
Chapter 8
Markov Processes with General State
Space

The focus of this chapter is that of discrete parameter Markov processes on
a general (measurable) state space S. Some general considerations for the
existence and uniqueness of invariant probabilities are provided.

Consider a discrete parameter stochastic process {Xn}n≥0 with general state space
S equipped with a σ -field S of subsets of S. Here the measurable space (S,S) may
be a countable set and S its power set as in the previous chapter, or more generally,
S may be a metric space and S its (Borel) σ -field generated by the open subsets
of S, for example. Unless stated otherwise, a map f on S into a metric space M is
(implicitly) referred to as measurable (or more explicitly, Borel measurable) if it is
measurable with respect to S on S and the Borel σ -field on M , i.e., if f −1(B) ∈ S
∀ Borel sets B in M . Also, for any family {Yλ : λ ∈ Λ} of random variables on a
probability space (Ω,F , P ), σ {Yλ : λ ∈ Λ} is the σ -field generated by the family
i.e., it is the smallest σ -field (⊂ F) with respect to which Yλ is measurable for each
λ ∈ Λ.

Definition 8.1. A stochastic process {X0, X1, . . . , Xn, . . .} having state space S

equipped with a σ -field S has the Markov property with regular transition prob-
abilities if for each n ≥ 0,

P(Xn+1 ∈ B|σ {X0, X1, . . . , Xn}) = pn(Xn, B), B ∈ S, (8.1)

where for each n,

1. For each B ∈ B, x → pn(x, B) is a measurable function on S.
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2. For each x ∈ S, B → pn(x, B) is a probability measure on S .
A stochastic process having the Markov property is called a Markov process with
transition probabilities pn(x, dy), n ≥ 0. The Markov process is said to be
homogeneous if the transition probabilities pn(x, dy) are the same for all n =
1, 2, . . . , say p(x, dy).

For the most part we will consider Markov processes with homogeneous
transition probabilities, and unless explicitly stated otherwise, by a Markov process
we will mean Markov process with homogeneous conditional probabilities from
here out.

The special case in which there is a σ -finite measure ν on (S,S) and a
nonnegative measurable function p(x, y) on S × S such that

∫
S

p(x, y)ν(dy) = 1
and p(x, B) = ∫

B
p(x, y)ν(dy), for all x ∈ S, occurs often. In this case, (8.7)

and (8.12) below are iterated integrals of p(x0, x1)p(x1, x2) . . . p(xn−1, xn). This
was the case, for example, in Chapter 7, where S is finite or countable and ν is the
counting measure.

The first task is to establish the following construction.

Proposition 8.1. Given an initial distribution μ and a transition probability
p(x, dy), there is a unique probability measure Pμ on the canonical space
(S∞,S⊗∞) with the property (8.1) for the coordinate projections Xn(x) = xn(n =
0, 1, 2, . . . ), where x = (x0, x1, x2, . . . ) ∈ S∞ ≡ S{0,1,2,... }, and S⊗∞ is the
product σ -field; i.e., the smallest σ -field on S∞ for which each of the respective
coordinate projection maps is measurable. Moreover,

Pμ(Xn+1 ∈ Bn+1|σ(X0, . . . , Xn)) = p(Xn, Bn+1), B ∈ S. (8.2)

Proof. To begin, one constructs a collection of probability measures Pμ,n, n =
0, 1, 2, . . . , on the finite dimensional product spaces (Sn,S⊗n), where Sn = S ×
· · · × S, and S⊗n = S ⊗ · · · ⊗ S , (n-fold), to represent the respective distributions
of (X0, X1, . . . , Xn), n = 0, 1, 2 . . . .

To this end, for a bounded S⊗n-measurable function f on Sn, define integrations
on the product spaces iteratively, beginning with the innermost integral (with respect
to p(xn−1, dxn)), keeping all variables except the last one, namely xn, fixed; that is,

∫

S

· · ·
∫

S

f (x0, x1, . . . , xn−1, xn)p(xn−1, dxn) · · · p(x0, dx1)μ(dx0)

=
∫

S

· · ·
∫

S

f1(x0, x1, . . . , xn−1)p(xn−2, dxn−1) · · · p(x0, dx1)μ(dx0)

=
∫

S

· · ·
∫

S

f2(x0, x1, . . . , xn−2)p(xn−3, dxn−2) · · · p(x0, dx1)μ(dx0)

...
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=
∫

S

∫

S

fn−1(x0, x1)p(x0, dx1)μ(dx0)

=
∫

S

fn(x0)μ(dx0), (8.3)

where

f1(x0, x1, . . . , xn−1) =
∫

S

f (x0, x1, . . . , xn−1, xn)p(xn−1, dxn),

f2(x0, x1, . . . , xn−2) =
∫

S

f1(x0, x1, . . . , xn−1)p(xn−2, dxn−1),

and so on. To justify this integration, first observe that y → f (x0, . . . , xn−1, y) is
S-measurable for any fixed (x0, . . . , xn−1) ∈ Sn; namely, it is clear for indicators
of measurable rectangles C = B0 × · · · × Bn, (Bi ∈ S, i = 0, 1, . . . , n), therefore,
by the π − λ theorem for all C ∈ S⊗n. Since every bounded measurable function
is a pointwise (uniform) limit of a sequence of simple functions, the measurability
of y → f (x0, . . . , xn−1, y) follows for all bounded S⊗n-measurable functions f

on Sn. The S⊗n-measurability of the map (x0, . . . , xn−1) → f1(x0, . . . , xn−1) =∫
S

f (x0, x1, . . . , xn−1, y)p(xn−1, dy) follows.
Now, to define Pμ,n, take f = 1C,C ∈ S⊗n+1. Writing Cx0,...,xn−1 = {y ∈ S :

(x0, . . . , xn−1, y) ∈ C}, and f1(x0, x1, . . . , xn−1) = p(xn−1, Cx0,...,xn−1), define

Pμ,0 = μ, Pμ,1(C) =
∫

S

∫

S

1Cx0
(x1)p(x0, dx1)μ(dx0) C ∈ S⊗2. (8.4)

More generally, define for n ≥ 2

Pμ,n(C) =
∫

S
· · ·

∫

S
1Cx0,...,xn−1

(xn)p(xn−1, dxn)p(xn−2, dxn−1) · · · p(x0, dx1)μ(dx0)

=
∫

S
· · ·

∫

S
p(xn−1, Cx0,...,xn−1)p(xn−2, dxn−1) · · · p(x0, dx1)μ(dx0). (8.5)

In particular, for a measurable rectangle C = B0 × · · · × Bn, (8.5) reduces to

Pμ,1(B0 × B1) =
∫

B0

p(x0, B1)μ(dx0),

and

Pμ,n(B0 × · · · × Bn) =
∫

B0

· · ·
∫

Bn−1

p(xn−1, Bn)p(xn−2, dxn−1) · · · p(x0, dx1)μ(dx0).
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Finite additivity of Pμ,n follows by writing 1C = ∑m
j=1 1Cj

for disjoint Cj ∈ S⊗n,
and countable additivity then follows by the monotone convergence theorem. This
completes the construction of the finite dimensional distributions. It is simple to
check that this collection of probability measures is consistent in the sense of the
Kolmogorov existence theorem.1 Thus, by the Kolmogorov existence theorem
in the case that S is also a Borel subset of a Polish space or, more generally
by Tulcea’s theorem2 for an arbitrary measurable space (S,S), one arrives at a
probability measure Pμ on (S∞,S⊗∞) such that the distribution of the projection
(X0, X1, . . . , Xn) : S∞ → Sn+1 is Pμ,n, n = 0, 1, 2, . . . . For this, let Bn+1 ∈ S . If
C ∈ S⊗(n+1), then it follows from (8.5) that

Pμ,n+1(C × Bn+1)

=
∫

S
· · ·

∫

S
1C(x0, . . . , xn)1Bn+1(xn+1)Pμ,n+1(dx0 × · · · × dxn+1)

=
∫

C×S
p(xn, Bn+1)Pμ,n(dx0 × · · · × dxn). (8.6)

If one takes Bn+1 = S, then the consistency is checked: Pμ,n+1(C×S) = Pμ,n(C).
This completes the construction of Pμ on (S∞,S⊗∞). Finally, note that (8.6) also
expresses the Markov property in the form:

Pμ(Xn+1 ∈ Bn+1|σ(X0, . . . , Xn)) = p(Xn, Bn+1). �
With the construction carried out in the proof of Proposition 8.1, given a

transition probability p(x, dy) and an initial distribution μ(dx), one may make the
following definition.

Definition 8.2. A stochastic process {X0, X1, . . . } on an arbitrary probability space
(Ω,F , P ) is Markov with transition probability p(x, dy) and initial distribution
μ(dx) if its distribution is Pμ on (S∞,S⊗∞). If μ = δx , then we write Px for Pδx .

Note: To avoid a clutter of symbols, we will often abuse notation in probabilities
associated with Markov processes X = {Xn : n = 0, 1, . . . } defined on a (possibly
non-canonical probability space) (Ω,F , P ) as Pμ(X ∈ B) to indicate that X0 has
distribution μ. That is, we may use the expression for the corresponding probability
in canonical space, where Xn is the nth coordinate projection on S∞.

Proposition 8.2. If {Xn}∞n≥0 has the Markov property, then one may obtain the
distribution at m ≥ 1 time points into the future inductively for B1, B2, . . . , Bm ∈
S , as

P(Xn+1 ∈ B1, . . . , Xn+m ∈ Bm|σ {X0, X1, . . . , Xn})

1 See BCPT p. 236 or Billingsley (1968), p. 235.
2 see BCPT p. 168 or Billingsley (1986), pp. 510–511.
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= P(Xn+1 ∈ B1, . . . , Xn+m ∈ Bm|σ {Xn})
=

∫

B1

· · ·
∫

Bm

p(xm−1, dxm) . . . p(x1, dx2)p(Xn, dx1)

= Px(X1 ∈ B1, . . . , Xm ∈ Bm)|x=Xn, (8.7)

where the integration is an iterated integral.

Proof. The first equality follows from the Markov property. The second follows
from (8.6), as does the last. To prove this in detail, simply condition the left hand side
of (8.7) on the larger σ -field σ(X0, . . . , Xn+m−1) and use the smoothing property
of conditional expectations. Since

∫

Bm

p(xm−1, dxm) = p(xm−1, Bm),

the first integration yields

f1(Xn+1, . . . , Xn+m−1) = 1[Xn+1 ∈ B1, . . . , Xn+m−1 ∈ Bm−1] · p(Xm−1, Bm),

in the notation introduced earlier. That is, the left side of (8.7) equals

E(f1(Xn+1, . . . , Xn+m−1)|σ(X0, . . . , Xn)). (8.8)

Next taking the conditional expectation of (8.8), given σ(X0, . . . , Xn+m−2), one has

E(f2(Xn+1, . . . , Xn+m−2)|σ(X0, . . . , Xn))

= 1[Xn+1 ∈ B1, . . . , Xn+m−2 ∈ Bm−2]
∫

Bm−1

p(Xm−1, Bm)p(Xm−2, dxm−1).

Continuing in this way, the probability is ultimately given by a function of Xn of
the form:

P(Xn+m ∈ Bm, . . . , Xn+1 ∈ B1|σ {X0, X1, . . . , Xn})
= E(fm−1(Xn+1)|σ(X0, . . . , Xn)

= Efm−1(Xn+1|σ(Xn)) =
∫

B1

fm−1(x1)p(Xn, dx1). (8.9)

�
Observe that taking Bm = B ∈ S , B1 = B2 = · · · = Bm−1 = S in (8.7), one has

P(Xn+m ∈ B|σ {X0, . . . , Xn}) = p(m)(Xn, B), (8.10)

where the m-step transition probabilities are recursively given by
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p(m+1)(x, B) =
∫

S

p(m)(y, B)p(x, dy), B ∈ S, x ∈ S, (8.11)

with p(1)(x, B) ≡ p(x, B). Notice that by taking successive conditional expecta-
tions of 1[X0 ∈ B0, . . . , Xn−1 ∈ Bn−1, Xn ∈ Bn] given σ(X0, . . . , Xn−1), σ (X0,

. . . , Xn−2), . . . , one obtains

Pμ(X0 ∈ B0, . . . , Xn−1 ∈ Bn−1, Xn ∈ Bn)

=
∫

B0

∫

B1

· · ·
∫

Bn

p(xn−1, dxn)p(xn−2, dxn−1) · · · p(x0, dx1)μ(dx0)

= Pμ,n(B0 × B1 × · · · × Bn),

where μ is the initial distribution of the process as defined by

μ(B) = P(X0 ∈ B), B ∈ S. (8.12)

The following is another equivalent version of the Markov property that is
commonly used.

Proposition 8.3. Let {Xn}n≥1 be a Markov process with a transition probability
p(x, dy) and some initial distribution μ. Then the conditional distribution of the
after-n process defined by X+

n := (Xn,Xn+1, . . . ), given σ {X0, . . . , Xn}, is PXn .
That is, it equals Px on the event [Xn = x] ⊂ Ω .

Proof. In view of (8.7), one has for finite dimensional events of the form C =
B0 × B1 × Bm × S∞, Bi ∈ S, 0 ≤ i ≤ m, that P(X+

n ∈ C|σ {X0, . . . , Xn}) =
PXn((X0, X1, . . . ) ∈ C). Now observe that the collection of sets C ∈ S⊗∞
such that this equation holds is a λ-system, which contains a π -system of finite
dimensional events. The assertion thus follows from an application of the π − λ

theorem. �
Situations in which there is an initial probability π for the Markov process which

is invariant under the evolution are of particular interest, especially because when
unique it represents the long term behavior of the process regardless of how it is
initiated.

Definition 8.3. A probability π on S is said to be an invariant probability or
steady state distribution for a Markov process {Xn}n≥0 with transition probabilities
p(x, dy) if

∫

S

p(x, B)π(dx) = π(B) for all B ∈ S. (8.13)

Notice that if π is an invariant initial probability for {Xn}n≥0, i.e., X0 has the
invariant distribution π , then the left side of (8.13) is P(X1 ∈ B). One has that
P(Xn ∈ B) = π(B), B ∈ S , that is,
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P(Xn+1 ∈ B) =
∫

S

p(x, B)P (Xn ∈ dx) =
∫

S

p(x, B)π(dx) = π(B), (8.14)

which for n = 0 is true by definition, and the general case follows by the Markov
property and induction. In addition to questions of

(i) Existence
(ii) Uniqueness

of invariant probabilities, one also seeks

(iii) Basins of Attraction

i.e., initial distributions under which convergence to a given invariant probability
will hold, and

(iv) Rates of Convergence

to name a few of the central topics of the theory. In view of (8.7),

P(Xn+1 ∈ B1, . . . , Xn+m ∈ Bm) = P(X1 ∈ B1, . . . , Xm ∈ Bm), Bi ∈ S.

(8.15)
In particular, in this context the distribution of the after-n process X+

n ≡ {Xn+m :
m = 0, 1, 2, . . .} coincides with that of X+

0 = {Xm : m = 0, 1, 2, . . .} for each
n = 1, 2, . . ., a property referred to as stationarity of the process {X0, X1, . . . },
as discussed in the earlier chapters of the text. From this perspective, theorems
providing

(v) Law of Averages

and

(vi) Fluctuation Law

in the forms of a strong law of large numbers (ergodic theorem) and a central
limit theorem for averages of the form 1

n

∑n−1
j=0 f (Xj ) in the presence of a unique

invariant initial distributions are also essential to a complete theory.
For the next definition and elsewhere in the book, B(S) denotes the set of all real-

valued bounded measurable functions on S, equipped with the sup-norm ‖f ‖ =
supx∈S |f (x)|.
Definition 8.4. Given a transition probability p(x, dy) on (S,S), the transition
operator T is the map on B(S) (into B(S)) defined by

Tf (x) =
∫

S

f (y)p(x, dy), f ∈ B(S). (8.16)

Note that the measurability of x → p(x, B) for every B ∈ S implies the
measurability of Tf (Exercise 1). The transition operator is a positive linear
contraction on B(S) such that T 1 = 1, where 1 ∈ B(S) is the constant function
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on S with constant numerical value one (Exercise 1). In particular, given any such
transition operator, one may recover p(x, B) = T 1B(x), x ∈ S,B ∈ S.

Note that for a Markov process {Xn : n = 0, 1, 2, . . . } with transition probability
p(x, dy), one has Tf (x) = E(f (X1)|X0 = x) ≡ E(f (X1)|σ(X0))|X0=x , which
may be expressed as Exf (X1). In fact, by the Markov property and induction,

Exf (Xn+1) = ExEx[f (Xn+1) | σ(X0, . . . , Xn)]
= ExEXnf (Xn+1)

= ExTf (Xn)

= ExE(Tf (Xn)|σ(Xn−1))

= ExT Tf (Xn−1) = ExT
2f (Xn−1) = · · · = ET nf (X1)

= T n+1f (x), x ∈ S, n ≥ 0,

i.e., T n is the transition operator defined by the n-step transition probability
p(n)(x, dy). The relation (8.13) implies (and is, therefore, equivalent to)

∫

S

(Tf )(x)π(dx) =
∫

S

f (x)π(dx) for all f ∈ B(S). (8.17)

Thus (8.17) also defines the convenient notation “π(dy) = ∫
S

p(x, dy)π(dx).” Just
as (8.13) implies (8.17), (8.14) implies

∫

S

(T nf )(x)π(dx) =
∫

S

f (x)π(dx) for all f ∈ B(S), for all n ≥ 1. (8.18)

One approach to obtain invariant probabilities is by consideration of long time
steady state distributions. In particular, one might anticipate that if for some x ∈
S, the distribution p(n)(x, dy) of the state Xn converges weakly as n → ∞ to
some limit probability distribution πx, then πx should be invariant under continued
evolution. However, as the following example shows, one must be careful.

Example 1 (Liggett). Let S = {0, 1, 1
2 ,

2
3 ,

3
4 , . . . ,

m
m+1 , . . .}, and let S be the power

set of S. Then S is a metric space with the usual distance on the line, d(x, y) =
|x − y|, and S is the Borel σ -field. Fix 0 < θ ≤ 1 and define

p
(
0,

{
1
2

})
= θ, p

(
0,

{
2
3

})
= 1 − θ

p
(

m
m+1 ,

{
m+1
m+2

})
= θ, p

(
m

m+1 ,
{

m+2
m+3

})
= 1 − θ, m = 1, 2, . . . .

p(1, {0}) = θ, p
(
1,

{
1
2

})
= 1 − θ.

Then p(n)(x, dy) converges weakly to δ{1}, but this is clearly not an invariant
probability.
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Note that weak convergence requires convergence of the sequences of integrals∫
S

f (y)p(n+1)(x, dy) = T n+1f (x) = T n(Tf )(x), for all f ∈ Cb(S), as n → ∞;
recall Cb(S) ⊂ B(S) denotes the subset of all bounded continuous functions on the
metric space S. As usual whenever S is a metric space, we take S to be the Borel
σ -field on S for the uniform norm on Cb(S).

Definition 8.5. A transition probability p(x, dy) on a metric space S is said to be
Feller continuous, or weakly Feller continuous, if for every f ∈ Cb(S), Tf ∈
Cb(S). In this case one also says p(x, dy) has the (weak) Feller property.

Observe that Feller continuity of p(x, dy) means that the map x → p(x, dy), on
S into the set P(S) of all probability measures on (S,S), is weakly continuous.
Moreover, T is a positive, linear contraction operator on Cb(S) with T 1 = 1.
Conversely, if S is a compact metric space, then any such operator on Cb(S)

uniquely determines Feller transition probabilities p(x, dy) by applying the Riesz
Representation Theorem3 from analysis to the bounded linear functional f →
Tf (x), f ∈ Cb(S), for each x ∈ S (Exercise 6).

Notice that since Cb(S) is measure-determining,4 the condition (8.17) defining
an invariant probability may be restricted to f ∈ Cb(S).

Another obstacle to this approach to the determination of invariant probabilities
is evident in the simple two-state example p01 = p10 = 1, p00 = p11 = 0. In this
case, π0 = π1 = 1/2 is the unique invariant probability, but p(n)

01 oscillates between
1 and 0 as a function of n. However, these oscillations can be averaged out by
considerations of 1

2n+1

∑2n
r=0 p

(r)
0j → 1/2, as n → ∞, for j = 0, 1. So this example

suggests that time averaging may be required, and Liggett’s Example 1 shows that
the hypothesis of Feller continuity in Proposition 8.4 cannot in general be dispensed
with in the weak convergence approach to invariant probabilities (Exercise 5). From
a probabilistic perspective, note also that

1

m

m−1∑

r=0

p(r)(x, B) = 1

m

m−1∑

r=0

Ex1[Xr ∈ B] = Ex

(∑m−1
r=0 1[Xr ∈ B]

m

)

(8.19)

is the expected proportion of visits to the set B ∈ S in time 0 to m−1, starting from
x.

Proposition 8.4. Suppose S is a metric space and p(x, dy) is a Feller continuous
transition probability on (S,S). (a) If for some x ∈ S there is a sequence of integers
1 ≤ n1 < n2 < . . . such that, as k → ∞,

1

nk

nk−1∑

r=0

p(r)(x, dy) converges weakly to πx(dy) (8.20)

3 BCPT p 237.
4 See BCPT, p. 11.
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for some probability measure πx , then πx is an invariant for p(x, dy).
(b) If, for some sequence 1 ≤ n1 < n2 . . . , (8.20) holds for every x ∈ S with the

same limit πx = π for all x, then π is the unique invariant probability.

Proof.

(a) The relation (8.20) says that

1

nk

nk−1∑

r=0

(T rf )(x) −→
∫

S

f (y)πx(dy) for all f ∈ Cb(S). (8.21)

Replacing f by Tf (which belongs to Cb(S) by hypothesis), one gets

1

nk

nk∑

r=1

T rf (x) −→
∫

S

Tf (y)πx(dy) for all f ∈ Cb(S). (8.22)

But the difference between the left sides of (8.21) and (8.22) equals in
magnitude |(T nkf )(x) − f (x)|/nk ≤ 2 sup{|f (x)| : x ∈ S}/nk , which goes
to zero as k → ∞. Hence the limits in (8.21) and (8.22) are the same. Thus,
since Cb(S) is measure-determining, one has πx(dz) = ∫

S
p(y, dz)πx(dy); see

Lemma 1 below.
(b) By (a), π is invariant. Suppose that, under the hypothesis of part (b), π ′ is

another invariant probability, and then integrating the two sides of (8.21) with
respect to π ′, one obtains

1

nk

nk−1∑

r=0

∫

S

(T rf )(x)π ′(dx) −→
∫

S

[∫

S

f (y)π(dy)

]

π ′(dx). (8.23)

By invariance of π ′, the left side equals
∫

f dπ ′ (see (8.18)), while the right side
is

∫
f dπ . Thus

∫
f dπ ′ = ∫

f dπ for every f ∈ Cb(S), implying π ′ = π since
Cb(S) is measure-determining. �

Lemma 1. If Q1 and Q2 are probability measures on the Borel σ -field of a metric
space S such that

∫
S

f dQ1 = ∫
S

f dQ2 for all bounded continuous real-valued
functions f on S, then Q1 = Q2.

Proof. Let C be the collection of Borel sets B such that Q1(B) = Q2(B). Then
it is simple to check that C is a σ -field. Since B the Borel σ -field is the smallest
σ -field containing all closed sets, it is sufficient to show that C contains all closed
sets. For this, it is enough to show that for each (closed) F ⊂ S, there exists a
sequence of nonnegative functions {fn} ⊂ Cb(S) such that fn ↓ 1F as n ↑ ∞.
Since F is closed, one may view x ∈ F in terms of the equivalent condition that
ρ(x, F ) = 0, where ρ(x, F ) := inf{ρ(x, y) : y ∈ F }. Let hn(r) = 1 − nr for
0 ≤ r ≤ 1/n, hn(r) = 0 for r ≥ 1/n. Then take fn(x) = hn(ρ(x, F )). In
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particular, 1F (x) = limn fn(x), x ∈ S, and Lebesgue’s monotone convergence
theorem applies to show F ∈ C. �

As an immediate corollary, one gets the following corollary:

Corollary 8.5. If a transition probability p(x, dy) on a metric space has the (weak)
Feller property and there exists a Caesaro limit in the weak topology, namely,

lim
n→∞

1

n

n−1∑

r=0

p(r)(x, dy) = π(dy) (8.24)

such that the probability measure π does not depend on x, then π is the unique
invariant probability.

Many important Markov processes do not admit an invariant probability, such as
the case, for example, of a randomwalk onRk with an arbitrary step size distribution
Q �= δ{0} (Exercise 8). There is one case, namely that of a compact state space,
where every Feller transition probability admits at least one invariant probability.

Proposition 8.6. Let S be a compact metric space and S its Borel σ -field. If
p(x, dy) is a Feller transition probability on (S,S), then it admits an invariant
probability.

Proof. Fix x ∈ S and consider the sequence of probability measures μn, n ≥ 1,
given by μn(B) = (1/n)

∑n
m=1 p(m)(x, B), B ∈ S . Since P(S) is a weakly

compact metric space,5 there exists a subsequence {μnk
: k = 1, 2, . . . }, which

converges weakly to a probability measure πx , say. By Proposition 8.4, πx is
invariant. �
As a simple corollary, we get the following result for finite Markov chains.

Corollary 8.7. A Markov chain on a finite state space S has at least one invariant
probability.

Proof. This follows from Proposition 8.6 by making S a compact metric space with
the metric d(x, y) = 1 if x �= y, d(x, x) = 0. Then S ≡ B(S) is the class of all
subsets of S, and every real-valued function on S is continuous. �
Remark 8.1. A direct proof of Corollary 8.7, which does not use Proposition 8.6
will be given later (see Corollary13.8 in Chapter 13).

The next approach to invariant probabilities is based on symmetries. For the
definition below, consider a stationary Markov process {Xn}n≥0 on a state space
(S,S) with transition probability p(x, dy). Since the distribution of such a process
is invariant under time shift, i.e., {Xn}n≥0 and {Xn}n≥k have the same distribution,
one may use Kolmogorov’s existence theorem to construct a stationary Markov

5 See BCPT, p.142.
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process {Zn}−∞<n<∞ having the same transition probability p and the same
invariant probability π .

Definition 8.6. A Markov process with a transition probability p and an invariant
probability π is said to be time-reversible if the stationary Markov process
{Zn}−∞<n<∞, with this transition probability and this invariant distribution, has
the same distribution as the time-reversed process {Yn}−∞<n<∞, where Yn := Z−n

(−∞ < n < ∞). We refer to {Zn}−∞<n<∞ as the double-sided version.

In the context of the “movie metaphor,” the statistics of a stationary data stream does
not depend on when viewing begins, while a time-reversible data stream sequence
is the same whether it is viewed forward or backward.

For the propositions below, assume that the transition probability p(x, dy) has
a density p(x, y) with respect to a σ -finite measure μ on (S,S), with (x, y) →
p(x, y) measurable (on (S × S,S ⊗ S) into ([0,∞),B[0,∞))).

Proposition 8.8 (Detailed Balance Condition). Let π(dy) be a probability measure
on (S,S) with a density π(y) with respect to μ. (a) If

π(x)p(x, y) = π(y)p(y, x) a.e. (μ × μ), (8.25)

then π is a time-reversible invariant probability for the Markov process. (b) For a
Markov process with transition probability density p(x, y) and invariant probability
density π(y), (8.25) is necessary for the process to be time-reversible.

Proof.

(a) Let p and π satisfy (8.25). Then for every Borel measurable f ,

∫
S Tf (x)π(dx) = ∫

S Tf (x)π(x)μ(dx) = ∫
S

(∫
S f (y)p(x, y)μ(dy)

)
π(x)μ(dx)

= ∫
S

∫
S f (y)p(x, y)π(x)μ(dy)μ(dx)

= ∫
S

(∫
S f (y)p(y, x)μ(dx)

)
π(y)μ(dy)

= ∫
S f (y)π(y)μ(dy) = ∫

S f (y)π(dy),

implying π is invariant. Let {Xn}n≥0 be a stationary Markov process with
transition probability p and invariant initial distribution π . Then, by the Markov
property, the joint density of (Xn,Xn+1, . . . , Xn+k), with respect to μ×· · ·×μ,
at (y0, y1, . . . , yk) ∈ Sk+1 is

g(y0, y1, . . . , yk) := π(y0)p(y0, y1)p(y1, y2) . . . p(yk−1, yk), (8.26)

while the joint density of (Xn+k, Xn+k−1, . . . , Xn), at the same point
(y0, y1, . . . , yk) ∈ Sk+1, is
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h(y0, y1, . . . , yk) := g(yk, yk−1, . . . , y1, y0)

= π(yk)p(yk, yk−1)p(yk−1, yk−2) · · · p(y1, y0)

= π(yk−1)p(yk−1, yk)p(yk−1, yk−2) · · · p(y1, y0)

= p(yk−1, yk)π(yk−1)p(yk−1, yk−2) · · · p(y1, y0)

= p(yk−1, yk)π(yk−2)p(yk−2, yk−1) · · · p(y1, y0)
...

= p(yk−1, yk)p(yk−2, yk−1) · · · p(y1, y2)π(y1)p(y1, y0)

= p(yk−1, yk)p(yk−2, yk−1) · · · p(y1, y2)π(y0)p(y0, y1)

= g(y0, y1, . . . , yk).

Since this is true for all k ≥ 1, the finite dimensional distributions of the double-
sided version {Zn}−∞<n<∞ and {Yn}−∞<n<∞ with Yn := Z−n (−∞ < n <

∞), described in Definition 8.6, coincide. Thus, using the π − λ theorem,6 it
follows that the process {Zn}−∞<n<∞ and its time-reversal {Yn}−∞<n<∞ have
the same distribution.

(b) For the stationary Markov process {Zn}−∞<n<∞ to be time-reversible, it is
necessary that the distribution of (Z0, Z1) is the same as that of (Y0, Y1) ≡
(Z0, Z−1). But the latter has the same distribution as (Z1, Z0). The left side
of (8.25) is the p.d.f. of (Z0, Z1) at (x, y), while the right side is the p.d.f. of
(Z1, Z0) at (x, y). Thus for time-reversibility, (8.25) must hold. �
If π is an invariant probability, then by Jensen’s inequality,

∫

S

(

∫

S

|f (y)|p(x, dy))2π(dx) ≤
∫

S

∫

S

f 2(y)p(x, dy)π(dx) =
∫

S

f 2(y)π(dy),

so that one may extend the transition operator T to L2(S, π) ⊇ B(S). We will now
show that, in analytical terms, time-reversibility of a Markov process means that the
transition operator T is self-adjoint on L2(S, π), i.e.,

〈Tf, g〉 = 〈f, T g〉 for all f, g ∈ L2(S, π). (8.27)

Here 〈 〉 is the inner product on the Hilbert space L2(S, π),

〈g, h〉 =
∫

S

g(y)h(y)π(dy).

We will denote by ‖g‖ the L2–norm: ‖g‖2 = 〈g, g〉.
Proposition 8.9. Let π be an invariant probability of a Markov process. (a) The
transition operator T is a contraction on L2(S, π). (b) If π is a time-reversible
invariant probability, then T is self-adjoint.

6 See BCPT, p. 4.
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Proof.
(a) This is proved in (8.28).
(b) Let f, g ∈ L2(S, π), and assume π is time-reversible in the sense of

Definition 8.6. Then, conditioning on X0, one has

〈Tf, g〉 =
∫

S

(∫

S

f (y)p(x, dy)

)

g(x)μ(dx)

= E
(
E(f (X1)|σ(X0))g(X0)

) = Ef (X1)g(X0)

= Ef (X0)g(X1) = 〈f, T g〉. �
Recall in the case of finite S that, given an initial distribution μ for X0, the

distribution μ1 of X1 may be obtained by the transformation μ → μ1 = p′μ,

where p′ is the transpose matrix, see (7.12). More generally, one may define an
adjoint operator as follows.

Definition 8.7. Given a transition probability p(x, dy) on (S,S), the adjoint linear
operator T ∗ is defined on the linear space M(S) of all finite signed measures on
(S,S) by

(T ∗μ)(B) =
∫

S

p(x, B)μ(dx) (B ∈ S, μ ∈ M(S)). (8.28)

In general, if μ is a probability measure, then T ∗μ is the distribution of X1 where
X0 has distribution μ. In particular, π is an invariant probability if and only if

T ∗π = π. (8.29)

To see the connection between the L2(S, π)-adjoint of T and this more general
operator, then, irrespective of (8.27), identify f ∈ L2(S, π)with the signed measure
f dπ , and note that T ∗(f dπ)(dy) is given by

∫

S

g(y)T ∗(f dπ)(dy) =
∫

S

∫

S

g(y)p(x, dy)f (x)π(dx) =
∫

S

T g(x)f (x)π(dx)

= 〈T g, f 〉 = 〈g, T ∗f 〉, g ∈ L2(S, π), (8.30)

where, by an obvious abuse of notation, T ∗f ∈ L2(S, π) is given by the L2(S, π)-
adjoint operator to T . In the interpretation of T ∗ as an operator on L2(S, π), 1 is an
eigenvalue of T ∗ with the constant eigenvector f (·) ≡ 1. For the adjoint operator
onM(S), this eigenvector corresponds to the invariant measure π(dy) = 1 ·π(dy).

Define T ∗nμ = T ∗(T ∗n−1μ) iteratively on M(S). In the case μ is a probability
measure, and X0 has distribution μ, T ∗μ is the distribution of X1, T ∗2μ is the
distribution of X2, . . . , T

∗nμ is the distribution of Xn. Thus, whereas iterates of the
transition operator T govern the “evolution of states” via T nf (x) = Exf (Xn), the
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iterates of the adjoint T ∗ govern the “evolution of probability distributions” of the
Markov process.

Now, T ∗n is a linear operator on M(S), as is T n on Cb(S). The term adjoint
operator given to T ∗ (or, T ∗n) is more fully justified in terms of the basic identities

∫

S

Tf (x)μ(dx) =
∫

S

f (x)(T ∗μ)(dx),

∫

S

T nf (x)μ(dx) =
∫

S

f (x)(T ∗nμ)(dx).

(8.31)
The first equality in (8.31) follows from (8.28), first for simple functions f and then
by approximating f ∈ B(S) uniformly by simple functions. The second equality in
(8.31) follows by induction on n. When μ is a probability measure, then the second
equality says Eμ[E(f (Xn) | X0)] = Eμf (Xn), with X0 having distribution μ.

Example 2. S = {0, 1}, p =
[

a 1 − a

1 − b b

]

, 0 ≤ a, b ≤ 1. S is a metric space

with the discrete metric d(0, 0) = d(1, 1) = 0, d(1, 0) = d(0, 1) = 1, S is the
power set, and every function f : S → R is a bounded, continuous function. By
the computation at the end of the previous chapter, one has for a + b < 2, with
a + b �= 0,

lim
n→∞p(n) =

[
1−b

2−a−b
1−a

2−a−b
1−b

2−a−b
1−a

2−a−b

]

.

In particular, the invariant probability (vector) π = (π0, π1)
′ is given by

π0 = limn→∞ p
(n)
i0 = 1−b

2−a−b

π1 = limn→∞ p
(n)
i1 = 1−a

2−a−b
, i = 0, 1.

Alternatively, one may determine π0, π1 from time-reversibility via the detailed
balance and total probability one equations. In this case one could then use the
L2(S, π) theory for self-adjoint operators to obtain convergence (Exercise 7).

In the cases a + b = 2 and a + b = 0, one has p =
[
1 0
0 1

]

and p =
[
0 1
1 0

]

,

respectively. In the former case every probability on S = {0, 1} is an invariant
probability, and hence there are infinitely many invariant probabilities. In the latter
case there is a unique invariant probability given by π0 = π1 = 1

2 ; but p
n does not

have a limit, although (8.24) holds.

Example 3. Suppose S = R with Borel σ -field S . Let ε1, ε2, . . . be an i.i.d.
sequence of standard normal random variables and let b ∈ R. Consider the sequence
of random variables

Xn+1 = bXn + εn+1, n = 0, 1, 2, . . . .

Iterating the recursion, one has that
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Xn+1 = bn+1X0 +
n∑

j=0

bj εn+1−j .

In particular, the m-step transition probability p(m)(x, dy) is given by the Gaussian

distribution with mean bmx and variance
∑m−1

j=0 b2j = b2m−1
b2−1

if |b| �= 1. In the

case b = ±1, p(m)(x, dy) is Gaussian with mean (±1)mx and variance m. In any
case p(x, dy) clearly has the (weak) Feller property, and in particular, if |b| <

1, then p(m)(x, dy) converges (weakly) as m → ∞ to the invariant distribution

π(dy) = 1√
2π(1−b2)−1

e− 1−b2
2 y2dy, y ∈ S = (−∞,∞), possessing a Gaussian

density with respect to Lebesgue measure. Note that for |b| < 1, if X is N(0, σ 2)

and Z is standard normal and independent of X, then X =dist bX + Z (equality
in distribution) if and only if σ 2 = (1 − b2)−1. One may check that π is also a
time-reversible invariant probability (Exercise 13).

Example 4 (RandomWalk on a Finite Graph). A finite graph consists of a finite set
S = {v1, . . . , vk} of k vertices together with a relation E ⊂ {1, . . . , k} × {1, . . . , k},
with the property that (i, j) ∈ E if and only if (j, i) ∈ E , defining edges as
follows: there is an edge eij connecting vertices vi and vj if and only if (i, j) ∈ E ,
denoted by means of the obvious abuse of notation eij ∈ E . The graph is said to
be connected if for any pair of distinct vertices vi, vj there is a path of m ≥ 1
edges eii1 , ei1i2 , . . . eim−1im with im = j . For a fixed vertex vi , the integer di :=
card{j : eij ∈ E} is called the degree of vi . A random walk on a finite connected
graph (S, E) may be defined as a Markov chain with state space S and transition
probabilities given by pvi,vj

= 1/di if and only if eij ∈ E , else pvi,vj
= 0. It

is straightforward to check that up to normalization, the vertex degrees define the
unique time-reversible invariant probability for a random walk on a finite connected
graph (see Exercise 12).

An approach to the construction of invariant probabilities, similar to that in
Proposition 8.4 but which is valid without the Feller property, is given below.

Proposition 8.10. Let p(x, dy) be a transition probability on a state space (S,S).

a If for some x ∈ S there is a sequence of integers 1 ≤ n1 < n2 < · · · such that, as
k → ∞,

1

nk

nk−1∑

r=0

p(r)(x, B) −→ πx(B) for all B ∈ S (8.32)

for some probability measure πx on (S,S), then πx is an invariant probability
for p.

b If, for some sequence {nk : k ≥ 1}, (8.32) holds for every x ∈ S with the same
limit πx = π for all x, then π is the unique invariant probability for p.
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Proof. The proof is essentially the same as that of Proposition 8.4, with Cb(S)

replaced by B(S)—the space of real-valued bounded measurable functions on S.
Note that (8.32) implies

1

nk

nk−1∑

r=0

(T rf )(x) −→
∫

S

f (y)πx(dy) for all f ∈ B(S). �
To close this chapter, let us note that a large class of examples of Markov chains

occur as functions of a given, perhaps more primitive Markov chain. Of course, one-
to-one functions are simply relabeling of the states and do not affect the dependence
structure. A more general class of functions can be obtained as follows7.

Definition 8.8. Ameasurable function ϕ on (S, S) to a measurable space (S′, S ′), is
said to be an invariant function of a group G of transformations on S if (i) ϕ(gx) =
ϕ(x) for all g ∈ G, x ∈ S. If, in addition, (ii) every measurable invariant function is
a measurable function of ϕ, then ϕ is said to be a maximal invariant.

Example 5.

1. For each x ∈ S, the orbit of x under G is defined by o(x) = {gx : g ∈ G}. Note
that each invariant function is constant on orbits. Let S and S′ be metric spaces
and ϕ : S → S′ a measurable surjection such that (a) ϕ is constant on orbits,
(b) ϕ(x) �= ϕ(y) if o(x) �= o(y), i.e., ϕ is a relabeling of o(x), and S′ may be
viewed as a relabeling of the space of orbits. Then ϕ is a maximal invariant since
(i) invariance is obvious by (a), and (ii) if ϕ(x) = ϕ(y), then ρ(x) = ρ(y) for
any invariant function ρ by (b), i.e., ρ is a function of ϕ.

2. ϕ(x) = |x| is a maximal invariant of the reflection group {e,−e}, where ex =
x, (−e)x = −x, x ∈ S = R, S′ = [0,∞).

Proposition 8.11. Suppose X = {Xn} is a Markov process on S whose transition
probabilities are invariant under the group G of transformations from S to S’, i.e.,

p(gx, g(B)) = p(x, B), ∀ x ∈ S, g ∈ G,B ∈ S.

If ϕ is a maximal invariant, then {ϕ(Xn)} is Markov.

Proof. Take conditional expectations with respect to the larger σ(Xm : m ≤ n),
followed by the smaller σ(ϕ(Xm) : m ≤ n), n = 1, 2, . . . , to get

P(ϕ(Xn+1) ∈ B|ϕ(Xm),m ≤ n) = E{p(Xn, ϕ
−1(B))|ϕ(Xm),m ≤ n}. (8.33)

By invariance of ϕ, ϕ ◦ g = ϕ, and one has from (i),

7 The continuous parameter version of this result is given in Bhattacharya and Waymire (1990,
2009), pp. 502–503, for non-injective functions of a Markov process. Also see Bhattacharya and
Waymire (1990).
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p(x, ϕ−1(B)) = p(g−1x, g−1(ϕ−1(B)))

= p(g−1x, ϕ−1(B)). (8.34)

That is, the function x → p(x, ϕ−1(B)) is invariant. By (ii), therefore, it is a
function q(ϕ(x), B), say, of ϕ. Thus,

P(ϕ(Xn+1) ∈ B|ϕ(Xm),m ≤ n) = E{p(Xn, ϕ
−1(B))|ϕ(Xm),m ≤ n}

= E{q(ϕ(Xn), B)|ϕ(Xm),m ≤ n}
= q(ϕ(Xn), B). (8.35)

Thus, {ϕ(Xn)} is Markov with one-step transition probabilities q(ϕ(x), B). �

Example 6 (Reflecting Simple Symmetric RandomWalk). Consider the unrestricted
simple symmetric random walk on Z starting at the origin, defined by Sn :=∑n

j=1 Xj , n ≥ 1, S0 = 0, where the displacements Xn : n ≥ 1 are i.i.d. ±1-

valued symmetric Bernoulli random variables. Then, since pij = 1
2δi−1(j) +

1
2δi+1(j), i, j ∈ Z is invariant under the reflection group G = {e,−e} where
e(i) = i, i ∈ Z, it follows that {Rn := |Sn|}n is a Markov chain. (Also see
Example 11.1.)

Exercises

1. Prove that for a transition probability p the measurability x → p(x, B)

for all B ∈ S implies that x → Tf (x) is measurable for all f ∈ B(S). Show
that (i) T is a linear operator on B(S), (ii) ||Tf || ≤ ||f ||, f ∈ B(S), ||f || =
supx∈S |f (x)|, (iii)T 1 = 1, where 1(x) = 1, for all x ∈ S, and (iv) Tf ≥ 0 on
S if f ∈ B(S) is a nonnegative function.

2. Let p(x, dy) be a transition probability on (S,S).

(a) Show that x → Px(B) is S-measurable for all B ∈ S⊗∞, and letting X
denote the identity map on S∞, the function y → Eyf (X) is S-measurable
for all bounded measurable f : S∞ → R.

(b) For every bounded S⊗n-measurable function f on Sn, show that the
function (x0, x1, . . . , xn−1) → ∫

S
f (x0, x1, . . . , xn−1, y)p(xn−1, dy) is

S⊗n-measurable.

3. Express time-reversibility and detailed balance without requiring densities.
[Hint: Detailed balance may be stated as π(dx)p(x, dy) = π(dy)p(y, dx),
suitably interpreted, and the consequent time-reversibility compares the joint
distribution of (X0, . . . , Xk) with that of (Xk,Xk−1, . . . , X0).]

4. Prove that T nf (x) = ∫
S

f (y)p(n)(x, dy) = E(f (Xn)|X0 = x), x ∈ S, for all
bounded, measurable functions f on S, and n ≥ 1.
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5. Show that the transition probability p in Example 1 (i) is not Feller continuous,
and (ii) does not satisfy the hypothesis of Proposition 8.10. [Hint: (i) has the
relative topology of [0, 1] so that all points m/(m + 1),m = 0, 1, . . . , are
isolated and only 1 is a point of accumulation. Hence a real-valued function
on S is continuous if and only if f ( m

m+1 ) → f (1) as m → ∞. For (ii),

p(n)(x, dy) → δ(dy) weakly as n → ∞ for all x ∈ S.]
6. Let S be a locally compact separable metric space. Suppose that T is a

positive linear contraction operator on Cb(S) with T 1 = 1. Use the Riesz
Representation Theorem to show that T uniquely determines Feller transition
probabilities p(x, dy) such that Tf (x) = ∫

S
f (y)p(x, dy).

7. In the case of the two-state Markov chain in Example 2, use time-reversibility
to compute the invariant probability π and establish convergence by an appeal
to the spectral theorem for self-adjoint linear operators on L2(S, π).

8. Let X0, Xn := X0 +Z1 +· · ·+Zn (n ≥ 1) be a (general) random walk S = R
k

with step size distribution Q, i.e., {Zn : n ≥ 1} is an i.i.d. sequence with
common distribution Q on (Rk,Bk), independent of X0. Show that (i) {Xn :
n ≥ 0} is Markov and (ii) no invariant probability exists if Q �= δ{0}.

9. (Birth–Death Chain with Two Reflecting Boundaries) Let S = {0, 1, 2, . . . , d}
(d > 1), p(x, x + 1) = βx , p(x, x − 1) = δx ≡ 1 − βx , with 0 < βx < 1
(x = 1, 2, . . . , d − 1), β0 ≡ p(0, 1) = 1, δd ≡ p(d, d − 1) = 1. Prove
that there exists a unique invariant probability π , and the Markov process with
this initial distribution is time-reversible. [Hint: There is a unique probability π

for which (8.25) holds (with μ as counting measure). To solve for π , note that
(8.25) implies π(x + 1)/π(x) = βx/δx+1 (x = 0, 1, . . . , d − 1). Check that
this must be true of the ratios for any invariant probability.]

10. (Time-Reversed Stationary Markov Process) Let {Xn : n ≥ 0} be a stationary
Markov process on (S,S) with a transition probability density p(x, y) (w.r.t.
a σ -finite measure μ) and an invariant probability density π(y), y ∈ S. Let
{Zn : −∞ < n < ∞} be a stationary Markov process such that {Zn : n ≥ 0}
has the same distribution as {Xn : n ≥ 0}. Show that {Yn := Z−n : n ∈
Z} is (i) stationary and (ii) Markov with the transition probability density
q(x, y) := (π(y)/π(x))p(y, x); note that this is simply “Bayes formula” for
(Xn,Xn+1). [Hint: Check that π is an invariant probability for q, and then
construct a stationary double-sided Markov process {Rn}−∞<n<∞ with these
transition probabilities and invariant probability. Then check that the processes
{Yn : n ∈ Z} and {Rn : n ∈ Z} have the same distribution by considering finite
dimensional events.]

11. Let {Xn : n ≥ 0} be a Markov chain on the countable state space S. Assume
that for any i, j ∈ S, one has p

(n)
ij > 0 for some n ≥ 1. We say that p = ((pij ))

is irreducible in this case. Define Yn = (Xn,Xn+1), n = 0, 1, 2, . . . .

(a) Show that {Yn : n ≥ 0} is a Markov chain on S′ = {(i, j) ∈ S × S : pij >

0}.
(b) Show that if {Xn : n ≥ 0} is irreducible, then so is {Yn : n ≥ 0}.
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(c) Show that if {Xn : n ≥ 0} has invariant distribution π = (πi), then { Yn :
n ≥ 0} has invariant distribution (πipij ).

(d) Show that an irreducible Markov chain on a state space S with an
invariant initial distribution π is time-reversible if and only if (Kolmogorov
Condition):

pii1pi1i2 · · ·piki = piikpikik−1 · · · pi1i for all i, i1, . . . , ik ∈ S, k ≥ 1.

(e) If there is a j ∈ S such that pij > 0 for all i �= j in (d), then for time-
reversibility it is both necessary and sufficient that pijpjkpki = pikpkjpji

for all i, j, k.

12. (A General Finite State Space Graph) Let {Xn : n ≥ 0} be an irreducible
Markov chain on a finite state space S; i.e., for each i, j ∈ S, there is an n ≥ 1
such that p

(n)
ij > 0. Define a graph G having states of S as vertices with edges

joining i and j if and only if either pij > 0 or pji > 0.

(a) Show that G is connected; i.e., for any two sites i and j , there is a path of
edges from i to j .

(b) Show that if {Xn : n ≥ 0} has an invariant distribution π , then for any
A ⊂ S,

∑

i∈A

∑

j∈S\A
πipij =

∑

i∈A

∑

j∈S\A
πjpji

i.e., the net probability flux across a cut of S into complementary sub-
sets A, S \ A is in balance. [Hint: Notice that

∑
i∈A

∑
j∈S πipij =∑

i∈A

∑
j∈S πipji .]

(c) Show that if G contains no cycles of three or more vertices, i.e., m = 3
or more distinct vertices v1, . . . , vm such that vi and vi+1 are joined by an
edge for i = 1, . . . , m and vm+1 = v1, then the process is time-reversible
started with π . A connected graph without cycles is called a tree graph.
[Hint: Proceed inductively on the number of states.]

(d) Give a graphical proof that an invariant probability for a birth–death
Markov chain on {0, 1, . . . , N} with reflecting boundaries at 0, N must be
time-reversible.

13. Prove the time-reversibility of Example 3 when |b| < 1 and {εn : n ≥ 1} is an
i.i.d. standard normal sequence.

14. Consider a Markov process {Xn : n = 0, 1, 2, . . . } on a metric space S defined
recursively byXn+1 = g(Xn, εn+1), n ≥ 0, where (i) {εn : n ≥ 1} is a sequence
of i.i.d. random variables with values in a metric space U , and independent of
X0, and (ii) g : S × U → S is continuous. Show that the Markov process
{Xn : n = 0, 1, 2, . . . } has the Feller property.
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