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Preface

Delays are ubiquitous in engineering and natural sciences: communication delays in
control devices or the incubation period during an epidemic spread are just a couple
of noteworthy examples. The inclusion of past history in the time evolution adds
nontrivial complexities with respect to ordinary systems, balancing the advantage
of dealing with more realistic models. Equations involving delays generate infinite-
dimensional dynamical systems, asking for advanced tools and methods in the back-
ground mathematical analysis, the numerical treatment and the development, design
and optimization of control strategies. Eventually, understanding fundamental issues
like stability is crucial, especially for varying or uncertain parameters.

These premises motivated the organization of an international course at CISM in
2019, and this book collects contributions of the lecturers about analytical, numerical
and application aspects of time-delay systems, under the paradigm of control theory.
The aim is at discussing recent advances in these different contexts, also highlighting
the interdisciplinary connections.

Chapter “The Twin Semigroup Approach Towards Periodic Neutral Delay Equa-
tions” deals with twin semigroups and norming dual pairs for neutral delay equa-
tions, including time-dependent perturbations in view of periodic problems. Then
in chapter “Characteristic Matrix Functions and Periodic Delay Equations”, charac-
teristic matrix functions are introduced to analyze spectral properties, focusing on
monodromy operators of neutral periodic delay equations.

Chapters “Pseudospectral Methods for the Stability Analysis of Delay Equa-
tions. Part I: The Infinitesimal Generator Approach and “Pseudospectral Methods
for the Stability Analysis of Delay Equations. Part II: The Solution Operator
Approach” concern the use of pseudospectral collocation techniques to reduce
to finite dimension the dynamical analysis of both delay differential and renewal
equations. Discretizations of the infinitesimal generator of the relevant semigroup
(Chapter “Pseudospectral Methods for the Stability Analysis of Delay Equations.
Part I: The Infinitesimal Generator Approach”) and of the semigroup itself (Chapter
“Pseudospectral Methods for the Stability Analysis of Delay Equations. Part II: The
Solution Operator Approach”) are described in view of analyzing local stability and
performing bifurcation analysis.

v



vi Preface

The focus moves then to the characteristic roots of linear time-invariant time-
delay systems in view of stability. Frequency-sweeping techniques are illustrated
in chapter “Counting Characteristic Roots of Linear Delay Differential Equations.
Part I: Frequency-Sweeping Stability Tests and Applications”, while frequency-
domain approaches are presented in chapter “CountingCharacteristicRoots of Linear
Delay Differential Equations. Part II: From Argument Principle to Rightmost Root
Assignment Methods”, linking maximal multiplicity to dominancy, also in view of
low-complexity controllers.

Chapter “Bifurcation Analysis of Systems With Delays: Methods and Their Use
in Applications” presents a dynamical systems point of view to study problems with
possibly state-dependent delays.Byusing themost recent release ofDDE-BIFTOOL,
the numerical continuation of steady states and periodic orbits, their bifurcations and
relevant normal forms are addressed, also through the analysis of two longer case
studies.

Chapters “Design of StructuredControllers forLinearTime-DelaySystems” gives
an overview of control design methods, grounded in matrix theory and numerical
linear algebra and relying on a direct optimization of stability, robustness and perfor-
mance indicators as a function of controller or design parameters. Then Chapter
“A Scalable Controller Synthesis Method for the Robust Control of Networked
Systems” concentrates on a scalable controller synthesis method in the framework
of H∞-norm control for networked systems.

Finally, chapters “Regenerative Machine Tool Vibrations” and “Dynamics
of Human Balancing” discuss models of, respectively, machine tool vibrations and
human balancing tasks. In the former, the phenomenon called surface regeneration
is analyzed in terms of the delay differential equations governing the vibrations, and
stability diagrams are constructed. In the latter, the central role played by the reaction
time is addressed by discussing stabilizability issues in terms of the critical delay for
different feedback concepts.

After two years of the global pandemic, the time has eventually come to put an end
to this volume: after all, some delay is not completely out of place given the subject.
Once more, let me thank the lecturers: I am sure that their stimulating contributions
to the course have been much appreciated by the 46 attendees from 13 different
countries, to which I gratefully add myself. The priceless help and kind presence of
CISM administrative staff are also acknowledged with true pleasure.

This book is the result of the lecturers’ effort, Sjoerd Verduyn Lunel, Silviu-Iulian
Niculescu, BerndKrauskopf,WimMichiels and Tamás Insperger (and of that of their
co-authors, whom I thank as well). I am tremendously grateful to them, as well as to
many other colleagues for all I could learn about delay systems. Since the list would
be excessively long, let me just give credit to Gabor Stépán for having inspired the
course behind this volume, and to Rossana Vermiglio and Stefano Maset for having
patiently introduced me to this research field, for which I trust this volume will be a
valid resource.

Udine, Italy Dimitri Breda
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The Twin Semigroup Approach Towards
Periodic Neutral Delay Equations

Sjoerd Verduyn Lunel

Abstract In the first part of this chapter we review the recently developed theory of
twin semigroups and norming dual pairs in the light of neutral delay equations. In the
second part we extend the perturbation theory for twin semigroups to include time-
dependent perturbations. Finally we apply this newly developed theory to neutral
periodic delay equations.

1 Introduction

Consider a function x defined on the half-line [0,∞) with values in Rn and assume
that the derivative ẋ depends on the history of x and ẋ .More precisely, we assume that
there exists h > 0 such that ẋ(t) depends on x(τ ) and ẋ(τ ) for t − h ≤ τ ≤ t . Given
these restrictions we would like to consider a general linear differential equation.

To formulate precisely what type of equations we consider, we first define the
segment xt : [−h, 0] → R

n by

xt (θ) := x(t + θ), for − h ≤ θ ≤ 0. (1)

Let η and ζ be n × n-matrix-valued functions of bounded variation defined on [0,∞)

such that η(0) = ζ(0) = 0, η and ζ are continuous from the right on (0, h), η(t) =
η(h) and ζ(t) = ζ(h) for t ≥ h.Wecall such functionsη and ζ of normalizedbounded
variation. Furthermore assume that η(t) is continuous at t = 0. (See Appendix A for
the precise definition and basic properties of such functions.)

The class of equations that we will study can now be written as

d

dt

[
x(t) −

∫ h

0
dη(θ)x(t − θ)

]
=

∫ h

0
dζ(θ)x(t − θ). (2)

S. Verduyn Lunel (B)
Mathematical Institute, Utrecht University, Utrecht, The Netherlands
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2 S. Verduyn Lunel

To single out a unique solution we have to provide an initial condition at a certain
time s. The initial condition should specify the values of x on the interval of length
h preceding time s. Let y satisfy (2) for t ≥ s and the initial condition

y(s + θ) = ϕ(θ), −h ≤ θ ≤ 0,

where ϕ ∈ B ([−h, 0];Rn), the Banach space of bounded Borel measurable func-
tions provided with the supremum norm (see Sect.A for the precise definition and
basic properties). Then x defined for t ≥ 0 by x(t) = y(s + t), satisfies (2) for t ≥ 0
and the initial condition

x(θ) = ϕ(θ), −h ≤ θ ≤ 0. (3)

Equation (2) is time invariant and called autonomous. So we can, without loss of
generality, restrict our attention to an initial condition imposed at time zero. This in
contrast to time periodic equations which we will consider in Sect. 8.

Equation (2) is called a neutral functional differential equation (NFDE). A
solution of the initial-value problem (2)–(3) on the half-line [0,∞) is a function
x ∈ B ([0,∞);Rn) such that

(i) (3) holds;
(ii) on (0,∞), the function x is absolutely continuous and (2) holds;
(iii) the following limit exists

lim
t↓0

1

t

[
x(t) −

∫ h

0
dη(θ)x(t − θ) − ϕ(0) −

∫ h

0
dη(θ)ϕ(−θ)

]

and equals
∫ h
0 dζ(θ)ϕ(−θ).

We end the introduction with an outline of this chapter. In Sect. 2 we derive a
representation of the solution of a NFDE by direct methods. The main result is given
in Theorem 2.4. In Sect. 3 we introduce the notions of norming dual pair and twin
semigroup following Diekmann and Verduyn Lunel (2021). In Sect. 4 we introduce
a concrete norming dual pair that will be used in Sect. 5 to represent the solution
semigroup corresponding to a NFDE as a twin semigroup. In Sect. 6 we use the
twin semigroup approach towards NFDE to prove a variation-of-constants formula,
see Theorem 6.4. In Sect. 7 we develop the perturbation theory for bounded time-
dependent perturbations of twin semigroups. The main result is given in Theorem
7.5. In Sect. 8 we consider periodic NFDE as an application of the perturbation
theory developed in Sect. 7 and prove that periodic NFDE define a twin evolutionary
system. Finally in Appendix A we review some basic properties of functions of
bounded variations and complex Borel measures.
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2 Introduction to NFDE

This section is concerned with the existence, uniqueness and representation of a
solution of the initial-value problem (2)–(3). For 0 ≤ t ≤ h, we can combine the two
separate pieces of information given in (2) and (3) and write

d

dt

[
x(t) −

∫ h

0
dη(θ)x(t − θ)

]
=

∫ t

0
dζ(θ)x(t − θ) +

∫ h

t
dζ(θ)ϕ(t − θ). (4)

By integration and changing the order of integration we can write (4) as

x(t) −
∫ h

0
dη(θ)x(t − θ) =

∫ t

0
ζ(θ)x(t − θ) dθ + g(t), (5)

where

g(t) := ϕ(0) −
∫ h

0
dη(θ)ϕ(−θ) +

∫ t

0

(∫ h

s
dζ(θ)ϕ(s − θ)

)
ds. (6)

Next we write (5) as follows

x(t) =
∫ t

0
dη(θ)x(t − θ) +

∫ t

0
ζ(θ)x(t − θ) dθ + f (t), (7)

where, using (6),

f (t) := g(t) +
∫ h

t
dη(θ)ϕ(t − θ)

= ϕ(0) +
∫ h

0
[ζ(t + σ) − ζ(σ)]ϕ(−σ) dσ

+
∫ h

0
d [η(t + σ) − η(σ)]ϕ(−σ). (8)

Here we have used that

∫ t

0

(∫ h

s
dζ(θ)ϕ(s − θ)

)
ds =

∫ h

0
[ζ(t + σ) − ζ(σ)]ϕ(−σ) dσ

and that ∫ h

t
dη(θ)ϕ(t − θ) =

∫ h

0
dη(t + σ)ϕ(−σ).

It follows from TheoremA.2 that the function f defined by (8) is a bounded Borel
measurable function on [0,∞) that is constant on [h,∞).
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Define the function μ by

μ(θ) := η(θ) +
∫ θ

0
ζ(s) ds, 0 ≤ θ ≤ h, (9)

and μ(θ) = μ(h) for θ ≥ h, then μ is a n × n-matrix-valued function of normalized
bounded variation. Note that, since η(θ) is continuous at θ = 0, we have that μ(θ) is
continuous at θ = 0.

The convolutionproduct of an × n-matrix-valued functionof normalizedbounded
variation μ and a bounded Borel measurable function f is defined by

(μ ∗ f ) (t) :=
∫ t

0
dμ(θ) f (t − θ), t ≥ 0. (10)

From Theorem A.1, it follows that μ ∗ f is a bounded Borel measurable function on
[0,∞).

Using the convolution product defined by (10), the initial-value problem (2)–(3),
i.e., (7), can be rewritten as a renewal equation for x

x = μ ∗ x + f, (11)

where μ is given by (9) and f , given by (8), can be rewritten as

f (t) = ϕ(0) +
∫ h

0
d [μ(t + σ) − μ(σ)]ϕ(−σ). (12)

Therefore to prove existence and uniqueness of solutions of the initial-value problem
(2)–(3), it suffices to prove existence and uniqueness of solutions of the renewal
equation (11).

The convolution product of two n × n-matrix-valued functions of normalized
bounded variation μ and ν, defined by

(μ ∗ ν) (t) :=
∫ t

0
dμ(θ)ν(t − θ), t ≥ 0, (13)

is again a function of bounded variation (see Appendix A and, in particular, Theorem
A.3).

The resolvent kernel ρ of a renewal equation (11) with kernel μ and convolution
product (13) is defined as the matrix solution of the resolvent equation

ρ = ρ ∗ μ + μ = μ ∗ ρ + μ. (14)

The key property of the resolvent concerns the representation of the solution of the
renewal equation (11) as

x = f + ρ ∗ f. (15)
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Indeed taking to convolution with ρ on the left and right of (11) yields

ρ ∗ x = (ρ ∗ μ) ∗ x + ρ ∗ f = (ρ − μ) ∗ x + ρ ∗ f.

Hence μ ∗ x = ρ ∗ f and substituting this relation into (11) yields (15).

We now discuss the existence and uniqueness of the solution of (14) under the
assumption that μ is a n × n-matrix-valued function of normalized bounded varia-
tion. It follows from Appendix A and in particular Theorem A.1 that functions of
normalized bounded variation are in one-to-one correspondence to complex Borel
measures. This allows us to use measure theory to prove existence and uniqueness
of the solution of (14). We start with some preparations.

Let E denote the Borel σ-algebra on [0,∞). The Banach space of complex
Borel measures of bounded total variation is denoted by M ([0,∞)) (see (82)). Let
Mloc ([0,∞)) denote the vector space of local measures, i.e., set functions that are
defined on relatively compact Borel measurable subsets of [0,∞) and that locally
behave like bounded measures: for every T > 0 the set function μT defined by

μT (E) := μ (E ∩ [0, T ]) , E ∈ E,

belongs to M ([0,∞)). The elements of Mloc ([0,∞)) are called Radon measures.
Since the restriction to [0, T ] of μ ∗ ν depends only on the restrictions of μ and ν to
[0, T ], we can unambiguously extend the convolution product to Mloc ([0,∞)) (see
(84)).

We continue with the existence of the resolvent ρ of a complex Borel measure μ
supported on [0,∞). For details see Diekmann and Verduyn Lunel (2021, Theorem
A.7) and for further information and details see Grippenberg et. al. (1990).

Theorem 2.1 Suppose thatμ ∈ Mloc
([0,∞);Rn×n

)
. There exists a uniquemeasure

ρ ∈ Mloc
([0,∞);Rn×n

)
satisfying either one of the following identities

ρ − μ ∗ ρ = μ = ρ − ρ ∗ μ (16)

if and only if det [I − μ({0})] 
= 0. Furthermore, if μ((0, t]) is continuous as t = 0,
then ρ((0, t]) is continuous at t = 0 as well.

The following theorem summarizes some relevant results for renewal equations
(Diekmann and Verduyn Lunel 2021, Theorem A.9).

Theorem 2.2 Let μ ∈ Mloc
([0,∞),Rn×n

)
with det [I − μ({0}] 
= 0.

(i) For every f ∈ Bloc ([0,∞),Rn), the renewal equation (15) has a unique solution
x ∈ Bloc ([0,∞),Rn) given by

x = f + ρ ∗ f,

where ρ satisfies (16). Furthermore, if f is locally absolutely continuous, then
the solution x is locally absolutely continuous as well.
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(ii) If the kernel μ has no discrete part and if f ∈ C ([0,∞),Rn), then x ∈
C ([0,∞),Rn).

We now summarize the conclusions obtained so far in this section in the following
theorem.

Theorem 2.3 Let η and ζ be of normalized bounded variation. Let ϕ ∈
B ([−h, 0];Rn) be given. Define μ by (9). If det [I − μ(0)] 
= 0, then the NFDE
(2) provided with the initial condition (3) admits a unique solution. For t ≥ 0 this
solution coincides with the unique solution of the renewal equation (11) and the
solution has the representation (15) where ρ satisfies the resolvent equation (14) and
f is given by (8).

Representation (15) will be used to derive a representation of the solution of
(2)–(3) directly in terms of the initial data x0 = ϕ. We first need a definition. The
fundamental solution of the delay equation (2)–(3) on [−h,∞) is defined by the
n × n-matrix-valued function

X (t) :=
{
I + ρ((0, t]) for t ≥ 0,

0 for − h ≤ t < 0,
(17)

where ρ is the resolvent ofμ given byTheorem2.1. Since t �→ μ((0, t]) is continuous
at t = 0, it follows from Theorem 2.1 that ρ((0, t]) is continuous at t = 0. Therefore
we can conclude that X (t) has a jump at t = 0.

By construction, the fundamental matrix solution X (t) satisfies (2) with initial
data

X0(θ) =
{
I for θ = 0,

0 for − h ≤ θ < 0.
(18)

Using the fundamental matrix solution X (t) given by (17) and Fubini’s theorem,
we can rewrite the representation formula (15) in terms of the forcing function f
given by (8) directly in terms of the initial condition ϕ.

We summarize the result in a theorem.

Theorem 2.4 The solution of (2)–(3) is given explicitly by

x(t;ϕ) = X (t)ϕ(0) +
∫ h

0
d

[∫ t

−h
dX (τ ) (μ(t − τ + σ) − μ(σ))

]
ϕ(−σ). (19)

Or, equivalently, in terms of the resolvent ρ we have

x(t;ϕ) = (I + ρ((0, t])) ϕ(0) +
∫ h

0
d [μ(t + σ) − μ(σ)])ϕ(−σ)

+
∫ h

0
d

[∫ t

0
ρ(dτ ) (μ(t − τ + σ) − μ(σ))

]
ϕ(−σ). (20)

Here μ is given by (9).
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3 Norming Dual Pairs and Twin Semigroups

The system of equations (2)–(3) defines an infinite-dimensional dynamical system
on the state space B ([−h, 0];Rn), but for the qualitative study of such a dynamical
system we need an adjoint theory in place (see Hale and Verduyn Lunel 1993). In
the classical theory of delay equations this is the main reason to work with the state
spaceC ([−h, 0];Rn) despite the fact that the initial data of the fundamental solution
(see (18)) does not belong to this space. From the Riesz representation theorem it
follows that the dual space ofC ([−h, 0];Rn) has a nice characterization as the space
of functions of normalized bounded variation.

The state space B ([−h, 0];Rn) includes the initial data of the fundamental solu-
tion but its dual space does not have a nice characterization. So although the state
space B ([−h, 0];Rn) is a more natural space to consider, it has not yet been used
because its dual space is too large to provide a useful adjoint theory. A beautiful idea
to repair this discrepancy is to use the notion of a dual pair (see Aliprantis and Border
2006) made precise in Kunze (2011) for infinite-dimensional dynamical systems in
the following way.

Two Banach spaces Y and Y � are called a norming dual pair (cf. Kunze (2011))
if a bilinear map

〈 · , · 〉 : Y � × Y → R

exists such that, for some M ∈ [1,∞),

|〈y�, y〉| ≤ M‖y�‖‖y‖

and, moreover,

‖y‖ := sup
{|〈y�, y〉| | y� ∈ Y �, ‖y�‖ ≤ 1

}
‖y�‖ := sup

{|〈y�, y〉| | y ∈ Y, ‖y‖ ≤ 1
}
.

So we can consider Y as a closed subspace of Y �∗, the dual of Y �, and Y � as a closed
subspace of Y ∗ and both subspaces are necessarily weak∗ dense since they separate
points.

The collection of linear functionals Y � defines a weak topology on Y , denoted by
σ(Y,Y �). The corresponding locally convex topological vector space is denoted by
(Y,σ(Y,Y �)). A crucial point in our approach is that the dual space (Y,σ(Y,Y �))′

is (isometrically isomorphic to) Y � (Rudin 1991, Theorem 3.10). So if a linear func-
tional on Y is continuous with respect to the topology induced by Y �, it can be
(uniquely) represented by an element of Y �.

The next key idea to study infinite-dimensional dynamical systems on a norming
dual pair is the notion of a twin operator introduced in Diekmann and Verduyn Lunel
(2021).
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A twin operator L on a norming dual pair (Y,Y �) is a bounded bilinear map from
Y � × Y to R that defines both a bounded linear map from Y to Y and a bounded
linear map from Y � to Y �. More precisely,

L : Y � × Y → R (y�, y) �→ y�Ly

is such that

(i) for some C > 0 the inequality

|y�Ly| ≤ C‖y�‖‖y‖

holds for all y ∈ Y and y� ∈ Y �;
(ii) for given y ∈ Y themap y� �→ y�Ly is continuous as amap from (Y �,σ(Y �,Y ))

to R and hence there exists Ly ∈ Y such that

〈y�, Ly〉 = y�Ly

for all y� ∈ Y �;
(iii) for given y� ∈ Y � themap y �→ y�Ly is continuous as amap from (Y,σ(Y,Y �))

to R and hence there exists y�L ∈ Y � such that

〈y�L , y〉 = y�Ly

for all y ∈ Y .

So all three maps are denoted by the symbol L , but to indicate on which space L acts
we write, inspired by Feller (1953) which, in turn, is inspired by matrix notation,
either y�Ly, Ly or y�L . As a concrete example, consider the identity operator. It
maps (y�, y) to 〈y�, y〉, y to y and y� to y�.

If our starting point is a bounded linear operator L : Y → Y then there exists
an associated twin operator if and only if the adjoint of L leaves the embedding of
Y � into Y ∗ invariant. We express this in words by saying that L extends to a twin
operator. Likewise, if our starting point is an operator L : Y � → Y � then L extends
to a twin operator if and only if the adjoint of L leaves the embedding of Y into Y �∗
invariant. So a twin operator on a norming dual pair is reminiscent of the combination
of a bounded linear operator on a reflexive Banach space and its adjoint, whence the
adjective “twin”.

The composition of bounded bilinear maps is, in general, not defined. But for twin
operators it is! Indeed, if L1 and L2 are both twin operators on the norming dual pair
(Y,Y �), we define the composition L1L2 by

y�L1L2y := 〈y�L1, L2y〉.

Note that this definition entails that L1L2 acts on Y by first applying L2 and next L1,
whereas L1L2 acts on Y � by first applying L1 and next L2.
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Definition 3.1 A family {S(t)}t≥0 of twin operators on a norming dual pair (Y,Y �)
is called a twin semigroup if

(i) S(0) = I , and S(t + s) = S(t)S(s) for t, s ≥ 0;
(ii) there exist constants M ≥ 1 and ω ∈ R such that

|y�S(t)y| ≤ Meωt‖y‖‖ y�‖;

(iii) for all y ∈ Y , y� ∈ Y � the function

t �→ y�S(t)y

is measurable;
(iv) for Re λ > ω (with ω as introduced in ii)) there exists a twin operator S(λ) such

that

y�S(λ)y =
∫ ∞

0
e−λt y�S(t)y dt. (21)

Note that the combination of i i) and i i i) allows us to conclude that the right hand
side of (21) defines a bounded bilinear map, but not that it defines a twin operator.
Hence iv) is indeed an additional assumption.

Wecall S(λ)definedon {λ | Re λ > ω} theLaplace transform of {S(t)}. It actually
suffices to assume that the assertion of iv) holds for λ = λ0 with Re λ0 > ω. This
assumption allows us to introduce the multi-valued operator

C = λ0 I − S(λ0)
−1 (22)

on Y and next define the function λ �→ S(λ) by

S(λ) = (λI − C)−1 (23)

on an open neighbourhood of λ0.
In Definition 2.6 of Kunze (2009) an operator C is called the generator of the

semigroup provided the Laplace transform is injective and hence C is single-valued.
In Diekmann and Verduyn Lunel (2021) we adopted a more pliant position and call
C the generator even when it is multi-valued and we refer to this paper for additional
information.

Focusing on {S(t)}t≥0 as a semigroup of bounded linear operators on Y, we now
list some basic results from Kunze (2011).

Lemma 3.2 The following statements are equivalent

1. y ∈ D (C) and z ∈ Cy;
2. there exist λ ∈ C with Re λ > ω, here ω is as introduced in ii) of Definition 3.1,

and y, z ∈ Y such that
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y = S(λ)(λy − z)

3. y, z ∈ Y and for all t > 0

∫ t

0
S(τ )z dτ = S(t)y − y.

Here it should be noted that item 3. includes the assertions

• the integral
∫ t
0 S(τ )z dτ defines an element of Y (even though at first it only defines

an element of Y �∗);
• the integral

∫ t
0 S(τ )z dτ does not depend on the choice of z ∈ Cy in case C is

multi-valued.

Lemma 3.3 For all t > 0 and y ∈ Y , we have
∫ t
0 S(τ )y dτ ∈ D (C) and

S(t)y − y ∈ C
∫ t

0
S(τ )y dτ .

4 The Norming Dual Pair (B, NBV )

In the study of delay differential equations, the natural dual pair is given by

Y = B
([−1, 0],Rn

)
and Y � = N BV

([0, 1],Rn
)

(24)

with the pairing

〈y�, y〉 =
∫

[0,1]
y�(dσ) · y(−σ) (25)

(see Appendix A for the definition of N BV ). Here Y is provided with the supremum
norm and Y � with the total variation norm (see (83)). See Diekmann and Verduyn
Lunel 2021.

In the study of renewal equations, the natural dual pair is given by

Y = N BV
([−1, 0],Rn

)
and Y � = B

([0, 1],Rn
)

with the pairing

〈y�, y〉 =
∫

[−1,0]
y(dσ) · y�(−σ).

Returning to (24)–(25), we first make two trivial, yet useful, observations: fix
1 ≤ i ≤ n and −1 ≤ θ ≤ 0,
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∫
[0,1]

y�(dσ) · y(−σ) = yi (θ),

if y�
j (σ) = 0, 0 ≤ σ ≤ 1, j 
= i , and y�

i (σ) = 0 for 0 ≤ σ < −θ and y�
i (σ) = 1 for

σ ≥ −θ, and similarly

∫
[0,1]

y�(dσ) · y(−σ) = y�
i (−θ),

if y j (−σ) = 0, 0 ≤ σ ≤ 1, j 
= i , and yi (−σ) = 1 for 0 ≤ σ ≤ −θ and yi (−σ) = 0
for σ > −θ.

The point is that, consequently, in case of (24)–(25), convergence in both
(Y,σ(Y,Y �)) and (Y �,σ(Y �,Y )) entails pointwise convergence (in, respectively,
B ([−1, 0],Rn) and N BV ([0, 1],Rn)).

In the first case, the dominated convergence theorem implies that, conversely, a
bounded pointwise convergent sequence in B ([−1, 0],Rn) converges in
(Y,σ(Y,Y �)). For N BV ([0, 1],Rn), this is not so clear. It is true that the pointwise
limit of a sequence of functions of bounded variation is again of bounded variation
(Helly’s theorem), but there is no dominated convergence theorem for measures.

The following theorem is proved inDiekmann andVerduynLunel (2021, Theorem
B.1).

Theorem 4.1 The dual pair given by (24) and (25) is a norming dual pair, i.e.,

‖y‖ = sup
{|〈y�, y〉| | y� ∈ Y �, ‖y�‖ ≤ 1

}
‖y�‖ = sup

{|〈y�, y〉| | y ∈ Y, ‖y‖ ≤ 1
}
.

Furthermore

(i) (Y,σ(Y,Y �)) is sequentially complete;
(i i) a linear map (Y,σ(Y,Y �)) → R is continuous if it is sequentially continuous.

5 The Twin Semigroup Approach to NFDE

Consider the norming dual pair (Y,Y �) with Y and Y � as given in Sect. 4 by (24).
By solving (2)–(3), see Theorem 2.3, we can define a Y -valued function u :

[0,∞) → Y by
u(t;ϕ) := xt ( · ;ϕ), t ≥ 0, (26)

where xt is defined by (1), and bounded linear operators S(t) : Y → Y by

S(t)ϕ = u(t;ϕ). (27)
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The initial condition (2) translates into

S(0)ϕ = u(0;ϕ) = ϕ

and (27) reflects that we define a dynamical system on Y by translating along the
functionϕ extended according to (2). Belowwe show that {S(t)} is a twin semigroup
and we characterize its generator C . But first we present some heuristics.

In order to motivate an abstract ODE for the Y -valued function u, we first observe
that the infinitesimal formulation of the translation rule (26) amounts to the PDE

∂u

∂t
− ∂u

∂θ
= 0.

We need to combine this with (2), in terms of u(t)(0) = x(t), and we have to specify
the domain of definition of the derivativewith respect to θ. The latter is actually rather
subtle. An absolutely continuous function has almost everywhere a derivative and
when the function is Lipschitz continuous this derivative is bounded. Thus a Lipschitz
function specifies a unique L∞-equivalence class by the process of differentiation.
But not a unique element of Y . In fact the set

Cψ =
{
ψ′ ∈ Y | ψ(θ) = ψ(−1) +

∫ θ

−1
ψ′(σ) dσ,

ψ′(0) −
∫ h

0
dη(θ)ψ′(−θ) =

∫ h

0
dζ(θ)ψ(−θ)

}
(28)

is, for a given Lipschitz continuous function ψ, very large indeed. Note that the
boundary condition

ψ′(0) −
∫ h

0
dη(θ)ψ′(−θ) =

∫ h

0
dζ(θ)ψ(−θ)

takes care of (2). We define C as a multi-valued, unbounded, operator on Y by (28)
with domain given by

D (C) = Lip
([−1, 0],Rn

)
. (29)

We claim that (2)–(3) and (26) correspond to an abstract differential equation

du

dt
∈ Cu.

To substantiate this claim, we shall verify that {S(t)}t≥0 defined by (27) is a twin
semigroup and, finally, that C is the corresponding generator in the sense of (23)
where S(λ) is given by (21).

From the representation (19) of the solution of (2)–(3) we can derive an explicit
representation of the semigroup {S(t)}t≥0 defined by (27).
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Theorem 5.1 The semigroup {S(t)}t≥0 defined by (27) is given by

(S(t)ϕ) (θ) =
∫ h

0
Kt (θ, dσ)ϕ(−σ) (30)

with for σ > 0 and −h ≤ θ ≤ 0 the kernel Kt (θ,σ) defined by

Kt (θ,σ) := H(σ + t + θ) + H(t + θ)ρ(t + θ)

+ H(t + θ)

∫ t+θ

0
dX (ξ) (μ(t + θ + σ − ξ) − μ(σ)) , (31)

and Kt (θ, 0) = 0. Here ρ denotes the resolvent of μ with μ defined in (9), X denotes
the fundamental solution given by (17), and H is the standard Heaviside function.

Proof For t + θ < 0 the second and third terms in the expression for Kt do not
contribute, and the first term yields

(S(t)ϕ) (θ) = ϕ(t + θ)

which is in accordance with (27) because of (3).
Now assume that t + θ ≥ 0. Clearly the first term contributes a unit jump at σ = 0

and H(t + θ) = 1. The second term has, as a function of σ, a jump of magnitude
ρ(t + θ) at σ = 0, an absolutely continuous part with derivative given by

∫ t+θ

0
dX (ξ) (ζ(t + θ + σ − ξ) − ζ(σ)) ,

and a part of bounded variation given by

∫ t+θ

0
dX (ξ) (η(t + θ + σ − ξ) − η(σ)) .

The jumps yield the first term at the right hand side of (19) (see also (20)) evaluated
at t + θ, the absolutely continuous part yields the second, and the bounded variation
part the third term. �

Note that Kt is bounded, in the sense (cf. Kunze 2009, Definition 3.2) that for
fixed θ in [−1, 0] the function σ �→ Kt (θ,σ) is of normalized bounded variation,
while for fixed σ ∈ [0, 1] the function θ �→ Kt (θ,σ) is bounded and measurable.

The next corollary is a general property of kernel operators.

Corollary 5.2 The operator S(t) extends to a twin operator.

Proof The proof directly follows from the observation that we can represent the
action of y�S(t) explicitly as
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(
y�S(t)

)
(σ) =

∫ h

0
y�(dτ ) Kt (−τ ,σ).

�

Theorem 5.3 The semigroup {S(t)}t≥0 defined by (30) is a twin semigroup.

Proof With reference to Definition 3.1 we note that S(0) = I follows directly from
(30)–(31), while the semigroup property follows from the uniqueness of solutions to
(2)–(3) and the fact that S(t) corresponds to translation along the solution.

The exponential estimates (ii) are well-established in the theory of NFDE, see
Sect. 9.3 of Hale and Verduyn Lunel (1993) or the proof of Proposition 7.3 below.

Property (iii), the measurability of t �→ y�S(t)y, is a direct consequence of the
way Kt (θ,σ), defined in (31), depends on t .

It remains to verify that the Laplace transform defines a twin operator. By Fubini’s
Theorem, the Laplace transform is a kernel operator with kernel

∫ ∞

0
e−λt Kt (θ,σ) dt.

�

Theorem 5.4 The operator C defined by (28) and (29) is the generator (in the sense
of (23)) of {S(t)}t≥0 defined by (30).

Proof Assume ϕ ∈ (λI − C)ψ. Then there exists ψ′ ∈ Y which is a.e. a derivative
of ψ such that

λψ − ψ′ = ϕ, −1 ≤ θ < 0,

satisfying the boundary condition

λψ(0) −
∫ h

0
dη(θ)ψ′(−θ) −

∫ h

0
dζ(θ)ψ(−θ) = ϕ(0).

Solving the differential equation yields that

ψ(θ) = eλθψ(0) + eλθ

∫ 0

θ

e−λσϕ(σ) dσ (32)

and accordingly the boundary condition for θ = 0 boils down to

ψ(0) = �(λ)−1H(λ;ϕ), (33)

where
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H(λ;ϕ) := ϕ(0) + λ

∫ h

0
dη(σ)e−λσ

∫ 0

−σ

e−λτϕ(τ ) dτ

+
∫ h

0
dζ(σ)e−λσ

∫ 0

−σ

e−λτϕ(τ ) dτ .

This requires that det�(λ) 
= 0 with

�(λ) = λ

[
I −

∫ h

0
dη(σ)e−λσ

]
+

∫ h

0
dζ(σ)e−λσ.

Our claim is that the identity

(λI − C)−1ϕ =
∫ ∞

0
e−λt S(t)ϕ dt (34)

or, equivalently,

ψ(θ) =
∫ ∞

0
e−λt (S(t)ϕ) (θ) dt

holds. To verify this, we first note that

∫ ∞

0
e−λt (S(t)ϕ) (θ) dt =

∫ ∞

0
e−λt x(t + θ;ϕ) dt

=
∫ −θ

0
e−λtϕ(t + θ) dt +

∫ ∞

−θ

e−λt x(t + θ) dt

= eλθ

∫ 0

θ

e−λσϕ(σ) dσ + eλθ x̄(λ;ϕ),

where x̄(λ;ϕ) := ∫ ∞
0 e−λt x(t;ϕ) dt , with x(t;ϕ) the solution of (2)–(3) given by

(19). So, since (32) holds, to prove (34) it remains to check that

ψ(0) = x̄(λ;ϕ).

By taking the Laplace transform on both sides of (11) we deduce that

x̄(λ;ϕ) =
(
1 −

∫ ∞

0
e−λt dμ(t)

)−1

f̄ (λ)

= �(λ)−1λ f̄ (λ),

where f̄ (λ) := ∫ ∞
0 e−λt f (t) dt . Therefore, using the representation of f in (12), it

follows that
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λ f̄ (λ) = ϕ(0) +
∫ ∞

0
λe−λt

∫ t

0

(∫ h

s
dζ(θ)ϕ(s − θ) ds

)
dt

+ λ

∫ ∞

0
e−λt

∫ h

t
dη(θ)ϕ(t − θ) dt

= ϕ(0) +
∫ ∞

0
e−λt

∫ h

t
dζ(θ)ϕ(t − θ) dt

+ λ

∫ ∞

0
e−λt

∫ h

t
dη(θ)ϕ(t − θ) dt

= ϕ(0) +
∫ h

0
dζ(θ)

∫ θ

0
e−λtϕ(t − θ) dt

+ λ

∫ h

0
dη(θ)

∫ θ

0
e−λtϕ(t − θ) dt

= ϕ(0) +
∫ h

0
dζ(θ)e−λθ

∫ 0

−θ

e−λσϕ(σ) dσ

λ

∫ h

0
dη(θ)e−λθ

∫ 0

−θ

e−λσϕ(σ) dσ

= H(λ;ϕ).

Therefore it follows from (33) that indeed ψ(0) = x̄(λ;ϕ) and this completes the
proof of the identity (34). �

In Diekmann and Verduyn Lunel (2021), we proved Theorems 5.1, 5.3 and 5.4 for
retarded functional differential equations, and gave an alternative proof of Theorem
5.3 in the neutral case using a relative bounded perturbation argument, see Diekmann
and Verduyn Lunel (2021, Theorem 11.1).

6 The Variation-of-Constants Formula for NFDE

It is a direct consequence of (29) that

X = D (C) = C
([−1, 0],Rn

)
.

ClearlyCψ ∩ X is either empty or a singleton, cf. (28), and for the set to be nonempty
we need that ψ ∈ C1 and

ψ′(0) −
∫ h

0
dη(θ)ψ′(−θ) =

∫ h

0
dζ(θ)ψ(−θ).

So the generator A of the restriction {T (t)}t≥0 of {S(t)}t≥0 to X is given by
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D (A) =
{
ψ ∈ C1 | ψ′(0) −

∫ h

0
dη(θ)ψ′(−θ) =

∫ h

0
dζ(θ)ψ(−θ)

}

Aψ = ψ′

in complete agreement with the standard theory.
As S(t) maps Y into X for t ≥ 1, one might wonder whether we gained anything

at all by the extension from X to Y ? Already in the pioneering work of Jack Hale he
emphasized that if one adds a forcing term to (2), one needs

q(θ) :=
{
1 for θ = 0,

0 for − 1 ≤ θ < 0,

to describe the solution by way of the variation-of-constants formula.
Indeed, the solution of

d

dt

[
x(t) −

∫ h

0
dη(θ)x(t − θ)

]
=

∫ h

0
dζ(θ)x(t − θ) + f (t), t ≥ 0,

x(θ) = ϕ(θ), −1 ≤ θ ≤ 0,

(35)

is explicitly given by

xt = S(t)ϕ +
∫ t

0
S(t − τ )q f (τ ) dτ , (36)

where S(t) is given by (30) and xt is as defined in (1). This formally follows directly
from the fact that the inhomogeneous NFDE (35) corresponds to the initial value
problem

du

dt
∈ Cu + q f, u(0) = ϕ,

where as before u(t) = xt . Note that the solution with initial condition q is the
so-called fundamental solution, cf. (18) and (17).

The integration theory presented next provides a precise underpinning of the
integral in (36) and the remainder of this section is devoted to a proof of (36). In
the original approach of Hale, the hidden argument θ in (36) is inserted and thus the
integral reduces to the integration of an R

n-valued function. Note that evaluation in
a point corresponds to the application of a Dirac functional, so our approach yields,
in a sense, a theoretical underpinning of Hale’s approach.

As a final remark, we emphasize that the variation-of-constants formula (36) is the
key first step towards a local stability and bifurcation theory for nonlinear problems,
as shown in detail in Diekmann et. al. (1995) for retarded functional differential
equations. For neutral functional differential equations this is work in progress.

Motivated by (36), we want to define an element u(t) of Y by way of the action
on Y � expressed in the formula
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〈y�, u(t)〉 = y�S(t)u0 +
∫ t

0
y�S(t − τ )q f (τ ) dτ , (37)

where the standard assumptions are

(i) (Y,Y �) is a norming dual pair;
(ii) q ∈ Y ;
(iii) f : [0, T ] → R is bounded and measurable;
(iv) {S(t)} is a twin semigroup,

and where u0 (corresponding to ϕ in (36)) is an arbitrary element of Y .
The definition of the first term at the right hand side of (37) is no problem at all,

it contributes S(t)u0 to u(t). The second term defines an element of Y �∗, but it is not
clear that this element is, without additional assumptions, represented by an element
of Y . The following lemma provides a sufficient condition.

Lemma 6.1 In addition to (i)–(iv) assume that

(
Y,σ(Y,Y �)

)
is sequentially complete. (38)

Then

y� �→
∫ t

0
y�S(t − τ )q f (τ ) dτ (39)

is represented by an element of Y , to be denoted as
∫ t
0 S(t − τ )q f (τ ) dτ .

Proof There exists a sequence of step functions fm such that | fm | ≤ | f | and fm → f
pointwise. Lemma 3.3 shows that

∫ t

0
S(t − τ )q fm(τ ) dτ

belongs to Y (in fact even to D (C)). Since (see Definition 3.1(ii))

∣∣y�S(t − τ )q fm(τ )
∣∣ ≤ Meω(t−τ )‖q‖‖y�‖ sup

σ
| f (σ)|,

the dominated convergence theorem implies that for every y� ∈ Y �

lim
m→∞

∫ t

0
y�S(t − τ )q fm(τ ) dτ =

∫ t

0
y�S(t − τ )q f (τ ) dτ .

The sequential completeness next guarantees that the limit too is represented by an
element of Y . �

In Diekmann and Verduyn Lunel (2021) we have developed a perturbation theory
to study neutral equations directly as an unbounded perturbation of a retarted equa-
tion. In order to do this, we have to replace f (τ ) dτ by F(dτ ) with F of bounded
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variation. In this setting the approximation by step functions used in the proof of
Lemma 6.1 no longer works. This observation motivates to look for an alternative
sufficient condition to replace (38). This is taken care of in the following lemma.

Lemma 6.2 In addition to (i)–(iv) assume that

a linear map
(
Y �,σ(Y �,Y )

) → R is continuous

if it is sequentially continuous. (40)

Then the assertion of Lemma 6.1 holds.

Proof Again we are going to make use of the dominated convergence theorem.
Consider a sequence {y�

m} in Y � such that for every y ∈ Y the sequence 〈y�
m, y〉

converges to zero in R. Then for all relevant t and τ we have

lim
m→∞ y�

mS(t − τ )q = 0

and consequently

lim
m→∞

∫ t

0
y�
mS(t − τ )q f (τ ) dτ = 0.

So the linear map (39) is, in the sense described in (40), sequentially continuous and
therefore, by the assumption, continuous. Since

(
Y �,σ(Y �,Y )

)′ = Y,

we conclude that (39) is represented by an element of Y . �

We are going to use the above results to show that a certain type of perturbation of
a twin semigroup {S(t)} yields again a twin semigroup. In order to do this we need
a dual version of (37), i.e., we want to define an element u�(t) of Y � by way of the
action on Y expressed in the formula

〈u�(t), y〉 = u�
0S(t)y +

∫ t

0
q�S(t − τ )y f (τ ) dτ , (41)

where the standard assumptions are as before with (ii) replaced by (ii)′, i.e.,

(i) (Y,Y �) is a norming dual pair;
(ii)′ q� ∈ Y �;
(iii) f : [0, T ] → R is bounded and measurable;
(iv) {S(t)} is a twin semigroup,

and where u�
0 is an arbitrary element of Y �. This implies that

y �→
∫ t

0
q�S(t − τ )y f (τ ) dτ (42)
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is represented by an element of Y �, to be denoted as
∫ t
0 q

�S(t − τ ) f (τ ) dτ .
Applying the two lemmas above, with the role of Y and Y � interchanged, we find

that this is indeed the case if either

(
Y �,σ(Y �,Y )

)
is sequentially complete (43)

or

a linear map
(
Y,σ(Y,Y �)

) → R is continuous

if it is sequentially continuous. (44)

Therefore to develop a perturbation theory for twin semigroups we need both (39)
and (42) to be represented by elements from, respectively, Y and Y �. This motivates
the following definition.

Definition 6.3 We say that a norming dual pair (Y,Y �) is suitable for twin pertur-
bation if

(a) at least one of (38) and (40) holds; and
(b) at least one of (43) and (44) holds

Recall from Theorem 4.1 that for the norming dual pair (B, N BV ) introduced
in Sect. 4 we have that (38) and (44) are satisfied. This shows that the norming dual
pair (B, N BV ) is suitable for twin perturbation.

We are now ready to give a rigorous proof of the variation-of-constants formula
for NFDE.

Theorem 6.4 The solution of the inhomogeneous NFDE (35) can be
represented by the variation-of-constants formula (36), i.e.,

xt = S(t)ϕ +
∫ t

0
S(t − τ )q f (τ ) dτ ,

where S(t) is the twin semigroup given by (30).

Proof It follows from Theorem 4.1 that

Y = B([−1, 0];Rn) and Y � = N BV ([0, 1];Rn)

is a norming dual pair suitable for twin perturbation. Therefore the claim follows by
applying Lemma 6.1 with respect to the norming dual pair (B, N BV ) and Lemma
6.2 with respect to the norming dual pair (N BV, B). �

In the treatment of renewal equations in Diekmann and Verduyn Lunel (2021)
we assumed (43) and (40). In fact for delay differential equations we take as normal
dual pair (Y,Y �) with Y = B([−1, 0]) and Y � = N BV ([0, 1]), while for renewal
equations we take (Y,Y �) with Y = N BV ([−1, 0]) and Y � = B([0, 1]).
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7 Bounded Time-Dependent Perturbation of a Twin
Semigroup

In this section we assume

• (Y,Y �) is a norming dual pair that is suitable for twin perturbation, cf. Definition
6.3;

• {S0(t)} is a twin semigroup on (Y,Y �) with generator C0;
• For j = 1, . . . , n the elements q j ∈ Y and t �→ q�

j (t) ∈ Y � are given.

Definition 7.1 A two-parameter family U = {U (t, s)}t≥s of twin operators on a
norming dual pair (Y,Y �) is called a twin evolutionary system if

(i) U (s, s) = I and U (t, s) = U (t, r)U (r, s) for s ≤ r ≤ t
(ii) there exist constants M ≥ 1 and ω0 ∈ R such that for all y ∈ Y , y� ∈ Y �

|y�U (t, s)y| ≤ Meω0(t−s)‖y‖‖ y�‖, t ≥ s;

(iii) Let the set � ⊂ R
2 be defined by � = {(t, s) | −∞ < s ≤ t < ∞}. For all

y ∈ Y , y� ∈ Y � the function

� � (t, s) �→ y�U (t, s)y ∈ R

is measurable.

Our aim is to define constructively a twin evolutionary system {U (t, s)} corre-
sponding to the abstract multi-valued differential equation

du

dt
∈ C(t)u, t ≥ s, u(s) given, (45)

with

D (C(t)) = D (C0) , C(t)y = C0y +
n∑
j=1

〈q�
j (t), y〉q j . (46)

The first step is to introduce a n × n-matrix-valued function k(t, s) on R × R via
k(t, s) = 0 for −∞ < t ≤ s < ∞ and

ki j (t, s) := q�
i (t)S0(t − s)q j , −∞ < s ≤ t < ∞. (47)

Note that for each pair c1, c2 with −∞ < c1 < c2 < ∞ and for each
f ∈ L1 ([c1, c2];Rn), we have

sup
‖ f ‖≤1

∫ c2

c1

(∫ c2

c1

‖k(t, s) f (s)‖ ds
)
dt < ∞.
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Here ‖ f ‖ denotes the norm of f as function belonging to L1 ([c1, c2];Rn) and the
map

f �→
∫ t

c1

k(t, s) f (s) ds, c1 ≤ t ≤ c2,

defines a bounded linear operator on L1 ([c1, c2];Rn) which we shall denote by K .
The linear space of lower triangular kernel functions on [c1, c2] × [c1, c2] of type

L1
loc endowed with the norm

‖k‖1 := sup
‖ f ‖≤1

∫ c2

c1

(∫ c2

c1

‖k(t, s) f (s)‖ ds
)
dt

= ess sup
s∈[c1,c2]

∫ c2

c1

‖k(t, s)‖ dt (48)

is a Banach space (see Theorem 9.2.4 and Proposition 9.2.7 of Grippenberg et. al.
1990) which we will denote by L1+

([c1, c2] × [c1, c2];Rn×n
)
.

Now let k be a lower triangular kernel function of type L1
loc. We call an n × n-

matrix-function r(t, s) a resolvent kernel function of k if r(t, s) is a lower triangular
kernel function of type L1

loc and

r(t, s) = k(t, s) +
∫ t

s
r(t, a)k(a, s) da, −∞ < s ≤ t < ∞, (49)

= k(t, s) +
∫ t

s
k(t, a)r(a, s) da, −∞ < s ≤ t < ∞. (50)

Define the integral operator R similar as the operator K but with the kernel k(t, s)
replaced by r(t, s), i.e.,

(R f ) (t) :=
∫ t

c1

r(t, s) f (s) ds, c1 ≤ t ≤ c2.

Using the integral operators K and R, it follows from the identity (50) that for
c1 < t < c2 we have

(K R f )(t) =
∫ t

c1

k(t, s)(R f )(s) ds

=
∫ t

c1

k(t, s)

(∫ s

0
r(s, τ ) f (τ ) dτ

)
ds

=
∫ t

c1

(∫ t

τ

k(t, s)r(s, τ ) ds

)
f (τ ) dτ

=
∫ t

c1

(r(t, τ ) − k(t, τ )) f (τ ) dτ

= (R f )(t) − (K f )(t), c1 ≤ t ≤ c2.
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It follows that K R = R − K . Similarly, using (49), we have RK = R − K . This
yields K R = RK and

(I − K )(I + R) = (I + R)(I − K ) = I, (51)

where I is the identity operator on L1 ([c1, c2];Rn). Thus I − K is an invertible
operator on L1 ([c1, c2];Rn), and its inverse is given by I + R.

Theorem 7.2 If k(t, s) is a lower triangular kernel function of type L1
loc, then k(t, s)

has a unique resolvent kernel function r(t, s) of type L1
loc. In particular, the integral

equation x = Kx + f has a unique solution given by x = f + R f .

Proof The proof will be done in three steps. Throughout k(t, s) is a lower triangular
kernel function of type L1

loc.

Step 1. First note that if k1 and k2 are lower triangular kernel functions on R × R,
then the same holds true for the functions

(t, s) �→
∫ t

s
k1(t, a)k2(a, s) da and (t, s) �→

∫ t

s
k2(t, a)k1(a, s) da.

Furthermore, from the discussion in the paragraph preceding the present theorem it
follows that a resolvent kernel function of type L1

loc is unique whenever it exists.

Step 2.Because of uniqueness of the resolvent kernel of type L1
loc, it suffices to prove

existence of a resolvent kernel on [c1, c2] for every c1, c2 ∈ (0,∞) with c1 < c2.
Assume first that ‖k‖1 ≤ 1 with ‖k‖1 given by (48), then the map

r(t, s) �→
∫ t

s
k(t, a)r(a, s) da + k(t, s)

is a contraction on L1+
([c1, c2] × [c1, c2];Rn×n

)
. This shows that (50) (and, using

(51), similarly (49)) has a unique solution, and this solution is a resolvent kernel of
type L1

loc.

Step 3. Since k(t, s) is a lower triangular kernel function of type L1
loc, we define a

scaled lower triangular kernel function of type L1
loc by

k̂(t, s) := e−γ(t−s)k(t, s).

Since the norm of k̂ is defined by (see (48))

‖̂k‖1 := ess sup
s∈[c1,c2]

∫ c2

c1

‖̂k(t, s)‖ dt = ess sup
s∈[c1,c2]

∫ c2

c1

e−γ(t−s)‖k(t, s)‖ dt,

we can choose γ so large that ‖̂k‖1 < 1. From Step 2, it follows that the equation

r̂(t, s) = k̂(t, s) +
∫ t

s
k̂(t, a)̂r(a, s) da
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has a unique solution r̂ ∈ L1+
([c1, c2] × [c1, c2];Rn×n

)
. Therefore, we have

r̂(t, s) = e−γ(t−s)k(t, s) +
∫ t

s
e−γ(t−a)k(t, a)̂r(a, s) da,

and hence

eγ(t−s)r̂(t, s) = k(t, s) +
∫ t

s
k(t, a)eγ(a−s)r̂(a, s) da.

Thus

r(t, s) = k(t, s) +
∫ t

s
k(t, a)r(a, s) da,

where r(t, s) = eγ(t−s)r̂(t, s). This completes the proof. �

Proposition 7.3 If k(t, s) is a lower triangular kernel function that satisfies the esti-
mate ‖k(t, s)‖ ≤ m(t) for 0 ≤ s ≤ t and r(t, s) denotes the corresponding resolvent
kernel function, then

‖r(t, s)‖ ≤ m(t) exp

[∫ t

s
m(σ) dσ

]
, 0 ≤ s ≤ t < ∞.

Proof From the estimate ‖k(t, s)‖ ≤ m(t) for 0 ≤ s ≤ t we obtain the following
integral inequality for the function u(t, s) := ‖r(t, s)‖ on 0 ≤ s ≤ t :

u(t, s) ≤ m(t) + m(t)
∫ t

s
u(a, s) da, 0 ≤ s ≤ t < ∞. (52)

Now fix s ∈ [0,∞), and put

q(t) := exp

[
−

∫ t

s
m(σ) dσ

] ∫ t

s
u(a, s) da. t ≥ s. (53)

Differentiation of q with respect to t yields

dq

dt
(t) = −m(t)q(t) + exp

[
−

∫ t

s
m(σ) dσ

]
u(t, s)

=
(
u(t, s) − m(t)

∫ t

s
u(a, s) da

)
exp

[
−

∫ t

s
m(σ) dσ

]

≤ m(t) exp

[
−

∫ t

s
m(σ) dσ

]
,

where we have used (52). Integration from s to t yields the inequality
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q(t) ≤
∫ t

s
m(a) exp

[
−

∫ a

s
m(σ) dσ

]
da = 1 − exp

[
−

∫ t

s
m(σ) dσ

]
.

Together with the definition of q in (53) we arrive at

m(t)
∫ t

s
u(a, s) da = m(t) exp

[∫ t

s
m(σ) dσ

]
q(t)

≤ −m(t) + m(t) exp

[∫ t

s
m(σ) dσ

]
.

Substitution into (52) yields

u(t, s) ≤ m(t) exp

[∫ t

s
m(σ) dσ

]
, 0 ≤ s ≤ t < ∞,

which completes the proof. �

In the context of the variation-of-constants spirit (46) motivates us to presuppose
that U (t, s) and S0(t) should be related to each other by the equation

U (t, s) = S0(t − s) +
∫ t

s
S0(t − τ )B(τ )U (τ , s) dτ , t ≥ s, (54)

where

B(t)y :=
n∑
j=1

〈q�
j (t), y〉q j , t ≥ s. (55)

By letting B(t) act on (54) we obtain, for a given initial point y ∈ Y , a finite dimen-
sional renewal equation.

To derive this renewal equation, we first write (55) as

B(t)y = 〈q�(t), y〉 · q, t ≥ s, (56)

where t �→ q�(t) is the n-vector-valued function with Y �-valued components q�
j (t)

and q is the n-vector-valued with Y -valued components q j . Here we use · to denote
the inner product in Rn .

We can factor (a rank factorization) B as B = B2B1 with B1 : Y → R
n and B2 :

R
n → Y defined by

B1(t)y := 〈q�(t), y〉, B2x :=
n∑
j=1

x jq j , t ≥ s. (57)

Now let (54) act on y ∈ Y and use (56) to obtain
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U (t, s)y = S0(t − s)y +
∫ t

s
S0(t − τ )q�(τ )U (τ , s)y · q dτ , t ≥ s. (58)

Next act on both sides of (58) with the operator B1(t) as defined in (57) to arrive at

v(t, s)y = q�(t)S0(t − s)y +
∫ t

s
k(t, τ )v(τ , s)y dτ , t ≥ s, (59)

where
v(t, s)y := B1(t)U (t, s)y = q�(t)U (t, s)y, t ≥ s,

and the lower triangular kernel function k(t, s) is given by (47). Using Theorem 7.2
we can express the solution of (59) in terms of the resolvent r(t, s) of the kernel
k(t, s) and the forcing function t �→ q�(t)S0(t − s)y by the formula

v(t, s)y = q�(t)S0(t − s)y +
∫ t

s
r(t, τ )q�(τ )S0(τ − s)y dτ , t ≥ s. (60)

And now that the function v(t, s)y, representing q�(t)U (t, s)y, can be considered
as known, Eq. (54) becomes an explicit formula for U (t, s):

U (t, s) = S0(t − s) +
∫ t

s
S0(t − τ )q · v(τ , s) dτ , t ≥ s. (61)

Please note that, with this definition of U (t, s), we do indeed have that

v(t, s)y = q�(t)U (t, s)y

(compare (61) to (59)).
Formula (61) is well suited for proving, on the basis of Lemma 6.1 or Lemma 6.2,

thatU (t, s)maps Y into Y . But not for proving thatU (t, s)maps Y � into Y �. So even
though this may seem superfluous, we now provide an alternative dual constructive
definition starting from the following equation

U (t, s) = S0(t − s) +
∫ t

s
U (t, τ )B(τ )S0(τ − s) dτ , t ≥ s, (62)

which is the variant of (54) in which the roles ofU (t, s) and S0(t) are interchanged.
Let (62) act (from the right) on y� ∈ Y � and next let the resulting identity act on the
vector q. Using (56) this yields the equation

y�w(t, s) = y�S0(t − s)q +
∫ t

s
y�w(t, τ )k(τ , s) dτ , t ≥ s, (63)

where y�w(t, s) := y�U (t, s)q and k(t, s) is given by (47). The formula
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y�w(t, s) = y�S0(t − s)q +
∫ t

s
y�S0(t − τ )q r(τ , s) dτ , t ≥ s, (64)

expresses the solution of (63) in terms of the forcing function in (63) and the resolvent
r(t, s) of the kernel k(t, s). Next use (56) to rewrite (62) in the form

U (t, s) = S0(t − s) +
∫ t

s
w(t, τ ) · q�S0(τ − s) dτ , t ≥ s. (65)

Please note that indeed y�w(t, s) = y�U (t, s)q (compare (65) to (63)).
Of course we should now verify that the integrals in (61) and (65) do indeed

define the same object. Writing the integral in (61) as w0 ∗ v and the integral in (65)
as w ∗ v0, equality follows from (60) written in the form

v = v0 + r ∗ v0

and (64) written in the form
w = w0 + w0 ∗ r

since

w0 ∗ v = w0 ∗ (v0 + r ∗ v0) = w0 ∗ v0 + w0 ∗ r ∗ v0

= (w0 + w0 ∗ r) ∗ v0 = w ∗ v0.

Before we can prove Theorem 7.5 below we first need an auxiliary result.

Lemma 7.4 The solution v(t, s)y of (59) has the property

v(t, s)y = v(t, r)U (r, s)y, t ≥ r ≥ s. (66)

Proof From (59) it follows that

v(t, s)y = q�(t)S0(t − r)S0(r − s)y +
∫ r

s
k(t, τ )v(τ , s)y dτ

+
∫ t

r
k(t, τ )v(τ , s)y dσ, t ≥ r ≥ s,

and, by uniqueness, (66) follows provided the following identity holds

q�(t)S0(t − r)S0(r − s)y +
∫ r

s
k(t, τ )v(τ , s)y dτ = q�(t)S0(t − r)U (r, s)y.

Recall from (47) that

k(t, s) = q�S0(t − s)q = q�S0(t − r)S0(r − s)q, t ≥ r ≥ s,
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so we conclude from (61) that this identity does indeed hold. �

Theorem 7.5 Equation (61) in combination with (60), or Eq. (65) in combination
with (64), defines a twin evolutionary system {U (t, s)} corresponding to the abstract
differential equation (45).

Proof Fix t ≥ s. Since (Y,Y �) is suitable for twin perturbation, we can use (61) and
either Lemma 6.1 or Lemma 6.2 to deduce that U (t, s) maps Y into Y . Similarly
we can use (65) and the observation concerning (42) to deduce thatU (t, s) maps Y �
into Y �. So U (t, s) is a twin operator.

Next we use Lemma 7.4 to derive the property

U (t, s) = U (t, r)U (r, s), t ≥ r ≥ s, (67)

To verify (67), we start from (61) and use Lemma 7.4 to write

U (t, s)y = S0(t − r)

[
S0(r − s)y +

∫ r

s
S0(r − τ )q · v(τ , s)y dτ

]

+
∫ t

r
S0(t − τ )q · v(τ , r)U (r, s)y dτ

= S0(t − r)U (r, s)y +
∫ t

r
S0(t − τ )q · v(τ , r)U (r, s)y dτ

= U (t, r)U (r, s)y.

Both the property S(s, s) = I and the measurability, for all y ∈ Y , y� ∈ Y �, of t �→
y�S(t)y follow from (61) and the corresponding properties of {S0(t)}.

Finally, the exponential estimate for y�S0(t)y yields exponential estimates for
both the kernel k(t, s) and the forcing function t �→ q�(t)S0(t − s)y, t ≥ s, in the
renewal equation (59). Therefore, using Proposition 7.3 we obtain an exponential
estimate for the resolvent r(t, s) and hence via (60) an exponential bound for v(t, s)y.
Finally, using (61) we obtain an exponential bound for y�U (t, s)y for t ≥ s.

This completes the proof of Theorem 7.5. �

8 A Perturbation Approach Towards Periodic NFDE

We shall be dealing with linear periodic neutral functional differential equations of
the following type:

⎧⎪⎨
⎪⎩

d

dt

[
x(t) −

∫ h

0
[dη(τ )]x(t − τ )

]
=

∫ h

0
[dτ ζ(t, τ )]x(t − τ ), t ≥ s,

x(s + θ) = ϕ(θ), −h ≤ θ ≤ 0.

(68)
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Here dτ denotes integration with respect to the τ variable and ϕ is a given function
in B ([−h, 0],Rn). Throughout we assume that for each t ∈ R the functions η and
ζ(t, ·) are n × n matrices of which the entries are real functions of bounded variation
on [0, h] and continuous from the left on (0, h), and η(0) = ζ(t, 0) = 0. Moreover,
it is assumed that there is a nondecreasing bounded function m ∈ L1

loc[−h,∞) such
that

Var[−h,0] ζ(t, ·) ≤ m(t), t ≥ 0.

Theorem 8.1 Under the above conditions, Eq. (68) defines a well-posed dynam-
ical system, that is, Eq. (68) has a unique solution x on [0,∞) such that xt ∈
B ([−h, 0],Rn) for t ≥ 0.

The above theorem is an extension of Theorem 6.1.1 in Hale and Verduyn Lunel
(1993) to the neutral case. In this section we shall derive Theorem 8.1 as a corollary
of Theorem 7.5 using the perturbation approach developed in the previous section.

Consider as the unperturbed problem the special case ζ = 0 in (68). Let y denote
the solution of the autonomous NFDE

⎧⎪⎨
⎪⎩

d

dt

[
y(t) −

∫ h

0
[dη(τ )]y(t − τ )

]
= 0, t ≥ 0,

y(θ) = ϕ(θ), −h ≤ θ ≤ 0.

(69)

From the theory developed in Sect. 2, it follows that the solution y of (69) satisfies
the autonomous renewal equation

y(t) −
∫ t

0
dη(θ)y(t − θ) = f0(t), t ≥ s, (70)

where

f0(t) := ϕ(0) −
∫ h

0
dη(θ)ϕ(−θ) +

∫ h

t
dη(θ)ϕ(t − θ), t ≥ s. (71)

The solution of (70) is given by

y(t) = f0(t) +
∫ t

0
dρ0(θ) f0(t − θ), t ≥ 0, (72)

where ρ0 denotes the resolvent of η, i.e., it satisfies the resolvent equation

ρ0 = η ∗ ρ0 + η, (73)

see Theorem 2.2. Denote by X (t) = I + ρ0(t) the fundamental matrix solution of
(69) so that we can write the solution y given by (72) as
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y(t) =
∫ t

0
dX (τ ) f0(t − τ ), t ≥ 0. (74)

It follows from Theorem 5.3 that the semigroup {S0(t)} defined by translation along
the solution of (69), i.e.,

(S0(t)ϕ) (θ) = y(t + θ;ϕ), −h ≤ θ ≤ 0, t ≥ 0,

is a twin semigroup.
Define for i = 1, . . . , n elements qi ∈ Y and functions t �→ q�

i (t) ∈ Y � by

qi (θ) :=
{
0 for − h ≤ θ < 0,

ei for θ = 0,
(75)

where ei is the i-th unit vector in R
n and the maps t �→ q�

i (t) are defined by

(
q�
i (t)

)
(θ) := ζi (t, θ), −h ≤ θ ≤ 0, t ≥ 0, (76)

where ζi is the i-th row of the n × n-matrix-valued function ζ.
For the matrix kernel k(t, s) introduced in (47) we have, using (75) and (76), the

representation

ki j (t, s) = q�
i (t)S0(t − s)q j

=
∫ t−s

0
dτ ζi (t, τ )X j (t − s − θ), t ≥ s, (77)

where X j (t) is the j-th column of the fundamentalmatrix solution X (t). Furthermore
for ϕ ∈ Y , using (76),

q�(t)S0(t − s)ϕ = q�(t)y(t − s;ϕ)

=
∫ h

0
dζ(t, θ)y(t − s − θ;ϕ), t ≥ s.

Let v(t, s)ϕ be the solution to the renewal equation (59), i.e.,

v(t, s)ϕ = q�(t)S0(t − s)ϕ +
∫ t

s
k(t, τ )v(τ , s)ϕ dτ , t ≥ s,

where the kernel k(t, s) is given by (77). We claim that the solution v(t, s)ϕ is given
by

v(t, s)ϕ =
∫ h

0
dζ(t, θ)x(t − θ;ϕ), t ≥ s, (78)

where x(·;ϕ) is the solution of (68).
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Define

v̄(t, s)ϕ :=
∫ h

0
dζ(t, θ)x(t − θ;ϕ). (79)

To prove that v(t, s) = v̄(t, s) it suffices to show that v̄(t, s)ϕ is also a solution of
the renewal equation (59).

Let x(·;ϕ) be the solution of (68). Similar as before we can rewrite equation (68)
to obtain that x is a solution of the renewal equation

x(t) −
∫ t

0
dη(θ)x(t − θ) =

∫ t

s
v̄(σ, s)ϕ dσ + f0(t), (80)

where f0 is given by (71). Note that the left hand side of (80) can be written as
x − η ∗ x . Using the resolvent equation (73) we obtain

(1 + ρ0) ∗ (x − η ∗ x) = x − η ∗ x + ρ0 ∗ x − ρ0 ∗ η ∗ x

= x − η ∗ x + ρ0 ∗ x − (ρ0 − η) ∗ x

= x .

Thus if we take on both sides of (80) the convolution with the fundamental solution
X (t) = I + ρ0(t) of (69) then

x(t) = y(t;ϕ) +
∫ t

s
dX (t − τ )

∫ τ

s
v̄(σ, s)ϕ dσ

= y(t;ϕ) +
∫ t

s
X (t − τ )v̄(τ , s)ϕ dτ , (81)

where y is given by (74). Finally take the convolution with q�(t) on both sides of
(81) to arrive at

v̄(t, s)ϕ = q�(t)y(t;ϕ) +
∫ t

s
q�(t)X (t − τ )v̄(τ , s)ϕ dτ

= q�(t)S0(t − s)ϕ +
∫ t

s

[∫ h

0
dζ(t, θ)X (t − τ − θ)

]
v̄(τ , s)ϕ dτ

= q�(t)S0(t − s)ϕ +
∫ t

s
k(t, τ )v̄(τ , s)ϕ dτ ,

where we have used (77) and (78). Therefore v̄(t, s)ϕ given by (79) satisfies the
identity

v̄(t, s)ϕ = q�(t)S0(t − s)ϕ +
∫ t

s
k(t, τ )v̄(τ , s)ϕ dτ .

This shows that v̄(t, s)ϕ is a solution to the renewal equation (59) and completes the
proof of the claim (78).
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Finally apply to (61) the element of Y � that corresponds to the Dirac measure in
−θ ∈ [0, 1] to obtain

(U (t, s)ϕ) (θ) = y(t − s + θ) +
∫ t

s
X (t − τ + θ) · v(τ , s)ϕ dτ

= x(t − s + θ;ϕ),

where in the last identity we have used (81).
Thus we conclude that the the perturbation approach based on the abstract

variation-of-constants formula developed in the previous section precisely yields
the twin evolutionary system defined by translation along the solution of (68).

We summarize this result in a theorem.

Theorem 8.2 Under the above conditions, translation along the solution of equation
(68) defines a twin evolutionary system {U (t, s)}t≥s given by (61).

A Review of Functions of Bounded Variation

In this appendix E denotes the Borel σ-algebra on [0,∞). For E ∈ E , we call a
sequence of disjoint sets {E j } in E a partition of E if ∪∞

j=1 E j = E . A complex
Borel measure is a map μ : E → C such that μ(∅) = 0 and

μ(E) =
∞∑
j=1

μ(E j ),

for every partition {E j } of E with the series converging absolutely. In the following
we will often omit the adjective ‘bounded’. The total variation measure |μ| of a
complex Borel measure μ is given by

|μ|(E) = sup

⎧⎨
⎩

n∑
j=0

|μ(E j )| | n ∈ N, {E j } a partition of E in E
⎫⎬
⎭ .

The vector space of complex Borel measures of bounded total variation is denoted
by M ([0,∞)). Provided with the total variation norm given by

‖μ‖T V = |μ| ([0,∞)) , (82)

the vector space M ([0,∞)) becomes a Banach space.

Let f : [0,∞) → C be a given function. For a partition {E j } of [0, t] with E j =
[t j−1, t j ) and 0 = t0 < t1 < · · · < tn = t we define the function T f : [0,∞) →
[0,∞] by
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T f (t) := sup
n∑
j=1

| f (t j ) − f (t j−1)|,

where the supremum is taken overn ∈ N and all such partitions of [0, t]. The extended
real function T f is called the total variation function of f . Note that if 0 ≤ a < b,
then T f (b) − T f (a) ≥ 0 and hence T f is an increasing function.

If limt→∞ T f (t) is finite, then we call f a function of bounded variation. We
denote the space of all such functions by BV . The space N BV ([0,∞)) of normalized
functions of bounded variation is defined by

N BV ([0,∞)) := { f ∈ BV | f is continuous from the right on (0,∞)

and f (0) = 0 }.

Provided with the norm
‖ f ‖T V := lim

t→∞ T f (t) (83)

the space N BV ([0,∞)) becomes a Banach space. More generally, we define for
−∞ < a < b < ∞, the vector space N BV ([a, b]) to be the space of functions
f : [a, b] → C such that f (a) = 0, f is continuous from the right on the open
interval (a, b), and whose total variation on [a, b], given by T f (b) − T f (a) = T f (b),
is finite. Providedwith the norm ‖ f ‖T V := T f (b), the space N BV ([a, b]) becomes a
Banach space. We extend the domain of definition of a function of bounded variation
by defining f (t) = 0 for t < 0 if f ∈ N BV ([0,∞)) and f (t) = 0 for t < a and
f (t) = f (b) for t > b if f ∈ N BV ([a, b]).
The following fundamental result (see Folland 1999, Theorem 3.29) provides the

correspondence between functions of bounded variation and complex Borel mea-
sures.

Theorem A.1 Letμ be a complex Borel measure onR. If f : [0,∞) → C is defined
by f (t) = μ((0, t]), then f ∈ N BV ([0,∞)). Conversely, if f ∈ N BV ([0,∞)) is
given, then there is a unique complex Borel measure μ f such that μ f ((0, t]) = f (t).
Moreover |μ f | = μT f .

Given a function f ∈ N BV ([a, b]) with corresponding measure μ f , we define
the Lebesgue-Stieltjes integral

∫
g d f or

∫
g(x) f (dx) to be

∫
g dμ f . Thus, a

Lebesgue-Stieltjes integral is a special Lebesgue integral and the theory for the
Lebesgue integral applies to the Lebesgue-Stieltjes integral. We embed L1 ([0,∞))

into M ([0,∞)) by identifying f ∈ L1 ([0,∞)) with the measure μ defined by

μ(E) =
∫
E
f (x) dx or, in short, μ(dx) = f (x) dx .

In this section we collect some results about the convolution of a measure and a
function and the convolution of two measures needed to study renewal equations.
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For details we refer to Appendix A of Diekmann and Verduyn Lunel (2021) and for
further results we refer to Folland (1999); Grippenberg et. al. (1990).

Let B ([0,∞)) denote the vector space of all bounded, Borel measurable func-
tions f : [0,∞) → R. Provided with the supremum norm (denoted by ‖ · ‖), the
space B ([0,∞)) becomes a Banach space. With B ([a, b]) we denote the Banach
space of all bounded, Borel measurable functions f : [a, b] → R provided with the
supremum norm.

The half-line convolution μ ∗ f of a measure μ ∈ M([0,∞)) and a Borel mea-
surable function f ∈ B ([0,∞)) is the function

(μ ∗ f )(t) :=
∫

[0,t]
μ(ds) f (t − s)

defined for those values of t for which [0, t] � s �→ f (t − s) is |μ|-integrable.
The following result can be found inGrippenberg et. al. (1990, Theorem 3.6.1(ii)).

Theorem A.2 If f ∈ B ([0,∞)) and μ ∈ M ([0,∞)), then the convolution of f
and μ satisfies μ ∗ f ∈ B ([0,∞)) and

‖μ ∗ f ‖ ≤ ‖μ‖T V ‖ f ‖.

The half-line convolution μ ∗ ν of two measures μ, ν ∈ M ([0,∞)) is defined by
the complex Borel measure that to each Borel set E ∈ E assigns the value

(μ ∗ ν)(E) :=
∫

[0,∞)

μ(ds)ν ((E − s)+) , (84)

where (E − s)+ := {e − s | e ∈ E} ∩ [0,∞) (cf. Grippenberg et. al. 1990, Defini-
tion 4.1.1)).

If χE is the characteristic function of the set E , then

ν((E − s)+) =
∫

[0,∞)

χE (σ + s)ν(dσ),

where [0,∞) � σ �→ χE (σ + s) is the characteristic function of (E − s)+. It fol-
lows from Theorem A.2 that s �→ ν(E − s)+) belongs to B ([0,∞)) and hence the
definition of the convolution of two measures μ ∗ ν : E → C given in (84) makes
sense. Furthermore, using Fubini’s Theorem, we have the following useful identity
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μ ∗ ν(E) =
∫

[0,∞)

μ(ds)ν ((E − s)+)

=
∫

[0,∞)

∫
[0,∞)

χE (σ + s)μ(ds)ν(dσ)

=
∫

[0,∞)

μ ((E − s)+) ν(ds).

The following result can be found inGrippenberg et. al. (1990, Theorem 4.1.2(ii)).

Theorem A.3 Let μ, ν ∈ M ([0,∞)) and let the convolution μ ∗ ν be defined by
(84).

(i) The convolution μ ∗ ν belongs to M ([0,∞)) and

‖μ ∗ ν‖T V ≤ ‖μ‖T V ‖ν‖T V .

(ii) For any bounded Borel function h ∈ B ([0,∞)), we have

∫
[0,∞)

h(t) (μ ∗ ν) (dt) =
∫

[0,∞)

∫
[0,∞)

h(t + s)μ(dt)ν(ds).

Using the one-to-one correspondence between complex Borel measures and func-
tions of bounded variation, see Theorem A.1, we can combine the above results to
obtain the following theorem (see Diekmann and Verduyn Lunel 2021, Theorem
A.5).

Theorem A.4 If f ∈ N BV ([0,∞)) and μ ∈ M([0,∞)), then the convolution of μ
and f satisfies μ ∗ f ∈ N BV ([0,∞)) and

‖μ ∗ f ‖T V ≤ ‖μ‖T V ‖ f ‖T V .

We also need the following result (see Diekmann and Verduyn Lunel 2021, The-
orem A.6).

Theorem A.5 Let μ ∈ M ([0,∞)) and let f : [0,∞) → C be a bounded continu-
ous function. If μ has no discrete part, then μ ∗ f is a bounded continuous function
and

‖μ ∗ f ‖ ≤ ‖μ‖T V ‖ f ‖.
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Characteristic Matrix Functions
and Periodic Delay Equations

Sjoerd Verduyn Lunel

Abstract In the first part of this chapter we recall the notion of a characteristic
matrix function for classes of operators as introduced in Kaashoek and Verduyn
Lunel (2023). The characteristic matrix function completely describes the spectral
properties of the corresponding operator. In the second part we show that the period
map or monodromy operator associated with a periodic neutral delay equation has
a characteristic matrix function. We end this chapter with a number of illustrative
examples of periodic neutral delay equations for which we can compute the charac-
teristic matrix function explicitly.

1 Introduction

Let X denote a complex Banach space, and let A : D (A) → X be a linear operator
with domain D (A) a subspace of X . A complex number λ belongs to the resolvent
set ρ(A) of A if and only if the resolvent (z I − A)−1 exists and is bounded, i.e.,

(i) λI − A is one-to-one;

(ii) Im λI − A = X ;

(iii) (z I − A)−1 is bounded.

Note that for closed operators, (iii) is superfluous, since it is a direct consequence
of the other assumptions by the closed graph theorem. The spectrum σ(A) is by
definition the complement of ρ(A) inC. The point spectrum σp(A) is the set of those
λ ∈ C for which λI − A is not one-to-one, i.e., Aϕ = λϕ for some ϕ �= 0. One then
calls λ an eigenvalue and ϕ an eigenvector corresponding to λ.

The null space Ker (λI − A) is called the eigenspace and its dimension the geo-
metric multiplicity of λ. The generalized eigenspace Mλ = Mλ(A) is the smallest
closed linear subspace that contains allKer (λI − A) j for j = 1, 2, . . . and its dimen-
sion M(A;λ) is called the algebraic multiplicity of λ. If, in addition, λ is an isolated
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point in σ(T ) and M(A;λ) is finite, then λ is called an eigenvalue of finite type.
When M(A;λ) = 1 we say that λ is a simple eigenvalue. A class of operators for
which the eigenvalues are of finite type is formed by the compact operators. Other
classes appear later in this chapter.

If λ is an eigenvalue of finite type, the operator T = A |Mλ
is a bounded operator

from a finite dimensional space into itself. So the situation is reduced to the finite
dimensional case, which we shall, therefore, discuss first.

Let T : Cm → C
m be a bounded linear operator. The eigenvalues of T are pre-

cisely given by the roots of the characteristic polynomial

C(z) := det (z I − T ) .

Over the scalar fieldC the characteristic polynomial can be factorized into a product
of m linear factors

C(z) =
m∏

j=1

(z − λ j ),

where λ j ∈ σ(T ). Define the multiplicity m(λ j , z I − T ) of λ j to be the number
of times the factor (z − λ j ) appears, or, in other words, the order of λ j as a zero
of the characteristic polynomial C . The characteristic polynomial is an annihilating
polynomial of T , i.e., C(T ) = 0. The minimal polynomial Cm of T is defined to
be an annihilating polynomial of T that divides any other annihilating polynomial.
Necessarily, Cm is of the form

Cm(z) =
l∏

j=1

(z − λ j )
k j ,

where σ(T ) = {λ1, . . . ,λl}, and for j = 1, . . . , l, the number k j is positive and
called the ascent of λ j .

Define
M j := Ker (λ j I − T )k j .

This is a T -invariant subspace, i.e., TM j ⊆ M j , and we can define the part of
T in M j , i.e., Tj = T |M j : M j → M j . This yields Cm = M1 ⊕ · · · ⊕ Ml . The
operator T decomposes accordingly

T = l⊕
j=1

Tj .

This decomposition is unique (up to the order of summands). The action of T can
be broken down to the study of the action of Tj . To continue the decomposition one
first studies the structure of the subspaces M j more closely.

Let λ ∈ σ(T ). A vector x is called a generalized eigenvector of order r if
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(λI − T )r x = 0 while (λI − T )r−1x �= 0.

Suppose xr−1 is a generalized eigenvector of order r ; then there are vectors
(xr−2, . . . , x1, x0) for which x0 �= 0 and

T x0 = λx0,

T x1 = λx1 + x0,

...

T xr−1 = λxr−1 + xr−2

and hence x j ∈ Ker (λI − T ) j+1. Such a sequence is called a Jordan chain. Obvi-
ously, the length of the Jordan chain is less than or equal to kλ, the ascent of λ, and a
Jordan chain consists of linearly independent elements. As a consequence of this con-
struction, the matrix representation of Tj with respect to the basis (xr−2, . . . , x1, x0)
is given by a Jordan block of order r corresponding to λ. See Diekmann et al. (1995,
Chap. IV) and the next section for more information about Jordan chains for analytic
matrix-valued functions.

Next consider the case that T is an operator defined on an infinite dimensional
complex Banach space X , then, in general, T no longer has a matrix representation
and we cannot define the characteristic polynomial of T by det (z I − T ). Neverthe-
less there is a large class of operators for which one has a characteristic function
whose zeros determine the spectrum of the corresponding operator. For example,
this is true for the infinitestimal generator of solution semigroup corresponding to
autonomous delay equations, see Diekmann et al. (1995, Chap. I). As it turned out
the abstract notion of a characteristic matrix function, introduced in Kaashoek and
Verduyn Lunel (1992) for unbounded operators, can be used to explain this connec-
tion. As a consequence it was possible to extend the finite dimensional theory to
specific classes of unbounded operators. To briefly explain the connection between
unbounded operators A : D (A) → X and analytic matrix functions, as developed
in Kaashoek and Verduyn Lunel (1992), let � : � → L(Cn) be an analytic n × n
matrix function with � ⊂ C.

Wecall� a characteristicmatrix function for A on� if there exist analytic operator
functions E and F , E : � → L(Cn ⊕ X) and F : � → L(Cn ⊕ X), whose values
are invertible operators, such that

[
�(z) 0
0 I

]
= F(z)

[
ICn 0
0 z I − A

]
E(z), z ∈ �.

The characteristicmatrix function� completely determines the spectral properties of
the unbounded operator A. See Kaashoek and Verduyn Lunel (1992) and Diekmann
et al. (1995, Chap. IV) for details.

In this chapter we will follow recent work, Kaashoek and Verduyn Lunel (2023),
and extend the notion of a characteristic matrix function to classes of bounded



40 S. Verduyn Lunel

operators, and show that the period map of a periodic neutral delay equation has
a characteristic matrix function.

We end the introduction with an outline of this chapter. In Sect. 2 we introduce
and discuss the basic properties of Jordan chains. In Sect. 3 we introduce the notion
of a characteristic matrix function for a class of bounded operators, and prove that
the characteristic matrix function completely determines the spectral properties of
the associated bounded operator. In Sect. 4 we show that the period map associated
with a periodic neutral delay equation has a characteristic matrix function. In Sect. 5
we show that in case the period is equal to the delay, then we can compute the
characteristic matrix function rather explicitly. Finally, in Sect. 6, we consider a class
of periodic delay equations for which the period is two times the delay. We construct
new examples for whichwe can compute the characteristicmatrix function explicitly.
In particular, we construct an example for which the periodmap has a finite spectrum.
In the literature such examples are only known in case the period is equal to the delay,
and were unknown in case the period is two times the delay.

2 Equivalence and Jordan Chains

Let X,Y, X ′,Y ′ be complex Banach spaces, and suppose that L : U → L(X,Y )

and M : U → L(X ′,Y ′) are operator-valued functions, analytic on the open subset
U ⊂ C. The two operator-valued functions L and M are called equivalent on U
(see Sect. 2.4 in Bart et al. (1979)) if there exist analytic operator-valued functions
E : U → L(X ′, X) and F : U → L(Y,Y ′), whose values are invertible operators,
such that,

M(z) = F(z)L(z)E(z), z ∈ U . (1)

Let L : U → L(X,Y ) be an analytic operator-valued function. A point λ0 ∈ U is
called a root of L if there exists a vector x0 ∈ X , x0 �= 0, such that,

L(λ0)x0 = 0.

An ordered set (x0, x1, . . . , xk−1) of vectors in X is called a Jordan chain for L at
λ0 if x0 �= 0 and

L(z)[x0 + (z − λ0)x1 + · · · + (z − λ0)
k−1xk−1] = O((z − λ0)

k). (2)

The number k is called the length of the chain and the maximal length of the chain
starting with x0 is called the rank of x0. The analytic function

k−1∑

l=0

(z − λ0)
l xl
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in (2) is called a root function of L corresponding to λ0.

Proposition 2.1 If two analytic operator functions L and M are equivalent on U ,
then there is a one-to-one correspondence between their Jordan chains.

Proof The equivalence relation (1) is symmetric, and thus it suffices to show that
Jordan chains for L yield Jordan chains for M . If (x0, . . . , xk−1) is a Jordan chain
for L at λ0, then

E(z)−1(x0 + (z − λ0)x1 + · · · + (z − λ0)
k−1xk−1)

= y0 + (z − λ0)y1 + · · · + (z − λ0)
k−1yk−1 + h.o.t.

and (y0, . . . , yk−1) is a Jordan chain for M at λ0. Here h.o.t. stands for the higher
order terms. Furthermore, the equivalence yields that the null spaces Ker L(λ0) and
Ker M(λ0) are isomorphic and this proves the proposition. �

Let � ⊂ C and � : � → L(Cn) denote an entire n × n matrix function. If the
determinant of � is not identically zero, then we define m(λ,�) to be the order of λ
as a zero of det� and k(λ,�) is the order of λ as pole of the matrix function�(·)−1.

Let λ0 be an isolated root of �, then the Jordan chains for � at λ0 have finite
length, and we can organize the chains as follows. Choose an eigenvector, say x1,0,
with maximal rank, say r1. Next, choose a Jordan chain

(x1,0, . . . , x1,r1−1)

of length r1 and let N1 be the complement in Ker�(λ0) of the subspace spanned by
x1,0. In N1 we choose an eigenvector x2,0 of maximal rank, say r2, and let

(x2,0, . . . , x2,r2−1)

be a corresponding Jordan chain of length r2. We continue as follows, let N2 be the
complement in N1 of the subspace spanned by x2,0 and replace N1 by N2 in the above
described procedure.

In this way, we obtain a basis {x1,0, . . . , xp,0} of Ker�(λ0) and a corresponding
canonical system of Jordan chains

x1,0, . . . , x1,r1−1, x2,0, . . . , x2,r2−1, xp,0, . . . , xp,rp−1

for � at λ0.
It is easy to see that the rank of any eigenvector x0 corresponding to the root

λ0 is always equal to one of the r j for 1 ≤ j ≤ p. Thus, the integers r1, . . . , rp do
not depend on the particular choices made in the procedure described above and
are called the zero-multiplicities of � at λ0. Their sum r1 + · · · + rp is called the
algebraic multiplicity of � at λ0 and will be denoted by M(�(λ0)).
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To illustrate this procedure, recall the case that � = z I − A is a linear matrix
function with A an n × n matrix as discussed in the Introduction. The Jordan chain
(x0, . . . , xk−1) for � at λ0 satisfies

(A − λ0)x0 = 0, (A − λ0)x1 = x0, . . . , (A − λ0)xk−1 = xk−2,

and hence
{(xi,0, . . . , xi,ri−1) | i = 1, 2, . . . , p}

is a canonical basis of eigenvectors and generalized eigenvectors for A at λ0.

Next we recall the connection between the Jordan chains and the local Smith form
for an analytic n × n matrix function � : � → L(Cn) with det� �≡ 0. Let λ0 ∈ C.
The local Smith form states there exist a neighborhood U of λ0 and analytic matrix
functions E and F on U whose values are invertibe operators such that

�(z) = F(z)D(z)E(z), z ∈ U , (3)

where
D(z) = diag

[
(z − λ0)

ν1 , . . . , (z − λ0)
νn

]
, z ∈ U . (4)

The integers {ν1, . . . , νn} are uniquely determined by � and the diagonal matrix D
in (4) is called the local Smith form for � at λ0. See Gohberg et al. (1993, Theorems
1.2 and 1.3) for a proof of (3)–(4), or see Diekmann et al. (1995, Chap. IV).

The Jordan chains for the local Smith form D are easily determined, and it follows
that the set of zero multiplicities is given by {ν1, . . . , νn}. Hence, the equivalence (3)
and Proposition 2.1 show that the algebraic multiplicity of � at λ is given by

M(�(λ)) =
n∑

l=1

νl .

On the other hand the equivalence (3) yields

det�(z) = det F(z)(z − λ0)
∑n

l=1 νl det E(z)

with det E(λ0) �= 0 and det F(λ0) �= 0. So, m(λ0,�) the multiplicity of λ0 as zero
of det� equals

m(λ0,�) =
n∑

l=1

νl

as well. This shows that the algebraic multiplicity of � at λ equals the multiplicity
of λ as zero of det� , i.e., m(λ,�) = M(�(λ)).

The following application of the local Smith form will be used in the proof of
Theorem 3.1 below. The identity in (5) below can be viewed as a matrix-valued
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version of the Cauchy multiplicity theorem and is due to Gohberg and Sigal, see
Kaashoek and Verduyn Lunel (2023, Theorem 5.1.2).

Theorem 2.2 Let � : � → L(Cn) be an analytic n × n matrix function on � ⊂ C

with det� �≡ 0. If λ0 ∈ � is an isolated zero of det�, then

m(λ0,�) = Tr
( 1

2πi

∫

�λ0

�(z)−1 d

dz
�(z) dz

)
, (5)

where �λ0 is a small circle surrounding λ0 and no other zeros of det�. Here Tr (A)

denotes the trace of an n × n matrix A.

3 Introduction to the Theory of Characteristic Matrix
Functions

Let T : X → X be a bounded operator, and let� : � → L(Cn) be an analytic n × n
matrix function with � ⊂ C. We call � a characteristic matrix function for T on
� if there exist analytic operator functions E and F , E : � → L(Cn ⊕ X) and
F : � → L(Cn ⊕ X), whose values are invertible operators, such that

[
�(z) 0
0 I

]
= F(z)

[
ICn 0
0 I − zT

]
E(z), z ∈ �. (6)

The operator function appearing in the left hand side of (6) is called the X -extension
of �.

We call � nondegenerate if det�(z) does not vanish identically. In this case,
I − zT is invertible for z ∈ � if and only if det�(z) is non-zero, and in that case

E(z)

[
�(z)−1 0

0 I

]
F(z) =

[
ICn 0
0 (I − zT )−1

]
, det�(z) �= 0. (7)

Note that if� = C, then� is always nondegenerate (take z = 0 in (6)). The operator
functions F and E appearing in (6) can also be described by 2 × 2 matrix functions
with entries that are analytic operator functions on �. For instance, for F we have

F(z)

(
c
x

)
=

[
F11(z) F12(z)
F21(z) F22(z)

] (
c
x

)
=

(
F11(z)c + F12(z)x
F21(z)c + F22(z)x

)
.

Using these partitioning of E(z) and F(z), the equivalence relation (7) yields a useful
representation for the resolvent operator (I − zT )−1 of T on �, namely

(I − zT )−1 = E21(z)�(z)−1F12(z) + E22(z)F22(z), z ∈ �. (8)
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If Q(z) := E(z)−1 and R(z) := F(z)−1, then it follows from (8) that

Q12(z)(I − zT )−1 = �(z)−1F12(z), z ∈ �,

(I − zT )−1R21(z) = E21(z)�(z)−1, z ∈ �.

Since the zeros of det�(z) do not have an accumulation point in �, we see from (8)
that the non-zero part of the spectrum of T inside � consists of eigenvalues of finite
type only.

In this sectionwe introduce an important class of operators T that have a character-
istic matrix function�, i.e., there exist functions E and F such that (6) holds. Before
we do this, we present a spectral resolution theorem that justifies the terminology
introduced above.

The next theorem is an adapted version of Theorem 2.1 of Kaashoek and Verduyn
Lunel (1992) for bounded operators and justifies the terminology introduced above.
See Kaashoek and Verduyn Lunel (2023, Theorem 5.2.6) for a complete proof.

Theorem 3.1 Let T be a bounded linear operator on a Banach space X, and let �
be a nondegenerate characteristic matrix function for T on �. Then

(i) the set �∩ σ(T ) \ {0} consists of eigenvalues of finite type and

�∩ σ(T ) \ {0} = {λ−1 ∈ � | det�(λ) = 0};

(ii) for λ−1
0 ∈ �∩ σ(T ) \ {0}, the partial multiplicities of λ−1

0 as an eigenvalue of
T are equal to the zero-multiplicities of � at λ0;

(iii) for λ−1
0 ∈ �∩ σ(T ) \ {0}, the algebraic multiplicity m(T,λ−1

0 ) of λ−1
0 as an

eigenvalue of T equals m(λ0,�), the order of λ0 as a zero of det�;
(iv) for λ−1

0 ∈ �∩ σ(T ) \ {0}, the ascent k(T,λ−1
0 ) of λ−1

0 equals k(λ0,�), the
order of λ0 as a pole of�−1 and dimKer (I − λ0T )k = m where k = k(λ0,�)

and m = m(λ0,�).

Next we introduce a class of operators T that have a characteristic matrix func-
tion � in the sense of (6). Consider an operator T : X → X that is a finite rank
perturbation of a given operator, i.e., admits a representation of the form

T := W + R, (9)

where W : X → X is a bounded operator and R : X → X is an operator of finite
rank. Define � ⊂ C such that for every x ∈ X

z �→ (I − zW )−1x is analytic on �. (10)

A specific example of such an operatorW is given by a the operator of integration,
i.e., for x ∈ C ([0, 1];Cn) define
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(Wx) (t) :=
∫ t

0
x(s) ds, 0 ≤ t ≤ 1. (11)

The resolvent of the operator W defined in (11) can be computed explicitly and is
given by

(
(I − zW )−1x

)
(t) = x(t) + z

∫ t

0
ez(t−s)x(s) ds, 0 ≤ t ≤ 1. (12)

This shows that (10) is defined for all z ∈ C and we can take � = C in this specific
case.

The fact that R has finite rank allows us to factor R as R = BC , where B : Cn →
X and C : X → C

n , with n ≥ rank R. If n is equal to the rank of R we call R = BC
a minimal rank factorization.

To a pair W and R with factorization R = BC we associate the n × n matrix
function

�(z) := ICn − zC(I − zW )−1B, z ∈ �. (13)

The next theorem tells us that � defined by (13) satisfies (6) with the operator T
defined by (9) on �. Note that in caseW is given by (11) we have � = C. Hence the
operator W is quasi-nilpotent, i.e., for every x ∈ X we have that z �→ (I − zW )−1x
is an entire function, and hence in this case � defined by (13) is an entire matrix
function as well.

The following theorem is an adapted version of Kaashoek and Verduyn Lunel
(2023, Theorem 6.1.1) and the proof is given for the convenience of the reader.

Theorem 3.2 Let W : X → X be a bounded operator. Define� ⊂ C such that (10)
holds. The n × n entire matrix function � defined by (13) is a characteristic matrix
function for the operator T defined by (9) on �. In particular, the identity (6) is
satisfied with � given by (13) and where the analytic operator-valued functions
E(z) : Cn ⊕ X → C

n ⊕ X and F(z) : Cn ⊕ X → C
n ⊕ X are given by

E(z) :=
[

�(z) C(I − zW )−1

−z(I − zW )−1B (I − zW )−1

]
, z ∈ �,

F(z) :=
[
�(z) −C(I − zW )−1

zB IX

]
, z ∈ �.

The inverses E(z)−1 : Cn ⊕ X → C
n ⊕ X and F(z)−1 : Cn ⊕ X → C

n ⊕ X are the
operator-valued functions given by
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E(z)−1 =
[
ICn −C

zB I − zT

]
, z ∈ �,

F(z)−1 =
[

ICn C(I − zW )−1

−zB I − zBC(I − zW )−1

]
, z ∈ �.

Proof Take z ∈ � fixed and apply Theorem 4.7 in Bart et al. (2008) with

M =
[
M11 M12

M21 M22

]
:=

[
I − zW zB

C ICn

]
: X ⊕ C

n → X ⊕ C
n.

Note that both M11 and M22 are invertible operators. Hence the Schur complements
of M11 and M22 in M are well defined and are given by

�1 := M22 − M21M
−1
11 M12

= ICn − zC(I − zW )−1B = �(z); (14)

�2 := M11 − M12M
−1
22 M21

= I − zW − zBC = I − zT . (15)

Put

E1(z) :=
[−M21M

−1
11 �1

M−1
11 M−1

11 M21

]

=
[−C(I − zW )−1 �(z)

(I − zW )−1 z(I − zW )−1B

]
,

F1(z) :=
[ −M−1

11 M12 I
ICn − M−1

22 M21M
−1
11 M12 M−1

22 M21

]

=
[−z(I − zW )−1B I

�(z) C

]
.

Then, using the identities (14) and (15), Theorem 4.7 in Bart et al. (2008) tells us
that [

�(z) 0
0 IX

]
= E1(z)

[
I − zT 0

0 ICn

]
F1(z). (16)

Note that the identify (16) can be verified directly using the definitions.
Moreover, the operators E1(z) and F1(z) are invertible and
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E1(z)
−1 =

[−M12M
−1
22 �2

M−1
22 M−1

22 M21

]

=
[−zB I − zT
ICn C

]
, (17)

F1(z)
−1 =

[ −M−1
22 M21 ICn

I − M−1
11 M12M

−1
22 M21 M−1

11 M12

]

=
[ −C ICn

I − z(I − zW )−1BC z(I − zW )−1B

]
. (18)

Finally put

E(z) :=
[
0 ICn

I 0

]
F1(z)

[
ICn 0
0 (I − zW )−1

]
,

F(z) :=
[
ICn 0
0 I − zW

]
E1(z)

[
0 I
ICn 0

]
.

Then the identities for E(z) and F(z) given in the statement of the theorem hold.
For example, the identity (16) yields (6):

F(z)

[
ICn 0
0 I − zT

]
E(z) =

=
[
ICn 0
0 I − zW

]
E1(z)

[
0 I
ICn 0

] [
ICn 0
0 I − zT

]
E(z)

=
[
ICn 0
0 I − zW

]
E1(z)

[
I − zT 0

0 ICn

]
F1(z)

[
ICn 0
0 (I − zW )−1

]

=
[
ICn 0
0 I − zW

] [
�(z) 0
0 IX

] [
ICn 0
0 (I − zW )−1

]

=
[
�(z) 0
0 IX

]
.

Furthermore, using (17) and (18), we see that E(z) and F(z) are invertible with
inverses as given in the statement of the theorem. �

As a corollary to Theorem 3.2 we have the following identities involving the
resolvent operator (I − zT )−1 that will be useful in the future.

(I − zT )−1 = z(I − zW )−1B�(z)−1C(I − zW )−1 + (I − zW )−1,

�(z)C(I − zT )−1 = C(I − zW )−1,

(I − zT )−1B�(z) = (I − zW )−1B.

As afirst illustration of Theorem3.2we compute the characteristicmatrix function
of a rank one perturbation of the operator of integration on C[0, 1], i.e., the operator
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W is given by (11). More precisely, take X = C[0, 1] and define T : X → X by

(T x) (t) :=
∫ t

0
x(s) ds +

∫ 1

0
x(s) dη(s), x ∈ C[0, 1], 0 ≤ t ≤ 1. (19)

Here η is a function of bounded variation (see Appendix A of Verduyn Lunel (2023)
for more information about functions of bounded variation). The operator T can be
written as T = W + R, where W and R are operators on X defined by

(Wx) (t) :=
∫ t

0
x(s) ds, (Rx) (t) :=

∫ 1

0
x(s) dη(s), 0 ≤ t ≤ 1.

From (12) it follows that we can take � = C. It follows that T given by (19) is a
finite rank perturbation of a quasi-nilpotent operator. Thus we can apply Theorem
3.2 with � = C, and C : X → C and B : C → X given by

Cx :=
∫ 1

0
x(s) dη(s), x ∈ X, (Bc)(t) := c, 0 ≤ t ≤ 1. (20)

Then R = BC is a minimal rank factorization. It follows from (12) and (20) that

(
(I − zW )−1Bc

)
(t) = c + z

∫ t

0
ezτc dτ = ezt c, 0 ≤ t ≤ 1.

Using this together with (13) and (20) we derive that the corresponding characteristic
matrix function � is the scalar function given by

�(z) := I − zC(I − zW )−1B

= 1 − z
∫ 1

0
ezs dη(s).

In particular, the characteristic matrix function � of the operator T defined by

(T x) (t) :=
∫ t

0
x(s) ds + x(1), x ∈ C[0, 1], (21)

is given by
�(z) = 1 − zez . (22)

Thus an application of Theorem 3.1 now yields that � given by (22) completely
characterizes the nonzero spectrum of the operator T given by (21). In fact, the
nonzero spectrum of T consists of simple eigenvalues only, and eμ is an eigenvalue
of T if and only if

μ − e−μ = 0. (23)
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The asymptotic behavior of the roots of Equation (23) is well-known, see Diekmann
et al. (1995, Sect. XI.2), and this information can be used to derive detailed estimates
on the nonzero spectrum of the operator T given by (21).

4 The Period Map of a Neutral Periodic Delay Equation

In this section we consider linear periodic functional differential equations of the
following type:

⎧
⎨

⎩

d

dt

[
x(t) −

∫ h

0
dη(τ )x(t − τ )

]
=

∫ h

0
dτ ζ(t, τ )x(t − τ ), t ≥ s,

x(s + θ) = ϕ(θ), −h ≤ θ ≤ 0.
(24)

Here dτ denotes integration with respect to the τ variable and ϕ is a given function in
B ([−h, 0],Cn), the complex Banach space of bounded Borel measurable functions
provided with the supremum norm. Throughout we assume that for each t ∈ R the
functions η and ζ(t, ·) are n × n matrices of which the entries are real functions
of bounded variation on [0, h] and continuous from the left on (0, h), and η(0) =
ζ(t, 0) = 0. See Appendix A of Verduyn Lunel (2023) for more information about
functions of bounded variation. Finally, we assume periodicity of the kernel ζ, i.e.,
there is a non negative real number ω such that

ζ(t + ω, ·) = ζ(t, ·), t ≥ 0.

In Sect. 8 of Verduyn Lunel (2023) we have proved the following theorem regard-
ing system (24).

Theorem 4.1 Under the above conditions, equation (24) has a unique solution x =
x(·; s;ϕ) on [s,∞). Furthermore the family of solution operators U (t, s), t ≥ s,
defined by translation along the solution of (24) and given by

(
U (t, s)ϕ

)
(θ) := x(t + θ; s,ϕ), −h ≤ θ ≤ 0, ϕ ∈ B

([−h, 0];Cn
)
,

is a twin evolutionary system of operators and has the following properties:

(i) U (s, s) is the identity operator for all s ∈ R,
(ii) U (t, s)U (s,σ) = U (t,σ) for all t ≥ s ≥ σ.

The period map T associated with (24) is defined by T := U (ω, 0). Using the
results from Sect. 8 of Verduyn Lunel (2023), we have an explicit representation of
the period map in terms of the fundamental matrix solution X (t).

The main purpose of this section is to show that the period map T admits a
characteristic matrix function � in the sense of (6). Before we prove this, we briefly
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recall the importance of the spectral properties of the period map in the study of
the qualitative behaviour of the solutions of (24). See Hale and Verduyn Lunel
(1993, Chap. 11) for the general qualitative theory for periodic functional differential
equations.

The first result relates all period maps U (ω + s, s), s ∈ R, to the operator T . For
a proof of the next theorem and more information about the period maps we refer to
Diekmann et al. (1995, Sect. XIV.3).

Theorem 4.2 Assume that λ �= 0 is an isolated eigenvalue of finite type of the oper-
ator U (t + ω, t) for each t ≥ 0. LetMλ,t denote the generalized eigenspace at λ of
the operator U (t + ω, t). If t ≥ s then

(i) λ ∈ σ(U (t + ω, t)) if and only if λ ∈ σ(U (s + ω, s));
(ii) if λ ∈ σ(U (t + ω, t)), then U (t, s) mapsMλ,s in a one-to-one way ontoMλ,t .

We continue with some more notation and terminology. If μ belongs to the non-
zero point spectrum of T , then μ is called a characteristic multiplier of (24), and
λ for which μ = exp(λω) (unique up to multiples of 2πi) is called a characteristic
exponent of (24).

Letμ �= 0 be an eigenvalue of finite type and letmμ denote the algebraicmultiplic-
ity of μ. Assume that ϕ1, . . . ,ϕmμ

in B ([−h, 0];Cn) is a basis of eigenvectors and
generalized eigenvectors of T at μ, and let Mμ = span {ϕ1, . . . ,ϕmμ

} be the corre-
sponding generalized eigenspace. Furthermore, let �0 be the mμ-row vector defined
by�0 := [ϕ1, . . . ,ϕmμ

], viewed as a linear operator fromC
mμ into B ([−h, 0];Cn).

SinceMμ is invariant under T , there exists a mμ × mμ matrix L with scalar entries
such that

T�0 = �0L ,

and the only eigenvalue of L is μ �= 0. But then, there is an mμ × mμ matrix B with
scalar entries such that L = exp(ωB), and thus L exp(−ωB) is themμ × mμ identity
matrix. Moreover, the unique eigenvalue λ of B satisfies the identity μ = exp(ωλ).
From Theorem 4.2 it follows that if

�(t) = [
U (t, 0)ϕ1 · · · U (t, 0)ϕmμ

]
, t ≥ 0,

then
(T�0)(t) = �(t)L , t ≥ 0.

Next, let P(t), t ≥ 0, be the block mμ-row vector given by

P(t) = U (t, 0)�0 exp(−tB) = �(t) exp(−tB), t ≥ 0.

Thus P(t) has size 1 × mμ and its entries are in B ([−h, 0];Cn).

Lemma 4.3 The function P(t), t ≥ 0, is periodic with period ω. Furthermore, we
have

U (t, 0)�0 = P(t) exp(tB), t ≥ 0. (25)
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Proof From item (ii) in Theorem 4.1 we know that U (t + ω, 0) = U (t, 0)T for
t ≥ 0. Using the latter identity we see that

P(t + ω) = U (t + ω, 0)�0e
−(t+ω)B

= U (t, 0)T�0e
−ωBe−tB = U (t, 0)�0Le

−ωBe−tB

= U (t, 0)�0e
−tB = P(t), t ≥ 0. (26)

Thus P(t) is periodic with period ω, and the final equality in (26) yields (25). �

The solution of (24) with initial value ϕ ∈ Mμ is of Floquet type, i.e., of the form

x(t;ϕ) = p(t) exp(tB)c, (27)

where c ∈ C
mμ is such that ϕ = �0c, the matrix B has size mμ × mμ and only one

eigenvalue at λ with μ = eλω , and p(t) = p(t + ω) is a periodic function. Indeed,
from Lemma 4.3 it follows that

x(t;ϕ) = (U (t, 0)�0c) (0) = (P(t)) (0) exp(tB)c.

Put p(t) := (P(t)) (0), then p(t) = p(t + ω) and this shows (27). Furthermore, since
λ is the only eigenvalue of B, it follows from the Jordan decomposition of B that we
can write

etBc = q(t)eλt ,

where q is a polynomial of degree at most mμ, and hence

x(t;ϕ) = p(t)q(t) exp(λt).

Next we prove that the period map T admits a characteristic matrix function �

in the sense of (6). In order to apply Theorem 3.2 we have to show that T satisfies
(9). In the case that η = 0 and ω = h in equation (24), we have a general result with
� = C. This is the contents of the next theorem.

Theorem 4.4 Consider equation (24) with η = 0 and period ω = h and let T on
B ([−h, 0];Cn) be the corresponding period map. The period map T satisfies (9),
where W is quasi-nilpotent and R is an operator of finite rank. The operators W and
R are operators on B ([−h, 0];Cn) given by

(Wϕ) (θ) := x(h + θ, 0;ϕ) − X (s + h + θ, 0)ϕ(0), −h ≤ θ ≤ 0, (28)

(Rϕ) (θ) := X (h + θ, 0)ϕ(0), −h ≤ θ ≤ 0, (29)

where x(t, s;ϕ) denotes the solution of (24) with initial data ϕ, and X (t, s) denotes
the fundamental matrix solution of (24), i.e., the matrix solution with initial data
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X0(θ) =
{
I for θ = 0,

0 for − h ≤ θ < 0.

Proof To prove thatW is quasi-nilpotent, we have to show that given ψ the equation

ϕ − zWϕ = ψ. (30)

has a unique solution ϕ for each z ∈ C.
We will use a contraction mapping principle in a weighted norm to prove that (30)

has a unique solution for each z ∈ C. Define for γ ∈ R the weighted norm ‖ · ‖γ on
B[−h, 0] by

‖ϕ‖γ := max
−h≤θ≤0

‖eγ(θ−h)ϕ(θ)‖. (31)

From (30) and the definition of W given in (28) it follows that

ψ = ϕ − z (x(h + ·, 0;ϕ) − X (h + ·, 0)ϕ(0)) . (32)

Hence ϕ(−h) = ψ(−h) and ϕ satisfies the differential equation

ψ̇ = ϕ̇ − z
(
ẋ(h + ·, 0;ϕ) − Ẋ(h + ·, 0)ϕ(0)

)
.

Using (24) with η = 0 and recalling that ζ(h + ·) = ζ(·) we obtain

ψ̇(σ) = ϕ̇(σ) − z
∫ h

0
dζ(σ, θ)x(h + σ − θ, 0;ϕ)

− z
∫ h+σ

0
dζ(σ, θ)X (h + σ − θ, 0)ϕ(0).

Using (32) we can rewrite this equation as follows:

ψ̇(σ) = ϕ̇(σ) −
∫ h+σ

0
dζ(σ, θ) (ϕ(σ − θ) − ψ(σ − θ))

− z
∫ h

h+σ

dζ(σ, θ)ϕ(h + σ − θ). (33)

To show that given ψ the equation (33) has a unique solution ϕ for each z ∈ C, we
first write the convolution part for ϕ (and similarly for ψ) in (33) which is given by

ϕ̇(σ) −
∫ h+σ

0
dζ(σ, θ)ϕ(σ − θ),

as follows:
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ϕ̇(σ) − ζ(σ, h + σ)ϕ(−1) −
∫ σ

−h
ζ(σ,σ − τ )ϕ̇(τ ) dτ .

Put k(σ, τ ) := ζ(σ,σ − τ ) and rewrite equation (33) now as follows:

ϕ̇(σ) −
∫ σ

−h
k(σ, τ )ϕ̇(τ ) dτ = F(σ;ψ), (34)

where

F(z,σ;ϕ,ψ) := ψ̇(σ) −
∫ σ

h
k(σ, τ )ψ(τ ) dτ + z

∫ h

h+σ

dζ(σ, θ)ϕ(h + σ − θ).

Solving equation (34) yields

ϕ̇(σ) = F(z,σ;ϕ,ψ) +
∫ σ

s
r(σ, τ )F(z, τ ;ϕ,ψ) dτ , (35)

where r(t, s) denotes the resolvent of k(t, s), see Theorem 7.2 of Verduyn Lunel
(2023). Integration of equation (35) yields

ϕ(σ) = G(z,σ;ϕ,ψ), (36)

where

G(z,σ;ϕ,ψ) := ψ(−1) +
∫ σ

−1
F(z, ξ;ϕ,ψ) dξ

+
∫ σ

−1

∫ ξ

s
r(ξ, τ )F(z, τ ;ϕ,ψ) dτ dξ.

Using the exponential estimate for the resolvent r(t, s), see Proposition 7.3 of Ver-
duyn Lunel (2023) and the weighted norm (31), we can estimate

‖G(z,σ;ϕ1,ψ) − G(z,σ;ϕ2,ψ)‖γ ≤ C

|γ| ‖ϕ1 − ϕ2‖γ,

where C > 0 and γ > 0 is sufficiently large. So the map ϕ �→ G(z,σ;ϕ,ψ) is a
contraction for γ > 0 sufficiently large. This shows that equation (36) has a unique
solution. Therefore equation (33) has a unique solution and this completes the proof
that (30) has a unique solution for every z ∈ C and ψ ∈ B ([−h, 0],Cn). �

In case η �= 0, it turns out that � ⊂ C with � �= C. See the examples in Sect. 5.
By choosing � appropriately, we can extend the proof of Theorem 4.4 to include
the case that η �= 0 and ω = h using a time-dependent version of Theorem 2.1 of
Verduyn Lunel (2023) (instead of using Theorem 7.2 of Verduyn Lunel (2023) as
we did in the proof of Theorem 4.4). The theory of Grippenberg et al. (1990) can be



54 S. Verduyn Lunel

used to prove a time-dependent version of Theorem 2.1 of Verduyn Lunel (2023).
To make the present work self-contained we have decided to focus on the examples
in Sect. 5 and not to aim for a general abstract result.

It is also possible to extend the proof of Theorem 4.4 to include the case that the
period ω is an integer multiple of the delay. The construction however becomes more
involved, see Kaashoek and Verduyn Lunel (2023, Chap. 11). Again in the present
work we have decided to focus on the examples in Sect. 6 and not to aim for a general
abstract result.

As an application of Theorem 3.2 we can, in case η = 0 and ω = h, compute the
characteristic matrix function � of the period map T associated with (24) explicitly
in terms of the fundamental matrix solution.

Corollary 4.5 Consider equation (24) with η = 0 and period ω = h and let T on
B[−h, 0] be the corresponding period map. The characteristic matrix function�(z)
of the period map T is given by

�(z) = I − zC(I − zW )−1B,

where the operator W is given by (28) and the operators B : Cn → B[−h, 0] and
C : B[−h, 0]Cn are defined by

(Bu)(θ) := X (h + θ, 0)u, −h ≤ θ ≤ 0, and Cϕ := ϕ(0). (37)

Proof From the definitions of B and C in (37) we see that, using (29),

(BCϕ)(θ) = (Bϕ(0)(θ) = X (h + θ, 0)ϕ(0) = (Rϕ)(θ), −h ≤ θ ≤ 0.

Thus R = BC , and Theorem 3.2 yields that �(z) is a characteristic matrix function
for T . �

As a first illustration of the results of this section we consider the delay equation

ẋ(t) = b(t)x(t − 1),

where b(t) = b(t + 1). The period map T on B ([−1, 0];Cn) is given by

(Tϕ) (θ) = ϕ(0) +
∫ θ

−1
b(σ)ϕ(σ) dσ, −1 ≤ θ ≤ 0.

The operator W on B ([−1, 0];Cn), defined in (28), is given by

(Wϕ) (θ) =
∫ θ

−1
b(σ)ϕ(σ) dσ, −1 ≤ θ ≤ 0. (38)
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and the resolvent of W defined by (38) is given by

(
(I − zW )−1ϕ

)
(θ) = ϕ(θ) + z

∫ θ

−1
G(θ − s; z)b(s)ϕ(s) ds, −1 ≤ θ ≤ 0.

Here G(t; z) is the fundamental solution of the homogeneous ordinary differential
equation

ẋ(t) = zb(t)x(t), t ≥ −1,

normalized to 1 at t = −1. Therefore G(t; z) is given by

G(t; z) = exp

(∫ t

−1
zb(s) ds

)
, t ≥ −1.

Moreover, B : Cn → B ([−1, 0];Cn) andC : B ([−1, 0];Cn) → C
n are defined by

(Bu)(θ) := u, −1 ≤ θ ≤ 0, and Cϕ := ϕ(0).

Furthermore (
(I − zW )−1B

)
(θ) = G(θ; z), −1 ≤ θ ≤ 0,

and hence

�(z) := 1 − zC0(I − zW )−1B

= 1 − zG(0; z) = 1 − zezm(b),

where

m(b) :=
∫ 0

−1
b(s) ds.

An application of Theorem 3.1 now yields that all nonzero eigenvalues of T are
algebraically simple eigenvalues. Furthermore, if b is such that m(b) = 0, then the
nonzero spectrum of T consists of the single point {1} only.

5 Scalar Periodic Delay Equations of Period One

Consider the scalar periodic delay equation

⎧
⎨

⎩

d

dt
[x(t) − cx(t − 1)] = b(t)x(t − 1), t ≥ s,

x(θ) = ϕ(θ), −1 ≤ θ ≤ 0.
(39)
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Here b is a complex-valued continuous periodic function of period one defined on
the full real line, c ∈ C, and ϕ ∈ B ([−1, 0];Cn).

The period map T on B ([−1, 0];Cn) defined by the periodic delay equation (39)
is given by

(Tϕ)(θ) = ϕ(0) − cϕ(−1) + cϕ(θ) +
∫ θ

−1
b(s)ϕ(s) ds, −1 ≤ θ ≤ 0.

The operator T consists of two parts: a finite rank operator R defined by

Rϕ := ϕ(0), ϕ ∈ B
([−1, 0];Cn

)
, (40)

and an operator W on B ([−1, 0];Cn) defined by

(Wϕ)(θ) := cϕ(θ) − cϕ(−1) +
∫ θ

−1
b(s)ϕ(s) ds, −1 ≤ θ ≤ 0. (41)

The minimal rank factorization of R is given by R = BC with B and C , for each
u ∈ C and ϕ ∈ B ([−1, 0];Cn), defined by

(Bu)(θ) := u, −1 ≤ θ ≤ 0, and (Cϕ) := ϕ(0).

The resolvent (I − zW )−1 of the operatorW defined by (41) is analytic for z ∈ �

with � = {z ∈ C | 1 − cz �= 0} and explicitly given by

(
(I − zW )−1ϕ

)
(θ) = ϕ(θ) + z

∫ θ

−1
G(θ − s; z)b(s)ϕ(s) ds, −1 ≤ θ ≤ 0.

Here G(t; z) is the fundamental solution of the ordinary differential equation

(1 − cz)ẋ(t) = zb(t)x(t), t ≥ −1,

normalized to 1 at t = −1. So G(t; z) is given by

G(t; z) = 1

1 − cz
exp

(∫ t

−1

z

1 − cz
b(σ) dσ

)
, t ≥ −1.

Moreover,

(
(I − zW )−1B

)
(θ) = (1 − cz)G(θ; z), −1 ≤ θ ≤ 0,

and hence according to Theorem 3.2, the characteristic function � defined by (13)
is given by



Characteristic Matrix Functions and Periodic Delay Equations 57

�(z) := 1 − zC(I − zW )−1B

= 1 − z(1 − cz)G(0; z).

Summarizing we have proved the following result.

Theorem 5.1 Let W and R be the operators given by (41) and (40), respectively.
Then T = W + R is the period map associated with (39), and T has a characteristic
matrix function on � = {z ∈ C | 1 − cz �= 0}, namely the function �(z) given by

�(z) = 1 − z exp

(
z

1 − cz

∫ 0

−1
b(s) ds

)

Furthermore λ = 1/c belongs to the essential spectrum of T .

Note that in the retarded case (c = 0), the set � defined in Theorem 5.1 equalsC,
and the operator W is a quasi-nilpotent operator. See also the example at the end of
the previous section.

6 Scalar Periodic Delay Equations (Two Periodic)

In this section we consider the special class of scalar periodic delay equations

{
ẋ(t) = b(t)x(t − 1), t ≥ s,

x(t) = ϕ(t), −1 ≤ t ≤ 0,

where b is of the form

b(t) :=
{
b0(t) 0 ≤ t mod 2 < 1

αb0(t) 1 ≤ t mod 2 < 2,
(42)

whereα ∈ R \ {0} and b0 is a complex-valued continuous periodic function of period
1. So b is a complex-valued continuous periodic function of period two for α �= 1.
The situation is similar to the one periodic case considered in the previous section,
but the computations of the period map become more involved. The special class of
equations considered in this section present a rich class of new examples.

Theperiod twomapT : B ([−1, 0];Cn) → B ([−1, 0];Cn) for the periodic delay
equation ẋ(t) = b(t)x(t − 1) with b given by (42) becomes
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(Tϕ) (θ) = ϕ(0) +
∫ 0

−1
b0(s)ϕ(s) ds

+ α

∫ θ

−1
b0(s)

(
ϕ(0) +

∫ s

−1
b0(σ)ϕ(σ) dσ

)
ds

= ϕ(0) +
∫ 0

−1
b0(s)ϕ(s) ds + αϕ(0)

∫ θ

−1
b0(s) ds

+ α

∫ θ

−1
b0(s)

∫ s

−1
b0(σ)ϕ(σ) dσ ds. (43)

From the representation (43) for T we conclude that T satisfies (9), where W and R
are operators acting on C[−1, 0] given by

(Wϕ) (θ) := α

∫ θ

−1
b0(s)

∫ s

−1
b0(σ)ϕ(σ) dσ ds, (44)

(Rϕ) (θ) := ϕ(0) +
∫ 0

−1
b0(s)ϕ(s) ds + αϕ(0)

∫ θ

−1
b0(s) ds.

Furthermore, the rank two operator R admits a minimal rank factorization R = BC ,
where

B : C2 → B
([−1, 0];Cn

)
, B

(
c1
c2

)
(θ) := c1 + c2

∫ θ

−1
b0(s) ds, (45)

C : B ([−1, 0];Cn
) → C

2, Cϕ :=
⎛

⎝ϕ(0) +
∫ 0

−1
b0(s)ϕ(s) ds

αϕ(0)

⎞

⎠ . (46)

Lemma 6.1 The operator W defined by (44) is a quasi-nilpotent operator, and the
resolvent of W is given by

(
(I − zW )−1ϕ

)
(θ) = ϕ(θ) +

∫ θ

−1

∂g

∂s
(α, z; θ, s)ϕ(s) ds, −1 ≤ θ ≤ 0,

where

g(α, z; θ, s) := 1

2
exp

(√
αz

∫ θ

s
b0(σ) dσ

)
+

+ 1

2
exp

(
−√

αz
∫ θ

s
b0(σ) dσ

)
, −1 ≤ s ≤ θ ≤ 0. (47)

Proof Put ψ = (I − zW )−1ϕ, then we need to solve the equation

ψ − zWψ = ϕ (48)
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withϕ given andψ as the unknown. By differentiating (48) we arrive at the following
initial value problem

ψ′(θ) − αzb0(θ)
∫ θ

−1
b0(σ)ψ(σ) dσ = ϕ′(θ), −1 ≤ θ ≤ 0 (49)

with initial condition ψ(−1) = ϕ(−1). The general solution of the homogeneous
part of the differential integral equation in (49) is given by

ψ(θ) = g(α, z; θ,−1)ϕ(−1), −1 ≤ θ ≤ 0,

where g(α, z; θ,−1) is given by (47) with s = −1. A particular solution of the
differential equation in (49) with ψ(−1) = 0 is given by

ψp(θ) =
∫ θ

−1
g(α, z; θ, s)ϕ′(s) ds,

where g(α, z; θ, s) is given by (47) and we have used that g(α, z; θ, θ) = 1 and
g′(α, z; s, s) = 0.

This shows that the solution of the initial value problem (49) with initial condition
ψ(−1) = ϕ(−1) is given by

ψ(θ) = g(α, z; θ,−1)ϕ(−1) +
∫ θ

−1
g(α, z; θ, s)ϕ′(s) ds (50)

= ϕ(θ) +
∫ θ

−1

∂g

∂s
(α, z; θ, s)ϕ(s) ds,

where we have used integration by parts in the last identity. This completes the proof
of the lemma. �

An application of Theorem 3.2 now yields that the period map T given by (43)
has a characteristic matrix function � given by (13). In the next theorem we will
compute � explicitly.

Theorem 6.2 The characteristic matrix function �(z) : C2 → C
2 associated with

the operator T defined by (43) is given by

�(z) =
[
1 − zγ1(z) − 1

α
γ2(z) − 1

α (γ1(z) + γ2(z) − 1)

−zαγ1(z) 1 − γ2(z)

]
, (51)

where
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γ1(z) := 1

2

(
exp

(√
αzm(b0)

) + exp
(−√

αzm(b0)
))

, −1 ≤ θ ≤ 0.

γ2(z) :=
√

αz

2

(
exp

(√
αzm(b0)

) − exp
(−√

αzm(b0)
))

, −1 ≤ θ ≤ 0,

where m(b0) := ∫ 0
−1 b0(σ) dσ. Moreover,

det�(z) = 1 −
(
1 + α

α

)
γ2(z) − z.

Proof Observe using (45) and (50) that

(
(I − zW )−1B

(
c1
c2

))
(θ) = g(α, z; θ,−1)c1 + c2

∫ θ

−1
b0(s)g(α, z; θ, s) ds.

(52)
Using (47) we can rewrite the last term in (52) as follows

∫ θ

−1
b0(s)g(α, z; θ, s) ds = 1

2
x + 1

2
y, (53)

where

x :=
∫ θ

−1
b0(s) exp

(√
αz

∫ θ

s
b0(σ) dσ

)
ds,

y :=
∫ θ

−1
b0(s) exp

(
−√

αz
∫ θ

s
b0(σ) dσ

)
ds.

Now put k(s) := ∫ θ

s b0(σ) dσ, c := √
αz, and ϕ(s) := ck(s). Note that both k(θ)

and ϕ(θ) are zero. Furthermore, we have

x = −
∫ θ

−1
k ′(s) exp (ck(s)) ds = −1

c

∫ θ

−1
ϕ′(s) exp (ϕ(s)) ds

= −1

c
exp(ϕ(s))

∣∣∣
θ

−1
= −1

c
+ 1

c
exp (ck(−1)) .

Similarly

y =
∫ θ

−1
k ′(s) exp

( − ck(s)
)
ds = 1

c

∫ θ

−1
−ϕ′(s) exp

( − ϕ(s)
)
ds

= 1

c
exp(−ϕ(s))

∣∣∣
θ

−1
= 1

c
− 1

c

(
v − ck(−1)

)
.

Summarizing and using (53) we have
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∫ θ

−1
b0(s)g(α, z; θ, s) ds = 1

2c
exp (ck(−1)) − 1

2c
exp (−ck(−1))

= 1

2
√

αz

(
exp

(√
αz

∫ θ

−1
b0(σ) dσ

)

− exp

(
−√

αz
∫ θ

−1
b0(σ) dσ

) )
.

In particular, ∫ 0

−1
b0(s)g(α, z; 0, s) ds = 1

αz
γ2(z).

Since g(α, z; 0,−1) = γ1(z) this shows that

(
(I − zW )−1B

(
c1
c2

))
(0) = γ1(z)c1 + 1

αz
γ2(z)c2.

Similarly using (47) with θ = t and s = −1 we obtain

∫ 0

−1
b0(t)g(α, z; t,−1) dt = 1

2
x̃ + 1

2
ỹ,

where

x̃ :=
∫ 0

−1
b0(t) exp

(√
αz

∫ t

−1
b0(σ) dσ

)
dt,

ỹ :=
∫ 0

−1
b0(t) exp

(
−√

αz
∫ t

−1
b0(σ) dσ

)
dt.

Now put �(t) := ∫ t
−1 b0(σ) dσ, and let c := √

αz. Then �′(t) = b0(t), and hence

x̃ =
∫ 0

−1
�′(t) exp

(
cl(t)

)
dt = 1

c
exp

(
c�(t)

)∣∣∣
0

−1

= 1

c
exp

(
c
∫ 0

−1
b0(σ) dσ

)
− 1

c
.

An analogous calculation with ỹ in place of x̃ yields

ỹ =
∫ 0

−1
�′(t) exp (−cl(t)) dt = −1

c
exp (−c�(t))

∣∣∣
0

−1

= −1

c
exp

(
−c

∫ 0

−1
b0(σ) dσ

)
+ 1

c
.
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It follows that

∫ 0

−1
b0(t)g(α, z; t,−1) dt =

= 1

2
√

αz

(
exp

(√
αz

∫ 0

−1
b0(σ) dσ

)
− exp

(
−√

αz
∫ 0

−1
b0(σ) dσ

))

= 1

αz
γ2(z).

Furthermore

∫ 0

−1
b0(t)

∫ s

−1
b0(σ)g(α, z; t,σ) dσ dt = 1

αz
(γ1(z) − 1) .

Thus using (46) it follows that C(I − zW )−1B can be written as

C(I − zW )−1B =
(

γ1(z) + 1
αzγ2(z)

1
αz (γ1(z) + γ2(z) − 1)

αγ1(z)
1
z γ2(z)

)
.

This proves that �(z) is given by (51). Moreover

det�(z) = (
1 − zγ1(z) − α−1γ2(z)

)
(1 − γ2(z))

− zγ1(z) (γ1(z) + γ2(z) − 1)

= 1 − α−1γ2(z) − γ2(z) + α−1γ2
2 − zγ2

1 .

Next observe that

α−1γ2
2 − zγ2

1 = α−1

(√
αz

2

(
e
√

αzm(b0) − e−√
αzm(b0)

))2

− z

(
1

2

(
e
√

αzm(b0) + e−√
αzm(b0)

))2

= −z

Thus

det�(z) = 1 −
(
1 + α

α

)
γ2(z) − z,

and this completes the proof of the theorem. �

To illustrate the applications of Theorem 6.2, we first consider the case α = 1 and
b0 ≡ 1 and the case α = −1 and b0 ≡ 1.

In caseα = 1 and b0 ≡ 1, the operator T defined by (43) can bewritten as T = T 2
1 ,

where T1 : B ([−1, 0];Cn) → B ([−1, 0];Cn) is given by
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(T1ϕ) (θ) := ϕ(0) +
∫ θ

−1
ϕ(s) ds.

It follows from Theorem 5.1 that the operator T1 admits a characteristic matrix
function �1 defined by �1(z) := 1 − ze−z . Furthermore, it follows from Theorem
6.2 that the characteristic matrix function � corresponding to period map T defined
by (43) satisfies

det�(z) = 1 − √
z
(
e
√
z − e−√

z
)

− z

=
(
1 − √

ze
√
z
) (

1 + √
ze−√

z
)

= �1(
√
z)�1(−√

z).

Since T = T 2
1 , this result is in agreement with the fact that

λ ∈ σ(T ) \ {0} if and only if
√

λ or − √
λ belongs to σ(T0) \ {0}.

In general, if we define the operator Tα : B ([−1, 0];Cn) → B ([−1, 0];Cn) by

(Tαϕ) (θ) := ϕ(0) + α

∫ θ

−1
b0(s)ϕ(s) ds, α �= 0,

then the operator T defined by (43) can be written as

T = TαT1.

In case α = −1 and b0 ≡ 1, the operator T becomes T = T−1T1. In this case

det�(z) = 1 − z and σ(T−1T1) \ {0} = {1}.

As a next example consider the 2-periodic delay equation

ẋ(t) = cos(πt)x(t − 1). (54)

Define

b0(t) :=
{
cos(πt) 0 ≤ t mod 2 < 1,

− cos(πt) 1 ≤ t mod 2 < 2.
(55)

Then b0 is 1-periodic and

m(b0) = −
∫ 0

−1
cos(πs) ds = 0.
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Furthermore

cos(πt) =
{
b0(t) 0 ≤ t mod 2 < 1,

−b0(t) 1 ≤ t mod 2 < 2.

Thus it follows that b(t) = cos(πt) satisfies (42) with b0(t) defined by (55) and
α = −1. Consequently, the spectrum of the period map associated with (54) consists
of a single point only.

Examples of periodic delay equations with period a multiple of the delay for
which the spectrum of the period map is finite was a open problem in the literature.
With the class of equations considered in this section, we can now construct many
periodic delay equations for which one still can compute the characteristic matrix
function rather explicitly.
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Pseudospectral Methods for the Stability
Analysis of Delay Equations. Part I: The
Infinitesimal Generator Approach

Dimitri Breda

Abstract Delay equations generate dynamical systems on infinite-dimensional state
spaces. Their stability analysis is not immediate and reduction to finite dimension is
often the only chance. Numerical collocation via pseudospectral techniques recently
emerged as an efficient solution. In this part we analyze the application of these
methods to discretize the infinitesimal generator of the semigroup of solution oper-
ators associated to the system. The focus is on both local stability of equilibria and
general bifurcation analysis of nonlinear problems, for either delay differential and
renewal equations.

1 Introduction

We are interested in delay equations, by which term we mean equations where the
evolution of an unknown function of time depends on both the present and the past.
They can be of either differential or renewal (integral) type, or systems of both, and
they represent a fundamental tool in modeling several phenomena with particular
relevance in the fields of population dynamics and control engineering (see, e.g.,
Inaba 2017; Michiels and Niculescu 2014 as starting references). The dependence
on the history generically leads to dynamical systems on infinite-dimensional state
spaces, typically Banach spaces of functions defined on some interval of the real line
(Hale 1977; Hale and Verduyn Lunel 1993; Diekmann et al. 1995 are cornerstone
monographs on the subject). Exactly this infinite dimension is the major motivation
for resorting to numerical methods, in order to either simulate solutions of Initial
Value Problms (IVPs, see Bellen and Zennaro 2003 or Bellen et al. 2009) or address
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crucial issues like stability and bifurcations in presence of varying parameters (see
Breda et al. 2015b; Insperger and Stépán 2011 to name a couple).

In this chapter we focus our attention first on the local stability analysis of equilib-
ria, as it represents the typical entrance to the dynamical analysis. A well-established
theory of strongly continuous semigroups (see, e.g., Engel and Nagel 1999; Batkai
and Piazzera 2005; Pazy 1983) furnishes the essential tools at the base of the principle
of linearized stability, bywhich the local stability of an equilibriumof an autonomous
nonlinear system can be inferred from the stability of the system obtained by lin-
earizing the original system at such equilibrium (at least in the hyperbolic case, see
below). The stability of the linearized system is determined by the position of the
so-called characteristic rootswith respect to the imaginary axis in the complex plane.
These roots can be conveniently seen as eigenvalues of a differential operator acting
on a subspace of the state space, viz. the infinitesimal generator of the underlying
semigroup of solution operators. Discretizing this operator allows to approximate
(part of) its spectrum, thus providing reliable numerical tools to address the stability
of equilibria.

Among several other discretization techniques (see, e.g., Breda et al. 2015b;
Lehotzky and Insperger 2016 as sources of recent references), the use of pseu-
dospectral collocation has revealed particularly efficient (see (Andò et al.) for a
self-contained account of). Here we aim at discussing the essential elements of its
use in addressing the local stability of equilibria of delay equations. Then, we also
illustrate how this technique can be conveniently extended to the case of nonlinear
equations, giving rise to a particularly flexible approach to bifurcation analysis. The
latter, originally presented in Breda et al. (2016a) (but see also Breda et al. 2016b;
Getto et al. 2019; Gyllenberg et al. 2018; Scarabel et al. 2020), consists in reducing
the delay equation to a system of Ordinary Differential Equations (ODEs), which
can then be treated with standard tools for continuation and bifurcation (e.g., Auto
Doedel 1981, 2007, MatCont Dhooge et al. 2003, 2008 or XPPaut Ermentrout
2002 to recall the main ones).

The chapter is organized as follows. Section2 deals with the basics of the theory
of strongly continuous semigroups of bounded linear operators and their infinitesi-
mal generators, first in general and then specializing to delay differential (Sect. 2.1),
renewal (Sect. 2.2) and coupled (Sect. 2.3) equations. A brief account of the related
principle of linearized stability is given inSect. 2.4. Section3 collects themain aspects
of polynomial interpolation and pseudospectral collocation. The latter is then applied
to discretize the infinitesimal generator of linear(ized) systems in Sect. 4, particular-
izing to delay differential (Sect. 4.1), renewal (Sect. 4.2) and coupled (Sect. 4.3) equa-
tions, with an overview on convergence and related questions in Sect. 4.4. Section5
treats the extension of the pseudospectral approach to nonlinear systems of coupled
equations. Some illustrative computations on examples from applications are pre-
sented in Sect. 6, after discussing some implementation issues. Relevant codes are
also provided. Finally, some closing remarks are given in Sect. 7. Note that the intro-
ductory expositions in Sect. 2 and Sect. 3 serve both this chapter and Breda (2023).

We conclude this introduction by presenting the prototypical delay equation we
are concerned with. To this aim, let τ > 0 be the (maximum bounded) delay of the
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system and let X and Y be spaces of (real, possibly vector-valued) functions defined
on [−τ , 0]. We consider systems of the form

{
x(t)= F(xt , yt )

y′(t)=G(xt , yt ),
(1)

where t denotes time and F : X × Y → R
dX and G : X × Y → R

dY are smooth,
autonomous, in general nonlinear functions defined on a state space X × Y . In this
respect we use the standard notation

xt (θ) := x(t + θ), yt (θ) := y(t + θ), θ ∈ [−τ , 0],

defining the state (xt , yt ) at time t through time translation. Above, F is assumed
to be integral in the X -component, while dX and dY are positive integers denoting
the number of, respectively, renewal (the X -component) and differential (the Y -
component) equations. Concerning the state space, we consider the classical choices
of Banach spaces of functions

X := L1([−τ , 0];RdX ), ‖ϕ‖X :=
∫ 0

−τ

|ϕ(θ)| dθ (2)

and
Y := C([−τ , 0];RdY ), ‖ψ‖Y := max

θ∈[−τ ,0]
|ψ(θ)| (3)

for | · | a norm in either RdX or RdY (see, e.g., Diekmann et al. 2008). Eventually,
we call (1) a coupled equation. In the sequel we also treat separately the cases of
Renewal Equations (REs), viz.

x(t) = F(xt )

and Delay Differential Equations (DDEs), viz.

y′(t) = G(yt ),

with the definitions of F and G adapted accordingly. Let us remark that the well-
posedness of the IVP for (1), obtained by imposing (x0, y0) = (ϕ,ψ) for some
(ϕ,ψ) ∈ X × Y , is ensured by assuming Lipschitz conditions on F and G (see
Diekmann et al. 2008, 1995). Note that it is not restrictive to set the initial time to 0
as we deal with autonomous problems.
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2 Semigroups of Solution Operators and Infinitesimal
Generator

This section summarizes standard definitions, concepts and results from the theory of
strongly continuous semigroups of bounded linear operators and their infinitesimal
generators, the relevant implications with respect to the stability of linear systems to
arrive, eventually, at formulating the principle of linearized stability. Readers may
refer to Engel and Nagel (1999); Batkai and Piazzera (2005); Pazy (1983) for a full
treatment and relevant proofs.

Let (X, ‖ · ‖X ) be a Banach space. A one parameter family {T (t)}t≥0 of bounded
linear operators T (t) : X → X is called a semigroup of bounded linear operators
on X if T (0) = IX and T (t + s) = T (t)T (s) for every t, s ≥ 0. A semigroup of
bounded linear operators is called strongly continuous (or C0-semigroup) if T (t)x →
x as t ↓ 0 for all x ∈ X . In the sequel, for brevity, the world semigroup implicitly
refers to a strongly continuous semigroup of bounded linear operators. The operator
A : D(A) ⊆ X → X defined by

Ax := T ′(0)x = lim
t↓0

T (t)x − x

t

for every x ∈ D(A) with

D(A) :=
{
x ∈ X : lim

t↓0
T (t)x − x

t
exists

}

is called the infinitesimal generator of the semigroup {T (t)}t≥0. D(A) is dense in
X , A is a closed linear operator and it determines the semigroup uniquely. The
set of λ ∈ C such that λIX − A is bijective is called the resolvent set of A. The
complement of the resolvent set is called spectrum, denoted by σ(A). An important
part of σ(A) is the point spectrum, σp(A), i.e., values λ such that λIX − A is not
injective. The elements λ ∈ σp(A) are called eigenvalues ofA and any x ∈ D(A) \
{0} such that Ax = λx is called an eigenvector (or eigenfunction if X is a space
of functions). The null space N (λIX − A) is called the eigenspace of λ and its
dimension g(λ) the geometricmultiplicity. The smallest closed linear subspaceM(λ)

that contains allN (λIX − A) j for j ≥ 1 is called the generalized eigenspace ofλ and
its dimension m(λ) the algebraic multiplicity. If λ is an isolated point of σp(A) and
m(λ) < +∞, thenλ is called an eigenvalue of finite type, simple ifm(λ) = 1. Finally,
the quantities ρ(A) := sup{|λ| : λ ∈ σ(A)} and α(A) := sup{
(λ) : λ ∈ σ(A)}
are called, respectively, spectral radius and spectral abscissa of A.

Going back to the semigroup, there exist constants ω ∈ R and M ≥ 1 such that
‖T (t)‖ ≤ Meωt for all t ≥ 0. The quantity

ω0 := inf{ω ∈ R : exists Mω ≥ 1 such that ‖T (t)‖ ≤ Mωe
ωt for all t ≥ 0}
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is called the growth bound of the semigroup. It holds −∞ ≤ α(A) ≤ ω0 < +∞
as well as ρ(T (t)) = eω0t for every t ≥ 0. These properties suggest an exponential
relation between the semigroup and its generator, which becomes concrete thanks
to the spectral mapping theorem for point spectra. Indeed, σp(T (t)) \ {0} = etσp(A)

and, more precisely, if λ ∈ σp(A) then eλt ∈ σp(T (t)) while if eλt ∈ σp(T (t)), then
there exists k ∈ Z such that λk := λ + i2πk/t ∈ σp(A). Unfortunately, the equality
α(A) = ω0 need not be true in general, but it is so if some compactness is available. In
this respect, a semigroup is called eventually compact if there exists t0 > 0 such that
T (t0) is compact1 (and then it is compact for all t ≥ t0 since T (t) = T (t − t0)T (t0)).
If the semigroup is eventually compact then σ(A) = σp(A), eα(A)t = ρ(T (t)) for
every t ≥ 0 and, finally, α(A) = ω0.

Typically, a semigroup {T (t)}t≥0 is a fundamental tool in describing the time
evolution of a linear dynamical system on a state space X . It arises in the implicit
definition of the state xt at time t of the system originating from an initial state x0
given at time 0:

T (t)x0 = xt , t ≥ 0. (4)

This implicit definition is well posed as soon as existence and uniqueness of the
related IVP are available. If so, it is clear that the knowledge of the growth bound
ω0 becomes crucial in assessing the long-time behavior. But being the semigroup
defined only implicitly, it is easier to look at the spectral abscissaα(A) of the relevant
infinitesimal generator. Indeed, it will be clear in the following sections that A can
be defined explicitly. Nevertheless, the equality α(A) = ω0 is not necessarily true
but, as anticipated, it becomes so if the semigroup is eventually compact. Therefore,
well-posedness of the underlying IVP and eventual compactness of the associated
semigroup are the two properties we shall be equipped with in order to be able to
declare the stability character of the linear system. In fact, α(A) < 0 would imply
asymptotic stability, while α(A) > 0 would give instability. Given then that σ(A) =
σp(A), the stability issue is finally reduced to the determination of the rightmost
eigenvalue(s) of A. Then the principle of linearized stability possibly transfers the
stability of the linearized system to the stability of the equilibrium around which
the linearization of the original nonlinear equation has been performed, see Sect. 2.4
below. First we deal separately with DDEs, REs and coupled equations, reporting
on the related IVP, the associated semigroup and its generator, and giving references
concerning the issues of well-posedeness and eventual compactness.2

1 Recall that a compact linear operator K : X → X satisfiesσ(K ) = {0} ∪ σp(K ) and eitherσp(K )

has finitely-many points or they accumulate at 0.
2 We treat first DDEs for their longer tradition with respect to REs. Then, when dealing with coupled
equations, we put REs first as in (1) following the convention in, e.g., Diekmann et al. (2008), due
to the relative importance of REs with respect to DDEs in describing several models in population
dynamics.
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2.1 Delay Differential Equations

Given ψ ∈ Y , consider the IVP

{
y′(t)=G(yt ), t ≥ 0,

y0 =ψ.

If G : Y → R
dY is Lipschitz continuous then existence and uniqueness of a solution

y forward in time are granted, see, e.g., (Hale (1977), Sect. 2.2), or (Bellen et al.
(2009), Sect. 4) for a modern account. Assume that there exists an equilibrium, i.e.,
a function ȳ ∈ Y satisfying G(ȳ) = 0. Linearization leads to

y′(t) = LG yt (5)

for LG := DG(ȳ) the Fréchet differential3 ofG at ȳ. The associated solution operator

TG(t)y0 = yt , t ≥ 0,

is well defined and eventually compact (Hale 1977, Sect. 7.1). In particular, TG(t)
is compact for every t ≥ τ . Eventually, it is not difficult to recover the infinitesimal
generator

AGψ = ψ′, ψ ∈ D(AG), (6)

with
D(AG) := {

ψ ∈ Y : ψ′ ∈ Y andψ′(0) = LGψ
}
, (7)

see again (Hale (1977), Sect. 7.1). Note that the action ofA is differentiation indepen-
dently of (5), while the latter, viz. LG , characterizes D(AG) through the nonlocal
boundary condition ψ′(0) = LGψ. To remark that this form of the generator fol-
lows the choice (3). Other choices are possible, even though less frequent. Among
these, it is worth mentioning Y = R

dY × L2([−τ , 0],RdY ), which is not uncommon
in the field of control engineering (see, e.g., Breda 2010 and the references therein
or Michiels 2023).

Finally, note that the general instance of (5) can be described through the
Lebesgue-Stieltjes integral

y′(t) =
∫ 0

−τ

dη(θ)y(t + θ)

for some function η of bounded variation, see, e.g., (Section I.1 Diekmann et al.
(1995)) or Verudyn Lunel (2023).

3 For a primer on Fréchet derivatives see (Ambrosetti and Prodi (1995), Chap.1).
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2.2 Renewal Equations

Given ϕ ∈ X , consider the IVP

{
x(t)= F(xt ), t ≥ 0,

x0 =ϕ.

If F : X → R
dX is Lipschitz continuous then existence and uniqueness of a solution

x forward in time are granted, see, e.g., (Diekmann et al. (2008), Theorem 3.8).
Assume that there exists an equilibrium, i.e., a function x̄ ∈ X satisfying x̄ = F(x̄).
Linearization leads to

x(t) = LF xt (8)

for LF := DF(x̄) the Fréchet differential of F at x̄ . The associated solution operator

TF (t)x0 = xt , t ≥ 0,

is well defined and eventually compact (Diekmann et al. (2008), Theorem 2.8). In
particular, TF (t) is compact for every t ≥ τ . Eventually, it is not difficult to recover
the infinitesimal generator

AFϕ = ϕ′, ϕ ∈ D(AF ), (9)

with
D(AF ) := {

ϕ ∈ X : ϕ′ ∈ X and ϕ(0) = LFϕ
}
. (10)

Note again that the action of AF is differentiation independently of (8), while the
latter, viz. LF , characterizesD(AF ) through the nonlocal boundary conditionϕ(0) =
LFϕ. Let us stress the differencewith respect toDDEs,where the boundary condition
regards the value of the derivative at zero rather than the value of the function itself.

Finally, note that the Riesz representation Theorem allows to express (8) in the
integral form

x(t) =
∫ 0

−τ

K (θ)x(t + θ) dθ

for some kernel K , see, e.g., (Breda and Liessi (2020), Appendix B).

2.3 Coupled Equations

Given (ϕ,ψ) ∈ X × Y , consider the IVP for (1). By joining the results in Diekmann
et al. (2008) together with those in Diekmann et al. (1995) it is possible to recover
all the necessary ingredients already seen in the preceding sections. In particular, we
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are mainly interested in the infinitesimal generator of the linearized problem

{
x(t)= LF (xt , yt )

y′(t)= LG(xt , yt ),
(11)

which reads
AF,G(ϕ,ψ) = (ϕ′,ψ′), (ϕ,ψ) ∈ D(AF,G), (12)

with
D(AF,G) := {(ϕ,ψ) ∈ X × Y : (ϕ,ψ) ∈ X × Y and

(ϕ(0),ψ′(0)) = (LF (ϕ,ψ), LG(ϕ,ψ))}. (13)

2.4 Principle of Linearized Stability

We limit ourselves to describe the principle in a very general fashion, avoiding to give
precise statements in view of this or that specific class of equations. For a starting
reference on delay equations see anyway (Diekmann et al. (2008), Theorem 2.18)
and the related bibliographical sources.

Consider a dynamical system generated by a nonlinear equation and assume it
has an equilibrium, i.e., a fixed point of the related solution operator. Note that the
notion of semigroup introduced in Sect. 2 through (4) is unchanged if the underlying
problem is nonlinear (yet well-posed). Let A be the infinitesimal generator of the
semigroup associated to the equation obtained by linearizing the original nonlinear
problem around the given equilibrium. Then, in its most generality, the principle of
lienarized stability states that if 
(λ) < 0 for all λ ∈ σ(A) then the equilibrium is
asymptotically (exponentially) stable, whereas if 
(λ) > 0 for some λ ∈ σ(A) then
the equilibrium is unstable. To remark that this principle concerns local stability
and its validity ceases to hold when A has eigenvalues along the imaginary axis, in
which case we talk about non-hyperbolic equilibria (for a treatment of which see,
e.g., (Diekmann et al. (1995), Chapter IX)).

3 Basics of Polynomial Interpolation and Pseudospectral
Methods

Several mathematical problems concern functions, andmost of them are not solvable
exactly.We can tackle the issue in the context of approximation in Banach spaces. As
general references for the results in this section let us advise Rivlin (1981); Trefethen
(2013).

To fix some notation (independently of the one used in the other sections), let
a, b ∈ R with a < b and consider a Banach space (X, ‖ · ‖X ) of functions [a, b] →
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R with dim X = ∞. Restriction to the scalar case does not preclude generality as
extension to vector-valued functions is straightforward. The goal is to find a suitable
finite-dimensional approximation of a given f ∈ X .

To this aim, let us represent this approximation as a vector in some finite-
dimensional space Xn , where the positive integer n is an indication of this finite
dimension. By defining a restriction operator Rn : X → Xn and a prolongation oper-
ator Pn : Xn → X , we can formalize the approximation process by the two steps

F := Rn f, fn := PnF ≈ f.

Above, F is the finite-dimensional representation of the finite-dimensional approx-
imation fn of f : note, in fact, that F ∈ Xn is a vector, while fn ∈ X is a function.4

Let us observe that even though it is reasonable to assume that Rn Pn = IXn , in
general we have PnRn �= IX . Therefore, measuring en := PnRn − IX is crucial and
several aspects should be taken into consideration, e.g., whether considering |en(t)|
for t ∈ [a, b] or ‖en‖X ; if the latter are bounded (possibly uniformly in n) or they
even vanish as n → ∞; if these properties hold in all X or just in some subspace. Nor
other computational issues should be neglected, such as how the choice of the rep-
resentation affects conditioning and stability, or the computational cost and similar
ones.

A quite natural (and indeed widely followed) way to find a reasonable approxi-
mation is that of substituting the function with its interpolating polynomial at a given
set of nodes discretizing the domain of definition. We assume henceforth that the
functions in X are regular enough for point-wise evaluation to make sense. Consider
the discretization of [a, b] through n + 1 distinct points, say

a ≤ tn,0 < tn,1 < · · · < tn,n ≤ b. (14)

Correspondingly, define Xn := R
n+1,

Rn f := ( f (tn,0), f (tn,1), . . . , f (tn,n))
T (15)

and
PnF := pn (16)

for pn the polynomial of degree at most n interpolating the components of F =
(F0, F1, . . . , Fn)

T ∈ Xn at the points (14), i.e., the one satisfying

pn(tn,i ) = Fi , i = 0, 1, . . . , n. (17)

While pn uniquely exists, its representation in Xn needs not be unique. The standard
Lagrange representation

4 In what follows we use lower case letters for functions and upper case letters for their finite-
dimensional counterparts, i.e., the vectors of their representation.
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pn(t) =
n∑
j=0

�n, j (t)Fj , t ∈ [a, b], (18)

for the Lagrange basis polynomials

�n, j (t) :=
n∏

k=0
k �= j

t − tn,k

tn, j − tn,k
, j = 0, 1, . . . , n, (19)

is theoretically convenient, as, e.g., (17) follows immediately from the cardinal prop-
erty �n, j (tn,i ) = δi, j for δi, j the Kronecker’s delta. From the numerical standpoint,
it becomes equally convenient when considered in its barycentric form (see Berrut
and Trefethen 2004), i.e.,

pn(t) = πn+1(t)
n∑
j=0

w j

t − t j
Fj

for the nodal polynomial

πn+1(t) :=
n∏

k=0

(t − tk)

and the barycentric weights

w j :=
n∏

k=0
k �= j

1

t j − tk
, j = 0, 1, . . . , n.

Note that the weights are independent of the evaluation point t and thus can be
computed in advance once for all evaluation points, in O(n2) operations.

Polynomial interpolation is an excellent technique when f is smooth and the
interpolation nodes t j are suitably chosen. For instance, when X = C([a, b],R) and
‖ · ‖X = ‖ · ‖∞, a classical result in uniform approximation theory gives

‖pn − f ‖∞ ≤ (1 + �n)En( f ) (20)

for

�n := max
t∈[a,b]

n∑
j=0

|� j (t)|

the so-called Lebesgue constant and

En( f ) := min
pn∈�n

‖ f − pn‖∞
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the best uniform approximation error (�n denotes the set of algebraic polynomials
of degree at most n). The independent roles of the interpolation nodes and of the
interpolated function emerge clear from (20). As for the former, it is well-known
that �n grows at least as O(log n) for any choice of nodes, but also at most with the
same order when Chebyshev nodes are chosen, either zeros (left) or extrema (right):

ti = cos

(
(2i + 1)π

2n + 2

)
∈ (−1, 1), ti = cos

(
iπ

n

)
∈ [−1, 1].

As for the latter, theWeierstrass approximationTheorem ensures that En( f ) vanishes
as n → ∞ for every continuous function f .More regularity is required to knowabout
the rate of decay, and results of the Jackson’s type guarantee an order O(n−k) for f
of class Ck , or O(n−k) for every k ∈ N for f of class C∞, or even O(e−γn) for some
positive γ for f analytic. The latter two are known as convergence of infinite order
or spectral accuracy (see, e.g., Trefethen 2000).5

Having recalled the basics of polynomial interpolation, it is not difficult now
to understand what a pseudospectral6 approach is: nothing else then replacing the
(unknown) function in the problem of interest with the interpolating polynomial of
a(n unknown) vector. Assume to reformulate the problem as H( f ) = 0 for some
operator H : X → X . Of course, in general, we cannot demand a polynomial to
solve this problem exactly, rather we can ask for something weaker as, e.g., to sat-
isfy the problem at given points (possibly different from the interpolation points).
The latter choice undergoes the name of collocation, thus leading to pseudospectral
collocation.7 A classic example is finding F ∈ Xn such that RnH(PnF) = 0, i.e.,
the collocation nodes coincide with the interpolation nodes, even though the general
approach is much more flexible.8

A first crucial question in the analysis of a pseudospectral collocation approach is
whether the finite-dimensional problem is well posed, i.e., existence and uniqueness
of F ∈ Xn . Once this is granted, the next issue is to estimate the error. In this respect,
note that F and f leave in different spaces, so that PnF is used to compare with

5 Anyway, let us also recall that Faber’s Theorem tells us that for any chosen set of nodes there is
always a continuous function f for which ‖pn − f ‖∞ does not vanish, Faber (1914).
6 For an explanation of the term pseudospectral see (Brunner (2004), Sect. 1.7).
7 Note that pseudospacetral collocation is an alternative among many other ones, as, e.g., Galerkin-
type or weighted-residuals approaches and series truncation. All these correspond in some sense
to different choices of Rn and Pn and different strategies to obtain F . Note, however, that any
choice must be suitably related to the features of X : e.g., there is no much sense in using Fourier
series in C([a, b],R) or interpolation in L2([a, b],R). Finally, let us remark that the choices above
potentially lead to discretization approaches different from the one described in the rest of this
chapter or in Breda (2023) when dealing with delay equations, see, e.g., Lehotzky and Insperger
(2016) to name some examples.
8 For instance, if H acts on a domain D(H) ⊂ X characterized by some given constraints (e.g.,
smoothness or boundary conditions), then the latter should be suitably taken into account in the
discretization process, e.g., by explicitly replacing an equal number of collocation conditions (as,
e.g., in Sect. 4.1) or by implicitly imposing such constraints in the construction of Pn (as, e.g., in
Sect. 4.2).
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f and thus one can define the collocation error en := PnF − f with the aim at
measuring ‖en‖X . Assuming to prove convergence in a further step of the analysis,
a final issue is how to choose n in order to ensure an error below some desired
tolerance. Unsurprisingly, pseudospectral collocation usually enjoys the property of
spectral accuracy above recalled when based on certain nodes and f is smooth. The
price to pay is often represented by complicated theoretical proofs of convergence
(due to working on Banach spaces and to the need of some level of smoothness), or
by the difficulty of estimating n for a given tolerance (possibly due to the infinite
order of convergence, see related comments in Sect. 4.4 below).

Let us note that the operator H describing above the infinite-dimensional prob-
lem at hands often involves differentiation and/or integration. In this respect, we
illustrate in Fig. 1 the good behavior of the pseudospectral approach by comparing
with classical methods of finite order.9 In the left panel, the derivative of an analytic
function is approximated with both (first order) finite differences and pseudospectral
differentiation. The latter corresponds to approximate the derivative of a (smooth)
function f at a point t ∈ (a, b) as

f ′(t) ≈ (PnRn f )
′(t).

If we let F := ( f (tn,0), f (tn,1), . . . , f (tn,n))
T and evaluate the approximated deriva-

tive at the same interpolation nodes, the resulting vector of derivative values is DnF
where Dn := [�n, j (tn,i )]i, j=0,1,...,n is the so-called differentiation matrix associated
to the nodes tn,i , see, e.g., Weideman and Reddy (2000) and the references therein.
In the right panel of Fig. 1, instead, the definite integral is approximated both with
the trapezoid rule (second order) and pseudospectral (interpolatory) quadrature, i.e.,

∫ b

a
f (t) dt ≈

∫ b

a
(PnRn f )(t) dt.

Note that the resulting approximation iswT F for the same F above andw the vector
of quadrature weights

wi =
∫ b

a
�n,i (t) dt, i = 0, 1, . . . , n.

For the problems of interest in this chapter the nodes can be freely selected. As we
approximate mainly spectral values of linear operators, the concerned functions are
eigenfunctions, and they are in general smooth under reasonable regularity conditions
on the original problem. So the use of pseudospectral collocation is largelymotivated.
Nevertheless, rather then the high accuracy they can perform, we take more profit
of the low dimension of the approximation required for a given tolerance. The latter
translates indeed into a lighter computational load. This is an advantagewhen dealing

9 Recall that in general a method of finite order, say m, applied to a function f of class Ck with
k > m gives an error decaying as O(n−m) independently of k.
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Fig. 1 Errors of the pseudospectral approach based on Chebyshev extrema (•) and of finite-order
methods (◦) for approximating f ′(0) (left) and

∫ 1
−1 f (t) dt (right) for f (t) = e−t2 ; see text for more

details

with continuation and bifurcation as it is typical in a dynamical analysis, where many
instances of the same problem are solved repeatedly.

Let us finally highlight that the proposed pseudospectral approach is not meant for
simulation (i.e., time integration of IVPs): solutions need not be necessarily smooth
in fact, as due in general to the presence of breaking points (see Bellen and Zennaro
2003 for an exhaustive treatment of the subject).

4 Pseudospectral Discretization of the Infinitesimal
Generator

The main idea behind the concerned numerical approach is that of replacing the
derivative action of the infinitesimal generator A by differentiating at given nodes a
polynomial interpolating a function in the domain D(A) and simultaneously satis-
fying or being close to satisfy the boundary condition characterizing the latter. We
recall that this boundary condition is the only link to the given linear(ized) equation10

and we stress that its treatment is the main difference among DDEs and REs from
the numerical standpoint (see also Remark 1 below). This and other aspects related
to the specific class of equations are treated separately in the forthcoming Sects. 4.1,
4.2 and 4.3. Then we summarize in Sect. 4.4 the main aspects concerning the related
convergence, together with other impotrant issues.

Prior to start we introduce a common ingredient. Let M be a positive integer and
let

θM,i = τ

2

[
cos

(
iπ

M

)
− 1

]
, i = 0, 1, . . . , M, (21)

be the Chebyshev extremal nodes in [−τ , 0]. Note that θM,0 = 0 and θM,M = −τ .

10 One can always rescale time to set τ = 1 and hence fix the state space independently of the
equation.
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4.1 Delay Differential Equations

Consider (5) and recall (6) and (7). Consider (21) and let RM and PM be the cor-
responding restriction and prolongation operators as introduced respectively in (15)
and (16), operating between Y and YM := R

dY (M+1). Given� ∈ YM , define the linear
finite-dimensional operator AG,M : YM → YM as

{[AG,M�]0 = LG PM�

[AG,M�]i = (PM�)′(θM,i ), i = 1, . . . , M.

The component of index 0 mimics the derivative action (6) at θM,0 = 0: it is given
through the boundary condition characterizing (7) as applied to the collocation poly-
nomial PM�. The components of index i = 1, . . . , M mimic the general derivative
action (6) at θM,i �= 0: they are given by the exact derivative of the collocation poly-
nomial at the relevant nodes. Observe that AG,M = RMAG PM needs not be true in
general,11 even though it well explains the underlying idea of the pseudospectral col-
location approach in view of approximating (the spectrum of)AG with (the spectrum
of) AG,M .

For the sake of implementation one needs a matrix representation ofAG,M , which
asks in turn to express the collocation polynomial PM� in some basis. The Lagrange
one (19) provides the block form

AG,M =
(

LG,M

DY,M ⊗ IdY

)
∈ R

dY (M+1)×dY (M+1) (22)

through (18), with12

LG,M := (
LG�M,0 LG�M,1 · · · LG�M,M

) ∈ R
dY×dY (M+1), (23)

DY,M :=
⎛
⎜⎝
dM,1,0 dM,1,1 · · · dM,1,M

...
...

. . .
...

dM,M,0 dM,M,1 · · · dM,M,M

⎞
⎟⎠ ∈ R

M×(M+1) (24)

for
dM,i, j := �′

M, j (θM,i ), i = 1, . . . , M, j = 0, 1, . . . , M, (25)

and ⊗ denoting the Kronecker’s product. In particular, (23) accounts for the discrete
version of the boundary condition in D(AG), while (24) is the Chebyshev differen-
tiation matrix (see, e.g., Trefethen 2000) without the first row. This representation

11 In fact, the range of PM is not contained in D(AG), i.e., (PM�)′(0) = LG PM� does not hold
for all � ∈ YM .
12 Let g ∈ C([−τ , 0];R) and {e1, . . . , edY } be the canonical basis ofRdY . Then LGg is a shorthand
notation for the matrix (LGge1| · · · |LGgedY ) ∈ R

dY ×dY .
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highlights the fact that AG,M is a differentiation matrix perturbed along the first
(block-) row, as the infinitesimal generator AG is a derivative operator perturbed
with the boundary condition at θM,0 = 0 characterizing D(AG).

4.2 Renewal Equations

Consider (8) and recall (9) and (10). Consider (21) without θM,0 = 0 and let RM

be the corresponding restriction operator as introduced in (15), operating between
X and XM := R

dX M . Note that RM is not defined on all X as chosen in (2), so we
implicitly assume that it acts on a suitable subspace X̃ where point-wise evaluation
makes sense: this is indeed the case as shown below. Given � ∈ XM , define the
prolongation operator PM such that PM� is the unique polynomial of degree at most
M satisfying {

(PM�)(θM,0)= LF PM�

(PM�)(θM,i ) =�i , i = 1, . . . , M.
(26)

Note that the boundary condition characterizing (10) is imposed directly to construct
the collocation polynomial PM�. Then, in the spirit of the pseudospectral approach,
define the linear finite-dimensional operator AF,M : XM → XM as

[AF,M�]i = (PM�)′(θi ), i = 1, . . . , M.

These componentsmimic the general derivative action (9) at θM,i �= 0, i = 1, . . . , M .
Observe now that differently from the case of DDEsAF,M = RMAF PM holds true.13

Moreover, the range of AF PM is surely contained in X̃ (given that it contains only
polynomials).

Remark 1 The approach of including the boundary condition in the definition of PM

and hence only implicitly in the construction of A·,M is possible also for DDEs, yet
less natural. In this case it is in fact more convenient to apply the boundary condition
explicitly when defining AG,M , being the latter a condition on ψ′(0) = (AGψ)(0)
and having chosen the nodes such that θM,0 = 0.

Constructing a matrix representation ofAF,M is slightly more involved than what
illustrated in Sect. 4.1. By using always (18), we can express the collocation polyno-
mial PM� as

(PM�)(θ) =
M∑
j=0

�M, j (θ)� j , θ ∈ [−τ , 0],

13 In fact, the range of PM is now contained in D(AF ) thanks to the first of (26).
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where we implicitly introduced �0 := (PM�)(0). The latter quantity is unknown
but it can be recovered from the first of (26) as

�0 = (IdX − LF�M,0)
−1

M∑
j=1

LF�M, j� j

by recalling that LF is linear (recall also note 12, which equally applies to LF

with obvious modifications). Observe that the inverse above is well-defined for M
sufficiently large otherwise the term x(t) would cancel out from (8). Then we get

AF,M = DX,M ⊗ IdX + (dX,M ⊗ IdX )LF,M ∈ R
dX M×dX M (27)

with
LF,M := (IdX − LF�M,0)

−1
(
LF�M,1 · · · LF�M,M

) ∈ R
dX×dX M , (28)

DX,M :=
⎛
⎜⎝
dM,1,1 · · · dM,1,M

...
. . .

...

dM,M,1 · · · dM,M,M

⎞
⎟⎠ ∈ R

M×M (29)

and

dX,M :=
⎛
⎜⎝
dM,1,0

...

dM,M,0

⎞
⎟⎠ ∈ R

M×1 (30)

for the same dM,i, j defined in (25). In particular, the term (28) in the second addend at
the right-hand side of (27) accounts for the discrete version of the boundary condition
inD(AG) as imposed implicitly, while (29) and (30) account for the derivative action
(9).

4.3 Coupled Equations

Consider (11) and recall (12) and (13). To tackle the case of coupled equations we
combine the pseudospectral approaches described separately in Sect. 4.1 for DDEs
and in Sect. 4.2 for REs. Recall that XM = R

dX M and YM = R
dY (M+1). Based on (21),

define the prolongation operator PM : XM × YM → X × Y such that PM(�,�) is
the unique polynomial of degree at most M satisfying

{
PM(�,�)(θM,0)= (LF PM(�,�),�0)

PM(�,�)(θM,i ) = (�i , �i ), i = 1, . . . , M.
(31)
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In the sequel let us denote by PM,X the X -component of PM and by PM,Y the Y -
component of PM . Similarly, let us also represent a vector v ∈ XM × YM by its block-
components listed as vX,1, . . . , vX,M , vY,0, vY,1, . . . , vY,M , observing that vX,i ∈ R

dX

for every i = 1, . . . , M while vY,i ∈ R
dY for every i = 0, 1, . . . , M . An approxi-

mation to the infinitesimal generator (12) is then represented by the linear finite-
dimensional operator AF,G,M : XM × YM → XM × YM defined as

⎧⎪⎪⎨
⎪⎪⎩

[AF,G,M(�,�)]X,i = (PM,X (�,�))′(θM,i ), i = 1, . . . , M,

[AF,G,M(�,�)]Y,0 = LG PM(�,�)

[AF,G,M(�,�)]Y,i = (PM,Y (�,�))′(θM,i ), i = 1, . . . , M.

(32)

Above we can recognize the derivative action (12) in the first and third rows. The
boundary condition in (13) is imposed in the construction of PM as far as the X -
component is concerned (first rowof (31)), while it appears explicitly in the definition
of AF,G,M as far as the Y -component is concerned (second row of (32)).

To get a matrix representation ofAF,G,M let us express the collocation polynomial
PM(�,�) in the Lagrange basis (19), i.e.,

PM(�,�)(θ) =
M∑
j=0

�M, j (θ)(� j , � j ), θ ∈ [−τ , 0],

where �0 = PM,X (�,�)(0) is recovered from the first of (31) as

�0 = (IdX − LF,X�M,0)
−1

⎛
⎝ M∑

j=1

LF,X�M, j� j +
M∑
j=0

LF,Y �M, j� j

⎞
⎠ .

Note that above we used LF�M, j (� j , � j ) = LF,X�M, j� j + LF,Y �M, j� j for suit-
able linear functions LF,X : X → R

dX and LF,Y : Y → R
dX and any j = 0, 1, . . . , M

by virtue of the linearity of LF .14 Then the resulting matrix AF,G,M is made of an
X -block (i.e., the first dXM rows) given by

AF,G,M,X = DX,M,0 ⊗ IdX + (dX,M ⊗ IdX )LF,M ∈ R
dX M×dX M

with DX,M,0 ∈ R
dX M×[dX M+dY (M+1)] the matrix whose first dXM columns coincide

with DX,M in (29) and the rest of the entries are zeros, dX,M in (30) and

LF,M := (IdX − LF,X�M,0)
−1(

LF,X�M,1 · · · LF,X�M,M

LF,Y �M,0 LF,Y �M,1 · · · LF,Y �M,M
) (33)

14 A similar decompoistion is used below for LG and note 12 applies to all LF,X , LF,Y , LG,Y and
LG,Y with obvious modifications.
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in RdX×[dX M+dY (M+1)], and a Y -block (the last dY (M + 1) rows) given by

AF,G,M,Y =
(

LG,M

DY,M,0 ⊗ IdY

)
∈ R

dY (M+1)×[dX M+dY (M+1)]

with
LG,M := (

LG,X�M,1 · · · LG,X�M,M

LG,Y �M,0 LG,Y �M,1 · · · LG,Y �M,M
) (34)

in R
dY×[dX M+dY (M+1)] and DY,M,0 ∈ R

dY M×[dX M+dY (M+1)] the matrix whose last
dY (M + 1) columns coincide with DY,M in (24) and the rest of the entries are zeros.

4.4 Convergence and Other Issues

A complete error analysis for the case of DDEs has been developed in Breda et al.
(2005). The general proof relies on translating the eigenvalue problem forAG into an
IVP for an ODE whose solution is exponential. In parallel, the eigenvalue problem
forAG,M relates to the collocation of the above IVP at the nodes (21). Then the first
key step is to measure the error in approximating the exponential solution with the
collocation polynomial. It is here that spectral accuracy takes place, as the exponen-
tial solution is analytic, and indeed it represents the generic eigenfunction ofAG (see
(Diekmann et al., 1995)). The second step regards the characteristic equations asso-
ciated to the eigenvalue problems, exact and discrete. Their difference can be linked
to the above collocation error and a relevant bound is thus obtained. The last step
exploits this bound in the framework of Rouché’s Theorem (see, e.g., (Priestley 1990,
Theorem 7.7)), which provides a final bound on the distance between an eigenvalue
of AG and its approximation through eigenvalues of AG,M . The same arguments
have been extended to coupled equations in Breda et al. (2015a). A softened version
of the final result in the latter case follows, which includes of course the separate
cases of DDEs and REs.

Theorem 1 Let λ ∈ σ(AF,G) have algebraic multiplicity ν. There exists M ∈ N

sufficiently large such that AF,G,M has ν eigenvalues λM,1, . . . ,λM,ν counted with
multiplicities satisfying

max
i=1,...,ν

|λM,i − λ| ≤ C2

(
C1

M !
)M/ν

(35)

for C1 and C2 constants depending on λ but independent of M.

The bound (35) ensures a convergence of infinite order15 from the theoretical stand-
point. From the practical one, it is commonly verified that M of the order of few tens

15 Indeed, Stirling’s formula for the factorial shows that the error decays as O(M−M ).
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is enough to get machine accuracy for simple roots, unless the relevant eigenfunc-
tion(s) were highly oscillatory. Nevertheless, a couple of delicate issues deserve some
attention. On the one hand, the constant C1 in (35) is proportional to |λ|, leading to
better approximations for eigenvalues of smaller magnitude.16 This may represent a
drawback in some cases since one is rather interested in rightmost roots in view of
assessing stability.17 On the other hand, it is not immediate to accurately estimate
the value of M needed to ensure a certain tolerance, as this would lead to solve a
nonlinear equation for M which may require more effort than what actually devoted
to the approximation itself of the eigenvalues.18

We conclude this section by mentioning two other questions one should be aware
of when applying a pseudospectral approach as presented in the previous sections
in its basic formulation. First of all, the construction of the approximation matrices
always requires to evaluate the right-hand side of the relevant class of equations at
the Lagrange basis polynomials: see the terms of the form L ·�M,· in (23), (28), (33)
or (34). In general, it might happen that this evaluation itself asks for numerical
approximation, in which case we rather compute L̃ ·�M,· and introduce a relevant
error (L̃ · − L ·)�M,·. A typical case is that of equations involving distributed delays,
for which an integral must be treated through a suitable quadrature. As discussed in
detail in (Breda et al. (2015b), Sect. 5.3.3), the additional error appears inside the
parentheses in (35), so that spectral accuracy takes place down to a barrier determined
by the quadrature error. A second question is that of treating efficiently also the
presence of multiple delays, in which case a piecewise approach is advisable. The
latter simply consists in extending restriction and prolongation operators in order to
allow for piecewise polynomials based on amesh in [−τ , 0]whose pieces are defined
through the multiple delays (or the integration limits of the possible distributed
delays). This extension is treated in (Breda et al. (2015b), Sects. 5.2 and 5.4) for
DDEs, and in Breda et al. (2015a) for coupled equations in view, e.g., of population
dynamics structured by age and thus with individuals divided into, e.g., juveniles
and adults cohorts.

5 Extension to Nonlinear Problems

The content of this section is a summary of what illustrated in detail in Breda et al.
(2016a). To understand why such an extension is possible, and furthermore natural,
it is enough to apply the general idea of the pseudospectral approach as described
at the beginning of Sect. 4 to the infinitesimal generator of the semigroup describing
the original nonlinear delay equation. As recalled in Sect. 2.4, indeed, the notions of
semigroup and generator extend straightforwardly to the nonlinear case. As antici-

16 Here “better” means that smaller values of M are required to reach a given tolerance.
17 Some work in this direction for DDEs can be found in Wu and Michiels (2012).
18 Although some indications are given in Breda et al. (2005), these may appear a little conservative
and however a precise answer to the issue of choosing M is not available yet.
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pated in the introduction, the final goal is that of obtaining a finite-dimensional system
of ODEs approximating (1) in order to perform a potentially complete dynamical
analysis through existing continuation and bifurcation software.

Consider then (1) and assume that F and G guarantee the IVP with (x0, y0) =
(ϕ,ψ) for some (ϕ,ψ) ∈ X × Y to be well posed. Let T (t) : X × Y → X × Y be
the solution operator defined as

T (t)(x0, y0) = (xt , yt ), t ≥ 0,

and let
A(ϕ,ψ) = (ϕ′,ψ′), (ϕ,ψ) ∈ D(A),

be the infinitesimal generator of the relevant semigroup, with domain

D(A) := {(ϕ,ψ) ∈ X × Y : (ϕ,ψ) ∈ X × Y and

(ϕ(0),ψ′(0)) = (F(ϕ,ψ),G(ϕ,ψ))}. (36)

Note that A has linear (derivative) action but nonlinear domain. Through A we can
equivalently describe the IVP in the abstract ordinary form

{
d
dt (u(t), v(t))=A(u(t), v(t)), t ≥ 0,

(u(0), v(0)= (ϕ,ψ),
(37)

the correspondence relying on (u(t), v(t)) = (xt , yt ), which holds strictly when
(ϕ,ψ) ∈ D(A), otherwise in a mild sense being D(A) dense in X × Y Engel and
Nagel (1999).

The pseudospectral reduction of the abstract19 ODE in (37) to a finite-dimensional
system of ODEs is based on adapting the discretization procedure illustrated in
Sect. 4.3, in particular by considering (31) and (32) with the nonlinear functions F
and G replacing the linear(ized) versions LF and LG . This leads to a discrete version
of A and, consequently, to the system of dXM + dY (M + 1) ODEs

⎧⎨
⎩
U ′(t)= DX,MU (t) + dX,MU0(t)
V ′
0(t)=G(PM(U (t), V (t))

V ′(t)= DY,MV (t),
(38)

where U0 is obtained from

U0(t) = F(PM(U (t), V (t)) (39)

as a function of the unknowns U (t) := (U1(t), . . . ,UM(t))T ∈ R
dX M and V (t) :=

(V0(t), V1(t), . . . , VM(t))T ∈ R
dY (M+1). Above, DX,M , dX,M and DY,M are given

19 Here the term “abstract” refers to the infinite-dimensional state space on which the ODE is posed.
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respectively by (29), (30) and (24). In the spirit of the pseudospectral approach,
the components Ui (t) and Vi (t) for all i = 0, 1, . . . , M are meant as approxima-
tions to x(t + θi ) = xt (θi ) = u(t)(θi ) and y(t + θi ) = yt (θi ) = v(t)(θi ), respec-
tively. Again, as in the linear case of Sect. 4, the boundary condition characterizing
D(A) in (36) is imposed implicitly through (39) for the X -component and explic-
itly through the second of (38) for the Y -component. Note that most of (38) can be
written (and hence implemented) independently of the specific right-hand sides F
and G, highlighting once more the different roles of the derivative action of A and
of the boundary condition describingD(A). Finally, observe that (39) can be solved
explicitly20 for U0 if the dependence of F from the X -component of the state is
linear: this is the case, e.g., of several models from population dynamics (Diekmann
et al. 2010).

6 Implementation and Results

In the following sections we provide four examples of applications of the pseudospe-
tral collocation presented in this chapter, respectively about a DDE in Sect. 6.1, an
RE in Sect. 6.2, a coupled equation in Sect. 6.3 and a last DDE in Sect. 6.4 concerning
the nonlinear approach. In each section we describe some relevant implementation
issues. All the following computations are performed on a MacBook Pro 2.3GHz
Intel Core i7 16GB by using Matlab R2019a. A demo (demo) including scripts to
run the codes relevant to the following tests is freely available at http://cdlab.uniud.
it/software.

6.1 Example 1: A Delay Differential Equation.

Consider the celebrated Mackey-Glass equation (Mackey and Glass 1977)

y′(t) = βy(t − τ )

1 + y(t − τ )α
− γy(t) (40)

with α,β, γ ≥ 0 and τ > 0. It is not difficult to recover the nontrivial equilibrium

ȳ :=
(

β

γ
− 1

)1/α

,

which exists for β ≥ γ and α > 0. Linearization leads to

20 Recall in fact that PM (and henceU0) is defined only implicitly through the first of (31) (with F
replacing LF ).

http://cdlab.uniud.it/software
http://cdlab.uniud.it/software
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Fig. 2 Results on Example 1 with α = 0, description in the text

y′(t) = ay(t) + by(t − τ )

with

a = −γ, b = β · 1 + (1 − α)ȳα

(1 + ȳα)2
.

The discretized generator takes the form (22) with first row

LG,M := (
a 0 · · · 0 b

) ∈ R
1×(M+1)

according to (23). All is implemented in three lines of code, namely lines 37-39
in the code example1, where the matrix DY,M in (24) is obtained with the auxil-
iary function cheb taken from Trefethen (2000). The rest of example1 concerns
the computation of the eigenvalues of AG,M through eig and the ordering of the
eigenvalues by decreasing real part (lines 42-44).

Let us choose β = 2, γ = 1 and τ = 2.We get ȳ = 1, a := −1 and b := 1 − α/2.
The relevant characteristic equation reads21

λ − a − be−λτ = λ + 1 −
(
1 − α

2

)
e−2λ = 0.

As ȳ = 1, we can consider also the limit case α = 0, for which it is not difficult to
show that λ = 0 is the rightmost characteristic root. Figure2 confirms the result: a
few rightmost eigenvalues are shown in the left panel, computed with M = 40, with
relevant errors shown in the right panel for increasing M .22 Observe the spectral
accuracy taking place in the right panel, with the role played by the constant C1 in
(35) as described in Sect. 4.4. In particular, the rightmost root λ = 0 is computed at
very high accuracy already with M = 1.

21 Just replace formally y(t) in (40) with eλt .
22 Apart from the rightmost rootλ = 0,we use as reference values for the other roots those computed
with a very large value of M , viz. M = 1000. The same comment holds also for the other examples.
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A second rapid test is then executed by choosing α = 2. This is a special choice
as the linearized DDE reduces to the ODE y′(t) = ay(t), and so the only eigenvalue
is λ = a = −1. Indeed, we get λM = −1 at machine precision already with M = 5.

6.2 Example 2: A Renewal Equation

Consider the nonlinear RE

x(t) = γ

2

∫ −1

−3
x(t + θ)[1 − x(t + θ)] dθ

taken from (Breda et al. (2016b), Appendix A). Assume γ > 0. It is not difficult to
recover the nontrivial equilibrium x̄ := 1 − 1/γ, which exists positive only for γ > 1
and vanishes at γ = γT := 1, the latter value representing a transcritical bifurcation.
It is shown in (Breda et al. (2016b), Appendix A) that x̄ exists stable until γ = γH :=
2(1 + π/4), value at which a Hopf bifurcation takes place and a periodic solution
arises. Let us confirm these two bifurcations by the pseudospectral collocation of the
infinitesimal generator of the linearized equation. The latter reads23

x(t) = c
∫ −1

−3
x(t + θ) dθ

for c := 1 − γ/2. As the delay is distributed on the interval [−3,−1], it is conve-
nient to adopt a piecewise discretization based on a mesh of nodes �M1 ∪ �M2 with
�M1 made of the Chebyshev extrema in [−1, 0] and �M2 made of the Chebyshev
extrema in [−3,−1]. In the code example2 we choose M1 and M2 proportional
to the lengths of the relevant intervals (lines 36-37), even though other choices are
possible (e.g., proportional to the error bounds from (35)). The relevant differentia-
tion matrices are computed again through the auxiliary function cheb (lines 38-39),
while a second auxiliary function, namely clencurt again from Trefethen (2000),
provides the quadrature weights (line 40) based on the Clenshaw-Curtis formula, i.e.,
the one using the Chebyshev extrema as quadrature nodes. Note that only the weights
on the second delay interval [−3,−1] are needed, where the distributed delay term
is defined. We avoid to give full details of the piecewise approach,24 rather we limit
ourselves to describe the case of this specific example, as we believe it contains
all the main ingredients. Indeed, it is enough to realize that the boundary condition
characterizing D(A) in (10) affects only the polynomial in the first delay interval
[−1, 0] (the one containing 0), so that the first of (26) gives rise to LF,M in (28)
where the application of LF vanishes on [−1, 0] and takes place only on [−3,−1].
In the latter, the integral

23 Concerning linerization of REs see ((Diekmann et al., 2008), Sect. 3.5).
24 For a complete treatment see Breda et al. (2015a).
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LF�
(2)
M2, j

= c
∫ −1

−3
�

(2)
M2, j

(θ) dθ

is approximated by the Clenshaw-Curtis formula25 as

L̃ F�
(2)
M2, j

= c
M2∑
k=0

w
(2)
M2,k

�
(2)
M2, j

(θ(2)
M2,k

) = cw(2)
M2, j

thanks to the cardinal properties of the Lagrange basis. This corresponds to lines 41
and 44 in the code. The rest (lines 42, 43 and 45) implements the differentiation part
ofAF,M in (27), which has a block-diagonal structure due to the piecewise strategy.

Running the code example2 with γ = γT and M = 20 gives back a rightmost
rootwhich is 0 tomachineprecision, confirming the transcritical bifurcation.Byusing
γ = γH and again M = 20 we obtain a rightmost couple 0.000000049143744 ±
1.570796291925258i,with an error of about 6 × 10−8 with respect to the exact couple
±iπ/2.26 Eventually, by increasing M to 40 the rightmost couple is approximated to
machine precision. We avoid to report on convergence as the relevant figures would
not differ from Fig. 2 (right) given that spectral accuracy takes place again.27

6.3 Example 3: A Coupled Equation.

Consider from (Breda et al. (2013), Sect. 5.2) the age-structured coupled equation

⎧⎪⎪⎨
⎪⎪⎩

x(t)=βy(t)
∫ amax

ā
x(t − a) da

y′(t)= r y(t)

(
1 − y(t)

K

)
− γy(t)

∫ amax

ā
x(t − a) da,

which models the birth rate x of a consumer species feeding on a resource y, the
latter evolving according to a logistic growth in absence of the former. Let all the
parameters be non-negative and assume amax > ā ≥ 0, denoting respectively the
maximum and maturation ages of the consumer individuals. It is not difficult to
recover the nontrivial equilibrium

(x̄, ȳ) :=
(

r

γ(amax − ā)

(
1 − 1

Kβ(amax − ā)

)
,

1

β(amax − ā)

)

25 Formally, a coefficient (τ2 − τ1)/2 = 1 (for τ1 = 1 and τ2 = 3) should appear in front of the
sum as the weights are referred to the normalized integration interval [−1, 1].
26 It is left as an exercise to verify that this is indeed the rightmost couple (hint:write the characteristic
equation and split it into real and imaginary parts).
27 For the smoothness of eigenfunctions of AF see ((Breda and Liessi, 2020), Sect. 5).



Pseudospectral Methods for the Stability Analysis of Delay … 89

beyond the trivial one (0, 0) and the single-species one (0, K ). Note that (x̄, ȳ) exists
positive only for β > 1/[K (amax − ā)] and it reduces to (0, K ) when β = βT :=
1/[K (amax − ā)]. The latter represents a transcritical bifurcation. In (Breda et al.
(2013), Sect. 5.2) it is also shown that (x̄, ȳ) exists stable until β = βH ≈ 3.0162,28

value at which a Hopf bifurcation takes place and a periodic solution arises. As for
Example 2, let us numerically confirm these two bifurcations. The linearization leads
to ⎧⎪⎪⎨

⎪⎪⎩
x(t)= ax y(t) + cx

∫ −τ1

−τ2

x(t + θ) dθ

y′(t)= ay y(t) + cy

∫ −τ1

−τ2

x(t + θ) dθ

for
ax := β(amax − ā)x̄, cx := β ȳ,

ay := r(1 − 2 ȳ/K ) − γ(amax − ā)x̄, cy := −γ ȳ,

τ2 := amax and τ1 := ā. Given the distributed delay term acting only on [−τ2,−τ1],
we adopt the same piecewise approach used for the RE in Example 2. In this respect,
the structure of the code example3 should be self-explanatory. It is enough to
consider properly the terms (33) (lines 48-49 and 54) and (34) (lines 50-51 and
56) relevant to the boundary condition characterizing (13). Then the block-diagonal
structure relevant to the differentiation part already seen in the code example2 for
the RE (lines 53 and 55) is replicated also for the DDE (with M2 replacing M1, lines
57-58).

Let us fix r = γ = K = 1, amax = 4 and ā = 3. Running the code example3
with β = βT = 1 and M = 20 gives back a rightmost root which is 0 to machine pre-
cision, confirming the transcritical bifurcation. By using β = βH = 3.01619677726
1349 and again M = 20 we obtain a rightmost couple −0.000000002223957 ±
0.398673660634495i. Eventually, by increasing M to 200 the rightmost couple
becomes 0.000000000000041 ± 0.398673660102389i, confirming a Hopf bifurca-
tion within an accuracy of about 13 digits.

6.4 Example 4: The Nonlinear Approach for a Delay
Differential Equation

Consider the delay logistic equation

y′(t) = r y(t)[1 − y(t − 1)],

28 This value is approximated in Breda et al. (2013) by a pseudospectral approach slightly different
from the one proposed here, difference due to an alternative treatment of the boundary condition in
(10).



90 D. Breda

5 10 15 20

10-10

10-5

100

Fig. 3 Results on Example 4, description in the text

known also as the Hutchinson’s equation Hutchinson 1948. It has the nontrivial
equilibrium ȳ := 1 independently of the growth parameter r , which we assume to
be positive. It is not difficult to prove that ȳ is (locally) asymptotically stable for
r ∈ (0,π/2) via linearization. At r = rH = π/2 a Hopf bifurcation arises. Here we
want to confirm the result without resorting to linearization, neither analytically nor
numerically, but rather applying the pseudospectral approach of Sect. 5 directly to
the nonlinear equation. The resulting approximating system of M + 1 ODEs reads

{
V ′
0(t)= rV0(t)[1 − VM(t)]

V ′(t)= DY,MV (t),
(41)

for DY,M as in (24). The code example4 contains the definition of the right-hand
side of (41) in viewof using it withinMatContDhooge et al. (2008). This right-hand
side depends on the numerical parameter M , as well as on the growth rate r , with
respect to which we want to perform the bifurcation analysis. The demo file demo
contains all the necessary instructions to run the continuation for a given value of M ,
including the initialization of MatCont and the setting of its options, among which
we fix all the tolerances to 10−10. In Fig. 3 (left) we plot the error |rH,M − rH | with
respect to increasing M = 2, 4, . . . , 20, with rH,M representing the Hopf bifurcation
value returned byMatCont for the chosen value of M . Note, once more, the expected
spectrally accurate behavior, at least down to 10−10, a barrier indeed imposed by the
tolerances set for MatCont. In Fig. 3 (right) we show also an initial continuation of
the limit cycle arising from theHopf point (obtainedwithM = 5 and 50 continuation
points). The relevant instructions are always contained in the demo file demo. Note
that the represented coordinates (V0, VM) refer to (41) and give an approximated
representation of the true cycle in the projected state space (ψ(0),ψ(−1)) for ψ ∈ Y
(recall indeed that V0(t) ≈ y(t) and VM(t) ≈ y(t − 1)). To give just a reference,
running all Example 4 with M = 5 requires less than 1s to continue the equilibrium
and about 16 s to continue the limit cycle.29

29 We did not report on the CPU time for the preceding examples as the computation of the eigen-
values is practically instantaneous.
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7 Conclusions

A general pseudospectral collocation approach to approximate the infinitesimal gen-
erator of the semigroup of delay equations has been illustrated. The technique can
be used for the local stability analysis of equilibria of DDEs, REs and systems of
coupled REs and DDEs through the principle of linearized stability, as well as to per-
form a bifurcation analysis through continuation directly on the nonlinear instances
of the same classes of equations. Independently of which case or class, the approach
has been described from the points of view of discretization, convergence, imple-
mentation and application. Where not all the details have been included (as, e.g.,
the proofs of convergence), suitable references have been provided for those inter-
ested in deepen their study of the subject. Eventually, relevant codes are made freely
available at http://cdlab.uniud.it/software.

Pseudospectral collocation is not new of course, dating back to pioneering works
on Partial Differential Equations (PDEs) (see, e.g., Gottlieb and Orszag 1977 and
the references therein). Its application to delay equations has revealed rather robust
and flexible in the last 15 years starting from Breda (2004) or Butcher et al. (2004).
Beyond the (autonomous) cases treated here, it is worthy to mention more recent
studies that have not found room in this chapter, concerning in particular the case
of infinite delay Gyllenberg et al. 2018, that of state-dependent delays Getto et al.
2019 or still the case of models with multiple structuring variables formulated as
PDEs Scarabel et al. 2020. A last class of problems, that of time-dependent (and
especially time-periodic) delay equations, is adequately treated in Breda (2023),
where the pseudospectral collocation is used to approximate directly the semigroup
rather than its generator. This alternative approach appears perhaps less immediate,
but it is certainly more general as far as the linearized analysis is concerned, as it
goes well beyond the case of equilibria.

Finally, we remark once more that by no way the pseudospectral approach repre-
sents the only solution to the numerical stability analysis of delay equations, nor the
most efficient one, or at least it is not so in view of the generality of cases it can deal
with.30 In the end, the great advantage it offers is precisely its flexibility in front of
this generality, beyond the fact that, as any other spectral method, it is able to fully
exploit the (potentially infinite) smoothness made available when solving eigenvalue
problems.

30 Starting references to other techniques (and there are quite many of them nowadays) have been
given in the introduction.

http://cdlab.uniud.it/software
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Pseudospectral Methods for the Stability
Analysis of Delay Equations. Part II: The
Solution Operator Approach

Dimitri Breda

Abstract Delay equations generate dynamical systems on infinite-dimensional state
spaces. Their stability analysis is not immediate and reduction to finite dimension is
often the only chance. Numerical collocation via pseudospectral techniques recently
emerged as an efficient solution. In this part we analyze the application of these
methods to discretize the evolution family associated to linear problems. The focus
is on local stability of either equilibria and periodic orbits as well as on generic
nonautonomous systems, for either delay differential and renewal equations.

1 Introduction

In this chapter we deal again with delay equations, for an introduction of which we
refer to Breda (2023, Sect. 1) to avoid repetitions. Here we limit ourselves to recall
the general instance we are concerned with. Let X and Y be spaces of real, possibly
vector-valued functions defined on [−τ , 0], τ > 0 being the maximum and bounded
delay of the system. The classical choices we consider are the Banach spaces of
functions

X :=L1([−τ , 0];RdX ), ‖ϕ‖X :=
∫ 0

−τ

|ϕ(θ)| dθ (1)

and
Y :=C([−τ , 0];RdY ), ‖ψ‖Y := max

θ∈[−τ ,0]
|ψ(θ)|, (2)
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where | · | is a norm in either RdX or RdY (see, e.g., Diekmann et al. 2008), with
dX and dY positive integers counting the number of renewal and differential equa-
tions, respectively the X - and Y -components. The general form of so-called coupled
equation we have in mind reads

{
x(t) = F(xt , yt )

y′(t) = G(xt , yt )
(3)

for t denoting time and F : X × Y → R
dX and G : X × Y → R

dY being smooth,
autonomous, in general nonlinear functions definedon a state space X × Y , according
to the time translation

xt (θ):=x(t + θ), yt (θ):=y(t + θ), θ ∈ [−τ , 0], (4)

defining the state (xt , yt ) at time t .We assume F to be integral in the X -component. In
the sequel we mostly treat in detail the case of Delay Differential Equations (DDEs),
viz.

y′(t) = G(yt ), (5)

commenting then on the extension to Renewal Equations (REs), viz.

x(t) = F(xt ), (6)

and to coupled equations (3). In (5) and (6) the definitions of F and G are suitably
adapted.

The original motivation behind the solution operator approach we discuss in this
chapter is to be found in the local stability analysis of periodic orbits of nonlinear
equations, whose existence is given as granted. The stability analysis of periodic
orbits is a natural task following the stability analysis of equilibria and their bifur-
cation (see, e.g., Krauskopf and Sieber 2023 for an illustration of the natural path of
dynamical analysis also beyond this single step). Determining the local stability of
equilibria is the focus of Breda (2023), for which the infinitesimal generator approach
illustrated therein has been developed. In view again of the principle of linearized
stability, we deal with linear problems with time periodic coefficients. As far as the
latter are concerned, Floquet theory suggests to focus on the so-called monodromy
operator, i.e., the operator advancing the evolution of the system of one period. Then
the asymptotic stability of the zero solution of the liner periodic system is dictated by
the position with respect to the unit circle of the eigenvalues of this operator, the so-
called Floquet multipliers. Discretizing the monodromy operator is therefore crucial
in view of approximating (part of) its spectrum, thus furnishing suitable numerical
schemes to address the stability of periodic orbits of the original nonlinear problem
(at least in the hyperbolic case, see below). Floquet theory is available since long for
DDEs, together with the principle of linearized stability for periodic orbits based on
relevant Poincaré sections and maps (see, e.g., Diekmann et al. 1995, Chaps. XIII
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and XIV). The same tools have been provided for REs only recently (Breda and
Liessi 2020a). Instead, rigorous proofs for coupled problems are still lacking, yet
under investigation (by D. Liessi and the author himself), even though it is fairly
reasonable to expect that similar results hold true (as we assume in the following).

In this chapter we describe the discretization based on the use of pseudospectral
collocation. Originally proposed for DDEs first in Breda et al. (2006) and then fully
developed in Breda et al. (2012), it has been extended to REs in Breda and Liessi
(2018) and further to coupled equations in Breda and Liessi (2020b). All the resulting
techniques rely on a preliminary reformulation of the monodromy operator, which
holds unchanged also for any other element of the relevant evolution family, i.e.,
for the general evolution operator T (t, s) advancing at time t ≥ s the state given
at any initial time s. If the monodromy operator reads indeed T (ω, 0) for ω the
period of the concerned periodic orbit, the discretization of T (h, 0) for any stepsize
h relevant to autonomous problems leads to a class of methods to address the local
stability of equilibria, hence an alternative to the infinitesimal generator approach
discussed in Breda (2023). Finally, the discretization of the elements of the sequence
{T (nτ , (n − 1)τ )}n∈N reveals to be essential in computing Lyapunov exponents,
thus addressing the generic nonautonomous case, where with the term “generic”
we identify time-dependent problems explicitly excluding the constant and periodic
cases. Results on the numerical computation of Lyapunov exponents appear in Breda
and Van Vleck (2014) for DDEs and only marginally in Breda et al. (2016b) for REs.
In fact, a systematic approach to tackle both REs and coupled equations has not been
fully developed yet. Finally, by no means the pseudospectral collocation technique is
meant to be the only choice for discretizing evolution operators. Other more or less
similar approaches have been proposed in the literature, amongwhichwemention the
recent work Borgioli et al. (2020), in which one can find also a reference bibliography
on the subject. In particular, we refer the interested reader to Krauskopf and Sieber
(2023) to fully appreciate some of these methods in action as part of DDE-BIFTOOL
(Engelborghs et al. 2001, 2002; Sieber et al. 2022), the most advanced and complete
software package for bifurcation analysis of DDEs (including state-dependent and
neutral problems), based on the framework of numerical continuationDoedel (2007).

The chapter is organized as follows. Section 2 deals with the basics of the the-
ory of evolution families associated to linear(ized) nonautonomous DDEs, first in
general and then specializing to the constant (Sect. 2.1), periodic (Sect. 2.2) and
generic (Sect. 2.3) cases. The discretization of a general evolution operator is illus-
trated in Sect. 3, particularizing to the computation of characteristic roots for the
stability of equilibria (constant case, Sect. 3.1), Floquet multipliers for the stability
of periodic orbits (periodic case, Sect. 3.2) and Lyapunov exponents of attractors
(the generic case, Sect. 3.3). Section 4 contains some guidelines on the extension of
the pseudospectral approach to both REs and coupled equations. Some illustrative
computations are presented in Sect. 5, where we report on experiments about both
convergence and bifurcation analysis in view of applications. Relevant codes are also
provided. Some concluding remarks are collected in Sect. 6. Finally, we refer the
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reader to the introductory expositions in Breda (2023, Sects. 2 and 3) for general
overviews on the theory of semigroups and on the basics of polynomial interpolation
and pseudospectral collocation.

2 Evolution Families

Consider a given solution ȳ of (5). Linearization leads to

y′(t) = A(t)yt (7)

for A(t):=DG(ȳt ) with DG the Fréchet differential1 of G at ȳt . Well-posedness
of the relevant Initial Value Problem (IVP) allows to define the solution operator
T (t, s) : Y → Y associating to an initial function y0 = ψ for some ψ ∈ Y given at
time s the state yt at time t ≥ s as

T (t, s)y0 = yt .

It is not difficult to show that the collection {T (t, s)}t≥s defines a so-called evolu-
tion family, i.e., it satisfies T (s, s) = IY for any s, T (t, s) = T (t, r)T (r, s) for any
t ≥ r ≥ s and, for each ψ ∈ Y , the map (t, s) �→ T (t, s)ψ is continuous (see, e.g.,
Chicone and Latushkin 1999, Chap. 3).

As an evident difference with respect to the autonomous case and to the relevant
semigroup of solution operators (see Breda 2023), here we deal with a family of
operators depending on two parameters, namely the current and starting times, the
latter inevitably playing a role in nonautonomous problems as (7) is in general. The
possibility of linking the evolution family to an abstract ODE in Y is tempting, but
the resulting equation would be nonautonomous. Correspondingly, a similar notion
of infinitesimal generator would be time-dependent and, in particular, with a time-
dependent domain if the state space is chosen as in (2) (as it is assumed here for the
time being).Although other choices can lead to better posed definitions of a generator,
as it is the case, e.g., for Y = R

dY × L2([−τ , 0],RdY ) (see, e.g., Breda 2010 and the
references therein or Curtain and Zwart 1995; Michiels 2023), it is not difficult to
argue that the spectrum of this “generator” is not the right place where to look for if
one is interested in the stability of the null solution of (7), or eventually in the local
stability of ȳ. Indeed, this is a well-known fact already in the finite-dimensional
case of Ordinary Differential Equations (ODEs). Consequently, the focus is headed
directly towards the spectrum of T (t, s), or of related quantities. In particular, in the
following sections we consider three separate cases, which are those of interest in
this chapter, distinguished depending on ȳ being an equilibrium of (5), a periodic
solution or none of the two (what we call a generic solution henceforth).

1 For a primer on Fréchet derivatives see Ambrosetti and Prodi (1995, Chap. 1).
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2.1 Autonomous Problems and Stability of Equilibria

When ȳ is an equilibrium, A(t) ≡ A holds independently of t in (7). In this
case it is not difficult to see that T (t, s) depends only on the difference t − s
(the amount of time spanned during the evolution) rather than on t and s sepa-
rately. Therefore, T (t, s) = T (t + r, s + r) for any r and, by taking r = −s, we get
T (t, s) = T (t − s, 0).As a consequence, bydefining S(t):=T (t, 0) for any t ≥ 0,we
get back to the standard semigroup of solution operators for the autonomous case (see
Breda 2023, Sect. 2). In fact, S(0) = T (0, 0) = IY and S(t + s) = T (t + s, 0) =
T (t,−s) = T (t, 0)T (0,−s) = T (t, 0)T (s, 0) = S(t)S(s).

From the above considerations it follows that the spectrum of T (h, 0) = S(h)

for any h > 0 gives information on the stability of the zero solution of (7) with
constant A and, in the hyperbolic case of absence of eigenvalues on the unit circle,
also on the local stability of ȳ. Indeed, if μ ∈ σ(T (h, 0) then λ:=(logμ + i2πk)/h is
a characteristic root for some k ∈ Z, i.e., an eigenvalue of the infinitesimal generator
of the semigroup {S(t)}t≥0. Eventually, the interest is thus in discretizing T (h, 0) to
get approximations to its (dominant) eigenvalues by computing the eigenvalues of
the resulting approximating matrix, see Sect. 3.1.

2.2 Periodic Problems and Stability of Periodic Orbits

When ȳ is periodic of period ω, A(t + ω) = A(t) holds independently of t in (7).
In this case, T (s + ω, s) becomes the so-called monodromy operator at s. Then
Floquet theory shows that all the monodromy operators share the same spectrum
independently of s, which is moreover a point spectrum possibly accumulating only
at 0 (see, e.g., Diekmann et al. 1995, Chap. XIII). The elements of this spectrum are
the so-called Floquet multipliers and, without loss of generality, they can be thought
as eigenvalues of T (ω, 0).

The stability of the null solution of (7) depends on whether the associated Floquet
multipliers are inside (all of them: asymptotic stability) or outside (at least one of
them: instability) the unit circle. Then, through the use of Poincaré sections andmaps
(see, e.g., Diekmann et al. 1995, Chap. XIV), the stability of the null solution can be
translated into the local stability of ȳ, but only if the so-called trivialmultiplierμ = 1,
which is always present due to linearization, is simple and is the only multiplier on
the unit circle (i.e., the so-called hyperbolic case). Eventually, the interest is thus in
discretizing T (ω, 0) to get approximations to the (dominant) Floquet multipliers by
computing the eigenvalues of the resulting approximating matrix, see Sect. 3.2.
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2.3 Generic Problems and Detection of Chaos

When ȳ is generic, one can no longer refer to a single element of the evolution
family associated to (7) in order to address the question of stability. Rather, the
focus is on the long-time behavior of {T (t, s)}t≥s as it provides information on the
average exponential growth in the long time of the solutions of (5) through the so-
called Lyapunov exponents.Without entering intomuch detail, for which we refer the
interested reader to Breda (2010, Sect. 6) and to the references therein, the exponent
of a single solution y is defined as

α(y):= lim sup
t→+∞

1

t
log |y(t)|,

following the original definition of Lyapunov in his Ph.D. thesis Lyapunov (1892).
For reasons that will be clarified later on in Sect. 3.3 when dealing with the com-
putation of the exponents, it is common (if not mandatory) to resort to the use of a
norm induced by a inner product, in order to have a proper notion of orthogonality at
disposal. For the single exponent α(y) this is not a real concern, as it can be proved
that the latter is independent of the particular norm | · | used in R

dY . But when it
comes to consider all the possible exponents of solutions of (7), which are unsurpris-
ingly infinitely-many due to the infinite dimension of the underlying state space Y ,
it becomes necessary to resort to orthogonality. Consequently, the classical space Y
defined in (2) adopted so far is no longer appropriate and must be suitably replaced,
e.g., by

Y = R
dY × L2([−τ , 0],RdY ), (8)

with norm ‖(v,ψ)‖Y :=
√

|v|2 + ‖ψ‖22 for ‖ · ‖2 the standard norm in L2. Given these
premises, the Lyapunov exponents of (7) are defined to be the eigenvalues of the limit
operator

�(s):= lim sup
n→∞

1

n
log ‖T (s + nτ , s)‖Y←Y . (9)

It can be shown that the above operator and hence the relevant exponents are inde-
pendent of s, yet another matter is to see whether it exists as an exact limit. When
this happens one usually talks about regular systems, but not all systems are regular
(already in the case of ODEs). So, in general, one can talk about upper and lower
Lyapunov exponents, referring them respectively to lim sup and lim inf. In any case,
the main outcome is that a positive (upper) Lyapunov exponent is a signature of
chaos. Therefore, the interest is thus in discretizing the elements of the sequence
{T (s + nτ , s)}n∈N for some s to get approximations to the (dominant) Lyapunov
exponents. How to exploit this discrete sequence in view of their computation is left
to Sect. 3.3, a procedure which will also clarify why orthogonality is necessary.
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3 Pseudospectral Discretization of the Evolution Family

In view of what illustrated in the previous sections, we aim at discretizing a general
element of the evolution family, say T (s + h, s) for a given starting time s and a given
advancing step h > 0. Then, the choice s = 0 and any h > 0 in the autonomous case
refers to Sect. 2.1 and to Sect. 3.1 below, the choice s = 0 and h = ω in theω-periodic
case refers to Sect. 2.2 and to Sect. 3.2 below, while the choice s = nτ for n ∈ N and
h = τ turns out to be useful in the generic case of Sect. 2.3, as treated in Sect. 3.3
below.

The approach we are going to discuss, named solution operator approach in
relation to the infinitesimal generator approach described in Breda (2023), is based
again on the use of pseudospectral collocation. Concerning the latter technique, as
already said, we refer to Breda (2023, Sect. 3) for an introductory exposition. Prior
to discretize the problem, it is useful to adopt the following reformulation, where we
use T :=T (s + h, s) for brevity and introduce the auxiliary spaces

Y+:=C([0, h];RdY ), Y±:=C([−τ , h];RdY ) (10)

beyond the state space Y of functions defined in [−τ , 0].2 Moreover, let us define
the operator V : Y × Y+ → Y± given by

[V (ψ, w)](t):=
{

ψ(0) + ∫ t
0 w(s) ds, t ∈ [0, h],

ψ(t), t ∈ [−τ , 0], (11)

and the operator Fs : Y± → Y+ given by

(Fsv)(t):=A(t + s)vt , t ∈ [0, h].

Then, the action of the evolution operator T on ψ ∈ Y can be expressed as

Tψ = V (ψ, w∗)h

for w∗ the3 solution of the fixed point equation

w = FsV (ψ, w) (12)

in Y+. Note, indeed, that the action of Fs is that of applying the right-hand side
of (7), just shifting the starting time from s to 0. On the other hand, the action of
V is that of reconstructing the solution in [−τ , h] of the IVP for (5) with initial

2 For ease of presentation, we restrict to the case h ≥ τ . For the case h < τ we refer the interested
reader to Breda et al. (2012), Breda and Liessi (2018) and Breda and Liessi (2020b) concerning,
respectively, DDEs, REs and coupled equations. The case h < τ is usually tackled by a piecewise
version of the method for the case h ≥ τ , introducing just technicalities but no conceptual novelties.
3 Uniqueness follows since we assume the relevant IVP to be well-posed.
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function ψ. This solution obviously coincides with ψ in [−τ , 0], while it is obtained
by basically integrating the derivative in [0, h], derivative whose role is played by
the second input w of V . Then the fixed-point equation (12) emerges naturally by
observing that the derivative of the solution is given by the right-hand side of (7) as
applied to the solution itself described in terms of the operator V . Finally, the action
of T is that of extracting the state at time h from the whole solution generated again
through V , according to (4).

Now, the problem of approximating T translates into replacing both ψ ∈ Y and
w ∈ Y+ by suitable polynomials, which can be determined through relevant col-
location equations imposed on two distinct meshes, respectively in [−τ , 0] and in
[0, h].

Let us then fix two positive integers M and N and define two meshes relevant to
Y and Y+ respectively as

�M :={θM,m, m = 0, 1, . . . , M : −τ =: θM,M < · · · < θM,1 < θM,0 := 0}

and
�+

N := {tN ,n, n = 1, . . . , N : 0 < tN ,1 < · · · < tN ,N < h}.

Correspondingly, let us set XM := R
dY (M+1) and X+

N := R
dY N for the discrete coun-

terparts of X and Y+, respectively, and introduce the restriction and prolongation
operators RM , PM , R

+
N and P+

N according to Breda (2023, Sect. 3). Then the action
of T : X → X on ψ ∈ Y reformulated as explained above, i.e.,

{
Tψ = V (ψ, w∗)h
w∗ = FsV (ψ, w∗),

(13)

is approximated by the action of the finite-dimensional operator TM,N : XM → XM

on � ∈ XM given as

{
TM,N� = RMV (PM�, P+

N W ∗)h
W ∗ = R+

NFsV (PM�, P+
N W ∗).

(14)

In practice, the input function ψ and the fixed point w∗ are replaced, respectively,
by the polynomials PM� and P+

N W ∗ constructed by interpolating the given input
vector � ∈ XM and the vector W ∗ ∈ X+

N . The latter is a fixed point of the second
equation, determined by collocation on the nodes of�+

N through the restriction R+
N .

4

Eventually, the action of TM,N is obtained by restricting the exact action of V on the
named polynomials to the nodes of �M through the restriction RM , thus giving back
a vector in XM .

A matrix representation of TM,N is needed in view of implementation. Details are
elaborated in Breda et al. (2012) by choosing for�M and�+

N respectively Chebyshev

4 The fixed point is actually unique for sufficiently large N (Breda et al. 2012, Sect. 3.4).
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extrema and zeros, viz.

θM,m = τ

2

[
cos

(mπ

M

)
− 1

]
, tN ,n = h

2

[
1 − cos

(
(2n − 1)π

2N

)]
.

These choices also allow for a complete error analysis as developed in Breda et al.
(2012), based on comparing T with a finite-rank infinite-dimensional version of
TM,N which shares the same nontrivial eigenvalues together with their multiplicities.
Convergence in norm of the latter to T guarantees the convergence of the relevant
multipliers and (generalized) eigenspaces thanks to the general results in Chatelin
(1983). A softened version of the final result follows from Breda et al. (2012).

Theorem 3.1 Let μ ∈ σ(T ) have algebraic multiplicity ν and ascent l, with (gen-
eralized) eigenfunctions of class C p. Then there exists N ∈ N sufficiently large such
that, for M ≥ N, TM,N has ν eigenvalues μM,N ,i , i = 1, . . . , ν, counted with multi-
plicities satisfying

max
i=1,...,ν

|μM,N ,i − μ| = o
(
N

1−p
l

)
.

Note that the relevant eigenfunctions are known to be analytic functions for DDEs
with smooth right-hand side, so that the resulting scheme performs the so-called
spectral accuracy (Trefethen 2000), as expected from pseudospectral methods.5

3.1 Computation of Characteristic Roots

We have already shown in Sect. 2.1 that {S(t)}t≥0 for S(t) := T (t, 0) is the semi-
group of solution operators of the linear DDE obtained by linearizing (5) around
an equilibrium ȳ, i.e., (7) with A(t) ≡ A := DG(ȳ) constant. This semigroup is
eventually compact, so it has only point spectrum. Let A be its infinitesimal gen-
erator. Given any h > 0, if μ ∈ σ(S(h)) then there exists k ∈ Z such that λ =
(logμ + i2πk)/h ∈ σ(A). Conversely, if λ is a characteristic root, i.e., λ ∈ σ(A),
then μ = eλh ∈ σ(S(h)). This relation is enough to address the local stability of ȳ
through the knowledge of the eigenvalues μ of S(h), although it is not enough if one
wants to recover, e.g., information about the frequency at Hopf points, given that
the imaginary part of the characteristic root λ is known in terms of μ only modulo
periodicity. In conclusion, the solution operator approach previously described is a
valid (yet not necessarily better nor worse) alternative to the infinitesimal genera-
tor approach described in Breda (2023) if one is interested in the local stability of
equilibria.

5 For relevant comments on the feature of spectral accuracy see Breda (2023).
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3.2 Computation of Floquet Multipliers

In the periodic case of (7) obtained by linearizing (5) around a given ω-periodic
solution, we have seen that T (ω, 0) represents the reference monodromy operator.
Therefore, the solution operator approach applied with h = ω and s = 0 provides us
with accurate approximations to the Floquet multipliers, hence a numerical tool to
address the local stability of the concerned periodic orbit (in the hyperbolic case).

3.3 Computation of Lyapunov Exponents

In order to present themain concepts behind the computation of Lyapunov exponents
we start from the case of ODEs. In this context, Adrianova (1995) is among the main
references from a theoretical point of view, beyond the original thesis of Lyapunov
(1892). Concerning computation see Dieci and Van Vleck (2002), Dieci et al. (2010)
and the references therein.

Let us consider then linear and nonautonomous systems

y′(t) = A(t)y(t) (15)

for A : [0,+∞) → R
n×n continuous and bounded.6,7 By first reducing (15) to tri-

angular form through orthogonalization, Lyapunov exponents can be extracted as a
limit for t → +∞ from the diagonal elements of the matrix of coefficients of the
reduced system. The key observation is that the orthogonalization process cannot be
performed directly (and exclusively) in the long time, but rather along every step of
a sequence of not too-distant time instants. This in order to avoid alignment along
the direction of highest growth, i.e., the one corresponding to the largest exponent.
From the computational standpoint, this process leads to the family of QR methods,
perhaps the most used class of computational techniques. We summarize below the
discrete version of the QR method for computing the Lyapunov exponents of (15),
taking inspiration from Dieci et al. (2010), yet giving credits also to the pioneering
works Benettin et al. (1980a, b) and to Dieci and Van Vleck (2002). Let us remark
the the name “QR” comes from the celebrated QR scheme to factorize a matrix into
the product of an orthogonal matrix Q and a triangular matrix R. Here we point out
that we refer to the unique such factorization of nonsingular matrices by requiring
that R has positive diagonal elements.

Let then Y (t) be a fundamental matrix solution of (15) such that Y (t0) = Y0 is
assigned for some nonsingular matrix Y0 prescribed at time t0 = 0 without loss of
generality. Let also {tk}k∈N be a strictly increasing sequence of time instants and

6 The choice of 0 as starting time is not restrictive at all given that Lyapunov exponents concern the
long-time behavior.
7 If interested in attractors of nonlinear problems, one usually linearizes around a reference (generic)
trajectory.
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construct the iterative QR factorization

Y (tk) = Qk Rk (16)

of the sequence {Y (tk)}k∈N starting from Y0 = Q0R0 as follows. First, at each step
j = 1, . . . , k solve the IVP

{
� ′(t, t j−1) = A(t)�(t, t j−1), t ∈ [t j−1, t j ],

�(t j−1, t j−1) = Q j−1
(17)

for the matrix solution �(t, t j−1). Second, take the QR factorization of the solution
at t j as

�(t j , t j−1) = Q j R j, j−1. (18)

In view of (9), consider now the evolution matrix T (t, s) = Y (t)Y (s)−1. Then

Y (tk) = T (tk, t0)Y0
= T (tk, tk−1) · · · T (t2, t1)T (t1, t0)Q0R0

= T (tk, tk−1) · · · T (t2, t1)�(t1, t0)R0

= T (tk, tk−1) · · · T (t2, t1)Q1R1,0R0

= T (tk, tk−1) · · · �(t2, t1)R1,0R0

= T (tk, tk−1) · · · Q2R2,1R1,0R0

· · ·
= Qk Rk,k−1 · · · R1,0R0.

Then

Rk =
⎛
⎝ k∏

j=1

R j, j−1

⎞
⎠ R0

follows from (16) by uniqueness of the QR factorization. Eventually, by denoting
with [R j, j−1]i,i the i-th diagonal entry of the j-th triangular factor R j, j−1, we recover
the (upper8) Lyapunov exponents as

αi = lim sup
k→∞

1

tk

k∑
j=1

log[R j, j−1]i,i , i = 1, . . . , n.

Going back now to DDEs, if we assume to choose (8) as a state space in order
to guarantee a notion of orthogonality, there is no conceptual change in the scheme

8 Lower exponents come either as lim inf or as upper exponents of the adjoint system. If (15) is
regular both upper and lower exponents coincide and exist as exact limit.
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described above if not for the infinite dimension of the state space.9 If this observation
lay the theoretical basis for the determination of the exponents, for a practical com-
putation one has to go back to finite-dimension through discretization. This translates
into replacing the evolution operator T in the infinite-dimensional QR factorization
(18) seen as

T (t j , t j−1)Q j−1 = �t j ,t j−1 = Q j R j, j−1

with its finite-dimensional counterpart TM,N . This is the methodology first proposed
in Breda and Van Vleck (2014), where a rigorous convergence analysis is also pro-
vided. The main (yet only) difference with respect to what described in Sect. 3 is
that the discretization TM,N , for obvious reasons, is constructed through generalized
Fourier projection rather than through pseudospectral collocation, the latter being
based on the choice (2) where orthogonality has no sense. Eventually, let us note
that with respect to ODEs, where one does not usually compute evolution matrices
but rather solve related IVPs (i.e., (17)), for DDEs one directly approximates the
evolution family thanks to the solution operator approach. And indeed, the method
proposed in Breda and Van Vleck (2014) was mainly inspired by that of Breda et al.
(2012), where the original solution operator approach was first fully developed and
rigorously analyzed.

To conclude, let us remark that a valid alternative has been proposedmore recently
(Breda and Della Schiava 2018), inspired by the perspective originally presented in
Breda et al. (2016a). Indeed, one can first reduce (7) to a system of ODEs through
the nonlinear (pseudospectral) approach discussed in Breda (2023, Sect. 5), and then
compute the Lyapunov exponents of the resulting ODE as approximations to (part
of) those of the original DDE by using standard techniques for ODEs. Of course, the
discrete QR method above illustrated is one of these techniques. To highlight that
going this way there is no need to change the state space from the classical (2) to (8).
Finally, it is worth mentioning that most of the computational techniques available
in the literature for computing Lyapunov exponents of DDEs are indeed based on
first reducing to ODEs (see, e.g., Farmer 1982; Sprott 2007).10

4 Extension to Renewal and Coupled Equations

The reformulation (13) of the evolution operator T is advantageous not only from the
point of view of computation through numerical discretization via (14), but also in
view of applying the same strategy to classes of equations other than DDEs. Indeed,
let us note that the action of T is described by two separate contributions, namely the
action of the right-hand side of the concerned equation through the operator Fs on
the one hand and, on the other hand, the way one reconstructs the solution through

9 The latter, of course, is responsible for infinitely-many Lyapunov exponents as alreadymentioned,
yet they all accumulate at −∞ Breda (2010).
10 Krauskopf and Sieber (2023, Sect. 4) is an example of application of Farmer (1982).
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the operator V given an initial function (necessary since it is a problem with delay)
and the output of the right-hand side of the concerned equation. In the specific case of
DDEs, the right-hand side of (5) prescribes the derivative of the solution, so that the
operator V integrates the latter to get the solution forward in time. If we now consider
the class (6) of renewal equations, where the right-hand side gives the solution itself,
the operator V becomes simply

[V (ϕ, u)](t) :=
{
u(t), t ∈ (0, h],
ϕ(t), t ∈ [−τ , 0], (19)

where the point-wise definition is intended in the sense of equivalence classes in
L1 given the choice (1) for the state space X and for the relevant spaces X+ and
X± defined similarly to Y+ and Y± in (10). With this new definition of V , the
discretization (14) remains unchanged, with the attention that now u represents the
solution forward in time and not its derivative as it is the case forDDEs.Of course, the
change in V leads to obvious differences in the construction of the discrete matrices
involved in the implementation of the method. All the details can be found in Breda
and Liessi (2018), where also a rigorous convergence analysis is reported. The latter
follows the main ideas of that in Breda et al. (2012), yet with nontrivial modifications
due to the different spaces, i.e., (1) instead of (2).11 The final result on the error in
computing the eigenvalues of T is unchanged with respect to Theorem 3.1, as far as
the stability of equilibria and periodic orbits12 is concerned. We reserve to comment
on the computation of Lyapunov exponents at the end of this section, for both REs
and coupled equations together.

The solution operator approach has been recently extended also to coupled equa-
tions (3), see Breda and Liessi (2020b). The same, as anticipated in the Introduction,
cannot be said yet for the relevant Floquet theory, although we give as reasonably
granted that results similar to that for DDEs and REs hold also for this class of sys-
tems. The principle guiding the extension is the same one above described for REs:
separating the action of the right-hand side of (3) from the way one reconstructs the
solution. This amounts to new definitions of the operators V andFs which unsurpris-
ingly combine (11) with (19) taking in due account the presence of crossing terms,
i.e., those relevant to y in the equation for x and the other way around. Indeed, the
state space for (3) is the cross-product X × Y , which “mixes” L1 functions with
continuous ones, requiring a certain ability in treating all the elements mainly in
view of the relevant analysis of convergence, fully developed in Breda and Liessi
(2020b). Nevertheless, and oncemore, Theorem3.1 holds unchanged.Unfortunately,
the “mixing” of the state spaces causes major difficulties in tackling the extension of
the Floquet theory, which is in fact still in progress (by D. Liessi and the author).

11 To note that, in any case, in (14) the operator V acts on polynomials.
12 The relevant theoretical background including Floquet theory, Poincaré sections and maps as
well as the principle of linearized stability for periodic orbits has been developed only recently and
can be found in Breda and Liessi (2020a).
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Finally, let us briefly comment on the extension of the solution operator approach
in view of computing Lyapunov exponents for REs and for coupled equations. As
previously illustrated, this approach has been first proposed for DDEs in Breda and
Van Vleck (2014), changing the state space from (2) to (8) in view of the neces-
sary orthogonality. For basically the same reason, the pseudospectral collocation
approach based on interpolating polynomials on family of Chebyshev nodes has
been substituted by a more appropriate truncation of generalized Fourier series. In
particular, the latter is based on the family of orthogonal Legendre polynomials as
far as the L2 component of (8) is concerned. The same strategy has not been fully
developed yet for REs, nor for coupled problems. Let us anyway remark that at a
first sight we cannot see any particular obstacle in view of pursuing this extension.
Instead, the approach developed for DDEs in Breda and Della Schiava (2018) has
been successfully applied also to REs in Breda et al. (2016b), and being based on
the prior reduction of the delay equation to ODEs, it is expected to work properly
for coupled problems, too. The results concerning Lyapunov exponents reported in
Sect. 5 are indeed obtained by following the latter approach.

5 Results and Applications

All the following computations are performed on a MacBook Pro 2.3GHz Intel Core
i7 16GB by using Matlab R2019a. Two demos including scripts to run the codes
relevant to the following tests are freely available at http://cdlab.uniud.it/software.
The first one, demo_DDE_mackeyglass, refers to the experiments described
in Sect. 5.1 about a DDE. The second one, demo_RE_logistic, refers to the
experiments described in Sect. 5.2 about an RE.13

5.1 Tests on the Mackey-Glass Equation

As in Breda (2023, Sect. 6.1), we consider again the celebrated Mackey-Glass equa-
tion (Mackey and Glass 1977)

y′(t) = βy(t − τ )

1 + y(t − τ )α
− γy(t) (20)

with α,β, γ ≥ 0 and τ > 0. In particular, we fix β = 2, γ = 1 and τ = 2, so that the
nontrivial equilibrium

ȳ :=
(

β

γ
− 1

)1/α

13 The auxiliary codes clencurt, mybarint and mybarwei are also included, whose imple-
mentation follows Berrut and Trefethen (2004), Trefethen (2000).

http://cdlab.uniud.it/software
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Fig. 1 Results on (20) with α = 1, β = 2, γ = 1 and τ = 2: (left) dominant eigenvalues of T (2, 0)
computedwitheigTMN (•’s) andwitheigAM (◦’s); (right) convergenceof the error on thedominant
multiplier; further details in the text

becomes simply ȳ = 1 independently of α. The latter is either kept fixed or made
varying in view of bifurcation analysis. Linearization leads to

y′(t) = ay(t) + by(t − τ )

with

a = −γ = −1, b = β · 1 + (1 − α)ȳα

(1 + ȳα)2
= 1 − α

2
.

As a first experiment we fix α = 1 and compute the approximations to the eigen-
values μ of T (2, 0), •’s in Fig. 1 (left), by using the solution operator approach with
M = N = 40. We also compare them with e2λ, ◦’s in Fig. 1 (left), for λ the eigen-
values computed by using the infinitesimal generator approach described in Breda
(2023) with M = 40 (i.e., the same N used above). They are obtained respectively
through the codes eigTMN (for μ) and eigAM (for λ) from Breda et al. (2015).
The first 21 dominant eigenvalues are plotted, with no visible difference between
•’s and ◦’s. Then, in Fig. 1 (right) and with respect to the dominant eigenvalue,
we test the convergence of both approaches by increasing N . The reference value
μ = 0.642200704059874 for the dominant eigenvalue is computed to machine accu-
racy by eigTMN with M = N = 100. To note that spectral accuracy takes place as
expected for both methods, with the solution operator approach showing slightly
better error constants.

As a second test we search for bifurcations of the nontrivial equilibrium by com-
puting the dominant eigenvalue(s) of T (2, 0) for α increasing from 1, using the solu-
tion operator approach implemented in eigTMN with M = N = 40 again. This can
be easily done via Matlab’s fzero as described in demo_DDE_mackeyglass,
which returns a Hopf bifurcation atα = ᾱ := 5.039605122412380 tomachine accu-
racy. Figure 2 (left) shows the dominant pair crossing the unit circle outwards when
increasing α from ᾱ − 1 (◦) through ᾱ (•) to ᾱ + 1 (�). The dominant pair at α = ᾱ
isμ = 0.413533430035905 ± 0.910488935815664i, computed tomachine accuracy
again by eigTMNwithM = N = 100. The emergence of a branch of stable periodic
solutions at the Hopf bifurcation at α = ᾱ is confirmed experimentally. In fact, in
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Fig. 2 Results on (20) with β = 2, γ = 1 and τ = 2: (left) crossing of the dominant pair of T (2, 0)
corresponding to a Hopf bifurcation atα = ᾱ, computed with eigTMN for increasingα from ᾱ − 1
(◦) through ᾱ (•) to ᾱ + 1 (�); (right) periodic solution (solid line) for α = 5.1, soon after the Hopf
bifurcation of the nontrivial equilibrium (dashed line) at α = ᾱ; further details in the text
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Fig. 3 Results on (20) with α = 5.1, β = 2, γ = 1 and τ = 2: (left) dominant eigenvalues of
T (ω, 0); (right) convergence of the error on the trivial Floquet multiplier; further details in the text

Fig. 2 (right) the periodic solution atα = 5.1 soon after the Hopf point is shown. The
trajectory is obtained through collocation of a boundary value problem as explained
in Krauskopf and Sieber (2023, Sect. 3.6). The relevant data, taken from Breda
et al. (2016b), are contained in the file periodic_51.mat provided together with
demo_DDE_mackeyglass.

To test further the solution operator approach, we show in Fig. 3 (left) the
dominant eigenvalues of the monodromy operator T (ω, 0) of the linearization
around the periodic solution previously computed at α = 5.1, whose period is ω =
5.490522200153110 to machine accuracy. These Floquet multipliers are computed
again through the solution operator approach, but the relevant code example1per
is a version of eigTMN adapted to the necessity of linearizing the DDE around a
solution computed numerically. Apart from this, we always use M = N = 40. To
note anyway the correct presence of the trivial Floquet multiplier 1 due to lineariza-
tion. Finally, Fig. 3 (right) shows the spectrally accurate behavior of the error on
this trivial multiplier, the latter being indeed a “true” error. Let us observe that a
lower barrier around 10−14 is reached instead of the usual machine precision: this is
actually the tolerance at which the periodic solution is numerically computed, given
that the relevant Newton’s iteration was stopped when the error fell below 10−12.
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5.2 Tests on a Logistic RE

We consider the RE

x(t) = γ

2

∫ −1

−3
x(t + θ)[1 − x(t + θ)] dθ (21)

with γ > 0 a varying parameter in view of bifurcation analysis. Equation (21) rep-
resents the logistic instance of a family of REs treated in Breda et al. (2016b). In
this section we repeat some of the experiments run therein, following the bifurca-
tion diagram represented in Fig. 4 (top-left), which can be reconstructed by using
demo_RE_logistic and the data from Breda et al. (2016b) provided with the
related files. By increasing γ beyond 0, the trivial equilibrium looses its stability in
favor of the nontrivial one

x̄ := 1 − 1

γ
, (22)

which exists positive for γ > 1. At γBP := 1, indeed, a transcritical bifurcation (col-
loquially, a “brancing point”) takes place. This is confirmed experimentally by com-
puting the characteristic roots of (21) linearized around (22) as eigenvalues of the
infinitesimal generator. In particular, in Fig. 4 (top-right) we show the transition of
the rightmost real root through the imaginary axis from left to right for γ increasing
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Fig. 4 Results on (21) for varying γ: (top-left) bifurcation diagram; (top-right) transcritical bifurca-
tion of the trivial equilibrium; (bottom-left) Hopf bifurcation of the nontrivial equilibrium; (bottom-
right) period doubling bifurcation of the branch of periodic solution rising from theHopf bifurcation;
description in the text
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from γ = 0.9 (◦) through γBP (•) to γ = 1.1 (�). The roots are approximated by
the infinitesimal generator approach implemented in eigAM_RE and described in
Breda (2023, Sect. 6.2), which is based on a piecewise discretization given that the
integral right-hand side of (21) has a kernel which is nontrivial only on [−3,−1],
while it vanishes on [−1, 0].

The same approach is used to correctly detect theHopf bifurcation of the nontrivial
equilibrium, which can be shown to occur at γH := 2 + π/2  3.571, Breda et al.
(2016b). Indeed, Fig. 4 (bottom-left) refers to the rightmost pair of roots crossing
the imaginary axis from left to right for γ increasing from γ = 3.471 (◦) through
γH (•) to γ = 3.670 (�). At γH a branch of stable periodic solution emerges. The
elements of this branch can be obtained explicitly and, moreover, they all share the
same periodω = 4, see Breda et al. (2016b, AppendixA), at least until the first period
doubling bifurcation occurs. Till this point, we are thus able to linearize (21) around
the exact periodic solution, in order to compute the eigenvalues of T (ω, 0) and detect
the relevant local stability. To this aim, we switch to the solution operator approach
described in this chapter. Then, following the branch, we find a first period doubling
at γPD1 := 4.324731218522237 computed to machine accuracy. Correspondingly,
the transition of the dominant nontrivial Floquet multiplier through the unit circle at
−1 in the outward direction is shown in Fig. 4 (bottom-right), for γ increasing from
γ = 4.225 (◦) through γPD1 (•) to γ = 4.424 (�).

As far as the convergence is concerned, we avoid to report on the results relevant
to the above experiments as they are qualitative the same as those presented in
Sect. 5.1 for the Mackey-Glass equation. Indeed, as already remarked, Theorem 3.1
is unchanged passing fromDDEs to REs and even to coupled equations.With regards
to the latter class, tests similar to those illustrated above can be found in Breda and
Liessi (2020b),whose relevant codes are freely available always at http://cdlab.uniud.
it/software.

Finally, at least other two period doubling bifurcations are found with clear dis-
tinction after γPD1 in Breda et al. (2016b), see Fig. 2.1a. Chaotic dynamics can be
found soon after the last detected period doubling by simulating the IVP for the
ODE obtained by approximating (21) with the nonlinear pseudospectral approach
described in Breda (2023, Sect. 5). In order to confirm experimentally the presence
of a potential period doubling cascade, (21) is first linearized around a reference
trajectory computed by the nonlinear approach just mentioned. Then we approxi-
mate the relevant Lyapunov exponents via the solution operator approach applied
to the linearized equation, embedded into the discrete QR scheme as illustrated in
Sect. 3.3. The results are illustrated in Fig. 5, where the onset of chaos corresponds to
the transition of the dominant nontrivial14 Lyapunov exponent from negative to pos-
itive, which occurs around γ  4.54. From the computed exponents, other islands of
stability are found beyond the onset of chaos, the most evident of which corresponds

14 A trivial exponent is always present due to linearization.

http://cdlab.uniud.it/software
http://cdlab.uniud.it/software
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Fig. 5 Results on (21) for
varying γ: dominant
nontrivial Lyapunov
exponent
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to a “period 6 cascade”, approximately in the range γ ∈ [4.85, 4.89]. The data con-
cerning the Lyapunov exponents, contained in the file LE.mat, are produced with
the codes used in Breda et al. (2016b).15

6 Conclusions

A general pseudospectral collocation approach to approximate the evolution family
of delay equations has been illustrated. The technique can be used for either DDEs,
REs and systems of coupled REs and DDEs, and it enables one to investigate the
local stability of equilibria and periodic orbits through the principle of linearized
stability, as well as to detect chaotic dynamics by computing Lyapunov exponents.
Independently of which target or class of equations, the approach has been described
from the points of view of discretization, convergence and application. Where not
all the details have been included (as, e.g., the proofs of convergence or the details
of implementation), suitable references have been provided for those interested in
deepen their study of the subject. Eventually, relevant codes aremade freely available
at http://cdlab.uniud.it/software.

The approach has been described mostly for DDEs. The extension to REs and
coupled equations has been summarized, providing relevant references. Neverthe-
less, there are still open direction with regards to potential extensions, beyond those
described in Sect. 4 concerning the computation of Lyapunov exponents. Indeed,
important classes of equations including neutral problems or equations with state-
dependent delays have not been addressed yet. Let us refer the interested reader to
Krauskopf and Sieber (2023) where effective computational solutions are provided
through the package DDE-BIFTOOL. Instead, we mention Borgioli et al. (2020) for
a versatile approach aimed also to equations with discontinuous right-hand side.

Finally, repeating from Breda (2023), we remark again that the pseudospectral
approach is clearly not the only solution to the numerical stability analysis of delay
equations, even if restricted to periodic problems. An interesting experimental com-
parison is carried out in Lehotzky and Insperger (2016), where it turns out that other
choices may reveal more efficient in this or that case. Nevertheless, the reformula-

15 Available by the author upon request.

http://cdlab.uniud.it/software
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tion of the solution operator on which the presented approach is based allows for a
uniform view concerning the plethora of discretization schemes that one can resort
to. Which, in turn, hopefully open the doors to tackle the theoretical convergence
analysis that more than once leaves the place to an experimental validation. Even-
tually, we remark once more that the great advantage offered by the pseudospectral
approach resides in its ability to fully exploit the (potentially infinite) smoothness
made available when solving eigenvalue problems.
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Counting Characteristic Roots of Linear
Delay Differential Equations. Part I:
Frequency-Sweeping Stability Tests and
Applications

Silviu-Iulian Niculescu, Xu-Guang Li and Arben Çela

Abstract This chapter addresses the stability analysis of linear dynamical systems
represented by delay differential equations with a focus on the effects induced by the
delay, seen as a parameter, on the dynamical behavior. More precisely, we propose a
frequency-sweeping framework for treating the problem, and the stability problem is
reformulated in terms of properties of frequency-sweeping curves. The presentation
is teaching-oriented and focuses more on discussing the main ideas of the method
and their illustration through appropriate examples and less on explicit proofs of the
results. Some applications from Life Sciences complete the presentation.

1 Introduction

One of the important problems in the analysis of dynamical systems is to understand
how changes in the systems’ parameters may affect the qualitative and quantitative
behavior of the systems. Such a problem becomes challenging when the system is
infinite-dimensional. This chapter is devoted to such issues in the case of linear time-
delay systems represented by Delay Differential Equations (DDEs). More precisely,
we focus on the analysis of the effects induced by the delay parameters on the
(exponential) stability of the corresponding system.

Roughly speaking, to better capture the heterogeneity of the temporal phenomena
in systems’ dynamics the knowledge of “past” may appear as being essential in
deriving appropriate models, and there exists a large variety of processes in nature
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having such characteristics. In these cases, the use of delays1 in representing such
phenomena may help in a better understanding of the underlying mechanisms or of
the interactions/coupling with other (eventually spatial) phenomena. For instance, in
Physics and Engineering, the delay may be used to model transport and propagation
in interconnected cyber-physical systems or to represent the effect induced by the
presence of humans in traffic flow models. In Life Sciences, the delays may appear
as good approximations for incubation periods, maturation times or age structure in
epidemic dynamics or they may be used to represent translation and transcription
processes in genetic regulatory networks. Finally, in Economics, delays may appear
in trade cycles, business cycles in commoditymarketswhen defining the right balance
between supply and market information-based demand.

Delay systems belong to the class of infinite-dimensional systems and there exist
several ways to represent their dynamics. Functional Differential Equations (FDEs)
sometimes called delay differential equations (DDEs) or differential-difference equa-
tions are, by now, a classical framework for studying the qualitative and quantitative
effects induced by the delays on the systems’ dynamics. Throughout this chapter,
we will adopt such a model representation. For a good introduction to the theory of
FDEs, we refer to Bellman and Cooke (1963), Hale and Verduyn Lunel (1993).

As pointed out in the open literature (see, e.g., Sipahi et al. 2011 and the refer-
ences therein), understanding the way the delay may affect systems’ dynamics is not
a trivial task and we may have some dichotomic behaviors. For instance, in control,
on one hand, large delays may induce instability in closed-loop even in the scalar
case when controlling integrators. On the other hand, small delays in the input/output
channels are useful in stabilizing oscillatory systems. There exists an abundant lit-
erature devoted to the analysis of the effects induced by the delays on the stability
of DDEs and to present it in detail is out of the scope of this chapter. However, our
intention is to point out some important (almost forgotten, in some cases) contribu-
tions related to the proposed methodology (i.e., frequency-sweeping approach), and
we believe that this historical perspective is useful for a better understanding of the
main ideas.

To the best of the authors’ knowledge, it appears that the first complete character-
ization of the stability regions with respect to the system’s parameters was derived
by Hayes (1950) for scalar DDEs in both retarded and neutral cases. At the end of the
50s, Pinney (1958) presented a detailed analysis for scalar and second-order DDEs
by using the argument principle. Under the assumption that the delay is known (and
equal to one), by introducing several notions (root plateau, root cell, D-set), Pinney
proposed an algorithm to compute the number of unstable roots of a quasipoly-
nomial of low-order as a function of its coefficients. Through this procedure, the
parameter-space is divided in several regions, such that each region is characterized
by a constant number of unstable roots. The boundaries separating the regions cor-
respond to the cases when the characteristic function has at least one root on the
imaginary axis. Such a procedure is “close” to the so-called D-partition method

1 The delaysmay be constant or time-varying, distributed or not over a finite or infinite time-interval,
depending on the state vector or not.
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developed by Neimark (1949) at the end of the 40s. For an historical perspective on
the D-partition and some of the existing results in the literature, we refer to Gryazina
et al. (2008).

Introduced by Lee and Hsu (1969) at the end of the 60s, the so-called τ -partition
may be seen as the “dual” of the D-partition method. More precisely, in the case
of a single and constant delay (parameter), this method allows computing the delay
intervals guaranteeing that the trivial solution of the DDE is exponentially stable.
As a byproduct of the analysis, for a given delay interval, one may explicitly follow
how the roots of the characteristic function move with respect to the imaginary axis
as a function of the delay parameter. As mentioned in the above reference, such a
method has its origin in the works of Sokolov and Miasnikov in the 40s and detailed
in the monograph of Popov (1962). To the best of the authors’ knowledge, close
to the ideas of root locus,2 it appears that the first systematic discussion on the
number of unstable roots by using the continuity of the roots with respect to the
delay parameter can be found in Kashiwagi (1965), where the author introduced the
notion of stability indicative function to count the number of unstable roots for a
given delay value. Finally, for a pedagogical presentation as well as some extensions
of the root locus method and classical well-known Nyquist criterion to deal with
linear single-input/single-output systems with one delay in the input/output channel,
we refer to Krall (1968) (see also Krall 1970 for a survey of the root-locus methods).

At the beginning of the 70s, Els’golts’ and Norkin (1973) mention three tests for
checking the asymptotic stability of DDEs: the amplitude-phase method (referring
to Tsypkin’s contributions), the D-partition method (discussed above) and the direct
generalization of the Routh-Hurwitz method (mainly Çebotarev’s contributions),
with a more detailed discussion of the first two methods by using the argument
principle as well as the Rouché’s Lemma. The so-called amplitude-phase method
proposed by Tsypkin (1946) in Control area in the 40s is at the origin at most of
the existing frequency-sweeping tests3 in the open literature, and its principle will be
briefly presented in the forthcoming sections. More precisely, in its simplest form,
Tsypkin’s criterion allows concluding on the so-called delay-independent (asymp-
totic) stability of a closed-loop system, that is the stability is guaranteed for all delay
values. Starting with the 80s, the development of tools and techniques in robust
control allowed to reconsider some of the existing methods in the literature by inter-
preting the delay as an uncertainty, and there exists an abundant literature on the
delay-independent/delay-dependent stability with a particular emphasis on the com-
putation of the so-called delay margin.4 For further discussions on such topics and

2 The origins of root locus go back to the works of Evans at the end of the 40s (see, e.g., Evans
1950 and the references therein).
3 To the best of the authors’ knowledge, the notion of “frequency-sweeping”was formally introduced
by Chen and Latchman (1995), Chen (1995) into a different methodological frame: robust analysis
with respect to the delay parameter, seen as an uncertainty, see also Niculescu (2001).
4 Under the assumption that the system free of delays is asymptotically stable, the delay margin is
the maximal value τm > 0 such that the asymptotic stability is guaranteed for all delays inside the
interval [0, τm); see also Chen et al. (1995), Chen (1995).
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various references, we refer to Niculescu (2001), Gu et al. (2003), Michiels and
Niculescu (2014), Fridman (2014) and the references therein.

The aim of this chapter is twofold: first, to introduce a simple approach easy
to understand and to apply for characterizing the exponential stability of the trivial
solution of linear DDEs with respect to the delay parameter. This approach enters
in the so-called τ -partition category and it is based in the construction of some
appropriate frequency-sweeping curves. This construction will allow “translating”
the behavior of the roots of the corresponding characteristic function with respect to
the (delay) parameters in terms of properties of such curves. The continuity of the
roots of the characteristic function with respect to the delay is the main ingredient of
the approach. Although the main results are presented in the case of retarded DDEs
including commensurate delays, the underlying ideas can be extended to incom-
mensurate or to some classes of distributed delays and/or to other classes of DDEs
(neutral). Several case studies as well as a few applications are briefly presented.
Second, we wish emphasizing an invariance principle that is essential for having a
complete characterization of the (exponential) stability of the trivial solution. In fact,
the proposed framework allows a simpler understanding of the asymptotic behavior
ofmultiple characteristic roots by using the properties of frequency-sweeping curves.
The presentation is teaching-oriented including discussions on the main ideas of the
method aswell as its illustration through appropriate examples and less on the explicit
proof of the results. The book written by Li et al. (2015) includes complementary
material as well as the proofs of themain results presented in this chapter. Finally, it is
worthmentioning that Pólya (1954)’s pattern on logical induction and analogy-based
reasoning strongly influenced the authors in the presentation style adopted.

The remaining document is organized as follows: Sect. 2 includes some prelim-
inaries and prerequisites. Next, a method based on the frequency-sweeping curves
is presented in Sect. 3, followed by Sect. 4 devoted to a brief discussion on the
asymptotic behavior of the critical imaginary roots at some critical delay values. The
invariance property as well as its utility in characterizing the stability with respect to
the delay are presented in Sect. 5. All these ideas and results allow proposing a uni-
fied frequency-sweeping framework for the stability analysis of DDEs with respect
to the delay parameter, approach that is summarized in Sect. 6. Next, Sects. 7 and 8
present various extensions of the approach as well as some applications. Finally, a
few notes and comments end the chapter.

Notations: Throughout this chapter, the following notations will be used: Z
denotes the set of integers, R (R+) denotes the set of (positive) real numbers,
R

∗ = R \ {0} and C is the set of complex numbers. For λ ∈ C, Re(λ) and Im(λ)

denote the real part and imaginary part of λ, respectively; C− and C+ denote the
sets {λ ∈ C : Re(λ) < 0} and {λ ∈ C : Re(λ) > 0}, respectively; iR (with i = √−1)
is the imaginary axis and ∂D is the unit circle. For a, b ∈ R, we denote �a, b� =
[a, b] ∩ Z, with the convention that [a, b] = ∅ if a > b. For γ ∈ R, �γ� denotes the
smallest integer greater than or equal to γ. Next, N and N+ are the sets of non-
negative integers and positive integers (≥1), respectively. For a (quasi)polynomial
a(λ) (q(λ)), deg(a) (deg(q)) denotes its degree and σs(a) (σs(q)) its spectrum.
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Moreover, det(·) denotes the determinant, and I the identity matrix. Finally, for a
function φ(x, y), φxα yβ (α,β ∈ N) denotes the partial derivative ∂α+βφ(x,y)

∂xα∂yβ .

2 Preliminaries and Prerequisites

To better fix the ideas, we recall some preliminary results and prerequisites concern-
ing the stability of linear DDEs.

2.1 Linear Time-Delay Systems

Consider the following linear system described by the delay differential equation
(DDE) of retarded type

ẋ(t) = A0x(t) + A1x(t − τ ), (1)

under appropriate initial conditions, where x(t) ∈ R
r (r ∈ N+) is the vector state at

time t , A0, A1 ∈ R
r×r are constant real matrices, and τ is the delay parameter, that

is assumed to be positive (τ ∈ R+).
The corresponding characteristic function f : C × R+ 
→ C is given by

f (λ, τ ) = det
(
λI − A0 − A1e

−τλ
)
, (2)

which is a quasipolynomial of the form

f (λ, τ ) := a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ, (3)

where a0(λ), . . ., aq(λ) (q ∈ N+) are polynomials in λ with real coefficients and
represent the so-called coefficient functions. It is easy to observe that the quasipoly-
nomial (3) includes multiple delays τk but with the particular dependence τk = kτ
for all k ∈ �0, q�. Such delays are called commensurate, and our main ideas are pre-
sented in such a setting. For a short discussion in the incommensurate delays case,
see Sect. 7.

Using the same terminology as Bellman and Cooke (1963), a complex number
λ ∈ C such that f (λ, τ ) = 0 is called a characteristic root. It is well-known that, for
a τ > 0, the characteristic function (2) of the DDE (1) has an infinite number of char-
acteristic roots. A fundamental well-known result from the finite-dimensional case
is still valid for DDEs (see, e.g., Bellman and Cooke 1963; Michiels and Niculescu
2014):
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Fig. 1 Example 2.2: characteristic roots location Re(λ) versus Im(λ) for τ = 0.01 (left) and τ= 1
(right)

Theorem 2.1 The trivial solution of the DDE (1) is exponentially stable if and only
if all the characteristic roots of the quasipolynomial f (3) are located in the open
left half-plane C−.

Unfortunately, due to the infinite-dimensional nature of the system, it is not real-
istic to apply Theorem 2.1 directly. The following example illustrates the root distri-
bution intuitively.

Example 2.2 Consider the following DDEs:

ẋ(t) =
(

0 1
−1 1

)
x(t) +

(
0 0

−9 −1.5

)
x(t − τ ),

with the characteristic function f (λ, τ ) = λ2 − λ + 1 + (1.5λ + 9)e−τλ.
When τ = 0, the system has two characteristic roots −0.2500 ± 3.1524i both

located in C−. As τ increases from 0 to +ε, infinitely many new characteristic
roots appear at far left of the complex plane. Figure 1 (left) shows the case when
τ = 0.01, where the two points denote the locations of the “original” roots. Next,
as τ increases, some roots move to the selected domain defined by Re(λ) ∈ [−4, 2]
and Im(λ) ∈ [−4, 4]. For instance, when τ = 1, some roots enter in the “selected”
domain and the “original” roots will leave the left-half plane and will enter in the
right-half plane as shown in Fig. 1 (right). For further illustration, Fig. 2 gives the
corresponding root loci w.r.t. the delay parameter.5 �

Asimple inspection of this example suggests that itwill be important to understand
how the behavior of the characteristic roots is affected by the delay parameter and,
in particular, in the case when the delay is increased from 0 to 0+. These issues will
be addressed in the sequel.

5 In this chapter, the root loci are numerically generated by using the DDE-BIFTOOL (Engelborghs
et al. 2002; Sieber et al. 2016).
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Fig. 2 Example 2.2: Re(λ) versus Im(λ) (left) and Re(λ) versus τ (right)

2.2 Characteristic Roots and Delay Parameter

In finite dimension, it has long been recognized that the roots of a polynomial are con-
tinuous functions of the coefficients as long as the leading coefficient does not vanish
(see, e.g., Knopp 1996;Marden 1949). Furthermore, in the case of simple roots, these
functions are also differentiable. Similar properties hold for quasipolynomials.

For the sake of simplicity, consider the simplest case q = 1 and assume that a0 is
a monic polynomial. Excepting the delay, assume that the set of parameters includes
also the coefficients of the corresponding polynomials a0 and a1 and introduce the
vector notation −→p for representing such parameters. Let Op ⊂ R

np be an open set,
and assume that deg(a0) > deg(a1), for all

−→p ∈ Op. Under these assumptions, the
characteristic function (3) rewrites as f : C × Op × R+ 
→ C:

f (λ,
−→p , τ ) := a0(λ,

−→p ) + a1(λ,
−→p )e−λτ . (4)

By using the properties of analytic functions, the quasipolynomial f given by (4)
has some nice and interesting properties. For instance, the characteristic roots are
isolated and only a finite number of roots lie in any compact set of the complex
plane C. Furthermore, any vertical strip of the complex plane includes at most a
finite number of characteristic roots. Finally, there exists a real number γ, such that
all the characteristic roots are confined to the half-plane Cγ : {λ ∈ C : Re(λ) < γ}.6
In conclusion, it is easy to observe that, surprisingly, despite its infinite-dimensional
nature, the quasipolynomial f given by (4) has only a finite number of roots in the
right-half plane C+. Finally, based on Rouché’s lemma (see, e.g., Ahlfors 1979), we
have:

Theorem 2.3 Under the assumptions that a0 is monic and that deg(a0) > deg(a1)
for all −→p ∈ Op, let λ0 be a characteristic root of f (·,−→p0, τ0) with multiplicity k.

6 For further discussions on such topics,we refer toMichiels andNiculescu (2014) and the references
therein.
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Then there exists a constant ε̄ > 0 such that for all ε > 0 satisfying ε < ε̄, there
exists a δε > 0 such that f (λ; −→p0 + �

−→p0, τ0 + �τ0), where �τ0 ∈ R, | �τ0 |< δε,
τ0 + �τ0 ≥ 0,�−→p0 ∈ R

np , ‖�−→p0‖2 < δε, has exactly k zeros (multiplicity taken into
account) in the disc {λ ∈ C : |λ − λ0| < ε}.
Remark 2.4 This result simply states that, in the retarded case, as long as the leading
coefficient of the polynomial a0 is not vanishing and the delay is positive, the charac-
teristic roots of the quasipolynomial (4) are continuous functions of the coefficients
of the polynomials a0 and a1 and of the delay τ , seen as a parameter. �

For the stability analysis purposes, it is important to know where the rightmost
characteristic root is located as well as the way it is affected by parameters change.
To answer to such questions, introduce now the so-called spectral abscissa function
(
−→p , τ ) ∈ Op × R+ 
→ αs(

−→p , τ ) ∈ R,

αs(
−→p , τ ) := sup

{
Re(λ) : f (λ,

−→p , τ ) = 0, −→p ∈ Op, τ ∈ R+
}
.

As a consequence of Theorem 2.3, we have two interesting properties that will be
exploited in the forthcoming sections:

(1) the function αs always exists, is bounded and continuous;
(2) as the delay and/or parameters vary, the multiplicity summation of the roots of

f in the open right-half plane (C+) can change only if a root appears on7 or
crosses the imaginary axis.

Remark 2.5 The assumption deg(a0) > deg(a1) for all parameters −→p ∈ Op is
essential to guarantee the continuity of the spectral abscissa function. Concerning
the second property, an elementary proof for general second-order DDEs of retarded
type (deg(a0)=2 and deg(a1) = 1) can be found in Cooke and Grossman (1982). �

Remark 2.6 As expected, the ideas above still hold in the commensurate delays
case (τi = iτ for i ∈ �1, r� and τ ∈ R+ in (3)). For incommensurate delays, by
introducing an appropriate notion of delay rays

{
r−→τ : r ∈ R+

}
, Datko (1978) proved

that the continuity of the spectral abscissa holds with respect to one parameter, that is
r ∈ R+. �

Remark 2.7 To construct the stability charts in the scalar and second-order linear
DDEs in the case when τ = 1, Pinney (1958) introduced the notion of (xr , kr )-root
plateau set, that is the set of parameters for which the characteristic function f has
kr and only kr roots “λi”, i ∈ �0, kr�, with Re(λi ) > xr . Thus, in the limit cases,
(0, 0)-root plateau set covers the stability regions, and the minimal value of xr of the
(xr , 0)-root plateau is the spectral abscissa notion introduced above. �

7 Such a case may occur in the case of neutral DDEs or if the coefficients of the quasipolynomials
depend on the delay parameters.
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Remark 2.8 (“Small” delays: retardedDDEs) Consider now the casewhen the only
parameter is the delay and assume that it is sufficiently small: τ = ε > 0. Under the
assumption that a1 �= 0, the use of Rouché’s Theorem allows to conclude that the
finite characteristic roots of f (·, ε) can be made arbitrarily close to the finite roots
of f (·, 0) and there exists an infinite number of roots whose real parts approach
negatively infinite.8 In particular, if the system free of delays has no roots on the
imaginary axis, when increasing the delay from 0 to 0+, although the system changes
its character from finite- to infinite-dimensional, the stability/instability of the delay-
free system is preserved for sufficiently small delays. �

Consider now (4) and assume that the leading coefficient of the polynomial a1 is
not vanishing for all (

−→p , τ ) ∈ Op × R+. The property mentioned above (Remark
2.8) does not necessarily hold in all the cases, and there are two particular situations
of interest: (i) neutral case (deg(a0) = deg(a1)) and (ii) delay-dependent coefficients
of the polynomials a0 and a1.

Remark 2.9 (“Small” delays: neutral DDEs) Although the individual characteristic
roots behave continuously with respect to the system’s parameters (see Michiels and
Niculescu 2014), the spectral abscissa function is, in general, not continuous. Recall
that a0 is a monic polynomial, deg(a0) = deg(a1), and denote by a1,m0 the leading
coefficient of the polynomial a1 and assume that a1,m0 ∈ O0, where O0 is an open
set not including the origin (0 /∈ O0). With these notations, we introduce the delay-
difference equation: y(t) + a1,m0 y(t − τ ) = 0 associated to the neutral DDE. The
corresponding characteristic function fD : C × O0 × R+ 
→ C writes as:

fD(λ, a1,m0 , τ ) = 1 + a1,m0e
−λτ .

As discussed in Michiels and Niculescu (2014), the delay-difference equation above
and the original neutral DDE are related by an interesting property. More precisely, a
necessary condition for the exponential stability of the trivial solution of the neutral
DDE is the exponential stability of the trivial solution of the corresponding delay-
difference equation. Now,

(i) if |a1,m0 | < 1,9 we have a similar property to the one valid in the retarded DDEs.
More precisely, as the delay and/or parameters vary, the multiplicity summation
of the roots of the characteristic function f in the open right-half plane (C+) can
change only if a root appears on or crosses the imaginary axis.

(ii) if |a1,m0 | > 1, then increasing the delay from 0 to 0+ generates instability even
in the case when the system free of delay is stable.

For further discussions on such topics, we refer to Hale and Verduyn Lunel (1993).
Finally, Sect. 7 includes a few illustrative examples. �

8 For a simple and elementary proof, we refer to Shaughnessy and Kashiwagi (1969).
9 It simply guarantees the exponential stability of the trivial solution of the corresponding delay-
difference equation.
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Remark 2.10 (“Small” delays: delay-dependent coefficients) Such a case may
appear in control engineering when the controller includes the derivative of a signal
that is not necessarily available formeasurement. For instance, in the case of classical
proportional-derivative (PD) controllers, the derivative action can be implemented by
using a (standard) Euler delay-difference approximation scheme. The corresponding
closed-loop system may be improperly-posed in the sense that the implementation
scheme may lead to instability for infinitesimal delay values in constructing the
delay-difference approximation even if the initial PD-controller stabilizes the origi-
nal system. Such a case is illustrated in Mendéz-Barrios et al. (2022), where it was
shown that if the relative degree of the system is one,10 then the derivative gain may
be at the origin of such a lack of continuity.11 For further discussions on DDEs with
delay-dependent coefficients, we refer to Chi et al. (2018a, b) and the references
therein. �

By taking into account all the observations and comments above, it appears that
the stability analysis of DDEs whose characteristic function is given by f in (4) can
be reduced to the following three steps:

(a) detecting all the characteristic roots “iωc” (of f ) located on the imaginary axis
(iR). Such roots are called critical (characteristic) imaginary roots. The delays
associated to a critical “iωc” are called critical delays andwemay have an infinite
number of critical delays for the same imaginary root. Finally, a pair (λ, τ ) is
called a critical pair if λ is a critical imaginary root and τ corresponds to a
critical delay;

(b) understanding and characterizing the behavior of the characteristic roots located
on iR with respect to the parameters’ change;

(c) counting the roots crossing fromC− toC+ and vice versa by taking into account
the root multiplicity.

Due to the infinite-dimensional nature of the system, it is clear that the steps (a)–(c)
are not trivial even in the case when we consider one parameter - the delay. When the
delay τ ≡ 0, the characteristic roots location problem reduces to the analysis of the
spectrum location of a polynomial. Next, in the simplest case when the system free
of delay has not roots located on iR, increasing the delay from 0 to 0+ will conserve
the distribution of the roots located on C+ as long as, there are no roots “crossing”
the imaginary axis. Assume further that the system free of delays is exponentially
stable. In such a situation, when increasing the delays, the stability property holds as
long as there are no characteristic roots “arriving” on the imaginary axis from C−.
These intuitive ideas are at the origin of a lot of theoretical developments in the open
literature as briefly explained in the sequel.

For a better understanding of the main ideas of the so-called τ -partition method
and related frequency-sweeping tests, consider now the (strictly proper) linear time-

10 The relative degree is defined by deg(a0) − deg(a1).
11 More precisely, in this configuration (i.e., improperly-posed approximation), a characteristic root
appears on the real axis in C+ from +∞ when the delay is increased from 0 to 0+.
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invariant (LTI) single-input/single-output (SISO) system �(A, b, cT ) with the state-
space representation:

� :
{
ẋ(t) = Ax(t) + bu(t)

y(t) = cT x(t),

where the transfer function Hyu(λ) of � writes as Hyu(λ) = a1(λ)/a0(λ), for some
appropriate real polynomials ai , i ∈ �0, 1�, whose coefficients are given by the
“entries” (A, b, cT ) of �. Assume now that � is controlled by the feedback law
u(t) = −ky(t − τ ) with k ∈ O0 ⊂ R

∗. Under the assumption that k and τ are the
parameters then the stability of the system in closed-loop reduces to the anal-
ysis of the location of the spectrum of the quasipolynomial f (·, k, τ ) given by
f (λ, k, τ ) := a0(λ) + ka1(λ)e−λτ .
For the sake of brevity, assume that a0 and a1 are coprime. If the gain is k = 1, f

simply rewrites as f (λ; τ ) := a0(λ) + a1(λ)e−λτ . Surprisingly, if

|a1(iω)| < |a0(iω)|, (5)

for all ω ∈ R, then σs( f ) ∩ iR = ∅. By using Theorem 2.3, it is easy to observe that
the characteristic roots of f can not migrate from C− to C+ or vice-versa if τ is
increased from 0 to +∞. Such a system is called hyperbolic and it has an interesting
property: the location of the spectrum of the polynomial a0 + a1 will define the
stability/instability of the system for all delays τ ∈ R+. For a deeper discussion on
such topics, see, e.g., Niculescu (2001) (commensurate delays) and Hale et al. (1985)
(more general setting).

If 0 ∈ σs( f (·, 0)), then f (0, τ ) = 0, ∀τ ∈ R+. Thus, the origin is an invariant
root.12 Now, if 0 /∈ σs( f (·, 0)), checking (5) for ∀ω ∈ R

∗+ is sufficient to guarantee
system’s hyperbolicity. Assume now that σs( f (·, 0)) ⊂ C−. As observed by Tsypkin
(1946), the closed-loop system is delay-independently stable if and only if the condi-
tion (5) holds for all ω ∈ R

∗+. It can be simply checked from the plot of z1, where the
mapping ω 
→ z1(ω) := −a0(iω)/a1(iω), forω ∈ R

∗+ defines the simplest frequency
sweeping curve.

Example 2.11 (Scalar case) Consider the following DDE:

ẋ(t) = −ax(t) − bx(t − τ ),

wherea, b ∈ R. The characteristic function is given by f (λ, τ ) = a0(λ) + a1(λ)e−τλ

with a0(λ) = λ + a and a1(λ) = b. It is easy to see that:

sup
ω∈R∗+

|a1(iω)|
|a0(iω)| = sup

ω∈R∗+

|b|√
ω2 + a2

= |b|
|a| ,

12 The common roots a0 and a1 on iR are also invariant roots w.r.t. τ .
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and thus if |a| > |b|, the system is hyperbolic. Consider now the case |a| = |b|. If
b = −a and b �= 0, then f has a double root at the origin and the hyperbolicity is
lost. Furthermore, the root at the origin is invariant with respect to the delay. Now, if
a = b �= 0, the system is still hyperbolic.

Based on the remarks above, if b ∈ R
∗ and |a| ≥ |b|, we have that the system

is stable (unstable) independent of the delay if and only if a + b > 0 (a + b < 0).
Finally, it is worth mentioning that in the delay-independent instability case, the
characteristic function has one (and only one) unstable real root moving on the
positive real axis as long as τ varies. �

Consider now the case when the system above is not hyperbolic. Then there
exists at least one value ωc ∈ R, such that f (iωc, τ ) = 0 for some critical delay
τ = τc ∈ R+. The real “ωc” is called crossing frequency, and the collection of all
“ωc” defines the crossing set:

�c := {ω ∈ R : |a0(iω)| = |a1(iω)|} .

At this stage, there are two important remarks:

(i) first, card(�c) is finite, and its computation reduces to the computation of the
positive roots of an appropriate polynomial;

(ii) second, the knowledge of a crossing frequency ωi,c ∈ �c allows to compute the
minimal critical delay value τ ∗

i,c ∈ R+13 generating the set of critical (crossing)
delays

T (ωi,c) :=
{
τ ∗
i,c + 2kπ

ωc
≥ 0, k ∈ Z

}
.

Indeed, if we formally denote z = e−iωτ , then f (iω, τ ) = a0(iω) + a1(iω)e−iωτ

can be interpreted as a two-variate polynomial fa(ω, z) = a0(iω) + a1(iω)z with
z on the unit circle of the complex plane.14 Thus, the “quantity” (if it exists)
z = −a0(iω)/a1(iω)may lead to a solution of fa at some frequency ωc if |a1(iωc)| =
|a0(iωc)|, condition naturally related to the definition of the crossing (frequency) set
above. For a deeper discussion of the remarks (i)–(ii) above, we refer to Michiels
and Niculescu (2014).

Under the assumption of a simple characteristic root ω0 ∈ �c for some delay τ0 ∈
T (ω0), Cooke and Grossman (1982) discussed the behavior of the characteristic root
iω0 for values close to τ0 by using the “quantity” sc := sgn(Re(dλ/dτ )) evaluated a
λ = iω0 and τ = τ0. Such an ideawas further refined in Cooke and van denDriessche
(1986) and largely used in the open literature during the last 30 years.More precisely,
if the characteristic root located on the imaginary axis moves towards instability
(stability), we will have a stability switch (reversal).15 Surprisingly, in the case of

13 Such a value always exists and it may be 0.
14 It is easy to see the way the roots of f and fa are linked. For instance, for any pair (iωs , τs) ∈
R

∗+ × R
∗+ satisfying f (iωs , τs) = 0, fa(ωs , zs) = 0, where zs = e−iωs , etc.

15 To the best of the authors’ knowledge, during the 70s, the notions of (stability) switches/reversals
appear in Cooke’s publications.
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simple imaginary roots, the “quantity” sc above does not include any information on
the delay parameter. In fact, the derivative of the function ga : R 
→ R defined by
ga(ω) := |a0(iω)|2 − |a1(iω)|2 evaluated at the crossing frequency ω = ωc indicates
the crossing type: switch (reversal) if g′(ωc) > 0 (< 0).

2.3 Stability Problem and the Delay Parameter

Following the notation used in the literature (see, e.g., Lee and Hsu 1969; Olgac
and Sipahi 2002), denote by NU (τ0) ∈ N the number of the characteristic roots
located in C+ for the delay τ = τ0. According to Theorem 2.1, the (linear) system is
asymptotically stable for a delay value τ = τ0, if and only if there are no characteristic
roots located on the imaginary axis and NU (τ0) = 0. In the commensurate delays
case, our objective is to obtain its exhaustive stability set for the delay parameter τ ,16

which is referred to as the complete stability problem. Based on the root continuity
property mentioned in the previous paragraphs, the complete stability analysis can
be fulfilled in two steps by solving two problems:

Problem 1: How to exhaustively detect the critical imaginary roots and the cor-
responding critical delays?

For a critical pair (λα, τα,k), denote by n ∈ N+ the multiplicity of λα at τα,k .
Clearly, a critical imaginary root is called a simple (multiple) critical imaginary root
if the corresponding index n = 1 (n > 1). In other words, the index n simply implies
that for λ = λα and τ = τα,k ,

fλ0 = · · · = fλn−1 = 0, fλn �= 0.

Next, introduce the index g ∈ N+ at (λα, τα,k), by which we may artificially treat
τα,k as a g-multiple root for f (λ, τ ) = 0 when λ = λα, having the property that
when λ = λα and τ = τα,k ,

fτ 0 = · · · = fτ g−1 = 0, fτ g �= 0.

Remark 2.12 Unlike for the critical imaginary roots, the analytic computation for
the other characteristic roots is generally very difficult. �

It is relatively simple to solve Problem 1 and various effective methods are avail-
able in the literature. In Sect. 3, a method based on the frequency-sweeping curves
is discussed. Once Problem 1 is solved, we have to analyze the variation of a critical
imaginary root as τ increases near the corresponding critical delay (value), called
the asymptotic behavior of a critical imaginary root.

Problem 2: How to analyze the asymptotic behavior of the critical imaginary
roots w.r.t. the corresponding critical delays?

16 I.e., the whole set for τ ≥ 0 such that NU (τ ) = 0 excluding the possible critical points.
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Remark 2.13 Owing to the conjugate symmetry of the spectrum, it suffices to con-
sider only the critical imaginary roots with non-negative imaginary parts. �

Remark 2.14 The critical delays divide the positive τ -axis into infinitely many
subintervals and within each subinterval NU (τ ) is constant. Solving Problem 2
allows monitoring NU (τ ) as τ increases. For instance, consider a subinterval τ ∈
(τ ′, τ ′′) where τ ′ and τ ′′ are two positive critical delays such that there are no other
critical delays inside this subinterval. If the value of NU (τ ′ − ε) is known and the
asymptotic behavior of the critical imaginary roots at τ = τ ′ is properly studied,
we may precisely know the value of NU (τ ′ + ε). According to the root continuity
argument, for any τ ∈ (τ ′, τ ′′), NU (τ ) = NU (τ ′ + ε). �

Problem 2 is rather involved, and is moreover divided into two sub-problems, as
follows:

Problem 2.1: How to analyze the asymptotic behavior of a critical imaginary
root at a critical delay?

To such an end, introduce some further notations. Suppose that (α,β) (withβ > 0)
is a critical pair with the index n. Near this critical pair, there exist n (characteristic)
rootsλi (τ ) (countedwithmultiplicities) continuousw.r.t. τ satisfyingα = λi (β), i =
1, . . . , n. Under some perturbation ε (−ε) on β, the n roots are expressed by λi (β +
ε) (λi (β − ε)), i = 1, . . . , n. Denote the number of unstable roots among λ1(β +
ε), . . . ,λn(β + ε) (λ1(β − ε), . . . ,λn(β − ε)) by NUα(β+) (NUα(β−)).With these
notations, we define:

�NUα(β)
�= NUα(β+) − NUα(β−)

Here, �NUα(β) stands for the change of NU (τ ) caused by the variation of the
critical imaginary root λ = α as τ increases from β − ε to β + ε.

Remark 2.15 The function NU introduced above is similar to the so-called stability
indicative function introduced in the 60s by Kashiwagi (1965). To the best of the
authors’ knowledge, under the assumption of simple characteristic imaginary roots,
the first systematic discussion on the number of unstable roots by using the continuity
of the roots with respect to the delay can be found in Kashiwagi’s works. �

Remark 2.16 If the system (1) free of delays has original critical imaginary roots
λα = iωα, then τα,0 = 0. In this case, the asymptotic behavior of the critical pair
(λα, τα,0) refers to how the original critical imaginary root λα varies as τ increases
from 0. This information is necessary for computing NU (+ε) (as it will be discussed
in Theorem 6.1). �

The asymptotic behavior of a critical imaginary root at a critical delay can be
properly derived if the associated Puiseux series17 can be obtained (see, for instance,
Sect. 4 below). As a critical imaginary root has an infinite number of critical delays

17 For an elementary introduction to Puiseux series, we refer to Casas-Alvero (2000).
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(see Remark 3.5 below), we need to solve the second sub-problem of Problem 2
described as follows:

Problem 2.2:How to analyze the asymptotic behavior of a critical imaginary root
w.r.t. all the infinitely many positive critical delays?

To solve this problem, the invariance property is essential (see Sect. 5 below).

3 Frequency-Sweeping Curves

We start this section by proposing the procedure to generate the frequency-sweeping
curves. First, the characteristic function f (λ, τ ) can be transformed by letting z =
e−τλ into a two-variate (auxiliary) polynomial:

pa(λ, z) =
q∑

i=0

ai (λ)zi .

Frequency-Sweeping Curves: sweep ω ≥ 0 and for each λ = iω we have q val-
ues of z such that p(iω, z) = 0 (denoted by z1(iω), . . . , zq(iω)). Thus, we obtain q
frequency-sweeping curves �i (ω): |zi (iω)| versus ω, i ∈ �1, q�.

Denote by �1 the line parallel to the abscissa axis with ordinate 1. If (λα, τα,k) is a
critical pair with index g, then g frequency-sweeping curves intersect �1 at ω = ωα

and the frequency ωα is called a critical frequency.
Such a simple construction shows that Problem 1 can be effectively solved by

appropriately using the frequency-sweeping curves.

Remark 3.1 For each given ω, p(iω, z) = 0 is a polynomial equation of z. It can
be (numerically) solved by using the MATLAB command roots. �

Remark 3.2 Consider now the case when some curves �i (ω) intersect �1 at ω = 0.
We may have two situations: z = 1 and z �= 1. In the first case, we have an invariant
root at the origin (for all τ ∈ R+). In the second case, λ = 0 is not a characteristic
root and this point should be ignored. �

Remark 3.3 As expected, if no critical imaginary roots are detected from the
frequency-sweeping curves, the system is hyperbolic and the property holds inde-
pendently of the delay value. �

Example 3.4 Consider again the scalar DDE in Example 2.11. One can easily obtain
the same conclusions by observing the frequency-sweeping curves. First, the system
is asymptotically stable when τ = 0 under the condition a + b > 0. Second, the
frequency-sweeping curve does not intersect the line �1 for any τ > 0 under the
condition a ≥ |b|. It is worth noting that, the frequency-sweeping curve intersects
the line �1 at ω = 0 (with the corresponding z = −1) if a = b > 0. However, as
discussed in Remark 3.2, λ = 0 is not a critical imaginary root. For illustration,
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Fig. 3 Example 3.4: frequency-sweeping curves�1 versusω for b = 1; left: a = 2 and right: a = 1

the frequency-sweeping curves in the delay-independent stability cases are given
respectively in Fig. 3 (left: strong; right: weak). �

Consider now that the system is not hyperbolic. In this case, without any loss
of generality, suppose there are “u” critical pairs for p(λ, z) = 0: (λ0 = iω0, z0),
(λ1 = iω1, z1), . . ., (λu−1 = iωu−1, zu−1) where ω0 ≤ ω1 ≤ · · · ≤ ωu−1. Notice that
two critical pairsmay share the same critical imaginary root. Once all the critical pairs
(λα, zα), α = 0, . . . , u − 1, are found, all the critical pairs (λ, τ ) can be obtained.
For instance, for each critical imaginary root λα, the corresponding critical delays

are given by τα,k
�= τα,0 + 2kπ

ωα
, k ∈ N, where τα,0

�= min{τ ≥ 0 : e−τλα = zα}. Thus,
the pairs (λα, τα,k), k ∈ N define a set of critical pairs associated to (λα, zα).

Remark 3.5 A critical imaginary root λα is invariant with respect to the delay
shift 2π

ωα
.18 However, the multiplicity of a critical imaginary root is not necessarily

conserved by the delay shift. �

Example 3.6 Consider the system (Example 5.11 in Gu et al. 2003)

ẋ(t) =
(

0 1
−2 0.1

)
x(t) +

(
0 0
1 0

)
x(t − τ ),

for which f (λ, τ ) = λ2 − 0.1λ + 2 − e−τλ and pa(λ, z) = −z + λ2 − 0.1λ + 2.
The frequency-sweeping curve can be easily generated by using MATLAB.19 For
instance, inMATLAB environment, for each givenω, we assign its value to a variable
w. The solution of z1(iω) for p(iω, z) = 0 can be obtained by using the command
roots([-1,(w* i)ˆ 2-0.1*w*i+2]).

18 More precisely, if λα is a critical imaginary root for τ = τα,0, then the system has a critical
imaginary root λα for all τ = τα,0 + k 2π

ωα
, k ∈ N.

19 Or other software for scientific computation.
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Fig. 4 Example 3.6:
frequency-sweeping curve
�1 versus ω
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The frequency-sweeping curve is depicted in Fig. 4. Two critical pairs (λ, z) for
pa(λ, z) = 0 are found from the frequency-sweeping curve: (λ0 = 1.0025i, z0 =
0.9950 − 0.1003i) and (λ1 = 1.7277i, z1 = −0.9850 − 0.1728i). For the first crit-
ical pair, we calculate the corresponding critical delays such that e−τλ0 = z0 =
e−(0.1004+2kπ)i. More precisely, one gets: τ0,k = 0.1002 + 2kπ

1.0025 , k ∈ N. Similarly,
for the second critical pair, the associated critical delays can be computed straight-
forwardly from the condition: e−τλ1 = z1 = e−(2.9680+2kπ)i. We have that τ1,k =
1.7178 + 2kπ

1.7277 , k ∈ N. Thus, the τ -axis is divided into intervals: [0, 0.1002),
(0.1002, 1.7178), (1.7178, 5.3546), (5.3546, 6.3676), . . . , and NU (·) is constant
in each such intervals. �

4 Asymptotic Behavior of a Critical Imaginary Root at a
Critical Delay

As f (λ, τ ) (3) is a quasipolynomial, it is analytical w.r.t. the variables λ and τ .
Thus, in a small neighborhood of a critical pair (λα, τα,k), the characteristic function
f (λ, τ ) can be expanded as a convergent power series of the form:

f (λ, τ ) = f (λα, τα,k) + ( fλ�λ + fτ�τ ) + fλλ(�λ)2+2 fλτ �λ�τ+ fττ (�τ )2

2!
+ fλ3 (�λ)3+3 fλ2τ (�λ)2�τ+3 fλτ2�λ(�τ )2+ fτ3 (�τ )3

3! + · · · ,
(6)

where λ = λα + �λ and τ = τα,k + �τ . The expression (6) is a standard two-
variable Taylor expansion of f (λ, τ ). Next, we may reformulate (6) in a more con-
venient form. Since f (λ, τ ) = f (λα, τα,k) = 0, we have:
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0 = ( fλ�λ + fτ�τ ) + fλλ(�λ)2+2 fλτ �λ�τ+ fττ (�τ )2

2!
+ fλ3 (�λ)3+3 fλ2τ (�λ)2�τ+3 fλτ2�λ(�τ )2+ fτ3 (�τ )3

3! + · · ·. (7)

Recall the definition of the index n: fλ = · · · = fλn−1 = 0 and fλn �= 0. As a result,
from the right-hand side of (7), for a critical pair (λα, τα,k), we now obtain a series
expression F(λα,τα,k )(�λ,�τ ) describing the relation between�λ and�τ as follows:

F(λα,τα,k )(�λ,�τ ) =
∞∑

i=n

Li0(�λ)i +
∞∑

i=0

(�λ)i
∞∑

l=1

Lil(�τ )l = 0, (8)

where Lil = fλi τ l
(i+l)!

(i+l
i

)
.20 In addition, in view of the index g, we have that L01 =

· · · = L0(g−1) = 0 and L0g �= 0. From the root loci, it is easy to observe that
for a �τ , �λ must have n solutions (multiplicity taken into account) satisfying
F(λα,τα,k )(�λ,�τ ) = 0 and �λ → 0 as �τ → 0:

Theorem 4.1 Consider the DDE (1) and assume λα �= 0 is an n-multiple imaginary
root for τ = τα,k . If τ is perturbed at τα,k by �τ , the variation �λ of λ at λα

corresponds to n Puiseux series solutions with respect to �τ . Any Puiseux series
solution converges in a neighborhood of (�λ = 0,�τ = 0).

Algorithm 1 (Puiseux series computation)
Step 0: Let α0 = 0 and β0 = g.
Step 1: Define μ = max{ β0−β

α−α0
> 0 : Lαβ �= 0,α > α0,β < β0}, where the coef-

ficients Lαβ are defined in (8).
Step 2: If there exists a μ, go to Step 3. Otherwise, skip to Step 5.
Step 3: Collect all the non-zero Lαβ satisfying β0−β

α−α0
= μ to form a set

{
Lα1β1(�λ)α1(�τ )β1 , Lα2β2(�λ)α2(�τ )β2 , . . .

}
,

with the order α1 > α2 > . . . We find a set of Puiseux series

�λ = C̃μ,l(�τ )μ + o((�τ )μ), l = 1, . . . ,α1 − α0,

where the coefficients C̃μ,l are the solutions of the polynomial equation

Lα1β1C
α1−α0 + Lα2β2C

α2−α0 + · · · + Lα0β0 = 0.

Step 4: Let α0 = α1,β0 = β1 and return to Step 1.
Step 5: The algorithm stops.

Theorem 4.2 For an n-multiple non-zero critical imaginary root of the DDE (1),
all the Puiseux series can be obtained by Algorithm 1.

20 Here,
(i+l

i

)
denotes the number of i-combinations from a set of i + l elements.
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Remark 4.3 It is known that a simple critical imaginary root’s asymptotic behavior
corresponds to a Taylor series and we may treat them as a specific type of Puiseux
series. In addition, the Puiseux series for a multiple critical imaginary root may
include a Taylor series (in the case of more than one conjugacy class), see e.g.,
Examples 4.3 and 4.4 in Li et al. (2015). �

Remark 4.4 In general, when �τ = ±ε, the first-order terms of the Puiseux series
do not contain purely imaginary numbers, and are sufficient for the asymptotic behav-
ior analysis. However, there exists a few cases, called degenerate, when such a prop-
erty does not hold and, to conclude, higher order terms are necessary. In this case,
we may still invoke Algorithm 1 in an iterative manner to obtain them. For a deeper
discussion, we refer to Sect. 4.3 of Li et al. (2015). �

For an n-multiple critical imaginary root, we may invoke n independent Puiseux
series. Unfortunately, such expressions are not always simple to use. However, they
can be expressed in a more compact form if we introduce the concept of conjugacy
class. Roughly speaking, for n Puiseux series belonging to one conjugacy class, one
expression of Puiseux series with polydromy order n will be sufficient to describe
all of them (see, e.g., Sect. 4.4 of Li et al. (2015) for further details).

Consider the critical pair (λα, τα,k) with τα,k > 0. Then �NUλα
(τα,k) can be

accurately calculated by means of the Puiseux series. More precisely, we substi-
tute �τ = +ε (�τ = −ε) into the corresponding Puiseux series, and the value of
�NUλα

(τα,k) can be obtained by comparing the numbers of the values of the Puiseux
series in C+ when �τ = +ε (�τ = −ε).

Example 4.5 Consider a DDE with the characteristic function f (λ, τ ) = e−τλ +
3π
8 λ5 − π2

8 λ4 + 5π
4 λ3 − π2

4 λ2 + 7π
8 λ − π2

8 + 1. For τ = π, λ = i is a triple critical
imaginary root with g = 1. By invoking Algorithm 1, we have three expressions
of the Puiseux series �λ = (0.55 + 0.09i)(�τ )

1
3 + o((�τ )

1
3 ), �λ = (−0.36 +

0.43i)(�τ )
1
3 + o((�τ )

1
3 ), and �λ = (−0.20 − 0.53i)(�τ )

1
3 + o((�τ )

1
3 ). These

three expressions correspond to the same conjugacy class. Therefore, any one among
them is sufficient to fully express the asymptotic behavior of the triple critical imag-
inary root. For instance, we choose the expression �λ = (0.55 + 0.09i)(�τ )

1
3 +

o((�τ )
1
3 ).

The variation of the triple critical imaginary root as the delay increases from π to
π + ε (π − ε to π) can be deduced by substituting the three values of (+ε)

1
3 ((−ε)

1
3 )

into (�τ )
1
3 for this expression. One may notice that the value sets of the Puiseux

series by the substitution of the values of (+ε)
1
3 and (−ε)

1
3 do not change ifwe choose

the other two expressions of the Puiseux series. As a result, we see that the number of
the characteristic roots located in C+ decreases by 1 due to the asymptotic behavior
of the triple critical imaginary root, that is, �NUi(π) = −1 (see, for instance, the
root loci in Fig. 5). �

To summarize, we can now properly solve Problem 2.1.
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Fig. 5 Example 4.5: root loci Re(λ) versus Im(λ) and Re(λ) versus τ

5 Invariance Property of Asymptotic Behavior

In the sequel, we introduce some necessary notations concerning the asymptotic
behavior of frequency-sweeping curves. For further properties and deeper discus-
sions, we refer to Chap. 8 of Li et al. (2015).

Under the assumption λα �= 0, suppose that
{
(λα, τα,k), k ∈ N

}
is a set of critical

pairs with the index g. It is important to mention that g is a constant w.r.t. different k
(see Property 1.2 of Li et al. 2015). Then there must exist g frequency-sweeping
curves such that zi (iωα) = zα = e−τα,0λα intersecting �1 when ω = ωα. Among
such g frequency-sweeping curves, when ω = ωα + ε (ω = ωα − ε), we denote
the number of the frequency-sweeping curves above the line �1 by NFzα

(ωα + ε)
(NFzα

(ωα − ε)). Introduce now a new notation �NFzα
(ωα) as

�NFzα
(ωα)

�= NFzα
(ωα + ε) − NFzα

(ωα − ε).

Such a “quantity” describes the asymptotic behavior of the frequency-sweeping
curves at the critical frequency ω = ωα.

Theorem 5.1 For a critical imaginary root λα of the DDEs (1), it always holds that
�NUλα

(τα,k) is a constant �NFzα
(ωα) for all τα,k > 0.

The contribution of the above Theorem 5.1 is two-fold:

(i) First, it provides a simple method (observing the frequency-sweeping curves)
to compute �NUλα

(τα,k), without invoking the Puiseux series; in other words,
the change of �NUλα

(τα,k) as the delay is increased from τ−
α,k to τ+

α,k can be
expressed in terms of changes of frequency-sweeping curves w.r.t. the line �1.
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(ii) Second, an interesting invariance property is claimed: for a critical imaginary
root λα, since �NFzα

(ωα) is invariant w.r.t. the delay parameter, the same prop-
erty holds for �NUλα

(τα,k) for all τα,k > 0. Such a property is helpful to over-
come the peculiarity that a critical imaginary root corresponds to infinitely many
critical delays.

Remark 5.2 By using different arguments, the invariance property was addressed
by Olgac and Sipahi (2002) (simple critical roots on imaginary axis: n = 1) and by
Jarlebring and Michiels (2010) (case n = 2, g = 1). �
Example 5.3 Consider a DDE with the characteristic function f (λ, τ ) =∑4

i=0 ai (λ)e−iτλ where a0(λ) = 15
8 π2λ6 + ( 114 π − 15

8 π2)λ4 + 9
2πλ3 + (1 + 1

2π −
75
8 π2)λ2 + (3 + 9

2π)λ + 1 − 9
4π − 45

8 π2, a1(λ) = 5
4πλ5 + 11

2 πλ4 + (1 + 7
2π)λ3 +

(π + 7)λ2 + (11 + 9
4π)λ + 4 − 9

2π, a2(λ) = 5
4πλ5 + 11

4 πλ4 + (3 − π)λ3 + (13 +
1
2π)λ2 + (15 − 9

4π)λ + 6 − 9
4π, a3(λ) = 3λ3 + 9λ2 + 9λ + 4, and a4(λ) = λ3 +

2λ2 + 2λ + 1.
We study the asymptotic behavior of critical pairs (i, (2k + 1)π), with g = 2. The

frequency-sweeping curves are given in Fig. 6. According to Theorem 5.1, it is easy
to see from Fig. 6 that �NUi((2k + 1)π) = 0 for all k ∈ N. In fact, the asymptotic
behavior of critical pairs (i, (2k + 1)π) is complex. The multiplicity n of the critical
root λ = i is 2, 3, 4, 2, when τ is π, 3π, 5π, 7π, respectively. The Puiseux series, all
degenerate, are:

⎧
⎨

⎩

�λ = 0.1592i�τ + (0.5371 − 0.3138i)(�τ )2 + o((�τ )2),

�λ = 0.0796i�τ + 0.0063i(�τ )2 + 0.0421i(�τ )3

+(0.0362 + 0.0137i)(�τ )4 + o((�τ )4),
⎧
⎨

⎩

�λ = (0.0385 + 0.0698i)(�τ )
1
2 + o((�τ )

1
2 ),

�λ = 0.1592i�τ + 0.0253i(�τ )2 + 0.6696i(�τ )3

+(1.1585 + 0.4376i)(�τ )4 + o((�τ )4),
{

�λ = −0.1592i�τ + (−05371 + 03644i)(�τ )2 + o((�τ )2),

�λ = −0.0988i(�τ )
1
3 + (−00356 + 00028i)(�τ )

2
3 + o((�τ )

2
3 ),

⎧
⎨

⎩

�λ = −0.0796i�τ + (−0.0671 + 0.0487i)(�τ )2 + o((�τ )2),

�λ = −0.1592i�τ + 0.0253i(�τ )2 + 0.6615i(�τ )3

+(−1.1585 − 0.4363i)(�τ )4 + o((�τ )4),

for k = 0, 1, 2, and 3, respectively. The above Puiseux series are consistent with the
analysis by Theorem 5.1. Moreover, Theorem 5.1 significantly reduces the compu-
tation burden for asymptotic behavior analysis, as the Puiseux series for this system
are rather involved.21 �

Thus, Problem 2.2 is appropriately solved.

21 For instance, in our case, for each k, the Puiseux series has multiple conjugacy classes; next,
for each k, the Puiseux series involves many degenerate terms, and finally, the structure of Puiseux
series is variable w.r.t. different k.
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Fig. 6 Example 5.3:
frequency-sweeping curves
�1, �2, �3, �4 versus ω
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6 A Unified Frequency-Sweeping Approach for Complete
Stability Problem

With the results above, we can now systematically solve our problem.

6.1 Computation of NU(+ε)

As a first step, we keep track22 of NU (τ ) from τ = +ε.

Theorem 6.1 If the system (1) has no critical imaginary roots when τ = 0,
NU (+ε) = NU (0). Otherwise, NU (+ε) − NU (0) equals to the number of the val-
ues in C+ of the Puiseux series for all the corresponding critical imaginary roots
when τ = 0 with �τ = +ε.

Example 6.2 Consider the DDEwith the characteristic function f (λ, τ ) = e−3τλ −
3e−2τλ + 3e−τλ + λ4 + 2λ2. It is easy to see that f (λ, 0)has four characteristic roots.
More precisely, λ = i (λ = −i) is a double critical imaginary root. We may have the
Puiseux series for the critical pair (i, 0):

�λ = (0.3536 + 0.3536i)(�τ )
3
2 + o((�τ )

3
2 ). (9)

Substituting �τ = +ε into (9) indicates that as τ increases from 0, the double root
i splits into two branches towards C− and C+ respectively, as seen in the root loci
given in Fig. 7. Thus, by using the conjugate symmetry property, NU (+ε) = +2. �

22 Since some DDEs may have critical imaginary roots when τ = 0, one needs to consider a suffi-
ciently “small” delay value ε > 0.
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Fig. 7 Example 6.2: Re(λ)

versus τ
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6.2 Explicit NU(τ ) Expression

The invariance property allows concluding with the following:

Theorem 6.3 For any τ > 0 which is not a critical delay, NU (τ ) for the DDE (1)
can be explicitly expressed as

NU (τ ) = NU (+ε) +
u−1∑

α=0

NUα(τ ),

where

NUα(τ ) =
{
0, τ < τα,0,

2Uλα

⌈
τ−τα,0

2π/ωα

⌉
, τ > τα,0,

i f τα,0 �= 0,

NUα(τ ) =
{
0, τ < τα,1,

2Uλα

⌈
τ−τα,1

2π/ωα

⌉
, τ > τα,1,

i f τα,0 = 0.

6.3 Further Classification

With the explicit NU (τ ) expression, we may accurately study the stability for any
finitely long τ -interval. However, in order to thoroughly solve the complete stability
problem, we need to understand the way NU (τ ) changes when τ → ∞. To such an
end, we introduce the following notions: a critical frequency ωα is called a crossing
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(touching) frequency for a frequency-sweeping curve�i (ω), if�i (ω) crosses (touches
without crossing) the line �1 as ω increases near ωα. We have the following:

Theorem 6.4 If the frequency-sweeping curves have a crossing frequency, there
exists some delay value τ ∗ such that the time-delay system (1) is unstable for all
τ > τ ∗ and lim

τ→∞ NU (τ ) = ∞.

Theorem 6.5 The DDE (1) must fall in the following three types:

(i) Type 1: Crossing frequencies exist and lim
τ→∞ NU (τ ) = ∞.

(ii) Type 2: Crossing and touching frequencies do not exist and NU (τ ) = NU (0)
for all τ > 0.

(iii) Type 3: Crossing frequencies do not exist but touching frequencies exist and,
with the exception of critical delays, NU (τ ) is a constant for all τ ≥ 0.

Remark 6.6 ADDEof Type 2 is hyperbolic. Furthermore, if NU (0) = 0, it is stable
independent of the delay. Discussions on other cases can be found in Sect. 9.1 of Li
et al. (2015). �

6.4 Procedure for Complete Stability Analysis

We now present a unified approach for studying our stability problem:
Step 1: Generate the frequency-sweeping curves, through which we can detect all

the critical imaginary roots and the corresponding critical delays.
Step 2: For each critical imaginary root λα, we may choose any positive criti-

cal delay τα,k to compute �NUλα
(τα,k). Alternatively, according to Theorem 5.1,

we may directly have from the frequency-sweeping curves that �NUλα
(τα,k) =

�NFzα
(ωα).

Step 3: Compute NU (+ε) (by Theorem 6.1).
Step 4: Obtain the explicit expression of NU (τ ) as stated in Theorem 6.3 and

have a “NU (τ ) versus τ” plot.
TheDDE (1) is asymptotically stable for all delay intervals satisfying the condition

NU (τ ) = 0. In addition, according to Theorem 6.5, the behavior when τ → ∞ is
known.

Example 6.7 Consider again the system in Example 5.3.When τ = 0 there are three
characteristic roots located inC+ and no characteristic roots located in the imaginary
axis. According to Theorem 6.1, NU (+ε) = NU (0) = 3. The frequency-sweeping
curves are given in Fig. 6. Theorem 6.3 allows deriving NU (τ ) expression. The
variation of NU (τ ) is shown in Fig. 8. As crossing frequencies exist, in light of The-
orem 6.4, NU (τ ) = ∞ as τ → ∞. To resume, the system is unstable independent
of the delay, but without being hyperbolic. �
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Fig. 8 Example 6.7: NU (τ ) versus τ plot

Fig. 9 Example 6.8: stability regions in (b, τ ) parameter space

Example 6.8 Consider the DDE with the characteristic function

f (λ, τ ) = λ2 + a2 + be−τλ, a > 0.

It is easy to see that the system is asymptotically stable if and only if one of the
following cases occurs:

(i) −a2 < b < 0 and τ lies in the intervals ( 2kπ√
a2+b

, (2k+1)π√
a2−b

) for all k ∈ N such that
2kπ√
a2+b

< (2k+1)π√
a2−b

;

(ii) a2 > b > 0 and τ lies in the intervals ( (2k+1)π√
a2−b

, (2k+2)π√
a2+b

) for all k ∈ N such that
(2k+1)π√

a2−b
< (2k+2)π√

a2+b
.

For illustration of the cases (i)–(ii), take a = 1. The corresponding stability regions
are depicted in Fig. 9 (left) and (right), respectively. �
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Fig. 10 Example 6.9: frequency-sweeping curve �1 versus ω and NU (τ ) versus τ plot

Example 6.9 [Stability reversals: further insights] Consider the time-delay system
ẋ(t) = A0x(t) + A1x(t − τ ) with

A0 =

⎛

⎜⎜⎜
⎝

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
α0 α1 · · · α4

⎞

⎟⎟⎟
⎠

, A1 =

⎛

⎜⎜⎜
⎝

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
β0 β1 · · · β4

⎞

⎟⎟⎟
⎠

,

where α0 = π
2 − π2

8 − 1, α1 = −2 + π
2 , α2 = − π2

4 + π − 10, α3 = −3 + π
2 , α4 =

−π2

8 + π
2 − 8, β0 = −1, β1 = −1, β2 = −10, β3 = −1, and β4 = −8. The char-

acteristic function is f (λ, τ ) = λ5 − ∑4
�=0 α�λ

� − (
∑4

�=0 β�λ
�)e−τλ. In this case,

the frequency-sweeping curve is shown in Fig. 10 (left). First, we observe that
three sets of critical pairs are detected: (0.3340i, 5.8296 + 2kπ

0.3340 ), (i, (2k + 1)π),
and (2.2421i, 1.2525 + 2kπ

2.2421 ). Second, when τ = 0, all the characteristic roots are
located inC− and, according toTheorem6.1, NU (+ε) = NU (0) = 0.Then, accord-

ing to Theorem 6.3, we have NU (τ ) =
2∑

α=0

NUα(τ ), with:

NU0(τ ) =
{
0, τ < τ3,
2U0.3340i

⌈
τ−5.8296
18.8125

⌉
, τ > τ3,

NU1(τ ) =
{
0, τ < τ2,
2Ui

⌈
τ−π
2π

⌉
, τ > τ2,

NU2(τ ) =
{
0, τ < τ1,
2U2.2421i

⌈
τ−1.2525
2.8024

⌉
, τ > τ1.

where τ1 = 1.2525, τ2 = π and τ3 = 5.8296. In view of Theorem 5.1, the values for
U0.3340i, Ui, and U2.2421i are +1, −1, and +1, respectively. The variation of NU (τ )

is shown in Fig. 10 (right). The system has two and only two stability intervals of τ :
[0, 1.2525) and (π, 4.0549).
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Fig. 11 Example 6.9: Re(λ) versus Im(λ) and Re(λ) versus τ

One can observe an interesting phenomenon. The asymptotic behavior of the
critical pair (λ = i, τ = π) with the indices23 n = 2 and g = 1 corresponds to the
Puiseux series:

�λ = 0.1468i(�τ )
1
2 + (−0.0033 − 0.1473i)(�τ )

2
2 + o((�τ )

2
2 ).

In such a case, as τ increases from π − ε to π two root loci24 collide on the imaginary
axis iR and thereby a double critical imaginary root λ = i appears. As τ further
increases from π to π + ε the double root λ = i splits into two root loci, both towards
the left-half planeC−. Meanwhile, there are no other characteristic roots inC+ when
τ = π − ε, and hence the system regains asymptotic stability at τ = π + ε. Thus,
as τ increases near π, the appearance of the double critical imaginary root i brings
a stability reversal. In order to verify the above results, the “Re(λ) versus Im(λ)”
plot near (λ = i, τ = π) and the “Re(λ) versus τ” plot are given in Fig. 11 (left)
and (right), respectively. More relevant results as well as a finer characterization of
stability reversals can be found in Li et al. (2019a). �

7 Further Extensions of the Frequency-Sweeping Approach

The DDE (1) under consideration in the previous sections are all of retarded type. In
the sequel, we address some extensions of the proposed methodology. In particular,
we consider two classes: neutral delay differential equations (NDDE) and distributed
delay differential equations (DDDEs) with uniform distributions.

23 The critical root λ = i is a double critical imaginary root at τ = π.
24 In our case, one characteristic root is located in the right-half plane C+ and the other in the
left-half plane C−.
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7.1 Neutral Delay Differential Equations

Consider the following DDE of neutral type

ẋ(t) = Ax(t) + Bx(t − τ ) + Cẋ(t − τ ), (10)

where A ∈ R
r×r , B ∈ R

r×r , and C ∈ R
r×r , C �= 0 are constant matrices. The char-

acteristic function of system (10) is given by

fN (λ, τ ) = det(λI − A − Be−τλ − λCe−τλ),

which is a quasipolynomial of the form

fN (λ, τ ) = a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ, (11)

where ai (λ), i ∈ �0, q� are polynomials in λ with real coefficients. As mentioned
in the Preliminaries, compared to the retarded DDEs (1), the stability of the trivial
solution of the neutral DDEs (10) has an additional necessary condition: the stability
of the neutral delay-difference equation

x(t) − Cx(t − τ ) = 0. (12)

The other issues for studying the complete stability problem are similar25 and can be
directly addressed by using the frequency-sweeping approach. For a comprehensive
introduction to the spectral properties of linear neutral DDEs, one may refer to Gu
(2012) (see also Michiels and Niculescu 2014).

Lemma 7.1 The trivial solution of the neutral delay-difference equation (12) is
exponentially stable for any positive τ if and only if

ρ(C) < 1.

Theorem 7.2 The trivial solution of the neutral delay-difference equation (12) is
exponentially stable if and only if all the frequency-sweeping curves are above the
line �1 as ω → ∞.

Example 7.3 Consider the NDDEs of Example case 2 in Olgac and Sipahi (2004),
i.e., the system (10) with matrices:

A =

⎛

⎜⎜
⎝

0 1 −1 0
−3.346 −2.715 2.075 −2.007

−4 0 2 0
−3 0 0 6

⎞

⎟⎟
⎠ , B =

⎛

⎜⎜
⎝

−1 2 2 −1
3 3 −2 0
1 2 −1 1
2 3 1 −3

⎞

⎟⎟
⎠ ,

25 Both the characteristic functions (3) and (11) are standard quasipolynomials.
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Fig. 12 Examples 7.3 and 7.4: frequency-sweeping curves �1, . . . , �4 versus ω

C =

⎛

⎜⎜
⎝

0.2 −0.1 0.5 −0.1
−0.3 0.09 −0.15 −0.027

−3.333 0.1 0.2 1
−1 2 0.5 1

⎞

⎟⎟
⎠ .

The four eigenvalues of C are 0.0881 ± 0.8494i and 0.6569 ± 0.5284i. Hence,
ρ(C) < 1. This result can be directly obtained from the frequency-sweeping curves
shown in Fig. 12 (left), based on Theorem 7.2. We see that as ω → ∞, |zi (iω)| > 1,
i = 1, . . . , 4. �

Example 7.4 Consider the NDDEs of Example b2 in Sipahi and Olgac (2003), i.e.,
the system (10) with matrices:

A =

⎛

⎜⎜
⎝

12 10 −6 14
7 8 11 9

−5 7 3 3
6 2 3 4

⎞

⎟⎟
⎠ , B =

⎛

⎜⎜
⎝

−169 −276.85 −445.76 −675.75
−11 −46 −61 −83
249 360.05 1070.43 1431.02
81.65 158.32 127.61 230.85

⎞

⎟⎟
⎠ ,

C =

⎛

⎜⎜
⎝

−4 12 3 1
0 1 −2 6
12 −8 4 2
1.47 −10.09 −4.33 0.03

⎞

⎟⎟
⎠ .

The four eigenvalues ofC are 0.2816 ± 1.3641i, -1.3469, and 1.8138.Hence,ρ(C) >

1. In this case, from the frequency-sweeping curves, Fig. 12 (right), we observe that
as ω → ∞, |zi (iω)| < 1, i ∈ �1, 4�, result consistent with Theorem 7.2. �

Example 7.5 Consider the following first-order NDDE (Fu et al. 2006):

ẋ(t) + β ẋ(t − τ ) = −ax(t) − bx(t − τ ),
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where26 |β| < 1. The characteristic function is fN (λ, τ ) = λ + a + (βλ + b)e−τλ.
When τ = 0, λ = − a+b

1+β
. Thus, NU (0) = 0 (NU (0) = 1) if a + b > 0 (a + b < 0)

while there exists an invariant characteristic root at the origin (λ = 0) if a + b = 0.
As z = − λ+a

βλ+b , we have the following possible cases:

(i) If |b| > |a|, the frequency-sweeping curve intersects the line �1 at one and only
one critical frequency (there is one and only one critical imaginary root λ0 with
the critical delays τ0,k). More precisely, we have: (i.1) if a + b < 0, the NDDE is
unstable for all τ ≥ 0, and (i.2) if a + b > 0, there is one and only one stability
τ -interval: [0, τ0,0).

(ii) If |b| < |a|, the frequency-sweeping curve does not intersect the line �1 (there
is no critical imaginary root). Thus, the system is hyperbolic, delay-independent
stable (unstable) if a + b > 0 (a + b < 0).

If a = b �= 0, it is easy to observe that the frequency-sweeping curve intersects the
line �1 at ω = 0. However, since z = −1, λ = 0 is not a critical imaginary root. In
such a case, similarly to the case (ii) above, the NFDDE is delay-independent stable
(unstable) if a = b > 0 (a = b < 0). �.

7.2 Distributed Delay Differential Equations with Uniform
Distribution

For the retarded- and neutral-type DDEs discussed in the previous sections, the char-
acteristic functions f (λ, τ ) given by (3) include polynomials ai (λ), with i ∈ �0, q�,
(called coefficient functions), and are “standard” quasipolynomials. It is worth men-
tioning that the methodology developed above works for larger classes of coefficient
functions. For instance, if we assume that the coefficient functions ai (λ), i ∈ �0, q�
of f (λ, τ ) given by (3) are only required to be analytic in iR\{0}, we are able to
cover a number of epidemiological models described by integro-differential equa-
tions including delays in their representation. In the sequel, a characteristic function
(3) with this relaxed condition is called general quasipolynomial. Due to the partic-
ular way the frequency-sweeping approach makes use of the coefficient functions,
it can also be applied to general quasipolynomials. More precisely, we have the
following result.

Theorem 7.6 For a critical imaginary root λα of the characteristic equation
f (λ, τ ) = 0 where f (λ, τ ) is a general quasipolynomial, �NUλα

(τα,k) is a con-
stant �NFzα

(ωα) for all τα,k > 0.

26 The stability of the trivial solution of the neutral delay-difference equation is guaranteed. It is
worth mentioning that the case β = 0 corresponds to the retarded DDE and it was addressed in the
previous section.
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To show the effectiveness of the invariance property mentioned above, consider
the following Distributed Delay Differential Equation (DDDE):

ẋ(t) = A0x(t) + A1

∫ t

−∞
κ(t − θ)x(θ)dθ, (13)

where κ(θ) is an appropriate kernel function. Assume that κ(·) is a uniform-
distribution described by:

κ(θ) =
{ 1

d1+d2
, if τ − d1 < θ < τ + d2,

0, otherwise,
(14)

where τ ≥ d1 ≥ 0 and d2 ≥ 0. The characteristic function rewrites as:

f (λ, τ ) = det(λI − A0 − A1
e−(τ−d1)λ − e−(τ+d2)λ

(d1 + d2)λ
), λ �= 0.

Example 7.7 Consider the DDDE (13) with

A0 =
(

0 1
− π4+3π2−4

π2(π2+1)
2π

π2+1

)

, A1 =
(

1 0
π2+4

π(π2+1)
−1

π2+1

)

.

Let κ(θ) be the uniform distribution (14) with d1 = d2 = π
2 . Then the char-

acteristic function is a general quasipolynomial f (λ, τ ) = a0(λ) + a1(λ)e−τλ +
a2(λ)e−2τλ, with the coefficient functions a0(λ) = λ2 − 4

π2 − 2πλ−6
π2+1 + 1, a1(λ) =

(e− πλ
2 −e

πλ
2 )(π3λ−π2+4)

π2λ(π2+1) , and a2(λ) = − (e− πλ
2 −e

πλ
2 )

2

π2λ2(π2+1) . At τ = (2k + 1)π,λ = i is a critical
imaginary root: λ = i is double at τ = π while it is simple at all τ = (2k + 1)π, k ∈
N+. According to Theorem 7.6, we have that �NUi((2k + 1)π) = �NF−1(1) for
all k ∈ N, where �NF−1(1) = 0 as observed from the frequency-sweeping curves
shown in Fig. 13. Next, we verify the above result by invoking the Puiseux series for
critical pairs (i, (2k + 1)π), k ∈ �0, 2�:

�λ = (0.2290 + 0.2930i)(�τ )
1
2 + o((�τ )

1
2 ), k = 0,

�λ = −0.1592i�τ + (−0.0283 + 0.0324i)(�τ )2 + o((�τ )2), k = 1,

�λ = −0.0796i�τ + (−0.0035 + 0.0072i)(�τ )2 + o((�τ )2), k = 2,

and thus, we arrive at the same conclusion. �
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Fig. 13 Example 7.7:
frequency-sweeping curves
�1, �2 versus ω
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7.3 Delay Differential Equations with Multiple
Incommensurate Delays

Consider the following DDEs:

ẋ(t) = A0x(t) +
q∑

�=1

A�x(t − τ�), (15)

where τ� ≥ 0 (� ∈ �1, q�) are independent delays. The characteristic function for (15)
is f (λ,−→τ ) = det(λI − A0 − ∑q

�=1 A�e−τ�λ), and we are interested to characterize
the stability regions in the delay-parameter space.

A straightforward idea is to extend the mathematical results from the single
delay case to multiple delays. However, such an extension is not trivial. As in the
commensurate delays case, the core of the approach is the invariance property. To
address the problem, we may proceed “indirectly” by fixing (q − 1) delays and leav-
ing the remaining delay as a “free” parameter. Thus, for any combination −→τ �, we
may accurately compute NU (−→τ �) by using several times the frequency-sweeping
tests in appropriate manner. Schematically speaking, suppose that τk = τk,0 for all
k ∈ �1, q�\{i} are fixed and τi is the “free” parameter for some i ∈ �1, q�. Then the
corresponding characteristic function can be rewritten in the form f (λ, τi ) given by
(3) where the coefficient functions ah(λ) (h ∈ �1, q�) can be seen as q-multivariate
polynomials of λ and (q − 1) variables zk = e−τk,0λ, with k ∈ �1, q�\{i}, for which
we can apply the frequency-sweeping approach.

Example 7.8 Consider aDDE including two delays τ1 and τ2, with the characteristic
function f (λ, τ1, τ2) = 1

π2 + 2 + (1 − 3
π
)λ + λ2 + (( 2

π2 + 3) + (3 − 4
π
)λ)e−τ1λ +

(( 1
π2 + 3) + (3 − 1

π
)λ)e−τ2λ + (1 + λ)e−(τ1+τ2)λ. Suppose τ2 = 2π is fixed and τ1

is the free delay parameter denoted by τ . Then f can be expressed by the
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Fig. 14 Example 7.8: frequency-sweeping curve �1 versus ω and Re(λ) versus Im(λ)

general quasipolynomial f (λ, τ ) = a0(λ) + a1(λ)e−τλ with the coefficient func-
tions a0(λ) = 1

π2 + 2 + (1 − 3
π
)λ + λ2 + (( 1

π2 + 3) + (3 − 1
π
)λ)e−2πλ and a1(λ) =

(( 2
π2 + 3) + (3 − 4

π
)λ) + (1 + λ)e−2πλ. At τ = π, λ = i is a triple critical root.27

According to Theorem 7.6, �NUi((2k + 1)π) = �NF−1(1) = +1 for all k ∈ N,
where�NF−1(1) is obtained from the frequency-sweeping curve (Fig. 14 (left)). To
verify the result, the Puiseux series for critical pairs (i, (2k + 1)π), k ∈ �0, 2� write
as:

�λ = (0.3801 − 0.2846i)(�τ )
1
3 + o((�τ )

1
3 ), k = 0,

�λ = −0.1592i�τ + 0.0253i(�τ )2 + (0.0021 − 0.0096i)(�τ )3

+o((�τ )3), k = 1,

�λ = −0.0796i�τ + 0.0063i(�τ )2 + (0.0001 − 0.0009i)(�τ )3

+o((�τ )3), k = 2.

To further illustrate the asymptotic behavior of the triple root i, the root loci near the
critical pair (i,π) is depicted in Fig. 14 (right). �

8 Applications

In this section, we present two case studies from Life Sciences: neural networks and
Lotka-Volterra systems.

27 It is worth mentioning that λ = i is simple at all τ = (2k + 1)π, k ∈ N+.
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8.1 Neural Network Dynamical Systems

To illustrate our approach for the stability analysis of neural networks with delays,
we present an example borrowed from Li et al. (2018b). Consider the Bidirectional
Associative Memory (BAM) neural network given by:

⎧
⎪⎨

⎪⎩

ẋ1(t) = −μ1x1(t) +
4∑

i=1

ci1 fi (xi (t − τ2)),

ẏk−1(t) = −μk yk−1(t) + c1k fk(x1(t − τ1)), k ∈ �2, 4�.

(16)

where x1(t) and y1(t), y2(t), y3(t) denote respectively the state of the neurons in the
I -layer and the K -layer. The functions fi , called activation functions, are assumed
to be C1-differentiable, such that fi (0) = 0, for i ∈ �1, 4�. The signal transmission
delay from the I -layer to the K -layer is τ1 while the delay from the K -layer to
the I -layer is τ2. Next, cki ∈ R (k, i ∈ �1, 4�) are the connection weights through
the neurons in two layers and μi ∈ R+ (i ∈ �1, 4�) describe the stability of internal
neuron process.

By letting u1(t) = x1(t − τ1), uk(t) = yk−1(t), k ∈ �2, 4� and τ = τ1 + τ2, the
BAM neural network (16) rewrites as follows:

⎧
⎪⎨

⎪⎩

u̇1(t) = −μ1u1(t) +
4∑

i=1

ci1 fi (ui (t − τ )),

u̇k(t) = −μkuk(t) + c1k fk(u1(t)), k ∈ �2, 4�.

(17)

The linearization of the model (17) at the origin writes as:

⎧
⎪⎨

⎪⎩

u̇1(t) = −μ1u1(t) +
4∑

i=1

αi1ui (t − τ ),

u̇k(t) = −μkuk(t) + α1ku1(t), k ∈ �2, 4�,

where αik = cik f ′
k(0), i, k ∈ �1, 4�, and with the characteristic function:

f (λ, τ ) = det

⎛

⎜⎜
⎝

λ + μ1 −α21e−τλ −α31e−τλ −α41e−τλ

−α12 λ + μ2 0 0
−α13 0 λ + μ3 0
−α14 0 0 λ + μ4

⎞

⎟⎟
⎠ .

This characteristic function is a quasipolynomial a0(λ) + a1(λ)e−τλ, where
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Fig. 15 BAM example: frequency-sweeping curve �1 versus ω and NU (τ ) versus τ plot

a0(λ) = λ4 + (μ1 + μ2 + μ3 + μ4)λ
3 + (μ1μ2 + μ3μ4 + μ1μ3 + μ1μ4)λ

2

+(μ2μ3 + μ2μ4)λ
2 + (μ1μ2μ3 + μ1μ2μ4 + μ1μ3μ4 + μ2μ3μ4)λ + μ1μ2μ3μ4,

a1(λ) = −(α12α21 + α13α31 + α14α41)λ
2

−(α12α21μ3 + α12α21μ4 + α13α31μ2 + α13α31μ4 + α14α41μ2 + α14α41μ3)λ

−(α12α21μ3μ4 + α13α31μ2μ4 + α14α41μ2μ3).

Under the assumption that the activation functions are hyperbolic tangent func-
tions,28 andwith choice of the coefficients as:μ1 = 2.46,μ2 = 4.5769,μ3 = 0.8561,
μ4 = 0.9669,α12 = 4.6621,α13 = −0.3896,α14 = 2.3488,α21 = −4.1320,α31 =
−2.8466,α41 = 0.7057, we study the local stability of the origin equilibrium. The
frequency-sweeping curve is shown in Fig. 15 (left). We see that the frequency-
sweeping curve intersects the line �1 at ω0 = 0.9059 and ω1 = 1.7637. As ω
increases, the frequency-sweeping curve crosses the line �1 from above to below
(from below to above) at ω0 (ω1). In this case, two critical imaginary roots
are detected: λ0 = 0.9059i (critical delays τ0,k = 3.3768 + 6.9355k) and λ1 =
1.7637i (critical delays τ1,k = 1.3947 + 3.5624k). According to Theorem 5.1,
�NUλ0(τ0,k) = −1 and �NUλ1(τ1,k) = +1 for all k ∈ N. By applying Theorem
6.3, we have the expression of NU (τ ) , as plotted in Fig. 15 (right). Thus, the origin
is locally asymptotically stable if τ ∈ [0, 1.3947) ∪ (3.3768, 4.9571).

8.2 Lotka-Volterra Systems

To further illustrate the proposed approach, consider a Lotka-Volterra system with
delays borrowed from Li et al. (2018a). More precisely, consider the three-species
Lotka-Volterra system described by the DDEs

28 In this case, fi (·) = tanh(·), i ∈ �1, 4� verifying fi (0) = 0 and f ′
i (0) = 1, i ∈ �1, 4�.



152 S.-I. Niculescu et al.

⎧
⎨

⎩

ẋ1(t) = x1(t)(a10 + a11x1(t) + a12x2(t)),
ẋ2(t) = x2(t)(a20 + a21x1(t) + a23x3(t − τ23)),

ẋ3(t) = x3(t)(a30 + a32x2(t − τ32)),
(18)

This system (18)maymodel a three-species food chain dynamics, where x1(t), x2(t),
and x3(t) denote the population densities at time t of the lowest-level prey, the mid-
level predator, and the top predator, respectively. It is assumed that the top predator
species needs time τ23 to possess the ability of predation and captures only the adult
mid-level predator species with maturation time τ32. The unique positive equilibrium
(x∗

1 , x
∗
2 , x

∗
3 ) is:

x∗
1 = a10a32 − a30a12

−a11a32
, x∗

2 = −a30
a32

, x∗
3 = a10a32a21 − a30a12a21 − a20a11a32

a11a32a23
.

Let ui (t) = xi (t) − x∗
i , i ∈ �1, 3�. Then, we can rewrite (18) as

⎧
⎨

⎩

u̇1(t) = (u1(t) + x∗
1 )(a11u1(t) + a12u2(t)),

u̇2(t) = (u2(t) + x∗
2 )(a21u1(t) + a23u3(t − τ23)),

u̇3(t) = (u3(t) + x∗
3 )a32u2(t − τ32).

(19)

The linearized system of (19) at the origin (0, 0, 0) is

⎧
⎨

⎩

u̇1(t) = a11x∗
1u1(t) + a12x∗

1u2(t),
u̇2(t) = a21x∗

2u1(t) + a23x∗
2u3(t − τ23),

u̇3(t) = a32x∗
3u2(t − τ32).

(20)

The characteristic function for the linear system (20) is

f (λ, τ ) = λ3 − a11x
∗
1λ

2 − a12a21x
∗
1 x

∗
2λ + (a11a23a32x

∗
1 x

∗
2 x

∗
3 − a23a32x

∗
2 x

∗
3λ)e−τλ,

where τ = τ23 + τ32. Let a10 = 0.7915, a11 = −0.1358, a12 = −0.9557, a20 =
−0.8337, a21 = 0.9089, a23 = −0.6429, a30 = −0.5726, a32 = 0.9322. The unique
positive equilibrium is (x∗

1 = 1.5056, x∗
2 = 0.6142, x∗

3 = 0.8318). We analyze the
local asymptotic stability. For the linearized system at the positive equilibrium, the
characteristic function writes as:

f (λ, τ ) = λ3 + 0.2045λ2 + 0.8033λ + (0.3062λ + 0.0626)e−τλ. (21)

For τ = 0, there are three characteristic roots (all in C−): −0.0738 ± 1.0468i
and −0.0569. The frequency-sweeping curve is generated as shown in Fig. 16
(left). It is easy to observe that there are three critical imaginary roots 0.0854i
(with the critical delays 22.8187 + 73.7657k), 0.7221i (with the critical delays
3.3005 + 8.7014k), and 1.0179i (with the critical delays 0.5218 + 6.1724k), k ∈
N. Next, simple computations lead to �NU0.0854i(22.8187 + 73.7657k) = +1,
�NU0.7221i(3.3005 + 8.7014k) = −1, and �NU1.0179i(0.5218 + 6.1724k) = +1,
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Fig. 16 Lotka-Volterra DDE: Frequency-sweeping curve �1 versus ω and NU (τ ) versus τ plot

for all k ∈ N. Finally, the “NU (τ ) versus τ” plot is depicted in Fig. 16 (right).
In conclusion, all the characteristic roots of (21) are located in C− if and only if
τ ∈ [0, 0.5218) ∪ (3.3005, 6.6942) ∪ (12.0019, 12.8666) and, thus, we have more
than one stability delay interval guaranteeing the local asymptotic stability of the
original system.

9 Notes and Comments

This chapter addressed the effects induced by the delay parameter on the (exponen-
tial) stability of linear dynamical systems represented by delay differential equations.
Toperformsuch an analysis, the authors proposed auser-friendly frequency-sweeping
framework, and the stability problemwas reformulated in terms of properties of some
appropriate frequency-sweeping curves. Illustrative examples and two applications
from Life Sciences show the effectiveness of the method.

The main results of this chapter devoted to single (or commensurate) linear delay
systems have been reported in Li et al. (2015) (see also Li et al. 2014, 2017). For
a deeper discussion of the properties of the spectral abscissa function, the reader
is referred to Michiels and Niculescu (2014) and the references therein. Next, an
extension of the frequency-sweeping approach applied to the incommensurate delay
case was presented in Li et al. (2019b). Finally, a guided tour of existing methods to
analyze multiple characteristic roots (including the frequency-sweeping approach)
can be found in Niculescu et al. (2021).
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Counting Characteristic Roots of Linear
Delay Differential Equations. Part II:
From Argument Principle to Rightmost
Root Assignment Methods

Silviu-Iulian Niculescu and Islam Boussaada

Abstract This chapter briefly presents some “user-friendly” methods and tech-
niques (frequency-domain approaches) for the analysis and control of linear dynami-
cal systems in presence of delays. The presentation is as simple as possible, focusing
more on the main intuitive (algebraic, geometric) ideas to develop theoretical results,
and their potential use in practical applications. To fix better the ideas, scalar and
second-order examples are largely discussed. Next, a particular attention will be
paid to the existing links between the maximal allowable multiplicity of the char-
acteristic roots and the spectral abscissa of the dynamical system. The underlying
property—multiplicity induced dominancy—will be particularly useful in construct-
ing low-complexity controllers by partial pole placement. Such an idea is particularly
exploited in vibration control.

1 Introduction

Propagation, transport and heredity represent some of the typical phenomena of phys-
ical, biochemical processes and properties of living organisms that can be modeled
by using delays in their mathematical representation. Understanding the ways the
delays and the other parameters may affect the models’ dynamics is a problem of
recurring interest during the last decades. This chapter completes the contribution
by Niculescu et al. (2023) (same volume) devoted to the stability analysis of linear
dynamical time-delay systems described by Delay Differential Equations (DDEs)
in frequency-domain. More precisely, we will present different (frequency-domain)
techniques to count the characteristic roots located in the right complex half-plane
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with particular emphasis on the Pólya-Szegö results1 and the so-called multiplicity
induced dominancy and its potential applications in control engineering.

In the 30s, the development of feedback amplifiers is at the origin of most of
frequency-response methods in control engineering and signal processing. In this
frame, Nyquist (1932) proposed a graphical method for the analysis of Single-
Input/Single-Output (SISO) Linear Time-Invariant (LTI) systems to determine the
(asymptotic) stability of the closed-loop system based on the transfer function of the
open-loop system. Due to its simplicity, such a method became extremely popular,
and it is at the origin of most of the graphical (stability) approaches and tests in
frequency-domain in the open literature, see, for instance, MacFarlane (1979) and
the references therein. It should be mentioned that the Cauchy’s argument principle
is a simple and elegant way to prove Nyquist criterion. However, inspired by some
ideas about the propagation of sinusoidal signals through the systems, Nyquist came
up with a different proof. It should be mentioned that the seminal work of Tsyp-
kin (1946) includes an extension of the Nyquist criterion in the case of dynamical
systems with input delay and the proof is based on the Cauchy’s argument principle.

In the 50s-70s, except for some natural extensions of Nyquist diagrams to delay
dynamical systems, the Mikhailov criterion2 has been the source of further develop-
ments (see, for instance, the discussion in Barker (1979) and the references therein).
For some connections betweenMikhailov and Nyquist tests applied to delay systems
we mention the almost forgotten paper by Chen and Tsay (1976). Other graphical
criteria include the well-known root-locus methods3 and the Satche’s diagrams (see,
e.g. Satche, 1949), where the latter can be interpreted as a variant of the Nyquist
criterion, sometimes called the dual root-locus methods. For a pedagogical presen-
tation as well as some extensions of the root locus methods and Nyquist criterion
to deal with dynamical systems including one delay in the input/output channel, we
refer to Krall (1968). Finally, for an historical perspective on the frequency-response
methods in control area, we refer to MacFarlane (1979).

At the end of the 70s, using the Cauchy’s argument principle, Stépán (1979)
proposed a simple criterion to count the unstable roots of a linearDDE.The simplicity
of the method has been illustrated in Stépán (1989) by constructing stability charts
for several examples from mechanical engineering and represented by DDEs. The
underlying idea has been extended by Hassard (1997) to also cover some cases
wheremultiple characteristic roots exist on the imaginary axis. This method is briefly
discussed in Sect. 2 and applied to a second-order DDE including a single delay.

Exploration of some earlier ideas present, e.g., in Pinney (1958) and the seminal
work Hayes (1950) demonstrated that the spectral values of systems of DDEs reach-
ing their maximal possible multiplicity tend to be dominant, in what has come to be
known as the Multiplicity Induced Dominancy (MID) property. The MID property
turns out to open some interesting perspectives in designing low-complexity feed-

1 More precisely, the estimation of the upper bound of the number of the characteristic roots of
exponential polynomials located on a horizontal strip.
2 Based on the same Cauchy’s argument principle.
3 Whose origins date back to the work of Evans in the late 1950s, Evans (1950), MacFarlane (1979).
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back control laws for delay systems. Since these seminalworks,many research efforts
have been devoted to the characterization of the classes of systems for which such
a property is valid and to its exploration in applications to stabilize delay systems.
This chapter addresses some of the most recent results in this direction.

To the best of the authors’ knowledge, it should be mentioned that most general
result involving the MID property so far is that of Boussaada et al. (2022), which
shows that theMIDproperty holds for retarded and neutralDDEs of an arbitrary order
with a single delay and highlights the potential of applicability of such a property in
the design of control feedback laws by using a partial pole placement methodology.
Such results are obtained by exploring links4 between spectra of systems of DDEs
and roots of a family of confluent hypergeometric functions, known as Kummer
functions.

The contributions of the chapter are fourfold. First, our intention is to complete
the presentation of Niculescu et al. (2021) by introducing other frequency-domain
methods useful to count the number of unstable characteristic roots. Second, we
wish to shed some light on various methods, techniques and ideas developed by the
authors of this contribution to deal with the case of multiple characteristic roots and,
in particular, the so-called MID property. Finally, we are interested to emphasize
the way that such a property can be applied to some control problems and, more
precisely, in vibration control.

The chapter is organized as follows: some preliminary results and prerequisites are
introduced in Sect. 2. Section 3 is devoted to the characterization of the multiplicity
of the characteristic roots in terms of structured matrices. Next, Section 4 introduces
the MID property and gives some insights on the resulting rightmost spectral value
assignment on comprehensive examples, opening perspectives in control design. A
parametric characterization of the MID property in the case of a second-order linear
DDE is provided in Sect. 5. Next, the effect of the maximal multiplicity of a spectral
value on the distribution of the remaining spectrum is discussed in Sect. 6, where
some interesting links with Kummer hypergeometric functions are emphasized. A
software dedicated to the ensuing partial pole placement, called P3δ is described in
Sect. 7. Section8 illustrates the use of the proposed control strategy in the active
damping of vibrations occurring in a flexible mechanical structure. Some notes and
comments end the chapter.

Notations. In this chapter, we use the following standard notations5: Z (N)
denote the set of (non negative) integers, R (C) denotes the set of real (complex)
numbers. Next, R+ (R−) denotes the set of strictly positive (negative) real num-
bers and R

∗ = R \ {0}. For a given complex number λ, �(λ) (�(λ)) denote its
real (imaginary) part. The open left (right) complex half-plane is the set C− (C+)
defined by C− = {λ ∈ C | �(λ) < 0} (C+ = {λ ∈ C | �(s) > 0}). For a given com-
plex number λ the modulus is defined by |λ| = √�(λ)2 + �(λ)2. For a given dis-
crete set χ, card(χ) denotes the number of elements of χ. The symbol sgn des-

4 Such links have been previously highlighted in Mazanti et al. (2021a) for a particular class of
systems and then generalized in Boussaada et al. (2022).
5 It should be mentioned that, for reading facility, some specific notations are introduced later on.
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ignates the sign of a real valued function f at a given argument. Given two vec-
tors u = (u1, . . . , un)

T ∈ R
n and v = (v1, . . . , vm)T ∈ R

m we adopt the notation:
(u/v) = (u1, . . . , un, v1, . . . , vm)T . For a set K of complex numbers, denote by
Mm,n(K) (Mn(K)) the set of m × n (n × n) matrices with coefficients in K. Given
matrices M1 ∈ Mm,n1(R) and M2 ∈ Mm,n2(R) the notation [M1 M2] designates the
matrix obtained by concatenation. Next, for a vector u ∈ R

n , ‖u‖2 denotes its 2-norm
and for a matrix A ∈ Mn(R), its 2-norm is defined by: ‖A‖2 = supu �=0 ‖Au‖2/‖u‖2.
Given k, n ∈ N with k ≤ n, the binomial coefficient

(n
k

)
is defined as

(n
k

) = n!
k!(n−k)!

and this notation is extended to k, n ∈ Z by setting
(n

k

) = 0 when n < 0, k < 0, or
k > n. For α ∈ C and k ∈ N, (α)k is the Pochhammer symbol for the ascending fac-
torial, defined inductively as (α)0 = 1 and (α)k+1 = (α + k)(α)k . Finally, deg(P)

denotes the degree of P ∈ R[x].

2 Preliminaries and Prerequisites

Let � ⊂ R
n p be an open set and consider two matrix functions A0, A1 : � 
→

Mn(R), −→p ∈ � 
→ A j (
−→p ) ( j = 0, 1), that are assumed to be sufficiently smooth.

With these notations, consider a dynamical system described by a DDE of retarded
type with a single delay of the form:

ξ̇ = A0(
−→p )ξ(t) + A1(

−→p )ξ(t − τ ), (1)

where ξ = (ξ1, . . . , ξn)
T ∈ R

n and (
−→p , τ ) ∈ � × R+ denote the state-vector and

the system’s parameters, respectively. Assume further that, for a fixed delay value
τ ∈ R+, for almost all −→p ∈ �, under appropriate initial conditions,6 the system
above is properly defined.7

It is well known that the asymptotic behavior of the solutions of (1) is determined
from the location of the spectrum8 χ of the characteristicmatrix function9 and defined
byM : C × � × R+ 
→ C

n×n with

M(λ,
−→p , τ ) = λ I − A0(

−→p ) − A1(
−→p ) e−τλ. (2)

Furthermore, these eigenvalues are the roots of the associated characteristic function
which is the quasipolynomial Q : C × � × R

∗+ → C

Q(λ,
−→p , τ ) = detM(λ,

−→p , τ ). (3)

6 Belonging to the Banach space of continuous functions C([−τ , 0],Rn).
7 In terms of existence of solutions for the corresponding Cauchy problem.
8 That is the set of eigenvalues of the corresponding characteristic matrix function.
9 Depending on the parameters −→p and τ .



Counting Characteristic Roots of Linear Delay Differential Equations … 161

Define now the sets χ+, χ0, χ− ⊂ χ as follows: χ+ = {λ ∈ C, Q(λ,
−→p , τ ) = 0,

�(λ) > 0}, χ− = {λ ∈ C, Q(λ,
−→p , τ ) = 0, �(λ) < 0} and χ0 = {λ ∈ C, Q(λ,−→p , τ ) = 0, �(λ) = 0} which give a partition of the spectrum χ of the DDE (1)

with respect to the imaginary axis. More precisely, the spectrum χ can be divided
into χ = χ+ ∪ χ0 ∪ χ−. This chapter focuses on the computation of card(χ+), that
is the number of unstable characteristic roots. If the only parameter of interest is the
delay τ , than Q(λ,

−→p , τ ) simply rewrites as Q(λ, τ ) and (1) becomes:

ξ̇ = A0ξ(t) + A1ξ(t − τ ), (4)

with A0, A1 constant real valued matrices in Mn(R). The proof of the proposition
below is given in Michiels and Niculescu (2007).

Proposition 1 If λ is a characteristic root of system (4), then it satisfies

|λ| ≤ ‖A0 + A1 e−τλ‖2. (5)

The inequality (5) combined with the triangular inequality provides a generic enve-
lope curve around the characteristic roots corresponding to the DDE (1), see for
instance Mori and Kokame (1989) for further insights on spectral envelopes for
DDEs with a single delay.

As in the previous chapter by Niculescu et al. (2023), most of the examples
considered in the sequel are represented by a particular class of quasipolynomial
functions given by:

Q(λ,
−→p , τ ) = P0(λ,

−→p ) + P1(λ,
−→p ) e−λτ ,

where deg(P0) > deg(P1), and a particular attentionwill be paid to scalar and second-
orderDDEs.Notice that some generic result on the location of associated spectral val-
ues for arbitrary polynomials P0 and P1 satisfying the condition deg(P0) ≥ deg(P1)

can be found in Boese (1998); see also Michiels and Niculescu (2007). Furthermore,
in most of the cases, the parameter vector −→p is explicitly defined by the coefficients
of the polynomials P0 and P1, assumed to be independent one another.

In the following paragraphs, we present a characterization of the admissi-
ble/maximal spectral values’ multiplicities10 and describe their effect on the stability
of the trivial solution as well as the corresponding exponential decay rate, see for
instance Mori et al. (1982). As a byproduct of the approach, the main steps of an
algorithmic procedure are proposed. We think that such an idea can be extended to
more general quasipolynomials.

10 It should be noted that, even in the simple case of second-order linear DDEs of retarded type, the
corresponding 5 parameters induce a large computational effort to perform such an analysis.
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2.1 On Integration Contours for Quasipolynomials
Corresponding to DDEs of Retarded Type

Cauchy’s argument principle is a basic complex analysis property11 widely used in
the stability analysis of LTI dynamical systems, see for instance Marden (1949);
Ahlfors (1979). Roughly speaking, it relates the difference between the number of
zeros and poles of a meromorphic function f in a simply connected domain D ⊂ C

to a contour integral of the function’s logarithmic derivative on the boundary ∂D;
note that, this is also equal to the winding number of the curve ∂D with respect to f .

Theorem 1 (Ahlfors 1979) Let D be a simply connected region with boundary �

(piecewise smooth and oriented anti-colockwise). Let f be a meromorphic function
in an open set containing the closure D with poles p1, . . . , pl and zeros z1, . . . , zm

counted according to their multiplicity, none of which belonging to the closed curve
�. Then

1

2iπ

∮

�

f ′(s)
f (s)

ds = Z − P,

where Z and P designate respectively the number of zeros and the number of poles
of f enclosed by �.

In particular, note that if f is a holomorphic function12 and� is a closed piecewise
C1 curve then

1

2iπ

∮

�

f ′(s)
f (s)

ds = Z.

Moreover, standard contours like the modified Bromwich contour are often used to
explore the asymptotic stability of dynamical systems’ solutions, as it allows to count
the zeros with �(s) > 0 (see, e.g., Fig. 1). Other contours can be chosen based on
the inherent properties of the considered characteristic function (Fig. 2).

Practically, owing to Proposition 1, a generic supremum bound for the real and
imaginary parts of the roots of function (30) is established. Then, one may define an
integration contour� = ∪l

k=1gk which is not passing through zeros of Q and is taken
as a counterclockwise closed curve. Hence, the contour integral over � is defined as
the sum of the integrals over the directed smooth curves that make up�, as illustrated
in Fig. 2.

Since we are concerned with zeros of quasipolynomials,13 the following result14

is a direct consequence of the argument principle applied to such functions.

Theorem 2 (Bellman and Cooke 1963) If f is an analytic function inside and on
a closed contour �, and is not zero on �, then the number of zeros (counting their

11 The reader may find the proof of this theorem in any standard textbook on the theory of analytic
functions.
12 In our case, we deal with quasipolynomial functions.
13 Quasipolynomials are analytic functions.
14 Called also the argument variation.
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Fig. 1 LTI dynamical system; generic contours for applying the argument principle to investigate
qualitative properties. (Left) Standard Bromwich contour usually adopted for asymptotic stability
investigation; (Right) a contour often used to investigate ω−stability or the dominancy of a given
root. Figures are borrowed from Boussaada et al. (2020)

Fig. 2 Solid blue curve:
simplified contour used in
Boussaada and Niculescu
(2018) for applying the
argument principle to
investigate the dominancy of
multiple roots; dashed red
curve: generic spectrum
envelope given by
Proposition 1 for the
quasipolynomial
Q(λ,

−→p , τ ) =
λ + a0 + a1 e−λτ under
conditions λ0 =
− a0τ+1

τ and a1 = eλ0 τ

τ
with a0 = τ = 1. The figure
is borrowed from Boussaada
et al. (2020)

respective multiplicities) of f within � is equal to 1/2π times the variation of the
argument of f (s) as s moves once around � in the counterclockwise sense.

Example 1 Consider the scalar DDE:

ξ̇(t) + a ξ(t) + b ξ(t − τ ) = 0, (6)

where −→p = (a, b)T and τ are such that τ > 0 and 0 < b < a. To study the asymp-
totic stability of the trivial solution of (6), one investigates the distribution of zeros
of the characteristic function given by:
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Q(λ,
−→p , τ ) = λ + a + b e−λ τ . (7)

To apply the argument principle, consider the standard Bromwich contour illustrated
in Fig. 1. First, it is easy to observe that Q does not admit imaginary roots. Indeed,
by assuming Q(iω,

−→p , τ ) = 0, one gets:

{
a = −b cos(ω τ )

ω = b sin(ω τ ),
(8)

where the first condition in (8) is inconsistent since a > b. Next, as emphasized in
Proposition 1, in C+, the spectrum is finitely bounded by an appropriate envelope,
so that Q does not admit zeros on the semi-circle CR when R → ∞. Furthermore,
since, in C+, the zeros of Q(λ,

−→p , τ ) coincides with the ones of Q(λ,
−→p , τ )/(λ +

a) = 1 − Q̃(λ,
−→p , τ ) where Q̃(λ,

−→p , τ ) = − b e−λ τ

λ+a , then one may investigate the

values of λ for which Q̃(λ,
−→p , τ ) = 1. Notice that the limiting position as R →

∞ of the contour � under the mapping Q̃(λ,
−→p , τ ) is called the amplitude-phase

characteristic, see for instance El’sgol’ts and Norkin (1973).
To apply the argument principle or equivalently the argument variation on

Q̃(λ,
−→p , τ ), one needs to calculate the number of circuits of the amplitude-phase

characteristic around the point λ = 1 (rather than λ = 0). Note also that under the
mapping Q̃(λ,

−→p , τ ), the semi-circle CR when R → ∞ reduces to a point. So
that, one needs only to inspect the mapping Q̃(λ,

−→p , τ ) through the imaginary
axis traversed in the negative direction. When R → ∞ the limiting characteristic
of Q̃(λ,

−→p , τ ) is nothing but the rational transformation −b/(λ + a), which trans-
forms the imaginary axis into the circle of center λ = −b/2a and radius b/a. Since
a, b > 0, then the mapping Q̃(λ,

−→p , τ ) does not make any circuit around λ = 1, so
that Q has no zeros in C+.

Another way to obtain the same conclusion of Example 1 is to employ the Rouché’s
Lemma.

Theorem 3 (Marden 1949) If f and g are analytic function inside a simple closed
Jordan curve � and if they are continuous on � with

| f (λ)| < |g(λ)|,

then the function f + g has the same number of zeros of g inside �.

Let us revisit Example 1 by applying Rouché’s Lemma. To do so, let us define
the functions g(λ) = λ + a and f (λ) = b e−λτ . Since 0 < b < a, the condition of
Rouché’s Lemma are satisfied on the contour � defined as the standard Bromwich
contour presented in Fig. 1, that is

|b e−λτ | < |λ + a|.

Hence, Q defined by (7) does not admit any roots in C+.
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When a given quasipolynomial function corresponding to a DDE of retarded type
has no roots on the imaginary axis, then the seminal Stépán’s work Stépán (1979)
gives a new formalism and an easy procedure to characterize the exact number of
unstable roots, that is the roots located in χ+, see also Stépán (1989, Theorems
2.15–2.16). The proof of such a result is mainly based on the argument principle.
Motivated by a potential application in bifurcation theory, the main theorem from
Hassard (1997)15 relaxes the assumption card(χ0) = 0. Thus, it emphasizes the link
between card(χ+) and card(χ0), both taking into account the multiplicity.

Theorem 4 (Hassard 1997, p. 223) Consider the quasipolynomial function Q
defined by

Q(λ, −→τ ) = P0(λ) +
N∑

k=1

Pk(λ) e−τk λ.

with −→τ = (τ1, . . . , τN )T . Let ρ1, . . . , ρr be the positive roots of R(y,−→τ ) =
�(in Q(i y,−→τ )), counted by their multiplicities and ordered so that 0 < ρ1 ≤ . . . ≤
ρr . For each j = 1, . . . , r there exist τ j such that Q(i ρ j , τ j ) = 0, assume that the
multiplicity of iρ j as a zero of Q(λ,−→τ ) is the same as the multiplicity of ρ j as a root
of R(y,−→τ ). Then card(χ+) is given by the formula:

card(χ+) = n − card(χ0)

2
+ (−1)r

2
sgn S(μ)(0, τ ) +

r∑

j=1

sgn S(ρ j , τ j ),

where μ designates the multiplicity of the zero spectral value of Q(λ,−→τ ) = 0 and
S(y,−→τ ) = �(i−n Q(iy,−→τ )). Furthermore, card(χ+) is odd (respectively, even) if
Q(μ)(0,−→τ ) < 0 (Q(μ)(0,−→τ ) > 0). If R(y,−→τ ) = 0 has no positive zeros (in y), set
r = 0 and omit the summation term in the expression of card(χ+). If s = 0 is not a
root of the characteristic equation, set μ = 0 and interpret S(0)(0,−→τ ) as S(0,−→τ )

and Q(0)(0,−→τ ) as Q(0,−→τ ).

In order to illustrate the above result, we count the number of unstable roots of the
following quasipolynomial with single delay and delay-dependent coefficients:

Q(λ, τ ) = λ2 − 4λ

τ
+ 6

τ 2
−

(
6

τ 2
+ 2λ

τ

)
e−λτ . (9)

Notice that (9) admits a characteristic root at the origin with multiplicity four.
Characterizing imaginary roots of the quasipolynomial.

In order to apply the argument principle on the standard Bromwich contour,
allowing to count the roots of the quasipolynomial (9) in C+, a deflation which
eliminates the roots on the imaginary axis is required. To do so, we first investigate
nonzero imaginary roots of (9). Assuming that there exists ω > 0 such that λ = iω

15 Which is strongly inspired from Stépán’s result.
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is a root of (9), we define R(ω) = �(i−2Q(iω, τ )) and S(ω) = �(i−2Q(iω, τ )), so
that ⎧

⎪⎨

⎪⎩

R(ω) = 6
cos (ω τ )

τ 2
+ 2

ω sin (ω τ )

τ
+ ω2 − 6

τ 2
,

S(ω) = 2
ω cos (ω τ )

τ
− 6

sin (ω τ )

τ 2
+ 4

ω

τ
.

(10)

As a consequence, for any λ = iω, root of (9), we have R(ω) = S(ω) = 0. Then,
some algebraic manipulations allow to eliminate the trigonometric functions as fol-
lows: ⎧

⎪⎪⎨

⎪⎪⎩

cos (ω τ ) = −1

2

7ω2τ 2 − 18

ω2τ 2 + 9
,

sin (ω τ ) = −1

2

ω τ
(
ω2τ 2 − 18

)

ω2τ 2 + 9
.

Using the standard trigonometric identity cos2 (ω τ ) + sin2 (ω τ ) = 1, one obtains
exclusively 0 and the non-vanishing solutions ω = ± 3 i

τ
, which are discarded since

we are dealing with positive frequencies. By using the notations from the Theorem
abovewhere card(χ0) stands for the number of imaginary roots of (9) andκ designate
the multiplicity of 0. In our case, card(χ0) = κ = 4. Hence, the deflated function
which is integrated on the Bromwich contour B is given by

Q̂(λ, τ ) = Q(λ, τ )

λ4
,

It has the same nontrivial zeros encircled by B as the quasipolynomial Q.
Characterizing ωk the positive roots of R and exploring sgn(S(ωk)). Consider

now the positive roots ofR. If ω > 0 is a root of the first transcendental function of
(10), then

6
cos (ω τ )

τ 2
+ 2

ω sin (ω τ )

τ
+ ω2 − 6

τ 2
= 0.

Multiplying the last equation by τ 2 reduces the problem to the search of zeros of an
univariate function:

F(ρ) = 6 cos (ρ) + 2 ρ sin (ρ) + ρ2 − 6 (ρ = ω τ ).

Interestingly, the function F admits a unique solution ρ� ∈ (
π, 3π

2

)
which is equiv-

alent to state that, for a given positive delay τ �, there exists a unique frequency
ω� ∈ R+ such that ρ� = ω� τ � and R(ω�, τ �) = 0.

By similarity, define G(ρ) = τ 2 S(ω). Then,

G(ρ) = 2 ρ(2 + cos (ρ)) − 6 sin (ρ)
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which is positive in the interval (π, 2π) since sin (ρ) < 0. In particular,G(ρ�, τ �) > 0
and thus S(ω�) > 0.

Counting the number of roots dominating zero. We are able now to compute the
number of unstable roots of (9) based on the computation of the argument variation.
As a matter of fact, combining all the above collected information on the behavior
of both the real R and the imaginary S parts of the quasipolynomial function (9),
we apply directly the theorem above. Namely, Z designates the number of roots
dominating 0:

Z = n − card(χ0)

2
+ 1

2
(−1)r sgn S(κ)(0) +

r∑

j=1

(−1) j−1 sgn S(ω j ), (11)

where n is the order of the system, κ is the multiplicity of 0 as a root of (9), K
is the total number of roots of (9) on the imaginary axis and r is the number of
positive real roots ofR. In our case, n = 2, κ = card(χ0) = 4, r = 1 and S(4)(ω) =
2 sin (ω τ ) τ 2 + 2ω cos (ω τ ) τ 3 which vanishes at ω = 0. As a result, we easily
obtain that Z = 0 owing to formula (11). Hence, the dominancy of 0 as a root of (9)
is established; that is no roots with positive real part exist for the quasipolynomial
Q.

2.2 Pólya-Szegö Theorem: Counting Quasipolynomial Roots

The following result was first introduced and claimed in the problems collection
published in 1925 by G. Pólya and G. Szegö. In the fourth edition of their book,16

the authors emphasize that the proof was obtained by N. Obreschkoff in 1928 using
the argument principle, see Obreschkoff (1928). Such a result gives a bound for
the number of quasipolynomial’s roots in any horizontal strip. As a consequence, a
bound for the number of quasipolynomial’s real roots can be easily deduced.

Proposition 2 (Pólya and Szegő 1972, p. 144) Let τ1, . . . , τN denote real num-
bers such that τ1 < τ2 < · · · < τN , and d1, . . . , dN positive integers satisfying
d1 ≥ 1, d2 ≥ 1, . . . , dN ≥ 1 and define D such that D = d1 + d2 + · · · + dN − N .

Let fi, j (λ) the function fi, j (λ) = λ j−1 eτi λ, for 1 ≤ j ≤ di and 1 ≤ i ≤ N. For
α, β two real numbers, let �P S be the number of zeros of the complex valued function

f (λ) =
∑

1≤i≤N ,1≤ j≤di

ci, j fi, j (λ)

16 More precisely, Pólya and G. Szegö (1972, Problem 206.2, p. 144 and p. 347).
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contained in the horizontal strip {λ ∈ C,α ≤ �(λ) ≤ β}. Assuming that

∑

1≤k≤d1

|c1,k | > 0, . . . ,
∑

1≤k≤dN

|cN ,k | > 0,

then

(τN − τ1) (β − α)

2 π
− D + 1 ≤ �P S ≤ (τN − τ1) (β − α)

2 π
+ D + N − 1.

Setting α = β = 0, the above Proposition allows to �P S ≤ D + N − 1 where D
stands for the sum of the degrees of the polynomials involved in the quasipolynomial
function f and N designates the associated number of polynomials. As explained in
the sequel, in the case of complete polynomials, this gives a sharp bound.

3 Characterizing Multiplicity Using Structured Matrices

Matrices arising from a wide range of problems in mathematics and engineering
typically display a characteristic structure. Exploiting such a structure is the mean
to the design of efficient algorithms, see for instance Bini and Boito (2010). The
discussion below is a crossroad between the investigation of a class of such struc-
tured matrices originally involved in multivariate interpolation problems17 and the
estimation of the upper bound for the codimension of spectral values of linear DDEs
(which are the zeros of the corresponding characteristic quasipolynomial). The aim
of this section is threefold: firstly, it emphasizes the link between the above two
quoted issues. Secondly, it shows that the codimension of the zero as well as purely
imaginary spectral values of a given DDE are characterized by some algebraic prop-
erties of an appropriate functional Birkhoff matrix. Finally, it shows the effectiveness
of the proposed constructive approach by exploring the generic settings as well as
investigating some specific but significant sparsity patterns. In both cases, symbolic
algorithms for LU-factorization are presented for some novel classes of Birkhoff
matrices. It is worth mentioning that such an attempt can be exploited for further
classes of Birkhoff matrices and should be of interest in some linear algebra prob-
lems involving structured matrices as well as in applications including polynomial
interpolation. The proofs of the results presented in this section can be found in
Boussaada and Niculescu (2016a, b).

3.1 Singularity Codimension May Exceed the Model
Order:Bogdanov-Takens Singularity

Consider first a simple scalar DDE with one delay representing a biological model
discussed in Cooke (1979) describing the dynamics of disease propagation. Namely,

17 Namely, the well-known Birkhoff interpolation problem.
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the infected host population x(t) is governed by:

ẋ(t) + a0 x(t) + a1 x(t − τ ) − a1 x(t − τ ) x(t) = 0,

wherea1 > 0 designates the contact rate between infected anduninfected populations
and it is assumed that the infection of the host recovery proceeds exponentially at a
rate −a0 > 0; see also Ruan (2006) for more insights on the modeling and stability
results. The linearized system is given by

ẋ(t) + a0 x(t) + a1 x(t − τ ) = 0, (12)

where−→p = (a0, a1)
T with (a0, a1, τ ) ∈ R

2 × R+, then the associated characteristic
(transcendental) function Q becomes

Q(λ,
−→p , τ ) = λ + a0 + a1 e−λτ . (13)

Zero is a spectral value for (12) if, and only if, Q vanishes at zero which is equivalent
to a0 + a1 = 0. The computations of the first derivatives of (13) with respect to λ
give:

Q′(λ,
−→p , τ ) = 1 − τ a1 e−λτ ,

Q′′(λ,
−→p , τ ) = τ 2 a1 e−λτ .

If additionally a1 �= 0, then the codimension of the zero spectral value is at most
two18 since the algebraic multiplicity 2 is ensured for τ ∗ = 1/a1 > 0, a0 = −a1 and

Q′′(0,
−→
p�, τ �) �= 0. It should be mentioned that Q includes 3 parameters (a0, a1, τ )

and the codimension cannot exceed 2. It is easy to observe that the Pólya-Szegö
bound �P S = 2 if if one chooses19 α = β = 0.

3.2 Codimension Counting: A Vandermonde/Birkhoff-Based
Framework

Consider now that the DDE (4) includes N discrete (constant) delays where the
vector ζ = (ζ1, . . . , ζn) ∈ R

n denotes the state-vector, then the DDE reads

ζ̇ =
N∑

k=0

Akζ(t − τk), (14)

18 Bogdanov-Takens singularity corresponds to equilibrium point admitting a double spectral value
at zero for which corresponds a single eigenvector. Near a Bogdanov-Takens singularity a codi-
mension 2 bifurcation may occur in two dimensional parameters space.
19 Indeed, in this case, we have N = 2, τ1 = 0, τ2 = τ and d1 = 1, d2 = 0.
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where τk , k = 1, . . . , N are strictly increasing positive constant delays such that
τ0 = 0 and −→τ = (τ1, . . . , τN )T , and Ak ∈ Mn(R) for k = 0, . . . , N . In this case,
the characteristic function of system (14) reads

Q̂(λ,
−→p ,−→τ ) = det

(

λ I − A0 −
N∑

k=1

Ak e−τkλ

)

, (15)

where −→p denotes the entries of the matrices Ak , for k = 0, . . . , N . For a given
delay vector −→τ and vector parameter −→p , the corresponding spectrum χ can be
split into χ = χ+ ∪ χ0 ∪ χ− where χ+ = {λ ∈ C, Q̂(λ,

−→p ,−→τ ) = 0, �(λ) > 0},
χ− = {λ ∈ C, Q̂(λ,

−→p ,−→τ ) = 0, �(λ) < 0} and χ0 = {λ ∈ C, Q̂(λ,
−→p ,−→τ ) =

0, �(λ) = 0}.
Let us start by setting a new parameterization for the quasipolynomial func-

tion (15) of the DDE (14) and defining some useful notations adopted through this
section. Some straightforward computations give the following formal expression of
the quasipolynomial function (15)

Q̂(λ,
−→p ,−→τ ) = P0(λ,

−→p ) +
∑

Mk∈SN ,n

PMk (λ,
−→p ) eσMk λ, (16)

where σMk = −Mk −→τ and SN ,n is the set of all the possible row vectors Mk =
(Mk

1 , . . . , Mk
N ) belonging to {1, . . . , n}N such that 1 ≤ Mk

1 + . . . + Mk
N ≤ n. Fur-

thermore, by running the index from 1 to the cardinality ÑN ,n := card(SN ,n), (16)
can be written in the following compact form:

Q̂(λ,
−→p , −→τ ) = P0(λ,

−→p ) +
ÑN ,n∑

k=1

−→p k(λ,
−→p ) eσk λ. (17)

For instance,

S3,2 = {
(1, 0, 0) , (0, 1, 0), (0, 0, 1), (2, 0, 0), (1, 1, 0),

(1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)
}

is ordered first by increasing sums (
∑N

i=1 Mk
i ) then by lexicographical order. In

this case, one has M2 = (0, 1, 0) and Ñ3,2 = 9. A generic property of DDEs (14)
allows considering p0 as a monic polynomial of degree n in λ and the polynomi-
als PMk satisfying deg(PMk ) = n − ∑N

s=1 Mk
s ≤ (n − 1) ∀Mk ∈ SN ,n . In the sequel,

p0(·,−→p ) will be called the delay-free polynomial and the quasipolynomial function

λ 
→ ∑ÑN ,n

k=1 PMk (λ,
−→p ) eσk λ will be called the transcendental part of the quasipoly-

nomial.
Next, define a j,k as the coefficient of the monomial λk for the polynomial PM j ,

1 ≤ j ≤ ÑN ,n , and denote PM0 = P0. Thus, a0,n = 1 and a j,k = 0 ∀k ≥ d j = n −
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∑N
s=1 M j

s . Here, d j − 1 is nothing but the degree of PM j . Furthermore, we denote
by a0 = (a0,0, a0,1, . . . , a0,n−1)

T the vector of the coefficients of the delay-free
polynomial and by a j = (a j,0, a j,1, . . . , a j,d j −1)

T the vector of the coefficients of
the polynomial associated to the auxiliary delay σ j for 1 ≤ j ≤ ÑN ,n . Next, set the
delay auxiliary vector σ = (σ1, σ2, . . . , σÑN ,n

) and a = (a1/ a2/ · · · / aÑN ,n
)T .

This leads to a new parameterization of the quasipolynomial Q̂(λ,
−→p ,−→τ ) =

Q(λ,
−→a ,−→τ ). Finally, let us denote by Q(k) the k-th derivative of Q with respect to the

variable λ. We say that zero is an eigenvalue of algebraic multiplicity m ≥ 1 for (14)
at −→a = −→a ∗ and −→τ = −→τ ∗ if Q(0,−→a ∗,−→τ ∗) = Q(k)(0,−→a ∗,−→τ ∗) = 0 for all k =
1, . . . , m − 1 and Q(m)(0,−→a ∗,−→τ ∗) �= 0. We assume also in what follows that σk �=
σk ′ for any k �= k ′ where k, k ′ ∈ SN ,n . Indeed, if for some value of the delay vector−→τ
there exists some k �= k ′ such that σk = σk ′ , then the number of auxiliary delays and
the number of polynomials is reduced by considering a new family of polynomials

P̃ satisfying P̃Mk = PMk + PMk′ . In the sequel, Dq = ∑ÑN ,n

k=0 deg(PMk ) + ÑN ,n − 1
will designate the degree of the transcendental part of the quasipolynomial20 .

Now, to characterize the structure of a given quasipolynomial function one needs
to introduce a vector V , called incidence vector, vector that reproduces the data on
the vanishing components of the vector −→a defined above. Thus, V is a sparsity
patterns indicator for the transcendental part of the quasipolynomial. To do so, we
finally introduce the symbol � to indicate the vanishing of a given coefficient of the
transcendental part of the quasipolynomial. To illustrate the above notions, consider
the following quasipolynomial function

Q(λ,
−→a ,−→τ )= P0(λ,

−→a ) + (
a1,0,0,0 + a1,0,0,1λ

)
e−λτ1

+a0,1,0,2λ
2e−λτ2 + a0,0,1,1λe−λτ3 .

(18)

In this case, σi, j,k = −(i j k) · −→τ where i, j, k = 0, 1.More precisely, σ1,0,0 = −τ1,
etc. According to the above considerations, deg(P0) = n ≥ 3, and the transcendental
part of (18) is characterized by the incidence vector

V = (x1, x1, �, �, x2, �, x3).

Namely, the first two components of V indicate that PM1 is a complete polynomial
with deg(PM1) = 1, the three components �, �, x2, indicate that a0,1,0,0 = a0,1,0,1 = 0
and PM2 is lacunary with deg(PM2) = 2 and �, x3 indicate that a0,0,1,0 = 0 and PM3

is lacunary with deg(PM3) = 1.
In the spirit of the definition of functional confluent Vandermonde matrices intro-

duced by Ha and Gibson (1980), the functional Birkhoff matrices are defined as
follows:

20 In other words, the sum of the degrees of the polynomials involved in the quasi-polynomial plus
the number of polynomials involved minus one is called the degree of a given quasi-polynomial.
Further discussions on such a notion can be found in Wielonsky (2001).
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Definition 1 The square functional Birkhoff matrix ϒ is associated to a sufficiently
regular real function � : R 
→ R and an incidence matrix E (or equivalently an
incidence vector V) and is defined by concatenation

ϒ = [ϒ1 ϒ2 . . . ϒ M ] ∈ Mδ(R),

where
ϒ i = [κ(ki1 )(xi ) κ(ki2 )(xi ) . . . κ

(kidi
)
(xi )],

such that kil ≥ 0 for all (i, l) ∈ {1, . . . , M} × {1, . . . , di } and ∑M
i=1 di = δ with

κ(xi ) = �(xi )[1 . . . xδ−1
i ]T , for 1 ≤ i ≤ M.

Remark 1 In the sequel, if n = deg(P0) let η = n + 1. Then, we consider �(xi ) =
xη

i . By analogy to the Birkhoff interpolation problem, the non degeneracy of the
matrices ϒ will be a fundamental assumption for investigating the codimension of
the zero spectral values for DDEs.

Remark 2 When η = 0, the matrix ϒ is nothing else but the standard Birkhoff
matrix and thus �(xi ) = 1. If, in addition, V does not contain �’s then we recover
the confluentVandermondematrix (Ha andGibson, 1980). The particular case di = 1
for i = 1, . . . , M corresponds to the standard Vandermonde matrix and, in this case,
M = δ since ϒ is assumed to be a square matrix.

Thanks to this formalism based on functional Birkhoff matrices initially presented
in Boussaada and Niculescu (2016a), one is able to characterize the codimension of
imaginary spectral values of DDEs of retarded type.

3.3 Codimension of Zero Singularities of DDEs

The next result gives a bound for the zero spectral value, bound that takes into account
the system structure. However, it should be noted that the proof is constructive and
it exploits the existing links between the multiplicity of the zero singularity and
Birkhoff matrices, see, for instance, Boussaada and Niculescu (2016a). Additionally,
it gives the values of the system parameters guaranteeing an admissible multiplicity
for the zero spectral value. Finally, the result holds even when the delay associated
polynomials are sparse.

Proposition 3 The following assertions hold:

(i) The multiplicity of the zero root for the generic quasipolynomial function (17)
cannot be larger than �P S = D + ÑN ,n, where D is the sum of degrees of the
polynomials involved in the quasipolynomial and ÑN ,n + 1 is the number of the
associated polynomials. Moreover, such a bound is reached if, and only if, the
parameters of (17) satisfy simultaneously:
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a0,k = −
∑

i∈SN ,n

(

ai,k +
k−1∑

l=0

ai,lσi
k−l

(k − l)!

)

, 0 ≤ k ≤ �P S − 1. (19)

(ii) Consider a quasipolynomial function (17) containing at least one incomplete
polynomial for which we associate an incidence vector VẼ . When the associated
functional Birkhoff matrix ϒẼ is nonsingular, then the multiplicity of the zero root
for the quasipolynomial function (17) cannot be larger than n plus the number
of nonzero coefficients of the polynomial family (PMk )Mk∈SN ,n .

Remark 3 In the generic case, the Pólya-Szegö bound �P S is completely recovered
by the first assertion of Proposition 3. But, its advantage consists in providing the
parameter values ensuring any admissible multiplicity of the zero singularity. The
proof of Proposition 3 provides a constructive linear algebra alternative for identify-
ing such a bound.

Remark 4 Obviously, the number of non-zero coefficients of a given
quasi-polynomial function is bounded by its degree plus its number of polynomi-
als. Thus, the bound proposed in Proposition 3 (ii) is sharper than �P S , even in the
generic case, that is all the parameters of the quasipolynomial are left free, these two
bounds are equal. Indeed, in the generic case, that is when the number of the left free
parameters is maximal, the Pólya-Szegö bound �P S = D + ÑN ,n = n + Dq + ÑN ,n

which is nothing else than n plus the number of parameters of the polynomial family
(PMk )Mk∈SN ,n .

Remark 5 When the matrix ϒẼ is singular, one keeps the generic Pólya-Szegö
bound �P S .

Remark 6 The above proposition can be interpreted as follows. Under the hypoth-
esis:

Q(iω) = 0 ⇒ ω = 0 (H)

(that is, all the imaginary roots are located at the origin), the dimension of the pro-
jected state on the center manifold associated with zero singularity for Eq. (17) is
less or equal to its number of nonzero coefficients minus one. Indeed, under (H), the
codimension of the zero spectral value is equal to the dimension of the state on the
center manifold since, in general, the dimension of the state on the center manifold
is nothing but the sum of the dimensions of the generalized eigenspaces associated
with the spectral values having a zero real part.

Remark 7 For a given quasipolynomial function, the multiplicity of real roots may
reach the Polya-Szegö bound, see Boussaada et al. (2014); Boussaada and Niculescu
(2014). However, the multiplicity of an imaginary crossing root may exceed the
dimension of the delay-free system but never reach the Polya-Szegö bound, see, e.g.,
Boussaada and Niculescu (2016b).
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4 Multiple Induced Dominancy and Partial Pole
Assignment: Comprehensive Examples

In this section, we focus on three case studies. The first one corresponds to the
simplest DDE by which one can exhibit and explain in a comprehensive way the
stability induced when forcing some particular spectral value to be multiple. The
second, which apparently illustrates the limitation of such a property, gives an in-
depth insight into the conditions of application of such a property. The last example
concerns the stabilization of a second-order oscillator controlled by a delayed-output
feedback. An appropriate choice of the gain and of the delay (seen as a parameter of
the system) allows assigning a dominant characteristic root in C with multiplicity 3.

4.1 Exponential Decay Rate of a Scalar DDE with a Single
Delay

Let us revisit the scalar DDE with one delay given in (6):

ξ̇(t) + a ξ(t) + b ξ(t − τ ) = 0, (20)

where b > 0, . It was shown in Boussaada et al. (2016) that for a given positive delay,
Eq. (20) admits a double spectral value at λ = λ0 if, and only if,

λ0 = −aτ + 1

τ
and b = eλ0 τ

τ
. (21)

In addition, it was emphasized that λ0 is the rightmost root, and that if λ0 < 0 then
the zero solution of system (20) is asymptotically stable. Now, recall that λ = λ0 is
a spectral value of (20) if, and only if, λ0 is a root of the characteristic function:

Q(λ,
−→p , τ ) = λ + a + b e−λτ . (22)

The main ingredient of the dominancy proof of λ0 is an integral equation which
cannot be satisfied for any spectral value λ with �(λ) > λ0. Namely, it was shown
that if b satisfies (21), then the characteristic function reads:

Q(λ,
−→p , τ ) = (λ − λ0)

(
1 −

∫ 1

0
e−τ (λ−λ0) t dt

)
. (23)

As amatter of fact, if λ1 = ζ + iη �= λ0 is a root of (23) then λ1 is a root of its second
factor. Hence, we obtain

1 =
∫ 1

0
e−τ (ζ−λ0) t dt.
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Fig. 3 (Left) Distribution of the spectrum corresponding to Eq. (22) and conditions (21) for a =
τ = 1 and b = e−2. The roots’ distribution is illustrated using the QPmR toolbox fromVyhlídal and
Zitek (2009). (Right) Rightmost root corresponding to Eq. (22) and conditions (21) as a function

of the delay τ for a = 1 and b = e−(τ+1)

τ . Figures are borrowed from Boussaada et al. (2020)

But, e−τ (ζ−λ0) t < 1 for ζ − λ0 > 0 and 0 < t < 1, thereby exhibiting the dominancy
of λ0.

Remark 8 The rightmost rootλ0 corresponding to equation (22), where system (21)
is satisfied, varies in the interval λ0 ∈ (−∞,−a). Figure3 illustrates the behavior
of the rightmost root with respect to the variation of τ .

4.2 Multiple Spectral Values for DDEs Systems are Not
Necessarily Dominant

The problem of stabilization of a chain of integrators is considered in Niculescu
and Michiels (2004) where a single integrator can be stabilized by a single delay
state-feedback. Indeed, a positive gain guarantees the closed-loop stability of the
system free of delay, and, by continuity, there exists a (sufficiently small) delay in
the output preserving the stability of the closed-loop system. However, the situa-
tion is completely different for a chain of integrators of order n when n > 1. For
instance, consider the time-delay system characterized by the following quasipoly-
nomial function:

Q(λ,α, τ ) = λ2 + α e−τ λ. (24)

It can be checked that the maximal admissible multiplicity is 2 and it can be attained
if, and only if,

α = −4
e−2

τ 2
, λ = −2

τ
. (25)

However, the main result from Niculescu and Michiels (2004) asserts that either
n distinct delays or a proportional+delay compensator with n − 1 distinct delays are
sufficient to stabilize a chain including n integrators. In Kharitonov et al. (2005), a
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like assertion is shown to be also necessary to stabilize the chain of n integrators.
Hence, in our case, either 2 distinct delays or a proportional+delay are necessary
and sufficient to stabilize the double integrator. In conclusion, there exists at least a
spectral value for (24) with a positive real part. As a result, λ0 = − 2

τ
, while being a

multiple root, it is not dominant. Indeed, consider (24)–(25) with τ = 1, that is

Q(λ,α, τ )|τ=1 = λ2 − 4e−(λ+2). (26)

As illustrated in Fig. 4, the dominancy property is lost since λ1 ≈ 0.557 is a root
of (26). This is justified by the sparsity (the vanishing of some coefficients of the
corresponding P0 polynomial) of (26).

4.3 Stabilizing an Oscillator Via a Delayed Output-Feedback

Consider the stability of the trivial solution corresponding to the control system

{
ξ̈(t) + c1ξ̇(t) + c0ξ(t) = u(t),

φ(t) = γ ξ(t),

where φ(t) is the system output and u(t) = β
γ

ξ(t − τ ) is the control law, which
amounts to studying the roots of the quasipolynomial function

Q(λ,
−→p , τ ) = λ2 + a1λ + a0 + β e−τ λ.

Fig. 4 Sparsity-induced loss of dominancy for the multiple spectral value. Each intersection
between the solid blue/dashed red curves corresponds to a spectral value of (26). For τ = 1, the
dominancy of λ1 ≈ 0.557 with respect to the double root at λ0 = −2 is illustrated. The roots’
distribution is illustrated using the QPmR toolbox from Vyhlídal and Zitek (2009). The figure is
borrowed from Boussaada et al. (2020)
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Using the standard linear change of variables λ → c1 λ
2 , one obtains the normalized

characteristic function

Q̃(λ,
−→p , τ ) = λ2 + 2λ + a0 + α e−λτ̃ (27)

whereα = 4
c21

β, τ̃ = c1
2 τ and a0 = 4 c0

c12
. Ifα = 0, the spectral abscissa isminimized

ata0 = 1which corresponds to the rightmost root located atλ0 = −1, see for instance
Kirillov andOverton (2013). By exploiting the delay effect, the following proposition
proved in Boussaada et al. (2018) asserts that the solution’s decay rate can be further
improved by decreasing the corresponding rightmost root. Assume that a0 > 1, then
we have:

Theorem 5 (Boussaada et al. 2018) The following properties hold:

(i) The multiplicity of any given root of the quasipolynomial (27) is bounded
by 3.

(ii) The quasipolynomial (27) admits a real spectral value at s0 = −1 − 1
τ̃

with
algebraic multiplicity 3 if, and only if,

τ̃ =
√

1

a0 − 1
with α = −2 e−(1+τ̃ )

τ̃ 2
. (28)

(iii) If equations (28) are satisfied then s = s0 is the rightmost root of (27).

Remark 9 If equalities (28) are satisfied then the trivial solution of the second-order
equation ξ̈(t) + 2 ξ̇(t) + a0 ξ(t) = α ξ(t − τ̃ ) is asymptotically stable with ξ(t) ≈
es0t .

5 Parametric MID for Second-Order Systems

Second-order linear systems capture the dynamic behavior of many natural phenom-
ena and have found numerous applications in a variety of fields, such as vibration and
structural analysis. Stabilization of solutions to such a reduced order model repre-
sents a standard test bench to approve new paradigms and methodologies in control
design.

The problem we consider in the sequel is the characterization of the admissible
multiplicities of spectral values and their effect on stability of the DDE

ξ̈(t) + a1ξ̇(t) + a0ξ(t) + α0 ξ(t − τ ) + α1ξ̇(t − τ ) = 0

It should be mentioned that such a system depicts several unexpected properties
and in particular, for each choice of the coefficients, the delay parameter induces a
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stabilizing/destabilizing behavior. In other words, increasing the delay value may be
beneficial for the system’s dynamics.21

>From a control theory viewpoint, the aim is to construct an appropriate delayed-
state-feedback controller given by u(t) = −α0 ξ(t − τ ) − α1ξ̇(t − τ ) able to stabi-
lize the following dynamical system:

ξ̈(t) + a1ξ̇(t) + a0ξ(t) = u(t). (29)

In frequency-domain, the latter generic control problem yields the following char-
acteristic quasipolynomial function:

Q(λ,
−→p , τ ) = P0(λ) + P1(λ) e−τ λ (30)

where P0(λ) = λ2 + a1λ + a0 and P1(λ) = α1 λ + α0.
>From an algebraic geometry viewpoint, it is consistent to set up such a control

problem via the discriminant of the characteristic polynomial related to the open-
loop (uncontrolled) equation. Namely, the complex/real nature of the roots of the
polynomial P0(λ) has a strong effect on the characterization of the controller’s gains
and delay enabling a desired fast stabilization using the MID property. In the sequel,
it shall be emphasized that the discriminant of P0 (� = a2

1 − 4a0) defines an efficient
and necessary criterion to exhibit the potential applicability and the limitations of
the MID methodology, and our analysis splits following the sign of the discriminant
�. The following results were presented in Boussaada et al. (2020).

5.1 Open-Loop Systems with One Oscillating Mode

One oscillating mode as solution of the uncontrolled equation (two conjugate com-
plex roots) corresponds, from a purely algebraic viewpoint, to a characteristic poly-
nomial with a strictly negative discriminant�. In such a case, the following theorem
gives a bound for quasipolynomial root’s multiplicity and provides the explicit MID-
based controller’s gains and delay.

Theorem 6 Consider the quasipolynomial (30). Then, the following assertions hold:

(i) the multiplicity of any given root of the quasipolynomial (30) is bounded by 4,
and this can only be achieved on the real axis and under negativity of �.

(ii) the quasipolynomial (30) admits a real spectral value at λ = λ0 with algebraic
multiplicity 4 if, and only if,

λ0 = −a1 + √−2�

2
,

21 Such a property does not hold for scalar systems with one delay, for which increasing the delay
leads to instability, see for instance Walton and Marshall (1987), Niculescu et al. (2010).
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and the system’s parameters satisfy

τ = 2

√

− 2

�
, α0 =

(
5� − a1

√−2�
)

4
es0τ , α1 = −

√−2�

2
es0 τ . (31)

(iii) if (31) is satisfied, then λ = λ0 is the spectral abscissa corresponding to (30).
(iv) if (31) is satisfied then the trivial solution of the closed-loop system (29) is

asymptotically stable if, and only if, either
(

a1 ≥ 0 and a0 >
a2
1
4

)
or

(
a1 < 0 and a0 >

3 a2
1

8

)
.

5.2 Open-Loop Systems with Non Oscillating Modes

Consider now the case where the uncontrolled equation admits two real spectral
values. As expected, under such a configuration, the MID based-design cannot be
applied by exploiting the maximal multiplicity which is equal to 4, see Theorem 6.
The following theorem gives a bound for the quasipolynomial roots’ multiplicity in
the case when � ≥ 0. In addition, it explicitly provides the MID-based controller’s
gains and delay by exploiting a lower multiplicity.

Theorem 7 Consider the quasipolynomial (30). Then the following assertions hold:

(i) if the discriminant � ≥ 0, then the multiplicity of any given root of the
quasipolynomial (30) is bounded by 3.

(ii) for an arbitrary positive delay τ , the quasipolynomial (30) admits a real spec-
tral value at λ = λ± with algebraic multiplicity 3 if, and only if,

λ± = −τ a1 − 4 ± √
8 + τ 2�

2 τ
,

and the system parameters satisfy:

⎧
⎪⎪⎨

⎪⎪⎩

α0 =
(

a1λ± + a1
2

2
− �

2
+ 6 a1 + 10λ±

τ
+ 6

τ 2

)
eλ±τ ,

1 =
(
2λ0 + a1 + 2

τ

)
eλ±τ .

(iii) if (�+) (respectively (�−)) is satisfied, then λ = λ+ is the spectral abscissa
corresponding to (30) (respectively λ− cannot be the spectral abscissa corre-
sponding to (30)). Furthermore, for an arbitrary delay τ the multiple spectral
value at λ− is always dominated by a single real root λ0.

(iv) if (�+) is satisfied then the trivial solution is asymptotically stable if, and only
if, τ satisfies the following conditions
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⎧
⎪⎨

⎪⎩

τ ∈ (0, τ−) when a0 < 0,

or

∈ (0, τ−) ∪ (τ+,∞) when a0 > 0 and a1 < 0,

where τ± = −a1±√
�+2 a0

a0
.

Remark 10 The second and third assertions of Theorem 7 hold also for negative
discriminant− 8

τ 2 < � < 0.Moreover, when� = − 8
τ 2 the triple root at λ± becomes

the quadruple root prescribed in Theorem 6.

6 The Generic MID Property

Some works have shown that, for some classes of dynamical systems represented
by DDEs of retarded type, a real root of maximal multiplicity is necessarily the
rightmost root. Such a property is called Generic MID, or GMID for short. This link
between maximal multiplicity and dominance has been suggested in Pinney (1958)
after the study of some simple, low-order cases, but without any attempt to address
the general case. Recently, amore general result on theGMID property fromMazanti
et al. (2021a) for generic retarded DDEs of order n with delayed (polynomial) “term”
of order n − 1, which relies on links between quasipolynomials with a real root of
maximal multiplicity and the Kummer’s confluent hypergeometric function in terms
of the location of the characteristic roots. The GMID property was also extended to
neutralDDEsof orders 1 and2 inMaet al. (2020);Benarab et al. (2020);Mazanti et al.
(2021b), as well as to the case of complex conjugate roots of maximal multiplicity
in Mazanti et al. (2020).

6.1 Degenerate Hypergeometric Functions

Let a, b ∈ C and assume that b is not a nonpositive integer. The Kummer’s confluent
hypergeometric function M(a, b, ·) : C → C is the entire function defined for λ ∈ C

by the series

M(a, b,λ) =
∞∑

k=0

(a)k

(b)k

λk

k! . (32)

Furthermore, the series in (32) converges for every λ ∈ C. As presented in Buchholz
(1969); Erdélyi et al. (1981); Olver et al. (2010), the function M(a, b, ·) satisfies
Kummer’s differential equation
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λ
∂2M

∂λ2
(a, b,λ) + (b − λ)

∂M

∂λ
(a, b,λ) − aM(a, b,λ) = 0. (33)

Other solutions of (33) are usually also called Kummer’s confluent hypergeometric
functions, but they are not used in this chapter. Note that the Kummer’s confluent
hypergeometric function M admits an integral representation, which can be found,
for instance, in Buchholz (1969); Erdélyi et al. (1981); Olver et al. (2010). Namely,
let a, b ∈ C and assume that �(b) > �(a) > 0. Then

M(a, b,λ) = �(b)

�(a)�(b − a)

∫ 1

0
eλt t a−1(1 − t)b−a−1 dt,

where � denotes the Gamma function.
The main result on confluent hypergeometric functions used in Mazanti et al.

(2021a) to prove the GMID property is the following one on the location of the roots
of some particular functions. It was proved in Wynn (1973) by using a continued
fraction expansion of the ratio of two such functions.

Proposition 4 Let a ∈ R be such that a > − 1
2 .

1. If λ ∈ C is such that M(a, 2a + 1,λ) = 0, then �(λ) > 0.
2. If λ ∈ C is such that M(a + 1, 2a + 1,λ) = 0, then �(λ) < 0.

6.2 Spectral Values of Maximal Multiplicity are Dominant

Consider the quasipolynomial function Q : C → C defined for λ ∈ C by

Q(λ, τ ) = λn +
n−1∑

k=0

akλ
k + e−λτ

n−1∑

k=0

αkλ
k . (34)

The following result proved inMazanti et al. (2021a) is the following characterization
of real roots of maximal multiplicity of Q, their dominance and the corresponding
consequences for the stability of the trivial solution of

y(n)(t) +
n−1∑

k=0

ak y(k)(t) +
n−1∑

k=0

αk y(k)(t − τ ) = 0, (35)

Theorem 8 (Mazanti et al. 2021a) Consider (34) and let λ0 ∈ R.

1. The number λ0 is a root of multiplicity 2n of Q if and only if, for every k =
0, . . . , N − 1,
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ak =
(

n

k

)
(−λ0)

n−k + (−1)n−kn!
n−1∑

j=k

(
j

k

)(
2n − j − 1

n − 1

)
λ

j−k
0

j !τ n− j
,

= (−1)n−1eλ0τ
n−1∑

j=k

(−1) j−k(2n − j − 1)!
k!( j − k)!(n − j − 1)!

λ
j−k
0

τ n− j
.

(36)

2. If (36) is satisfied, then λ0 is a strictly dominant root of Q.
3. If (36) is satisfied, then the trivial solution of (35) is exponentially stable if and

only if an−1 > − n2

τ
.

7 Software: Partial Pole Placement via Delay Action

Based on the recent results by the authors on the MID property for DDEs, a Python
software for the parametric design of stabilizing feedback laws with time-delays,
called “Partial Pole Placement via Delay Action” (P3δ22 for short), has been devel-
oped. P3δ also implements other features, which are detailed in Boussaada et al.
(2022). In the sequel, we revisit the problem of damping solutions of the standard
oscillator by using a delayed feedback, and the proposed results are illustrated by
using P3δ:

ζ̈(t) + 2 ξ ω0 ζ̇(t) + ω2
0 ζ(t) = c(t)

where ω0 > 0 and 0 < ξ < 1 stand respectively for the oscillator natural frequency
and the damping factor. Consider now the controller c as a proportional-derivative
delayed-controller:

c(t) = −b0 ζ(t − τ ) − b1 ζ̇(t − τ ).

Thus, the closed-loop characteristic function is given by:

Q(λ,
−→p , τ ) = λ2 + 2 ξ ω0 λ + ω0

2 + (b0 + b1 λ) e−τ λ.

Assume the natural frequency ω0 = 1 and the damping factor ξ = 1/2, which corre-
sponds to an open-loop plant with a complex-conjugate pair λ±

O L = −1/2 ± i
√
3/2.

Then, the closed-loop plant corresponds to the following characteristic quasipolyno-
mial

Q(λ,
−→p , τ ) = λ2 + λ + 1 + (b0 + b1 λ) e−τ λ. (37)

Forcing the existence of a triple spectral value suggests that

λ±
C L = −1/2 − 2 τ−1 ± 1/2 τ−1

√
−3 τ 2 + 8 (38)

22 The software is freely available for download on https://cutt.ly/p3delta,where installation instruc-
tions, video demonstrations, and the user guide are also available.

https://cutt.ly/p3delta
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Fig. 5 P3δ interface exhibiting the design of a stabilizing delayed PD controller in the case of
the characteristic function (37). (Left) Illustration of the roots location in the case τ = τ∗ ≈ 0.24
which by using (38) corresponds to λ+

C L = −3. (Right) Closed-loop response corresponding to the
history function ϕ(t) = 3 for all t ∈ [−τ∗, 0]

are the only admissible roots. As a matter of fact, those triple spectral values are
defined if, and only if, the controller’s gains are such that:

b0 =
(
6 + (

2 + λ±
C L

)
τ 2 + (

10λ±
C L + 6

)
τ
)
eλ±

C Lτ

τ 2
,

b1 = eλ±
C Lτ

(
2λ±

C Lτ + τ + 2
)

τ
.

(39)

It follows that if (39) is satisfied and the triple root at λ+
C L is selected then the spectral

abscissa corresponds to λ+
C L as illustrated in Fig. 5.

Notice that the assignment of the triple root λ = λ+
C L is possible only in the

admissibility region λ ∈ (−∞, λM ] which corresponds necessarily to τ ∈ (0, τM ]
where τM = 2/3

√
6 and λM = −1/2 (1 + √

3), see for instance Boussaada et al.
(2020). This fact is illustrated in Fig. 6.
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Fig. 6 MIDstabilizability regiondefinedby (−∞, λM ], inwhich the assignment of a triple negative
dominant root of (37) is possible, where in such a case λM corresponds to the lowest (in absolute
value) assignable decay rate

8 Active Vibration Control in a Mechanical Flexible
Structure

The problem of active vibration damping of thin mechanical structures is a topic
that has received a great attention by the control community since several years (see,
for instance, Tliba 2011 and the references therein), especially when actuators and
sensors are based on piezoelectric materials. For deformable mechanical structures,
piezoelectricmaterials are used as strain sensors or strain actuators.Manyworks have
concerned the vibration control problem of the “Euler-Bernoulli beam” equipped
with one rectangular piezoelectric actuator and sometime, another one, identical and
collocated, but used as sensor. See for example Chen et al. (2004); Banks et al. (2002)
where one edge of the beam is clamped whereas the other remains free. Other works
dealt with the problem of vibration control for laminated rectangular plates Kögl and
Bucalem (2005) or complex plate like structures Tliba et al. (2005).

8.1 Modeling of the Vibrating Beam

Consider now the flexible structure depicted in Fig. 7. It is an aluminium-based beam,
embedded in a mobile support. The mobile support is subjected to an acceleration,
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Fig. 7 Sketch of the piezo-actuated flexible beam, clamped at one edge. The figure is taken from
Boussaada et al. (2017)

denoted by w in the sequel, and it is moving along the z axis. This flexible beam
is equipped with two piezoelectric patches made with lead zirconate titanate (also
called PZT). One of them is used as an actuator and the other works as a sensor. These
patches are supposed to be rigidly bounded on the beam, one on each side, located
at the clamped edge. The whole device is called thereafter as a piezo-actuated beam.
It can be deformed by the application of a voltage, denoted by u, across the actuator.
The sensor delivers an electrical voltage which corresponds to a measure, denoted
by y, of the local deformation under the piezoelectric patch.

Very often, this equipped mechanical structure is partly described by the in-plane
Euler-Bernoulli Partial Differential Equation (PDE) that suffers from the lack of pre-
cision in describing the electro-mechanical interactions between the passive struc-
ture and the piezoelectric components. Indeed, these latter are often withdrawn in the
computation of the eigenfrequencies (Tliba, 2004) of the whole structure. Neverthe-
less, such a structure obeys to fundamental equations of continuum mechanics in 3D
space (Gérardin and Rixen, 1997), involving computations of gradient of displace-
ment vector and divergence operator applied to strength tensor. When completed
with Neumann and Dirichlet boundary conditions, the fundamental equations give
several PDEs that are coupled, thus hardly or impossible to solve analytically. Then,
for controller design purposes, one naturally turns toward numericalmethods in order
to get the input-to-output dynamical models (Komzsik, 2005).

Using Finite Element Modeling (FEM), one obtains the LTI system described by
the following ordinary differential equations:

Mqq q̈(t) + Dqq q̇(t) + Kqqq(t) = Mqww(t) − Kquu(t) (40)

y(t) = Kqyq(t) (41)

z(t) = Fzww(t) − Fzuu(t) − Fzqq(t) − Fzvq̇(t) (42)

where w(t) ∈ R is the absolute acceleration (m/s2) of the movable support along
axis z, z(t) ∈ R is the relative acceleration (m/s2) of the free end, derived from the
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Fig. 8 Frequency responses of the analysis (-) and reduced order (.-) models. The figure is borrowed
from Boussaada et al. (2017)

Mode 1 at 37.15 Hz Mode 3 at 227.3 Hz Mode 4 at 621.2 Hz

Fig. 9 First three controllable and observable modes. The figure is borrowed from Boussaada et al.
(2017)

equations of motion, u(t) ∈ R is the piezoelectric voltage (V ) across the actuator
(control signal), y(t) ∈ R is the piezoelectric sensor voltage (V ) across the sensor
(measured output signal y(t)). Moreover, the termsMqq , Dqq ,Mqw,Kqq ,Kqu ,Kqy ,
Fzw, Fzu , Fzq and Fzv are all matrices derived from the assembly step of the FEM
such that the obtained approximation is with several thousands degrees of freedom.
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After producing a FEM, a modal analysis is performed to the undamped motion
Eq. (40). It consists in finding the eigenstructure of Mqq q̈(t) + Kqqq(t) = 0, and
using the eigenvalues and eigenvectors as a new basis allowing the description of
(40)–(42) into a new system of ODEs, still linear but decoupled, involving a new
state vector, called vector of modes. The advantage of this form is that it allows
to build a model in state-space form devoted to analysis, (43) below, having its
order sufficiently small to describe the dynamical behavior within a low-frequency
bandwidth. Furthermore, a reduced-order system, devoted to the controller synthesis
step, is also available and differs from the analysis one by the presence of direct
feedthrough terms between the outputs {z, y} and the inputs {w, u}. Further details
can be found in Boussaada et al. (2018). The frequency responses for the analysis
and the reduced-order models are shown in Fig. 8 and the shapes of the first three
bending modes in Fig. 9.

⎧
⎨

⎩

ẋ p(t) = Apx p(t) + Bp,ww(t) + Bp,uu(t)
z(t) = C p,z x p(t) (+ Dp,zww(t) + Dp,zuu(t)

)

y(t) = C p,y x p(t) (+ Dp,yww(t) + Dp,yuu(t)
) (43)

It is worth mentioning that the piezo-actuated beam is a SISO LTI system. In the
sequel, we shall use the transfer function basedmodel, derived from (43) by applying
to it Laplace transform, given by

⎧
⎪⎨

⎪⎩

z(λ) = Nwz(λ)

ψ(λ)
w(λ) + Nuz(λ)

ψ(λ)
u(λ)

y(λ) = Nwy(λ)

ψ(λ)
w(λ) + Nuy(λ)

ψ(λ)
u(λ),

where λ denotes the Laplace variable. By considering the first vibration mode, one
gets the following numerical data for the reduced order model

Nwz(λ) = −1.572λ2 − 0.767λ + 0.114,

Nuz(λ) = 0.040λ2 + 0.019λ − 0.002,

Nwy(λ) = −0.047λ2 − 0.023λ − 24664.720,

ψ(λ) = λ2 + 0.487λ + 59495.866,

Nuy(λ) = 0.082λ2 + 0.040λ + 5472.410.

An interesting control objective would be to damp the peak of resonance of the first
bendingmode, by using an output feedback controller, without affecting the vibrating
modes that were neglected in the reduced order model. The result presented in the
next section as well as its proof can be found in Boussaada et al. (2017), see also
Boussaada et al. (2018).
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Fig. 10 Feedback control
structure. The figure is
borrowed from Boussaada
et al. (2017)

8.2 Vibration Damping

Consider now the piezo-actuated system inserted in the typical output feedback con-
trol structure of Fig. 10, with a zero-reference signal and an input disturbance w cor-
responding to a rectangular impulse signal. The control problem consists in damping
the vibrations due to the first mode when the mobile support is subjected to a shock-
like disturbance.We define the output feedback control law u(λ) = C(λ,

−→p , τ ) y(λ)

involving the following reduced-complexity controller given in Laplace domain by

C(λ,
−→p , τ ) = N (λ,

−→p , τ )

D(λ,
−→p , τ )

(44)

where N (λ,
−→p , τ ) = n0 + nr0 e−τ λ and D(λ,

−→p , τ ) = d0 + dr0 e−τ λ and p =
(n0, nr0, d0, dr0). By applying the inverse Laplace transform, it can be easily shown
that this control law writes in time-domain as:

u(t) = −dr0

d0
u(t − τ ) + n0

d0
y(t) − nr0

d0
y(t − τ ),

which is an output feedback control law based on proportional actions plus delayed
proportional actions. For the sake of clarity, by omitting the variable λ in the polyno-
mials, the closed loop relation between the disturbance w and the controlled output
z is given by:
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z(λ) = Nwz ψ D + (
Nuz Nwy − Nwz Nuy

)
N

ψ
(
ψ D − Nuy N

) w(λ). (45)

It can be proven that ψ divide the polynomial
(
Nuz Nwy − Nwz Nuy

)
so that it can

be removed from the numerator and the denominator. In this last case, let R(λ)

be the polynomial satisfying Nuz(λ) Nwy(λ) − Nwz(λ) Nuy(λ) = R(λ)ψ(λ). Then
(45) becomes

z(λ) = Nwz D + R N

ψ D − Nuy N
w(λ).

Consider now the characteristic function

Q(λ,
−→p , τ ) = ψ(λ) D(λ,

−→p , τ ) − Nuy(λ) N (λ,
−→p , τ ).

By applying the MID property and the ensuing procedure, one can assign λ0 as a
rightmost root of multiplicity equal to 3 such that λ0 � −192.359. Notice that in
such a case the numerical values for the parameters of the controller in (44) are given
by:

n0 � 39.793, nr0 � 48.034, d0 � 4.281, dr0 � 3.961, τ � 0.005.

Notice that such a choice for the controller’s gains guarantees that the closed-loop
characteristic equation is of retarded type. To show the efficiency of the proposed
reduced-complexity controller, we propose to compare, in Fig. 11, the time responses

Fig. 11 Time responses of the measured output y (Top) and of the controlled output z (Bottom)
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of both output signals in open-loop (blue) and in closed-loop (red) when the distur-
bance w is a rectangular impulse (black), say like a shock. We also put the time
response of the control signal u that exhibits a peak of magnitude roughly equal to
−60 V which is reasonable for this application.

9 Notes and Comments

In studying the exponential stability of the trivial solution of linear DDEs of retarded
type, this chapter addressed several frequency-domain techniques to count the roots
of the corresponding characteristic functions in the complex right half-plane with
a particular emphasis on the MID property and its potential application in control
engineering. Illustrative examples and one application in vibration control show the
effectiveness of the method. The main results of this chapter have been reported in
Boussaada and Niculescu (2016a) (characterizing the codimension of the zero sin-
gularity) Mazanti et al. (2021a) (characterizing the generic MID characterization for
DDEs of retarded type with a single delay) and Boussaada et al. (2017) (application
in vibration control). It should be noted that a guided tour of existing methods to
analyze multiple characteristic roots (including the MID property mentioned in this
chapter) can be found in Niculescu et al. (2021).
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Mori, T., & Kokame, H. (1989). Stability of ẋ(t) = Ax(t) + Bx(t − τ ). IEEE Transactions on
Automatic Control, 34, 460–462.

Mori, T., Fukuma, N., & Kuwahara, M. (1982). On an estimate of the decay rate for stable linear
delay systems. International Journal of Control, 36(1), 95–97.

Niculescu, S.-I., & Michiels, W. (2004). Stabilizing a chain of integrators using multiple delays.
IEEE Transactions on Automatic Control, 49(5), 802–807.

S-Niculescu, S. I., Michiels, W., Gu, K., & Abdallah, C. T. (2010). Delay effects on output feedback
control of dynamical systems (pp. 63–84). Springer Berlin.

Niculescu, S. I., Boussaada, I., Li, X. G., Mazanti, G., & Méndez-Barrios, C. -F. (2021). Stability,
delays and multiple characteristic roots in dynamical systems: A guided tour. In Proceedings
of the 16th IFAC Workshop Time Delay Systems (Vol. 54, pp. 222–239), IFAC-PapersOnLine.
Guangzhou, China.

Niculescu, S. -I., Li, X. -G., & Çela, A. (2023). Counting characteristic roots of linear delay-
differential equations. Part I: frequency-sweeping stability tests and applications. In D. Breda
(Ed.), Controlling Delayed Dynamics: Advances in Theory, Methods and Applications, CISM
Lecture Notes (pp. 117–156). Wien-New York: Springer.

Nyquist, H. (1932). Regeneration theory. Bell System Technical Journal, 11(1), 126–147.
Obreschkoff, N. (1928). Nullstellen linearer kombinationen von exponentialfunktionen. Jahres-

bericht der Deutschen Mathematiker-Vereinigung, 37, 81–84.



Counting Characteristic Roots of Linear Delay Differential Equations … 193

Olver, F.W. J., Lozier, D.W., Boisvert, R. F., &Clark, C.W. (Eds.).NIST handbook of mathematical
functions. Cambridge: Cambridge University Press.

Pinney, E. (1958).Ordinary difference-differential equations. Berkeley: University California Press.
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Bifurcation Analysis of Systems With
Delays: Methods and Their Use in
Applications

Bernd Krauskopf and Jan Sieber

Abstract This chapter presents a dynamical systems point of view of the study of
systems with delays. The focus is on how advanced tools from bifurcation theory, as
implemented for example in the packageDDE-BIFTOOL, can be applied to the study
of delay differential equations (DDEs) arising in applications, including those that
feature state-dependent delays. We discuss the present capabilities of the most recent
release of DDE-BIFTOOL. They include the numerical continuation of steady states,
periodic orbits and their bifurcations of codimension one, as well as the detection of
certain bifurcations of codimension two and the calculation of their normal forms.
Two longer case studies, of a conceptualDDEmodel for theElNiño phenomenon and
of a prototypical scalar DDE with two state-dependent feedback terms, demonstrate
what kind of insights can be obtained in this way.
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1 Introduction

Systems with delays arising in applications come in many different forms. From a
general perspective a DDE is an ordinary differential equation (ODE) with a number
of terms that feature delays. When the delays are zero, or parameters multiplying
such terms are zero, then the DDE reduces to the underlying ODE, that is, a finite-
dimensional dynamical system. When delays are present, on the other hand, one
is dealing with an actual DDE and, hence, with an infinite-dimensional dynamical
system. As for ODEs, the task is to determine the possible dynamics of a given DDE
as a function of its parameters. In other words, what is called for is a bifurcation
analysis of the DDE that unveils the division of parameter space into regions of
different behavior. In spite of this difference in the dimension of the phase space, the
bifurcation theory of DDEs is effectively that of ODEs in the sense that the same
bifurcations of equilibria and periodic orbits arise in both cases. The complicating
issue is that equilibria, periodic orbits and their bifurcations of a given DDE “live”
in an infinite-dimensional space. As is the case for ODEs, this requires specialized
numerical tools for finding and tracking invariant objects and their bifurcations.

Aswewill demonstrate, such advanced tools are available today.We focus here on
the capabilities as implemented in the package DDE-BIFTOOL—a Matlab/octave
(MATLAB 2018; Eaton et al. 2017) compatible library for performing numerical
bifurcation analysis of DDEs of different types. DDE-BIFTOOL uses a numeri-
cal continuation approach, originally implemented by Engelborghs et al. (2000b),
Engelborghs et al. (2001), Samaey et al. (2002), and is currently accessible and
maintained at sourceforge.net/projects/ddebiftool (Sieber et al. 2015). Its capabili-
ties are a subset of those of commonly used tools for ODEs and maps, such as AUTO
(Doedel et al. 1999; Doedel 2007), MATCONT (Dhooge et al. 2003; Govaerts 2000)
or COCO (Dankowicz and Schilder 2013). The bifurcation analysis tool knut offers
an alternative, stand-alone implementation (in C++) of many of the methods used in
DDE-BIFTOOL; see Roose and Szalai (2007).

In contrast to the tools forODEs, the packageDDE-BIFTOOLpermits differential
equations with a finite number of discrete delays in their arguments. More precisely,
it considers differential equations of the form

Mx ′(t) = f (x(t), x(t − τ1), . . . , x(t − τd), p), where (1)

M ∈ R
n×n and f : Rn×(d+1) × R

np → R
n ,

which is a DDE with d + 1 delays (where τ0 = 0 is included in the list of discrete
delays). Further, there are np system parameters p ∈ R

np . We call the space Rn , in
which x(t) lives, the physical space for (1) (not to be confused with the infinite-
dimensional phase space of the DDE as defined below). The matrix M on the left-
hand side is most commonly (and by default) equal to the identity matrix, which
corresponds to the case of ‘standard’ DDEs. Different choices of M are used to
define other types of DDEs, including equations that are neutral (featuring delayed
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derivatives), are of differential algebraic form, or are of mixed type with both delayed
and advances terms.

DDE-BIFTOOL distinguishes two types of DDEs, depending on the nature of
the discrete delays τ1, . . . , τd : DDEs with constant delays and DDEs with state-
dependent delays. In the case of constant-delay DDEs the delays τ1, . . . , τd need to
be part of the vector p of system parameters. As part of the setup, the user has to
specify the list ofd indices of p that correspond to the delays τ1, . . . , τd .Alternatively,
when dealing with state-dependent delays one may specify the delays τ1, . . . , τd as
functions of current or delayed states of x . More precisely, the user has to specify
the number d of delays and the functions

τ
f
j : Rn× j × R

np → R for j = 1, . . . , d, where then

τ j = τ
f
j (x0, . . . , x j−1, p) for j = 1, . . . , d, with (2)

x0 = x(t), x j = x(t − τ j ) for j = 1, . . . , d, such that

x ′(t) = f (x0, . . . , xd , p). (3)

This way of defining the system permits the user to specify that the delay τ j depends
on the instantaneous state x(t), the delayed states x(t − τ1), . . . , x(t − τ j−1) and the
parameter p. For example, for d = 2 permitted systems are of the form

x ′(t) = f (x(t), x(t − τ1(x(t), p)), x(t − τ2(x(t), x(t − τ1(x(t), p)), p)), p).

Hence, the recursive definition (2)–(3) permits arbitrary levels of nesting of delays.
We focus here on ‘standard’ DDEs with constant and state-dependent delays. We

first briefly discuss their relevant properties as dynamical systems. Subsequently, we
present the tasks of bifurcation analysis and then discuss how they are performed
and set up in practice in DDE-BIFTOOL; here, we use a constant-delay DDE for the
inverted pendulum with delayed control as the illustrating example throughout. We
further illustrate the overall capabilities with two longer case studies: (1) a conceptual
DDE model for the El Niño Southern Oscillation (ENSO) system with negative
delayed feedback and periodic forcing, where the delay is initially constant and then
state dependent; and (2) a prototypical scalarDDEwith two state-dependent feedback
terms that features only trivial dynamics in the absence of state dependence.

2 DDEs as Dynamical Systems

While DDEs with discrete delays are the most common type of DDEs considered for
practical implementation of numerical methods, the underlying mathematical theory
does not distinguish between discrete and, e.g., distributed delays. The general theory
permits general functionals on the right-hand side, of the form
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f̃ : C0([−τmax, 0];Rn) × R
np → R

n.

Here Ck([−τmax, 0];Rn) (or Ck for short) is the space of k times continuously dif-
ferentiable functions—the history segments—on the interval [−τmax, 0], where τmax

is an upper bound for the delays; in particular, C0 is the space of continuous func-
tions on [−τmax, 0] with values in R

n . The general DDE (also called a functional
differential equation, FDE) then has the form

x ′(t) = f̃ (xt , p), (4)

for the standard case that M in (1) is the identity matrix. One looks for solutions
x(t) ∈ R

n with t ∈ [−τmax, tend] of (4), and the solution xt with subscript t is the
current history segment in C0, that is,

xt : [−τmax, 0] → R
n

θ �→ x(t + θ).

For the DDE (1) with discrete delays the functional f̃ has the form

f̃ (x, p) = f (x(0), x(−τ1), . . . , x(−τd), p)

for x ∈ C0. In case the delays are state dependent, the τ j are defined as described by
(2) when setting t = 0.

2.1 General Theory for DDEs With Constant Delays

For DDEs with constant delays the textbooks by Hale and Verduyn Lunel (1993) and
Diekmann et al. (1995) develop the necessary theory that permits one to consider
DDEs of the general type (4) (and, hence, (1)) as regular dynamical systems on the
phase space C0 of continuous functions over the (maximal) delay interval; these
DDEs are referred to as abstract ODEs by Diekmann et al. (1995). For t = 0 one has
to provide an initial history segment φ ∈ C0, and then at each time t ≥ 0 the current
state is the function xt , which is also inC0; in particular, x0 = φ. The textbooks show
that the map

X : [0,∞) × C0 → C0

(t,φ) �→ xt ,

which maps time t and initial value φ to the history segment xt at time t of the
solution of the DDE, is as regular with respect to its argument φ as the right-hand
side f̃ of (1) is with respect to its first argument. For example, if φ �→ f̃ (φ, p) is �

times continuously differentiable, then so is φ �→ X (t;φ). Consequently, the general
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theory transfers many results of the bifurcation theory for ODEs to the case of DDEs
with constant delays. In particular, the solution map X is eventually compact, which
implies that local centermanifolds in equilibria and periodic orbits ofDDEs are finite-
dimensional and as regular as the right-hand side f̃ . Therefore, the local bifurcation
theory of DDEs with a finite number of constant delays is identical to the local
bifurcation theory of ODEs.

2.2 General Theory for DDEs With State-Dependent Delays

For DDEs with state-dependent delays the claim that their local bifurcation theory
is identical to the theory of ODEs is not fully resolved. A review of well established
results and an exposition of the obstacles that one initially faces are described in
the review by Hartung et al. (2006). Even assuming that the state-dependent delays
are always bounded within an interval [0, τmax], the space of continuous C0 is not a
suitable phase space, since no local uniqueness of solutions to initial-value problems
can be guaranteed. The difficulty lies in the fact that for state-dependent delays
the functional f̃ : C0 → R

n in the right-hand side of the DDE is not continuously
differentiable (or locally Lipschitz continuous), even if all coefficients f and τ

f
j

are smooth. In fact, for general DDEs of the form (4) the assumption that f̃ is
continuously differentiable with respect to its first argument is not satisfied when
the delays are state dependent. The assumption of regularity of φ �→ f̃ (φ, p) being
satisfied could be considered as the general property underlying and, hence, defining
the constant-delay case of the theory.

Walther (2003) observes that functionals f̃ involving state-dependent delays sat-
isfy a weaker regularity condition, which could be called mild differentiability. For
these types of functionals Walther (2003) proves that for history segments φ within
the manifold of compatible initial conditions, defined as

φ ∈ C1
comp :=

{
φ ∈ C1 : φ′(0) = f̃ (φ)

}
,

a unique solution X (t;φ) of the DDE exists and is also in C1
comp. Moreover, for each

time t ≥ 0, the solution map

X : C1
comp → C1

comp

φ �→X (t;φ) (5)

is continuously differentiable once, which means that X meets the conditions for
basic stability theory. For example, the principle of linearized stability holds for
equilibria and periodic orbits (Skubachevskii and Walther 2006; Mallet-Paret and
Nussbaum 2011b). Moreover, local center manifolds exist, are finite-dimensional
and are continuously differentiable once (Stumpf 2011).
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The results for the solution map X cannot be generalized to higher degrees of con-
tinuous differentiability; hence, X is not sufficiently regular to support all aspects of
local bifurcation theory. However, there exist some results on higher-order differen-
tiability for DDEswith state-dependent delays. First, solutions of periodic boundary-
value problems for state-dependent delays can be reduced to finite-dimensional alge-
braic systems of equations that are as regular as the coefficients, such as f and τ

f
j in

(2) and (3). Thus, all computations performed during numerical bifurcation analysis
of equilibria, periodic orbits or their local bifurcations can be performed as expected
and depend smoothly on their data. This includes the standard tasks of continuation of
solutions using Newton iterations and pseudo-arclength continuation, or branching
off at singularities. Similarly, all computations performed during normal form anal-
ysis are feasible (Sieber 2012, 2017). Furthermore, Krisztin (2006) checked that the
techniques used for obtaining � > 1 times differentiable local unstable manifolds of
equilibria (Krisztin 2003) are also applicable to local center manifolds of equilibria.

Thus, the results by Krisztin (2006) strongly suggest that local center manifolds
in DDEs with state-dependent delays are differentiable as often as the coefficients f
and τ

f
j , even though the solution map X of (5) is not. For this reason, while this is not

fully resolved, the local bifurcation theory of DDEs with state-dependent delays is
still expected to be identical to the theory for ODEs. Indeed, this claim is supported
by all theoretical results this far, as well as by numerical investigations such as the
one presented in Sect. 5.

3 Capabilities of DDE-BIFTOOL Demonstrated for the
Controlled Inverted Pendulum

The general theory of Sect. 2 implies that numerical bifurcation analysis should allow
one to perform a range of tasks for equations of type (1), similar to those arising in the
bifurcation analysis of ODEs. More specifically, the local bifurcations of (standard)
DDEs with both constant and state-dependent delays are the same as those one finds
in ODEs and can, hence, be found in standard textbooks such as Guckenheimer and
Holmes (1983), Govaerts (2000), Kuznetsov (2013).We do not present or review here
this extensive theory but rather focus on the typical tasks required for the bifurcation
analysis of a given DDE (or ODE), which include:

1. continuation of equilibria in a single system parameter;
2. linear stability analysis at equilibrium points, that is, finding the (leading) eigen-

values of their linearization;
3. detection of codimension-one bifurcations of equilibria and their continuation as

curves in two system parameters; in generic systems, these are the saddle-node
(or fold) bifurcation and the Hopf bifurcation, while in the presence of additional
(symmetry) properties they include the transcritical bifurcation and the pitchfork
bifurcation;
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4. detection of codimension-two bifurcations of equilibria; in generic systems,
these include the saddle-nodeHopf, Hopf-Hopf, cusp and degenerateHopf bifur-
cations;

5. normal form analysis of generic codimension-one and codimension-two bifur-
cations of equilibria; this includes, for example, computing the Lyapunov coef-
ficient for the Hopf bifurcation, which determines whether the bifurcation is
supercritical or subcritical, and branching off to secondary solution or bifurca-
tion branches;

6. continuation of periodic orbits in a single system parameter (with automatic
adjustment of the period);

7. linear stability analysis of periodic orbits, that is, determining their (leading)
Floquet multipliers;

8. detection of codimension-one bifurcations of periodic orbits and their contin-
uation as curves in two system parameters; in generic systems, these are the
saddle-node (or fold) bifurcation of periodic orbits, the period-doubling bifur-
cation and the torus (or Neimark-Sacker) bifurcation;

9. identification and continuation of connecting orbits between equilibria in a suit-
able number of system parameters (depending on the dimensions of the respec-
tive stable and unstable eigenspaces of the involved equilibria);

10. computation of unstable manifolds of equilibria and periodic orbits with a single
unstable direction to find, for example, certain invariant tori and global bifurca-
tions.

Continuation tasks require formulating an algebraic system of equations of the form

G(y) = 0, where G : dom(G) → range(G) (6)

is differentiable and the nullspace ker G ′(y) is one-dimensional in solutions y ∈
domG. For the contination of equilibria and their bifurcations we will have dom
(G) = R

N+1 and range(G) = R
N for some problem dependent N ∈ N. For the

continuation of periodic orbits and their bifurcations G will map between infinite-
dimensional spaces. In these cases a discretized problemGd : RN+1 → R

N has to be
constructed, where N depends on the number of mesh points, and may be increased
to improve accuracy. Solution loci of system (6) are generically curves (branches),
which are tracked by the continuation algorithm (Doedel et al. 1999). Within DDE-
BIFTOOL, the user specifies two points near each other on the respective curve
of interest; the (pseudo-arclength) continuation algorithm generates a predictor by
extrapolating the secant through the (last) two points on the curve and then uses
Newton iteration to correct the prediction and, hence, find the next point along the
curve; this predictor-corrector step is repeated until a sufficient piece of the curve
defined by (6) has been computed.

Stability computation tasks for DDEs require the creation of a matrix eigenvalue
problem of an approximating, sufficiently large system of ODEs. Normal form anal-
ysis for equilibrium bifurcations in DDE-BIFTOOL computes explicit normal form
coefficients for codimension-one and codimension-two bifurcations, which deter-
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Fig. 1 Sketch of an inverted pendulum on a cart subject to a control force F with its equation
in rescaled time units

√
L/g (a), and the linear stability chart in the (a, b)-plane for PD control

F(t) = aθ(t − τ ) + bθ′(t − τ ) and delay τ = √
2/4 (b)

mine the dynamics close to the bifurcation according to the textbook by Kuznetsov
(2013). The normal form analysis is also used to construct predictors for starting
the continuation of secondary solution branches that emerge from the respective
bifurcation.

3.1 DDE Model of the Controlled Inverted Pendulum

We will proceed to explain how these different tasks are performed by DDE-
BIFTOOL. To demonstrate how this works in practice, we will use throughout this
section the example of a simple DDEmodel for balancing an inverted pendulumwith
delayed feedback, described by Sieber andKrauskopf (2004a), Sieber andKrauskopf
(2004b),

θ′′(t) = sin θ(t) − F(t) cos(t), where F(t) = aθ(t − τ ) + bθ′(t − τ ). (7)

The dependent variable θ(t) is the angle by which the (approximately mass-less)
pendulum deviates from the upright position. The term F(t) is the feedback force
exerted by moving the base of the pendulum, such as the cart sketched in Fig. 1a, to
achieve upright balancing. In (7), the feedback is of proportional-plus-derivative type,
where the correcting force depends linearly on the angle θ and on the angular velocity
θ′; one speaks of PD control. Time in (7) is in units of the intrinsic time scale

√
g/L

of the pendulum, where L is the length of the pendulum and g is the gravitational
acceleration. The delay τ models a reaction delay relative to the intrinsic time scale
of the pendulum; hence, varying the delay is similar to changing the length of the
pendulum, where a shorter pendulum corresponds to a longer delay after scaling.
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Rewriting (7) as a first-order system gives

x ′
1(t) = x2(t),

x ′
2(t) = sin x1(t) − cos x1(t) [ax1(t − τ ) + bx2(t − τ )] .

(8)

Hence, the physical space for x(t) = (x1(t), x2(t)) is R2, the parameter space for
p = (p1, p2, p3) = (a, b, τ ) is R3, and the right-hand side f is

f (x0, x1, p) =
[

x02
sin x01 − cos x01

(
p1x11 + p2x12

)
]

(9)

in the formulation (1) of DDE-BIFTOOL, where M is the identity in R2. We remark
that, even though the right-hand side f does not depend on τ , the delay τ must be
included in the parameter vector p (as p3) for f .

We observe that the right-hand side f has the reflection symmetry

f (−x0,−x1, p) = − f (x0, x1, p).

Therefore, system (8) has two types of solutions: symmetric solutions, which are
invariant under this reflection symmetry, and symmetrically related pairs of non-
symmetric solutions. As we will see later on, distinguishing the two types is of
practical relevance because the control force F(t) is applied by adjusting the posi-
tion of the pendulum at its base, that is, by pushing the cart on which it is mounted in
Fig. 1a. For non-symmetric solutions the average of F(t) is non-zero, which implies
that the cart accelerates away in one direction; in particular, the cart position, which
we refer to as δ(t) in Fig. 2 below, is unbounded. For symmetric solutions, on the other
hand, the long-term average of the force F(t) on the cart is zero, which means that
the cart position δ(t) may be bounded. Thus, only symmetric solutions correspond
to successful balancing of the pendulum. Mathematically, the reflection symmetry
introduces non-generic symmetry-breaking bifurcations, including pitchfork bifur-
cations, which require special treatment within DDE-BIFTOOL.

3.2 Continuation of Branches of Equilibria

The continuation of equilibria for DDEs is identical to that for ODEs: equilibria xeq
of x ′(t) = f (x(t), x(t − τ1), . . . , x(t − τd), p) are given by the nonlinear equation

Geq(yeq) = f (xeq, . . . , xeq, p) = 0,

which is of the general form (6) where the dimension N = n is the dimension of the
physical space. One typically chooses the unknowns yeq = (xeq, pi ) for continuation
of equilibria in one of the system parameters pi .
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(c)

(a) (b)

(a)

(b)

(c)

P

H

Ppo

(∗)

PD

T∞

Fig. 2 Bifurcation diagram of the controlled inverted pendulum (8) on an ellipsoid around the
triple-zero point, with regions of equilibrium stabilization (a), small oscillations (b) and runaway
oscillations (c) of the pendulum. The bounded chaotic dynamics in the area labelled (∗) is shown
separately in Fig. 3b. Curves of codimension-one bifurcations on the ellipse include those of pitch-
fork bifurcation P , Hopf bifurcation H , pitchfork bifurcation of periodic orbits Ppo, period doubling
PD, and connecting orbits T∞. Here, r = 1/2 in the definition (12) of the ellipse

The pendulum problem (8) has the upright position x = (0, 0) as its reflection-
invariant trivial equilibrium solution. Figure 1b shows the line (dashed) for fixed
b = 1.5 and varying a in the (a, b)-plane for τ = √

2/4, which corresponds to the
single-parameter family of trivial equilibria (0, 0, a).

3.3 Linear Stability Analysis of Equilibria

The natural next step is the computation of the linear stability for each equilibrium
(xeq, p) along the computed branch, which is determined by the stability of the DDE,
linearized in the equilibrium (including τ0 = 0 into our list of discrete delays),

Mx ′(t) =
d∑
j=0

A j x(t − τ j ), where A j = ∂ f

∂x j
(xeq, . . . , xeq, p) ∈ R

n×n . (10)

The stability of the origin for the linear DDE (10) is determined by the real parts of
the spectrum of its infinitesimal generator A, defined by
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[Ax](θ) = x ′(θ) with domain

D(A) =
{
x ∈ C1 : Mx ′(0) =

d∑
i=0

Ai x(−τi )

}
.

The eigenvalue problem λx = Ax in the infinite-dimensional space D(A) is equiv-
alent to the n-dimensional eigenvalue problem for the characteristic matrix �(λ) ∈
R

n×n ,

�(λ)v = 0, where �(λ) = λM −
d∑

i=0

Ai exp(−λτi ) (11)

(Kaashoek and Verduyn Lunel, 1992). The problem of finding the right-most eigen-
values λ of A (or �) is fundamentally different from an ODE stability problem,
since typically A has infinitely many eigenvalues. However, for the most common
case where M is the identity, the infinitesimal generatorA has at most finitely many
eigenvalues to the right of any vertical line in the complex plane. For its linear sta-
bility analysis DDE-BIFTOOL does not solve det�(λ) = 0, but instead discretizes
the eigenvalue problem λx = Ax to obtain an eigenvalue problem for a pair of large
matrices. The approach by Breda et al. (2005) (see also Breda, 2023) is to discretize
the ODE boundary-value problem

x ′(θ) = λx(θ), Mx ′(0) =
d∑

i=0

Ai x(−τi ),

on the interval [−τmax, 0] with an mth-order pseudospectral approximation (e.g.,
Chebyshevpolynomials) for x : [−τmax, 0] → C

n to obtain amatrix eigenvalue prob-
lem of dimension (m + 1)n. Engelborghs and Roose (2002) discretize (10) by using
a linear multistep ODE solver with a small time step h = τmax/m and express the
condition that the approximate solution after a single time step, xh , satisfies xh = μx0
on the uniform grid with step h on [−τmax, 0]. This is also an eigenvalue problem
for large matrices in μ, from which the eigenvalues λ are obtained by the relation
λ = (logμ)/h. Both options are available in DDE-BIFTOOL, which automatically
refines the discretization if the desired right-most eigenvalues are not accurate up to
a specified tolerance.

For the pendulummodel’s upright equilibrium x = (0, 0) the characteristicmatrix
�(λ) has the form

�(λ) =
[

λ −1
ae−λτ − 1 λ + be−λτ

]
.

When increasing a from 0 for b = 1.5 and τ = √
2/4, one detects a change of linear

stability at the points P and H in Fig. 1b. At the point P (where a = 1) a real
eigenvalue crosses the imaginary axis from the right to the left half of the complex
plane.At this point P , the trivial equilibriumgains linear stability (under increasinga)
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in a subcritical pitchfork bifurcation (owing to the reflection symmetry), and a family
of non-symmetric equilibria of the form (x1, x2, a) = (x1, 0, (sin x1)/(x1 cos x1))
branches off. At the point H (at a ≈ 3.6), the linear DDE has a pair of complex
eigenvalues±iω ≈ ±0.6iπ (crossing from left to right for increasing a) such that the
upright equilibrium destabilizes in aHopf bifurcation. Consequently, for b = 1.5 and
τ = √

2/4 the upright position of the pendulum is linearly stable when a ∈ (1, 3.6);
that is, between the points P and H in Fig. 1b.

3.4 Continuation of Codimension-One Bifurcations of
Equilibria

Once a bifurcation of an equilibrium (whichwill typically be of codimension one) has
beendetectedonemayeither branchoff to followanother branch (of equilibria or peri-
odic orbits), or continue the bifurcation itself in additional parameters—as a curve in
twochosen systemparameterswhen it is indeedof codimensionone.DDE-BIFTOOL
supports continuation of the generic codimension-one bifurcations, the saddle-node
(or fold) and theHopf bifurcation (Engelborghs andRoose 1999). The continuation is
implemented for nonlinear systems that extend the nonlinear equation Geq(yeq) = 0
with the eigenvalue problem (11) for the critical eigenvalue. For the fold of equilibria
the eigenvalue λ is 0 such that the unknowns are yfeq = (xfeq, vfeq, pi , p j ) ∈ R

2n+2

(with two free parameters pi and p j ). For the Hopf bifurcation the frequency ωH

is unknown and the eigenvector vH is complex such that we have the unknowns
yH = (xH , vH ,ωH , pi , p j ) ∈ R

3n+3 (counting the complex vector vH as two real
vectors of length n). The nonlinear equations for the fold and Hopf bifurcations are

Gfeq(yfeq) =
⎡
⎣
f (xfeq, . . . , xfeq, p)
�(xfeq, p; 0)vfeq

vT
feqvfeq − 1

⎤
⎦ and GH (yH ) =

⎡
⎣
f (xH , . . . , xH , p)
�(xH , p; iωH )vH

vT
refvH − 1

⎤
⎦ ,

which are inR2n+1 andR3n+2, respectively; here the base points (xfeq, p) and (xH , p)
are included as arguments of the characteristic matrix � (since the matrices Ai in
(11) depend on them). The scale of the complex eigenvector vH ∈ C

n is fixed with
the help of a reference vector vref ∈ C

n and one complex equation (i.e., two real
equations).

For the balancing pendulummodel, the point H is on a curve of Hopf bifurcations,
which can be continued in two parameters. The resulting curve in the (a, b)-plane
is shown in green in Fig. 1b. The eigenvalue zero bifurcation at the point P is not
a fold, but a pitchfork bifurcation due to the equilibrium’s invariance under the
reflection symmetry. Thus, the equation Gfeq(yfeq) = 0 is singular. An experimental
feature ofDDE-BIFTOOLpermits the user to add constraints enforcing the symmetry
of the equilibrium to make the extended nonlinear system regular (for example,
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xfeq,1 = 0 for the inverted pendulum); see also Sect. 3.10. For system (8) the pitchfork
bifurcation is at a = 1 for any b and τ , and this curve P is shown in red in Fig. 1b.

Along these two curves of codimension-one bifurcations one encounters degen-
erate points. At ωH = 0 the Hopf bifurcation meets the pitchfork bifurcation in a
special point where the linearization has a zero eigenvalue of algebraic multiplicity
2; this point lies at b = τ and a = 1 in Fig. 1b. For small τ the Hopf bifurcation curve
emerges to the right of the line of pitchfork bifurcations before it bends back to cross
this line again at b ≈ 4.5; at this point there is a pitchfork-Hopf bifurcation, where
the linearization has an eigenvalue 0 and an imaginary eigenvalue pair ±iωH .

The Hopf bifurcation curve and the pitchfork bifurcation line bound the region in
Fig. 1b where the upright position x = (0, 0) is linearly stable; this is indicated with
the label 0, which refers to the number of unstable eigenvalues. Bosschaert et al.
(2020) implemented normal form analysis for generic equilibrium bifurcations of
codimension one or two. Their analysis produces normal form coefficients permitting
us to branch off toward secondary codimension-one branches from codimension-two
bifurcation points. The expressions rely on genericity conditions that are violated at
the pitchfork bifurcation (due to the reflection symmetry), such that the routines pro-
vided by Bosschaert et al. (2020) cannot be applied to the double-zero and pitchfork-
Hopf interaction points we found for the inverted pendulum DDE (8). However,
the criticality of the Hopf bifurcation along the branch of Hopf bifurcation can be
determined by computing the Lyapunov coefficient �1 with the routines from Boss-
chaert et al. (2020). The coefficient is negative everywhere, meaning that the Hopf
bifurcation is supercritical. From this information the shown numbers of unstable
eigenvalues of the upright equilibrium x = (0, 0) in the other regions of Fig. 1b can
be determined.

3.5 Codimension-Three Singularity of the Inverted Pendulum

The region of stability shown in Fig. 1b shrinks to the single point (a∗, b∗) = (1,
√
2)

at the critical delay τ∗ = √
2, at which the upright equilibirum x = (0, 0) has a

linearization with a zero eigenvalue of multiplicity 3. Hence, the critical delay τ∗
is the largest possible delay for which the delayed PD control can stabilize the
upright position. In Sieber and Krauskopf (2004a), Sieber and Krauskopf (2004b)
we performed an analysis of the bifurcation structure in the neighborhood of this
singularity. Its results are shown in Fig. 2 for parameters on an ellipsoid around
the singular point (a∗, b∗, τ∗) = (1,

√
2,

√
2) of codimension three. The ellipsoid

is parametrized in the new coordinates (α,β, γ), which are related to the original
coordinates via

a = a∗ + r6α, b = b∗ + r2
τ∗
3

β, τ = b + r4
τ∗
3

γ, (12)

α = sin(ϕπ/2), β = cos(ϕπ/2) cos(2πψ), γ = cos(ϕπ/2) sin(2πψ),
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where the radius-type scaling parameter r determines the size of the ellipsoid. The
unit sphere in the rescaled (α,β, γ)-space is then parametrized by the two polar
coordinate angles (ϕ,ψ) ∈ [0, 1] × [0, 1], yielding the representation in Fig. 2.

The viewpoint of the sphere in (α,β, γ)-space is chosen in Fig. 2 with a focus
on the region of stability of the upright pendulum, labeled (a) and bounded by the
curves P of pitchfork bifurcation and H of Hopf bifurcation, as well as on nearby
regions with more complicated dynamics of the controlled inverted pendulum. Note
from panel (a) of Fig. 2 that successful stabilization of the upright position involves
convergence of the position θ as well as of the velocity δ̇ of the cart. As we discuss
next, finding additional behavior of the system beyond stabilization requires the
continuation of periodic orbits and their bifurcations.

3.6 Continuation of Periodic Orbits

Aperiodic orbit x(t)with x(t) = x(t − T ) for some fixed period T > 0 and all times
t is given as the solution of a periodic DDE boundary-value problem (BVP). Hence,
obtaining the nonlinear problem Gpo(ypo) = 0 for the computation and continuation
of periodic orbits requires a discretization of a periodic BVP. As is common, we
rescale the period to the interval [0, 1] and use the variable s = t/T for the rescaled
time (and recall the convention that τ0 = 0) to obtain

DDE: Mxpo
′(s) = T f

(
xpo

(
s − τ0

T

)
[0,1)

, . . . , xpo
(
s − τd

T

)
[0,1)

, p

)
, (13)

BC: xpo(0) = xpo(1), (14)

PC: 0 =
∫ 1

0
x ′
ref(s)

T xpo(s)ds (15)

for the unknowns xpo(·) ∈ C1([0, 1];Rn), T ∈ (0,∞) and a single system parameter
p. In (13)we use the notation xpo(s)[0,1) for the ‘wrapped’ evaluation of xpo(s), that is,
(s)[0,1) = (s − floor(s)) (and, hence, xpo(s)[0,1) = xpo(s − floor(s))), where floor(s)
is the largest integer less than or equal to s. Thus, (s)[0,1) is always in [0, 1) and the
boundary condition (BC) (14) simply expresses the periodicity of the solution. In the
original time, the periodic orbit is then t �→ xpo(t/T )[0,1). A phase condition (PC) is
required to select a unique and isolated solution of the overall BVP that represents the
periodic orbit. This is the case because, if xpo(·)[0,1) is a solution of (13)–(14), then
so is xpo(· + c)[0,1) for any c ∈ [0, 1). We use here the integral phase condition (15),
which fixes the free phase of the present solution xpo by minimizing the integral

distance
∫ 1
0 (xref(s) − xpo(s))T (xref(s) − xpo(s))ds to a periodic reference solution

xref ; see Doedel (2007) for more details on phase conditions. We may write the
infinite-dimensional nonlinear problem (13)–(15) in the form (6) as

Gpo(ypo) = 0, where ypo = (xpo(·), T, pi ) ∈ C1([0, 1];Rn) × R × R.
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Engelborghs et al. (2000a) and Engelborghs and Doedel (2002) constructed a
fixed-degree piecewise polynomial collocation discretization for (13)–(15). The dis-
cretization stores the approximate solution xpo(·) on a mesh se of NT subintervals
in polynomial pieces of degree κ, in the form of a vector xpo,d ∈ R

n(κNT +1). The
discretized residual at an arbitrary point s ∈ [0, 1] has the form

GDE,d(xpo,d, T, p; s) =
ME (1)(s)xpo,d − T f

(
E (0)

(
s − τ0

T

)
[0,1)

xpo,d, . . . , E
(0)

(
s − τd

T

)
[0,1)

xpo,d, p

)
.

The matrices E (�)(s) are n × (n(κNT + 1)) interpolation (for � = 0) and differentia-
tion (for � > 0)matrices, such that x(s) = E (0)(s)xpo,d and x (�)(s) = E (�)(s)xpo,d for
all piecewise polynomials x defined on the mesh se. The overall discretized periodic
DDE BVP (13)–(15) has the form

Gpo,d(ypo,d) =
⎡
⎢⎣

(
GDE,d(xpo,d, T, p; sc, j )

)κNT

j=1[
E (0)(0) − E (0)(1)

]
xpo,d∫ 1

0 (E (1)(s)xref,d)T E (0)(s)xpo,dds

⎤
⎥⎦ , (16)

where (sc, j )
κNT
j=1 is a suitably chosen collocationmesh. The variable ypo,d = (xpo,d, T,

pi ) has dimension N = n(κNT + 1) + 2 and Gpo,d(ypo,d) has nκNT + n + 1 com-
ponents. The matrix E (0)(·) provides a natural embedding such that the function

xpo,e(·) : t �→ xpo,e(t) = E (0)(t/T )[0,1)xpo,d (17)

is a piecewise polynomial approximation of the periodic orbit. The integral in the final
component of Gpo,d (the phase condition) can be computed exactly as xTref,dWc xpo,d
with precomputed quadrature weights Wc; here the discretized reference solution
xref,d is generally chosen as the discretized periodic orbit computed at the last con-
tinuation step. While the definitions for Gpo,d look identical for constant and state-
dependent delays, the τ j in the definition ofGDE,d are functions of s and (xpo,d, T, p)
if they depend on the state. Convergence of the discretization for constant delays has
only been proven recently by Andó and Breda (2020). Convergence proofs in earlier
papers treated the variables T and τ j as given constants, because considering (for
example) the period T as an unknown creates analytical difficulties similar to those
when considering state-dependent delays.

The above description agreeswith the current implementation inDDE-BIFTOOL,
generalizing the original construction by Engelborghs et al. (2000a) and Engelborghs
and Doedel (2002) by separating the construction of the matrices E (�)(·) from the
construction of the nonlinear problem. Since different discretization methods enter
only through different interpolation matrices E (�), different choices of discretization
can be made depending on the matrix M . The mesh adaptation is based on the same
error estimate and error equidistribution as those in AUTO (Doedel et al. 1999).
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For the inverted pendulum model (8), the periodic orbits that emerge from the
Hopf bifurcations can be computed as solutions ofGpo,d(ypo,d) = 0 withGpo,d(ypo,d)
given by (16), for example, with the angle φ as the continuation parameter pi . These
periodic orbits have the spatio-temporal symmetry xpo(t + T/2) = −xpo(t), and a
typical time profile is shown in Fig. 2b. The symmetric periodic orbits lose their
stability in a symmetry breaking pitchfork bifurcation of periodic orbits, labelled
Ppo in Fig. 2; see Sects. 3.7 and 3.8 for the linear stability analysis of periodic orbits.
Moreover, a branch of symmetric periodic orbits terminateswhen the period T (which
is part of the variable ypo and its discretization ypo,d along the solution branch)
goes to infinity; at this point the periodic orbits approach a symmetric heteroclinic
connection between the two non-symmetric saddle equilibria, the locus of which is
labeled T∞ in Fig. 2. Together the curves Ppo and T∞ bound the region of stable
symmetric periodic orbits, which is labeled (b) in Fig. 2. This type of periodic orbit
can be interpreted as partial stabilization of the inverted pendulum: while the upright
pendulum equilibrium is no longer stable, nevertheless, the periodic motion of the
pendulum as well as the velocity of the cart are bounded and initially (close to the
curve H ) quite small.

3.7 Linear Stability Analysis for Periodic Orbits

Linearizing around a solution (xpo(·), T, p) of (13)–(15) yields a linear DDE with
time-periodic coefficient matrices s �→ A j (s) and (if the delays are state-dependent)
time periodic delays s �→ τ j (s) of period 1. The eigenvalue problem involves a
Floquet multiplier μ ∈ C and an eigenfunction xev : [−τmax/T, 0] �→ C

n , satisfying

0 = Mxev
′(s) −

d∑
j=0

A j (s)xev

(
s − τ j (s)

T

)
if s ∈ (0, 1], (18)

μxev(s) = xev(s + 1) if s ∈ [−τmax/T, 0] (19)

(note the absence of wrapping). Here, for state-dependent delays with τ0 = 0,
τ j = τ

f
j (x0, . . . , x j−1, p), X0 = In , x j = xpo(s − τ j/T )[0,1), and x ′ j = xpo′(s −

τ j/T )[0,1) for j = 0, . . . , d we have

A j (s) = T
∂ f

∂x j
(x0, . . . , xd, p)X j and (20)

X j = In − x ′ j

T

j−1∑
�=0

∂τ
f
j

∂x�
(x0, . . . , x j−1, p)X �.

In practice, the arguments of ∂ f/∂x j have to be evaluated for the approximate
periodic orbit defined by (17), that is, x j = xpo,e(s − τ j/T )[0,1) and x ′ j = x ′

po,e(s −
τ j/T )[0,1).
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Szalai et al. (2006) and Sieber and Szalai (2011) showed that the eigenvalue
problem (18)–(19) is equivalent to a finite-dimensional eigenvalue problem�(μ)v =
0, where the dimension of the characteristic matrix �(μ) may be larger than n but is
bounded for bounded T and τmax. Yanchuk et al. (2019) constructed a characteristic
matrix for the case d = 1 of a single delay τ1, which can be large but keeps T − τ1
bounded (a common scenario for pulse-type periodic solutions in systems with a
single large delay).

Extending the mesh se from the interval [0, 1] to the interval [−τmax/T, 1], a
piecewise polynomial x of degree κ on [−τmax/T, 1] is now stored in a vector xev,d
of size n(κ(NT + Nτmax) + 1). With the help of the interpolation and differentiation
matrices E (�)(·) on the extended mesh se, we define the n × (n(κ(NT + Nτmax) + 1))
coefficient matrix for the discretized residual of the linear DDE (18) at an arbitrary
time s ∈ (0, 1]

ADE,d(s) = ME (1)(s) −
d∑
j=0

A j (s)E
(0)

(
s − τ j (s)

T

)
.

Then the discretized eigenvalue problem is a (N1 + N2)-dimensional generalized
matrix eigenvalue problem with (N1, N2) = (n(κNτmax + 1), nκNT ) of the form
(Borgioli et al. 2020)

Axev,d = μBxev,d, with A =
[
(ADE,d(sc, j ))

κNT
j=1

0N1×N2 IN1×N1

]

and B =
[

0N2×(N1+N2)

IN1×N1 0N1×N2

]
.

In the definition for A we may use the same collocation mesh sc as for the com-
putation of the periodic orbit x . The interpolation matrix E (0) provides a natural
embedding such that xev,e : t �→ E (0)(t/T )xev,d is an approximate Floquet eigen-
function corresponding to a Floquet multiplier μ, where xev,d is the eigenvector of
size (N1 + N2) from the discrete matrix eigenvalue problem. The dimension of the
matrix eigenvalue problem can be reduced to an explicit N1 × N1 eigenvalue problem
by using the first N2 equations (where μ does not show up) to eliminate the com-
ponents ((xev,d) j )

N1+N2
j=N1+1. This corresponds to solving the discretized monodromy

problem for the linear DDE (18), and works whenever the initial-value problem is
well-posed. Yanchuk et al. (2019) observed that an adaptive mesh se that has been
adapted for a good approximation of the periodic orbit xpo(t)may give poor approxi-
mations xev,e for the Floquet eigenfunctions xev(t) even for multipliers with |μ| ≈ 1.
The eigenfunction xev(t) may have rapid oscillations where xpo(t) is approximately
constant. This is common when the delay τ and the period T are relatively large and
xpo is pulse-like (Yanchuk et al. 2019).
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3.8 Continuation of Codimension-One Bifurcations of
Periodic Orbits

For generic local bifurcations of periodic orbits DDE-BIFTOOL implements fully
extended defining systems (Govaerts 2000) by appending the variational problem.
The extended system is formulated in the infinite-dimensional space in a man-
ner that it has again the form (13)–(15) of a periodic DDE BVP with additional
free parameters and integral constraints. For the continuation of folds of periodic
orbits, we consider the infinite-dimensional nonlinear problem Gpo(ypo) = 0 where
ypo = (xpo(·), T, pi , p j ) (thus, adding one free parameter), and append its variational
problem, such that we have

Gfpo(yfpo) = Gfpo(xpo(·), T, p, xv(·), Tv)

=
⎡
⎣

Gpo(xpo(·), T, p)
∂xpoGpo(ypo)xv + ∂T Gpo(ypo)Tv∫ 1

0 xv(s)T xv(s)ds + Tv
2 − 1

⎤
⎦ .

Here, p = (pi , p j ) and the additional variational variables yv = (xv(·), Tv) ∈ C1

([0, 1];Rn) × R have the same format as (xpo(·), T ). Thus, Gfpo(yfpo) has the same
format as (13)–(15): it consists of a periodic BVPof dimension 2n (for (xpo(·), xv(·)))
with 3 scalar integral conditions such that DDE-BIFTOOL uses the discretization
Gpo,d on this extended problem. The discretized problem has the overall dimension
N = 2n(κNT + 1) + 4.

For the pitchfork bifurcation of periodic orbits found in the bifurcation diagram of
the controlled inverted pendulum this system is singular. However, an experimental
feature of DDE-BIFTOOL lets the user append conditions that enforce a spatio-
temporal symmetry of xpo, such that the system becomes regular (for example, for

the reflection symmetry
∫ 1
0 (xpo)1(s)ds = 0); the bifurcation curve Ppo in Fig. 2 was

computed in this way. Notice from Fig. 2c that the bifurcating asymmetric periodic
orbit in the corresponding region represents oscillations around a value of θ that is
not zero; in particular, the velocity δ̇ of the cart decreases (or increases). Hence, this
type of periodic orbit no longer satisfies the condition for generalized stability of the
controlled inverted pendulum.

For the continuation of period doubling and torus bifurcations we append the
equation for the critical eigenfunction in periodic form: if xev(s + 1) = μxev(s) and
|μ| = 1, we may write μ = exp(iπωv), where πωv is the rotation number, and intro-
duce xv(s) = exp(−iπωvs)xev(s). Then the defining system for torus and period
doubling bifurcations appends to (16) the equations
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xv
′(s) = −iπωvxv(s) +

d∑
j=0

A j (s)xv(s − τ j (s)/T ) exp(−iπωvτ j (s)/T ), (21)

0 =
∫ 1

0
xv,ref(s)

T xv(s)ds − 1, (22)

where the A j are as defined by (20) in the section on linear stability of periodic
orbits. Equation (22) has two real components (or one complex component). It fixes
the length and phase of the complex Floquet vector xv, depending on a reference
function xv,ref . Thus, the defining system G tor(ytor) = 0 for the torus bifurcation
consists of Gpo(ypo) = 0 defined by (16) together with (21)–(22) for the (extended)
input vector variables ytor = (ypo, xv(·),ωv) = (xpo(·), T, pi , p j , xv(·),ωv). Again,
the solutions are both represented by discretization vectors xpo,d and xv,d such that
the overall dimension of ytor is N = 3n(κNT + 1) + 5. For the period doubling
bifurcation the unknown rotation number πωv equals π (such that ωv = 1).

Apart from these generic codimension-one local bifurcation of periodic orbits,
DDE-BIFTOOL is able to detect and continue connecting orbits between equilibria
by means of a defining system Gcon(ycon) implemented by Samaey et al. (2002). As
for the variable ypo for periodic orbits, the formulation is that of a DDE BVP and
the variable ycon contains (discretized) orbit segments and an unknown integration
time (which is, however, no longer a period). Moreover, ycon also contains variables
associated with the locations of the equilibria and their linearizations, because the
setup uses projection boundary conditions to approximate the connecting orbit by an
orbit segmentwith a finite integration time (Beyn 1990). TheDDEBVPGcon(ycon) =
0 can be used to detect connecting orbits and continue them in a parameter planewhen
they are of codimension one; however, the present implementation is restricted to
the constant-delay case. An alternative method for computing connecting orbits that
arise as limits of periodic orbits, such as homoclinic orbits, is to continue a branch of
periodic orbits until the period T is very high, indicating that the parameter is close
to the locus of connecting orbits. The continuation of periodic orbits with a fixed,
sufficiently high period in two system parameters is then an approximation of the
sought locus of connections.

This latter approach was used for finding the curve T∞ for the controlled inverted
pendulum in Fig. 2 as the locus of symmetric periodic orbits of large period. More-
over, we found that for φ approaching the curve T∞ the branch of symmetric periodic
orbits has an infinite sequence of pitchfork and fold bifurcations when the hetero-
clinic connection is approached; this is the case because the dominant eigenvalues of
the linearizations at the non-symmetric saddle equilibria satisfy the (saddle-quantity)
condition for a complicated (or chaotic) Shilnikov bifurcation (Kuznetsov 2013). The
non-symmetric periodic orbits branching off at these pitchfork bifurcations encounter
period doublings for larger φ and then also approach a connecting orbit, namely a
non-symmetric homoclinic connection to a single non-symmetric equilibrium. The
curve PD in Figure 2, bounding the dark red region, is the first of these period dou-
bling bifurcations and it has been computed with the defining system G tor(ytor) = 0
as defined above.
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3.9 Symmetric and Non-Symmetric Chaos in the Pendulum

The repeated period doublings of the non-symmetric oscillations in Fig. 2 suggest
that there is a region where oscillations can be chaotic. We expect this to occur
inside the wedges formed by the first period doubling curve PD, and a region with
chaotic oscillations is indeed readily identified inside the largest wedge by numerical
simulations. As is shown in row (a) of Fig. 3, initially, these chaotic oscillations of
(8) are non-symmetric and they do not correspond to successful balancing, because
they feature run-away acceleration of the cart balancing the pendulum; see Fig. 3a3.
However, further inside the chaotic region, inside the subregion labelled (∗) in Fig. 2,
the two symmetrically related non-symmetric chaotic attractors collide near a homo-
clinic tangency of the symmetric saddle periodic orbit. As a result, symmetric chaotic
oscillations are possible, as is shown in row (b) of Fig. 3. For these symmetric chaotic
oscillations of position x1 and velocity x2 of the pendulum, the cart performs a chaotic
walk around its zero velocity; see Fig. 3b3. Therefore, this type of symmetric chaotic
attractor represents a quite extreme form of generalized stabilization of the inverted
pendulum. The homoclinic tangency of the saddle periodic orbit can be approximated
by computing the unstable manifold of the symmetric saddle orbit and checking if it
returns to the symmetric saddle orbit in a way that is tangent to the stable linear sub-
space of the symmetric saddle orbit. A brief description of computations of unstable
manifolds of periodic orbits is given as part of the case study in Chap.5; see Sieber
and Krauskopf (2004b) for further details of the overall dynamics of the DDEmodel
(8) of the PD controlled inverted pendulum.

Fig. 3 Chaotic runaway motion (a) and chaotic bounded motion (b) of the controlled inverted
pendulum DDE; here, panels (a1) and (b1) show the trajectory and (a2) and (b2) the Poincaré map
in projection onto the (x1, x2)-plane, while (a3) and (b3) show the time evolution of the velocity δ̇
of the cart. From Sieber and Krauskopf (2004b) © 2004 Elsevier; reproduced with permission



Bifurcation Analysis of Systems With Delays 215

3.10 Some Experimental Features of DDE-BIFTOOL

Wefinish the description of the capabilities of DDE-BIFTOOL bymentioning briefly
some features that are still experimental.
Problems with discrete symmetry. Similar to the reflection symmetry of the pendu-
lummodel (9), systemswith discrete symmetries (for examplewhere R f (x0, . . . , xd ,
p) = f (Rx0, . . . , Rxd , p) for some root R of the identity matrix) have additional
degeneracies when symmetry breaking occurs. The user can add additional con-
straints enforcing the symmetry, and request that the defining system automatically
appends dummy variables to create regular continuation problems for symmetry-
breaking bifurcations. This feature has been used to find the curve Ppo of pitchfork
bifurcation of periodic orbits of (8) on the ellipse in parameter space shown in Fig. 2.
Problems with rotational symmetry. A common feature of problems with delays
in optics is that they have rotational symmetry, in the simplest case with a single
free rotation. That is, the right-hand side f satisfies exp(At) f (x0, . . . , xd , p) =
f (exp(At)x0, . . . , exp(At)xd , p) for a fixed anti-symmetric matrix A ∈ R

n×n (that
is, AT = −A), and arbitrary t ∈ R and x0, . . . , xd ∈ R

n . In this case one is interested
in tracking (i) any rotating wave, which is a periodic solution of the form x(t) =
exp(Aωt)xeq, as a relative equilibrium, that is, as xeq; and (ii) any modulated rotating
wave, which is a quasi-periodic solution of the form x(t) = exp(Aωt)xpo(t) where
xpo has period T , as a relative periodic orbit, that is, as xpo.

Typical examples are the DDEmodels for semiconductor lasers with optical feed-
back frommirrors orwith delayed optical coupling,which are invariant under rotation
of the complex electric field (Pieroux et al. 2001; Haegeman et al. 2002; Krauskopf
et al. 2000; Krauskopf 2005). In fact, the wish to perform the bifurcation analysis
of this type of laser system provided considerable motivation for the early develop-
ment of DDE-BIFTOOL. In order to select unique solutions in the presence of this
rotational symmetry, the phase of the electric field was pushed into an additional
parameter, which was then set to a specific, fixed value to implement a phase con-
dition. Generalizing this approach, DDE-BIFTOOL provides a wrapper around the
defining systems in Sects. 3.2, 3.4, 3.6 and 3.8 that introduces the mean rotation
frequency ω as an additional free parameter and adds an additional phase condition.
Interface with COCO. DDE-BIFTOOL can only continue curves of invariant
objects and their bifurcations, that is, it computes one-dimensional solution man-
ifolds of the respective defining system. The package COCO, on the other hand,
has implemented algorithms for multi-parameter continuation by means of growing
atlases of solution manifolds of arbitrary dimension, which is based on the origi-
nal algorithm by Henderson (2002); see Dankowicz and Schilder (2013) for more
details. An interface is available that feeds the defining systems implemented in
DDE-BIFTOOL into COCO’s more general continuation algorithm, and provides
constructors to start such a multi-parameter continuation.
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3.11 DDE-BIFTOOL Formulation for Other Types of DDEs

The capabilities we just reviewed, which allow DDE-BIFTOOL to perform the var-
ious tasks required for bifurcation analysis, can be applied to standard DDEs with
constant or state-dependent delays. The latter requires the user to specify the state-
dependence in the form (2); how this is done in practice is demonstrated in Sect. 4
for a conceptual DDE model of the ENSO system and in Sect. 5 for a scalar DDE
with two state-dependent delays.

Moreover,DDE-BIFTOOLcan be used for the study ofDDEs beyond the standard
form, whose formulation requires that the matix M in (1) is not the identity matrix.
Permitting the matrix M to be singular drastically expands the class of DDE one can
consider. In particular, the general form (1) used by DDE-BIFTOOL includes the
following types of DDEs.
Neutral Equations (NDDEs). Neutral DDEs feature delayed derivatives, and this
case can be formulated in the framework of (1) by a suitable choice of M . As an
example, including an acceleration dependence into the feedback term F in (7)
changes the governing equations for the deviation θ(t) of the pendulum angle from
the upright position to

θ′′(t) = sin θ(t) − cos θ(t)[aθ(t − τ ) + bθ′(t − τ ) + cθ′′(t − τ )],

where c is an additional control gain (Sieber and Krauskopf 2005; Insperger et al.
2013). This can be formulated within (1) for x(t) = (θ(t), θ′(t), θ′′(t)) ∈ R

3 and
p = (a, b, c, τ ) ∈ R

4 by setting M = diag(1, 1, 0) and

f (x0, x1, p) =
⎡
⎣

x02
x03

sin x01 − cos x01
[
p1x11 + p2x12 + p3x13

] − x03

⎤
⎦ .

Differential Algebraic Equations (DAEs). In a number of applications one encoun-
ters algebraic constraints on the variables of a DDE, leading to a system of DAEs
with delays. For example, one may define a state-dependent delay implicitly, as is
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done in the position control problem with echo location measurements discussed by
Walther (2002)

y′(t) = k
[
yref − c

2
s(t − τ0)

]
, where cs(t) = y(t) + y(t − s(t)).

Here y(t) is the position to be kept at target yref by feedback control. The other state,
s(t), is the travel time of an echo location signal sent from position y(t − s(t)) with
speed c to yref and reflected back to y(t) to estimate the current position offset as
cs(t)/2. The constant delay τ0 is a reaction delay in the application of the feedback
control with target position yref (similar to the delay in the pendulum feedback in (7),
where the reference position is the upright angle 0). Here x(t) = (y(t), s(t)) ∈ R

2

and p = (yref , k, c, τ0) ∈ R4. This can be formulated by setting M = diag(1, 0),
d = 2 and

τ
f
1 (x0, p) = p4 ,

τ
f
2 (x0, x1, p) = x02 ,

and f (x0, x1, x2, p) =
⎡
⎢⎣ p2

(
p1 − p3

2
x21

)

p3x02 − x20 − x22

⎤
⎥⎦ .

Forward-Backward/Mixed-Type Equations. Even when all delays are positive
in (1), the possibility of adding algebraic equations permits one to introduce both
negative and positive delays. These types of equations do not describe well-posed
initial-value problems but may occur when modeling traveling waves or periodic
wave trains on a space-discrete lattice (Abell et al. 2005). For example, a wave in a
discrete linear diffusion equation traveling with speed 1/τ satisfies u′(t) = �[u(t +
τ ) + u(t − τ ) − 2u(t)]. This could be formulated by setting M = diag(1, 0), p =
(�, τ ) ∈ R

2, and

f (x0, x1, p) =
[
p1[x11 + x02 − 2x01 ]

x01 − x12

]
,

such that x(t) ∈ R
2 and u(t) = x1(t).

Experimental Nature of Computations for DDEs Beyond the Standard Form.
While the types of problems above can be formulated for input in DDE-BIFTOOL
by using a singular matrix M in (1), we stress that any subsequent computations of
invariant objects and their bifurcation must be considered as being of an experimen-
tal nature. Namely, the accuracy of the results obtained by the different numerical
computations we described for standard DDEs is not always guaranteed. See Barton
et al. (2006) for an analysis of convergence properties for neutral DDEs and note
that forward-backward problems and delayed DAEs with index higher than 1 are yet
untested.
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4 An ENSO DDE Model With State Dependence

Feedback loops are crucial ingredients in the dynamics of climate systems, where
they arise due to the interactions between various subsystems, including distinct
bodies of water, the atmosphere, land and ice masses; see, for example, Bar-Eli and
Field (1998), Dijkstra (2008), Dijkstra (2013), Kaper and Engler (2013), Keane et al.
(2017), Simonnet et al. (2009) as entry points to the literature. Such feedback loops
are subject to inherent time delays, mainly as a result of the time it takes to transport
mass or energy across the globe and/or throughout the atmosphere, or due to delayed
reactions of subsystems to changing conditions. Whenever the time delays of feed-
back loops in climate systems are large compared to the forcing time scales under
consideration, explicit modeling of the delay makes sense in conceptual models. As
a specific example of immediate human and wider mathematical interest, we con-
sider the El Niño phenomenon—a large increase of the sea surface temperature in
the eastern equatorial Pacific Ocean that occurs about every 3–7 years. This oceanic
phenomenon is associated with an atmospheric component, the Southern Oscilla-
tion, and they are jointly known as El Niño Southern Oscillation (ENSO) variability
(Dijkstra 2008; Graham and White 1988; Kaper and Engler 2013; Tziperman et al.
1998; Zaliapin and Ghil 2010). Large peaks in the sea surface temperature of the
eastern Pacific Ocean near the coast off Peru represent El Niño events, the warm
phase of ENSO, while large drops represent the cool phase known as La Niña.

El Niño events have major consequences world-wide, yet they remain notoriously
hard to predict even with sophisticated global climate models (Barnston et al. 2012).
An important aspect of ENSO is that El Niño events tend to occur at the same
time of year, always around Christmas. This suggests locking to the seasonal cycle
(with a period of 1 year), which represents the characteristic forcing time scale
of the ENSO system. Feedback mechanisms in ENSO arise naturally from ocean-
atmosphere coupling processes in the eastern and central equatorial Pacific Ocean,
and they have delay times of manymonths due to the time it takes waves to propagate
across the Pacific Ocean.

In light of the overall complexity of climate systems, conceptual models have
much to offer in terms of elucidating underlying mechanisms behind observed
dynamics. Conceptual DDE models for ENSO (and some other climate phenom-
ena) have been developed by Bar-Eli and Field (1998), Dijkstra (2013), Falkena
et al. (2019), Ghil et al. (2008), Kaper and Engler (2013), Tziperman et al. (1994),
Tziperman et al. (1998), Zaliapin and Ghil (2010) to provide insights into the inter-
play between delayed feedback loops and different types of external forcing. Such
DDE ENSO models constitute a significant model reduction, compared to the full
description of atmospheric and oceanic dynamics and interaction, including their
velocity and temperature fields. Since the feedback loops and their delay times are
explicit parts of the DDE model, their roles for observed system behavior can be
investigated readily. Generally, the delays that arise in such models are estimated,
from quantities such as average wave speeds and distances, and taken to be constant.
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4.1 The Delayed Action Oscillator Paradigm

We consider here an ENSO DDE model that follows the prominent delayed action
oscillator (DAO) paradigm that was first introduced by Suarez and Schopf (1988).
There exist a number ofmodels based on the DAOparadigm; for example, see Suarez
and Schopf (1988), Battisti and Hirst (1989), Tziperman et al. (1994), Tziperman
et al. (1998). TheDDEmodel introduced byGhil et al. (2008) is one of the simplest in
that it focuses on the interaction between the negative delayed feedback and additive
seasonal forcing. Its ingredients are illustrated in Fig. 4. The main quantity of interest
for the DAO is the depth of the thermocline, which is the thin and distinct layer in
the ocean that separates deeper cold waters from shallower warm surface water. The
thermocline is deeper in the West and shallower in the East, and this is represented
by the tilted bottom plane of Fig. 4. The variable h(t) denotes the deviation of the
thermocline depth from the long-term thermocline mean in the eastern equatorial
Pacific, off the coast of Peru. A positive value of h corresponds to a larger layer of
warm water and, hence, an increased sea-surface temperature (SST) in the eastern
Pacific, while negative h means a decreased SST. In other words, the variable h can
be seen as a proxy for SST. We are concerned here with the main negative feedback
loop: off the equator, a negative anomalous thermocline depth signal is carried to
the western boundary of the ocean via so-called Rossby waves, which are reflected
as Kelvin waves. The oceanic waves of the negative feedback are the green arrows
in Fig. 4, and they carry the shallow thermocline perturbation back to the eastern
boundary of the ocean, which is a process that takes on the order of 8 months. There

Atmosphere

h+  

+  

Rossby waves

Kelvin waves

Equator

thermocline
depth

Fig. 4 Schematic of the negative feedback loop of the thermocline h at the eastern Pacific Ocean
due to energy transport via Rossby and Kelvin wave from the central ocean-atmosphere interaction
zone
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is also a positive feedback of h with a shorter delay of only about a month. It is
represented by the black arrow in Fig. 4 and arises from the fact that a warm SST
anomaly slows down the easterly trade winds, leading to westerly wind anomalies
that deepen the thermocline; see, for example, Dijkstra (2013), Keane et al. (2017),
Keane et al. (2019) for more details.

4.2 The GZT Model

As was done by Ghil et al. (2008), we now consider only the above-mentioned
negative feedback loop and the seasonal cycle, with the goal of demonstrating that
their interplay is sufficient to produce rich dynamical behavior that is relevant to
ENSO. The effects of including the positive feedback loop into this model are studied
in detail in Keane et al. (2016). The model from Ghil et al. (2008), which we refer
to as the GZT model from now on, takes the form

h′(t) = −b tanh[κh(t − τ )] + c cos(2πt). (23)

Here, τ is the delay time of the negative feedback loop with amplification factor b,
which is further characterized by the coupling parameter κ; note that κ is the slope at
0 of the tanh-function and see Münnich et al. (1991) for a justification for this simple
type of ocean-atmosphere coupling. Throughout, we fix the parameters b and κ to
the values b = 1 and κ = 11 that were used and justified in previous investigations
of the ENSO phenomenon (Ghil et al. 2008; Zaliapin and Ghil 2010). In (23) the
periodic forcing of strength c enters as an additive term. Alternatively, one may shift
the period-1 response to the origin such that the seasonal forcing is parametric, as was
considered in a simple DDE ENSO model by Tziperman et al. (1998), Krauskopf
and Sieber (2014). We remark that simple conceptual ENSO DDEs such as the GZT
model are of wider interest because they are rather prototypical: DDE models of
much the same structure can also be found in control theory and machining; see, for
example, Just et al. (2007), Milton et al. (2009), Purewal et al. (2014), Stépán (1989).

A key feature of system (23) is the periodic forcing term with its explicit depen-
dence on time t ; hence, this DDE is non-autonomous. Since DDE-BIFTOOL is
designed for autonomous DDEs, we transform (23) into autonomous form by intro-
ducing an artificial stable oscillation that generates the periodic forcing. For any
periodically forced DDE (or ODE) this can be achieved with the Hopf normal form
for a stable periodic orbit of radius 1; it can be written in complex form as

ż(t) = (1 + ωi)z(t) − z(t)|z(t)|2, (24)

and we set ω = 2π to have the required forcing period of 1 (year). This two-
dimensional system then drives (23) in its rewritten form

ḣ(t) = −b tanh [κh(t − τ )] + c Re(z(t)). (25)
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The equivalent autonomous system (25) with (24) is readily implemented in DDE-
BIFTOOL with physical state x(t) = (h(t),Re(z(t)), Im(z(t))) ∈ R

3, parameter
vector p = (p1, p2, p3, p4) = (b, c,κ, τ ) ∈ R

4 (such that τ = p4), and right-hand
side

f (x0, x1, p) =
⎡
⎣

−p1 tanh[p3x11 ] + p2x02
x02 − 2πx03 − x02 ((x

0
2 )

2 + (x03 )
2)

x03 + 2πx02 − x03 ((x
0
2 )

2 + (x03 )
2)

⎤
⎦ . (26)

Figure 5 presents five stable solutions of (23) as obtained by numerical integration
with theEulermethod from initial conditions h ≡ 0 and/or h ≡ 1 after transients have
settled down. Shown are the respective time series of h in panels (a1)–(e1), which
are intuitive in the context of ENSO system since the variable h is a proxy for the
SST: maxima and minima of h represent El Niño and La Niña events, respectively.
Panels (a2)–(e2) of Fig. 5 are projections of the corresponding attractors onto the
(h(t − τ ), h(t))-plane.

For zero seasonal forcing c = 0 there is an attracting periodic solution; see row (a)
of Fig. 5. Its zigzag-like shape and period of T = 4τ years is due to the fact that
the slope κ is quite large at κ = 11, so that the tanh-function is rather close to a
discontinuous switching function. In the context of ENSO, this stable periodic orbit
corresponds to an El Niño event exactly every 4.8 years as driven by the delay time
of τ = 1.2 years. On the other hand, when the periodic forcing is large compared to
the negative feedback one finds a periodic solution that is quite close to sinusoidal
with a period T = 1 year; an example is shown in row (b) of Fig. 5. The observed
dynamics is clearly dominated by the seasonal forcing, meaning that the SST varies
exactly with the seasonal cycle.

The interesting case is that of an interplay between negative feedback and the
seasonal cycle when b and c are of the same order. In this regime one may find
dynamics on invariant tori, which may be locked or quasiperiodic. Row (c) of Fig.
5 shows a stable locked periodic solution; in fact, it coexists with the seasonally
driven periodic solution in row (b). Another example of multi-stability are the stable
solutions shown in rows (d) and (e). The projection onto the (h(t − τ ), h(t))-plane
in panel (d2) clearly shows that there is an attracting torus with dynamics that is
quasiperiodic (or periodic with a very high period); the attractor in row (e), on the
other hand, is clearly periodic and likely a locked solution on a different torus.
Notice the difference in amplitude between the respective coexisting stable solutions
in rows (b) and (c) and in rows (d) and (e), respectively. An interpretation of the
locked periodic solutions in row (c) and (e) would be a build-up of the maxima of
the SST from year to year until a global maximum, interpreted as an El Niño event,
is reached and the SST decreases until a global minimum, interpreted as La Niña
event, is reached and the process repeats.

Figure 6 shows two maximum maps in the (c, τ )-plane of (23), together with
curves of saddle-node bifurcations of periodic orbits SL, period-doubling bifurca-
tions PD, and torus bifurcations T. Two-parameter maximum maps, which plot for
each point of a grid in parameter space the maximum of a sufficiently long time
series after transients have settled down, have been considered as a convenient way
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Fig. 5 Stable solutions of (23), shown as time series in panels (a1)–(e1) and as projections onto
the (h(t − τ ), h(t))-plane in panels (a2)–(e2); throughout b = 1,κ = 11 and τ = 1.2, c = 0 for
(a), τ = 1.2, c = 3 for (b) and (c), and τ = 0.62, c = 3 for (d) and (e). From Keane et al. (2015)
© 2015 Society for Industrial and Applied Mathematics; reproduced with permission

of obtaining an overview of the overall dynamics (Ghil et al. 2008; Keane et al.
2015). We show two maximum maps in two panels of Fig. 6 in a greyscale where,
for each row of fixed delay τ , the parameter c is swept up or down in small steps as
is indicated by the arrows; here the respective previous solution is used as the initial
history for the next value of c. In this way, hysteresis loops in c are detected and
regions of multistability are identified as regions in the (c, τ )-plane where the two
maximum maps do not agree.
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Fig. 6 Maximum maps and bifurcation set of (23) in the (c, τ )-plane with curves of saddle-node
bifurcations of periodic orbits (SL), period-doubling (PD) and torus bifurcations (T), and labelled
lower resonance tongues. From Keane et al. (2015) © 2015 Society for Industrial and Applied
Mathematics; reproduced with permission

The bifurcation curves in Fig. 6 explain features of the two maximum maps. In
particular, the curves SL of saddle-node bifurcations of periodic orbits delineate the
elongated shapes. In fact, they bound resonance tongues that emerge from the line
c = 0 of zero forcing and from the curve T of torus bifurcations, namely at points
of p :q resonance, some of which are labelled. In the regions bounded by respective
curves SL one finds stable frequency locked solutions of the fixed frequency ratio
p :q; compare with Fig. 5c, e. The curve T lies near the (roughly diagonal) boundary
along which one finds sudden jumps of the maxima. Notice that this boundary is
different for increasing c versus decreasing c in two panels of Fig. 6, showing that
the curve T is associated with regions of multistability. As is discussed by Keane
and Krauskopf (2018), this involves folding resonance tongues and the break-up of
invariant tori in what are known as Chenciner bubbles. Overall, Fig. 6 confirms that
for sufficiently large c solutions are dominated by the seasonal forcing, while there
is an interplay between the forcing and the delayed feedback for lower values of c,
specifically, to the left of the torus bifurcation curve T, where one finds dynamics on
invariant tori.

We focus here on the existence of chaotic dynamics caused by this interplay,
because it has been suggested that irregular locked motion of (23) captures impor-
tant aspects of ENSO (Ghil et al. 2008; Zaliapin and Ghil 2010). Regions where
such dynamics may occur are those in Fig. 6 that are bounded by curves PD of
period-doubling bifurcations, which are found inside some of the shown resonance
tongues. This is a known feature that occurs when resonance tongues overlap and the
corresponding tori lose their normal hyperbolicity and break up; see, for example,
Broer et al. (1998), Kuznetsov (2013). To identify where chaotic dynamics can be
found, Fig. 7 shows the bifurcation curves in the (c, τ )-plane overlaid on amap of the
maximal Lyapunov exponent, as computed for an upsweep of c with the algorithm
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Fig. 7 Bifurcation set and maximal Lyapunov exponent of solutions in the (c, τ )-plane of (23)
[corresponding to that of (28) with ηc = 0 and ηe = 0]. From Keane et al. (2019) © 2019 The
Royal Society; reproduced with permission

for DDEs from Farmer (1982). It shows that a positive maximal Lyapunov exponent
indicating chaotic dynamics is generally associated with period-doubling cascades
and can be found only in small regions of the parameter plane. Note that some of
these regions of positivemaximal Lyapunov exponents can be foundwhere no curves
of period-doublings are shown; indeed, there exist infinitely many higher-order res-
onance tongues in between those we have shown, and they are expected to overlap.
As demonstrated for a related DDE model by Keane et al. (2016), regions of chaotic
dynamicsmay also be entered via intermittent transitions that are characterized by the
sudden appearance of chaos at a saddle-node bifurcation (Pomeau and Manneville
1980). The conclusion to be drawn from Fig. 7 is that chaotic dynamics of (23) can
be found, but only for quite specific and small ranges of c and τ . As we will show
next, state dependence of the feedback loop changes this picture considerably.

4.3 State Dependence Due to Upwelling and Ocean
Adjustment

It is important to recognize that taking a constant value for any delay in a DDE
model is a modeling assumption that must be justified. The assumption of delays
being constant is well justified in certain applications, such as machining (Insperger
and Stépán 2000) and laser dynamics (Kane and Shore 2005). On the other hand,
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Fig. 8 Ocean adjustment and upwelling as sources of state-dependence in the ocean-atmosphere
interaction in the central and eastern equatorial Pacific Ocean. From Keane et al. (2019) © 2019
The Royal Society; reproduced with permission

delays in many applications, and certainly in climate modeling, are definitely not
constant. While the delays in conceptual DDE climate models have generally been
taken to be constant (Keane et al. 2017), there are many reasons to suspect that this
is not actually the case. Generally, the delay times will depend on the state of the
system itself, which leads to DDE models with state-dependent delays. The main
questions that need to be addressed from a more general modeling perspective are:

(1) When does state dependence arise from physical processes and what mathemat-
ical forms does it take?

(2) Does state dependence of delays have a significant effect on the observed dynam-
ics of the respective DDE model?

Specifically for theGZTmodel (23), a non-constant delay in the negative feedback
loop arises from the physics of the coupling of the ocean surface with the thermocline
below. Figure 8 illustrates the heuristic argument for considering two termswith state
dependence in the overall negative delay loop of ENSO, which are not described by
and go beyond the original DAO mechanism; more details can be found in Keane
et al. (2019). The horizontal direction represents longitude along the equator between
the basin boundaries of the Pacific Ocean and the vertical direction represents depth
below the ocean surface with the atmosphere above. The thermocline is sketched as a
deviation from its mean, which is about 50m deep in the East and 150 metres deep in
the central equatorial Pacific Ocean. The black arrows represent the four components
of the negative feedback loop. A positive perturbation in the thermocline depth h(t)
in the eastern equatorial Pacific increases the SST after an upwelling process with
associated delay time τe. The easterly winds forming the atmospheric component
that transports such a perturbation to the interaction zone in the central Pacific Ocean
are considered fast and are modelled as instanteaneous (as is the case in all DAO
models). The interaction zone is reasonably localized, and it is simplified to a point
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in mathematical derivations of DAO models (Cane et al. 1990; Jin 1997). There is
then a delay τc due to the coupling process known as ocean adjustment of the SST
influencing the thermocline, which depends on the current thermocline depth h(t).
As in the GZT model without state dependence, Rossby waves then carry the signal
to the western basin boundary and are reflected as Kelvin waves, which carry the
signal back to the East with an associated delay time τw, which we assume here is
constant. The total delay time associated with the negative feedback loop is therefore

τ = τe + τc + τw.

Here τe and τc are state dependent, that is, depend on the thermocline depth h. To
determine their functional formwe summarize briefly themodeling exercise inKeane
et al. (2019), where more details can be found. It is convenient to define the constant
part of the delay τ (with respect to the mean thermocline depth) as

τ̄ = τ̄e + τ̄c + τw.

Here τ̄e is the constant time it takes the signal to travel from the mean thermocline
depth to the surface, and τ̄c is the constant time of the ocean adjustment at the central
Pacific associated with the mean thermocline depth. From a correlation analysis of
observational SST and thermocline depth data (Zelle et al. 2004) one concludes that
the two constant delay times τ̄e and τ̄c for the long-term average of the thermocline
are 2 weeks and 4 months, respectively, which gives the values τ̄e = 2/52 and τ̄c =
4/12 (in years) that we use from now on. Moreover, based on oceanic wave speeds
calculated fromTOPEX/POSEIDON satellite data in Boulanger andMenkes (1995),
Chelton and Schlax (1996), realistic values of τw lie between 5.2 and 7.2months, that
is, in the range [0.43, 0.6] when scaled to years. Hence, one obtains the estimated
range [0.80, 0.97] for the constant part τ̄ of the overall delay.

The upwelling delay can be modelled by

τe = τ̄e + ηeh(t − τ̄ ), (27)

where ηe is the inverse of the upwelling speed. Note that the state-dependent term is
itself subject to a delay because the thermocline depth signal that ultimately returns
to the eastern equatorial Pacific at time t began its journey at the thermocline one
feedback cycle ago; in (27) this implicitly defined state dependence is resolved by
considering the first-order approximation given by the constant part τ̄ . Maximum
deviations in the thermocline depth in the eastern equatorial Pacific Ocean are about
50 metres (Harrison and Vecchi 2001) and it follows, with time measures in years,
that the nominal value of the inverse upwelling speed is ηe ≈ 2/52 ≈ 0.04.

The dependence of the delay time τc due to mass transport between ocean surface
and the thermocline can be modelled by

τc = τ̄c + ηch(t),
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where ηc is the ocean-adjustment speed. Since the maximum deviations in ther-
mocline depth in the central equatorial Pacific Ocean of 150 metres corresponds
to about one third of its mean depth, we obtain similarly the nominal value
ηc ≈ (4/3)/12 ≈ 0.11 (in units of years per meter).

4.4 The GZT Model With Upwelling and Ocean Adjustment

The resulting state-dependent GZT ENSO DDE model we consider in what follows
is given by (23) with the overall state-dependent delay

τ (h) = τ̄ + ηeh(t − τ̄ ) + ηch(t), (28)

whichhas the additional parametersηe andηc that allowus to ‘switchon’ the two types
of state dependence.Clearly, forηe = ηc = 0 thismodel reduces to the constant-delay
GZT DDE. When implementing the state-dependent delay in DDE-BIFTOOL, the
expression for the right-hand side is very similar to that given in (26), but the param-
eter vector is changed to p = (p1, . . . , p6) = (b, c,κ, τ̄ , ηc, ηe) ∈ R

6, the number
of delays is specified as d = 2, and the delays are given as functions:

τ
f
1 (x0, p) = p4,

τ
f
2 (x0, x1, p) = p4 + p5x

0
1 + p6x

1
1 ,

f (x0, x1, x2, p) =
⎡
⎣

−p1 tanh[p3x21 ] + p2x02
x02 − 2πx03 − x02 ((x

0
2 )

2 + (x03 )
2)

x03 + 2πx02 − x03 ((x
0
2 )

2 + (x03 )
2)

⎤
⎦ .

Note that the delayed argument appearing in f is now x21 , instead of x11 as was the
case in (26). The question is what effects the two types of state dependence have
on the observed dynamics as represented by the bifurcation set in the (c, τ̄ )-plane.
This was considered by Keane et al. (2019) for ranges of ηe and ηc up to ηe = 0.08
and ηc = 0.22, that is, twice their nominal values. It turns out that, within the ranges
of the parameters considered, state dependence of τe alone has a negligible effect
on the bifurcation set. State dependence of τc, on the other hand, has a significant
impact on the bifurcation set in the (c, τ̄ )-plane, featuring considerably increased
and more overlapping resonance regions. Surprisingly, for 0 < τc, state dependence
of τe does have a definite influence on the bifurcation set, namely that of increasing
the observed complexity even further.

As an example of the effect of both types of state dependence, Fig. 9 shows the
bifurcation set and maximal Lyapunov exponent of solutions in the (c, τ̄ )-plane of
(23) with (28) for the case where the upwelling ηe and the ocean adjustment ηc are
at the maximum of their considered ranges at ηe = 0.08 and ηc = 0.22, respectively.
As for ηe = ηc = 0 in Fig. 7, shown in Fig. 9 are curves SL, PD and T of saddle-
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Fig. 9 Bifurcation set and maximal Lyapunov exponent of solutions in the (c, τ̄ )-plane of (23)
with (28) for ηe = 0.08 and ηc = 0.22; see Fig. 7 for the color map. The dot indicates the parameter
point for the time series in Fig. 10. FromKeane et al. (2019) © 2019 The Royal Society; reproduced
with permission

node of periodic orbits, period-doubling and torus bifurcations, respectively. They
were computed with DDE-BIFTOOL, thus, demonstrating that such computations
can be performed readily also for DDEs that feature state dependence. The maximal
Lyapunov exponent of solutions was computed again for an upsweep of c with the
algorithm for DDEs from Farmer (1982). Note that in the dark grey region for low
values of τ̄ the delay becomes negative during the integration, so that a sufficiently
long time series to determine the Lyapunov exponent cannot be found. Similarly,
some curves of period-doubling bifurcations stop in this region because the delay
becomes negative along the respective periodic orbit during the continuation.

Comparing Fig. 9 with Fig. 7 clearly drives home the point that state dependence
has a large effect on the bifurcation set and, hence, on the observable dynamics of
the GZT model (23). In Fig. 9 the bifurcation set now extends substantially further
into the region of large forcing c: the curve T of torus bifurcation has moved, as
have resonance regions associated with it. In particular, there is now a cluster of
overlapping resonance regions near τ̄ = 1, that is, in the physically relevant range of
the (c, τ̄ )-plane. Notice that this cluster is associated with large positive Lyapunov
exponents. More generally, state dependence results here in considerably more and
larger regions where chaotic dynamics can be found. Interestingly, there is also a
large region of chaotic dynamics for very low values of τ̄ , near the boundary where
the delay becomes negative.
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Clearly, introducing a physically motivated state-dependent delay time changes
the overall observed dynamics of theGZTmodel.Wefinish by demonstrating that this
model modification leads to dynamics that represents realistic aspects of the ENSO
system, more so than those found in the absence of state dependence. Namely, in
the constant delay case, irregular (chaotic) behavior could only be found for small
pockets of the (c, τ̄ )-plane and, as such, could not be considered a prominent feature
of themodel behavior. In the presence of state dependence due to upwelling and ocean
adjustment, on the other hand, this type of behavior is more prominent, especially
in the physically relevant cluster of period-doublings near τ̄ = 1. The blue dot in
this cluster indicates the parameter point (c, τ̄ ) = (7.2, 0.95), and Fig. 10 shows the
corresponding times series and power spectra in direct comparison with those for
the measured Nino3 index. This data is the spatially averaged SST over 5◦N–5◦S
and 150◦W–90◦W as derived from the Optimum Interpolation SST V2 data by the
National Oceanic and Atmospheric Administration in Boulder, Colorado. The Nino3
time series, which was linearly detrended, is shown in Fig. 10a1. Prominent in the
time series data is the strong annual forcing, which is represented by the large peak
at 1 year in the power spectrum in panel (a2), which was calculated by using the
Welch method with windows of length 15 years and overlapping across 12 years.
Moreover, the Nino3 time series shows characteristic larger maxima, that is, El Niño
events, about every 3–7 years, which give rise to the distinct but broad peak in the
power spectrum that is centred near the frequency of about 1/3.5 years. Indeed,
there is clearly a high degree of variability in the timing of larger maxima and, as
we checked, they tend to be seasonally locked. As row (b) of Fig. 10 shows, time
series and power spectrum of the thermocline deviation h of the GZT model (23)
with delays given by (28) and ηe = 0.08 and ηc = 0.22 at (c, τ̄ ) = (7.2, 0.95) also
possess these important characteristics of ENSO. The solution from which the time
series is derived evolves on a chaotic attractor that lies at the intersection of several
resonance tongues. The times series in panel (b1) clearly lacks certain aspects of the
data in panel (a1), and it is not obvious how exactly the thermocline deviation h as
described by the rather simple conceptual GZT model translates to an observable
such as Nino3. Nevertheless, the time series of h features irregularity in the form of
relatively large peaks that occur every 2–7 years, with a similar broad peak centered
near the frequency of about 1/2.5 years as well as seasonal locking, which is very
robust with respect to the choice of parameters. The number and distribution of
large maxima, on the other hand, depends on where the parameters point is chosen
to lie in the regions of overlapping p :q resonance tongues. Moreover, the relative
strengths between the peaks in the power spectrum, representing both seasonal and
El Niño time scales can be influenced by the choice of the seasonal forcing strength
c. Overall, we conclude that solutions with fundamental ENSO characteristics can be
found in appropriate regions of parameter space of the state-dependent GZT model
as considered here.
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5 Resonance Phenomena in a Scalar DDE With Two
State-Dependent Delays

The previous section demonstrated that state dependence of delays can have a serious
impact on the observed dynamics of a given DDE. On the other hand, the GZTmodel
for ENSO features complicated dynamics already when the delays are constant. As
wewill discuss now, state dependence of delays alone can create complicated nonlin-
ear dynamics, even when the constant-delay DDE has only trivial, linear dynamics.
This surprising result was obtained in Calleja et al. (2017) for the scalar DDE

u′(t) = −γu(t) − κ1u(t − a1 − c1u(t)) − κ2u(t − a2 − c2u(t)). (29)

Here, 0 < γ is the linear decay rate and 0 ≤ κ1,κ2 are the strengths of the two
negative feedback loops with the constant delay times 0 < a1, a2 and linear state
dependence of strengths 0 ≤ c1, c2. For κ1 = κ2 = 0, this system is simply a linear
scalar equationwhose solutions decay exponentially to the originwith rate 0 < γ. For
0 < κ1,κ2, on the other hand, (29) is a DDE with two negative feedback loops. For
c1 = c2 = 0 this DDE is linear with the two fixed delays a1 and a2 and all trajectories
of (29) decay to the origin or blow up to infinity, depending on the values of γ, κ1 and
κ2; see Bellman and Cooke (1963), Hale (1977), Hale and Verduyn Lunel (1993).
In other words, the dynamics of the system without state dependence in the delay
terms is indeed trivial.
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The situation is very different with state dependence, that is, for 0 < c1, c2, in
which case (29) may show a wide range of behaviors. The two-delay state-dependent
DDE (29) was introduced by Humphries et al. (2012). It is a generalisation of the
single-delay state-dependent DDE, corresponding to setting κ2 = 0, which was first
introduced in a singularly perturbed form as an example problem in Mallet-Paret
et al. (1994) and considered extensively in Mallet-Paret and Nussbaum (2011a). A
singularly perturbed version of the two-delay state-dependent DDE (29) was studied
by Humphries et al. (2016) and Kozyreff and Erneux (2013). Specifically, solutions
near the singular Hopf bifurcations were considered by Kozyreff and Erneux (2013),
while large amplitude singular solutions are constructed and studied by Humphries
et al. (2016). We report here on the work by Calleja et al. (2017) and consider (29)
for a1 < a2 without loss of generality. It was shown by Humphries et al. (2012)
that the state-dependent delays can never become advanced when κ2 < γ, which
we assume from now on. Hence, for any Lipschitz continuous initial condition the
initial value problem given by (29) has a unique solution.Moreover, Humphries et al.
(2012) showed that state dependence of the delay terms changes the dynamics in an
essential way. In particular, although it is only linear, the state dependence of the
delays for 0 < c1, c2 is responsible for nonlinearity in the system, and the dynamics
of the DDE (29) is no longer linear. Given that it has two feedback loops, the system
is, colloquially speaking, potentially at least as complicated as two coupled damped
nonlinear oscillators.

This realization was the starting point of the extensive bifurcation analysis of the
two delay state-dependent DDE (29) by Calleja et al. (2017), where more details can
be found. The first step is to bring (29) into the form required by DDE-BIFTOOL.
To this end, one has to specify the number of delays, d = 2, and define

τ
f
1 (x0, p) = a1 + c1x

0,

τ
f
2 (x0, x1, p) = a2 + c2x

0,

f (x0, x1, x2, p) = −γx0 − κ1x
1 − κ2x

2.

Note that here the physical space is one-dimensional since x(t) ∈ R
1, M = 1 and

the parameter vector is p = (p1, . . . , p7) = (γ,κ1,κ2, a1, a2, c1, c2) ∈ R
7.

5.1 Hopf-Hopf Bifurcation as an Organizing Center

We focus here on resonance phenomena associated with a pointHH1, where a Hopf-
Hopf bifurcation occurs. As in Humphries et al. (2012), Calleja et al. (2017), we
fix the parameters of (29) to γ = 4.75 , a1 = 1.3, a2 = 6, and c1 = c2 = 1. Thus,
parameters κ1 and κ2 are bifurcation parameters, where we restrict to κ2 ∈ (0, 4.75)
so that indeed κ2 < γ. The bifurcation diagram of (29) in the (κ1,κ2)-plane is shown
in Fig. 11; here row (a) focuses on the immediate vicinity of the point HH1, while
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point HH1 at the intersection of curves H1 and Hu , as computed from the normal form (a1) and
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panel (b) shows the relevant bifurcation set associated with HH1 over a wider range
of κ1 and κ2.

An important contribution of Calleja et al. (2017) is the computation of the
third-order normal form of the state-dependent DDE in the form of an ordinary
differential equation (ODE) on the center manifold near Hopf-Hopf points; see,
for example, Guckenheimer and Holmes (1983), Kuznetsov (2013) for the respec-
tive ODE normal forms. This is achieved by expanding the state dependence to
derive a DDE with terms up to a given order and with only constant delays. This
constant-delay DDE can then be reduced to the required four-dimensional ODE nor-
mal form with standard techniques; see Bélair and Campbell (1994), Guo and Wu
(2013), Wage (2014). Computation with DDE-BIFTOOL shows that the point HH1

lies at (κ1,κ2) = (2.08092, 3.78680) where the Hopf bifurcation curves H1 and Hu

intersect; it features a double pair of purely complex conjugate eigenvalues with
frequencies (imaginary parts) ω1 = 2.48710 and ω2 = 1.58215. The normal form
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computation at this Hopf-Hopf point, details of which can be found in Calleja et al.
(2017), shows that HH1 is subcase III of what is referred to as the simple case in
Kuznetsov (2013). This means that there are two curves of torus (or Neimark-Sacker)
bifurcations emerging from the codimension-two Hopf-Hopf point. When the nor-
mal form coordinates are transformed back into the (κ1,κ2)-plane, one obtains the
bifurcation diagram shown in Fig. 11a1, featuring the curves H1 and Hu and the torus
bifurcation curves T1 and Tu . Note that all curves are straight lines, whose slopes
are determined by the respective normal form coefficient. The bifurcation diagram
in Fig. 11a2 shows the same bifurcation curves H1, Hu , T1 and Tu but now computed
for (29) by continuation with DDE-BIFTOOL. Note that these curves are no longer
straight lines. Comparison with panel (a1) shows that the nature, order and slopes
of the respective bifurcation curves is indeed as determined by the normal form
computation, which strongly supports the correctness of the expansion method used
to derive the Hopf-Hopf normal form of the full state-dependent DDE (29). This
approach has been extended by Sieber (2017) to all codimension-two bifurcations
of steady-states that are defined by conditions on the linearization. Hence, normal
form calculations for these codimension-two bifurcations, which had been incorpo-
rated into the capabilities of the package DDE-BIFTOOL for constant-delay DDEs
by Wage (2014), are now also available for state-dependent DDEs; see Sieber et al.
(2015).

Figure 11b shows that the local curves T1 and Tu , when continued beyond a neigh-
borhood of the Hopf-Hopf point HH1, actually form a single curve in the (κ1,κ2)-
plane. As expected from theory, along the branches T1 and Tu of torus bifurcations
one finds points of p :q resonance, which we include for q ≤ 13. At each such point
the Floquet multiplier is a rational multiple of 2π and a resonance tongue emerges
where the dynamics on the torus is p :q locked. For parameter points that do not
lie in a resonance tongue the rotation number is an irrational multiple α of 2π and
the dynamics of the torus is quasiperiodic. In either case, the bifurcating torus is
normally hyperbolic, and hence smooth, near the respective torus bifurcation. Each
resonance region is bounded locally near the point of p :q resonance by a pair of
saddle-node bifurcations of periodic orbit. Tori with fixed irrational rotation number
α, on the other hand, lie on smooth curves that connect to the point on the torus
bifurcation curve with the corresponding Floquet multiplier. Also shown in Fig. 11b
are the bounding curves of saddle-node bifurcations for the resonance points with
q ≤ 13. They have been found by identifying, by means of numerical integration,
stable locked periodic orbits near the respective branch of torus bifurcation; this is
possible because the tori bifurcating from T1 and Tu are actually attracting (which
is in agreement with the normal form calculation). The subsequent continuation of
these with DDE-BIFTOOL in κ1 identifies the pair of saddle-node bifurcations, at
two specific values of κ2, that form the boundary of the resonance tongue. Once these
two points of saddle-node bifurcations of periodic orbits have been found, they can
be continued in both κ1 and κ2 towards the curves T1 and Tu to obtain the respective
curves shown in the (κ1,κ2)-plane. Note that the gap between the two bounding
curves of the p :q resonance tongue becomes smaller for increasing q.
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5.2 Finding and Representing Smooth Invariant Tori

As we show now, invariant tori of DDEs can also be computed, including when
the delay is state dependent; see Krauskopf and Green (2003), Green et al. (2003),
Calleja et al. (2017). This is quite straightforward for an attracting quasiperiodic
torus, because it is densely filled by any trajectory on it. Such a trajectory can be
obtained readily by numerical integration from an initial condition sufficiently near
the torus, after transients have settled down. Such a torus is a smooth two-dimensional
submanifold that lives in the infinite-dimensional phase space C of the DDE. There-
fore, the question is how to represent it via a suitable low-dimensional projection.
Figure 12 shows with the example of the smooth attracting quasiperiodic torus of
(29) for κ1 = 4.44 and κ2 = 3.0 how this can be achieved. Panel (a) shows the
computed long trajectory on the torus in the natural and convenient projection onto
the three-dimensional (u(t), u(t − a1), u(t − a2))-space of (29). Also shown is the
intersection set of the trajectory on the torus with the shown section �, which forms
a smooth invariant curve as is expected for a quasiperiodic torus.

Note that the representation of the torus in Fig. 12a looks very much like a two-
dimensional smooth torus in a three-dimensional phase space of an ODE, with an
associated image of the dynamics of the Poincarémap in the two-dimensional section
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�. However, it is important to recognize that this image is a projection from the
infinite-dimensional phase space C . In particular, it is an interesting question how
best to define a Poincaré map for a DDE. In general terms, given a section � of
codimension one in the phase space C that is transverse in some region of interest to
the (semi)flow �t generated by the DDE, the (local) Poincaré map P is defined as

P� : � → �,

q �→ �tq (q) ,

where tq > 0 is the return time to �. The main issue from a practical perspective
is how to define the section �. When the DDE has a physical space R

n of suffi-
cient dimension (at least three), then it is convenient to consider a codimension-one
section � ⊂ R

n; requiring that the headpoint q(0) of the point q lies in � induces a
codimension-one section in the infinite dimensional phase space C , which we also
refer to as� for simplicity; seeKrauskopf andGreen (2003).Moreover, there is a nat-
ural projection onto R

n and just considering the headpoints in the section � ⊂ R
n

gives what we refer to as the finite-dimensional Poincaré trace of the dynamics.
Unfortunately, this approach is not workable for (29) because it is a scalar DDE
and, moreover, state dependent. Instead, we make use of the fact that all periodic
and quasi-periodic orbits repeatedly cross {u = 0} ⊂ R when the parameters are all
positive as considered here; therefore, it is natural to use this condition for defining
the Poincaré section as

� = {q ∈ C : q(0) = 0}. (30)

Clearly, the section � is infinite dimensional itself, and the local Poincaré map
P� on � is defined as the map that takes a downward transversal crossing of zero
(where q(0) = 0 with q ′(0) < 0) to the next such crossing. The Poincaré trace in
the u(t − a1), u(t − a2))-plane, which is the projection of the infinite-dimensional
� from (30), is obtained from the projection onto (u(t), u(t − a1), u(t − a2))-space
simply by also requiring that u(t) = 0. This projected section, which we again refer
to as � for convenience, is shown in Fig. 12a.

The underlying projection onto (u(t), u(t − a1), u(t − a2))-space generalizes an
idea of Mackey and Glass (1977), who were the first to project solutions of DDEs
into finite dimensions by plotting values of u(t − τ ) against u(t) for a single-delay
DDE. Defining the section � for (29) by q(0) = 0 has the advantage that the two
delays are exactly a1 and a2, that is, constant. Figure 12b, c illustrates this by showing
the function segments of all the points that generate the Poincaré trace on �; they
are represented by ut (θ) in panel (b) and by (ut−a1(θ), ut−a2(θ)) in panel (c), both as
functions of the argument θ, which runs over the interval [−6, 0] since a1 = a2 = 6.
In particular, Fig. 12c clearly shows the “history tails” over the time interval [−6, 0]
associated with headpoints that form the trace in (the two-dimensional projection of)
� (given by θ = 0); see also Krauskopf and Green (2003).

Figure 13 shows an example of an attracting smooth invariant torus with locked
dynamics; namely this example for κ1 = 5.405 and κ2 = 2.45 is from the 1 :4 reso-
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nance tongue. Hence, there are a stable periodic orbit and a saddle periodic periodic
orbit that both form a 1 :4 torus knot. The presentation is as for the quasi-periodic
torus in Fig. 12. Panel (a1) of Fig. 13 shows the shows the torus rendered as a surface
in projection onto (u(t), u(t − a1), u(t − a2))-space, together with the (projection
of the) section �. The Poincaré trace in the (u(t − a1), u(t − a2))-plane, that is, the
intersection set of the torus with�, is shown on its own in panel (a2). The associated
function segments or history tails are shown in Fig. 13c, d as represented by ut (θ) and
by (ut−a1(θ), ut−a2(θ)), respectively, for θ ∈ [−6, 0]. The locked dynamics on the
torus as represented in Fig. 13a is again very reminiscent of what one would expect
to find for a torus of a three-dimensional ODE: its two-dimensional Poincaré trace
in panel (a2) clearly shows a single smooth curve with four points of a stable period-
four orbit and four points of an unstable period-four orbit; see Fig. 13a2. Notice that
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the invariant curve has a point of self-intersection; this is due to projection and a
reminder that we are dealing with a DDE with an infinite-dimensional phase space.

As opposed to the case of a quasiperiodic torus, a torus with locked dynamics
cannot be found by numerical integration alone. Indeed, any initial condition will,
after transients have settled down, trace out only the attracting periodic orbit. The
torus on which it lies can be computed as follows. Continuation of the stable periodic
orbit in the parameter κ1 gives, after a fold or saddle-node bifurcation of periodic
orbits, the coexisting saddle periodic orbit for the initial value of κ1 = 5.405. As
theory predicts, this saddle peridic orbit has one unstable Floquet multiplier and,
hence, one unstable eigenfunction, which we extracted from the DDE-BIFTOOL
data; see also Green et al. (2003).We then used the eigenfunction to define two initial
functions in the local unstable manifold of the periodic orbit, one on each side of
and sufficiently close to the saddle periodic orbit. Trajectory segments that lie on the
unstable manifold were then found with numerical integration from initial functions
along the unstable eigenfunction; a selection of them is shown in Fig. 13b, c. The
torus was rendered as a surface in (u(t), u(t − a1), u(t − a2))-space in panel (a1)
and as an invariant curve in the (u(t − a1), u(t − a2))-plane in panel (a2) by ordering
a suitable selection of trajectory segments from the Poincaré section back to itself.

5.3 Locked Nonsmooth Invariant Tori

Aswas alreadymentioned in Sect. 5.1, any computed pair of saddle-node bifurcation
curves shown in Fig. 11b emerges at a resonance point on the torus bifurcation curve
Tu and connects to a point of resonance on the torus bifurcation curve T1 (or vice
versa). More generally, this is evidence for the observation that, near the Hopf-Hopf
pointHH1, any p :q resonance point on the upper branch Tu is connected by a pair of
saddle-node bifurcation curveswith a p :(p + q) resonance point on the lower branch
T1. In the region of locked dynamics bounded by such a pair one, hence, finds p :q
locked dynamics on a smooth invariant torus near Tu and p :(p + q) locked dynamics
on a smooth invariant torus near T1. Since a p :q torus knot and a p :(p + q) torus
knot cannot exist on one and the same smooth torus for topological reasons, the torus
inside the respective resonance tongue cannot be smooth throughout in the transition
inside the tongue from the p :q to the p :(p + q) resonance point (or vice versa). On
the other hand, without the requirement that the periodic orbit lies on an invariant
two-dimensional torus, it is possible to transform a periodic orbit with q loops into
one with (p + q) loops; in other words, there is indeed no topological obstruction
for the bounding curves of saddle-node bifurcations of periodic orbits to connect in
the way we found in Fig. 11b.

Figure 14 shows that it is possible to perform computations that show how an
invariant locked torus of a DDE loses its smoothness and bifurcates further. The
key idea here is to compute the one-dimensional unstable manifold in the Poincaré
trace that is associated with a saddle-periodic orbit with a single unstable Floquet
multiplier. In other words, the approach we used to compute the smooth 1 :4 phase-
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locked torus in Fig. 13 also works when the torus is no longer smooth; the only
requirement is that the saddle-periodic orbit still exists and has a single unstable
Floquet multiplier; see also Krauskopf and Green (2003), Green et al. (2003), Calleja
et al. (2017), Keane and Krauskopf (2018). Panel (a) of Fig. 14 shows the resonance
tongue in the (κ1,κ2)-plane that connects the 1 :4 resonance on Tu with the 1 :5
resonance on T1. The line segment at κ2 = 3.0 indicates the κ1-range of the one-
parameter bifurcation diagram shown in panel (b). Specifically, shown is the value of
u(t − a1) when u(t) = 0, that is, the first component of the (u(t − a1), u(t − a1))-
plane of the Poincaré trace. Inside the resonance tongue we find 1 :4 locking: there
are four branches of the stable periodic orbit and four branches of the saddle periodic
orbit, which meet and disappear in saddle-node bifurcations; these branches were
foundwithDDE-BIFTOOLbycontinuation inκ1, and this computation also confirms
that the saddle periodic orbit has a single unstable Floquet multiplier throughout the
κ1-range of the resonance tongue when κ2 = 3.0. Outside the resonance tongue we
find quasi-periodic dynamics or dynamics of very high period; it was identified by
numerical integration and is represented by many points in the Poincaré trace whose
u(t − a1)-values effectively fill out intervals.

Panels (c) and (d) of Fig. 14 show the result of computing the unstable manifold of
the saddle periodic orbit for κ1 = 6.93 with the approach from Sect. 5.2. While this
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is hard to see in the projection onto (u(t), u(t − a1), u(t − a1))-space in Fig. 14c,
the Poincaré trace in the (u(t − a1), u(t − a1))-plane in panel (d) clearly shows
that the one-dimensional unstable manifold of the saddle periodic orbit now spirals
around the stable periodic orbit. This means that the stable periodic orbit has two
dominant Floquet multipliers that are complex conjugate, which is confirmed by
the computation of the Floquet multipliers during the continuation of the periodic
orbits with DDE-BIFTOOL. The attracting periodic orbit on the torus developing a
pair of complex conjugate Floquet multiplier is a mechanism for the loss of normal
hyperbolicity of an invariant torus that is known from ODE theory (Aronson et al.
1982). As Fig. 14c, d shows, there is still a continuous two-dimensional torus, formed
by the closure of this unstable manifold, but this torus is indeed no longer smooth.

Further bifurcations may occur that change the nature of the invariant set in the
Poincaré trace, including homoclinic and heteroclinic tangencies of unstable mani-
fold of saddle periodic orbits. This happens, for example, when the 1 :4 resonance
tongue is crossed again at κ2 = 3.0 for larger values of κ1; see Calleja et al. (2017)
for the details. Other examples where such global bifurcations in DDEs have been
identified via unstable manifold computations are the transition to chaos in a laser
with phase-conjugate feedback in Krauskopf and Green (2003), Green et al. (2003)
and the break-up of a torus in the GZTmodel of Sect. 4.2 due to the transition through
a bifurcation structure known as a Chenciner bubble in Keane and Krauskopf (2018).

6 Conclusions and Outlook

The case studies of the GZT ENSO model and of the DDE with two state-dependent
delays we presented show that core tasks of numerical bifurcation analysis can be
performed forDDEswith finitelymanydiscrete delays, evenwhen the delays are state
dependent. More specifically, the routines that are implemented within the package
DDE-BIFTOOL include the detection and continuation of equilibria, periodic orbits
and their bifurcations of codimension one, of codimension-one connecting orbits
between equilibria, as well as the computation of normal forms of bifurcations of
equilibria up to including codimension two. This suite of tools puts the present
capabilities practically at the same level that is available for ODEs. In other words,
the numerical bifurcation analysis of DDEs, whether they arise in applications or in
a theory context, is now perfectly feasible.

One area where the capabilities for DDEs still lag behind that for ODEs is the
computation of normal forms for bifurcation of periodic orbits. The approach to nor-
mal form analysis designed by Dhooge et al. (2003) for MATCONT and extended by
Bosschaert et al. (2020) to equilibria of DDEs with constant delays is, in principle,
applicable also to periodic orbits and their bifurcations. However, there remain some
technical difficulties. For example, in case delays are bifurcation parameters or are
state dependent, the computation of normal form coefficients may involve the com-
putation of high-order time derivatives of the piecewise polynomials representing
the solution.
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We considered here chieflyDDEs in standard formwith a finite number of discrete
delays. For this class the discussed tools for the numerical bifurcation analysis are on
very firm ground theoretically when the delays are constant. On the other hand, some
present capabilities of the numerical methods and the software assume properties
of the underlying DDE that have not yet been proven rigorously when the delays
are state dependent. For example, convergence of the collocation schemes used for
the representing periodic orbits has been proved for standard DDE with constant
delays, but remains an open question when the delays are part of the unknowns or
state-dependent. Case studies such as the ones presented here clearly suggest that
collocation ‘works well’ also in such wider circumstances; moreover, the techniques
introduced by Andó and Breda (2020) look promising as a tool for proving this.
Similarly and as we also demonstrated, associated normal form calculations appear
to be working perfectly fine when delays are state dependent and are in agreement
with the results of numerical bifurcation analysis. Yet the proof that the suggested
expansion of the state dependence gives the correct normal form is still outstanding—
owing to the fact that regularity results for local center manifolds in DDEs with
state-dependent delays are strictly speaking still open. In spite of these technical
difficulties, wewould argue that the tools we presented can be usedwith considerable
confidence also for DDEs with discrete state-dependent delays.

The methods as implemented in DDE-BIFTOOL actually permit the bifurcation
analysis of systems from a far larger class of problems, including neutral DDEs
(with constant or state-dependent delays), differential algebraic equations with delay,
possibly of higher index, and advanced-delayed systems. We explained briefly how
these types of systems can be defined within the framework of the software, so that
the different tasks of bifurcation theory can be performed also for such DDEs that
are not in standard form (with a non-identity matrix multiplying the left-hand side).
However, rigorous regularity results (such as the existence of smooth local center
manifolds or branches of periodic orbits) and numerical convergence statements are
not available yet formany of these problems. Therefore, when attempting a numerical
bifurcation analysis in this wider context it is presently the responsibility of the user
to experiment and test for convergence a-posteriori.

Finally, we hope that this review may encourage the use of numerical tools from
bifurcation theory in the study of systems with delays in different application con-
texts. In particular, we would like to stress again that these tools are available and
reliable not only when the delays are constant, but also for the case that delays are
state dependent. Hence, there is no need to approximate state-dependent delays with
constant delays. This message is important from a practical perspective because state
dependencemay be responsible for layers of additional dynamics. Indeed, as we have
demonstrated, in some situations it may even generate all of the nontrivial dynam-
ics. Case studies of specific DDEs beyond the standard form would also be very
interesting and are encouraged. While this is more challenging in terms of ensuring
that the results stand up to scrutiny, such investigations have a role in guiding the
further development of theory and methods—in much the same way as case studies
of standard DDEs with constant and state-dependent delays have helped us get to
where we are now.
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Design of Structured Controllers for
Linear Time-Delay Systems

Wim Michiels

Abstract We present an overview of control design methods for linear time-delay
systems, which are grounded in matrix theory and numerical linear algebra tech-
niques, such as eigenvalue computations, solving Lyapunov matrix equations, eigen-
value perturbation theory and eigenvalue optimization. The methods are particularly
suitable for the design of structured controllers, as they rely on a direct optimiza-
tion of stability, robustness and performance indicators as a function of controller or
design parameters. Several illustrations complete the presentation.

1 Introduction

We consider the system

⎧
⎪⎨

⎪⎩

ẋ(t) = A0x(t) +
m∑

i=1

Ai x(t − τi ) + Bζ(t),

η(t) = Cx(t) + Dζ(t − τ0),

(1)

where x(t) ∈ C
n is the state variable at time t , ζ(t) ∈ C

nζ is the input and η(t) ∈ C
nη

is the output at time t , and τi , i = 0, . . . ,m, represent time-delays. We assume that
the state delays are ordered such that 0 < τ1 < · · · < τm . The input is not assumed to
be delayed, yet input-output delays can be taken into account in themodels addressed
in Sect. 5.

It iswell known that the solutions of (1), with ζ ≡ 0, satisfy a spectrumdetermined
growth property, in the sense that their asymptotic behavior and stability properties
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are determined by the location of the characteristic roots, seeHale andVerduynLunel
(1993), compare also with Breda (2023). The latter appear among the solutions of
the nonlinear eigenvalue problem

(

λI − A0 −
m∑

i=1

Aie
−λτi

)

v = 0, v ∈ C
n, v �= 0. (2)

For example the null solution of (1), with zero input, is exponentially stable if and
only if all its characteristic roots are confined to the open left half plane (Niculescu
2001; Gu et al. 2003). In such a case, we call system (1) internally exponentially
stable.

As a common approach in the domain of robust control, we assume that input ζ
and output η are defined in such a way that performance and robustness requirements
for the system can be expressed in terms of norms of the associated transfer function
G : C → C

nη×nζ ,

G(λ) := C

(

λI − A0 −
m∑

i=1

Aie
−λτi

)−1

B + De−λτ0 , (3)

which corresponds to the Laplace transform of the impulse response h of the system.
Important measures are the H2 and H∞ norm of the input-output map of the sys-
tem (Zhou et al. 1995). For an internally exponentially stable system, the H2 norm
is defined as

‖G‖H2 :=
√
∫ ∞

0
tr
(
h(t)Hh(t)

)
dt,

which, by Parseval’s relation, can also be expressed as

‖G‖H2 =
√

1

2π

∫ ∞

−∞
tr
(
G(iω)HG(iω)

)
dω. (4)

TheH2 norm is particularly suitable to quantify the effects of additive perturbations to
the differential equation on the deviation from the equilibrium, as it can be interpreted
as the trace of the covariance matrix of the output, when the system input consists
of white noise. The H∞ norm, on its turn, is equal to the peak gain of the transfer
function in the closed right half plane. Once again under assumption of internal
exponential stability, it can be defined by the expression

‖G‖H∞ := sup
ω∈R

σ1(G(iω)),

where σ1(·) denotes the largest singular value. In the time-domain theH∞ norm can
be interpreted as the induced L2-norm from input ζ to output η, when considered
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as functions on the interval [0,∞), that is ‖G‖H∞ = maxu �≡0
‖y‖L2
‖u‖L2

, emphasizing
its role in assessing the disturbance rejection of a dynamical system. In addition,
many robustness criteria for stability against perturbations to system model (1) can
be expressed in terms of the reciprocal of the H∞ norm of an appropriately defined
transfer function. For example, considering complex valued perturbations δAi on
matrices Ai , i = 0, . . . ,m, in (1), whose size is measured by

‖(δA0, . . . , δAm)‖glob :=

∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎣

w0‖δA0‖2
...

wm‖δAm‖2

⎤

⎥
⎦

∥
∥
∥
∥
∥
∥
∥

∞

,

where numbers wi ∈ R
+
0 ∪ {∞}1 are weights associated to the different matrix per-

turbations, the associated stability radius

rC(‖ · ‖glob) := inf
{‖(δA0, . . . , δAm)‖glob : δAi ∈ C

n×n, 0 ≤ i ≤ m, and
ẋ(t) = (A0 + δA0)x(t) +∑m

i=1(Ai + δAi )x(t − τi ))
is not exponentially stable}

can be expressed as

rC(‖ · ‖glob) =
⎧
⎨

⎩

∥
∥
∥
∥
∥
∥

(

iω I − A0 −
m∑

i=1

Aie
−iωτi

)−1
∥
∥
∥
∥
∥
∥
H∞

m∑

i=0

1

wi

⎫
⎬

⎭

−1

,

see Michiels and Niculescu (2014). It should be noticed that

‖(δA0, . . . , δAm)‖glob < 1 ⇔ ‖δAi‖2 <
1

wi
, 0 ≤ i ≤ m.

The above result can be extended by exploiting structured, real valued perturbations,
see, e.g., Borgioli and Michiels (2020), Borgioli et al. (2019), where theH∞ frame-
work is generalized to the μ-framework (Zhou et al. 1995). We note that Borgioli
et al. (2019) also considers bounded perturbations on the delays. Finally, the sys-
tem norms can also be used in the context of structure preserving model reduction.
Denoting by G̃ the transfer function of a reduced model for (1) of the form

Ĝ(iω) = Ĉ

(

λI −
m∑

i=0

Âi e
−λτi

)−1

B̂ + De−λτ0 , Âi ∈ C
k×k, i = 0, . . . ,m,

assuming n large and k � n, the matrices of the reduced model could be determined
by minimizing

‖G − G̃‖H2 , or ‖G − G̃‖H∞ ,

1
R

+
0 denotes the set of strictly positive real numbers.
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see Gomez et al. (2019), Pontes Duff et al. (2018). Here we can express the mismatch
between the transfer functions in the form of a standard transfer function, namely

G(iω) − Ĝ(iω) = [C − Ĉ] ×
(

iω

[
In 0
0 Ik

]

−
m∑

i=0

[
Ai 0
0 Âi

]

e−iωτi

)−1 [
B
B̂

]

,

enabling tools for optimizing system or controller parameters.

The structure of the chapter is as follows. In Sect. 2 we present some numerical
methods for the computation of the rightmost characteristic roots of (1) and for the
computation of the H2 and H∞ norm of transfer function (3). These analysis tools
are at the basis of the controller synthesis methods discussed in Sect. 3. There we
assume that the system matrices in (1) depend on a finite number of parameters,
which may originate from the parametrization of a controller (hence, system (1) may
correspond already to the so-called closed-loop system). The stabilization problem
and the optimization of the H2 and H∞ norm of (3) are addressed. The approach is
inspired by controller synthesis methods for finite-dimensional linear time-invariant
systems which rely on eigenvalue optimization, as for instance implemented in the
package HIFOO (Burke et al. 2006). These methods have proven very useful for
synthesis problems where the controller is constrained or its order (dimension) is
smaller than the dimension of the plant. They are particularly powerful for time-delay
systems, because any design problem involving the determination of a finite number
of parameters can be interpreted as a reduced-order control design problem due to
the infinite dimension of the system, and they constitute an important component
of the established eigenvalue based framework for time-delay systems (Michiels
and Niculescu 2014; Michiels 2019). In Sect. 4 we illustrate the flexibility of the
approach in twocomplementary directions, by incorporatingpole location constraints
in the stabilization procedure, and by synthesizing a proportional-retarded controller
optimizing the H2 norm of the system, respectively. In Sect. 5 we briefly address
extensions of the approach towards delay differential algebraic equation models,
which can also describe systems of neutral type. Finally, in Sect. 6 we present some
concluding remarks.

2 Solving Analysis Problems

We start with the reformulation of (1) as an infinite-dimensional linear system
in a standard state space representation, based on Curtain and Zwart (1995),
because the interplay between the two representations has played an important
role in the development of computational tools. Consider the Hilbert space X :=
C

n × L2([−τm, 0],Cn), equipped with the inner product

< (y0, y1), (z0, z1) >X=< y0, z0 >Cn + < y1, z1 >L2 ,
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and denote by AC([−τm, 0],Cn) the space of absolutely continuous functions from
[−τm, 0] to Cn . Let A : X → X be the derivative operator defined by

D(A) := {z = (z0, z1) ∈ X : z1 ∈ AC([−τm, 0],Cn), z0 = z1(0)} ,

Az =
(

A0z0 +
m∑

i=1

Ai z1(−τi )

)

, z ∈ D(A),

and let the operators B : Cnζ → X and C : X → C
nη be given by

Bζ := (Bζ, 0), ζ ∈ C
nζ ,

Cz := Cz0, z = (z0, z1) ∈ X.

We can now rewrite system (1) as

{
�̇(t) = A�(t) + Bζ(t),
η(t) = C�(t) + Dζ(t − τ0),

(5)

where �(t) ∈ D(A) ⊂ X . The relation between corresponding solutions of (5) and
(1) is given by �0(t) = x(t) and �1(t)(θ) ≡ x(t + θ) for θ ∈ [−τm, 0].

2.1 Computation of Characteristic Roots and the Spectral
Abscissa

The spectral properties of the operator A in (5) are described in detail in Michiels
and Niculescu (2014, Chap. 1). The operator only has a point spectrum. Hence, its
spectrum, σ(A), is fully determined by the eigenvalue problem

A z = λz, z ∈ X, z �= 0. (6)

The connections with the characteristic roots are as follows. The characteristic roots
are the eigenvalues of operator A. Moreover, if λ ∈ σ(A), then the corresponding
eigenfunction takes the form

z(θ) = veλθ, θ ∈ [−τm, 0], (7)

where v ∈ C
n and the pair (λ, v) satisfies (2). Conversely, if a pair (λ, v) satisfies

(2), then (7) is an eigenfunction of A corresponding to the eigenvalue λ. From the
equivalent representation of (1) as (5), we conclude that the characteristic roots can
be equivalently expressed as

1. the solutions of the finite-dimensional nonlinear eigenvalue problem (2);
2. the solutions of the infinite-dimensional linear eigenvalue problem (6).



252 W. Michiels

This dual viewpoint lies at the basis of available tools to compute the rightmost char-
acteristic roots. On the one hand, discretizing (6) and solving the resulting standard
eigenvalue problems allows to obtain global information, for example, estimates of
all characteristic roots in a given compact set or in a given right half plane. On the
other hand, the (finitely many) nonlinear equations (2) allow us to make local cor-
rections on characteristic root approximations up to the desired accuracy, e.g., using
Newton’s method or inverse residual iteration.

There are several possibilities to discretize eigenvalue problem (6). Given a pos-
itive integer N and a mesh �N of N + 1 distinct points in the interval [−τm, 0],

�N = {
θN ,i , i = 1, . . . , N + 1

}
, (8)

with
−τm ≤ θN ,1 < . . . < θN ,N < θN ,N+1 = 0,

a spectral discretization as in Breda et al. (2005) (see also Breda 2023) leads for
example to the eigenvalue problem

ANxN = λxN , xN ∈ C
n(N+1), xN �= 0, (9)

where

AN =

⎡

⎢
⎢
⎢
⎣

d1,1 . . . d1,N+1
...

...

dN ,1 . . . dN ,N+1

a1 . . . aN+1

⎤

⎥
⎥
⎥
⎦

∈ R
n(N+1)×n(N+1) (10)

and

di,k = l ′N ,k(θN ,i )In, i = 1, . . . , N , k = 1, . . . , N + 1,

ak = A0lN ,k(0) +
m∑

i=1

AilN ,k(−τi ), k = 1, . . . , N + 1.

The functions lN ,k represent the Lagrange polynomials relative to the mesh �N ,
i.e. polynomials of degree N such that, lN ,k(θN ,i ) = 1 if i = k and lN ,k(θN ,i ) = 0
if i �= k, In Breda et al. (2005) it is proven that spectral accuracy on the individual
characteristic root approximations (approximation error O(N−N )) is obtained with
a mesh consisting of (scaled and shifted) Chebyshev extremal points, that is,

θN ,i = − cos
π(i − 1)

N
, i = 1, . . . , N + 1.

The discretization of (6) into (9) lays at the basis of the software tool TRACE-DDE
(Breda et al. 2009). The stability routine for equilibria of the packageDDE-BIFTOOL
(Engelborghs et al. 2002; Sieber et al. 2016) exploits the dual representation of the
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eigenvalue problem, since it is based on discretizing the solution operator of (5),
whose infinitesimal generator isA, using a spline collocation approach, followed by
Newton corrections on (2). For a pseudospectral collocation approach to discretize
the solution operator see Breda (2023).

Both aforementioned tools rely on computing all eigenvalues of the discretized
system, which restricts the size of the problem from a computational point of view.
In Jarlebring et al. (2010) an iterative method is proposed for computing selected
eigenvalues of large-scale systems. This method has an interpretation as Arnoldi’s
method (see, e.g.,Saad 1992) in a function setting, applied to the inverse of the
infinite-dimensional operatorA, which is characterized in the following proposition.

Proposition 2.1 The inverse of A : X → X exists if and only if matrix A0 +∑m
i=1 Ai is nonsingular. Moreover, it can be explicitly expressed as

D(A−1) = X
(A−1 φ

)
(θ) =

(

C(φ),

∫ θ

0
φ1(s) ds + C(φ), θ ∈ [−τm, 0)

)

, φ ∈ D(A−1),

where

C(φ) =
(

A0 +
m∑

i=1

Ai

)−1 [

φ0 −
m∑

i=1

Ai

∫ −τi

0
φ1(s) ds

]

. (11)

We note that all information about the system is concentrated in the integration
constant (11). To get some insight in the method of Jarlebring et al. (2010), let us
apply first the power method to A−1 for scalar system

ẋ(t) = −2x(t) + 1

3
x(t − log 3),

whose smallest characteristic root is equal to −1. Starting with the constant initial
function φ ≡ 1, the iterations result in polynomials of increasing degree

1.
1. − 1.21993t
1. − 1.03416t + .630804t2

1. − .999697t + .516927t2 − .210204t3

1. − .998615t + .499156t2 − .172070t3 + 0.0524783t4

1. − .999733t + .499174t2 − .166341t3 + 0.0430061t4 − 0.0104929t5

1. − 1.00000t + .499869t2 − .166392t3 + 0.0415855t4 − 0.00860127t5 + 0.00174882t6,

in which one easily recognizes an approximation of the Taylor series of function
exp(−t), the eigenfunction of A corresponding to eigenvalue λ = −1, which is
closest to the origin. In order to compute multiple eigenvalue approximations, the
power method can be replaced by Arnoldi’s method, furnishing the basis of the
Infinite Arnoldi method (Jarlebring et al. 2010), or by a Rational Krylov method,
laying the basis of the dynamic variants of the algorithm proposed in Güttel et al.
(2014). As features of interest, thesemethods do not explicitly rely on a discretization
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of the delay equation, while all operations are still performed on vectors andmatrices
(of finite dimension), in addition to their ability to exploit sparsity of the coefficient
matrices.

We note that also methods for generic nonlinear eigenvalue problems can be used
for computing characteristic roots, see for instance the CORK framework described
in Van Beeumen et al. (2015) and the software package NEP-PACK (Jarlebring et al.
2018).

2.2 Computation of H∞ Norms

For systems without delay, level set methods are standard methods for computing
H∞ norms and related problems, see, e.g., Boyd and Balakrishnan (1990), Bruinsma
and Steinbuch (1990) and the references therein. These methods originate from the
property that all the intersections of the singular value curves, corresponding to the
transfer function, and a constant function (the level) can be directly computed from
the solutions of a structured eigenvalue problem. This property enables a fast two-
directional search for the dominant peak in the singular value plot.

InMichiels andGumussoy (2010) an extension of this approach for computing the
H∞ normof transfer function (3) is described. The theoretical foundation is contained
in the following proposition from Michiels and Gumussoy (2010, Lemma 2.1 and
Proposition 2.2).

Proposition 2.2 Let ξ > 0 be such that the matrix Dξ := DT D − ξ2 I is non-
singular. For ω ≥ 0, matrix G(iω) in (3) has a singular value equal to ξ if and
only if λ = iω is a solution of the equation

det H(λ; ξ) = 0, (12)

where

H(λ; ξ) := λI − M0 −
m∑

i=1

(
Mie

−λτi + M−i e
λτi
)− (

N1e
−λτ0 + N−1e

λτ0
)
,

with

M0 :=
[

A0 −BD−1
ξ BT

−CTC + CT DD−1
ξ DTC −AT

0

]

,

Mi :=
[
Ai 0
0 0

]

, M−i :=
[
0 0
0 −AT

i

]

, 1 ≤ i ≤ m,

N1 :=
[
0 0
0 CT DD−1

ξ BT

]

, N−1 :=
[−BD−1

ξ DTC 0
0 0

]

.

Moreover, (12) holds if and only if λ is an eigenvalue of the operator Lξ , defined by
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D(Lξ) :=
{

φ ∈ Z : φ′(0) = M0φ(0) +
m∑

i=1

(Miφ(−τi ) + M−iφ(τi ))

+ N1φ(−τ0) + N−1φ(τ0)

}

Lξ φ := φ′, φ ∈ D(Lξ),

where Z := AC([−τm, τm],C2n).

According to Proposition 2.2, the intersections of the constant functionR � ω �→
ξ, with level ξ > 0 prescribed, and the curves

R � ω �→ σi (G(iω)), 1 ≤ i ≤ min(nζ , nη),

where σi (·) denotes the ith singular value, can be found by computing the solutions
on the imaginary axis of either

1. the finite-dimensional nonlinear eigenvalue problem,

H(λ; ξ)v = 0, v ∈ C
2n, v �= 0, or (13)

2. the infinite-dimensional linear eigenvalue problem

Lξφ = λφ,φ ∈ Z ,φ �= 0.

These two characterizations are similar to the representations of characteristic roots
as eigenvalues. As a consequence, the methods outlined in Sect. 2.1 can be adapted
accordingly.

The method presented in Michiels and Gumussoy (2010) for computing the H∞
norm of (3) relies on a two-directional search in a modification of the singular value
plot, induced by a spectral discretization of operatorLξ , followedby a local correction
of the peak value up to the desired accuracy. The latter is based on the nonlinear
equation (13), supplemented with a local optimality condition. The main steps are
sketched in Fig. 1.

Finally, a closely related problem is the computation of the pseudospectral
abscissa, for which we refer to Gumussoy and Michiels (2010) and the references
therein.

2.3 Computation of H2 Norms

We assume that (1) is internally exponentially stable and, in addition, that matrix D
is equal to zero. Under these conditions the H2 norm of G is finite and it satisfies
(4). We present two different approaches for its computation, which once again stem
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Fig. 1 Principles of the method in Michiels and Gumussoy (2010). Function HN is an approxi-
mation of H , induced by a spectral discretization of Lξ on a mesh consisting of 2N + 1 points
over the interval [−τm , τm ]. In the first step the peak value is found for a fixed value of N by the
iterative algorithm of Bruinsma and Steinbuch (1990): for a given level ξ all intersections with the
approximate singular value curves are computed (squares). In the geometric midpoints of these
intersections (crosses) a vertical search for intersections is performed. The maximum value of ξ
over all the intersections gives rise to the new value of the level. In the second step, the effect of the
discretization is removed by a local corrector based on nonlinear eigenvalue problem (13) (circles)

from the two descriptions of the time-delay system, by the functional differential
equation (1) and by the abstract linear equation (5), respectively.

The first approach makes use of so-called delay-Lyapunov equations, introduced
in the context of constructing complete-type Lyapunov-Krasovskii functionals for
stability assessment (see for instance Kharitonov and Plischke 2006). The following
result is a special case of Jarlebring et al. (2011, Theorem 1).

Theorem 1 Assume that (1) is internally exponentially stable and D = 0. Then the
H2 norm of transfer function (3) satisfies

‖G‖H2 = tr(BTU (0)B),

= tr(CV (0)CT ),

where U, V are the unique solutions of the delay Lyapunov equation
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U ′(t) = U (t)A0 +
m∑

k=1

U (t − τk)Ak, t ∈ [0, τ1] ,

U (−t) = UT (t),

−CTC = U (0)A0 + AT
0U (0) +

m∑

k=1

(
UT (τk)Ak + AT

k U (τk)
)
,

(14)

and the dual delay Lyapunov equation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

V ′(t) = V (t)AT
0 +

m∑

k=1

V (t − τk)A
T
k , t ∈ [0, τmax],

V (−t) = V T (t),

−BBT = V (0)AT
0 + A0V (0) +

m∑

k=1

(
V T (τk)A

T
k + AkV (τk)

)
.

(15)

The underlying idea in the proof is that the solutions of (14)–(15), as well as theH2

norm, can be expressed in terms of the fundamental solution of the delay equation
(see, e.g., Kharitonov and Plischke 2006; Jarlebring et al. 2011).

Theorem 1 opens the possibility to computeH2 norms by solving delay Lyapunov
equations numerically. An approach based on spectral collocation on a Chebyshev
mesh is presented in Jarlebring et al. (2011). This approach is generally applicable,
but the convergence rate of the approximation (as a function of the number of mesh
points) depends on the smoothness properties of the solution, which are on their turn
determined by the interdependence of the delays (see Sect. 4 of the reference for a
complete characterization). It is also shown that, in the case of commensurate delay
values, an analytic solution of (14)–(15) can be obtained, which leads to an explicit
expression for theH2 norm involving only matrices of finite dimension.

The second approach is based on discretizing (5). A spectral discretization on the
mesh (8) leads us to the linear system

{
ẋN (t) = ANxN (t) + BNζ(t),
η(t) = CNxN (t),

(16)

where AN is given by (10) and

BN = [0 · · · 0 I ]T ⊗ B, CN = [0 · · · 0 I ] ⊗ C.

From the fact that (16) is a standard linear time-invariant system we can approxi-
mately compute

‖G‖H2 ≈ ‖GN‖H2 = tr(BT QNBN )

= tr(CN PNCT ),
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where GN is the transfer function of (16) and the pair (PN , QN ) satisfies (see, e.g.,
Zhou et al. 1995),

AN PN + PNAT
N = −BNBT

N ,

AT
N QN + QNAN = −CT

NCN .
(17)

In Vanbiervliet et al. (2011) it has been shown that the approximation error satisfies

‖G‖H2 − ‖GN‖H2 = O(N−3), N → ∞,

while arguments are provided why fairly accurate results are expected for a moderate
value of N already.

Although the second approach is essentially a “discretize first” approach, it is
amendable for most control problems because, unlike the delay Lyapunov equation
approach of Jarlebring et al. (2011), it does not involve an explicit vectorization
of matrix equations (which squares the dimensions of the problem), and because
derivatives of theH2 norm with respect to the elements of the system matrices in (3)
can easily be obtained as a by-product of solving (17), see Vanbiervliet et al. (2011).

Finally, for large-scale problems involving sparse coefficient matrices, a
discretization-free method has been proposed in Michiels and Zhou (2019), which
is related to the infinite Arnoldi method discussed at the end of Sect. 2.1.

3 Making the Leap From Analysis to Synthesis

Inwhat followswe assume that the systemmatrices in (1) smoothly depend on a finite
number of parameters p = (p1, . . . , pnp ) ∈ R

np . Making the dependence explicit in
the notations leads us to system

{
ẋ(t) = A0(p)x(t) +∑m

i=1 Ai (p)x(t − τi ) + B(p)ζ(t),
η(t) = C(p)x(t) + D(p)ζ(t − τ0).

(18)

Inmany control design problems the closed-loop system can be brought into the form
(18), where the parameters p have an interpretation in terms of a parametrization
of the controller, while ζ and η appear as external inputs and outputs, used in the
description of performance and robustness specifications.We note that both static and
dynamic controllers can be addressed in this framework. It is also possible to impose
additional structure on the controller, such as a proportional-integral-derivative (PID)
structure, or to impose a sparsity pattern, enabling the design of decentralized and
distributed controllers (Dileep et al. 2018).

Because time-delay systems constitute a class of infinite-dimensional systems,
illustrated by representation (5) and by the typical presence of infinitely many char-
acteristic roots, any control design problem involving the determination of a finite
number of parameters can be interpreted as a reduced-order controller synthesis
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problem. This explains to a large extent the difficulties and limitations in controlling
time-delay systems (Niculescu 2001; Sipahi et al. 2011; Michiels 2019).

The proposed control synthesis methods are based on a direct optimization of
appropriately defined cost functions as a function of the parameters p.

3.1 Stabilization

In order to impose internal exponential stability of the null solution of (18), it is
necessary to find values of p for which the spectral abscissa

c(p) := sup
λ∈C

{

�(λ) : det
(

λI − A0(p) −
m∑

i=1

Ai (p)e
−λτi

)

= 0

}

is strictly negative. The approach of Vanbiervliet et al. (2008) is based onminimizing
the function

p → c(p). (19)

Function (19) is in general non convex. It may be not everywhere differentiable, even
not everywhere Lipschitz continuous. A lack of differentiability may occur when
there are more than one active characteristic roots, i.e., a characteristic roots whose
real part equals the spectral abscissa. A lack of Lipschitz continuity may occur when
an active characteristic roots is multiple and non-semisimple. On the contrary, the
spectral abscissa function is differentiable at points where there is only one active
characteristic root with multiplicity one. If this is the case with probability one
when randomly sampling parameter values, the spectral abscissa is smooth almost
everywhere (Vanbiervliet et al. 2008).

The properties of function (19) preclude the use of standard optimizationmethods,
developed for smooth problems. Insteadwe propose the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm with weak Wolfe line search, whose favorable properties
for nonsmooth problems have been reported in Lewis and Overton (2009), with
refinements using the gradient sampling algorithm (Burke et al. 2005). This combi-
nation of algorithms has been implemented in the MATLAB code HANSO (Overton
2009). The code only requires the evaluation of the objective function, as well as its
derivatives with respect to parameters, whenever it is differentiable.

The value of the spectral abscissa can be obtained by computing the rightmost
characteristic roots, using the methods described in Sect. 2.1. If there is only one
active characteristic root λa with multiplicity one, the spectral abscissa is differen-
tiable and we can express

∂c

∂ pk
(p) = �

⎛

⎝
wH

(
∂A0
∂ pk

(p) +∑m
i=1

∂Ai
∂ pk

(p)e−λaτi
)

υ

wH
(
I +∑m

i=1 Ai (p)τi e−λaτi
)
υ

⎞

⎠
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for k = 1, . . . , np,, where w and υ are the left and right eigenvector corresponding
to eigenvalue λa .

3.2 Optimizing H∞ andH2 Norms

The properties of the function

p �→ ‖G(·; p)‖H∞ , (20)

whereG(λ; p) is the transfer function of (18), are very similar to the spectral abscissa
function. In particular, function (20) is in general not convex, not everywhere differ-
entiable, but it is smooth almost everywhere. Consequently, the methods described
in Sect. 3.1 can also be applied to (20). For almost all p derivatives exist and they
can be computed from the sensitivity of an individual singular value of G(iω; p)
with respect to p, for a fixed value of ω, see Gumussoy and Michiels (2011). Unlike
objective function (20), function

p �→ ‖G(·; p)‖H2 , (21)

is smooth whenever it is finite, which allows an embedding in a derivative based opti-
mization framework. Derivatives of (21) can be obtained either by constructing the
variational equation corresponding to (14), as worked out in Gomez et al. (2019), or,
in a discretize-first setting, from the solutions of the two Lyapunov matrix equations
in (17), see Vanbiervliet et al. (2011).

Theminimization problems of (20) and (21) contain an implicit constraint, c(p) <

0, because the norms are only finite if the system is internally exponentially stable.
This leads us to a two-stage approach: if the initial values of the parameters are not
stabilizing, then the overall procedure contains a preliminary stabilization phase,
using the methods of Sect. 3.1. For the next phase, the actual minimization of (20)–
(21), the line-search mechanism in BFGS and the gradient sampling algorithm are
adapted in order to discard trial steps or samples outside the feasible set, defined by
the implicit constraint (Gumussoy and Michiels 2011).

Instead of directly optimizing the spectral abscissa as in Sect. 3.1, which requires
methods for nonsmooth optimization problems, it is also possible to optimize a
smooth relaxation of the spectral abscissa function, proposed in Vanbiervliet et al.
(2009b), Gomez and Michiels (2019b), which is defined in terms of a relaxed H2

criterion. In this way stability optimization can also be performed within a derivative
based framework.Moreover, an adaptation of the approachmakes it possible to solve
H2 optimization problems without the explicit need for a preliminary stabilization
phase (Vanbiervliet et al. 2009a).
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4 Case Studies

In this section we illustrate the flexibility of the presented control design approach.
With the first example from Michiels et al. (2010), we show how to incorporate
pole location constraints in the stabilization procedure. The additional flexibility
consists of assigning a finite number of characteristic roots, smaller or equal than
the number of controller parameters, and using the remaining degrees of freedom
to optimize the real part of the rightmost non-assigned characteristic root. With the
second example from Gomez et al. (2019), we illustrate the design of a proportional-
retarded controller, thereby optimizing a cost function expressed in terms of theH2

norm and using a delay as a controller parameter.

Example 4.1 Many design criteria for linear control systems, such as the settling
time, damping and amount of overshoot, can be translated into a desired location of
the rightmost characteristic roots. The characteristic matrix of (18) is given by

�(λ; p) := λI − A0(p) −
m∑

i=1

Ai (p)e
−λτi .

Assigning a real characteristic root to the location r results into the following con-
straint on the parameter values,

det (�(r; p)) = 0. (22)

Similarly, assigning a complex conjugate pair of characteristic roots, r ± s j , results
in the constraints

� (det (�(r ± s j; p))) = 0; � (det (�(r ± s j; p))) = 0. (23)

If matrix � depends in an affine way on p and if the condition

rank

([
∂�

∂ p1
(λ; p) · · · ∂�

∂ pnp

(λ; p)
])

= 1, ∀λ ∈ C, (24)

is satisfied, then the constraints (22)–(23) are affine in p. Hence, assigning k char-
acteristic roots, with k ≤ np, can be expressed by constraints of the form

Sp = R, (25)

where S ∈ R
k×np and R ∈ R

k×1. It is important to note that the rank condition (24)
is satisfied for problems where the closed-loop characteristic matrix results from
control through a single input.

In article Michiels et al. (2010) it is shown how the constraints (25) on the param-
eters can be eliminated. Subsequently, the optimization problem
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min
p∈Rn p , Sp=R

c̄(p) (26)

is addressed, where

c̄(p) := sup
λ∈C

{

�(λ) : det
(
λI − A0(p) −∑m

i=1 Ai (p)e−λτi
)

�k
i=1(λ − λi )

= 0

}

(27)

and {λ1, . . . ,λk} are the assigned characteristic roots. Problem (26) is a modifica-
tion of the spectral abscissa minimization problem discussed in Sect. 3.1. Since the
assigned roots are specified by the designer, the value of (27) can be obtained by
computing the rightmost characteristic roots and removing the assigned ones, which
are invariant over the (reduced) controller parameter space.

Let us now consider the solution of problem (26) for the model of an experimental
heat transfer set-up at the Czech Technical University in Prague, comprehensively
described in Vyhlídal et al. (2009). The model consists of 10 delay differential
equations. The addition of an integrator, to achieve a zero steady state error of one of
the controlled state variables with respect to a prescribed set-point, eventually results
in equations of the form

ẋ(t) = A0x(t) +
5∑

i=1

Ai x(t − τi ) + Bu(t − τ6), (28)

with x(t) ∈ R
11×11 and u(t) ∈ R. We refer to Vyhlídal et al. (2009) for the corre-

sponding matrices and delay values. In Fig. 2 we show the rightmost characteristic
roots of the open-loop system. For the control law

u(t) =
11∑

i=1

pi xi (t),

the solutions of optimization problem (26) are presented in Table 1. The setting
SN1 corresponds to the (unconstrained) minimization of the spectral abscissa (19).
The other settings correspond to assigning one real characteristic root (SN2), one
pair of complex conjugate characteristic roots (SN3) and, finally, two real roots and
two complex conjugate roots (SN4). The assigned characteristic roots were chosen
to the right of the minimum of the spectral abscissa function, because these root
were intended to become the rightmost roots after solving (26). Their positions
were optimized to achieve a properly damped set-point response and disturbance
rejection (Michiels et al. 2010). The optimized characteristic root locations are shown
in Fig. 3 for settings SN1 and SN4.

Example 4.2 We consider a second-order, oscillatory system of the form
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Fig. 2 Rightmost characteristic roots of the open-loop system (28)

Table 1 Controller parameters corresponding to the solution of (26), see the main text for more
details

SN 1 2 3 4

λi - - - - −0.01 −0.02 ± 0.02i −0.02, −0.03
−0.03 ± 0.03i

min c̄ −0.0565 −0.0629 −0.0659 −0.0736

p1 −5.4349 −0.0732 −4.1420 −0.3521

p2 3.5879 8.1865 5.9345 8.6190

p3 −1.4411 −1.2503 −2.3820 −4.8822

p4 −3.7043 −7.1472 −7.9449 −17.2747

p5 24.616 32.8003 27.8585 35.1494

p6 −2.1778 4.4977 0.4490 −1.3188

p7 9.6924 10.3140 8.4887 6.0338

p8 −4.5121 −2.6572 −0.2605 5.4190

p9 −14.631 −21.6711 −20.5152 −24.6596

p10 11.351 4.1244 5.4531 2.3754

p11 −0.7562 −0.2749 −0.3635 −0.1360
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Fig. 3 Rightmost
characteristic roots
corresponding to the solution
of (26), for settings SN1 and
SN4 in Table 1
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ẋ(t) = Ax(t) + B(u(t) + ζ(t))

y(t) = Cx(t),

η(t) = Cx(t),

(29)

with matrices

A =
[

0 1
−ν2 −2δν

]

, B =
[
0
b

]

, C = [
1 0

]
,
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where ν is the natural frequency, δ is the damping factor, and b is the input gain. We
introduce a Proportional-Retarded (PR) controller of the form

u(t) = −kp y(t) + kr y(t − τ1), (30)

where we consider kr and τ1 as parameters. This class of controllers, where the delay
is a design parameter, has been studied in recent works (see, for instance, Villafuerte
et al. 2013). As a main motivation from an application perspective, controller (30)
mimics the behavior of a proportional-derivative (PD) controller, without the need
to explicitly differentiate the output, which might amplify sensor noise considerably.
The closed-loop system, formed by coupling (29) with (30), is given by

ẋ(t) =
[

0 1
−ν2 − bkp −2δν

]

x(t) +
[

0 0
bkr 0

]

x(t − τ1) +
[
0
b

]

ζ(t)

η(t) =Cx(t).

(31)

In order to bring this systemmodel in the formof (18),weperforma transformation
of time. Setting x̄(t̄) = x(t), with t = τ1 t̄ , we arrive at

˙̄x(t̄) =
[

0 τ1
−ν2τ1 − bkpτ1 −2δντ1

]

x̄(t̄) +
[

0 0
bkrτ1 0

]

x̄(t̄ − 1)

+
[

0
bτ1

]

ζ(τ1 t̄)

η(τ1 t̄) =Cx̄(t̄).

(32)

The relation between theH2 norm of systems (31) and (32) is given as follows:

‖G‖2H2
= 1

τ1
‖Ḡ‖2H2

, (33)

where Ḡ is the transfer function of the time-scaled system (32). We use this equality
in order to minimize ‖G‖2H2

. We set the following numerical values, corresponding
to the model of a DC servomechanism in Villafuerte et al. (2013),

ν = 17.6, δ = 0.0128, b = 31, kp = 22.57,

and take as parameter vector p = [p1 p2], with p1 = τ1 and p2 = krτ1. From (33),
the gradient of ‖G‖2H2

with respect to p can be expressed as

∇‖G‖2H2
= 1

p1

⎡

⎢
⎢
⎢
⎣

∂‖Ḡ‖2H2

∂ p1
− ‖Ḡ‖2H2

p1
∂‖Ḡ‖2H2

∂ p2

⎤

⎥
⎥
⎥
⎦

.
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Fig. 4 Values of ‖G‖2H2
at

every iteration,
corresponding to Example
4.2
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The values of the delay and the gain obtained by minimization of the H2 norm of
system (31), with initial parameters p = [0.03 0.09], are given by τ1 = 0.05187
and kr = 17.9643, while the achieved value of ‖G‖2H2

is 0.0497. Figure 4 shows the
value of theH2 norm of system (31) at every iteration of the optimization of function
(33).

5 Equations of Neutral Type and Delay Differential
Algebraic Equations

In this section we consider delay differential algebraic equation (DDAE) models of
the form {

Eẋ(t) = A0x(t) +∑m
i=1 Ai x(t − τi ) + Bζ(t),

η(t) = Cx(t),
(34)

where leading matrix E is singular, x(t) ∈ C
n, ζ(t) ∈ C

nζ , η(t) ∈ C
nη are the

(pseudo)state, input and output at time t , and 0 < τ < · · · < τm represent the time-
delays. With the following examples we illustrate the generality of model (34).

Example 5.1 Consider the feedback interconnection of system

⎧
⎨

⎩

ẋ(t) = Ax(t) + B1u(t) + B2ζ(t),
y(t) = Cx(t) + D1u(t),
η(t) = Fx(t),

and controller
u(t) = Ky(t − τ ).

For τ = 0, it is possible to eliminate the output and the controller equation, which
results in the closed-loop system
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{
ẋ(t) = Ax(t) + B1K (I − D1K )−1Cx(t) + B2ζ(t),
η(t) = Fx(t).

(35)

This approach is for instance taken in the software package HIFOO (Burke et al.
2006). If τ �= 0, then the elimination is not possible any more. However, if we let
X = [xT uT yT ]T we can describe the system by the equations

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎣
I 0 0
0 0 0
0 0 0

⎤

⎦ Ẋ(t) =
⎡

⎣
A B1 0
C D1 −I
0 I 0

⎤

⎦ X (t) −
⎡

⎣
0 0 0
0 0 0
0 0 K

⎤

⎦ X (t − τ ) +
⎡

⎣
B2

0
0

⎤

⎦ ζ(t),

η(t) = [
F 0 0

]
X (t),

which are of the form (34). Furthermore, the dependence of the matrices of the
closed-loop system on the controller gain K is still linear, unlike in (35).

Example 5.2 The presence of a direct feedthrough term from ζ to η, as in

{
ẋ(t) = A0x(t) + A1x(t − τ ) + Bζ(t),
η(t) = Fx(t) + D2ζ(t),

(36)

can be avoided by introducing a slack variable. If we let X = [xT γT ]T , where γ is
the slack variable, we can bring (36) in the form (34):

⎧
⎨

⎩

[
I 0
0 0

]

Ẋ(t) =
[
A0 0
0 −I

]

X (t) +
[
A1 0
0 0

]

X (t − τ ) +
[
B
I

]

ζ(t),

η(t) = [F D2] X (t).

In a similar fashion the feedthrough term Du(t − τ0) in (1) can be eliminated.

Example 5.3 The following system with input delay and input dynamics,

{
ẋ(t) = Ax(t) + B1ζ(t) + B2ζ(t − τ ),

η(t) = Cx(t),

can also be brought into standard form (34), again by using a slack variable. Setting
X = [xT γT ]T , with (pseudo)state variable γ representing a copy of the input, we
can express

⎧
⎨

⎩

Ẋ(t) =
[
A B1

0 −I

]

X (t) +
[
0 B2

0 0

]

X (t − τ ) +
[
0
I

]

ζ(t),

η(t) = [C 0] X (t).

In a similar way we can handle multiple delays in the output.

Example 5.4 Neutral type systems can be considered as well. The following neutral
equation
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d

dt

(

x(t) +
m∑

i=1

Gi x(t − τi )

)

=
m∑

i=0

Hi x(t − τi )

can for instance be rewritten as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ̇(t) =
m∑

i=0

Hi x(t − τi ),

0 = −γ(t) + x(t) +
m∑

i=1

Gi x(t − τi ).

(37)

Clearly (37) is of the form (34), with (pseudo)state [γ(t)T x(t)T ]T .
It should be noted that DDAEmodels are particularly suitable for the (automated)

modeling and description of interconnected systems, where the differential equations
stem from a systematic description of the subsystems or components, while the
algebraic and delay difference equations model their interconnections. As a final
illustration, the feedback interconnection of any retarded type time-delay system
and controller with the following state-space representations,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋG(t) =
ma∑

i=0

Ai xG(t − τ a
i ) +

mb1∑

i=0

Bi
1ζ(t − τ b1

i ) +
mb2∑

i=0

Bi
2u(t − τ b2

i )

η(t) =
mc1∑

i=0

Ci
1xG(t − τ c1

i ) +
md11∑

i=0

Di
11ζ(t − τ d11

i ) +
md12∑

i=0

Di
12u(t − τ d12

i )

y(t) =
mc2∑

i=0

Ci
2xG(t − τ c2

i ) +
md21∑

i=0

Di
21ζ(t − τ d21

i ) +
md22∑

i=0

Di
22u(t − τ d22

i )

(38)

and ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋK (t) =
mak∑

i=0

Ai
K xK (t − τ ak

i ) +
mbk∑

i=0

Bi
K y(t − τ bk

i )

u(t) =
mck∑

i=0

Ci
K xK (t − τ ck

i ) +
mdk∑

i=0

Di
K u(t − τ dk

i ),

(39)

can be written in the form of (34) by combining the techniques illustrated with the
previous examples. More precisely, the transformation consists of the elimination of
input dynamics, output dynamics, and non-trivial feedthrough terms.

The price to pay for the generality of model (34) is the increase of the dimension
of the system, n, compared to classical DDEmodels, which may affect the efficiency
of the numerical methods. However, this is a minor problem in most of the applica-
tions, because the delay difference equations or algebraic constraints are related to
inputs and outputs, and for large-scale problems the number of inputs and outputs
are usually much smaller than the number of state variables. Another consequence
of the generality is that assumptions for well-posedness are necessary (in the next
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subsection we will introduce such an assumption). To illustrate the necessity, the
DDAE

ẋ1(t) = x1(t) + x2(t − τ1)
0 = −x2(t − τ2) + x1(t − τ3)

is not causal if τ2 > τ1 + τ3, following from the underlying delay differential equa-
tion ẋ1(t) = x1(t) + x1(t − τ1 − τ3 + τ2).

5.1 Preliminaries and Assumptions

Let matrix E in (34) satisfy
rank(E) = n − ν,

with 1 ≤ ν < n, and let the columns of matrix U ∈ R
n×ν , respectively V ∈ R

n×ν ,
be a (minimal) basis for the right, respectively left nullspace of E , which implies

UT E = 0, EV = 0.

Furthermore we defineU⊥ and V⊥ as n × (n − ν)matrices whose columns span the
orthogonal complement of the column spaces ofU and V . Throughout the remainder
of the chapter we make the following assumption.

Assumption 5.5 Matrix UT A0V is nonsingular.

Assumption 5.5 implies that the differentiation index of (34) is one, correspond-
ing to a system of semi-explicit DDAEs. It is satisfied for all the examples discussed
before. The equations (34) can now be explicitly separated into coupled delay dif-
ferential and delay difference equations. The pre-multiplication of (34) with matrix

[
U⊥T

−(UT A0V )−1UT

]

and the substitution

x = [
V⊥ V

]
[
x1
x2

]

,

with x1(t) ∈ R
n−ν and x2(t) ∈ R

ν , result in the coupled equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E (11) ẋ1(t) =
m∑

i=0

A(11)
i x1(t − τi ) +

m∑

i=0

A(12)
i x2(t − τi ) + B1ζ(t),

x2(t) =
m∑

i=0

A(21)
i x1(t − τi ) +

m∑

i=1

A(22)
i x2(t − τi ) + B2ζ(t),

η(t) = C1x1(t) + C2x2(t),

(40)
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where we have τ0 = 0,

E (11) = U⊥T
EV⊥, A(11)

i = U⊥T
Ai V

⊥, A(12)
i = U⊥T

Ai V,

A(21)
i = −(UT A0V )−1UT AiV⊥, i = 0, . . . ,m,

A(22)
i = −(UT A0V )−1UT AiV, i = 1, . . . ,m,

and
B1 = U⊥T

B, B2 = −(UT A0V )−1UT B, C1 = CV⊥, C2 = CV .

In (40) matrix E (11) is invertible, following from

rank(E (11)) = rank
([
U⊥ U

]T
E
[
V⊥ V

]) = rank(E) = n − ν.

Weconsider initial functionsϕ forEq. (34) that belong to the set AC ([−τm, 0],Cn)

and call them consistent if the corresponding initial value problem at t = 0 has at
least one solution (Du et al. 2013). A function x(t;ϕ) is called a (classical) solu-
tion if it is absolutely continuous, it satisfies (34) almost everywhere on [0,∞), and
x(θ;ϕ) = ϕ(θ) for θ ∈ [−τm, 0], where ϕ is a consistent initial function. For a con-
tinuously differentiable input function, the space of consistent initial functions for
(34) is given by

X :=
{

ϕ ∈ AC ([−τm, 0],Cn) :

UT A0ϕ(0) +
m∑

i=1

UT Aiϕ(−τi ) +UT Bζ(0) = 0

}

,

which corresponds to the set of initial conditions forwhich the second equation in (40)
is satisfied at t = 0. Moreover, for every initial function belonging to X , a forward
solution is uniquely defined (Ha andMehrmann 2012; Du et al. 2013; Fridman 2002).
We say that system (34), with zero input, is (internally) exponentially stable if there
exist constants γ > 0 and σ > 0 such that for every initial condition ϕ ∈ X , the
emanating solution satisfies

‖x(t;ϕ)‖2 ≤ γe−σt

(

sup
θ∈[−τm ,0]

‖ϕ(θ)‖2
)

, ∀t ≥ 0.

5.2 Spectral Properties and Stability

We summarize the main theoretical results from Michiels (2011), addressing the
stability of the null solution of (34) for ζ ≡ 0.
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Exponential Stability. Stability conditions can still be expressed in terms of the
position of the characteristic roots, satisfying

det�(λ) = 0,

where � : C → C
n×n is the characteristic matrix,

�(λ) := λE − A0 −
m∑

i=1

Aie
−λτi .

In particular, we have the following result.

Proposition 5.6 The null solution of (34) is internally exponentially stable if and
only if c < 0, where c is the spectral abscissa:

c := sup {�(λ) : det�(λ) = 0} .

Continuity of the Spectral Abscissa and Strong Stability. We discuss the depen-
dence of the spectral abscissa of (34) on the delay parameters �τ := (τ1, . . . , τm). In
general the function

�τ ∈ (R+
0 )m �→ c(�τ ) (41)

is not everywhere continuous, as we shall illustrate with an example later on. In fact
the lack of continuity carries over from the spectral properties of delay difference
equations (see, e.g., Avellar and Hale 1980; Michiels et al. 2002, 2009). Therefore,
we first outline properties of the function

�τ ∈ (R+
0 )m �→ cD(�τ ) := sup {�(λ) : det�D(λ; �τ ) = 0} , (42)

with

�D(λ; �τ ) := −I +
m∑

i=1

A(22)
i e−λτi . (43)

Note that (43) can be interpreted as the characteristic matrix of the delay difference
equation

x2(t) =
m∑

i=1

A(22)
i x2(t − τi ), (44)

which is associated with the neutral equation.
Theproperty that function (42)maynot be continuous led inMichiels andVyhlídal

(2005) to the smallest upper bound, which is ‘insensitive’ to small delay changes.
Letting

B(�τ , ε) := {�θ ∈ (R+)m : ‖�θ − �τ‖2 < ε}, (45)
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we can define the robust spectral abscissa cD of the delay difference equation (44)
as follows.

Definition 5.7 For �τ ∈ (R+
0 )m , let CD(�τ ) ∈ R be defined as

CD(�τ ) := lim
ε→0+ cε

D(�τ ),

where
cε
D(�τ ) := sup {cD(�τε) : �τε ∈ B(�τ , ε)} .

Several properties of this upper bound on cD are listed below (see (Michiels 2011,
Sect. 3) for an overview).

Proposition 5.8 The following assertions hold:

1. function
�τ ∈ (R+

0 )m �→ CD(�τ )

is continuous;
2. for every �τ ∈ (R+

0 )m, the quantity CD(�τ ) is equal to the unique zero of the strictly
decreasing function

χ ∈ R → f (χ; �τ ) − 1,

where f : R → R
+ is defined by

f (χ; �τ ) := max
�θ∈[0, 2π]m

ρ

(
m∑

k=1

A(22)
k e−χτk eiθk

)

(46)

and ρ(·) denotes the spectral radius;
3. CD(�τ ) = cD(�τ ) for rationally independent delays2

4. for all �τ1, �τ2 ∈ (R+
0 )m, we have

sign (CD(�τ1)) = sign (CD(�τ2)) =: �;

5. condition � < 0 (> 0) holds if and only if γ0 < 1 (> 1) holds, where

γ0 := max
�θ∈[0, 2π]m

ρ

(
m∑

k=1

A(22)
k eiθk

)

. (47)

We now come back to DDAE (34) and, in particular, the properties of its spectral
abscissa function (41). The following two technical lemmas establish connections
between the characteristic roots of (34) and the zeros of (43).

2 The m components of �τ = (τ1, . . . , τm) are rationally independent if and only if
∑m

k=1 nkτk =
0, nk ∈ Z implies nk = 0,∀k = 1, . . . ,m.
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Lemma 5.9 If cD is finite, then there exists a sequence {λk}k≥1 of characteristic
roots of (34) satisfying

lim
k→∞ �(λk) = cD, lim

k→∞ �(λk) = +∞.

Lemma 5.10 For every ε > 0 the number of characteristic roots of (34) in the half
plane

{λ ∈ C : �(λ) ≥ CD(�τ ) + ε}

is finite.

The lack of continuity of the spectral abscissa function (41) leads us again to an
upper bound that takes into account the effect of small delay perturbations.

Definition 5.11 For �τ ∈ (R+
0 )m , let the robust spectral abscissa C(�τ ) of (34) be

defined as
C(�τ ) := lim

ε→0+ cε(�τ ), (48)

where
cε(�τ ) := sup {c(�τε) : �τε ∈ B(�τ , ε)} .

The following characterization of the robust spectral abscissa (48) constitutes the
main theoretical result of this section.

Proposition 5.12 The following assertions hold:

1. the function
�τ ∈ (R+

0 )m �→ C(�τ )

is continuous;
2. for every �τ ∈ (R+

0 )m, we have

C(�τ ) = max(CD(�τ ), c(�τ )).

In line with the sensitivity of the spectral abscissa with respect to infinitesimal
delay perturbations, which has been resolved by considering the robust spectral
abscissa (48) instead, we define the notion of strong stability.3

Definition 5.13 The null solution of (34), with zero input, is strongly stable if there
exists a number τ̂ > 0 such that the null solution of

Eẋ(t) = A0 +
m∑

k=1

Akx(t − (τk + δτk))

3 This terminology is borrowed from the theory of neutral delay differential equations (Hale and
Verduyn Lunel 2002; Michiels and Vyhlídal 2005).
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is exponentially stable for all δ�τ ∈ (R+)m satisfying ‖δ�τ‖2 < τ̂ and τk + δτk ≥
0, k = 1, . . . ,m.

The following result provides necessary and sufficient conditions for strong stability.

Theorem 5.14 The null solution of (34) is strongly stable if and only if C(�τ ) < 0,
or, equivalently, c(�τ ) < 0 and γ0 < 1, where γ0 is defined by (47).

Finally we note, that both the spectral abscissa and the robust spectral abscissa of
(34) are continuous functions of the elements of the system matrices.

5.3 Robust Stabilization by Eigenvalue Optimization

As in Sect. 3, we assume that the system matrices smoothly depend on control or
design parameters p ∈ R

np , which is made explicit in the description

Eẋ(t) = A0(p)x(t) +
m∑

i=1

Ai (p)x(t − τi ). (49)

For example, in the feedback interconnection (38)–(39) parameter vector pmay arise
from a parameterization of matrices (Ai

K , Bi
K , Ci

K , Di
K ).

To impose exponential stability of the null solution of (49), it is necessary to find
values of p for which the spectral abscissa is strictly negative. If the achieved stability
is required to be robust against small delay perturbations, this requirement must be
strengthened to the negativeness of the robust spectral abscissa. This brings us to the
optimization problem

min
p

C(�τ ; p). (50)

Strongly stabilizing values of p exist if the objective function can be made strictly
negative. By Theorem 5.14 the latter can be evaluated as

C(�τ ; p) = max(c(�τ ; p),CD(�τ ; p)). (51)

An alternative approach consists of solving the constrained optimization problem

inf
p
c(�τ ; p), subject to γ0(p) < γ, (52)

with γ < 1. If the objective function is strictly negative, then the satisfaction of
the constraint implies strong stability. Problem (52) can be solved using the barrier
method proposed in Vyhlídal et al. (2010), which is inspired by interior point algo-
rithms, see, e.g., Boyd and Vandenberghe (2004). The first step consists of finding a
feasible point, i.e., a set of values for p satisfying the constraint. If the feasible set is
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nonempty, such a point can be found by solving

min
p

γ0(p). (53)

Once a feasible point p = p0 has been obtained, one can solve in the next step the
unconstrained optimization problem

min
p

c(p) − r log(γ − γ0(p)), (54)

where r > 0 is a small number and γ satisfies

γ0(p) < γ ≤ 1.

The second term in (54), the barrier, assures that the feasible set cannot be left when
the objective function is decreased in a quasi-continuous way (because the objective
function will go to infinity when γ0 → γ). If (54) is repeatedly solved for decreasing
values of r and with the previous solution as a starting value, a solution of (52) is
obtained.

For optimization problem (50) and for subproblems (53) and (54), which are
in general not everywhere differentiable but smooth a.e., we use once again the
code HANSO (Overton 2009). Note in particular that the switching between the
arguments of the maximum operator in (51) is treated in the same way as the switch-
ing between individual characteristic root paths when optimizing only the spectral
abscissa. The overall algorithm only requires the evaluation of the objective func-
tion, as well as its derivatives with respect to the controller parameters,whenever it is
differentiable. The spectral abscissa can be computed using a spectral discretization,
directly extending the approach of Sect. 2.1, followed by Newton corrections. The
quantities CD and γ0 can be computed using the characterizations in Theorem 5.8,
where the (global) maximization problems in (46) and (47) are solved by discretizing
the domain [0, 2π]m−1, followed by local corrections. In all cases derivatives with
respect to p can be obtained from derivatives of individual eigenvalues or singular
values. For more details and expressions we refer to Michiels (2011).

5.4 Examples

We first illustrate the design of a strongly stabilizing controller. Subsequently, we
show how the computation of zeros of transfer function (3) can be recast in the
computation of characteristic roots of an associated DDAE.

Example 5.15 We consider the system with input delay from Vanbiervliet et al.
(2008),

ẋ(t) = Ax(t) + Bu(t − τ ), y(t) = x(t), (55)
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where

A =
⎡

⎣
−0.08 −0.03 0.2

0.2 −0.04 −0.005
−0.06 0.2 −0.07

⎤

⎦ , B =
⎡

⎣
−0.1
−0.2
0.1

⎤

⎦ , τ = 5. (56)

The uncontrolled system is unstable, with spectral abscissa equal to 0.108.We design
a stabilizing static controller

u(t) = Ky(t), (57)

as well as a dynamic controller of the form

{
ẋc(t) = Acxc(t) + Bcy(t),
u(t) = Ccxc(t) + Dcy(t), xc(t) ∈ R

nc ,
(58)

using the approach of Sect. 5.3. More precisely we treat (55) and (57), respectively
(55) and (58), as a system of DDAEs, with (pseudo)state [xT uT yT ]T , respectively
[xT xTc uT yT ]T , while we set p = vec K , respectively

p = vec

[
Ac Bc

Cc Dc

]

.

Since the transfer function from u to y in (55) is strictly proper, the robust spectral
abscissa equals the spectral abscissa, and optimization problems (50) and (52) reduce
to the (unconstrained) minimization of the spectral abscissa. The resulting optimized
spectrum is displayed in Fig. 5 for the static controller and for a dynamic controller of
order nc = 2. Note that the additional degrees of freedom in the dynamic controller
lead to a further reduction of the spectral abscissa.

Next we assume that the measured output of system (55) is instead given by

ỹ(t) = x(t) +
⎡

⎣
3
4
1

⎤

⎦ u(t − 2.5) +
⎡

⎣
2/5

−2/5
−2/5

⎤

⎦ u(t − 5), (59)

for which we design a static controller,

u(t) = Dc ỹ(t).

As amain differencewith the previous example, there are two non-trivial feedthrough
terms in the system model, which are both delayed. By a combination of this model
and the control law, the closed loop system is no longer of retarded type. Solving
optimization problem (50) leads us to

C = −0.0309, Dc = [0.0409 0.0612 0.3837]. (60)
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Fig. 5 Characteristic roots
of controlled system
(55)–(56), corresponding to
a minimum of the spectral
abscissa function, for static
controller (57) (boxes) and
for dynamic controller (58)
of order two (pluses)
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The computed rightmost characteristic roots of the closed-loop system are given by

λ1 = −0.0309,
λ2,3 = −0.0309 ± 0.0001i,
λ4,5 = −0.3336 ± 2.3789i,
λ6,7 = −0.3499 ± 4.8863i.

They indicate that the optimum is characterized by a rightmost characteristic root
of multiplicity three, which must be non-semisimple because of the use of a single
control input. Note that due to the high sensitivity of such roots (Michiels et al.
2017), a very accurate replication using an a-posteriori spectrum computation is not
possible.

The presence of three rightmost roots (counting multiplicity) may sound counter-
intuitive because the number of degrees of freedom in the controller is also three. The
explanation is that we are in a situation where CD ≥ c. In fact, the optimum of (50)
is characterized by an equality between CD and the spectral abscissa c. Hence, in
the optimum we have four conflicting objectives: the three eigenvalues constituting
the multiple root, and the behavior of high frequency characteristic roots, captured
by quantity CD . In the left panel of Fig. 6 we show the rightmost characteristic
roots corresponding to the minimum of the robust spectral abscissa (60). The dotted
line corresponds to �(λ) = cD , the dashed line to �(λ) = CD . In order to illustrate
that we indeed have c = CD , we depict in the right panel of Fig. 6 the rightmost
characteristic roots after perturbing the delay value 2.5 in (59) to 2.51.

Whenwe solve instead the constrained optimization problem (52) with the default
parameters r = 10−3 and γ = 1 − 10−3 in the relaxation (54), we arrive at the



278 W. Michiels

Fig. 6 (Top) Characteristic
roots corresponding to the
minimum of the robust
spectral abscissa of the
second example (55) and
(59), using a static controller.
The rightmost characteristic
roots, λ ≈ −0.0309, has
multiplicity three. (Bottom)
Effect on the characteristic
roots of a perturbation of the
delays (2.5, 5) in (59)
to (2.51, 5)
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controller gain Dc = [0.0249 0.1076 0.3173]. Compared to (60), where we had
C = c = CD , a further reduction of the spectral abscissa to c = −0.0345 has been
achieved, at the price of an increased value of CD (equal to −0.00602). This is
expected because the constraint γ0 < 1 imposes robustness of stability, yet no bound
on the exponential decay rate of the solutions.

Example 5.16 A transmission zero of system (1) is a number z0 ∈ C such that
G(z0) = 0. In the time-domain the meaning is as follows. If an exponentially stable
system is excited by signal

ζ(t) = ζez0t , (61)



Design of Structured Controllers for Linear Time-Delay Systems 279

then the stationary response in the output η is identically zero, for any ζ ∈ C
nζ . This

interpretation is at the basis of the computation of transmission zeros. Due to the
separation principle in the frequency domain, the stationary response to excitation
(61) takes the form

x(t) = xez0t , η(t) = ηez0t .

Substituting these functions in (1) and requiring that η ≡ 0 brings us to

[
z0 I − A0 −∑m

i=1 Aie−z0τi −B
C De−z0τm+1

] [
x
ζ

]

ez0t = 0.

The 2-by-2 block matrix in the left-hand side can be interpreted as the characteristic
matrix of a DDAE, and, accordingly, its characteristic roots are the transmission
zeros. The extension to model (34) is straightforward.

Transmission zeros play a central role in applications related to vibration control.
Signal shapers and vibration absorbers are tuned in such a way that the transfer
function from the locationwhere undesired vibrations enter the system to the location
where vibrations need to be annihilated, has transmission zeros at the dominant
frequencies. For the design and implementation of novel classes of signal shapers
and vibration absorbers that explicitly use delays as controller parameters, and for
the use of DDAE models to describe the overall system, we refer to Pilbauer (2017)
and the references therein.

5.5 Note on the StrongH2 andH∞ Norm

Similarly to the spectral abscissa, the H2 and H∞ system norms of DDAEs suffer
from a fragility problem, in the sense of being potentially sensitive to infinitesimal
delay perturbations. The latter cannot be excluded from an application point of view.
Before we analyze the problem and present robustified measures, we introduce some
notation and motivating examples. We denote by Ĝ the transfer function of (34),

Ĝ(λ) := C

(

λE − A0 −
m∑

i=1

Aie
−λτi

)−1

B.

We also introduce the corresponding asymptotic transfer function Ĝa ,

Ĝa(s) := C2

(

I −
m∑

i=1

A(22)
i e−λτi

)−1

B2.

It can be interpreted as the transfer function of delay difference equation
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{
x2(t) = ∑m

i=1 A
(22)
i x2(t − τi ) + B2ζ(t),

η(t) = C2x2(t),
(62)

obtained by setting x1 = 0 in the second equation of (40). It describes the asymptotic
behavior of Ĝ(λ) for |λ| → ∞ in the closed right half plane. The following property
is proven in Gumussoy and Michiels (2011).

Proposition 5.17 For all γ > 0, there exists a number � > 0 such that
∥
∥
∥Ĝ(iω)−

Ĝa(iω)

∥
∥
∥
2

< γ for all ω > �.

With the following example we illustrate that functions

(
R

+
0

)m � �τ �→
∥
∥
∥Ĝ(·; �τ )

∥
∥
∥
H2

,
(
R

+
0

)m � �τ �→
∥
∥
∥Ĝ(·; �τ )

∥
∥
∥
H∞

maynot be continuous, even if the system is strongly stable, and that this phenomenon
is related to the behavior of the asymptotic transfer function.

Example 5.18 We consider system (34), already in the form (40) with m = 2 and
matrices E (11) = 1, A(11)

0 = −10, A(12)
0 = [

1 1
]
, A21

0 = [
0 0

]T
,

[
A(11)
1 A(12)

1

A(21)
1 A(22)

1

]

=
⎡

⎣
0 0 0
0 1

4 0
0 −1 1

4

⎤

⎦ ,

[
A(11)
2 A(12)

2

A(21)
2 A(22)

2

]

=
⎡

⎣
0 0 0
0 1

8
1
8

0 1 1
8

⎤

⎦ ,

[
B1

B2

]

=
⎡

⎣
100
1
0

⎤

⎦ ,
[
C1 C2

] = [
1 0 1

]
.

(63)

The system is exponentially stable for all delay values, and thus strongly stable. Due
to its tridiagonal structure, its spectrum namely consists of eigenvalue λ = −10,
supplemented with the spectrum of (62), which is confined to the open left half plane
because γ0 = 0.625 < 1.

We now analyze the system norms from input ζ to output η. In Fig. 7 we show
in the left the transfer function Ĝ and in the right the asymptotic transfer function
Ĝa , evaluated on the imaginary axis, for λ = iω. Notice their matching at large
frequencies, in accordance with Proposition 5.17. For �τ = (1, 1) there is clearly no
feedthrough from input to output, inducing a finite H2 norm. Let us now consider
rationally independent delays �τ = (1, 1 + π/υ) with υ ∈ N. For υ = 50 we see that
functions Ĝ and Ĝa do not tend to zero asω → ∞. If υ tends to infinity, the deviation
from nominal delays (1, 1) tends to zero. However, the H2 norms of Ĝ and Ĝa

remain unbounded, while the significant mismatch of the transfer functions and the
corresponding transfer functions for the limit �τ = (1, 1) only shifts towards higher
frequencies. This is visualized in the figure by comparing the caseswhere υ = 50 and
υ = 200. Thus, theH2 norm of Ĝ is not continuous at the nominal delays �τ = (1, 1).
ItsH∞ norm is continuous and characterized by the peak gain reached for ω = 0.
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Fig. 7 Maximum singular value of the transfer function (left) and asymptotic transfer function
(right) of the system in Example 5.18 as a function of s = iω, for three cases: �τ = (1, 1) (top),
�τ = �(1, 1 + π/50) (middle) and �τ = �(1, 1 + π/200) (bottom). The dashed line indicates the strong
H∞ norm of Ĝa

Let us now consider other numerical values for the input matrix B, while keeping
the other system matrices:

B =
[
B1

B2

]

=
⎡

⎣
25
1
0

⎤

⎦ . (64)

In Fig. 8 we display again the transfer functions. With the modified input matrix, not
only the H2 norm is discontinuous at nominal delays (1, 2), but also the H∞ norm.

The possible discontinuity of the system norms brings us to the following robus-
tified counter parts, which explicitly take into account infinitesimal delay perturba-
tions.

Definition 5.19 The strongH2 and strong H∞ norm of Ĝ are defined as

�Ĝ(·; �τ )�H2 := limε→0+ sup{‖Ĝ(·; �τε)‖H2 : �τε ∈ B(�τ , ε)},
�Ĝ(·; �τ )�H∞ := limε→0+ sup{‖Ĝ(·; �τε)‖H∞ : �τε ∈ B(�τ , ε)},

with B given by (45).

The strongH2 andH∞ norm of Ĝa are defined in a similar way. In order to provide
mathematical characterizations of the strong norms, we first introduce matrix poly-
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Fig. 8 Maximum singular value of the transfer function (left) and asymptotic transfer function
(right) of the system in Example 5.18, with modified input matrix (64), as a function of s = iω, for
three cases: �τ = (1, 1) (top), �τ = �(1, 1 + π/50) (middle) and �τ = �(1, 1 + π/200) (bottom). The
dashed line indicates the strong H∞ norm of Ĝa

nomials Pk1,...,km , with ki ∈ Z
+, i = 1, . . . ,m, which are recursively defined through

the following expressions:
P0,...,0 := I, (65)

Pk1,...,km := A(22)
1 Pk1−1,k2,...,km + A(22)

2 Pk1,k2−1,k3,...,km

+ . . . + Â(22)
m Pk1,k2,...,km−1,km−1

(66)

and
Pk1,...,km := 0 if any ki ∈ Z

−, i = 1, . . . ,m. (67)

For instance, for m = 2 and k1 + k2 ≤ 2 these matrix polynomials are

P0,0 = I,
P1,0 = A(22)

1 , P0,1 = A(22)
2 ,

P2,0 = A(22)
1 A(22)

1 , P1,1 = A(22)
1 A(22)

2 + A(22)
2 A(22)

1 , P0,2 = A(22)
2 A(22)

2 ,

while we also have

P2,1 = A(22)
1 A(22)

1 A(22)
2 + A(22)

1 A(22)
2 A(22)

1 + A(22)
2 A(22)

1 A(22)
1 .
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Hence Pk1,...,km is the sum of all monomials of order ki in matrix A(22)
i , for all

i = 1, . . . ,m. We can now formulate a characterization of the strong norms of the
asymptotic transfer function.

Proposition 5.20 (Gomez et al. 2010, Proposition 1) Assume that system (34) is
strongly stable. Then its asymptotic transfer function Ĝa satisfies

� Ĝa�H∞ = max
�θ∈[0, 2π]m

∥
∥
∥
∥
∥
∥
C2

(

I −
m∑

i=1

A(22)
i e−iθi

)−1

B2

∥
∥
∥
∥
∥
∥
2

. (68)

If conditions

C2Pk1,...,km B2 = 0, ∀(k1, . . . , km) ∈ (
Z

+)m :
m∑

i=1

ki < mn (69)

are satisfied, with multi-powers Pk1,...,km defined by (65)-(67), then it holds that
�Ga�H2 = 0. Otherwise, it holds that �Ga�H2 = +∞.

It is important to point out that the strong norms of the asymptotic transfer function
do not depend on the delay values. We can now state the corresponding results for
transfer function Ĝ.

Proposition 5.21 (Gomez et al. 2010, Proposition 2) If system (34) is strongly
stable, then its transfer function Ĝ satisfies

� Ĝ(·; �τ )�H∞ = max
{
‖Ĝ(·; �τ )‖H∞ ,�Ĝa�H∞

}
(70)

and

�Ĝ(·; �τ )�H2 =
{ ‖Ĝ(·; �τ )‖H2 < +∞, if(69)issatisfied,

+∞, otherwise.

Furthermore, function
(
R

+
0

)m � �τ �→ �Ĝ(·; �τ )�H∞ is continuous whenever (34) is

strongly stable. Function
(
R

+
0

)m � �τ �→ �Ĝ(·; �τ )�H2 is continuous whenever (34)
is strongly stable and the strong H2 norm is finite.

Example 5.22 We revisit Example 5.18 and consider nominal delay values (τ1, τ2)
= (1, 1). By evaluating (68) we arrive at �Ĝa�H∞ = 3.88, whose corresponding
level sets are the dashed horizontal lines in Figs. 7 and 8. Because we have

C2A
(22)
1 B2 = −1, C2A

(22)
2 B2 = 1,

the conditions (69) are not satisfied, implying �Ga�H2 = +∞.
For the first choice of B, as in (63), the maximum in the right-hand side of (70) is

attained by the first term, hence, the strongH∞ norm is reached at a finite frequency,
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here ω = 0. For the second choice (64), it is reached by the second term, hence,
�Ĝ�H∞ = �Ĝa�H∞ = 3.88. Obviously, we have in both cases �G�H2 = +∞.

The computation and subsequent optimization of the strong H∞ norm as in
Gumussoy and Michiels (2011) is based on expression (70), where in a first phase
(68) is evaluated using a combination of gridding and local correction. Here it is
important to note that the number of nonzero coefficient matrices A(22)

i is typically
very small in applications, as they all correspond to the presence of a control loop
along which high frequency modes are not damped. In the second phase, an exten-
sion of the level-set algorithm, described in Sect. 2.2 and illustrated with Fig. 1, is
used to compute the nominal H∞ norm, provided it is larger than �Ĝa�H∞ . For
this, the latter norm is used as initial value for the level. Derivatives of the objective
function (70) with respect to controller parameters are obtained from derivatives of
corresponding active eigenvalues or singular values.

We now address the H2 norm computation. With several examples, including
Examples 5.2 and 5.18, we illustrated that aDDAEof the form (34)may hide nontriv-
ial feedthrough terms, hence after checking strong stability it should be determined
first whether the strongH2 norm is finite. An important property of the necessary and
sufficient condition (69), derived in Gomez et al. (2020) using a multi-dimensional
generalization of the Cayley-Hamilton theorem, is that this involves checking only
finitely many equalities. However, the number of equalities to check has an expo-
nential growth as a function of the number of delays m. In response to this, it can be
noted that conditions

CB = 0,
CAσ1 · · · Aσk B = 0, ∀k ∈ Z

+,∀σi ∈ {1, . . . ,m}, i = 1, . . . , k
(71)

imply that CPk1,...,km B = 0 for any m-tuple (k1, . . . , km), and, hence, that finiteness
criterion (69) is satisfied. In Gomez et al. (2010) it is shown that checking sufficient
condition (71) can be done with an algorithm having significantly better scalability
properties in terms of both the dimension of the system and the number of delays. It
is also shown that the satisfaction of (71) is equivalent to the existence of a simulta-
neous block triangularization of the matrices of delay difference equation (62). The
latter is instrumental to a special regularization procedure that allows to transform
DDAE (34) to a neutral equation with the same transfer matrix, without any need
for differentiation of inputs or outputs. This transformation enables to compute the
strongH2 norm using an established approach grounded in Lyapunov matrices (Jar-
lebring et al. 2011), thereby directly extending Theorem 1 and the related algorithms.
For further reading we refer to Gomez and Michiels (2019a), Gomez et al. (2010,
2020).
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6 Concluding Remarks

An eigenvalue based solution to the robust control of linear time-delay systems has
beenpresented.Because any controller characterizedby afinite number of parameters
can be seen as a structured, reduced-order controller, a direct optimization approach
has been taken. Its main advantages are two-fold. First, the methods are generally
applicable. The extension of model (1) towards DDAE models allows to consider
both retarded and neutral type stand-alone and interconnected systems, with discrete
delays in states, control input, sensors outputs, and in the inputs and outputs used
to describe the robustness and performance specifications. As a second advantage,
the approach is not conservative in the sense that a stabilizing or optimal fixed-
structure H2 − H∞ controller can be computed whenever it exists, in contrast to
approaches inferred from sufficient (but not necessary) conditions for a stabilizing
or a guaranteed cost controller. As a price to pay for these beneficial properties, the
optimization problems encountered in Sects. 3 and 5.3 are in general non-convex,
hence, there is no guarantee that the computed optima found by the presented local
optimization algorithms are global.

The eigenvalue based framework has recently been extended to the robust stability
analysis and stabilization of linear time-periodic systems with delay (Michiels and
Fenzi 2020; Borgioli et al. 2020), the H2 norm analysis of such systems (Michiels
and Gomez 2020), and it has been applied to problems from machining (Hajdu et al.
2020). It has also been adopted to the design of prediction based controllers, see,
e.g., Zhou et al. (2019) and the references therein.

Software tools for solving the analysis and synthesis problems discussed in this
article, as well as a benchmark data, are available at

http://twr.cs.kuleuven.be/research/software/delay-control/.

They have been integrated in the software package TDS-CONTROL (Appeltans
and Michiels 2022).
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A Scalable Controller Synthesis Method
for the Robust Control of Networked
Systems

Pieter Appeltans and Wim Michiels

Abstract This chapter discusses a scalable controller synthesis method for net-
worked systems with a large number of identical subsystems based on theH∞-norm
control framework. The dynamics of the individual subsystems are described by
identical linear time-invariant delay differential equations and the effect of transport
and communication delay is explicitly taken into account. The presented method
is based on the result that, under a particular assumption on the graph describing
the interconnections between the subsystems, the H∞-norm of the overall system
is upper bounded by the robust H∞-norm of a single subsystem with an additional
uncertainty. This chapter will therefore briefly discuss a recently developed method
to compute this last quantity. The resulting controller is then obtained by directly
minimizing this upper bound in the controller parameters.

1 Introduction

This chapter presents a controller synthesis method for networked systems. Such
networked systems consist of a large number of smaller subsystems that interact
over a network. The analysis and control of these networked systems is challenging
due to their large dimension and the presence of delays. These delays originate from
the time needed to transfer matter, energy and information between subsystems. In
this context, the traditional approach of using one global controller for the complete
network is not feasible due to the high communication requirements and the poor
scalability with respect to the number of subsystems. Furthermore, the assumption
that all measurements are centrally available, does often not hold for networked sys-
tems. These limitations inspired local control approaches, in which each subsystem
has its own local controller. Neighboring controllers can however communicate to
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improve control performance. This approach of having multiple local controllers
instead of one global controller fits the framework of distributed and decentralized
control.

In this chapter we consider networked systems in which the dynamics of the indi-
vidual subsystems are described by identical linear time-invariant delay differential
equations. The resulting local controllers are identical and minimize an upper bound
for theH∞-norm of the overall system. ThisH∞-norm is an important performance
measure in robust control theory, see Zhou and Doyle (1998).

The computation cost of the standard algorithms for calculating the H∞-norm
of dynamical systems with discrete delays, such as Gumussoy and Michiels (2011),
scales cubically with respect to the number of states (and hence the number of
subsystems). However, for some networked systems this computation cost can be
decreased significantly using the decoupling transformation presented in Massioni
and Verhaegen (2009), Dileep et al. (2018b). More specifically, if the subsystems
are identical and the graph describing the interconnections between the subsystems
fulfills a particular assumption, then the H∞-norm of the complete system is equal
to the maximal H∞-norm of a single parametrized subsystem where the allowable
values of the parameter correspond to the eigenvalues of the adjacency matrix of the
interconnection graph. Moreover, in Dileep et al. (2018a) it was suggested to con-
sider this parameter as an uncertainty bounded to a region in the complex plane that
comprises all these eigenvalues. As such, the worst-caseH∞-norm of this uncertain
subsystem gives an upper bound for theH∞-norm of the complete network. Further-
more, this worst-case H∞-norm is also known as the robust H∞-norm and can be
computed at a cost that only depends on the dimension of an individual subsystem
using the method presented in Appeltans and Michiels (2021).

For the controller synthesis, we will directly minimize the robust H∞-norm of
the uncertain subsystem in the controller parameters. Our method thus fits in the
frequency based, direct optimization framework, used in Gumussoy and Michiels
(2011),Michiels (2011), Dileep et al. (2018a), Özer and Iftar (2015). This framework
allows to easily incorporate constraints on the structure of the controller, such as
PID or reduced order control. In contrast, H∞-controller design methods based on
Riccati equations and linearmatrix inequalities typically give rise to dense controllers
with dimensions equal to that of the system. A notable exception is Hilhorst et al.
(2015), which allows to design reduced order controllers using the aforementioned
framework. Another advantage of the direct optimization approach compared to
methods based on Riccati equations and linear matrix inequalities, in particular for
systems with delays, is that the obtained results are less conservative. This comes
however at the cost of having to solve a non-convex and non-smooth optimization
problem.

The remainder of this chapter is structured as follows. First, Sect. 2 introduces
the considered networked systems and details the aforementioned decoupling trans-
formation. Next, a recently developed method to compute the robust H∞-norm of
uncertain linear time-invariant systems with discrete delays is discussed in Sect. 3.
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Subsequently, the direct optimization approach to synthesize the controller is out-
lined in Sect. 4. Finally, the resulting design methodology is illustrated using an
example problem in Sect. 5 and some concluding remarks are given in Sect. 6.

2 Computing the H∞-norm of Networked Systems

In Sect. 2.1we introduce the considered networked systems and the control objective.
Section 2.2 presents the decoupling transformation that allows to compute an upper
bound for the H∞-norm of the overall system at a computation cost that does not
depend on the number of subsystems.

2.1 System Description and Control Objective

In this chapter, we consider networked systems with N subsystems. The dynamics of
the individual subsystems are identical and described by a state-space representation
of the following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ j (t) =
K∑

k=0
Ak x j (t − τk) + Bu u j (t − τu) + Bun u

(n)
j (t) + Bw w j (t)

y j (t) = Cy x j (t)
y(n)
j (t) = Cyn x j (t)
z j (t) = Cz x j (t) for j = 1, . . . , N

(1)

with x j (t) ∈ R
(n) the state vector of subsystem j , u j (t) ∈ R

mc its control input,
y j (t) ∈ R

pc its measured output, w j (t) ∈ R
m its performance input, z j (t) ∈ R

p its
performance output, 0 = τ0 < τ1 < · · · < τK discrete delays, τu ≥ 0 an input delay
and Ak , Bu , Bun , Bw, Cy , Cyn and Cz real-valued matrices of appropriate dimen-
sion. The input u(n)

j (t) and the output y(n)
j (t) model the interactions between the

subsystems:

u(n)
j (t) =

N∑

i=1

PN
j,i y

(n)
i (t − τn),

with τn ≥ 0 the interaction delay and PN = [PN
j,i ]Nj,i=1 the adjacency matrix of the

interconnection graph of the network. More specifically, an element PN
j,i is non-zero

if and only if the dynamics of subsystem j are influenced by subsystem i .
Each subsystem is controlled using a local controller and these local controllers

are identical. Here we will consider dynamic output feedback controllers of order
nc:
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{
ξ̇ j (t) = Jp ξ j (t) + Fp y j (t) + F (n)

p u(nc)
j (t)

u j (t) = Lp ξ j (t) + Kp y j (t) + K (n)
p u(nc)

j (t) for j = 1, . . . , N
(2)

with ξ j (t) ∈ R
nc the controller state of the local controller associated with subsystem

j . The matrices Jp, Fp, F (n)
p , Lp, Kp and K (n)

p are real-valued and of appropriated
dimension. The subscript p is used to indicate that these matrices depend on some
tunable control parameters p. If F (n)

p �= 0 and/or K (n)
p �= 0, the local controllers can

communicate their sensor measurements to neighboring subsystems. It is however
required that the adjacency matrix of the communication graph is equal to the adja-
cency matrix of the interaction graph:

uncj (t) =
N∑

i=1
PN
j,i yi (t − τnc),

with τnc ≥ 0 the communication delay.

Remark 2.1 In the remainder of this chapter we restrict our attention to controller
architectures where the local controllers can only share sensor measurements. Note
however that the results can be extended to architectures where the local controllers
can also share their internal state.

By eliminating the control and coupling variables, we find the following state-
space description for the closed-loop of the complete networked system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
K∑

k=0
(IN ⊗ Ak) x(t −τk) + (

IN ⊗ BuKpCy
)
x(t −τu)+

(
PN ⊗ BunCyn

)
x(t −τn) + (

IN ⊗ BuLp
)
ξ(t −τu)+(

PN ⊗ BuK (n)
p Cy

)
x(t −τu −τnc) + (IN ⊗ Bw) w(t)

ξ̇(t) = (
IN ⊗ Jp

)
ξ(t) + (IN ⊗ FpCy) x(t)+(

PN ⊗ F (n)
p Cy

)
x(t −τnc)

z(t) = (IN ⊗ Cz) x(t)

(3)

with IN the identity matrix of size N , x(t) = [x1(t)T · · · xN (t)T ]T the com-
bined state, ξ(t) = [ξ1(t)T · · · ξN (t)T ]T the combined controller state, w(t) =
[w1(t)T · · · wN (t)T ]T the combined performance input, z(t) = [z1(t)T · · · zN (t)T ]T
the combined performance output and ⊗ the Kronecker product. The corresponding
transfer function from w to z is equal to:

T (s;p, N ) = (
IN ⊗ [

Cz 0
]) (

IN (n+nc)s − IN ⊗ Qp(s)− PN ⊗ Rp(s)
)−1 ×

(
IN ⊗

[
Bw

0

] ) (4)

with
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Qp(s) =
[

A0 0
FpCy Jp

]

+
K∑

k=1

[
Ak 0
0 0

]

e−sτk +
[
BuKpCy BuLp

0 0

]

e−sτu

and

Rp(s) =
[
BunCyn 0

0 0

]

e−sτn +
[
BuK (n)

p Cy 0
0 0

]

e−s(τu+τnc) +
[

0 0
F (n)
p Cy 0

]

e−sτnc .

If system (3) is exponentially stable, theH∞-norm of (4) equals:

‖T (·;p, N )‖H∞ = max
ω∈R+

σ1
(
T (jω;p, N )

)

with σ1(·) the largest singular value of its matrix argument (Gumussoy andMichiels,
2011). Here we recall that the H∞-norm is an important performance measure in
robust control theory, used to asses the disturbance rejection of a dynamical system
as it gives the worst-case energy gain of the system with respect to energy-bounded
noise signals:

‖T (·;p, N )‖H∞ = max
w∈L2

m

‖z‖L2
p

‖w‖L2
m

,

with‖w‖L2
m

:=
√∫ +∞

0 ‖w(t)‖22 dt , L2
m := {w : [0,+∞) �→ R

m such that ‖w‖2L2
m

<

+∞}, ‖w(t)‖2 the Euclidean norm, and ‖z‖L2
p
and L2

p defined analogously (Zhou
and Doyle 1998).

2.2 Upper Bound for the H-Infinity Norm

In this subsection we show that under the following assumption on PN , there exists a
decoupling transformation that allows to compute an upper bound for theH∞-norm
of (4) at a computation cost that does not depend on the number of subsystems.

Assumption 1 The matrix PN has real-valued eigenvalues confined to an interval
[a, b] and is diagonalizable by a unitary matrix VN , i.e.,

VN
H PNVN = �N

with �N = diag(λ1,λ2, . . . ,λN ) and λ j ∈ [a, b] for j = 1, . . . , N .

If we apply the following change of variables to the states, the controller states, the
performance input and the performance output of system (3)
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x̄(t) := (VN
H ⊗ In ) x(t)

ξ̄(t) := (VN
H ⊗ Inc) ξ(t)

w̄(t) := (VN
H ⊗ Im ) w(t)

z̄(t) := (VN
H ⊗ Ip ) z(t)

we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄x(t) =
K∑

k=0
(IN ⊗ Ak) x̄(t −τk) + (IN ⊗ BuKpCy) x̄(t −τu) +

(�N ⊗ BunCyn ) x̄(t −τn) + (
IN ⊗ BuLp

)
ξ̄(t −τu)+

(�N ⊗ BuK (n)
p Cy) x̄(t −τu −τnc) + (IN ⊗ Bw) w̄(t)

˙̄ξ(t) = (
IN ⊗ Jp

)
ξ̄(t) + (

IN ⊗ FpCy
)
x̄(t)+(

�N ⊗ F (n)
p Cy

)
x̄(t − τnc)

z̄(t) = (IN ⊗ Cz) x̄(t).

(5)

Notice that all matrices in (5) are block diagonal and hence the behavior of this
transformed system is fully characterized by its N independent subsystems. This
leads to the following theorem.

Theorem 2.2 For a networked system of form (3) whose adjacency matrix fulfills
Assumption 1, it holds that

‖T (·;p, N )‖H∞ = ‖T̄w̄z̄(·;p, N )‖H∞ = max
λ∈{λ1,...,λN }

‖T̂ŵẑ(·;p,λ)‖H∞

with T̄w̄z̄(·;p, N ) the transfer function from w̄ to z̄ of system (5) and T̂ŵẑ(·;p,λ) the
transfer function from ŵ to ẑ of the following system parameterized in λ:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂x(t) =
K∑

k=0
Ak x̂(t −τk) + BuKpCy x̂(t −τu) + λBunCyn x̂(t −τn)

+λBuK (n)
p Cy x̂(t −τu −τnc) + BuLp ξ̂(t −τu) + Bw ŵ(t)

˙̂
ξ(t) = Jp ξ̂(t) + FpCy x̂(t) + λF (n)

p Cy x̂(t −τnc)

ẑ(t) = Cz x̂(t).

(6)

Proof The provided proof is added for self-containedness and is similar to the ones
given in Massioni and Verhaegen (2009); Dileep et al. (2018b). We refer to these
papers for more details.
The relation between T (jω;p, N ) and T̄w̄z̄(jω;p, N ) is given by

T (jω;p, N ) = (
VN ⊗ Ip

)
T̄w̄z̄(jω; N )

(
VN

H ⊗ Im
)
.

Because (VN ⊗ Ip) and (VN
H ⊗ Im) are unitary matrices if follows that,
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σ1
(
T (jω;p, N )

) = σ1

( (
VN ⊗ Ip

)
T̄w̄z̄(jω;p, N )

(
VN

H ⊗ Im
) )

= σ1
(
T̄w̄z̄(jω;p, N )

)
.

The second equality follows from the fact that

T̄w̄z̄(jω;p, N ) = blkdiag j=1,...,N

(
T̂ŵẑ(jω;p,λ j )

)
,

and hence
σ1
(
T̄w̄z̄(jω;p, N )

) = max
λ∈{λ1,...,λN }

σ1
(
T̂ŵẑ(jω;p,λ)

)
,

which concludes the proof. �

Note that system (6) corresponds to a single subsystem in (3) where the network
connections are replaced by a parameter. By treating λ in (6) as an uncertainty
confined to the interval [a, b], the robust H∞-norm associated with (6), which is
defined as the maximal value of the H∞-norm over all instances of the uncertain
parameter,

‖T̂ŵẑ(·;p, ·)‖[a, b]
H∞ = max

λ∈[a, b]
‖T̂ŵẑ(·;p,λ)‖H∞ , (7)

can be used as an upper bound for the H∞-norm of (3), as stated in the following
corollary.

Corollary 2.3 The H∞-norm of a networked system of form (3) whose adjacency
matrix fulfills Assumption 1, is upper bounded by the robustH∞-norm of T̂ŵẑ(·;p,λ),
with λ an uncertain parameter confined to [a, b]:

‖T (·;p, N )‖H∞ ≤ ‖T̂ŵẑ(·;p, ·)‖[a, b]
H∞ .

Furthermore, if Assumption 1 holds with a and b independent of N , then ‖T̂ŵẑ(·;p, ·)
‖[a, b]
H∞ is also an upper bound for the supremum of ‖T (·;p, N )‖H∞ over the number
of subsystems:

sup
N=1,...,+∞

‖T (·;p, N )‖H∞ ≤ ‖T̂ŵẑ(·;p,λ)‖[a, b]
H∞ .

If, furthermore, the (Hausdorff) distance between [a, b] and
+∞⋃

N=1
{λ ∈ C : det(INλ−

PN ) = 0} goes to zero then

sup
N=1,...,+∞

‖T (·;p, N )‖H∞ = ‖T̂ŵẑ(·;p,λ)‖[a, b]
H∞ .

Example 2.4 To illustrate the applicability of this result, we consider the following
adjacency matrices:
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Fig. 1 Bidirectional ring
topology 1

2

3. . .

N −1

N

Fig. 2 Bidirectional line
topology 1 . . . N

P ring
N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.5 0.5
0.5 0 0.5

0.5 0 0.5
. . .

. . .
. . .

0.5 0 0.5
0.5 0.5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and P line
N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.5
0.5 0 0.5

0.5 0 0.5
. . .

. . .
. . .

0.5 0 0.5
0.5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thefirst adjacencymatrix, P ring
N , corresponds to a bidirectional ring topology, see Fig.

1; the second one corresponds to a bidirectional line topology, see Fig. 2. The eigen-

values of these adjacency matrices are
{
cos

(
2π( j−1)

N

)}� N+2
2 �

j=1
and

{
cos

(
jπ

N+1

)}N

j=1
,

respectively. The eigenvalues of both matrices are thus confined to the interval
[a, b] = [−1, 1] for all N > 1. As both adjacencymatrices are symmetric and hence
unitary diagonalizable, we can apply Corollary 2.3 to compute an upper bound for
theH∞-norm of (4) that holds for all N > 1 at a computation cost that only depends
on the dimension of a single subsystem. Furthermore, this upper bound is the same
for both topologies.

3 Computing the RobustH∞-norm

This section introduces a numerical algorithm to efficiently compute the robustH∞-
norm of an uncertain linear time-invariant system with discrete delays:
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⎧
⎪⎨

⎪⎩

ẋ(t) =
R∑

r=0
(Hr + λ Gr ) x(t − τr ) + Bw w(t)

z(t) = Czx(t)

(8)

with x(t) ∈ R
(n) the state, w(t) ∈ R

m the performance input, z(t) ∈ R
p the perfor-

mance output, 0 = τ0 < τ1 < · · · < τR discrete delays, Hr , Gr , Bw and Cz real-
valued matrices of appropriate dimension and λ a real-valued, scalar parameter
addressed as an uncertainty confined to the interval [a, b]. Note that system (6)
fits this form.

Under the assumption that system (8) is internally exponentially stable for all
λ ∈ [a, b], its (asymptotic) input-output behavior for each allowable value of λ is
described in the Laplace domain by the following transfer function:

T (s;λ) = Cz

(
Ins −

R∑

r=0

(Hr + λGr ) e−sτr
)−1

Bw,

and the associated robust H∞-norm is equal to

‖T (·; ·)‖[a, b]
H∞ = max

λ∈[a, b]
‖T (·;λ)‖H∞ = max

λ∈[a, b]
ω∈R+

σ1
(
T (jω;λ)

)
.

In Appeltans and Michiels (2021) a novel numerical algorithm to compute the
robust H∞-norm of an uncertain time-delay system is presented. This algorithm is
based on the relation between the robust H∞-norm and the robust stability radius
of an “uncertain” characteristic matrix. This relation is illustrated in Sect. 3.1. The
resulting algorithm is given in Sect. 3.2.

3.1 Relation With the Robust Stability Radius

Consider the following “uncertain” characteristic matrix

M(s;λ,�) := Ins −
R∑

r=0
(Hr + λGr ) e−sτr − Bw�Cz , (9)

with Hr , Gr , Bw, Cz , τr and λ as defined above, In the identity matrix of size n and
� ∈ C

m×p a complex-valued uncertainty with ‖�‖2 ≤ ε and ε ≥ 0. Note that this
uncertain characteristic matrix has two uncertainties: a scalar λ which is real-valued
and bounded to the interval [a, b] and an m × p matrix � which is complex-valued
and bounded in spectral norm by ε, or in other words � ∈ BC

m×p

‖·‖2≤ε with

BC
m×p

‖·‖2≤ε := {
� ∈ C

m×p : ‖�‖2 ≤ ε
}
.
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Next, we define three important concepts related to this uncertain characteristic
matrix. The spectral value set of this uncertain characteristic matrix is defined as

�[a, b]
ε :=

⋃

λ∈[a, b]

⋃

�∈BCm×p
‖·‖2≤ε

{s ∈ C : det (M(s;λ,�)) = 0} ,

i.e., the union of the characteristic roots of M(·;λ,�) over all λ ∈ [a, b] and � ∈
BC

m×p

‖·‖2≤ε. Note that this spectral value set is symmetric with respect to the real axis.
The pseudo-spectral abscissa is defined as the real part of the rightmost point, i.e.,
the point with the largest real part, in this spectral value set,

α[a, b]
ε := max

{ (s) : s ∈ �[a, b]
ε

}
.

Finally, the robust stability radius is defined as the smallest ε for which this pseudo-
spectral abscissa becomes non-negative,

r[a, b] := min
{
ε ∈ [0,+∞) : α[a, b]

ε ≥ 0
}
. (10)

Furthermore, because α[a, b]
ε is a continuous function of ε (this can be shown

using a similar argument as in Borgioli and Michiels Borgioli and Michiels (2020,
Section IV), the transition to a non-negative pseudo-spectral abscissa is character-
ized by an ε for which α[a, b]

ε equals zero. This means that the robust stability radius
can also be defined as the smallest ε for which the spectral value set touches the
imaginary axis:

r[a, b] = min
{
ε ∈ [0,+∞) : ∃ ω ∈ R

+ such that jω ∈ �[a, b]
ε

}
. (11)

The following example illustrates these three concepts in more detail.

Example 3.1 Consider the following uncertain characteristic matrix:

[
1 0
0 1

]

s −
([

−5 3
2 −6

]

+ λ

[
2 2

−2 −1

])

−
([

−3 −1
0 2

]

+ λ

[
1 1

−1 1

])

e−s −
[
1

−3

]

�
[
2 5

]
. (12)

Figure 3 shows the part of the spectral value set in the region [−0.5,−0.2] ×
j [2.1, 2.7] for [a, b] equal to [−1, 1] and several values of ε. For ε = 0, only the
real-valued uncertainty λ plays a role and the viewed part of the spectral value set is a
curve. For nonzero ε, also the complex-valued uncertainty� affects the characteristic
matrix and the viewed part of the spectral value set becomes a region in the complex
plane which grows as ε increases. Figure 4 shows the pseudo-spectral abscissa α[a, b]

ε

in function of ε. We find that r[−1,1] = 0.22491. Finally, Figure 5 shows the part of
the associated spectral value set in the region [−3, 0.3] × j [−10, 10]. One sees that
the spectral value set touches the imaginary axis at the origin (ω = 0).

We are now ready to state the relation between the robust H∞-norm associated
with uncertain system (8) and the robust stability radius of (9).
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Fig. 3 The part of the
spectral value set of (12) in
the region
[−0.5,−0.2] × j [2.1, 2.7]
for [a, b] equal to [−1, 1]
and ε equal to 0 (full line),
0.05 (dashed line), 0.1
(dotted line) and 2/9 (dash
dotted line)

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25
2.1

2.2

2.3

2.4

2.5

2.6

2.7

Fig. 4 The pseudo-spectral
abscissa of (12) for [a, b]
equal to [−1, 1] in function
of ε

0 0.05 0.1 0.15 0.2 0.25
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Theorem 3.2 If uncertain system (8) is internally exponentially stable for all λ ∈
[a, b], its associated robustH∞-norm is equal to the reciprocal of the robust stability
radius of (9).

Proof The following proof is a simplification of the result in Appeltans andMichiels
(2021).
A complex number jω lies in �[a, b]

ε if and only if there exist λ ∈ [a, b] and � ∈
BC

m×p

‖·‖2≤ε such that

det
(
M(jω;λ,�)

) = det
(
Injω −∑R

r=0(Hr + λ Gr )e−jωτr − Bw�Cz

)
= 0.

Because we required that (8) is internally exponentially stable for all λ ∈ [a, b], this
is equivalent to
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Fig. 5 The part of the
spectral value set of (12) in
[−3, 0.3] × j [−10, 10] for
[a, b] equal to [−1, 1] and
ε = 0.22491

-3 -2.5 -2 -1.5 -1 -0.5 0
-10

-8

-6

-4

-2

0

2

4

6

8

10

det
(
In − (

Injω −∑R
r=0(Hr + λGr )e−jωτr

)−1
Bw�Cz

)
= 0.

By the Weinstein-Aronszajn identity, this last equality can be rewritten as

det
(
I −Cz

(
I jω −

∑R
r=0(Hr + λGr )e−jωτr

)−1
Bw�

)
= det

(
I −T (jω;λ)�

)

= 0.

The characterization of the robust stability radius in (11) can thus be rewritten as

r[a, b] = min
ω∈R+

min
λ∈[a, b]

min
�∈Cm×p

{
‖�‖2 : det (I − T (jω;λ)�

) = 0
}
.

Using min�∈Cm×p {‖�‖2 : det (I − M�) = 0} = σ1 (M)−1 from Packard and Doyle
(1993) one finds that

r[a, b] = min
λ∈[a, b]
ω∈R+

(
σ1
(
T (jω;λ)

))−1

=
(

max
λ∈[a, b]
ω∈R+

σ1
(
T (jω;λ)

))−1 =
(
‖T (·; ·)‖[a, b]

H∞

)−1
,

which concludes the proof. �

Remark 3.3 The presented relation can be generalized to systemswith uncertainties
on the delays, multiple uncertainties and other uncertainty structures, such as full
block and diagonal uncertainties. Also systems with delays and uncertainties in the
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input, output and direct feed-through terms can be considered. For more information,
see Appeltans and Michiels (2021).

3.2 Numerical Algorithm

This subsection presents a numerical algorithm to compute the robust stability radius.
Once this quantity is found, the robustH∞-norm associated with (8) follows imme-
diately from Theorem 3.2.

By (10), the robust stability radius is the zero-crossing of the function R
+ �

ε �→ α[a, b]
ε . This zero-crossing can be found using the Newton-Bisection method,

see Press et al. (1996, Chap. 9.4) for a reference implementation. This root finding
method requires the evaluation of both α[a, b]

ε and its derivative with respect to ε for
given ε (whenever this derivative exists). The quantity α[a, b]

ε can be computed using
the method presented in Appeltans and Michiels (2021), which notes that α[a, b]

ε is
the solution of the following optimization problem:

max
s, λ,�

 (s) ,

subject to det
(
M(s;λ,�)

) = 0,
λ ∈ [a, b],
� ∈ BC

m×p

‖·‖2≤ε.

(13)

Furthermore, the following proposition shows that there exists a � of rank one and
norm ε associated with local optima of this optimization problem. This result will
allow us to reduce the search space for � to the space of matrices of rank one and
spectral norm ε. We will denote this space as BC

m×p

‖·‖2=ε, rank=1.

Lemma 1 Let s� /∈ �
[a, b]
0 be a local rightmost point of �[a, b]

ε , then there exist
λ� ∈ [a, b] and �� =εuvH with u∈C

m, v∈C
p and ‖u‖2=‖v‖2=1 such that

det (M(s�;λ�,��))=0.

Proof Firstly, using similar ideas as in the proof of Theorem 3.2 one can show that

�[a, b]
ε = �

[a, b]
0 ∪

{
s ∈ C \ �

[a, b]
0 : max

λ∈[a, b]
σ1 (T (s;λ)) ≥ ε−1

}
.

Because s� /∈ �
[a, b]
0 and s� is a rightmost point of of �[a, b]

ε , s� must lie on the
boundary of

{
s ∈ C \ �

[a, b]
0 : maxλ∈[a, b] σ1 (T (s;λ)) ≥ ε−1

}
. Hence, it holds that

there exists a λ� ∈ [a, b] such that σ1 (T (s�;λ�)) = ε−1.
Secondly, it can easily be verified that det

(
I − T (s�;λ�)(ενυH )

) = 0 for υ and ν the
left and right normalized singular vectors associated with σ1

(
T (s�;λ�)

)
. Following

the derivation in the first part of the proof of Theorem 3.2 in the opposite direction
one finds det

(
M
(
s�;λ�, ενυH

)) = 0. �
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Constrained optimization problem (13) is solved using a projected gradient flow
method. The idea of this approach is to define a flow in the space of permissible
variables along which the objective function monotonically increases and whose
attractive stationary points are (local) optimizers of the optimization problem. These
stationary points can be found by choosing initial parameters and discretizing the
resulting path till convergence to a stationary point using Euler’s forward method.
The step size is chosen such that the objective function monotonically increases
along the discretized path. For more details on the usage of these methods for the
computation of extreme points of spectral value setswe refer to Borgioli andMichiels
(2020), Guglielmi and Lubich (2011), Guglielmi and Lubich (2013).

In our case we are thus looking for a path [0,+∞) � θ �→ (λ(θ),�(θ)) ∈
[a, b] × BC

m×p

‖·‖2=ε, rank=1 such that the function

θ �→ max{(s) : det (M(s;λ(θ),�(θ)
)) = 0}

is monotonically increasing and such that the (local) optimizers of (13) appear as
attractive stationary points. Furthermore, to improve computational performance we
employ an explicit decomposition of �(θ) as εu(θ)v(θ)H inspired by Guglielmi and
Lubich (2011). Here we consider the following flow where u̇, v̇ and λ̇ denote the
derivatives of u, v and λ with respect to θ and where the dependency of u(θ), v(θ)
and λ(θ) on θ is omitted for notational convenience:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = ε
ξ(θ)

((
I −uuH

)
BT

wϕ(θ)ψ(θ)HCT
z v + j

2�
(
uH BT

wϕ(θ)ψ(θ)HCT
z v
)
u
)

v̇ = ε
ξ(θ)

((
I −vvH

)
Cz ψ(θ)ϕ(θ)H Bwu + j

2�
(
vHCz ψ(θ)ϕ(θ)H Bwu

)
v
)

λ̇ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 λ = b and
(∑R

r=0  (ϕ(θ)HGrψ(θ)e−s(θ)τk
))

> 0

0 λ = a and
(∑R

r=0  (ϕ(θ)HGrψ(θ)e−s(θ)τk
))

< 0

1
ξ(θ)

R∑

r=0
 (ϕ(θ)HGrψ(θ)e−s(θ)τk

)
otherwise

(14)
with s(θ) the rightmost characteristic root of M

(
s;λ(θ), εu(θ)v(θ)H

)
, and ϕ(θ) and

ψ(θ) the associated left and right eigenvectors, normalized such that

ξ(θ) = ϕ(θ)H
(
I +∑R

r=0 (Hr + λ(θ)Gr ) τr e−s(θ)τr
)
ψ(θ) > 0.

These paths are a combination of the paths presented in Borgioli and Michiels
(2020) (computing the pseudo-spectral abscissa for real-valued Frobenius norm
bounded uncertainties) and Guglielmi and Lubich (2011) (computing the pseudo-
spectral abscissa for complex-valued spectral norm bounded uncertainties). The ful-
fillment of the constraints, the monotonic increase of the objective function and the
(local) optimality of stationary points follows from these works. To conclude, we
give some intuition behind (14): the right-hand side can be interpreted as a projection
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of the gradient of the objective function on the tangent space of the feasible set. This
projection step is needed to ensure that the variables remain within the feasible set.

The algorithm for numerically solving (13) is summarized in Algorithm 1, where
sR
(
M(s;λ, εuvH )

)
gives the rightmost characteristic root of M(s;λ, εuvH ) and u̇k ,

v̇k and λ̇k correspond to the right-hand side of (14) evaluated at uk , vk and λk .

Algorithm 1 Discretization algorithm to solve (13).
k ← 0 and choose initial λ0, u0, v0
s−1 ← −∞ and s0 ← sR

(
M
(
s; λ0, εu0vH

0

))

while |sk − sk−1| > tol · |sk+sk−1|
2 do

Find h such that 
(
sR
(
M
(
s; λk +hλ̇k , ε(uk +hu̇k)(vk +hv̇k)

H
)) ) ≥


(
sR
(
M(s; λk , εukvH

k )
))

if No h > tolh is found then stop.
else

λk+1 ← λk + hλ̇k ; λk+1 ← max{a,min{λk+1, b}};
uk+1 ← uk + hu̇k ; uk+1 ← uk+1

‖uk+1‖2 ;
vk+1 ← vk + hv̇k ; vk+1 ← vk+1

‖vk+1‖2 ;
sk+1 ← sR

(
M
(
s;λk+1, εuk+1v

H
k+1

))
;

k ← k + 1;
end if

end while

Remark 3.4 To compute the rightmost characteristic root, we use the algorithm pre-
sented inWuandMichiels (2012). This algorithmexploits the relation between a non-
linear delay eigenvalue problem and the linear eigenvalue problem corresponding to
the solution operator of the associated delay differential equation. More precisely,
this method uses a spectral discretization of the solution operator to approximate
the characteristic roots. These roots are subsequently refined by applying Newton
corrections based on the original non-linear eigenvalue problem formulation. This
methods is however restricted to small problems. For large sparse matrices one could
use iterative methods such as Jarlebring et al. (2010), Güttel et al. (2014) to compute
the rightmost characteristic roots.

Once α[a, b]
ε is computed, its derivative with respect to ε can be computed almost

everywhere as shown in the following proposition.

Proposition 3.5 Let λ� and �� = εu�v�H be the unique optimizers of (13) and
assume that the rightmost characteristic root of M(s;λ�,��) is simple, then

dα[a, b]
ε

dε
=  (ϕ�H Bwu�v�HCzψ

�
)

ϕ�H (I +∑R
r=0 (Ak + λ�Gr ) τr e−τr s�

)ψ�
,
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with s� the rightmost characteristic root of M(s;λ�,��) and φ� and ψ� its corre-
sponding left and right eigenvectors, normalized such that the denominator is real
and positive.

Proof Similar as in Borgioli and Michiels (2020, Theorem 2).

4 A Scalable H-Infinity Controller Synthesis Method

In this section we will describe a controller synthesis method for networked systems
of form (3)whose associated adjacencymatrix fulfillsAssumption 1. The idea behind
the presented method is to find a suitable controller by directly minimizing (7) in the
controller parameters p. Or in other words, we look for controller parameters p� that
fulfill

p� ∈ argmin
p

‖T̂ŵẑ(·;p, ·)‖[a, b]
H∞ . (15)

Note however that ‖T̂ŵẑ(·;p, ·)‖[a, b]
H∞ is only an upper bound for the actualH∞-norm

of (4). The resulting control parameters will therefore in most cases not minimize
the actual H∞-norm of the system, but this methodology has the advantage that its
computation cost does not depend on the number of subsystems. Furthermore, if
Assumption 1 remains valid with a and b independent of the number of subsystems,
then the resulting controller guarantees a level of disturbance rejection even if the
number of subsystems is unknown.

The minimization of (15) is however not trivial, as the robust H∞-norm may
be a non-smooth and non-convex function of the controller parameters even if the
controller matrices are analytic functions of the controller parameters. This precludes
the usage of standard optimizationmethods. Therefore,wewill useHANSO(Overton
2009), which implements a combination of BFGS with weak Wolfe line search
and gradient sampling. Furthermore, to decrease the chance of ending up at a local
optimum we will restart the optimization algorithm from several initial points. The
optimization procedure requires the evaluation of both the objective function and its
derivative with respect to the control parameters whenever this derivative exists. To
evaluate the objective function,we use themethod presented in Sect. 3. The derivative
with respect to the control parameters follows from the following proposition.

Proposition 4.1 If there exists a unique pair

(ω�,λ�) ∈ argmax
λ∈[a, b], ω∈R+

σ1 (T (jω;p,λ))

and if σ1 (T (jω�;p,λ�)) is simple, then the function p �→ ‖T̂ŵẑ(·;p, ·)‖[a, b]
H∞ is dif-

ferentiable at p, with
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d

dp
‖T (·;p, ·)‖[a, b]

H∞ = 
(

uH

(
∂

∂p
T (jω�;p,λ�)

)

v

)

,

in which u and v are the normalized left and right singular vectors associated with
σ1
(
T (jω�;p,λ�)

)
, respectively.

Finally, to start the optimization process we need initial controller parameters p for
which the system is internally exponentially stable for all λ ∈ [a, b]. To find such a
starting point, we use the method presented in Dileep et al. (2018a).

5 Example

In this example we consider a networked system that consists of N frictionless carts
that are interconnected using identical springs and that each balance an inverted
pendulum. Furthermore, the first and the last cart are connected to the wall using
additional (but identical) springs. This set-up is illustrated in Fig. 6 for N equal
to 3. The dynamics of an individual cart-pendulum subsystem are governed by the
following non-linear delay differential equations

⎧
⎪⎨

⎪⎩

(M + m)d̈ j (t) + ml cos
(
θ j (t)

)
θ̈ j (t) − ml sin

(
θ j (t)

)(
θ̇ j (t)

)2 +
k
(
d j (t) − d j+1(t)

)+ k
(
d j (t) − d j−1(t)

)− u j (t − τu) − w j,1(t) = 0

l θ̈ j (t) − g sin
(
θ j (t)

)+ d̈ j (t) cos
(
θ j (t)

)− w j,2(t) = 0

for j = 1, . . . , N and M the mass of the individual carts, m the mass of the pendu-
lum’s bob which is connected to the cart using a massless rod of length l, k the spring
constant, u j a controllable force that acts on the cart with an input delay τu , w j,1

and w j,2 external disturbances, θ j the angular displacement of the pendulum of cart
j , d j the horizontal displacement of the j th cart’s centre of mass with respect to its
equilibrium position and d0 = dN+1 = 0. By a linearization around the equilibrium

k
M

m

lθ1

d1

u1

k
M

m

lθ2

d2

u2

k
M

m

lθ3

d3

u3

k

Fig. 6 Schematic representation of the considered set-up for N = 3
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point (d j , ḋ j , θ j , θ̇ j ) = (0, 0, 0, 0) for j = 1, . . . , N and choosing
[
d j (t) θ j (t)

]T
as

both measured and performance output, we obtain the following linear state-space
model of form (1):

ẋ j (t) =

⎡

⎢
⎢
⎣

0 1 0 0
− 2k

M 0 −mg
M 0

0 0 0 1
2k
Ml 0 g

l + mg
Ml 0

⎤

⎥
⎥
⎦x j (t) +

⎡

⎢
⎢
⎣

0
1
M
0
−1
Ml

⎤

⎥
⎥
⎦u j (t −τu) +

⎡

⎢
⎢
⎣

0
k
M
0
−k
Ml

⎤

⎥
⎥
⎦u

(n)
j (t)+

⎡

⎢
⎢
⎣

0 0
1
M

−m
M

0 0
−1
Ml

1
l + m

Ml

⎤

⎥
⎥
⎦w j (t)

(16)

y j (t) =
[
1 0 0 0
0 0 1 0

]

x j (t), y(n)
j (t) = [

2 0 0 0
]
x j (t), z j (t) =

[
1 0 0 0
0 0 1 0

]

x j (t)

with,

u(n)
j (t) =

N∑

i=1

PN
j,i y

(n)
i (t),

and

PN = P line
N =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0.5
0.5 0 0.5

. . .
. . .

. . .

0.5 0 0.5
0.5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The input signal u j is generated using a controller of form (2) with nc equal to 2.
Furthermore, we will allow communication between the controllers of neighbor-
ing subsystems and as control parameters p we choose the elements of the control
matrices.

Asmentioned in Example 2.4, the eigenvalues of P line
N are restricted to the interval

[−1, 1] for all N > 1. It thus follows from Corollary 2.3 that the robust H∞-norm
of a parametrized subsystem of form (6) with λ an uncertainty bounded to [−1, 1],
forms an upper bound for theH∞-norm of the overall network that holds independent
of N . Furthermore, this upper bound can be computed efficiently using the method
presented in Sect. 3.

For the following parameter values:M = 1kg,m = 0.05kg, k = 1N/m, l = 1m,
g = 9.8 m/s2, τu = 0.1 s and τunc = 0.2 s, we apply the procedure of Chap.4 to find
the controller parameters that minimize this upper bound. The obtained controller
matrices (rounded to four digits accuracy) are:
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Table 1 The H∞-norm (rounded to 6 digits accuracy) of the closed loop networked system for
several N and the computation time required by the algorithm described in Gumussoy andMichiels
(2011) to compute these values

N 3 5 10 15

‖T (·; p�, N )‖H∞ 0.512228 0.512239 0.512246 0.512247

Computation
time (s)

17.39 91.56 806.3 2961

Jp� =
[

−67.92 −313.2
−52.15 −306.8

]

Fp� =
[

−407.4 1139
141.8 1519

]

F (n)
p� =

[
−33.74 −112.6
−91.45 −147.9

]

Lp� = [
−143.3 −834.4

]

Kp� = [
349.9 4172

]
K (n)

p� = [
−246.5 −406.9

]
,

(17)

in which the subscript p� is used to indicate that these matrices correspond to the
minimizing control parameters. The corresponding upper bound for the H∞-norm
equals 0.512249 (rounded to 6 digits). Table 1 gives the actual H∞-norm of the
closed loop system with controller matrices (17) for several N . We observe that
these values lie close to the computed upper bound. This table also gives the time
required by the algorithm described in Gumussoy and Michiels (2011) to compute
these values. As expected, the computation time grows roughly cubicallywith respect
to N . For comparison, the computation time of the robustH∞-norm of the associated
uncertain subsystem equals 75.70 s. For system with large number of subsystems it
is thus beneficiary to minimize this upper bound instead of the actual H∞-norm.

Next, we will examine the disturbance rejection of the closed loop system for
N equal to 20. We simulate the system for t ∈ [0, 10] where both the state and the
controller state are equal to 0 for t < 0, and each performance input is low pass
filtered (ωcuto f f = 6π) Gaussian white noise which is scaled after filtering to have a
root mean square energy of 0.1. Figure 7 shows the performance inputs and outputs
of the 10th subsystem. We observe that the noise is well attenuated. The root mean
square energy of z10,1 and z10,2 are equal to 0.03610 and 0.02094, respectively.

As explained in Corollary 2.3, the robust H∞-norm of an associated uncertain
subsystem of form (6) was used as upper bound for the actual H∞-norm of the
networked system. Figure 8 shows the “worst-case gain function” of this associated
uncertain subsystem:

ω �→ max
λ∈[−1, 1]

σ1

(
T̂ŵẑ(jω;p�,λ)

)
(18)

for ω ∈ [10−1, 102]. The robust H∞-norm, which is equal to the maximal value
of this worst-case gain function, is indicated with a dashed line. We observe that
the worst-case gain function is flat and almost equal to the robust H∞-norm for
ω ∈ [0, 10]. This phenomenon is typical for the direct optimization framework.
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Fig. 7 Simulation of the performance inputs (left) and outputs (right) of the 10th subsystem for
t ∈ [0, 10] of the closed loop system (16)–(17) for N = 20. The state and the controller state are
equal to zero for t < 0. Each performance input is low pass filtered (ωcuto f f = 6π) Gaussian white
noise, scaled after filtering to have a root mean square energy of 0.1

Fig. 8 The worst-case gain
function of the associated
uncertain subsystem as
defined in (18) for
ω ∈ [10−1, 102]. The robust
H∞-norm,
‖T̂ŵẑ(·; p�, ·)‖[−1, 1]

H∞ , is
indicated with a dashed line
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6 Conclusion

In this chapter we introduced a scalable controller synthesis method for networked
systems with identical subsystems and an interconnection topology that fulfills
Assumption 1. Using the decoupling transformation of Sect. 2 we arrived at an
upper bound for theH∞-norm which can be computed at a cost that does not depend
on the number of subsystems. This upper bound was the robust H∞-norm of a sin-
gle subsystem with an additional scalar uncertainty. Subsequently an algorithm to
compute this robustH∞-norm was discussed in Sect. 3. Finally, Sect. 4 showed how
a controller that minimizes this upper bound can be synthesized using the direct
optimization framework.
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To conclude, we note that the presented method can be extended to more general
identical subsystems, e.g., subsystems with direct feed-through terms. For such sys-
tems, however, theH∞-norm is sensitive to infinitesimal delay changes and the strong
H∞-norm is a more appropriate performance measure (Gumussoy and Michiels,
2011). Furthermore, as in Sect. 2, one can show that the strong H∞-norm of the
overall system is upper bounded by the robust strong H∞-norm of a single uncer-
tain subsystem. This robust strong H∞-norm can be computed using the method
presented in Appeltans and Michiels (2021).
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Regenerative Machine Tool Vibrations

Tamás Insperger and Gabor Stépán

Abstract Two basic models of machine tool vibrations are presented. First, a simple
model of orthogonal turning process is discussed where material is removed from
the rotating workpiece by a tool. Vibrations of the tool are copied on the workpiece’s
surface and, after one revolution, the tool cuts this wavy surface. This phenomenon
is called surface regeneration and the equations governing the vibrations are delay
differential equations where the time delay is equal to the rotation period of the
workpiece. Then, the mechanical model of milling operation is presented. Here the
surface regeneration effect is combined by the parametric forcing of the entering
and exiting cutting teeth. The governing equation is hence a time-periodic delay
differential equation where the time delay and the principal period are both equal
to the tooth passing period. Stability diagrams in the plane of the technological
parameters are constructed for both turning and milling operations.

1 Introduction

Machine tool vibration ormachine tool chatter is knownas a large amplitude vibration
between the tool and theworkpiece duringmachining typically involving intermittent
loss of contact of the tool and the workpiece. These vibrations are accompanied
with a high-frequency noise during machining (chatter noise) and are copied on
the workpiece surface resulted in chatter marks (see Fig. 1). Machine tool chatter
decreases the lifetime of the tool and results in a poor surface quality, therefore its
prediction is of high importance in manufacturing engineering.
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Fig. 1 Chattermarks caused by the vibrating tool (photo by Roland Horvath)

The history of machine tool chatter goes back to a century, when Taylor (1907)
described machine tool chatter as the “most obscure and delicate of all problems
facing the machinist.” After the extensive work of Tobias and Tlusty (Tobias and
Fishwick, 1958; Tobias, 1965; Tlusty et al., 1962), the so-called regenerative effect
became the most commonly accepted explanation for machine tool chatter. This
effect is related to the cutting-force variation due to the wavy workpiece surface cut
one revolution ago. Stability properties of the machining process are depicted by
the so-called stability lobe diagrams, which plot the maximum stable axial depths
of cut versus the spindle speed. These diagrams provide a guide to the machinist to
select the optimal technological parameters in order to achieve maximum material
removal rate without chatter. Although there exist many sophisticated methods to
optimize manufacturing processes, machine tool chatter is still an existing problem
in manufacturing centers.

This chapter gives an overview on the main mechanism of regenerative machine
tool chatter in turning and milling processes. First, the mechanical model of regen-
erative vibrations in turning operations is given, the governing equation, which is a
Delay Differential Equation (DDE) with constant coefficients, is derived, the stabil-
ity analysis is performed and the stability lobe diagrams are constructed. Second, the
mechanical model of milling operations is considered, which are described by DDEs
with time-periodic coefficients. Stability analysis of milling operations is determined
by the semidiscretization method (Insperger and Stépán, 2011).

2 Turning Operations

The basis of regenerative cutting models is that either the tool, or the workpiece or
both are flexible and the chip thickness varies due the relative vibrations of the tool
and the workpiece. The tool cuts the surface that was formed in the previous cut,
and the chip thickness is determined by the current and a previous position of the
tool/workpiece. The time delay between two succeeding cuts is equal to the period
of the workpiece rotation for turning (or the tooth-passing period for milling). The
simplest model to describe regenerative machine tool vibrations is the orthogonal
turning process.
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2.1 Mechanical Model

Fig. 2 shows the chip removal process in an orthogonal turning operation for an
ideally rigid tool and for a compliant tool. In the latter case, the tool experiences
bending vibrations and leaves a wavy surface behind. The system can be modeled as
a two-degrees-of-freedom oscillator excited by the cutting force, as shown in Fig. 3.
If there is no dynamic coupling between the x and y directions, then the governing
equation can be given as

mẍ(t) + cx ẋ(t) + kx x(t) = Fx (t) ,

mÿ(t) + cy ẏ(t) + ky y(t) = Fy(t) ,

Fig. 2 Chip removal in orthogonal turning processes in the case of an ideally rigid tool (left) and
real compliant tool (right)

Fig. 3 Surface regeneration in an orthogonal turning process
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wherem, cx , cy , kx , and ky are the modal mass and the damping and stiffness param-
eters in the x and y directions, respectively. The cutting force is given in the form

Fx (t) = Kx w hq(t) , (1)

Fy(t) = Ky w hq(t) , (2)

where Kx and Ky are the cutting-force parameters in the tangential (x) and the normal
(y) directions, w is the depth of cut (also known as the width of cut or the chip width
in cases of orthogonal cutting), h(t) is the instantaneous chip thickness, and q is the
cutting-force exponent. In this model, it is assumed that the tool never leaves the
workpiece, that is, h(t) > 0 during the cutting process.

If the tool were rigid, then the chip thickness would be constant h(t) ≡ h0, which
is just equal to the feed per revolution. However, in reality, the tool experiences
vibrations that are recorded on the workpiece, and after one revolution, the tool cuts
this wavy surface. The chip thickness h is determined by the feed motion, by the
current tool position and by an earlier position of the tool. The time delay τ between
the present and the previous cut is determined by the equation

R2πΩτ

60
= 2Rπ + x(t) − x(t − τ ) ,

where Ω is the spindle speed given in [rpm] and R is the radius of the workpiece.
Since the amplitude of the vibrations is typically much smaller than the workpiece
diameter (i.e., |x(t)| � 2Rπ), the regenerative time delay will be approximated by
the constant

τ = 60

Ω
.

The chip thickness can be given as the combination of the feed and the present
and the delayed positions of the tool in the form

h(t) = vfτ + y(t − τ ) − y(t) ,

where vf is the feed velocity. Thus, the governing equation can be written as

mẍ(t) + cx ẋ(t) + kx x(t) = Kxw
(
vfτ + y(t − τ ) − y(t)

)q
, (3)

mÿ(t) + cy ẏ(t) + ky y(t) = Kyw
(
vfτ + y(t − τ ) − y(t)

)q
. (4)

The substitution of the equilibrium states x(t) ≡ x̄ and y(t) ≡ ȳ into (3) and (4)
gives the solution
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x̄ = Kxw(vfτ )q

kx
, (5)

ȳ = Kyw(vfτ )q

ky
. (6)

This constant steady-state solution is equal to the deflection of the tool for a stationary
case when the tool does not vibrate during the cutting process, but it has a constant
deflection. Linearization about the equilibrium gives the variational system

mξ̈(t) + cx ξ̇(t) + kxξ(t) = Kxwq(vfτ )q−1
(
(η(t − τ ) − η(t))

)
, (7)

mη̈(t) + cy η̇(t) + kyη(t) = Kywq(vfτ )q−1
(
(η(t − τ ) − η(t))

)
, (8)

where ξ = x − x̄ and η = y − ȳ. Note that Eq. (7) is an Ordinary Differential Equa-
tion (ODE) forced by η, while Eq. (8) is a DDE. Consequently, the stability of the
linear system is determined only by Eq. (8).

Dividing equation (8) by m gives

η̈(t) + 2ζωnη̇(t) + ω2
nη(t) = H (η(t − τ ) − η(t)) , (9)

where ωn = √
ky/m is the natural angular frequency, ζ = cy/(2mωn) is the damping

ratio of the tool in the y direction, and H = Kywq(vfτ )q−1/m is the specific cutting-
force coefficient. Note that H is linearly proportional to the depth of cut w, which
is an important technological parameter for machinists. Equation (9) is the simplest
mathematical model that describes regenerative machine tool chatter.

2.2 Stability Analysis

The stability of the system can be determined by the D-subdivision method (Stépán,
1989). Substitution of the trial solution η(t) = Aeλt into Eq. (9) or alternatively, the
Laplace transformation gives the characteristic equation

λ2 + 2ζωnλ + ω2
n + H

(
1 − e−λτ

) = 0 .

Substitution of λ = γ ± iω and decomposition into real and imaginary parts give

Re : γ2 − ω2 + 2ζωnγ + ω2
n + H − He−γτ cos(ωτ ) = 0 , (10)

Im : 2ζω + 2ζωnω + He−γτ sin(ωτ ) = 0 . (11)

The D-curves can be obtained by substituting γ = 0:
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Re : − ω2 + ω2
n + H − H cos(ωτ ) = 0 , (12)

Im : 2ζωnω + H sin(ωτ ) = 0 . (13)

This system of equation should be solved for H and Ω = 60/τ . First, taking the
square of both sides of Eqs. (12) and (13) and summing them gives

(
ω2
n − ω2

)2 + 2 H
(
ω2
n − ω2

) + H 2 + 4ζ2ω2
nω

2 = H 2 .

This equation yields

H =
(
ω2 − ω2

n

)2 + 4ζ2ω2
nω

2

2
(
ω2 − ω2

n

) . (14)

Then, move the terms with H to the right side in Eqs. (12) and (13) and divide the
left and right sides of the resulted equations to get

ω2 − ω2
n

−2ζωnω
= 1 − cos(ωτ )

sin(ωτ )
.

Utilize that
1 − cos(ωτ )

sin(ωτ )
= tan

(
1

2
ωτ

)
,

and from here one gets

τ = 2

ω

(
jπ − arctan

(
ω2 − ω2

n

2ζωnω

))
, j = 0, 1, 2, . . . , (15)

which gives

Ω = 30ω

jπ − arctan

(
ω2 − ω2

n

2ζωnω

) , j = 0, 1, 2, . . . . (16)

The D-curves in parametric curves are given by Eqs. (14) and (16), where the
parameter ω is the frequency of the arising vibrations in [rad/s]. Figure4 shows the
D-curves and the number of unstable characteristic exponents in the plane of the
dimensionless specific cutting-force coefficient

H

ω2
n

=

((
ω
ωn

)2 − 1

)2

+ 4ζ2
(

ω
ωn

)2

2

((
ω
ωn

)2 − 1

)
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Fig. 4 Stability chart and the number of unstable characteristic exponents for (9) with ζ = 0.05

and the dimensionless spindle speed Ω/(60 fn), where fn = ωn/2π is the natural
frequency of the tool in [Hz]. As can be seen, (16) and (14) give a pair of D-curves
for each integer j ≥ 1, one in the domain H > 0 associated with ω > ωn and one in
the domain H < 0 associatedwithω < ωn. The case j = 0 gives a single curve in the
domain H < 0. In the literature, theseD-curves are called lobes or stability lobes. The
lobes of index j = 1 are the rightmost ones; all the other lobes with j ≥ 2 are located
at lower spindle speeds. Each pair of lobes has a vertical asymptote at Ω = 60 fn/j
indicated by dotted lines in Fig. 4. The limits for the frequency parameter ω along
the stability lobes are also presented. Frequency parameters ω < 0 give D-curves in
the negative spindle speed domain (not presented here).

The number of unstable characteristic exponents can be determined by the analysis
of the exponent-crossing direction (also called root tendency) along the D-curves.
For this analysis, one should take the partial derivative of both sides of Eqs. (10)
and (11) with respect to the specific cutting force coefficient H , and then substitute
γ = 0. This gives the system of equations

A γ′ + B ω′ = cos(ωτ ) − 1 ,

−B γ′ + Aω′ = − sin(ωτ ) ,

where γ′ and ω′ are the partial derivatives of γ and ω with respect to H , respectively,
and

A = 2ζωn + Hτ cos(ωτ ) ,

B = Hτ sin(ωτ ) − 2ω .

From here, one gets
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γ′ = 1

A2 + B2
(A cos(ωτ ) − AB sin(ωτ )) ,

which, after substituting A and B gives

γ′ = 1

A2 + B2

(
τ

(
ω2 − ω2

n

) + 2 Hζωn
(
ω2 + ω2

n

))
.

This implies that the sign of γ′ is equal to the sign of H along the D-curves (note
that ω < ωn if H < 0 and ω > ωn if H > 0). In the case H = 0, the system is
a damped oscillator, which is asymptotically stable. Consequently, in the region
bounded by the stability lobes (indicated by gray shading in Fig. 4), the number of
unstable characteristic exponents is zero. This parameter region is associated with
stable/chatter-free machining process. Note that from a practical point of view, only
the domain H > 0 is relevant, since this corresponds to positive depth of cut values.

The stability boundaries in Fig. 4 represent Hopf bifurcation, since the character-
istic exponents cross the imaginary axis with a nonzero imaginary part (i.e., ω �= 0)
as we cross the stability boundaries. If the cutting forces are given in the form (1)
and (2) with q ≈ 0.75, then the stability boundaries represent subcritical Hopf bifur-
cations. In case of a subcritical Hopf bifurcation, an unstable periodic orbit coexists
with the stable stationary cutting state that may lead to chatter even within the linear
stability boundaries.

Figure5 shows the practical region of the stability chart (i.e., for positive depths
of cut) and the associated frequency ratio diagram, where f = ω/2π is the frequency
of the arising self-excited vibrations at the stability boundaries in [Hz]. The stability
lobes are usually characterized by their index: the lobe of index j is called the j th
lobe. The minimum points of the lobes can be determined by differentiating (14)
with respect to ω, giving

dH

dω
(ω∗) = 0 ⇒ ω∗ = ωn

√
2ζ + 1 , Hmin = H(ω∗) = 2ζω2

n(1 + ζ) . (17)

For ζ = 0.05 in Fig. 5, (17) gives Hmin/ω
2
n = 2ζ(1 + ζ) = 0.105.

2.3 Phase Shift Along the Stability Lobes

Regenerative machine tool chatter is also often explained by the phase shift between
the actual η(t) and the delayed η(t − τ ) position of the tool. The relation between
the regenerative delay and the chatter frequency is

τ = 2π

ω
k + ε

ω
,
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Fig. 5 Stability lobe diagram (bottom) and frequency diagram (top) for (9) with ζ = 0.05

where k is the number of full oscillation completedduring the period τ and ε ∈ (0, 2π]
is the phase shift. If ε = 0 (or 2π) then the tool at time instant t is in phase with the
tool at time instant t − τ . If ε = π then the tool at time instant t is in antiphase with
the tool at time instant t − τ . Using (15), the phase shift can be given as

ε =
(
j − k − 1

π
arctan

(
ω2 − ω2

n

2ζωnω

))
2π ,

where j is the lobe number. The fact that ω > ωn (if H > 0) and ε ∈ (0, 2π] implies
that j − k = 1. That is, the number of full oscillations by the tool over a delay period
is k = j − 1.

The value of the phase shift can be determined at specific points along the stability
lobes. At the left side of the lobe of number j , where ω → ωn:

Ω = 30ω

jπ − arctan

(
ω2 − ω2

n

2ζωnω

)
∣∣∣∣
ω→ωn

= 1

j

60

2π
ωn ,

ε = 2π

(
j − k − 1

π
arctan

(
ω2 − ω2

n

2ζωnω

)) ∣∣∣∣
ω→ωn

= 2π

(note that j − k = 1). This means that during one revolution of the workpiece, the
tool completes k + 1 = j number of full oscillations. In other words the tool at time
instant t is in phase with the tool at time instant t − τ .

At the right side of the lobe of number j , where ω → ∞:
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Fig. 6 Phase shift between the actual η(t) and the delayed η(t − τ ) position of the tool. See the
variation of the chip thickness: the actual tool position is in phase (left) and in antiphase (right) with
previous tool position

Ω = 30ω

jπ − arctan

(
ω2 − ω2

n

2ζωnω

)
∣∣∣∣
ω→∞

= ∞ ,

ε = 2π

(
j − k − 1

π
arctan

(
ω2 − ω2

n

2ζωnω

)) ∣∣∣∣
ω→∞

= π .

Thus, during one revolution of the workpiece, the tool completes k + 1/2 = j − 1/2
number of full oscillations. In other words the tool at time instant t is in antiphase
with the tool at time instant t − τ .

At the minimum point of lobe of number j , where ω = ω∗ = ωn
√
2ζ + 1:

Ω = 30ωn
√
2ζ + 1

jπ − arctan

(
ω2
n(2ζ + 1) − ω2

n

2ζωnωn
√
2ζ + 1

) ≈ 1

j − 1
4

60

2π
ωn ,

ε = 2π

(
j − k − 1

π
arctan

(
ω2
n(2ζ + 1) − ω2

n

2ζωnωn
√
2ζ + 1

)) ∣∣∣∣
ω→∞

= 3

2
π .

(Here, it was used that
√
2ζ + 1 ≈ 1 if ζ is small.) Thus, during one revolution of

the workpiece, the tool completes k + 1/2 = j − 1/4 number of full oscillations.
The phase between the actual and the delayed position of the tool for different

phase shifts ε is shown in Fig. 6. The oscillations of the tool over a delay period along
the stability lobes are shown in Fig. 7. The number of full oscillations is increasing
with the number j of the lobes.

3 Milling Operations

Compared to turning processes, regenerative machine tool chatter is an even more
challenging problem for milling operations. In the case of milling, the rotation of the
tool and the continuously entering and exiting cutting edges (see Fig. 8) present a
parametric excitation, which, combined with the surface regeneration effect, results
in a DDE with time-periodic coefficients. The first results regarding the stability
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Fig. 7 Oscillations over a delay period along the stability lobes

Fig. 8 Milling operation
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properties of milling processes appeared in Tobias’s and Tlusty’s works (Tobias and
Fishwick, 1958;Tobias, 1965;Tlusty et al., 1962). They considered the time-averaged
cutting force instead of the time-periodic one, so their models were equivalent to a
DDE with constant coefficients. These models can be used for processes with large
radial immersion and large number of cutting teeth when the parametric excitation of
the teeth is negligible. For small radial immersion, however, the intermittent nature of
the cutting process cannot be neglected. In these cases, the extended Floquet theory
should be applied for the stability analysis. A well-known technique is the multi
frequency solution developed by Budak and Altintas (Altintas and Budak, 1995;
Budak and Altintas, 1998; Altintas, 2012), which is a frequency-domain method
based on Fourier expansion of the periodic terms and Hill’s infinite determinant
technique. An alternative, time-domain method is the semidiscretization method
(Insperger and Stépán, 2002, 2011). In this chapter, we consider a single-degree-of-
freedom model of milling operation and determine the stability properties using the
semidiscretization method.

3.1 Mechanical Model

One of the simplest models of end milling is shown in Fig. 9. This model is taken
from Insperger et al. (2003a). The workpiece is assumed to be flexible in the feed
direction (direction x) withmodalmassm, damping coefficient c, and spring stiffness
k, while the tool is assumed to be rigid. The tool has N equally distributed cutting
teeth with zero helix angles. The spindle speed is � given in [rpm]. According to
Newton’s law, the equation of motion reads

Fig. 9 Single-degree-of-freedom mechanical model of end milling process with a straight fluted
tool
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Fig. 10 Cutting-force
components and chip
thickness model in the
milling process

mẍ(t) + cẋ(t) + kx(t) = −Fx (t) , (18)

where Fx (t) is the x component of the cutting force vector acting on the tool. Let the
teeth of the tool be indexed by j = 1, 2, . . . , N . The geometry of the milling process
and the cutting forces are shown in Fig. 10.

The tangential and radial components of the cutting force acting on tooth j read

Fj, t(t) = g j (t)Ktaph
q
j (t) ,

Fj, r(t) = g j (t)Kraph
q
j (t) ,

where Kt and Kr are the tangential and radial cutting-force parameters, respectively,
ap is the axial depth of cut, h j (t) is the chip thickness cut by tooth j and q is the
cutting-force exponent. Function g j (t) is a screen function; it is equal to 1 if tooth j
is in the cut and 0 if it is not. If ϕen and ϕex denote the angular locations where the
cutting teeth enter and exit the cut, then the screen function reads

g j (t) =
{
1 if ϕen < (ϕ j (t) mod 2π) < ϕex ,

0 otherwise,

where

ϕ j (t) = 2π �

60
t + j

2π

N

is the angular position of tooth j and mod is the modulo function. In the case of
up-milling,

ϕen = 0 , ϕex = arccos

(
1 − 2ae

D

)
,

while in the case of down-milling,
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Fig. 11 Sketch of up-milling and down-milling operations

ϕen = arccos

(
2ae
D

− 1

)
, ϕex = π ,

where ae is the radial immersion and D is the diameter of the tool (see Fig. 11).
Although a constant feed fz per tooth is prescribed, the actual feed A(t) per

tooth is not constant, since it is affected by the present and a delayed position of the
workpiece in the form

A(t) = fz + x(t) − x(t − τ ) ,

where τ = 60/(N�) [s] is the regenerative delay, which coincides with the tooth-
passing period (note that the spindle speed � is given in [rpm]). The instantaneous
chip thickness h j (t) is determinedby the actual feed per tooth and the angular position
of the cutting teeth. A circular approximation of the tooth path gives

h j (t) = A(t) sinϕ j (t) = ( fz + x(t) − x(t − τ )) sinϕ j (t) .

The x component of the cutting force acting on tooth j is obtained as the projection
of Fj,t and Fj,r in the x direction, i.e.,

Fj, x (t) = Fj, t(t) cosϕ j (t) + Fj, r(t) sinϕ j (t) .

The x component of the resultant cutting force acting on the tool reads

Fx (t) = Q(t) ( fz + x(t) − x(t − τ ))q ,

where

Q(t) =
N∑
j=1

apg j (t) sin
q ϕ j (t)

(
Kt cosϕ j (t) + Kr sinϕ j (t)

)

is a periodic function with period τ . Thus, the equation of motion is the following
nonlinear time-periodic DDE:
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mẍ(t) + cẋ(t) + kx(t) = −Q(t) ( fz + x(t) − x(t − τ ))q . (19)

Assume that the motion of the workpiece can be written in the form

x(t) = xp(t) + ξ(t) , (20)

where xp(t) = xp(t + τ ) is a τ -periodic function, and ξ(t) is the perturbation (see
Fig. 9). In fact, xp(t) is the solution for the unperturbed ideal casewhen no self-excited
vibrations arise. Substitution of (20) into (19) yields

mẍp(t) + cẋp(t) + kxp(t) + mξ̈(t) + cξ̇(t) + kξ(t)

= −Q(t) ( fz + ξ(t) − ξ(t − τ ))q . (21)

In the ideal unperturbed case, ξ(t) ≡ 0 and the oscillations of the workpiece are
described by x(t) = xp(t). This case gives an ODE for xp in the form

mẍp(t) + cẋp(t) + kxp(t) = − f q
z Q(t) . (22)

Since this is a linear differential equation with τ -periodic forcing, it has a τ -periodic
particular solution. This proves the existence of the τ -periodic function xp(t) and
verifies the decomposition (20).

For linear stability analysis, the variational system of (19) about the periodic
motion xp(t) should be determined. Taylor expansion of the nonlinear terms in (21)
with respect to ξ and neglecting the higher-order terms gives

mẍp(t) + cẋp(t) + kxp(t) + mξ̈(t) + cξ̇(t) + kξ(t)

= − f q
z Q(t) − q f q−1

z Q(t) (ξ(t) − ξ(t − τ )) . (23)

Using (22) and (23), a linear time-periodic DDE is obtained for ξ:

mξ̈(t) + cξ̇(t) + kξ(t) = −q f q−1
z Q(t) (ξ(t) − ξ(t − τ )) . (24)

Introducing the natural angular frequency ωn = √
k/m and the damping ratio ζ =

c/(2mωn), (24) can be written in the form

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) = −HG(t) (ξ(t) − ξ(t − τ )) , (25)

where H = apq f
q−1
z Kr/m is the specific cutting-force coefficient and

G(t) =
N∑
j=1

g j (t) sin
q ϕ j (t)

(
Kt

Kr
cosϕ j (t) + sinϕ j (t)

)
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is a τ -periodic function called the directional dynamic cutting-force coefficient, or
simply the directional factor. If Kr = Ky , ap = w, fz = vfτ , andG(t) ≡ 1, then (25)
gives the governing Eq. (9) of turning operations.

The system can be written in the first-order form

ẋ(t) = A(t)x(t) + B(t)u(t − τ ) , (26)

u(t) = Dx(t) , (27)

where

x(t) =
(

ξ(t)
ξ̇(t)

)
, D = (

1 0
)

,

A(t) =
(

0 1
− (

ω2
n + HG(t)

) −2ζωn

)
, B(t) =

(
0

HG(t)

)
.

3.2 Stability Analysis by Semidiscretization

In this section, stability charts are determined for the system (26)–(27) using
the zeroth-order semidiscretization method (Insperger and Stépán, 2002, 2011).
Semidiscretization is based on the discrete time scale ti = ih, i ∈ Z, where the dis-
cretization step is h = τ/r and r an integer approximation parameter. The point of the
semidiscretizationmethod is that the delayed terms and the time-periodic coefficients
are discretized (such as in discrete-time sampling), while all the other terms in the
differential equation are unchanged. The (zeroth-order) semidiscrete approximation
of the system (26)–(27) reads

ẏ(t) = Ai y(t) + Biv(ti−r ) , t ∈ [ti , ti+1) , (28)

v(ti ) = Dy(ti ) , (29)

where

Ai = 1

h

∫ ti+1

ti

A(t) dt , Bi = 1

h

∫ ti+1

ti

B(t) dt .

Approximation of the term u(t − τ ) by term v(ti−r ) with piecewise constant
argument over the interval t ∈ [ti , ti+1) actually corresponds to a perturbation in the
delay, since the term v(ti−r ) can also be written as v(t − ρ(t)), where

ρ(t) = rh − ti + t , t ∈ [ti , ti+1) , (30)

is a sawtooth-like time-periodic time delay shown in Fig. 12. If r → ∞ and h → 0
such that rh = τ remains constant, then the time-periodic time delay ρ(t) tends to
the constant delay τ , as shown in Fig. 12.
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Fig. 12 Discrete-time sampling effect presented as time-periodic delay

In fact, the sampling effect introduces a periodic parametric excitation at the time
delay according to (30). System (28)–(29) is still a time-periodic DDE (i.e., a DDE
with time-periodic coeffcients and time-periodic point delay) with principal period τ .
The stability conditions are determined by the eigenvalues of the monodromy oper-
ator, which is typically an infinite-dimensional operator in case of delayed systems
(see, e.g., Breda, 2023). On the other hand, system (28)–(29) can also be considered
as a series of ODEs with a piecewise constant forcing on the right-hand side, which
implies that a finite-dimensional representation of the monodromy operator can be
given as shown below. The approximation parameter r is related to the resolution of
the delay period τ , therefore, it is called the delay resolution.

Solution over the interval [ti , ti+1) gives

yi+1 = Pi yi + Ri,0vi−r , (31)

where

Pi = eAi h ,

Ri =
∫ h

0
eAi (h−s) ds Bi .

If A−1
i exists, then integration gives

Ri = (
eAi h − I

)
A−1
i Bi ,

where I is the 2 × 2 identity matrix. Equations (31) and (29) imply the (2 + r)-
dimensional discrete map

zi+1 = Gi zi , (32)

where
zi = (

yi vi−1 vi−2 · · · vi−r
)T = (

xi ẋi xi−1 xi−2 · · · xi−r
)T

is the augmented state vector and the (2 + r) × (2 + r) coefficient matrix reads
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Gi =

⎛
⎜⎜⎜⎜⎜⎝

Pi 0 · · · 0 Ri

D 0 · · · 0 0
0 I · · · 0 0
...

...

0 0 · · · I 0

⎞
⎟⎟⎟⎟⎟⎠

.

Recalling that τ = rh, r repeated applications of (32) with initial state z0 gives the
monodromy mapping

zr = �z0,

where
� = Gr−1Gr−2 · · ·G0

is a (2 + r)-dimensional matrix representation of the monodromy operator of system
(26)–(27). In this way,� provides a finite-dimensional approximation of the infinite-
dimensional monodromy operator of the original system (26)–(27).

The stability of the approximate system (28)–(29) can be assessed by the eigen-
value analysis of matrix �. If all the eigenvalues are inside the unit circle of the
complex plane, then the system (28)–(29) is asymptotically stable. Since semidis-
cretization preserves asymptotic stability of the original system (28)–(29) (Hartung
et al., 2006), the method can be used to construct approximate stability charts.

As was mentioned in Chap.2, the critical characteristic multipliers can be located
in three ways:

1. |μ1,2| = 1 with Imμ1,2 �= 0 (secondary Hopf bifurcation);
2. μ1 = 1 (cyclic-fold bifurcation);
3. and μ1 = −1 (period-doubling or flip bifurcation).

It can easily be seen that the case μ1 = 1 cannot occur for (25). It is known that in
the critical subspace, ξ(t + τ ) = μ1ξ(t) is satisfied. If μ1 = 1, then ξ(t − τ ) = ξ(t),
and substitution into (25) gives the damped oscillator

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) = 0 . (33)

Since ζ andωn are positive, (33) is asymptotically stable; consequently, it cannot have
a characteristic exponent equal to zero, i.e., it cannot have a characteristic multiplier
equal to 1. This proves that cyclic-fold bifurcation cannot arise for (25).

With a different conclusion, the same idea can be applied in the case μ1 = −1.
Here, ξ(t − τ ) = −ξ(t), and substitution into (25) gives

ξ̈(t) + 2ζωnξ̇(t) + (
ω2
n + 2 HG(t)

)
ξ(t) = 0 .

This is an ODEwith time-periodic coefficient, for which the characteristic multiplier
μ1 = −1 typically arises for some parameter combination.
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3.3 Chatter Frequencies in Milling Operations

The vibration frequencies arising at the boundary of stability can be determined
using the critical characteristicmultipliers obtained by the semidiscretizationmethod
(Insperger et al., 2003b; Mann et al., 2003). Vibrations arise when the system loses
stability, i.e., when the critical characteristic multiplier satisfies |μ1| = 1. Equation
(25) is periodic at the tooth-passing period τ . According to the Floquet theory, the
solution corresponding to the critical characteristic multiplier μ1 reads

ξ(t) = a(t)eλ1t + ā(t)eλ̄1t , (34)

where a(t) is a τ -periodic function, bar denotes complex conjugate, and λ1 is the
critical characteristic exponent, i.e., μ1 = eλ1τ . Fourier expansion of a(t) and sub-
stitution of λ1 = iω1 results in

ξ(t) =
∞∑

j=−∞

(
C je

i (ω1+ j2π/τ )t + C̄ je
−i (ω1+ j2π/τ )t

)
, (35)

where C j and C̄ j are some complex coefficients. Note that ω1τ is equal to the phase
angle describing the direction of μ1 in the complex plane, so that −π < ω1τ ≤ π.
The exponents in (35) give the angular frequency content of the vibrations. The
corresponding vibration frequencies are

f = ±ω1

2π
+ j

τ
[Hz] , j = 0,±1,±2, . . . .

Of course, only the positive frequencies have physical meaning.
For the secondary Hopf lobes, the critical characteristic multipliers are a complex

conjugate pair in the form μ = e±iωτ , and the chatter frequencies are given by

fH = ±ω1

2π
+ j

N�

60
[Hz] , j = 0,±1,±2, . . . . (36)

According to (34), the solution is given as the product of the τ -periodic function a(t)
and the (2π/ω1)-periodic function eλ1t = eiω1t . Consequently, the resulting vibra-
tions are quasiperiodic. In the literature, vibrations due to secondary Hopf bifurca-
tions are often referred to as quasiperiodic chatter.

For the flip lobes, the critical characteristic multiplier is μ1 = −1, i.e., ω1τ = π.
The corresponding chatter frequencies are

fF = N�

120
+ j

N�

60
[Hz] , j = 0,±1,±2, . . . . (37)
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In this case, the period of the function eλ1t = eiω1t = ei πt/τ is 2τ . Consequently, the
solution according to (34) is a 2τ -periodic function that explains the terminology
period doubling: the period of the vibration is double of the tooth-passing period.

3.4 Stability Lobe Diagrams for Milling

Figure13 shows a series of stability lobe diagrams in the plane of the dimensionless
spindle speed N�/(60 fn) and the dimensionless specific cutting-force coefficient
H/ω2

n for different milling operations (note that H is linearly proportional to the
axial depth of cut ap). The corresponding frequency diagrams and the directional
factor G(t) are also presented. The damping ratio is ζ = 0.02, the cutting-force ratio
is Kr/Kt = 0.3, and the cutting-force exponent is q = 0.75. The same diagrams are
also shown for turning as the special limiting case whenG(t) ≡ 1. The technological
parameters for themilling operationswere determined such that the time-dependency
of the directional factor G(t) becomes stronger and stronger. The first case is a full-
immersion milling with a 4-fluted tool. In this case the tool is always in contact
with the workpiece, since two of its cutting edges are always in the cut, and the
directional factor G(t) is a continuous function. The other cases are all up-milling
operations by a 4-fluted tool with smaller and smaller radial immersion, resulting in
more and more interrupted machining. Highly interrupted machining operations can
be modeled approximately by a finite-dimensional discrete map instead of infinite-
dimensional DDEs such that the cutting process is considered as an impact with
the cutting force impulse being proportional to the chip thickness. In this sense,
Fig. 13 presents a transition between two special models ofmachining: the traditional
time-independent DDE model of turning operation and the discrete map model of
highly interrupted machining (Insperger and Stépán, 2004). Figure13 shows that a
series of extra stability lobes arises in addition to the Hopf lobes of turning as the
process becomesmore andmore interrupted. Numerical calculation shows that along
these additional lobes, a single characteristic multiplier crosses the unit circle at −1,
i.e., these lobes are associated with period-doubling (flip) bifurcation. As the radial
immersion decreases, the orientation of the flip lobes become vertical.

The frequency diagrams in Fig. 13 were obtained using (36) and (37). While turn-
ing operations are characterized by a well-defined single chatter frequency according
to the Hopf bifurcation of autonomous systems, milling operations, being paramet-
rically excited systems, present multiple vibration frequencies. Along the flip lobes,
the basic frequency of the vibrations is equal to half of tooth-passing frequency.
Along the Hopf lobes, quasiperiodic vibrations arise. It should be mentioned that
flip instability is directly related to the time-periodic nature of the milling process. It
occurs mostly for operations with small radial immersion when the directional factor
G(t) is strongly time-dependent.

Note that the frequency diagrams in Fig. 13 do not distinguish the dominant vibra-
tion frequencies. Generally, only one or two of these frequencies characterize the
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Fig. 13 Stability charts and frequency diagrams with the corresponding directional factor G(t) for
turning and different milling operations
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chatter signal, and the other harmonics are associated with negligible amplitudes.
For more details on the dominant chatter frequencies, see Dombovari et al. (2011).

Figure14 shows a series of stability charts for different radial immersion ratios
ae/D for a 2-fluted end mill cutter. The damping ratio is ζ = 0.02, the cutting-
force ratio is Kr/Kt = 0.3, and the cutting-force exponent is q = 0.75. The plots
give a transition of the stability charts between up-milling and down-milling. For up-
milling operations, the Hopf lobes are located to the left of the flip lobes. As the radial
immersion is increased, the flip lobes open and newHopf stability boundaries appear
while the original Hopf lobe shrinks to a loop-like curve (see the full-immersion
case). Reducing the radial immersion at the other side of the workpiece leads to the
down-milling operations (see Fig. 11).As the radial immersion is decreased, the loop-
like lobe disappears, while the new Hopf lobes remain dominant. For down-milling
operations, the Hopf lobes are located to the right of the flip lobes.

Figure14 clearly shows the main differences between up- and down-milling oper-
ations with a 2-fluted cutter. As can be seen, the flip lobes are located more or less
at the same spindle speed ranges, although they may vary in size for the different
cases. This is not true for the Hopf lobes. For low-immersion up-milling operations,
the Hopf lobes are located to the left of the flip lobes, while for down-milling, the
Hopf lobes are positioned to the right of the flip lobes. The physical explanation for
this special duality is the following. The flip lobes are related to the impact effects of
the cutting teeth as they enter and leave the cut. These are more or less independent
of the sense (up or down) of the operation. This is not the case for the Hopf lobes. As
was shown in Fig. 4, the conventional stability chart of turning operations contains
a part for negative depths of cut, which has no physical meaning there. In the case
of milling, the cutting force is multiplied by the directional factor G(t), which is
mostly positive for up-milling and mostly negative for down-milling operations (see
Fig. 14). The new Hopf lobes that emerge as the operation turns from up-milling to
down-milling are related to the lobes in the negative depth of cut values in Fig. 4,
which are dual to those in the positive region. This is the explanation for the duality
in the stability properties of up- and down-milling.

In addition to the intricate transition between the up- and down-milling cases, the
stability chart of (25) shows another interesting feature: the flip stability boundaries
are not always open lobes, but for certain parameter combinations, they are closed
curves forming unstable islands in the stability charts (Szalai and Stépán, 2006).
Figure15 shows the stability charts for an up-milling operationwith radial immersion
ae/D = 0.02 by a 4-fluted tool for different damping-ratio parameters. It can be seen
that as the damping ratio gets larger, the stability domains grow and the second flip
lobe at spindle speed N�/(60 fn) ≈ 0.7 closes and forms an unstable island within
the stable domain. These unstable islands appear as a result of the parametric forcing
of the milling process, and are therefore referred to as parametrically induced flip
islands.
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Fig. 14 Stability charts and the corresponding directional factor G(t) for milling operations with
different radial immersions for a 2-fluted tool (N = 2)
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Fig. 15 Stability charts for an up-milling operation with radial immersion ae/D = 0.02 by a
straight fluted tool with four cutting teeth for different damping ratio parameters ζ. The cutting-
force exponent is q = 1

3.5 Milling with Helical Tools

In the case of helical tools, the forces acting on the cutting edges change along the
axial direction of the tool. In the case of large axial immersion, this effect should
also be taken into account.

The single-degree-of-freedom model of end milling shown in Fig. 9 is considered
now with a helical tool of uniform helix angle β. The equation of motion of the
system is the same as (18), but here, the cutting-force component Fx(t) should be
derived in a different way due to the helical cutting edges. For this purpose, the tool
is divided into elementary disks along the axial direction, as shown in Fig. 16.

The angle of twist of the cutting edge j at axial immersion z isψ(z) = 2z tan β/D,
where D is the diameter of the tool. The relation between the helix angle β and the
helix pitch lp is tan β = Dπ/(Nlp). Thus, the angular position of the cutting edges
along the axial direction reads

ϕ j (t, z) = 2π �

60
t + j

2π

N
− z

2π

Nlp
.

The elementary cutting-force components acting on tooth j at a disk element of
width dz are
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Fig. 16 Geometry of a helical tool and its division into elementary disks along the axial z direction

dFj, t(t, z) = g j (t, z)Kth
q(t, z)dz ,

dFj, r(t, z) = g j (t, z)Krh
q(t, z)dz ,

where Kt and Kr are the cutting-force parameters in the tangential and radial direc-
tions, respectively, h j (t, z) is the chip thickness cut by tooth j at axial immersion z,
and q is the cutting-force exponent. Function g j (t, z) reads

g j (t, z) =
{
1 if ϕen < (ϕ j (t, z) mod 2π) < ϕex ,

0 otherwise ,

where ϕen and ϕex are the entrance and exit immersion angles. The instantaneous
chip thickness at axial immersion z can be given as

h j (t, z) = ( fz + x(t) − x(t − τ )) sinϕ j (t, z) ,

where fz is the feed per tooth and τ = 60/(N�) [s] is the tooth-passing period. The
x component of the elementary cutting force acting on tooth j reads

dFj, x (t, z) = dFj, t(t, z) cosϕ j (t, z) + dFj, r(t, z) sinϕ j (t, z) ,

and the x component of the resultant cutting force acting on the tool is

Fx (t) = Q(t) ( fz + (x(t) − x(t − τ )))q ,

where
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Q(t) =
N∑
j=1

(∫ ap

0
g j (t, z) sin

q ϕ j (t, z)
(
Kt cosϕ j (t, z) + Kr sinϕ j (t, z)

)
dz

)
.

The equation of motion is the nonlinear time-periodic DDE

mẍ(t) + cẋ(t) + kx(t) = −Q(t) ( fz + x(t) − x(t − τ ))q .

Linearization about the steady-state periodic solution xp(t) = xp(t + τ ) gives the
variational system in the form

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) = −G(t, ap) (ξ(t) − ξ(t − τ )) , (38)

where

G(t, ap) =
N∑
j=1

(
q f q−1

z

m

∫ ap

0
g j (t, z) sin

q ϕ j (t, z)
(
Kt cosϕ j (t, z)

+ Kr sinϕ j (t, z)
)
dz

)

is a particular directional factor that depends on the axial immersion ap. Equation
(38) is written in the first-order form

ẋ(t) = A(t)x(t) + B(t)u(t − τ ) ,

u(t) = Dx(t) ,

with

x(t) =
(

ξ(t)
ξ̇(t)

)
, D = (

1 0
)

,

A(t) =
(

0 1
− (

ω2
n + G(t, ap)

) −2ζωn

)
, B(t) =

(
0

G(t, ap)

)
.

Stability charts can be determined by the semidiscretization method, as shown in
Sect. 3.2.

Stability charts are presented in Fig. 17 for up-milling operations with different
helix pitches.

A 4-fluted tool is considered (N = 4) with diameter D = 20mm. The radial
immersion is ae = 2mm; thus, the radial immersion ratio is ae/D = 0.1. The
cutting-force parameters are Kt = 107 × 106 N/m1+q and Kr = 40 × 106 N/m1+q ;
the cutting-force exponent is q = 0.75. The feed per tooth is fz = 0.1mm, for
which the linearized cutting-force coefficients are Ktq f

q−1
z = 800 × 106 N/m2 and

Krq f
q−1
z = 300 × 106 N/m2. The stiffness is k = 20 × 106 N/m, the natural fre-

quency is fn = ωn/2π = 400Hz, and the damping ratio is ζ = 0.02. The first panel
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Fig. 17 Stability charts for a straight fluted tool (zero helix angle) and for helical tools with different
helix pitches

shows the stability diagram for a straight fluted tool. This diagram corresponds to
the case ae/D = 0.1 in Fig. 13. The other panels in Fig. 17 show the stability charts
for milling tools with different helix pitches. It can be seen that the flip lobes turn to
closed curves forming unstable islands within the stable domain. These islands are
separated by the lines where the depth of cut is equal to the multiples of the helix
pitch lp (indicated by dashed lines in Fig. 17).

The analysis of the particular directional factor G(t, ap) gives a clear explanation
for the existence of these unstable islands. If the axial depth of cut is equal to amultiple
of the helix pitch, that is, ap = jlp with j being a positive integer, then G(t, ap)
becomes constant in time, since the variation of the cutting forces distributed along
the helical edges are balanced along the helix pitch lp. Figure18 shows the unstable
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Fig. 18 Stability chart for a helical tool with lp = 25mm and the particular directional factor
G(t, ap) for certain axial depths of cut ap

islands for lp = 25mm and the plots of the particular directional factor G(t, ap) for
different depths of cut ap. For ap = lp and ap = 2lp, G(t, ap) is constant in time.
Consequently, at these parameters, the system is described by an autonomous DDE.
Therefore, the only possible way for loss of stability is the Hopf bifurcation. If flip
stability boundaries exist for other axial depths of cut (when ap �= jlp, j = 1, 2, . . . )
then they should form bounded islands between the lines ap = jlp.

Note that these flip islands are different from the parametrically induced ones
shown in Fig. 15. While the parametrically induced islands are related to the periodic
nature of the machining process, the islands in Figs. 17 and 18 are related to the
helical edges of the tool, and are therefore referred to as helix-induced flip islands.

4 Final Comments

In this chapter only some basic models were presented, which highlight the effect of
the regenerative delay on the dynamic behavior of machining processes. There exist
more sophisticated models in terms of the tooth path approximation (Faassen et al.,
2007; Bachrathy et al, 2011; Totis et al., 2019), the cutting edge geometry (Sims
et al., 2008; Dombovari and Stépán, 2012; Stépán et al., 2014; Kilic and Altintas,
2016) or the cutting force distribution on the cutting edge (Molnar et al., 2016, 2017).
Models involvingmultiple delays and time- and state-dependent delays are discussed
in Wan et al. (2011), Totis et al. (2019) and in Insperger et al. (2007), Bachrathy et al
(2011), Molnar et al. (2016), respectively. For a general and detailed overview on



Regenerative Machine Tool Vibrations 339

machine tool chatter and vibration suppression techniques, see Altintas and Weck
(2004); Munoa et al. (2016).

There is a huge literature for the numerical stability analysis of milling operations,
i.e., time-periodic delayed systems. The higher order semidiscretization method
(Insperger et al., 2008; Insperger and Stépán, 2011), the multi frequency solution
(Altintas and Budak, 1995; Budak and Altintas, 1998; Merdol and Altintas, 2004;
Altintas et al., 2008;Bachrathy andStépán, 2013), theChebyshev collocationmethod
(Butcher et al., 2004; Totis et al., 2014), the spectral element method (Khasawneh
and Mann, 2011; Lehotzky et al., 2016, 2017) or the pseudospectral tau approxi-
mation (Lehotzky and Insperger, 2016) can be mentioned as examples. For some
special models, analytical approaches can also be used, see e.g., the method in (Sims
et al., 2008; Sims, 2016) for variable pitch cutters. Several methods have also been
developed to robust stability analysis of machine tool chatter, which account for the
uncertainties in the model parameters (Totis, 2009; Hajdu et al., 2017, 2020).
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Dynamics of Human Balancing

Tamás Insperger, Gabor Stépán and John Milton

Abstract Mechanical models of two human balancing tasks, quiet standing and
stick balancing on the fingertip, are discussed with special attention to the reaction
time delay. As in many control systems, time delay sets limitation to performance
during balancing tasks. Human subjects cannot balance an arbitrarily short stick
on the fingertip, because a short stick falls faster than the time needed to make a
corrective motion. Also, increased reaction time delay is one of the main reasons
of instability during quiet standing, which can lead to falls especially among the
elderly. The governing equation of the twomodels are second-order delay differential
equations. In this chapter, stabilizability issues are discussed in terms of the critical
delay for different feedback concepts, such as proportional-derivative, proportional-
derivative-acceleration and predictor feedback.

1 Introduction

Human balancing has several implications to people’s everyday activities. Falling
due to loss of balance is one of the most important and, at the same time, one of
the most challenging problems related to human balance. Indeed, in the aging soci-
ety, falls are a leading cause of accidental death and morbidity in the elderly. From
the mechanical point of view, postural sway during standing, maintaining balance
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during walking or running and balancing an object on the fingertip are all similar pro-
cesses in the sense that they all require stabilization of an object around an unstable
equilibrium or unstable periodic motion in the gravitational field. According to the
Newtonian dynamics, the stabilization process is described by second-order differ-
ential equations. An important feature of balancing tasks is the reaction time delay:
the time duration between perception and action. In this chapter, we present some
basic models and concepts of balancing an object around an unstable equilibrium in
the presence of reaction time delay. Two balancing models are investigated: postural
sway during quiet standing and stick balancing on the fingertip. Postural sway can
be modeled by a pinned inverted pendulum to describe the angular oscillation of the
human body in the anterior-posterior plane around the ankle joint. Stick balancing
on the fingertip is associated with the pendulum-cart model.

2 Mechanical Models

Balancing tasks can be described by a set of second-order Delay Differential Equa-
tions (DDEs). One-degree-of-freedom tasks, such as ball and beam balancing (Buza
et al., 2020), stick balancing (Mehta and Schaal, 2002; Insperger and Milton, 2014),
quiet standing with ankle strategy (Maurer and Peterka, 2005; Asai et al., 2009)
can be described by a single second-order DDE. Two-degree-of-freedom tasks, such
as balancing on a balance board (Chagdes et al., 2013; Cruise et al., 2017; Molnar
et al., 2017; Chumacero-Polanco and Yang, 2019) or quiet standing with ankle-hip
strategy (Suzuki et al., 2012; Morasso et al., 2019) can be described by a set of two
second-order DDEs. Here, we illustrate the mathematical analysis by focusing on
the simplest models of quiet standing and stick balancing.

2.1 Human Postural Sway: The Pinned Inverted Pendulum
Model

Postural sway refers to the movements made by the human body to maintain balance
during quiet standing. It is typically monitored by having a subject stand quietly with
eyes closed on a force platform. In a quiet room with eyes closed the fluctuations in
the center of pressure (COP) are about 0.5cm. This suggests that the postural sway
oscillations are in the order of 0.5 deg for healthy individuals with no history of
falling.

Balance is maintained by applying a torque at the ankle joint. The COP is the
weighted average of all of the downward forces acting on the force platform through
the soles of the feet. It depends primarily on stance width and the motor control of
the position of the ankle. Postural sway results from changes in the relative positions
of the COP and the center of mass (COM) during quiet standing (Winter, 2005).
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Fig. 1 Pinned pendulum model of postural sway

For example, in 1 dimension, as the COP moves to the right of the COM, the COM
moves left, and vice versa. The biomechanical condition for stable quiet standing is
that the COM must be located within the base of support defined by the area under
and between the feet.

Figure1 shows a pinned inverted pendulummodel of quiet standing in the anterior-
posterior direction. The human body is modeled as a rod of mass m pivoted on a
joint A. The distance between the center of gravity C and the suspension point A is
denoted by �AC. The equation of motion around the upright unstable equilibrium can
be written in the form

JAθ̈(t) + bt θ̇ + (kt − mg�AC)θ(t) = −T (t) , (1)

where JA = JC + m�2AC is the moment of inertia of the body with respect to the
normal line via the pivot point A and JC is the moment of inertia with respect to the
normal line via the center of gravity and T is the active torque exerted at the ankle.

The passive resistance of the ankle joint against falling is modeled by a torsional
spring of stiffness kt and a torsional dashpot of damping bt (Winter et al., 1998).
These elements are attributed to the foot, Achilles’ tendon and aponeurosis and
they cannot be neurally regulated during quiet standing. As shown by Loram and
Lakie (2002), the stiffness increases slightly with ankle torque, which verifies the
linear spring model. They also showed that the intrinsic mechanical stiffness of the
ankle is insufficient for stability during quiet standing, and additional modulation of
parallel connected calf muscle fibers is required to maintain balance. Consequently
the system without the control torque T (t) is unstable, since the intrinsic mechanical
stiffness of the ankle alone cannot maintain stability, i.e., kt − mg�AC < 0.

Equation (1) can be written as

θ̈(t) + bθ̇(t) + aθ(t) = − f (t) , (2)
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Fig. 2 Pendulum-cart model of stick balancing on the fingertip. Parameters from de Leva (1996):
upper arm: mu = 1.775kg, �u = 0.2874m; forearm: mf = 1.015kg, �f = 0.2666m; hand: mh =
0.395kg, �h = 0.0821m

where

b = bt
JA

, a = kt − mg�AC
JA

< 0 , f (t) = T (t)

JA
.

Parameter a is referred as system parameter hereafter.

2.2 Stick Balancing: The Pendulum-Cart Model

Stick balancing at the fingertip has been investigated for over 70years as a paradigm
to explore the neural control of balance and skill acquisition (Cabrera and Milton,
2002, 2004a; Gawthrop et al., 2013; Lee et al., 2012; Milton et al., 2009, 2016;
Stépán, 2009). The study of stick balancing offers a number of advantages for both
the experimentalist and the modeller: (1) the movements in three dimensions can be
measured with high precision using 3-D motion analysis techniques (Cabrera and
Milton, 2002, 2004a); (2) the difficulty of the task can be readily manipulated by
changing the length of the stick (Cabrera andMilton, 2004b; Milton et al., 2016); (3)
skill level can be significantly increased with just a few days of practice (Cabrera and
Milton, 2004b, 2012); and (4) virtual stick balancing tasks that involve the interaction
between a human and a computer provide a way to manipulate important parameters
(Cabrera et al., 2004; Kovacs et al., 2019; Mehta and Schaal, 2002; Milton et al.,
2013; Patzelt et al., 2007).

A model for stick balancing at the fingertip in the AP direction is shown in Fig. 2.
Since during stick balancing the position of the fingertip is continually moving the
mechanical model takes the form of a pendulum-cart system. This is now a two-
degree-of-freedom system, where θ is the angular position of the stick and x is the
position of the cart (fingertip).

A pendulum-cart model for stick balancing at the fingertip around the upright
unstable position of the stick takes the form
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( 1
3m�2 1

2 m�
1
2 m� m + m0

)(
θ̈
ẍ

)
+

(− 1
2 mg� 0
0 0

)(
θ
x

)
=

(
0

F(t)

)
,

where m, m0 are, respectively, the mass of the stick and cart, ẍ is the acceleration
of the cart (fingertip) and F(t) describes the neural control force. If F(t) does not
depend on x and on ẋ , then the term ẍ can be eliminated from the equation and the
balancing process can be reduced to a one-degree-of-freedom model given by

(
1

3
m�2 − m2�2

4(m + m0)

)
θ̈ − 1

2
mg� θ = − m�

2(m + m0)
F(t).

This equation can be written in the the simple form

θ̈(t) + aθ(t) = − f (t), (3)

where

a = −6g

μ�
, f (t) = 6

μ(m + m0)�
F(t)

and

μ = 4 − 3m

(m + m0)
.

Here, the parameter μ is equal to 1 when m0 = 0 and μ ≈ 4 when m0 � m. Note
that the system parameter a is related to the time constant of the system since

Tp = 2π√−a
(4)

is the period of the small amplitude oscillations of a pendulum-cart system in the
hung down position.

The dynamics of the pendulum-cart system is strongly affected by the value of μ,
i.e., by the relation between the mass m0 of the cart and the mass m of the stick. In
order to estimatem0, the human arm ismodeled as a slider crankmechanism shown in
Fig. 2. The parameters of the mechanism are set according to the average human arm
segment as listed in the figure legend. The equivalence of the slider crankmechanism
and the pendulum-cart model can be established based on the equivalence of their
kinetic energy (Insperger and Milton, 2017; Nagy et al., 2020). For a typical posture
of the balancing arm (ϕu ≈ 20◦ and ϕf ≈ 10◦) with the given parameters, one get
m0 = 2.5 kg. The mass of the stick (in case of wooden stick that is mostly used in
stick balancing experiments) is significantly smaller than m0, hence μ = 4 can be
set for practical calculations. This gives

a = −3g

2�
, f (t) = 6

4(m + m0)�
F(t) ,
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which actually corresponds to the parameters of a pinned inverted pendulum
(Insperger and Milton, 2017).

2.3 Unifying the Two Models

One should notice that (3) is actually equivalent to (2) with b = 0. Hence in the
following we will analyze (2) as a general governing equation for one-degree-of-
freedom balancing tasks.

3 Time-Delayed Feedback Control

The type of feedback depends on the available sensory information provided by the
biological sensors that detect the magnitude and time-dependent changes in the con-
trolled variable. Here, three types of feedback are to be investigated. All of them uses
different combination of the perceived angular position, velocity and acceleration and
the efferent copies of the actual control commands.

3.1 Proportional-Derivative (PD) Feedback

Here the feedback depends on two state variables, the position θ and its derivative θ̇
measured at time t − τ . The control effort in this case takes the form

fPD(t) = kpθ(t − τ ) + kdθ̇(t − τ ) (5)

where kp and kd are, respectively, the proportional and derivative gains and τ is
the feedback delay. Equation (2) with (5) is an example of a retarded functional
differential equation (RFDE).

Although this type of control scheme seems to be restrictive, it still has a great
importance. All nonlinear feedback controllers that can bewritten in the form f (t) =
h(θ(t − τ ), θ̇(t − τ )) canbe reduced toPD feedback after linearization if the function
h is smooth in both of its arguments.

3.2 Proportional-Derivative-Acceleration (PDA) Feedback

In addition to displacement and velocity the feedback may also include a term for
corrective contributions related to acceleration. The corresponding control action
takes the form
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Fig. 3 Schematic representation of predictor feedback. Note that this control concept requires the
knowledge of the input f over the interval [t − τ , t]. In the human neural system, this is provided
by the efferent copies of the actual control commands

fPDA(t) = kpθ(t − τ ) + kdθ̇(t − τ ) + kaθ̈(t − τ ) (6)

where ka is the acceleration gain. Equations (2) with (6) is an example of a neutral
functional differential equation (NFDE) since the delay appears in the argument with
the highest derivative. In contrast to a RFDE, the characteristic equation for a NFDE
can have infinitely many roots with positive real parts. A necessary condition for
stability is that |ka| < 1 (Kolmanovskii and Nosov, 1986; Stépán, 1989).

3.3 Predictor Feedback (PF)

Predictor feedback (Krstic, 2009) corresponds to an internal, or forward, model
in the neuroscience literature (Kawato, 1999; Mehta and Schaal, 2002). It is often
associated with finite spectrum assignment or delay compensation in the engineering
control literature (Krstic, 2009; Michiels and Niculescu, 2007) and prediction using
an internal model in the neuroscience literature (Kawato, 1999; Mehta and Schaal,
2002; Shadmehr et al., 2010). The optimum prediction for a system with input delay
is obtained when the system equations are solved over the delay period (Kleinman,
1969; Mannitius and Olbrot, 1979).

Predictor feedback controllers suggest that rather than feeding back the delayed
state, one should predict the actual state using the most recent available information
on the state and the available control force history as demonstrated in Fig. 3. The
corresponding control action has the form
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fPF(t) =
∫ t

0
η(θ(s − τθ), θ̇(s − τθ), fPF(s − τ f ))ds,

where η is a measurable function and τθ, τ f are, respectively, the delays involved in
obtaining the angle θ and feedback information f . We assume that τθ = τ and the
feedback information is readily provided by the efferent copies, thus τ f = 0. The
function η can be determined by the prediction given by the solution of (2). In order
to describe predictor feedback, it is most convenient to write (2) in the first-order
form

ż(t) = Az(t) + B fPF(t), (7)

where

z(t) =
(

θ(t)
θ̇(t)

)
, A =

(
0 1

−a −b

)
, B =

(
0

−1

)
.

We assume that the control effort fPF is readily provided for the nervous system
by the efferent copies, and matrices A and B and the delay τ are also available for
the nervous system via an internal model with high accuracy as a result of a long
enough learning process. The state is predicted by the solution of (7) over the interval
[t − τ , t] as

zpred(t) = e Ãτ̃ z(t − τ ) +
∫ t

t−τ̃

e Ã(t−s) B̃ fPF(s)ds , (8)

where Ã, B̃ and τ̃ are the estimated values of A, B and τ used by the neural internal
model. Note that this prediction uses the most recent available state z(t − τ ) and the
control force fPF issued over the interval [t − τ , t], which is readily provided by the
efferent copies of motor command. The predictor feedback effort reads

fPF(t) = Kzpred(t),

with
K = (

kp kd
)
.

Thus, the control action can be written as

fPF(t) = k̃pθ(t − τ ) + k̃dθ̇(t − τ ) +
∫ t

t−τ̃

kf(t − s) fPF(s)ds,

where k̃p and k̃d are the elements of K̃ = K e Ãτ̃ and kf(t − s) = K e Ã(t−s) B̃.
If the prediction is perfect, i.e., Ã = A, B̃ = B, τ̃ = τ , the numerical calcula-

tions in (8) are performed with perfect accuracy and there are no perturbations then
zpred(t) = z(t) and the system dynamics becomes

ż(t) = Az(t) + BK z(t) , (9)
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which is equivalent to state feedback equation without any delay. Hence, the system
becomes an Ordinary Differential Equation (ODE) with finite spectrum. This is why
predictor feedback is called finite spectrum assignment or delay compensation in
control systems theory (Mannitius and Olbrot, 1979; Krstic, 2009; Michiels and
Niculescu, 2007).

3.4 PD and PDA as Predictor Feedback

It shall bementioned that PD and PDA feedback can also be represented as a predictor
feedback. In case of PD feedback, the simple control logic is used that the state does
not significantly change over the delay interval, thus θ(t) ≈ θ(t − τ ) and θ̇(t) ≈
θ̇(t − τ ). The corresponding control action can be written as

fPD(t) = kpθ(t − τ )+kdθ̇(t − τ )

= kp
(
θ(t − τ ) + τ θ̇(t − τ )

)
︸ ︷︷ ︸

≈θ(t)

+ (
kd − kpτ

)
θ̇(t − τ ).

This is equivalent to the feedback of a linearly predicted position over the delay τ
and the delayed velocity.

In case of PDA feedback, the control action can be written as

fPDA(t) = kpθ(t − τ ) + kdθ̇(t − τ ) + kaθ̈(t − τ )

= kp
(
θ(t − τ ) + τ θ̇(t − τ )

)
︸ ︷︷ ︸

≈θ̇(t)

+ (
kd − kpτ

) (
θ̇(t − τ ) + τ θ̈(t − τ )

)
︸ ︷︷ ︸

≈θ̇(t)

+ (
ka − kdτ + kpτ

2) θ̈(t − τ ).

When ka = kdτ − kpτ 2 then this is equivalent to the feedback of a linearly predicted
position and linearly predicted velocity.

It can easily be seen that if the state is predicted based on its own delayed values
only, and the feedback term f is not involved into the prediction, then the predicted
state can be written as

zpred(t) = P(τ )z(t − τ ) ,

where P(τ ) is a matrix describing the prediction over the delay period. Feedback of
the predicted state according to the linear control law fPF(t) = Kzpred(t) gives

ż(t) = Az(t) + BK P(τ )z(t − τ ) .

This is actually equivalent to a direct delayed state feedback with control gain matrix
K P(τ ).
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4 Stability Analysis

Here, we derive and discuss the stability properties of the inverted pendulum models
subject to PD, PDA and predictor feedback in terms of the control gains, the system
parameters and the feedback delay.

4.1 PD Feedback

Equations (2) with (5) define the DDE

θ̈(t) + bθ̇(t) + aθ(t) = −kpθ(t − τ ) − kdθ̇(t − τ ) . (10)

The corresponding characteristic function reads

D(λ) = λ2 + bλ + a + kpe
−λτ + kdλe

−λτ .

Stability analysis can be performed according to the D-subdivision method (Kol-
manovskii and Nosov, 1986; Stépán, 1989). For this, we take λ = γ + iω, ω ≥ 0,
with i being the imaginary unit and set D(λ) = 0. Decomposing into real and imag-
inary parts, we obtain

Re : γ2 − ω2 + bγ + a + kpe
−γτ cos(ωτ ) + kdγe

−γτ cos(ωτ )

+ kdωe
−γτ sin(ωτ ) = 0 (11)

Im : 2γω + bω − kpe
−γτ sin(ωτ ) + kdωe

−γτ cos(ωτ )

− kdγe
−γτ sin(ωτ ) = 0. (12)

The condition for stability is that Re(λ) < 0 for all λ. Thus we take γ = 0 to obtain
the D-curves as

if ω = 0 : kp = −a, kd ∈ R , (13)

if ω �= 0 : kp = (ω2 − a) cos(ωτ ) + bω sin(ωτ ) , (14)

kd = ω2 − a

ω
sin(ωτ ) − b cos(ωτ ) . (15)

Figure4 shows that the inverted pendulum is stable if kp and kd are located within
a D-shaped stability region. It should be noted that stabilization is possible only if
kd ≥ −aτ > 0. In other words it is not possible to stabilize the inverted pendulum
using only position feedback.

The D-subdivision method can be used to construct stability diagrams for
autonomous DDEs. The D-curves separate the parameter space into regions where
the number of unstable characteristic exponents (also called the instability degree)



Dynamics of Human Balancing 353

Fig. 4 Stability chart indicating the number of unstable characteristic exponents for (10) with
a = −0.5, b = 0 and τ = 1

are constant. Two methods are used to determine the number of unstable charac-
teristic exponents in the individual parameters regions: (1) the exponent-crossing
direction method and (2) the Stepan’s formulas (Stépán, 1989).

The exponent crossing direction is the sign of the partial derivative of the real part
of the characteristic exponent λ with respect to one of the system’s parameters. The
D-curves are given by

R(ω) = 0, S(ω) = 0, ω ∈ [0,∞) ,

where
R(ω) := Re D(iω), S(ω) := Im D(iω) . (16)

When a D-curve is crossed in some direction then the number of unstable character-
istic exponents changes. If the number of unstable characteristic exponents is known
for at least one point in a parameter region, then it can be determined for the other
regions by considering the exponent-crossing direction along the D-curves. The sta-
ble region is associated with zero unstable exponents. Thus, the stability boundaries
are the D-curves that bounds the region with zero unstable characteristic exponents.

In case of (10), the D-curve given by (13) is associated with a real characteristic
exponent λ = 0, kp = −a, and the D-curve given by (14)–(15) is associated with a
complex conjugate pair of characteristic exponents of the form λ = ±iω. For fixed
a, these curves cut the parameter space (kp, kd) into infinitely many regions as shown
in Fig. 4. The exponent-crossing direction along the D-curve kp = −a is obtained by
taking the partial derivatives of (11) and (12) and substituting γ = 0,ω = 0, kp = −a
to get

∂γ

∂kp
= − 1

aτ + kd − b
.
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We see that this derivative is positive for kd < b − aτ and negative for kd > b −
aτ . If the line kp = −a is crossed from left to right with kd > b − aτ , then a real
characteristic exponent becomes stable. If kd < b − aτ , then a real exponent becomes
unstable as the line kp = −a is crossed from left to right. Since the choice (kp, kd) =
(0, 0) corresponds to anODEwith one unstable characteristic exponent, i.e., the fixed
point is a saddle, the number of unstable characteristic exponents can be given for
all the regions in the parameter plane (kp, kd) by considering the exponent-crossing
directions along the D-curve kp = −a (see Fig. 4).

Stepan’s formulas (Stépán, 1989) provide a direct way to determine the number of
unstable characteristic exponents via utilizing Cauchy’s argument principle. It is only
necessary to use (16) and it is not necessary to know the exponent-crossing direction.
This method assumes (1) a system of n first-order, linear DDEs; (2) the past effect
decays exponentially in the past; and (3) D(λ) has no zeros on the imaginary axis. If
n is even, i.e., n = 2m where m is an integer, the number of unstable characteristic
exponents is

N = m + (−1)m
r∑

i=1

(−1)i+1sgnS(ρi ) (17)

where ρ1 ≥ · · · ≥ ρr > 0 are the positive real zeros of R(ω). If n is odd, i.e. n =
2m + 1, then

N = m + 1

2
+ (−1)m

[
1

2
(−1)ssgnR(0) +

s−1∑
i=1

(−1)i sgnR(σi )

]
,

where σ1 ≥ · · · ≥ σs = 0 are the nonnegative real zeros of S(ω).
To illustrate for (10), we have

R(ω) = −ω2 + a + kp cos(ωτ ) + kd sin(ωτ ), ω ∈ [0,∞),

S(ω) = bω − kp sin(ωτ ) − kdω cos(ωτ ), ω ∈ [0,∞) .

Take τ = 1, b = 0 and choose the point labelled A in Fig. 4, which corresponds to
a = −0.5, kp = −20 and kd = 0. Point A is located in the parameter region that
has three unstable characteristic exponents. For these parameters, R(ω) has zeros at
ρ1 = 3.844 and ρ2 = 1.750. Using (17) we obtain N = 3.

4.2 PDA Feedback

Equation (2) with (6) define

θ̈(t) + bθ̇(t) + aθ(t) = −kpθ(t − τ ) − kdθ̇(t − τ ) − kaθ̈(t − τ ) . (18)
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This is an NFDE since the second derivative of the state variable appears both with
actual and with delayed arguments. A necessary condition for stability is that the
difference part θ̈(t) = −ka θ̈(t − τ ) has to be stable, i.e., |ka| should be less than 1
(Kolmanovskii and Nosov, 1986; Stépán, 1989; Zhang et al., 2018). If |ka| > 1 then
the system has infinitely many unstable characteristic exponents.

The characteristic function for (18) is

D(λ) = λ2 + bλ + a + kpe
−λ + kdλe

−λ + kaλ
2e−λ .

We apply the D-subdivision method. Substituting λ = γ ± iω, ω ≥ 0 into D(λ) = 0
and then decomposing into real and imaginary parts gives

Re : γ2 − ω2 + bγ + a + kpe
−γ cosω + kdγ e−γ cosω + kdωe

−γ sinω

+ ka(γ
2 − ω2) e−γ cosω + ka2γωe−γ sinω = 0 , (19)

Im : 2γω + bω − kpe
−γ sinω + kdωe

−γ cosω − kdγ e−γ sinω

+ ka2γωe−γ cosω − ka(γ
2 − ω2)e−γ sinω = 0 . (20)

Substitution of γ = 0 into (19) and (20) gives the D-curves in the form

if ω = 0 : kp = −a , kd ∈ R , (21)

if ω �= 0 : kp = (ω2 − a) cosω + bω sin(ωτ ) + kaω
2 (22)

kd = ω2 − a

ω
sinω − b cos(ωτ ) (23)

where ω is the frequency parameter, which is equal to the imaginary part of the
characteristic exponent λ, i.e., ω = Im(λ).

The D–curve kp = −a given by (21) is associated with a real critical characteristic
exponent λ = 0, while the D–curve given by (22) is associated with a complex
conjugate pair of characteristic exponents of the formλ = ±iω. In fact, the parametric
curve (22)–(23) defines a spiral in the plane (kp, kd) as shown in Fig. 5. Some specific
values of the frequency parameterω along the stability boundaries are also presented.
The stable region (with zero unstable characteristic roots) is indicated by gray shading
in the right (zoomed) panel in Fig. 5.

In order to determine the number of unstable characteristic exponents we need to
determine the exponent crossing direction along the D-curve kp = −a. Thus we take
the partial derivatives of (19) and (20) with respect to kp. Setting γ = 0, ω = 0 and
kp = −a we obtain

∂γ

∂kp
= − 1

aτ + kd − b
,

which is actually the same as for PD feedback. We see that this derivative is positive
for kd < b − aτ and negative if kd > b − aτ . If kp = 0, kd = 0 with |ka| < 1, a < 0
and b = 0 then the number of unstable characteristic exponents is 1 (see, for example,
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Fig. 5 Stability chart with the number of unstable characteristic exponents for (18) with a = −2,
b = 0, τ = 1 and ka = 0.5

Fig. 3.10 on p. 64 in Stépán (1989)). Thus the number of unstable characteristic
exponents can be determined for all the regions in the parameter plane (kp, kd) by
examining the exponent-crossing directions along the D-curve kp = −a. It is also
possible to determine the number of unstable characteristic exponents using (17).

4.3 Predictor Feedback

In case of predictor feedback with perfect delay compensation, the system is reduced
to the ODE (9), which is equivalent to

θ̈(t) + bθ̇(t) + aθ(t) = −kpθ(t) − kdθ̇(t) . (24)

Hence, stability requires that a + kp > 0 and b + kd > 0. The corresponding stability
chart is shown in Fig. 6. The stable region is infinitely large for this ideal case. In case
of imperfections in the implementation of the predictor feedback due to parameter
uncertainties, noise or computational limitations (e.g., discretization, quantization),
the stable region becomes finite (Mondíe et al., 2002; Molnar and Insperger, 2016).

5 Critical Parameters

It is known that time delay in feedback systems is a source of unstable behaviour.
Indeed, in many control applications, stabilization is not possible if the delay or
some system parameters exceed a critical value. Stabilizability properties can be
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Fig. 6 Stability chart with the number of unstable characteristic exponents for the perfect predictor
feedback (24) with a = −0.5 and b = 0

demonstrated on the stick balancing task. Balancing a short stick is more difficult
than balancing a longer one. This is because shorter sticks fall faster than the time
needed to make a corrective motion. Actually, there is a limitation in the length of
the stick: even expert stick balancers cannot balance a stick of length shorter than
20cm (Milton et al., 2016). In this section the terminology of the critical delay is
discussed for PD, PDA and predictor feedback.

5.1 PD Feedback

Figure7 shows a series of stability diagrams for (10) with b = 0 and τ = 1. It can
be seen that as the magnitude of the system parameter a decreases the stable region
shrinks until it finally disappears when a = −2. This happens when the tangent of
the parametric curve (14)–(15) at ω = 0 becomes vertical. It can be shown that

lim
ω→0

dkd
dkp

= lim
ω→0

dkd
dω
dkp
dω

= 6τ + 3bτ 2 + aτ 3

6 + 6bτ + 3aτ 2
.

The tangent is vertical if 6 + 6bτ + 3aτ 2 = 0 andhence the critical systemparameter
is

acrit,PD = −2 + 2bτ

τ 2
(25)

If a < acrit,PD, then the fixed point of (10) is unstable for all kp and kd.
Alternatively, for a fixed system parameter, one can determine a critical delay as

τcrit,PD = −1

a

(
b +

√
b2 − 2a

)
. (26)
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Fig. 7 Stability diagrams for (10) (PD feedback) as a function of kp and kd when b = 0 and τ = 1.
As a decreases, the size of the D-shaped stability region decreases until it disappears when a = −2

If τ > τcrit,PD then the system cannot be stabilized by PD feedback.
When b = 0, the critical delay can be given in the elegant form

τcrit,PD
∣∣
b=0 =

√
2

−a
= Tp

π
√
2
,

where Tp is the period of the small oscillations around the hung down equilibrium
given by (4) (Stépán, 2009).

5.2 PDA Feedback

Similarly to PD feedback, the stable region shrinks also for PDA feedback as the
system parameter a decreases. Stabilizability conditions have been investigated pre-
viously for the case b = 0 (Sieber and Krauskopf, 2005; Insperger et al., 2013). Note
that stability requires |ka| < 1. Series of stability diagrams with different system
parameters a and acceleration control gain ka for (18) with b = 0 and τ = 1 are pre-
sented in Fig. 8. The figure shows that the intersection points along the line kp = −a
are more and more dense and the number of unstable characteristic exponents gets
larger and larger as ka gets closer and closer to +1 or −1. Note that if ka > 1 or
ka < −1, then the system has infinitely many unstable characteristic exponents.

In order to determine the critical system parameter acrit,PDA, which limits the
stabilizability of (18), it is necessary to analyze the D-curves (22) and (23) for dif-
ferent values of a and ka. Figure8 shows that as the system parameter a gets smaller
and smaller, the region of stability shrinks and disappears when the tangent of the
parametric curve (22)–(23) at ω = 0 becomes vertical. This is reminiscent of the
behavior we have already observed for PD feedback. A long but straightforward
algebraic derivation gives
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Fig. 8 D-curves and the number of unstable characteristic exponents for (18) with different system
parameters a and acceleration control gains ka for b = 0 and τ = 1
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lim
ω→0

dkd
dkp

= lim
ω→0

dkd
dω
dkp
dω

= 6τ + 3bτ 2 + aτ 3

6 + 6ka + 6bτ + 3aτ 2

The tangent is vertical if 6 + 6ka + 6bτ + 3aτ 2 = 0, which gives the critical system
parameter

acrit,PDA = −2 + 2bτ + 2ka
τ 2

.

Since there is a limitation to ka, namely, |ka| < 1, the actual critical system parameter
can be given by setting ka = 1, which gives

acrit,PDA = −4 + 2bτ

τ 2
. (27)

If the system parameter is fixed then the critical delay can be expressed as

τcrit,PDA = −1

a

(
b +

√
b2 − 4a

)
.

If τ > τcrit,PDA then the system cannot be stabilized by PDA feedback.
It should be noted that τcrit,PD > τcrit,PDA, i.e., PDA feedback allows larger feed-

back delay than PD feedback does. If b = 0 then

τcrit,PD =
√

2

−a
and τcrit,PDA =

√
4

−a
= √

2 τcrit,PD.

This shows that feeding back the acceleration increases the critical delay by approx-
imately 41% compared to PD feedback when b = 0.

5.3 PF Feedback

If the parameters of the internal model match the actual system parameters, i.e., if
Ã = A, B̃ = B and τ̃ = τ in (7) and (8), then the prediction gives the exact state,
i.e., zpred(t) = z(t). In this case, the feedback of the predicted state eliminates the
delay from the control loop and one ends up with (9), i.e., with (24). In this case the
characteristic exponents can arbitrarily be assigned to any point within the complex
plane by tuning the control gains in kp and kd. It is often stated that the goal of predictor
feedback is to compensate for the effects of the time delay. If this compensation is
perfect then, at least in principle, any large delay can be compensated, i.e.,

τcrit,PF → ∞ .

The critical system parameter is
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acrit,PF → −∞ .

If there is any mismatch between the internal model and the real system or the
implementation of the predictor feedback is not perfect due to noise or computational
limitations, then the critical parameter becomes finite. For instance if ã and τ̃ in the
internal model differs by 10% from the actual parameters a and τ then critical delay
for PDA feedback becomes larger than that of the predictor feedback (Molnar and
Insperger, 2016).

6 Conclusions

Limitations in the stabilization by different control concepts can be demonstrated
on the stick balancing task. The governing equation is given by (3). By taking into
consideration the inertia of the human arm (μ = 4), the system parameter can be
written as a = −3g/(2�). From here, the critical length can be given using the
expression of the critical system parameter.

In case of PD feedback, the governing equation is (10) with b = 0. Using (25)
one get

�crit,PD = 3

4
gτ 2 .

For a typical human reaction delay τ = 230 ms (Milton et al., 2016), the critical
length is �crit,PD = 39 cm. Indeed, most unskilled subject find difficult balancing a
sticks shorter than 39cm.

In case of PDA feedback, one get (18) with b = 0. Equation (27) gives

�crit,PDA = 3

8
gτ 2 = 1

2
�crit,PD.

Hence, acceleration feedback actually helps in the stabilization.
In case of predictor feedback with prefect prediction,

�crit,PF = 0 ,

i.e., a stick of arbitrarily short length can be balanced.
Skilled stick balancers can balance a stick as short as≈ 30 cm (Milton et al., 2016).

This observation has been interpreted as indicating that skilled stick balancers use
a predictor feedback controller whose performance is limited by the presence of a
sensory dead zone.

The model of the quiet standing can directly be linked to the model of the inverted
pendulum as shown in Sect. 2.1. The human body can bemodelled as a homogeneous
rod of height H with JA = 1

3mH 2 and �AC = 1
2H . Here, an important parameter is

the passive stiffness kt , which reduces the magnitude of the system parameter. In the
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literature, the ratio kt/mg�AC is ranging between 0.8 and 0.91 (Loram and Lakie,
2002;Asai et al., 2009). Taking the lower estimate 0.8, the systemparameter becomes

a = kt − mg�AC
JA

= −0.2mg�AC
JA

= −0.2mg 1
2H

1
3mH 2

= − 3g

10H

Assuming PD feedback, (26) gives the critical delay as

τcrit,PD =
√

2

−a
=

√
20H

3g
.

According to this model, a toddler of height 70cm needs faster than τcrit = 0.69 s
reaction time to be able to stand unsupported. For an adult of height 180cm, τcrit =
1.1 s. For PDA feedback this critical delay is τcrit,PDA = 1.41τcrit,PD, while for prefect
predictor feedback τcrit,PF → ∞.

It is highlighted in Sect. 3.4 that the main difference between predictor feedback
and delayed state feedback is whether the feedback term f is involved into the control
lawor not. In humanmotor control, involving f into the prediction is possible through
an efferent copy of corollary discharges of the motor command. Hence, predictor
feedback is also a possible control mechanism for balancing tasks. The question is
whether is it economically beneficial to the neural system to develop a predictor
feedback control strategy? Or does the decision of employing state or predictor
feedback depend on the difficulty of the task?
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