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Abstract We present an overview of control design methods for linear time-delay
systems, which are grounded in matrix theory and numerical linear algebra tech-
niques, such as eigenvalue computations, solving Lyapunov matrix equations, eigen-
value perturbation theory and eigenvalue optimization. The methods are particularly
suitable for the design of structured controllers, as they rely on a direct optimiza-
tion of stability, robustness and performance indicators as a function of controller or
design parameters. Several illustrations complete the presentation.

1 Introduction

We consider the system

⎧
⎪⎨

⎪⎩

ẋ(t) = A0x(t) +
m∑

i=1

Ai x(t − τi ) + Bζ(t),

η(t) = Cx(t) + Dζ(t − τ0),

(1)

where x(t) ∈ C
n is the state variable at time t , ζ(t) ∈ C

nζ is the input and η(t) ∈ C
nη

is the output at time t , and τi , i = 0, . . . ,m, represent time-delays. We assume that
the state delays are ordered such that 0 < τ1 < · · · < τm . The input is not assumed to
be delayed, yet input-output delays can be taken into account in themodels addressed
in Sect. 5.

It iswell known that the solutions of (1), with ζ ≡ 0, satisfy a spectrumdetermined
growth property, in the sense that their asymptotic behavior and stability properties
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are determined by the location of the characteristic roots, seeHale andVerduynLunel
(1993), compare also with Breda (2023). The latter appear among the solutions of
the nonlinear eigenvalue problem

(

λI − A0 −
m∑

i=1

Aie
−λτi

)

v = 0, v ∈ C
n, v �= 0. (2)

For example the null solution of (1), with zero input, is exponentially stable if and
only if all its characteristic roots are confined to the open left half plane (Niculescu
2001; Gu et al. 2003). In such a case, we call system (1) internally exponentially
stable.

As a common approach in the domain of robust control, we assume that input ζ
and output η are defined in such a way that performance and robustness requirements
for the system can be expressed in terms of norms of the associated transfer function
G : C → C

nη×nζ ,

G(λ) := C

(

λI − A0 −
m∑

i=1

Aie
−λτi

)−1

B + De−λτ0 , (3)

which corresponds to the Laplace transform of the impulse response h of the system.
Important measures are the H2 and H∞ norm of the input-output map of the sys-
tem (Zhou et al. 1995). For an internally exponentially stable system, the H2 norm
is defined as

‖G‖H2 :=
√
∫ ∞

0
tr
(
h(t)Hh(t)

)
dt,

which, by Parseval’s relation, can also be expressed as

‖G‖H2 =
√

1

2π

∫ ∞

−∞
tr
(
G(iω)HG(iω)

)
dω. (4)

TheH2 norm is particularly suitable to quantify the effects of additive perturbations to
the differential equation on the deviation from the equilibrium, as it can be interpreted
as the trace of the covariance matrix of the output, when the system input consists
of white noise. The H∞ norm, on its turn, is equal to the peak gain of the transfer
function in the closed right half plane. Once again under assumption of internal
exponential stability, it can be defined by the expression

‖G‖H∞ := sup
ω∈R

σ1(G(iω)),

where σ1(·) denotes the largest singular value. In the time-domain theH∞ norm can
be interpreted as the induced L2-norm from input ζ to output η, when considered



Design of Structured Controllers for Linear Time-Delay Systems 249

as functions on the interval [0,∞), that is ‖G‖H∞ = maxu �≡0
‖y‖L2
‖u‖L2

, emphasizing
its role in assessing the disturbance rejection of a dynamical system. In addition,
many robustness criteria for stability against perturbations to system model (1) can
be expressed in terms of the reciprocal of the H∞ norm of an appropriately defined
transfer function. For example, considering complex valued perturbations δAi on
matrices Ai , i = 0, . . . ,m, in (1), whose size is measured by

‖(δA0, . . . , δAm)‖glob :=

∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎣

w0‖δA0‖2
...

wm‖δAm‖2

⎤

⎥
⎦

∥
∥
∥
∥
∥
∥
∥

∞

,

where numbers wi ∈ R
+
0 ∪ {∞}1 are weights associated to the different matrix per-

turbations, the associated stability radius

rC(‖ · ‖glob) := inf
{‖(δA0, . . . , δAm)‖glob : δAi ∈ C

n×n, 0 ≤ i ≤ m, and
ẋ(t) = (A0 + δA0)x(t) +∑m

i=1(Ai + δAi )x(t − τi ))
is not exponentially stable}

can be expressed as

rC(‖ · ‖glob) =
⎧
⎨

⎩

∥
∥
∥
∥
∥
∥

(

iω I − A0 −
m∑

i=1

Aie
−iωτi

)−1
∥
∥
∥
∥
∥
∥
H∞

m∑

i=0

1

wi

⎫
⎬

⎭

−1

,

see Michiels and Niculescu (2014). It should be noticed that

‖(δA0, . . . , δAm)‖glob < 1 ⇔ ‖δAi‖2 <
1

wi
, 0 ≤ i ≤ m.

The above result can be extended by exploiting structured, real valued perturbations,
see, e.g., Borgioli and Michiels (2020), Borgioli et al. (2019), where theH∞ frame-
work is generalized to the μ-framework (Zhou et al. 1995). We note that Borgioli
et al. (2019) also considers bounded perturbations on the delays. Finally, the sys-
tem norms can also be used in the context of structure preserving model reduction.
Denoting by G̃ the transfer function of a reduced model for (1) of the form

Ĝ(iω) = Ĉ

(

λI −
m∑

i=0

Âi e
−λτi

)−1

B̂ + De−λτ0 , Âi ∈ C
k×k, i = 0, . . . ,m,

assuming n large and k � n, the matrices of the reduced model could be determined
by minimizing

‖G − G̃‖H2 , or ‖G − G̃‖H∞ ,

1
R

+
0 denotes the set of strictly positive real numbers.



250 W. Michiels

see Gomez et al. (2019), Pontes Duff et al. (2018). Here we can express the mismatch
between the transfer functions in the form of a standard transfer function, namely

G(iω) − Ĝ(iω) = [C − Ĉ] ×
(

iω

[
In 0
0 Ik

]

−
m∑

i=0

[
Ai 0
0 Âi

]

e−iωτi

)−1 [
B
B̂

]

,

enabling tools for optimizing system or controller parameters.

The structure of the chapter is as follows. In Sect. 2 we present some numerical
methods for the computation of the rightmost characteristic roots of (1) and for the
computation of the H2 and H∞ norm of transfer function (3). These analysis tools
are at the basis of the controller synthesis methods discussed in Sect. 3. There we
assume that the system matrices in (1) depend on a finite number of parameters,
which may originate from the parametrization of a controller (hence, system (1) may
correspond already to the so-called closed-loop system). The stabilization problem
and the optimization of the H2 and H∞ norm of (3) are addressed. The approach is
inspired by controller synthesis methods for finite-dimensional linear time-invariant
systems which rely on eigenvalue optimization, as for instance implemented in the
package HIFOO (Burke et al. 2006). These methods have proven very useful for
synthesis problems where the controller is constrained or its order (dimension) is
smaller than the dimension of the plant. They are particularly powerful for time-delay
systems, because any design problem involving the determination of a finite number
of parameters can be interpreted as a reduced-order control design problem due to
the infinite dimension of the system, and they constitute an important component
of the established eigenvalue based framework for time-delay systems (Michiels
and Niculescu 2014; Michiels 2019). In Sect. 4 we illustrate the flexibility of the
approach in twocomplementary directions, by incorporatingpole location constraints
in the stabilization procedure, and by synthesizing a proportional-retarded controller
optimizing the H2 norm of the system, respectively. In Sect. 5 we briefly address
extensions of the approach towards delay differential algebraic equation models,
which can also describe systems of neutral type. Finally, in Sect. 6 we present some
concluding remarks.

2 Solving Analysis Problems

We start with the reformulation of (1) as an infinite-dimensional linear system
in a standard state space representation, based on Curtain and Zwart (1995),
because the interplay between the two representations has played an important
role in the development of computational tools. Consider the Hilbert space X :=
C

n × L2([−τm, 0],Cn), equipped with the inner product

< (y0, y1), (z0, z1) >X=< y0, z0 >Cn + < y1, z1 >L2 ,
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and denote by AC([−τm, 0],Cn) the space of absolutely continuous functions from
[−τm, 0] to Cn . Let A : X → X be the derivative operator defined by

D(A) := {z = (z0, z1) ∈ X : z1 ∈ AC([−τm, 0],Cn), z0 = z1(0)} ,

Az =
(

A0z0 +
m∑

i=1

Ai z1(−τi )

)

, z ∈ D(A),

and let the operators B : Cnζ → X and C : X → C
nη be given by

Bζ := (Bζ, 0), ζ ∈ C
nζ ,

Cz := Cz0, z = (z0, z1) ∈ X.

We can now rewrite system (1) as

{
�̇(t) = A�(t) + Bζ(t),
η(t) = C�(t) + Dζ(t − τ0),

(5)

where �(t) ∈ D(A) ⊂ X . The relation between corresponding solutions of (5) and
(1) is given by �0(t) = x(t) and �1(t)(θ) ≡ x(t + θ) for θ ∈ [−τm, 0].

2.1 Computation of Characteristic Roots and the Spectral
Abscissa

The spectral properties of the operator A in (5) are described in detail in Michiels
and Niculescu (2014, Chap. 1). The operator only has a point spectrum. Hence, its
spectrum, σ(A), is fully determined by the eigenvalue problem

A z = λz, z ∈ X, z �= 0. (6)

The connections with the characteristic roots are as follows. The characteristic roots
are the eigenvalues of operator A. Moreover, if λ ∈ σ(A), then the corresponding
eigenfunction takes the form

z(θ) = veλθ, θ ∈ [−τm, 0], (7)

where v ∈ C
n and the pair (λ, v) satisfies (2). Conversely, if a pair (λ, v) satisfies

(2), then (7) is an eigenfunction of A corresponding to the eigenvalue λ. From the
equivalent representation of (1) as (5), we conclude that the characteristic roots can
be equivalently expressed as

1. the solutions of the finite-dimensional nonlinear eigenvalue problem (2);
2. the solutions of the infinite-dimensional linear eigenvalue problem (6).
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This dual viewpoint lies at the basis of available tools to compute the rightmost char-
acteristic roots. On the one hand, discretizing (6) and solving the resulting standard
eigenvalue problems allows to obtain global information, for example, estimates of
all characteristic roots in a given compact set or in a given right half plane. On the
other hand, the (finitely many) nonlinear equations (2) allow us to make local cor-
rections on characteristic root approximations up to the desired accuracy, e.g., using
Newton’s method or inverse residual iteration.

There are several possibilities to discretize eigenvalue problem (6). Given a pos-
itive integer N and a mesh �N of N + 1 distinct points in the interval [−τm, 0],

�N = {
θN ,i , i = 1, . . . , N + 1

}
, (8)

with
−τm ≤ θN ,1 < . . . < θN ,N < θN ,N+1 = 0,

a spectral discretization as in Breda et al. (2005) (see also Breda 2023) leads for
example to the eigenvalue problem

ANxN = λxN , xN ∈ C
n(N+1), xN �= 0, (9)

where

AN =

⎡

⎢
⎢
⎢
⎣

d1,1 . . . d1,N+1
...

...

dN ,1 . . . dN ,N+1

a1 . . . aN+1

⎤

⎥
⎥
⎥
⎦

∈ R
n(N+1)×n(N+1) (10)

and

di,k = l ′N ,k(θN ,i )In, i = 1, . . . , N , k = 1, . . . , N + 1,

ak = A0lN ,k(0) +
m∑

i=1

AilN ,k(−τi ), k = 1, . . . , N + 1.

The functions lN ,k represent the Lagrange polynomials relative to the mesh �N ,
i.e. polynomials of degree N such that, lN ,k(θN ,i ) = 1 if i = k and lN ,k(θN ,i ) = 0
if i �= k, In Breda et al. (2005) it is proven that spectral accuracy on the individual
characteristic root approximations (approximation error O(N−N )) is obtained with
a mesh consisting of (scaled and shifted) Chebyshev extremal points, that is,

θN ,i = − cos
π(i − 1)

N
, i = 1, . . . , N + 1.

The discretization of (6) into (9) lays at the basis of the software tool TRACE-DDE
(Breda et al. 2009). The stability routine for equilibria of the packageDDE-BIFTOOL
(Engelborghs et al. 2002; Sieber et al. 2016) exploits the dual representation of the
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eigenvalue problem, since it is based on discretizing the solution operator of (5),
whose infinitesimal generator isA, using a spline collocation approach, followed by
Newton corrections on (2). For a pseudospectral collocation approach to discretize
the solution operator see Breda (2023).

Both aforementioned tools rely on computing all eigenvalues of the discretized
system, which restricts the size of the problem from a computational point of view.
In Jarlebring et al. (2010) an iterative method is proposed for computing selected
eigenvalues of large-scale systems. This method has an interpretation as Arnoldi’s
method (see, e.g.,Saad 1992) in a function setting, applied to the inverse of the
infinite-dimensional operatorA, which is characterized in the following proposition.

Proposition 2.1 The inverse of A : X → X exists if and only if matrix A0 +∑m
i=1 Ai is nonsingular. Moreover, it can be explicitly expressed as

D(A−1) = X
(A−1 φ

)
(θ) =

(

C(φ),

∫ θ

0
φ1(s) ds + C(φ), θ ∈ [−τm, 0)

)

, φ ∈ D(A−1),

where

C(φ) =
(

A0 +
m∑

i=1

Ai

)−1 [

φ0 −
m∑

i=1

Ai

∫ −τi

0
φ1(s) ds

]

. (11)

We note that all information about the system is concentrated in the integration
constant (11). To get some insight in the method of Jarlebring et al. (2010), let us
apply first the power method to A−1 for scalar system

ẋ(t) = −2x(t) + 1

3
x(t − log 3),

whose smallest characteristic root is equal to −1. Starting with the constant initial
function φ ≡ 1, the iterations result in polynomials of increasing degree

1.
1. − 1.21993t
1. − 1.03416t + .630804t2

1. − .999697t + .516927t2 − .210204t3

1. − .998615t + .499156t2 − .172070t3 + 0.0524783t4

1. − .999733t + .499174t2 − .166341t3 + 0.0430061t4 − 0.0104929t5

1. − 1.00000t + .499869t2 − .166392t3 + 0.0415855t4 − 0.00860127t5 + 0.00174882t6,

in which one easily recognizes an approximation of the Taylor series of function
exp(−t), the eigenfunction of A corresponding to eigenvalue λ = −1, which is
closest to the origin. In order to compute multiple eigenvalue approximations, the
power method can be replaced by Arnoldi’s method, furnishing the basis of the
Infinite Arnoldi method (Jarlebring et al. 2010), or by a Rational Krylov method,
laying the basis of the dynamic variants of the algorithm proposed in Güttel et al.
(2014). As features of interest, thesemethods do not explicitly rely on a discretization
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of the delay equation, while all operations are still performed on vectors andmatrices
(of finite dimension), in addition to their ability to exploit sparsity of the coefficient
matrices.

We note that also methods for generic nonlinear eigenvalue problems can be used
for computing characteristic roots, see for instance the CORK framework described
in Van Beeumen et al. (2015) and the software package NEP-PACK (Jarlebring et al.
2018).

2.2 Computation of H∞ Norms

For systems without delay, level set methods are standard methods for computing
H∞ norms and related problems, see, e.g., Boyd and Balakrishnan (1990), Bruinsma
and Steinbuch (1990) and the references therein. These methods originate from the
property that all the intersections of the singular value curves, corresponding to the
transfer function, and a constant function (the level) can be directly computed from
the solutions of a structured eigenvalue problem. This property enables a fast two-
directional search for the dominant peak in the singular value plot.

InMichiels andGumussoy (2010) an extension of this approach for computing the
H∞ normof transfer function (3) is described. The theoretical foundation is contained
in the following proposition from Michiels and Gumussoy (2010, Lemma 2.1 and
Proposition 2.2).

Proposition 2.2 Let ξ > 0 be such that the matrix Dξ := DT D − ξ2 I is non-
singular. For ω ≥ 0, matrix G(iω) in (3) has a singular value equal to ξ if and
only if λ = iω is a solution of the equation

det H(λ; ξ) = 0, (12)

where

H(λ; ξ) := λI − M0 −
m∑

i=1

(
Mie

−λτi + M−i e
λτi
)− (

N1e
−λτ0 + N−1e

λτ0
)
,

with

M0 :=
[

A0 −BD−1
ξ BT

−CTC + CT DD−1
ξ DTC −AT

0

]

,

Mi :=
[
Ai 0
0 0

]

, M−i :=
[
0 0
0 −AT

i

]

, 1 ≤ i ≤ m,

N1 :=
[
0 0
0 CT DD−1

ξ BT

]

, N−1 :=
[−BD−1

ξ DTC 0
0 0

]

.

Moreover, (12) holds if and only if λ is an eigenvalue of the operator Lξ , defined by
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D(Lξ) :=
{

φ ∈ Z : φ′(0) = M0φ(0) +
m∑

i=1

(Miφ(−τi ) + M−iφ(τi ))

+ N1φ(−τ0) + N−1φ(τ0)

}

Lξ φ := φ′, φ ∈ D(Lξ),

where Z := AC([−τm, τm],C2n).

According to Proposition 2.2, the intersections of the constant functionR � ω �→
ξ, with level ξ > 0 prescribed, and the curves

R � ω �→ σi (G(iω)), 1 ≤ i ≤ min(nζ , nη),

where σi (·) denotes the ith singular value, can be found by computing the solutions
on the imaginary axis of either

1. the finite-dimensional nonlinear eigenvalue problem,

H(λ; ξ)v = 0, v ∈ C
2n, v �= 0, or (13)

2. the infinite-dimensional linear eigenvalue problem

Lξφ = λφ,φ ∈ Z ,φ �= 0.

These two characterizations are similar to the representations of characteristic roots
as eigenvalues. As a consequence, the methods outlined in Sect. 2.1 can be adapted
accordingly.

The method presented in Michiels and Gumussoy (2010) for computing the H∞
norm of (3) relies on a two-directional search in a modification of the singular value
plot, induced by a spectral discretization of operatorLξ , followedby a local correction
of the peak value up to the desired accuracy. The latter is based on the nonlinear
equation (13), supplemented with a local optimality condition. The main steps are
sketched in Fig. 1.

Finally, a closely related problem is the computation of the pseudospectral
abscissa, for which we refer to Gumussoy and Michiels (2010) and the references
therein.

2.3 Computation of H2 Norms

We assume that (1) is internally exponentially stable and, in addition, that matrix D
is equal to zero. Under these conditions the H2 norm of G is finite and it satisfies
(4). We present two different approaches for its computation, which once again stem
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N
(jω,ξ)=0

ω

ξ

Fig. 1 Principles of the method in Michiels and Gumussoy (2010). Function HN is an approxi-
mation of H , induced by a spectral discretization of Lξ on a mesh consisting of 2N + 1 points
over the interval [−τm , τm ]. In the first step the peak value is found for a fixed value of N by the
iterative algorithm of Bruinsma and Steinbuch (1990): for a given level ξ all intersections with the
approximate singular value curves are computed (squares). In the geometric midpoints of these
intersections (crosses) a vertical search for intersections is performed. The maximum value of ξ
over all the intersections gives rise to the new value of the level. In the second step, the effect of the
discretization is removed by a local corrector based on nonlinear eigenvalue problem (13) (circles)

from the two descriptions of the time-delay system, by the functional differential
equation (1) and by the abstract linear equation (5), respectively.

The first approach makes use of so-called delay-Lyapunov equations, introduced
in the context of constructing complete-type Lyapunov-Krasovskii functionals for
stability assessment (see for instance Kharitonov and Plischke 2006). The following
result is a special case of Jarlebring et al. (2011, Theorem 1).

Theorem 1 Assume that (1) is internally exponentially stable and D = 0. Then the
H2 norm of transfer function (3) satisfies

‖G‖H2 = tr(BTU (0)B),

= tr(CV (0)CT ),

where U, V are the unique solutions of the delay Lyapunov equation
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U ′(t) = U (t)A0 +
m∑

k=1

U (t − τk)Ak, t ∈ [0, τ1] ,

U (−t) = UT (t),

−CTC = U (0)A0 + AT
0U (0) +

m∑

k=1

(
UT (τk)Ak + AT

k U (τk)
)
,

(14)

and the dual delay Lyapunov equation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

V ′(t) = V (t)AT
0 +

m∑

k=1

V (t − τk)A
T
k , t ∈ [0, τmax],

V (−t) = V T (t),

−BBT = V (0)AT
0 + A0V (0) +

m∑

k=1

(
V T (τk)A

T
k + AkV (τk)

)
.

(15)

The underlying idea in the proof is that the solutions of (14)–(15), as well as theH2

norm, can be expressed in terms of the fundamental solution of the delay equation
(see, e.g., Kharitonov and Plischke 2006; Jarlebring et al. 2011).

Theorem 1 opens the possibility to computeH2 norms by solving delay Lyapunov
equations numerically. An approach based on spectral collocation on a Chebyshev
mesh is presented in Jarlebring et al. (2011). This approach is generally applicable,
but the convergence rate of the approximation (as a function of the number of mesh
points) depends on the smoothness properties of the solution, which are on their turn
determined by the interdependence of the delays (see Sect. 4 of the reference for a
complete characterization). It is also shown that, in the case of commensurate delay
values, an analytic solution of (14)–(15) can be obtained, which leads to an explicit
expression for theH2 norm involving only matrices of finite dimension.

The second approach is based on discretizing (5). A spectral discretization on the
mesh (8) leads us to the linear system

{
ẋN (t) = ANxN (t) + BNζ(t),
η(t) = CNxN (t),

(16)

where AN is given by (10) and

BN = [0 · · · 0 I ]T ⊗ B, CN = [0 · · · 0 I ] ⊗ C.

From the fact that (16) is a standard linear time-invariant system we can approxi-
mately compute

‖G‖H2 ≈ ‖GN‖H2 = tr(BT QNBN )

= tr(CN PNCT ),
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where GN is the transfer function of (16) and the pair (PN , QN ) satisfies (see, e.g.,
Zhou et al. 1995),

AN PN + PNAT
N = −BNBT

N ,

AT
N QN + QNAN = −CT

NCN .
(17)

In Vanbiervliet et al. (2011) it has been shown that the approximation error satisfies

‖G‖H2 − ‖GN‖H2 = O(N−3), N → ∞,

while arguments are provided why fairly accurate results are expected for a moderate
value of N already.

Although the second approach is essentially a “discretize first” approach, it is
amendable for most control problems because, unlike the delay Lyapunov equation
approach of Jarlebring et al. (2011), it does not involve an explicit vectorization
of matrix equations (which squares the dimensions of the problem), and because
derivatives of theH2 norm with respect to the elements of the system matrices in (3)
can easily be obtained as a by-product of solving (17), see Vanbiervliet et al. (2011).

Finally, for large-scale problems involving sparse coefficient matrices, a
discretization-free method has been proposed in Michiels and Zhou (2019), which
is related to the infinite Arnoldi method discussed at the end of Sect. 2.1.

3 Making the Leap From Analysis to Synthesis

Inwhat followswe assume that the systemmatrices in (1) smoothly depend on a finite
number of parameters p = (p1, . . . , pnp ) ∈ R

np . Making the dependence explicit in
the notations leads us to system

{
ẋ(t) = A0(p)x(t) +∑m

i=1 Ai (p)x(t − τi ) + B(p)ζ(t),
η(t) = C(p)x(t) + D(p)ζ(t − τ0).

(18)

Inmany control design problems the closed-loop system can be brought into the form
(18), where the parameters p have an interpretation in terms of a parametrization
of the controller, while ζ and η appear as external inputs and outputs, used in the
description of performance and robustness specifications.We note that both static and
dynamic controllers can be addressed in this framework. It is also possible to impose
additional structure on the controller, such as a proportional-integral-derivative (PID)
structure, or to impose a sparsity pattern, enabling the design of decentralized and
distributed controllers (Dileep et al. 2018).

Because time-delay systems constitute a class of infinite-dimensional systems,
illustrated by representation (5) and by the typical presence of infinitely many char-
acteristic roots, any control design problem involving the determination of a finite
number of parameters can be interpreted as a reduced-order controller synthesis
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problem. This explains to a large extent the difficulties and limitations in controlling
time-delay systems (Niculescu 2001; Sipahi et al. 2011; Michiels 2019).

The proposed control synthesis methods are based on a direct optimization of
appropriately defined cost functions as a function of the parameters p.

3.1 Stabilization

In order to impose internal exponential stability of the null solution of (18), it is
necessary to find values of p for which the spectral abscissa

c(p) := sup
λ∈C

{

�(λ) : det
(

λI − A0(p) −
m∑

i=1

Ai (p)e
−λτi

)

= 0

}

is strictly negative. The approach of Vanbiervliet et al. (2008) is based onminimizing
the function

p → c(p). (19)

Function (19) is in general non convex. It may be not everywhere differentiable, even
not everywhere Lipschitz continuous. A lack of differentiability may occur when
there are more than one active characteristic roots, i.e., a characteristic roots whose
real part equals the spectral abscissa. A lack of Lipschitz continuity may occur when
an active characteristic roots is multiple and non-semisimple. On the contrary, the
spectral abscissa function is differentiable at points where there is only one active
characteristic root with multiplicity one. If this is the case with probability one
when randomly sampling parameter values, the spectral abscissa is smooth almost
everywhere (Vanbiervliet et al. 2008).

The properties of function (19) preclude the use of standard optimizationmethods,
developed for smooth problems. Insteadwe propose the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm with weak Wolfe line search, whose favorable properties
for nonsmooth problems have been reported in Lewis and Overton (2009), with
refinements using the gradient sampling algorithm (Burke et al. 2005). This combi-
nation of algorithms has been implemented in the MATLAB code HANSO (Overton
2009). The code only requires the evaluation of the objective function, as well as its
derivatives with respect to parameters, whenever it is differentiable.

The value of the spectral abscissa can be obtained by computing the rightmost
characteristic roots, using the methods described in Sect. 2.1. If there is only one
active characteristic root λa with multiplicity one, the spectral abscissa is differen-
tiable and we can express

∂c

∂ pk
(p) = �

⎛

⎝
wH

(
∂A0
∂ pk

(p) +∑m
i=1

∂Ai
∂ pk

(p)e−λaτi
)

υ

wH
(
I +∑m

i=1 Ai (p)τi e−λaτi
)
υ

⎞

⎠
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for k = 1, . . . , np,, where w and υ are the left and right eigenvector corresponding
to eigenvalue λa .

3.2 Optimizing H∞ andH2 Norms

The properties of the function

p �→ ‖G(·; p)‖H∞ , (20)

whereG(λ; p) is the transfer function of (18), are very similar to the spectral abscissa
function. In particular, function (20) is in general not convex, not everywhere differ-
entiable, but it is smooth almost everywhere. Consequently, the methods described
in Sect. 3.1 can also be applied to (20). For almost all p derivatives exist and they
can be computed from the sensitivity of an individual singular value of G(iω; p)
with respect to p, for a fixed value of ω, see Gumussoy and Michiels (2011). Unlike
objective function (20), function

p �→ ‖G(·; p)‖H2 , (21)

is smooth whenever it is finite, which allows an embedding in a derivative based opti-
mization framework. Derivatives of (21) can be obtained either by constructing the
variational equation corresponding to (14), as worked out in Gomez et al. (2019), or,
in a discretize-first setting, from the solutions of the two Lyapunov matrix equations
in (17), see Vanbiervliet et al. (2011).

Theminimization problems of (20) and (21) contain an implicit constraint, c(p) <

0, because the norms are only finite if the system is internally exponentially stable.
This leads us to a two-stage approach: if the initial values of the parameters are not
stabilizing, then the overall procedure contains a preliminary stabilization phase,
using the methods of Sect. 3.1. For the next phase, the actual minimization of (20)–
(21), the line-search mechanism in BFGS and the gradient sampling algorithm are
adapted in order to discard trial steps or samples outside the feasible set, defined by
the implicit constraint (Gumussoy and Michiels 2011).

Instead of directly optimizing the spectral abscissa as in Sect. 3.1, which requires
methods for nonsmooth optimization problems, it is also possible to optimize a
smooth relaxation of the spectral abscissa function, proposed in Vanbiervliet et al.
(2009b), Gomez and Michiels (2019b), which is defined in terms of a relaxed H2

criterion. In this way stability optimization can also be performed within a derivative
based framework.Moreover, an adaptation of the approachmakes it possible to solve
H2 optimization problems without the explicit need for a preliminary stabilization
phase (Vanbiervliet et al. 2009a).
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4 Case Studies

In this section we illustrate the flexibility of the presented control design approach.
With the first example from Michiels et al. (2010), we show how to incorporate
pole location constraints in the stabilization procedure. The additional flexibility
consists of assigning a finite number of characteristic roots, smaller or equal than
the number of controller parameters, and using the remaining degrees of freedom
to optimize the real part of the rightmost non-assigned characteristic root. With the
second example from Gomez et al. (2019), we illustrate the design of a proportional-
retarded controller, thereby optimizing a cost function expressed in terms of theH2

norm and using a delay as a controller parameter.

Example 4.1 Many design criteria for linear control systems, such as the settling
time, damping and amount of overshoot, can be translated into a desired location of
the rightmost characteristic roots. The characteristic matrix of (18) is given by

�(λ; p) := λI − A0(p) −
m∑

i=1

Ai (p)e
−λτi .

Assigning a real characteristic root to the location r results into the following con-
straint on the parameter values,

det (�(r; p)) = 0. (22)

Similarly, assigning a complex conjugate pair of characteristic roots, r ± s j , results
in the constraints

� (det (�(r ± s j; p))) = 0; � (det (�(r ± s j; p))) = 0. (23)

If matrix � depends in an affine way on p and if the condition

rank

([
∂�

∂ p1
(λ; p) · · · ∂�

∂ pnp

(λ; p)
])

= 1, ∀λ ∈ C, (24)

is satisfied, then the constraints (22)–(23) are affine in p. Hence, assigning k char-
acteristic roots, with k ≤ np, can be expressed by constraints of the form

Sp = R, (25)

where S ∈ R
k×np and R ∈ R

k×1. It is important to note that the rank condition (24)
is satisfied for problems where the closed-loop characteristic matrix results from
control through a single input.

In article Michiels et al. (2010) it is shown how the constraints (25) on the param-
eters can be eliminated. Subsequently, the optimization problem
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min
p∈Rn p , Sp=R

c̄(p) (26)

is addressed, where

c̄(p) := sup
λ∈C

{

�(λ) : det
(
λI − A0(p) −∑m

i=1 Ai (p)e−λτi
)

�k
i=1(λ − λi )

= 0

}

(27)

and {λ1, . . . ,λk} are the assigned characteristic roots. Problem (26) is a modifica-
tion of the spectral abscissa minimization problem discussed in Sect. 3.1. Since the
assigned roots are specified by the designer, the value of (27) can be obtained by
computing the rightmost characteristic roots and removing the assigned ones, which
are invariant over the (reduced) controller parameter space.

Let us now consider the solution of problem (26) for the model of an experimental
heat transfer set-up at the Czech Technical University in Prague, comprehensively
described in Vyhlídal et al. (2009). The model consists of 10 delay differential
equations. The addition of an integrator, to achieve a zero steady state error of one of
the controlled state variables with respect to a prescribed set-point, eventually results
in equations of the form

ẋ(t) = A0x(t) +
5∑

i=1

Ai x(t − τi ) + Bu(t − τ6), (28)

with x(t) ∈ R
11×11 and u(t) ∈ R. We refer to Vyhlídal et al. (2009) for the corre-

sponding matrices and delay values. In Fig. 2 we show the rightmost characteristic
roots of the open-loop system. For the control law

u(t) =
11∑

i=1

pi xi (t),

the solutions of optimization problem (26) are presented in Table 1. The setting
SN1 corresponds to the (unconstrained) minimization of the spectral abscissa (19).
The other settings correspond to assigning one real characteristic root (SN2), one
pair of complex conjugate characteristic roots (SN3) and, finally, two real roots and
two complex conjugate roots (SN4). The assigned characteristic roots were chosen
to the right of the minimum of the spectral abscissa function, because these root
were intended to become the rightmost roots after solving (26). Their positions
were optimized to achieve a properly damped set-point response and disturbance
rejection (Michiels et al. 2010). The optimized characteristic root locations are shown
in Fig. 3 for settings SN1 and SN4.

Example 4.2 We consider a second-order, oscillatory system of the form
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Fig. 2 Rightmost characteristic roots of the open-loop system (28)

Table 1 Controller parameters corresponding to the solution of (26), see the main text for more
details

SN 1 2 3 4

λi - - - - −0.01 −0.02 ± 0.02i −0.02, −0.03
−0.03 ± 0.03i

min c̄ −0.0565 −0.0629 −0.0659 −0.0736

p1 −5.4349 −0.0732 −4.1420 −0.3521

p2 3.5879 8.1865 5.9345 8.6190

p3 −1.4411 −1.2503 −2.3820 −4.8822

p4 −3.7043 −7.1472 −7.9449 −17.2747

p5 24.616 32.8003 27.8585 35.1494

p6 −2.1778 4.4977 0.4490 −1.3188

p7 9.6924 10.3140 8.4887 6.0338

p8 −4.5121 −2.6572 −0.2605 5.4190

p9 −14.631 −21.6711 −20.5152 −24.6596

p10 11.351 4.1244 5.4531 2.3754

p11 −0.7562 −0.2749 −0.3635 −0.1360
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Fig. 3 Rightmost
characteristic roots
corresponding to the solution
of (26), for settings SN1 and
SN4 in Table 1
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ẋ(t) = Ax(t) + B(u(t) + ζ(t))

y(t) = Cx(t),

η(t) = Cx(t),

(29)

with matrices

A =
[

0 1
−ν2 −2δν

]

, B =
[
0
b

]

, C = [
1 0

]
,
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where ν is the natural frequency, δ is the damping factor, and b is the input gain. We
introduce a Proportional-Retarded (PR) controller of the form

u(t) = −kp y(t) + kr y(t − τ1), (30)

where we consider kr and τ1 as parameters. This class of controllers, where the delay
is a design parameter, has been studied in recent works (see, for instance, Villafuerte
et al. 2013). As a main motivation from an application perspective, controller (30)
mimics the behavior of a proportional-derivative (PD) controller, without the need
to explicitly differentiate the output, which might amplify sensor noise considerably.
The closed-loop system, formed by coupling (29) with (30), is given by

ẋ(t) =
[

0 1
−ν2 − bkp −2δν

]

x(t) +
[

0 0
bkr 0

]

x(t − τ1) +
[
0
b

]

ζ(t)

η(t) =Cx(t).

(31)

In order to bring this systemmodel in the formof (18),weperforma transformation
of time. Setting x̄(t̄) = x(t), with t = τ1 t̄ , we arrive at

˙̄x(t̄) =
[

0 τ1
−ν2τ1 − bkpτ1 −2δντ1

]

x̄(t̄) +
[

0 0
bkrτ1 0

]

x̄(t̄ − 1)

+
[

0
bτ1

]

ζ(τ1 t̄)

η(τ1 t̄) =Cx̄(t̄).

(32)

The relation between theH2 norm of systems (31) and (32) is given as follows:

‖G‖2H2
= 1

τ1
‖Ḡ‖2H2

, (33)

where Ḡ is the transfer function of the time-scaled system (32). We use this equality
in order to minimize ‖G‖2H2

. We set the following numerical values, corresponding
to the model of a DC servomechanism in Villafuerte et al. (2013),

ν = 17.6, δ = 0.0128, b = 31, kp = 22.57,

and take as parameter vector p = [p1 p2], with p1 = τ1 and p2 = krτ1. From (33),
the gradient of ‖G‖2H2

with respect to p can be expressed as

∇‖G‖2H2
= 1

p1

⎡

⎢
⎢
⎢
⎣

∂‖Ḡ‖2H2

∂ p1
− ‖Ḡ‖2H2

p1
∂‖Ḡ‖2H2

∂ p2

⎤

⎥
⎥
⎥
⎦

.
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Fig. 4 Values of ‖G‖2H2
at

every iteration,
corresponding to Example
4.2
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The values of the delay and the gain obtained by minimization of the H2 norm of
system (31), with initial parameters p = [0.03 0.09], are given by τ1 = 0.05187
and kr = 17.9643, while the achieved value of ‖G‖2H2

is 0.0497. Figure 4 shows the
value of theH2 norm of system (31) at every iteration of the optimization of function
(33).

5 Equations of Neutral Type and Delay Differential
Algebraic Equations

In this section we consider delay differential algebraic equation (DDAE) models of
the form {

Eẋ(t) = A0x(t) +∑m
i=1 Ai x(t − τi ) + Bζ(t),

η(t) = Cx(t),
(34)

where leading matrix E is singular, x(t) ∈ C
n, ζ(t) ∈ C

nζ , η(t) ∈ C
nη are the

(pseudo)state, input and output at time t , and 0 < τ < · · · < τm represent the time-
delays. With the following examples we illustrate the generality of model (34).

Example 5.1 Consider the feedback interconnection of system

⎧
⎨

⎩

ẋ(t) = Ax(t) + B1u(t) + B2ζ(t),
y(t) = Cx(t) + D1u(t),
η(t) = Fx(t),

and controller
u(t) = Ky(t − τ ).

For τ = 0, it is possible to eliminate the output and the controller equation, which
results in the closed-loop system
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{
ẋ(t) = Ax(t) + B1K (I − D1K )−1Cx(t) + B2ζ(t),
η(t) = Fx(t).

(35)

This approach is for instance taken in the software package HIFOO (Burke et al.
2006). If τ �= 0, then the elimination is not possible any more. However, if we let
X = [xT uT yT ]T we can describe the system by the equations

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎣
I 0 0
0 0 0
0 0 0

⎤

⎦ Ẋ(t) =
⎡

⎣
A B1 0
C D1 −I
0 I 0

⎤

⎦ X (t) −
⎡

⎣
0 0 0
0 0 0
0 0 K

⎤

⎦ X (t − τ ) +
⎡

⎣
B2

0
0

⎤

⎦ ζ(t),

η(t) = [
F 0 0

]
X (t),

which are of the form (34). Furthermore, the dependence of the matrices of the
closed-loop system on the controller gain K is still linear, unlike in (35).

Example 5.2 The presence of a direct feedthrough term from ζ to η, as in

{
ẋ(t) = A0x(t) + A1x(t − τ ) + Bζ(t),
η(t) = Fx(t) + D2ζ(t),

(36)

can be avoided by introducing a slack variable. If we let X = [xT γT ]T , where γ is
the slack variable, we can bring (36) in the form (34):

⎧
⎨

⎩

[
I 0
0 0

]

Ẋ(t) =
[
A0 0
0 −I

]

X (t) +
[
A1 0
0 0

]

X (t − τ ) +
[
B
I

]

ζ(t),

η(t) = [F D2] X (t).

In a similar fashion the feedthrough term Du(t − τ0) in (1) can be eliminated.

Example 5.3 The following system with input delay and input dynamics,

{
ẋ(t) = Ax(t) + B1ζ(t) + B2ζ(t − τ ),

η(t) = Cx(t),

can also be brought into standard form (34), again by using a slack variable. Setting
X = [xT γT ]T , with (pseudo)state variable γ representing a copy of the input, we
can express

⎧
⎨

⎩

Ẋ(t) =
[
A B1

0 −I

]

X (t) +
[
0 B2

0 0

]

X (t − τ ) +
[
0
I

]

ζ(t),

η(t) = [C 0] X (t).

In a similar way we can handle multiple delays in the output.

Example 5.4 Neutral type systems can be considered as well. The following neutral
equation



268 W. Michiels

d

dt

(

x(t) +
m∑

i=1

Gi x(t − τi )

)

=
m∑

i=0

Hi x(t − τi )

can for instance be rewritten as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ̇(t) =
m∑

i=0

Hi x(t − τi ),

0 = −γ(t) + x(t) +
m∑

i=1

Gi x(t − τi ).

(37)

Clearly (37) is of the form (34), with (pseudo)state [γ(t)T x(t)T ]T .
It should be noted that DDAEmodels are particularly suitable for the (automated)

modeling and description of interconnected systems, where the differential equations
stem from a systematic description of the subsystems or components, while the
algebraic and delay difference equations model their interconnections. As a final
illustration, the feedback interconnection of any retarded type time-delay system
and controller with the following state-space representations,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋG(t) =
ma∑

i=0

Ai xG(t − τ a
i ) +

mb1∑

i=0

Bi
1ζ(t − τ b1

i ) +
mb2∑

i=0

Bi
2u(t − τ b2

i )

η(t) =
mc1∑

i=0

Ci
1xG(t − τ c1

i ) +
md11∑

i=0

Di
11ζ(t − τ d11

i ) +
md12∑

i=0

Di
12u(t − τ d12

i )

y(t) =
mc2∑

i=0

Ci
2xG(t − τ c2

i ) +
md21∑

i=0

Di
21ζ(t − τ d21

i ) +
md22∑

i=0

Di
22u(t − τ d22

i )

(38)

and ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋK (t) =
mak∑

i=0

Ai
K xK (t − τ ak

i ) +
mbk∑

i=0

Bi
K y(t − τ bk

i )

u(t) =
mck∑

i=0

Ci
K xK (t − τ ck

i ) +
mdk∑

i=0

Di
K u(t − τ dk

i ),

(39)

can be written in the form of (34) by combining the techniques illustrated with the
previous examples. More precisely, the transformation consists of the elimination of
input dynamics, output dynamics, and non-trivial feedthrough terms.

The price to pay for the generality of model (34) is the increase of the dimension
of the system, n, compared to classical DDEmodels, which may affect the efficiency
of the numerical methods. However, this is a minor problem in most of the applica-
tions, because the delay difference equations or algebraic constraints are related to
inputs and outputs, and for large-scale problems the number of inputs and outputs
are usually much smaller than the number of state variables. Another consequence
of the generality is that assumptions for well-posedness are necessary (in the next
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subsection we will introduce such an assumption). To illustrate the necessity, the
DDAE

ẋ1(t) = x1(t) + x2(t − τ1)
0 = −x2(t − τ2) + x1(t − τ3)

is not causal if τ2 > τ1 + τ3, following from the underlying delay differential equa-
tion ẋ1(t) = x1(t) + x1(t − τ1 − τ3 + τ2).

5.1 Preliminaries and Assumptions

Let matrix E in (34) satisfy
rank(E) = n − ν,

with 1 ≤ ν < n, and let the columns of matrix U ∈ R
n×ν , respectively V ∈ R

n×ν ,
be a (minimal) basis for the right, respectively left nullspace of E , which implies

UT E = 0, EV = 0.

Furthermore we defineU⊥ and V⊥ as n × (n − ν)matrices whose columns span the
orthogonal complement of the column spaces ofU and V . Throughout the remainder
of the chapter we make the following assumption.

Assumption 5.5 Matrix UT A0V is nonsingular.

Assumption 5.5 implies that the differentiation index of (34) is one, correspond-
ing to a system of semi-explicit DDAEs. It is satisfied for all the examples discussed
before. The equations (34) can now be explicitly separated into coupled delay dif-
ferential and delay difference equations. The pre-multiplication of (34) with matrix

[
U⊥T

−(UT A0V )−1UT

]

and the substitution

x = [
V⊥ V

]
[
x1
x2

]

,

with x1(t) ∈ R
n−ν and x2(t) ∈ R

ν , result in the coupled equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E (11) ẋ1(t) =
m∑

i=0

A(11)
i x1(t − τi ) +

m∑

i=0

A(12)
i x2(t − τi ) + B1ζ(t),

x2(t) =
m∑

i=0

A(21)
i x1(t − τi ) +

m∑

i=1

A(22)
i x2(t − τi ) + B2ζ(t),

η(t) = C1x1(t) + C2x2(t),

(40)
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where we have τ0 = 0,

E (11) = U⊥T
EV⊥, A(11)

i = U⊥T
Ai V

⊥, A(12)
i = U⊥T

Ai V,

A(21)
i = −(UT A0V )−1UT AiV⊥, i = 0, . . . ,m,

A(22)
i = −(UT A0V )−1UT AiV, i = 1, . . . ,m,

and
B1 = U⊥T

B, B2 = −(UT A0V )−1UT B, C1 = CV⊥, C2 = CV .

In (40) matrix E (11) is invertible, following from

rank(E (11)) = rank
([
U⊥ U

]T
E
[
V⊥ V

]) = rank(E) = n − ν.

Weconsider initial functionsϕ forEq. (34) that belong to the set AC ([−τm, 0],Cn)

and call them consistent if the corresponding initial value problem at t = 0 has at
least one solution (Du et al. 2013). A function x(t;ϕ) is called a (classical) solu-
tion if it is absolutely continuous, it satisfies (34) almost everywhere on [0,∞), and
x(θ;ϕ) = ϕ(θ) for θ ∈ [−τm, 0], where ϕ is a consistent initial function. For a con-
tinuously differentiable input function, the space of consistent initial functions for
(34) is given by

X :=
{

ϕ ∈ AC ([−τm, 0],Cn) :

UT A0ϕ(0) +
m∑

i=1

UT Aiϕ(−τi ) +UT Bζ(0) = 0

}

,

which corresponds to the set of initial conditions forwhich the second equation in (40)
is satisfied at t = 0. Moreover, for every initial function belonging to X , a forward
solution is uniquely defined (Ha andMehrmann 2012; Du et al. 2013; Fridman 2002).
We say that system (34), with zero input, is (internally) exponentially stable if there
exist constants γ > 0 and σ > 0 such that for every initial condition ϕ ∈ X , the
emanating solution satisfies

‖x(t;ϕ)‖2 ≤ γe−σt

(

sup
θ∈[−τm ,0]

‖ϕ(θ)‖2
)

, ∀t ≥ 0.

5.2 Spectral Properties and Stability

We summarize the main theoretical results from Michiels (2011), addressing the
stability of the null solution of (34) for ζ ≡ 0.
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Exponential Stability. Stability conditions can still be expressed in terms of the
position of the characteristic roots, satisfying

det�(λ) = 0,

where � : C → C
n×n is the characteristic matrix,

�(λ) := λE − A0 −
m∑

i=1

Aie
−λτi .

In particular, we have the following result.

Proposition 5.6 The null solution of (34) is internally exponentially stable if and
only if c < 0, where c is the spectral abscissa:

c := sup {�(λ) : det�(λ) = 0} .

Continuity of the Spectral Abscissa and Strong Stability. We discuss the depen-
dence of the spectral abscissa of (34) on the delay parameters �τ := (τ1, . . . , τm). In
general the function

�τ ∈ (R+
0 )m �→ c(�τ ) (41)

is not everywhere continuous, as we shall illustrate with an example later on. In fact
the lack of continuity carries over from the spectral properties of delay difference
equations (see, e.g., Avellar and Hale 1980; Michiels et al. 2002, 2009). Therefore,
we first outline properties of the function

�τ ∈ (R+
0 )m �→ cD(�τ ) := sup {�(λ) : det�D(λ; �τ ) = 0} , (42)

with

�D(λ; �τ ) := −I +
m∑

i=1

A(22)
i e−λτi . (43)

Note that (43) can be interpreted as the characteristic matrix of the delay difference
equation

x2(t) =
m∑

i=1

A(22)
i x2(t − τi ), (44)

which is associated with the neutral equation.
Theproperty that function (42)maynot be continuous led inMichiels andVyhlídal

(2005) to the smallest upper bound, which is ‘insensitive’ to small delay changes.
Letting

B(�τ , ε) := {�θ ∈ (R+)m : ‖�θ − �τ‖2 < ε}, (45)
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we can define the robust spectral abscissa cD of the delay difference equation (44)
as follows.

Definition 5.7 For �τ ∈ (R+
0 )m , let CD(�τ ) ∈ R be defined as

CD(�τ ) := lim
ε→0+ cε

D(�τ ),

where
cε
D(�τ ) := sup {cD(�τε) : �τε ∈ B(�τ , ε)} .

Several properties of this upper bound on cD are listed below (see (Michiels 2011,
Sect. 3) for an overview).

Proposition 5.8 The following assertions hold:

1. function
�τ ∈ (R+

0 )m �→ CD(�τ )

is continuous;
2. for every �τ ∈ (R+

0 )m, the quantity CD(�τ ) is equal to the unique zero of the strictly
decreasing function

χ ∈ R → f (χ; �τ ) − 1,

where f : R → R
+ is defined by

f (χ; �τ ) := max
�θ∈[0, 2π]m

ρ

(
m∑

k=1

A(22)
k e−χτk eiθk

)

(46)

and ρ(·) denotes the spectral radius;
3. CD(�τ ) = cD(�τ ) for rationally independent delays2

4. for all �τ1, �τ2 ∈ (R+
0 )m, we have

sign (CD(�τ1)) = sign (CD(�τ2)) =: �;

5. condition � < 0 (> 0) holds if and only if γ0 < 1 (> 1) holds, where

γ0 := max
�θ∈[0, 2π]m

ρ

(
m∑

k=1

A(22)
k eiθk

)

. (47)

We now come back to DDAE (34) and, in particular, the properties of its spectral
abscissa function (41). The following two technical lemmas establish connections
between the characteristic roots of (34) and the zeros of (43).

2 The m components of �τ = (τ1, . . . , τm) are rationally independent if and only if
∑m

k=1 nkτk =
0, nk ∈ Z implies nk = 0,∀k = 1, . . . ,m.
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Lemma 5.9 If cD is finite, then there exists a sequence {λk}k≥1 of characteristic
roots of (34) satisfying

lim
k→∞ �(λk) = cD, lim

k→∞ �(λk) = +∞.

Lemma 5.10 For every ε > 0 the number of characteristic roots of (34) in the half
plane

{λ ∈ C : �(λ) ≥ CD(�τ ) + ε}

is finite.

The lack of continuity of the spectral abscissa function (41) leads us again to an
upper bound that takes into account the effect of small delay perturbations.

Definition 5.11 For �τ ∈ (R+
0 )m , let the robust spectral abscissa C(�τ ) of (34) be

defined as
C(�τ ) := lim

ε→0+ cε(�τ ), (48)

where
cε(�τ ) := sup {c(�τε) : �τε ∈ B(�τ , ε)} .

The following characterization of the robust spectral abscissa (48) constitutes the
main theoretical result of this section.

Proposition 5.12 The following assertions hold:

1. the function
�τ ∈ (R+

0 )m �→ C(�τ )

is continuous;
2. for every �τ ∈ (R+

0 )m, we have

C(�τ ) = max(CD(�τ ), c(�τ )).

In line with the sensitivity of the spectral abscissa with respect to infinitesimal
delay perturbations, which has been resolved by considering the robust spectral
abscissa (48) instead, we define the notion of strong stability.3

Definition 5.13 The null solution of (34), with zero input, is strongly stable if there
exists a number τ̂ > 0 such that the null solution of

Eẋ(t) = A0 +
m∑

k=1

Akx(t − (τk + δτk))

3 This terminology is borrowed from the theory of neutral delay differential equations (Hale and
Verduyn Lunel 2002; Michiels and Vyhlídal 2005).
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is exponentially stable for all δ�τ ∈ (R+)m satisfying ‖δ�τ‖2 < τ̂ and τk + δτk ≥
0, k = 1, . . . ,m.

The following result provides necessary and sufficient conditions for strong stability.

Theorem 5.14 The null solution of (34) is strongly stable if and only if C(�τ ) < 0,
or, equivalently, c(�τ ) < 0 and γ0 < 1, where γ0 is defined by (47).

Finally we note, that both the spectral abscissa and the robust spectral abscissa of
(34) are continuous functions of the elements of the system matrices.

5.3 Robust Stabilization by Eigenvalue Optimization

As in Sect. 3, we assume that the system matrices smoothly depend on control or
design parameters p ∈ R

np , which is made explicit in the description

Eẋ(t) = A0(p)x(t) +
m∑

i=1

Ai (p)x(t − τi ). (49)

For example, in the feedback interconnection (38)–(39) parameter vector pmay arise
from a parameterization of matrices (Ai

K , Bi
K , Ci

K , Di
K ).

To impose exponential stability of the null solution of (49), it is necessary to find
values of p for which the spectral abscissa is strictly negative. If the achieved stability
is required to be robust against small delay perturbations, this requirement must be
strengthened to the negativeness of the robust spectral abscissa. This brings us to the
optimization problem

min
p

C(�τ ; p). (50)

Strongly stabilizing values of p exist if the objective function can be made strictly
negative. By Theorem 5.14 the latter can be evaluated as

C(�τ ; p) = max(c(�τ ; p),CD(�τ ; p)). (51)

An alternative approach consists of solving the constrained optimization problem

inf
p
c(�τ ; p), subject to γ0(p) < γ, (52)

with γ < 1. If the objective function is strictly negative, then the satisfaction of
the constraint implies strong stability. Problem (52) can be solved using the barrier
method proposed in Vyhlídal et al. (2010), which is inspired by interior point algo-
rithms, see, e.g., Boyd and Vandenberghe (2004). The first step consists of finding a
feasible point, i.e., a set of values for p satisfying the constraint. If the feasible set is
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nonempty, such a point can be found by solving

min
p

γ0(p). (53)

Once a feasible point p = p0 has been obtained, one can solve in the next step the
unconstrained optimization problem

min
p

c(p) − r log(γ − γ0(p)), (54)

where r > 0 is a small number and γ satisfies

γ0(p) < γ ≤ 1.

The second term in (54), the barrier, assures that the feasible set cannot be left when
the objective function is decreased in a quasi-continuous way (because the objective
function will go to infinity when γ0 → γ). If (54) is repeatedly solved for decreasing
values of r and with the previous solution as a starting value, a solution of (52) is
obtained.

For optimization problem (50) and for subproblems (53) and (54), which are
in general not everywhere differentiable but smooth a.e., we use once again the
code HANSO (Overton 2009). Note in particular that the switching between the
arguments of the maximum operator in (51) is treated in the same way as the switch-
ing between individual characteristic root paths when optimizing only the spectral
abscissa. The overall algorithm only requires the evaluation of the objective func-
tion, as well as its derivatives with respect to the controller parameters,whenever it is
differentiable. The spectral abscissa can be computed using a spectral discretization,
directly extending the approach of Sect. 2.1, followed by Newton corrections. The
quantities CD and γ0 can be computed using the characterizations in Theorem 5.8,
where the (global) maximization problems in (46) and (47) are solved by discretizing
the domain [0, 2π]m−1, followed by local corrections. In all cases derivatives with
respect to p can be obtained from derivatives of individual eigenvalues or singular
values. For more details and expressions we refer to Michiels (2011).

5.4 Examples

We first illustrate the design of a strongly stabilizing controller. Subsequently, we
show how the computation of zeros of transfer function (3) can be recast in the
computation of characteristic roots of an associated DDAE.

Example 5.15 We consider the system with input delay from Vanbiervliet et al.
(2008),

ẋ(t) = Ax(t) + Bu(t − τ ), y(t) = x(t), (55)
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where

A =
⎡

⎣
−0.08 −0.03 0.2

0.2 −0.04 −0.005
−0.06 0.2 −0.07

⎤

⎦ , B =
⎡

⎣
−0.1
−0.2
0.1

⎤

⎦ , τ = 5. (56)

The uncontrolled system is unstable, with spectral abscissa equal to 0.108.We design
a stabilizing static controller

u(t) = Ky(t), (57)

as well as a dynamic controller of the form

{
ẋc(t) = Acxc(t) + Bcy(t),
u(t) = Ccxc(t) + Dcy(t), xc(t) ∈ R

nc ,
(58)

using the approach of Sect. 5.3. More precisely we treat (55) and (57), respectively
(55) and (58), as a system of DDAEs, with (pseudo)state [xT uT yT ]T , respectively
[xT xTc uT yT ]T , while we set p = vec K , respectively

p = vec

[
Ac Bc

Cc Dc

]

.

Since the transfer function from u to y in (55) is strictly proper, the robust spectral
abscissa equals the spectral abscissa, and optimization problems (50) and (52) reduce
to the (unconstrained) minimization of the spectral abscissa. The resulting optimized
spectrum is displayed in Fig. 5 for the static controller and for a dynamic controller of
order nc = 2. Note that the additional degrees of freedom in the dynamic controller
lead to a further reduction of the spectral abscissa.

Next we assume that the measured output of system (55) is instead given by

ỹ(t) = x(t) +
⎡

⎣
3
4
1

⎤

⎦ u(t − 2.5) +
⎡

⎣
2/5

−2/5
−2/5

⎤

⎦ u(t − 5), (59)

for which we design a static controller,

u(t) = Dc ỹ(t).

As amain differencewith the previous example, there are two non-trivial feedthrough
terms in the system model, which are both delayed. By a combination of this model
and the control law, the closed loop system is no longer of retarded type. Solving
optimization problem (50) leads us to

C = −0.0309, Dc = [0.0409 0.0612 0.3837]. (60)
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Fig. 5 Characteristic roots
of controlled system
(55)–(56), corresponding to
a minimum of the spectral
abscissa function, for static
controller (57) (boxes) and
for dynamic controller (58)
of order two (pluses)
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The computed rightmost characteristic roots of the closed-loop system are given by

λ1 = −0.0309,
λ2,3 = −0.0309 ± 0.0001i,
λ4,5 = −0.3336 ± 2.3789i,
λ6,7 = −0.3499 ± 4.8863i.

They indicate that the optimum is characterized by a rightmost characteristic root
of multiplicity three, which must be non-semisimple because of the use of a single
control input. Note that due to the high sensitivity of such roots (Michiels et al.
2017), a very accurate replication using an a-posteriori spectrum computation is not
possible.

The presence of three rightmost roots (counting multiplicity) may sound counter-
intuitive because the number of degrees of freedom in the controller is also three. The
explanation is that we are in a situation where CD ≥ c. In fact, the optimum of (50)
is characterized by an equality between CD and the spectral abscissa c. Hence, in
the optimum we have four conflicting objectives: the three eigenvalues constituting
the multiple root, and the behavior of high frequency characteristic roots, captured
by quantity CD . In the left panel of Fig. 6 we show the rightmost characteristic
roots corresponding to the minimum of the robust spectral abscissa (60). The dotted
line corresponds to �(λ) = cD , the dashed line to �(λ) = CD . In order to illustrate
that we indeed have c = CD , we depict in the right panel of Fig. 6 the rightmost
characteristic roots after perturbing the delay value 2.5 in (59) to 2.51.

Whenwe solve instead the constrained optimization problem (52) with the default
parameters r = 10−3 and γ = 1 − 10−3 in the relaxation (54), we arrive at the
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Fig. 6 (Top) Characteristic
roots corresponding to the
minimum of the robust
spectral abscissa of the
second example (55) and
(59), using a static controller.
The rightmost characteristic
roots, λ ≈ −0.0309, has
multiplicity three. (Bottom)
Effect on the characteristic
roots of a perturbation of the
delays (2.5, 5) in (59)
to (2.51, 5)
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controller gain Dc = [0.0249 0.1076 0.3173]. Compared to (60), where we had
C = c = CD , a further reduction of the spectral abscissa to c = −0.0345 has been
achieved, at the price of an increased value of CD (equal to −0.00602). This is
expected because the constraint γ0 < 1 imposes robustness of stability, yet no bound
on the exponential decay rate of the solutions.

Example 5.16 A transmission zero of system (1) is a number z0 ∈ C such that
G(z0) = 0. In the time-domain the meaning is as follows. If an exponentially stable
system is excited by signal

ζ(t) = ζez0t , (61)
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then the stationary response in the output η is identically zero, for any ζ ∈ C
nζ . This

interpretation is at the basis of the computation of transmission zeros. Due to the
separation principle in the frequency domain, the stationary response to excitation
(61) takes the form

x(t) = xez0t , η(t) = ηez0t .

Substituting these functions in (1) and requiring that η ≡ 0 brings us to

[
z0 I − A0 −∑m

i=1 Aie−z0τi −B
C De−z0τm+1

] [
x
ζ

]

ez0t = 0.

The 2-by-2 block matrix in the left-hand side can be interpreted as the characteristic
matrix of a DDAE, and, accordingly, its characteristic roots are the transmission
zeros. The extension to model (34) is straightforward.

Transmission zeros play a central role in applications related to vibration control.
Signal shapers and vibration absorbers are tuned in such a way that the transfer
function from the locationwhere undesired vibrations enter the system to the location
where vibrations need to be annihilated, has transmission zeros at the dominant
frequencies. For the design and implementation of novel classes of signal shapers
and vibration absorbers that explicitly use delays as controller parameters, and for
the use of DDAE models to describe the overall system, we refer to Pilbauer (2017)
and the references therein.

5.5 Note on the StrongH2 andH∞ Norm

Similarly to the spectral abscissa, the H2 and H∞ system norms of DDAEs suffer
from a fragility problem, in the sense of being potentially sensitive to infinitesimal
delay perturbations. The latter cannot be excluded from an application point of view.
Before we analyze the problem and present robustified measures, we introduce some
notation and motivating examples. We denote by Ĝ the transfer function of (34),

Ĝ(λ) := C

(

λE − A0 −
m∑

i=1

Aie
−λτi

)−1

B.

We also introduce the corresponding asymptotic transfer function Ĝa ,

Ĝa(s) := C2

(

I −
m∑

i=1

A(22)
i e−λτi

)−1

B2.

It can be interpreted as the transfer function of delay difference equation
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{
x2(t) = ∑m

i=1 A
(22)
i x2(t − τi ) + B2ζ(t),

η(t) = C2x2(t),
(62)

obtained by setting x1 = 0 in the second equation of (40). It describes the asymptotic
behavior of Ĝ(λ) for |λ| → ∞ in the closed right half plane. The following property
is proven in Gumussoy and Michiels (2011).

Proposition 5.17 For all γ > 0, there exists a number � > 0 such that
∥
∥
∥Ĝ(iω)−

Ĝa(iω)

∥
∥
∥
2

< γ for all ω > �.

With the following example we illustrate that functions

(
R

+
0

)m � �τ �→
∥
∥
∥Ĝ(·; �τ )

∥
∥
∥
H2

,
(
R

+
0

)m � �τ �→
∥
∥
∥Ĝ(·; �τ )

∥
∥
∥
H∞

maynot be continuous, even if the system is strongly stable, and that this phenomenon
is related to the behavior of the asymptotic transfer function.

Example 5.18 We consider system (34), already in the form (40) with m = 2 and
matrices E (11) = 1, A(11)

0 = −10, A(12)
0 = [

1 1
]
, A21

0 = [
0 0

]T
,

[
A(11)
1 A(12)

1

A(21)
1 A(22)

1

]

=
⎡

⎣
0 0 0
0 1

4 0
0 −1 1

4

⎤

⎦ ,

[
A(11)
2 A(12)

2

A(21)
2 A(22)

2

]

=
⎡

⎣
0 0 0
0 1

8
1
8

0 1 1
8

⎤

⎦ ,

[
B1

B2

]

=
⎡

⎣
100
1
0

⎤

⎦ ,
[
C1 C2

] = [
1 0 1

]
.

(63)

The system is exponentially stable for all delay values, and thus strongly stable. Due
to its tridiagonal structure, its spectrum namely consists of eigenvalue λ = −10,
supplemented with the spectrum of (62), which is confined to the open left half plane
because γ0 = 0.625 < 1.

We now analyze the system norms from input ζ to output η. In Fig. 7 we show
in the left the transfer function Ĝ and in the right the asymptotic transfer function
Ĝa , evaluated on the imaginary axis, for λ = iω. Notice their matching at large
frequencies, in accordance with Proposition 5.17. For �τ = (1, 1) there is clearly no
feedthrough from input to output, inducing a finite H2 norm. Let us now consider
rationally independent delays �τ = (1, 1 + π/υ) with υ ∈ N. For υ = 50 we see that
functions Ĝ and Ĝa do not tend to zero asω → ∞. If υ tends to infinity, the deviation
from nominal delays (1, 1) tends to zero. However, the H2 norms of Ĝ and Ĝa

remain unbounded, while the significant mismatch of the transfer functions and the
corresponding transfer functions for the limit �τ = (1, 1) only shifts towards higher
frequencies. This is visualized in the figure by comparing the caseswhere υ = 50 and
υ = 200. Thus, theH2 norm of Ĝ is not continuous at the nominal delays �τ = (1, 1).
ItsH∞ norm is continuous and characterized by the peak gain reached for ω = 0.
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Fig. 7 Maximum singular value of the transfer function (left) and asymptotic transfer function
(right) of the system in Example 5.18 as a function of s = iω, for three cases: �τ = (1, 1) (top),
�τ = �(1, 1 + π/50) (middle) and �τ = �(1, 1 + π/200) (bottom). The dashed line indicates the strong
H∞ norm of Ĝa

Let us now consider other numerical values for the input matrix B, while keeping
the other system matrices:

B =
[
B1

B2

]

=
⎡

⎣
25
1
0

⎤

⎦ . (64)

In Fig. 8 we display again the transfer functions. With the modified input matrix, not
only the H2 norm is discontinuous at nominal delays (1, 2), but also the H∞ norm.

The possible discontinuity of the system norms brings us to the following robus-
tified counter parts, which explicitly take into account infinitesimal delay perturba-
tions.

Definition 5.19 The strongH2 and strong H∞ norm of Ĝ are defined as

�Ĝ(·; �τ )�H2 := limε→0+ sup{‖Ĝ(·; �τε)‖H2 : �τε ∈ B(�τ , ε)},
�Ĝ(·; �τ )�H∞ := limε→0+ sup{‖Ĝ(·; �τε)‖H∞ : �τε ∈ B(�τ , ε)},

with B given by (45).

The strongH2 andH∞ norm of Ĝa are defined in a similar way. In order to provide
mathematical characterizations of the strong norms, we first introduce matrix poly-
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Fig. 8 Maximum singular value of the transfer function (left) and asymptotic transfer function
(right) of the system in Example 5.18, with modified input matrix (64), as a function of s = iω, for
three cases: �τ = (1, 1) (top), �τ = �(1, 1 + π/50) (middle) and �τ = �(1, 1 + π/200) (bottom). The
dashed line indicates the strong H∞ norm of Ĝa

nomials Pk1,...,km , with ki ∈ Z
+, i = 1, . . . ,m, which are recursively defined through

the following expressions:
P0,...,0 := I, (65)

Pk1,...,km := A(22)
1 Pk1−1,k2,...,km + A(22)

2 Pk1,k2−1,k3,...,km

+ . . . + Â(22)
m Pk1,k2,...,km−1,km−1

(66)

and
Pk1,...,km := 0 if any ki ∈ Z

−, i = 1, . . . ,m. (67)

For instance, for m = 2 and k1 + k2 ≤ 2 these matrix polynomials are

P0,0 = I,
P1,0 = A(22)

1 , P0,1 = A(22)
2 ,

P2,0 = A(22)
1 A(22)

1 , P1,1 = A(22)
1 A(22)

2 + A(22)
2 A(22)

1 , P0,2 = A(22)
2 A(22)

2 ,

while we also have

P2,1 = A(22)
1 A(22)

1 A(22)
2 + A(22)

1 A(22)
2 A(22)

1 + A(22)
2 A(22)

1 A(22)
1 .
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Hence Pk1,...,km is the sum of all monomials of order ki in matrix A(22)
i , for all

i = 1, . . . ,m. We can now formulate a characterization of the strong norms of the
asymptotic transfer function.

Proposition 5.20 (Gomez et al. 2010, Proposition 1) Assume that system (34) is
strongly stable. Then its asymptotic transfer function Ĝa satisfies

� Ĝa�H∞ = max
�θ∈[0, 2π]m

∥
∥
∥
∥
∥
∥
C2

(

I −
m∑

i=1

A(22)
i e−iθi

)−1

B2

∥
∥
∥
∥
∥
∥
2

. (68)

If conditions

C2Pk1,...,km B2 = 0, ∀(k1, . . . , km) ∈ (
Z

+)m :
m∑

i=1

ki < mn (69)

are satisfied, with multi-powers Pk1,...,km defined by (65)-(67), then it holds that
�Ga�H2 = 0. Otherwise, it holds that �Ga�H2 = +∞.

It is important to point out that the strong norms of the asymptotic transfer function
do not depend on the delay values. We can now state the corresponding results for
transfer function Ĝ.

Proposition 5.21 (Gomez et al. 2010, Proposition 2) If system (34) is strongly
stable, then its transfer function Ĝ satisfies

� Ĝ(·; �τ )�H∞ = max
{
‖Ĝ(·; �τ )‖H∞ ,�Ĝa�H∞

}
(70)

and

�Ĝ(·; �τ )�H2 =
{ ‖Ĝ(·; �τ )‖H2 < +∞, if(69)issatisfied,

+∞, otherwise.

Furthermore, function
(
R

+
0

)m � �τ �→ �Ĝ(·; �τ )�H∞ is continuous whenever (34) is

strongly stable. Function
(
R

+
0

)m � �τ �→ �Ĝ(·; �τ )�H2 is continuous whenever (34)
is strongly stable and the strong H2 norm is finite.

Example 5.22 We revisit Example 5.18 and consider nominal delay values (τ1, τ2)
= (1, 1). By evaluating (68) we arrive at �Ĝa�H∞ = 3.88, whose corresponding
level sets are the dashed horizontal lines in Figs. 7 and 8. Because we have

C2A
(22)
1 B2 = −1, C2A

(22)
2 B2 = 1,

the conditions (69) are not satisfied, implying �Ga�H2 = +∞.
For the first choice of B, as in (63), the maximum in the right-hand side of (70) is

attained by the first term, hence, the strongH∞ norm is reached at a finite frequency,
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here ω = 0. For the second choice (64), it is reached by the second term, hence,
�Ĝ�H∞ = �Ĝa�H∞ = 3.88. Obviously, we have in both cases �G�H2 = +∞.

The computation and subsequent optimization of the strong H∞ norm as in
Gumussoy and Michiels (2011) is based on expression (70), where in a first phase
(68) is evaluated using a combination of gridding and local correction. Here it is
important to note that the number of nonzero coefficient matrices A(22)

i is typically
very small in applications, as they all correspond to the presence of a control loop
along which high frequency modes are not damped. In the second phase, an exten-
sion of the level-set algorithm, described in Sect. 2.2 and illustrated with Fig. 1, is
used to compute the nominal H∞ norm, provided it is larger than �Ĝa�H∞ . For
this, the latter norm is used as initial value for the level. Derivatives of the objective
function (70) with respect to controller parameters are obtained from derivatives of
corresponding active eigenvalues or singular values.

We now address the H2 norm computation. With several examples, including
Examples 5.2 and 5.18, we illustrated that aDDAEof the form (34)may hide nontriv-
ial feedthrough terms, hence after checking strong stability it should be determined
first whether the strongH2 norm is finite. An important property of the necessary and
sufficient condition (69), derived in Gomez et al. (2020) using a multi-dimensional
generalization of the Cayley-Hamilton theorem, is that this involves checking only
finitely many equalities. However, the number of equalities to check has an expo-
nential growth as a function of the number of delays m. In response to this, it can be
noted that conditions

CB = 0,
CAσ1 · · · Aσk B = 0, ∀k ∈ Z

+,∀σi ∈ {1, . . . ,m}, i = 1, . . . , k
(71)

imply that CPk1,...,km B = 0 for any m-tuple (k1, . . . , km), and, hence, that finiteness
criterion (69) is satisfied. In Gomez et al. (2010) it is shown that checking sufficient
condition (71) can be done with an algorithm having significantly better scalability
properties in terms of both the dimension of the system and the number of delays. It
is also shown that the satisfaction of (71) is equivalent to the existence of a simulta-
neous block triangularization of the matrices of delay difference equation (62). The
latter is instrumental to a special regularization procedure that allows to transform
DDAE (34) to a neutral equation with the same transfer matrix, without any need
for differentiation of inputs or outputs. This transformation enables to compute the
strongH2 norm using an established approach grounded in Lyapunov matrices (Jar-
lebring et al. 2011), thereby directly extending Theorem 1 and the related algorithms.
For further reading we refer to Gomez and Michiels (2019a), Gomez et al. (2010,
2020).
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6 Concluding Remarks

An eigenvalue based solution to the robust control of linear time-delay systems has
beenpresented.Because any controller characterizedby afinite number of parameters
can be seen as a structured, reduced-order controller, a direct optimization approach
has been taken. Its main advantages are two-fold. First, the methods are generally
applicable. The extension of model (1) towards DDAE models allows to consider
both retarded and neutral type stand-alone and interconnected systems, with discrete
delays in states, control input, sensors outputs, and in the inputs and outputs used
to describe the robustness and performance specifications. As a second advantage,
the approach is not conservative in the sense that a stabilizing or optimal fixed-
structure H2 − H∞ controller can be computed whenever it exists, in contrast to
approaches inferred from sufficient (but not necessary) conditions for a stabilizing
or a guaranteed cost controller. As a price to pay for these beneficial properties, the
optimization problems encountered in Sects. 3 and 5.3 are in general non-convex,
hence, there is no guarantee that the computed optima found by the presented local
optimization algorithms are global.

The eigenvalue based framework has recently been extended to the robust stability
analysis and stabilization of linear time-periodic systems with delay (Michiels and
Fenzi 2020; Borgioli et al. 2020), the H2 norm analysis of such systems (Michiels
and Gomez 2020), and it has been applied to problems from machining (Hajdu et al.
2020). It has also been adopted to the design of prediction based controllers, see,
e.g., Zhou et al. (2019) and the references therein.

Software tools for solving the analysis and synthesis problems discussed in this
article, as well as a benchmark data, are available at

http://twr.cs.kuleuven.be/research/software/delay-control/.

They have been integrated in the software package TDS-CONTROL (Appeltans
and Michiels 2022).

References

Appelmans, P., &Michiels, W. (2022). TDS-CONTROL: AMATLAB package for the analysis and
controller-design of time-delay systems. In Proceedings of the 18th IFAC Workshop on Control
Applications of Optimization, Gif-sur-Yvette, France.

Avellar, C. E., & Hale, J. K. (1980). On the zeros of exponential polynomials. Journal of Mathe-
matical Analysis and Applications, 73, 434–452.

Borgioli, F., &Michiels,W. (2020). A novel method to compute the structured distance to instability
for combined uncertainties on delays and system matrices. IEEE Transactions on Automatic
Control, 65(4), 1747–1754.

Borgioli, F., Michiels, W., Lu, D., & Vandereycken, B. (2019). A globally convergent method to
compute the real stability radius for time-delay systems. Systems & Control Letters, 127, 44–51.

Borgioli, F., Hajdu, D., Insperger, T., Stépán, G., &Michiels, W. (2020). Pseudospectral method for
assessing stability robustness for linear time-periodic delayed dynamical systems. International
Journal for Numerical Methods in Engineering.



286 W. Michiels

Boyd, S., & Balakrishnan, V. (1990). A regularity result for the singular values of a transfer matrix
and a quadratically convergent algorithm for computing itsL∞-norm. Systems&Control Letters,
15, 1–7.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.
Breda, D. (2023). Pseudospectral Methods for the Stability Analysis of Delay Equations. Part I:
the Infinitesimal Generator Approach. methods and applications. In D. Breda (Ed.) Controlling
Delayed Dynamics: Advances in Theory, Methods and Applications, CISM Lecture Notes (pp.
65–94). Wien-New York: Springer.

Breda, D. (2023). Pseudospectral Methods for the Stability Analysis of Delay Equations. Part II: the
Solution Operator Approach. methods and applications. In D. Breda (Ed.) Controlling Delayed
Dynamics: Advances in Theory, Methods and Applications, CISM Lecture Notes (pp. 95–116).
Wien-New York: Springer.

Breda, D.,Maset, S., &Vermiglio, R. (2005). Pseudospectral differencingmethods for characteristic
roots of delay differential equations. SIAM Journal on Scientific Computing, 27(2), 482–495.

Breda, D., Maset, S., & Vermiglio, R. (2009). TRACE-DDE: a tool for robust analysis and charac-
teristic equations for delay differential equations. In Topics in time-delay systems, Lecture Notes
in Control and Information Sciences (Vol. 388, pp. 145–155). Springer.

Bruinsma, N. A., & Steinbuch, M. (1990). A fast algorithm to compute theH∞-norm of a transfer
function matrix. Systems & Control Letters, 14, 287–293.

Burke, J. V., Lewis, A. S., & Overton, M. L. (2005). A robust gradient sampling algorithm for
nonsmooth, nonconvex optimization. SIAM Journal on Optimization, 15(3), 751–779.

Burke, J. V., Henrion, D., Lewis, A. S., Overton, M. L. (2006). HIFOO - a MATLAB package
for fixed-order controller design and H-infinity optimization. In Proceedings of the 5th IFAC
Symposium on Robust Control Design, Toulouse, France.

Curtain, R. F., & Zwart, H. (1995). An introduction to infinite-dimensional linear systems theory,
Texts in Applied Mathematics (Vol. 21). Springer.

Dileep, D., Van Parys, R., Pipeleers, G., Hetel, L., Richard, J.-P., & Michiels, W. (2020). Design of
robust decentralised controllers forMIMO plants with delays through network structure exploita-
tion. The International Journal of Control, 93(10), 2275–2289.

Du, N. H., Linh, V. H., Mehrmann, V., & Thuan, D. D. (2013). Stability and robust stability of
linear time-invariant delay differential-algebraic equations. SIAM Journal on Matrix Analysis
and Applications, 34(4), 1631–1654.

Engelborghs, K., Luzyanina, T., & Roose, D. (2002). Numerical bifurcation analysis of delay dif-
ferential equations using DDE-BIFTOOL. ACM Transactions on Mathematical Software, 28(1),
1–24.

Fridman, E. (2002). Stability of linear descriptor systems with delay: A Lyapunov-based approach.
Journal of Mathematical Analysis and Applications, 273, 24–44.

Gomez, M. A., & Michiels, W. (2019a). Analysis and computation of theH2 norm of delay differ-
ential algebraic equations. IEEE Transactions on Automatic Control, 65(5), 2192–2199.

Gomez,M. A., &Michiels, W. (2019b). Characterization and optimization of the smoothed spectral
abscissa for time-delay systems. The International Journal of Robust and Nonlinear Control,
29(13), 4402–4418.

Gomez, M. A., Egorov, A., Mondié, S., & Michiels, W. (2019). Optimization of the H2 norm
for single-delay systems, with application to control design and model approximation. IEEE
Transactions on Automatic Control, 64(2), 804–811.

Gomez, M. A., Jungers, R. M., & Michiels, W. (2020). On the m-dimensional Cayley-Hamilton
theorem and its application to an algebraic decision problem inferred from theH2 norm analysis
of delay systems. Automatica, 113, 108761.

Gomez, M. A., Jungers, R. M. & Michiels, W. (2010). On the strong H2 norm of differential
algebraic systems with multiple delays: finiteness criteria, regularization and computation. IEEE
Transactions on Automatic Control. Accepted for publication.

Gu, K., Kharitonov, V. L., & Chen, J. (2003). Stability of time-delay systems. Birkhauser.



Design of Structured Controllers for Linear Time-Delay Systems 287

Gumussoy, S., &Michiels, W. (2010). A predictor - corrector type algorithm for the pseudospectral
abscissa computation of time-delay systems. Automatica, 46(4), 657–664.

Gumussoy, S., & Michiels, W. (2011). Fixed-order H-infinity control for interconnected systems
using delay differential algebraic equations. SIAM Journal on Control and Optimization, 49(5),
2212–2238.

Güttel, S., Van Beeumen, R., Meerbergen, K., & Michiels, W. (2014). NLEIGS: A class of fully
rational Krylov methods for nonlinear eigenvalue problems. SIAM Journal on Scientific Comput-
ing, 36(6), A2842–A2864.

Ha, P., & Mehrmann, V. (2012). Analysis and reformulation of linear delay differential-algebraic
equations. The Electronic Journal of Linear Algebra, 23, 703–730.

Hajdu, D., Borgioli, F., Michiels, W., Insperger, T., & Stépán, G. (2020). Robust stability of milling
operations based on pseudospectral approach. International Journal of Machine Tools and Man-
ufacture, 149, 103516.

Hale, J.K.,&VerduynLunel, S.M. (1993). Introduction to functional differential equations,Applied
Mathematical Sciences (Vol. 99). Springer.

Hale, J. K., & Verduyn Lunel, S. M. (2002). Strong stabilization of neutral functional differential
equations. IMA Journal of Mathematical Control and Information, 19, 5–23.

Jarlebring, E., Meerbergen, K., & Michiels, W. (2010). A Krylov method for the delay eigenvalue
problem. SIAM Journal on Scientific Computing, 32(6), 3278–3300.

Jarlebring, E., Vanbiervliet, J., & Michiels, W. (2011). Characterizing and computing theH2 norm
of time-delay systems by solving the delay Lyapunov equation. IEEE Transactions on Automatic
Control, 56, 814–825.

Jarlebring, E., Bennedich, M., Mele, G., Ringh, E., & Upadhyaya, P. (2018). NEP-PACK: A julia
package for nonlinear eigenproblems - v0.2.

Kharitonov,V.,&Plischke, E. (2006). Lyapunovmatrices for time-delay systems.Systems&Control
Letters, 55(9), 697–706.

Lewis, A., & Overton, M. L. (2009). Nonsmooth optimization via BFGS. Available from
http://cs.nyu.edu/overton/papers.html.

Michiels, W. (2019). Control of linear systems with delays (pp. 1–7). London: Springer. ISBN
978-1-4471-5102-9.

Michiels, W. (2011). Spectrum-based stability analysis and stabilisation of systems described by
delay differential algebraic equations. IET Control Theory & Applications, 5, 1829–1842.

Michiels, W., Boussaada, I., & Niculescu, S.-I. (2017). An explicit formula for the splitting of
multiple eigenvalues for nonlinear eigenvalue problems and connections with the linearization
for the delay eigenvalue problem. SIAM Journal on Matrix Analysis and Applications, 38(2),
599–620.

Michiels, W., Engelborghs, K., Roose, D., & Dochain, D. (2002). Sensitivity to infinitesimal delays
in neutral equations. SIAM Journal on Control and Optimization, 40(4), 1134–1158.

Michiels, W., & Fenzi, L. (2021). Spectrum-based stability analysis and stabilization of a class of
time-periodic time delay systems. SIAM Journal on Matrix Analysis and Applications, 5(16),
1829–1842.

Michiels,W., &Gomez,M. A. (2020). On the dual linear periodic time-delay system: Spectrum and
Lyapunov matrices, with application toH2 analysis and balancing. The International Journal of
Robust and Nonlinear Control, 30(10), 3906–3922.

Michiels, W., & Gumussoy, S. (2010). Characterization and computation of H-infinity norms of
time-delay systems. SIAM Journal on Matrix Analysis and Applications, 31(4), 2093–2115.

Michiels, W., & Niculescu, S.-I. (2014). Stability and stabilization of time-delay systems. An eigen-
value based approach, 2nd edn. SIAM.

Michiels, W., & Vyhlídal, T. (2005). An eigenvalue based approach to the robust stabilization of
linear time-delay systems of neutral type. Automatica, 41(6), 991–998.

Michiels, W., Vyhlídal, T., & Zítek, P. (2010). Control design for time-delay systems based on
quasi-direct pole placement. Journal of Process Control, 20(3), 337–343.



288 W. Michiels

Michiels, W., Vyhlídal, T., Ziték, P., Nijmeijer, H., & Henrion, D. (2009). Strong stability of neutral
equations with an arbitrary delay dependency structure. SIAM Journal on Control and Optimiza-
tion, 48(2), 763–786.

Michiels,W., & Zhou, B. (2019). Computing delay lyapunovmatrices andH2 norms for large-scale
problems. SIAM Journal on Matrix Analysis and Applications, 40(3), 845–869.

Niculescu, S.-I. (2001). Delay effects on stability. A robust control approach, Lecture Notes in
Control and Information Sciences (Vol. 269). Springer.

Overton, M. (2009). HANSO: a hybrid algorithm for nonsmooth optimization.
http://cs.nyu.edu/overton/software/hanso/.

Pilbauer, D. (2017). Spectral Methods in Vibration Suppression Control Systems with Time Delays.
Ph.D. thesis, Double Doctorate Chech Technical University in Prague - KU Leuven.

Pontes Duff, I., Poussot-Vassal, C., & Seren, C. (2018). H2-optimal model approximation by
input/output-delay structured reduced order models. Systems & Control Letters, 117, 60 – 67.

Saad, Y. (1992). Numerical methods for large eigenvalue problems. Manchester University Press.
Sieber, J., Engelborghs, K., Luzyanina, T., Samey, G., & Roose, D. (2016). DDE-BIFTOOLmanual
- bifurcation analysis of delay differential equations - v3.1.1.

Sipahi, R.,Niculescu, S. I., Abdallah, C. T.,Michiels,W.,&Gu,K. (2011). Stability and stabilization
of systems with time delay. IEEE Control Systems Magazine, 31(38–65), 3278–3300.

Van Beeumen, R., Meerbergen, K., & Michiels, W. (2015). Compact rational Krylov methods
for nonlinear eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 36(2),
820–838.

Vanbiervliet, J., Vandereycken, B., Michiels, W., & Vandewalle, S. (2008). A nonsmooth optimiza-
tion approach for the stabilization of time-delay systems. ESAIM: Control, Optimisation and
Calculus of Variations, 14(3), 478–493.

Vanbiervliet, J., Michiels, W., & Vandewalle, S. (2009a). Smooth stabilization and optimal H2
design. InProceedings of the IFACWorkshop onControl Applications of Optimization, Jyväskylä,
Finland.

Vanbiervliet, J., Vandereycken, B.,Michiels,W., Vandewalle, S., &Diehl,M. (2009). The smoothed
spectral abscissa for robust stability optimization. SIAMJournal onOptimization, 20(1), 156–171.

Vanbiervliet, J., Michiels, W., & Jarlebring, E. (2011). Using spectral discretisation for the optimal
H2 design of time-delay systems. International Journal of Control, 84(2), 228–241.

Villafuerte, R., Mondié, S., & Garrido, R. (2013). Tuning of proportional retarded controllers:
Theory and experiments. IEEE Transactions on Control Systems Technology, 21(3), 983–990.
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