is more and more common to use networks such as varia-
tions of ResNet to perform detection or classification tasks. Unfortunately, these
models require a much higher amount of nodes and have a bigger computational
complexity than the simple CNNs. In this paper, we propose to improve the per-
formance of the simple CNN by separating the calculation of features from the
classification algorithm and by using other efficient, but computationally lighter,
nonlinear multi-label classifiers than deep neural networks.

The model we propose to fulfil these requirements is made of a simple CNN
that computes new features, which are then given as input to XGBoost models
that perform the classification for each of the classes in the multi-label context.

We train this model as follows. First, a CNN is trained in which the last layer
consists of artificial neurons, one for each class. This model is trained as if it has
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Fig. 2. The architecture of our proposed model, the CNN XGBoost, for the detection
and multi-label classification of bat calls.

to perform detection and classification. Once it is fully trained, it is applied to
the augmented training data; the output of the second to last dense layer on
this training data will be used as an input dataset to train XGBoost models,
which will then detect and classify. The resulting architecture is presented in a
schematic way in Fig. 2.

To tackle the multi-label classification problem, the binary relevance [16]
method was chosen to train the CNN, including the last fully connected layer.

Subsequently, one binary XGBoost model is trained for each separate class.
These models predict a probability for each class.

Note however that these probabilities need to be thresholded in order to pre-
dict whether or not a specific type of bat is present in a window. We exploit
this ability to pick thresholds to take into account the various requirements
on our model. After all, our aim is not only to obtain good performance on the
augmented data, but also on the original detection dataset. We take this require-
ment into account by choosing the thresholds such that the sum is optimised of
the average multi-label classification F1-score on the augmented dataset and the
detection F1-score on the detection dataset.

Our algorithm for optimising the thresholds works as follows, as inspired
by [6]. We iterate over all the classes, and for each class separately, we vary the
thresholds from 0 to 1 with steps of 0.01, while the thresholds of the other classes
remain fixed; if our optimisation criterion improves, we accept the new threshold;
we continue this process of iterating over the classes and the thresholds until no
further improvement can be found.

4 Results

This section presents the detection dataset and the classification dataset used in
our experiments, as well as how they were combined to be used in a detection and
multi-label classification context. It also presents the evaluation methods and the
models to which our architecture will be compared on the challenges C1–C5. It
then analyses to which degree our proposed model answers to those challenges
and verifies whether the latter indeed performs better than the architectures
used in earlier works.
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4.1 Datasets

The two datasets that we have at our disposal are a detection dataset, made
available by Bat detective on their website1, and a classification dataset, provided
by Natagora, a Belgian association aiming at protecting nature and collecting
various data samples in Wallonia and Brussels.

Bat detective’s dataset is made of bat calls recorded from four different
regions in Europe between 2005 and 2011, namely in Bulgaria, Romania, UK
and Norfolk. The dataset is labelled with the starting position of each call but
contains no information about the species that emitted the call. Therefore, these
recordings are used to train the networks that are only used for detection.

Natagora’s dataset is composed of bat calls recordings taken between 2012
and 2019 at various observation sites in Belgium. The dataset contains seven
different groups of bat species that cover the twenty-four species of bat that
can be found in Belgium. The seven groups of bat species are Barabar, Envsp,
Myosp, Pip35, Pip50, Plesp and Rhisp. The labels provided indicate for each file
which group of species can be heard in it. So each file is associated with a tag,
but the exact timings of the calls in a given recording are not known.

To create the augmented multi-label dataset, we first needed a detection
model. The detection model we used is the one proposed by Bat detective [9]
and it was trained with their dataset. This detection model could then be used
to find calls positions in the Natagora classification dataset. From that newly
labelled dataset, calls were superimposed to generate multi-label samples.

To have a dataset representative of a real-life case, the same amount of files
having superimposed calls and of files with no calls and a single group in it were
taken for the multi-label dataset. In that way, the models learn to differentiate
a call from background noise and to determine whether there is a single call
or more than one at a given time of the recording. The total number of bat
calls available is 94766. 8801 of them form the test set, used to compute the
multi-label performance. The validation set is made of 8772 calls and the 77193
remaining ones form the training set. The validation set is used for thresholds
optimisation while the training set is used for training and tuning the models.

4.2 Evaluation

As we do not have ground truths available for the multi-label classifiers, we
evaluate our algorithms on three different aspects.

The first aspect is the evaluation of the model on the augmented data. This
is done by computing the precision, recall and F1-score for the detection as
well as for the classification of each class on the multi-label test set. A macro
average of the classification metrics is also performed to have a global score of
the classification performance while giving the same importance to each class.

To compute the different metrics in a multi-label fashion, 2× 2 confusion
matrices are used, one for each of the classes. To fill in the confusion matrices,

1 http://visual.cs.ucl.ac.uk/pubs/batDetective/.

http://visual.cs.ucl.ac.uk/pubs/batDetective/
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the choice was made to consider each class independently. In other words, to
update the confusion matrix of a given class, we ignore all the calls and all the
predictions that are not from that class and evaluate the remaining labels as one
would do in a binary detection problem. The only difference is that a detected
call is considered as correctly predicted if it overlaps with an actual call position,
i.e. if they are less than ten milliseconds away from each other, and not only if
the prediction and ground truth are in the same window.

The second aspect that needs to be evaluated is the performance of the model
as a detector. This is done on the original detection dataset, as it is our only
dataset in which the call positions are ground truths. The metrics used are the
same as for the multi-label evaluation, but only the detection performance is
considered as we cannot say if the classes predicted are correct or not.

Finally, the models are also evaluated as classifiers on the original classifica-
tion data. The ground truths from that dataset are, for each recording, the type
of bat present in it but not the exact timing of the calls. Therefore, we have to
look at the class that is the most predicted for each file and we verify if this
matches with the ground truth class for that file. Our metric here is thus the
percentage of files that are labelled with the correct majority class.

4.3 Architectures for Comparison

To make sure that our new architecture is indeed better in terms of performance
than a simple CNN and smaller in terms of size than a ResNet, we compare our
approach with a number of other architectures. Our proposed model and all the
following architectures can be found in the GitHub of our project on https://
github.com/luciledierckx/batML. All the details about the models’ parameters
are also given there.

For calculating features, we consider ResNet50 as an alternative, as used in
earlier work and adapted to receive a spectrogram as input [12], in addition to
a simple CNN.

As our use of XGBoost models aims to improve the performance over a
simple fully connected layer, we also compare with a basic neural network in
which a fully connected layer is used for both detection and classification. In our
experiments, we use data with seven bat species groups; these networks have
eight output classes with one for the class “not a bat” and the seven others
for the seven bat species groups. We will refer to these networks as CNN8 and
ResNet8, based on the convolutional neural network used.

In addition to these architectures, two baseline alternatives are also eval-
uated. In these, the detection and classification tasks are separated into two
different networks. The recordings are thus first fed to the detection network,
and the windows that are predicted as containing a bat call are then given to
the second network. The latter predicts which of the seven groups of species are
present in the considered window.

The decision thresholds needed for the binary relevance method are tuned for
all architecture independently, as these have different strengths and weaknesses
in the detection and classification.

https://github.com/luciledierckx/batML
https://github.com/luciledierckx/batML
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Table 2. Performance of the compared architectures on Norfolk detection dataset. The
best value for each threshold type and metric is highlighted.

Bat
detective

ResNet8 Double
ResNet

ResNet
XGBoost

CNN8 Double
CNN

CNN
XGBoost

Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1

a) Thresholds on Natagora

82 86 84 55 76 64 63 87 73 67 81 73 60 85 71 64 88 74 73 77 75

b) Thresholds on both Natagora and Norfolk

82 86 84 72 78 75 68 88 77 74 80 77 75 83 79 79 85 82 77 82 79

Finally, all the networks’ hyperparameters and architecture are tuned using
the Hyperopt [3] library. The models were trained, tuned and tested on an i7-
9800X CPU @ 3.80 GHz, 32 GB RAM and an RTX 2080 SUPER GPU.

4.4 Performance on the Different Challenges

To evaluate challenge C1, corresponding to the detection task, the tuned models
were evaluated on the Norfolk test set. In the first experiment, the thresholds
are only optimised on the augmented dataset. The results of this evaluation are
presented in Table 2a, which also gives the results obtained by the Bat detective
architecture when using the same evaluation method.

From Table 2a, we see that our CNN XGBoost model has the highest pre-
cision and F1-score, and is the most balanced for the detection, but remains
nine percent lower than Bat detective for all metrics. This can be explained by
the fact that, even though the species present in Belgium and Norfolk are the
same [4], their occurrence frequency at the two places is different, and therefore,
the thresholds for each class have to be adapted. This is why we decided to use
half of the Norfolk dataset as a training set in order to optimise the thresholds
not only on Natagora’s validation set but also on the Norfolk training set, as
described earlier. This is presented in Table 2b.

Table 2b shows that the performance improves with the new thresholds,
although it does not reach the performance of Bat detective. While our network
is not the best in terms of F1-score, overall its performance as a detector is rea-
sonable; the important next question is whether this performance as a detector
provides benefits as a classifier.

Concerning the classification challenge C2, the evaluation of the classification
is done using the recordings from Natagora’s dataset that contain a single species.
The percentage of files labelled with the correct majority class is reported in
Table 3 for both threshold types.

From Table 3 we observe that, no matter the type of threshold used, our CNN
XGBoost model has the best classification performance. A noticeable aspect is
that, for our proposed architecture, the number of correctly predicted files does
not decrease with the new thresholds and is even a bit higher here. This shows
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Table 3. Percentage of files for which the model predict the correct species. The model
is considered as predicting the correct class for a file when it is the class predicted the
most for that file. The best value for each threshold type is highlighted.

ResNet8 Double
ResNet

ResNet
XGBoost

CNN8 Double
CNN

CNN
XGBoost

Thresholds on
Natagora

78 76 84 84 79 85

Thresholds on both
Natagora and Norfolk

79 36 85 74 77 86

Table 4. Performance of the compared architectures for the detection task on the
augmented data set. The best value for each threshold type and metric is highlighted.

ResNet8 Double
ResNet

ResNet
XGBoost

CNN8 Double
CNN

CNN
XGBoost

Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1

a) Thresholds on Natagora

77 73 75 76 73 74 76 74 75 81 76 78 86 69 77 78 74 76

b) Thresholds on both Natagora and Norfolk

81 67 73 78 74 76 82 67 74 85 65 74 90 60 72 83 68 75

that the model has a strong classification performance and is not too quickly
disturbed by a change of distribution in the number of class samples.

Now that the basic cases of detection and classification have been assessed,
the multi-label classification and detection, i.e., challenges C3 and C4, must be
evaluated on the artificially created multi-label dataset. The performance of each
architecture for the detection task is reported in Table 4 for the two different
thresholds. The classification performance of the different models for each of the
bat species groups and the macro average over the seven classes is presented in
Table 5 for the new thresholds. The performance with the thresholds tuned on
the augmented data only are not displayed but are higher for all models.

Looking at the detection performances from Table 4a, we see that the network
the most fitted to detect the bat calls in the recordings is the CNN8 as it has
the best F1-score and best recall. Our CNN XGBoost model has an F1-score
of two percent less so its detection performance is not too low compared to
the best architecture. It can also be noticed that, for the detection, the models
using ResNet all have a lower F1-score than those using CNNs. And in a general
manner, we see that all the models perform better in terms of precision than in
terms of recall. That indicates that the models tend to miss some low quality,
less obvious calls, and recognise more easily when a sound is not a bat call. When
using the new thresholds, we can see in Table 4b that for most of the models, the
F1-score only slightly decrease, but the gap between detection and recall gets
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Table 5. Performance of the compared architectures for the classification of each
species group as well as the macro average over all the classes with the thresholds
optimised on both Natagora and Norfolk. The best F1-score for each class and for the
macro-average is highlighted.

ResNet8 Double

ResNet

ResNet

XGBoost

CNN8 Double CNN CNN

XGBoost

Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1

Barbar 71 88 78 97 56 71 87 61 72 90 73 81 90 80 85 91 52 66

Envsp 89 87 88 88 51 64 88 93 90 92 81 86 94 82 87 91 92 91

Myosp 94 83 88 92 53 67 95 90 92 98 80 88 94 84 89 97 87 92

Pip35 73 71 72 60 53 57 71 78 74 73 72 73 74 72 73 82 76 79

Pip50 51 89 65 48 23 31 62 88 72 47 92 63 52 90 66 56 93 70

Plesp 87 70 78 85 43 57 81 70 75 95 67 79 93 63 75 82 68 75

Rhisp 87 83 85 10 100 19 92 81 86 86 86 86 93 73 82 95 84 89

Avg 79 81 79 69 54 52 82 80 80 83 79 79 84 78 80 85 79 80

Table 6. Computational resources of the different networks in terms of number of
parameters for deep networks and longest paths in the decision trees for XGBoost.

ResNet8 Double
ResNet

ResNet
XGBoost

CNN8 Double
CNN

CNN
XGBoost

Size 23 571 272 47 128 201 23 794 880 569 048 1 185 521 806 480

higher. In this case, it is the double ResNet model that performs best but our
CNN XGBoost remains the second-best performing model.

In terms of average multi-label classification performance, it can be observed
in Table 5 that with the Norfolk-optimized thresholds our CNN XGBoost model
is one of the models having the best average F1-score. This model also has the
best F1-score for most bat species groups. For the classes where it is not the
best, it is always quite close to it, except for the Barbar class. In general, we
observe that the networks using CNNs tend to perform better than the ones
composed of ResNets.

The last challenge to evaluate is the challenge C5, concerning the computa-
tional resources used by the architectures to perform a prediction. The resources
used by the models are presented in Table 6. For the neural networks, the num-
ber of parameters is used as a metric. For models based on XGBoost, in addition,
the number of nodes visited to produce a prediction is estimated by summing
up the depths of all the trees in the model.

From Table 6 we can conclude that the models using ResNet require much
larger computational resources than the ones using simpler CNNs. Our CNN
XGBoost model is heavier in terms of computational resources than the basic
architecture made of a single CNN, but the difference is much smaller than with
ResNet. We can therefore say that our model is light compared to others state
of the art architectures.
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From the evaluation of challenges C1–C5, we see that our proposed model is
the best performing model for many of the evaluated challenges, even though not
for all of them. However, in those cases, our CNN XGBoost architecture is always
reasonably close to the best model. Therefore, we can say that among all the
proposed models, it is the one that is the most well-balanced and is hence best
fitted for the problem of multi-label detection and classification using detection
and classification data solely.

5 Conclusion

We have addressed the need for an automated tool performing both detection
and multi-label classification for bat calls in recordings as well as the challenge
of the limited datasets available. We presented a data augmentation method and
implemented a new architecture responding to that need. We showed that it has
good detection and classification performance despite the fact of being trained
on an augmented dataset. We then verified that our architecture delivered better
performance than the state of the art models for multi-label acoustic bat mon-
itoring tasks. Finally, we verified that the computational resources required by
the model are reasonable. From these various evaluations, we concluded that our
CNN XGBoost model was the one responding the best to the multiple challenges
of the multi-label detection and classification. Future work includes implement-
ing our model on a portable recording device, and studying its use on a more
fine-grained bat classification tasks.
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Abstract. Diabetic Retinopathy (DR) is the leading cause of visual impairment
among working-aged adults. Screening and early diagnosis of DR is essential to
avoid visual acuity reduction and blindness. However, a worldwide limited access
to ophthalmologists may prevent an early diagnosis of this blinding condition. In
this paper,we propose a novelmethod for screeningDR fromsmartphone-captured
fundus images. Themain challenges are to perform higher accurate detection even
with reduced quality of handheld captured fundus images and to provide the result
into the smartphone used for acquisition. For such a need, we apply transfer learn-
ing to the lightweight deep neural network “NasnetMobile” which is used as a
feature descriptor, while configuring a multi-layer perceptron classifier to deduce
the DR disease, in order to take benefit from their lower complexity. A dataset
composed of 440 fundus images is structured, where the acquisition and statement
are performed by expert ophthalmologists.A cross-validation process is conducted
where 95.91% accuracy, 94.44% sensitivity, 96.92% specificity and 95.71% pre-
cision in average are achieved. In addition, the whole processing flowchart is
implemented into a mobile device, where the execution time is under one second
whatever the fundus image is. Those performances allow deploying the proposed
system in a clinical context.

Keywords: Diabetic retinopathy · Deep learning · Transfer Learning ·
Mobile-health

1 Introduction

Diabetic Retinopathy (DR) is an ocular disease registered for 30% of diabetes-affected
patients [1]. Based on the world health organization report, 146 million suffer from DR
[2]. Advanced stages of DR may lead to severe visual acuity impairment and blindness
[3, 4], with 37 million blind persons worldwide. Therefore, DR screening is mandatory
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for the early diagnosis and initiation of appropriate treatment to improve the visual
outcome and to prevent blindness. Fundus examination is the main clinical approach to
screen DR.

Actually, a heavy workload is requested from ophthalmologists, where a ratio of 50
per million persons worldwide is required to ensure early screening and timely manage-
ment of DR. However, only 21 countries have verified the targeted ratio, where the actual
global ratio is about 29 ophthalmologists per million persons [5, 6]. Consequently, in
many countries, there is a lack of periodical DR screening, hence an important delay of
DR diagnosis.

Recently, several optical lens-based devices have been proposed, which can be
snapped into smartphones to capture fundus images. Those devices are distinguished
by their low-cost and mobility, which are associated to the smartphone availability in
terms of connectivity, data storage and processing [7–9]. The mobile devices ensure cap-
turing fundus images with sufficient quality compared to those captured by conventional
fundus cameras. However, blurs and noise are always deduced caused by the handheld
aspect of the mobile capturing. Several clinical studies have been performed and have
shown similar DR detection accuracy from smartphone-captured fundus images and
conventional fundus cameras-captured images [10–12].

Previous studies have aimed to automatically screen DR from smartphone-captured
fundus images [13–15]. Some work has addressed the problem of limited quality of
fundus images, where the different limitations were highlighted in [16]. To outperform
those problems, the methods have been based on intensive computational processing.
In [17], DR detection was provided though a multiple instance for the AlexNet Deep
Convolutional Neural Network (DCNN) architecture, while the method suggested in
[16] used the ResNet50 neural network as a feature descriptor. Such processing could
not be run into embedded or smartphone devices, due to the limited material resources.

Other methods have aimed to run DR screening into smartphones where the main
contribution was based on suggesting low complexity processing. In [18, 19], features
were extracted though linear computational complexity, where the DR stages were
detected using the SVM classifier. Elsewhere, lightweight DCNNs were employed such
as mobilenet-V2 and inception-V3, respectively used in [20–22]. However, these meth-
ods did not consider the decreased quality of smartphone-captured fundus images, where
they were validated using database images acquired by classical conventional fundus
cameras. Little work has addressed both challenges, hence failing to achieve higher
performance, such as the one described in [14] where 62% precision was registered.

The originality of our work is to describe an automated method that (1) ensures
higher performant DR screening from smartphone-based fundus photography andwhich
(2) has a low complexity to be implemented into a smartphone associated with a mobile
device. The whole hardware and software tool presents an end-to-end mobile system
from fundus image acquisition to DR screening. For such a need, a preprocessing is
performed to enhance the image quality. Then, the DCNN “Nasnet-Mobile” is used
as a feature descriptor, which is characterized by its higher performance, lightweight
processing and fast convergence even with a reduced database size. Then, the extracted
features are provided to a Multi-Layer Perceptron (MLP) classifier with a single hidden
layer, to deduce theDRdisease. Thiswork is a part of project leading tomobile computer-
screening system for DR which we already developed in [10, 18, 19].
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The suggested method is introduced in the rest of the paper. Section 2 describes
the automated method for DR screening. The experimental evaluation of the detection
performance and the execution time is presented in Sect. 3. The conclusion and some
future work are detailed in Sect. 4.

2 Novel Method for DR Screening

2.1 Pre-processing and Data Processing

Basically, the dataset images must be resized to (224 × 224 × 3) to be provided to
the NasNet-Mobile. Preprocessing aims to enhance the fundus image quality in order
to promote DR screening. In fact, the handheld capture of fundus images leads to a
blurred illustration of retinal components, especially the DR lesions characterized by a
small size such as micro-aneurysms or hard exudates. Thus, the point spread function is
applied to clearly model the retina [18], as shown in Fig. 1(b). The variability on the light
source causes a non-balanced contrast of the smartphone-captured fundus images. To
resolve this problem, the Contrast Limited Adaptive Histogram Equalization (CLAHE)
approach [23] is applied, as illustrated in Fig. 1(c).

Thereafter, a data augmentation is applied in order to increase the dataset size and
enhance the DL model robustness. For this purpose, all images are flipped and shifted
horizontally and vertically, rotated with angle 30°, zoomed and contrast-adjusted with
respect to the varied contrast of the smartphone-captured fundus images [24, 25].

2.2 Nasnet-Mobile Architecture

The Nas Network (NasNet) is a CNN architecture provided by the neural architecture
search (Nas) framework [26]. It a research algorithm that designs an optimal convolu-
tional architecture is for a given dataset, through a scalable method. The framework is
based on a controller recurrent neural network (RNN) where networks are iteratively
generated and trained using the provided dataset. Then, their accuracies are returned to
the controller to enhance the next versions of architectures [27, 28]. The research leads
to compose the network by convolutional layers called “normal cell” and “reduction

Fig. 1. Fundus images: (a) captured with Volk-inView, (b) after deblurring, (c) after contrast
enhancement
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cell” having identical structure with different weights. The first cell type generates a
feature map preserving the same resolution than the input. the second one reduces the
feature map size through a stride= 2. Using the “ImageNet” dataset that contains 1,000
categories [29], the Nas framework was provided an architecture where the selected cells
are as modelled in Fig. 2. We note that Nas framework may provide a lightweight archi-
tecture called “NasNet-Mobile” made up of only four million parameters [28], which is
able to perform an accurate classification [30].

2.3 Transfer Learning of Nasnet-Mobile Architecture

The available dataset is composed of few hundreds of smartphone-captured fundus
images. To ensure reliable performance, the transfer learning method is endorsed [31],
where the NasNet-Mobile model, initially trained with the “ImageNet” dataset that con-
tains 1,000 categories [29, 32] is retrieved. The classification layer is interchanged by
the four ones, as described in Fig. 2. The first layer consists of an Average Pooling where
the input feature map is spatially partitioned into a grid of square blocks with side 2,
and average over each blocks are stored in the output feature map. Then, a flatten is per-
formed to align all features into a single row. The third layer applies a dropout function
to prevent overfitting, with a threshold equal to 0.7. The last one is a dense layer with a
ReLU function where the feature vector size is reduced to 32, while decreasing the error
through back-propagation.

The model is finetuned in order to update the weights of neurons during training,
where the chosen learning rate is 0.000005 [29, 33]. The optimal weight is stored after
each epoch, to guarantee converging the model. Training is performed into 150 epochs,
and theweights are updated following the “Adam”optimizer [34]. The “categorical-cross
entropy” loss function is adopted, where the loss is based on the sum of all computed
ratios. The main hyper parameters used for training are summarized in Table 1.

Table 1. Hyper parameters of training NasNet-Mobile model

Parameter Value

Optimizer Adam optimizer

Learning rate 0.000005

Regularization Dropout (0.7)

Mini-batch size 2

Epoch 200

Loss function Binary cross-entropy
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Fig. 2. Processing flowchart of the proposed DR screening method

2.4 MLP Configuration

The classifiermust retrieve a featuremap from theNasNet-Mobile deep learningmodel in
order to ensure a performant classification, through low-complexity processing. Based
on those constraints, the MLP classifier is chosen to ensure the classification of DR-
affected fundus images. It is considered as a neural network where the weights are
randomly predefined. Indeed, it is widely employed in medical classification problems.
The MLP can be configured in terms of number of hidden layers and number of neurons
inside. We choose a single hidden layer to reduce the computational complexity. After
that,we performan experimental studywhere the neuron number is varied. Then, training
and testing processes are iteratively performed to evaluate the currentMLP, as detailed in
Table 2. Based on the experiment results, we deduce that a hidden layer with 10 neurons
will allow achieving the best classification result.
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Table 2. Performance classification in terms of neuron number of hidden layer

Neuron number of hidden layer 8 10 12

Sens 88.57 94.44 94.29

Spec 91.67 96.15 85.42

Acc 89.83 95.4.45 90.68

Prec 93.94 94.44 90.41

3 Experimental Results

3.1 Dataset

Patients’ data were collected in the department of ophthalmology belonging to Fat-
touma Bourguiba University Hospital (Tunisia), between 2019–2020. Image acquisition
was performed after preliminary eye examination and dilating pupil of patient eyes
using mydriatic substance. Fundus images were captured using a Volk-InView dispos-
itive, as shown in Fig. 3, allowing a field of view of 50°. Several clinical studies have
attested the higher quality of fundus images captured by Volk-InView, compared to
other optical lenses such as D-Eye, Retina Peek and Welch Allyn [16]. All anonymized
captured images were evaluated by two independent masked retina specialists (NA and
IK). Screening the DR lesions of retinal photographs using the “International Clinical
Diabetic Retinopathy Classification Severity Score” was performed, where images were
graded as non DR and DR.

Thedispositivewas snapped into an “IpodTouch”devicewhere the camera resolution
was about 8 Mp. The dataset was composed of 440 images, where 260 were classified
as healthy and 180 contained DR lesions. The image resolution was 892 * 892 pixels
with 96 dpi, where some healthy and DR affected captured retina are shown in Table 3.
It is easy to distinguish retinal components, such as the optic disk, the macula and DR
lesions, even those having small sizes.

The evaluation is performed through a five-fold cross validation approach to guar-
antee a reliable evaluation, where the dataset is partitioned into 5 subsets. To overcome
the problem of the reduced dataset size, four subsets representing 80% of fundus images
are dedicated for training. The fifth subset is partitioned equitably between validation
and testing sub-sets, as illustrated in Fig. 3.

Val. Test Training Training Training Training

Training Val. Test Training Training Training

Training Training Val. Test Training Training

Training Training Training Val. Test Training

Training Training Training Training Val. Test

Fig. 3. Dispatching of subsets for 5-fold cross validation
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Table 3. Healthy and DR-affected fundus images

3.2 ML Implementation

The method is coded using the Python language. Preprocessing is performed using the
OpenCV library, while NasNet-Mobile and MLP are implemented using the “Keras”
API. The training and testing steps are executed on the cloud service “google Colab”.
The curve slopes of accuracy and loss for both training and validation are retrieved as
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depicted in Fig. 4. It is deduced that both accuracy (resp. loss) curves increase (resp.
decrease) progressively to become almost constant.

Fig. 4. Evaluationof trainingperformance in termsof epochs: (a)Training andvalidation accuracy
values; (b) Training and validation loss values

3.3 Evaluation Metrics

The performance of our method is evaluated through the Accuracy (Acc), Sensitivity
(Sens), Specificity (Spec) and Precision (Prec) metrics, which are computed as indicated
in Eqs. 1, 2, 3 and 4.

Sensitivity = TP

TP + FN
(1)

Specificity = TN

TN + FP
(2)

Accuracy = TP + TN

TP + FP + TN + FN
(3)

Prec = TP

TP + FP
(4)

where TP (True Positive) is the number of images classified correctly as DR-affected,
TN (True Negative) is the number of images classified correctly as healthy, FP (False
Positive) is the number of healthy images identified as DR, and FN (False Negative) is
the number of DR-affected images classified as healthy.

3.4 Performance Evaluation of Proposed Method

This method is evaluated using all cross-datasets, where the performancemetrics of each
one are shown in Table 4. We deduce that our method carries out higher accuracy, which
achieves 97.73%. Even with an equitable partition between healthy and DR-affected
images, sensitivity and specificity have higher values whatever the cross dataset is.
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Table 4. DR screening performances in terms of cross-datasets

Acc (%) Sens (%) Spec (%) Prec (%)

First cross-database 97.73 94.44 100.00 100.00

Second cross-database 93.18 88.89 96.15 94.12

Third cross-database 95.45 94.44 96.15 94.44

Fourth cross-database 97.73 94.44 100.00 100.00

Fifth cross-database 95.45 100.00 92.31 90.00

The performances of cross-validation sets are illustrated through the box plots rep-
resented in Fig. 5. The reduced plot sizes justify the sustainability of the DR screening
whatever the image set, either used for testing or for training. Consequently, it reflects
the method robustness and confirms its capacity to be used as a mobile aided screening
system for DR.

Fig. 5. Performance visualization using box plots

3.5 Execution Time Evaluation of the Mobile-Aided Screening System

The trained Nasnet-Mobile model associated to theMLP classifier must be updated to be
suitable for smartphone uses. Therefore, the method is implemented as an android app
through an Android Studio 4.2 and JAVA Development Kit (JDK) 15.0.2. Therefore,
the “TFLiteConverter” class of the public “tf.lite” API is used to convert the trained
“TensorFlow” model into a “TensorFlowLite” model. The NasNet-Mobile is converted
into a FlatBuffer file (.tflite) and stored into a”TensorFlowLite” model to be called
through the “TensorFlow Lite Android Support” library. The MLP classifier and the
image enhancement processing are implemented using the predefined function of the
“Open Source Computer Vision (OpenCV)” multiplatform library which is compiled by
an Android Native Development Kit (NDK).
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Thereafter, we evaluate the computational performance of DR screening when run
in a mobile device as an app. For such a need, 10 images (partitioned equitably on
healthy and DR-affected fundus images) are randomly selected from the dataset and
tested through the app executed into a “Samsung Galaxy A31” smartphone having an
octa-core processor (2 × 2 GHz & 6 × 1.95 GHz) and 4 Go RAM. We deduce that all
execution time is above one second, as depicted in Fig. 6. In addition, close values are
registered where the average value is equal to 0.894 s. Accordingly, we deduce that the
computational performance is adequate to promote using our system in clinical contexts.
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Fig. 6. Execution time of DR screening application in terms of fundus images

4 Conclusion

DR is a major cause of blindness worldwide. Our challenge consists in screening DR
using a mobile CAD system, while ensuring all tasks from the fundus image acquisition
to the decision generation. For such a requirement, we have proposed a preprocessing
to enhance the image quality. Then, we have employed a lightweight DL architecture
and a low complexity classifier to carry out higher performant DR screening. The exper-
imentation has been proved respecting the clinical constraints in terms of screening
performance and execution time.

In our futurework, we aim to extend the dataset size by continuous collaborationwith
the expert ophthalmologist team. Afterwards, the provided system will be extended to
ensure fundus image grading into DR severity. Otherwise, the system will be oriented to
other ocular pathologies such as glaucoma, aged macular degeneration or hypertensive
retinopathy. Furthermore, the lightweight processing principle can be carried out into
other mobile-health domains [35].

Funding. This work was supported by the Campus-France PHC-UTIQUE (19G1408) Research
program.
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Abstract. In supervised Machine Learning (ML), Artificial Neural Net-
works (ANN) are commonly utilized to analyze signals or images for a
variety of applications. They are increasingly performing as a strong tool
to establish the relationships among data and being successfully applied
in science due to their generalization ability, noise and fault tolerance.
One of the most difficult aspects of using the learning process is opti-
mization of the network weights.

A gradient-based technique with a back-propagation strategy is com-
monly used for this optimization stage. Regularization is commonly
employed for the benefit of efficiency. This optimization gets difficult
when non-smooth regularizers are applied, especially to promote sparse
networks. Due to differentiability difficulties, traditional gradient-based
optimizers cannot be employed.

In this paper, we propose an MCMC-based optimization strategy
within a Bayesian framework. An effective sampling strategy is designed
using Hamiltonian dynamics. The suggested strategy appears to be effec-
tive in allowing ANNs with modest complexity levels to achieve high
accuracy rates, as seen by promising findings.

Keywords: Artificial neural networks · Optimization · Deep learning ·
LSTM · MCMC · Hamiltonian dynamics

1 Introduction

Machine learning (ML) [1] is an artificial intelligence subfield (AI). It has
expanded at an incredible rate, drawing a large number of academics inter-
ested in studying how a system may learn to do a task. In reality, an ML system
does not follow instructions but instead learns from experience, such as making
predictions or decisions based on data and continuously improving performance
by reviewing new data. ML research achieved outstanding results on several
complex cognitive tasks, including Computer Vision [2–5], Medical diagnoses [6–
9], Signal Processing [10,11], recommendation systems [12], etc. Deep Learning
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(DL) [13,14] architectures have proved their capacity to deal with progressively
voluminous data during the previous two decades. Furthermore, it has gradually
become the most extensively employed computational strategy in the field of
machine learning, generating exceptional results on a variety of cognitive tasks,
equal or even surpassing human performance in some cases. The capacity to
learn from huge volumes of data is one of the benefits and challenges of deep
learning.

In a similar vein, Convolutional neural networks (CNN) [2,15,16] are one of
the state-of-art deep learning techniques. CNNs are designed to automatically
and adaptively learn spatial hierarchies of features through backpropagation
[17,18] by using multiple building blocks, such as convolution layers, pooling
layers, and fully connected layers. However, training a CNN is a challenging task,
especially for deep architecture involving a high number of parameters (model
weights) to be estimated. Sophisticated optimization algorithms need therefore
to be used. This is indeed the key step in order to fit a given architecture to
learning data in order to minimize the error between ground truth and estimates.

Many optimization techniques have been presented in recent years [19]. The
convexity and differentiability of the target loss function have a significant impact
on the performance of the deployed algorithms. Hence, choosing an optimiza-
tion strategy that seeks to find the global optima in the learning stage is gen-
erally challenging, especially when the number of parameters is large. A non-
appropriate optimization technique may for instance lead the network to lie in
a local minimum during training phase. Speeding up the optimization process is
also a challenging issue for large databases.

In this context, Bayesian approaches have made significant progress in a
number of areas over the years, and there are several practical benefits. The
core concept is to use probabilities to represent all uncertainties throughout
the model. One of the most significant benefits is the ability to incorporate
prior information. Indeed, recent developments in Markov Chain Monte Carlo
(MCMC) methods [20–24] facilitate the implementation of Bayesian analyses
of complex data sets containing missing observations and handling multidimen-
sional outcomes. The main goal of this paper is to highlight a Bayesian model
for the minimization of the target cost function of a learning model through
hyperparameters adjustment.

Specifically, we propose a Bayesian optimization method to minimise the tar-
get cost function and derive the optimal weights vector. Indeed, we demonstrate
that using the proposed method leads to high accuracy results, which cannot be
reached using competing.

The rest of this paper is organized as follows. The addressed problem is
formulated in Sect. 2. The proposed efficient Bayesian optimization scheme is
developed in Sect. 3 and validated in Sect. 4. Finally, conclusions and future
work are drawn in Sect. 5.
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2 Problem Formulation

It is well known that weights optimization is one of the key steps to design an
efficient artificial neural network. For instance, if we consider a classification
problem, the ANN weight vector W is updated during the learning phase by
minimizing an error between the ground truth and the labels estimated using
the network. An iterative procedure is generally performed, and gradient-based
optimization procedures are used. For the sake of efficiency, regularization can
also be performed in order to have a more accurate weights configuration. In this
sense, smooth regularizers such as the �2 norm are used. In this case, gradient-
based algorithms could still be used. However, if one aims at promoting sparse
networks, sparse regularizations such as the �1 norm should be used, which makes
the use of gradient-based algorithms inefficient since the error to be minimized
in this case is no longer differentiable.

In this paper, we propose a method to allow weights optimization under non-
smooth regularizations. Let us denote by x an input to be presented to the ANN.
The estimated label will be denoted by ŷ(x,W ) as a non-linear function of the
input x and the weights vector W ∈ R

N , while the ground truth label will be
denoted by y.

Using a quadratic error with an �1 regularization with M input data for the
learning step, the weights vector can be estimated as:

̂W = arg min
W

L(W )

= arg min
W

M
∑

m=1

‖ŷ(xm;W ) − y(m)‖22 + λ‖W‖1
(1)

where λ is a regularization parameter balancing the solution between the data
fidelity and regularization terms, and M is the number of learning data.

Since the optimization problem in (1) is not differentiable, the use of gradient-
based algorithms with back-propagation is not possible. In this case, the learning
process is costly and very complicated.

In Sect. 3 we present a method to efficiently estimate the weights vector
without increase of learning complexity. The optimization problem in (1) is for-
mulated and solved in a Bayesian framework.

3 Bayesian Optimization

As stated above, the weights optimization problem is formulated in a Bayesian
framework. In this sense, the problem parameters and hyperparameters are
assumed to follow probability distributions. More specifically, a likelihood dis-
tribution is defined to model the link between the target weights vector and the
data, while a prior distribution is defined to model the prior knowledge about
the target weights.
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3.1 Hierarchical Bayesian Model

According to the principle of minimizing the error between the reference label y
and the estimated one ŷ, and assuming a quadratic error (first term in (1)), we
define the likelihood distribution as

f (y;W,σ) ∝
M
∏

m=1

exp
(

− 1
2σ2

‖ŷ(xm;W ) − y(m)‖2
)

, (2)

where σ2 is a positive parameter to be set.
As regards the prior knowledge on the weights vector W , we propose the use

of a Laplace distribution in order to promote the sparsity of the neural network:

f(W ;λ) ∝
N
∏

k=1

exp
(

−‖W [k]‖1
λ

)

, (3)

where λ is a hyperparameter to be fixed or estimated.
By adopting a Maximum A Posteriori (MAP) approach, we first need to

express the posterior distribution. Based on the defined likelihood and prior,
this posterior writes:

f(W ; y, σ, λ) ∝ f(y;W,σ)f(W ;λ)

∝
M
∏

m=1

exp
(

− 1
2σ2

‖ŷ(xm;W ) − y(m)‖2
) N

∏

k=1

exp
(

−‖W [k]‖1
λ

)

. (4)

It is clear that this posterior is not straightforward to handle in order to derive
a closed-form expression of the estimate ̂W . For this reason, we resort to a
stochastic sampling approach in order to numerically approximate the posterior,
and hence to calculate an estimator for ̂W . The following Section details the
adopted sampling procedure.

3.2 Hamiltonian Sampling

Let us denote α =
λ

σ2
and θ = {σ2, λ}. For a weight W k we define the following

energy function

Ek
θ (W k) =

α

2

M
∑

m=1

‖ŷ(xm;W ) − y(m)‖22 + ‖W k‖1. (5)

The posterior in (4) can therefore be reformulated as

f(W ; y, θ) ∝ exp

(

−
N

∑

k=1

Ek
θ (W k)

)

. (6)

To sample according to this exponential posterior, and since direct sampling is
not possible due to the form of the energy function Ek

θ , Hamiltonian sampling
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is adopted. Indeed, Hamiltonian dynamics [25] strategy has been widely used in
the literature to sample from high dimensional vectors. However, sampling using
Hamiltonian dynamics requires computing the gradient of the energy function,
which is not possible in our case due to the �1 term. To overcome this difficulty, we
resort to a non-smooth Hamiltonian Monte Carlo (ns-HMC) strategy as proposed
in [26]. More specifically, we use the plug and play procedure developed in [27].
Indeed, this strategy requires to calculate the proximity operator only at an
initial point, and uses the shift property [28,29] to deduce the proximity operator
during the iterative procedure [27, Algorithm 1].

As regards the proximity operator calculation, let us denote by GL(W k) the
gradient of the quadratic term of the loss function L with respect to the weight
W k. Let us also denote by ϕ(W k) = ‖W k‖1. Following the standard definition
of the proximity operator [28,29], we can write for a point z

proxEk
θ
(z) = p ⇔z − p ∈ ∂Ek

θ (p). (7)

Straightforward calculations lead to the following expression of the proximity
operator:

proxEk
θ
(z) = proxϕ

(

z − α

2
GL(W k)

)

. (8)

Since proxϕ is nothing but the soft thresholding operator [29], the proximity
operator in (8) can be easily calculated once a single gradient step is applied
(back-propagation) to calculate GL(W k).

The main steps of the proposed method are detailed in Algorithm 1.

Algorithm 1: Main steps of the proposed Bayesian optimization.
- Fix the hyperparameters λ and σ;
- Initialize with some W0;
- Perform one back-propagation step to provide an initialization for GL(W0);
- Compute proxEθ

(W0) according to (8);

- Use the Gibbs sampler in [27, Algorithm 1] until convergence;

After convergence, Algorithm 1 provides chains of coefficients sampled
according to the target distribution of each W k. These chains can be used to
compute an MMSE (minimum mean square error) estimator (after discarding
the samples corresponding to the burn-in period).

It is worth noting that hyperprior distributions can be put on λ and σ in order
to integrate them in the hierarchical Bayesian model. These hyperparameters
can therefore be estimated from the data at the expense of some additional
complexity.
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4 Experimental Validation

In order to validate the proposed method, two image classification experiments
are conducted using two different datasets: COVID-19 dataset including Com-
puted tomography (CT) images [30], and a standard dataset, namely, CIFAR-10
[31]. For the sake of comparison, two kinds of optimizers are used: i) MCMC-
based method, precisely the standard Metropolis-Hastings (MH) algorithm and
the random walk Metropolis Hastings (rw-MH) [32], and ii) the most popular
optimization techniques used in DL. : Adam and Adagrad [33]. One of the key
hyper-parameters to set in optimizers in order to train a neural network is the
learning rate. This parameter scales the magnitude of the weight updates in
order to minimize the network’s loss function. In the experiments, the learning
rate is equal to 10−3. In addition, the hyper-parameters β1 and β2 are equals
to 0.9 and 0.999 respectively. They stand for the initial decay rates used when
estimating the first and second moments of the gradient. As regards coding, we
used python programming language with Keras and Tensorflow libraries on an
Intel(R) Core(TM) i7-2720QM CPU 2.20 GHZ architecture with 16 Go memory.
The same behavior with the computational time and accuracy which justify the
effectiveness of our proposed MCMC method.

4.1 ConvNet Models

Two CNN architectures are used in this study. Like the LeNet model [34],
the first one (CNN 1) includes three convolutional (Conv3× 3-32, Conv3 × 3-64,
Conv3 × 3-128), and two fully-connected (FC-64 and FC-softmax). The second
one (CNN 2) has five convolutional (Conv3× 3-32, Conv3 × 3-32, Conv3 × 3-64,
Conv3 × 3-64, Conv3 × 3-128, Conv3 × 3-128) and three FC layers (FC-128,FC-
64,FC-softmax) that are organized similarly to VGG-Net [35]. All of them involve
convolutional layers with 3 × 3 Kernel filters in addition to 2 × 2 max-pooling,
with stride size equal to 1. All layers in the different configurations used ReLU
as an activation function except the output layer.

As deep neural networks can easily overfit when trained with small datasets,
the used CNNs are extended with three regularizing techniques [33]:

– Batch Normalization: deals with the feature space distribution variability
during the training. The input of the layer is normalized to be zero-mean with
unitary variance. This step not only acts as a regularizer, but also allows faster
training, higher learning rates, and less sensitivity to weights initialization.

– �1 Regularization: �1 regularization is the preferred choice when having a high
number of features as it provides sparse solutions. In our case, the regular-
ization parameter was set to λ = 0.001.

– Dropout : random disabling of neurons during training with rate p. Tem-
porarily ignoring some activation forces the other neurons to learn a more
robust representation of the input data while reducing the sensitivity of spe-
cific neurons. In our study, the dropout rate is set by cross validation to
p = 0.35.
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4.2 Experiment 1: Challenging Case

A challenging classification case is addressed in this experiment. The same CNNs
are used for CT images classification to identify Covid-19 infections from other
pneumonia. This task is challenging due to the rich content of CT images and
similarity between Covid-19 infection and other pneumonia. The COVID-CT
dataset contains 349 CT images positive for COVID-19 belonging to 216 patients
and 397 CT images that are negative for COVID-19. The dataset is open-sourced
to the public. We used 566 images for the train and 180 images for the test with
size of 230 × 230.

The reported scores in Table 1 indicate that the proposed method clearly out-
performs the competing optimizers in training both models to solve this challeng-
ing classification problem. Moreover, severe performance decrease is observed for
some optimizers like Adagrad. This is mainly due to the challenging classifica-
tion, which leads to a more complex learning process.

Table 1. Experiment 1: results for CT image classification using CNN 1 and CNN 2.

Optimizers CNN 1 CNN 2

Comp. time (hrs) Accuracy Loss Comp. time (hrs) Accuracy Loss

ns-HMC 0.40 0.84 0.26 0.51 0.88 0.22

MH 1.19 0.73 0.36 1.54 0.76 0.33

rw-MH 0.59 0.76 0.34 1.58 0.77 0.31

Adam 0.58 0.70 0.43 1.35 0.73 0.36

Adagrad 0.55 0.66 0.44 1.43 0.68 0.41

In order to confirm this performance decrease, Figs. 1 and 2 shows loss and
accuracy curves obtained using the competing optimizers, and this for CNN 1
and CNN 2, respectively. The displayed curves clearly indicate an overfitting
effect for classical optimizers, in contrast to the proposed method.

4.3 Experiment 2: CIFAR-10 Image Classification

In this scenario, the learning performance using the competing optimization
algorithms is evaluated using the standard CIFAR-10 dataset. The CIFAR-10
dataset consists of 60000 32 × 32 colour images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test images. The dataset
is divided into five training batches and one test batch, each with 10000 images.
The test batch contains exactly 1000 randomly-selected images from each class.
The training batches contain the remaining images in random order, but some
training batches may contain more images from one class than another. Between
them, the training batches contain exactly 5000 images from each class.

The reported scores in Table 2 indicate that the proposed method outper-
forms the competing optimizers in terms of learning precision, and hence clas-
sification performance. Furthermore, the competing optimizers do not perform



Efficient Bayesian Learning of Sparse Deep Artificial Neural Networks 85

(a): ns-HMC (b):MH (c): rw-MH

(d): Adam (e): Adagrad

Fig. 1. Experiment 1: train and test curves using CNN 1.

(a): ns-HMC (b):MH (c): rw-MH

(d): Adam (e): Adagrad

Fig. 2. Experiment 1: train and test curves using CNN 2.

well to learn both CNNs on the CIFAR-10 dataset. This confirms the ability of
the proposed method to allow different networks reaching high accuracy levels,
in contrast to standard optimizers, even when regularization is use. The gain in
terms of computational time using the proposed method is more important on
this experiment.
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Table 2. Experiment 2: results for CIFAR-10 image classification using CNN 1 and
CNN 2.

Optimizers CNN 1 CNN 2

Comp. time (hrs) Accuracy Loss Comp. time (hrs) Accuracy Loss

ns-HMC 1.17 0.92 0.22 5.13 0.93 0.19

MH 2.77 0.86 0.35 12.43 0.87 0.33

rw-MH 3.06 0.88 0.33 13.29 0.88 0.31

Adam 2.60 0.90 0.46 7.40 0.92 0.32

SGD 2.73 0.88 0.71 7.54 0.89 0.56

Adagrad 2.78 0.75 0.81 7.22 0.78 0.64

5 Conclusion

In this paper, we proposed a new Bayesian optimization method for fitting
weights for artificial neural networks. The suggested method uses Hamiltonian
dynamics to solve the problem of sparse regularization optimization. Our results
demonstrated the good performance of the proposed method in comparison with
standard optimizers, as well as classical Bayesian ones. Moreover, the proposed
technique allows simple networks to enjoy high accuracy and generalization prop-
erties. Future work will focus on testing our proposed optimizer with larger
datasets, as well as proposing a distributed or parallel implementation.
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Abstract. Many real-world tensors come with missing values. The task
of estimation of such missing elements is called tensor completion (TC).
It is a fundamental problem with a wide range of applications in data
mining, machine learning, signal processing, and computer vision. In the
last decade, several different algorithms have been developed, couple of
them have shown high-quality performance in diverse domains. How-
ever, our investigation shows that even state-of-the-art TC algorithms
sometimes make poor estimations for few cases that are not noticeable
if we look at their overall performance. However, such wrong estimates
might have a severe effect on some decisions. It becomes a crucial issue in
applications where humans are involved. Making bad decisions based on
such poor estimations can harm fairness. We propose the first algorithm
for tensor completion post-correction, called TCPC, to identify some of
such poor estimates from the output of any TC algorithm and refine
them with more realistic estimations. Our initial experiments with five
real-life tensor datasets show that TCPC is an effective post-correction
method.

Keywords: Tensor completion · Missing value estimation ·
Post-correction

1 Introduction

A tensor is a multi-dimensional array to extend scalars, vectors, and matrices to
higher orders. With this definition, scalars, vectors, and matrices can be consid-
ered zero-order, first-order, and second-order tensors.

Tensor completion deals with estimating the value of unobserved elements
in a tensor, based on the relationship between the known and unknown parts.
If there is no relationship between available and missing pieces, completion is
not possible. However, in real-life datasets, this is typically not the case, and
often there are various types of correlations and repetitions [1]. For vectors,
estimation of missing elements is straightforward. Linear, spline, or polynomial
interpolation are typically used. For the matrix data, the usual practice is to use
a low-rank approximation for recovering the missing elements. For the tensors,
there exist two major types of methods. The first group is based on trace norm
minimization, and the second class is based on low-rank tensor decomposition
techniques. This paper is not about a new method for TC, so we do not go into
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more details on the algorithms and solutions for TC. Instead, we refer readers
to a recent comprehensive survey on tensor completion algorithms [2].

Although state-of-the-art TC algorithms show promising performance in var-
ious domains and applications [2–4], our initial investigations show that even the
best state-of-the-art methods sometimes suffer from very poor estimations in a
few cases. Unfortunately, we cannot identify this problem when we look at the
overall performance. However, such poor estimates might have a severe effect
on some decisions. This issue becomes a critical challenge in applications where
humans are involved. Making wrong decisions based on such poor estimations
can harm fairness.

The current trend of solution development for tensor completion is more
focused on the general performance of these methods. New methods are typically
compared against previous techniques using global performance metrics such as
Mean absolute error (MAE) or Root Mean Square Error (RMSE).

There is almost no research devoted to making partial corrections on the
output of these algorithms. However, if we compare the individual estimation
of some of these state-of-the-art TC algorithms with ground truth, we observe
some peculiar estimations. For instance, we demonstrate the estimates of two
popular TC algorithms in Table 1. We can see that there are poor estimations
with 20 units of difference away from the ground truth. These cases are not that
common. That is why they have less influence on the overall error. However, if
we make no corrections on these cases, it may have severe consequences on the
concerned subjects. For instance, if values are in a million-dollar, 20 units of
difference translates to the same amount of revenue loss.

Given the above arguments, it is clear that post-correction of poor estima-
tions may have commercial value or avoid potential losses in some applications.
To solve this problem, we have to face this problem: How can we identify very
poor estimation? In Table 1 we used ground truth to show the poor predictions,
but in real-life problems, we know the indices of missing elements and nothing
more. So, how can we even assess the quality of estimations without having
ground truth values?

This research is an effort to answer these questions and provide a solution
for post-correction of TC solutions. To the best of our knowledge, this is the
first effort of this kind in the literature. We first introduce a novel data structure
that converts tensors of any order to a regular feature matrix. Later, upon the
new data structure, we develop our method to identify poorly estimated cases.
Finally, we propose an approach for correcting poor estimations.

2 Method

In this section, we first describe our proposed method. Later, we provide an
illustrative example and provide the time complexity analysis of the proposed
method.

The general idea of the proposed method is to transform both observed ele-
ments and missing elements into a unified space so that we can perform a near-
est neighbor search after we had the estimations by any TC algorithm. At first
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Table 1. An example of poor estimations of two popular state-of-the-art tensor comple-
tion methods on a few elements and our method’s corresponding correction (specified
with Corrected column). Dataset: Peppers, Missing ratio: 70%

Actual HaLRTC Corrected Actual t-SVD Corrected

4 –18.5885436 0 0 –29.292 0

212 238.3056218 229 212 268.4384 225

227 236.7395851 221 205 260.6259 225

2 –17.12847877 3 0 –30.3158 0

0 –17.30172716 3 213 245.5625 218

223 232.7940263 224 211 258.441 230

188 179.365688 177 207 247.9978 220

216 228.3721368 220 0 –28.9757 0

glance, it seems impossible to reach this objective since there is no information
except indices of elements of missing values. We propose to solve this problem
by performing normalization across the different combinations of modes, once
before TC output and once after. With this approach, we will have a unified
space before and after running the TC algorithm. We assume that if there is
a very close nearest neighbor in the observed tensor for a missing element, the
value of that nearest neighbor should be a better estimation than the original
estimation by the TC algorithm. We will explain this idea in more detail in the
following subsections.

2.1 Proposed Algorithm: TCPC

The proposed method is presented in Algorithm 1. The central part of this algo-
rithm is calling a sub-procedure called Tensor2MetaFeature to transform the
observed input tensor to a two-dimensional meta-feature matrix. This meta-
feature matrix preserves the information of multi-way interactions across differ-
ent mode permutations. We first describe this sub-procedure and then go into
the rest.

The sub-procedure Tensor2MetaFeature is presented in Algorithm 2, where
the algorithm receives the Nth-order tensor X and returns Meta-feature Matrix
M as an output. At line 2 of this algorithm we generate a ({1, .., N − 1})-order
permutations of modes’ indices, which is basically all possible {1, .., N −1} order
combinations between modes. For instance, C is defined as {1, 2, 3, (1, 2), (1,
3), (2, 3)} for a third-order tensor and {1, 2, 3, 4, (1, 2), (1, 3), (1, 4), (2, 3), (2,
4), (3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4) } for a fourth-order tensor.

At lines 6-17 we do multi-way normalization of the tensor elements. We use
min-max normalization using the following formula:

Xn =
X − minc

maxc − minc
(1)
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Where c refers to one of the generated above-explained permutations. If the
normalized value becomes lower than zero or greater than one, we replace it
with lower/upper limits. Also, if min and max are equal for some indices in a
particular permutation, we replace the normalized value with a very tiny quantity
to not become problematic in the nearest neighbor search.

The final meta-feature matrix M will have six columns for a third-order
tensor. The first three columns represent normalized tensor based on modes 1,
2, and 3, respectively. The following three columns correspond to normalized
values for second-order combinations: (1, 2), (1, 3), and (2, 3). For the fourth-
order tensor, the number of columns will be 14. The first four columns are
devoted to the first-order normalization, the following six columns represent
second-order normalization, and the last four columns correspond to third-order
normalization.

The rationale behind this approach is that we want to see how tensor elements
look like if we view them from a specific mode or combination of modes. Thus,
we create meta-features for each element of tensor, which later can be used for
similarity search.

Now let’s back to Algorithm 1. Once we generate tensor meta-feature O on
the observed tensor Xo we fill the missing values using our tensor completion
algorithm of interest. Then we recall Algorithm 2 again to re-estimate a new
meta-feature matrix, this time with the completed tensor Xc estimated by the
TC algorithm. We already have the meta-feature matrix computed for each miss-
ing element, so we find their nearest neighbor in the original meta-feature matrix
O. We assume that if two tensor elements have identical multi-way normalized
vectors, they should have a similar value. So, based on this, we make corrections
for those items with a neighbor with a very close distance to elements in the
observed tensor. So, the primary assumption we use here is that if there is a
very close neighbor for a missing element in the observed tensor, the nearest
neighbor’s value is more accurate than its estimation by the TC algorithm.

2.2 Illustrative Example

Figure 1 shows an illustrative example of the proposed method for a third-order
tensor. In this fictional example, we have six missing elements. The whole proce-
dure is composed of five steps specified in the figure with black circles and white
fonts.

In STEP 1, we compute the Meta-feature matrix for the observed elements
of the tensor using Algorithm 2. Since the example is for third-order tensor, all
possible permutations of modes’ indices (C in Algorithm 2) are {1, 2, 3, (1, 2),
(1 3), (2, 3)}. For instance, element (5, 6, 9) with value of 25 is transformed to
six-dimensional vector of (0.1702, 0.1817, 0.3083, 0.1665, 0.9021, 0.7246). The
first three values of this vector is obtained by normalizing 25 by min-max nor-
malization across the first, the second, and the third mode, i.e., Xo(5, :, :), Xo(:,
6, :) and Xo(:, :, 9), respectively. The following three values of the vector are
computed by normalizing 25 across second-order mode combinations, i.e., Xo(5,
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6, :), Xo(5 ,:, 9), and Xo(:, 6, 9), respectively, where Xo represents the observed
tensor.

In STEP 2, we estimate the missing values with our TC algorithm of inter-
est and complete the tensor with the estimated values. Later, in STEP 3, we
re-compute the meta-feature matrix via Algorithm 2, this time with the com-
pleted tensor Xc, and obtain the meta-features for missing elements. For exam-
ple, the missed item (3, 4, 5) that got estimation of 16.42 by the TC algorithm
obtains the six-dimensional meta-feature vector of (0.2166, 0.1800, 0.1651, 02833,
0.952, 0). This is obtained by min-max normalization of 16.42 over Xc(3, :, :),
Xc(:, 4, :) and Xc(:, :, 5), Xc(3, 4, :), Xc(3, :, 5), and Xc(:, 4, 5).

In STEP 4, we find their nearest neighbor and the corresponding distance
from the meta-feature matrix O (meta-features for observed elements) for each
missing element. For instance, in this fictional example, the nearest neighbor of
the missing element (3, 4, 5) is (3, 1, 11) with a distance of 0. So, we compute the
distance of the six-dimensional meta-feature vector of this element with all six-
dimensional vectors in the observed meta-feature and find the lowest distance.
Then we make corrections for those elements that have the nearest neighbor
with a distance lower than ε (in the example ε = 0.0001). By correction, we
mean replacing the estimation obtained via TC algorithm with the value of the
nearest neighbor from the observed tensor. For instance, since the neighbor of
element (3, 4, 5) has a value of 10, we replace the estimation of 16.42 with 10.
The idea is that if for any missing element there is a very close nearest neighbor
in the meta-feature space, the value of the nearest neighbor is more reliable than
the TC estimation, so by replacing it, we correct some of these poor estimations.

Fig. 1. Illustrative example of the proposed method for a third-order tensor
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2.3 Time Complexity

Computing meta-feature matrix requires O(2n‖C‖) (one time before TC and
one time after). Since ‖C‖ is a fixed value (e.g. for third-order tensor is equal to
6) the time complexity of this part is linear with the number of tensor elements.
The time complexity of nearest neighbor search is O(mn), where m is the number
of missing elements and n is the number of observed elements. This is dominant
part, which makes the total cost O(mn). In the very large datasets, use of this
post-processing approach is computationally justifiable if time complexity of the
chosen TC algorithm is greater or equal to O(mn). In any case the proposed
method is competitive when m << n, which makes the solution linear with the
number of observed tensor.

Algorithm 1. TCPC
Input tensor X, observed indices A, missing indices U , ε
Output: corrected completed tensor Xc

1: Xo ← X(A)
2: Xm ← X(U)
3: O ← Tensor2MetaFeature(Xo)
4: Xc ← TensorCompletion(Xo)
5: M ← Tensor2MetaFeature(Xc)
6: [NN, D] ← KNNSearh(O, M)
7: for All u in U do
8: if D(u) < ε then
9: Replace Xc(u) with NN.value

10: end if
11: end for

3 Experimental Evaluation

In this section, we present the empirical evidence on the effectiveness of the
proposed method.

3.1 Tensor Completion Algorithms

We test how the proposed method is effective in correcting estimations
of 12 TC algorithms. See Table 2 for more details. Some of these meth-
ods are highly cited (See the third column in Table 2) and quite pop-
ular in the community. The code of all of these algorithms is publicly
available in MATLAB package mctc4bmi (https://github.com/andrewssobral/
mctc4bmi) and another GitHub repository (https://github.com/Kaimaoge/
Tensor-decomposition-completion-and-recovery-papers-and-codes) or from the
authors’ websites.

https://github.com/andrewssobral/mctc4bmi
https://github.com/andrewssobral/mctc4bmi
https://github.com/Kaimaoge/Tensor-decomposition-completion-and-recovery-papers-and-codes
https://github.com/Kaimaoge/Tensor-decomposition-completion-and-recovery-papers-and-codes
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Algorithm 2. Tensor2MetaFeature
Input Nth-order tensor X
Output: M

1: C ← (N − 1)-order permutations of modes’ indices
2: % e.g., For 3rd-order tensor, C={1,2,3,(1,2),(1,3),(2,3)}
3: for i = 1 : |C| do
4: for each index combination k in C{i} do
5: id ← elements of X satisfying C{i}{k}
6: mn = min(X(id)); mx = max(X(id))
7: if (mx − mn) �= 0 then
8: M(id, i) = (X(id) − mn)/(mx − mn)
9: if M(id, i) < 0 then

10: M(id, i) = 0
11: end if
12: if M(id, i) > 1 then
13: M(id, i) = 1
14: end if
15: else
16: M(id, i) = 10−10

17: end if
18: end for
19: end for

Table 2. Tested tensor completion algorithms

Name P. Year Cited Type Optimization

HaLRTC [5] 2012 1225 Tucker ADMM

SPC [1] 2016 146 PARAFAC Hierarchical ALS

BCPF [6] 2015 300 PARAFAC Bayesian

NNFCP [7] 2018 24 PARAFAC Nesterov’s optim. grad.

T3C WOPT [8] 2017 21 Tensor-Train Weighted optimization

T3C SGD [9] 2019 21 Tensor-Train SGD

geomCG [10] 2014 251 Tucker Riemannian optimization

ncpc [11] 2013 815 NN-PARAFAC Block Coordinate descent

TenALS [12] 2014 167 PARAFAC ALS

TMac [13] 2013 215 MatrixFactorization Cyclic block minimization

tSVD [14] 2014 377 Tensor-SVD ADMM

tTNN [15] 2015 20 Tensor-SVD ADMM
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3.2 Datasets

We use five publicly available tensor datasets (See Table 3), which are widely
used in tensor completion and decomposition problems. Our claim is not com-
putational efficiency, so we intentionally did not choose large datasets for more
efficient experimental evaluation. However, the selected datasets have an appar-
ent tensor (multi-way) structure.

3.3 Evaluation Metric

We use Mean absolute error (MAE) for the evaluation of performance. MAE is
a widely used metric in the TC literature. It is defined as:

MAE =
∑m

i=1 |Yi − Xi|
m

Where m is the number of missing elements and Yi represents the estimations
for missing elements, and Xi is a ground truth data.

Table 3. Datasets

Dataset Size Type Domain Ref.

Peppers (256, 256, 3) Visual image Computer vision [16]

Amino (5, 201, 61) Fluorescence data Chemometrics [17]

Ribeira (203, 268, 33) Hyperspectral image Computer vision [18]

Sugar (268, 571, 7) Fluorescence data Chemometrics [19]

Tongue (13, 10, 5) Processed X-ray Computer vision [20]

3.4 Experimental Configuration

We use default parameters in the software packages for running TC algorithms,
except two parameters in optimization that are set equal for all methods for fair
comparisons among them. These parameters are tol (lower band change tolerance
for convergence detection) and the maximum number of iterations, which are set
as 10−5 and 500, respectively. The only parameter of our method is ε, which is
the ε for one estimation get selected as a potential candidate for correction. In
the first part of the experiment, we set this as 10−4, but we will present the
performance of the proposed method on different TC algorithms on a broader
range from 0 to 0.1 by an increment of 0.00002, in total 500 possible ε values.

Note that our method is not a new TC algorithm. We claim that our proposed
method can improve some poor estimations of any TC algorithm. So, optimizing
the hyper-parameter of TC algorithms is not relevant in our empirical evaluation.
However, it can be good to see in what hyperparameter configuration our post-
processing approach works better for each of these algorithms. However, due to
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the scale of required experiments, we do not perform this experiment for this
report and postpone it for the journal version.

All five datasets are full tensors. So, we artificially remove 30% and 70%
of elements to assess both conditions where missing elements are in minority
and majority, respectively. We do this because some algorithms exhibit poor
performance when the missing ratio is higher than the observed elements and
vice versa. So, we should see how our TCPC method performs on both of these
settings.

3.5 Evaluation of TCPC on Improvement of TC Estimation

To evaluate how TCPC is effective in correcting poor estimations, we apply it
after we performed tensor completion via 12 TC algorithms on five datasets.
The partial MAE result for ε = 10−4 is presented in Table 4 and Table 5 for
two missing ratio configurations 30% and 70%, respectively. In the table, “N”
represents the number of treated cases, “Original” represents the partial MAE
for original estimations by TC algorithms, and “Corrected” corresponds to the
partial MAE after applying TCPC.

As we can see, TCPC, in the majority of cases, has been able to effectively
correct estimations for missing elements that had a very close nearest neighbor
in the meta-feature space. However, it seems that its competitiveness may also
depend on the TC algorithm and the dataset properties.

For instance, TCPC is more effective for some datasets such as Sugar, Pep-
pers, and Ribeira. TCPC has been capable of post-correcting outputs of all 12
algorithms (except for Ribeira dataset on TenALS), both in terms of partial
MAE measured and the number of corrections. This observation is important
because most of the current application of TC is with image data.

TCPC also sounds more robust upon some TC algorithms such as TMac,
HaLRTC, and tSVD and geomCG, ncpc, and tTNN. For instance, we can observe
that TCPC has been effective in almost all datasets on both missing ratio set-
tings with these algorithms. This is an interesting result because we can safely
prescribe TCPC for highly popular methods such as HaLRTC and tSVD, irre-
spective of the dataset properties.

Comparing the results with 70% missing ratio versus 30% missing ratio also
reveals that when missing elements are higher than the observed elements, TCPC
sounds more valuable. This is also promising because we have highly sparse
tensors in modern applications such as recommender systems and time-evolving
networks.

3.6 Sensitivity of TCPC’s Unique Parameter: ε

As we can see in Algorithm 1 the unique parameter of the algorithm is ε. Contrary
to the parameter of many algorithms, ε is highly intuitive. Since each value in
the meta-feature vector is a normalized value in the range of [0, 1], a distance
of 10−4 between two points can be shown and interpreted in this space for a
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Table 4. Partial MAE for corrected elements - 30% missing ratio

Dataset HaLRTC SPC BCPF NNFCPT3C WOPTT3C SGD geomCGncpc TenALSTMac tSVD tTNN

Amino

N 4 4 4 2 3 1 2 3 6 1 1 3

Original 2.07 5.01 5.40 6.36 3.98 49.73 8.85 5.45 537.67 8.73 36.04 2.06

Corrected 2.19 13.84 26.82 20.86 14.26 13.44 6.72 15.66 68.72 6.91 8.65 3.70

Peppers

N 2 5 2 6 2 1 3 2 2 2 4 4

Original 20.15 30.18 64.59 19.04 73.43 89.73 59.35 49.16 154.74 55.91 20.19 11.42

Corrected 5.5 7 4 1.66 9 84 15.66 19 8.5 4 4.5 1.5

Ribeira

N 274952 6 4 0 5 2 3 0 2 3 6 2

Original 0.33 0.02 0.16 — 0.19 0.17 0.19 — 0.48 0.10 0.06 0.04

Corrected 0.32 0.02 0.11 — 0.15 0.17 0.11 — 0.54 0.10 0.06 0.04

Sugar

N 4 5 4 1930 2 0 4 61 3 5 7 12

Original 24.19 40.96 148.22 0.80 5583.65 — 237.10 5.55 947.95 107.79 15.28 7.44

Corrected 1.04 0.87 12.46 0.45 500.10 — 10.30 0.18 1.61 8.60 1.11 0.89

Tongue

N 195 1 1 195 2 2 2 1 0 0 0 0

Original 1.55 0.03 0.30 1.55 1.57 0.27 9.04 0.16 — — — —

Corrected 1.35 0.05 0.15 1.35 1.1 0.35 1.87 0.15 — — — —

Table 5. Partial MAE for corrected elements - 70% missing ratio

Dataset HaLRTC SPC BCPF NNFCPT3C WOPTT3C SGD geomCGncpc TenALSTMac tSVD tTNN

Amino

N 5 5 1 0 2 0 2 6 0 1 2 5

Original 4.29 3.54 9.72 — 21.67 — 11.68 0.04 — 1192.56 58.90 7.75

Corrected 5.20 4.75 6.68 — 17.06 — 6.72 0.04 — 707.36 9.29 5.23

Peppers

N 5 3 3 1 2 3 2 22 0 3 4 4

Original 19.37 38.00 61.57 129.42 72.35 63.81 75.88 9.61 — 57.02 42.91 25.21

Corrected 6 1.66 8.66 25 0 57.33 5.5 6.86 — 8 8.25 4

Ribeira

N 274952 6 4 0 5 2 3 0 2 3 6 2

Original 0.33 0.02 0.16 — 0.19 0.17 0.19 — 0.48 0.10 0.06 0.04

Corrected 0.32 0.02 0.11 — 0.15 0.17 0.11 — 0.54 0.10 0.06 0.04

Sugar

N 4 3 4 3231 3 1 4 85 4 2 4 5

Original 22.55 66.09 168.27 0.21 2836.53 2.40 247.59 7.33 1975.84 185.96 24.41 9.63

Corrected 0.83 0.89 15.98 0.09 266.89 1.61 11.15 0.18 5.49 15.44 1.33 1.79

Tongue

N 455 2 0 455 2 4 3 1 0 5 0 1

Original 1.60 0.13 — 1.60 13.86 1.88 42.35 5.35 — 2.99 — 0.12

Corrected 1.30 0.15 — 1.30 1.95 0.67 1.86 1.4 — 1.43 — 0.1
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(a) HaLRTC (b) SPC (c) BCPF

(d) NNFCP (e) T3C-WOPT (f) T3C-SGD

(g) geomCG (h) ncpc (i) TenALS

(j) TMac (k) tSVD (l) tTNN

Fig. 2. Sensitivity: error improvement percentage (y) versus ε (x) on five datasets

six-dimensional vector. However, to have an idea that in what range TCPC has
more value, we plot estimation error improvement by TCPC versus ε from 0.0000
to 0.10000 with an increment of 0.0002 (totally 500 possible value for ε) applied
upon each of TC algorithms on five datasets for two missing ratios.

The results are presented in Fig. 2, for missing ratio 30%. The plots show
estimation error improvement in percentage in the x-axis versus ε in the y-axis.
The improvement line is also specified with a dashed line for different datasets.
The more above improvement line, the more effective TCPC is for different ε
values.

The general observation is that by increasing ε more than 0.001, there will be
a risk that TCPC is not effective anymore. The safest value is perhaps 10−4 that
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we used in the experiments. But, for some methods such as TenALS we might
be able to set ε to larger numbers and make more corrections. For T3C-SGD we
observe abnormal behavior that cannot be seen in other methods. For instance,
for the Amino dataset, for any ε value, we have improvement, while for other
datasets, any ε value does not give any improvement.

4 Conclusion and Future work

We propose the first procedure, called TCPC, for post-correction of tensor com-
pletion’s outcome. This general procedure can partially correct poor estimations
of any TC algorithm. We show empirical evidence on the effectiveness of TCPC
on different datasets and two missing ratio conditions of 30% and 70%. We
demonstrate that TCPC is effective upon state-of-the-art popular algorithms
such as HaLRTC and t-SVD, but less effective on not very accurate methods.
We also show that TCPC can be helpful for exact predictions of missing ele-
ments. According to our experiments, the current TC algorithms never make
exact estimations. Thus, in the applications where exact estimation is required,
TCPC upon an accurate TC algorithm can provide competitive results with
some exact estimations.

The future work includes three main directions: 1) deeper evaluation of TCPC
with more diverse data sets and configurations; 2) Further investigation on exact
predictions is another exciting area to explore; and 3) investigation on the use-
fulness of tensor meta-feature on other problems such as clustering and anomaly
detection [21].
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Abstract. The benefit of locality is one of the major premises of LIME, one of
the most prominent methods to explain black-box machine learning models. This
emphasis relies on the postulate that the more locally we look at the vicinity of an
instance, the simpler the black-box model becomes, and the more accurately we
can mimic it with a linear surrogate. As logical as this seems, our findings suggest
that, with the current design of LIME, the surrogate model may degenerate when
the explanation is too local, namely, when the bandwidth parameter σ tends to
zero. Based on this observation, the contribution of this paper is twofold. Firstly,
we study the impact of both the bandwidth and the training vicinity on the fidelity
and semantics of LIME explanations. Secondly, and based on our findings, we
propose S-LIME, an extension of LIME that reconciles fidelity and locality.

Keywords: Explainable AI · Interpretability

1 Introduction

The pervasiveness of complex automatic decision-making nowadays has raised multiple
concerns about the implications of AI for the values of fairness, trust, transparency, and
privacy [2,4,13]. These concerns have propelled a plethora of work in explainable AI, a
domain concerned with the design of models that can provide high-level comprehensive
explanations for their answers. These models can be either explainable-by-design, or
rely on external modules that compute explanations a posteriori. This need for post-
hoc explainability is particularly compelling for sophisticated machine learning models,
e.g., neural networks, whose logic is perceived as a black box by lay users.

One of the most prominent modules to compute post-hoc explanations for black-
box supervised ML models is LIME [15]. This approach builds upon the notion of local
feature attribution via a linear surrogate. Feature attribution means that the explanation
quantifies the contribution of a set of features to the black box’s answer. This allows
users to build a ranking of the features that play the biggest role in the model’s logic. We
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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say the explanation is local because it only holds for a target instance and its vicinity.
By focusing on a region of the feature space, LIME reduces the complexity of the black
box and can approximate it using a surrogate sparse linear function whose coefficients
constitute the feature attribution scores of the explanation. To learn this surrogate, LIME
constructs a training set by generating artificial instances – called neighbors – around
the target instance, and labeling them using the black box. The neighbors may not lie in
the original feature space, but rather on a surrogate space that is meaningful to humans,
e.g., image segments instead of pixels for images. The neighbors are weighted using an
exponential kernel that depends on the distance to the target and a bandwidth parameter
σ ∈ R+. The weighting process controls the level of locality of the explanation: the
smaller σ is, the more local the explanation becomes as closer neighbors are weighted
higher than farther ones. More locality also implies focusing on a smaller region where
the black box is presumably easier to approximate.

As logical as this sounds, our experiments suggest that small values of σ can yield
unfaithful or even trivially empty explanations. This counter-intuitive result has thus
motivated this work, which brings two contributions: (a) A study of the impact of the
bandwidth and the training vicinity on the fidelity and semantics of LIME, namely the
meaning of the feature attribution scores1; and (b) S-LIME, an extension of LIME that
can solve the locality-fidelity paradox.

This paper is structured as follows. In Sect. 2 we introduce some background con-
cepts and notations. We elaborate on our contributions in Sects. 3 and 4. Section 5
presents an experimental evaluation of S-LIME. In Sect. 6 we survey the state of the
art. Section 7 concludes the paper.

2 Preliminaries

Black Boxes and Linear Surrogates. We assume our black box is a classification func-
tion f : Rd → R (d ∈ Z+) that predicts the probability that a target instance x ∈ Rd

belongs to a given class. We denote by x[i] the i-th feature of x. Conversely, the expla-
nation g : Rd̂ → R (d̂ ∈ Z+) is a linear surrogate function that approximates f in
the locality of x, i.e., g(x̂) = α̂0 +

∑
1≤i≤d̂ α̂ix̂[i]. Note that g may be defined on a

surrogate space different from f ’s. This implies the existence of a conversion function
ηx : Rd̂ → Rd from the surrogate to the original space.

LIME. In [15], the authors propose a model-agnostic method to compute local explana-
tions for ML models in the form of sparse linear surrogates. LIME learns an explanation
g for a black box f and an instance x by solving the following minimization problem:

g = argmin
g∈G: ‖α̂‖0�k

Lx(f, g) (1)

In other words, the surrogate g is chosen such that it minimizes the error Lx w.r.t. the
answers of f on a neighborhood X around a target instance x. To keep the explanation
meaningful to humans, LIME restricts itself to surrogate functions g with less than k

1 By semantics of LIME, we mean the information carried by the feature attribution scores.
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non-zero parameters, where k is a user-configurable hyper-parameter set by default to 6.
LIME does not assume access to the training data of the black box2, therefore the neigh-
bors z ∈ X take the form z = ηx(ẑ) where ẑ ∈ X̂ ⊆ {0, 1}d̂ is a synthetic instance that
lies on a binary space. This space is interpretated as the presence or absence of features
of the target x, so that x = ηx(x̂) with x̂ = 1d̂. The neighbors in X̂ are obtained by
toggling off bits in x’s binary representation x̂. When a bit is set to zero in the sur-
rogate space, the conversion function ηx must map the resulting vector to the original
space. For images, this can be achieved by replacing the toggled-off super-pixels with a
baseline monochrome segment or with a patch from another image [16]. LIME weighs
the neighbors in X̂ according to a kernel function πσ

x (based on a distance D and a
bandwidth hyper-parameter σ ∈ R+) on the surrogate space, that is,

Lx(f, g) =
∑

ẑ∈X̂
πσ

x (ẑ)(f(ηx(ẑ)) − g(ẑ))2, with πσ
x (ẑ) = exp

(−D(x̂,ẑ)2/σ2
)
.

The hyper-parameter σ controls the locality of the explanation so that smaller values
give more weight to the instances that lie close to x̂, i.e., those instances with fewer
toggled-off bits. LIME does not make any assumptions about the inner-workings of f ,
however the distance D and the conversion functions ηx depend on f ’s original space,
which at the same time depends on the instances’ data type.

Quality Metrics. The quality of the local surrogate g is evaluated in terms of its fidelity,
which can be measured via the surrogate’s adherence to the black box f in the vicinity of
x. Adherence is usually measured via the coefficient of determination R2 [5,17,20]. The
R2 score measures the similarity between the predictions of both functions, compared to
the variance of the black-box prediction. This coefficient lies in (−∞, 1], where R2 = 1
means g fits f perfectly and R2 = 0 (respectively R2 < 0) implies that g is as accurate
as (resp. less accurate than) the best constant model.

When a gold standard set Ff (x) of important features is available, we can also
calculate fidelity as the agreement between the explanation and the gold standard. This
can be quantified via metrics such as recall [15], precision, or coverage [8]. Assuming
the surrogate and the original feature spaces are identical, if the explanation g for the
target instance x reports features Fg(x) as the most important, the recall and precision

of g are respectively |Ff (x)∩Fg(x)|
|Ff (x)| and |Ff (x)∩Fg(x)|

|Fg(x)| . Coverage can be used for data
types where segments, i.e., conglomerates of contiguous features, are more meaningful
to humans than individual features. Examples are time series and images. For those
cases, the coverage is the proportion of the gold standard regions that overlap with the
regions reported by the surrogate. Further specialized metrics have been proposed to
measure the fidelity of pixel attribution explanations for image classifiers [9].

3 Locality vs. Fidelity

In this section we study the impact of two important elements of LIME on the fidelity
and semantics of explanations, namely the bandwidth σ and the neighborhood X̂ .

2 The exception to this rule is its implementation for tabular data.
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(a) σ = 0.1 (b) σ = 0.75 (c) σ = 100

Fig. 1. LIME explanations for three different bandwidths on the same instance of the wine dataset
(k = 4).

3.1 The Paradox of Small Bandwidth

We illustrate the impact of σ on the output of the tabular variant of LIME3, which
we use to explain a random forest classifier trained on the UCI wine dataset4. Tabular
LIME sets σ = 0.75 with no further explanation. Changing σ can, however, drastically
change the resulting explanation as depicted in Fig. 1. In particular, LIME computes
null attribution coefficients when σ = 0.1. Changing σ from 0.75 to 100 rearranges the
attribution ranking of the features.

To investigate the cause of this instability, we measure the adherence of the surro-
gate in X̂ as σ varies for all the test instances of the dataset. We plot the results for two
instances in Fig. 2a, where instance 2 is the example explained in Fig. 1.

(a) R2 vs. σ (b) σ = 0.1 (c) σ = 100

Fig. 2. Left: Impact of the bandwidth σ on the R2 score of LIME for two instances of the wine
dataset. Right: Distribution of the neighborhood weights for instance 2.

We recall that the R2 score is calculated as 1 − vr(g)/v(f), where vr(g) is the resid-
ual sum of squares of the surrogate g and vr(f) is the total sum of squares of f ’s
answers. This means that the surrogate accounts for no more than 60% of the variabil-
ity of the black box in X̂ . The dashed regions of the curves indicate that the surrogate
model has degenerated into a set of zero weights. This points out a counter-intuitive
phenomenon: higher locality – achieved by making σ small – yields poor explanations.
We also observe that the R2 may not increase monotonically with σ. Based on these

3 The discretization is off, hence the classifier and the explanation operate in the same space.
4 https://archive.ics.uci.edu/ml/datasets/wine.

https://archive.ics.uci.edu/ml/datasets/wine
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(a) Logistic Regression (b) σ = 0.5 (c) σ = 1.0

Fig. 3. Left: A logistic regression classifier and a neighborhood (denoted by + marks) generated
on a 2D discrete surrogate space. Center and right: Two LIME explanations. The gradient of
each of these functions at the target example (denoted by the * mark) is orthogonal to the bor-
der between white area and black area. The explanation in the middle captures the black box’s
gradient more faithfully. (Color figure online)

observations, we devise two research questions that drive our contribution: (i) Why do
seem locality and fidelity in opposition?, and (ii) what makes a good LIME explanation?

3.2 Why do Seem Locality and Fidelity in Opposition?

We investigate the cause of this paradox by means of Figs. 2b and 2c that depict the
distribution of weights for the neighbors of instance 2 for σ = 0.1 and σ = 100. In the
first case, the LIME surrogate is a degenerated model that predicts a constant as hinted
by Fig. 2a and its corresponding explanation in Fig. 1a. Figure 2b tells us that the bulk
of the weights is concentrated on the target instance. Such a phenomenon leads to a
trivial training set. Even though locality is defined in terms of the entire set of instances
in X̂ , almost all of them are dispensable because they do not have any influence when
learning the surrogate. The situation is less skewed for σ = 100 (Fig. 2c), which yields
the non-trivial explanation in Fig. 1c.

From this analysis we conclude that the selection of σ and the construction of X̂
must go in hand. We thus propose a strategy to jointly select them in Sect. 4.

3.3 What Makes a Good LIME Explanation?

The human aspects of interpretability are beyond the scope of this paper; instead this
study is concerned with the quality and meaningfulness of explanations from a mathe-
matical point of view. As suggested by [6], LIME computes a scaled version of the gra-
dient ∇f for linear black boxes f . The scaling arises because the surrogate is learned
on a finite number of neighbors in a discrete space, and the scaling factor depends on x,
σ, ηx, and X̂ . We argue that in the absence of a reference instance (as in [12,18,19]),
explanations based on instantaneous gradients are meaningful and desirable because
their semantics are well-defined: the surrogate gradient ∇̂f(x) is the contribution of
each surrogate feature to f ’s change rate at point x. That said, LIME does not always
estimate ∇̂f accurately as suggested by Fig. 3. The figures show that the weights asso-
ciated to the neighbors may yield an estimation that differs largely from the black box’s
actual gradient in Fig. 3a.
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Algorithm 1. S-LIME applied to black-box function f at target instance x

Require: Conversion function ηx, distribution νσ on the surrogate space
Require: Number k of features in the explanation, number n of local examples

1: X̂ ←
{

ẑ(i) : i = 1, . . . , n
}

, where ẑ(i) ∼ νσ for i = 1, . . . , n

2: return argming∈G: ‖α̂ ‖0�k

∑
ẑ∈X̂ (f(ηx(ẑ)), g(ẑ))2

4 S-LIME

To tackle the locality-fidelity paradox explained in Sect. 3.1, we introduce an extension
of LIME, called S-LIME (Smoothed LIME), that we detailed in the following.

4.1 Generic Algorithm

LIME may compute degenerated explanations due to two main factors: (i) the discrete-
ness of the surrogate space, and (ii) the fact that instance generation and weighting are
decoupled. Indeed, LIME first generates a discrete neighborhood X̂ (independently of
σ), and then weighs the instances in X̂ using πσ

x . In the extreme cases when σ tends to
zero, the weighting is concentrated on x̂.

To prevent this skewed concentration of weights, we control the locality of the
explanation in a single step (see Algorithm 1). Hence, we define the neighbors in the
continuous space [0, 1]d̂ and populate X̂ with examples ẑ whose distance D to x̂ is of
the same magnitude as σ. Concretely, the neighborhood X̂ = {ẑ(1), . . . , ẑ(n)} consists
of n equally-weighted instances drawn independently from a distribution νσ . Such a
design decision enables g to approximate ∇̂f when σ tends to zero, without hinder-
ing interpretability: g still combines the contributions of the surrogate features linearly,
and we can still confer an interpretable meaning to the neighbors as later explained in
Sect. 4.4. Moreover, this allows controlling locality via the bandwidth of the neighbor-
hood distribution, and not anymore through an a-posteriori weighting.

Note that S-LIME also requires the definition of new conversion functions ηx as X̂
is now a subset of the continuous space [0, 1]d̂ instead of the discrete space {0, 1}d̂. In
Sect. 4.4 we provide examples of proper distributions νσ and functions ηx for images,
time series, and tabular data.

4.2 S-LIME Subsumes LIME

Lemma 1. Let f be a function and x a target instance. There is a distribution νσ over
[0, 1]d̂ such that LIME and S-LIME are minimizing the same expected loss function.

Proof. LIME outputs a function g that minimizes the loss Lx(f, g) which is the resid-
ual sum of squares of the examples drawn from a distribution ν. The expectation of this

loss function w.r.t. to a random neighborhood is Eẑ∼ν

[
πσ

x (ẑ) (f(ηx(ẑ)) − g(ẑ))2
]
.

Remark that ν is a distribution on the finite space {0, 1}d̂, then ν =
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∑
ẑ∈{0,1}d̂ wν(ẑ)δ(ẑ), where δ(ẑ) is the Dirac distribution at point ẑ, and wν(ẑ) is

a positive real number.
Similarly, S-LIME returns the linear surrogate g that minimizes a loss with expec-

tation Eẑ∼νσ

[
(f(ηx(ẑ)) − g(ẑ))2

]
. Let Z be

∑
ẑ∈{0,1}d̂ πσ

x (ẑ)wν(ẑ). If we consider

S-LIME with generating distribution νσ = 1/Z
∑

ẑ∈{0,1}d̂ πσ
x (ẑ)wν(ẑ)δ(ẑ), then

Eẑ∼νσ

[
(f(ηx(ẑ)) − g(ẑ))2

]
=

∑

ẑ∈{0,1}d̂

πσ
x (ẑ)wν(ẑ)

Z
(f(ηx(ẑ)) − g(ẑ))2

=
1
Z
Eẑ∼ν

[
πσ

x (ẑ) (f(ηx(ẑ)) − g(ẑ))2
]
,

which concludes the proof.

Remark 1. It follows from Lemma 1 that S-LIME may be used as a placeholder for
LIME. Still, the proposed distribution νσ is practical only when d is small, or when
νσ corresponds to a well-known distribution. Otherwise, storing the 2d̂ coefficients
πσ

x (ẑ)wν(ẑ) is unpractical. Anyway, we demonstrate in Sect. 5 that S-LIME with a
continuous distribution is more faithful than LIME.

4.3 S-LIME and the Gradient of the Black-Box Function

Let us assume the surrogate function f ◦ ηx to be differentiable at x̂. Let us also denote
by α̂ the weights of the linear model returned by S-LIME when we drop the sparseness
constraint. Then for any family of continuous distributions νσ on [0, 1]d̂, such that their
mass concentrates on x̂ when σ tends to zero, α̂ tends to the gradient ∇̂f(x) of f ◦ηx at
point x̂. An example of such family of distributions is the set {N (

x̂, σ2III
)
, σ ∈ R+} of

Gaussian distributions centered at x̂ with variance σ2III , where III is the identity matrix.
This property has two main implications. First, while LIME degenerates as σ

approaches zero, S-LIME remains well-defined for any value of σ. Secondly, we know
what S-LIME is targeting when we look locally at x̂: ∇̂f(x).

Remark 2. There are settings for which surrogate gradients are meaningless: piece-wise
constant functions such as random forests. In such a scenario, S-LIME outputs a zero
gradient as soon as the bandwidth of the generating distribution is small enough. While
the weights returned by S-LIME are mathematically consistent for such kinds of mod-
els, they are useless as they carry on information that is too local. If that is the case,
users may pick a higher value for σ, or resort to a rule-based surrogate [16].

4.4 S-LIME Implementations

Let us now discuss examples of concrete distributions νσ and functions ηx. The gener-
ating distribution νσ is the same for image and time series datasets: the uniform distri-
bution on [1 − σ, 1]d̂, with σ ∈ (0, 1]. As needed, this distribution concentrates around
the surrogate target x̂ = 1d̂ when σ tends to zero.
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In regards to the conversion function ηx, we recall that for both images [15] and
time series [8], LIME splits the original instance into d̂ contiguous regions, namely
super-pixels for images or fragments of fixed size for time series. Those regions define
the features of the surrogate space. Given a neighbor ẑ ∈ X̂ and a surrogate feature j,
we can project ẑ back to the original space by interpolating the original features of the
target x with a baseline x0, i.e., ηx(ẑ)[i] = (1 − ẑ[j])x0 + ẑ[j]x[i] for all the original
features i, i.e., pixels or time measures, covered by segment j. We set x0 = 0 in our
experiments, i.e., the interpolation is done w.r.t. a black image and a null time series.

Finally, for tabular data we consider one surrogate feature per original feature.
Therefore, the generating distribution νσ is the centered multivariate Gaussian distri-
bution with covariance σ2III , and the function ηx(ẑ) = x + ẑ.

Remark 3. The design of a proper distribution νσ and a proper function ηx requires the
black-box model to handle examples living in a continuous space. As a consequence,
S-LIME cannot be defined for text data.

5 Experiments

We now show-case the impact of the bandwidth σ on the fidelity of LIME and S-LIME
explanations. We first detail our experimental setup and then elaborate on our findings.

5.1 Experimental Settings

Datasets and Black Boxes. We conduct our experiments on a variety of datasets, com-
prising Cifar10 [10] and MNIST [11] for image data, the FordA and StarlightCurves
time series datasets from the UEA & UCR Time Series Classification Repository, and
the Compas and Diabetes datasets from the UCI Machine Learning Repository for tab-
ular data. We also consider a selection of black-box models, which may be smooth or
piece-wise constant, simple or complex, interpretable or not.

Protocol and Metrics. For each combination of dataset, model, and explanation mod-
ule, we compute the average value of the experimental metrics for different values of σ
on the test instances of the dataset. The experimental metrics were introduced in Sect. 2:
the R2 score for all models, and the precision/recall or the coverage for the interpretable
models, i.e., those for which a ground truth is available. All these metrics take values
either in (−∞, 1] or in [0, 1], and higher values denote higher fidelity.

5.2 Impact of σ

To study the impact of σ on the fidelity of the LIME and S-LIME explanations, we
plot the surrogate’s adherence on the StarlightCurves dataset for several black-box
models all using 100 random shapelets as input features. The models include Learn-
ing Shapelets (LS) [7], RESNET [21], Fast Shapelets (FS) [14], and a sparse logistic
regression (LR, with L1-regularization to enforce at most 10 features). The results are
depicted in Fig. 4. We set k = 6 for the number of features in explanations [15].
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(a) S-LIME on LS (b) S-LIME on RES. (c) S-LIME on LR (d) S-LIME on FS

(e) LIME on LS (f) LIME on RESNET (g) LIME on LR (h) LIME on FS

Fig. 4. R2 and coverage vs. σ on the StarlightCurves dataset. Each subplot corresponds to a
couple (explainer, dataset). The plotted results are averaged on the instances of the test dataset.
Recall that for S-LIME σ is defined in (0, 1].

(a) S-LIME on RESNET (b) S-LIME on LR

Fig. 5. R2 and coverage vs. σ on the StarlightCurves dataset. Each subplot corresponds to a
couple (explainer, dataset). Each curve corresponds to one target instance.

We observe that very local S-LIME neighborhoods lead to higher adherence and
coverage, except for FS. This translates into more faithful explanations as σ approaches
zero, where LIME cannot deliver proper explanations. In contrast, LIME achieves
higher adherence and coverage for FS, because this model is a decision tree. Hence, the
decision function is piece-wise constant and its gradient is zero almost every-where.
When σ is small enough, S-LIME recovers this gradient and returns an explanation
with null coefficients, which has little practical value. That said, a wider locality can
still yield a more informative explanation.

We also remark that, for complex models, the best value for σ may depend on the
target instance. This is corroborated by Fig. 5 that shows the disaggregated results for
3 instances on RESNET, a deep neural network. We can observe that the adherence is
maximal when σ is equal 10−4, 3×10−3, and 2×10−2 respectively. On the other hand,
the same values of σ are optimal for all examples on a simpler LR model.

Finally, we highlight that the coverage peaks when the adherence is maximal both
at the instance (Fig. 5b) and dataset level (Figs. 4(cdgh)). This shows the pertinence of
the R2 score as metric to select the right level of locality.
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Table 1. Best average recall and precision, or coverage (std. in parentheses) on different datasets
and interpretable black-box classifiers.

Data type Dataset Model S-LIME LIME

Rec. or Cov. Precision Rec. or Cov. Precision

Timeseries FordA LR on shapelets 0.87 (0.15) – (–) 0.73 (0.17) – (–)

Fast shapelets 0.51 (0.30) – (–) 0.49 (0.27) – (–)

Starlight-curves LR on shapelets 0.81 (0.17) – (–) 0.75 (0.17) – (–)

Fast shapelets 0.68 (0.19) – (–) 0.45 (0.15) – (–)

Tabular data Diabetes Logistic reg. 1.00 (0.00) 1.00 (0.00) 0.88 (0.12) 0.88 (0.12)

Dec. tree 0.95 (0.13) 0.81 (0.20) 0.94 (0.14) 0.80 (0.20)

Compas Logistic reg. 1.00 (0.00) 1.00 (0.00) 0.52 (0.21) 0.52 (0.21)

Dec. tree 0.66 (0.33) 0.25 (0.00) 0.65 (0.33) 0.33 (0.00)

Table 2. Best average R2 (std. in parentheses) on different datasets and black-box classifiers.
MLP stands for a neural network with one hidden layer composed of 100 neurons and logistic
sigmoid activation function. Column Int. indicates interpretable black-box models (�). FS, DT
and RF are put aside as they are piecewise constant models.

Data type Model Int. k S-LIME LIME k S-LIME LIME

Images MNIST Cifar10

Alexnet 10 0.80 (0.28) 0.58 (0.20) 10 0.84 (0.10) 0.55 (0.25)

VGG16 10 0.56 (0.43) 0.57 (0.21) 10 0.69 (0.13) 0.50 (0.27)

Timeseries FordA StarlightCurves

Learning shapelets 6 0.84 (0.08) 0.57 (0.15) 6 0.92 (0.07) 0.70 (0.07)

RESNET 6 0.73 (0.20) 0.10 (1.05) 6 0.87 (0.15) 0.44 (0.15)

LR on shapelets � 6 1.00 (0.01) 0.56 (0.13) 6 0.99 (0.02) 0.58 (0.12)

Fast shapelets � 6 0.15 (0.18) 0.19 (0.14) 6 0.25 (0.13) 0.19 (0.16)

Tabular data Diabetes Compas

Logistic regression � 4 1.00 (0.00) 0.99 (0.01) 11 1.00 (0.00) 0.42 (0.23)

MLP 4 0.97 (0.03) 0.72 (0.13) 6 0.79 (0.01) 0.31 (0.16)

Decision tree � 3 0.46 (0.09) 0.46 (0.10) 3 0.34 (0.00) 0.36 (0.00)

Random forest 4 0.62 (0.03) 0.58 (0.12) 6 0.30 (0.01) 0.30 (0.02)

5.3 Fidelity Analysis

Tables 1 and 2 show the average scores obtained by S-LIME and LIME when σ is
selected to maximize the aggregated adherence (R2 score) in the test instances of
the experimental datasets. Table 1 shows recall, precision, and coverage for the inter-
pretable models, whereas Table 2 provides the R2 score for all models.

Firstly, we remark that S-LIME’s explanations are strictly more faithful than
LIME’s except for piecewise constant models (FS, DT, and RF). That said, this does
not prevent S-LIME from achieving higher adherence for such models on some datasets
when we look at a larger vicinity.

Secondly, the R2 score is a good proxy to predict the best neighborhood in terms of
recall, precision, or coverage. This is a strong result from an application point of view.
Practitioners are mostly interested by the features that are actually used by the black-
box model. For cases where those actual features are unknown, the R2 score enables
the computation of faithful linear explanations that can identify the important features.
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6 Related Work

Feature-Attribution Explanations. Methods such as DeepLIFT [18], Integrated Gradi-
ents (IG) [19], SHAP [12], or LIME [15] compute importance local attribution scores
for the features of a black-box ML model. Among those, SHAP and LIME are model-
agnostic and compute linear surrogates learned from artificial neighbors. Despite these
similarities, the semantics of their explanations are different as confirmed by existing
studies [1]. While LIME approximates – often coarsely – the instantaneous gradient of
the black box w.r.t. the input features [6], SHAP computes – or rather approximates
– the Shapley values [12], which quantify the feature contributions to the difference
between the model’s answer on a baseline instance and the target. The baseline depends
on the use case, e.g., a single-color image (represented by the vector 0d̂ in the surrogate
space). This makes SHAP and LIME complementary methods rather than competitors.

LIME Extensions. An important body of literature has studied the impact of the differ-
ent components and parameters of LIME on the quality of the explanations. This has led
to multiple extensions of the original LIME algorithm. As opposed to this work, some
extensions [17,20,22] tackle the instability of LIME, i.e., the fact that two executions of
the algorithm with the same input may not deliver the same explanation. This instabil-
ity originates from the randomness in the different steps of the approach, e.g., sampling
in the surrogate space, non-deterministic conversion functions, etc. On those grounds,
the techniques to tackle instability are diverse. ALIME [17], for example, resorts to a
denoising auto-encoder to create a surrogate space that characterizes the data manifold
more accurately. DLIME [22], in contrast, applies hierarchical agglomerative clustering
on the training instances to identify the closest neighbors of the target and use them to
learn the surrogate. In another line of thought, the authors of OptiLIME [20] study the
relationship between the bandwidth σ, the adherence, and the instability of LIME. Sim-
ilar to our work, the authors highlight the importance of choosing the right σ in a per-
instance basis. Moreover, they show an inverse relationship between σ and explanation
instability. This observation constitutes the basis of a method to select the bandwidth
σ that yields the best trade-off between adherence and instability. We highlight that all
these approaches have been proposed only for tabular data, and that none of them takes
into account recall, precision, or coverage fidelity.

Other extensions of LIME have focused entirely on improving fidelity. ILIME [5]
proposes the use of influence functions in order to up-weight the neighbors that play a
higher role in the linear fit of the surrogate. QLIME-A [3] proposes to extend the local
surrogate to report quadratic relationships for cases where a linear surrogate is still inac-
curate. While quadratic functions do exhibit higher fit capabilities, their interpretability
in general settings is debatable.

7 Conclusion

In this paper we have introduced S-LIME, an extension of LIME that reconciles local-
ity and fidelity for linear explanations. We argue that LIME can produce degenerated
explanations as locality – controlled through the bandwidth σ – increases. We solve
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this paradox by means of a new neighbor generation process on a continuous surrogate
space. Our experiments on image, time series, and tabular data suggest that this strat-
egy can provide even more faithful linear explanations with gradient-compliant seman-
tics that are not affected by high locality. As a future work, we envision to investigate
the fidelity of S-LIME explanations with other generating distributions and conversion
functions, as well as to study the impact on the stability of the explanations.
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Abstract. Evaluation methods for data stream classification have fre-
quently been focused on how available data are used for learning a model
and for its performance assessment, with major emphasis on the differ-
ence between predicted and true labels. More recently, growing interest
in delayed labelling evaluation has resulted in the evaluation of multiple
predictions made by an evolving model for an instance before its true
label arrival. Still, under this setting predictions are also compared with
true labels rather than changes in predictions focused on.

In this study, we aim to provide an intuitive evaluation framework
to quantify changes in predictions made over time for the same input
instances by evolving classification models. The primary motivation is to
gain insight into the impact of the evolution of a classification model on
the changes in decision boundaries, which may effectively re-assign the
instances to other classes. The prediction change measures proposed in
this study make it possible to reveal the scale of such changes. Further-
more, the notions of volatility of predictions and productive volatility are
proposed and quantified. Results for a number of real and synthetic data
streams show that similar accuracy of the models can be accompanied
by significantly different volatility of predictions made by these models.

Keywords: Data stream · Classification · Delayed labels · Evaluation

1 Introduction

Stream mining methods [2,5,7] address the need for machine learning models
operating on unbounded data. In particular, existing methods such as k Nearest
Neighbours (kNN) have been adapted to a stream mining setting and novel
methods have been proposed. In both cases, the primary assumption is that a
model changes with time. One of the reasons for these changes is the growing
availability of data, which may justify updates in the model. Furthermore, many
data streams describe nonstationary processes. Hence, real concept drift [2,5]
may occur i.e. the probability p(y|x) that an instance x belongs to a class y may
change with time. Such changes are expected to be reflected by a classification
model. This may happen with some latency, especially when ground truth labels
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yi become available with some latency only compared to the corresponding xi

examples i.e. under a delayed labelling setting.
There has been much work on detecting concept drift and developing stream

mining classifiers capable of adapting to it [1,2,7]. More recently, quantitative
measures of concept drift have been proposed [11,12]. Importantly, changes in
the performance measure calculated for a model can be caused by model changes
resulting in changes in the classes assigned to the same input instances. However,
another possible reason is the fact that the data distribution can change [11].
Not only real concept drift, but also virtual concept drift, i.e. a change only in
p(x), but not in p(y|x) [5], may contribute to this phenomenon.

Importantly, even a constant value of a performance measure of a model
does not mean that the model remains constant. As an example, it is possible
that the growth in the number of instances of class ci wrongly mapped by a
model to class cj , j �= i is balanced by the growth in the number of instances
correctly mapped by a model to class ci. This raises the question of how many
past predictions would be different if made by a more recent model, and how
many of such new predictions actually improve on past predictions, which is
what we actually would expect from an evolving model. Hence, we believe there
is a need to quantify not only changes in data streams and in the performance
of stream mining models, but also to quantify the way past predictions change.
In particular, it is possible that even a model developed under a stationary
setting and exhibiting stable accuracy of its predictions frequently changes its
decision boundaries and predictions, even though such noisy changes yield no
performance improvements.

Hence, we complement methods quantifying changes in evolving data streams
and models by proposing a method for identifying changes in predictions made by
online classifiers. With the volatility measure we propose to quantify the ratio
of changes in classes predicted for individual instances by an evolving model
over time. With the productive volatility measure the changes replacing previous
wrong class predictions with correct predictions can be summarised. The primary
contributions of this work are as follows:

– We propose how changes in predictions over time can be identified;
– We propose measures summarising how frequently an online model changes its

past predictions and whether such changes are productive i.e. they eliminate
previous errors in class assignment;

– We show with empirical experiments using reference data streams and meth-
ods that classifiers of similar accuracy may largely differ in how frequently
they change their predictions for the same instances;

– We provide an open source implementation of the methods proposed in this
study1.

1 The code and data sets repository are available at https://github.com/mgrzenda/
PredictionVolatility. The code calculating the measures proposed in this study has
been implemented as an extension of the Massive Online Analysis (MOA) [2] frame-
work.

https://github.com/mgrzenda/PredictionVolatility
https://github.com/mgrzenda/PredictionVolatility
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The remainder of this study is organised as follows. Section 2 consists of an
overview of related works. Next, a proposal for tracking changes in predictions
and calculating prediction change measures is made in Sect. 3. This is followed
in Sect. 4 by the results of applying the methods proposed in this study to a
number of real and synthetic data streams. Finally, conclusions and suggestions
for future work summarise the study in Sect. 5.

2 Related Works

The fact that a data stream is by definition an unbounded sequence of instances
has a major impact on the training and evaluation of classification models. The
key aspects to consider are how to use stream instances for training and evalu-
ating a model at the same time and what performance measures to calculate.

As far as the use of stream instances for model training and evaluation is
concerned, an assumption of immediate labelling is frequently made, i.e. after
instance xi, its true label yi is made available to a learner. In this approach, first
a predicted label ỹi is generated and evaluated and next a model is updated with
(xi, yi) before the arrival of the next example xi+1.

However, for many problems true labels are only available with some latency.
Hence, an alternative approach allows delayed labels [5,9]. In a delayed
labelling scenario, for many or all instances, a non-negligible period between
receiving an instance and receiving its true label occurs. This results in ver-
ification latency [5,10] i.e. the prediction made at the time of receiving an
instance can be compared with the true label of the instance only after some
period. Hence, in [9] three categories of predictions, i.e. an initial prediction
made at the time of receiving an instance, periodic predictions made next,
but before true label arrival, and a final prediction polled from a model before
updating the model using the true label, were proposed. Experiments performed
in [8,9] for real and synthetic data streams show that the accuracy of initial and
final predictions may be significantly different. What is common for immediate
and delayed labelling settings is that the classification models are expected to
evolve and the performance measures rely on the comparison of predicted vs.
true labels [2,7–9].

Irrespective of whether immediate or delayed labelling is concerned, adapting
a model to concept drift is one of the key challenges of stream mining [1,2,5]. One
possible strategy is the use of a drift detection mechanism [1,11] to trigger model
updates. Moreover, methods quantifying concept drift, and measures such as
drift magnitude and duration [11] were proposed. Model updates may also follow
from the growing availability of data in a stationary setting. As an example, the
Hoeffding tree algorithm [6] is an example of an algorithm which includes no
explicit drift detection mechanism. Still, it relies on the Hoeffding bound to build
a decision tree and define how additional splits in the tree are introduced with
time. Such splits defined by new tree branches are also added under a stationary
setting. This effectively changes past predictions. These changes are expected
to make a model better match the true decision boundaries and improve its
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performance in turn. Significantly, Webb et al. show in [11] that even in the
seemingly simple case of pure covariate drift (also known as virtual concept
drift) i.e. changes in p(X) under constant p(Y |X), not all Hoeffding tree models
recover from such drift. Somewhat surprisingly, it was observed that the larger
the magnitude of the drift, the more efficient the recovery and the lower the
ultimate error of a Hoeffding tree [11].

Our study aims to complement the works on quantifying model performance
and quantifying changes in data streams by providing an increased insight into
changes in predictions for the same instances observed over time. We aim to
develop techniques applicable to both static and evolving data streams i.e.
streams in which different drifts occur. This is because in both cases, due to
growing availability of data, models are expected to evolve as long as errors in
predictions are observed. Importantly, even when no concept drift occurs models
may change, yet such changes can be of a partly noisy nature and only partly
improve model performance. In particular, in the case of delayed labelling, the
issue of how many initial predictions were replaced with some other final pre-
dictions and whether this eliminated previous prediction errors is addressed.

3 Prediction Change Measures

3.1 Monitoring Prediction Changes

To address the challenges identified above, we propose an evaluation methodol-
ogy for multiclass streaming classifiers. First of all, under the delayed labelling
setting, a stream S1,S2, . . . can be defined as a stream of two categories of
tuples. In line with [9], it includes unlabelled instances, which can be denoted
by Si = {(xk, ?)}, while the arrival of the true label for this instance can be
denoted by the arrival of Sj = {(xk, yk )}, j > i.

Let us observe that for any data stream for which no natural delay exists,
such as data streams used under an immediate labelling setting, a comparison of
prediction ht(xk) made by a model ht() available at the time t(xk) of the arrival
of instance {(xk, ?)} with the prediction ht+Δt(xk) made by a more recent model
ht+Δt() can be made. How many predictions change, i.e. ht+Δt(xk) �= ht(xk), is
influenced by the number of other (xi, yi) instances made available to a learner
in the period

(
t(xk), t(xk) + Δt

)
. Hence, for streams with no natural delay we

propose to track the scale of prediction changes subject to a requested fixed label
delay D. Next, let us observe that an immediate labelling task can be converted
into a task in which the sequence of xk examples is preserved, but each true label
yk is made available to a learner with delay. First, the time of every instance is
set to an instance index in this stream. Next, as proposed in [9], the labels from
original instances Sa = {(xk, yk )} are removed, i.e. every Sa is set to {(xk, ?)},
and labelled instances Sb = {(xk, yk )} are added at t(Sb) = t(Sa) + D. In this
way, a unified approach following a delayed labelling setting can be applied both
to data streams for which natural delay exists and data streams typically used
under an immediate labelling setting. In the latter case, the same label delay D
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can be applied to all instances. Hence, without loss of generality we refer to a
delayed labelling setting for all the data streams in the remainder in our study.

Input: S1,S2, ... - data stream, N - the size of prediction change window
Data: P (k) - list of predictions for Si = {(xk, ?)}; W - sliding prediction

change window of N recent tuples (y I
k, y

F
k , y

T
k ) composed of initial

predicted label, final predicted label and true label for xk, respectively;
hi - the prediction model

begin
h1 = InitModel(); W=InitWindow(N);
for i = 1, . . . do

/* New unlabelled instance */

if Si = {(xk, ?)} then
/* get and store initial prediction */

P(k).yI = hi(xk);

else
/* Si = {(xk, yk)}, i.e. true label arrived */

yF = hi(xk);
vk =

(
P (k).yI, yF, yk

)
;

UpdateSlidingPredictionWindow(W,vk);
hi+1=train(hi, {(xk, yk)});

end

end

end
Algorithm 1: Calculation of prediction change measures

Let us define label change tuple v ∈ C
3 to be a tuple used to record the

change of initial prediction to final prediction, but also the true label of an
instance, while C = {c1, . . . , cl} denotes the set of possible classes. A tuple
vi = (y I

i , y
F
i , y

T
i ) is composed of initial prediction y I

i made for an instance xi,
final prediction yF

i made for the instance, and the true label yT
i of the instance.

In Algorithm 1, we propose how label change tuples can be processed and pre-
diction change measures calculated. The algorithm extends the delayed labelling
evaluation algorithm proposed in [9]. As defined in Algorithm 1, every time a new
unlabelled instance arrives, an initial prediction yI is made for this instance and
recorded. When the true label for an instance arrives, the final prediction for the
instance is made. Next, a new label change tuple vk is created. Hence, one label
change tuple is developed for every labelled instance. The tuple is inserted into
the prediction change window W , which is a sliding window of at most N most
recent label change tuples. We rely on a standard sliding window maintaining
the same size and moving over the stream as used to evaluate stream mining
methods. Next, the classifier hi can be updated to yield model hi+1. Let us note
that this use of a sliding window is compliant with the standard mechanism of
calculating measures such as accuracy over a sliding window present inter alia
in MOA [2]. It serves the same purpose of aggregating measure values over a
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sliding window of a fixed size of N instances. In particular, the size of W can
match the size of the sliding window used to calculate performance measures
during the learning process and simplify the comparison of these measures with
the measures proposed in this work.

To capture the changes in a model and its predictions over the entire latency
period, i.e. the period between t({(xk, ?)}) and t({(xk, yk)}), we will focus
on summarising the difference between initial predictions and final predictions
recorded in a prediction change window. In the case of data streams adopted from
an immediate labelling setting, this means summarising the difference between
predictions polled from an evolving model at time t(xi) and t(xi) + D. Let us
define the confusion matrices needed to calculate the volatility measures.

Definition 1. Initial confusion matrix: Let CI(W ) denote a confusion
matrix developed for initial predictions, i.e. a square l × l matrix. Every ele-
ment cIij of the matrix denotes the total number of examples in W of true class
i, for which the initially predicted class was class j. More formally, CI(W ) is
composed of cIij = card({v ∈ W : v.yT = i ∧ v.y I = j}).

Definition 2. Final confusion matrix: Let CF(W ) denote the final confusion
matrix, i.e. the confusion matrix developed for final predictions and composed of
cFij = card({v ∈ W : v.yT = i ∧ v.yF = j}).

The two matrices provide the basis for calculating the differential confu-
sion matrix summarising how the performance of a model for individual classes
changes after the initial predictions are replaced with the final predictions.

Definition 3. Differential confusion matrix: Let CD(W ) denote the differ-
ential l× l confusion matrix, the elements of which are defined as: cDij = cFij −cIij.

With the differential confusion matrix, questions such as whether a more recent
model reduced the false positive rate can be answered. Let us note that cFij = cIij
does not mean that predictions made for individual examples have not changed.

3.2 Quantifying Prediction Changes

To provide insight into the way the predictions change during the latency period,
let us define the prediction transition matrix.

Definition 4. Prediction transition matrix: Let the prediction transition
matrix CT(W ) be a square l×l matrix composed of elements revealing the number
of instances for which the initial prediction of class i was changed to the final
prediction of class j, i.e. composed of: cTij = card({v ∈ W : v.y I = i∧v.yF = j}).

For many problems the number of transitions from initial to final predictions
can be of interest. Examples include the number of cases in which the model
changed the initial prediction for a client from paying back their loan to default-
ing on the loan. However, substantial insight into the changes in models can also
be provided by the overall ratio of prediction changes. Hence, let us propose the
volatility measure.
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Definition 5. Volatility: Let the volatility measure V (W ) be the share of
changed predictions among all predictions:

V (W ) =

∑
i,j=1,...,l;i�=j c

T
ij

card(W )

Volatility shows how many changes to initial predictions were made, i.e. the
ratio of instances represented in W for which the initial prediction was not the
same as the final prediction. This raises the question of how many such new
class assignments actually corrected initial prediction errors. Therefore, let us
conclude with a proposal for productive volatility.

Definition 6. Productive volatility (PV): Let the productive volatility mea-
sure VP(W ) be defined as follows:

VP(W ) =

∑
i=1,...,l c

D
ii∑

i,j=1,...,l;i�=j c
T
ij

, V (W ) �= 0

The numerator in VP(W ) formula quantifies the total number of changes in
correct predictions i.e. it serves to aggregate the number of prediction changes
causing changes in the number of instances of class i for which correct prediction
was made. The denominator serves to calculate the total number of changes in
predictions i.e. the number of final predictions differing from initial predictions. It
is interesting to note that VP(W ) ∈ [−1, 1]. In particular, VP(W ) = 1 means that
all observed changes in predictions were changes from initially wrong classes to
correct i.e. true classes. On the other hand, VP(W ) = −1 means that all changes
in predictions caused by model evolution were changes from initial predictions
of true classes to final predictions of incorrect classes. Therefore, by combining
volatility and productive volatility we can understand for how many instances
predictions changed and how many changes in predictions replaced a previously
wrong prediction with the correct one. Finally, let us note that WN (m) will be
used in the remainder of this study to refer to the window containing at most
N label change tuples after processing m labelled instances.

4 Results

4.1 Reference Data Streams and Streaming Classifiers

To illustrate the use of the proposed measures, experiments with both real and
synthetic data streams were performed. As our study concerns both immedi-
ate and delayed setting, we selected some of the most frequently used stream-
ing classifiers of varied types applicable in both cases. These included Hoeffd-
ing tree (HT) [6], i.e. a decision tree learner, which incrementally grows a tree
model based on newly arriving instances, but includes no mechanisms of replac-
ing existing tree branches to respond to concept drift, and Hoeffding Adaptive
Tree (HAT) [3], i.e. a method responding to concept drift by adapting an exist-
ing decision tree. The remaining methods were the streaming version of kNN,
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i.e. the kNN method applied to a sliding window of recent instances represent-
ing distance-based classifiers, Adaptive Random Forest (ARF) [7] representing
ensemble models, and Naive Bayes (NB) classifier, i.e. an example of a prob-
abilistic classifier. In addition, the No Change (NC) method using last known
true label as the predicted label for the next instance, and the Majority Class
(MC) method assigning a new instance the label most frequently observed until
the instance arrived were included. In all cases, the standard implementation of
the method available in MOA was used. By selecting the stream mining methods
listed above we aim to investigate how predictions of models of different cate-
gories such as distance-based models and tree-based models change over time,
rather than focus on just one model category e.g. ensemble models only.

The list of data streams used in our experiments is provided in Table 1.
First of all, real data streams for which natural varied label delay exists were
included. Secondly, to investigate the use of prediction change measures to reveal
prediction changes over constant length periods, we used data streams for which
no natural delay exists. We decided on the use of data streams considered in
the recent evaluation of stream classification and regression methods under a
delayed labelling setting [9]. Hence, while we provide a basic description of the
data streams below, further details on these data streams can be found in [9].
Let us note that in the case of the latter group of streams, label delay D can be
set as needed in order to track how predictions change over a period of arbitrary
length defined by delay value. The synthetic streams we used are non-stationary
streams. As far as the real data streams listed in Table 1 are concerned, CovType
represents a stationary problem, as no time notion exists for both the problem
and the data describing it. However, as pointed out in [4] in the context of inter
alia CovType, airlines and electricity data, a common assumption for these data
streams is that it is not possible to unequivocally state when drift occurs or if
there is any drift.

Table 1. Data streams used in the assessment of prediction volatility measures. ∗ - see
detailed discussion in Sect. 4

Data #labelled inst. #attributes Type Stationary Label delay D

Airlines 7541 10 real ∗ varied

Electricity 24957 149 real ∗ varied

CovType 24500 54 real ∗ fixed, 1000 instances

Hyperplane 24950 2 synthetic NO fixed, 100 instances

LED 20000 24 synthetic NO fixed, 1000 instances

Agrawal 10000 9 synthetic NO fixed, 1000 instances

4.2 Investigating Changes in Predictions for Hyperplane Data

Let us first apply the prediction change measures to the simple example of
a synthetic hyperplane data stream. The stream was generated under a two-
dimensional setting, in which the hyperplane separating instances of the two
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classes in R
2 slowly rotates and gradually converges to its ultimate location.

This illustrates the case of a simple concept drift setting. Figure 1 shows how
the accuracy of selected stream mining models changes. Figure 1(a) provides
the results for the initial stage of stream processing, during which significant
gradual concept drift occurs. A major difference between the accuracy of initial
and final predictions can be observed for most methods including ARF, which
diminishes with time. Figure 1(b) shows that all methods except for MC achieve
high accuracy with time, both for initial and final predictions.
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Fig. 1. The accuracy of stream mining methods for (a) the first instances and (b) entire
stream. Hyperplane data
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Fig. 2. The volatility of stream mining methods for (a) the first instances and (b)
entire stream. Hyperplane data

Figure 2 shows the volatility of predictions made by individual models during
the initial stage of stream processing and for the entire hyperplane stream. It
follows from the figure that the volatility of predictions for all techniques except
for MC decreases with time to a negligible level. It is only the MC method that
periodically changes its predictions. This phenomenon can be explained by the
fact that the majority class periodically changes, as the two classes have a similar
share in the stream. Hence, every time this happens the entire instance space is
reassigned to another class, which is reflected by high volatility.

4.3 Quantifying Prediction Changes for Airlines Data

Let us analyse the case of Airlines data, i.e. the task of predicting whether indi-
vidual planes will land early, on time or late. In this case, the initial predictions
are made by the model available at the time of flight departure. Final predic-
tions are made with the models available at the time of actual arrival. Hence,
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Fig. 3. The accuracy and volatility of stream mining methods. Airlines data

Table 2. Median volatility and productive volatility. Results after processing all
labelled instances, N = 1000. Note that when no prediction changes occur i.e. volatility
equals 0 at some or all periods, productive volatility is not applicable (n.a.).

Data Volatility Productive volatility

NC MC NB kNN HT HAT ARF NC MC NB kNN HT HAT ARF

Hyperplane 0.50 0.00 0.00 0.00 0.00 0.00 0.00 –0.02 n.a. n.a. n.a. n.a. n.a. n.a.

Airlines 0.61 0.00 0.08 0.39 0.07 0.07 0.12 0.05 n.a. 0.08 0.16 0.16 0.17 0.10

Agrawal 0.50 0.00 0.11 0.40 0.22 0.22 0.23 –0.03 n.a. 0.42 0.13 0.40 0.52 0.18

Electricity 0.51 0.00 0.03 0.35 0.12 0.17 0.39 0.69 n.a. n.a. 0.24 0.32 0.37 0.30

CovType 0.77 0.00 0.04 0.52 0.24 0.29 0.56 0.52 n.a. n.a. 0.63 0.59 0.54 0.70

LED 0.90 0.00 0.06 0.37 0.07 0.10 0.17 0.00 n.a. 0.50 0.03 0.33 0.36 0.22

the difference between an initial and a final prediction reflects the changes of the
evolving model, possibly caused by concept drift, which occur over a relatively
short time i.e. the time of the flight.

Let us start with an investigation of the accuracy of individual models pro-
vided in Fig. 3(a). It follows from the figure that after processing approx. 500
labelled instances, the accuracy of the different methods attains a similar level,
after which different models reach their highest overall accuracy at different
periods. Figure 3(b) reveals that in spite of similar accuracy, the volatility of
predictions made with different techniques significantly varies. In particular, in
spite of limited label delay approximately 40% of initial predictions made by
kNN are not matched by final predictions. This shows that the decision bound-
ary defined by a recent buffer of instances, which the kNN method relies on,
frequently changes, and these changes mean than many instances are with time
assigned to another class. The MC method yields the lowest volatility, which
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can be explained by the fact that one class dominates in the stream, which is
unlike the case of hyperplane data. The volatility and PV results for Airlines
data are provided in Table 2, which includes median values calculated based on
raw values of these measures recorded every 100 instances.

The PV values reveal that for the Airlines data the share of successful pre-
diction updates made while awaiting true labels, remains at a low level. Inter-
estingly, the largest PV values are observed for HAT, i.e. a relatively high pro-
portion of prediction changes made by HAT are correct. A similar improvement
is observed for kNN and HT. However, in the case of HT and HAT prediction
changes are very rare, i.e. the median proportion of changed predictions is at the
level of 0.07 for the two techniques relying on Hoeffding trees. It turns out that
adding new split(s) in a Hoeffding tree affected a lower number of predictions
than the constant changes in the instance buffer used by kNN.

4.4 Summary of Results for Remaining Data Streams

Finally, let us summarise the volatility for the remaining data streams. First
of all, the volatility values reported in Table 2 clearly show that little or no
prediction changes occur when majority class is used, which is why productive
volatility is not applicable in this case. Moreover, the instance-based classifier of
kNN typically frequently reassigns instances to other classes while waiting for a
true label, unless a nearly stationary setting of a hyperplane stream over a large
number of instances is considered. This suggests the use of volatility combined
with an instance-based classifier as a way to quantify model changes which may
be due to concept drift. Furthermore, ARF models, i.e. ensemble models, pro-
duce high volatility of predictions as compared to NB, HT and HAT. The scale
of prediction changes for ARF, reaching 56% for CovType data, can even be
considered unexpectedly high. This is unlike the case of the single tree models,
namely HT and HAT, which change their predictions far less frequently. Finally,
NB is the classifier which changes its predictions least frequently, although its
changes are typically productive, i.e. result in positive values of PV.

Moreover, let us observe that productive volatility for many techniques, even
though it takes positive values, remains at a low level. An interesting finding
is that except for CovType data, changes in predictions observed over time for
kNN, HT, HAT yield median PV lower than 0.6. This shows that a major share of
prediction updates over latency periods (Airlines and Electricity) and analysed
label delay period (Agrawal and LED) are noisy updates not replacing past
wrong predictions with the new correct predictions. Eliminating unnecessary
model changes could be a way to increase the accuracy of predictions, including
predictions made under an immediate labelling setting.

To sum up, let us note that there is a major difference between volatility
and productive volatility values we expect under stationary and non-stationary
streams. When no concept drift occurs, we expect volatility to gradually decrease
as only minor model updates should occur in this case. Moreover, ideally model
updates should result in high productive volatility i.e. high share of predictions
for which wrong past predictions were replaced with correct predictions provided
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by a more recent model. When no concept drift occurs, volatility can be expected
to be non-decreasing for growing label delay values, which is unlike in the case
of e.g. recurring concept drifts. Moreover, lower delay values will help identify
changes in predictions over shorter periods. Further investigation of this aspect
is an interesting avenue for future research.

For non-stationary streams volatility is expected to be growing during and
after concept drift periods. Ideally, the growth in volatility should be accom-
panied by high productive volatility. However, it is important to note that our
results only partly match these expectations. In particular, high volatility is not
necessarily matched by high productive volatility. This confirms that the use of
the measures proposed in this work provides new insight into the model adapta-
tion to concept drift and model updates under stationary data streams. Finally,
let us note that a varied number of instances may be required for the model to
adapt to a new concept for different subsets of an instance space. This makes the
analysis of any performance measure calculated for a sliding window, including
the measures proposed in this study and calculated over W window, even more
challenging for non-stationary streams. This is because setting one window size
matching all streaming classifiers and concept drift types is not possible. Instead,
a fixed-length window has to be used to reveal the volatility of predictions in
spite of the fact that its length may not match unknown length of drift periods.

5 Summary

Most frequently, a more recent classification model is expected to yield perfor-
mance improvements such as increased accuracy thanks to increased availability
of the labelled data it relies on and possible adaptation to concept drift. However,
our results show that model changes causing prediction updates frequently do
not result in more accurate predictions. Interestingly, streaming classifiers vary
in terms of how many initial predictions they change during latency periods and
whether these changes are productive, i.e. replace incorrect predictions with pre-
dictions of true labels. Such varied volatility of predictions can also be observed
when processing the same data stream with methods of similar accuracy. Hence,
prediction volatility measures both quantify prediction changes and complement
existing drift and model performance measures.

Needless to say, the instances for which predictions change with time are the
instances affected by decision boundaries being moved in the process of model
evolution. Hence, the instances for which volatility of predictions was observed
can be considered instances close to these boundaries, i.e. with lower confidence
of predictions. Furthermore, a method displaying high volatility of predictions
can be considered less likely to be approved when high interpretability methods
are expected.

Possible directions of future studies include extending the methods proposed
in this work to quantifying changes in probabilities assigned to individual labels
and quantifying changes in predictions for regression tasks. Furthermore, the PV
measure can be used to assess individual stream mining methods in terms of the



Quantifying Changes in Classes Assigned by Stream Mining Models 127

share of needed and unnecessary model updates they cause, which can be used
to help develop new stream mining methods.
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Abstract. Seasonal influenza is an infectious disease of multi-causal eti-
ology and a major cause of mortality worldwide that has been associated
with environmental factors. In the attempt to model and predict future
outbreaks of seasonal influenza with multiple environmental factors, we
face the challenge of increased dimensionality that makes the models
more complex and unstable. In this paper, we propose a nowcasting
and forecasting framework that compares the theoretical approaches of
Single Environmental Factor and Multiple Environmental Factors. We
introduce seven solutions to minimize the weaknesses associated with
the increased dimensionality when predicting seasonal influenza activ-
ity level using multiple environmental factors as external proxies. Our
work provides evidence that using dimensionality reduction techniques
as a strategy to combine multiple datasets improves seasonal influenza
forecasting without the penalization of increased dimensionality.

Keywords: Influenza · Nowcasting · Forecasting · Dimensionality
reduction · Environmental factors

1 Introduction

Seasonal influenza is a public health event of multi-causal etiology, periodical
recurrence, and one of the principal causes of morbidity and mortality worldwide
[10]. Annually, the World Health Organization (WHO) estimates about 3 to 5
million cases of severe illness and about 290,000 to 650,000 respiratory deaths
[27]. In the last years, we have seen a growing interest in generating real-time
epidemic forecasts, and seasonal influenza forecasting approaches are leading the
way in this front. The research on developing predictive models is based both on
traditional surveillance systems, such as seasonal influenza incidence captured by
the network of outpatient clinics [3,23], and digital data streams [17,24,29]. As
the most prominent example, Google Flu Trends (GFT) was harnessing external
data to provide forecasts of the level of influenza-like illness (ILI) incidence in the
USA by employing search engine queries associated with flu-related keywords [8].
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On the one hand, the availability of digital data streams facilitates the detec-
tion of potential outbreaks and provides immediate analysis and instant feedback
for follow-ups. On the other hand, studies that make use of digital data ignore
the multi-causal property of influenza. Recent associations between environmen-
tal factors with influenza [18,19,31] create an opportunity to deploy predictive
models that respect the factors associated with the disease. As a result, the use
of environmental variables as proxies for predicting future epidemics is a strategy
to strengthen the surveillance systems at a population level.

Traditional epidemiological studies focus mainly on a single environmental
factor [31]. As an example, seasonal influenza is principally associated with low
temperatures, relative humidity [18,19], or high levels of particle matter in the
atmosphere [20]. The benefit of such approaches is that they are easy to conduct.
However, the challenge in working with environmental data is the spatiotempo-
ral coexistence of independent variables that generate a risk factor in human
health [11]. In the real world, dynamic changes in air pollutants and meteorolog-
ical factors coexist simultaneously [6,30]. This means that human exposure to
air pollutant contaminants or meteorological factors is dynamic and changeable
over time. Thus, using a single environmental factor approach to predict sea-
sonal influenza activity level is not realistic from the perspective of exposition
risk [1]. In contrast, a multiple environmental factors approach would be more
appropriate and more adequate to explain the multi-causality of influenza.

As a result, in this study, we introduce two theoretical approaches for pre-
dicting seasonal influenza activity level using exogenous factors:

– Single Environmental Factor (SEF): It is based on the single pollutant app-
roach that studies the associations between a single pollutant and the dis-
ease [6] and chooses the pollutant with the highest correlation to the disease
spread. Our study assumes a single environmental factor, such as an air pol-
lutant or a weather variable, to be the predictor.

– Multiple Environmental Factors (MEF): It is based on the multi-pollutant
approach, where the associations with influenza are measured using air pol-
lution mixtures as a whole [6]. In our study, similarly to the SEF approach,
we use multiple environmental factors (air pollutants and weather variables).

A key challenge of this conceptual transition from epidemiological models that
consider seasonal influenza an isolated entity to models that capture the associa-
tion between environmental factors and human health introduces an increase in
dimensionality. Additionally, in the presence of multiple variables, data dimen-
sionality and complexity increase, and the model becomes less stable [12].

A major limitation resulting from the increase in dimensionality when deal-
ing with environmental data is ecological bias since the variables may overlap,
potentialize, or annulate each other [22]. Therefore, current approaches suggest
the use of machine learning classifiers to minimize such bias following a MEF
approach [4]. Davalos et al. study several broad classes of statistical approaches
that may decrease the adverse effect of ecological bias, specifically Additive Main
Effects (AME), Effect Measure Modification (EMM), Unsupervised Dimension
Reduction (UDR), Supervised Dimension Reduction (SDR), and Non-parametric
methods [4].
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This study focuses on the conceptual interrelation between single or multiple
environmental factors and human health and explores the impact of dimension-
ality of exogenous variables (proxies) for the task of nowcasting and forecasting
future seasonal influenza occurrence, with Norway as a use-case. More concretely,
the aim is to assess the impact of the dimensionality of proxies for predicting
seasonal influenza activity level from 1 to 4 weeks ahead. As proxies, we employ
environmental factors, such as weather and air pollution. We propose three dif-
ferent problem instantiations: (i) Baseline, which only involves historical data
of seasonal influenza activity level; (ii) SEF, that involves seasonal influenza
activity level and one environmental variable (weather or air pollution) at a
time; and (iii) MEF, that involves seasonal influenza activity level and all the
environmental variables, with or without dimensionality reduction.

We use the seasonal variants of the ARIMA model, i.e., SARIMA and SARIMAX,
to estimate the future influenza activity level. Typically, for diseases that show
seasonality and their future behavior is highly correlated to their past behavior,
statistical time series models are used to predict future outbreaks [2,9,21]. These
models have two major advantages: (i) they are easily interpreted, and it is easy
to understand the current state expressed as a function of the past states, and
the influence of the exogenous variables; (ii) model selection can be performed
over a time series in an automated fashion to maximize prediction accuracy.

This study aims to expand upon previous work from Zheng et al. [31] that
examines the effects of single environmental factors on the incidence of influenza.
In the presented work, we show quantitatively the value of incorporating multiple
environmental factors in forecasting approaches as an adequate proxy that can
explain the multi-causality of influenza.

Additionally, inspired by the work of Davalos et al. [4] we introduce dimen-
sionality reduction techniques that permit the use of multiple data sources
without the penalization of increased dimensionality. From the five statistical
approaches introduced in Davalos’ study we employ AME, SDR, and UDR,
while EMM is disregarded since model uncertainty may introduce challenges
when we have a large number of pollutants and interaction terms, especially in
the presence of collinearity. Finally, we do not employ Non-parametric methods
as they are difficult to construct and interpret.

2 Framework

2.1 Problem formulation

We propose a nowcasting and forecasting framework that provides estimates for
influenza incidence using exogenous environmental variables by exploiting their
dimensionality. This is a quasi-experimental study that compares the perfor-
mance of predicting seasonal influenza activity level contrasting the theoretical
approaches of Single Environmental Factor Vs. the Multiple Environmental Fac-
tors. In Fig. 1, we provide a diagrammatic illustration of the framework.

More formally, let Y = {yi} be the variable measuring the number of weekly
influenza cases, with yi ∈ N being the number of influenza cases in week i. Given
the series of weekly influenza cases of up to week t, denoted as Y[1:t] = y1, . . . , yt,
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Fig. 1. Proposed approach workflow.

we are interested in estimating the influenza adoption trend at a weekly level for
up to k weeks ahead, i.e., Y ′

[t+1:t+k] = y′
t+1, . . . , y

′
t+k. Additionally, we consider a

set of m exogenous time series variables X = {X1, . . . , Xm}, with each Xj ∈ X
corresponding to an environmental variable measured at a weekly level with Xj

i

denoting the value of Xj in week i. Our problem can be defined as follows:

Problem 1. Given Y[1:t] and X[1:t], we want to predict Y ′
[t+1:t+k] using a sea-

sonal statistical function f and a mapping function g : X → X̂ , that maps X to
X̂ = {X̂1, . . . , X̂m̂}, an m̂-dimensional space, such that m̂ ≤ m.

Y ′
[t+1:t+k] = f(Y[1:t], g(X[1:t+k])) ,

Note that g can also map to itself, in which case X̂ = X .

2.2 Problem Instantiations and Solutions

We propose three problem instantiations alongside their solutions, varying the
number of exogenous variables m, their dimensionality m̂, and for different map-
ping functions g(·). In general, the release date of the influenza reports is delayed
by one week. We consider k ∈ {1, 2, 3, 4}, distinguishing between hindcasting
(k = 1): estimating the influenza activity level of a week that has already passed
by, nowcasting (k = 2): predicting the influenza activity level during the present
week and forecasting (k > 2): predicting the flu activity in the future weeks.

Baseline. This problem formulation assumes no exogenous variables, i.e., X = ∅,
and the solution is a linear combination of the previous instances of seasonal
influenza activity level. The solution, i.e., Baseline (B), is computed as follows:

y′
t+k = αk +

w−1∑

i=0

ak
i yt−i, (1)



132 S. Guarnizo et al.

where w is the model’s window size, while α and ai are the regression coefficients.

Single Environmental Factor. This formulation extends the Baseline for-
mulation by also considering one exogenous environmental variable (related to
weather or air pollution) at a time, i.e., a single Xj is chosen from X . In total,
this yields m (e.g., in our case m = 12) models, one per environmental variable,
and the solution, i.e., Single Exogenous Variable (SEV), is computed as follows:

y′
t+k = αk +

w−1∑

i=0

ak
i yt−i +

w+k−1∑

i=0

bki X
j
t−i, (2)

where the exogenous variables iterate for k additional time points since the
up-to-date environmental data should be taken into account for each predicted
week.

Multiple Environmental Factors. This formulation further extends SEV by
including all exogenous environmental variables, either with or without applying
dimensionality reduction. The solution is computed as follows:

y′
t+k = αk +

w−1∑

i=0

ak
i yt−i +

m̂∑

l=1

w+k−1∑

i=0

bkli X̂ l
t−i, (3)

where m̂ is the total number of exogenous variables.
We consider three cases for defining function g: (1) no dimensionality reduc-

tion is applied, i.e., g is a function that maps to itself, (2) we apply supervised
dimensionality reduction, (3) we apply unsupervised dimensionality reduction.

No Dimensionality Reduction: In this case, no dimensionality reduction is
applied, hence m̂ = m and X̂ = X . The solution, i.e., Additive main effects
(AME), assumes that each exogenous environmental variable has an additive
effect [4]. This solution involves seasonal influenza activity level and 12 environ-
mental variables (6 weather and 6 air pollution variables) without treatment.

Supervised Dimensionality Reduction (SDR): In this case, the transformation
of the set of environmental variables is considered dependent on the health
outcome[4]. The solution, i.e., Linear discriminant analysis (LDA), involves sea-
sonal influenza activity level and 12 environmental variables with an SDR tech-
nique of up to 2 dimensions (1D, 2D), i.e., m̂ ∈ {1, 2}. Hence, we have two SDR-
LDA models in total. The main objective of LDA is the projection of the normal
vector in the linear discriminant hyperplane. It renders the distance between the
classes as the largest and the distance within the classes as the smallest. Then,
LDA makes a linear classification that attempts to model the difference between
the labels, independent of the data dimensions [5]. The classifier is built using
labels produced by the Symbolic Aggregate approXimation (SAX) algorithm
[13]. SAX transforms a time series of length h into the string of arbitrary length
ω, where ω << h typically, using an alphabet A of size s > 2. In our case, s = 5.



Impact of Dimensionality on Nowcasting Seasonal Influenza 133

Unsupervised Dimensionality Reduction (UDR): In this case, multiple environ-
mental variables are transformed into a different set of variables independently
of the health outcome of interest [4]. This solution involves seasonal influenza
activity level and 12 variables with UDR techniques of up to 7 dimensions per
technique, i.e., m̂ ∈ [1, 7]. We propose 3 solutions for a total of 21 UDR models:

– Principal component analysis (PCA): It is the process of computing the prin-
cipal components to achieve the largest data variance in the dimensions of
the projection. The principal component is the transformation of variables
into the principal axis, which fixes the variance and co-variance distribution
data and reorients the axis to make all the variables comparable [5].

– t-Distributed stochastic neighbor embedding (TSNE): It transforms high
dimensional Euclidean distances between data points into conditional proba-
bilities that represent similarities, and then it uses Student’s t distribution to
compute the similarity between two points in the low-dimensional space [14].

– Uniform manifold approximation and projection (UMAP): It builds a partic-
ular weighted k-neighbor graph using the nearest-neighbor descent algorithm,
and it computes a low-dimensional projection mimicking the original fuzzy
topology of data [15].

In order to solve the coefficients of the previous instantiations, we employ Auto
Regression Integrated Moving Average (ARIMA). The process refers to the combi-
nation of Autoregressive (AR) and Moving Average (MA) that builds a composite
model of the time series. An ARIMA model includes parameters to account for
season and trend, and autoregressive and moving average terms to handle the
autocorrelation embedded in the data. More concretely, ARIMA is defined by three
non-seasonal parameters, (p, d, q), where p and q correspond to the non-seasonal
AR and MA processes, respectively, while d is the amount of differencing applied
to the original time series to stationarize it.

This study considers two variants of ARIMA, the seasonal variant SARIMA,
which is used to solve for the coefficients of Baseline, and the seasonal variant
with exogenous variables, i.e., SARIMAX, that is used to solve the other instanti-
ations. Both variants include three seasonal parameters (P,D,Q) in addition to
the three non-seasonal parameters, where P and Q correspond to the seasonal
AR and MA processes, respectively, while D corresponds to seasonal differencing.

Finally, SARIMA and SARIMAX require stationary time series that show no
fluctuation or periodicity over time. We use the Augmented Dickey-Fuller (ADF)
test to verify the stationarity of the time series, and if needed, we apply multiple
iterations of differencing until stationarization is achieved.

Overall, 37 models are deployed, and their performance is assessed in terms
of Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE),
and Pearson correlation. The best model of each solution is reported.
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3 Empirical Evaluation

3.1 Data Description

Influenza Data. Seasonal influenza data are obtained from the World Health
Organization (WHO) FluMart platform [28] that contains the reported cases
through FluNet, a global web-based tool for influenza virological surveillance
launched in 1997 [26]. The data of FluNet, e.g., the number of influenza viruses
detected by subtype, are critical for tracking the movement of viruses globally
and interpreting the epidemiological data. The data are provided remotely by
National Influenza Centres of the Global Influenza Surveillance and Response
System (GISRS) and other national influenza laboratories collaborating with
GISRS or are uploaded from WHO regional databases. The data are publicly
available at a country level and are updated weekly.

We focus our analysis on the country of Norway, and we obtain the number
of total cases per week for 6 seasons. The data are collected from the 22nd week
of 2013 to the 21st week of 2019 for the seasons of 2013/14, 2014/15, 2015/16,
2016/17, 2017/18, 2018/19. See Fig. 2a for a representation of the influenza cases
per season. For our study, we normalize the data using the MinMax method for
each season, ranging the values from 0 to 1. Then, we drop the weeks with a
value smaller than 0.25 since the number of influenza cases for these weeks is
either zero or not significant. See Fig. 2b for the weeks of each season that make
part of the final data. We notice that the peak of each season is colored with a
deeper violet color.

(a) Original influenza cases. (b) Final Weeks.

Fig. 2. Influenza cases before and after the filtering. In the left figure, we see the
original influenza cases per season. In the right figure, we see the weeks of each season
that make part of the final data after the filtering. (Color figure online)
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Weather Data. Weather data are obtained from the API terminal of the Nor-
wich Meteorological Institute [16]. We have 6 variables describing the weather
conditions: temperature, relative humidity, absolute humidity, air pressure, wind
speed, and precipitation. We collect data every 12 h for all the weather stations
in the country. All data are averaged to one measurement per week to match the
seasonal influenza dataset and normalized using the MinMax method for each
season, ranging the values from 0 to 1.

Air Pollution Data. Air pollution data are obtained through web scraping
from the European Environmental Agency [7]. We have 6 environmental vari-
ables regarding air pollution: CO, NO, NO2, O3, PM10, and PM2.5. Air Pollu-
tion data are collected every 12 h per monitoring station. All data are averaged
to one measurement per week to match the seasonal influenza dataset and nor-
malized using the MinMax method for each season, ranging the values from 0
to 1.

3.2 Dynamic Training and Hyperparameters

The environmental conditions change quickly in the real world, and a disease
prediction model should respond quickly to such changes. Therefore, in this
study, we borrow the idea of the rolling forecast scenario to perform a dynamic
training of the models [25].

In order to generate each models’ parameters and calculate the accuracy of
the models, we split the data into training and test sets. Specifically, the training
set spans 5 seasons, from the 4th week of 2014 to the 14th week of 2018 (see
Fig. 2b for the final weeks). The test set is the last season of 2018/2019, from
the 2nd to the 13th week of 2019, for a total of 13 time steps. In each step, we
dynamically increase the training data to include the latest information. Through
dynamic training, we can keep track of the changing situation at any time and
quickly adjust the disease prevention and control points. The models that use
the external variables employ historical influenza reports available until week
t − 1 and the environmental data available until week t. Our models produce
forecasts for 1 to 4 weeks ahead.

For LDA we set the range of the number of components as n components ∈
[1, 2] while for PCA, TSNE and UMAP, we set n components ∈ [1, 7]. Addition-
ally, for TSNE we set perplexity = 40, and method = ‘exact’. The remaining
hyperparameters are set to the default values.

3.3 Perfomance Indicators

Let yt denote the observed value of the influenza at time t, y′
t the predicted value

by the model at time t, ȳ the mean or average of the values yt and similarly ȳ′

the mean or average of the values y′
t. We consider three performance indicators,

which are described next.
Root Mean Square Error (RMSE), a measure of predictive performance

defined as the square root of the second sample moment of the differences
between predicted values and true values. More concretely:



136 S. Guarnizo et al.

RMSE =

√√√√ 1
n

n∑

i=1

(y′
i − yi)2. (4)

Mean Absolute Percentage Error (MAPE), a measure of predictive perfor-
mance defined as the ratio of the absolute difference between the predicted and
true values over the true values. More concretely:

MAPE = (
1
n

n∑

i=1

|yi − y′
i

yi
|) × 100. (5)

Pearson Correlation, a measure of the linear dependence between two vari-
ables during a time period of length n, is defined as:

r =
∑n

i=1(yi − ȳ)(y′
i − ȳ′)√∑n

i=1(yi − ȳ)2
√∑n

i=1(y
′
i − ȳ′)2

. (6)

4 Results

In this study, our goal is to determine the impact of increased dimensionality to
predict seasonal influenza activity level in Norway from 1 to 4 weeks in advance
of the latest ground truth data released from the regular surveillance system.
We use environmental factors, such as weather and air pollution, as proxies to
improve our predictions. We propose 3 different problem instantiations for a
total of 7 solutions: (i) Baseline - B, (ii) Single Environmental Factor - SEV,
and (iii) Multiple Environmental Factors - AME, LDA, PCA, TSNE, UMAP.

In order to evaluate the performance of the different solutions, we consider
the performance indicators (see Sect. 3.3) of the 1 to 4 weeks ahead forecast time
series. In Table 1, we report these indicators for the best model of each solu-
tion for the four time horizons, as well as the overall performance. We evidently
observe the added value of using the environmental factors over the simple base-
line B that uses only historical influenza data. Forecasts obtained with SEV,
using a single exogenous variable, are more accurate compared to the baseline
approach, but in the case of AME, the inclusion of all the environmental variables
increases the dimensionality and decreases the performance.
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Table 1. Performance indicators for the best model in each solution.

MAPE RMSE Pearson correlation
Weeks
ahead 1 2 3 4 All 1 2 3 4 All 1 2 3 4 All

B 19.74 31.11 35.79 38.38 31.26 0.13 0.21 0.31 0.36 0.26 0.89 0.68 0.32 0.15 0.51

SEV 16.71 22.11 27.90 29.27 24.00 0.11 0.17 0.26 0.34 0.25 0.94 0.89 0.64 0.28 0.69

AME 31.88 48.81 43.42 47.51 42.90 0.19 0.26 0.26 0.31 0.25 0.72 0.38 0.32 0.18 0.40

LDA 17.63 19.57 16.07 19.87 18.28 0.10 0.13 0.15 0.17 0.14 0.93 0.89 0.89 0.94 0.91

PCA 20.00 27.74 26.79 26.65 25.29 0.14 0.20 0.23 0.26 0.21 0.88 0.84 0.78 0.83 0.83

TSNE 18.15 27.75 34.27 41.80 30.49 0.12 0.19 0.28 0.35 0.23 0.90 0.79 0.47 0.10 0.57

UMAP 19.50 32.46 37.96 36.66 31.64 0.11 0.21 0.29 0.33 0.23 0.91 0.72 0.42 0.26 0.58

(a) MAPE and RMSE. (b) Pearson.

Fig. 3. Performance indicators for the best model in each solution.

To minimize the weaknesses associated with the increased dimensionality
for predicting seasonal influenza, we introduce several dimensionality reduction
techniques, such as LDA, PCA, TSNE, UMAP. We observe in Table 1 that the
use of the dimensionality reduction techniques shows the lowest errors and the
highest Pearson correlation in comparison to the previous models B, SEV and
AME. More specifically, LDA outperforms the other models in all four time
horizons across the different performance metrics, MAPE, RMSE, and Pearson
correlation, while PCA shows the second best performance. As expected, we
also remark that the performance of forecasts deteriorates as the time horizon
increases.

Figure 3a and 3b confirm these findings, highlighting the overall performance
of the best model of each solution in regards to the metrics. Additionally, they
report which one is the best model for each solution. We annotate the best model
with its group solution name and number of dimensions, i.e., PCA5 for the PCA
solution for a total of 5 dimensions. We notice that the best proxy amongst the
SEV alternatives is O3, a major air pollutant. Moreover, the best model for the
LDA solution is the LDA2 for a total of 2 dimensions.

Figure 4 displays the predictions of LDA2 against the reported influenza
activity level for the four time horizons, 1, 2, 3, and 4 weeks ahead. Overall
predictions track the influenza activity level accurately, as shown in the top part
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of each panel. Close inspection shows that the 1 week ahead predictions from the
LDA2 and the actual influenza activity level are very similar, with small errors.
For 2, 3, and 4 weeks ahead, LDA2 continues to track the influenza activity
level closely, with some undershooting in some cases. In the lower part of each
panel, there is a heatmap bar indicating the absolute error between the LDA2
predictions and the influenza activity level.

Fig. 4. LDA2 predictions against the reported influenza activity level for the four time
horizons, 1, 2, 3, and 4 weeks ahead. The time-dependent absolute error is displayed
in the lower part of each panel.

5 Conclusions

Traditional theoretical approaches highlight the use of the Single Environmental
Factor concept for predicting seasonal influenza activity. A theoretical swift from
Single Environmental Factor to the Multiple Environmental Factors approach
implies an increment of dimensionality, where the application of machine learning
techniques transforms the epidemiological field.

In this study, we propose the use of dimensionality reduction techniques
to minimize the weaknesses associated with the increased dimensionality when
predicting seasonal influenza activity level using multiple environmental factors
as external proxies. With dimensionality, we refer to the number of environmental
factors included in the predictive model.
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Increasing the dimensionality of the model, we achieve a more realistic per-
spective of the exposure and higher explainability of the multi-causality of
influenza. However, that also decreases the performance of the model, i.e., the
AME solution. To compensate for this decrease in performance, inspired by the
work of Davalos et al. [4], we use supervised and unsupervised dimensionality
reduction techniques that achieve higher seasonal influenza forecast accuracy.
We use SARIMA and SARIMAX models to produce our seasonal influenza forecasts
for 1 to 4 weeks ahead.

Our results show that the best solution to the nowcasting and forecasting
task is LDA, which achieves the best performance while considering the multi-
causal property of influenza. LDA outperforms the other models in all four time
horizons across the different performance metrics, MAPE, RMSE, and Pear-
son correlation, while PCA shows the second best performance. Thus, the use
of dimensionality reduction techniques allows a change in the current under-
standing of the interaction between environmental variables and their ability to
predict seasonal influenza, involving the MEF concept, minimizing the impact
of increased dimensionality and improving the accuracy of the predictions.

An interesting line of future work lies in the use of more advanced techniques
from deep learning to improve the predictive performance, such as autoencoders
for dimensionality reduction and LSTM for the nowcasting and forecasting task.

Our nowcasting and forecasting framework could be easily extended to track
seasonal influenza activity level in other countries when the environmental fac-
tors are available. However, it is important to stress that the influenza seasons are
more regular in the Nordic area than in tropical and subtropical regions. Addi-
tionally, countries in this area, Norway included, have a strong environmental
control policy that regulates particulate matter emissions. Further investigation
would be required to verify the effectiveness of our approach in countries with
heavier pollution and the interrelation with human health.

Acknowledgements. The work of IM and PP has been supported in part by the Dig-
ital Futures EXTREMUM project titled “Explainable and Ethical Machine Learning
for Knowledge Discovery from Medical Data Sources”.

Appendix

In Table 2 we comparatively present the performance of all models in each solu-
tion using the following performance indicators: MAPE, RMSE, and Pearson
correlation.
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Table 2. Performance indicators for all models in each solution.

MAPE RMSE Pearson correlation
Weeks
ahead 1 2 3 4 All 1 2 3 4 All 1 2 3 4 All

B 19.74 31.11 35.79 38.38 31.26 0.13 0.21 0.31 0.36 0.26 0.89 0.68 0.32 0.15 0.51

temp-SEV 19.11 28.80 32.63 35.95 29.12 0.13 0.19 0.27 0.35 0.24 0.87 0.75 0.52 0.24 0.60

relHum-SEV 23.68 39.88 47.46 44.65 38.92 0.15 0.22 0.30 0.37 0.26 0.77 0.58 0.19 -0.04 0.38

spcHum-SEV 19.62 31.33 35.19 37.17 30.83 0.12 0.20 0.29 0.36 0.25 0.89 0.73 0.46 0.20 0.57

airPre-SEV 17.86 27.56 31.50 34.73 27.91 0.12 0.18 0.27 0.35 0.23 0.89 0.78 0.55 0.25 0.62

wSpeed-SEV 24.10 32.61 39.25 38.08 33.51 0.15 0.22 0.30 0.38 0.26 0.86 0.78 0.52 -0.01 0.54

precip-SEV 22.65 28.38 32.89 36.33 30.06 0.13 0.18 0.27 0.35 0.23 0.88 0.76 0.52 0.24 0.60

CO-SEV 19.61 28.08 32.71 34.90 28.82 0.12 0.21 0.31 0.36 0.25 0.92 0.73 0.39 0.21 0.56

NO-SEV 20.75 28.32 34.82 36.97 30.22 0.13 0.19 0.27 0.33 0.23 0.89 0.76 0.49 0.24 0.59

NO2-SEV 27.07 41.92 49.26 49.68 41.99 0.16 0.25 0.32 0.35 0.27 0.78 0.44 0.11 -0.14 0.30

O3-SEV 16.71 22.11 27.90 29.27 24.00 0.11 0.17 0.26 0.34 0.25 0.94 0.89 0.64 0.28 0.69

PM10-SEV 20.20 29.52 34.74 38.25 30.68 0.13 0.20 0.29 0.36 0.24 0.88 0.73 0.45 0.17 0.56

PM25-SEV 13.68 27.45 36.51 33.98 27.91 0.10 0.16 0.24 0.30 0.20 0.93 0.84 0.66 0.38 0.70

AME 31.88 48.81 43.42 47.51 42.90 0.19 0.26 0.26 0.31 0.25 0.72 0.38 0.32 0.18 0.40

LDA1 17.83 22.10 18.89 23.68 20.62 0.11 0.15 0.17 0.21 0.16 0.92 0.88 0.86 0.84 0.88

LDA2 17.63 19.57 16.07 19.87 18.28 0.10 0.13 0.15 0.17 0.14 0.93 0.89 0.89 0.94 0.91

PCA1 18.86 28.88 37.23 40.52 31.37 0.12 0.20 0.32 0.37 0.25 0.92 0.73 0.28 0.00 0.48

PCA2 17.24 27.17 34.32 36.40 28.78 0.11 0.20 0.29 0.34 0.24 0.90 0.69 0.40 0.24 0.56

PCA3 19.86 32.84 33.72 31.39 29.45 0.14 0.23 0.31 0.33 0.25 0.90 0.78 0.49 0.34 0.63

PCA4 17.29 25.13 27.16 27.82 24.35 0.14 0.20 0.28 0.29 0.23 0.88 0.86 0.72 0.83 0.82

PCA5 20.00 27.74 26.79 26.65 25.29 0.14 0.20 0.23 0.26 0.21 0.88 0.84 0.78 0.83 0.83

PCA6 17.36 26.05 28.28 31.58 25.82 0.13 0.19 0.23 0.28 0.21 0.89 0.87 0.85 0.86 0.87

PCA7 20.00 27.74 26.79 26.65 25.29 0.14 0.20 0.23 0.26 0.21 0.87 0.85 0.71 0.45 0.72

TSNE1 85.49 91.28 157.49 74.20 102.12 0.72 0.85 2.03 1.03 1.16 0.31 0.32 0.08 -0.06 0.16

TSNE2 67.58 90.39 72.79 59.22 72.50 0.50 0.77 0.73 0.51 0.63 0.39 0.36 0.12 -0.06 0.21

TSNE3 18.15 27.75 34.27 41.80 30.49 0.12 0.19 0.28 0.35 0.23 0.90 0.79 0.47 0.10 0.57

TSNE4 26.52 31.30 38.00 45.19 35.25 0.16 0.22 0.33 0.40 0.28 0.82 0.67 0.27 -0.10 0.42

TSNE5 22.18 31.76 36.02 44.16 33.53 0.14 0.22 0.29 0.39 0.26 0.86 0.70 0.54 0.19 0.57

TSNE6 22.78 29.12 33.98 39.60 31.37 0.14 0.21 0.30 0.39 0.26 0.84 0.67 0.33 0.00 0.46

TSNE7 24.87 35.91 41.40 50.16 38.09 0.17 0.25 0.33 0.41 0.29 0.78 0.65 0.34 -0.07 0.42

UMAP1 19.50 32.46 37.96 36.66 31.64 0.11 0.21 0.29 0.33 0.23 0.91 0.72 0.42 0.26 0.58

UMAP2 25.12 46.63 56.66 60.17 47.15 0.15 0.26 0.36 0.43 0.30 0.81 0.51 0.13 -0.50 0.24

UMAP3 20.56 33.28 35.25 42.51 32.90 0.14 0.22 0.22 0.22 0.20 0.82 0.56 0.47 0.48 0.59

UMAP4 28.86 41.02 50.77 62.27 45.73 0.18 0.25 0.31 0.34 0.27 0.79 0.51 0.25 0.03 0.40

UMAP5 28.89 44.52 55.89 57.48 46.69 0.17 0.25 0.31 0.31 0.26 0.74 0.40 -0.11 -0.40 0.16

UMAP6 32.95 51.65 56.59 65.35 51.63 0.19 0.29 0.36 0.38 0.30 0.73 0.42 0.13 -0.08 0.30

UMAP7 35.51 50.09 60.08 68.94 53.65 0.22 0.31 0.31 0.37 0.30 0.67 0.37 0.08 0.00 0.28
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Abstract. Although outlier detection/elimination has been studied
before, few comprehensive studies exist on when exactly this technique
would be useful as preprocessing in classification tasks. The objective of
our study is to fill in this gap. We have performed experiments with 12
various outlier elimination methods and 10 classification algorithms on
50 different datasets. The results were then processed by the proposed
reduction method, whose aim is identify the most useful workflows for a
given set of tasks (datasets). The reduction method has identified that
just three OEMs that are generally useful for the given set of tasks. We
have shown that the inclusion of these OEMs is indeed useful, as it leads
to lower loss in accuracy and the difference is quite significant (0.5%) on
average.

Keywords: Outlier elimination · Metalearning · Average ranking ·
Reduction of portfolios

1 Introduction

One of the common problems machine learning users face is choosing an algo-
rithm for a specific task [23]. The motivation is to either maximize or minimize
a quantifiable measure, such as predictive accuracy. Apart from algorithm selec-
tion, users may achieve an improvement in performance by incorporating dif-
ferent data preprocessing methods and by selecting appropriate hyperparameter
settings for these components. The combination of these three factors consti-
tutes a workflow (pipeline) design problem. The search space of alternatives is
sometimes referred to as configuration space. As this space can be very large, we
need tools to help us identify the optimal one for the new task.

Many approaches focus on the issue of how to conduct the search in the
given configuration spaces [28]. Other approaches try to redesign this space first
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in order to facilitate the search to be conducted in the future. The work described
here falls into the second category. The space considered here includes different
machine learning algorithms and outlier elimination methods (OEMs), which
can be seen as a particular preprocessing method [25].

Various authors have shown that using outlier elimination as a preprocessing
method can improve accuracy [25,26], although this may not always be bene-
ficial. We have decided to investigate this issue. Our first aim was to identify
which OEMs are potentially useful when taking into account the given classifica-
tion algorithm and dataset. Our results show that, for some algorithms, such as
Naive Bayes, the improvement is quite significant. However, various workflows
that include OEMs have the opposite effect, namely they decrease the overall
performance. Therefore, we have decided to conduct a more thorough study to
determine whether the OEMs are truly useful when recommending algorithms
for new unseen datasets.

To determine this, we have adapted the approach of [2]. In this work,
the authors examined the usefulness of different algorithms (workflows) in a
given portfolio, while taking into account a given set of tasks. The algorithms
(workflows) that are unlikely to lead to a overall performance improvement are
dropped. So, the algorithms (workflows) that remain after the reduction are of
interest.

This study has shown that only three OEMs out of the initial set of twelve
OEMs are required for solving the given set of tasks. So, these three OEMs that
have been identified represent a generally useful knowledge that can be exploited
in the design of other, more complex, algorithm recommendation platforms.

2 Related Work

Outlier Detection End Elimination. One pioneering work in the area of
outlier detection and elimination was the work of John and Langley (1995) [16]
on the so-called robust decision trees, who studied the effects of label noise.
After learning a tree, all misclassified instances were removed from the learning
set and a new tree was learned. This was repeated until the learning set was
consistent. Although it did not result in accuracy increase, the resulting tree
was much smaller. A similar approach for kNN was presented elsewhere [29,33].

Smith and Martinez (2018) [25] explored filtering of misclassified instances.
Misclassification was studied both in conjunction with a single classifier or an
ensemble of classifiers. In total, 54 datasets were used in conjunction with
9 supervised learning algorithms from Weka [12]. In both cases, misclassified
instances were removed. When the same learning algorithm was used to filter
misclassified instances and to learn a model, only three algorithms displayed an
accuracy increase – LWL lazy learner, Neural net and Ripper. In all cases, using
an ensemble of learning algorithms for filtering resulted in a greater increase in
classification accuracy than when using a single learning algorithm. However, if
compared with majority voting ensemble of the 9 classifiers, the majority voting
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ensemble reached, on average, the highest accuracy. An extensive and recent dis-
cussion of noise filters, as well as a particular solution for elimination of attribute
noise can be found in [24].

Workflow Recommendation with AutoML/Metalearning Systems.
Various approaches exist regarding how to identify the best possible work-
flow/pipeline (sequence of algorithms) for a given task and for a given configura-
tion space. Some simple ones include, for instance, grid search, random search,
and gradient descent method, which is often used in the task of configuring the
hyperparameters of neural networks. The approach known as sequential model-
based search/optimization (SMBO) exploits knowledge of past experiments on
the target dataset [14]. The so-called surrogate model permits to carry out a rela-
tively fast test to estimate the next best candidate to test. The system AutoWeka
[28], for instance, uses this kind of search to identify the potentially best workflow
configuration for a given task.

Metalearning approaches gather test results on various datasets and the
metaknowledge obtained is used to construct a model estimating the next best
candidate to test [5,32]. The metaknowledge gathered represents a set of work-
flows (pipelines) used in the past, some of which may be useful for the new
task. Each workflow (pipeline) can also be seen as a plan of different operations
to execute. So, one advantage of the metalearning approaches is that one does
not need to search for a new plan if a sufficiently rich set already exists. The
method called AR* [1] exploits an average ranking of workflows. It represents
a simple method that orders the workflows according to a given performance
measure (e.g., accuracy, a combined measure of accuracy and runtime). Hence,
this method allows us to evaluate the benefit of adding new workflows to a
given portfolio and thus obtain information about its marginal contribution to
performance [34].

Analysis and Reformulation of Given Configuration Space. Various
authors have investigated the issue of which parts of the given configuration
space are useful for a given set of tasks. Various works exist on the problem of
how to establish the relative importance of hyperparameters and their setting
(see e.g., [30,34]). Others tried to use the results of prior analysis to reformulate
the configuration space. As was mentioned earlier, [2] examined the usefulness
of different algorithms (workflows) for a given set of tasks. The results of this
analysis was used to reformulate the existing set (portofolio) of algorithms (work-
flows).

3 Research Questions and Methodology

Let us first list the main research questions that we wish to answer in this work:

RQ1: Can we use OEMs in workflows without restrictions?
RQ2: Are some OEMs potentially useful?
RQ3: Can we identify the most useful workflows with OEMs? If so, how?
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The research question RQ1 is addressed in a study described in Sect. 5.1. The
method used to answer the research question RQ2 is discussed in Sect. 3.2 and
the results are presented in Sect. 5.2. The research question RQ3 is addressed in
Sect. 3.3 and the results are presented in Sect. 5.3.

3.1 Basic Concepts

Let us clarify the meaning of some basic concepts, starting with the notion
of outliers. Barnett and Lewis [4] define them as observations that deviate so
much from the rest of the data that it is likely that they are generated by a
different phenomenon than the one being analyzed. If we characterize the points
generated by a certain distribution, then outliers can be seen as the points that
do not belong to this distribution.

We can distinguish two kinds of noise in a dataset that may even influence
each other [35]. Class noise appears when instances are incorrectly labelled and
may be caused in a process of labelling by a human, while attribute noise cor-
responds to errors in attribute values - caused, for instance, by measurement
errors. While class noise may be eliminated by instance filtering, for attribute
noise it is not appropriate. The work presented here focuses on attribute noise.

Let us also clarify what we mean by initial and extended of workflows. The
initial workflows are of the form CLk represents a particular classification algo-
rithm with default settings. The set of classifiers used in the experiments is
shown in Sect. 4. The initial portfolio includes the set of these initial workflows.

The extended workflows are of the form OEMi,j , CLk, where OEMi,j rep-
resents the outlier elimination method i with configuration j. The set of outlier
elimination methods (OEMs) used in the experiments is shown in Sect. 4. The
extended portfolio includes both the initial and the extended workflows.

3.2 Determine Whether Some OEMs are Potentially Useful

Informally speaking, the extended workflow (OEMi,j , CLk) can be considered
to be potentially useful if it leads to increased performance on many datasets
when compared to its initial counterpart (CLk). The amount of the increase also
matters and so we also take this into account. The aim of our experiments are
twofold: first, determine whether all, or just some, of the extended workflows
with OEMs can be considered as useful. If at least some extended workflows are
identified as potentially useful, our aim is to identify the classification algorithm
and the datasets involved. The results of this study are presented in Sect. 5.2.

3.3 Identify the Most Useful Workflows with OEMs

Our aim is to compare the performance of a chosen algorithm selection method
on two different portfolios, the initial and the extended one, which may include
some workflows with OEMs. The aim of this comparison is to determine whether
it is advantageous to use the extended portfolio. However, we need to be careful,
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as some workflows that include an OEM may result in a decrease of performance.
So, to avoid this, we use a reduction method based on [1] to select the most
competitive workflows. This way, the extended set is effectively reduced, by
pruning out the non-competitive variants. So one key question is the following:
will some of the OEMs “survive” this reduction phase? If so, which ones? Will the
final portfolio lead to competitive results? The aim of our experiments discussed
in Sect. 5 is to answer these questions and, this way, shed light on the usefulness
of outlier elimination methods.

Method for the Reduction of Portfolios of Workflows. The reduction
method used here is based on the method in [1], but includes various adapta-
tions. This method uses a given portfolio of algorithms (in general workflows)
and reduces it by removing non-competitive ones by exploiting the existing per-
formance metadata obtained in prior tests. This is followed by the elimination
of workflows that include infrequent OEMs.

Identifying the most competitive algorithm using a given performance mea-
sure (A3R, which combines accuracy and runtime) is straightforward. Identi-
fying all algorithms with equivalent performance could be done with recourse
to the Wilcoxon signed-ranks test, that exploits fold information of the cross-
validation procedure. As we do not have this data, we had to use a substitute
method instead. This method uses just the N% of top workflows as the most
competitive algorithms for a given dataset. Here we use the top 1% of workflows
based on A3R measure (combining accuracy and time) and another top 1% of
workflows based on accuracy only. All these workflows are passed to the second
phase.

The aim of this phase is to eliminate all workflows which include rather
infrequent OEM variants in this portfolio. If a particular OEM variant appears
in less than P% of workflows, the corresponding workflows with this variant is
marked for elimination. After processing all OEM variants, all corresponding
workflows are dropped.

Algorithm/Workflow Recommendation Method Used. Here, we have
chosen the method average ranking (AR*) [1] as the algorithm/workflow rec-
ommendation method. This method was chosen because it is relatively simple
and, consequently, it is easy to define different configurations that include all
required alternatives (selected classification algorithms with/without OEMs).
We have excluded AutoWeka [28], Auto-sklearn [10] or other systems from con-
sideration, as they not include all the OEMs we have considered here.

Method AR* requires that each portfolio of workflows is converted into a
ranking on the basis of available performance metadata. Each ranking is then
followed to generate recommendations for the dataset left out. This enables to
obtain its performance and to calculate how far it is from the best possible
performance, i.e., calculate the loss. This is repeated as many times as there are
datasets, following the leave-one-out (LOO) strategy. Sect. 5.3 shows the median
loss obtained across all folds of LOO cycles.
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Evaluation Strategy. The evaluation strategy adopted here is a leave-one-
out (LOO) evaluation strategy. In each cycle, all datasets except one are used
to identify the portfolios discussed above. The recommendations of the chosen
algorithm selection method are used to calculate the loss on the dataset left out.

4 Experimental Setup

Our setup included 50 datasets from the cc18 benchmark set of OpenML [31]
(see Table 5 in the Appendix). We have not used datasets that were deemed to
be too easy (the accuracy reported was higher than 95%) or those that had more
than 50k instances.

In this study we have used 10 classifiers from the Weka toolkit that were used
in one previous study [26] (see Table 1). Obviously, other classifiers could have
been chosen (e.g., XGBoost, neural networks), but the choice made is useful for
comparisons. All algorithms were used with default parameter settings. Apart
from these, we have also used the default classifier that simply predicts the most
frequent class for each dataset.

Table 1. Classifiers used in the experiments

Classifier Description

IBk 5-Nearest Neighbors classifier [3]

J48 C4.5 Decision Tree classifier [22]

JRip RIPPER propositional rule learner [8]

LMT Classification trees with logistic regression at the leaves [18]

Logistic Logistic regression model with a ridge estimator [19]

SimpleLogistic Linear logistic regression model [27]

NaiveBayes Naive Bayes using estimator classes [17]

PART Generates rules based on partial Decision Tree leaves [11]

RandomForest Random Forest classifier [6]

SMO Sequential minimal optimization for SVM [21]

Twelve outlier detection and elimination methods (OEMs) have been used,
some of which are general (see Table 2), others class-based [20] (see Table 3), rep-
resenting a richer set than the one used in [25]. Each outlier elimination method
(OEM) also has one hyperparameter indicating the percentage of top outliers
to be eliminated (top 0.5, 1, 2, 3, 4 or 5%). All five values of this parameter
were used in the experiments. Consequently, the total number of OEMs and
its variants is 72, if we do not count the null method (12 OEMs, each with 6
hyperparameter settings).

The extended workflows have the format OEM i,j , CLk, where OEM i,j repre-
sents a particular outlier detection/elimination method i with a hyperparameter
j. The total number of extended workflows was 720 (72 OEMs x 10 CLs). As
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Table 2. General outlier detection methods used

OD General outlier detection methods

LOF Local Outlier Factor [7]: Compares the density of instances to its
neighbors

NN Nearest Neighbors [26]: Uses distances to the k nearest neighbors

IF Isolation Forest [9]: Using forests, determines the outlyingness of
instances based on their path lengths from the root to the isolation node

DS Disjunct Size [26]: Outlyingness based on the size of leaf node of instances
in the decision tree

TD Tree Depth [26]: Outlyingness based on the depth of the leaf node using
single decision tree

TDwP Tree Depth with Pruning [26]: Same as TD but uses a pruned tree

each extended workflow was run on 50 datasets, the number of experiments was
36,000. To this, we need to also add the experiments with the initial workflows,
which totaled 500 (10 CLs × 50 datasets). Each experiment was performed using
5-fold cross-validation.

5 Results

5.1 Can We Use OEMs Without Restrictions (RQ1)?

Our results have shown that, on average,1 the workflows extended with outlier
elimination do not exceed the initial counterpart. The only exception is Naive
Bayes, whose performance, can, on average be improved by 0.316% by adding
OEMs. So, the main conclusion from this experiment is that the OEMs should
not be used blindly, without taking into account other aspects.

5.2 Determining Whether Some OEMs are Potentially Useful
(RQ2)

Following the methodology defined in Sect. 3, we seek extended workflows of
the type OEMi,j , CLk whose performance exceeds the initial workflow CLk on
many datasets. In other words, our aim is to identify outlier methods OEMi,j

that are potentially useful for a specific CLk.
Some results of these experiments are shown in Table 4. This table shows

some potentially useful workflows (Classifier, OEM ) and the hyperparameter
setting of the outlier method indicating how many elements should be left out
(column Out.). Column Init. shows the average accuracy of the initial workflow
(a particular classifier) on all datasets. The information in column Extend. is
similar; it is relative to the workflow extended with the particular OEM . Col-
umn Dif. shows the difference between the two values. Positive values indicate
1 The average is calculated by aggregating the accuracy across different OEMs and

datasets.
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Table 3. Class-based outlier detection methods used

OD Class-based outlier detection methods

RF-OEX Random Forest (RF) Outlier Detection and Explanation [20]: Uses RF
to calculate the dissimilarity of instances to their own class, the
similarity to other classes and general outlyingness

CODB Class Outliers - Distance Based approach [13]: Uses nearest neighbors
to calculate the dissimilarity of instances to their own neighborhood,
the similarity to other classes and general outlyingness

KDN K Disagreeing Neighbors [26]: Uses class labels of k nearest neighbors
to calculate outlyingness

CLOF Class-based Local Outlier Factor: Combines the dissimilarity to its own
class, the similarity to other classes and general outlyingness:
LOF (sameclass) + 0.75 ∗ LOF (otherclasses) + 0.25 ∗ LOF (all)

CL Class Likelihood [26]: Calculates the probabilities of instances
belonging to their own class based on Kernel Densities and the number
of occurrences of features

CLD Class Likelihood Difference [26]: CL, but with probabilities of belonging
to different class also taken into account

Table 4. Some potentially useful workflows

Classifier OEM Out. Init. Extend. Dif. # Wins

Acc.% Acc.% Acc.% in 50

NaiveBayes CODB 4 72.816 73.430 0.615 31

NaiveBayes LOF 2 72.816 73.788 0.973 30

NaiveBayes CODB 3 72.816 73.389 0.573 30

NaiveBayes CODB 2 72.816 73.275 0.459 30

NaiveBayes KDN 4 72.816 73.194 0.379 30

IBk DS 5 79.490 79.659 0.169 30

LMT ClassLikelihood 1 83.475 83.579 0.104 30

LMT IsolationForest 0.5 83.475 83.554 0.079 30

SMO RF-OEX 1 79.898 79.939 0.041 30

NaiveBayes IsolationForest 2 72.816 73.793 0.978 29

that the particular OEM had a positive effect on performance. For instance,
the use of outlier methods CODB (with Out = 4), together with NaiveBayes
classifier, has led to an average increase of accuracy amounting to 0.615%. The
improvements were observed on 31 out of 50 datasets (column #Wins).

This analysis does not really show how to proceed. That is, if we selected
a particular combination of OEMi,j , CLk this would be a risky guess. As the
experiments have shown, it is not guaranteed that this workflow would lead to
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a better performance. So, the only choice we have is to use the most promising
alternatives and conduct tests on a validation set. This topic is discussed in the
next section.

5.3 Constructing a Portfolio with the Most Useful Workflows
with OEMs (RQ3)

In this subsection, we address the question of whether some of the extended
workflows that include a particular OEM method are useful for algorithm rec-
ommendation.

As we explained in Sect. 3, we use the method based on average ranking
AR* [1]. This method uses a ranked portfolio of workflows to generate the rec-
ommendations to the user. This makes it possible to compare the benefit of
having workflows with OEMs in the portfolio. The results are shown in Fig. 1
showing the median curves that aggregate the data of different curves resulting
from different cycles of LOO procedure.

All curves start with default accuracy for each dataset corresponding to the
prediction of the most frequent class. The black loss curve (Baseline 10) includes
the 10 base workflows and can be considered as the baseline.

The blue loss curve (Full Ranking 710) includes all 730 workflows. Ten of
these are the initial workflows and 720 are the workflows that include OEMs
(10 base workflows × 10 OEMs × 6 parameter settings = 720). The advantage
of including OEMs is clearly visible. The corresponding curve reaches zero loss,
while the black one that uses only classifiers does not. The difference when
considering the median curves is rather significant - nearly 0.5%. The downside
is that we need to spend more time (around 103 s) testing different alternatives
before we encounter a good solution.

The red loss curve (Red Perc 1+1) shows the loss curve relative to the reduced
portfolio that includes about 306 workflows on average, i.e., 58% reduction, which
is quite significant. This portfolio was obtained by identifying the top performers
for each dataset, then joining them without repetitions and constructing a single
A3R ranking. The top performers include the top 1% of workflows based on
A3R measure (it combines accuracy and time) and another top 1% of workflows
based on accuracy only. So, this way, we identify 7+7 workflows per dataset.
This alternative achieved a somewhat better loss as the total set represented by
the blue curve. The advantage of this solution is that the portfolio includes fewer
workflows.

The green loss curve (Red Perc 1+1 Subset) uses an even smaller portfolio
when compared to the previous case (Red Perc 1+1). The portfolio Red Perc
1+1 is used as a starting point for this operation. The aim is to eliminate all
workflows which include rather infrequent OEM variants in this portfolio. If a
particular OEM variant appears in less than P% of workflows, the corresponding
workflows with this variant is marked for elimination. After processing all OEM
variants, all corresponding workflows are dropped. In this study, the threshold
of P = 10% was used. The reduction obtained this way is significant, as it
includes just 118 workflows (86% of reduction). Only 3 OEMs appeared in these
workflows: RF-OEX, TDWithPrunning and DS.
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Fig. 1. Median loss curves of AR* relative to different portfolios of workflows (Color
figure online)

6 Future Work and Conclusions

Future Work. It would be possible to examine how reliable are the OEMs
identified in eliminating certain outliers. This could be done by injecting outliers
in a controlled manner and then by examining whether these would be eliminated
with the OEMs. Also, we could compare the effect of using OEMs with the noise
filters discussed by Saez et al. [24] (see Sect. 2).

We note that outliers are often defined with respect to a particular distribu-
tion (see Sect. 3). In this work we have assumed that the distribution is fixed.
It would be possible to extend the work presented here to be able to deal with
data following a specific distribution. In case of skewed distributions, suitable
transformations might help, e.g. Box-Cox, Yeo-Johnson or quantile-based trans-
formations [15].

Although the reduction method used here was applied to a particular setting
that includes OEMs, the method is quite general, as it can be applied in other
settings. These could include algorithm selection, selection of suitable hyperpa-
rameter settings and inclusion of other preprocessing methods. The configura-
tion space obtained with our specific workflow recommendation system can be
implanted into other more complex systems. We are planning to conduct other
studies in the future to demonstrate this.
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Conclusions. Our aim was to examine the usefulness of outlier detec-
tion/elimination methods (OEMs) in classification. We have considered twelve
different OEMs in conjunction with different classifiers and formulated several
research questions. We have shown that it is not advisable to use OEMs in work-
flows without further restrictions. The performance of the workflows extended
with OEMs does not usually exceed the performance of the initial counterparts.
The workflows with Naive Bayes and OEMs represent an exception, although
the gain obtained by including OEMs is not large.

This result lead us to investigate how we could identify the most useful
workflows that include some OEMs only, and this way improve the performance.
The methodology adopted used a simple algorithm/workflow recommendation
system (AR*). We have investigated the effect of selecting different portfolios of
workflows in this setting. Our aim was to try to reduce the initial portfolio by
eliminating certain elements, without affecting the performance of the workflow
recommendation system.

Our results show that if we use OEMs, the results of the workflow recom-
mendation system will improve on average. The gain observed on a study with
50 datasets in a leave-one-out mode was rather significant (0.5%). Our most
important result involves the three OEMs identified with our approach, which
are RF-OEX, TDwP and DS. Besides, we showed that it is possible to eliminate
86% of the original workflows and still maintain the same loss.

Reducing the number of workflows can be regarded as a reduction of the
given configuration space. This topic is relevant to other researcher in AutoML,
as it can lead to substantial speed-ups of the search for effective solutions.
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Appendix

Table 5. Datasets used in the experiments (total 50)

Dataset Inst. Feat. Clas. Dataset Inst. Feat. Clas.

dresses-sales 500 13 2 mfeat-fourier 2000 77 10

KC2 522 22 2 mfeat-karhunen 2000 65 10

climate-model-simulation-crashes 540 21 2 mfeat-morphological 2000 7 10

cylinder-bands 540 40 2 mfeat-pixel 2000 241 10

ilpd 583 11 2 mfeat-zernike 2000 48 10

balance-scale 625 5 3 KC1 2109 22 2

credit-rating 690 16 2 segment 2310 20 7

eucalyptus 736 20 5 ozone-level-8hr 2534 73 2

blood-transfusion-service 748 5 2 madelon 2600 501 2

pima-diabetes 768 9 2 dna 3186 181 3

analcatdata-dmft 797 5 6 splice 3190 61 3

vehicle 846 19 4 spambase 4601 58 2

tic-tac-toe 958 10 2 churn 5000 21 2

vowel 990 13 11 phoneme 5404 6 2

credit-g 1000 21 2 wall-robot-navigation 5456 25 4

qsar-biodeg 1055 42 2 texture 5500 41 11

cnae9 1080 857 9 optdigits 5620 65 10

PC1 1109 22 2 first-order-theorem 6118 52 6

pc4 1458 38 2 satimage 6430 37 6

cmc 1473 10 3 data.va3.gesture 9873 33 5

pc3 1563 38 2 JM1 10885 22 2

semeion 1593 257 10 letter 20000 17 26

car 1728 7 4 doushouqi-raw-egtb-2-pieces 44819 7 3

spf3 1941 28 7 bank-marketing-full 45211 17 2

mfeat-factors 2000 217 10 electricity 45312 9 2
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Abstract. The notion of concept drift refers to the phenomenon that
the distribution, which is underlying the observed data, changes over
time; as a consequence machine learning models may become inaccurate
and need adjustment. Many unsupervised approaches for drift detection
rely on measuring the discrepancy between the sample distributions of
two time windows. This may be done directly, after some preprocessing
(feature extraction, embedding into a latent space, etc.), or with respect
to inferred features (mean, variance, conditional probabilities etc.). Most
drift detection methods can be distinguished in what metric they use,
how this metric is estimated, and how the decision threshold is found. In
this paper, we analyze structural properties of the drift induced signals in
the context of different metrics. We compare different types of estimators
and metrics theoretically and empirically and investigate the relevance
of the single metric components. In addition, we propose new choices
and demonstrate their suitability in several experiments.

Keywords: Concept drift · Concept drift detection · Drift detection
metric · Metric adaption

1 Introduction

One popular assumption in classical machine learning is that the observed data
is generated i.i.d. according to some unknown underlying and stationary proba-
bility PX . Yet, stationarity is often violated for realistic learning tasks such as
machine learning based on (streaming) social media entries or measurements of
IoT devices, which are subject to continuous change [1,22]. Here, concept drift,
i.e. changes of the underlying distribution PX occurs, caused e.g. by seasonal
changes, changed demands, ageing of sensors, etc. Learning with drift can be
dealt with in different ways. Often, data is treated via windowing techniques,
and the model is continuously adapted based on the characteristics of the data
in an observed time window. Thereby, many approaches deal with supervised
scenarios and they aim for a small interleaved train-test error. In recent years,
some approaches deal with concept drift in unsupervised settings [6,16]. One
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fundamental problem, which is part of supervised learning schemes as well as
unsupervised drift modelling and which will be in the focus of this publication,
is the challenge of drift detection and determination of the time point when drift
occurs.

According to [16] most drift detection schemes proceed in four stages: 1) col-
lecting data, 2) building a descriptor of the data in two time windows, 3) com-
puting a dissimilarity based on the obtained the descriptor, 4) normalize the dis-
similarity, e.g. by considering an appropriate statistical test. This work focuses
on the second and third stage of this scheme, which constitute the most cru-
cial ones. The first stage can be solved in many problem-specific ways without
a major effect on the next stages. The decision process in stage four can be
bounded independently of the concrete realization: the difference of the output
of stage three under the null hypothesis (no drift) and the alternative (drift)
constitutes such a bound.

The aim of the present work is to determine the influence of the two major
ingredients of stage 2 and 3, namely the used descriptor (stage 2) and the dissim-
ilarity measure applied to the descriptor (stage 3) and to evaluate their influence
on the capability to detect drift and localize it in time. We will empirically show
that the chosen dissimilarity measure is of minor importance. The descriptor has
an impact. In lay terms, it is more important how to estimate rather than what
to estimate. This claim will be investigated from a theoretical and an empirical
perspective using different estimation schemes.

Beyond this general comparison, we provide new methods to realize stages
two and three in an efficient (dataset-specific) way: random projection-based and
moment tree-based binning. This is of particular interest since dataset-agnostic
dissimilarity measures face the challenge of an inherent trade-off between statis-
tical power or sensitivity and convergence speed.

This work is structured as follows: first (Sect. 2) we recall relevant work
from the literature and define the problem setup – in particular, we describe
different approaches to tackle the four stages (Sect. 3). We also provide a general
argument when an estimator is capable of drift detection (see Theorem 2). In
the last section (Sect. 5) we evaluate the metrics and estimators – showing their
strengths and weaknesses – and show the suitability of our proposed approaches.

2 Problem Setup

In the usual time invariant setup of machine learning, one considers a genera-
tive process PX , i.e. a probability measure, on the data space X . In this con-
text, one views the realizations of PX -distributed, independent random variables
X1, ...,Xn as samples. Depending on the objective, learning algorithms try to
infer the data distribution based on these samples, or, in the supervised setting,
the posterior distribution. We will not distinguish between these settings and
only consider distributions in general, subsuming supervised and unsupervised
modeling [23].
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Many processes in real-world applications are time dependent, so it is reason-
able to incorporate time into our considerations. One prominent way to do so,
is to consider an index set T , representing time, and a collection of probability
measures pt on X , indexed over T , which may change over time [8]. We will
usually assume T = [0, 1]. In the following, we investigate the relationship of
those pt. Drift refers to the fact that pt varies for different time points, i.e.

∃t0, t1 ∈ T : pt0 �= pt1 .

In this context, we consider a sequence of samples (X1, T1), (X2, T2), ..., with
Xi ∼ pTi

and Ti ≤ Ti+1, as a stream. Notice, that we will usually use the
shorthand drift instead of concept drift. In this contribution we will mainly
focus on the case of one single abrupt drift, i.e. there exist probability measures
P and Q and a time point t0 ∈ T , such that

pt =

{
P, t ≤ t0

Q, t > t0
.

In this context we can ask two questions, which are referred to as drift detection:

1. Whether there is drift, i.e. does P �= Q hold?
2. If so, when does the drift occur, i.e. what is t0?

2.1 A General Scheme for Drift Detection

As most drift detection methods are applied in a streaming context, one usu-
ally considers time-dependent data samples S(t), observed during a time period
W (t). To detect drift, one estimates the dissimilarity of the distributions of a
(presumably before drift) reference time-interval (or window) W−(t) and a cur-
rent time-interval W+(t), which are obtained by splitting W (t). The estimation
is done using the sub-samples S−(t) and S+(t) called windows of S(t) that corre-
spond to W−(t) and W+(t), respectively. The way this is done varies depending
on the specific algorithm. In this section we discuss some of the most prominent
choices for the relevant stages 1–4 of this drift detection scheme as described in
[16].

Stage 1: Acquisition of data: As stated above most approaches are based on
sliding windows, however, the concrete implementation can vary. In particular,
the reference window is realized in different ways: as sliding window, stationary,
growing window, implicitly within a model, etc. To illustrate the idea we describe
the examples of (a variant of) ADWIN and a simple version of an implicit refer-
ence window:

Example 1. ADWIN [2] uses only one sliding window S(tnow). To test for drift
this window is split successively into to halves, S−(t; tnow) and S+(t; tnow).
Then, these are compared using a suitable distance measure d̂, i.e. the statis-
tic of ADWIN is given by supt d̂(S−(t; tnow), S+(t; tnow)). In the original version
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Fig. 1. Two stage scheme of estimating distribution dissimilarity from data. Distance
of distributions (d̂) can be estimated by building a descriptor (A) and then computing
a dissimilarity (s).

ADWIN “prepocesses” the data by comparing the result of a fixed classification
model against reference labels. However, extensions with other statistical tests
are straightforward.

Example 2. A simple approach with implicit reference window consists of a refer-
ence mean μ̂ref = μ(S−(t)) and a sliding window S+(t) of fixed size corresponding
to W+(t). If there is no drift, the mean in the current window and the reference
should be the same, i.e. μ(S+(t)) ≈ μ̂ref. Based in this assumption a drift detec-
tion can be performed using a t-test. Once a sample drops out of the current
window S+(t) it is used to update μ̂ref.

Apart from these examples, some approaches use preprocessing such as a
deep latent space embedding. We do not explain those possibilities in more
detail. Instead, we focus on the case of two windows only and try to evaluate
the suitability of different distance measures for the task at hand.

Stage 2: Building a descriptor: Comparing two distributions directly based on
a sample is usually complicated. Therefore, the process is split into two parts
which are visualized in Fig. 1: First a descriptor of the distributions is built
(this corresponds to A in Fig. 1), and then the dissimilarity of the distribution is
computed based on that descriptor (s in Fig. 1). Possible descriptors are grid- or
tree-based binnings, neighbor-, and kernel approaches. We list some of the most
popular descriptors together with suitable dissimilarity measures in Sect. 3.

Stage 3: Computing dissimilarity: As stated in the last paragraph, computing
the dissimilarity of two samples is often reduced to a comparison of descriptors
which are based on those samples (s in Fig. 1). Although, several approaches
for building descriptors exist, many admit the same or at least comparable dis-
similarity measures. For example, if we consider binning descriptors, it does not
matter whether the bins are obtained from a grid or a tree, or if the grid or tree
is adjusted to the presented data or not.

Stage 4: Normalization: As the obtained dissimilarities typically depend on both,
the method, i.e. stages 1–3, and also the concrete distribution at hand, it is nec-
essary to normalize the result to obtain a useful scale. One of the most common
ways to do this is by a relation of the dissimilarity to the statistic of a statistical
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test; in this case the p-value offers a normalized scale. In the literature a large
variety of approaches are considered. However, independently of the concrete
normalization, the presence of drift can be observed from the output of stage
3; more formally the post hoc optimal normalization after stage 3 provides an
upper bound on the quality of any concrete normalization. Therefore, we will
focus on the output after stage 3 in the following.

Beyond stage 4: Ensemble and hierarchical approaches: Some authors [16] sug-
gest to combine multiple drift detectors. They are usually arranged in an ensem-
ble, e.g. by combining multiple p-values after stage 4 into a single one, or hier-
archical, e.g. by combining a computationally inexpensive but imprecise detec-
tor with a precise but computationally expensive validation. Although, those
approaches differ on a technical level, they do not from a theoretical perspective,
as the suggested framework is sufficiently general.

2.2 Formal Setup and Research Question

Before we can formally specify question 1 and 2, we first have to define the
sampling process:

Definition 1. Let X be a data space and T ⊂ R. Let (pt, PT ) be a drift process
[13] on X and T , i.e. a distribution PT on T and a Markov kernel pt from T
to X . A window S drawn from pt during a time interval W ⊂ T is a sample
S = {(x1, t1), · · · , (xn, tn)} drawn i.i.d. from ptPT [ · |W ], assuming PT (W ) > 0.

We use the following notation: If the choice of W is not specified, we will
assume W = T . For the sub-intervals W−(t) := (−∞, t] ∩ W and W+(t) :=
(t,∞) ∩ W , we define the sub-windows S−(t) := {(x′, t′) ∈ S | t′ ∈ W−(t)} and
S+(t) analogously.

Question 1: “Whether” It was shown in [12, Theorem 2] that drift is equivalent
to different sub-window distributions, i.e. it exists a t ∈ W such that pW−(t) �=
pW+(t), here pW denotes the distribution during W . Since we do not observe the
underlying distributions, but only a window S, it is reasonable to quantify this
using estimates of the distance of the underlying distributions

d̂(S−(t), S+(t)) := (s ◦ A)(S, t)

which should be (significantly) larger than 0 if and only if there is drift. Here we
decompose d̂ as described before into a descriptor A and a dissimilarity s.

Control of the uncertainty of the sampling process when detecting drift can
be formalized as follows:

Definition 2. Let (pt, PT ) be a drift process, and S denote a window drawn
from it. An estimator (A, s) is a pair of measurable maps, one mapping windows
to descriptors, i.e. A : ∪n(X × T )n × T → B, the other mapping descriptors to
dissimilarities, i.e. s : B → R. We refer to B as the description space.
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An estimator is drift detecting, iff it raises correct alarms with a high prob-
ability in the following sense: There exists a 0 < δ < 1/2 and a number n such
that with probability at least 1 − δ over all choices of S, with |S| > n, it hold
s ◦ A(S, t) > 0 for some t if and only if there is drift.

An estimator is surely drift detecting, iff it raises correct alarms with arbi-
trarily high certainty, that is the above statement holds for all 0 < δ < 1.

Notice, that this definition is applicable for general drift, including gradual,
incremental, and periodic. Furthermore, the difference between drift detection
and sure drift detection only occurs in the limit of the size of S. As long as we
are restrained to windows of fixed sample size, both notions are effectively the
same.

Question 2: “When” We are interested in finding the time point t0 where the drift
actually occurs. This is often estimated by the point t̂0 with largest difference
of the sub-windows, i.e.

t̂0 = arg max
t∈T

d̂(S−(t), S+(t)).

The precision of this estimator can be quantified by mean ratio of samples
between the true drift event t0 and its estimate t̂0. This can be formalized as
follows:

Definition 3. Let (pt, PT ) be a drift process with a single abrupt drift event at
t0 with 0 < PT (W−(t0)) < 1. Let S be a window drawn from pt.

We define the precision of the estimate t̂0 as 1 − PT ( [t0, t̂0) ∪ (t̂0, t0] ).1

We say that an estimator (A, s) is precise, iff for all 0 < δ < 1 and ε > 0
there exists a number n, such that with at least probability 1 − δ over all choices
of S, with |S| > n, the precision is larger than 1− ε, assuming drift was detected.

Notice, that the restriction to a single drift event in the definition of precision
is necessary to avoid the ambiguity of which event t̂0 is to be compared to.

As finding the best split t̂0 requires the evaluation of multiple potential split
points t, an efficient computation is important. As we have to compute the dis-
similarity at each time point, efficiency holds if the same descriptor can be used
for multiple split points, i.e. d̂(S−(t), S+(t)) = (s ◦ A)(S, t) = s(A0(S), t), where
A0 is independent of the split point. This gives rise to the following definition:

Definition 4. We say that an estimator (A, s) is c-complex, iff s ∈ O(c) regard-
ing computational complexity and A factorizes as A0 × idT , that means it holds
(s ◦ A)(S, t) = s(A0(S), t).

Notice, that the computational efficiency of s crucially depends on the
codomain of A0. For example factorization also holds if we choose the set of
all functions from T to R and s as the evaluation map.

The notion of complexity restricts how much A(S, t) can be adapted to the
split point t. Yet, the incorporation of the temporal information contained in S

1 Recall that [a, b) = (a, b] = ∅ for a ≥ b.
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is desirable as it usually leads to better descriptors. We therefore say that an
estimator is “arrival time respecting” if the descriptor uses temporal information
beyond the split point:

Definition 5. An estimator (A, s) is arrival time respecting, iff the obtained
descriptor depends on the timing within the sub-windows, i.e. it exists a split
of a window S = S−∪̇S+, and permutations π−, π+, such that A(S− ∪ S+, t) �=
A(S̃− ∪ S̃+, t), where S̃− = {(xi, tπ−(i)) | i = 1, ..., n−} is the time-permuted
version of S− = {(xi, ti) | i = 1, ..., n−} and analogous for S̃+.

3 Dissimilarity Estimators

We are interested in popular instantiations of stages 2 and 3 and their properties.
Binning can be considered as one of the simplest strategies to estimate a

probability distribution. Essentially, the input space is segmented and the num-
ber of samples per bin is counted. The ratio of these samples as compared to
all provides an estimate for the actual probability. Based thereon, distance mea-
sures like total variation [23], Hellinger distance [5], or Kullback-Leibler diver-
gence [4,19] can be computed. We will also consider the Jensen-Shannon metric
which is based on the Kullback-Leibler divergence. Binning on a grid was used
in the work [23], for example, to estimate the rate of change in data streams.

Since the number of required bins grows exponentially with the number of
dimensions, one might consider multiple, separate binnings of low dimensional
projections for high dimensional data. Typical choices are projections onto the
coordinate axis/marginals [5] and onto the principal components [19]. While
these strategies reduce the complexity of the descriptor, it is not capable of
capturing drift that affects the correlation of features or of components with
small variance, respectively. As this poses a problem for drift detection in the
real world, we propose a new technology: random projection binning considers
binnings along randomly chosen projection axes.

Instead of using an equally spaced grid structure, one can also consider a
recursive splitting of the dataset similar to a decision tree with leaves forming
the bins. Depending on the way of splitting, these are Random Trees, where the
dimension and the split point are chosen completely randomly, or kdq-Trees [4],
where one successively splits the dimensions along the center. As such splits
often lead to slow convergence, we propose to use a comparably new alternative:
Moment Trees [14], which are designed for conditional density estimation. Here,
they are trained to predict the (distribution of) time given data, i.e. PT |X . Notice,
that due to the relation to a supervised problem, one can perform a parameter
tuning, which is not possible for the other approaches.

Neighborhood-based approaches offer a popular and robust choice in non-
parametric methods which have been widely used for various estimators, includ-
ing Kullback-Leibler divergence [18]. In drift detection the Local Drift Degree
(LDD) [15] is one method that is explicitly based on k-nearest neighbors (k-
NN).
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Table 1. Summary of estimators (Drift Detecting: No �, Drift detecting (�), Surely

drift detecting �, Arrival Time Respecting: No �, Yes �)

Descriptor (B) Metric(s) DD ATR Complexity

Marginal Bin. [5] � � O(1) Cumulative histogram

Random Proj. Bin. (�) � O(1) Cumulative histogram

Random Tree (Bin.) Total variation [23], � � O(1) Cumulative histogram

kdq-Tree [4] (Bin.) Hellinger [5], Jensen- � � O(1) Cumulative histogram

Moment Tree (Bin.) Shannon, DKL [4] � � O(1) Cumulative histogram

k-NN LDD [15], DKL [18] � � O(k) Neighborhood graph

Kernel embedding of
distribution [20]

MMD [10] � � O(|W |) Cholesky decomposition
of kernel matrix

Another, non-parametric approach are kernels. Maximum Mean Discrep-
ancy (MMD) [10] is a kernel-based metric, which was also applied to drift detec-
tion [20].

The methods listed above are summarized in Table 1. We investigate their
theoretical properties and experimental behavior in the following.

4 Theoretical Analysis

We will now discuss some of the properties of the approaches presented in Sect. 3
from a theoretical point of view. We will see that, regarding questions 1 and 2,
common estimators are well suited for drift detection. In the following we will
always assume a drift process (pt, PT ) on X , T , with T ⊂ R.

Linear Projections: Many, in particular, simple methods use projections as a
first step. However, as already discussed by [19] not every possible projection is
also suitable. Indeed, most approaches from the literature are not:

Remark 1. Linear projections with respect to marginals [5] or principal compo-
nents [19] are not drift detecting, independent of the further processing. This
stays true if pt is compactly supported.

Conversely, random projections are sufficient for drift detection:

Theorem 1. Let X = R
d and assume that pt is compactly supported, then ran-

dom projection (with w ∼ N (0, I)) with random bins is drift detecting.

Proof. All proofs can be found in the ArXiv version.

However, we will observe that they do not perform well for large dimensional-
ity. We conjecture that this is a consequence of the fact that they are not arrival
time respecting, and therefore not adapted to the specific problem at hand.
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Learneable Models: Many popular machine learning models are also applied to
estimate dissimilarities in drift detection. Interestingly, the uniform learnabil-
ity that qualifies them as valid machine learning models, also assures that the
derived estimators are surely drift detecting and precise:

Theorem 2. Let X be a measurable space and let H be a hypothesis class of
binary classifiers on X . Consider the estimators induced by

1
2

− inf
h∈H

E[�w(h, (X,1[T ∈ W+(t)]))],

where �w denotes the 0-1-loss with class reweighting, i.e. �w(y′, (x, y)) = 1/P[Y =
y] if y �= y′ and 0 otherwise. If H is PAC-learnable, then the estimator is precise.
If in addition, for all binary classification tasks on X there exists a h ∈ H that
performs better than random, then the estimator is also surely drift detecting.

To connect this result to the existing literature, observe that (for X = R
d

and universal H) the estimator is equivalent to the total variation norm.
In particular, if an estimator is based on a uniform learneable model class, it

is surely drift detecting and precise, but in general this requires us to retrain the
model for each split point t. At this point the fact that some models do not need
adaptation can increase efficiency. Indeed, for Random Trees and kdq-Trees we
find the following statements:

Corollary 1. On X = [0, 1]d Random Trees and kdq-Trees with total varia-
tion norm are surely drift detecting, precise, and O(1)-complex with cumulative
histograms as descriptors.

To obtain a similar result for Moment Trees, we make use of the fact that
they can be used for conditional density estimation [14]: The obtained tree is
suitable for all classification tasks of the form 1[T > t], which is exactly what
is considered by Theorem 2. We therefore conjecture that Moment Trees with
total variation norm is drift detecting, precise, arrival time respecting, and O(1)-
complex with cumulative histograms as descriptors.

5 Empirical Evaluation

Based on the theory provided in Sect. 4, we can derive worst case bounds similar
to standard results from classical learning theory for drift detection. Yet, we are
also interested in average case bounds obtained from empirical estimations.

We apply the estimators as described in Table 1. For the binning approaches
we used different numbers of bins, and equidistant and equilikely bins. In case
of Random Projection, we also vary the number of projections. In case of the
k-NN and tree approaches we vary the number of neighbors and trees. In case of
Moment Trees we consider different degrees, ensembles of independently grown
Decision Trees and Random Forests. For MMD we use the biased estimator
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(a) Effect of window length on pperm on
weather dataset.

(b) Effect of displacement (t = t0 + Δ,
t0 = 50%) on ppa(Δ) on weather dataset.

(c) Effect of additional noise dimensions
(Gaussian) on pperm on elec dataset.

Fig. 2. Effect of setup parameters on statistical power (pperm) and precision accuracy
(ppa(Δ)) of used estimators.

with Gauss kernel. Notice, that due to the setup no parameter tuning can be per-
formed during a run. In any case we consider all possible combinations of descrip-
tor and dissimilarity measure according to Table 1. For arrival time respecting
methods we also consider skipping the last 10% of the reference window during
training.

We use the following datasets: “Rotating hyperplane” (RHP) [17], “SEA”
[21], “stagger” [9], “RandomRBF” (rbf) [17], “Electricity Market Prices” (elec)
[11], “Forest Covertype” (cover) [3] and “Nebraska Weather” (weather) [7]. For
labeled datasets, the label is integrated as an additional feature, hence real drift
becomes distributional drift. To obtain a sample window with drift we sample two
concepts (S− ∼ pW− ×U([0, 1/2]) and S+ ∼ pW+ ×U([1/2, 1])) and concatenate
them (S = S− ∪ S+); we then permute these samples to obtain a counterpart
without drift (S̃ = {(xi, tπ(i)) | i = 1, · · · , n} where S = {(xi, ti) | i = 1, · · · , n}).
In case of real world datasets we obtain two different concepts (before and after
drift) by randomly sampling from before and after a given time stamp (we used a
two sample test to assure that the obtained batches are indeed different, while the
random selection assures no drift within the sub-windows). Analysis of different
split points on the same window use the same binning/tree; for other windows
(including drift vs. no drift) we create a new binning/tree.

We investigate the effect of windows length, additional noise dimensions,
offsets/imbalance (removing oldest 0%, 12.5%, 25% of whole window; drift is
at 50%), and displacement of the split point t = t0 + Δ (split at t = 50%,
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Table 2. Empirical upper bounds: pperm (left), pthre (right). Estimators are: Moment
Tree (Random Forest), Random Projection Binning, Marginal Binning, Random Tree,
MMD, and LDD.

Dataset RF Rnd Pj Marg Rnd Tree MMD LDD

SEA 0.56 0.53 0.51 0.49 0.59 0.55 0.62 0.56 0.54 0.49 0.53 0.50

cover 1.00 0.92 0.99 0.88 1.00 0.96 0.99 0.90 1.00 0.95 0.97 0.86

elec 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00

rbf 1.00 0.99 1.00 0.99 1.00 0.93 1.00 0.96 0.98 0.90 1.00 1.00

RHP 0.97 0.86 1.00 0.93 0.48 0.48 1.00 0.93 0.50 0.52 1.00 0.96

stagger 1.00 1.00 1.00 0.97 1.00 0.96 1.00 1.00 1.00 0.92 1.00 0.98

Weather 0.99 0.84 0.86 0.70 0.85 0.69 0.83 0.67 0.80 0.65 0.91 0.73

53%, 56%, 62%, 75% of the whole window; drift is at t0 = 50%). We repeat each
experiment 1000 times.

Question 1: “Whether” We evaluate how well an estimator d̂ = s ◦ A detects
drift. For this purpose, we estimate the probability that the estimation with
drift is larger than the one without, i.e. pperm = P[d̂(S−, S+) > d̂(S̃−, S̃+)], and
we evaluate the probability that the estimation with and without drift can be
distinguished using a threshold, i.e. pthre = supb P[d̂(S−, S+) > b ≥ d̂(S̃−, S̃+)],
where S−, S+ and S̃−, S̃+ are obtained from S and S̃, respectively, using the
same split point t. Since pperm is the probability that a random permutation
decreases the estimate, it is an upper bound for the statistical power (TP/T) of
any normalization. Similarly, pthre is an upper bound for the balanced accuracy
((TP/T + TN/N)/2) of (distribution dependent) threshold-based normalization.
Unlike a comparison to 0, this procedure does not suffer from potential biases.

The results for one setup (length 150, split at drift point, no offset, total
variation norm and LDD (in case of k-NN), where hyper-parameters are selected
to optimize pthre in a previous run) are presented in Table 2. An analysis of
feature importances shows that the used descriptor has the largest impact on
the results, followed by the dataset. Window length and split point displacement
are in medium range, the effects of the used dissimilarity, and the offset are
marginal.

As can be seen, all methods perform about equally good. Exceptions are
Random Trees and Marginal Binning, which are the only methods that are
better than random on the SEA dataset (Moment Tree and LDD are also able
to solve SEA for larger windows sizes), and Moment Trees (RF) which is the only
method that could solve the weather dataset. To show the impact of the window
length, we plot the results for different window lengths for the weather dataset
(see Fig. 2). As can be seen for most methods, using more samples increases the
statistical power. The results on the impact of noise for the Electricity dataset
are presented in Fig. 2. Only Moment Trees can handle the noisy version.
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Table 3. Precision accuracy: Δ = 3% (left) and Δ = 12% (right). Estimators are:
Moment Tree (Random Forest), Random Projection, Marginal Binning, Random Tree,
MMD, and LDD.

Dataset RF Rnd Pj Marg Rnd Tree MMD LDD

SEA 0.42 0.58 0.42 0.33 0.52 0.52 0.42 0.38 0.50 0.48 0.50 0.53

cover 0.80 0.97 0.69 0.79 0.76 0.90 0.77 0.89 0.80 0.93 0.71 0.83

elec 1.00 1.00 0.94 1.00 0.94 1.00 0.95 1.00 0.80 0.90 0.95 1.00

rbf 0.96 1.00 0.93 0.99 0.81 0.91 0.89 0.97 0.81 0.90 0.94 1.00

RHP 0.73 0.93 0.75 0.90 0.48 0.48 0.76 0.90 0.50 0.47 0.75 0.92

stagger 0.93 1.00 0.84 0.94 0.71 0.82 0.94 0.99 0.82 0.91 0.78 0.94

Weather 0.68 0.93 0.52 0.53 0.56 0.60 0.54 0.54 0.62 0.67 0.64 0.74

Question 2: “When” To evaluate precision of an estimator d̂ we empirically
evaluate the probability that the estimation at the real split point t0 is larger than
the one at the displaced split point t0 + Δ, i.e. ppa(Δ) = P[d̂(S−(t0), S+(t0)) >

d̂(S−(t0+Δ), S+(t0+Δ))]. We refer to this as precision accuracy. Notice, that this
corresponds to an ADWIN [2] like split point search. The feature importances
provides the same results as before. The results (same setup as Table 2) are
shown in Table 3. We also illustrate the behavior for the weather dataset in
Fig. 2 for different Δ.

As can be seen the larger the split point displacement (Δ), the higher the
precision accuracy. Furthermore, except for two datasets and only with Δ = 3%,
Moment Trees show the best performance. Furthermore, they tend to approach
perfect precision accuracy rather quickly.

6 Conclusion

In this paper we studied the theoretical and empirical properties of several met-
rics that are used in drift detection. We also introduced two new metric estima-
tors based on Random Projection Binning and Moment Trees. We found that
in most cases the estimation method is more important than the used distance
measure, when it comes to drift detection. Also, most datasets can be solved
by all methods, when it comes to drift detection. Regarding localizing the drift
point, Moment Trees outperform the other methods.
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A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 32. Curran Associates, Inc. (2019)

21. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale clas-
sification. In: Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August
2001, pp. 377–382 (2001)

22. Tabassum, S., Pereira, F.S.F., Fernandes, S., Gama, J.: Social network analysis: an
overview. Wiley interdiscip. Rev. Data Min. Knowl. Discov. 8(5) (2018). https://
doi.org/10.1002/widm.1256

23. Webb, G.I., Lee, L.K., Petitjean, F., Goethals, B.: Understanding concept drift.
CoRR abs/1704.00362 (2017). http://arxiv.org/abs/1704.00362

https://doi.org/10.1002/widm.1256
https://doi.org/10.1002/widm.1256
http://arxiv.org/abs/1704.00362


Exploring the Geometry and Topology
of Neural Network Loss Landscapes

Stefan Horoi1,2 , Jessie Huang3 , Bastian Rieck4 , Guillaume Lajoie1,2 ,
Guy Wolf1,2 , and Smita Krishnaswamy3,5(B)

1 Department of Mathematics and Statistics, Université de Montréal,
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Abstract. Recent work has established clear links between the general-
ization performance of trained neural networks and the geometry of their
loss landscape near the local minima to which they converge. This sug-
gests that qualitative and quantitative examination of the loss landscape
geometry could yield insights about neural network generalization perfor-
mance during training. To this end, researchers have proposed visualizing
the loss landscape through the use of simple dimensionality reduction
techniques. However, such visualization methods have been limited by
their linear nature and only capture features in one or two dimensions,
thus restricting sampling of the loss landscape to lines or planes. Here,
we expand and improve upon these in three ways. First, we present a
novel “jump and retrain” procedure for sampling relevant portions of
the loss landscape. We show that the resulting sampled data holds more
meaningful information about the network’s ability to generalize. Next,
we show that non-linear dimensionality reduction of the jump and retrain
trajectories via PHATE, a trajectory and manifold-preserving method,
allows us to visualize differences between networks that are generalizing
well vs poorly. Finally, we combine PHATE trajectories with a compu-
tational homology characterization to quantify trajectory differences.
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1 Introduction

Artificial neural networks (ANNs) have been successfully used to solve a number
of complex tasks in a diverse array of domains. Despite being highly overparam-
eterized for the tasks they solve, and having the capacity to memorize the entire
training data, ANNs tend to generalize to unseen data. This is a spectacular feat
since their highly non-convex optimization landscape should (theoretically) be a
significant obstacle to using these models [2]. Questions such as why ANNs favor
generalization over memorization and why they find “good” minima even with
intricate loss functions still remain largely unanswered. One promising research
direction is to study the geometry of the loss landscape of ANNs. Recent work
tried to approach this task by proposing various sampling procedures and linear
methods (based on PCA for example) for visualizing loss landscapes and their
level curves. In some cases, this approach proved effective in uncovering underly-
ing structures in the loss-landscape and linking them to network characteristics,
such as generalization capabilities or structural features [8,15,16,18]. However,
these methods have two major drawbacks: (1) they only choose directions that
are linear combinations of parameter axes while the loss landscape itself is highly
nonlinear, and (2) they choose only one or two among thousands (if not millions)
of axes to sample and visualize while ignoring all others.

First, an emerging challenge is how to sample and study such an extremely
high dimensional optimization landscape (linear in the number of network
parameters) with respect to minimized loss. We posit that one can utilize a
manifold structure inherent to relevant connected patches of the loss landscape
that are reachable during training processes in order to faithfully visualize the
essential characteristics of its “shape”. For this, we propose the jump and retrain
method for sampling trajectories on the low loss manifolds surrounding found
minima. The sampled points preserve information pertaining to the general-
ization capability of the neural network, while maintaining tractability of the
visualization.

We then utilize and adapt the PHATE dimensionality reduction method [21],
which relies on diffusion-based manifold learning, to visualize these trajectories
in low dimensions. In general, visualizations like PHATE are specifically designed
to retain and compress as much variability as possible into two dimensions, and
thus provide an advantage over previous linear approaches. Our choice of using
PHATE over other popular methods, such as tSNE [19] or UMAP [20], is due
to its ability to capture both global and local structures of data. In particular,
PHATE adequately tracks the continuous training trajectories that are traversed
during gradient descent, while other methods tend to shatter them, and thus
allows for significantly better visualizations of the manifolds on which these
trajectories lie.

Finally, we turn to topological data analysis (TDA) methods to quantify
features of the jump and retrain trajectories, and thus characterize the loss-
landscape regions surrounding different optima that emerge in networks that
generalize well vs poorly. Our approach provides a general view of relevant geo-
metric and topological patterns that emerge in the high-dimensional parameter
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space, providing insights regarding the properties of ANN training and reflecting
on their impact on the loss landscape.

Contributions: We present the jump and retrain sampling procedure in Sect. 3.1
and show that the resulting data holds more relevant information about network
generalization capabilities than past sampling procedures in Sect. 4.2. We pro-
pose a new loss-landscape visualization method based on a variation of PHATE,
implemented with cosine distance in Sect. 3.2. Our visualization method is, to
our knowledge, different from all other proposed methods for loss-landscape visu-
alization in that it is naturally nonlinear and captures data characteristics from
all dimensions. In Sect. 4.3, we show that our method uncovers key geometric
patterns characterizing loss-landscape regions surrounding good and bad gen-
eralization optima, as well as memorization optima. Finally, we use topological
data analysis to characterize the PHATE transformed sampled manifolds and to
quantify the differences between them in Sect. 4.4. To our knowledge this is the
first time that a combination of data geometry (via PHATE) and topology has
been used to analyze the loss landscape of ANNs.

2 Preliminaries

2.1 PHATE Dimensionality Reduction and Visualization

Given a data matrix N, PHATE first computes the pairwise similarity matrix
A (using a distance function φ and an α-decaying kernel), then row-normalize
A to obtain the diffusion operator P, a row-stochastic Markov transition matrix
where Pi,j denotes the probability of moving from the i-th to the j-th data
point in one time step. One of the reasons PHATE excels at capturing global
structures in data, especially high-dimensional trajectories and branches, is that
it leverages the diffusion operator (also used to construct diffusion maps [5])
by running the implicit Markov chain forward in time. This is accomplished
by raising the matrix P to the power t, effectively taking t random walk
steps, where t is selected automatically as the knee point of the Von Neumann
Entropy of the diffusion operator. To enable dimensionality reduction while
retaining diffusion geometry information from the operator, PHATE leverages
information geometry to define a pairwise potential distance as an M-divergence
IDi,j = ‖ log Pi,: − log Pj,:‖2 between corresponding t-step diffusion probabil-
ity distributions of the two points, which provides a global context to each data
point. The resulting information distance matrix ID is finally embedded into a
tractable low-dimensional (2D or 3D) space by metric multidimensional scaling
(MDS), thereby squeezing the intrinsic geometric information to calculate the
final 2D or 3D embeddings of the data. For further details, see Moon et al. [21].

2.2 Topological Data Analysis

Topological data analysis (TDA) refers to a set of techniques for understanding
complex datasets by means of their topological features, i.e., their connectiv-
ity [7]. While TDA is applicable in multiple contexts, seeing increased use in



174 S. Horoi et al.

machine learning [10], we focus specifically on the case of graphs. Here, the
simplest set of topological features is given by the number of connected compo-
nents β0 and the number of cycles β1. Such counts, also known as the Betti num-
bers, are coarse graph descriptors that are invariant under graph isomorphisms.
Their expressivity is limited, but can be increased by considering a function
f : V → R on the vertices of a graph G = (V,E) with vertex set V and edge
set E. Since V has finite cardinality, so does its image imf := {w1, w2, . . . , wn}.
Without loss of generality, we assume that w1 ≤ · · · ≤ wn. We write Gi for
the subgraph induced by filtering according to wi, such that the vertices of
Gi satisfy Vi := {v ∈ V | f(v) ≤ wi}, and the edges satisfy Ei := {(u, v) ∈
E | max(f(u), f(v)) ≤ wi}. The subgraphs Gi satisfy a nesting property, as
G1 ⊆ G2 ⊆ · · · ⊆ Gn. It is now possible to calculate topological features along-
side this filtration of graphs, tracking their appearance and disappearance. If a
topological feature of dimension d (d = 0 for connected components and d = 1
for cycles) is created in Gi, but destroyed in Gj (for d = 0 it might be destroyed
because two connected components merge, for instance), we represent this by
storing the point (wi, wj) in the dimension d persistence diagram Df,d associ-
ated to G. Persistence diagrams are known to be salient descriptors of graphs and
have seen increasing usage in graph classification [12–14,22,26]. Their primary
appeal lies in their capability to summarize shape information and the robust-
ness to noise [4] of topological features made them successful shape descriptors
in a variety of applications [1,23]. Numerous fixed filtrations have been described
for different tasks [13,26], but in our context, a natural choice for f is provided
by the loss function of the network itself. This will enable us to describe the
topology of the loss landscape.

3 What Is the “Shape” of the Loss Landscape?

The loss landscape of an ANN can be formulated mathematically as the geometry
and topology defined in the high dimensional parameter space Θ by a loss func-
tion f : Θ → R that assigns a loss value f(θ) to every possible parameter vector
θ (e.g., consisting of network weights) based on considered training or validation
data. While f(θ) provides some information for examining and filtering the var-
ious configurations of model parameters, the exceedingly high dimensionality of
the parameter space (i.e., often in the millions) renders the task of visualizing or
analyzing the entire loss-landscape over Θ virtually impossible. However, since
the optimization process considered in this context is guided by the objective of
minimizing the loss, we can expect most regions in the high-dimensional Θ to be
of negligible importance, if not unreachable, for the network training dynamics
or the viable configurations learned by them. Therefore, the analysis of the loss
landscape can focus on regions that are reachable, or reliably traversed, during
this optimization process, which we expect would have a much lower intrinsic
dimensionality than the ambient dimensions of the entire parameter space.

Our approach to characterizing the “shape” of the loss landscape in such
local regions of interest is inspired by the construction of a tangent space of
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manifolds in intrinsic terms in Riemannian geometry. There, tangent vectors at
a given point of interest are defined by aggregating together intrinsic trajectories
(on the manifold) traversing through the tangential point. This aggregation, in
turn, yields equivalence classes that signify tangential directions, whose span
is considered as the tangent space that provides a local intrinsic (typically low-
dimensional) coordinate neighborhood in the vicinity of the tangential point. In a
similar way, here we propose to leverage trajectories of the network optimization
process in order to reveal the intrinsic geometry exposed by them as they flow
towards convergence to (local) minima of the loss. The remainder of this section
provides a detailed derivation of the three main steps in our approach.

3.1 Jump and Retrain Sampling

Gradient-based optimization methods naturally explore low-loss regions in
parameter space before finding and settling at a minimum. We hypothesize
that keeping track of optimizer trajectories in parameter space is an efficient
way of sampling these low-loss manifolds and thus to gather information about
the relevant part of the loss regions surrounding minima. This can be seen as
an approximation to the Morse–Smale complex [9], a decomposition of f into
regions of similar gradient behavior, whose analytical calculation is infeasible
given the overall size of Θ. With this in mind we have designed the following
“jump and retrain” or J&R sampling procedure. Let θo represent the vector of
network parameters at the minimum:

for seed ∈ SEEDS do
for step size ∈ STEP SIZES do

Choose a random vseed in Θ and filter-normalize to obtain vseed;
Set the ANN parameters to be θjump-init = θo + step size · vseed;
Retrain for N epochs with the original optimizer;
Record parameters θ and evaluate the loss at each retraining epoch;

end

end

Most of our experiments were conducted with SEEDS = {0, 1, 2, 3} or {0, 1, 2, 3, 4},
STEP SIZES = {0.25, 0.5, 0.75, 1.0} and N = 40 or 50. Given a convolutional neu-
ral network with parameters θ and a random Gaussian direction v with dimen-
sions compatible with θ, v is computed as vi,j = vi,j

‖vi,j‖‖θi,j‖, where vi,j represents
the jth convolutional filter of the ith layer of v. This filter-wise normalization
was presented in [18] as a means to remove the scaling effect present in neural
networks using the ReLU non-linearity [6] and allow for meaningful comparisons
between the loss landscapes of different ReLU ANNs. Step sizes smaller than 1
were empirically shown to be sufficient to distinguish between smooth regions
of the loss landscape surrounding minima that generalize well and regions with
dramatic non-convexities surrounding minima that generalize poorly.
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3.2 PHATE Dimensionality Reduction and Visualization

Since the points sampled with the presented procedure are not simply positioned
on a line or a plane, methods that project these points onto a 1D or 2D space are
unable to properly visualize all the variation in the data. PHATE has allowed us
to bypass the key drawbacks of previously proposed linear visualization methods
by (1) Capturing variance in the sampled data from all relevant dimensions and
embedding it in a low-dimensional space; and (2) preserving high-dimensional
trajectories and global structures of data in ANN parameter space. All mod-
ern dimensionality-reduction techniques would have achieved (1) with varying
degrees of success. However our proposed cosine-distance PHATE, which uses
cosine distance to compute the pairwise similarity matrix A and to perform
MDS, has unique advantages over other state-of the art dimensionality reduc-
tion methods to accomplish (2). The use of cosine distance is motivated by the
structure of the J&R sampled data and our interest in determining whether or
not training trajectories return to the optimum in the same direction, as opposed
to capturing the rate with which they return to the optimum (as would have
been measured by the euclidean distance). Training trajectories needing to get
around loss-landscape non-convexities would diverge in ANN parameter space, a
feature that is captured by the cosine distance even if the size of the training step
is the same. In practice, cosine-distance PHATE better preserves the continuity
of the training trajectories and the global structure of the data when compared
to its euclidean counterpart, resulting in better visualizations. Figure 1 demon-
strates the benefits of using cosine PHATE by showing a comparison of multiple
such techniques, namely PHATE, PCA, t-SNE [19] and UMAP [20], and how
they each embed the data from the J&R sampling (Fig. 1A) and an artificial
data set having a tree-like structure (Fig. 1B) in a 2D space.

While some trajectory-like structure is visible in all low-dimensional embed-
dings, only PHATE properly captures intra-trajectory variance. PHATE is also
the only technique that captures the global relationships between trajectories
while t-SNE and UMAP have a tendency to cluster points that are close in
parameter space and disregard the global structure of the data. On the artificial
data set (Fig. 1B), what we observe is that the embeddings of the linear method
PCA are highly affected by the noise in the data while t-SNE and UMAP have a
tendency of shattering trajectories that should be connected. By accomplishing
(1) and (2) PHATE effectively reconstructs the manifold in parameter space
from which the jump and retrain data is sampled and allows its embedding in a
lower-dimensional space preserving its local and global structure.

3.3 Topological Feature Extraction

In order to quantify the shape of the PHATE embeddings, we calculate a set of
topological features. To this end, we first compute a kNN graph (with k = 20)
based on the PHATE diffusion potential distances. Each node of this graph G
corresponds to a specific point in parameter space θ ∈ Θ sampled from the loss
landscape. We obtain a filtration function from this by assigning each vertex
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Fig. 1. 2D embeddings of the J&R experiment (5 random seeds) results for a
WResNet28-2 network using PHATE (A1), t-SNE (A2), UMAP (A3) and the linear
method PCA (A4). B: embeddings of an artificial data set having a fully connected
tree-like structure found using the same techniques. We see that PHATE consistently
retains continuous trajectory structures while other embeddings (tSNE/UMAP) shat-
ter the structure, or miss important features (PCA) because of uninformative projec-
tions to low dimensions.

θ its corresponding loss value f(θ). Then we filter over this graph by slowly
increasing the loss threshold t, which effectively reveals increasingly larger parts
of the graph and creates a filtration as described in Sect. 2.2. From this fil-
tration we obtain a set of persistence diagrams D0, D1 summarizing the topo-
logical features (respectively connected components and cycles) of the respec-
tive embedding (we omit the index f for simplicity). As a powerful summary
statistic, we calculate the total persistence [4] of a persistence diagram D, i.e.,
pers(D) :=

∑
(c,d)∈D |d − c|2. pers(·) serves as a complexity measure that enables

us to compare different embeddings. This measure has the advantage that it
is invariant with respect to rotations of the embedding. Moreover, it satisfies
robustness properties, meaning that it will change continuously under a con-
tinuous perturbation of the input filtration. If two loss functions f and f ′ are
close (in the Hausdorff sense), their corresponding total persistence values will
be close as well [4], making this value a useful summary statistic.

4 Geometric and Topological Reflection on ANN
Training and Generalization

4.1 Experimental Setup

In order to assess the effectiveness of our loss landscape visualizations and char-
acterizations, we trained wide ResNets (WResNets) [24] of varied sizes with
depth ∈ {10, 16, 22}, width ∈ {1, 2} on the CIFAR10 image classification task
[17] from initialization to optimum. The networks were trained with a combina-
tion of the following hyperparameters: batch size ∈ {32, 128, 512}, weight decay
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∈ {0, 0.0001, 0.001} and either with or without data augmentation (random hor-
izontal flips and crops). Each of the 108 WResNets were initialized identically
and trained for 200 epochs using SGD with 0.9 momentum and a learning rate
with initial value of 0.1 followed by step decay by a factor of 10 at epochs 100,
150 and 185.

Utilizing data augmentation and weight decay has allowed us to find “good
optima” that generalize better, increasing test accuracy from around ∼85%
(for “bad optima” trained without d.a. and w.d.) to ∼95%. We also trained
a WResNet28-2 network for memorization by completely randomizing the labels
of the training data. This modification was presented in [25] to show that neural
networks have the ability to completely memorize the training data sets.

4.2 Jump and Retrain Sampling Captures Generalization
and Training Characteristics

Past work has shown that networks with different generalization capabilities
tend to have optima surrounded by regions of distinct geometrical characteris-
tics [3,11,15,16,18]. Regularization techniques, such as weight decay and data
augmentation, are believed to play a role in this difference in geometries [3,15].
Inspired by past results, we formulate the following classification tasks to eval-
uate loss landscape sampling methods and see if the sampled data holds infor-
mation about the networks ability to generalize and the geometry of the loss
landscape. We used the sampled loss and accuracy values as features and we
separated the trained WResNet models into 5 (almost) equally-sized “general-
ization” classes according to the value of the test loss at optimum. The ∼20%
of networks with the lowest test losses at optimum were assigned to class 1,
and so on. We then trained 11 simple classifiers to predict the generalization
class of each network with training losses and accuracy features. All results were
obtained from 10-fold cross validation. It is important to note that the classifiers
were not tuned to favor any of the sampling procedures. Two similar classifi-
cation tasks were designed to predict weight decay and whether or not data
augmentation was used.

To evaluate the effectiveness of the jump and retrain sampling, we compared
it to two other sampling procedures. We refer to the first as grid sampling,
and it is directly inspired by the 1D or 2D linear interpolations used in past
visualization methods [8,15,18]. Here, we randomly choose 3 vectors starting
from the optimum (θo) and construct a 3D grid using the 3 vectors as basis.
The loss and accuracy on the training set is then evaluated at all points on the
grid. The second comparison sampling procedure, that we call naive sampling,
evaluates the loss in random directions (θi) centered at the optimum θ0, and
multiple step sizes c; i.e. evaluate at θo + cθi. This method tests whether using
more directions and step sizes when sampling, without the grid-like structure, is
more informative since it explores a greater number of directions in parameter



Exploring the Geometry and Topology of Neural Network Loss Landscapes 179

Table 1. Mean and standard error (%) of the 11 classifiers accuracies on the 5 class
generalization, weight decay and data aug. classification tasks with different features.

Features 5 class
gen.

Weight
decay

Data aug-
mentation

Theoretical random (1/#classes) 20.0 33.3 50.0

Randomized J&R retrain loss and
accuracy values

20.7 ± 1.1 38.9 ± 1.5 52.7 ± 1.9

Grid sampling, train loss and
accuracy values

30.1 ± 2.7 51.1 ± 2.9 62.3 ± 5.1

Naive sampling, train loss and
accuracy values

31.8 ± 4.0 55.7 ± 3.9 67.6 ± 5.2

J&R sampling, retrain loss and
accuracy values

39.2 ±4.3 58.2 ±3.6 72.1 ±5.4

space. All methods considered, including J&R, sample 640 points from the loss
landscape excluding the optimum itself. We applied the filter-wise normalization
presented in [18] when obtaining random directions. As a control experiment,
we trained the same classifiers on scrambled versions of the best performing
features, making sure classifiers were not overfitting the data and evaluating the
impact of feature distributions alone. The results are shown in Table 1.

Using the loss and accuracy values sampled with the J&R procedure as fea-
tures allows the classifiers to achieve mean accuracies of 39.2%, 58.2% and 72.1%
on the generalization, weight decay and data augmentation classifications tasks
respectively. This is significantly higher than the mean classification accuracies
reached using the data sampled with the other two methods. We confirmed the
validity of the classification accuracy with J&R data with permutation tests
where the accuracy is essentially the same as random. Indeed, our results indi-
cate that connected patches of the low-loss manifold surrounding the optima,
which are found with the jump and retrain procedure, hold more information
about the region’s geometry and the network’s ability to generalize at that opti-
mum than the data sampled with non-dynamical methods. Furthermore, the
success of the J&R sampled data on the weight decay and data augmentation
classification tasks shows that our sampling method captures information not
only about generalization but also about the training procedure. The set of J&R
sampled loss and accuracy values seem to have distinct characteristics depending
on the training procedure used to reach the minima and whether or not regu-
larization methods were used and to what extent. This helps support the idea
that a dynamical sampling of the loss landscape, which mimics the behavior of
optimization procedures, is more informative than static sampling methods.
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Fig. 2. Top row: PHATE embeddings of the data generated with the three sampling
procedures colored by loss in log scale. The rigidity of the grid and naive sampling
methods makes visualizations less informative. The J&R sampling successfully sam-
ples the low-loss manifolds surrounding minima. Bottom row: PHATE embeddings
comparison between good, bad and memorization minumum. The θjump-init points are
marked by diamonds of colors corresponding to step size and trajectories are colored
by seed with descending hue, i.e. the color gets whiter as retraining progresses. In
contrast to more continuous trajectories returning to near the optimum in the good
generalization case, bad generalization and memorization display more random pat-
terns where weights move out before moving back, often switching direction during
retraining.

4.3 Generalization Indicated by Visual Patterns from Loss
Landscape Regions Around Optima

PHATE visualization of the data sampled with the J&R procedure as in Fig. 2(c)
clearly demonstrate the trajectories and the low-loss manifold surrounding the
found optima that was actually traversed during training. It is more informative
that the visualization of data from the other sampling procedures (Fig. 2(a, b)).
Also, although all networks achieved ∼0 loss on their respective training sets
and only a ∼7% difference in their test set accuracies, Fig. 2(d, f) reveal stark
differences between network configurations that memorize (or overfit) versus ones
that generalize. The good generalization minimum has a distinctive star shaped
pattern. This indicates that even when points are thrown away from the minima
they return to it immediately without traveling outward. Thus the minima seems
to serve as an effective attractor to which trajectories repeatedly return.

In case of bad minimum, the trajectories start off near the middle of the plot
(darker points in the middle of Fig. 2e) but, during the retraining, they diverge
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toward the edges before occasionally coming back towards the middle of the
plot. This outward movement is in stark contrast with the consistent retraining
trajectories surrounding the good generalization minimum, which immediately
return to the valley. In this sense the minima are not stable and perturbations
of the parameters cause networks to escape this minima. The “memorization”
minimum plot (Fig. 2f) looks similar to the bad generalization plot, with tra-
jectories that go outward at small step sizes of the jump. However, curiously at
larger step sizes, the trajectories seem to return without going outward first, but
they do not return immediately, they show some lateral movement, potentially
indicating bumpiness in the landscape that they are avoiding.

Fig. 3. A, top row: 2D PHATE embeddings of the data sampled with the jump and
retrain procedure surrounding minima reached by four WResNet16-2 with the same
initialization but trained in different ways and thus reaching different accuracies on the
test set. A, bottom row: Persistence diagrams of the loss-level filtration computed
from the respective PHATE diffusion potentials. The total persistence associated with
each optima/persistence diagram (dim. 0) is written in bold. Both PHATE and the
topological features of the loss landscape seem to differentiate these four networks
which have very different generalization capabilities. B: Total persistence of dimension
0 computed from the jump & retrain data for each network w.r.t. the test loss at
optimum. Colors indicate the value of the weight decay used during training.

4.4 Generalization May Be Related to Low Topological Activity in
Near-Optimum Regions

PHATE has allowed us to generate low dimensional representations of the low-
loss manifolds sampled through the jump and retrain procedure. Here, topologi-
cal data analysis enables us to quantify the topological features of these manifolds
and thus characterize the loss landscape regions surrounding different optima. In
Fig. 3A we show the PHATE visualizations of the jump and retrain data sam-
pled around different optima of a WResNet16-2 network and the corresponding
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dimension 0 and 1 persistence diagrams. From the PHATE visualizations alone
it is clear that the sampled manifold have different structures. In fact, the per-
sistence diagrams confirm that these manifolds also have different topological
features. In particular, optima that generalize poorly seem to be surrounded by
manifolds with more topological activity, the two persistence diagrams on the
left having more high-persistence points (higher density of points in the red rect-
angles of Fig. 3A). Conversely, networks that generalize well have both zero and
one dimensional topological features emerging later in the loss threshold (green
rectangles).

In order to verify this observation in a more general case, we also computed
the total persistence (see Sect. 3.3) of the persistence diagrams corresponding
to each one of the 108 trained WResNets. In Fig. 3B we plot these values as
functions of the test loss at optimum and color the points according to the value
of weight decay used during training to reach those points. The first thing we
observe is that optima surrounded by regions of high topological activity tend to
have a higher loss value at the optima, while low-loss optima have a lower asso-
ciated total persistence. This further confirms the idea that good generalization
optima are surrounded by relatively flat loss-landscape regions while bad gener-
alization optima tend to be situated in regions with many non-convexities. Fur-
thermore we observe that optima found with the most aggressive weight decay
(namely 0.001) are surrounded by regions of relatively low topological activity
while optima reached without the use of weight decay are associated with the
highest levels of total persistence. These results seem to suggest that the use of
weight decay, an efficient regularization method, allows optimizers to find min-
ima on low-loss manifolds with low-persistence topological features. Past results
have linked the use of regularization techniques to finding good generalization
minima surrounded by flat regions, i.e. regions of low geometrical activity. We
have expanded on these results by showing that the topological activity in those
regions is also relatively low when compared to regions surrounding optima found
without regularization.

5 Discussion and Conclusion

We propose a novel approach to dynamically sample the loss landscapes of deep
learning models which takes theoretical inspiration from the fields of Rieman-
nian geometry and dynamical systems. Our sampling method efficiently sam-
ples points from the low-loss manifolds surrounding minima found through gra-
dient descent. The resulting sampled data holds more information than past
loss landscape sampling methods about the geometry of the loss landscape, the
network ability to generalize at the optimum and the training procedure and
regularization used to reach that optimum. We then present a new loss land-
scape visualization method based on the state-of-the-art PHATE dimensionality
reduction method, which is able to reconstruct the high-dimensional trajectories
sampled in two dimensional representations. Our approach enables geometric
exploration of the sampled manifolds and regions surrounding generalization
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and memorization optima, found via ANN training, to provide insight into gen-
eralization capabilities and training of the network. Finally, topological data
analysis enables us to characterize these regions through the computation of
their topological features. We found that weight decay, a powerful regularization
technique, allows ANN optimizers to find minima in regions of lower topological
activity. An interesting research direction would be to try to apply dimension-
ality reduction techniques that better take into account the time dependency of
the data. We expect in future work our sampling, visualization and topological
characterization approaches to enable more methodical paradigms for the devel-
opment of ANNs that generalize better, train faster, and to provide fundamental
understanding of their capabilities.
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Abstract. The purpose of pattern mining is to help experts understand
their data. Following the assumption that an analyst expects neighbour-
ing patterns to show similar behavior, we investigate the interestingness
of a pattern given its neighborhood. We define a new way of selecting
outstanding patterns, based on an order relation between patterns and
a quality score. An outstanding pattern shows only small syntactic vari-
ations compared to its neighbors but deviates strongly in quality. Using
several supervised quality measures, we show experimentally that only
very few patterns turn out to be outstanding. We also illustrate our
approach with patterns mined from molecular data.
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1 Introduction

The purpose of data mining is to help experts to analyze their data by provid-
ing valuable results. When those results come in the form of patterns, whether
conjunctions of attributes or items, sequences, trees, or graphs, a recurring prob-
lem is that there are simply too many of them for a human to work through.
Once this problem was recognized, research first focused on reducing the out-
put through the notion of condensed representations [11], a plethora of quality
measures [13], and pattern set mining techniques [7] were designed, all of which
fall short, however. Even when creating condensed representations, there are
typically still hundreds or even thousands of patterns left, as is the case no mat-
ter which quality measure one uses. In addition, the latter lead to the question
which measure to use for a given task. Pattern set mining, finally, works well
enough when the goal is to create a set of non-redundant patterns to be used as
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descriptors in downstream tasks such as classification or clustering, but less so
when it comes to offering an expert an interpretable result set.

Here, we start from the assumption that an analyst expects that patterns
which are neighbors in the pattern space show similar behavior. Hence, a pat-
tern showing different behavior from what one expects given similar patterns
deserves a second look. To find these patterns, which we will call outstanding
going forward, we use a Hasse Diagram (HD), a directed acyclic graph (DAG),
as a representation of the pattern space. This DAG encodes a partial order
between patterns whose interestingness is quantified by a quality measure. Pat-
terns that are scored very differently than the average of neighboring patterns
are considered outstanding.

The main contribution of the paper is a new way of selecting outstanding
patterns, given an order relation between patterns, and a quality measure on
patterns. We formulate our idea in general terms since it can be applied for
any pattern language (e.g., items, sequences, graphs). With items, we illustrate
our approach by using the lattice of formal concepts derived from data as the
encoding HD. We define the notion of a selector, a function that outputs the
set of outstanding patterns given a HD and a quality measure. Outstanding
patterns will then be those that show only small syntactic variations compared
to their neighbors but deviate strongly in quality. Notably, this deviation is
not necessarily positive: a pattern might be outstanding because it correlates
much more weakly with a class label, for instance, than its neighbors. Using
several supervised quality measures, we show experimentally that only very few
patterns turn out to be outstanding and that the number varies depending on the
measure. Our contribution is an outgrowth of the concept of activity cliffs [12] on
molecular data, which define a noticeable modification of the biological activity
for a small modification of the chemical structure. We therefore also illustrate
our method on using patterns mined from molecular data, which are the main
focus of our application interest.

The paper is organized as follows. In the next section, we discuss the literature
related to our problem setting and proposal. In Sect. 3, we introduce necessary
background knowledge. In Sect. 4, we present the selector. In Sect. 5, we report
experimental results on transactional data derived from UCI data sets and on
molecular data and discuss them. We conclude in Sect. 6.

2 Related Work

Since the introduction of constraint-based pattern mining, an on-going theme
has been how to help the experts identify the most valuable patterns from result
sets containing thousands or even millions of them. A well established solution is
to find a condensed representation of the patterns such as closed [11,17] or free
patterns [3], i.e., maximal or minimal patterns from the support-based equiva-
lence classes. Since real data are often noisy, [3] proposed error-tolerant variants.

Another direction is to focus on the best patterns according to quality mea-
sures [13]. The survey [15] divides measures in two categories: absolute measures
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and advanced ones. Advanced measures are based on statistical models (indepen-
dence model, partition models, MaxEnt models) having different complexities.
However, there are numerous measures and it remains difficult to clearly identify
the advantages and limitations of each one. The quality of a selected pattern can
be assessed via syntactically linked patterns during computation [4], somewhat
similar to our proposal.

Recent research has highlighted the benefits of the unexpectedness of a pat-
tern when contrasted with given information depending either on the data or
on prior knowledge of the analyst [2]. For instance, by sampling patterns ful-
filling data-independent constraints under assumptions about the symbol dis-
tribution (i.e. null models), the authors of [1] derive a model of background
noise, and identify thresholds expected to lead to interesting results, i.e. results
that diverge from the expected support derived from super- and sub-patterns.
Another approach combines sampling and isotonic regression in order to arrive
at pattern frequency spectrum for frequent itemset mining [14]. By comparing
those thresholds to ones derived from data where all items are independent, one
can identify thresholds or which the result set is expected to contain interest-
ing patterns. Self-sufficient itemsets, finally, are itemsets the support of which
cannot be predicted from their sub-sets or super-sets [16]. However, these app-
roach are limited to itemset data. Our method differs in that we do not make
assumptions about syntactic relationships between patterns. In addition, we do
not make an independence assumption w.r.t. pattern elements.

Also closely related to our work, in the context of web queries modeled accord-
ing to the setting of the Formal Concept Analysis, [5] uses the siblings of a node
to define the interestingness of a new query. However, the method does not take
into account the whole set of siblings and it is linked to frequencies observed
in the extents and intents of the concepts whereas our approach can use any
quality measure defined on patterns.

3 Background

As usual in the pattern mining paradigm, let us consider D a dataset, L a pattern
language and � a partial order relation on the patterns in L. The support of
a pattern p, Supp(p), is the number of transactions containing p. The pattern
space can be modelled by its Hasse diagram, a DAG whose set of vertices maps
the set of patterns and whose edges depict the order relation: there is an edge
(p, q) from a pattern p to a pattern q if p � q and if there is no other pattern r
between p and q (p � r and r � q). From an edge (p, q), we say that p is a parent
of q, that q is a child of p. The siblings of a pattern is the set of patterns that share
a common parent with it. Figure 1 depicts an example of these relationships: the
siblings of the pattern S (in red) are Si (in purple), the parents of S are Pi (in
blue).

In the itemset setting, D is a set of transactions, each transaction containing
one or more distinct literals called items I. A pattern X is an element of 2I . The
order relation on the patterns is the usual inclusion relation ⊆ . In the itemset
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setting and considering closed itemsets [11], the Hasse diagram is then a Galois
lattice [6].

Many quality measures have been described in the literature [13,15] and the
interestingness of a pattern will be quantified by a measure f : L × D �→ R.

P1 P2

SS1S2 S3 S4

Fig. 1. Retrieving siblings (purple/Si and red/S) from a source vertex (red) and its
parents (blue/Pi). (Color figure online)

4 Outstanding Pattern Selector: How to Exploit Siblings

To select outstanding patterns, the method is based on the principle that an
analyst expects patterns that are neighbors in the pattern space to show simi-
lar behavior. Therefore a pattern showing different behavior from its neighbors
according to a quality measure f deserves attention. The sibling patterns being
structurally close, their quality should be similar. If a pattern is scored differ-
ently from its siblings, it is highly interesting as a outstanding sibling. Thus,
we seek for local variations of interestingness. This phenomenon is not captured
when f is applied to each pattern individually, as is usual in the frequent or
association pattern setting. Concretely, we say that a pattern X is outstanding
when its quality deviates from the mean quality of its siblings S(X). The sibling
mean μ(S(X),D) is:

μ(S(X),D) =

∑

s∈S(X)

f(s,D)

|S(X)|
Then μ(S(X),D) is compared to the standard deviation of the siblings:

σ(S(X),D) =

√∑
s∈S(X)(f(s,D) − μ(S(X),D))2

|S(X)|
The selector is defined as:

OPS(L, f,D, δ) = {X ∈ L : |f(X,D) − μ(S(X),D)| ≥ δ ∗ σ(S(X),D)}



Selecting Outstanding Patterns Based on Their Neighbourhood 189

Thus, X is outstanding if its quality deviates at least δ standard deviations
from the mean of the qualities of its siblings, δ being a user-supplied parameter.
We consider the quality measure as a random variable, which distribution varies
locally, while staying normally distributed around a local mean. Moreover, the
behavior of the quality measure will impact the selection. A homogeneous quality
measure will lead the selector to select a few chosen ones while an heterogeneous
quality measure will produce more outliers.

One of the appeals of using the standard deviation instead of a classic thresh-
old is that the selector adjusts to its environment: if the siblings of a pattern
are all relatively close to a particular support value, a small increase over this
value can be interesting. Similarly, take the example of the growth rate [8] as
the quality measure f . Let us assume furthermore that D is partitioned into two
classes, and most of the siblings are Jumping Emerging Pattern (JEP) [8,9], i.e.
patterns that have a support of zero in the negative class. JEPs have a tendency
to overfit; our selector, on the other hand, keeps a JEP only if it indicates a local
deviation. Moreover, it can select interesting patterns that are not JEP.

In practice, as shown in the next section, the number of outstanding patterns
is small, allowing a human domain expert to manually inspect them.

5 Experiments

In this section, we show experimental results illustrating the reduction in pat-
terns, as well as the behavior of four quality measures. In the next section, we
provide results on itemset data, and in Sect. 5.3 on graph data representing
molecules. We use our experiments to answer several questions:

– Does selecting outstanding patterns reduce the size of the result set signifi-
cantly?

– Does changing the quality measure change how many patterns are outstand-
ing?

– Can outstanding patterns be easily characterized in terms of the score they
receive from an interestingness measure?

– Do outstanding patterns from self-sufficient itemsets, another type of pattern
that takes itemsets’ neighborhoods into account, albeit syntactic ones?

5.1 Itemset Data

The data we used are itemset data derived from UCI data sets, which we down-
loaded from the CP4IM repository1. The data have been binarized by the main-
tainers of the repository, the majority class named positive class, and minority
classes merged into a single negative class.

We performed closed frequent set mining with minimum support thresholds
(denoted by θ) of 10%, 15%, and 20%. In the resulting graph G(V, E) each vertex

1 https://dtai.cs.kuleuven.be/CP4IM/datasets/.

https://dtai.cs.kuleuven.be/CP4IM/datasets/
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Table 1. Characteristics for selected UCI datasets and their number of self-sufficient
itemsets.

Data set Mushroom Primary-
tumor

Soybean Splice-1

Transactions 8124 336 630 3190

Items 119 31 50 287

Density 18% 48% 32% 21%

Self-sufficient itemsets
for θ = 10%/15%/20%

69
69/68/53

16
13/11/8

55
49/33/30

38
30/9/3

Data set tic-tac-toe vote zoo-1

Transactions 958 435 101

Items 27 48 36

Density 33% 33% 44%

Self-sufficient itemsets
for θ = 10%/15%/20%

24
24/24/0

39
39/39/39

64
62/60/48

is labeled with a closed itemset. We tested four quality measures: χ2, confidence,
normalized Growth Rate (NGR)2:

{
NGR(X,D) = 1.0 if GR(X,D) = ∞
NGR(X,D) = GR(X,D)

1+GR(X,D) otherwise

and Weighted Relative Accuracy (WRAcc). For the latter three, we chose the
positive class as target. For the OPS threshold, we chose δ = 2 since 95% of all
values of a normal distribution fall into the interval [μ − 2 · σ, μ + 2 · σ].

As Fig. 2 shows, only very few itemsets are outstanding compared to their
siblings, with at most 3.052% selected by confidence and NGR on the splice
data set for the 10% minimum support threshold. Notably, this is in addition to
the reduction achieved by mining closed itemsets. We take this as evidence that
selecting outstanding patterns results in small enough result sets that domain
experts could inspect them (and their neighborhoods) manually to gain deeper
insight into the underlying phenomena. We can also compare the behavior under
different support thresholds, i.e. the results for a single data set and a single
measure, and for different quality measures, i.e. the results in a single line.

While increasing the support threshold mostly reduces the number of out-
standing patterns as well, this is not always the case, as can be seen for the zoo-1
data set, for instance. Using confidence or GR as a quality measure leads to fewer
outstanding patterns than using χ2 and WRAcc does, with the exception of the
splice-1 (10%) and vote (10%, 15%) data sets. A particularly remarkable data
set is the tic-tac-toe one where not a single pattern stands out.

2 We normalize the growth rate because the unnormalized growth rate can have ∞ as
a value, which prevents the calculation of mean and standard deviation.
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38 / 3276 ( 1.159% )
15 / 1529 ( 0.981% )
9 / 811 ( 1.109% )
54 / 31024 ( 0.174% )
43 / 16962 ( 0.253% )
31 / 9589 ( 0.323% )
29 / 2907 ( 0.997% )
16 / 1456 ( 1.098% )
11 / 844 ( 1.303% )
23 / 1605 ( 1.433% )
5 / 419 ( 1.193% )
1 / 243 ( 0.411% )
0 / 191 ( 0% )
0 / 111 ( 0% )
0 / 26 ( 0% )
22 / 35770 ( 0.061% )
17 / 14642 ( 0.116% )
10 / 7227 ( 0.138% )
10 / 3108 ( 0.321% )
10 / 2303 ( 0.434% )
8 / 1618 ( 0.494% )

4 / 3276 ( 0.122% )
3 / 1529 ( 0.196% )
3 / 811 ( 0.369% )
18 / 31024 ( 0.058% )
12 / 16962 ( 0.070% )
12 / 9589 ( 0.125% )
12 / 2907 ( 0.412% )
6 / 1456 ( 0.412% )
4 / 844 ( 0.473% )
49 / 1605 ( 3.052% )
5 / 419 ( 1.193% )
1 / 243 ( 0.411% )
0 / 191 ( 0% )
0 / 111 ( 0% )
0 / 26 ( 0% )
34 / 35770 ( 0.095% )
19 / 14642 ( 0.129% )
3 / 7227 ( 0.041% )
3 / 3108 ( 0.096% )
2 / 2303 ( 0.086% )
3 / 1618 ( 0.185% )

4 / 3276 ( 0.122% )
3 / 1529 ( 0.196% )
2 / 811 ( 0.246% )
17 / 31024 ( 0.054% )
9 / 16962 ( 0.053% )
14 / 9589 ( 0.146% )
25 / 2907 ( 0.859% )
6 / 1456 ( 0.412% )
5 / 844 ( 0.592% )
49 / 1605 ( 3.052% )
5 / 419 ( 1.193% )
1 / 243 ( 0.411% )
0 / 191 ( 0% )
0 / 111 ( 0% )
0 / 26 ( 0% )
37 / 35770 ( 0.103% )
18 / 14642 ( 0.122% )
3 / 7227 ( 0.041% )
3 / 3108 ( 0.096% )
2 / 2303 ( 0.086% )
3 / 1618 ( 0.185% )

21 / 3276 ( 0.641% )
7 / 1529 ( 0.457% )
4 / 811 ( 0.493% )
16 / 31024 ( 0.051% )
7 / 16962 ( 0.041% )
2 / 9589 ( 0.020% )
8 / 2907 ( 0.275% )
3 / 1456 ( 0.206% )
1 / 844 ( 0.118% )
25 / 1605 ( 1.557% )
7 / 419 ( 1.670% )
1 / 243 ( 0.411% )
0 / 191 ( 0% )
0 / 111 ( 0% )
0 / 26 ( 0% )
20 / 35770 ( 0.055% )
12 / 14642 ( 0.081% )
9 / 7227 ( 0.124% )
6 / 3108 ( 0.193% )
7 / 2303 ( 0.303% )
6 / 1618 ( 0.370% )
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Fig. 2. Selection statistics (#outstanding patterns/#patterns/%) on UCI data-sets.
(Color figure online)

Notably, using different quality measures lead to different sets of outstanding
patterns to be selected. Figure 3 shows a heatmap representation of the Jaccard
similarity between result sets for three example data sets. For the primary-tumor
data set (middle), there is little similarity between the different results, for the
soybean data set (right-most figure), confidence and GR give very similar results.
The full set of figures can be found in the supplementary material.

As we mentioned in the introduction, outstanding patterns are not necessar-
ily among the best patterns in terms of class correlation, for instance. This is
shown by Fig. 4 on the primary tumor data set with the confidence measure: for
all minimum support thresholds, also itemsets with low confidence are selected.
Figures for other data sets and quality measures can be found in the supplemen-
tary material available at https://github.com/Etienne-Lehembre/Outstanding-
Pattern-Selector.git.

5.2 Comparison to Self-sufficient Itemsets

A method that is close in spirit to our proposal are the self-sufficient itemsets
proposed by Webb et al. [16]. Self-sufficient itemsets, can be considered inde-
pendently from each other, as can outstanding patterns, which is not the case
for patterns selected by pattern mining techniques. The full definition of self-
sufficiency is too involved to reproduce here3 but self-sufficiency includes the
requirement that the probability of itemsets’ occurrence cannot be inferred by

3 We direct the interested reader to the original publication.

https://github.com/Etienne-Lehembre/Outstanding-Pattern-Selector.git
https://github.com/Etienne-Lehembre/Outstanding-Pattern-Selector.git
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mushroom primary-tumor soybean

Fig. 3. Heatmap representation of Jaccard similarity for sets of outstanding patterns
selected for different quality measures for mushroom (θ = 10%), primary-tumor (θ =
15%), soybean (θ = 15%).

Fig. 4. Distribution of confidence values for the primary tumor data set, outstanding
patterns in the bottom row, non-outstanding patterns on top. Results for minimum
support 10% in the left-most column, 15% center, 20% right-most.

the probability of subsets’ and supersets’ occurrences. This requirement trans-
lates into comparing itemsets to their predecessors and successors in a DAG
where vertices are labeled with the full set of possible itemsets and edges indi-
cating extension of itemsets with individual items. We therefore want to know
how many of the outstanding itemsets we select are self-sufficient and vice versa.

We ran the OpusMiner implementation available at https://eda.mmci.uni-
saarland.de/prj/selfsufs/ on the UCI data sets mentioned above. The lower part
of Table 1 reports the number of self-sufficient itemsets and a comparison to Fig.
2 shows that there is no obvious relationship between the number of outstanding
and self-sufficient itemsets. Not all self-sufficient itemsets are frequent under the
minimum support thresholds we use, and the bottom-most row of Table 1 shows
their number for the three different support thresholds.

Self-sufficient itemsets also cannot expected to be closed itemsets. We there-
fore identified for each self-sufficient itemset the corresponding closed frequent
itemset, and compared this set to the set of outstanding itemsets selected. Table 2
shows for each support and each quality measure which proportion of out-
standing itemsets are also self-sufficient (left-hand column per quality measure)
and which proportion of self-sufficient itemsets are also outstanding (right-hand
column). Missing lines correspond to settings where all values are 0.0, which
includes in particular the tic-tac-toe data set.

https://eda.mmci.uni-saarland.de/prj/selfsufs/
https://eda.mmci.uni-saarland.de/prj/selfsufs/
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Table 2. Self-sufficient and outstanding itemsets for different minimum supports θ and
different quality measures. For each measure, left-hand column shows the proportion of
outstanding itemsets that are self-sufficient, right-hand column displays the proportion
of self-sufficient that are outstanding.

Data set θ χ2 Confidence NGR WRAcc

Mushroom 10 0.16 0.48 0.25 0.14 0.25 0.14 0.29 0.48

Mushroom 15 0.13 0.15 0.33 0.13 0.33 0.13 0.14 0.13

Primary-tumor 10 0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.00

Primary-tumor 15 0.02 0.09 0.00 0.00 0.00 0.00 0.00 0.00

Primary-tumor 20 0.03 0.12 0.00 0.00 0.00 0.00 0.00 0.00

Soybean 10 0.03 0.02 0.00 0.00 0.04 0.02 0.12 0.02

Soybean 15 0.12 0.06 0.00 0.00 0.17 0.03 0.00 0.00

Soybean 20 0.18 0.07 0.00 0.00 0.20 0.03 0.00 0.00

Splice-1 10 0.13 0.10 0.06 0.10 0.06 0.10 0.12 0.10

Vote 10 0.18 0.10 0.00 0.00 0.00 0.00 0.00 0.00

Vote 15 0.12 0.05 0.00 0.00 0.00 0.00 0.00 0.00

Vote 20 0.10 0.03 0.00 0.00 0.00 0.00 0.00 0.00

zoo-1 10 0.10 0.02 0.33 0.05 0.33 0.05 0.00 0.00

zoo-1 15 0.10 0.02 0.50 0.05 0.50 0.05 0.00 0.00

zoo-1 20 0.12 0.02 0.33 0.06 0.33 0.06 0.00 0.00

Generally speaking, we can remark that outstanding itemsets stand not to
be self-sufficient and vice versa. W.r.t. individual data sets, we can observe some
interesting phenomena. For mushroom at θ = 10% and χ2/WRAcc, only one of
the four outstanding itemsets is self-sufficient but ten of the self-sufficient item-
sets are represented by it, i.e. they are subsets that cover the same transactions.
Once we increase the minimum support to 20%, there is no itemset left that
is both self-sufficient and outstanding. For the vote data set, there is a certain
correspondence between outstanding and self-sufficient itemsets for χ2 but none
whatsoever for the other quality measures.

5.3 Structured Pattern Selection

This section gives an experimental illustration of our method on graph-
structured data. This experiment is motivated by the study of chemical and
biological data BCR-ABL from ChEMBL234. In the data, every molecule is
labeled as active or inactive; their structure represented as graphs. Negative
data is denoted by D− in the following. From the 1485 graphs of the data set,
we extract closed frequent sub-graphs with at most 7 nodes, and θ = 10.

4 https://www.ebi.ac.uk/chembl/.

https://www.ebi.ac.uk/chembl/
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As in the case of the closed itemsets we considered above, edges in the result-
ing DAG connect two vertices u and v if u is labeled with a maximal predecessor
of the closed graph labeling v. As before, we assess the behavior of different
quality measures: χ2, confidence, NGR, WRAcc.

Table 3. Selection statistics on graph data.

Quality measure χ2 Confidence NGR WRAcc

Selected 247 30 32 257

Percentage 1.589% 0.193% 0.205% 1.653%

Total # patterns 15,544

As we can see in Table 3, we select at most 1.7% of mined patterns. We
also notice different behaviors for different quality measures: whereas NGR and
confidence select small sets, WRAcc and χ2 select more than six times as many,
a number of patterns that could be hard to process by a human domain expert.

Fig. 5. Selection histograms for NGR (top) and WRAcc (bottom).

Figure 5, shows histograms of the scores for GR (top), and WRAcc (bottom).
The left-most column shows the distribution of pattern scores, the center column
the mean score for neighborhoods, and the right-most one the relative relevance,
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i.e. deviation of patterns from the mean of their neighborhood, normalized by
the standard deviation. Blue histograms are for outstanding patterns, red for
non-outstanding ones. As before, we see that outstanding patterns are not nec-
essarily strongly correlated with the active class but might also be those that are
unexpectedly weakly correlated (or even negatively correlated). We also see that
while the majority of outstanding patterns are two standard deviations off their
neighborhood’s mean score, there are patterns that deviate even more strongly.

5.4 Expert Analysis Upon an Outstanding Pattern and Its Family

The NGR used in the preceding section tends to discount jumping emerging
patterns, which are however rather interesting in the context of activity analysis.
In the following section we will therefore use another quality measure called
GRmax, which avoids the ∞ problem but gives JEPs its due:

{
GRmax(X,D) = |D−| if GR(X,D) = ∞
GRmax(X,D) = GR(X,D) otherwise

We applied GRmax to the data-set BCR-ABL extracted from ChEMBL.

Table 4. Results on BCR-ABL using GRmax

Order 1 Order 2 Order 3 Order 4 Order 5 Order 6 Total

Total 6 307 5 388 8 269 1 534 40 15 544

Selected 0 6 203 175 12 0 396

Percentage 0.00% 1.95% 3.77% 2.12% 0.78% 0.00% 2.55%

In Table 4, order indicates the number of nodes in the smallest free/genera-
tor sub-graph corresponding to closed graphs, allowing us to structure the graph
into several layers. A closed graph together with its generator patterns induces
an equivalence class of graph patterns covering the same data graphs. Each col-
umn correspond to a layer, numbered with its order. Rows Total indicates the
number of equivalence classes in a layer, Selected the number of selected equiva-
lence classes, and Percentage the percentage of selected equivalence classes. We
observe that most of the outstanding patterns are found in the third and fourth
layer. This is why the following analysis will be conducted on equivalence classes
extracted from the third and fourth layers.
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Fig. 6. Selected outstanding pattern (centered) along with its parents, and children of
the parents. Labeled nodes are selected by OPS or important parent (373 and 676).

Starting from the outstanding pattern, an expert can expect to gain insight
into structure-activity relationships (SAR) [10]. As an illustration, consider the
center node of Fig. 6. It shows an outstanding pattern appearing in 61 molecules,
as well as its parents labelled as 676 and 373, colored according to their GRmax

value with lighter colors corresponding to higher values. Larger nodes have a
higher relative relevance. One of the parents, which differs only by one ele-
ment syntactically, has significantly higher support values than the others. On
both labelled parents, we see a large amount of children that include both pat-
terns that do not correlate with the target class at all, and others that correlate
very strongly. Furthermore we see that this family has several selected siblings
(labelled nodes which are neither 676, nor 373). It implies that several subsets of
molecules are outstanding regarding of each individual families for each pattern.
It implies that the molecules’ super-sets of our entry point contain cliffs [12]
regarding the molecular activity. The outstanding pattern is therefore an entry
point to visual analysis by the expert. Therefore, the outstanding pattern is an
entry point for a visual analysis by the expert.

6 Conclusion

We have proposed a new way of selecting outstanding patterns by comparing
them to neighboring patterns: a pattern is outstanding if it deviates clearly from
the average of neighboring patterns w.r.t. the value of a quality measure. Our
proposal is independent of the pattern language or the quality measure used. As
experimentally shown, our selection patterns method leads to a strong reduction
in the size of the result set, making the manual exploration by domain experts
possible. Results differ significantly between different quality measures, i.e. the
choice of quality measure becomes meaningful.
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Finally, our selector puts an emphasis on the outstanding pattern’s context.
The selected pattern is interesting, but its parents, as well as its siblings, are also
objects of interest. It can lead us to siblings linked to more than one outstanding
pattern. Parents of such siblings become very interesting because outstanding
pattern can have either positive or negative qualities, depending on the underly-
ing data. Therefore, our selector offers a new way to study cleaving points inside
the pattern language, and thus, the data, putting human in the loop.
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Abstract. Previous research on EMA data of mental disorders was
mainly focused on multivariate regression-based approaches modeling
each individual separately. This paper goes a step further towards explor-
ing the use of non-linear interpretable machine learning (ML) models in
classification problems. ML models can enhance the ability to accurately
predict the occurrence of different behaviors by recognizing complicated
patterns between variables in data. To evaluate this, the performance of
various ensembles of trees are compared to linear models using imbal-
anced synthetic and real-world datasets. After examining the distribu-
tions of AUC scores in all cases, non-linear models appear to be superior
to baseline linear models. Moreover, apart from personalized approaches,
group-level prediction models are also likely to offer an enhanced perfor-
mance. According to this, two different nomothetic approaches to inte-
grate data of more than one individuals are examined, one using directly
all data during training and one based on knowledge distillation. Inter-
estingly, it is observed that in one of the two real-world datasets, knowl-
edge distillation method achieves improved AUC scores (mean relative
change of +17% compared to personalized) showing how it can benefit
EMA data classification and performance.

Keywords: Ecological Momentary Assessment · Machine learning ·
Explainable Boosting Machine · Knowledge distillation

1 Introduction

In the last few years, there has been a renewed research interest in the areas
of psychology and psychiatry that has been particularly sparked by recent
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technological and methodological developments for collecting time-intensive,
repeated, intra-individual measurements through Ecological Momentary Assess-
ment (EMA) studies [4,11,13,14]. EMA offers the opportunity to capture rele-
vant information about patients’ evolution of their mental condition, symptoms
and experiences, in real-time and in context of their everyday life. This way, a
large amount of personalized data has become available, providing the means for
further exploring mental disorders [6]. Consequently, there has been an urgent
need for developing statistical methods to model psychological behaviour [18].
Some practical applications of such models could be to predict illness course,
determine treatment response or develop tailored psychiatric interventions [3].

Based on literature, EMA time-series data have been mostly studied in a
multivariate regression-based approach [8,18]. More specifically, the most pop-
ular class of time-series models is the Vector Autoregressive (VAR) model with
a goal to estimate the dynamical interactions between all the measured vari-
ables (i.e., network structures) [2]. However, the fact that these models can only
estimate linear statistical relationships can be a significant issue for mental dis-
orders, where the involved interactions are likely to be quite complex. When
many symptoms or variables are involved in the course, these are more prone
to interact in a non-linear fashion with each other. Thus, linear models seem
insufficient to uncover the possible non-linear interactions and describe precisely
the real complex nature of mental disorders.

A promising approach that can learn such complex and higher-order inter-
actions of symptoms is using non-linear machine learning (ML) models [17]. ML
models can enhance the ability to accurately predict the occurrence of different
behaviors by recognizing complicated patterns or relations between variables in
existing data.

This work focuses on two research objectives, examining the idiographic (or
personalized) and nomothetic (or group-based) predictive approach, respectively.
First, according to the idiographic approach, personalized models are typically
applied, as there are possibly different underlying mechanisms that drive a future
behavior in each individual. Thus, different non-linear interpretable models are
evaluated in terms of performance to test whether they are superior to base-
line linear models. Second, we should acknowledge the possibility that shared
influences among different individuals may provide a complementary predictive
utility. Therefore, prediction models are applied in a nomothetic (group-based)
approach showing that integrating data of more than one individual in a single
model could also accurately predict future outcomes at a person level [19].

2 Methodology

2.1 Idiographic (Person-Specific) Approach

Based on the fact that mental disorders can be modeled as a complex system,
we assume that illness course and behaviors differ remarkably across individuals.
Most individuals suffering from the same disorder are likely to exhibit different
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symptoms, so different mechanisms possibly influence and drive a future behav-
ior. Therefore, it is proposed that each individual should be examined separately
using personalized prediction models [4].

Starting from the widely used linear models, a natural extension of these is
the more flexible Generalized Additive Models (GAMs) [9]. The main concept
of GAMs remains the same as of the linear ones, expecting for the outcome
to be an additive model of feature effects, but relaxing the restriction of the
linear relationship. It allows the use of arbitrary functions for representing the
features’ effects. Subsequently, more flexible, non-linear feature functions can
be incorporated. These functions can be based on regression spline models and
tree-based models such as single trees or ensembles of bagged trees, boosted trees
and boosted-bagged trees.

However, there is still a significant gap between the flexible GAMs and full-
complexity models, such as ensembles of trees, regarding accuracy [9]. The main
reason of this limitation is that GAMs take into account only univariate terms
and not any interaction between features (variables). To deal with this drawback,
a more advanced method was developed, called Generalized Additive Models
plus Interactions (GA2Ms), which incorporates pairwise interactions between
features [10]. The model is described in the following form:

g(y) =
∑

i

fi(xi) +
∑

i�=j

fij(xi, xj) (1)

where f are the feature functions of features x and g is the link function (e.g.
identity or logistic) of the predicted outcome y. This model can still be inter-
pretable, using heat maps for representing the pairwise features’ interactions, as
well as accurate, reaching the performance of the state-of-the-art ML models.

In this work, a fast implementation of the GA2Ms algorithm was used, called
Explainable Boosting Machine models (EBMs), which is part of the Microsoft’s
open-source Python package InterpretML [12]. The EBMs’ learning process
makes use of gradient boosting with shallow regression tree ensembles. At each
boosting round, a tree is built on a single feature and its residuals are used for
training the tree of the following feature. This is repeated for all different fea-
tures. After several boosting rounds, each feature’s trees of all rounds can be
combined, leading to tree ensembles as the final features’ representation. On top
of this, functions for pairwise features’ interactions can be additionally incor-
porated. The FAST method is used to detect and rank features’ interactions
in order to keep the most significant ones, without the expense of checking all
possible combinations [10]. Again, the same training process is performed for the
specified pairs.

Because EBMs is a relatively novel method, its performance is evaluated by
comparing it to other full-complexity ML models, such as XGBoost, Gradient
Boosting Trees (GradBoost) and Random Forest (RF). Afterwards, non-linear
models are also compared to linear models, such as Logistic Regression (LogReg)
and Support Vector Machines (SVM), using a linear kernel.
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2.2 Nomothetic (Group-Level) Approaches

Although personalized models are mostly applied, commonalities among different
participants may provide complementary predictive utility. Thus, population-
level prediction studies are also likely to offer an enhanced performance. Espe-
cially, in case of more advanced ML models, incorporating more data could be of
more help, compared to the traditional linear models. This approach could have
a clear advantage to uncover potential complex hidden relationships between
variables.

The most common way of integrating data of more than one individual in a
model is to concatenate the data of all individuals together in a single dataset.
The augmented dataset is then used to construct a population-based model.
Such models produce generalizable predications that can be relevant to a wider
range of individuals. For example, a population-based model can be applied to
new individuals who have not been included in the training of the model. An
additional benefit would be that it can be applied to individuals that cannot be
run in a personalized way due to the lack of the necessary amount of training
samples (time-points) or samples of the minority class.

The second proposed approach is based on the Knowledge Distillation (also
known as teacher-student) method [7]. In this case, information from a larger
(teacher) model is used in a smaller (student) model. The original concept of
Knowledge Distillation was created with the goal to fill the gap between expres-
sive power and learnability in Neural Networks (NNs). This is achieved by train-
ing a small NN after incorporating additional information from a larger and
more complex NN. However, the aforementioned gap does not only exist in NNs
but also in other machine learning methods like the tree-based models described
above [5]. So, the distillation method using information extracted from larger
models can be further exploited in non-NN models.

Fig. 1. The proposed Knowledge Distillation method: after each sample (x1, x2, .., xn)
is input to the teacher model, the extracted log-probabilities yi are used to the temper-
ature softmax function. The produced p1 or p2 are the labels for the student models.

Inspired by this, the proposed Knowledge Distillation method in our case is
illustrated in Fig. 1. First, the teacher model is trained on data from all par-
ticipants and then information derived from this model is used for training
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Table 1. Characteristics of the examined datasets. For imbalance ratio and train-
ing/test sets, the mean and standard deviation values of all individuals are presented,
after pre-processing.

Dataset #Participants #Features Imbalance ratio #Training samples #Test samples

Synthetic 20, 50, 100 25, 60 2.33 35, 70, 210 15, 30, 90

Drink 24 15 8.45 (5.45) 72.83 (12.02) 31.87 (5.24)

ThinkSlim2 57 43 5.82 (3.25) 86 (38.72) 37.51 (16.68)

personalized student models for each individual separately. Additional infor-
mation is gained through the smoothened probabilities pi (soft labels), which
come from the pre-trained teacher model. The log-probabilities yi of the train-
ing samples are softened using a temperature softmax function. The temperature
hyperparameter T plays an important role in smoothing the distribution of the
outputs, that is necessary to prevent the case of having an one-hot vector as the
result of a typical softmax function. Then, the smoothened outputs are used as
labels for the personalized student models. Compared to the conventional per-
sonalized training that uses hard labels, distillation can provide additional useful
information with an aim to improve the personalized models.

3 Experimental Setup

3.1 EMA Datasets

EMA data is organized in a hierarchical structure for each individual, where
observations are collected multiple times a day for a pre-defined period of several
weeks. The total number of observations as well as the collection period can be
different among individuals because some may experience difficulties in following
the schedule of the surveys. All datasets’ characteristics used in this paper are
briefly reported in Table 1 and more extensively presented as follows.

Synthetic Datasets. Due to lack of access to big EMA datasets, we fol-
low a simple method for generating random EMA datasets. These datasets are
designed to consist of the feature vectors and labels of each patient, aiming at a
2-class classification problem. It is also commonly noticed that medical-related
EMA datasets, as well as the following examined real-world datasets, are char-
acterized as imbalanced. This means that the majority of samples belongs only
to one class, whereas much fewer to the other class. Thus, in this case, the ratio
of samples assigned to the two classes is 0.7:0.3 in the synthetic datasets as well.

Furthermore, the datasets must be created in a way to be structurally similar
to the real EMA data. First, these must incorporate multivariate ordinal and
categorical variables. This is a challenging issue, especially in high dimensional
datasets. The method of generating our feature vectors is based on sampling
from a different random normal distribution for each one. These are afterwards
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transformed into ordinal features after deriving an equi-width histogram of the
distribution, leading to a random number of 6 distinct values, or 2 as categorical
variables are typically encoded to binary.

It is also often necessary to impose some flexibility on the data variables, such
as noise. Noise can be added to both output labels and feature vectors. Here,
a small amount of noise is introduced. More specifically, 20% of the labels are
randomly assigned to samples as well as the values of 20% of features are ran-
domly shuffled. Finally, regarding other characteristics of the synthetic datasets,
such as the number of individuals, features and samples, a number of choices is
evaluated.

Dataset: Drink. This first real-world dataset was obtained by a study
described in [15]. It was a 2-week collection of data from 33 individuals through
8 daily mobile notifications/surveys. The captured variables included positive
and negative emotions, drinking craving and expectancies, self-reported alcohol
consumption, impulsivity, as well as social context. All these variables were mea-
sured on a scale from 0 to 100. Regarding the output variable, the aim of this
prediction was the occurence or not of drinking events at the next time-point.
So, a positive label was assigned to each sample when the number of alcoholic
drinks at the next time-point was one or higher.

Dataset: ThinkSlim2. The second real-world dataset is larger and more chal-
lenging. It was obtained by a study described in more detail in [1,16]. This
consisted of data collected from 134 overweight individuals multiple times a day
(minimum 8) for 7 weeks (excluding the follow-up phase) via a mobile appli-
cation. From all the measured variables, only some were selected based on the
individuals’s compliance. The final variables included various positive and neg-
ative emotions, location, activity, social context and type of consumed food.
The emotion-related variables were measured on a scale from 0 to 10. All other
variables were categorical, including a set of predefined choices for each one.
Regarding the output variable, the examined scenario was aiming at predicting
the next healthy or unhealthy eating event. So, a healthy or unhealthy label was
assigned to each sample according to the type of food consumed at the next
time-point.

3.2 Data Preparation

For each dataset, each participant’s EMA data was prepared for analysis sepa-
rately. These were assessed for the frequency of daily observations as well as the
frequency and distribution of the outcome events. First, individuals having very
few observations per day or in total were removed. The number of individuals
retained was 31 and 76 for the Drink and ThinkSlim2 datasets, respectively.

Additionally, because of the final goal to predict (or classify) the next time-
point behavior, consecutive data points had to be collected. For example, for each
data point, if the following one (collected within the next 2 h) was absent then we
could not retrieve its prediction target and eventually it was also considered as
missing. That way, some individuals were found to have so few outcome events of
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the minority class that subsequent cross-validation steps could not be conducted.
So, these participants were also excluded from the final dataset. As a result, the
number of retained individuals were 24 for the Drink dataset having an average
of 6.18 (std = 0.90) daily points and 57 for ThinkSlim2 with average 3.39 (std
= 2.05) points.

As further seen in Table 1, data points of each individual were split sequen-
tially at fixed time intervals into two datasets, a training and a test set, contain-
ing the first 70% and last 30% of the data points, respectively.

3.3 Data Analysis

Idiographic Approach. According to the idiographic approach, separate pre-
dictive models were applied to each individual, using various ML algorithms. A
necessary step is hyperparameters’ tuning, which frequently has a big impact
on model’s performance. In this paper, a time-series cross-validation method (a
variation of KFold, returning first k folds as training set and the (k+1)th fold as
test set) was used to tune some of the main hyperparameters of the tree-based
methods. All these combinations were exhaustively explored for each case using
Grid Search and the one resulting to the best cross-validation score was retained
for the following analysis. The metric score of interest was ROC AUC (or any
of the macro average scores), measuring the true-positive rate and false-positive
rate for the model’s predictions using a set of different probability thresholds.
AUC score was chosen for the prediction of both classes to be taken into account
equally, regardless the number of samples these classes contained. In other words,
the prediction of samples belonging to the majority class should not play a more
important role than predicting samples of the minority class.

Nomothetic Approach. According to the nomothetic approach, the two meth-
ods described in Sect. 2.2 were investigated using Explainable Boosting Machine
models (EBMs). EBMs were built using data of all individuals and then com-
pared to the traditional personalized EBMs. In the first method, the train-
ing datasets of all individuals were concatenated in a population-level dataset,
which was used to train an EBM. The number of interactions was fine-tuned to
select the optimal value, as in the personalized models. The performance of this
“EBM all” model was evaluated separately on the testing set of each individual.
The testing sets are kept the same as in the personalized approach.

In the second method, information obtained from the first method (teacher
model) was further used in personalized EBMs. Each class’ log-probabilities of
the training samples were extracted and transformed to smoothed probabilities
using a temperature softmax function, with the temperature value being selected
from a range between 2 and 200. Thus, new datasets were created using the
training samples of each individual and the extracted “probabilities” as a target
label, instead of the initial hard labels (0, 1). These new datasets created for each
individual were used to train the student models, which are EBMs regression
models.
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Table 2. Performance of personalized models (EBM, XGBoost, Gradient Boosting, RF,
SVM and Logistic Regression): the mean and standard deviation of the AUC scores
are given for all synthetic datasets (each having different number of users, features
and samples). Numbers in bold indicate the highest mean AUC score for each dataset,
while underlined numbers indicate cases where EBMs’ score is close to the highest one.

#Users #Feat #Samples EBM XGBoost Grad RF SVM LogReg

20 25 50 0.715 (0.149) 0.747 (0.145) 0.699 (0.179) 0.734 (0.168) 0.638 (0.185) 0.700 (0.149)

20 25 100 0.736 (0.142) 0.707 (0.127) 0.706 (0.132) 0.735 (0.130) 0.664 (0.130) 0.702 (0.087)

20 25 300 0.695 (0.154) 0.663 (0.148) 0.678 (0.133) 0.691 (0.147) 0.684 (0.163) 0.667 (0.157)

20 60 100 0.757 (0.147) 0.762 (0.181) 0.745 (0.153) 0.760 (0.142) 0.620 (0.147) 0.634 (0.143)

20 60 300 0.761 (0.127) 0.752 (0.121) 0.749 (0.107) 0.747 (0.127) 0.672 (0.105) 0.685 (0.113)

50 25 50 0.736 (0.170) 0.722 (0.170) 0.668 (0.157) 0.711 (0.155) 0.634 (0.188) 0.657 (0.173)

50 25 100 0.718 (0.128) 0.718 (0.133) 0.706 (0.128) 0.726 (0.121) 0.655 (0.145) 0.690 (0.132)

50 25 300 0.750 (0.111) 0.739 (0.108) 0.741 (0.107) 0.751 (0.111) 0.739 (0.123) 0.744 (0.121)

50 60 100 0.680 (0.154) 0.684 (0.148) 0.675 (0.136) 0.667 (0.148) 0.558 (0.150) 0.603 (0.136)

50 60 300 0.764 (0.101) 0.755 (0.105) 0.749 (0.103) 0.757 (0.101) 0.685 (0.101) 0.701 (0.102)

100 25 50 0.688 (0.179) 0.685 (0.158) 0.670 (0.172) 0.695 (0.148) 0.572 (0.193) 0.629 (0.177)

100 25 100 0.675 (0.147) 0.676 (0.144) 0.671 (0.144) 0.690 (0.147) 0.613 (0.133) 0.618 (0.131)

100 25 300 0.751 (0.110) 0.742 (0.101) 0.744 (0.104) 0.757 (0.109) 0.748 (0.109) 0.748 (0.110)

100 60 100 0.737 (0.131) 0.711 (0.134) 0.718 (0.122) 0.696 (0.122) 0.600 (0.131) 0.634 (0.122)

100 60 300 0.722 (0.131) 0.709 (0.128) 0.710 (0.117) 0.710 (0.126) 0.665 (0.091) 0.668 (0.112)

4 Experimental Results

4.1 Synthetic Dataset

Idiographic Approach. The initial step to evaluate the described methods
was to create synthetic datasets. Using synthetic data, it is easier to understand
the problem we have to solve and develop effective and efficient methods for that.
To create the data, different values for the dataset’s parameters, such as number
of subjects, features and samples, were chosen and investigated independently.

Synthetic datasets are first analyzed using a personalized approach. For each
combination of the chosen parameters, personalized non-linear and linear models
are applied to each individual of every dataset separately. After applying all
personalized models, the mean and standard deviation values of the performance
(AUC scores) of all created individuals are presented in Table 2. It is clearly
visible that the average AUC scores are greater when applying non-linear models.
According to the extracted AUC results, EBMs models produce the best average
scores in most of the datasets. However, even when RF or XGBoost show the
best scores, their difference to EBMs is quite small. Moreover, EBMs achieved
more accurate performance when a large number of samples is used for training,
such as 100 or 300.

Nomothetic Approach. Subsequently, personalized EBMs are evaluated in
comparison to the two nomothetic approaches described in Sect. 2.2, the using
all data EBMs (EBM all) and knowledge distillation (KD) method. In case of
knowledge distillation, different values for the temperature parameter are eval-
uated, ranging from 1 to 100. After applying all examined methods, the mean
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Table 3. Performance of the two nomothetic methods (EBM all and KD): the mean
and standard deviation of the AUC scores are given for all synthetic datasets (each
having different number of users, features and samples). Numbers in bold indicate the
highest mean AUC score for each dataset, while underlined numbers indicate cases
where distillation outperforms personalized EBMs.

#User #Feat #Samples EBM EBM all KD (T = 1) KD (T = 5) KD (T = 100)

20 25 50 0.715 (0.149) 0.804 (0.151) 0.753 (0.178) 0.768 (0.185) 0.776 (0.178)

20 25 100 0.736 (0.142) 0.758 (0.162) 0.739 (0.134) 0.735 (0.139) 0.753 (0.148)

20 25 300 0.695 (0.154) 0.691 (0.172) 0.698 (0.167) 0.694 (0.171) 0.690 (0.179)

20 60 100 0.757 (0.147) 0.813 (0.111) 0.786 (0.092) 0.779 (0.096) 0.795 (0.097)

20 60 300 0.761 (0.127) 0.762 (0.119) 0.757 (0.111) 0.756 (0.113) 0.762 (0.119)

50 25 50 0.736 (0.170) 0.756 (0.183) 0.707 (0.169) 0.719 (0.170) 0.731 (0.166)

50 25 100 0.718 (0.128) 0.747 (0.146) 0.713 (0.162) 0.720 (0.164) 0.733 (0.160)

50 25 300 0.750 (0.111) 0.773 (0.133) 0.762 (0.134) 0.769 (0.135) 0.769 (0.135)

50 60 100 0.680 (0.154) 0.735 (0.140) 0.689 (0.144) 0.686 (0.147) 0.700 (0.151)

50 60 300 0.764 (0.101) 0.783 (0.120) 0.751 (0.119) 0.755 (0.122) 0.766 (0.123)

100 25 50 0.688 (0.179) 0.767 (0.175) 0.720 (0.167) 0.725 (0.171) 0.736 (0.166)

100 25 100 0.675 (0.147) 0.723 (0.144) 0.719 (0.138) 0.720 (0.135) 0.726 (0.141)

100 25 300 0.751 (0.110) 0.769 (0.121) 0.767 (0.120) 0.765 (0.119) 0.764 (0.121)

100 60 100 0.737 (0.131) 0.761 (0.140) 0.712 (0.150) 0.721 (0.147) 0.738 (0.148)

100 60 300 0.722 (0.131) 0.736 (0.142) 0.724 (0.133) 0.720 (0.132) 0.729 (0.139)

and standard deviation values of the produced AUC scores for each synthetic
dataset are presented in Table 3.

In the majority of the examined datasets, it is apparent that using person-
alized EBMs leads to worse performance than when either of the nomothetic
methods is applied. More specifically, EBM all gives the best results compared
to the distillation method in all but three datasets, whereas in one of these, both
methods achieved the same score. It is also interesting to mention that their dif-
ference, in terms of the mean AUC score, is quite big in some datasets. This is
the case in datasets with a small number of samples, such as when characteristics
({users, features, samples}) are {20, 25, 50}, {50, 25, 50}, {100, 25, 50}, {50, 60,
100} and {100, 60, 100}. Therefore, it is important to highlight that collecting
sufficient data from each user can benefit the knowledge distillation process.

4.2 Dataset: Drink

Idiographic Approach. First, the total number of 24 individuals is analyzed
using a personalized approach. After applying all different ML models, the results
of the personalized predictive models on the testing sets indicated that the pro-
duced results highly vary across individuals. For instance, some individuals had
quite high AUC results, whereas others’ results were at chance level.

To compare the different ML models, we show some of the statistical prop-
erties of all AUC scores, using the box and whisker plots in Fig. 2a. In this
figure, we present the performance of EBMs compared to the full-complexity
ML models as well as the performance of non-linear models compared to the
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traditionally-used linear ones. Regarding the first comparison, AUC’s distribu-
tion for EBMs is comparable to the ones of the other non-linear models. Apart
from RF, which shows a slightly better overall performance, all statistical prop-
erties of the EBMs’ scores reached higher values than the other three models.
The median value of EBM AUC score is around 0.81, only a bit lower than
XGBoost (0.83). It can also be noticed that the minimum value of EBM perfor-
mance was the highest among ML models, indicating a smaller variation among
individuals in the case of EBMs.

Regarding the second comparison, a distinction between the linear and non-
linear models is clearly visible. All statistical properties of the AUC scores are
lower in the case of linear models. These findings highlight the ability of non-
linear ML models to enhance the predictive performance of the traditionally-
applied linear ones.

Fig. 2. a: AUC performance of all non-linear and linear models b: Comparing the per-
formance of personalized EBMs to the two nomothetic approaches (EBM all and KD)

Nomothetic Approach. In the nomothetic approach, data from all individuals
are pooled into one dataset and modeled collectively by one EBM (EBM all), or
further exploited in a personalized way (KD). To facilitate comparison, box and
whisker plots are utilized and presented (as before) in Fig. 2b.

Using a nomothetic approach, the AUC distribution of the KD method is
improved compared to that of personalized EBMs. This shows more consis-
tent performance scores across individuals, apart from 4 outliers. Regarding the
EBM all method, its AUC distribution is more spread, meaning that the 25th
percentile and minimum values are lower compared to personalized EBMs and
KD. However, the upper half of its distribution is comparable to the respec-
tive part of the distributions obtained through the other cases. Subsequently,
by comparing the median values of both approaches, we see that there is a
slight distinction between them, where personalized EBMs reach the level of
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0.80, whereas around 0.76 and 0.79 for the EBM all and KD methods, respec-
tively. In contrast to the results on synthetic datasets, we see that in a more
realistic dataset, the knowledge distillation method can lead to improved results
compared to EBM all.

4.3 Dataset: ThinkSlim2

Idiographic Approach. Similar to the previous dataset, the performance of 57
personalized predictive models is first evaluated. As the produced results highly
varied across individuals, their performance is also here assessed through box and
whisker plots. Figure 2a presents the AUC scores of all different ML methods.
According to AUC scores, all models’ distributions are comparable to each other,
having a quite large range. All methods show similar poor performance, achieving
a low median value around 0.57 in the case of non-linear models, whereas around
0.54 for the linear ones. That could be due to the more complex and challenging
structure of this dataset, containing a larger number of individuals as well as
features, but not more data samples compared to the previous dataset. Another
interesting aspect in this experiment is that some AUC values are very close to
zero (for all setups). This means that probabilities produced by all models for
these individuals lead to a flipped prediction label for almost all testing points.

Nomothetic Approach. Finally, personalized EBMs were compared to the two
nomothetic approaches, EBM all and KD. The results of all methods, in terms
of AUC scores, are presented in Fig. 2b. The median as well as the 25th and 75th
percentile values are similar for both KD and EBM all, and also increased com-
pared to the respective values of the personalized EBMs. The mean relative AUC
increase of KD and EBM all compared to EBMs are at 17% and 14%, respec-
tively. It is also worth mentioning that there is one individual having an AUC
score equal to 0. This means that the probabilities produced by both EBM all
and KD methods for this individual do not map the class labels correctly, maybe
because they are different than the rest of the population. In challenging prob-
lems, like the one represented by the ThinkSlim2 dataset, where personalized
non-linear models do not perform well, both nomothetic approaches are likely
to achieve a slightly improved performance.

5 Challenges of Modelling EMA Data

Studying the aforementioned two real-world datasets and noticing their varying
results across individuals shows the importance of collecting good quality EMA
data. Because of the complex nature of psychological behavior, its representa-
tion on a dataset can be quite challenging. EMA data collection is a difficult
task, trying to capture multiple observations on subjective variables during an
intensive period. Thus, it may contain unclear and arbitrary responses as well
as missing values.
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Missing data is a significant problem of real-world EMA datasets that cannot
be controlled during a study. Even though several individuals initially participate
in a study, some may not produce enough data for analysis (especially if one
needs to take into account the temporal nature of the data). The number of
data points that is sufficient depends on the total compliance of each individual
during the whole data collection period and also per day. The most common
approach to deal with missing data is to delete them while keeping only the
complete sets of data. However, this method relies on the assumption that the
missing observations are missing at random (MAR) or completely at random
(MCAR), which possibly is not always the case.

6 Conclusion

This research work highlights the importance of exploiting the wealth of EMA
data through more advanced ML models compared to linear ones. Non-linear vs.
linear and idiographic vs. nomothetic approaches were investigated for classifying
a target variable at a next time-point on different datasets.

The results showed great consistency for the idiographic approach, showing
that non-linear models yield an enhanced performance on both synthetic and
real-world data. Subsequently, regarding the nomothetic approaches, no clear
trends were observed in the results of all datasets. Although the EBM all method
appears to perform best for synthetic datasets, that is not the case for the real-
world datasets. Overall, the proposed knowledge distillation method could be
recognized as the most beneficial to improve performance of personalized models.
However, the differences in both idiographic and nomothetic approaches were not
found statistically significant. As a future step, further experiments are needed
on more (and larger) datasets for evaluating the examined approaches.
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Abstract. Artificial Intelligence (AI) and Machine Learning (ML) are
becoming some of the most dominant tools in scientific research. Despite
this, little is often understood about the complex decisions taken by
the models in predicting their results. This disproportionately affects
biomedical and healthcare research where explainability of AI is one of
the requirements for its wide adoption. To help answer the question of
what the network is looking at when the labels do not correspond to
the presence of objects in the image but the context in which they are
found, we propose a novel framework for Explainable AI that combines
and simultaneously analyses Class Activation and Segmentation Maps
for thousands of images. We apply our approach to two distinct, complex
examples of real-world biomedical research, and demonstrate how it can
be used to provide a global and concise numerical measurement of how
distinct classes of objects affect the final classification. We also show how
this can be used to inform model selection, architecture design and aid
traditional domain researchers in interpreting the model results.

Keywords: Convolutional Neural Networks · Segmentation ·
Explainability · Class Activation Maps · Blood smear ·
High-throughput microscopy

1 Introduction

Powered by AI, our world is undergoing the next industrial revolution. We are
seeing a growing number of sectors utilising AI as a driver for their continued
innovation with ‘MedTech’ - a rapidly growing area of the healthcare industry -
seeing an emergence of a paradigm shift in the way that research and develop-
ment are being carried out. Two particular examples of where AI is becoming
rapidly adopted are diagnostics, with some algorithms already outperforming
human experts [1], and within drug discovery where AI-created drugs are already
being trialled [2].

With the rise in real-world applications of AI, understanding how these algo-
rithms are making their decisions is becoming increasingly important. This is
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even more key in healthcare settings where the lack of explainability of the algo-
rithms could hinder their adoption as useful tools. These requirements are some
of the reasons driving the development of the major new interdisciplinary area of
research focusing on Explainable AI. Works including Zhou et al. [3] and Ribeiro
et al. [4] explore the decisions made by neural networks when classifying objects
in images, with these techniques now becoming increasingly popular within the
ML community. Conversely, Ghassemi et al. [5] advise caution when considering
Explainable AI at the patient-level, suggesting instead that external validation
should be the most important requirement for any AI used in a healthcare set-
ting. However, while explainable AI can be used as a tool for validating the
model output, it can also be applied to the R&D process in order to identify
and correct issues long before clinical approval is sought. Although not in the
healthcare setting, Jia et al. [6] pose the question: ‘is the model right for the right
reasons?’ and provide an example in which the Neural Network tested removes
contextual information which is not useful to the labelling process - in their case,
the model is right for the right reasons.

Convolutional Neural Networks (CNN) are amongst the most widely used
types of ML models in the world, thanks to their excellent image classification
performance. In recent years, Class Activation Maps (CAMs) have become an
increasingly popular method of understanding the complex decision making pro-
cess of these networks, as is explored in Jia et al. [6]. CAMs are produced by
stacking selected convolutional layers of a network, with the degree of their acti-
vation used to weight their relative impact of each layer. The resulting maps
highlight the areas of the images which contributed most strongly to the final
classification.

Whilst very useful in simple classification tasks, on their own these tech-
niques are not immediately applicable in cases where the objects in the image
are not directly the target labels for the model. For example, when diagnosing
blood disorders, we look at images of blood cells, but we are not interested in
determining whether or not the objects in the images are cells. Instead, we aim
to label the context in which the cells are present in the image as a whole, using
the information about their shape and size, and relative abundance. This could
be considered similar to the problem of analysing satellite images showing cars
in a urban setting where we are not trying to locate and classify the vehicles
themselves but attempt to predict if they are showing a car park, a traffic jam
or regular traffic.

In this work, we propose a new framework for summarising the areas of
interest of a model when faced with these more complex image classification
tasks. Our proposed tool uses segmentation masks for any number of classes of
objects found in the images and compares them with the CAMs generated by
CNNs to produce a single numerical descriptor, indicating the degree of impact
of that class on the overall classification. Our metric can be used by ML experts
to improve their network design whilst simultaneously aiding domain experts to
interpret the results presented without the need for the them to understand the
inner working of the models, as has already been adopted within Evotec.
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Fig. 1. Left: An example image from the ALL-IBD1 dataset from an ALL patient.
Centre: A sample image for a non-ALL patient. Right: An image from the Cell Painting
Dataset.

1.1 Image Context Classification

In the healthcare applications of ML, we often come across classification prob-
lems where the labels we are assigning do not directly correspond to the object
found in the image but instead are drawn from the greater context presented
in the images. In this work, we focus on just two examples of this: predicting
Acute Lymphoblastic Leukemia (ALL) from blood smear images and predict-
ing biological activity from high-throughput microscopy images, however, the
methods presented here could be applied to many other areas of research. Both
of these classification tasks are well-defined and have been explored in multiple
publications using publicly available datasets.

Predicting ALL - A Single-Task Problem. ALL is a rare cancer affecting
the white blood cells. With the majority of cases being in children, teenagers
and young adults, it is the most common form of leukaemia in children. Around
790 people are diagnosed with ALL in the UK each year, and as the cancer is
aggressive, the patients’ condition can rapidly decline, making early detection
and immediate treatment critical. If left untreated, death can occur in just a
matter of weeks [8,9]. In diagnosing ALL, one of the first steps includes the
analysis of a blood sample by measuring the number of abnormal leukocytes
(white blood cells). High numbers of these abnormal cells, referred to as ‘blast
cells’ or lymphoblasts, are indicative of ALL [8]. As the changes to the cell can
be detected though their visual inspection, this problem is well suited for the
use with CNNs. Figure 1 shows example images used for this analysis. Due to
the clear contrast between the healthy leukocytes and lymphoblasts, we could
consider this to be a relatively simple example of a visual single-task classification
problem [17].

Predicting Biological Activity - A Multi-label Problem. The develop-
ment of new drugs is an expensive process, taking up to 20 years, with cost
estimates ranging from 0.5–2.6 billion USD [10]. However, both the develop-
ment time and cost can be reduced by implementing an early and accurate
estimate of the biological effects of drug-like molecules on organisms, referred to
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as assays. This allows the process to quickly focus on the candidate molecules
with the greatest chance of success, ultimately leading to the delivery of much
needed medication to patients. ML in general, and in particular deep learning,
is an emerging technology in the field of drug discovery, showing great promise
and high accuracies in producing such estimates. Several different methodolo-
gies have been used to predict the activity for drug-like molecules using a vari-
ety of physico-chemical properties and, more recently, data generated using
high-throughput imaging assays. Chan et al. [11] published a thorough review
on Advancing Drug Discovery via Artificial Intelligence in August 2019, while
Zhu [12] published a thorough review of Big Data and Artificial Intelligence
Modeling for Drug Discovery in September 2019. Here, we focus on predicting
biological assays from high-throughput microscopy images, a subject investigated
in depth by Hofmarcher et al. [13]. This is a highly complex classification task,
due not only to its multilabel nature but also to the sparsity of the available
data. However, despite its importance, no works to date thoroughly explore the
problem of explainability in AI for drug discovery.

2 The Classification Tasks

2.1 Data

Blood Smear Images. ALL can be identified by analysing blood smear images,
such as those published in the well-curated and high quality Acute Lymphoblas-
tic Leukemia Image Database for Image Processing (ALL-IDB1) [9]. This dataset
consists of images captured using an optical laboratory microscope, with mag-
nification ranging from 300–500×, and a Canon PowerShot G5 camera. Each
image in the database has been classified by expert oncologists to assign accu-
rate labels which can be used for in model training. Whilst two datasets are
provided, this work uses the ALL IDB1 subset, comprised of 108 images taken
during September 2005 from both ALL and non-ALL patients. Example blood
smear images from both ALL and non-ALL patient are shown in Fig. 1.

High-Throughput Microscopy Images. In this work, we also use high-
throughput imaging assays - a type of data with growing popularity in the world
of AI-driven drug discovery. One such dataset is the Cell Painting Dataset intro-
duced by Bray et al. [14]. Figure 1 shows an example image from their library. In
this dataset, cells have been ‘painted’ with several distinct fluorescent morpho-
logical markers simultaneously in order to emphasise the morphological infor-
mation contained in the images. The dataset consists of 406 multi-well plates,
imaged using an ImageXpress Micro XLS automated microscope, with 5 fluo-
rescent channels at ×20 magnification, and 6 fields of view imaged per well. By
cross matching the chemicals applied to the cells with their known assays in the

1 Provided by the Department of Information Technology at Universitá degli Studi di
Milano, https://homes.di.unimi.it/scotti/all/.

https://homes.di.unimi.it/scotti/all/
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ChEMBL database [15], we were able to produce a set of assay activity labels
for our dataset. Assays are only included in the dataset if 10 active and 10 inac-
tive measurements exist, aligning our criteria with these used in other works,
including Hofmarcher et al. [13].

2.2 Existing Classification Methods

Predicting ALL. Given the importance of rapid diagnosis of ALL, it is perhaps
not surprising that a large number of publications exist exploring various predic-
tive algorithms. Some of these are traditional ML algorithms, with neural net-
work based approaches becoming more popular in the recent years. Ghadezadeh
et al. [17] produce a systematic review of a number of works exploring such
applications, summarising the datasets and techniques used. Due to the large
pixel resolution of the images in the dataset, as well as the high angular resolu-
tion required to observe the small changes in the shape of the cells, a significant
proportion of the publications focus on locating the lymphocytes and studying
their properties in isolation. This may be achieved through the application of one
or more segmentation techniques to sub-sample the images [18] or through fea-
ture extraction [19]. Furthermore, a number of publications use the ALL-IDB2
dataset, which is not suitable for our analysis as it consists of expert cropped
images focusing only on the areas containing a single lymphocyte.

Predicting Biological Activity. The work by Hofmarcher et al. [13] is
perhaps the most thorough example of using the Cell Painting Dataset. The
authors compare the results of a number of CNNs, including DenseNet [20] and
ResNet [21] to their own architecture, GapNet, with these three models obtaining
the highest performance. ResNet, DenseNet and GapNet achieved mean AUCs
of 0.731± 0.19, 0.730± 0.19 and 0.725± 0.19 respectively, which shows a consis-
tent performance across all three models. The authors however note that Gap-
Net holds an advantage over the other methods as, due to a significantly lower
number of convolutional layers and model parameters, it is considerably more
efficient to train.

2.3 Our Classification Models

We use three classification models for the prediction of labels in both exam-
ple applications presented in this work. We have selected the ResNet101 and
DenseNet121 models, as well as our own modified TensorFlow implementation of
the GapNet architecture. We alter GapNet’s design, as compared to Hofmarcher
et al. [13], to remove some of the constraints that were likely introduced in order
to accelerate the training times as opposed to being performance-driven. We
marginally increased the number of convolutional layers, as well as the depth of
the layers, to bring it closer in line with the VGG architecture on which GapNet
is largely based [13]. We also removed all dense layers from the model, with
the exception of the final classification layer and directly connected the Global
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Table 1. Summary of the performance of GapNet, ResNet101 and DenseNet121 on
the ALL IDB1 library and our subset of the Cell Painting dataset. Errors represent
the standard deviation of our results across 10 bootstraps.

Dataset GapNet
average AUC

ResNet101
average AUC

DenseNet121
average AUC

ALL IDB1 98.88 ± 3.51% 99.39 ± 1.41% 98.53 ± 1.53%

Cell Painting 82.35 ± 1.84% 83.35 ± 1.71% 82.39 ± 1.68%

Average Pooling (GAP) layers to the final output layer. This brings our model
inline with the modern CNN designs, where dense layers are becoming obsolete
in favour of Global Pooling layers [20,21]. Whilst this is a considerable depar-
ture from the design of the original GapNet, we found this approach to result
in nearly identical performance on the same dataset as used by Hofmarcher et
al. [13]. Our analysis additionally benefits from this change, as it allows us to
treat all three architectures consistently (Table 1).

As the focus of this work is not on the details of the image classification
models, the implementations of these models is considered beyond the scope of
this paper and is therefore not discussed here. Instead, we are making all of our
code publicly available at https://github.com/ToyahJade/dunXai where further
details can be found.

Predicting ALL. We trained our modified GapNet, ResNet101 and
DenseNet121 on 70 images from the ALL-IDB1 dataset, using a further 20 images
for the in-training testing. Each model was bootstrapped 10 times and validated
using 10 hold-out images. Our training obtained an average AUC of 98.88±3.51%
for GapNet, 99.39 ± 1.41% for ResNet101 and 98.53 ± 1.53% for DenseNet121.

Predicting Biological Activity. For the purposes of this work, we simplify
the task of predicting biological activity to classifying only the assays originating
from the Sanger Institute that are present in our dataset. All of these cells are
growth inhibition assays. The reduced dataset, combined with labels for the
Cell Painting Images, consists of 27 assays and 21 compounds, found in 942
images. We train our GapNet as well as both ResNet101 and DenseNet121 over
10 bootstraps, each with 615 training images, with a further 262 images being
used for the testing. Using a hold-out validation dataset of 330 images, we achieve
average AUCs of 82.35 ± 1.84% for GapNet, 83.35 ± 1.71% for ResNet101 and
82.39 ± 1.68% for DenseNet121.

3 dunXai

We propose DO-U-Net for Explainable AI, or dunXai, for the analysis of Deep
Learning models where their aim is to classify the visual context of the image.

https://github.com/ToyahJade/dunXai
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Table 2. Summary of the performance of DO-U-Net on the ALL IDB1 dataset as well
as our subset of the Cell Painting dataset for each object type.

Dataset Object type Number in
training dataset

Precision Sensitivity

ALL IDB1 Erythrocytes 3,602 99.94% 98.62%

Lymphocytes 79 100.00% 100.00%

Cell Painting Cell membranes 145 99.31% 95.83%

Nuclei 135 98.83% 95.83%

Our tool can be broken down into three components. First, objects in the images
are segmented using DO-U-Net [7], with all distinct instances labeled separately,
even when such objects are closely co-located. Secondly, we create CAMs for the
models used. Whilst we use GapNet, Densenet and Resnet architectures in this
work, any CNN model compatible with the CAM method could be used here.
Finally, the segmentation masks and CAMs are compared using our selected
algorithm, producing the final numerical descriptions of the relationship between
the areas of interest in the images and the final output of the models.

3.1 DO-U-Net

We use the Duel-Output U-Net (DO-U-Net), developed in Overton and
Tucker [7] as our segmentation model. DO-U-Net is a U-Net [22] based, Encoder-
Decoder, Fully Convolutional Network for object segmentation and counting. We
chose DO-U-Net over the simpler U-Net in order to improve the quality of the
segmentation masks for objects where the edges are not clearly defined in the
images. We found this to be a particular issue for lymphoblasts and cell mem-
branes where the extra focus that DO-U-Net puts on detecting the edges allows
the network to separate the objects preserving their true area, thus increasing
the accuracy of our metrics discussed in Sect. 3.3.

In both of our example applications of dunXai, we are working with data
containing two distinct classes of objects. The blood smear images contain ery-
throcytes and lymphocytes, while the cell painting dataset focuses on cell images
where we are able to separate the nuclei of the cell and the membrane that sur-
rounds them. Table 2 highlights the performance of DO-U-Net for each class of
objects.

Application to Blood Smear Images. We trained two separate DO-U-Net
models: one to segment erythrocytes, and a second to segment lymphocytes.
Whilst it is possible to use DO-U-Net for multi-label segmentation, we have
found that training on each class separately improved our results considerably.
When trained using 8 images, divided into smaller 196× 196 regions, containing
3,602 erythrocytes we achieved a precision of 99.94% and sensitivity of 98.62%
on the 4 images used for validation containing 2,035 erythrocytes. Using the
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Fig. 2. Example CAMs generated for our modified GapNet architecture. Left: ALL
patient. Centre: Non-ALL patient. Right: Cell Painting Dataset.

same training images containing 79 lymphocytes, we reached a precision and
sensitivity of 100.00% on our validation dataset of 8 images containing 134 lym-
phocytes.

Application to High-Throughput Microscopy Images. Similarly, we
trained two separate models to segment the cell membranes and their nuclei.
When trained using 105 images containing 6,601 cells, DO-U-Net achieved a
precision of 99.31% and a sensitivity of 95.83% for cell membranes, as measured
on 8 validation images. For the nuclei, DO-U-Net achieves a precision of 98.83%
and a sensitivity of 95.83% using the same data.

3.2 Explainable AI: Class Activation Maps

In order to create the CAMs, we follow a methodology similar to that of Zhou
et al. [3]. In our case, we use three architectures with GAP as their penultimate
layer which allowed us to use the models directly as trained in Sect. 2.3, without
the need for modifications. Our implementation of GapNet requires an additional
step as the penultimate layer is a concatenation of four GAP layers, taken at
different depths of the network. For simplicity we only consider the GAP layer
corresponding to the final convolution layer of the model in this work, and use
the activation weights for that portion of the concatenated GAP layer. This
could be trivially modified to study the impact of the other GAP layers, derived
at different depths of the network. Example CAMs for our sample images can
be seen in Fig. 2.

3.3 dunXai Metrics

By comparing the segmentation masks generated using DO-U-Net and the CAMs
produced for each label, we can create a set of numerical descriptors for all
images in our dataset. The choice of measurements here depends on the specific
research question being investigated. Thanks to the use of DO-U-Net, we could
calculate the impact of each instance of the segmented objects or the effects
of the background on the classification. However, in the interest of brevity,
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Fig. 3. Left: CAM generated using our modified GapNet for an ALL patient. Top
Centre: Lymphocytes segmentation mask. Bottom Centre: Erythrocytes segmentation
mask. Right: Union of the CAMs and the segmentation masks, showing a much stronger
activation for lymphocytes.

we cannot demonstrate an exhaustive list of all possible metrics. Instead, we
focus on a global property of the image that gives a strong overview of the
relationship between the objects it contains and the final classification labels.

Our proposed dunXai score, d, measures the mean intensity of the CAM, C,
that lies in the region overlapping the objects in question, S with an area,

∑
S,

normalised to its maximum absolute intensity. Figure 3 shows the union of the
segmentation mask and the CAM for two different classes of objects found in
our data, which forms the basis of our metric.

d =
∑

(C ∩ S)
max (|C|) × ∑

S
(1)

To demonstrate how our proposed dunXai score can be used to analyse the
way the models make their complex classification decision, we look at our two
examples across the three architectures and all object types present in the data.
While calculated for individual images, we can compare the dunXai score across
our entire dataset in order to measure the importance of a given class of objects
on the final classification.

Application to Blood Smear Images. In this simple, single-task classifica-
tion problem, all of our models produce highly confident predictions, achieving
very high AUCs using our validation dataset. To evaluate the importance of
each class of objects found in the images, we can take the mean of the dunXai
score across all images. For GapNet, we measure a mean score of 0.2738 ±
0.1736 for erythrocytes and 0.8969 ± 0.0948 for lymphocytes. The much higher
score for lymphocytes indicated that the model consistently and strongly relies
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on these objects to perform the classification. This is consistent with the tra-
ditional approach to the classification of ALL. However, both ResNet101 and
DenseNet121 achieved a more similar dunXai score for the two classes, with
ResNet101 producing a score of 0.2525 ± 0.1374 for erythrocytes and 0.2999 ±
0.1362 for lymphocytes and DenseNet121 scoring 0.2446 ± 0.1242 for erythro-
cytes and 0.3806 ± 0.1562 for lymphocytes. The similarity of the scores suggests
that these models do not use the presence of lymphoblasts as the only indicator
of ALL. As there is no biological basis for this, our findings could potentially be
pointing towards the overfitting of the models.

Application to High-Throughput Microscopy Images. This complex,
multi-label classification problem often results in less significant predictions, as
is also reflected in the overall accuracy of the models. This gives us an opportu-
nity to study the relationship between dunXai scores and the predicted labels as
opposed to relying on the mean score. As our dataset spans 27 classes of assays,
we propose that a dunXai score should be produced for each class separately.
For our dataset, this leads to a lengthy number of results to discuss. We are
therefore unable to discuss the analysis for all assays individually in this work,
despite the usefulness of the dunXai score on each assay. Instead, we focus on
a selected example for one of the assays which demonstrates the approach that
could be used to study all remaining assays.

We analyse on one particular cell growth inhibition assay, CHEMBL2363747
with Fig. 4 showing the comparison of the relationships between the predicted
labels and dunXai score for both the cell nuclei and membranes across all of
the images in our validation sample. Looking at relationship for GapNet, we can
see that the cell membranes play a more important part in predicting the assay
than the nuclei. The dunXai scores for both classes are broadly consistent for all
predictions, showing that the network is likely using a specific level of activation
in the region corresponding to these cell types. In this case, the actuations are
negative for a large proportion of the nuclei which could mean that the model
is looking for the lack of a specific cell behaviour as opposed to its presence -
something that could be a feature of this particular assay.

However, if this result is biologically motivated, we would expect to see the
same behaviour for both ResNet and DenseNet. Instead, the level of activation
in the regions corresponding to both the cell nuclei and their membranes appear
to be strongly correlated to the predicted label, with no clear separation between
the two classes. This could indicate that the network is not making its decision
in the final layers of the model, suggesting that both ResNet and DenseNet are
unnecessarily too deep for this task. Our findings could be seen as an independent
validation of the conclusion made by Hofmarcher et al. [13] that GapNet is a
sufficient architecture for this classification task.
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Fig. 4. The relationship between our proposed dunXai scores and the classification
labels predicted by GapNet, ResNet and DenseNet.

4 Conclusion

We have proposed a novel framework for quantitatively evaluating the rela-
tionship between the objects found in biomedical images and the predictions
of their real-world classification models. We have developed a new metric by
simultaneously combining the DO-U-Net generated segmentation masks with
CAMs produced for thousands of images using three example architectures. For
a simple, single-task classification problem of predicting ALL in blood smear
images, we demonstrate that GapNet architecture replicates the manual app-
roach taken to classify these images whilst ResNet and DenseNet take a dif-
ferent route. For a more complex, multi-label problem of predicting assays in
high-throughput microscopy images, we use our approach to demonstrate that
ResNet and DenseNet have a deeper architecture than is required for this task
by comparing the relationship between the predicted scores and our proposed
dunXai metric.
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Abstract. Even though deep learning has allowed for significant
advances in the last decade, it is still vulnerable to adversarial attacks -
inputs that, despite looking similar to clean data, can force neural net-
works to make incorrect predictions. Moreover, deep learning models usu-
ally act as a black box or an oracle that does not provide any explanations
behind its outputs. In this paper, we propose Attribution Guided Sharp-
ening (AGS), a defense against adversarial attacks that incorporates
explainability techniques as a means to make neural networks robust.
AGS uses the saliency maps generated on a non-robust model to guide
Choi and Hall’s sharpening method to denoise input images before pass-
ing them to a classifier. We show that AGS can outperform previous
defenses on three benchmark datasets: MNIST, CIFAR-10 and CIFAR-
100, and achieve state-of-the-art performance against AutoAttack.

Keywords: Adversarial attacks · Computer vision · Machine learning
robustness

1 Introduction

Thanks to the increase in computing power and storage capacity seen in the last
decade, machine learning has gained a lot of popularity. It has shown promising
results in a wide range of tasks such as voice recognition [2], resource alloca-
tion [34] or autonomous driving [6]; however, its deployment in the real world
has been significantly slowed down and, in many cases, opposed. This is due to
two of the most important unsolved problems in machine learning: the lack of
interpretability of deep learning models and their vulnerability to adversarial
attacks.

Most models act as black boxes which, given an input, make a prediction
without giving any explanations behind why they generated that output. Tak-
ing adversarial attacks into account, this lack of interpretability makes it evident
that one cannot blindly trust machine learning models, even more so in safety-
critical domains. Many different explainability techniques have been proposed.
Generally, they can be grouped in two categories based on their scope [1]: global
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explainability, which is aimed at explaining the behaviour of whole models with
techniques like GIRP [38], and local explainability, which is aimed at explaining
individual predictions with techniques like LIME [27] or gradient-based attri-
butions (saliency maps) [30]. Despite the successes of these techniques, deep
learning is still not fully interpretable and we still cannot explain many of its
predictions.

The other roadblock in the widespread deployment of machine learning into
the real world is its lack of robustness. Adversarial attacks [32] are carefully
crafted small perturbations that can be added to the inputs of a working model
to force it to make wrong predictions without changing how the inputs would be
interpreted by a human. As can be seen in Fig. 1, these perturbations can alter
images in such a way that, even though they look very similar, the network com-
pletely misclassifies them. Adversarial examples can be very dangerous and can
benefit parties with negative intentions in fields like medicine [13] or autonomous
driving [10]. Therefore, building robust models against these attacks is a crucial
problem yet to be solved.

Fig. 1. Adversarial example on ImageNet that illustrates how adding a small carefully
created perturbation to the image can completely change the prediction [14].

Even though adversarial attacks have been widely studied and many defenses
against them have been proposed, there is no universal solution to defend against
all of them. Some defenses have solved the problem partially; however, no defense
has been found that provides universal robustness against different attack meth-
ods and across different architectures and datasets.

The best defense known so far is adversarial training [14], which incorporates
adversarial examples into the training set. However, adversarial training tends
to overfit models to a specific kind of attack [28] and does not generalize well to
new attacks.

Salman et al. have proposed and certified denoised smoothing, a defense
against adversarial attacks sampled from a certain �p radius [29]. They propose
the combination of randomized smoothing (which smoothes the classifier by
adding random noise to the inputs) with a neural network trained to remove
the added noise as a means to remove adversarial perturbations. Despite their
robust certification, their defense is not as strong against attacks from a different
�p norm than what the denoiser has been trained on.
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More sophisticated denoising approaches have been proposed such as Deep
Denoising Sparse Autoencoder (DDSA) [5], which modifies a denoiser by adding
sparsity constraints between the fully connected layers of the encoder and the
decoder.

Another relevant denoising approach is high-level representation guided
denoiser (HGD) [22]. HGD is composed of a neural network that has been trained
to minimize the logit activation difference between clean images and denoised
adversarial images. Despite being the winner of the NIPS 2017 competition track,
HGD has been shown to be an ineffective defense [4].

As DDSA and HGD, our proposed defense, Attribution Guided Sharpening
(AGS), is a denoising approach. Other techniques in the adversarial robustness
literature have used attributions but simply as a means to identify adversarial
inputs [18,39]. The novelty in AGS comes in using attribution values generated
by a non-robust classifier to guide the denoising of adversarial noise. Generally,
attacks modify images by increasing the value of pixels that have more weight for
the logits of wrong classes. Since attributions give us the ability to analyze the
importance of each pixel when making predictions, these same saliency maps can
be used to study and correct the influence of individual pixels. In this paper,
we do this by using Choi and Hall’s sharpening method [7] as the denoising
technique.

Our contributions are as follow:

– We introduce the idea of Attribution Guided Denoising (AGD) as a defense
against adversarial attacks.

– We propose Attribution Guided Sharpening (AGS): a new defense against
adversarial attacks for non-robust models that does not require additional
training.

– We evaluate our technique on three benchmark datasets: MNIST [21], CIFAR-
10 and CIFAR-100 [20], and show state-of-the-art performance against FGSM,
100-PGD and AutoAttack without the need for adversarial training.

The rest of this paper is divided as follows: Sect. 2 provides an overview
of relevant concepts in the fields of adversarial attacks and machine learning
explainability; Sect. 3 introduces AGS as a defense and the methodology followed
in our implementation; Sect. 4 shows experimental results on MNIST, CIFAR-10
and CIFAR-100; lastly, Sect. 5 summarizes the results of the paper and provides
a reflection on the need of more work at the intersection of adversarial defenses
and explainable artificial intelligence (XAI).

2 Background

2.1 Adversarial Attack Generation

Adversarial attacks were introduced as imperceptible non-random perturbations
that can change the predictions of a network [32]. This definition has later been
extended and adversarial examples need not be imperceptible [12,23] but only
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require that a human can still interpret the inputs correctly. Unlike noisy data,
which is simply perturbed data, whether the perturbation is random or not,
adversarial perturbations are generated as the output of an optimization problem
targeted to make the network fail.

Adversarial attacks can be classified into two categories: black-box and white-
box attacks. Black-box attacks have no knowledge about the model or the
defense. They can only query the model and observe its outputs. They usu-
ally generate substitute models and generate attacks on these substitute models
exploiting the transferability of attacks [26]. On the other side, white-box attacks
have full access to the defense, the model architecture and its parameters. They
usually generate perturbations by solving an optimization problem that aims
to minimize the perturbation (δ) while maximizing a loss function (L), which
determines the performance of the network (F), with the goal of changing the
outputs of the model F(x + δ) = y′ �= y (where y is the real label).

δ = min
δ∈Δ

max L(F ;x + δ, y) (1)

Some relevant attacks in current literature used in this paper are:

Fast Gradient Sign Method (FGSM) [14] is a simple but efficient white-box attack
that generates adversarial examples by performing the perturbation:

xadv = x + εsign(∇xL(F ;x, y)) (2)

where ∇x is the gradient of the network (F) with respect to the inputs (x) and
ε is a parameter that controls the maximum allowed perturbation.

Projected Gradient Descent (PGD) [24] is more effective, and perhaps the most
commonly used white-box attack. It finds perturbations recursively and projects
them onto an �p norm ball of choice after each iteration.

x
(i+1)
adv = x

(i)
adv + Pε(α∇xL(F ;x(i)

adv, y)) (3)

where x
(0)
adv = x, Pε is the projection onto the �p norm ball designated by ε

and α is the stepsize of the applied perturbation. We use �∞ for our experiments.
Despite the successes of these attacks, usually, the evaluation of the robust-

ness of proposed defenses is not done thoroughly, which gives a false sense of
robustness.

AutoAttack (AA) [8] was proposed to solve this problem. AutoAttack is a
parameter-free attack that is both stronger and more reliable than previous
attacks used in the adversarial robustness literature. It combines four different
attacks: two versions of the parameter-free variant of PGD, Auto-PGD [8], Fast
Boundary Adaptive Attack [8], and the black-box attack Square Attack [3].

2.2 Attribution Techniques

Since our focus is to find the importance of each pixel of the input image for
a specific prediction, we use gradient-based attribution methods to guide the
denoising.
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Saliency maps [30] are the simplest type of attribution methods. They can
be generated by backpropagating the gradient of a class label with respect to
an input image on the network. These attribution maps have higher values in
the pixels where the images have more relevant features to the class and lower
values where the features are not as important.

A more advanced attribution technique, the one used in our defense, is Inte-
grated Gradients (IG) [31]. IG calculates the integral of the saliency maps gener-
ated along a straight line from a baseline to the input image. This is more easily
understood mathematically as:

IGi(x) = (xi − bi) ·
∫ 1

α=0

∂F(bi + α(xi − bi)
∂xi

dα (4)

where IGi is the attribution of the ith pixel, b is the baseline and α is the
parameter for the line from b to x. In practice, this is approximated as a Riemann
sum by:

IG∗
i (x) = (xi − bi) ·

m∑
k=0

∂F(bi + k
m · (xi − bi))
∂xi

· 1
m

(5)

where m is the number of steps in the approximation of the integral.

3 Methodology

3.1 Choi and Hall Sharpening (CHSharp)

The denoising method used in our defense is Choi and Hall’s sharpening [7],
which was originally formulated for bias reduction of density estimators.
CHSharp was aimed at decreasing the bias near local maxima and local min-
ima, which were often overestimated and underestimated by density estimators.
CHSharp uses local constant regression, a form of weighted averaging commonly
used in statistics and first proposed by Nadaraya and Watson independently in
1964 [25,35]. CHSharp works as follows: given an evaluation point xj , the esti-
mate for the regression coefficient β0 in local constant regression is obtained by
minimizing the locally weighted least squares criterion

n∑
i=1

Wh(xi, xj)[yi − β0]2. (6)

with respect to β0. The solution to 6 is the Nadaraya-Watson estimator,

β0 =
∑n

i=1 Wh(xi, xj)yi∑n
i=1 Wh(xi, xj)

, (7)

where Wh(xi, xj) = W [(xi − xj)/h(x)] for some weight function W and band-
width h. The weight function for our purposes is Gaussian φh with standard
deviation h,

β0 =
∑n

i=1 φh(xi − xj)yi∑n
i=1 φh(xi − xj)

(8)
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Instead of using data pairs (xi, yi), which is how regression is normally per-
formed, the sharpening method involves regression of the xi’s against themselves.
In other words, we use data pairs (xi, xi). In this case, the regression coefficient
β0 is the sharpened data point x′

j , and is given by

x′
j =

∑n
i=1 φh(xi − xj)xi∑n
i=1 φh(xi − xj)

. (9)

which will yield the sharpened data,

(x′
1, . . . , x

′
n).

This process can then be iterated for further sharpening,

x
(m)
j =

∑n
i=1 φh(x(m−1)

i − x
(m−1)
j )x(m−1)

i∑n
i=1 φh(x(m−1)

i − x
(m−1)
j )

(10)

A pixel is therefore only sharpened based on the pixels surrounding it and
will be more or less influenced by neighbour pixels depending on the bandwidth
used.

3.2 Attribution Guided Sharpening (AGS)

Attribution Guided Sharpening (AGS) builds around already existing non-robust
classifiers to create a robust defense against attacks. The workflow of AGS is
shown in Fig. 2: given a non robust classifier Fnominal that classifies inputs x ∈
R

d to classes y ∈ C, and an input x, the non-robust model first predicts the label
y∗

p. Then AGS calculates the IG attributions, a, of the prediction and uses them
to guide the CHSharp denoising of x. This is done by setting the bandwidth of
the CHSharp algorithm equal to some affine function of the attribution ai of
each pixel xi. The transformed image, x̃, then passes through a second classifier,
Fsharp to make the robust prediction ỹp. We refer to this workflow, as shown in
Fig. 2, more generally as Attribution Guided Denoising (AGD) because it allows
for a lot of different combinations of attribution and denoising techniques.

To understand the intuition behind AGS, consider the classifier Fnominal and
an input image x that belongs to class c. An adversary will add a perturbation to
x to create an image xadv that is classified as y∗

p such that y∗
p �= c. The attribution

a = IG(Fnominal;xadv, y∗
p) reveals that pixels that do not represent the class c

have high attribution values, which translates into the misclassification of xadv.
If the attribution of a pixel is high, its bandwidth is high as well in AGS and
CHSharp shifts its value closer to that of neighbouring pixels and thus decreases
it, which will decrease its attribution for class y∗

p and bring it closer to c. If,
however, the attribution of a pixel is low, its bandwidth will be correspondingly
low, and thus it will not be heavily affected by neighbouring pixels, its value will
not change much. In summary, when the processed image CHSharp(xadv) gets
classified by Fsharp, it will be closer to c, making the classifier more likely to
predict the correct label ỹp such that ỹp = c.



AGS 231

Fig. 2. Attribution Guided Denoising workflow. For AGS, the denoiser is Choi and
Hall’s sharpening method.

4 Experiments

In our experiments, we evaluated the performance of AGS on MNIST, CIFAR-
10 and CIFAR-100 against FGSM, 100-PGD and AutoAttack. We built our
defense using PyTorch and evaluated all attacks using Torchattacks [19]. The
architecture used for the MNIST classifier was a Convolutional Neural network
(CNN) with 4 convolutional layers as shown in Fig. 3. For CIFAR-10 and CIFAR-
100, the architecture of choice was ResNet-18. In our defense procedure, AGSpret,
we trained Fnominal and used this same network as the Fsharp classifier. All our
code is available at https://github.com/Idsl-group/AGS. More details about our
training procedure and hyperparameters can be found there.

Fig. 3. Our CNN architecture.

https://github.com/Idsl-group/AGS
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Table 1. Adversarial robustness of AGS and various defenses extracted mainly from [8]
against FGSM , �∞ 100−PGD and AutoAttack (AA). The attack column None refers
to the nominal accuracy of the defenses. We use ε = 0.3 for MNIST, ε = 8

255
for

CIFAR-10 and CIFAR-100. The column AT refers to whether the model incorporated
Adversarial Training as part of the defense or not.

Model Dataset Defense Params AT Attack

None FGSM PGD AA

4-CNN MNIST AGSpret 0.1 M∗ ✗ 99.16 98.55 98.10 96.17

2-CNN MNIST [36] 0.2 M ✓ 98.50 – 90.19 82.93

4-CNN MNIST [40] 0.3 M ✓ 98.38 – 95.25 93.96

2-CNN MNIST [24] 3.3 M ✓ 98.53 95.60 91.97 88.50

2-CNN MNIST [11] 3.3 M ✓ 98.95 – 95.96 91.40

ResNet-18 CIFAR-10 AGSpret 11 M ✗ 87.72 85.05 84.65 82.65

WRN-28-10 CIFAR-10 [15] 38 M ✓ 89.48 – 64.08 62.80

WRN-28-10 CIFAR-10 [37] 38 M ✓ 88.25 67.94 63.58 60.05

WRN-34-10 CIFAR-10 [24] 48 M ✓ 87.14 56.1 46.46 44.04

WRN-106-8 CIFAR-10 [33] 108 M ✓ 86.06 – 61.87 56.03

ResNet-18 CIFAR-100 AGSpret 11 M ✗ 62.70 61.50 59.20 59.00

WRN-28-10 CIFAR-100 [16] 38 M ✗ 59.23 – 33.17 28.42

WRN-34-12 CIFAR-100 TRADESa 67 M ✓ 56.75 37.68 29.02a 25.23

WRN-34-12 CIFAR-100 MARTa 67 M ✓ 58.27 41.24 34.12a 28.63

WRN-34-20 CIFAR-100 [9] 192 M ✓ 63.55 – 35.50b 30.20
∗M: Millions.
aRefers to the implementation of these defenses in [17] where they use a 20-step PGD.
bThey use ResNet-18 and 20-step PGD for attack evaluation.

Table 1 shows the results of our experiments and demonstrates that AGS
provides a significant improvement in robustness on the three datasets studied,
even against AutoAttack. While in some cases the drop in clean accuracy due
to AGS is more significant than with other defenses, it is still reasonable and is
compensated by the remarkable improvements in robust accuracy. This might be
alleviated with larger models with a better generalization capability; however,
we limit our study to smaller models to make efficient use of our resources and
emphasize the potential of this defense.

4.1 MNIST

This dataset consists of 28 × 28 pixel black and white images of handwritten
digits. We trained the Fnominal classifier to 99.39% accuracy and used it to build
our AGSpret defense. As Table 1 shows, AGS provides the best robustness on
MNIST against all ε = 0.3 attacks studied. It achieves a 98.6% accuracy against
FGSM, compared to the 95.6% accuracy of [24]. The improvements against PGD
are similar with 98.1% robust accuracy versus 95.96% achieved by [11]. More
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notably, AGS achieves 96.2% robust accuracy against AutoAttack while the
second best defense studied achieves only 93.96% [40]. Our architecture is the
smallest out of all the architectures studied with only 84,714 parameters while
some of the defenses studied, like [11], have over 30 times more parameters.
Nevertheless, we also study smaller architectures with a number of parameters
closer to 200,000 and 300,000 like [36]. Moreover, AGS is the only defense that
does not require adversarial training.

4.2 CIFAR-10

This dataset consists of 32×32 pixel colour images of 10 different categories: air-
planes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. We trained
the Fnominal classifier to 90.15% accuracy and built our AGSpret defense with
it. As Table 1 shows, AGS obtains the best robustness against all ε = 8

255 attacks
studied on CIFAR-10 as well. Again, our model is the only one that does not
make use of adversarial training and our architecture is the simplest out of
all the studied models with only 11 million parameters compared to 38 mil-
lion or 108 million used in [15] or [33] respectively. In this case, AGS does not
achieve the best nominal accuracy, 87.72%, and is surpassed by [15] with 89.48%
nominal accuracy. Nevertheless, AGS still outperforms the other defenses by
more than 15% points in robust accuracy against the three studied attacks. We
achieve 85.05% against FGSM compared to 67.94% in [37]. Similarly, while [15]
only achieves 64.08% and 62.8% robust accuracy against PGS and AutoAttack
respectively, AGS provides 84.65% and 82.65% robust accuracies.

4.3 CIFAR-100

This dataset is an extended version of CIFAR-10 with 100 classes instead of
10. As with MNIST and CIFAR-10, we first trained the Fnominal classifier that
we used for our AGSpret to 67.22% accuracy. The drop in accuracy produced
by AGS is more notable in this dataset with only 62.70% clean accuracy com-
pared to 63.55% achieved by [9]. However, AGS still provides the best robustness
against all ε = 8

255 attacks studied despite using a significantly smaller model
than the rest of the defenses studied (11 million versus 38 million in [16] or
192 million in [9]). AGS provides a robust accuracy of 61.5% against FGSM
compared to 41.24 % provided by [17]. AGS achieves 59.20% and 59% robust
accuracy against PGD and Autoattack respectively compared to 35.50% and
30.2% achieved by [9]. All the defenses studied except for AGS and [16] use
adversarial training, but AGS still gives the best robust performance with an
almost 2-fold improvement in robust accuracy against Auto-Attack.

5 Conclusions

In this paper, we have taken a step forward in bridging two of the most impor-
tant problems with current machine learning: vulnerability to attacks and lack
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of explainability. We propose a new kind of defense called Attribution Guided
Denoising (AGD), which uses the explanations of classification labels of a model
to guide the denoising of adversarial noise. Particularly, we introduce Attribu-
tion Guided Sharpening (AGS), which uses Integrated Gradient attributions to
guide Choi and Hall’s sharpening method to successfully remove adversarial per-
turbations in images. Our experiments on three benchmark datasets (MNIST,
CIFAR-10 and CIFAR-100) reveal state-of-the-art performance. We show that
AGS provides a better robust accuracy against AutoAttack than other popular
defenses in the literature using much smaller models and without the need to
retrain the model or use adversarial training.

5.1 Looking Ahead

While we have shown that AGS can provide better robust accuracies than most
popular defenses and have taken a significant step towards solving the robustness
problem, we do not claim to have solved it as others have done before. Evaluating
a defense against all existing attacks is not feasible so we limited our evaluation
to the two most common attacks in the adversarial literature: FGSM and PGD,
and one of the strongest attacks known to date: AutoAttack, which has the
advantage of being parameter-free and thus makes evaluations more reliable.
Despite the excellent performance of AGS against these attacks, there might be
other unexplored attacks that can beat our defense. We encourage the machine
learning community to try to craft new attacks that can beat our defense. This is
the only possible way to find weaknesses in defenses and make progress towards
more reliable machine learning.

We also want to advocate for more work at the intersection of explainability
and robustness. We believe that these two fields go hand in hand and that there
is a lot of potential at their intersection. It would be interesting to study other
possible AGD defenses with different denoising methods or other attribution
techniques and to verify the performance of AGD in other domains. We also
want to encourage others to find more ways to include explainability in building
robust defenses.
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Abstract. The goal of a classification model is to assign the correct
labels to data. In most cases, this data is not fully described by the given
set of labels. Often a rich set of meaningful concepts exist in the domain
that can describe each datapoint much more precisely. Such concepts can
also be highly useful for interpreting the model’s classifications. In this
paper we propose Variational Autoencoder-based Contrastive Explana-
tion (VAE-CE), a model that represents data with high-level concepts
and uses this representation for both classification and explanation. The
explanations are contrastive, conveying why a datapoint is assigned to
one class rather than an alternative class. An explanation is specified as a
set of transformations of the input datapoint, where each step changes a
concept towards the contrastive class. We build the model using a disen-
tangled VAE, extended with a new supervised method for disentangling
individual dimensions. An analysis on synthetic data and MNIST vali-
dates the utility of the approaches to both disentanglement and expla-
nation generation. Code is available at https://github.com/yoeripoels/
vce.

Keywords: Deep learning · Explanation · Interpretability · VAE

1 Introduction

Discriminative models for classification based on deep neural networks achieve
outstanding performance given a sufficient amount of training data. They are
highly practical as they can be trained in an end-to-end fashion to develop a
map f : X → Y given pairs of datapoints x ∈ X and labels y ∈ Y . Much of this
success is due to their hierarchical nature, which allows them to learn an effective
high-level representation of low-level input data. However, this aspect is also the
reason for one of their major limitations. Even though the models learn high-
level representations, in most cases the model’s reasoning is difficult to interpret.
The learned representations are often hard to align with existing concepts in the
domain. So, these models are commonly considered black boxes that directly
map observations to target variables. Such black-box models often lack user
trust [22], as we cannot accurately gauge how they make their predictions.

Many approaches have been proposed that focus on developing interpreta-
tions of models’ decisions and internal representations. When the data consists
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Bouadi et al. (Eds.): IDA 2022, LNCS 13205, pp. 237–250, 2022.
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Fig. 1. An explanation where lines are concepts, and combinations thereof define
classes. The query (left) and exemplar (right) differ in some class-relevant concepts
in C. This difference is conveyed by transforming in domain C, one concept at a time.

of natural images, some of these interpretations rely on the human visual sys-
tem, by creating visualizations of the model’s internal representation of the data
(e.g. saliency maps [21,34] or component visualizations [25,30]). In general, such
approaches are limited to certain types of data and to the qualitative interpre-
tation by domain experts. In this paper, we propose an approach that includes
interpretability as an integral part of the model. Specifically, our model consists
of maps fc : X → C and fy : C → Y , where C indicates the domain of high-level
human-understandable concepts. Map fc develops an encoding of the datapoint
into domain C that we then use to explain the model’s decisions, whereas map
fy implements the downstream task of assigning a class to the datapoint.

The explanations that we produce are contrastive. Contrastive explanation
follows the human tendency of explaining an event by (implicitly) comparing it to
an alternative event that did not take place [17,23]. In our case, they convey why
a datapoint belongs to one class rather than some other class, by highlighting the
differences as a sequence of transformations of the datapoint. When considering
image data we obtain visual explanations; an example is depicted in Fig. 1.

To create suitable explanations we need to be able to represent the data in
an interpretable concept space and be able to generate interpretable transforma-
tions against a contrastive target. For these purposes we use a generative latent
variable model, specifically a Variational Autoencoder (VAE) [15,31]. We employ
existing methods to disentangle class-relevant from irrelevant information [3,40],
and expand this model with a new method for disentangling individual dimen-
sions. To develop the contrastive explanation, we identify a target datapoint that
is associated with the target class, referred to as the exemplar. We then infer
a sequence of transformations in concept domain C that interpolates between
the query datapoint and the exemplar. The exemplar is selected such that it is
representative of its class, and such that the sequence is of minimum length.

We denote our approach as VAE-based Contrastive Explanation (VAE-CE).
To be able to validate VAE-CE, we define a method for quantitatively evaluating
explanations, using data with a known generating process. We compare VAE-CE
to similar VAE-based methods and evaluate the individual components of our
method. The two main contributions of this paper can be summarized as follows:

– We propose a method for disentangling a VAE’s latent dimensions, which
is supervised by data pairs (not) differing in a single semantic con-
cept (Sect. 3.2).
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– We propose a method for generating explanations of a datapoints’ class assign-
ment. This method considers training a VAE to represent class concepts in
individual dimensions in a subpart of the latent space, and using this space
to generate interpolations depicting the class-relevant concepts (Sect. 3).

2 Related Work

Image-classification explanations come in many shapes. Saliency-based
methods explain classifications by highlighting the contribution of pixels w.r.t.
either the decision itself [21,34] or to an alternative classification [27,29] (i.e. con-
trastive explanations). To evaluate pixel contributions in a black-box manner,
one can perturb the input images, e.g. for classification [32] or for contrasting
classes [6].

The use of examples that flip a class decision, counterfactuals, can help
explain a model’s classification boundaries [39]. Another method for convey-
ing these boundaries considers using a query image and an alternative image,
and showing which pieces must be swapped to flip the decision [9]. The use of
deep generative models, such as Generative Adversarial Networks (GANs) [8]
and VAEs [15,31], has been proposed to explain classification boundaries in a
high-level space. Such methods, e.g. [18,26,33,36], involve various approaches to
training a generative model and interpolating in its latent space to convey the
class boundaries. Alternatively, one can create boundary-crossing translations
using datapoints [28].

To interpret decisions one can also work with high-level concepts, e.g. by
evaluating learned components [25,30] or by identifying associations between
concepts and classifications [14]. More integrated into the model, one can also
first detect concepts and use them to classify in an interpretable fashion [1,41].
Other examples of self-explaining methods consider generating textual explana-
tions of classifications [11] and matching image parts to other samples to assign
a class [4].

Disentanglement in VAEs can be defined as the notion that single latent
dimensions are sensitive to changes in single generative factors while being invari-
ant to changes in others [12,19]. It is also used in the context of separating
information related to a specific factor from unrelated information [2,40].

Unsupervised approaches generally add regularization with some extra
assumptions about the latent space, e.g. [5,12]. Similar to our approach to disen-
tanglement (Sect. 3.2), [42] propose learning a disentangled representation using
pairs differing in a single dimension, maximizing mutual information. Regarding
unsupervised disentanglement, [19] raised the question whether we can expect
well-disentangled representations, showing that strong inductive biases or super-
vision are a necessity for learning and validating such representations.

Using supervision, one can group datapoints according to a common fea-
ture and enforce a part of the latent space to share a representation for this
group [2,13]. A weakly-supervised variant of this idea considers heuristically
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finding common dimensions and sharing them [20]. Alternatively, one can use
labels to encourage a disentangled latent space, e.g. by optimizing subspaces to
contain or exclude information about a label using classification objectives [3,40].

3 Method: VAE-CE

3.1 Learning a Data Representation for Class Explanation

To represent the data in a high-level space, we use a VAE [15,31]. A VAE aims
to approximate a dataset’s distribution under the assumption that its samples
x are generated according to latent variable z with known prior p(z); it aims
to model p(x, z) = p(x|z)p(z). This relation is approximated using an encoder
qφ(z|x) and decoder pθ(x|z) distribution, parameterized by neural networks, and
optimized using a lower bound on the likelihood of the data, the ELBO. The
reparametrization trick [15] is used to (back)propagate through latent variables.

Since not all information in the data, and consequently in latent variable z,
is necessarily class related, we wish to disentangle class-relevant from irrelevant
information. The VAE’s ELBO objective is extended with classification terms,
in line with works such as [3,40]. We split z into subspaces zy and zx, where the
former aims to contain class-relevant information and the latter should contain
the remaining information. We use a separate encoder for inferring each latent
subspace; the zy encoder, qφy

(zy|x), serves as the concept encoder, fc.
To achieve this split we introduce categorical distributions qψy

(y|zy) and
qψx

(y|zx), parameterized by neural networks, and referred to as the latent spaces’
classifiers. The former, qψy

(y|zy), is also used to infer class predictions, serving as
fy. For training, we simultaneously optimize both classifiers and both encoders
using sample-label pairs (x, y). However, since zx should contain little informa-
tion about label y, we reverse the loss’ gradients for zx’s encoder, qφx

(zx|x),
through a Gradient Reversal Layer (GRL) [7]. The full loss terms (including the
ELBO), where the subscript denotes the optimized parameters, are as follows:

Lθ,φy,φx,ψy
(x, y) = −Eqφy (zy|x),qφx (zx|x)[log pθ(x|zy, zx)] (1)

+ βyKL(qφy
(zy|x)||pθ(z)) + βxKL(qφx

(zx|x)||pθ(z)) (2)
− αEqφy (zy|x)[log(qψy

(y|zy))] (3)

+ αEqφx (zx|x)[log(qψx
(y|zx))], (4)

Lψx
(x, y) = −Eqφx (zx|x)[log(qψx

(y|zx))], (5)

with hyperparameters βy, βx and α. All expectations are approximated with
single-sample Monte Carlo estimation. We assume pθ(x|zy, zx) is a factorized
Gaussian with fixed variance, letting us approximate (1) as squared error. Prior
pθ(z) is set to a standard factorized Gaussian, which lets us compute (2) ana-
lytically. (3–5) optimize the log-likelihood of the categorical distributions using
categorical cross-entropy. Note that (4) is a negation of (5): Both are computed
in a single pass using a GRL. Both losses update different components and are
minimized simultaneously. Figure 2a shows an overview of the model.
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3.2 Pair-Based Dimension Conditioning

To produce explanations that convey differences in class concepts, we must
manipulate concepts individually. To exercise this control, we aim to learn a
representation where individual zy-dimensions control individual concepts. We
introduce a new disentanglement method based on two assumptions: (1) a sig-
nificant change in a latent dimension should correspond to changing a single
concept and (2) we can train a model to evaluate such changes. This method
acts as additional regularization and is summed to the previously described loss
term.

qφy (zy |x)

qφx (zx|x)
x

zy

zx

z pθ(x|z) x̃

qψy (y|zy) ỹ

qψx (y|zx) ỹ

GRL

(a) The class-disentangled VAE: x is
encoded into zx and zy, which to-
gether reconstruct x̃. Disentanglement
is encouraged by auxiliary classifiers.

xa qφy
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⎡
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(zy|x)

qφx(zx|x) zx

pθ(x|z)

pθ(x|z)

x̃pa

x̃pb

CD

D

D

good change

real

real

zpa

zpb

(b) Individual dimensions are disentangled in
an amortized fashion: Randomly constructed
latent variables differing in one dimension are
optimized to exhibit a single concept change.

1change

Fig. 2. The VAE from the viewpoint of class-based and concept-based disentanglement.

Two auxiliary models are used to aid this procedure: A ‘Change Discrimi-
nator’ (CD) and a regular ‘Discriminator’ (D), both predicting a value in the
range [0, 1]. CD is trained beforehand, and infers whether a pair of datapoints
exhibits a desirable change. We train CD as a binary classifier with pairs that
either indicate a good change (a single concept change) or a bad change (no or
multiple concept changes), and use it to optimize latent dimensions to exhibit
such changes. D is trained to distinguish between generated and real datapoints,
as done in a GAN [8]. It is used to optimize the quality of the samples, avoiding
a degenerate solution where non-realistic changes are produced that trick CD
(i.e. an adversarial attack [37]). Intuitively, the procedure works by having the
VAE decode pairs differing in a single latent dimension and optimizing the model
using a ‘critic’, CD, to make this change represent a single concept change. A
visualization of the procedure is depicted in Fig. 2b. One step works as follows:

1. Encode two arbitrary datapoints xa and xb to their latent representations in
zy-space: zya

and zyb
. For the zx-space, only encode datapoint xb to zx.

2. Construct two latent variables from zya
and zyb

that share all but one dimen-
sion. These variables are denoted as zpa

and zpb
. Each dimension is picked

from either zya
or zyb

(equally likely), and all but one dimension are shared.
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3. Generate x̃pa
and x̃pb

by decoding latent representations (zpa
, zx) and

(zpb
, zx).

4. Optimize the encoders and the decoder such that CD predicts a high-quality
change between x̃pa

and x̃pb
and D predicts that the samples are real.

The corresponding loss term is as follows:

Lθ,φy,φx
(x̃pa

, x̃pb
) = −αr[log(D(x̃pa

)) + log(D(x̃pb
))] (6)

+ αpny
|zpa

− zpb
|

|zya
− zyb

| · − log(CD(x̃pa
, x̃pb

)), (7)

with hyperparameters αr and αp, and ny denoting the number of dimensions in
zy. The first component of (7) ensures we do not penalize ‘bad’ changes when
the differing dimension is insignificant. D is trained as a binary classifier (as in a
GAN), using generated samples as one class and training samples as the other.

3.3 Explanation Generation

Explanations are created by identifying an exemplar, and translating from the
query’s class concepts to those of the exemplar. The exemplar is chosen from
an alternative, e.g. the second most likely, class. When creating explanations we
use mean values, rather than samples, of latent variable z; we substitute z for μ
in this subsection. We refer to the query and exemplar using subscripts a and b.

Exemplar identification rests on two principles: (1) how representative a dat-
apoint is of its class and (2) how similar it is to the datapoint we contrast it
with. To capture the former we only evaluate datapoints whose class probabil-
ity is above a given threshold. For the latter, we select the datapoint with the
minimum squared difference between the class-specific embeddings μya

and μyb
.

Explanation generation works by transforming the class-relevant embedding
from the query (μya

) to the exemplar (μyb
) and showcasing the intermediate

steps; the class-irrelevant embedding (μxa
) is not changed. To highlight one

concept per step we change dimension values at once, and allow for multiple
switches per step. We allow for the latter as the query and exemplar could share
concepts: Switching only the corresponding dimension results in a meaningless
step. We aim to find the shortest path of this structure, in line with the Min-
imum Description Length principle [10]. This path is further optimized w.r.t.
two aspects: (1) each step should depict a single concept change and (2) each
state should represent a realistic sample. These properties are optimized using
CD and D.

Not all interpolation paths are explicitly computed, as the quantity of paths
changing (groups of) dimensions grows extremely fast.1 Rather, we build a graph
denoting all paths, where each edge denotes the cost of adding this state to the
interpolation. For the change of state x̃i to x̃j , the cost is computed as follows:

wij = [α
(
1 − D(x̃j)

)
+ β

(
1 − CD(x̃i, x̃j)

)
] · kγ , (8)

1 Equal to the weak orderings of a set: For n dimensions, the nth Fubini number [24].
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where k denotes the number of changed dimensions, and α, β, and γ are hyper-
parameters. While we can find the shortest path in linear time w.r.t. graph size
(as the graph is directed and acyclic) [38], the graph itself grows quickly: For n
dimensions to change, the explanation graph has 2n nodes and 3n − 2n edges.

4 Experiments

4.1 Datasets

Synthetic data, used for a controlled evaluation, is structured as follows. The
data’s underlying concepts are lines (defined by their position and orientation),
of which combinations define classes. To then create datapoints, non-trivial noise
is added, which seeks to mimic the noise of handwritten shapes (e.g. MNIST).
Change pairs (for CD) are created by taking a class configuration and hiding
some line(s) in both images in the pair, such that only 1 (positive) or 0/2+ lines
differ (negative). An overview for the synthetic data is provided in Fig. 3.
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Fig. 3. Synthetic data generation. Using lines as concepts 1 we form ten classes 2 .

Noise is added to create datapoints 3 . Change pairs are formed using shapes differing

in a single line (positive, top row) or in no/multiple lines (negative, bottom row) 4 .

MNIST [16], used for evaluating a more realistic setting (i.e. with noisy super-
vision), is augmented as follows. Change pairs are created under the assumption
that the underlying concepts are continuous lines. Digits are reduced to individ-
ual lines and pixels are clustered according to these lines. Then, pairs are created
that exhibit 1 (positive) or 0/2+ (negative) line changes. Examples of MNIST
samples and change pairs are depicted in Fig. 4. As creating a full description of
each digit is a notably more challenging task than augmenting images to create
change pairs, we do not consider methods requiring such supervision.

( ), ( ), ( ), ( ),

+−
1 2

Fig. 4. MNIST samples 1 and positive (left)/negative (right) change pairs 2 .
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4.2 Considered Evaluations

Explanation Alignment Cost (eac). To the best of our knowledge there is no
method for quantitatively evaluating explanations of our defined structure. As
such, we introduce the explanation alignment cost (eac). The eac quantifies the
quality of a contrastive explanation based on a pair of datapoints (a, b) as input.
The explanation consists of an interpolation starting at datapoint a, gradually
transitioning to the class-relevant concepts of b. In each step a single concept
should change. An explanation for pair (a, b) is evaluated according to the cost of
aligning it to a ground-truth explanation. We define a ground-truth explanation
as a minimum length sequence starting at a, with each subsequent state changing
only a single concept from a to b. The last state depicts a datapoint with all
class-relevant concepts from b and the remaining information from a.

The alignments we identify must map every state in the candidate expla-
nation to at least one state in the ground-truth explanation, and vice versa.
Additionally, we constrain this mapping such that both aligned sequences are
increasing. Such an alignment can be computed using Dynamic Time Warp-
ing [35] in O(nm) time (for two sequences of length n and m). We compute the
cost of each individual state-to-state mapping as the per-pixel squared error and
a small constant (ε = .001, for discouraging repetitions in the alignment). We
compute this cost for all possible ground-truth explanations (n! orders, given
n concepts to change) and take the minimum alignment cost as the eac. Intu-
itively, the eac measures the quality of individual steps (through the state-to-
state error), whether the correct concepts are changed each step (by aligning to
ground-truth explanations), and whether the explanation is of minimum length
(as redundant steps only increase the alignment cost).

Representation Quality Metrics. Additionally, we explore the effects of the
conditioning methods on the learned representations. To quantify concept dis-
entanglement, the mutual information gap (mig) [5] is used. We estimate the
mig for the class concepts in zy following the same procedure as [19]. The
ELBO components–the reconstruction error and KL divergence–are also eval-
uated, denoted as rec, kly, and klx. The classification accuracy, using learned
distribution qψy

(y|zy), is denoted as acc. Finally, we evaluate the disentangle-
ment of the latent subspaces w.r.t. class labels, by training logistic regression
classifiers on the latent space embeddings. Their accuracies are denoted as l-
accy and l-accx.

Other Evaluations. We evaluate whether the exemplar identification process
selects variants with more common concepts as follows. Class 9 has 2 variants:
Both variants have the same number of concepts in common with classes 1–6, but
classes 7 and 8 have more in common with one variant. We query for exemplars
and compare the probability of selecting the more common variant using classes
7 and 8 compared to the baseline probability. Also, we visualize explanations
using single datapoints to explain, and using input pairs to contrast.
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4.3 Comparison Overview

Concept-Disentanglement Approaches. DVAE denotes the baseline
(Sect. 3.1). LVAE denotes an extension of label-based disentanglement (Sect. 3.1)
for individual dimensions: For each zy-dimension a label is provided indicating
whether a concept is present, which is used with two auxiliary classifiers (per
dimensions) to disentangle the concepts. GVAE denotes an adaption of [13] using
pairs of datapoints with (at least) one specified matching concept. The inferred
values for the zy-dimension corresponding to this concept are averaged out, forc-
ing this information to be shared through optimizing the ELBO. To evaluate the
effect of the supervision alone, we use an adaptation of ADA-GVAE [20] that
uses positive change pairs as supervision. While minimizing the ELBO on these
pairs we average all but one dimension in zy, which is selected as the dimen-
sion with the highest KL divergence (between the pair). VAE-CE denotes our
method (Sect. 3).

Model Implementations. All methods share the same encoder and decoder
architecture, with 8 latent dimensions for both zx and zy. Prior distribution
pθ(z) is set to a standard factorized Gaussian, N (0, I). Other hyperparameters
are optimized using the eac on synthetic data. As this cannot be evaluated for
MNIST we use the same hyperparameters as chosen for the synthetic data.

Interpolation Methods. We denote our method (Sect. 3.3) as graph. For com-
parison, we consider two naive interpolation approaches. First, a smooth inter-
polation (denoted as sm), where we linearly interpolate between the query and
exemplar’s zy-representation, changing all dimensions at once (using five states).
Second, a dimension-wise interpolation (denoted as dim), where we change zy-
dimensions individually (in random order) if the absolute difference between the
values is greater than 1. The leftover dimensions are all changed in the first step.

4.4 Results

We train four models for each configuration and report all results as mean ±
standard deviation. For each metric, we mark the best mean value(s) in bold.

Synthetic Data. For the explanation quality, the eac results are provided in
Fig. 6a, and explanations are shown in Figs. 6c and 5a. VAE-CE provides the best
results, having the lowest eac and explanations closely resembling ground-truth
explanations. As an ablation study we also used the disentanglement method
and the explanation method in isolation (i.e. VAE-CE with other interpolations
and graph interpolations with other models, see Fig. 6a). While the use of either
component shows performance improvements, the scores are dominated by the
combination thereof. The representation-quality metrics are provided in Table 1
(top). We can observe that the mig seems strongly correlated with the explana-
tion quality, whereas other metrics vary, with the baseline performing the best
classification-wise. Evidently, extra regularization comes at a cost. For the exem-
plar selection experiment, the baseline probability of picking the selected variant
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was .790 ± .018, whereas using classes 7 and 8 led to a probability of .938 ± .044,
hinting that a variant with more common factors is more likely to be chosen.

MNIST. The explanation quality evaluations are depicted in Figs. 6b and 5b.
Individual line changes are apparent in VAE-CE’s explanations but they are nois-
ier than before, likely because of the more complex lines and noisy supervision.
However, the explanation steps still resemble line changes, which is less obvious
for other methods’ explanations. The representation quality metrics are provided
in Table 1 (bottom). The results paint a similar picture as before, with no method
dominating all metrics. We note that DVAE’s accuracy is substantially higher
than that of other methods, showing the cost of added regularization. As there
are no ground-truth concepts available, the eac and mig are not evaluated.

(a) For synthetic samples. (b) For MNIST samples.

Fig. 5. Explanations generated by VAE-CE. The query datapoints are outlined in red,
followed by an explanation transforming the datapoint to the second most likely class.
(Color figure online)

(a) eac on synthetic data. Note that
graph relies on VAE-CE components.

input

DVAE

ADA-GVAE

VAE-CE

(b) MNIST explanations.

DVAE

LVAE

GVAE

ADA-GVAE

VAE-CE

(c) Synthetic data explanations. For each
explanation the top row shows the closest
ground-truth explanation, whereas the bot-
tom row depicts the created interpolation.

Fig. 6. Explanation quality comparisons, using query-exemplar pairs to explain. For
the visual comparisons, VAE-CE generates graph-based interpolations, whereas other
models use the naive interpolation method (sm or dim) with the lowest eac.

Discussion and Limitations. The eac results and qualitative comparisons
indicate that VAE-CE provides benefits over the compared methods w.r.t. expla-
nation quality. All extra regularization comes at a cost however, with each
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method having lower classification accuracy than the baseline. The remaining
representation quality results were mixed, indicating trade-offs between the dif-
ferent regularization approaches in this regard.

We note that the considered datasets align well with our assumptions of the
data, i.e. discrete concepts that are shared between classes. This assumption
does not necessarily translate to complicated datasets, and extending VAE-CE
to handle alternative supervision is non-trivial, highlighting a limitation of our
method. Additionally, we compare only to VAE-based explanation methods and
consider a limited set of metrics; further evaluations are desirable to strengthen
the empirical results.

Table 1. Representation quality metrics for synthetic data (top) and MNIST (bottom).

Model mig ↑ rec ↓ kly ↓ klx ↓ acc ↑ l-accy ↑ l-accx ↓
DVAE .121± .03 11.9± .28 4.4± .16 7.54± .22 .973± .001 .975± .001 .17± .02

LVAE .423± .05 13.5± 1.1 11.0± 5.4 7.05± .22 .954± .008 .962± .002 .208± .06

GVAE .148± .07 10.2± .19 7.07± .57 5.74± .76 .962± .001 .964± .001 .202± .02

ADA-GVAE .34± .07 10.7± .34 8.23± 1.2 4.94± 1.1 .959± .001 .961± .001 .18± .04

VAE-CE .49± .03 14.5± .6 7.81± .14 7.94± .46 .963± .001 .966± .001 .182± .01

DVAE 16.0± .35 4.34± .31 8.04± .25 .991± .001 .994± .001 .182± .01

ADA-GVAE 13.6± .19 10.1± 1.1 3.6± .90 .965± .002 .97± .002 .20± .02

VAE-CE 21.7± 1.3 7.12± .29 6.65± .35 .98± .002 .983± .002 .182± .01

5 Conclusions

In this paper, we proposed an interpretability-focused classification model that
creates explanations in a concept domain C. This method extends a class-
disentangled VAE with a new supervised regularization method for disentan-
gling individual concepts. Using this model we generate contrastive explanations,
highlighting class concepts using a sequence of transformations. An introductory
evaluation shows that the components of our method provide benefits over exist-
ing approaches. Ultimately, we believe that the proposed method allows us to
learn a more understandable and trustworthy classification model. Topics still
of interest consider exploring more complex data, more efficient approaches to
explanation generation, and CD implementations using less supervision.
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Abstract. Uplift Modeling measures the impact of an action (market-
ing, medical treatment) on a person’s behavior. This allows the selection
of the subgroup of persons for which the effect of the action will be most
noteworthy. Uplift estimation is based on groups of people who have
received different treatments. These groups are assumed to be equiva-
lent. However, in practice, we observe biases between these groups. We
propose in this paper a protocol to evaluate and study the impact of the
Non-Random Assignment bias (NRA) on the performance of the main
uplift methods. Then we present a weighting method to reduce the effect
of the NRA bias. Experimental results show that our bias reduction
method significantly improves the performance of uplift models under
NRA bias.

Keywords: Uplift modeling · Machine learning · Non-Random
Assignment Bias · Treatment effect estimation · Causal inference

1 Introduction

Uplift modeling is a predictive modeling technique that models directly the incre-
mental impact of treatment, such as a marketing campaign or a drug, on an indi-
vidual’s behavior. The applications are multiple: customer relationship manage-
ment, personalized medicine, advertising, political elections. Uplift models help
identify groups of people likely to respond positively to treatment only because
they received one. A major difficulty in uplift modeling is that data are only
partially known: it is impossible to know for an individual whether the chosen
treatment is optimal because their responses to alternative treatments cannot be
observed. Several works address challenges related to the uplift modeling with
single treatment [8] and multiple treatments [24]. The evaluation of uplift mod-
els is studied in [18]. State-of-art uplift modeling approaches assume that the
groups of individuals are homogeneous. This means that uplift should be mod-
eled on experimental data, i.e., data whose generation is controlled and for which
there is no bias between different treatment groups. However, in practice, uplift
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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modeling is used with observational data where bias exists. For example, an
unanswered commercial call introduces a bias between treated and not treated
individuals. Similarly, it is assumed that there is no bias between data used to
learn an uplift model and its deployment whereas such a bias may exist. Those
biases jeopardize the practical use of uplift modeling methods [15].

This paper aims to study the Non-Random Assignment (NRA) bias, a very
common bias in the context of uplift modeling. It occurs when the treatment
assignment is dependent on the characteristics of individuals. We address the
following research questions: what is the impact of the NRA bias on the main
uplift modeling approaches? How can the bias effect be reduced? To answer the
first question, we design an experimental protocol that evaluates the impact of
the NRA bias on state-of-art uplift methods. Our study allows us to identify
several behavioral aspects of uplift methods. Regarding the second question,
we propose a weighting method to reduce the effect of the NRA bias on the
performance of uplift models. Experimental results show that our bias reduction
method significantly improves the performance of uplift models under NRA bias.
To the best of our knowledge, this is the first work that focuses on the bias effect
in uplift modeling. The remainder of this paper is organized as follows. Section 2
introduces uplift modeling definition and methods, Sect. 3 describes the problem
setting and our experimental protocol for evaluating the impact of NRA bias.
We present our bias reduction method in Sect. 4 then conclude in Sect. 5.

2 Uplift Modeling and Evaluation

2.1 Definition

Uplift is a notion introduced by Radcliffe and Surry [17] and defined in Rubin’s
causal inference models [20] as the Individual Treatment effect (ITE). We now
outline the notion of uplift and its modeling.

Let X be a group of N individuals indexed by i : 1 . . . N where each indi-
vidual is described by a set of variables X. Xi denotes the set of values of X

for the individual i. Let T be a variable indicating whether or not an individual
has received a treatment. Uplift modeling is based on two groups: the individ-
uals having received a treatment (denoted T = 1) and those without treatment
(denoted T = 0). Let Y be the outcome variable (for instance, the purchase or
not of a product). We note Yi(T = 1) the outcome of an individual i when he
received a treatment and Yi(T = 0) his outcome without treatment. The uplift
of an individual i, denoted by τi, is defined as: τi = Yi(T = 1) − Yi(T = 0).

In practice, we will never observe both Yi(T = 1) and Yi(T = 0) for a
same individual and thus τi cannot be calculated. However, uplift can be empir-
ically estimated by considering two groups: a treatment group (individual with
a treatment) and a control group (without treatment). The estimated uplift of
an individual i denoted by τ̂i is then computed by using the CATE (Conditional
Average Treatment Effect) [20]:

CATE : τ̂i = E[Yi(T = 1)|Xi] − E[Yi(T = 0)|Xi] (1)
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As the real value of τi cannot be observed, it is impossible to directly use
machine learning algorithms such as regression to infer a model to predict τi.
The next section describes how uplift is modeled in the literature.

2.2 Uplift Modeling

The uplift modeling literature and a branch of the causal inference literature
have recently approached each other [6]. We sketch below the main methods in
this field of research.

Meta-Learners. Meta-Learners take advantage of usual machine learning algo-
rithms to estimate the CATE. The most classical and intuitive approach is
the T-Learner (also known as the Two-Model approach in the uplift liter-
ature, which is the name that we use in this paper). The T-Learner is made
of two independent predictive models, one on the treatment group to estimate
P (Y |X,T = 1) and another on the control group to estimate P (Y |X,T = 0).
The estimated uplift of an individual i is the difference between those values
for the given individual, i.e. τ̂i = P (Y = 1|Xi, T = 1) − P (Y = 1|Xi, T = 0).
The advantages of this approach are the simplicity and the possibility to use any
machine learning algorithm but it has also known limitations [18]. The causal
inference community defines other methods such as the S-Learner which includes
the variable T in the features with a standard regression, the X-Learner which
performs a two-step regression before the estimation of the CATE to deal with
the unbalanced size of treatment groups [7], the DR-Learner [9] which combines
a two-model approach and the use of the Inverse Propensity Weighting [14].

Class-Transformation Approach. The principle of this approach [8] is to
map the uplift modeling problem to a usual supervised learning problem. The
outcome variable Y is transformed into a variable Z as illustrated in Eq. 2. Then
a machine learning algorithm is used to learn a model and to predict P (Z|X).
The estimated uplift of an individual i is τ̂i = 2 × P (Z = 1|Xi) − 1

Z =

⎧
⎪⎨

⎪⎩

1, if T = 1 and Y = 1
1, if T = 0 and Y = 0
0, otherwise.

(2)

Several studies [3,8] show that this approach has a better performance than
the two-model approach.

Direct-Approaches. These methods modify supervised learning algorithms to
suit them to fit the uplift modeling problem. Then uplift is directly estimated.
Examples include methods based on decision trees [22,24], k nearest neigh-
bors [5], logistic regression [12] or reinforcement learning [11].
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2.3 Uplift Evaluation

Real values of uplift being not observed, supervised machine learning techniques
cannot be used and therefore performance measures of the supervised setting are
inoperative. That is why uplift is evaluated through the ranking of the individuals
according to their estimated uplift value. The intuition is that a good uplift
model estimates higher uplift values to individuals in the treatment group with
positive outcomes than those with negative outcomes and vice versa for the
control group. The qini measure (also known as Area Under Uplift Curve [2,16])
is based on this principle to evaluate uplift methods. It is a variant of the Gini
coefficient. Qini values are in [−1, 1], the higher the value, the larger the impact
of the predicted optimal treatment.

3 Evaluation of Uplift with Biased Data

This section presents the NRA bias and the experimental protocol that we
designed to assess performance of uplift methods under this bias.

3.1 Problem Setting

State-of-art uplift methods assume that data are unbiased and that the treat-
ment group comes from the same distribution as the control group, which is not
true for real data. In practice, there are differences between treatment and control
groups, also known as Non-Random Assignment bias, a prevalent type of bias
in uplift modeling. Formally, this bias occurs when P (T = 1|X) �= P (T = 0|X)
(which also means P (X|T = 1) �= P (X|T = 0)). Usually it is easier to collect
control data and the treatment group is the most biased because it is more chal-
lenging to apply a treatment to individuals and collect the corresponding data
due to ethical, political or economic constraints.

This bias problem has been studied in the literature on clinical studies
where the goal is to estimate the “Average Treatment Effect” (ATE) defined
as E[Yi(T = 1) − Yi(T = 0)]. In order to estimate it, the “Propensity Score
Matching” (PSM) [21] is used to extract balanced treatment groups on which
ATE is estimated. Similarly, in the uplift literature, since uplift methods assume
the homogeneity between treatment groups, PSM is used to extract an unbiased
sample from a biased dataset. Uplift modeling is applied subsequently as carried
in [15]. However, this procedure clearly suffers from a loss of data.

3.2 Designing of the Experimental Protocol

This section describes the experimental protocol that we designed to evaluate the
behavior of uplift methods under the NRA bias. The principle, to create a NRA
bias and observe its impact, is to introduce imbalances in the data regarding
the initial distribution of the variables. We do this by modifying proportions
of individuals in a non-random way (for example, decreasing the proportion of
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specific socio-professional categories or ages till it disappears in the data). Such
a protocol must satisfy several conditions to correctly evaluate the impact of
NRA in order to avoid introducing a bias due to the protocol itself. (1) The
chosen variables to introduce bias have to be correlated with the outcome Y or
Y given the treatment T , otherwise the bias will not affect the uplift modeling.
(2) In contrast, the choice of the values of the variables, according to which
the proportions of individuals vary, is random. If not, the construction of the
populations E1 and E2 (which will be explained below) may be biased. (3) The
bias must be tunable in order to change its rate and quantify its impact on the
uplift methods. (4) The created bias is only in the treatment group in order to
imitate the natural phenomena as previously explained in Sect. 3.1. (5) The total
size of each of the biased learning samples is always the same in order to avoid
any variation in the performance due to different learning data sizes.

More precisely, as shown in Fig. 1, two populations E1 and E2 are created.
This is done by choosing a set of variables V and dividing its values into two
groups, C1 and C2, such that the number of individuals defined by the values of
C1 is equivalent to the number of individuals defined by C2. Let E1 (resp. E2) be
the population whose variables correspond to C1 (resp. C2) and whose sizes are
N1 and N2 respectively. We use a 10-fold cross-validation. In the first training
sample, E1 and E2 have an equal size (i.e. N1 = N2), it is considered unbiased
and gives a reference value of the qini. The NRA bias is gradually introduced
in the treatment group by increasing the size of E1 and decreasing the size of
E2 while preserving the total size of the treatment group. We identify the bias
rate of a sample by the variable b where b = (N1 − N2) × 100/N . b goes from
b = 0 in the unbiased situation to b = 100 the most biased situation according
to the NRA bias. An uplift model is then learned on each biased sample defined
by b. All models are then tested on the same test sample and evaluated using
the qini. The evolution of the qini according to b allows studying the behavior
of an uplift method towards the NRA bias.

3.3 Experiments

We apply our protocol to several real and synthetic datasets using the main
uplift approaches1.

Datasets. We use four datasets from politics and marketing fields as well as
four synthetic datasets (cf. Table 1). For all the datasets, the outcome is binary.

1. Criteo [3]: a usual marketing dataset for uplift modeling.
2. Hillstrom2: a classical dataset for uplift modeling. It is made up of two treat-

ment groups and a control group. We only use the group of people who
received an advertising campaign via mail for women’s products as the treat-
ment group.

1 For a reproducible purpose, codes and experiment results are available in the sup-
plementary material [19].

2 http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.
html/.

http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html/
http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html/
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Fig. 1. Biased samples generation procedure: (1) Variable(s) V is chosen to create E1
and E2. (2) Creating training and test sets with 10-fold cross validation. (3) Random
sampling of treatment and control groups. (4) The sizes of the treatment and control
groups are always the same throughout the biasing process.

3. Gerber [4]: a policy-relevant dataset used to study the effect of social pressure
on voter turnout.

4. Retail Hero3: a dataset of the X5 sales group, the treatment is the action to
send SMS to encourage consumers to increase their purchases.

5. Megafon4: a synthetic dataset created for uplift modeling. It is generated by
telecom companies in order to reproduce the situations encountered by these
companies.

6. Zenodo5: a synthetic dataset containing trigonometric patterns specifically
designed for uplift modeling. We used a subset of 20,000 rows of data (data
identified by the variable trial id = 1 and trial id = 2).

7. Synth1 and Synth2: two synthetic datasets that we have built as a 2D grid
of size 10 × 10 in which each cell corresponds to a particular uplift drawn at
random. Synth1 is a dataset with a high ATE value and Synth2 has a low
response rate.

Uplift Methods. We test 13 uplift methods: two-model approach (2M); class-
transformation approach (CT), each with Xgboost and logistic regression (LR);
DR-Learner (DR); X-Learner and S-Learner, each with Xgboost and linear
regression (LinR). Direct-approaches based on decision trees are tested as well:
KL, ED [22] and CTS [24].
3 https://ods.ai/competitions/x5-retailhero-uplift-modeling/data.
4 https://ods.ai/tracks/df21-megafon/competitions/megafon-df21-comp/data.
5 https://zenodo.org/record/3653141#.YUCYEufgoW8.

https://ods.ai/competitions/x5-retailhero-uplift-modeling/data
https://ods.ai/tracks/df21-megafon/competitions/megafon-df21-comp/data
https://zenodo.org/record/3653141#.YUCYEufgoW8


Evaluation of Uplift Models with Non-Random Assignment Bias 257

Table 1. Dataset characteristics. - Datasets have a balanced size of treatment and
control groups. - Independence between treatment and control groups is measured
using the C2ST test [13]. A p-value smaller than 0.05 means the null hypothesis is
rejected (i.e. treatment independence). - *Value after re-balancing the dataset using
PSM [21]

Datasets #Rows #Variables Response
ratio

ATE Treatment
independence

Criteo 50000 13 0.16 0.08 0.1

Hillstrom 42693 8 0.129 0.04 0.33

Gerber 76419 10 0.34 0.06 0.43

RetailHero 200039 11 0.619 0.033 0.7

Megafon 600000 36 0.2 0.04 0.4375*

Synthetic Zenodo 20000 16 0.3 0.109 0.22

Synth1 40000 2 0.32 0.241 0.197

Synth2 40000 2 0.007 0.00125 0.33

Implementation Details. For each dataset (except Synth1 and Synth2) and
for each uplift method, the experimental protocol is applied twice with different
contents of V : once with the variable the most correlated with Y and once with
the variable the most correlated with Y given the treatment group (T = 1). For
Synth1 and Synth2, V contains the two variables of these datasets. Moreover,
given a set V , the experiment is repeated twice in order to provide different
splittings of C1 and C2.

3.4 Results

Qini Variability According to b. Figure 2 illustrates the results (due to space
constraints, it is not possible to give all the results). We observe that the NRA
bias strongly affects the performance of uplift models6 (the higher the bias rate,
the more significant the decrease of the qini). To provide a global view of the
results, we compute for each dataset and each uplift method the Average Qini,
i.e., the average of qini values according to the bias rates going from b = 0 to
b = 100 (cf. Table 2).

Overall Ranking. To better compare the methods according to their resistance
to NRA bias, Fig. 3 shows the average rank obtained by each method based on
the Average Qini (all divisions of V are taken into account).

The results of these experiments provide the following messages: (i) the most
resistant models to the NRA bias are the ED and X-Learner LinR, DR LinR,
two-model approach with the logistic regression: the qini strongly decays only

6 When comparison with state of the art is possible, the achieved qini values without
bias (b = 0) are those usually found in the literature [3].
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Fig. 2. Qini values of uplift methods according to NRA bias rates in the Criteo dataset
with the ‘f8’ variable (top left), Hillstrom dataset with the ‘mens’ variable (top right),
Megafon dataset with the ‘X16’ variable (bottom left) and Synth2 dataset with its
both variables (bottom right). A method name is followed by the learning algorithm
used with it.

when the bias rate is high; (ii) the models where the qini gently degrades as the
bias rate increases are tree based methods (KL, and CTS) and (iii) the models
strongly affected by the bias even with low bias rates are the class-transformation
based methods and the S-Learner LinR.

Methods Comparison with Statistical Tests. We study now the significance
of the results regarding the comparison of the uplift methods (cf. Table 2) by
using a statistical test. Following the study [1], we choose the Friedman test
with the post hoc test of Nemenyi to compare the performance (average qini)
of more than two methods across several datasets. Figure 4 depicts the results
with a heatmap. The null hypothesis states that there is no significant difference
in performance according to the average qini between two methods across the
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Table 2. Average Qini (multiplied by 100) and its variance (shown in brackets) across
datasets and uplift methods (in bold, the best value for each dataset). A dataset name
is followed by the names of the V variables used to generate the NRA bias (due to
space constraints, the results are given for a single splitting of the V values).

TwoModel ClassTransformation DR XLearner SLearner Trees

Xgboost LR Xgboost LR Xgboost LinR Xgboost LinR Xgboost LinR KL ED CTS

Criteo f2 6.6 (1.7) 7.2 (1.6) 0.2 (1.9) 1.9 (1.2) 4.4 (2.8) 9.9 (0.9) 5.5 (2.6) 8.5 (0.8) 8.0 (1.9) −0.2 (1.9) 0.6 (1.4) 4.9 (1.3) 2.1 (1.5)

Criteo f8 8.1 (2.6) 6.3 (2.0) 0.1 (1.7) 1.7 (1.0) 3.7 (2.3) 9.8 (1.0) 5.4 (2.6) 8.1 (1.1) 8.4 (1.9) −0.2 (1.7) 1.2 (1.6) 5.2 (1.2) 2.4 (1.6)

Gerber p2002 −2.4 (2.0) 1.1 (1.1) −2.1 (1.5) −0.4 (1.2) −2.0 (1.9) 0.8 (1.1) −2.3 (1.9) 1.4 (1.1) −2.0 (2.0) 0.1 (0.9) −1.5 (1.8) −0.9 (1.5) −0.1 (1.7)

Gerber p2004 −2.1 (2.0) 0.8 (1.1) −1.8 (1.7) −1.2 (1.3) −2.1 (1.9) 0.7 (1.1) −2.1 (1.8) 1.2 (1.3) −1.8 (2.0) 0.0 (1.1) −1.7 (1.8) −1.5 (1.9) −0.6 (1.9)

Hillstrom mens 2.7 (2.1) 5.5 (2.6) −4.1 (2.0) −4.6 (2.2) 1.9 (2.4) 5.4 (2.1) 2.0 (2.6) 5.5 (2.2) 2.5 (2.7) 0.2 (2.4) 2.8 (2.6) 2.9 (2.5) 1.0 (2.8)

Hillstrom newbie 2.8 (2.2) 6.2 (2.7) 0.1 (2.1) 2.4 (1.9) 1.0 (2.4) 5.9 (2.0) 2.1 (2.3) 6.0 (2.0) 3.3 (2.2) −0.1 (2.4) 4.2 (2.2) 4.3 (2.5) 4.3 (2.5)

Megafone X16 17.8 (0.5) 3.5 (0.4) 8.6 (0.6) 3.2 (0.4) 16.9 (0.5) 3.0 (0.5) 18.3 (0.4) 3.0 (0.6) 17.9 (0.4) −0.0 (0.6) 13.2 (0.5) 13.7 (0.5) 11.6 (0.7)

Megafone X21 18.2 (0.4) 3.5 (0.4) 12.0 (0.4) 2.4 (0.5) 17.4 (0.5) 3.0 (0.4) 18.8 (0.4) 3.1 (0.4) 18.4 (0.4) −0.0 (0.6) 13.9 (0.5) 14.0 (0.6) 10.7 (0.8)

Synth1 7.0 (0.9) 0.9 (1.6) 1.7 (0.9) −2.9 (1.3) 9.7 (1.5) −0.4 (1.5) 12.6 (1.6) −1.6 (2.0) 12.2 (1.2) 0.6 (1.6) 9.7 (1.2) 8.8 (1.6) 8.7 (1.2)

Synth2 9.8 (0.1) 1.9 (0.1) 8.1 (0.5) 1.1 (0.2) 9.7 (0.2) 1.9 (0.1) 9.7 (0.2) 1.8 (0.1) 10.1 (0.1) −0.1 (0.4) 9.7 (0.1) 9.6 (0.2) 8.7 (0.1)

retailHero age 0.7 (0.4) 1.2 (0.3) 0.3 (0.4) 0.8 (0.4) 0.5 (0.4) 1.3 (0.4) 0.5 (0.3) 1.2 (0.3) 0.9 (0.3) −0.0 (0.3) 0.8 (0.3) 0.9 (0.3) 0.9 (0.4)

retailHero trNum 0.8 (0.4) 1.2 (0.3) 0.4 (0.3) 1.1 (0.4) 0.4 (0.4) 1.3 (0.4) 0.5 (0.4) 1.2 (0.4) 0.9 (0.4) −0.0 (0.4) 0.7 (0.4) 0.7 (0.4) 0.6 (0.4)

zenodoSynth X10 9.7 (1.8) 12.6 (1.9) 7.0 (2.2) 12.1 (1.5) 7.8 (1.9) 12.2 (1.9) 9.4 (1.7) 12.1 (1.7) 11.5 (2.0) 0.0 (2.5) 12.8 (1.9) 13.0 (1.9) 10.6 (2.6)

zenodoSynth X31 9.8 (2.4) 12.2 (2.0) 6.6 (2.0) 12.0 (1.9) 7.7 (2.1) 12.3 (1.9) 9.7 (2.2) 12.4 (1.7) 11.7 (2.2) 0.1 (1.9) 12.7 (1.9) 13.2 (2.0) 10.2 (2.2)

datasets. With a value of p (p-value) smaller than 0.05, the null hypothesis is
rejected (in green in Fig. 4). Figure 4 and Fig. 3 confirm that the S-Learner and
the class-transformation based approaches are the least resistant towards the
NRA bias.

Fig. 3. Overall ranking for the different
uplift approaches.

Fig. 4. Heat map to visualize the com-
parison between uplift methods. A value
of p smaller than 0.05 means that the
null hypothesis is rejected. (Color figure
online)

4 Method to Reduce the NRA Bias Impact

This section presents our weighting method to reduce the effect on the NRA bias
on the uplift modeling. Our method is inspired from the Domain Adaptation
literature where samples of a source dataset are weighted according to their
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Fig. 5. Qini values by class-transformation based methods according to different NRA
bias rates with and without reweighting. Top-left: class-transformation approach with
Xgboost on Criteo dataset and ‘f8’ variable. Top-right: class-transformation approach
with logistic regression on Hillstrom dataset and ‘mens’ variable. Bottom-left: class-
transformation approach with Xgboost on Megafon dataset with X16 variable. Bottom-
right: class-transformation approach with logistic regression on Synth2 dataset with its
both variables.

importance to a target dataset [10]. The principle of our method is to weight
individuals of the treatment group according to their weight in the control group
to make the biased population (the treatment group) similar to the unbiased one
(the control group). Our weighting technique is based on the propensity score
which is the probability for an individual of being treated (T = 1) given his
vector of observed variables Xi i.e. P (T = 1|Xi). In observational studies, the
propensity scores are not known but they can be learned from the data using
a regression algorithm. Our method weights each individual i of the treatment
group by w(Xi) s.t.:

w(Xi) = P (T = 0|Xi)/P (T = 1|Xi) (3)
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Table 3. Average Qini (multiplied by 100) and its variance (shown in brackets) with
the class-transformation based methods (in bold, the best value for each dataset).
Dataset name is followed by the names of the V variables used to generate the NRA
bias (for space constraints, the results are given for a single splitting of the V values).
MAE takes into account all splittings of V into C1 and C2, as explained previously.

Class-transformation with LR Class-transformation with Xgboost

Ref. qini w/o weights wt 1 wt 2 Ref. qini w/o weights wt 1 wt 2

Criteo f2 11.1 (0.9) 1.9 (1.2) 6.1 (1.5) 8.2 (2.0) 9.1 (2.6) 0.2 (1.9) 2.6 (1.8) 4.8 (1.9)

Criteo f8 11.2 (1.0) 1.7 (1.0) 5.5 (1.8) 7.9 (1.7) 9.6 (1.2) 0.1 (1.7) 3.4 (1.5) 5.0 (1.8)

Gerber p2002 0.8 (1.6) −0.4 (1.2) 0.9 (1.1) 0.5 (1.2) −1.9 (2.0) −2.1 (1.5) −1.6 (1.9) −2.3 (1.8)

Gerber p2004 1.1 (1.4) −1.2 (1.3) 0.9 (1.3) 0.4 (1.1) −1.6 (2.1) −1.8 (1.7) −1.7 (1.8) −2.3 (1.9)

Hillstrom mens 5.9 (2.5) −4.6 (2.2) 5.3 (2.2) 4.2 (2.2) 1.7 (2.1) −4.1 (2.0) −0.2 (2.7) 0.5 (2.4)

Hillstrom newbie 6.3 (1.7) 2.4 (1.9) 5.6 (2.0) 5.2 (2.1) 1.7 (1.9) 0.1 (2.1) 1.3 (2.0) 1.4 (2.1)

Megafone X16 3.2 (0.5) 3.2 (0.4) 3.1 (0.4) 3.2 (0.4) 17.3 (0.6) 8.6 (0.6) 8.4 (0.5) 15.5 (0.5)

Megafone X21 3.2 (0.4) 2.4 (0.5) 3.1 (0.4) 3.0 (0.5) 17.2 (0.5) 12.0 (0.4) 12.0 (0.4) 16.0 (0.5)

Synth1 −0.2 (3.4) −2.9 (1.3) −1.0 (1.8) −0.8 (0.9) 2.5 (2.4) 1.7 (0.9) 2.5 (0.7) 8.9 (2.9)

Synth2 1.8 (0.0) 1.1 (0.2) 1.9 (0.1) 1.7 (0.1) 10.7 (0.0) 8.1 (0.5) 8.3 (0.5) 9.7 (0.2)

retailHero age 1.2 (0.4) 0.8 (0.4) 1.3 (0.4) 1.2 (0.3) 0.6 (0.4) 0.3 (0.4) 0.3 (0.4) 0.6 (0.4)

retailHero trNum 1.2 (0.3) 1.1 (0.4) 1.2 (0.4) 1.2 (0.4) 0.7 (0.4) 0.4 (0.3) 0.4 (0.3) 0.6 (0.3)

zenodoSynth X10 12.3 (1.3) 12.1 (1.5) 11.9 (1.7) 9.8 (1.8) 8.0 (3.1) 7.0 (2.2) 7.4 (2.0) 6.5 (2.1)

zenodoSynth X31 11.7 (2.3) 12.0 (1.9) 12.1 (1.7) 9.9 (2.0) 6.9 (1.9) 6.6 (2.0) 7.2 (2.5) 6.5 (2.2)

MAE 0 2.367 0.978 1.053 0 2.803 1.953 1.592

We estimate the probabilities of Eq. 3 by using logistic regression and
xgboost. Then the uplift method integrates the weights to amplify the role of
the under-represented individuals in the treatment group and estimate τ̂i. We
named wt 1 (resp. wt 2) the use of the logistic regression (resp. xgboost) in the
weighting method.

We evaluate our weighting method with the two-model and the class-
transformation approaches since these approaches use traditional machine learn-
ing algorithms where weights can be given directly at each line (individual).
The direct-approaches cannot take into account weights, so we do not use
them. Results show a large enhancement in the performance with the class-
transformation methods (cf. Fig. 5) and a slight improvement with the two-
model approach (the full set of results can be found in the supplementary mate-
rial [19]). Table 3 details the results with the class-transformation based methods.
“Ref. qini” denotes the reference qini, that is the qini value of a method with-
out bias (i.e. b = 0) and without weighting. The Mean Absolute Error (where
MAE = 1

n

∑n
j=1 |Ref.qinij − AverageQinij |) indicates the gap between the qini

obtained by an uplift method and the reference qini. The smaller the gap is, the
better the weighting. The gap is much smaller with our weighting methods espe-
cially with the logistic regression (LR) than without weighting. Best average qini
values are also achieved with weighting except on zenodoSynth X10.

Statistical Test. Following the study [1], we use Wilcoxon test [23] to determine
if our weighting method significantly improves the performance of the uplift
methods. This test is used to compare two methods on several datasets. As we
perform two tests (on wt 1 and wt 2 methods), in order to control the family-
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Table 4. p-values obtained with the Wilcoxon test when comparing uplift methods
w/o and with weighting.

Methods p-value Methods p-value

CT LR w/o weights vs CT LR with wt 1 0.0014 2M LR w/o weights vs 2M LR with wt 1 0.985

CT LR w/o weights vs CT LR with wt 2 0.106 2M LR w/o weights vs 2M LR with wt 2 0.986

CT Xgboost w/o weights vs CT Xgboost with wt 1 0.142 2M Xgboost w/o weights vs 2M Xgboost with wt 1 0.356

CT Xgboost w/o weights vs CT Xgboost with wt 2 0.02 2M Xgboost w/o weights vs 2M Xgboost with wt 2 0.68

wise error rate due to multiple tests, the Bonferroni correction is applied and
therefore the null hypothesis is rejected when the p-value is smaller than 0.025.
Table 4 asserts that our weighting technique improves significantly the class-
transformation based methods while there is no significant improvement with
the two-model based methods.

Discussion. The weak impact of the weighting method on the two-model app-
roach methods can be explained. The NRA bias does not change in the treat-
ment group the distribution of the outcome Y given populations E1 and E2

(cf. Sect. 3.2). The probability estimations P (Y |T = 1,X) and P (Y |T = 0,X)
are then slightly affected, and the performances with and without weighting are
similar. This is different with the class-transformation methods which directly
estimate Z based on the assumption that the treatment and control groups are
equivalent. However, this assumption no longer holds with the NRA bias. Then
weighting the treatment group improves the estimation of Z and thus the uplift.

5 Conclusion

In this paper, we have studied the effect of the NRA bias when modeling uplift
methods. To the best of our knowledge, this is the first work that focuses on the
study of bias effect on current uplift models. We have designed an experimental
protocol that allows, by varying the bias rate, to study the impact of the NRA
bias on uplift methods and to identify classes of behavior for these methods.
Inspired by the literature on domain adaptation, we have proposed a method to
reduce the effect of the NRA bias by weighting the individuals in the treatment
group. Experimental results on eight datasets show that our method significantly
improves the uplift estimation performances for the class-transformation based
methods.

This work opens several perspectives. As the weighting method reduces the
effect of the NRA bias with the class transformation methods, it seems promising
to design new methods of this family. On the other hand, it will be fruitful to
study other types of bias, such as (i) the deployment bias, which occurs when
uplift models are applied to different populations (Covariate Shift situation) or
when the behavior of individuals changes with time (Concept Drift situation);
(ii) the non-response bias which is a real challenge for uplift modeling with
observational data.
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Abstract. Executing operational processes generates valuable event
data in organizations’ information systems. Process discovery describes
the learning of process models from such event data. Incremental pro-
cess discovery algorithms allow learning a process model from event data
gradually. In this context, process behavior recorded in event data is
incrementally fed into the discovery algorithm that integrates the added
behavior to a process model under construction. In this paper, we inves-
tigate the open research question of the impact of the ordering of incre-
mentally selected process behavior on the quality, i.e., recall and preci-
sion, of the learned process models. We propose a framework for defining
ordering strategies for traces, i.e., observed process behavior, for incre-
mental process discovery. Further, we provide concrete instantiations of
this framework. We evaluate different trace-ordering strategies on real-
life event data. The results show that trace-ordering strategies can sig-
nificantly improve the quality of the learned process models.

Keywords: Process mining · Process discovery · Ordering effects

1 Introduction

Process mining [17] offers tools and methods to systematically analyze data gen-
erated during the execution of operational processes, e.g., business and produc-
tion processes. These data are referred to as event data, which can be extracted
from organizations’ information systems. Process mining aims to generate valu-
able insights into the processes under investigation to optimize them ultimately.

Process discovery, a key discipline within process mining, comprises algo-
rithms that learn process models from event data. Most process model for-
malisms focus on describing the control flow of process activities. Note that
process model formalisms like BPMN [7] allow modeling, e.g., resource infor-
mation and data flows, besides the control flow of process activities. In short,
process models are an essential artifact within process mining.
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Conventional process discovery algorithms [2] are fully automated. Other
than configuring parameter settings, they do not provide any form of interaction.
Thus, they function as a black box from a user’s perspective. Since event data
often have quality issues, e.g., wrongly captured, missing, and incomplete process
behavior, process discovery can be considered an unsupervised learning task.
Many conventional process discovery algorithms yield low-quality models on real-
life event data. Automated filtering techniques, such as [4], attempt to solve such
data quality problems but often remove too much process behavior. In addition,
they cannot add missing process behavior to the event data.

Domain-knowledge-utilizing process discovery aims to overcome the limita-
tions of conventional process discovery by using additional knowledge about the
process under consideration besides event data and by incorporating user feed-
back into the discovery, respectively, learning phase [16]. Incremental process
discovery is a subclass of domain-knowledge-utilizing process discovery where the
user gradually selects process behavior that is added to a process model under
construction by the discovery algorithm. With incremental process discovery, a
user can, for example, examine the process model after each incremental exe-
cution and, if necessary, jump back to a previous version of the model and add
other observed process behavior. In this way, the user can steer and influence
the discovery phase compared to conventional process discovery.

In previous work [14], we introduced an incremental process discovery algo-
rithm that allows to gradually add process instances, i.e., individual process
executions, which are also referred to as traces, to a process model under con-
struction. An open research question is the influence of the order in which the
process behavior is gradually inserted into the process model under construction
on the quality of the eventual process model discovered. In this paper, we address
this research question by exploring strategies to recommend a trace order. From
a practical perspective, these strategies are helpful in situations where, for exam-
ple, a user selects several traces at once to be added next but does not have any
preferences about the exact order in which they are added to the model by the
incremental discovery algorithm.

This paper contains two main contributions. First, we define a general frame-
work for trace-ordering strategies within the context of incremental process dis-
covery. The framework can be applied for any incremental process discovery algo-
rithm that gradually adds traces to a process model. Second, we provide instan-
tiations of this framework, i.e., various trace-ordering strategies for an existing
incremental process discovery algorithm [14]. Finally, we present an evaluation of
the proposed strategies. Our experiments show that using trace-ordering strate-
gies results in significantly better models than random trace selection, cf. [15].

The remainder of this paper is organized as follows. In Sect. 2, we present
related work. Section 3 introduces preliminaries. In Sect. 4, we introduce a frame-
work for trace-ordering strategies and provide specific instantiations of this
framework. The evaluation by use of real-life event data of these instantiations
is presented in Sect. 5. Finally, Sect. 6 concludes this paper.
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2 Related Work

For a general introduction to process mining, we refer to [17]. In this section,
we mainly focus on process discovery. Compared to, e.g., sequential pattern
mining [1], process discovery aims to return process models describing the end-
to-end control-flow of activities within a process. We refer to [17] to further
differentiate process mining from existing data mining techniques. Many con-
ventional process discovery algorithms have been developed; a recent overview
can be found in [2]. Regarding the field of domain-knowledge-utilizing process
discovery, we refer to [16] for a recent overview. One of the first approaches
to interactive process discovery was presented in [6]. The approach involves a
user creating a process model gradually in an editor while being supported by
the algorithm with suggestions. Regarding incremental process discovery, few
approaches exist. In [14] an incremental process discovery algorithm has been
introduced that produces process trees. In [10] an incremental approach has been
proposed that represents the process as a set of first-order logic formulae. Tech-
niques for model repair [8], a research area within process mining, can also be
utilized as incremental discovery.

To the best of our knowledge, no related work focuses on trace ordering
neither within incremental process discovery nor within process model repair.
Outside of process mining, in the context of AI/ML, the influence of ordering
data on the learning results has been addressed, for example, in [5,13].

3 Preliminaries

For an arbitrary set X, we define the set of all sequences over X as X∗, e.g.,
〈b, a, b〉 ∈ {a, b, c}∗. We denote a totally ordered set by (X,�). Given a base set
X, we denote the universe of all totally ordered sets by O(X). A multi-set allows
for multiple occurrences of the same element. We denote the set of all possible
multi-sets over a base set X as B(X) and the power set as P(X).

3.1 Event Data

Event data are generated during the execution of operational processes. Table 1
shows an example of an event log. Each row corresponds to an unique event
that records the execution of an activity for a specific process instance. Pro-
cess instances are identified by a case-id. Events that belong to the same process
instance, i.e., that have the same case ID, form a trace, i.e., a sequence of events
ordered by their timestamp, for example. Consider Table 1, the trace of the pro-
cess instance “A10000” is 〈“Create Fine”, “Send Fine”, “Insert Fine Notification”,
“Add penalty”, “Payment”〉. An event log typically consists of multiple traces.
Next, we formally define the concept of a trace and an event log. In the remainder
of this paper, we denote the universe of activity labels by A.

Definition 1 (Trace & Event Log). A trace is a sequence of activity labels,
i.e., σ ∈ A∗. An event log is a multi-set of traces, i.e., E ∈ B(A∗). We denote
the universe of event logs by E = B(A∗).
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Table 1. Real-life event log from a road traffic fine management process [12]

Event-ID Case-ID Activity label Timestamp . . .

1 A10000 Create Fine 09.03.2007 . . .

2 A10000 Send Fine 17.07.2007 . . .

3 A10000 Insert Fine Notification 02.08.2007 . . .

4 A10000 Add penalty 01.10.2007 . . .

5 A10000 Payment 09.09.2008 . . .

6 A10001 Create Fine 19.03.2007 . . .

7 A10001 Send Fine 17.07.2007 . . .

8 A10001 Insert Fine Notification 25.07.2007 . . .

9 A10001 Insert Date Appeal to Prefecture 02.08.2007 . . .

10 A10001 Add penalty 23.09.2007 . . .

. . . . . . . . . . . . . . .

→

Create
Fine

×

Send
Fine

τ

Insert Fine
Notification

∧

Add
penalty

�

Payment τ

Fig. 1. Example of a process model represented as a process tree

Since we are only interested in the various sequences of executed process
activities and multiple cases can have the same sequence of executed activities,
we define an event log as a multi-set of traces. For an event log E ∈ E , we write
E = {σ ∈ E} ⊆ A∗ to denote the set of unique traces. For instance, given the
event log E =

[〈a, b, c〉5, 〈a, b, b〉3], i.e., an event log containing five times the
trace 〈a, b, c〉 and three times the trace 〈a, b, b〉, E =

{〈a, b, c〉, 〈a, b, b〉}.

3.2 Process Models

Process models describe process behavior, especially the control flow of process
activities. For example, consider Fig. 1, showing a process tree, i.e., an important
process model formalism within process mining [17]. The process tree specifies
that the activity ‘Create Fine’ is executed first. Next, ‘Send Fine’ is option-
ally executed, followed by ‘Insert Fine Notification’. Finally, ‘Add Penalty’ is
executed parallel to potentially multiple executions of ‘Payment’. A formal def-
inition of process trees is outside the scope of this paper; we refer to [17].

This paper abstracts from a specific process model formalism, e.g., Petri nets
or process trees. Thus, we generally define the universe of process models by M.
Each process model M defines a language, i.e., a set of accepted traces. As such,
we denote the language of a process model M ∈ M by L(M) ⊆ A∗.



268 D. Schuster et al.

previously
added traces

P ⊆ E

user-selected trace
to be added next

σ ∈ E \ P

(initial) model
M with P ⊆ L(M)

Incremental
Process

Discovery
Algorithm

α

updated previously
added traces
P ′ = P ∪ {σ}

updated model M ′

with P ∪ {σ} ⊆ L(M ′)

Fig. 2. Overview of the procedure of an incremental process discovery algorithm

3.3 Incremental Process Discovery

Conventional process discovery algorithms can be seen as a function d : E →
M. Incremental process discovery algorithms form a specific class of process
discovery algorithms that gradually learn a process model. Figure 2 shows an
overview of the procedure used by incremental process discovery algorithms.
Given an event log E ∈ E and an (initial) process model M ∈ M, a trace σ ∈ E
that is added by the incremental process discovery algorithm to the process
model M . The resulting process model M ′, which describes the previously added
traces P and the trace σ, is then used as an input in the next iteration. Next,
we formally define an incremental process discovery algorithm.

Definition 2 (Incremental Process Discovery Algorithm). The function
α : M × P(A∗) × A∗ → M is an incremental process discovery algorithm if
for any process model M ∈ M, set of previously added traces P ∈ P(A∗) with
P ⊆ L(M), and trace to be added σ ∈ A∗ it holds that P ∪{σ} ⊆ L(α(M,P, σ)).

4 Dynamic Trace-Ordering Strategies

In this section, we present the proposed approach to order trace candidates.
First, we present a general framework on how to define trace-ordering strategies
for incremental process discovery. Finally, we present concrete strategies.

4.1 General Framework

In this section, we present the proposed framework for defining Dynamic Trace-
Ordering Strategies (DTOS) for incremental process discovery. In Fig. 3, we
depict the proposed framework. A DTOS consists of n ≥ 1 sequentially applied
strategy components (sc). Each strategy component sci orders all input trace
candidates Ci−1 according to some internal logic. The calculated ordering of the
trace candidates represents a ranking which trace should be added next to the
process model M . A ‘minimal’ trace in (Ci−1,�) represents the most suitable
candidate to be added next according to the current strategy component sci.
Next, we formally define a strategy component.
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Fig. 3. Proposed framework for dynamic trace-ordering strategies that consist of
sequentially aligned strategy components, sc1 until scn, which order the trace can-
didates from best to worst suitability. After each strategy component, a filter function
f removes the worst suited trace candidates. After the last strategy component scn,
the function f filters such that a single trace candidate σ remains that is then fed into
the incremental process discovery algorithm.

Definition 3 (Strategy component). A strategy component is a function
sc : E × P(A∗) × P(A∗) × M → O(A∗) that maps an event log E ∈ E, a set
of previously added traces P ⊆ E, a set of trace candidates C ⊆ P \ E, and a
process model M ∈ M to an ordered set of trace candidates (C,�) ∈ O(C). We
denote the universe of strategy components by SC.

After each strategy component, a filter function f filters out the worst suited
trace candidates. Each call of the filter function f can be configured via a filter
rate ri ∈ [0, 1]. A filter rate of 1 results in no trace candidate being filtered.
A filter rate of 0 results in only one trace candidate remaining. Thus, Cn ⊆
Cn−1 ⊆ ... ⊆ C1 ⊆ C0 holds (cf. Fig. 3). Each strategy component together
with the subsequent filtering can be viewed as a knock-out step that reduces the
number of trace candidates that are potentially to be added next to the process
model M . Next, we formally define a filter function and a DTOS.

Definition 4 (Filter function). A filter function f : O(A∗) × [0, 1] → P(A∗)
maps an ordered set of traces (C,�) ∈ O(A∗) and a filter rate r ∈ [0, 1] to
a set of traces C ′ ∈ P(A∗) such that C ′ ⊆ C, |C ′| = max

{
1, 
r ∗ |C|�}, and

∀c′ ∈ C ′∀c ∈ C \ C ′(c′ ≤ c).

Definition 5 (Dynamic trace-ordering strategy (DTOS)). A DTOS is a
non-empty sequence of strategy components and corresponding filter rates, i.e.,
〈(sc1, r1), . . . , (scn, rn)〉 ∈ (SC × [0, 1])∗ with rn = 0 for n ≥ 1.

We consciously decided to design a DTOS as a sequence of strategy compo-
nents and filters that work in a knock-out fashion, i.e., every strategy component
orders the trace candidates, and subsequently, a function filters out the worst
trace candidates. This decision was taken to keep the computational effort low
because it is crucial to compute recommendations fast in an interactive process
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discovery setting. The use of multiple strategy components within a DTOS allows
combining different aspects when evaluating which trace candidate should be
added next. The general intention of the framework is to initially perform evalu-
ations that are fast to calculate within the first strategy components. More com-
plex evaluations should be performed in the later strategy components. These
components will receive fewer trace candidates since the previously executed
strategy components have already filtered out some trace candidates.

4.2 Instantiations

Here, we present specific strategy components, i.e., instantiations of Definition
3. We provide general applicable strategy components that are independent of a
specific incremental process discovery algorithm and strategy components which
are specifically tailored for the incremental process discovery algorithm intro-
duced in previous work [14]. Next, we briefly present six strategy components.

Alignment Costs. Alignments [18] are a state-of-the-art conformance checking
technique that quantifies to which extent a trace can be replayed on a process
model. They further provide diagnostic information on missing and unexpected
behavior when comparing a trace with a process model. The costs of an optimal
alignment reflect the conformance degree of the trace and the closest process
model execution. Given a process model, we can assign costs, i.e., alignment
costs, to each trace candidate. These costs are then used to rank/sort the trace
candidates, i.e., the trace candidate with the lowest costs first and the trace can-
didate with the highest costs last. The intention is to first add trace candidates
to the process model that are close to the specified behavior by the current pro-
cess model. Note that the computation of alignments has an exponential time
complexity, i.e., also called the state space explosion problem [3].

Missing Activities. When starting to discover a process model incrementally,
it is likely that the first process models obtained do not describe all process
activities that have been recorded in the event data. This results from the fact
that in many real-life event logs not every trace contains all possible executable
process activities of a process. The ‘missing activities strategy’ ranks the trace
candidates according to their number of activity labels already present in the
process model M . Trace candidates that contain process activities present in
the current process model M get costs 0. For the other trace candidates, costs
correspond to the number of unique activity labels within the trace that are not
yet part of the process model M .

Levenshtein Distance. This strategy compares the trace candidates among
each other by calculating the Levenshtein distance, i.e., a metric to compare the
distance between two sequences based on edit operations: insertion, deletion, and
substitution. The idea behind this strategy is to favor traces that are more similar
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to all other traces that still need to be potentially added. For example, consider
the three trace candidates with corresponding frequency values in Table 2. We
compare all traces and weigh the different Levenshtein distances according to
the trace frequency. In the example, we would choose the trace 〈a, b〉 as the best
trace candidate to be added next.

Table 2. Example of the weighted Levenshtein distance for trace candidates

Trace
candidates

Frequency
in E

Weighted Levenshtein distance Rank

〈a, b〉 100 50 ∗ lev
(〈a, b〉, 〈a, b, b〉) + 20 ∗ lev

(〈a, b〉,
〈a, c〉) = 70

1

〈a, b, b〉 50 100 ∗ lev
(〈a, b, b〉, 〈a, b〉) + 20 ∗ lev

(〈a, b, b〉,
〈a, c〉) = 140

2

〈a, c〉 20 100 ∗ lev
(〈a, c〉, 〈a, b〉) + 50 ∗ lev

(〈a, c〉,
〈a, b, b〉) = 200

3

Brute-Force. Assume a process model M , an event log E ∈ E , the set of
previously added traces P ⊆ E, and a set of trace candidates C ⊆ E \ P (cf.
Fig. 3). The strategy separately applies the incremental process discovery (cf.
Fig. 2) to all trace candidates in C and the model M . As a result, |C| different
process models are obtained. A quality metric, i.e., the F-measure representing
the harmonic mean of recall and precision, is calculated on the given event log E
for each obtained model. The trace candidate that yields a process model with
the highest F-measure is ranked first.

LCA Height. This strategy is tailored to the incremental process discovery
algorithm introduced in our earlier work [14]. The incremental process discovery
algorithm uses process trees (cf. Fig. 1) as a process model formalism. When
incrementally adding a new trace to the model, the central idea of the algorithm
is to identify subtrees that need to be modified so that the new trace fits the lan-
guage of the model. These deviating subtrees are called LCAs in [14]. Depending
on which trace is added, the LCAs that must be altered change.

The key idea of this strategy is to avoid changing large parts of the already
learned process model upon adding a new trace. Thus, the strategy prefers trace
candidates that lead to only minor changes in the process model. Therefore, the
strategy computes for each trace candidate in C ⊆ E the height of the first LCA,
i.e., the first subtree in the process model M , that must be altered1. The height
of an LCA is defined by the path length from the LCA’s root node to the root
1 Note that per trace that is incrementally added, various LCAs might be changed.

However, without fully executing the incremental process discovery approach for a
trace, we only can compute the first LCA that must be changed. Therefore, there
is a risk that the first LCA will be rated as good based on the strategy, but that
further LCAs will have to be changed, which the strategy would rate as bad.
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Table 3. Overview of the strategy components

Abbreviation Strategy component (Sect. 4.2) Algorithmic specific or general

C Alignment Costs General

M Missing Activities General

L Levenshtein Distance General

B Brute Force General

D Duplicates Specific

H LCA Height Specific

node of the entire tree, i.e., the entire process model M . Trace candidates are
then descending ordered based on the first LCA’s height.

Duplicates. This strategy is tailored to the incremental process discovery algo-
rithm introduced in our earlier work [14]. These LCAs, i.e., subtrees of the
process tree, may have multiple leaf nodes with the same activity label, i.e.,
duplicate labels. In general, duplicate labels can increase the precision of a pro-
cess model and are therefore desirable. When altering an LCA, the incremental
process discovery algorithm [14] rediscovers the LCA using a conventional pro-
cess discovery algorithm [11]. The downside of this rediscovery is that the used
conventional process discovery algorithm [11] is not able to discover process
trees with duplicate labels. Thus, the rediscovery would remove the potentially
desirable duplicate labels in the LCA that have been learned so far. Thus, this
strategy, called Duplicates, favors trace candidates whose first LCA does not
contain leaf nodes with duplicate labels. Trace candidates are ascending ordered
based on the number of duplicate leaf nodes.

5 Evaluation

In this section, we present the experimental evaluation. First, we present the
experimental setup. Subsequently, we present and discuss the results.

5.1 Experimental Setup

To keep the experimental setup independent of a particular user selecting trace
candidates to be added next (cf. Sect. 1), we assumed the following: given an
event log and an initial process model, all traces are eventually added to the
model incrementally. Thus, the set of trace candidates represents in the beginning
the entire event log. After one incremental discovery step—a trace selected by an
ordering strategy is added to the model by the incremental discovery algorithm—
the added trace is removed from the trace candidate set.

Given the strategy components’ abbreviations in Table 3, we created all
potential orderings by shuffling the order of C, M, L, D, and H. Finally, strategy



A Generic Trace Ordering Framework for Incremental Process Discovery 273

Fig. 4. Legend for the results shown in Fig. 5 and Fig. 6

component B is added to each strategy. Note that the brute force (B) strategy
component is computationally expensive, and therefore we decided to always
add this strategy component at the end. This procedure leads to 5! = 120 differ-
ent strategy component orderings. To avoid further expansion of the parameter
space, we used one filter rate for each strategy component within a strategy,
except the last one (cf. Fig. 3). For instance, the strategy L-H-C-M-D-B F-Rate
10 (cf. Fig. 4) represents the strategy where first the Levenshtein distance compo-
nent is applied and finally the brute force component. All components within this
specific strategy use a filter rate of 0.1=̂10%. We applied the different strategies
on real-life event logs using the incremental process discovery algorithm pre-
sented in [14]. Further, we measured the F-measure, i.e., the harmonic mean of
recall and precision, of each incrementally discovered process model using the
given event log. We used four publicly available real-life event logs [9,12,19].

5.2 Results & Discussion

In Fig. 5, we depict the results of 16 dynamic strategies, a static strategy, i.e.,
most occurring trace variant first (black line), the brute force component as
a stand-alone strategy (gray line), random trace orderings (blue lines), and the
average of the random trace orderings (red line). Note that we only show a selec-
tion of the strategies evaluated. Per log, we provide two x-axis scales: percentage
of processed traces and percentage of uniquely processed trace variants.

We observe that for all four event logs, the trace candidate order has a sig-
nificant impact on the F-measure, cf. the large area covered by the blue lines
in Fig. 5. The solid red line represents the average of the blue lines. Thus, the
red line can be seen as a baseline as it represents the quality of the models if a
random trace order is applied. We see that most strategies are clearly above the
red line. Thus, applying a strategy is often better than randomly selecting trace
candidates. Note that with incremental process discovery, the goal is often not
to include all traces from the event log, as event logs often have data quality
issues. We observe that the brute force approach as a stand-alone strategy (gray
line) often performs better than the other strategies, although the brute force
approach can be considered as a greedy algorithm. For the domestic event log,
the brute force as a stand-alone strategy could not be used as the calculation was
still not completed after several days. In Fig. 6 we depict the computation time
per strategy. In general, we observe that an increasing filter rate per strategy
component ordering leads to an increasing computation time. This observation
can be explained because each strategy includes the brute force strategy com-
ponent as the last step. We also find that the brute force approach as a single
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(a) Domestic declarations log [19]

(b) Sepsis log (sampled) [9]

(c) Road traffic fine management log [12]

(d) Request for payment log [19]

Fig. 5. F-measure values of the incrementally discovered process models. Most evalu-
ated strategies (cf. Fig. 4) perform better than the baseline (red line). Blue lines indicate
the solution space (not complete, as not every possible trace ordering can be evaluated
due to a large number of trace variants per event log). (Color figure online)
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(a) Domestic declarations log [19] (b) Sepsis log [9]

(c) Road traffic fine management log [12] (d) Request for payment log [19]

Fig. 6. Computation time of the strategies (cf. Fig. 4) per event log

strategy (gray bar) has a significantly longer computation time than the other
strategies. In short, it can be stated that many of the presented strategies lead
to better process models, i.e., outperforming randomly selecting a trace to be
added. Nevertheless, no clear strategy can be identified that always works best
on all tested event logs.

6 Conclusion

We presented a framework to define trace-ordering strategies for incremental
process discovery. We introduced general strategy components and evaluated
different strategies on real-life event data based on the framework. The results
show that the trace-ordering strategies can improve the quality of the learned
process models. For future work, we are interested in non-sequential composi-
tions of strategy components, e.g., each strategy component ranks all trace can-
didates, and finally, a score is determined. However, this requires more efficient
computable strategy components. Finally, we plan to integrate trace-ordering
strategies in our incremental process discovery tool Cortado [15].
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Abstract. Non-traditional data like the applicant’s bank statement is
a significant source for decision-making when granting loans. We find
that we can use methods from network science on the applicant’s bank
statements to convert inherent cash flow characteristics to predictors for
default prediction in a credit scoring or credit risk assessment model.
First, the credit cash flow is extracted from a bank statement and later
converted into a visibility graph or network. Afterwards, we use this
visibility network to find features that predict the borrowers’ repay-
ment behaviour. We see that feature selection methods select all the
five extracted features. Finally, SMOTE is used to balance the training
data. The model using the features from the network and the standard
features together is shown having superior performance compared to the
model that uses only the standard features, indicating the network fea-
tures’ predictive power.

Keywords: Bank statement · Non traditional data · Time series ·
Network construction · Visibility graph · Complex networks · Regular
network · Network features · Feature selection · Cash flow · SMEs ·
Micro finances

1 Introduction

Microfinance institutions (MFI) provide loans to low-income clients, including
micro-companies and the self-employed, who traditionally lack access to main-
stream sources of finance from traditional banking institutions. These types of
clients are considered too risky by traditional banks since they cannot provide
real collateral, and they tend to work in informal sectors of the economy. There-
fore, whenever an MFI lends to a client, there is an inherent risk of money not
coming back, i.e. the client turning into a defaulter; this is called the credit risk.
When it comes to assessing the credit risk involved with each loan application,
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a client’s lack of verifiable credit history is the major challenge for MFIs in
emerging markets [1]. To determine the creditworthiness of the application, in
cases when credit history is not available, MFIs rely mainly on the information
provided by the client at the time of loan application. This information primarily
consists of the traditional socioeconomic data of the client.

Finding relevant features for predicting defaulters from these traditional data
has been studied extensively over time [2,3]. Non-traditional data like bank
statements can provide additional information on a client’s repayment capacity
improving the models focusing only on the traditional socioeconomic data [4].
A bank statement is an official document that summarizes the account holder’s
activity over a certain period, containing all the transactions records-both incom-
ing (credits) and outgoing (debits). For MFI, this credit and debit flow is vital
in knowing what is going on with the client’s funds during a period.

This work focuses on using time series and network science tools to extract
relevant features from bank statements, providing better predictions of the
client’s ability to repay the loan. A time series is a collection of observations of
well-defined data items obtained through repeated measurements over time. For
example, the bank statement from the clients can provide the credit and debit
clash flow as a time series. Visibility graph [5] method of constructing networks
out of time series have shown to conserve their structure in the graph topology.
However, these networks inherit several time-series properties in their design as
periodicity and randomness. Different network structure measures could then be
used to characterize the time series and hence in our case, the bank statement
and the nature of the client’s repayment capacity.

The paper is organized as follows. After introducing the problem and focus
of work, Sect. 2 briefly reviews the related works in this area. Then, Sect. 3
describes the process and methodology used to develop the visibility graph from
the bank statement. It also describes some interesting properties seen in the
generated graph. Next, Sect. 4 presents the data set and explains the extracted
graph features. It also describes the feature selection methods used and explains
the evaluation done to check the extracted features’ predictive power. Finally,
in Sect. 5, we present our conclusion and future work.

2 Related Work

Machine learning models are employed extensively for credit risk analysis and
credit scoring. Petropoulos et al. [6] identified that machine learning models
demonstrated superior performance and forecasting accuracy compared to tra-
ditional methods in credit rating.

Recently more non-traditional methods and use of non-traditional data for
credit risk assessment have been explored [7]. Ruiz et al. [1] proposed a method
to evaluate the predictive power of the non-traditional approach and showed how
the assembling of Weight of Evidence (WoE) with different feature selection cri-
teria could result in more robust credit scoring models in microfinance. In addi-
tion, non-traditional data such as contact networks have been used to address the
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problem of the lack of a verifiable customers’ credit history using node embed-
ding features [8]. Provenzano et al. [9] further used other non-traditional data
to improve credit ratings, such as historical balance sheets, bankruptcy statutes
and macroeconomic variables, to develop machine learning models and observed
excellent out-of-sample performance results.

Bunker et al. [4] showed that the bank statement derived features have value
in improving the credit scoring model. However, relevant features to extract
from the bank statement data were decided on in consultation with senior staff
members at the lending company. Our work eliminates this drawback of a need
for expert knowledge by using tools from network science to map the intrinsic
nature of the bank statement to the structural properties of a network and later
extract them through relevant network metrics.

In [10], Silva et al. presented a comprehensive and well-structured review
of existing univariate and multivariate time series to networks algorithm map-
pings, highlighting their similarities and differences, the data characteristics they
capture, and the main references and results.

Lacasa et al. [5] proposed visibility mappings from (univariate) time series to
complex networks, based on traditional visibility algorithms from computational
geometry [11]. Later, following Luque et al.’s work [12] to reduce the computa-
tional complexity associated with NVGs by restricting the visibility lines to be
only horizontal, Lacasa et al. [13] introduced directed horizontal visibility graphs
by defining a horizontal visibility graph.

3 From Bank Statements to Network Features

The high-level view of our approach is summarised as a flow chart in Fig. 1.
First, each client’s raw data, in the form of a bank statement, is converted to
corresponding time series. Then using the visibility graph method, a network is
constructed out of the time series. In the following stage, features are extracted
from the network and mapped back to the client. Afterwards, feature selection
methods are used to select the important features from the pool of all avail-
able features, including the features extracted from the visibility graph and the
base features of the data set containing the client’s traditional socioeconomic
data. This is followed by applying an oversampling technique, SMOTE [14],
to each cross-validation training data set considering the class imbalance issue.
Afterwards, evaluation is done on a Random Forest [15] model with 10-fold cross-
validation to do a pairwise Wilcoxon signed rank test between a base model that
gets only the initial feature selected predictors from the loan providers database
and a “NetworkPlus” model that gets all the predictors available, including the
extracted network features.

According to [16], almost any discrete structure can be suitably represented
as special cases of graphs, whose features may be characterized, analyzed and
eventually related to its respective dynamics. The motivation for this work stems
from this idea and looks into how a network view can help in getting informa-
tion out of a bank statement via time series, which can be of importance in
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Fig. 1. Prediction of defaulters from bank statements: main steps of our approach.

determining the repayment capacity of a loan applicant. Previous works done by
Andriana et al. [17] have already shown that time series with different dynamics
are mapped into complex networks with different structures. There are several
methods currently followed for this mapping. The one that is used here is the
Visibility Graphs method.

3.1 Visibility Graphs

This method based on the concept of visibility was first proposed in 2008 by
Lacasa et al. [5]. Named Natural Visibility Graph (NVG), each node in the
graph corresponds, in the same order, to the time series data points and two
nodes are connected if there is a line of visibility between the corresponding
data points. That is, if it is possible to draw a straight line in the time series
that joins the two corresponding data points that intercepts no data “height”
between them, then there exists a connection between the data points or an edge
between the corresponding nodes.

More formally, we can establish the following visibility criteria: two arbitrary
data values (ta, ya) and (tb, yb) will have visibility, and consequently will become
two connected nodes of the associated visibility graph, if any other data (tc, yc)
placed between them fulfills:

yc < yb + (ya − yb) ∗ (tb − tc)
(tb − ta)

(1)

The associated graph extracted from a time series is always:

1. connected - each node sees at least its nearest neighbors (left and right);
2. undirected - the way the algorithm is built up, there is no direction defined

in the links;
3. invariant under affine transformations of the series data - the visibility cri-

terion is invariant under re-scaling of both horizontal and vertical axes, and
under horizontal and vertical translations.

3.2 Daily Time Series to Visibility Graphs

The visibility graph mapping is illustrated in Fig. 2. After outlier removal and
normalization, each of the points in the time series become vertices in the visibil-
ity network of the credit flow. The days numbered 42, 51, 86 and 87 which had
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Fig. 2. Visibility graph of daily credit time series from a bank statement. The node
colour indicates the node degree. Blue indicates a lower degree while red indicates
a higher degree. Green indicates a degree value between blue and red. (Color figure
online)

high daily credit can be seen as having high degree nodes because of its visibility
around the other points in the time series. Mapping of daily credit to visibility
graph was implemented by an algorithm where each unique pair of points in the
time series were taken and checked for any obstruction by any points that came
between them. For example, for checking if there is a possible edge between data
points at time 6 and time 23, the algorithm takes all the point in between them
one by one and find its magnitude or value of y axis. If one of these points has
a magnitude greater than:

yb + (ya − yb) ∗ (tb − tc)
(tb − ta)

(2)

where ya and yb are the credit value for points a = 6 and b = 23 and ta and
tb are the time for those points which in our case is 6 and 23, then there is no
edge between point 6 and point 23.

The color of the nodes is an indication of its degree. The color varies from
blue to green to red. Lower degree being blue and higher degree being red. In the
network in Fig. 2 each nodes corresponds to each of the days numbered from 1
to 122 (length of the time series in display), arranged in anti-clock wise direction
starting from outer middle right end of the circular structure. The dome/tent
shaped edge grouping inside the networks brings out the periodicity indicating
a clear regularity in the graph opposed to a randomness. We can see shorter
period repeating patterns and fewer longer ones too. Nodes with green color and
its spacing indicate shorter periods.

3.3 Properties of the Generated Graphs

Previous works have shown that time series with different dynamics are mapped
into complex networks with different structures. Also the associated graph inher-
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its some structure of the time series, and consequently the process that generated
the time series can be characterized by using graph theory. The structure of the
time series is seen to be conserved in the visibility graph topology by periodic
series converted into regular graphs, random series into random graphs, and
fractal series into scale-free graphs [5].

Since one of the aim of trying visibility graph method for the problem in hand
is to detect any periodicity, or even any indication of the duration of periodicity,
initial intention was to look into the degree distribution of network to see if it
is formed by a finite number of peaks related to the series period. Generically
speaking, all periodic time series are mapped into regular graphs, the discrete
degree distribution being the fingerprint of the time series periods. Figures 3
and 4 show the visibility graphs of the daily credit and debit time series and the
corresponding degree distribution for each.

Since the outliers have been removed, the chances of finding data points with
very high visibility, which corresponds to nodes that are hubs, are lesser than in
random networks. This can be seen also from the degree distribution as shown
in Fig. 4. And it can be seen that both debit and credit visibility graph have
similar short periodic regions.

Analysing Figs. 3 and 5, which are the daily and weekly visibility graph of
the same client, and looking at the interval of appearance of high degree nodes,
it can be seen that there are monthly cycles with a period of 4 to 5 weeks in
between them. At the same time another client’s weekly visibility graph (cf.
Fig. 6), indicates less periodicity and regularity.

Fig. 3. Credit and debit visibility graph of same bank statement of client 1.
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Fig. 4. Degree distribution of daily credit and debit visibility graph of client 1

Fig. 5. Weekly credit and debit visibility graphs of client 1, depicting some periodicity
and regularity.

4 Case Study

4.1 Data Set

The data used in this work comes from a MFI providing loans to small businesses
in several regions in a country in Sub-Saharan Africa. The data includes all the
information the MFI gets with a loan application. These include data about the
business owner, business details and the details of the loan that they have applied
for. The data also contains the digital bank statement linked to the clients busi-
ness. The duration of the bank statement can be between 6 to 10 months. The
bank statement data includes transaction date and the amount of credit or debit
that happened for that particular transaction. The data is labeled good or bad
based on whether the client was able to repay or not. Total of the daily credit
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Fig. 6. Weekly credit and debit visibility graphs of client 2, depicting less periodicity
and regularity.

transactions is calculated for each of the bank statements through the duration
of the available data. This daily credit is converted to a time series which is
used to construct the network. Even though the submitted bank statements are
between 6 and 10 months long, there could be days when no credit happened,
making the data size not necessarily of 6 to 10 times 30 days long time series.
The presence of public holidays and situations like recent pandemic brings in
a lot of noise or empty space in the time series that make traditional method
inadequate for the purpose of time series analysis. The inflow and outflow of
money to such an account differ vastly from a personal bank account. Detecting
the inflow periodicity or at least a presence of periodicity becomes crucial in
deciding whether the business will be able to repay the loan successfully with
a weekly, bi weekly or monthly repayment periodicity. Matching the repayment
plan to the clients’ capacity of payment will ensure both the parties benefit from
the loan with reduced risk.

4.2 Feature Extraction

We extracted five network features from the daily credit network of each client
constructed using the visibility graph method:

1. Graph Information Criterion (GIC) [18]: GIC is Kullback-Leibler divergence
or L2 distance between our undirected credit visibility graph and an Erdos-
Renyi random graph (ER) with the probability to connect a pair of vertices
being the same as our undirected credit visibility graph.

2. Number of edges: The number of edges in our network which corresponds to
the number of daily credit lower than local peaks.

3. Number of vertices: The number of vertices in our undirected credit visibility
graph which corresponds to the length of the bank statements.
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4. Number of vertices with degree greater than average degree of the network:
This corresponds to the hubs or high peaks in our network which corresponds
to days with higher visibility.

5. Mean distance of the network: This is the average path length in a graph, by
calculating the shortest paths between all pairs of vertices using a breadth-
first search.

4.3 Feature Selection

Feature selection is the process of choosing variables that are useful in predicting
the response. It is considered a good practice to identify which features are
important when building predictive models especially when dealing with high-
dimensional data so as to reduce the complexity of the model and to make
the model faster. However for our work the role of feature selection is mainly
in determining whether the features we choose from the network, based on its
structural significance, are actually indicative of the defaulting of the client.
Along with the 5 network features extracted from network 78 features from the
tradition data source where also tested using the 3 feature selection methods
which are:

1. Information Value: Out of the 5 network properties 4, (1,2,3 and 4), where
selected with Information value greater than 0.3.

2. Boruta [19]: All 5 where selected under a tentative rough fix condition.
3. Recursive Feature Elimination (RFE): Out of the 5 network properties 4,

(2,3,4 and 5) where selected.

Table 1 shows the features that where selected by each of the methods. The
union of all the selected features where taken to get the final predictor set for
evaluation, which included all the 5 features we took from the network.

Table 1. Feature selection methods (Information Value, Boruta and RFE) and network
features selected as important.
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4.4 Evaluation

A Random Forest [15] classification model with 10-fold cross validation was
used to evaluate the F1 score of the test fold prediction. F1 score was chosen
considering the imbalance class ratio of the target and since our aim here is to
compare model performance. The size of the data set used in the test is 369
data points. Since the good to bad class ratio was 7:3, a common challenge
with predicting credit defaulters, Synthetic Minority Oversampling Technique
(SMOTE) [14] was used to balance the train data. Smote was applied only to the
train set for each of the 10 folds evaluation set to deal with the class imbalance
problem.

Fig. 7. F1 score distribution obtained by Random Forest with 10-fold cross-validation,
on Base model with only the predictors from the loan providers database and Net-
workPlus model with all available predictors including the extracted network features.

Following that, the pairwise Wilcoxon signed rank test was conducted
between a base model, that gets only the initial, feature selected, predictors
from the loan providers database and a “NetworkPlus” model that gets all the
available predictors including the extracted network features. The Wilcoxon test
gave a p-value less than 0.05 (cf. Fig. 7) indicating there is enough evidence to
reject the null hypothesis that both the model performed same.

The pair of box plots in Fig. 7 shows the average F1 score over the 10-folds of
the evaluation. The median line of NetworkPlus model box lies entirely outside
of Base model box, indicating a significant difference between the groups.

5 Conclusion and Future Work

In this work, we tried to see if there is any method that can extract the inherent
nature of a bank statement into features that can indicate repayment capacity to
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use in the credit risk prediction model. We found that we can convert the daily
credit time series to a daily credit network using the visibility graph method that
contains relevant features in its structural complexity. A cash flow times series
like bank balance or credit and debit movement of a business are very complex,
considering the social nature of the processes causing it. With this work, we
found that the network view of the bank statement can provide information
on the periodicity in the cash inflow and give insights into short term patterns
within the flow. Furthermore, various feature selection methods selected all the
features extracted from the visibility network as carrying value to the default
prediction problem. Other evaluation results also indicate the predictive power
of these network features over traditional predictors.

The immediate future step would be to explore how we can use debit networks
in a similar way. Finding more network measures that can give information about
both the credit and debit visibility network together can also be considered.
Using tools like Gephi [20] on the constructed networks to find more information
than the one available from a simple visual study will also help bring out more
structural patterns. Another future approach is to study how these networks can
be classified based on their businesses cash flow.
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Abstract. Deep Neural Network (NN) architectures often achieve super-human
performance in many application domains. Recent models are made of up to
billions of parameters (e.g. GPT2 and GPT3 for Natural Language Processing)
and require massive training resources. How can these models be trained on
sequences of tasks without negatively affecting each other? Continual Learning
(CL) methods tackle the problem of incrementally updating NN models with new
tasks while retaining the performance on previously learned tasks. In this paper,
we propose a continual learning (CL) technique that is beneficial to sequential
task learners by improving their retained accuracy and reducing catastrophic for-
getting. The principal target of our approach is the automatic extraction of modu-
lar parts of the neural network (NN) and then estimating the relatedness between
the tasks given these modular components. This technique is applicable to the
CL family of rehearsal-based (e.g., the Gradient Episodic Memory) approaches
where episodic memory is needed. Empirical results demonstrate remarkable per-
formance gain (in terms of robustness to forgetting) for methods such as GEM
based on our technique, especially when the memory budget is very limited.

1 Introduction

Despite the success in outperforming humans on complex tasks, such as playing Go
with and without human guidance [24,25], machine learning methods still lack the
human ability to retain learned skills without forgetting [5,12,16,21]. Continual learn-
ing is a branch of lifelong learning that tackles task knowledge accumulation, while
minimizing the effect of forgetting how to perform on previously trained tasks. In
recent years, there have been significant advancements in mitigating catastrophic for-
getting through different learning schemes. The regularization-based methods such
as EWC [12] and R-EWC [15] penalize model updates that are harmful to previ-
ously observed tasks. Rehearsal-based methods such as GEM [16], AGEM [5], and
iCaRL [21] aim at weakening the forgetting by replaying real or pseudo examples while
learning new tasks.

Despite satisfactory performances achieved by these methods, they usually explic-
itly model the task-relatedness between the new task and previous ones in the learning
objective.

There are only a few exceptions that consider task-relatedness. Dynamically
expandable network (DEN) [28] computes the relatedness to decide whether the net-
work’s capacity should be increased in a layer-wise manner. The expert gate (EG) [1],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Bouadi et al. (Eds.): IDA 2022, LNCS 13205, pp. 290–301, 2022.
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on the other hand, trains a powerful autoencoder for each task and estimates the relat-
edness between the new task τ and the t-th old task with the reconstruction error of the
t-th autoencoder on the data from the task τ , thus, requiring an additional architecture to
compute the relatedness. Both methods follow a train-and-evaluate framework to esti-
mate the task relatedness, which is always computationally expensive and sensitive to
the selected models. For example, if one resorts to a powerful autoencoder in EG, this
autoencoder could likely fit the data from all tasks with just marginal differences. Task
rehearsal method (TRM) [26] is one of the early works that measure the relatedness in
the task sequential setting. This relatedness is then used to generate rehearsal examples
to achieve transfer learning in a functional manner. Despite the explicit relatedness com-
putation in these methods, the absence of the network’s modular decomposition causes
the modular-relatedness to be ignored. In our work, we model the relatedness not only
among tasks, but also with respect to parts of the NN that we group in modules.

Motivated by evidence from neuropsychology and neurobiology that animal and
human brains are organized into segregated modules based on their functionality [2],
a modular neural network is an aggregation of computationally independent sub-
networks.

In this work, we present a general approach to mitigate task forgetting by deriving
a technique that integrates task relatedness into the learning of modular networks. The
detailed contributions of this paper are twofold:

(i)A novel CL framework based onmodularization and relatedness (Sect. 3): It enables
the automatic discovering of groups of neurons (in each layer) that are mutually inde-
pendent or less dependent, and proposes an adaption of the learning process to consider
the relevance between tasks given each of these groups.
(ii) An example realization of how modular-relatedness could be implemented: As a
proof of concept, we propose a modular extension to GEM.

2 Background Knowledge

2.1 Continual Learning Problem Definition

Sequential task learning: Consider N classification tasks T = {(Xt, Yt)|t ∈
{1, . . . , N}}, where each task Tt is represented by the set of Nt data samples Tt =
{Xt, Yt} = {(xti, yti) : i ∈ {1, ..., Nt}}, xti ∈ R

pt is an input instance with pt

dimensionality, while yti ∈ Yt = {c1, . . . , cmt
} is a class label taken from mt unique

categories. This formulation is the generic one that multi-task and continual approaches
often consider. For simplicity, we target the setting when pt = p, mt = m, and Yt = Y

for all t ∈ {1, . . . , N}.
Neural network parametrization: Consider representing the neural network by the

function f(x; θ) : Rpt → [0, 1]|Y| that computes the scoring function fc(x; θ) for each
category c ∈ Y being the correct label for the instance x through a multi-layered neural
network parameterized by θ ∈ Θ. For a D-layered network, the set of parameters θ =
{ωd

ij , b
d+1
j |d ∈ 1, . . . , D − 1} contains the weights ωd

ij of the connections between the

units ud
i in the dth layer and the units ud+1

j in the (d+1)th layer, and the bias terms bd
j of
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the units in the dth layer. The scoring function resulting from the forward propagation
in the D-layered network takes the form:

fj(x; θ) = φ

(∑
i

ωD−1
ij oD−1

i + bD
j

)
(1)

od
j = φ

(∑
i

ωd−1
ij od−1

i + bd
j

)
, (2)

where od
j is the jth unit’s output at the dth layer, o1j represent the features of the input

data, and φ is an activation function. In this regard, Eq. (2) is indeed the function od
j (x)

that computes the representation of x given all the units of the previous layers 1, . . . , d−
1 and the connections from layer d − 1 to the unit ud

j . For a given loss function L,
multi-task learning methods aim at finding a general parametrization θ that minimizes
the objective

∑
t∈T

E(xt,yt)∼Tt
L(f(xt; θ), yt) [7], i.e., observing all tasks at the same

time and minimizing their joint loss simultaneously. Generally speaking, after learning
on t − 1 tasks, continual learning aims at finding θt that is the least harmful to the
previous tasks:

argminθt
E(xt,yt)∼Tt

L(f(xt; θ), yt) (3a)

s.t. E(xk,yk)∼Tk
L(f(xk; θt), yk) ≤ E(xk,yk)∼Tk

L(f(xk; θt−1), yk) : k < t ,

even without having the ability to access {Xk, Yk} for k < t. Failing to satisfy the
conditions in (3) means a deterioration of performance on previous tasks, which is often
referred to as catastrophic forgetting.

2.2 Modular Networks

Layer-wise modularization methods aim to assign each unit ud
i (in layer d) to a group

gk. As a result, the groupings gd
1 , . . . , g

d
Kd

of the dth layer’s units are created, where Kd

is the number of groups. From each group gd
i , the function Gd

i can be defined as

Gd
i (x; θ) : R

pt → R
|gd

i |, Gd
i (x; θ) = [od

j (x)|ud
j ∈ gd

i ] . (4)

2.3 Gradient Episodic Memory

GEM [16] is a rehearsal-based continual learning method with an episodic memory M
storing a subset of the observed examples. For a total number of N tasks, for each task
Tk, the set of examples Mk is preserved where |Mk| = |M |/N . GEM’s main aspect is
constraining the loss on the episodic memory to decrease while updating the network’s
parameters on the new task Tt. This is achieved by adding the decrease of the loss,
l(f(; θ),Mk) = 1

Mk

∑
(xi,yi)∈Mk

l(f(xi; θ), yi), on M as a constraint in the search for
parameters after observing the example (x, y) from the current task Tt:

argmin
θ

l(f(x; θ), y) (5a)

s.t. l(f(; θ),Mk) ≤ l(f t−1(; θ),Mk) : k < t , (5b)
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where f t−1(; θ) is the found parameterization after learning the previous t − 1 tasks.
Solving problem (5) can be done efficiently by inferring an increase in the loss from the
angle between the gradients of the loss before and after the update, which we refer to
as qk and q, respectively. If all these constraints (a constraint for each previous task Tk)
are satisfied, then the episodic memories’ losses should not increase. However, when
one of these constraints is violated, the authors propose to project the gradient q to the
closest gradient q̃ in squared l2 norm, i.e., solving the following problem:

argmin
q̃

1
2 ‖q − q̃‖22 (6a)

subject to 〈q̃, qk〉 ≥ 0 for k < t . (6b)

Problem (6) has the primal quadratic program:

argmin
z

1
2z�z − q�z + 1

2q�q (7a)

subject to Rz ≥ 0 , (7b)

where R is the matrix of the negative gradients on all previous t − 1 tasks computed on
the episodic memories Mk, R = −(q1; . . . ; qt−1). Instead of solving the primal prob-
lem (7) whose number of variables could be in millions (the number of the network’s
parameters |q̃| = |θ| = |Θ|), the following dual problem is defined

argmin
V

1
2v�RR�v + q�R�v (8a)

subject to v ≥ 0 . (8b)

Upon finding v, the projected gradient is computed as q̃ = R�v + q.

3 General Approach

In the following, we describe a general method that exploits the relation between two
tasks given a subset of parameters (module) of the network. This method lies in the
spectrum between looking at every parameter in its singularity (EWC) and taking all
parameters at once (GEM). As observed by Ramasesh et al. [20], we hypothesise that
tasks’ overwriting (leading to forgetting) becomes inevitable between tasks similar in
the representation space.

3.1 Relatedness Estimation

At first, we introduce a measure of similarity (relatedness) between tasks’ rep-
resentations. Given the kth module in the dth layer, gd

k , the tasks T1 and Tt,
and their underlying sampling probability distributions, P1 and Pt, the estimate
of their divergence conditioned on gd

k is given by D(P1(y|x; gd
k)||Pt(y|x; gd

k)) =
D(P1(y|Gd

k(x)||Pt(y|Gd
k(x))). In this work, we measure the divergence from

P1(y|Gd
k(x)) to Pt(y|Gd

k(x)) with the recently suggested Bregman-correntropy con-
ditional divergence [29], which avoids the density estimation of the data and is more
statistically powerful than the classical KL. For brevity, we give its definition as fol-
lows.
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Fig. 1. The general approach of modular-relatedness for continual learning. Phase 1: training
the initial model parameters θ = {ωd

ij , b
d+1
j |d ∈ 1, . . . , D − 1} on the first task, T1. Phase

2: the induction of the modular groups {gd
1 , . . . , gd

Kd
} for each layer d ∈ {2, . . . , D − 1}.

Phase 3: computing the covariance matrices σGd
k
(x)y and σGd

k
(x) characterizing P1(G

d
k(x), y)

and P1(G
d
k(x)), respectively, for each group gd

i . For each forthcoming task Tt, Phases 4 and
5 are performed iteratively. Phase 4: for each group, gd

i , computing the discrepancy between
the conditional distributions of the current task Tt and the previous tasks Tk (k < t). Phase 5:
employing the computed discrepancies for the training on the next batches of data.

Definition 1. The asymmetric conditional discrepancy [29] between the two condi-
tional probability distributions PA(y|x) and PB(y|x) is defined as the quantity:

Dϕ,B(PA(y|x)‖PB(y|x)) = Dϕ,B(σxy‖ρxy) − Dϕ,B(σx‖ρx), (9)

where σxy, ρxy ∈ Sp+1
+ denote positive semidefinite matrices characterizing the joint

probability distributions PA(x, y) and PB(x, y). Similarly, σx, ρx ∈ Sp
+ character-

ize the marginal distributions PA(x) and PB(x). Dϕ,B is the Bregman matrix diver-
gence [13] Dϕ,B(σ‖ρ) = ϕ(σ) − ϕ(ρ) − tr((∇ϕ(ρ))T (σ − ρ)) between the two pos-
itive semidefinite matrices σ, ρ ∈ Rn×n, where ϕ : Rn×n → R is a strictly convex
and differentiable function. The Bregman divergence represents a class of divergence
functions where the von NeumannDvN and the LogDetD�D divergences can be instan-
tiated based on the choice of ϕ1. One realization of σ and ρ could be the covariance
matrix or the centered correntropy matrix [6]. The symmetric conditional discrepancy
is defined as:

Dϕ,B(PA(y|x) :: PB(y|x)) = 1
2
(Dϕ,B(PA(y|x)‖PB(y|x))

+ Dϕ,B(PB(y|x)‖PA(y|x))).
(10)

For simplicity, we omit the subscripts of the Bregman matrix divergence Dϕ,B in the
remainder of the paper.

1 Setting ϕ(σ) = (σ log σ − σ) gives the von Neumann divergence [18]: DvN (σ‖ρ) =
(σ log σ − σ log ρ − σ + ρ). log σ is the matrix logarithm. Setting ϕ(σ) = − log detσ gives
the LogDet divergence: D�D(σ||ρ) = ∑

i,j
λi
θj
(vT

i uj)
2 − ∑

i log
(

λi
θi

) − n.
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3.2 Modularization

The measure of relatedness between tasks T1 and Tt given the module gd
k would be

inversely proportional to the symmetric discrepancy D(P1(y|Gd
k(x)) :: Pt(y|Gd

k(x))),
as defined in (10). The general approach, depicted in Fig. 1, starts by learning the
model’s parameters on the first task T1 and then finding the modular groups for each
network’s layer. The choice of modularization method, in our approach, is a generic
component that where any modularization can be used. Having defined (or induced)
modules, we compute for the first task, T1, and for each following task, Tt, the covari-
ance matrices σGd

k(x)y
and σGd

k(x)
of Pt(Gd

k(x), y) and P1(dk(x)) for each module gd
k ,

needless to say that this computation can be efficiently performed in one pass.
The computed covariances allow us to estimate D(Pt(y|Gd

k(x)||Pj(y|Gd
k(x))) for

each j < t for each Gd
k; the estimation can be theoretically re-computed after each

sample or each batch (depending on the available computation resource). The estimated
divergence is the core element used in each training step, depending on the training pro-
cedure and objective. In the next sections, we present a realization of how the technique
outlined here can extend state-of-the-art methods to lessen catastrophic forgetting.

4 Modular-Relatedness for Rehearsal-Based Continual Learning

4.1 Modular GEM

TheModularization and Relatedness application to GEM consists of two main aspects:
(i) the modular partitioning of the units of each of the network’s layers, and (ii)
the discrepancy estimation of each task’s representation projected in each group.
The first aspect concerns the creation of the groups gd

1 , . . . , g
d
Kd

for each layer d ∈
{2, . . . , L − 1}, and the second aspect leads to the computation of the discrepancy
(rd

i )k = D(Pt(y|Gd
i (x; θ)) :: Pk(y|Gd

i (x; θ))) between task Tt and each previous task
Tk (k < t) given the group gd

i , see the definition of the discrepancy in Eq. (10).
The first part, grouping, allows us to slice the gradients q of problem (6) into q1

the gradient for the first layer’s parameters, and qd
i the gradients for each group gd

i in
each layer d ∈ {2, . . . , L}, since each group gd

i concerns the set of parameters θd
i =

{ωd
ij , b

d+1
j |ui ∈ gd

i ∧ for each j}. Similarly, the gradient projection q̃, that is searched
for, becomes q̃1 and q̃d

i for each group gd
i . This formulation allows us to change the

constraints such that the inner product is computed on the group-wise gradients and not
on all parameters at once. Therefore, we formulate the new problem

argmin
q̃

1
2

‖q − q̃‖22 (11a)

subject to 〈q̃d
i , (qd

i )k〉 ≥ (hd
i )k for each (gd

i )k, k < t , (11b)

subject to 〈q̃1, (q1)k〉 ≥ 0 for k < t , (11c)

where (hd
i )k is proportional to the inverse of exp(−(rd

i )k) and normalized over the seen
tasks Tk (k < t). In other words, for a group that establishes a strong relation between

the current and the previous task, the angle between its gradients q̃d
i and (qd

i )k should
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be smaller than that when such a relation is absent. The primal problem of the quadratic
program solving (11) becomes: argminz

1
2z�z − q�z + 1

2q�q subject to Rz ≥ H .
Finally, we solve the dual problem

argmin
V

1
2v�RR�v + q�R�v (12a)

subject to v ≥ h . (12b)

As in (8), the new projected gradient is computed as q̃ = R�v + q.

4.2 Network Modularization

In this work, we suggest to employ log-likelihood modularization at the neuron-level.
Log-likelihood modularization: This type of modularization searches for the grouping
that maximizes the likelihood of the neurons’ group assignment. Watanabe et al. [8]
propose a modular decomposition of trained neural networks into a set of indepen-
dent sub-networks. This decomposition considers each unit’s assignment ud

i (in layer
d) to a group gk as a latent variable, and defines the probability for each group to
connect to each neuron of the previous and the following layers as a parameter. These
parameters and the group assignment are found by maximizing the likelihood of observ-
ing the groups given the connections to the previous and following layers, d − 1 and
d + 1, respectively. To this end, the expectation-maximization algorithm is iteratively
employed to find the groups.

4.3 Complexity Analysis

The complexity for computing the conditional discrepancy (rd
i )k =D(Pt(y|Gd

i (x; θ)) ::
Pk(y|Gd

i (x; θ))) between task Tt and a previous task Tk (k < t) given the group gd
i

constitutes the following: (i) computing the covariance matrices σGd
i (x)y

and σGd
i (x)

,

for each of task Tt and task Tk, takes O(N(|gd
i | + 1)2) where |gd

i | is the size of the
group gd

i and N is the batch size. (ii) Computing JvN on two covariance matrices
fromR(|gd

i |+1)×(|gd
i |+1) requires the eigenvalue decomposition which is (O(|gd

i |+1)3).
Hence, the final complexity for a batch is O((|gd

i | + 1)3 + N(|gd
i | + 1)2). Notice that

this complexity is independent of the dimensionality of the data and is only controlled
by the dimensionality of the features.

5 Related Work

5.1 Continual Learning

Regularization-based CL methods add a penalty term to the learning objective such that
older knowledge is retained when learning on new tasks. Elastic weight consolidation
(EWC) [12] penalizes the change of each parameter by a weight proportional to the
diagonal Fisher information matrix (FIM) (the diagonal of the inverse Hessian of the
negative log-likelihood). R-EWC [15] suggests rotating the parameter space such that
FIM is diagonal. Synaptic intelligence (SI) [30] measures the accumulative contribu-
tion of each parameter to the loss change as a measure of importance instead of FIM.
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Another important family of methods is the replay-based methods that maintain a small
set of examples of previous tasks to be rehearsed during the learning on the new task.
Gradient episodic memory (GEM) [16], for example, employs the memory examples
to constrain the direction of the model’s update to reduce performance deterioration
on the memory. Averaged GEM (AGEM) [5] is one of GEM’s extensions that sug-
gest an averaging over GEM’s constraints to gain computational efficiency. This family
also includes pseudo-rehearsal methods [23] that apply random input to previous mod-
els to simulate previous tasks. Later, we elaborate more on GEM, as a representative
of the family of replay-based methods, and present our extensions using the proposed
technique. Other CL families include parameter isolation methods, generative coreset
methods; the surveys [14,19] and [10] offer an extensive overview of the topic.

5.2 Modular Neural Networks

Neural networks were developed with inspiration from human brain structures and func-
tions. The human brain itself is modular in a hierarchical manner. The learning process
always occurs in a very localized subset of highly inter-connected nodes that are rela-
tively sparsely connected to nodes in other modules [17]. That is to say that the human
brain is organized as functional, sparsely connected sub-networks [9]. Many existing
works in neural networks can be analyzed and interpreted from the perspective of mod-
ularization. In general, there are three levels of modularization: modularization in a
sub-network; modularization in a layer-wise manner; and modularization concerning
specific neurons or groups of neurons. The majority of methods realize modularization
in a layer-wise level. For example, [11] developed a way to greedily learn each layer of
a neural network without backpropagation via approximating gradient signals locally at
each layer.

In [8], the authors propose a community detection-based method that partitions each
layer into maximally independent and mutually exclusive modules. In this work, we
focus on the modularization in a neuron-level, such that a set of functionally connected
neurons in each layer are automatically identified and grouped.

6 Experiments

6.1 Setting: Online Continual Learning

In the following, we present the experimental results using the online setting proposed
in [22]. In this setting, the samples of each task form a sequence that is observed only
once, i.e., single pass. We use a simple neural network architecture, a fully-connected
network with two hidden layers (100 units) and single head. The input layer is of size
28×28, and the single head output layer has 10 neurons. The architecture is comparable
to that employed in [16]. The ReLu activation function is used in the hidden layers, and
SGD is used to minimize the softmax cross-entropy on the output predictions.

Datasets and Performance Measures. We use for the evaluation the following data
sets: (i) MNIST Permutations (mnistP) [12], (ii) MNIST Rotations (mnistR) [16],
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(iii) Permuted Fashion-MNIST (fashionP) [27], and (iv) Permuted notMNIST (notm-
nistP) [3]. Images of all these data sets are of the same size, 28 × 28 pixels.

To measure the learning-ability and resistance to forgetting, we compute the often
used performance measures: (i) Learning accuracy (LA) is the average accuracy on each
task after directly learning it. (ii) Retained accuracy (RA) is the averaged performance
on all tasks after learning on all tasks. (iii) Backward transfer (BT) is the difference
between LA and RA [4], hence, it measures the loss in performance due to forgetting.

Comparison Protocol. In our framework, we claim to improve the performance of
continual learning methods by showing how modular-relatedness to previous tasks can
be exploited to prevent catastrophic forgetting. To verify this claim, we evaluate our
extension, ModGEM, which alters GEM as a representative of rehearsal-based methods.
We compare the performance of ModGEM against that of its original method, GEM,
and the Meta-Experience Replay (MER) [22]. To ensure a fair comparison, we per-
form a grid-based hyperparameter search on each data set for each method; the search
protocol and the found parameters are reported in Appendix A.

In the following experiment, we observe a sequence of ten tasks with only 1000
samples per task. The evaluation is performed on 10,000 for each task.

As for the modularization method, we implement the community detection-based
modularization [8] using ten iterations and then choosing the detected modules with the
highest log-likelihood. We also fix the number of groups to be Kd = 5 for ModGEM.

Comparing Mod-GEM Versus GEM. In this experiment, we compare at first Mod-
GEM versus GEM, using the above described online setting while restricting the mem-
ory budget to be ten samples per task.

Table 1 shows that ModGEM outperforms GEM on each of notmnistP, mnistP and
fashionP with margins of 4%, 4%, and 2% retained accuracy, respectively. The only
exception here is mnistR, where GEM is only 1.6% better than ModGEM. Both meth-
ods have relatively the same learning accuracy, which results in a better backward per-
formance achieved by ModGEM. The gain in both LA and RA that our modification
causes to GEM is accompanied by a better backward transfer (BT) on all data sets
except for mnistR. Similarly, ModeGEM outperfroms MER in terms of LA on all data
sets, and has a better RA performance on notmnistP and fashionP with a large margin,
and has a similar performance on mnistP.

Fig. 2. Retained accuracy performance curves for ModGEM, and its original method GEM. The
curves are computed when the memory budget is taken from the set {5, 10, 15, 20}.
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Table 1. Performance comparison between ModGEM, GEM and MER. The numbers in paren-
theses are the standard errors (SE) of the means in the former row.

MER GEM ModGEM

Data RA LA BT RA LA BT RA LA BT

notmnistP 50.6 55.1 −4.6 64.2 78.6 −14.36 68.41 80.51 −12.1

(0.7) (0.8) (0.7) (0.4) (0.1) (0.4) (0.2) (0.1) (0.2)

fashionP 53.3 61.2 −7.8 56.86 67.4 −10.54 58.47 67.52 −9.05

(0.8) (0.9) (0.8) (0.18) (0.1) (0.17) (0.14) (0.06) (0.15)

mnistR 81.2 81.3 −0.2 75.75 85.05 −9.3 74.15 85.19 −11.04

(0.2) (0.2) (0.2) (0.2) (0.07) (0.21) (0.22) (0.06) (0.19)

mnistP 68.9 75.9 −7.0 64.4 80.38 −15.97 68.57 80.37 −11.8

(0.3) (0.2) (0.3) (0.25) (0.07) (0.26) (0.14) (0.11) (0.12)

Modular-Relatedness Under Different Memory Constraints. In this experiment,
we evaluate the effect of different memory budgets on RA of GEM, and our proposed
method. The experiments vary the memory size from the set {5, 10, 15, 20}. Figure 2
depicts the RA curves versus the memory budget (x-axis). The subfigures show how the
curves of ModGEM, most of the time, dominate those of GEM and with a large margin.
There is, sometimes, the trend for GEM to improve when more memory is granted, and
its curve does meet with that of ModGEM on the fashionP data. This result indeed con-
firms our intuition that the modular-relatedness plays the role of an augmented memory
when memory budget is scarce, moreover, ModGEM seems to offer an empirical upper
bound of what GEM can achieve, as confirmed on notmnistP, fashionP and mnistP.
Interestingly, no clear pattern can be deduced from Fig. 2(c) on mnistR since the differ-
ence between the two curves does not exceed 1%.

7 Conclusion

In this work, we present a modularization and relatedness technique that exploits
tasks’ modular-relatedness based on the discrepancy of their latent representations. The
method automatically discovers groups of neurons (modules) in each layer, and, given
these modules, adapts the learning process to account for the tasks’ relatedness. We
apply this technique to GEM and propose Mod-GEM. A significant performance gain
is observed on the learning and retained accuracy using Mod-GEM compared to GEM.
Future work is twofold. First, we aim at studying the applicability of our technique in a
broader spectrum of continual learning families. Second, we are investigating the use of
this technique in meta-learning, where task relatedness plays an essential role in choos-
ing the right prior. Here modular-relatedness would help in choosing the right prior over
the modular sub-networks.
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A Hyperparameter Search

To ensure a fair comparison, we start with a grid-based hyperparameter search for each
of the methods on each of the datasets using a sample of 5 tasks and 300 samples per
task. For GEM, we search for the parameters, the learning rate lr ∈ {0.001, 0.003, 0.01,
0.03, 0.1, 0.3, 1.0} and the margin mg ∈ {0.0, 0.1, 0.5, 1.0}. The found parameters are
reported in the following:

– GEM found hyperparameters
• lr ∈ {0.001, 0.003, 0.01 (notmnistP,mnistR, mnistP, fashionP), 0.03, 0.1, 0.3,
1.0 }

• mg ∈ {0.0 (notmnistP,mnistR, mnistP, fashionP), 0.1, 0.5, 1.0}
– Meta-Experience Replay found hyperparameters:

• learning rate: lr ∈ {0.001, 0.003, 0.005, 0.01, 0.03, 0.1 (fashionP, mnistP,
mnistR, notmnistP) }

• across batch meta-learning rate: γ = 1
• within batch meta-learning rate: β ∈ {0.01 (fashionP, mnistP, mnistR), 0.03
(notmnistP), 0.1, 0.3, 1.0}

Without any further tuning, we adopt the same found parameter to our proposed modifi-
cation. As for the relatedness measure, we employ (10) when Dϕ,B is the von Neumann
divergence by setting ϕ(σ) = (σ log σ − σ). σ is the covariance matrix of each task’s
latent representation at each group.
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InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto,

Porto, Portugal
3 BIOPOLIS Program in Genomics, Biodiversity and Land Planning,

CIBIO, Campus de Vairão, Porto, Portugal
4 LIAAD-INESC TEC, Porto, Portugal

Abstract. Biodiversity loss is a hot topic. We are losing species at a
high rate, even before their extinction risk is assessed. The International
Union for Conservation of Nature (IUCN) Red List is the most complete
assessment of all species conservation status, yet it only covers a small
part of the species identified so far. Additionally, many of the existing
assessments are outdated, either due to the ever-evolving nature of taxon-
omy, or to the lack of reassessments. The assessment of the conservation
status of a species is a long, mostly manual process that needs to be
carefully done by experts. The conservation field would gain by having
ways of automating this process, for instance, by prioritising the species
where experts and financing should focus on. In this paper, we present
a pipeline used to derive a conservation dataset out of openly available
data and obtain predictions, through machine learning techniques, on
which species are most likely to be threatened. We applied this pipeline
to the different groups within the Reptilia class as a model of one of
the most under-assessed taxonomic groups. Additionally, we compared
the performance of models using datasets that include different sets of
predictors describing species ecological requirements and geographical
distributions such as IUCN’s area and extent of occurrence. Our results
show that most groups benefit from using ecological variables together
with IUCN predictors. Random Forest appeared as the best method for
most species groups, and feature selection was shown to improve results.
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1 Introduction

Biodiversity loss is causing several emerging problems to humankind [5,14].
Health issues, reduced food security, increased contact with diseases and more
unpredictable weather events have been related to biodiversity loss and estimated
to be worsened by it in the future. Reptiles in particular, play an important role
in keeping ecosystems healthy and balanced by serving as predators and preys,
pollinators or seed dispersers [17]. In the face of global environmental change, it
is vital to understand how much biodiversity is being lost. Knowing which species
are most at risk of becoming extinct is vital to guide decision making and to
establish priorities for conservation efforts, resource allocation and reevaluation
of conservation status.

This study proposed a working pipeline for data preparation, modelling and
evaluation. The goal was to create a model of the conservation status of species
in the Reptilia class that could be used to make predictions for species not yet
evaluated. The modelling task was formulated as a binary classification problem,
where species were labelled as either threatened or non-threatened according to
IUCN criteria. IUCN assessment relies mainly on two predictors based on the
spatial distribution of presences of a given taxon: the Extent Of Occurrence
(EOO) and the Area Of Occupancy (AOO). We compared different sets of pre-
dictor variables for each group of species to evaluate the impact of using ecolog-
ical and geographical variables, both by themselves and with other predictors
used by IUCN.

The main contributions of our work were: (i) a curated dataset of ecogeo-
graphical and conservation data for reptiles, (ii) a processing pipeline applicable
to multiple taxa, and, (iii) the first large scale study testing several models to
automate the assessment of conservation status of one of the most under-assessed
taxonomic groups, the reptiles, (iv) a comparison and comment on predictor
importance, including experimental results and discussion on the usage of dif-
ferent groups of variables to augment two traditional predictors used by IUCN.

The paper was organised as follows. In Sect. 2 we reviewed the state of the art
of studies conducted in this area. In Sect. 3 we described our proposed pipeline to
gather and preprocess the occurrence data from multiple sources, aggregating it
into a species dataset, and building and evaluating the model. In Sect. 4 we laid
out the experimental setup and presented the results. We concluded in Sect. 5 by
discussing the outcomes of our work and its potential future applications. Finally,
due to space limits, the complete description of features considered in the species
dataset, the subset selected for each group and detailed results obtained in the
modelling phase were made available in bit.ly/3coZNC0.

2 Related Work

Even though standards and guidelines are still being defined for the application of
data science to ecology and conservation, several works in ecology have emerged
in recent years. In particular, machine learning techniques have been applied to
predict conservation status at a global or continental scale [2,12,15].

http://bit.ly/3coZN0
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In a previous work, the authors focused on the flora of the African continent
and created a complementary method, the Preliminary Automated Conservation
Assessments (PACA) [15]. It used large numbers of species data from RAINBIO
and GBIF and estimates thereof and, based on the IUCN Criteria A (estimation
of population reduction) and B (estimation of geographic distribution), automat-
ically categorised species using six preliminary levels. Those levels could then be
used to prioritise more extensive and detailed conservation assessments. Other
works also devised a workflow to facilitate the process of predicting conservation
status of multiple taxa [12]. Like the previous work, this method was applied
to land plants (over 150,000 species), but at a global level. It used geographic,
environmental and morphological trait data and applied a Random Forests (RF)
to predict the conservation status. Comparing the results from two datasets, one
with spatial data only and another with spatial and morphological, the authors
concluded that the spatial-only performed better, possibly due to the lack of
morphological data, which led them to use fewer data points. A comparison
between recent studies using machine learning methods can be seen in Table 1.

Table 1. Summary of related work applying machine learning to assess the conser-
vation status of species. For each work, the scale, variables, classification type, tested
algorithms, and target taxonomic group is given.

Source Scale Variables Response Algorithms Group

[1] Global Geographic

Ecological

Human impact

Binary Decision trees, RF,

boosted trees, k-NN,

SVM, NN,

Mammals

(terrestrial)

[2] Global Physiological

Geographic

Ecological

Human impact

Binary RF Reptiles

[4] Global Taxonomic

Geographic

Human impact

Conservation action

Binary RF Plants

(bulbous

monocot)

[8] Local Physiological

Geographic

Ecological

Continuous Decision trees,

regression models

Plants

(angiosperms)

[10] Global Taxonomic

Physiological

Geographic

Ecological

Multi-class CLMM Fish (groupers)

[11] Global Taxonomic

Geographic

Ecological

Human impacts

Binary RF non-ML methods Plants (several

groups)

[12] Global/

Continental

Geographic

Ecological

Morphological

Binary RF Plants

(terrestrial)
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3 Methodology

3.1 Preliminaries

The IUCN Red List of Threatened Species (https://www.iucnredlist.org/) is
the most complete source of information on the conservation status of species.
The IUCN assessment of conservation status consists of nine categories, seven
of which representing different levels of extinction risk. In decreasing levels of
concern: Extinct (EX), Extinct in the Wild (EW), Critically Endangered (CR),
Endangered (EN), Vulnerable (VU), Near Threatened (NT) and Least Concern
(LC). EX and EW represent species that are thought to no longer exist or to
exist only ex situ. Species under CR, EN or VU categories are considered as
Threatened, while NT and LC are considered Non-Threatened species. Data
Deficient (DD) includes species that were evaluated, but there was not enough
data to place them under a levelled category. DD and Not Evaluated (NE)
represent species not assessed. It is not known whether they are threatened or
not, so IUCN advises caution not to assume they are safe. Species may be very
close to extinction, but due to the lack of data or formal evaluation they fall into
one of these two categories.

IUCN Red List uses five criteria (A-E) which are meant to be usable and
comparable across different taxa. This comparability ensures proper prioritisa-
tion decisions and standardises the process. Criteria take into account many
factors, including the number of populations, population trends, fragmentation
level, EOO, AOO, number of locations, and probability of becoming EW.

Based on IUCN criteria and labelled data, the classification models devel-
oped in this work discriminate between threatened and non-threatened species,
and were trained and evaluated using species where the conservation status was
known to fall under one of the five levels of threat from CR to LC. Predictions
were generated for DD and NE species.

3.2 Proposed Pipeline

We propose a five-steps pipeline to gather occurrences, construct a tidy dataset of
species, include relevant predictors, build machine learning models and evaluate
their performance, as follows.

Step 1: Occurrence Data. The first step was to retrieve occurrence data
from several sources. Occurrence data conveys the presence/absence of a species
in geographic (or cartographic) coordinates for a given point in time. Abun-
dance data may also be available, i.e. the number of observed individuals at a
given location and date of sighting. Here, we were only interested in presence
records, since one cannot be sure if an absence indicates that a species does not
exist in that location or habitat, or if it simply was not detected at observa-
tion time. Abundance data with counts higher than zero were also considered as
presences. Data was retrieved from four online open databases GBIF (https://
doi.org/10.15468/dl.kkfc5m), PREDICTS (https://www.predicts.org.uk/pages/
outputs.html), BioTIME (https://biotime.st-andrews.ac.uk/downloadFull.php),

https://www.iucnredlist.org/
https://doi.org/10.15468/dl.kkfc5m
https://doi.org/10.15468/dl.kkfc5m
https://www.predicts.org.uk/pages/outputs.html
https://www.predicts.org.uk/pages/outputs.html
https://biotime.st-andrews.ac.uk/downloadFull.php
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LPI (https://www.livingplanetindex.org). Each dataset was preprocessed and
merged into a single occurrence dataset without duplicate entries. These datasets
were filtered to contain only species of the class Reptilia and to include only data
points with a taxonomic rank of species or subspecies. Species taxonomic classifi-
cation in the ’Tree of Life’ is ever evolving. New findings from biologic and genetic
studies may lead species to be splitted or merged, subspecies to be promoted to
species or vice-versa. Since our data spans over decades, we needed a way to map
older records to the most up to date taxonomy. The Reptile Database (http://
www.reptile-database.org) contains taxonomic information of 11,440 reptiles, as
of December, 2020, including synonyms of each taxa and it was used to harmonise
the species names on our (presence-only) occurrence dataset. Predictor variables
used for model development were decided with the help of experts and literature
review. These provided information about species habitat describing climate,
vegetation, topography and geomorphology linked to presence data. These vari-
ables can be grouped into two main categories: (i) geographical and (ii) ecologi-
cal. Regarding geographical variables, which describe the spatial distribution of
species records, we had AOO and EOO along with latitude/longitude-derived
features. Regarding ecological variables, these features describe species habitat
and requirements linked to climate (temperature and precipitation), topography
(e.g., elevation, slope, surface roughness) as well as habitat heterogeneity calcu-
lated from satellite-based vegetation indices (e.g., fraction of vegetated cover).
In total we used 35 variables. Predictors were represented in raster layers which
allowed to extract values from each one using the geographic location of data
points. Marine species were excluded from this analysis. Even though many of
them spend a part of their time on land, we would need to use a different set
of predictors that explains their marine habits and ecosystem better. Without
them, our models would not be able to learn from a significant part of their habi-
tats. Additionally, we assumed that occurrences of terrestrial species located on
water were due to imprecise coordinates. These points were imputed by looking
for the nearer land cell in a radius incremented by 1 up to 10 km. Reptile taxa
reside mostly in tropical or temperate climates, so coordinates falling in extreme
latitudes (larger than 70oN or 70oS) were removed from the dataset. Moreover,
occurrences without the observation year, or before the year 2000 were discarded
due to the uncertainty associated with older positioning systems such as GPS or
GLONASS. After this filter, our occurrence dataset spanned two decades, from
2000 to 2020. Lastly, only species with at least 20 occurrences as suggested in
[13] were kept, to have a minimum amount of information for model training.

Step 2: Relevant Features. Occurrences were divided into five groups by their
species’ clade, namely, amphisbaenians, crocodiles, lizards, snakes and turtles.
Tuataras were intentionally left out, since this clade comprises only one species
with very unique characteristics and do not fit into any of the other groups. A
6th group contained the data points of all taxa. The original set of ecological
variables contained 29 features from the three groups detailed before (19 climatic,
4 topographic and 6 habitat heterogeneity predictors). This was a large number
of features for the amount of species present in each group, and many of these

https://www.livingplanetindex.org
http://www.reptile-database.org
http://www.reptile-database.org
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variables are known to be highly correlated. Moreover, each reptile group has
different characteristics, which may lead to different environmental needs. To
better model the conservation status of each group, we selected different sets of
variables for each one and ran a Principal Component Analysis (PCA) on the
occurrences for each group. From these, we kept the variables that maximise the
variance of each of the top PCA dimensions, according to the Pearson criteria by
retaining 80% of the variance, keeping the actual original variables. The pipeline
can be applied to other taxa by picking an appropriate set of original variables
for those species.

Step 3: Species-Level Dataset. At this point, presence data was aggregated
from spatial occurrences to the species level to match the target variable (i.e.,
IUCN species threat status). This was done by calculating the mean and the
standard deviation of each of the ecological predictors selected by the PCA step,
to express how much a species was able to occupy habitats with different range
of environmental conditions aiming to describe species realised niche (i.e., a
n-dimensional hypervolume). Moreover, the geographical features were created
from the occurrence data and added to the species datasets. Note that our goal
was to make predictions for the current risk of a species being threatened, and not
to predict its future threat level. The labels were extracted from the IUCN threat
level, and matched with the corresponding species already manually assessed.
IUCN categories CR, EN and VU were classified as threatened and, the NT
and LC categories as non-threatened. Binarization was performed to increase
the discriminative power, as some threat categories had a low number of species.
DD and NE do not have a risk value, so they were not used for training. The
result of this step was a set of six species level datasets, corresponding to the five
groups of species, plus the entire species pool aggregating all previous groups.
The characteristics of these datasets are presented in Table 2.

Table 2. Dataset characterization for each group. The number of examples (species,
Nsp) and variables (Nv), the imbalance ratio (IR) and the minority class (threatened,
T, or non-threatened, nT) is given for each group.

Group Nsp Nv IR Minority class

Amphisbaenians 19 21 0.73 nT

Crocodiles 21 23 0.91 nT

Lizards 2103 21 0.52 T

Snakes 970 21 0.36 T

Turtles 147 23 0.62 nT

All species 3260 24 0.50 T

None of the datasets had a perfect balance between threatened and non-
threatened species, but the imbalance was not too steep. For the most imbal-
anced groups, there were more non-threatened than threatened species, while the
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groups where threatened was the majority class tended to be less imbalanced.
Also, there was a big difference in the number of examples across the groups
of species. Independently of which was the minority class for a given group,
threatened was always used as the positive class.

Step 4: Predictive Modelling. Over the built datasets, we trained differ-
ent binary classification models to discriminate between threatened and non-
threatened species. An additional feature selection, using recursive feature elim-
ination [6], was tested to try to improve results further. Lizards, snakes and all
species groups, had a higher imbalance ratio and their minority class was the
class of interest, i.e., threatened species. In this domain, the cost of a false neg-
ative is higher, as it may lead to the lack of conservation efforts being allocated
to threatened species. On the other hand, a false positive may mean that the
already scarce funding would be distributed to species that do not need it. Thus,
we preferred to optimise sensitivity, but without losing too much specificity.

Step 5: Predict Conservation Status. In this last step of the pipeline, pre-
viously trained models were used to obtain predictions for previously unassessed
species (i.e. DD and NE according to IUCN criteria). These species are of partic-
ular interest for this application given that the lack of information may imperil
them harder. To understand which factors contribute the most to predicting the
threat status of species, we also calculated variable importance scores.

The pipeline and feature selection workflow were summarised in Fig. 1.

Fig. 1. (a) The five steps of the data processing pipeline, and (b) the workflow used
for selecting the ecological and geographic variables for each dataset.

4 Experimental Results

We designed our experimental setting to answer the following research questions.
RQ1: Did the usage of ecological and other geographical variables, not typically
used in IUCN assessments, have an effect on the classification of species into
threatened or non-threatened? RQ2: What were the most important features
for the classification task? RQ3: Which modelling algorithms performed best?
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4.1 Datasets

The dataset resulting from the data integration contains 3260 reptile taxa
(species and subspecies). As previously mentioned, these were split into six
datasets representing highly distinct species groups: amphisbaenians, crocodiles,
lizards, snakes, turtles and all species.

To evaluate if there was a gain from using features other than AOO and
EOO, which are traditionally used by IUCN to generate assessments, we cre-
ated five distinct datasets for each group. All datasets contain the same set of
species, only the features vary. The first dataset—the baseline—only used the
values of AOO and EOO. Often, it was not possible to calculate these two values
accurately or these depict a shallow representation of the species niche hyper-
volume and, in those cases, it would be good to rely on a more complete proxy
set of features. To assess if environmental predictors would have a satisfying
performance and could be used without the presence of AOO and EOO, one
other dataset uses only ecological variables. A different dataset contained both
AOO and EOO, ecological variables and other geographical variables derived
from the occurrences data points: minimum and maximum latitudes, latitude
length, median longitude and median distance to the equator. For both the
dataset of ecological and of geographical features an extra step of feature selec-
tion was run, generating two more datasets. These are summarised as follows:
AOO EOO - dataset containing only AOO and EOO, the two most important
variables considered in IUCN assessments; EcoFeatures - dataset containing only
ecological variables; EcoFeatures FS - EcoFeatures dataset post-processed by a
feature selection step, using backwards selection; AllFeatures - datasets contain-
ing both AOO and EOO, and ecological variables, plus other geographical fea-
tures derived from the occurrences dataset; AllFeatures FS - AllFeatures dataset
post-processed by a feature selection step, using backwards selection.

At the end, we had 30 different datasets. Regardless of the groups, the first
dataset was our baseline, as we wanted to understand how the performance
of models using other datasets was comparatively to the one used for IUCN
assessment.

4.2 Experimental Setup

We used 2× 5-fold cross validation setup to train classification models, for each
group: RF, used by other recent studies in prediction conservation status of
species [4,11,12]; XGBoost, another ensemble strategy that has performed better
than RF in some settings; decision trees, a simple algorithm, which may have
better results in smaller datasets due to their smaller natural tendency to overfit;
GLM, extensively used in this domain [7], that creates a linear decision boundary,
which may be desirable for groups with a low species count; and, finally k-NN,
a traditional machine learning model. Each model was run in the entire dataset,
and in a subset of features selected by RFE [6], a backwards selection method,
keeping the minimum number of features to optimise model accuracy.
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Each algorithm used a grid search approach to tune the param-
eters for each dataset: RF [9] - mtry = {2, . . . , 7}, nodesize =
{1, . . . , 5}, ntree = {5, 10, 20, 50, 100, 200, 500}; XGBoost [3] - nrounds =
{5, 10, 20, 50, 75, 100, 200}, eta = {0.01, 0.1, 0.3, 0.5}, max depth = {2, . . . , 4},
colsample bytree = {0.5, 1} and min child weight = {1, . . . , 5}; k-NN [6] -
k = {1, . . . , 20}; and rpart [6] - max depth = {1, . . . , 14}. The range of val-
ues for the tuning of k in k-NN and max depth in rpart was chosen to allow a
good set of values to be tested without compromising too much on performance.
We stopped testing higher values when the performance of the models was not
improving for any group, C5.0 [6] and GLM [6] had no parameter tuning. Addi-
tionally, the classification threshold was also tuned, for each dataset and method,
by testing each value from 0.10 to 1, with increments of 0.05. The tuning process
maximised the sensitivity of the models, without letting specificity drop to values
lower than 0.7. Over the six algorithms used, a total of 1086 parameter values
were tested for the five datasets of each of the six groups of species, leading to
a total of 195,480 models trained using this tuning process.

The models were evaluated using sensitivity, specificity, precision, AUC, TSS
and F-measure with β = 0.5. These metrics are common when dealing with
imbalanced data. AUC and TSS, in particular, were used by other related stud-
ies (e.g., [16]). The used F-measure, a combined metric of precision and recall
(sensitivity), is aligned with the domain goals. Furthermore, to assess if the
performance of the models using a different dataset was significantly better
with respect to the baseline dataset (AOO EOO), we used the paired one-sided
Wilcoxon test. We also applied this test to the pairs of the ‘ecological’ and the
‘all’ features datasets, allowing us to test how the ecological variables alone would
perform against the all features as a baseline.

4.3 Results and Discussion

Figure 2 summarises the comparison between the five datasets using F0.5, AUC
and TSS, and for each of the six groups. Each dot represents the mean of the
results of a model across the 10 folds of our 2× 5-fold cross validation setup.
The standard deviation is represented by the vertical line. For a given group,
models with an opaque colour performed significantly better when comparing to
the results of the same algorithm over the AOO EOO dataset.

The results showed that most groups of species benefited from using eco-
logical and geographical features, since, for multiple groups, AllFeatures and
AllFeatures FS datasets performed better than AOO EOO dataset, at least for
some of the methods. Overall, models for smaller groups, namely amphisbae-
nians and crocodiles with only 19 and 21 species, respectively, had a larger
performance variation across algorithms. This reflects the importance of gath-
ering more species occurrence (or abundance) data and including a broader
set of species for modelling purposes. These results also suggested that when
deciding on how to group species for modelling, one should balance between
having groups that reflect species with similar taxonomic, phylogenetic and/or
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functional characteristics (to be represented by the same set of variables), and
also, having enough data points for the methods to be able to properly learn
and to generalise.

The results of the best models for each of the six groups, accord-
ing to F0.5, AUC and TSS, are shown in Table 3. The full set of
results is available on https://bit.ly/3coZNC0 and the code for getting them
here https://github.com/nadias/Combining-Multiple-Data-Sources-to-Predict-
IUCN-Conservation-Status-of-Reptiles. Overall, RF was the best model for these
metrics on four out of six groups. These results were in accordance with conclu-
sions reported in previous conservation studies [4,11,12]. Moreover, in general,
the extra step of feature selection yielded better results when compared to its
counterpart without feature selection.

Fig. 2. Performance of the models for group, method and dataset, according to F0.5,
AUC and TSS. Results in opaque colour significantly outperformed the same algorithm
over the AOO EOO dataset. (Color figure online)

Table 3. Best model for each group based on F0.5, its estimates of F0.5, AUC and TSS
metrics, method and dataset used to achieve that performance.

Group F0.5 AUC TSS Method Dataset

Amphisbabaenians 0.97 0.88 0.75 GLM AOO EOO

Crocodiles 0.99 0.98 0.95 RF AllFeatures FS

Lizards 0.87 0.84 0.68 RF AllFeatures FS

Snakes 0.87 0.88 0.76 RF AOO EOO

Turtles 0.88 0.77 0.54 XGBoost EcoFeatures FS

All species 0.88 0.86 0.72 RF AllFeatures FS

https://bit.ly/3coZNC0
https://github.com/nadias/Combining-Multiple-Data-Sources-to-Predict-IUCN-Conservation-Status-of-Reptiles
https://github.com/nadias/Combining-Multiple-Data-Sources-to-Predict-IUCN-Conservation-Status-of-Reptiles
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To better understand the role of each feature in the predictions by the dif-
ferent models, we also evaluated the feature importance using caret’s varImp
function in R [6], a wrapper function with specific methods for calculating fea-
ture importance of different types of models. Figure 3 shows the ranking of
variables by taking into account the features importance for C5.0, GLM, RF,
XGBoost and rpart, over the AllFeatures datasets, using only the top five vari-
ables obtained with each method. As it would be expected, both EOO and AOO
had an important role in the classification. Nevertheless, other variables con-
tributed to improving the performance of the model, especially, geographic and
bioclimatic variables. Results also suggest that statistical dispersion measures
(e.g., standard deviation) perform generally better since these portray species
ecological tolerance ranges.

As for our research questions, we could see that regarding RQ1, when generat-
ing predictions about the conservation status of species, ecological and geograph-
ical variables other than AOO and EOO affected the classification of species,
since several models performed better when these were included. Regarding the
most important features mentioned by RQ2, we have seen that EOO and AOO
are the top-important features for most of the models, followed by other geo-
graphic features related to the species’ latitudinal range, and then by ecological
variables that have a non-negligible contribution to the models. Regarding the
best modelling technique (RQ3), we have demonstrated that RF generated the
best models for most groups, consistent with the fact that many studies on this
domain used this algorithm. Additionally, feature selection was an important
step included in the proposed pipeline. For most groups, the feature selection
step generated the best models.

Fig. 3. Cumulative variable importance for AllFeatures dataset across models.
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5 Conclusions

We devised a comprehensive pipeline that may be applied to generate automatic
conservation assessments using IUCN’s conservation status, which may aid in
the mostly manual process of analysing data and can be applied to other taxo-
nomic group. This pipeline included several steps to tackle very relevant issues in
the application domain such as data curation and imputation, feature generation
and selection, and model tuning and dataset comparison. Overall, our models
performed well according to standard metrics used in the ecology and conserva-
tion domain and metrics that consider the higher cost of false negatives. Results
showed that some models may be improved by using more features besides those
traditionally used by IUCN criteria, which reside mostly on the area and extent
of occurrence. Those features are, in decreasing order, geographic (mainly the
latitudinal range of species but also their longitudinal distribution), bioclimatic
indices, habitat, and topographic heterogeneity.

Besides predicting whether a species is threatened or not, experts want to be
able to understand what factors contribute to that decision. This would allow
us to assess the model’s behaviour and ideally, gain new insights into what
variables influence threat. With the exception of k-NN, the algorithms tested in
this work were either based on trees or linear models, providing a good degree
of transparency and explainability.

We think that the large volume of data currently available can be used to
perform a general model-assisted assessment across many other under-assessed
taxonomic groups, that can be complemented by more focused studies. This
can also be used to guide priorities and rank species according to their pre-
dicted extinction risk, helping IUCN specialists to better direct their assessments
and governmental entities to more efficiently allocate conservation efforts. This
framework can be applied to other taxonomic groups by implementing the same
steps in data from a different set of species, and given that relevant predictor
variables are used at appropriate spatial scales. Moreover, other sets of features
could be tested, for instance, variables that depict anthropogenic disturbances
on species habitats such as land use change, landscape fragmentation, wildfires,
invasive species, which influence the amount, the connectivity and the ability of
species finding suitable environments.

Future improvements in the pipeline could also open up the possibility of
forecasting species threat status and addressing climate change impacts by feed-
ing models data from climate scenarios provided by UN’s Intergovernmental
Panel on Climate Change (IPCC). These scenarios are a set of projections of
how the climate may evolve in the future, according to different greenhouse gas
emission pathways. Such application is deemed critical for domain specialists to
anticipate species vulnerabilities in the face of global environmental change.
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Abstract. The verification of document authorships is important in var-
ious settings. Researchers are for example judged and compared by the
amount and impact of their publications and public figures are confronted
by their posts on social media. Therefore, it is important that authorship
information in frequently used data sets is correct. The question whether
a given document is written by a given author is commonly referred to as
authorship verification (AV). While AV is a widely investigated problem
in general, only few works consider settings where the documents are
short and written in a rather uniform style. This makes most approaches
impractical for bibliometric data. Here, authorships of scientific publica-
tions have to be verified, often with just abstracts and titles available.
To this point, we present LG4AV which combines language models and
graph neural networks for authorship verification. By directly feeding the
available texts in a pre-trained transformer architecture, our model does
not need any hand-crafted stylometric features that are not meaningful
in scenarios where the writing style is, at least to some extent, stan-
dardized. By the incorporation of a graph neural network structure, our
model can benefit from relations between authors that are meaningful
with respect to the verification process.

Keywords: Authorship verification · Language models · Graph neural
networks · Co-authorships

1 Introduction

Evaluation of research strongly depends on bibliometric databases. Today, they
are used for the assessment of productivity and impact of researchers, confer-
ences and affiliations. Because of their rising relevance for the evaluation of the
scientific output of individual authors, it is crucial that the information which is
stored in such databases is correct. However, with the rapid growth of publication
output [5], automatic inspections and corrections of information in bibliometric
data is needed. A major challenge in this area is authorship verification (AV),
which aims to verify if a document is written by a specific author. In general,
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T. Bouadi et al. (Eds.): IDA 2022, LNCS 13205, pp. 315–326, 2022.
https://doi.org/10.1007/978-3-031-01333-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01333-1_25&domain=pdf
http://orcid.org/0000-0003-1579-1151
http://orcid.org/0000-0002-0570-7908
https://doi.org/10.1007/978-3-031-01333-1_25


316 M. Stubbemann and G. Stumme

AV is widely investigated [11,12,20], with a majority of existing work handling
author verification by capturing writing styles [8,12], assuming that they are
unique among different authors. This assumption does not hold in environments
where the available texts are short and contain uniform language patterns. An
example of this is given by author verification tasks for scientific documents. In
such settings, the availability of full texts is rare because bibliometric data sets
often contain only abstracts and titles. In such scenarios the variety of writing
styles and linguistic usage is rather limited.

Additionally, the focus in AV research is on documents with one author, while
verification of multi-author documents is seldom done. Here, the information
about known multi-authorships can enhance the verification process because it
provides a meaningful graph structure. For example, scientific authors are more
likely to write papers that would also fit to their co-authors and twitter users
are expected to post about the same topics as the persons they follow. The
incorporation of such graph structures is rarely investigated.

Here we step in with LG4AV. Our novel architecture combines language mod-
els and graph neural networks (GNNs) to verify whether a document belongs to
a potential author. This is done without the explicit recap of the known docu-
ments of this author at decision time which can be a computational bottleneck.
This is especially true for authors with a large amount of known documents.
Additionally, LG4AV does not rely on any hand-crafted stylometric features.

By incorporating a graph neural network structure into our architecture,
we use known relations between potential authors. In this way, we are able to
account for the fact that authors are more likely to turn to topics that are present
in their social neighborhood. We experimentally evaluate the ability of our model
to make verification decisions in bibliometric environments and we review the
influence of the individual components on the quality of the verification decisions.

LG4AV is available on GitHub1 and a longer version of this paper which
includes experiments on authors not seen at training time is available on arXiv.2

2 Related Work

Authorship verification is a commonly studied problem. PAN@CLEF3 provides
regular competitions in this realm. However, their past author verification chal-
lenges were based on a setting where either small samples of up to ten known
documents for each unknown document were provided (2013–2015) or pairs of
documents were given where the task was to decide whether they were written by
the same person (2020, 2021). Both scenarios are not applicable for bibliometric
environments, where the amount of known document can reach up to hundreds.

Many well-established methods for author verification develop specific hand-
crafted features that capture stylometric and syntactic patterns of documents.
For example, [15] uses features such as sentence-lengths, punctuation marks and
1 https://github.com/mstubbemann/LG4AV.
2 https://arxiv.org/abs/2109.01479.
3 https://pan.webis.de/shared-tasks.html.

https://github.com/mstubbemann/LG4AV
https://arxiv.org/abs/2109.01479
https://pan.webis.de/shared-tasks.html
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frequencies of n-grams to make verification decisions. While the use of n-grams
was already studied in earlier works such as [17], there are still recent methods
that build upon them, such as [24]. Another well established approach is given
by [21] where the authors successively remove features and observe how this
reduces the distinction between two works. This approach is still known to be
the gold standard [4,24]. Despite its advantages, it is known to perform worse
on short texts. Therefore, [4] proposes a modification that is also applicable to
shorter texts. However, this work experiments with documents of 4,000 words
per document, which is still much longer then abstracts of scientific publications.

Recently, methods based on neural network architectures, such as RNNs and
transformer models, emerged [2,3]. Note, that both of these approaches need to
train head layers for each individual author. This makes them impractical for
AV in bibliometric data where thousands of authors has to be considered.

One of the few works that experiments with bibliometric data is [12], which
uses full text of a small subset of authors and ignores co-authorship relations.
Most other works that deal with bibliometric data tackle the closely related
problem of authorship attribution (AA), i.e., with questions of the kind “who is
the author of d” instead of “is a author of d” [6,7,14].

One of the few works in the realm of AV that explicitly takes into account that
research papers are multi-author documents is [26]. In their work, the authors
derive a similarity based graph structure of text fragments for authorship attri-
bution for multi-author documents. In contrast, our aim is to incorporate past
co-authorship relations to verify potential authorships.

3 Combining Language Models and Graph Neural
Networks for Author Verification

We always assume vectors v ∈ R
m to be row-vectors. For M ∈ R

n×m, we denote
by Mi the i-th row of M and with Mi,j the j-th entry of the i-th row of M .

3.1 Problem

Let t be a fixed time point and let G = (A,E) be a graph with A = {a1, . . . , an}
being a set of authors and E ⊆ (

A
2

)
a set of edges present before t. Additionally,

let D be a set of documents. Let, for all authors a ∈ A, be D(a) ⊆ D the set
of their known documents until t. Let U be a set of documents created after t
with unknown authorships. The goal is to verify for a set P ⊆ A × U , whether
for each (a, u) ∈ P a is an author of u, i.e., to compute a verification score
f(a, u) ∈ [0, 1]. Our formulation differs from the usual setting where the problem
is broken down to sequences of pairs (Di, di)li=1 where the task is to determine
for each i ∈ {1, . . . , l} if the unknown document di is from the same author as
the set of known documents Di. These settings are closely connected in the sense
that each author a can be interpreted as the set of his known documents D(a) at
training time. However, approaches adopted to this setting often assume to have
already pairs of known document sets and unknown documents [15] at training
time or they explicitly use the set of known documents for verification [16,24,27].
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Prepocessed

Trainable

Fig. 1. Forward step. LG4AV gets as input an author ai and a document d. The author
specific cls-token is added to the front of d which is then feed through the language
model (which is BERT in our case). The i-th rows of X, ÂX, . . . , ÂkX are individually
component-wise multiplied with the output of LM, which constitutes the incorporation
of the GNN structure. The resulting vectors are concatenated and fed through a fully
connected layer with a sigmoid activation. Here, k displays the maximal amount of
neighborhood aggregations, i.e., the maximal j for which ÂjX is incorporated.

3.2 Combining Language Models and Graph Neural Networks for
Author Verification

We develop an end-to-end model to tackle the author verification problem. For
this, we additionally assume to have for each author a ∈ A a vector representa-
tion xa ∈ R

s. At training time, our model gets as input pairs (a, d) ∈ A×D and
is trained on predicting whether a is author of D, i.e., d ∈ D(a). For inference
at testing time, the model gets as input pairs (a, u) ∈ P and decides whether
a is author of u by computing a verification score f(a, u). For both training
and testing, author-document pairs (a, d) are forwarded through the network in
the following manner. We add a special token to represent the current author
to the beginning of d. The resulting document is then guided through a lan-
guage model. Additionally, we incorporate a graph neural network structure by
1) computing vector representations of a that depend on its graph neighbors, 2)
combining these vector representations with the output of the language model 3)
and forwarding through a fully connected layer to get a verification score. In the
following, we discuss the individual components and give a detailed explanation
of the network inference. A sketch of LG4AV is given by Fig. 1.

The Language Model. As language model, we choose the standard BERT [10]
model which we assume the reader to be familiar with. Even though there are
a multitude of newer models built upon it and outperforming it on NLP tasks,
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BERT is considered to be the common basic pre-trained transformer model. We
therefore use it here to demonstrate our approach. We feed the full document
at once through BERT and extract the output of the [CLS] token. This practice
has already been applied to abstracts of scientific documents [9] and social media
data [31]. Our language model can be interpreted as a map LM : D ∪ U → R

m.
To combine the output of the language model with the neighborhood aggre-

gated author vector representation, we need to ensure that the output of the
language model has the same dimension as the feature vectors of the authors,
i.e., m = s. Hence, we extend LM by a linear layer on top of the BERT model,
if needed.

To give the language model information about the current author a ∈ A,
we replace the regular [CLS] token by an author-dependent classification token
[CLS-a]. Hence, the information of the current author is encoded into the input
of the language model. To nourish from the optimization of the [CLS] token that
was done in the pre-training procedure of BERT, we initialize for each author
a ∈ A the token-embedding of [CLS-a] with the token-embedding of [CLS].

The Graph Neural Network. The Graph Convolutional Network (GCN) [18]
is a base for many modern graph neural network architectures. It is a 2-layer
neural network with an additional neighborhood aggregating step at the input
and hidden layer. This method leads to problems in batch-processing. Since the
feature vector of each node is merged with feature vectors of adjacent nodes at
the input and hidden layers, the corresponding node vectors have to be in the
same batch.

To solve this problem we use a GNN architecture that only aggregates neigh-
borhood information before weight matrices are multiplied with feature vectors.
Then, the neighborhood-aggregation can be done once in a preprocessing step
over the full feature-matrix. Such an approach is for example introduced by [29].
Here, the authors propose a linear model of the form X �→ σ(ÂkXW ), with
Â being a normalized adjacency matrix and W a trainable weight matrix. In
contrast, SIGN [25] proposes to have multiple input layers with different neigh-
borhood aggregations of the form X �→ ÂkXW . Here, Âk can for example be
a power of a normalized adjacency matrix or powers of matrices that are based
on triangles in the graph. While the model in [29] is more simple, it has the
disadvantage that it only uses ÂkX and not incorporates X itself. Hence, it only
uses the aggregated feature vector of a node without a special emphasis on the
features of the node itself. For LG4AV, we use a new model that is strongly
inspired by both of the introduced approaches.

LG4AV. Let X ∈ R
n×s be the feature matrix of all authors, i.e. Xi = Xai

.
Let k ∈ N. Let Ã be the adjacency matrix of G with added self loops. For
each i ∈ {1, . . . , n}, let deg(i) :=

∑n
j=1 Ãi,j be the degree of ai in G and let

D ∈ R
n×n with Di,i := deg(i) and Di,j = 0 if i �= j. Let then Â := D− 1

2 ÃD− 1
2

be the normalized adjacency matrix. For a given pair (ai, d) of an author and
a document the network inference is done in the following manner. For all l ∈
{0, . . . , k}, we concatenate the vectors vl(ai, d) := (ÂlX)i ∗ LM(d) to a vector
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v(ai, d) := (v0(ai, d), . . . , vk(ai, d)). Hence, k displays the maximum amount of
times, neighborhood features are aggregated. Here, ∗ denotes the element-wise
product. To derive a verification score from this concatenated vector, we feed
v(ai, d) into a fully connected layer with a weight matrix W ∈ R

s(k+1)×1, a bias
b ∈ R and a sigmoid activation. Hence, the full network inference of LG4AV is
given by the equation f(ai, d) := σ(v(ai, d))W + b).

For training we use all pairs (a, d) ∈ A × D with d ∈ D(a) as positive
examples. For each a ∈ A we sample |D(a)| documents d ∈ D\D(a) to generate
negative examples. We use binary cross entropy as loss function.

4 Experiments

We use a data set which contains publication information of the German and
international AI research community [19]. It contains titles and abstracts from
Semantic Scholar [1] which are needed for LG4AV but are not included in
DBLP4. The relations between authors and papers are based on DBLP which is,
in our experience, comparably accurate with good name disambiguation. This is
crucial to prevent wrong authorship information in the data itself.

We use the data set of the German AI researchers as our first data set. As a
second data set, we extract all authors with publications at the KDD conference
and all their publications from the data set of the international AI researchers.
We refer to the first as the GAI and to the second as the KDD data. Basic
statistics of the resulting data can be found in Table 1. We generate training,
validation and testing data for both data sets in the following manner.

– We discard all publications without an English abstract.
– For each publication, we use the title and the abstract as input for the lan-

guage model and concatenate them via a new line char to generate the text
that represents this publication.

– We build the co-author graph of all authors until 2015. From this co-author
graph, we discard all author nodes that do not belong to the biggest con-
nected component. Let A be the set of authors that are nodes in this graph.
We use this graph for the neighborhood aggregation. We denote the set of
publications until 2015 of these authors with Dtrain.

– We generate for all authors and each of their publications a positive training
example. For all authors, we then sample papers from Dtrain which they are
not an author of. We sample in such a way that we have for each author an
equal amount of positive and negative examples.

– We use data from 2016 for validation. More specifically, we use for all authors
a ∈ A all publications that they have (co-) authored in 2016 as positive
validation examples. Let Dval be the set of these publications. We sample for
all authors papers from Dval that they are not author of as negative validation
examples. Again, we sample in such a way that we have for each author an
equal amount of positive and negative validation examples.

– We use publications from 2017 and newer to analogously generate test data.

4 https://dblp.org/.

https://dblp.org/
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Table 1. Basic statistics of the data sets. We display from left to right: 1) The number
of authors in A, 2) the number of edges in the co-author graph of these authors at train-
ing time, 3) the number of training examples, 4) the number of validation examples,
5) the number of test examples.

# Authors # Edges # Train # Validation # Test

GAI 1669 4315 175118 14314 41558

KDD 3056 9592 254096 19976 61804

4.1 Baselines and Configurations of LG4AV

N-Gram Baseline. This baseline is strongly inspired by the baseline script of
the AV challenge of PAN@CLEF 2020. For all authors we generate a “super-
document” by concatenating all their documents that are available for training.
For all pairs of authors a and documents d at validation and testing time, we
measure the similarity between d and the superdocument of a. If the similarity
is above a given threshold t, we classify the pair as a positive example. To mea-
sure similarities, we build a character-based n-gram TF-IDF vectorizer upon all
papers available at training time, using only the 3000 most frequent n-grams
across the documents that the vectorizer is built on.

We tune n via grid-search on {1 . . . 10} and choose the value that corresponds
to the highest AUC on the validation set. We tune the threshold on the set
{ 1
999 i − 1

999 | i ∈ {1, . . . , 1000}}. Note, that this means to sample 1000 evenly
spaced points in [0, 1]. We also test the median of the distances of the validation
examples as threshold. Since the AUC is independent of this threshold, we tune
on the validation F1 score after the best n is chosen.

GLAD [15]. This method is intended for pairs of the form (D, d) where D is a
set of documents and d is a single document. Note, that GLAD needs such pairs
already for training. Since our data consists of pairs (a, d) with a an author and
d a document, we build training examples for GLAD in the following manner.
Let Ptrain be the set of all author-document pairs available at training time and
let, for all (a, d), be l(a,d) ∈ {0, 1} the label of that pair. For each author a we
collect the set Da,+ := {d | (a, d) ∈ Ptrain, l(a,d) = 1} = {da,+,0, . . . , da,+,m} of
positive and the set Da,− := {d | (a, d) ∈ Ptrain, l(a,d) = 0} = {da,−,0, . . . , da,−,m}
of negative training examples. For each i ∈ {0, . . . , m}, we train GLAD with
(Da,+\{da,+,i}, da,+,i) with a positive label and (Da,+\{da,+,i}, da,−,i) with a
negative label. For validation and testing, we replace pairs (a, d) by (Da,+, d).

GLAD works as follows. For each pair (D, d) a vector representation is com-
puted that consists of features that are solely build on D or d, such as for example
average sentence length and joint features, which are build on D and d, such as
entropy of concatenations of documents of D and d. This vector representations
are then fed into a support-vector machine. While the authors of [15] uses a lin-
ear support-vector machine with default parameter setting of scikit-learn [23],
we enhance GLAD by tuning the c-parameter of the support-vector machine and
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additionally experiment with radial kernels where we tune the γ-parameter. For
both parameters, we grid search over {10−3, . . . , 103} on the validation AUC.

RBI [24]. The ranking-based impostors method verifies a pair (D, d) with the
help of a set De of external documents. To use exactly the information avail-
able for training and thus have a fair comparison, we use Da,+ as the known
documents and Da,− as the external documents for each pair (a, d).

By studying for each di ∈ D how many documents of De are closer to d
than di is to d, the impostors method computes a verification score where pairs
with higher scores are more likely to be positive examples. To compute vector
representations for documents, we stick to the procedure in [24]. We choose the
following parameters for RBI. We grid search k ∈ {100, 200, 300, 400}, choose
cosine similarity as the similarity function and select the aggregation function
between mean, minimum and maximum function. For the meaning of the param-
eters, we refer to [24]. We use the AUC score on the validation data to choose
the best parameters. To derive binary predictions from the verification scores,
we use the median of all verification scores from the validation data.

Siamese BERT (S-BERT) [28]. In this method, pairs of documents are feed
through BERT and the network is trained to put document pairs close together
which are from the same author. To derive examples from a training pair (a, d),
we sample from Da,+\{d} 3 documents d1, d2, d3 to generate the training exam-
ples (d1, d), (d2, d), (d3, d). If (a, d) is a validation or test example we set the
distance of (a, d) to the mean of the distances of (d1, d), (d2, d), (d3, d).

This model is trained with a linear decreasing learning rate starting at 5 ∗
10−5 and weight decay of 0.01. We use a contrastive loss function with a margin
of 0.1 and cosine distance because this led to the highest AUC score in [28].
To choose the threshold t which separates positive and negative examples at
validation and testing time, we grid search over {0, 0.02, . . . , 1.998, 2} on the
validation F1 score and classify all pairs as positive which have a distance not
higher then t. We use a batch-size of 2 and accumulate 4 batches for an effective
batch size of 8. As S-BERT tends to lead to unstable results, which is commonly
observed for BERT models [22,30], we do 10 runs for both data sets and report
mean values of the runs which lead to a reasonable solution, i.e., an AUC over
0.51.

Configurations of LG4AV. We use three different configurations of LG4AV to
evaluate the importance of the individual components. Namely, we work with
LG4AV-2, a“regular” LG4AV model with k = 2 which is a common choice in
the realm of GNNs [13,18] and LG4AV-0, with k = 0. Hence, the latter model
does not use any graph information. We use it to evaluate to which extent the
graph information enhances the verification process. Additionally, we experiment
with LG4AV-F. This model coincides with LG4AV-2 with the difference, that
we freeze all BERT parameters and just train the weight matrix W . This allows
us to understand if the fine-tuning of the BERT parameters is indeed necessary.
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Table 2. Results. For S-Bert, we report means over runs with an AUC over 0.51. On
the GAI data set, LG4AV-2 significantly outperforms LG4AV-0 with p = 0.05 with
respect to a t-test and a Wilcoxon test. On the KDD data set, LG4AV-2 significantly
outperforms LG4AV-0 with p = 0.01 with respect to a t-test and a Wilcoxon test. For
both data sets, this holds for all three performance indicators.

GAI KDD

AUC ACC F1 AUC ACC F1

N-Gram .8624 .7874 .7817 .7592 .6887 .7008

GLAD .8328 .7500 .7150 .7322 .6698 .6200

RBI .8251 .7478 .7391 .7452 .6823 .6647

S-BERT .9196 .8492 .8516 .8207 .7373 .7602

LG4AV-2 .9247 .8541 .8569 .8522 .7675 .7808

LG4AV-0 .9207 .8492 .8519 .8465 .7619 .7771

LG4AV-F .8384 .7576 .7767 .7622 .6866 .7110

To derive classification decisions for computing F1 and accuracy scores, we grid
search a threshold t over {0, 0.002, . . . , 0.998, 1} on the validation F1 score.

4.2 Implementation Details

We use the “regular” BERT base uncased model and train for 3 epochs. After
the element-wise multiplication of the BERT output and the text features, we
dropout with probability of 0.1. We use ADAM with weight decay of 0.01 and a
learning rate of 2 ∗ 10−5 with linear decay and a batch size of 4. We do gradient
accumulation of 4 for an effective batch size of 16. To generate features for each
author, we feed their known documents through the not fine-tuned BERT model
and build the mean point vector of the vector representations of the [CLS] tokens.

Because of the instability of BERT fine-tuning [22,30], we do 10 runs for all
configurations of LG4AV and report mean scores. For this runs, we use the same
10 different random seeds for weight initialization and for data shuffling. We do
this because early experiments indicated that LG4AV-2 and LG4AV-0 perform
better for the same random seeds (and therefore same shuffles of the training
data).

4.3 Results and Discussion

The results can be found in Table 2. LG4AV outperforms all baselines. We
especially point out that LG4AV also lead to slight improvement over S-BERT,
which also uses language models and is, because of the sampling procedure that
increases the amount of training examples, more time-expensive. As we replace
one training example with 3 new samples for S-BERT, an epoch lasts about a
factor 3 longer for S-BERT.

Note, that LG4AV uses for all authors their papers until 2015 to both build
the positive training examples and for computing their feature vector. Hence,
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considering the positive examples, the network is trained on verifying author-
document pairs where the document is additionally used to build the features of
this author. Thus, it is reasonable to expect that the availability to generalize to
unseen documents is limited. However, the results on the test set, which contains
only documents not used for the features vectors, show that this is not the case.

The above mentioned instability of BERT models is indeed inherited to
LG4AV. For some random seeds, LG4AV does not converge to a reasonable
solution and results in AUC scores are around 0.5. Hence, we recommend to try
different random seeds for training and not rely on one training run. Because of
this and since the results of LG4AV-2 and LG4AV-0 are very close, we compare
them with statistical significance tests to investigate if the co-author information
significantly enhances the verification decisions. Based on the random shuffling
and initialization procedure explained above, we decide to use a paired t-test and
paired Wilcoxon tests over the 10 runs. To sum up, the results indicate that the
incorporation of co-author information lead to significant enhancements. Still,
the comparable results for k = 0 show that our idea of combining author features
with a language model even works without co-author information. In contrast,
if the BERT layers are frozen, the performance declines considerably. Hence,
fine-tuning is crucial for success.

The performance gap between the data sets is remarkable. Because the GAI
data uses data from all domains of AI while the KDD data is limited to authors
with connections to topics of the KDD, it stands to reason that the documents
of the KDD data set are more topically related. Thus, the worse results on the
KDD data support our hypothesis that AV for bibliometric data is not about
distinguishing writing styles, but about identifying relevant topics of authors.

5 Conclusion and Outlook

In this work, we presented LG4AV, a novel architecture for author verification.
By combining a language model with a graph neural network, our model does
not depend on any handcrafted features and is able to incorporate relations
between authors into the verification process. LG4AV surpasses methods that use
handcrafted stylometric and n-gram text features when it comes to verification
of short and, to some extent, standardized texts. Hence, LG4AV is especially
helpful to correct authorship information in bibliometric data sets, especially
when only abstracts and titles are available.

Future work could include applications of LG4AV to different settings, as for
example social media posts. Additionally, it is promising to investigate temporal
evolution of interests of authors. Does the performance decrease, if the temporal
distance between the training and test set is increased? Does the performance
increase if only recent texts are considered to verify new potential authorships?
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Abstract. Current subgroup discovery methods struggle to produce
good results for large real-life datasets with high dimensionality. Run
times can become high and dependencies between attributes are hard
to capture. We propose a method in which auto-encoding is applied for
dimensionality reduction before subgroup discovery is performed. In an
experimental study, we find that auto-encoding increases both the qual-
ity and coverage for our dataset with over 500 attributes. On the dataset
with over 250 attributes and the one with the most instances, the cov-
erage improves, while the quality remains similar. For smaller datasets,
quality and coverage remain similar or see a minor decrease. Additionally,
we greatly improve the run time for each dataset-algorithm combination;
for the datasets with over 250 and 500 attributes run times decrease
by a factor of on average 150 and 200, respectively. We conclude that
dimensionality reduction is a promising method for subgroup discovery
in datasets with many attributes and/or a high number of instances.

Keywords: Subgroup discovery · Auto-encoding · Dimensionality
reduction

1 Introduction

Subgroup Discovery (SD) is a data mining method used to discover interesting
relationships between objects in a dataset with respect to a specific target vari-
able. The SD outcome is typically represented as a set of rules called subgroups
[10]. SD methods are often used on real-world problems, such as the detection
and description of Coronary Heart Disease risk groups [8], fraud detection in
the healthcare domain [16] and identifying flight delay patterns [23]. Real-life
problems often involve datasets with high dimensionality. For many SD meth-
ods, handling such large datasets can be an issue. The most commonly used
method to address this problem is by applying sampling. However, this method
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has the downside of not taking dependencies and relationships between variables
into account which can result in important data loss for subgroup discovery. It
seems that no research is conducted on reducing the dimensionality of a dataset
via auto-encoding prior to applying subgroup discovery methods. Using auto-
encoding as a method to reduce the dimensionality of a dataset may solve the
issue of important data loss since this method is able to uncover latent low-
dimensional non-linear structures in the data [11], which allows it to minimize
the dimensionality reduction information loss. Therefore, this paper investigates
the effects of auto-encoding on the results of various existing SD methods.

1.1 Main Contribution

We propose an alternative method that enables the application of SD on larger
datasets. We show that preprocessing datasets by performing dimensionality
reduction using auto-encoders can improve the efficiency of SD, while maintain-
ing or improving subgroup quality and coverage of discovered subgroups. Run
times can be a few hundred times less for datasets with many attributes. At
the same time, we can increase the coverage and explore different regions in the
data for any algorithm if datasets are reasonably sized. We can do this while
achieving equivalent or even higher subgroup qualities, both on average and for
the best subgroup, depending on the dataset.

2 Related Work

2.1 Subgroup Discovery

Subgroup Discovery methods (see [10] for a survey) can be partitioned into three
groups. The first group of methods are extensions of classification algorithms,
such as EXPLORA [14], MIDOS [29], SD [8], and CN2-SD [18]. The second
group contains extensions of association algorithms, such as APRIORI-SD [13]
and Merge-SD [9]. The third group consists of evolutionary algorithms, such
as NMEEF-SD [3]. Herrera et al. [10] noticed that many of the above listed
subgroup discovery techniques have difficulties with real-world problems due
to high dimensionality of the datasets associated with such problems. Usually,
there are two solutions for data mining algorithms that do not perform well
under high dimensional datasets, namely reducing the data size without changing
the outcome radically or redesigning the algorithm so that it can handle huge
datasets. The most applied method to reduce the dimensionality of a dataset
is sampling, in which particular instances of a dataset are selected according to
certain criteria [10]. A downside of this technique is that this could lead to loss
of important knowledge for the SD task when not considering dependencies and
relationships between variables. Therefore, when reducing the dimensionality of
a dataset, it must be ensured that no important data is lost which is necessary
for the extraction of important subgroups [10].
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2.2 Dimensionality Reduction

The goal of dimensionality reduction is to produce a compact low-dimensional
encoding of a given high-dimensional dataset. Principal Component Analysis
(PCA) [28] aims to find a linear subspace of a dimension lower than the dimen-
sion of the original dataset, such that the data points lie mainly on this linear
subspace, and thus maintain most of the variability of the data [25,27]. Lin-
ear Discriminant Analysis (LDA) [24] is a classifier that is used to find a linear
combination of features, which separates a number of classes of data. The main
idea is to ensure that the samples after projection have maximum between-
cluster-distance and minimum within-cluster-distance in the new subspace [27].
Isomap [25] performs multidimensional scaling in the geodesic space of the non-
linear data manifold, rather than in the input space. Lastly, auto-encoders [27]
reduce dimensionality very well while maintaining more information than the
four aforementioned dimensionality reduction methods for most datasets. Addi-
tionally, auto-encoders are better capable of detecting repetitive structures than
the alternative methods.

3 Preliminaries

A dataset D consists of a set of individuals I and attributes A, such that D =
(I,A). A subgroup description, also called a complex pattern P , is a set of
selectors, also called basic patterns [2]. For a nominal attribute, a selector is
a Boolean function that is true if ai ∈ A = vj for the individual, and false
otherwise. For numeric attributes, the value of the selector is set to true for
an individual if the attribute value for that individual is in the interval [minj :
maxj ], thus if ai ∈ [minj : maxj ], and false otherwise. The set of all basic patterns
in the dataset is denoted by Σ. The subgroup description P is then defined by
a conjunction of basic patterns: P (i) = selj ∧ ...∧ seln, selm ∈ Σ, m = j, ..., n for
individual i ∈ I. This pattern can then be interpreted as a rule for a subgroup
SP := {i ∈ I|P (i) = true} [2]. A subgroup SP is thus defined as the set of all
individuals i ∈ I that satisfy the rule based on the conjunction in P , consisting
of a set of selectors.

Subgroup Discovery is a technique for descriptive and exploratory data min-
ing. The goal of SD is to identify subsets of a given dataset that display interest-
ing behaviour [2]. The interestingness of behaviour is defined as “distributional
unusualness with respect to a certain property of interest” [29]. To what extent
behaviour is interesting, is evaluated with respect to certain interestingness cri-
teria, which are formalized by a quality function. Using this quality function,
a subgroup discovery algorithm identifies a set of interesting subgroups. In this
paper, we employ Weighted Relative Accuracy (WRAcc) [17] as quality function.
The WRAcc of a subgroup is defined in the following way [20]:

WRAcc(SP ) =
|SP |
|I| ∗ (pSP

(target = 1) − pI(target = 1))
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The task of Subgroup Discovery in this paper now becomes equivalent to the
formal problem definition in [6, Problem Statement 1], with Ω = D, D is as
described earlier in this section, ϕ = WRAcc, q = 100, and C = ∅.

3.1 Auto-Encoding

An auto-encoder is a three-layered neural network, consisting of an encoding
layer, an encoded layer, and a decoding layer. The encoding layer takes an indi-
vidual i ∈ R

d as input and reduces it to an item h ∈ R
d′

, where typically d′ � d.
This layer is subsequently decoded to produce a reconstructed version i′ ∈ R

d of
the individual. The objective of the auto-encoder is then to minimize the recon-
struction error J(i, i′) = 1

2‖i − i′‖22 [27], such that this reconstructed version is
as close to the original data entry as possible. Given a dataset D, such a net-
work can be trained using backpropagation of the so-called mean squared error,
which is the average of this loss over the data in D. This training occurs for
a certain number of epochs, which are passes through the dataset. To prevent
overfitting, the training can stop earlier once the test error has not improved
for a certain number of steps. Once the auto-encoder has completed training, its
encoded layer can be used as a dimension-reduced version of the input data.

The structure of auto-encoders can vary with regard to the number of hidden
layers, size of the hidden layers, and activation function used in its neurons.
Deep auto-encoders tend to perform better than shallower ones with only a
single hidden layer [11], although this advantage disappears if the number of
free parameters becomes too big as a result [11]. The neurons in the layers can
have several activation functions. Often the Leaky ReLU [21] activation function
is used, due to strong performance and immunity to the dying neuron problem.
The Leaky ReLU activation function is given by:

f(x) =

{
αx if x < 0
x if x ≥ 0

Here, α is a typically small coefficient that is chosen by the user.

4 Methodology

We propose a method of combining auto-encoding with SD. Our original dataset
D may contain attributes of any type: binary, nominal, and numeric. Auto-
encoding expects input data that is real-valued, and we bridge that gap by one-
hot encoding all non-numeric attributes of the original dataset. This results in
a new dataset D′ whose individuals take value in R

d, and whose dimensionality
is larger than the number of attributes in the original dataset: d ≥ |A|. Sub-
sequently, an auto-encoder neural network is trained on this dataset D′ using
backpropagation on the mean squared error. This auto-encoder has d′ encoded
features, where d′ is chosen in such a way that it provides a balance between
a small number of features and a high representativeness of the features. Once
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this auto-encoder is developed, every individual i ∈ D′ is transformed to an item
h ∈ R

d′
. Using this set of transformed items and associated set of attributes, we

can perform SD as described in Sect. 3, directly using this new data in existing
SD algorithms.

4.1 Experimental Setup

To conduct our analysis on the effect of auto-encoding on the performance of SD,
we perform multiple experiments1. These experiments are conducted using sev-
eral SD algorithms with various datasets (see Sect. 4.3). We test the algorithms
both with and without auto-encoding and compare the results. The employed
SD algorithms are beam search [6], APRIORI-SD [13], Best First Search (BFS)
[31], and Depth First Search (DFS) [20]. These are implemented in Python, using
the adapted code from [5] for the beam search algorithm and a modified version
of the Python package pysubgroup [20] for the other algorithms.

For all datasets, the auto-encoder is implemented using TensorFlow 2.0 [1]
in Python. The number of encoded features d′ of the auto-encoder is selected
individually for each dataset. Here, we choose a number that provides a good
balance between the number of features and the error function. The intuition
here is similar to that of the elbow rule (or critical point rule) in clustering [26].
The selected values for d′ are reported in Table 1.

During the tuning of the number of features, the number of epochs and
patience for early stopping are set to 100 and 10, respectively. We set the number
of hidden layers before and after the encoded layer to 4 and the number of
neurons per layer to 512, 256, 128, and 64 (reversed in the decoder). For the
neurons, we use the Leaky ReLU activation function with α = 0.3, following the
findings of [30].

We evaluate the performance of auto-encoder based SD along three axes.
Firstly, to represent subgroup quality, we report the mean and maximum WRAcc
for the 100 best-found subgroups. Secondly, to represent dataset coverage, we
determine the number of items that are present in at least one subgroup, as
well as the number of distinctive items2 between vanilla and auto-encoder based
SD: added items are those present in at least one subgroup found through auto-
encoder based SD but in none of the subgroups found through vanilla SD, and
the reverse are lost items. Thirdly, to represent subgroup diversity, we check the
distribution of the number of subgroups in which each item is present.

1 cf. Github repository at https://github.com/JFvdH/Efficient-SD-through-AE.
2 Notice that, for making these distinctive comparisons, we must compare presence

or absence of individuals in subgroups in the original data space, with presence or
absence of encoded items in subgroups in the encoded space. Naively, this may seem
nontrivial, but notice that the number of individuals and the number of items is
identical: when encoding, the representation of each individual is changed and its
number of attributes may change, but each individual has one unique counterpart
item in the encoded space. This enables identification of added and lost items across
the divide between original data space and encoded space.

https://github.com/JFvdH/Efficient-SD-through-AE
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(a) Without DSSD. (b) With DSSD.

Fig. 1. Effect of Diverse Subgroup Set Discovery (DSSD) on distributions of item
occurrence in subgroups.

4.2 Algorithms and Settings

The SD algorithms that we analyse are beam search [6], APRIORI-SD [13], Best
First Search (BFS) [31], and Depth First Search (DFS) [20]. All algorithms are
set to find subgroups with a depth of 2, meaning that they have to find sub-
groups using patterns of at most 2 selectors. All subgroups are parameterized
to report the best 100 subgroups found, evaluated by WRAcc. For beam search,
additional parameters require configuration: the beam width was set to (a gen-
erous) 100, the minimum support for a subgroup to be considered was set to 2%
of the dataset, and numeric attributes were treated with the lbca discretization
method from [22] with granularity 5.

We adapt the SD algorithms to incorporate the lessons learned from Diverse
Subgroup Set Discovery (DSSD) [19]. In beam search, a candidate subgroup is
discarded unless its quality differs from the quality of its seed subgroup. For the
other algorithms, the same principle is implemented in a slightly different way: a
candidate is now discarded if its quality is (approximately) equal to any current
candidate’s quality and all but 1 selectors are identical. Figure 1 illustrates the
effect of this DSSD strategy on the distribution of the number of subgroups
encompassing items: variety increases under DSSD.

4.3 Data

The six datasets used for this research are extracted from the UCI Machine
Learning Repository. Those datasets are selected since they all have differ-
ent compositions such that a variety of dataset characteristics are tested. An
overview of the number of rows, number of attributes, and type of attributes is
presented in Table 1.

For the Soybean dataset, all rows with missing data are dropped. This means
that N decreases from 307 to 266. In the Arrhythmia dataset, one attribute
contained 376 missing values. Instead of removing the majority of our rows, we
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Table 1. Metadata (before preprocessing) of datasets used for the experiment.

Dataset N #Attributes d′

Discrete Numerical Total

Ionosphere 351 0 34 34 5

Soybean(-large) 307 35 0 35 9

Adult 48842 8 6 14 7

Mushroom 8124 22 0 22 5

Arrhythmia 452 73 206 279 8

Indoor 21048 2 520 522 9

chose to drop this attribute, resulting in a remaining 205 numerical attributes in
this dataset. After this attribute drop, 32 rows contain further missing values.
Those rows are dropped resulting in N = 420. The datasets Ionosphere, Adult,
and Mushroom did not contain any missing values, so N remains 351, 48842,
and 8124, respectively. Lastly, in the Indoor dataset, multiple target variables
are present. We select BuildingID as the target of our SD run and drop all other
target variables. No rows are dropped, so N remains 21048.

WRAcc evaluation requires one target class per dataset to be designated
as the positive class. For Ionosphere we select “good”, for Mushroom we select
poisonous mushrooms, for Adult we select persons making over 50K a year, for
Arrhythmia we select having any heart disease, for Soybean we select soybeans
having any “spot” classification, and for Indoor dataset we select all objects
having BuildingID ‘2’.

Lastly, to ensure proper training of the auto-encoder, the attributes in the
Adult and Arrhythmia datasets are standardized before auto-encoding. These
datasets contain attribute values of significantly varying orders of magnitude.
If not standardized, training based on the mean square error becomes both
very unstable and skewed towards only those attributes with large values. This
leads to poor results of the encoder. Hence, all data entries are standardized by
subtracting the sample mean and dividing by the sample standard deviation of
the specific attribute.

5 Results

An overview of the results of the algorithms with and without auto-encoding can
be seen in Table 2. All auto-encoders had a small number of encoded features
compared to the original numbers of features. With this lower dimensionality,
depending on the dataset and algorithm, slightly varying results are obtained.

Firstly, in Table 2a we find that the coverage of the discovered subgroups
using beam search is increased for every dataset except for the Mushroom dataset
(where it stays approximately the same). This observation will be further dis-
cussed in Sect. 6. From the inspection of the added and lost items, we see that,
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Table 2. Comparative performance of Subgroup Discovery with and without auto-
encoding, in terms of runtime, quality, and coverage.

(a) Beam search, using min sgsize = 2%, n chunks = 5, beam width = 100.

Vanilla Auto-encoded Items

Dataset
Run time (s)
(Algorithm)

WRAcc
Max Mean Coverage

Run time (s)
Tun. Enc. Alg.

WRAcc
Max Mean Coverage Added Lost

Ionosphere 396 0.141 0.132 0.858 50 5 41 0.097 0.087 0.883 33 (0.094) 24 (0.068)
Soybean 221 0.250 0.248 0.508 61 4 90 0.166 0.143 0.662 48 (0.180) 7 (0.026)
Adult 945 0.066 0.065 0.458 4810 650 180 0.064 0.062 0.565 7740 (0.158) 2528 (0.052)
Mushroom 309 0.242 0.226 0.566 1184 133 46 0.163 0.153 0.553 993 (0.122) 1096 (0.135)
Arrhythmia 7800 0.085 0.082 0.450 83 6 91 0.084 0.073 0.540 106 (0.252) 68 (0.162)
Indoor 47644 0.117 0.114 0.378 4980 650 187 0.165 0.149 0.463 2972 (0.141) 1191 (0.057)

(b) Best-first search.

Vanilla Auto-encoded Items

Dataset
Run time (s)
(Algorithm)

WRAcc
Max Mean Coverage

Run time (s)
Tun. Enc. Alg.

WRAcc
Max Mean Coverage Added Lost

Ionosphere 0.9 0.069 0.043 0.997 50 5 0.1 0.089 0.021 0.972 1 (0.003) 10 (0.028)
Soybean 0.2 0.241 0.162 0.944 61 4 0.1 0.115 0.033 0.910 13 (0.049) 22 (0.083)
Adult 2.7 0.069 0.030 0.853 4810 321 0.5 0.053 0.011 0.936 5463 (0.112) 1432 (0.029)
Mushroom 0.9 0.182 0.093 1.000 1184 133 0.1 0.113 0.021 0.936 0 (0.000) 522 (0.064)
Arrhythmia 46.9 0.066 0.058 0.705 83 6 0.2 0.058 0.017 0.874 91 (0.217) 20 (0.048)
Indoor 108.7 0.107 0.106 0.400 4980 650 0.4 0.109 0.032 0.900 10530 (0.500) 3 (0.000)

(c) Depth-first search.

Vanilla Auto-encoded Items

Dataset
Run time (s)
(Algorithm)

WRAcc
Max Mean Coverage

Run time (s)
Tun. Enc. Alg.

WRAcc
Max Mean Coverage Added Lost

Ionosphere 1.0 0.069 0.043 0.989 50 5 0.1 0.043 0.015 0.949 15 (0.043) 1 (0.002)
Soybean 0.3 0.241 0.162 0.944 61 4 0.1 0.087 0.027 0.944 15 (0.056) 15 (0.056)
Adult 5.05 0.063 0.029 0.853 4810 321 0.5 0.054 0.011 0.936 5463 (0.112) 1432 (0.029)
Mushroom 1.4 0.182 0.093 1.000 1184 133 0.1 0.120 0.022 0.936 0 (0.000) 522 (0.064)
Arrhythmia 46.6 0.086 0.062 0.681 83 6 0.2 0.083 0.022 0.855 97 (0.231) 24 (0.057)
Indoor 117.1 0.109 0.107 0.350 4980 650 0.5 0.134 0.039 0.909 11752 (0.558) 0 (0.000)

(d) APRIORI-SD.

Vanilla Auto-encoded Items

Dataset
Run time (s)
(Algorithm)

WRAcc
Max Mean Coverage

Run time (s)
Tun. Enc. Alg.

WRAcc
Max Mean Coverage Added Lost

Ionosphere 1.1 0.074 0.046 0.997 50 5 0.3 0.086 0.022 0.972 1 (0.003) 10 (0.028)
Soybean 0.2 0.241 0.162 0.944 61 4 0.1 0.112 0.032 0.914 13 (0.049) 21 (0.079)
Adult 2.6 0.063 0.029 0.853 4810 321 0.6 0.055 0.011 0.936 5463 (0.112) 1432 (0.029)
Mushroom 0.4 0.182 0.093 1.000 1184 133 0.1 0.106 0.021 0.936 0 (0.000) 522 (0.064)
Arrhythmia 39.3 0.084 0.062 0.702 83 6 0.8 0.078 0.022 0.855 90 (0.214) 26 (0.061)
Indoor 94.8 0.129 0.122 0.290 4980 650 1.7 0.116 0.039 0.909 13016 (0.618) 0 (0.000)

besides increasing coverage, beam search with the auto-encoded data covers a
different region of the data for most datasets. Some items are newly included in
its 100 best subgroups and other items are now excluded. For the Adult dataset,
however, very few items are lost while many are added. Thus, here, auto-encoding
expands the coverage region.

In Tables 2b, 2c, and 2d, we find consistent effects on the coverage for
the other three algorithms. Increased coverage is only achieved for the Adult,
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Arrhythmia, and Indoor datasets: the larger ones in terms of items and/or
attributes. For the smaller datasets, the vanilla algorithms already achieve such
high coverage that auto-encoding can only match the coverage. The coverage of
the Adult data (relatively many items) is a few percentage points higher for all
three algorithms. Auto-encoding based SD manages to cover 15% points more
of the Arrhythmia data (relatively many attributes). Lastly, for the Indoor data
(relatively many attributes and items), the coverage is increased by at least 50%
points for BFS, DFS, and APRIORI-SD. For these algorithms, the number of
items added and lost for the bigger datasets show similarities with the numbers
for beam search. Namely, in the Adult and Arrhythmia data, a part of the items
is newly included after auto-encoding while another part is excluded. The find-
ings, therefore, cover different regions of the data. For the Indoor data, on the
other hand, many items are added to at least one subgroup while few to none are
lost for each algorithm. Hence, we find that auto-encoding increases the coverage
of all subgroup discovery algorithms significantly for data with a high number
of items and/or attributes. It includes different regions of the data or expands
the current regions. For smaller datasets, the coverage is approximately equal.

In terms of WRAcc quality of the found subgroups, again, a difference can
be seen between the three smaller and three larger datasets. Table 2a displays
that the maximum and mean WRAcc after auto-encoding are worse for Iono-
sphere, Soybean, and Mushroom when performing beam search. Oppositely, the
qualities for the bigger Adult and Arrhythmia datasets remained similar after
auto-encoding. The subgroups found on the Indoor dataset are substantially
better with auto-encoding than without. It is likely that due to the high num-
ber of numerical variables, the attributes that are present do not have enough
expressive power to form strong groups with a small number of selectors while
the encoded attributes do have this expressive power.

For the other algorithms, we find similar results in Tables 2b, 2c, and 2d.
An important distinction, however, is that the mean WRAcc scores over the 100
subgroups after auto-encoding are generally lower for all datasets, indicating that
the number of high-quality subgroups is lower. From the maxima, though, we can
see that the performance with auto-encoding of the three big datasets is good,
again. For all three algorithms, the maximum WRAcc scores for the Adult and
Arrhythmia data are equivalent with and without auto-encoding. One exception
is APRIORI-SD, in which auto-encoding decreases the maximum WRAcc for
the Adult data. The maximum WRAcc score for the Indoor dataset is higher
with auto-encoding using BFS and DFS and only slightly lower for APRIORI-
SD. For the smaller Soybean and Mushroom datasets, again we find that the
maximum WRAcc scores decreases with auto-encoding for APRIORI-SD, DFS,
and BFS. On the other hand, the subgroups of the Ionosphere dataset, which
has a reasonably high number of numerical features, have a higher maximum
WRAcc with auto-encoded features for BFS and APRIORI-SD algorithm.

Finally, run times of the algorithms itself on auto-encoded versions of each
dataset are improved across all of Table 2. For the Indoor dataset, the time is
reduced by a factor of over 250 for multiple algorithms. In Table 2a, we see that
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the beam search run time for the Arrhythmia data is decreased from more than
2 h to 91 s and for the Indoor dataset it is even decreased from over 13 h to just
3 min. Of course, this neglects tuning and training time of the auto-encoders: for
some combinations of dataset and algorithm this time is longer than the gained
algorithm run time. For the combination of Arrhythmia and Indoor with beam
search, we see that the gained time is bigger than the total model development
time.

6 Discussion

From the results, we can derive that feature reduction using auto-encoding can
help to improve subgroup discovery for datasets with many attributes and/or
instances. We found that, depending on the algorithm and dataset, the coverage,
quality, and run time can be improved by auto-encoding the data. For smaller
datasets with fewer attributes, this improvement is smaller. Here, the coverage
is often similar and the run time is shorter, but the quality of the subgroups
is generally lower. The method could still be used to explore different regions
within the data but, in general, the added value is low.

For the datasets that do benefit from auto-encoding, we saw that for some
dataset-algorithm combinations, the model development time is higher than the
algorithm run time. However, for the largest two datasets in terms of attributes,
we already saw that the model development time is very small compared to the
run time of beam search without auto-encoding. This benefit will only become
more apparent for larger datasets. On top of that, tuning and training the auto-
encoder only has to occur once. Thus, in case multiple algorithms must be run,
this can all occur with the same encoded features. Similarly, if one has to inves-
tigate a similar dataset with new instances every once in a while (e.g. monthly
fraud detection investigation), the auto-encoder does not need to be re-trained
and the same model can still be used. Hence, in several scenarios, the model
development time is still not a deal-breaker if the initial development time is
longer than a one-time run of the model.

Another potential limitation of feature reduction using auto-encoding is the
decrease in interpretability. When creating patterns from selectors that include
the original attributes of the dataset, all rules can directly be read and inter-
preted. This allows for clear interpretation of the rules and one can find a logic
based on these rules. For encoded features, however, you do not know the mean-
ing of the attributes and therefore the developed rules are hard or impossible
to interpret. While this inevitable loss of interpretability will always be present,
this does not mean that the subgroups become unusable. In some scenarios, like
fraud detection, people will mainly be interested in the instances that are in a
subgroup. Then, the interpretation of the rules is less relevant. Besides, if you
would want to find an intuition behind the subgroups, you can still trace back
the instances in the subgroups and inspect their attribute values compared to the
general dataset. For example, Fig. 2 displays that the best subgroup found in the
Adult dataset has different proportions of education categories compared to the
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Fig. 2. Adult education category histogram for top subgroup and full dataset.

original dataset. From this, we can clearly see that the subgroup only contains
persons with higher education levels. This, intuitively, makes sense when looking
for people with a high income. Hence, we conclude that dimensionality reduction
in subgroup discovery could still prove to be useful for interpretation. In fact,
this expands the subgroup language expressibility: without auto-encoding, a sub-
group defined on education level will take the form of an equality constraint to a
single value or a set of values; with auto-encoding, a subgroup can be expressed
by the skewed orange histogram of education level values.

7 Conclusions

Dimensionality reduction through auto-encoding can improve subgroup discov-
ery (SD) for large datasets. Multiple SD algorithms find subgroups with higher
or equivalent quality and better coverage for datasets with a high number of
attributes and/or instances when auto-encoding is performed beforehand. On
Indoor, the dataset with the largest number of attributes within our experi-
ments, pre-processing through auto-encoding doubles the coverage reached by
the BFS, DFS, and APRIORI-SD algorithms (cf. Table 2). With auto-encoding,
the beam search algorithm finds subgroups with improved WRAcc quality.

In addition to improved coverage and subgroup quality, the run times of the
algorithms are improved greatly. Across Table 2, run times of the algorithms
decreased substantially for each algorithm-dataset combination. For datasets
with many attributes, we found a decrease in run time of a factor of more than
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100. This can have a great impact when handling real-life datasets. For beam
search on the Indoor dataset, which has 21 048 instances, the run time decreased
from over 13 h to just 3 min while improving coverage and quality. In practice, the
number of instances can become even larger leading to an even bigger difference
in run times. To achieve this improved run time, the auto-encoder first has to be
trained which also takes time. For larger datasets, we found that the decrease in
algorithm run time outweighs the model development time.

The increased performance of auto-encoded subgroup discovery comes at
the cost of a decrease in interpretability. As the example of Fig. 2 illustrates,
intuition can still be derived from the items that are within the subgroup, and
the subgroup language becomes more expressive.

In short, we can conclude that using auto-encoding before subgroup discovery
is a promising method that can increase the quality, coverage, and run times for
subgroup discovery when datasets are large with many attributes.

Future research naturally emerges along two competing axes. On the one
hand, we would want to investigate whether we can recover the lost interpretabil-
ity of subgroups while achieving similar results, by employing interpretability-
preserving dimensionality reduction techniques. Straightforward candidates are
Principal Component Analysis with constraints on homogeneity and sparsity [4],
and the Interpretable Kernel DR algorithm [12]. On the other hand, we would
want to investigate whether the lost interpretability allows for better predictive
performance, in a LeGo setting [15]: exploiting found subgroups as extra fea-
tures for multi-label classifiers [7] and as dummy variables in regression models
[6, Sect. 8.1] has proven to work; we would want to investigate whether they
could be enhanced through auto-encoding.
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project EDIC and partly financed by the Dutch Research Council (NWO).
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Abstract. Lab experiments are a crucial part of research in natural sci-
ences. High-throughput screening is leveraged to generate hypotheses,
by evaluating a wide range of experimental parameter values and accu-
mulating a wealth of data on the corresponding experimental outcomes.
The data is subsequently analyzed to design new rounds of experiments.
While discriminative models have previously proven useful for screen-
ing data analytics, they do not account for randomness inherent to lab
experiments, and do not have the capacity to capture the potentially
high-dimensional relationship between the experiment input parameters
and outcomes. Instead, we take a data-driven simulation perspective on
the problem. Inspired by biomaterials research experiments, we consider
a case where both the input parameter space and the outcome space
have a high-dimensional (image) representation. We propose a deep gen-
erative model that serves simultaneously as a simulation model of the
experiment, i.e. allows to generate potential outcomes conditioned on
the experiment input, and as a tool for inverse design, i.e. generating
instances of inputs that could lead to a given experiment outcome. A
proof-of-concept evaluation on a synthetic dataset shows that the model
is able to learn the embedded relationship between the properties of the
input and of the output in a probabilistic manner and allows for experi-
ment simulation and design application scenarios.

Keywords: Generative models · Disentangled latent space ·
Simulation of experiments · Biomaterials engineering

1 Introduction

High-throughput screening (HTS) is a technology for automated experiments
that has gained traction in various disciplines, for example drug discovery [10]
and biomaterial design [6,13]. HTS accelerates scientific discovery and the design
process by evaluating a vast set of inputs in parallel. In other words, a high-
throughput screening takes samples pi from the space P of input parameters
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of the experiment in bulk and produces a collection of observations of the bio-
chemical outcome xi from the experiment outcome space X. Nevertheless, HTS
is limited by the time required to conduct the experiments and by the capacity
of the lab in terms of the number of inputs that can be evaluated. One way to
address this problem is to develop a model of the relationship between spaces
P and X. However, since both spaces may be high-dimensional, the task is typ-
ically simplified to a classification [1,11,13,14] or regression [6] problem, where
a few outcome features of interest fx

i are predicted based on numerical proper-
ties of the input p = (p1, p2, . . . , pn). As an example, in biomaterials research,
this approach has been used to show that the rate of macrophage attachment
correlates with the size of texture patterns on the surface [15]. To optimize fx

i

in the next experiment, some properties pj are adjusted in a way that enhances
the desired outcome features according to the model, e.g., by designing textures
with larger or smaller patterns in the biomaterials example.

The implications of this approach are that, firstly, such models are point
estimate models, that is, they predict a single (expected) value of the outcome
feature fx

i and do not account for randomness inherent to many types of exper-
iments in natural sciences. Secondly, machine learning is used as a tool to learn
correlations between engineered features, and the underlying high-dimensional
relationship might not be fully captured. Thirdly, the outcome x is predicted in
parts (fx

i ) by several independent models, which limits the capacity of inverse
design, where the objective is to find parameters p ∈ P that are likely to lead to
a desired outcome.

Fig. 1. Experiment simulation model (left); Inverse design model (right).

To address the outlined limitations of the plain modeling approach to screen-
ing data analysis, in this paper we consider the concept of a data-driven simu-
lation model of a HTS experiment. Such a model aims to mimic the mapping
P → X based on the available screening data by generating possible outcomes
x ∈ X in response to an input p ∈ P . We further consider the design task as
inverse to experiment simulation, which is reflected by the mapping X → P :
given an outcome x ∈ X, possibly with desired properties, the task is to gener-
ate inputs p ∈ P that could lead to that outcome. An illustration is provided in
Fig. 1.

We argue that an experiment simulation model could be useful for various
research fields, since, firstly, it would allow to observe a full outcome x as an
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output of the model instead of observing a number of predictions for distinct fea-
tures fx

i . Secondly, whereas only a fraction of the input parameter space P can be
covered by lab experiments in reasonable time, a simulation model, once trained,
can be queried many times to evaluate an arbitrary number of unseen inputs,
hence serving as an augmentation to the HTS framework. Furthermore, such a
model accounts for uncertainty of the underlying relationship, i.e. when an input
sample can lead to a variety of outcomes, and an observed outcome could origi-
nate from a variety of inputs. We further argue that deep generative models are a
particularly promising tool to develop such simulation models. Firstly, deep gen-
erative models are known to be suitable for tasks on high-dimensional datasets.
Secondly, generative models allow to incorporate uncertainty with probability
distributions: an input p leads to a probability distribution of outcomes x, and
an outcome originates from a probability distribution of inputs.

To investigate the applicability of generative models to simulation of
lab experiments, we consider a specific problem in biomaterials engineering
(Sect. 3.1), where HTS is used to study the impact of a material’s surface topog-
raphy on living cell behavior at scale. In this application, both the topography
design space (P ) and the cell response space (X) have image representation.
We propose a deep generative model that is aimed to simultaneously serve as
a simulation model of the cell-surface topography experiment, and as a tool for
cell response-conditioned topography design. The proposed model is built upon a
Variational Autoencoder (VAE) [8] architecture and builds on DIVA [7] to derive
a disentangled latent space, which offers control over individual generative fac-
tors of the cell response. This control is particularly useful for the design task.
The key idea is to model the relationship P ↔ X in the latent spaces LP ↔ ZX

instead of the original spaces, which we implement with shared latent subspaces.
The latent subspaces of the cell model, corresponding to independent cell fea-
tures, are assumed to also be part of the latent space in the topography model,
where they represent the factors of variation in topographies that influence the
respective cell features. As a result, the model allows for cross-conditional gen-
eration: cell images given a topography image and topography images given a
cell image or a cell feature value. To summarize, the contributions of the present
work are as follows:

– We introduce a generative modeling perspective on the problem of lab experi-
ments simulation, addressing the outlined challenges of 1. high dimensionality
of the input and output data spaces and 2. high uncertainty of the underlying
relationship, intrinsic to such experiments.

– Inspired by the use-case of biomaterials research, we propose a deep generative
simulation model with a disentangled latent space for the case where both
the input and output spaces are represented by images, and the outcome
features of interest are measurable, independent and reflect visual attributes.
The proposed model constitutes a two-sided VAE that connects two different
datasets using a shared latent space.
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– We provide a proof-of-concept evaluation for the proposed architecture on a
synthetic dataset with an embedded relationship. The obtained model disen-
tangles the outcome features of interest and is able to unravel the relationship
between topographies and cells.

2 Related work

The two most prevalent approaches in deep generative models are VAEs [8] and
Generative Adversarial Networks (GANs) [4]; a VAE simultaneously learns a
deep latent variable model and an inference model by optimizing a lower bound
(ELBO) on the log-likelihood of the observed data, while a GAN consists of a
generator G that tries to mislead a discriminator D into classifying a generated
sample x ∼ pG(x) as a sample from the real dataset x ∼ D and vice versa.
Deep generative models have become a popular tool for learning disentangled
representations [3]; in particular, the DIVA approach [7] extends the vanilla
VAE and disentangles the latent space by partitioning it into independent sub-
spaces. Due to their flexibility, generative models have started to gain traction
in scientific experiment and design applications. Examples of successful appli-
cations can be found, amongst others, in the domains of molecular science [12]
and material microstructure design [16]. Although these works demonstrate the
potential of generative models in scientific applications, they generally consider
only data from a single domain and try to simulate experiments conditioned
on low-dimensional features (e.g. incident particle energy), or generate designs
with favourable low-dimensional properties (e.g. stiffness). In contrast, we con-
sider the case where both P and X are high-dimensional, e.g. represented by
images, and are related via a non-deterministic relationship. Moreover, rather
than searching through the latent space, we explicitly accommodate generating
p ∈ P conditioned on a user-specified x ∈ X.

3 Proposed Approach

3.1 Use Case: Biomaterials Research

Biomaterials are artificially designed materials that are able to interact with liv-
ing tissue to fulfill a desired function. Biomaterials are used in various applica-
tions as part of medical devices, e.g. in production of stents, sutures, hip implants
and artificial heart valves [13]. To design such materials, the field of biomateri-
als engineering studies cell behavior in response to different materials. Several
studies have shown that the topography of the material’s surface impacts differ-
ent aspects of cell phenotype, such as cell morphology [1,2,5,6,13], expression
of biomarkers [5,11,13,14], cell proliferation [2,11,13,15] and metabolic activ-
ity [1,2]. The task is therefore to find the optimal surface topography with respect
to the desired cell response for a particular application. To study the cell-surface
topography interaction at scale, HTS is used, in which living cells are exposed
to a large collection of algorithmically generated surface topographies produced
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on a chip [13], after which they are stained with fluorescent dyes and captured
in images. The resulting screening data is a collection of observations, where a
surface topography, represented by an image (or alternatively, using a numerical
parameterization) is paired with the resulting cell response, represented by cell
images and by numerical cell features.

3.2 Model Concept

In the scope of this work we assume that topographies p may influence cell
images x through visually discernible, measurable and independent cell features
fi. Accordingly, a cell image can be described by a combination of these proper-
ties and residual variation ε, which is not influenced by topographies. We aim to
derive a fully factorized latent space ZX = Zf1 ×Zf2 × . . .×Zfn

×Zε, where n is
the number of cell features, such that each latent subspace Zfi

encodes the varia-
tion in X explained only by the feature fi. The subspace Zε captures the residual
variation in X that is not explained by the features fi. Subsequently, we reuse
the latent subspaces Zf1 , . . . , Zfn

in the latent space LP of P . Each subspace
Zfi

, being considered as part of LP , represents the influence of topographies on
a cell feature f . Furthermore, an additional residual subspace Lε is introduced
to capture the variation in P that is not related to any influence on X.

3.3 Implementation

Fig. 2. Graphical model for X (cell model). Fig. 3. Graphical model for P (topog-
raphy model).

The cell model (Fig. 2) is a VAE [8] with a factorized latent space with one
or multiple latent variables zf and a single latent variable zε. All latent vari-
ables have distinct encoders qφf

(zf |x), qφε
(zε|x) with unshared parameters,

as suggested by [7]. The latent variable zf has a conditional prior distribu-
tion pθf

(zf |f), while zε has an standard normal prior p(zε). A single decoder
pθ(x|zε, zf ) is used to generate cell images. To achieve a disentangled latent
space, an approach similar to DIVA [7] is used: auxiliary regressors qωf

(f |zf )
are included in the training process, which aim to predict the values of the corre-
sponding features f based on latent representations zf of cell images x. We fur-
ther introduce an auxiliary parameterized normal prior pθpr

(zf ) (Eq. 1), referred
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to as the full prior, for conditional prior distributions pθf
(zf |f). The full prior

has a zero mean, while the parameters representing the variance by dimensions
are made trainable with the condition that their sum equals one. The purpose of
the full prior is to 1. impose a normal distribution on the marginal distribution
pθf

(zf ), the shape of which is otherwise uncontrolled, and to 2. approximate the
marginal distribution by learning the variance parameters instead of calculating
it directly (Eq. 1–2); the full prior with learned variance parameters pθ∗

f
(zf ) is

later used as a substitute for the marginal distribution pθf
(zf ) in the topography

model (Fig. 3).
The topography model is also a VAE with a factorized latent space, which

comprises the latent variables zf from the cell model, as well as an additional
latent variable lε for the variation in topographies that is uninformative for cell
response prediction. Similarly to the cell model, the topography model has a
single decoder pϑ(p|lε, zf ), and its latent variables zf , lε have distinct encoders
qϕf

(zf |p), qϕε
(lε|p) with unshared parameters. The latent variable lε has a stan-

dard normal prior p(lε), while for the latent variable zf the full prior distribution
from the cell model pθ∗

pr
(zf ) is taken as a prior distribution (Eq. 3). The variance

parameters of the full prior are learned during training of the cell model and are
fixed in the topography model (denoted by ∗), as will be explained further. The
combined model is illustrated in Fig. 4.

Fig. 4. Combined model with a
shared latent variable zf .

pθpr (zf ) = N(0, diag(σ2
θpr

)),

such that
∑

i

(σθpr )2i = 1 (1)

pθf (zf ) =

∫
pθf (zf |f)p(f)df (2)

ptop(zf ) ≡ pθ∗
pr

(zf ) ≈ pθf (zf ) (3)

Notably, independently training VAE-like objectives for both components
would result in two independent models with unrelated latent variables zf , since
initially there is no component that binds topographies and cells from the train-
ing pairs (pi, xi) in the combined architecture. The challenge is therefore to
enforce a shared latent subspace, i.e. to ensure that zf is the same latent space
in both the cell model and topography models. To address this issue, we pro-
pose two likelihood-based auxiliary training objectives, the goal of which is to
establish the connection between the datasets through the latent space using



Simulation of Scientific Experiments with Generative Models 347

the training data. The first (first term in Eq. 5) aims to maximize the likeli-
hood of cell images given a topography image while the second (second term in
Eq. 6) aims to maximize the likelihood of topography images given cell images.
Furthermore, to train the combined model, a three-step training procedure is
proposed. Each of these steps consists of optimizing an objective function until
convergence of the validation loss, after which the next step commences.

1. All the components of the cell model are trained in the first step. It is done by
maximizing objective F1(x, f) (Eq. 4) with respect to all involved parameters.
The hyperparameters include βε, βf , βpr, αf . Subsequently, the weights of all
the components of the cell model are fixed (denoted by ∗). This step ensures
the cell model’s ability to (re)construct cell images, possibly conditioned on f .

F1(x, f) = Eqφε (zε|x)qφf
(zf |x) log pθ(x|zε, zf )

− βε KL
(
qφε

(zε|x) || p(zε)
)

− βf KL
(
qφf

(zf |x) || pθf
(zf |f)

)

− βpr KL
(
pθf

(zf |f) || pθpr
(zf )

)

+ αf Eqφf
(zf |x) log qωf

(f |zf )

(4)

2. In the second step, the topography-model encoder(s) qϕf
(zf |p) corresponding

to the shared variable zf is trained by maximizing objective F2(x, p) (Eq. 5)
with respect to parameters ϕf . Notably, zε is sampled from the posterior
qφ∗

ε
(zε|x). The only hyperparameter in this step is βpf . Once trained, the

weights of the encoder are fixed: qϕ∗
f
(zf |p). In this step, the simulation func-

tionality of the combined architecture is optimized, i.e. the model learns to
encode a given topography such that the already trained cell-model decoder
can generate cell images that could have resulted from this topography.

F2(x, p) = Eqφ∗
ε
(zε|x)qϕf

(zf |p) log pθ∗(x|zε, zf )

− βpf KL
(
qϕf

(zf |p) || pθ∗
pr

(zf )
) (5)

3. Finally, the remaining components of the topography model, i.e. qϕl
(lε|p),

pϑ(p|lε, zf ), are trained by maximizing objective F3(x, p) (Eq. 6) with respect
to parameters ϕl, ϑ. Intuitively, the final step targets the ability of the model
to design new topographies, which includes both reconstruction of a given
topography, as well as design of topographies that could result in a given
cell image. The hyperparameters include η, βl, where η controls the balance
between reconstruction error and quality of cell response-conditioned topog-
raphy design.

F3(x, p) = Eqϕl
(lε|p)qϕ∗

f
(zf |p) log pϑ(p|lε, zf )

+ η Ep(lε)qφ∗
f
(zf |x) log pϑ(p|lε, zf )

− βl KL
(
qϕl

(lε|p) || p(lε)
)

(6)
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Application Scenarios

1. Experiment simulation. To generate cell images x for a given topography p,
the topography is processed with the topography-model encoder qϕ∗

f
(zf |p),

after which samples zf ∼ qϕ∗
f
(zf |p) and zε ∼ p(zε) are passed to the cell-

model decoder pθ∗(x|zε, zf ).
2. Topography design. To generate topography images p for a given cell image

x, the model is queried in the opposite direction. A given x is mapped to a
posterior distribution qφ∗

f
(zf |x), after which samples zf from the posterior

and lε from p(lε) are passed to the topography-model decoder pϑ∗(p|lε, zf ).
3. Topography design based on f . The model can also take a value of the cell fea-

ture f as an input. In this case, samples zf ∼ pθ∗
f
(zf |f) from the conditional

prior are used by the decoder to generate topographies.

4 Evaluation

4.1 Dataset

We created a synthetic dataset that comprises 50,000 synthetic images of cells
and 50,000 synthetic images of topographies, all 128 by 128 pixels.1 A cell image
is defined by four features: roundness (f1), elongation (f2), nucleus size (f3) and
rotation angle (f4); f1, f2, f3 are chosen to be the cell features of interest, while
f4 is assumed to be an irrelevant noise feature. A topography image contains
nine identical shapes in a grid and is defined by two features: roundness (g1) and
radius (g2). At creation all features were randomly generated.

Fig. 5. Creating artificial training pairs
{pi, xi}.

Fig. 6. Artificial relationship: exam-
ples of training pairs.

To verify the proposed approach it is necessary to establish some relation-
ship between topography images and cell images and subsequently unravel this
relationship using the model. Consequently, it is assumed that the radius of a
topography (g2) positively influences the elongation of a cell (f2). In order to

1 The source code and the data are available at https://github.com/stepanveret/
biomatsim.

https://github.com/stepanveret/biomatsim
https://github.com/stepanveret/biomatsim
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create artificial training pairs (topography image, cell image) with positive rela-
tionship between g2 and f2, the topography data table is firstly sorted by g2 and
the cell data table is sorted by f2, both in ascending order. Secondly, a sliding
window having width2 w = 1000 is propagated through both tables in parallel.
At each position, a single row index inside the sliding window is taken at random
independently for each of the tables, and the two selected rows form a training
pair. An illustration of this procedure is provided in Fig. 5. Examples of training
image pairs are shown in Fig. 6.

4.2 Results

Disentangled Latent Representation of Synthetic Cell Images. After
the first step of the training procedure, a qualitative latent space traversal app-
roach is used to evaluate the disentanglement in the latent space (Fig. 7, top).
Each feature f is varied, and for each value a sample zf ∼ pθf

(zf |f) is passed to
the decoder to generate a cell image, while the other zf samples are fixed. The
leftmost images correspond to zero values of fi. It can be seen that elongation
f2 and nucleus size f3 are well captured and disentangled by the model in the zf

subspaces, since only the respective properties of the cell image change. Whereas
the space zf1 , corresponding to roundness, is moderately correlated with elon-
gation, i.e. not fully disentangled. Further, we qualitatively established that zε

encoded the residual variation in cell images (rotation angle f4): we randomly
sampled zε ∼ p(zε) with all zf fixed at the means of the posterior distributions
qφf

(zf |x) of a given cell image x (Fig. 7, bottom).

Fig. 7. Latent space traversal: zf1 , zf2 , zf3 (top); zε (bottom).

2 The width w of the sliding window regulates the variance of the dependency.
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Modeling the Influence of Topographies on Cells for Experiment Sim-
ulation. In the second step of training (Eq. 5) the goal is to model the possible
influence of topographies on cells by training the topography-model encoders for
each zf subspace. The hyperparameters βpf,i (i = 1, 2, 3) control the penalty on
the posteriors qϕf

(zf |p) for diverging from the full prior distributions pθ∗
pr

(zf ),
learned in the previous step. We searched over several values of βpf (identical
values for all f) in the range between (100, 1000) and trained the second-step
objective (Eq. 5) for 5–10 epochs; we observed that the value of KL2

3 is signif-
icantly larger than KL1, KL3 for all tested values of βpf . Arguably, this was to
be expected, since zf2 corresponds to cell elongation, which is the only feature
correlated to the topography design parameters in the data: for i �= 2, there is no
utility for posteriors qϕfi

(zfi
|p) to deviate from the priors pθ∗

pr,i
(zfi

), since this
yields no reduction in the cell image reconstruction loss. By contrast, using a
control-case dataset, in which topography and cell images are paired randomly,
we observe that KLi values are all close to zero, which implies the model learns
no relationship, as expected.

Fig. 8. Simulation of the experiment: given p, generate x.

Once the second-step objective (Eq. 5) is trained until convergence, the model
can be tested in the scenario of experiment simulation. As can be seen in Fig. 8,
the model is capable of generating cell images, which are elongated according to
the radius of the input topography, while at the same time they are diverse in the
remaining cell properties. Hence, the model learned the embedded relationship.

Modeling the Inverse Mapping for Cell-Conditioned Topography
Design. After the third step of training (Eq. 6), we found that, although the
architecture successfully generated topographies with radii that were expected
based on the input cell’s elongation, the diversity of the generated designs was
limited. To mitigate this issue, we extend our main approach with the idea of [9],

3 KLi stands for the average KL
(
qϕfi

(zfi |p) || pθ∗
pr,i

(zfi)
)
.
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where a VAE architecture is enriched with a discriminator model. The discrim-
inator outputs D(p), the estimated probability that a given topography p origi-
nates from the dataset P , and is trained to maximize Eq. 7. At the same time,
the base model, with all components frozen except for the decoder pϑ(p|lε, zf ), is
treated as a generator. Apart from the main objective, it aims to mislead the dis-
criminator and to generate topography samples that resemble true topographies;
the maximization objective (Eq. 6) is extended in Eq. 8.

FD(x, p) = Ep∼P log D(p) − EpG∼p(lε)qφ∗
f
(zf |x)pϑ(p|lε,zf ) log

(
1 − D(pG)

)
(7)

FV AE/GAN (x, p) =F3(x, p) + ξ EpG∼p(lε)qφ∗
f
(zf |x)pϑ(p|lε,zf ) log D(pG) (8)

As a result, the model learned to generate diverse topography images in the
task of cell-conditioned topography design with the radius feature g2 correspond-
ing to elongation f2 of a given cell, as shown in Fig. 9. Finally, the model is tested
in the third application scenario: topography design based on a cell feature value
f . Figure 9 shows different generated topographies for a series of increasing val-
ues of cell elongation f2, taken as input to the model. It can be seen that the
radius g2 of the generated topographies increases, while the residual feature,
roundness g1, varies.

Fig. 9. Cell image-conditioned topography design (top). Cell feature value-conditioned
topography design (based on cell elongation f2) (bottom).
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5 Conclusion

Although high-throughput screening and first-principle simulation have
advanced scientific experiment and design methods in the past decades, such
approaches are still limited by finite lab capacity or long simulation times, espe-
cially when both the parameter and outcome spaces are high-dimensional. There-
fore, using machine learning to design and simulate experiments can substan-
tially accelerate the iterative experiment and design cycle. We propose to use a
deep generative model in which the parameter and outcome space share latent
subspaces, allowing for both the holistic simulation of experimental outcomes,
conditioned on parameters (in silico experiments), as well as generating param-
eters that could have led to a user-specified outcome (in silico design). A proof-
of-concept evaluation on a synthetic dataset, inspired by biomaterials research,
shows that the proposed architecture is able to capture relationships between
high-dimensional input and output spaces and allows for both simulation and
design use cases.

The proposed approach has a number of limitations, providing grounds for
future work. Firstly, the model relies on the assumption that the experiment’s
outcome is composed of a set of independent and measurable features, while
the actual outcome features may be to varying degrees correlated or uncertain.
This observation suggests a future research direction aimed to drop the indepen-
dence assumption and to develop latent representations that allow for correlated
outcome features, yet preserve interpretability at the same time. Secondly, the
proposed model implies the assumption that the factors of variation in the input
space that influence certain outcome features are 1. mutually independent, 2. are
independent from the residual input variation, and 3. influence outcome features
via one-to-one relationships. However, these assumptions might not necessarily
hold in many real-world settings, which leaves modeling of the general case for
future work.
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Abstract. We present a method, which allows to train a Generalized
Matrix Learning Vector Quantization (GMLVQ) model for classification
using data from several, maybe non-calibrated, sources without explicit
transfer learning. This is achieved by using a siamese-like GMLVQ-
architecture, which comprises different sets of prototypes for the tar-
get classification and for the separation learning of the sources. In this
architecture, a linear map is trained by means of GMLVQ for source
distinction in the mapping space in parallel to the classification task
learning. The respective null-space projection provides a common data
representation of the different source data for an all-together classifica-
tion learning.

Keywords: Transfer learning · Learning vector quantization ·
Multiple source learning · Null-space evaluation

1 Introduction

Classification learning from different data sources is challenging because the data
frequently are not calibrated appropriately [2,5,35]. Thus learning from such
databases requires a careful data handling and merging. Another option is to
apply transfer learning for those data using a concept drift assumption [18,33,37–
39]. In this setting, the data from one source serve as the basis model training for
classification and afterwards the data from the other sources are mapped in such
a way that the trained model can be applied for these, too [19,39]. Generally,
transfer learning for concept drift processing is well established [7,15,38,39].
The transfer mapping function can be approximated by an affine transformation
using a Taylor expansion assumption [26].
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The standard transfer learning approach fails in our setting of several sources,
if not enough data are available from a single source to train the classifier model
adequately. In this case, usually all data are calibrated first and subsequently the
whole data set can serve for model training, i.e. the firstly mentioned strategy has
to be applied as usual in the field of source domain adaptation and multiple source
learning [5]. Accordingly, an adequate calibration of the data requires a careful
processing to keep the useful data information [13]. Yet, there is a great variety of
preprocessing tools and methods available [34]. Yet, this preprocessing frequently
is done independently from the subsequent classification task. Thus, valuable
information might be lost such that the subsequent classification learning suffers
from insufficient information [6].

To overcome these difficulties the preprocessing should take care of the tar-
geted classification problem. In this contribution we propose a learning vector
quantization (LVQ) approach to solve this challenge. LVQ variants for transfer
learning constitute a robust alternative to deep learning approaches [10,19,21]
with theoretical justifications for learning behavior [4,32]. Moreover, LVQ con-
stitutes a prototype-based approach which establishes an interpretable classifier
model [14,22,23,36].

The proposed model is based on the matrix variant of generalized learning
vector quantization (GMLVQ) [29]. GMLVQ is a variant of LVQ, which addition-
ally to classification learning adjusts a linear data mapping for optimum class
separation. We adapt this model to learn to distinguish the sources, on the one
hand side, restricting here the concept drift to consist of linear transformations
[17]. On the other hand, projecting the data into the null-space of the learned
linear GMLVQ-mapping leads to a leveling of the data differences with respect
to the sources. If this linear mapping has limited rank it offers a great variability
to do so. Therefore, to tackle the challenge of classification learning from data
of several sources, we suggest to apply classification learning in this null-space
exploiting the remaining variability of source separation. Thus, the mapping
information is shared by both procedures, source separation and classification
learning and, hence, can be seen as a siamese-like setting. We denote this kind of
transfer learning based on GMLVQ as null-space transfer classification learning
(T-GMLVQ).

The remainder of the paper is as follows: First, we briefly introduce GMLVQ.
Thereafter, we explain the null-space transfer classification learning model based
on limited rank GMLVQ. An exemplary application and concluding remarks
finalize the contribution.

2 Learning Vector Quantization

Learning vector quantization (LVQ) as introduced by T. Kohonen supposes
data vectors x ∈ T = {xk}Nk=1 ⊆ R

n together with class labels c (x) ∈ C =
{1, . . . , C} for training [12]. Further, the LVQ-model requires prototype vectors
wj ∈ W = {wk}Kk=1 ⊂ R

n with class labels c (wj) such that each class is
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represented by at least one prototype. A new data vector is assigned to a class
by means of the nearest prototype principle

x �→ c (w∗) with w∗ = argminwj∈W (d (x,wj))

where w∗ is denoted as the winning prototype for the input x with respect to
W , and d is a dissimilarity measure in R

n. According to [27], prototype learning
in LVQ can be realized as a stochastic gradient descent learning regarding the
cost function E =

∑
x∈T f (μ (x)) approximating the overall classification error,

where f is a monotonically increasing function and

μ (x) =
d (x,w+) − d (x,w−)
d (x,w+) + d (x,w−)

is the classifier function taking negative values for correct classification. Here,
w+ is the closest prototype to x with correct label whereas w− is the closest
prototype with incorrect label. If the dissimilarity d is chosen as

dΩ (x,w) = (Ω (x − w))2 (1)

and the mapping matrix Ω ∈ R
m×n is also subject of adaptation during learning.

This approach is known as the generalized matrix LVQ (GMLVQ) [29], which
usually requires some regularization of Ω to ensure the numerical stability [28].
In case of m < n, it is the limited rank GMLVQ (LiRaGMLVQ) [3]. Generally,
GMLVQ belongs to the class of interpretable classifier models [1] known to be
robust and optimizing classification margins [4,24].

3 Null-Space Transfer Classification Learning for GMLVQ
Using a Siamese-Like Architecture

In the following we assume that the data are obtained from different sources.
Hence, they are equipped with a source label s (x) ∈ S = {1, . . . , S}. Addition-
ally, the data are assigned to classes by means of class labels c (x) ∈ C. The task
is to classify the the data correctly independently from the source domain. Yet,
the sources may show considerable variations of the data.

To solve this task, the essential idea of the Transfer Learning GMLVQ (T-
GMLVQ) is to suppose two kinds of prototypes: the usual set W of class pro-
totypes wj with class labels c (wj) and the set W of so-called source proto-
types ωj with source labels s (ωj) ∈ S . The prototypes are responsible for
the class and the source discrimination, respectively. Further, we assume a
LiRaGMLVQ framework applying a mapping matrix Ω for the source sepa-
ration, i.e. Ω ∈ R

m×n with m < n is valid.
Now the idea is to train a GMLVQ model for the source prototypes ωj ∈ W

using a sub-orthogonal matrix Ω ∈ R
m×n with rank m < n in (1) to calculate

dΩ (x,ωj) whereas

δΩ (x,wk) =
((

In − ΩTΩ
)

(x − wk)
)2

(2)
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is used as the dissimilarity for the class prototypes wk ∈ W . More precisely, we
consider two classifier functions

νΩ (x) =
dΩ (x,ω+) − dΩ (x,ω−)
dΩ (x,ω+) + dΩ (x,ω−)

(3)

and

μΩ (x) =
δΩ (x,w+) − δΩ (x,w−)
δΩ (x,w+) + δΩ (x,w−)

(4)

sharing the information contained in the mapping matrix Ω. In (3), ω+ is the
best matching source prototype ωj with respect to the dissimilarity dΩ (x,ωj)
and with correct source label s (ωj) = s (x) whereas ω− is the best matching
source prototype with incorrect source label. In analogy in (4), w+ is the best
matching class prototype wk regarding the dissimilarity δΩ (x,wk) with correct
class label c (wk) = c (x) and w− is the corresponding counterpart.

Hence, the classifier function νΩ (x) from (3) detects wrongly determined
sources by taking positive values. Analogously, μΩ (x) from (4) yields positive
values in case of misclassifications.

The resulting cost function of T-GMLVQ combines both classifier functions
and reads as

ET−GMLVQ =
∑

x

α · f (μ (x)) + (1 − α) · g (ν (x)) (5)

taking into account the source information as well as the class information of the
training data x. It realizes a siamese architecture, which is visualized in Fig. 1.
The parameter α ∈ [0, 1] controls the relative importance of source and class

separation, respectively.
As we will show in the next section, the source separation takes place in the

projection space R
m determined by the mapping Ω using the source prototypes

ωj . The class discrimination is performed in the null-space of Ω by means of
the class prototypes wj .

The learning can be realized as a stochastic grading descent learning accord-
ing to the local loss

l (x) = α · f (μ (x)) + (1 − α) · g (ν (x))

with respect to the adjustable parameters, which are obviously the class proto-
types wk, the source prototypes ωj but additionally also the low-rank mapping
matrix Ω.

4 Mathematical Justification of the T-GMLVQ

In the following we give a mathematical justification for the setting of the T-
GMLVQ approach described above.
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Fig. 1. Visualization of the proposed siamese architecture for T-GLVQ. Two types of
prototypes are used for source and class separation, respectively. The information is
shared by the sub-orthogonal Ω-matrix in the dissimilarities δΩ (x,wk) and dΩ (x, ωj).

We suppose a sub-orthogonal matrix Ω ∈ R
m×n with m < n. Hence, ΩΩT =

Im holds with Im being the unity matrix in R
m.1 Therefore, P = ΩTΩ is an

orthogonal projection matrix and Q = In − P is the complementary orthogonal
projector [11]. It maps an arbitrary vector x ∈ R

n into the null space null (Ω)
of Ω, i.e. x̂ = Q ·x ∈ null (Ω) as well as ω̂ = Q ·ω ∈ null (Ω) and ŵ = Q ·w ∈
null (Ω) are valid for the source and the class prototypes, respectively [8,11].
Using the decomposition into the orthogonal sum

x − ω = P (x − ω) + Q (x − ω) (6)

the similarity
dΩ (x̂, ω̂) = (Ω (P (x − ω) + Q (x − ω)))2

of the null-space projections x̂ and ω̂ reduces to dΩ (x̂, ŵ) = (ΩP (x − ω))2

because ΩQ (x − ω) = 0. Thus, any optimization of Q regarding a class proto-
type wk does not contribute to dΩ (x̂, ŵ). This motivates the use of δΩ (x,wk)
from (2), where obviously Q = In − ΩTΩ holds and Q is subject of matrix
learning in GMLVQ for the class prototypes. of course, because both classifier
functions, νΩ (x) and μΩ (x), share the dependency on Ω, the class learning and
the source learning are not independent although different prototypes are used.

The proposed method allows the following interpretation: The source sep-
aration learning optimizes Ω for best results regarding this source discrimina-
tion. Yet, projection of the data into the null-space of Ω levels (or at least

1 Usually, sub-orthogonal matrices are defined in terms of column zero vectors or
equivalently Ω ∈ R

n×m. Then, the more common relation ΩTΩ = Im is equivalently
valid.
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reduces) the differences regarding the sources. Hence, class separation learning
optimizes the Ω matrix in such a way that the complementary projection matrix
Q = In − ΩTΩ delivers best class separation.

We remark that if the training set T contains samples with source label but
unknown class membership these data can still be taken into account in terms
of the source classifier function νΩ (x).

Further, to impose the sub-orthogonal matrix property of Q without any
renormalization according to a Gram-Schmidt-orthonormalization algorithm, we
could introduce a penalty term

p (Ω) =
(
det

(
ΩTΩ

))2

− 1 (7)

in the cost function ET−GMLVQ from (5). It can be seen as an analogue to the
regularization term regarding the Ω-learning suggested in [28] for GMLVQ.

Thus, we obtain

ÊT−GMLVQ =
∑

x

α · f (μ (x)) + (1 − α − β) · g (ν (x)) + β · p (Ω)

as a new cost function in this case with α, β ≥ 0 and α + β ≤ 1 as adjustable
parameters to be chosen in advance. Otherwise, approaches which implicitly
guarantee the sub-orthogonality while adapting the matrix Ω should be consid-
ered [16]. Otherwise, if sub-orthogonality is completely dropped, more complicate
projections have to be applied [11].

5 Exemplary Application – Analysis of Polluted
Breathing Air Spectra

We present an application of the method to detect classes of polluted breathing
air by means of multicapillary column coupled ion mobility spectrometry (MCC-
IMS) measurements [20,31].2 For each measurement, a total of 240s-retention-
time-spectrum was derived with a drift time of 0 to 20.48ms. The resulting heat
maps were preprocessed according to the procedure specified in [20]. Ultimately,
each measurement delivers a peak spectrum with respect to a peak list of n = 230
peaks regarding the identified regions of interest (ROI).

In this conceptual study, three measurement devices were used (sources – S1:
sn180169, S2: sn200157, S3: sn200158). Five air classes have to be discriminated.
For each source and each class only 10 measurements are available, respectively.
Data samples (heat maps) for each class and source are depicted in Fig. 2.

We applied GMLVQ for each source separately and afterwards the model
to the data of the other sources. In comparison we applied T-GMLVQ to the

2 For the measurements a MCC-IMS-device from STEP Sensortechnik und Elektronik,
Pockau, Germany (STEP IMS NOO) was used.



360 T. Villmann et al.

Fig. 2. Data samples (heatmaps) for the classes and sources. In each heat map, the
horizontal axis is the retention time whereas the vertical axis represents the drift time.
According to the processing described in [20], regions of interest are identified according
to all samples, the average of which in each heat map deliver together the respective
data sample spectrum. These spectra are used in the analysis.

merged data set. For all experiments we used only one class prototype per class.
For T-GMLVQ, also only one source prototype was used for each source. The
mapping dimension of the mapping matrix Ω was chosen as m = 10 such that the
remaining dimensionality of the null-space null (Ω) is 220 giving the flexibility
for class separation learning. The results are depicted in Table 1. The results
presented here are obtained by five-fold cross validation.
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Table 1. Accuracy results for MCC-IMS spectra classification regarding the data from
three sources (devices) obtained by GMLVQ and T-GMLVQ.

GMLVQ T-GMLVQ

S1 S2 S3 S1&S2&S3

S1 99.7 ± 0.6 18.5 ± 4.1 17.7 ± 1.6 97.8 ± 0.04

S2 16.0 ± 0.6 100 ± 0.0 92.6 ± 4.2 100 ± 0.0

S3 23.1 ± 1.9 93.0 ± 1.5 99.2 ± 1.1 95.6 ±0.08

We observe that the separately trained GMLVQ models are not able to trans-
fer the classification ability with respect to the training source to the other
sources. Particularly, source S1 seems to be quite different. Yet, T-GMLVQ is
able to discriminate the classes very well in all source-specific subsets of the data.

6 Conclusion and Future Work

In this paper we introduced null-space transfer classification learning by means of
limited rank GMLVQ to classify data from different sources. The approach uses
a siamese architecture of coupled GMLVQ models with prototypes for sources
and classes, respectively. Both sub-networks share the information regarding
the appropriate data transformations realized by linear mappings. This siamese
architecture allows to exploit this information in parallel such that classification
learning is possible also if only a few data samples are available from each source.
Future work will extend this approach to non-linear Φ mappings or its affine
approximations, i.e. we replace the matrix Ω by an affine operator

[Ω + s]x
def
= Ωx + s

containing a shift vector s. This will relate the null-space transfer classification
learning more closely to tangent metric learning for classification tasks [26].
Particularly, operator can be seen as an affine (Taylor) approximation of a non-
linear data transformation [9,25,26,30].
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Abstract. Machine learning has shown remarkable artistic values and
commercial potentials in the music industry. Recurrent variational
autoencoders (RVAEs) have been widely applied to this area due to the
condensing, inclusive, and smooth nature of their latent space. How-
ever, RNNs are powerful auto-regressive models on their own, where the
decoder in a RVAE can be strong enough to work independently from the
encoder. When this happens, the model degrades from an autoencoder
to a traditional RNN, which is known as posterior collapse. In this paper,
we propose a cost-effective bar-wise regulation schema called MuseBar
to alleviate this problem for music generation. We impose a prior on the
hidden state of every music bar in the RNN encoder, instead of only on
the last hidden state as in the standard RVAEs, such that the latent code
is learned under stronger regulations. We further evaluate our proposed
method, quantitatively and qualitatively, with extensive experiments on
manually scraped musical data. The results demonstrate that the bar-
wise regulation significantly improves the quality of the latent space in
terms of Mutual Information and Kullback-Leibler divergence.

Keywords: Music generation · Variational autoencoder · Recurrent
neural networks · Posterior collapse

1 Introduction

Recent advances in Artificial Intelligence (AI) have exhibited great values in cre-
ative arts such as music composing [18], poem writing [13], painting imitation [5],
and so on. Creating arts using AI techniques is efficient, imaginative, inspiring,
and for music generation, it can lead to additional commercial benefits. Because
of AI, people now have extensive exposure to sophisticated yet user-friendly cre-
ation, remixing, and learning tools e.g., Magenta, Flow Machines, MuseNet, etc.
Moreover, it can be used for therapeutic purpose as certain types of music have
been proven effective in suppressing beta and gamma rhythms in the brain that
are correlated with depression and anxiety [9]. Thus, pre-defining various out-
put patterns via AI technologies can undoubtedly save a lot of human labor and
produce more effective therapeutic music.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Bouadi et al. (Eds.): IDA 2022, LNCS 13205, pp. 365–377, 2022.
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However, successfully modeling the long sequences of notes in the musical
data is very challenging. On the one hand, convolutional neural networks (CNNs)
have been adopted to capture the patterns in the musical data [2,11]. CNNs are
used to distill the musical features, in which, music data is treated as consecutive
images and each image represents a bar in the music notation. These methods are
utilized in polyphonic music modeling as they can capture the common patterns
among multiple tracks. Nonetheless, they fail to generate the long- and short-
term structure of the music, which can not be ignored in long music sequences
as the transitions among the bars is what brings the tuneful melodies.

On the other hands, deep generative models [7] have been widely applied
for music generation. Recurrent variational autoencoders (RVAEs) are among
the most popular frameworks for this purpose due to the representative and
continuous nature of their latent space. Nevertheless, RNNs themselves are typ-
ically used on their own as powerful auto-regressive models of sequences. The
decoder in a recurrent VAE is sufficiently capable of modeling the sequential
data and might ignore the latent code from the encoder. With the latent code
disregarded, the model degrades from an autoencoder to a traditional RNN. This
is known as posterior collapse, or KL vanishing [1], which could get worse for
music generation as music notes are commonly of longer sequences. To alleviate
this problem, most of the existing approaches mainly focus on either designing
a stronger encoder by stacking LSTM units [16,17] or restricting the power of
decoder by introducing additional modules [14]. However, both approaches lead
to bulky models with significantly more parameters to learn.

In this paper, we introduce a light-weighted bar-wise regularization tech-
nique to address the posterior collapse in RVAEs without incorporating extra
parameters and/or additional modules. In a standard RVAE, a prior based on a
standard Gaussian distribution is imposed only on the last hidden state of the
RNN encoder, which might not be enough for long sequences, and can result in
an inaccurate representation of the latent code. Therefore, inspired by the ideas
from Li et al. [10], we propose MuseBar, a bar-wise regulation scheme to effec-
tively compress the data into the latent space. Subsequently, the Gaussian prior
is applied on multiple hidden states of the RNN-based encoder, and in this way,
a stronger regulation is imposed on the model and will theoretically produce a
more informative latent space, in particular, during the early phases. Empirical
study on manually scraped musical data from different genres shows that Muse-
Bar can effectively mitigate posterior collapse and outperforms certain baselines
in terms of the quality of the latent space as well as the overall performance.

2 Background

2.1 MIDI Representation

In order to make music notes accessible to the computer, they have to be encoded
according to a certain unified grammar. Musical Instrument Digital Interface
(MIDI) is one of the most commonly used formats which we adapt in this paper.
MIDI is a technically standard format to describe a protocol, a digital interface,
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Fig. 1. Comparison of piano-roll matrix and MIDI notes.

and connectors, which makes the interaction between various electronic musical
instruments, software, and devices possible [15].

Music notes in the MIDI format are often processed to the piano-roll repre-
sentation, which can be further translated into a matrix indicating which note(s)
at a certain pitch is played, at what velocity, and at which time frame. Simply
put, a piano-roll matrix is a mathematical representation of a MIDI file that
only focuses on musical notes and their key attributes. As depicted in Fig. 1, the
pitch value in MIDI files usually ranges from 0 to 127, hence in total, we have
128 different pitches. The 1s in the figure represent the note(s) with particular
pitch indicating when the left bar is being played. Although MIDI representa-
tion is not able to distinguish whether a key is held for multiple time steps or
consecutively pressed during a certain time frame, it is still a practical format
for digital composition in music generation due to its adaptability.

2.2 Generative Models

Autoencoders. An autoencoder (AE) is a neural network that aims at suc-
cessfully replicating its input x to output x′. There are two key parts in an
AE, an encoder that compresses the input signal into the latent code z, and a
decoder that reconstructs the input data from z. AEs have been widely used for
dimensionality reduction and feature extraction. However, the latent code from
an AE is a discrete vector of a fixed length, making it difficult to interpolate.
When sampling from such latent vector, we may end up with unrealistic output
as the decoder has never encountered some parts of the input before.

Variational Autoencoders. Compared to AEs, the latent space of variational
autoencoders (VAEs) is designed to be continuous and thus allows for random
interpolation and sampling. This is achieved by casting the input data to a
distribution instead of a latent code of fixed length. A VAE [8] samples the
latent vector z from a prior distribution p(z), which is controlled by parameters
μ and σ. The encoder is then denoted in conditional probability as Qφ (z | xi),
where φ indicates the weights of the encoder network. Correspondingly, a decoder
is represented as Pθ (x′

i | z), with θ being the weights of the decoder.
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(a) CNN-based VAE (b) RNN-based VAE

Fig. 2. Illustration of information flow in VAEs.

The backbone of both the encoder and decoder in a VAE can be of various
neural network structures, while we only focus on recurrent neural networks
(RNNs) in this paper, as musical notes are sequential data in essence. More
specifically, the encoder Qφ is composed of an LSTM module that outputs a series
of hidden states h1, h2, . . . , hT for a given input sequence x = {x1, x2, . . . , xT }.
The hidden states are used to generate μ and σ, which are the parameters of
the distribution over the latent code z. The latent vector z is sampled from this
distribution and is then utilized to initialize the states of the decoder Pθ . The
decoder network is also composed of an LSTM module and can auto-regressively
reconstruct the input sequence to output x′ = {x′

1, x
′
2, . . . , x

′
T }. The overall

model is trained to both learn an approximate posterior Qφ (z | x) which is close
to the prior P (z), as in a standard VAE and reconstruct the input sequence (i.e.,
x′

i = xi, i ∈ {1, . . . , T}). The loss function is subsequently defined as

L (
θ,φ;x1:t

i

)
= EQφ(zT |x1:t

i )
[
log Pθ

(
x1:t

i | zT
)] − DKL

(
Qφ

(
zT | x1:t

i

) ‖P
(
zT

))
,

(1)
where x1:t

i represents the sequential input data and zT represents the latent code
sampled from the last hidden state of the encoder.

Posterior Collapse. Posterior collapse, also known as KL vanishing, is a noto-
riously difficult problem in variational autoencoders, which makes it hard to
train an effective model due to the vanish of the KL term in Eq. (1). This phe-
nomenon is particularly obstinate when an RNN is exerted as the backbone of
VAE, since the temporal receptive field in RNNs can be unlimited in essence.

An intuitive explanation of such phenomenon is displayed in Fig. 2 [4]. For a
standard VAE with a CNN as the backbone, Fig. 2(a) shows that there is only
one path moving from encoder Qφ, to the latent code z, and then to the decoder
Pθ , when reconstructing the input data x. Such a uni-directional flow limits the
leak of information along the way and thus makes it easier to collaboratively
train the model. However, we will end up with an additional information flow
brought by the auto-regressive RNN if the traditional CNN decoder is replaced
by an RNN module. For an RNN decoder, the inputs come from two paths,
as shown in Fig. 2(b), one is from the latent code z and the other one is from
the output of the previous time step. Similar to the standard VAEs, z serves
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Fig. 3. Standard recurrent VAE. (Color figure online)

Fig. 4. Schematic of the bar-wise regulation on recurrent VAE.

as the global feature vector that supervises the replication of x, whereas parts
of the ground-truth information of x suffers from leaking at every time step of
the sequential decoding. As a result, the decoder becomes powerful enough to
generate data on its own and could not utilize stochastic information brought
by the trained latent space.

3 MuseBar

Effectively compressing the data to the latent space is crucial for the decoder
training, as the latent code is later used to initialize and supervise the reconstruc-
tion [1,4,6]. Nevertheless, to train an informative latent space especially at the
early stages is very challenging, as the encoder has not yet learned to condense
the input data. The latent code is hence not strong enough to guide the decoder
given its auto-regressive nature. Therefore, the decoder fails to cooperate with
the encoder and the latent code becomes meaningless. In order to penalize the
decoder from working independently, standard RVAEs, also illustrated in Fig. 3,
add one regularizer (red box) into the bottleneck layer to force the latent space
to follow the standard Gaussian distribution. However, only a single regulation
on the last hidden state of the encoder is insufficient to guarantee an optimal
latent space, especially when capturing the long-term dependencies.

Consequentially, following the light of step-wise regulation [10], we propose
MuseBar, a bar-wise regularizer, as displayed in Fig. 4, to impose stronger regu-
lations on the hidden states generated from multiple bars in a sequence of music.
The resulted Evidence Lower BOund (ELBO) loss is hence
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L (θ,φ;xi)b = EQφ(zT|xi)

[
log Pθ

(
xi | zT

)]− 1
b

b∑

t=1

DKL

(
Qφ

(
zt | x1:t

i

) ‖P
(
zt

))
,

(2)
where the final KL term is obtained from the average divergence of each bar in
the input sequence.

Given a musical sequence of length L with a number of b bars, a recurrent
encoder compresses the input into a low-dimensional latent space where only
most representative information is retained. Subsequently, the latent code z of
length l is sampled from this space to initialize the decoder, which will be used
to reconstruct the input sequence. The entire VAE network is trained under the
supervision of a reconstruction loss imposed on the input and output, which in
our case, is a binary cross-entropy loss, and a regularizer on the latent space and
standard Gaussian distribution, which is quantified as Kullback-Leibler diver-
gence. MuseBar adds a Gaussian distribution prior to every bar of the input
sequence as illustrated in Fig. 4. We choose bars as regulation units rather than
single beats because musical sequences are usually at least 20 times longer than
texts, hence, adding regulation on every beat can lead to a significant increase
in the computational costs. Apart from the bar-wise regulation, latent code z
is concatenated with the input sequence to form the final input for the decoder
instead of solely being used for initialization. This way, more information is
passed on to the decoder and theoretically brings richer context.

The main structure of the model consists of a 2-layer LSTM for both encoder
and decoder with hidden units of size 512 and input/output dimension of 128,
which is the number of pitches in the MIDI representation. Furthermore, the
vector z is sampled from the latent space and is both used to initialize the
decoder and concatenated with every sequence as the final input for the decoder.
In the output layer of the decoder, a sigmoid function is applied in order to
convert the output into probabilities. Finally, a binary construction (BCE) loss
is used along with the KL divergence to train the model in an end-to-end manner.

4 Empirical Study

In this section, we conduct experiments to evaluate the performance of MuseBar
compared to several baselines for music generation. The music data is collected
from Freepianotutorials1 and Lakh MIDI Dataset2, consisting of five major gen-
res which include pop, rock, classical, jazz, and electronic. For each genre, we
collect 100–300 songs, depending on the availability of monophonic MIDI files
and the productivity of the corresponding musicians. Every song is further pre-
processed to be of the same length by either repetition or interruption and then
concatenated into a long piece. For simplicity, all musical data is rendered by
piano and collected in monophonic MIDI format, with the help of Music21
library, which is a Python-based toolkit for computer-aided musicology.

1 https://www.freepianotutorials.net.
2 https://colinraffel.com/projects/lmd.

https://www.freepianotutorials.net
https://colinraffel.com/projects/lmd
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In our setting, the batch size equals to the number of musicians/genres so
that we can pick one specific genre/musician based on the batch index later on.
Models with different parameter settings are trained for 3k epochs and learning
rate is set to 0.001 as an upper limit for the Adam optimizer. During training,
we randomly select a snippet of 240 time steps from each musician/genre to feed
the model, as 240 is the average time steps needed for a basic structure in a
song (intro, verse, pre-chorus, chorus, and bridge) [12], which is approximately
30 s. In addition, we take 80 bars in one snippet on a 4/4 time signature, each
contains 4 time steps. To evaluate the performance of our model, we conduct
the following experiments.

Overall Performance. To verify the effectiveness of the bar-wise regulation, we
first compare MuseBar to two baselines: vanilla VAE (LSTM-VAE) [3], which
is simply composed of an LSTM unit without any special training strategy or
regulations, and the one proposed by Bowman et al. [1] (VAE-BOW), which is
trained under a weight annealing strategy. In the latter, the importance of KL
term is progressively raised over time in order to force the model to first learn the
latent code and then utilize it. Additionally, we train the bar-wise regularized
RVAE combined with the weight annealing method (MuseBar-BOW).

Music Genres. Monophonic music of different genres vary drastically in terms
of the transition intensity and pitch ranges. Classical music tends to have more
frequent transitions and wider range of pitch class than pop or rock music,
which is the reason why classical music sounds richer in texture and melody.
With the aim of exploring the impact of different genres, we train the regularized
recurrent VAE with the same network structure on datasets of 5 different genres,
respectively pop, rock, classical, jazz and electronic.

Hyperparameter Exploration. Autoencoders, or rather the encoder com-
ponent of them, in general are compression algorithms. Therefore, the size of
the latent space greatly impacts the effectiveness and efficiency of the model.
A latent code with a small size might not properly capture all the information
needed to reconstruct the input, while a larger latent space might end up with
too many dead units which consequently become more costly to train. Thus,
we tune the model to identify the optimal length of the latent vector z as a
hyper-parameter and we vary the length of the latent code from 8 to 128 in
a geometric sequence in this experiment. Furthermore, we explore the number
of regularizers as another hyper-parameter of the model. To this end, with the
input size of 240 time steps consisting of 60 bars under the time signature of 4/4,
we experiment different numbers of regularizers from {5, 10, 15, 30, and 60} on
both full dataset and separate genres, respectively, corresponding to regulation
on every 12, 6, 4, 2, and 1 bar(s).
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Fig. 5. Comparison of Binary Cross-entropy (BCE) in MuseBar and baselines.

4.1 Evaluation Metrics

In general, VAEs use the Evidence Lower Bound (ELBO) measure to estimate
the negative log likelihood of the data points under the learned distribution to
assess the reconstruction loss. Hence, ELBO can be used as the quantitative
measure of the overall performance of the model. We further investigate the
binary cross-entropy (BCE) and Kullback-Leibler divergence (KL), which are
two sub-components of ELBO, in our evaluation.

In addition to the inherent KL term, one of the most commonly used quan-
titative method for evaluating the quality of encoding is called Mutual Infor-
mation (MI). In information theory, mutual information is a measure of mutual
dependence of two given random variables, which can also be considered as the
reduction in the uncertainty about one random variable given the knowledge of
another. As such, we compute the MI between the latent space and the sampled
latent code to get an idea of how deductive the latent space is from which a latent
variable is sampled. The difference between MI and KL is that MI indicates how
much information is encoded in the latent code from the latent space, while KL
determines how far the latent space is from the standard Gaussian distribution.

4.2 Performance Results

Overall Performance. The general performance of different methods is eval-
uated on the joint test set of all genres with the input size of 240 × 128 and
the latent vector of length 100. The regulation is imposed on every two bars as
this leads to the best performance according to the exploration study conducted
later on. In order to reduce the effect of randomness, the results are averaged
over 10 runs. The performance is further compared with vanilla recurrent VAE
(LSTM-VAE) and VAE trained with weight annealing strategy (VAE-BOW),
which are shown in Fig. 5. In this figure, only the binary cross-entropy loss is
displayed as the Kullback-Leibler divergence and mutual information (MI) are
trivial (close to zero) in LSTM-VAEs compared to MuseBar.

In addition, Table 1 summarizes the evaluation results of all methods in terms
of three metrics on the entire data as well as each genre. For the entire data (the
Overall row), according to binary cross-entropy (BCE), Kullback-Leibler diver-
gence (KL), and Mutual Information (MI), the obtained results illustrate that
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Table 1. The performance of all methods on the collected dataset.

LSTM-VAE VAE-BOW MuseBar MuseBar-BOW

Overall BCE 1100 1076 1078 1068

KL 0.1 19 22 27

MI 0.7 17 20 21

Classical BCE 1121 1109 1111 1091

KL 0.08 17 20 30

MI 0.5 10 11 20.3

Jazz BCE 1130 1111 1113 1102

KL – 14 21 32

MI – 15 20 21.7

Electronic BCE 1029 1007 1001 989

KL 0.1 23 29 35.7

MI 0.9 20 21 24

Pop BCE 1047 1029 1021 1017

KL 0.09 16 27 32.9

MI 0.07 15 21 23.4

Rock BCE 1045 1026 1019 1007

KL 0.08 21 27 29

MI 0.03 20 23 24

both VAE-BOW and MuseBar enhance the vanilla recurrent VAE, with MuseBar
slightly better than VAE-BOW, but the best performance is achieved when two
strategies are combined, i.e., training MuseBar with weight annealing method.
Note that the weight annealing strategy balances the two terms in ELBO, which
is beneficial when the input size and latent dimension vary drastically. Samples
of music generated from our model can be found online3.

Music Genres. In addition to training on the complete dataset, we further
investigate the performance of bar-wise regulation and corresponding baselines
on each genre used in this paper. The results from both Fig. 5 and Table 1 demon-
strate that different genres react differently to the regularization. For classical
and jazz, VAE-BOW slightly outperforms MuseBar in terms of BCE, while for
other genres MuseBar achieves a better performance. This happens due to both
the specialty of the strategy and attributes of the music itself. VAE-BOW is
designed to balance the two terms in ELBO, which accordingly focuses on global
adjustment, unlike bar-wise regularizer, which is targeted at local bar-wise tex-
ture. Therefore, MuseBar is more suitable for genres that are less variant such as
electronic and rock. Not Surprisingly, electronic is more sensitive to any form of

3 Link to the sample musics.

https://www.youtube.com/watch?v=uNfUOlFJXiA&list=PLfmGagt5kVRPDed8PRrTYhFXG48Z4OucQ
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(a) Length of latent code z (b) Number of regularizers

Fig. 6. BCE loss and KL-divergence with different parameter settings. (Color figure
online)

optimization compared to other genres. We believe this is because of the repeti-
tive property of electronic music, which makes it easier to model and predict. On
the other hands, pop and rock music react similarly to either kind of enhance-
ments. We reckon this is because of the indistinct boundary between these two
genres. For example, Coldplay can be considered as a rock band and a pop band
at the same time. Same applies to the Beatles, Greenday, One Direction, etc.
Needless to say that this is also biased toward the collected data.

Hyperparameter Exploration. In this experiment, we first explore the
impact of different lengths of the latent code. Experiments in this part are
conducted on the complete dataset with 30 regularizers. Figure 6(a) plots the
performance of MuseBar in terms of varying BCE (orange) and KL (green)
measures.

As shown in Fig. 6(a), the size of the latent space does not necessarily have
a big influence on BCE as it does on KL. The BCE remains stable with slight
fluctuation from 1075 to 1080, while KL varies from 5.7 to 22.3. However, a larger
latent space (128) does not outperform a smaller one (64) in terms of both KL
and BCE, which means that our model does not require a very large latent space
to represent the compression of the input data. In the above experiments, we
adapt the size of 100 as the optimal latent dimension for the complete dataset,
aiming to effectively and efficiently compress the input sequence.

Additionally, we aim to verify the influence of the number of regularizers on
the model. Hence, we evaluate the performance of MuseBar with 5, 10, 15, 30,
and 60 regularizers on both full dataset and separate genres, which respectively
correspond to regulation on every 12, 6, 4, 2, and 1 bar(s). In this experiment,
the latent code is fixed to the length of 100. The results are displayed in Fig. 6(b)
for BCE (orange) and KL (green) terms.

Similarly, Fig. 6(b) demonstrates that the number of regularizers does not
necessarily have a great influence on BCE as it does on KL divergence. The BCE
remains stable with slight fluctuation from 1076 to 1081, while KL term varies
from 10.7 to 27.3. The obtained results verify that a stronger regulation leads
to a higher KL divergence as the KL reaches its maximum when 60 regularizers
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(a) Overall (b) Electronic (c) Pop

(d) Rock (e) Classical (f) Jazz

Fig. 7. Heatmap of BCE with variation of length of z and number of regularizers.

are added to the model. Nevertheless, more regularizers (60) does not surpass
less regulations (30) in terms of BCE, which indicates that vigorous supervision
is not necessarily beneficial to reconstruction. We believe this is sensitive to the
music genre. Genres with more flexible and creative patterns might need more
regulations while genres with less variations such as electronic does not require
strong regulations.

Consequently, we further investigate the interaction of the number of regu-
larizers and the length of the latent code on each genre. To this end, we conduct
extensive exploration experiments, where the achieved results are demonstrated
as heatmaps in Fig. 7. We employ BCE as the evaluation metric for this set of
experiments as the reconstruction loss is the core measure of interest to evaluate
the overall performance of the method.

Overall, Fig. 7 shows that BCE is negatively correlated to the number of
regularizers as well as the length of the latent code. When the latent code is
of length 8, all music genres reach the largest BCE as the size of the latent
space is not sufficient enough to represent the input sequence. However, there is
no significant difference regarding BCE when the latent code is above 64. This
also testifies the aforementioned assumption that the latent space of a large size
might be redundant as it might include inactivated units, which is not utilized
by the decoder at all. For various genres, the optimal combination of the number
of regularizers and the size of the latent code is also not the same. For example,
electronic in general needs more regulations compared to classical or jazz music
to reach an optimal BCE. We believe this is due to the repetitive/predictive
music notes progression of the electronic genre. Moreover, we conclude that it
is easier to reconstruct an electronic piece than a classical one according to the
range of the BCE indicated with the side bar.
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5 Conclusions

In this paper, we aimed to mitigate the posterior collapse problem in recurrent
VAEs in the context of music generation. Inspired by the step-wise VAE [10],
we proposed MuseBar, which adds stronger regulations to the hidden states of
the recurrent encoder during the training process, ensuring a more informative
latent space that can be used as a global guidance for the auto-regressive decoder.
Extensive experiments are conducted to analyze the impact of the length of the
latent code, number of regularizers, and various music genres on the perfor-
mance. Our model by itself as well as combined with weight annealing strategy
(MuseBar-BOW) significantly outperforms vanilla recurrent VAE (LSTM-VAE)
and VAE trained with weight annealing strategy (VAE-BOW) in terms of binary
cross-entropy, Kullback-Leibler divergence, and Mutual Information. Although
the bar-wise regulation effectively enhances the overall performance of RVAEs
and mitigates the KL vanishing problem, there are some limitations that hin-
der the further improvements, such as the MIDI representation and the LSTM
architecture. To address the aforementioned issues, we aim to seek for a more
fidelitous but also cost-efficient digital representation, and exploit more sophis-
ticated architectures such as bi-directional or pyramid LSTM encoder, that are
left for the future work.

References

1. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Gen-
erating sentences from a continuous space. In: Proceedings of the Twentieth Con-
ference on Computational Natural Language Learning (2015)

2. Dong, H.W., Hsiao, W.Y., Yang, L.C., Yang, Y.H.: MuseGAN: multi-track sequen-
tial generative adversarial networks for symbolic music generation and accompa-
niment, vol. 32, no. 1 (2018)

3. Fabius, O., Van Amersfoort, J.R.: Variational recurrent auto-encoders. arXiv
preprint arXiv:1412.6581 (2014)

4. Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., Carin, L.: Cyclical annealing
schedule: a simple approach to mitigating KL vanishing. In: Proceedings of NAACL
(2019)

5. Ha, D., Eck, D.: A neural representation of sketch drawings. arXiv preprint
arXiv:1704.03477 (2017)

6. Huang, A., Wu, R.: Deep learning for music. arXiv:1606.04930v1 (2016)
7. Jiang, J., Xia, G.G., Carlton, D.B., Anderson, C.N., Miyakawa, R.H.: Transformer

VAE: a hierarchical model for structure-aware and interpretable music representa-
tion learning, pp. 516–520 (2020)

8. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Second Interna-
tional Conference on Learning Representations (2013)

9. Kirk, R., Abbotson, M., Abbotson, R., Hunt, A., Cleaton, A.: Computer music in
the service of music therapy: the MIDIGRID and MIDICREATOR systems. Med.
Eng. Phys. 16(3), 253–258 (1994)

10. Li, R., Li, X., Chen, G., Lin, C.: Improving variational autoencoder for text mod-
elling with timestep-wise regularisation. arXiv preprint arXiv:2011.01136 (2020)

http://arxiv.org/abs/1412.6581
http://arxiv.org/abs/1704.03477
http://arxiv.org/abs/1606.04930v1
http://arxiv.org/abs/2011.01136


MuseBar: Alleviating Posterior Collapse in RVAEs Toward Music Generation 377

11. Malekzadeh, S., Samami, M.: Classical music generation in distinct dastgahs with
alimnet ACGAN. arXiv preprint arXiv:1901.04696 (2019)

12. McIntyre, P.: Creativity and cultural production: a study of contemporary western
popular music songwriting. Creat. Res. J. 20(1), 40–52 (2008)

13. Oliveira, H.G., Hervás, R., Dı́az, A., Gervás, P.: Adapting a generic platform for
poetry generation to produce Spanish poems, pp. 63–71 (2014)

14. Roberts, A., Engel, J., Raffel, C., Hawthorne, C., Eck, D.: A hierarchical latent
vector model for learning long-term structure in music, pp. 4364–4373 (2018)

15. Rothstein, J.: MIDI: A Comprehensive Introduction, 7th edn. A-R Editions, Mid-
dleton (1992)

16. Semeniuta, S., Severyn, A., Barth, E.: A hybrid convolutional variational autoen-
coder for text generation. In: Proceedings of Empirical Methods in Natural Lan-
guage Processing (2017)

17. Sønderby, C.K., Raiko, T., Maaløe, L., Sønderby, S.K., Winther, O.: Ladder vari-
ational autoencoders. Adv. Neural Inf. Process. Syst. 29, 3738–3746 (2016)

18. Wu, J., Hu, C., Wang, Y., Hu, X., Zhu, J.: A hierarchical recurrent neural network
for symbolic melody generation (2017)

http://arxiv.org/abs/1901.04696


Parameter Learning in ProbLog
with Annotated Disjunctions

Wen-Chi Yang1(B) , Arcchit Jain1 , Luc De Raedt1,2 ,
and Wannes Meert1

1 Department of Computer Science, Leuven.AI, KU Leuven,
Celestijnenlaan 200a - box 2402 3001, Leuven, Belgium

{wenchi.yang,luc.deraedt,wannes.meert}@kuleuven.be,
arcchit.jain.2015@iitkalumni.org

2 Centre for Applied Autonomous Sensor Systems, Örebro University,
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Abstract. In parameter learning, a partial interpretation most often
contains information about only a subset of the parameters in the pro-
gram. However, standard EM-based algorithms use all interpretations to
learn all parameters, which significantly slows down learning. To tackle
this issue, we introduce EMPLiFI, an EM-based parameter learning tech-
nique for probabilistic logic programs, that improves the efficiency of
EM by exploiting the rule-based structure of logic programs. In addi-
tion, EMPLiFI enables parameter learning of multi-head annotated dis-
junctions in ProbLog programs, which was not yet possible in previous
methods. Theoretically, we show that EMPLiFI is correct. Empirically,
we compare EMPLiFI to LFI-ProbLog and EMBLEM. The results show
that EMPLiFI is the most efficient in learning single-head annotated
disjunctions. In learning multi-head annotated disjunctions, EMPLiFI is
more accurate than EMBLEM, while LFI-ProbLog cannot handle this
task.

Keywords: Learning from interpretations · Probabilistic logic
programming · Expectation maximization

1 Introduction

Statistical relational learning [8] and Probabilistic Logic Programming [3,4]
have contributed to various representations and learning schemes that rea-
son about objects and uncertain relational structures among them. Popular
approaches include PRISM [10], Independent Choice Logic [13], Bayesian Logic
Programs [11], Markov Logic Networks [14], Logic Programs with Annotated
Disjunctions [17], CP-Logic [16] and ProbLog [7]. Many of these languages
are based on variants of the distribution semantics [15]. They vary in the
way they define the distribution over logic programs but are equally expres-
sive [2]. In this paper, we use ProbLog’s representation. ProbLog has proba-
bilistic facts such as 0.01 :: earthquake, stating that the probability of having
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an earthquake is 0.01, and has clauses such as alarm :− earthquake, stating
that the alarm goes off if there is an earthquake. In addition, ProbLog supports
annotated disjunctions (ADs) such as 0.01 :: alarm(long); 0.19 :: alarm(short);
0.8 :: alarm(none), stating that an alarm has exactly one type of the three types.

ProbLog’s parameter learning approach, LFI-ProbLog, is designed only for
probabilistic facts, and not for ADs. Hence, LFI-ProbLog cannot learn multi-
head AD variables. Even though LFI-ProbLog can learn single-head AD param-
eters, we will show that it is inefficient and in extreme cases, results in incorrect
values. Faria et al. tackled a special case of this efficiency issue for single-head
ADs [6]. In contrast, we provide a more general solution that, in addition, also
covers multi-head ADs. Although our approach is implemented in ProbLog, it
can be applied to other EM-based parameter learning algorithms as what we
exploit is the rule-based structure that is shared by all probabilistic logic pro-
grams.

The contribution is twofold. First, we introduce EMPLiFI, a new parame-
ter learning approach in ProbLog. EMPLiFI correctly learns multi-head ADs
and speeds up learning by exploiting the rule-based structure of logic programs.
Second, we prove that EMPLiFI is correct and illustrate how it reduces EM iter-
ations. We compare EMPLiFI with two other EM-based learners, LFI-ProbLog
and EMBLEM, and show that EMPLiFI is the most accurate in learning multi-
head ADs and takes the fewest EM iterations to converge.

2 Preliminaries

Probabilistic Logic Programming. A ProbLog theory (or program) T con-
sists of a finite set of probabilistic facts F , a finite set of clauses BK and a finite
set of annotated disjunctions AD. A probabilistic fact is an expression p :: f that
states the ground fact f is true with probability p. A clause is an expression
h :−b1, · · · ,bn where h is a literal and b1, · · · ,bn is a conjunction of literals, stat-
ing h is true if b1, · · · ,bn is true. ProbLog defines probability distributions over
ground facts in a Herbrand base LT . The probabilistic facts define a probability
distribution over possible worlds. All ground facts in a possible world W are true
and all that are not in W are false. The probability of a possible world W is
defined as P (W |T )=

∏
fi∈W pi

∏
fi∈LT \W (1−pi). The success probability of a

query q is the sum of the probabilities of the possible worlds that entail q, for-
mally, Ps(q|T )=

∑
I⊆LT ,I|=q P (I|T ). A partial interpretation I is an incomplete

possible world that contains truth values of some (but not all) atoms. If an atom
a (resp. ¬a) is in I, then a is true (resp. false). Otherwise, the truth value of
a is unknown. Hence, a partial interpretation I represents a number of possible
worlds, and the probability of I is the success probability of the conjunction of
the literals in I, i.e. P (I)=Ps(

∧
l∈I l).

Annotated Disjunctions in ProbLog. An annotated disjunctions (ADs) is a
clause with one or more mutually exclusive heads of the form p1 :: h1; · · · ; pk :: hk
where

∑k
i=1 pi = 1, stating that if the body is true, exactly one head is made true,
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where the choice of hi is governed by pi. Although the ProbLog language and
semantics allow for ADs, only probabilistic facts (and a transformation) are used
for inference. Hence, most transformations encode ADs as probabilistic facts as
the first step [5,7]. For example, a three-head AD 0.2 :: a1; 0.2 :: a2; 0.6 :: a3 :−b
is encoded as

0.2::h1. 0.25::h2. 1.0::h3.

a1:-b,h1. a2:-b,\+h1,h2. a3:-b,\+h1,\+h2,h3.

where h1, h2 and h3 are hidden facts. The last fact h3 can be dropped for infer-
ence but we keep it in because we will later need it for learning. This encoding
is designed to compute the probabilities correctly for the inference task but is
insufficient for learning and results in incorrect values (see Sect. 3).

3 Learning from Interpretations in ProbLog

In this section, we review LFI-ProbLog and illustrate its two issues. Later, Sect. 4
will introduce a new learning approach that resolves these issues. The parameter
learning task in ProbLog is as below.
Given

– A ProbLog program T (p) =F ∪ BK ∪ AD where F is a set of probabilistic
facts, BK is a set of background knowledge and AD is a set of ADs. p =
〈p1, · · · , pN 〉 is a set of unknown parameters where each parameter is attached
to a probabilistic fact or an AD head.

– A set I of partial interpretations {I1, ..., IM}.

Find maximum likelihood probabilities p̂ for all interpretations in I. Formally,

p̂ = arg max
p

P (I|T (p)) = arg max
p

M∏

m=1

Ps(Im|T (p))

Given initial parameters p0 = 〈p01, · · · , p0N 〉, an Expectation Maximization (EM)
algorithm computes p1, and in this fashion, enumerates a series of estimations
p2, ...,pT . The process terminates after T iterations when the log likelihood does
not improve more than an arbitrary small value ε. LFI-ProbLog, is summarized
by Eq. 1 [7,9], which takes pt to compute pt+1. Intuitively, based on pt, a new
estimate pt+1

n is the expected count of fn being true divided by the total count
of fn, formally,

pt+1
n =

∑M
m=1

∑Km
n

k=1 P (fn,k|Im, T (pt))
∑M

m=1 Km
n

(1)

where Km
n is the number of ground instances represented by pn :: fn in Im. We

will use the following running examples throughout this paper to illustrate two
issues of LFI-ProbLog and our approach to tackle them.
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Running example 1. Consider the following Smokers program with three param-
eters p = 〈p1, p2, p3〉, stating that a person is a smoker with probability p1, and
any smoker (resp. non-smoker) has cancer with probability p2 (resp. p3).

person(X). p1::smokes(X):-person(X).

p2::cancer(X):-smokes(X),person(X). p3::cancer(X):-\+smokes(X),person(X).

Consider interpretations I1 = {smokes(a), cancer(a)}, I2 = {smokes(b),¬
cancer(b)}, I3 = {¬smokes(c),cancer(c)}, I4 = · · · = I102 = {¬smokes(·),
¬cancer(·)}. As all interpretations are fully observable, we obtain 〈p1, p2, p3〉
= 〈2/102, 1/2, 1/100〉 by simply counting.

Running example 2. Consider the following Colors program with three parame-
ters p = 〈p1, p2, p3〉 that jointly denote a probability distribution of the color of
a ball.

p1::green;p2::red;p3::blue:-ball. ball.

Given interpretations I1 = {green}, I2 = {red} and I3 = {blue}, we obtain p =
〈1/3, 1/3, 1/3〉 by counting.

The first issue of LFI-ProbLog is efficiency-related. When learning single-
head ADs, LFI-ProbLog takes into account all interpretations, including the
irrelevant ones that do not contain information about the parameter to be
learned. These irrelevant interpretations introduce an undesired inertia in EM
learning, as illustrated in Example 1.

Example 1. For LFI-ProbLog, the Smokers program must be transformed into
the following program with hidden facts h1, h2 and h3.

p1::h1. p2::h2. p3::h3. person(X).

smokes(X):-person(X) h1.

cancer(X):-smokes(X),person(X),h2. cancer(X):-\+smokes(X),person(X),h3.

Given initial parameters p0 = 〈0.1, 0.1, 0.1〉, by applying Eq. 1, we obtain p1 =
〈p11, p12, p13〉 as follows.

p11 =
1+1+0+0×99

102
=

2

102
, p12 =

1+0+.1+.1×99

102
= 0.108, p13 =

.1+.1+1+0×99

102
= 0.012

By repeatedly applying Eq. 1, we further obtain a series of estimates
p2 = 〈2/102,0.116,0.01〉, · · · , p100 = 〈2/102,0.445,0.01〉. Notice that p2 does not
converge to 0.5 after 100 iterations even though all interpretations are fully
observable. This is resulted from the irrelevant interpretations I3, · · · I102.

The second issue is that LFI-ProbLog does not correctly learn all possible
multi-head ADs. This is because how their probabilities are transformed from p
to ṕ [5] (cf. Sect. 2). This transformation is incorrect in learning as the parame-
ters are not known and must be learned, as illustrated in Example 2.
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Example 2. For LFI-ProbLog, the Colors program must be transformed into
the following program with hidden facts gh, rh and bh, and the given initial
parameters must be transformed. Say, given p0 = 〈0.2, 0.2, 0.6〉, the transformed
probabilities are ṕ0 = 〈0.2, 0.25, 1.0〉.

ṕ1::gh. ṕ2::rh. ṕ3::bh. ball.

green:-ball,gh. red:-ball,\+gh,rh. blue:-ball,\+gh,\+rh,bh.

By applying Eq. 1, we obtain ṕ1 as follows.

ṕ11 =
1 + 0 + 0

3
= 0.333 ṕ12 =

0.25 + 1 + 1
3

= 0.750 ṕ13 =
1 + 1 + 1

3
= 1

We future obtain ṕ2 = 〈0.333, 0.917, 1〉, · · · , ṕ10 = 〈0.333, 1, 1〉, which corre-
sponds to the incorrect AD parameters p10 = 〈1/3, 2/3, 0〉.

4 Learning with Annotated Disjunctions

We propose EMPLiFI, a parameter learning approach in Eq. 2, as a solution to
the issues discussed in Sect. 3. This section illustrates EMPLiFI, and Sect. 5 will
prove EMPLiFI’s correctness.

pt+1
n =

∑
Im∈Ipn

∑Jm
n

j=1 P (hn,j, bn,j|Im, T (pt))
∑

Im∈Ipn

∑Jm
n

j=1 P (bn,j|Im, T (pt))
(2)

where

– hn,j and bn,j are the j-th possible ground instance represented by pn :: hn and
the corresponding body in Im

– Jm
n is the total number of ground instances represented by pn :: hn in Im

– Ipn is the set of all relevant interpretations to pn

If the denominator is zero, then pt+1
n will not be updated. Intuitively, based on

pt, a new estimate pt+1
n is the expected count of the head divided by the expected

count of the body. Unlike LFI-ProbLog that assumes all parameters are attached
to a fact, EMPLiFI recognizes and exploits AD rule structures, which enables
efficient EM and multi-head AD learning.

4.1 Relevant Interpretations

At this point, it is important to stress that some interpretations do not contain
information about a rule p :: h :−b. An interpretation I is called irrelevant to p
if the conditional probability components P (hn, bn|·) and P (bn|·) solely depend
on the old probability estimate pt, formally,

P (h, b|I, T (pt)) = P (h, b|T (pt)) and P (b|I, T (pt)) = P (b|T (pt)) (3)
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As irrelevant interpretations slow down learning (see Example 1), it is our aim
to identify them for each parameter.

The dependency set of a ground atom a in a ProbLog theory T , denoted
by depT (a), is the set of all atoms that occur in some SLD-proof of a [7]. The
dependency set of multiple atoms is the union of their dependency sets. A ground
fact f ∈ T is relevant to an interpretation I if it is in the dependency set of I,
namely f ∈ depT (I). Similarly, a ground clause is relevant to I if it is used in the
SLD proof of I. Then, the interpretation-restricted theory, denoted by Tr(I), is
the union of all relevant facts and clauses [9]. A restricted theory is a subset of
the original ground program, in fact, it is usually much smaller than the original
program. Using the restricted theory, we can define relevant interpretations for
learning a parameter.

Definition 1 (Relevant Interpretation) For a ProbLog theory T , an inter-
pretation I is relevant to an atom an ∈ T if and only if an is in the interpretation-
restricted theory Tr(I), namely an ∈ Tr(I).

Since a parameter pn always corresponds a unique atom an in T , we define
pn-relevant interpretations using an, formally, Ipn = {I ∈ I|an ∈ Tr(I)}. We have
defined relevant interpretations for single-head ADs and probabilistic facts.

Example 3. Consider the Smokers program and I2 = {smokers(b),
¬cancer(b)}, the dependency set of I2 is depT (I2) = {h1, h2, smokes(b),
cancer(b)} and the corresponding restricted theory Tr(I2) is

p1::h1. p2::h2. person(b).

smokes(b):-person(b),h1. cancer(b):-smokes(b),person(b),h2.

Therefore, I2 is relevant to p1 and p2 according to Definition 1. We obtain the
relevant interpretation sets for all three parameters as Ip1 = {I1, · · · , I102}, Ip2 =
{I1, I2}, and Ip3 = {I3, · · · , I102}. Given initial parameters p0 = 〈0.1, 0.1, 0.1〉,
we obtain p1 = 〈2/102, 1/2, 1/100〉 after one EM iteration by applying Eq. 2, as
opposed to Example 1.

4.2 Directly Learning Multi-head ADs

Recall that ProbLog’s transformations result in incorrect learning of multi-head
ADs (see Sect. 3). To gain correctness, it is required to maintain mutual exclusiv-
ity in the interpretation-restricted theory. To do so, we define the AD dependency
set, depAD

T (I) ⊇ depT (I) to include also mutually exclusive atoms. Intuitively,
if depAD

T (I) contains an AD head, it must also contain all mutually exclusive
heads and their dependency sets. Then, an AD dependency set defines an AD
interpretation-restricted theory as in Sect. 4.1.

Definition 2 (Relevant Interpretation with AD). For a ProbLog theory T ,
an interpretation I is relevant to an atom an ∈ T if and only if an is in the AD
interpretation-restricted theory T AD

r (I), namely an ∈ T AD
r (I).
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After defining relevant interpretations for ADs, we can now learn multi-head
ADs using Eq. 2.

Example 4. Consider the Colors program and I1 = {green}, the AD dependency
set depAD

T (I1) is {ball, green, red, blue, gh, rh, bh} and the AD restricted the-
ory T AD

r (I1) is

ṕ1::gh. ṕ2::rh. ṕ3::bh. ball.

green:-ball,gh. red:-ball,\+gh,rh. blue:-ball,\+gh,\+rh,bh.

I1 is relevant to p1, p2 and p3 according to Definition 2. Similarly, I2 and I3 are
also relevant to all three parameters. Given initial parameters p0 = 〈0.2, 0.2, 0.6〉,
we obtain p1 = 〈1/3, 1/3, 1/3〉 after one EM iteration by applying Eq. 2.

5 Proofs

Section 5.1 will prove EMPLiFI’s correctness and Sect. 5.2 will provide insight
into how EMPLiFI improves efficiency of EM parameter learning.

5.1 Correctness

We start from the EM algorithm for Bayesian Networks [12], i.e. Eq. 4, that
differs from EMPLiFI by learning from all interpretations. Since Eq. 4 is cor-
rect [12], we can prove the correctness of EMPLiFI, i.e. Eq. 2, by showing they
converge to the same values, i.e. Proposition 1.

pt+1
n =

∑M
m=1

∑Jm
n

j=1 P (hn,j, bn,j|Im, T (pt))
∑M

m=1

∑Jm
n

j=1 P (bn,j|Im, T (pt))
(4)

Proposition 1. Given a program T , a set of partial interpretations I, and ini-
tial parameters p0. Let pt,1 and pt,2 be the parameter estimates generated by
Eqs. 2 and 4, respectively. It is true then limt→∞ pt,1n = pt,2n

Proof. We prove by induction. When t = 0, p0,1 =p0,2 =p0 holds. Assume that
when t = k, pk,1 =pk,2 holds. Then, for t = k+1, by applying Eq. 2, we obtain
pk+1,1
n , which we rewrite using A and B to save space.

pk+1,1
n =

∑
I∈Ipn

∑Jm
n

j=1 P (hn,j, bn,j|I, T (pk,1))
∑

I∈Ipn

∑Jm
n

j=1 P (bn,j|I, T (pk,1))
=

A

B
(5)
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We finish the proof by showing that pk+1,2
n also converges to A

B .

pk+1,2
n =

∑M
m=1

∑Jm
n

j=1 P (hn,j, bn,j|Im, T (pk,2))
∑M

m=1

∑Jm
n

j=1 P (bn,j|Im, T (pk,2))
( ∵ Equation 4)

=

∑M
m=1

∑Jm
n

j=1 P (hn,j, bn,j|Im, T (pk,1))
∑M

m=1

∑Jm
n

j=1 P (bn,j|Im, T (pk,1))
( ∵ pk,1 =pk,2)

=
A +

∑
I �∈Ipn

∑Jm
n

j=1 P (hn,j, bn,j|I, T (pk,1))

B +
∑

I �∈Ipn

∑Jm
n

j=1 P (bn,j|I, T (pk,1))
( ∵ Equation 5)

=
A +

∑
I �∈Ipn

∑Jm
n

j=1 P (hn,j, bn,j|T (pk,1))

B +
∑

I �∈Ipn

∑Jm
n

j=1 P (bn,j|T (pk,1))
( ∵ Equation 3)

=
A + M2 × P (hn, bn|T (pk,2))
B + M2 × P (bn|T (pk,2))

(LetM2 =
∑

I �∈Ipn

Jm
n and ∵ pk,1 =pk,2)

=
A+M2×P (hn, bn|T (pk+1,2))
B+M2×P (bn|T (pk+1,2))

( ∵ pk,2 =pk+1,2) (6)

By definition,

pk+1,2
n =

P (hn, bn|T (pk+1,2))
P (bn|T (pk+1,2))

(7)

By combining Eqs. 6 and 7, we obtain pk+1,2
n = A

B .

5.2 Convergence Rate

We will prove that EMPLiFI always updates the parameters by a larger margin
by considering only relevant interpretations, namely Proposition 2.

Proposition 2. Given a program T , a set of interpretations I, and parameter
estimates pt. Let pt+1,1 and pt+1,2 be the next parameter estimates generated
by Eqs. 2 and 4, respectively. It is true that either pt+1,1

n ≤ pt+1,2
n ≤ ptn or

pt+1,1
n ≥ pt+1,2

n ≥ ptn holds.

Proof. Following the same reasoning as in Proposition 1, we have

pt+1,1
n =

A

B
and pt+1,2

n =
A + M2 × P (hn, bn|T (pt))

B + M2 × P (bn|T (pt))

We also have P (hn, bn|T (pt))= ptn×P (bn|T (pt)) by definition. Hence,

pt+1,2
n =

pt+1,1
n ×B+M2×ptn×P (bn|T (pt))

B+M2×P (bn|T (pt))
=

pt+1,1
n ×B+ptn×C

B+C
(8)

where C =M2×P (bn|T (pt)). As B,C ≥ 0, we have proven Proposition 2.
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Equation 8 illustrates that irrelevant interpretations create an inertia, namely
ptn×C, where ptn is the old estimate and C is proportional to the number of
irrelevant instances. This inertia not only slows down learning, but also causes
numerical instability and results in incorrect values when C >> B as standard
EM terminates before reaching the true probabilities (cf. Example 1).

6 Experiments

There are two well-known parameter learning algorithms and implementations
for probabilistic logic programming: EMBLEM [1] and LFI-ProbLog [7,9]. We
compare EMPLiFI to these two learners to answer the following questions.

Q1 How much does EMPLiFI speed up EM learning?
Q2 How well does EMPLiFI handle multi-head ADs?
Q3 How well does EMPLiFI handle missing data?
Q4 Does EMPLiFI require more computational resources?

Programs

Emergency Power Supply (EPS) [18] is propositional, acyclic and contains 24
probabilities1. It can be handled by all learner as it has no multi-head ADs.

0.95::lowSupply:-a1. 0.95::highSupply:-a2,a3.

1.0::lowSupply:-highSupply. 0.95::highSupply:-a2,a4.

0.95::failure:-highLoad,\+highSupply. 0.95::highSupply:-a3,a4.

0.95::failure:-lowLoad,\+lowSupply. 0.75::a2:-a3.

0.98::emergency:-\+a3,\+a4. 0.75::a2:-a4.

0.7::ll1:-emergency. 0.85::a1.

0.7::pl1:-emergency. 0.95::a3.

0.6::highLoad:-ll2,ll3,pl2,pl3. 0.95::a4.

0.95::lowLoad:-highLoad. 0.8::ll2.

0.8::lowLoad:-ll1, pl1. 0.8::pl2.

0.8::lowLoad:-ll2, pl2. 0.8::ll3.

0.8::lowLoad:-ll3, pl3. 0.8::pl3.

Smokers [7] contains 4 probabilities. It has no multi-head ADs but is relational
and cyclic. We omit ground facts person/1 and friend/2 to save space.

0.2::smokes(X):-person(X).

0.3::smokes(X):-friend(X,Y),smokes(Y),person(X),person(Y),X\=Y.

0.3::cancer(X):-smokes(X),person(X).

0.1::cancer(X):-\+smokes(X),person(X).

Dice is an AD with 6 heads. The dice has a higher change of throwing a six.

0.15::one;0.15::two;0.15::three;0.15::four;0.15::five;0.25::six.

1 http://www.machineryspaces.com/emergency-power-supply.html.

http://www.machineryspaces.com/emergency-power-supply.html
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Colors consists of a single-head AD and two multi-head ADs. To learn this
program, one must perform EM, even in the fully observable case because the
AD bodies are not mutually exclusive.

ball. 0.8::green:-ball. 0.8::large;0.1::medium;0.1::small.

0.3::large; 0.6::medium; 0.1::small:- green.

Experimental Setup and Results

Experiments were run on a 2.4 GHz Intel i5 processor. Learning terminates with
ε= 1e−6. All interpretations are sampled from the above programs. Partial inter-
pretations are generated by randomly discarding literals in the interpretation,
given a missing rate m ∈ [0, 1]. When m = 0, interpretations are fully observable.
We obtain average measurements by executing all tasks using 5 random seeds.
EMPLiFI and LFI-ProbLog programs are compiled as SDDs. Tables 1, 2 and 3
list parameter errors and EM iteration counts. Table 4 lists compilation, evalu-
ation, total times and circuit sizes, which refer to node counts.

Q1 How Much Does EMPLiFI Speed up EM Learning? We run all three
learners on Smokers and 100 fully observable interpretations. Table 1a shows that
EMPLiFI and LFI-ProbLog converge to the same values, but EMPLiFI takes
fewer EM iterations. This is consistent with Propositions 1 and 2. EMBLEM is
not accurate in Table 1a. Since EMBLEM is not designed to learn all parameters
at the same time [1], we split this task into four sub-tasks where each task learns
one parameter and all other parameters are set to ground truth values. Results
are in Table 1b, where EMBLEM is still the least accurate.

Table 1. Smokers. EMPLiFI is the most accurate and takes the fewest EM cycles.

param empl lfip embl

name err err err

smo[.2] -.015 -.015 -.200

smo[.3] .046 .046 .092

can[.3] -.025 -.025 -.142

can[.1] -.055 -.055 -.049

#iters 19.6 51.2 108.0

(1a) Learning all parameters

param empl lfip embl

name err iters err iters err iters

smo[.2] -.007 12.4 -.007 12.4 -.200 171.0

smo[.3] .039 20.0 .039 56.4 -.083 38.0

can[.3] -.025 3.0 -.025 41.6 -.178 21.0

can[.1] -.055 3.0 -.055 14.6 -.100 61.0

(1b) Learning one parameter

Q2 How Well Does EMPLiFI Handle Multi-head ADs? This experiment
shows that EMPLiFI is more accurate than EMBLEM and LFI-ProbLog in
learning multi-head ADs. We run all three learners on Dice (Table 2) and Colors
(Table 3) with 1k sampled interpretations under two settings. The first setting
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Table 2. Dice. LFI-ProbLog fails when
only positive literals are given.

Param name Fully observable Only positive

empl lfip embl empl lfip embl

on[.15] −.012 −.012 −.012 −.012 .85 −.012

tw[.15] −.017 −.017 −.017 −.017 .85 −.017

th[.15] .010 .010 .010 .010 .85 .010

fo[.15] .000 .000 -.000 .000 .85 .000

fi[.15] −.003 −.003 −.003 −.003 .85 −.003

si[.25] .022 .022 .021 .022 .75 .022

#iters 3.0 3.0 6.99k 2.0 2.0 58.0

Table 3. Colors. EMPLiFI is the most
accurate.

Param name Fully observable Only positive

empl lfip embl empl lfip embl

gr[.8] −.013 −.013 −.048 .072 .072 .200

la[.3] −.012 −.078 −.064 −.127 −.148 −.300

me[.6] .015 .017 −.026 .100 .170 .146

sm[.1] −.003 −.005 .088 .028 .210 .154

la[.8] −.008 .002 −.009 .046 .077 .200

me[.1] −.008 −.015 −.100 −.045 −.047 −.100

sm[.1] .015 .012 −.099 −.001 .146 −.100

#iters 25.4 14.4 25.6k 25.0 14.4 171.0

Fig. 1. The average error of EPS parameters decreases over EM iterations under all set-
tings. EMPLiFI generally takes fewer iterations to converge compared to LFI-ProbLog.

learns from full interpretations (e.g. {one,¬two, · · · , ¬six}), and the second
setting learns from only positive literals (e.g. {one}). The second setting is fully
observable as the truth values of all missing literals can be derived. Table 2 shows
that when given all literals, all learners can learn multi-head ADs. However, when
given only positive literals, LFI-ProbLog cannot learn. Table 3 shows an example
that EMBLEM also fails at learning multi-head ADs.

Q3 How Well Does EMPLiFI Handle Missing Data? This experiment
shows that EMPLiFI reduces EM iterations in the partially observable setting.
We run EMPLiFI and LFI-ProbLog on EPS and 10k interpretations for a series
of missingness values in [0, 1]. EMBLEM cannot handle this task with the limit
of 3.5 GB memory. Figure 1 shows that EMPLiFI converges much sooner than
LFI-ProbLog given either full or partial interpretations.

Q4 Does EMPLiFI Require More Computational Resources? We run
EMPLiFI and LFI-ProbLog on EPS with 10k interpretations for a series of
missingness values. Table 4 shows that EMPLiFI has larger circuits thus longer
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compilation and evaluation time. This is because EMPLiFI includes informa-
tion of mutually exclusive AD heads. However, EMPLiFI achieves shorter total
execution time compared to LFI-ProbLog as it reduces EM iterations.

Table 4. EPS. The total runtime is the sum of compilation and evaluation time.

missing rate emplifi lfiproblog

Size Comp Eval Iters Eval/Iter Total Size Comp Eval Iters Eval/Iter Total

0.0 75.0 16.6 91.1 199.4 5.0 107.6 58.0 6.1 106.3 406.6 0.3 112.4

0.1 75.9 233.6 986.2 114.0 8.7 1219.8 57.1 92.6 6865.40 1447.6 4.7 6957.9

0.3 74.9 455.1 5338.4 245.6 21.7 5793.4 53.7 165.3 15320.8 1765.2 8.7 15486.2

0.5 67.6 438.3 9133.7 418.6 21.8 9571.9 47.0 140.8 15651.8 1920.8 8.2 15792.6

0.7 50.5 265.54 6399.1 551.8 11.6 6664.6 35.3 94.3 12029.1 2229.8 5.4 12123.4

0.9 24.5 45.4 473.4 243.6 1.9 518.8 18.2 20.1 502.7 579.4 0.9 522.8

7 Related Work

We review EM-based parameter learners. PRISM [10] is one of the first EM learn-
ing algorithms, however, it imposes strong restrictions on the allowed programs.
LFI-ProbLog [7,9] performs parameter learning of probabilistic logic programs.
Before learning AD parameters, it must transform the program, which intro-
duces latent variables that slow down learning. In extreme cases, it can converge
to incorrect values. Asteroidea [6,18] tackles this issue by avoiding EM iterations
for probabilistic rules, which is a specialization of EMPLiFI that supports single-
head ADs, but not multi-head ADs. EMBLEM [1] is another EM-based param-
eter learner. It can naturally express and learn AD parameters as it is based
on the language of Logic Programs with Annotated Disjunctions [17]. Similar
to the aforementioned work, EMBLEM uses knowledge compilation techniques.
However, it differs in the construction of BDDs as it focuses on learning a single
target predicate. When multiple target predicates are present, EMBLEM can
converge to incorrect values.

8 Conclusion

We have introduced EMPLiFI, an EM-based algorithm for probabilistic logic
programs. EMPLiFI supports multi-head ADs and improves efficiency by learn-
ing from only relevant interpretations. Theoretically, we have proven that
EMPLiFI is correct. Empirically, we have shown that EMPLiFI, compared to
LFI-ProbLog and EMBLEM, is more accurate in learning multi-head ADs, and
takes fewer iterations to converge. EMPLiFI is available in the ProbLog2 repos-
itory.

2 https://github.com/ML-KULeuven/problog.

https://github.com/ML-KULeuven/problog
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Abstract. Few-shot classification tasks aim to classify images in query
sets based on only a few labeled examples in support sets. Most studies
usually assume that each image in a task has a single and unique class
association. Under these assumptions, these algorithms may not be able
to identify the proper class assignment when there is no exact matching
between support and query classes. For example, given a few images of
lions, bikes, and apples to classify a tiger. However, in a more general
setting, we could consider the higher-level concept, the large carnivores,
to match the tiger to the lion for semantic classification. Existing stud-
ies rarely considered this situation due to the incompatibility of label-
based supervision with complex conception relationships. In this work,
we advance the few-shot learning towards this more challenging scenario,
the semantic-based few-shot learning, and propose a method to address
the paradigm by capturing the inner semantic relationships using psycho-
metric learning. The experiment results on the CIFAR-100 dataset show
the superiority of our method for the semantic-based few-shot learning
compared to the baseline.

Keywords: Psychometric testing · Self-supervised learning · Few-shot
learning

1 Introduction

With enormous amounts of labeled data, deep learning methods have achieved
impressive breakthroughs in various tasks. However, the need for large quantities
of labeled samples is still a bottleneck in many real-world problems. For this
reason, few-shot learning [18,33] is proposed to emulate this by learning the
transferable knowledge from the “base” dataset where ample labeled samples
are available to generalize to another “novel” dataset which has very few labeled
training examples. A popular approach for this problem is meta-learning based
phase [7,28] which follows the episodic training procedure to mimic the few-shot
tasks. In each few-shot task, a few labeled examples (the support set) are given
to predict classes for the unlabeled samples (the query set).

While these formulations have made significant progress, the underlying
assumption is that each data point from the support set and query set has a
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single and uniquely identified class association, and the query image must pre-
cisely match one of the support set classes. However, as illustrated in the last
two rows in Fig. 1, the few-shot learning models that are capable of dealing with
classification based on the predefined classes may not be able to identify the
right class assignment when there is no exact class matching.

Typical four-way one-shot learning task

Apple BearBeetleBike Bear

Support images Query image

Semantic-based four-way one-shot learning task

Apple BearBeetleBike Leopard

Semantic-based four-way one-shot learning task

Apple BearBeetleBike Clock

Fig. 1. Different settings of few-shot learning tasks. The first row follows a typical
four-way one-shot learning setting. The class of the query image matches one of the
support set labels. In the second task, the typical few-shot learning model might fail to
identify the query image when there is no exact class matching. However, if we could
consider the higher-level semantic concept of the carnivores, a correct assignment could
still be made by matching bear to leopard. A similar prediction could also be made if
we consider the concept of non-living things in the last task.

In a more general setting, if considering the concept at a higher level, e.g.,
whether they are large carnivores or living things in Fig. 1, one could determine
the right class association. Humans are very capable of inferring these concepts
on a higher level, while typical few-shot learning algorithms are not specifically
designed for this under single discriminating class descriptions. They treat each
class equally without considering their intra hierarchical semantic relationships.
One possible reason for this limitation might be the supervision approach: the
traditional label-based supervision is incompatible with the complex conception
hierarchy. Fortunately, much progress has been made in learning from other types
of supervision, such as psychometric testing [9]. While label-based supervision
reduces the comprehensive semantic relationships to given discrete labels, these
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psychometric testing based methods could elicit the relative conception similar-
ities and full-depth of knowledge by transmitting the annotations progress to
pair or triplet comparisons. Then the elicited knowledge could be used for other
downstream tasks such as clustering or segmentation [35,36]. Enabled with such
techniques, our work aims to extend the capabilities of few-shot learning models
towards a more challenging setting, the semantic-based few-shot learning.

To be specific, we assume there is a shared concept hierarchy covering both
base and novel classes. Self-supervised learning (SSL) is applied for feature learn-
ing at the first stage. Psychometric testing is then followed to capture the simi-
larities of the semantic concepts from base dataset. We use these semantic simi-
larities to fine-tune the learned features from SSL, and map them to a semantic
embedding space where we transfer the learned hierarchical knowledge from base
classes to novel classes for semantic few-shot prediction.

Our contributions could be summarized as follows.

* We define a new problem setting, the semantic-based few-shot learning. It aims
to identify the correct assignment to query image by higher-level concepts
when there is no class matching between query and support images.

* We analyze the limitations of label-based supervision under the semantic-
based few-shot learning setting and propose a psychometric learning based
approach to tackle this problem.

* We evaluate our method by comparing it with a typical few-shot baseline
(prototype network [28]) on CIFAR-100 dataset [17]. The results demonstrate
that our method could significantly outperform this baseline in semantic-
based few-shot learning even using fewer annotations from base data.

2 Related Work

There are three lines of research closely related to our work: psychometric testing,
few-shot learning, and self-supervised learning.

Psychometric Testing. Psychometric testing [9] aims to study the percep-
tual processes under measurable psychical stimuli such as tones with different
intensity or lights with various brightness. In general, two types of psychometric
experiments could be carried. Firstly, the absolute threshold based method tries
to detect the point of stimulus intensity that could be noticed by a participant.
For example, how many hairs are touched to the back of hand before a partic-
ipant could notice. Secondly, the discriminative based experiments aim to find
the slightest difference between two stimuli that a participant could perceive.
Participants might be asked to describe the difference in direction or magnitude
between these two stimuli or forced to choose between the stimuli concerning a
specific parameter of interest (also known as two-alternative-force choice (2AFC)
test [5]). Some scholars extend the 2AFC to M-AFC methods [4] by comparing
M stimuli in one test to elicit the subjects’ perception of more complex multime-
dia such as videos or images [6,29,35,36]. In our work, we take advantage of the
3-AFC method to align with our loss function. Three samples are presented in
one test to elicit the annotator’s perception regarding the conception similarity.
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Few-Shot Learning. Meta-learning (learning to learn) has gained increasing
attention in the machine learning community, and one of its well-known appli-
cations is few-shot learning. Three main approaches have emerged to solve this
problem. Metric learning based methods aim to learn a shared metric in fea-
ture space for few-shot prediction, such as prototypical network [28], relation
networks [30] and matching networks [33]. Optimization based methods fol-
low the idea of modifying the gradient-based optimization to adapt to novel
tasks [7,10,23]. Memory based approaches [7,12,21,27] adopt extra memory
components for novel concepts learning, and new samples could be compared
to historical information in the memories.

While these frameworks lead to significant progress, little attention has been
paid to leveraging the knowledge hierarchy and dealing with the situation when
there is no precise label matching between query images and support images,
i.e., the semantic-based few-shot learning scenario.

Self-supervised Learning. When human supervision is expensive to obtain,
self-supervised learning could be a general framework to learn features without
human annotations by solving pretext tasks. Various pretexts have been studied
for learning useful image representation. For example, predicting missing parts
of the input image [19,26,31,37,38], the image angle under rotation transforma-
tion [11], the patch location, or the number of objects [24]. Recently, another line
of researches follows the paradigm of contrastive learning [1,3,13,15,16,22,25,34]
and get the state of the art performance. The learned image features could be
utilized for downstream tasks such as image retrieval or fine-tuning for classifica-
tion. In our work, we take advantage of the SimCLR [3] framework and fine-tune
the learned features with psychometric testing for semantic image representa-
tions.

3 Semantic-Based Few-Shot Learning

Our proposed framework contains three parts. First, as we aim to tackle the
limitation caused by label-based supervision, we assume no label information is
provided in advance. Self-supervised learning (SSL) is applied for representation
learning in the first stage. Next, we adopt a psychometric testing procedure [9]
that relies on discriminative testing to obtain transferable semantic conception
relationships. The elicited conception similarities are then used to fine-tune the
features learned by SSL using a multi-layer perceptron (MLP) [8] in a seman-
tic representation network. In the last stage, with the fine-tuned network, we
could search for each query’s most semantically similar image in support set by
Euclidean distances, even when the target and query images are not sharing the
same class. We illustrate our whole framework in Fig. 2.

3.1 Problem Formulation

Consider the situation we are given a base dataset contains classes Cbase with
adequate labeled images, and a novel dataset contains classes Cnovel where only
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SSL representation 
Network

Self-supervised 
learning
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Network

Base data

Novel data

Stage:2

Stage:1

Stage:3
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Fine-tuning

Semantic
Embeddings

Semantic-based
few-shot learning

Semantic representation network (SRN) 

MLPSSL representation 
Network

Semantic representation network  (SRN) 

(without
label information )

Psychometric tests
on base data

Fig. 2. Overview of the proposed method.

a few labeled samples are available per class. There is no overlapping with these
two datasets, i.e., Cbase ∩ Cnovel = ∅. The general idea of the few-shot problem
is taking advantage of the sufficient labeled samples in Cbase to obtain a good
classifier for the novel class Cnovel. In a standard N -way K-shot classification
task, we random sample N classes from novel class Cnovel with K samples per
class to form the support set, and sample query images from the same N classes
to create the query set. We aim to classify the query images into these N classes
based on the support set.

Then we extend the problem to the semantic-based few-shot learning sce-
nario. Assume we have a conception tree G = (V,E) where V means the nodes
and E are edges. The bottom layer class C = c1, ..., cn ∈ V denotes the lowest
level of concepts that we concern, and could merge to more general concepts
(superclass nodes) if they are conceptually similar. An example for such a struc-
ture is given in Fig. 3. The base class Cbase and novel class Cnovel are represented
as the leaf nodes and share the same superclasses nodes. As we aim to solve this
problem without label-based supervision, we are not able to specify a few-shot
task using the label information as the typical few-shot learning setting, i.e.,
sampling multiple images with the same labels to create a class in support set.
Therefore, we random sample N image without specifying their classes from the
Cnovel to build the support set and sample one image as a query to form a N -
way 1 -shot semantic-based few-shot learning task. Our goal is to find the most
semantically similar image from support set to a query.

The semantic distance between two samples (x, y) is defined by the height of
the lowest common subsumer (LCS) of these samples divided by the height of
the hierarchy [2,32]:
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Superclass Novel class Base class

Knowledge Hiearchy

wolf bear bicyclelion bus train

carnivores furniture

living 
things

non-living 
things...

...

...

...

reptiles vehicles

Fig. 3. CIFAR-100 with knowledge hierarchy.

Ds(x, y) =
height(lcs(x, y))

maxw∈V height(w)
(1)

As Ds(x, y) ranges from 0 to 1, we could define the semantic similarity by:

Ss(x, y) = 1 − Ds(x, y) (2)

An example could be seen in Fig. 3. The LCS of wolf and lion are carnivores,
and the height of the hierarchical tree is 3. Therefore Ds(wolf, lion) = 1

3 , and
Ss(wolf, lion) = 2

3 . Note that the typical few-shot learning is a special case
when Ss(x, y) = 1, in which x is the query image, y is from support set, and x, y
belong to a same leaf node.

3.2 Self-supervised Feature Learning

We use self-supervised learning to learn the image features from Cbase before
using psychometric testing for fine-tuning. SimCLR [3] framework is applied in
our work for its conciseness and good performance. It learns representation by
maximizing the similarity between two views (augmentations) of the same image.

From Cbase, we randomly sample N images each batch and create two random
augmentation views for each image to form 2N data points. Each data pair
generated from the same image is considered a positive pair, or a negative pair
if it’s from different images. The contrastive loss function for a mini-batch could
be written as:

Lself = −
2N∑

i=1

log
exp(sim(zi, zj(i)/τ))∑

a∈A(i) exp(sim(zi, za)/τ)
(3)

where zi = g(f(xi)), f(·) a neural network called encoder to extract features from
augmented images, g(·)is the projection head that maps features to a space where
contrastive loss is applied. Cosine similarity sim(u, v) is adopted to measure the
similarity of u and v by the dot product between their L2 normalized features. τ
denotes a scalar temperature parameter. i is the index or all the 2N augmented
views of images. j(i) is the index of positive view to image i and A(i) is the set
of all indices except i.
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3.3 Psychometric Testing

Different from label-based supervision, we apply three-alternative-force choice
(3AFC) [4] psychometric tests to elicit the semantic perceptions from Cbase.
These perceptions could be transferred to Cnovel through the shared high-level
conceptions (superclasses) in the hierarchical knowledge tree (as shown in Fig. 3).

To be specific, we sample three images from Cbase and ask the annotators
to choose the most dissimilar one (see Fig. 4). By carrying this simple task,
perceptions of conception similarities are obtained.

Which Image is the most dissimilar to the other two?

Fig. 4. Examples of two 3AFC psychometric testings. In the first test, annotators tend
to choose the butterfly as the most dissimilar one since other two are large carnivores.
In the second test, annotators are more likely to choose the wolf because it is the only
living things.

Next, a semantic representation network (SRN) is built to map these per-
ceived conception similarities to embedding distances. Specifically, we add a
multi-layer perceptron (MLP) with a single hidden layer on top of the represen-
tations learned from SSL, freeze the SSL network, and fine-tune the MLP by the
following dual-triplet loss function [35,36] :

L =
N∑

i=1

[
d(xi

p1, x
i
p2) − d(xi

n, xi
p1),+m

]
+

+
[
d(xi

p1, x
i
p2) − d(xi

n, xi
p2),+m

]
+

(4)

where xn is the negative image chosen by annotator, xp1, xp2 are two unpicked
positive images that have closer concept similarity at the 3AFC tests (see Fig. 4).
d(x, y) denotes the these two points’ Euclidean distance between the normalized
features extracted by our semantic representation network. N is the number of
psychometric tests in a mini-batch.

This loss function encourages images that the annotator perceives similar to
be close to each other and enforces a distance margin m between positive pairs
and negative pairs.
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3.4 Semantic-Based Few-Shot Prediction

After fine-tuning our proposed network with 3-AFC tests from Cbase, we could
extract visual features for image samples from Cnovel using this network and
apply the nearest neighbor search method for semantic-based few-shot learning
prediction. Specifically, for a query image in a task, we compute its normalized
Euclidean distance to each support sample and find the nearest one, which is
the predicted most semantically similar image to the query when considering a
higher-level concept.

4 Experiments and Discussion

Since the label-based supervision is a bottleneck that limits the models’ potential
in the semantic-based few-shot learning setting, we assume no label information
and no conception structure are preprovided for both Cbase and Cnovel. However,
we are then not able to assess whether the semantic assignment to query is
correct using the defined semantic similarity metric (see Eq. 2). Therefore, we
simulate a virtual annotator who always precisely responds to the 3AFC tests
based on a given knowledge hierarchy, so that the accuracy could be measured
in an objective manner by this semantic similarity.

We evaluate our model on CIFAR-100 dataset under three metrics: the typ-
ical few-shot learning accuracy, the semantic-based few-shot learning accuracy,
and the required annotation numbers. Then we investigate how the number of
psychometric test responses impacts the model’s performance. Besides, a TSNE
visualization [20] of the learned features is plotted for an intuitive understanding.

Dataset. We use the CIFAR-100 in our experiment and build an inner concep-
tion hierarchy tree based on the preprovided coarse and finer labels. Besides, we
build another layer on top of the coarse level labels by distinguishing living from
non-living things. A three-layer conception tree is then created, which includes
2, 10, 100 nodes from top to bottom layers, as illustrated in Fig. 3. 60 classes are
randomly sampled from the bottom layer as base classes, and the rest 40 classes
are used for novel classes.

Few-Shot Learning Accuracy. Note when there is a label matching between
the query image and support images, i.e., the semantic similarity is equal to 1,
the semantic-based few-shot learning problem is then transmitted to a typical
few-shot learning problem. We choose the prototypical network [28] as a baseline
and compared it with our proposed method in both typical few-shot learning
accuracy and semantic-based few-shot learning accuracy.

In our work, we use the SGD optimizer with momentum 0.9, and set the
decay factor to 0.1. When extracting image features in SSL, ResNet50 [14] is
applied as backbone and are trained for 1000 epochs with 128 batch-size. The
learning rate decays from 0.5 at epoch 700, 800 and 900. When fine-tuning by
psychometric responses, margin value, learning rate, training epochs are set to
0.4, 0.001, 15 respectively. During prototypical network training, we use the same
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backbone of SSL for a fair comparison, train the model 100 epochs with 10000
tasks each epoch, and set the learning rate to 0.1 that decays every 20 epochs.

The results are reported in Table 1. It could be seen without losing too
much accuracy of typical one-shot learning (decreasing by 4.95% in 5-way, and
2.43% in 20-way). We could boost the ability of semantic-based one-shot learning
significantly (increasing by 9.98% in 5-way, and 7.35% in 20-way). Furthermore,
the annotation burdens on base data are dramatically released from 36000 times
label-based annotations to 1000 times psychometric testings.

Table 1. Comparison with the baseline.

Model Annotation

type

Number of

annotations (Cbase)

5-way 1-shot Acc (%) 20-way 1-shot Acc (%)

Typical Semantic Typical Semantic

PN [28] Label based 36000 57.52 42.37 31.18 19.81

SRN (Ours) Psychometric

testing

1000 52.57 52.35 28.75 27.16

Impact of the Number of Psychometric Test Responses. We train our
model using 500 psychometric tests in the first iteration and add 500 more tests
to retrain the model in each of the following iterations. The model is evaluated
under the 5-way 1-shot scenario and we plot the results in Fig. 5. It could be
noticed that the accuracy of typical few-shot learning remains steady with differ-
ent numbers of psychometric tests. That is because our psychometric tests only
aim to provide semantic constrain rather than learning discriminative features.
We also find that the ability of semantic few-shot learning gets a noticeable
improvement when increasing training samples from 500 to 1000 tests but keeps
stuck after that. The possible reason might be that with the help of pre-trained
SSL features, we could easily get a high accuracy using only a few psychome-
tric tests. However, as we only fine-tune on MLP without training the whole
network, the semantic few-shot accuracy would quickly reach a bottleneck even
with more psychometric responses.

TSNE Visualization. We visualize the embedding features of five categories
randomly chosen from Cnovel (See Fig. 6). It could be seen that with our proposed
method, categories that are similar in concepts tend to be closer to each other.
For example, all the non-living things (mountain, forest, streetcar) are located
in the top area while living things (bee, tiger) are placed bottom. Mountain and
forest are the nearest two clusters since they are “all outdoor scenes” and their
semantic distance is the closest among the five categories. On the other hand, the
prototypical network could successfully separate the five categories apart from
each other, but they are located randomly in the graph without considering the
semantic relationships.
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Fig. 5. 5-way 1-shot learning accuracy under different number of psychometric tests.

Fig. 6. Embedding visualization after TSNE with our proposed method (left), and
prototypical network (right).

5 Conclusion

Few-shot learning is typically under label-based supervision, which discards the
semantic relationships and fails to make a class association when there is no
label matching between support and query set. However, humans could easily
identify the right association by considering a higher-level concept. Inspired by
this, we present a psychometric testing based method that could capture images’
high-level conception relationships to address the challenge. We evaluate our
method on CIFAR-100 dataset. The results indicate that our method is capable
of achieving higher semantic-based few-shot learning accuracy even with fewer
annotating burdens than the baseline.
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