
Chapter 23
Special Topic: Associated Random Fields,
Positive Dependence, FKG Inequalities

The notion of association is a form of positive dependence among random
variables independently introduced in reliability theory, percolation theory
and statistical physics, where it is expressed in a form known as the “FKG-
Inequalities.” The main focus of this chapter is (i) a proof of Newman’s central
limit theorem for associated random fields with summable fast decay of
correlations, and (ii) Pitt’s characterization of association of multidimensional
Gaussian distributions by non-negativity of covariances.

The notion of association as a form of positive dependence has proved to be of much
interest in statistical physics,1 but its potential importance goes beyond statistical
physics applications. In 1980 C. M. Newman2 announced a central limit theorem
for associated random fields that will be the focus of this chapter. For stationary
random fields the role of association in the asymptotic distribution of centered and
scaled sums may be compared to that of martingales for stationary sequences, where
only the finiteness of second moments come into play.

In their paper Esary et al. (1967), the notion is developed as a natural extension of weaker forms
of positive dependence motivated by applications to reliability theory. It first appeared in Harris
(1960), and was later generalized in Fortuin et al. (1971).
1 A notion of negative dependence was explored by Pemantle (2000) from the perspective of
statistical physics by way of stimulating examples and conjectures. However, the development
of a comparable mathematical theory appears to be much less fruitful.
2 The central limit theorem of Newman (1980) was extended to a functional central limit theorem
for stationary associated sequences in Newman and Wright (1981).

© Springer Nature Switzerland AG 2022
R. Bhattacharya, E. C. Waymire, Stationary Processes and Discrete Parameter
Markov Processes, Graduate Texts in Mathematics 293,
https://doi.org/10.1007/978-3-031-00943-3_23

361

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00943-3_23&domain=pdf
https://doi.org/10.1007/978-3-031-00943-3_23


362 23 ST: Associated Random Fields

We will restrict the exposition to random fields of real-valued random variables
{Xx : x ∈ Z

k} defined on a probability space (Ω,F , P ) and indexed by the
k-dimensional integer lattice Z

k . Here the natural extension of stationarity of
sequences to that of random fields is as follows.

Definition 23.1. The random field X := {Xx : x ∈ Z
k} is said to be translation

invariant if for each fixed z ∈ Z
k the random field {Xx+z : x ∈ Z

k} is distributed as
X.

Definition 23.2. A finite set of random variables X1, . . . , Xm is said to be associ-
ated if

Cov(f (X1, . . . , Xm), g(X1, . . . , Xm))

≡ Ef (X1, . . . , Xm)g(X1, . . . , Xm) − Ef (X1, . . . , Xm)Eg(X1, . . . , Xm) ≥ 0

for any pair of bounded measurable coordinatewise non-decreasing functions f, g.
An arbitrary collection {Xλ : λ ∈ Λ} is said to be associated if every finite
subcollection is associated.

The inequalities (23.1) are referred to as the Fortuin–Kasteleyn–Ginbre (FKG)
Inequalities.3 Let us begin with a useful formula for covariance in this context. The
special case of this formula with f (x) = x, g(y) = y was derived in Lehmann
(1966) with attribution to Hoeffding (1940). Newman (1980) noticed the simple but
significant extension presented here. (Recall the Definition 2.1 of the covariance of
complex-valued random variables.)

Lemma 1 (Hoeffding-Newman Covariance Formula). Suppose that f (X), g(Y ) ∈
L2(Ω,F , P ) and assume f, g are continuously differentiable complex-valued
functions on R having bounded derivatives. Then,

Cov(f (X), g(Y )) =
∫
R

∫
R

f ′(x)g′(y)HX,Y (x, y)dxdy,

where

HX,Y (x, y) = Cov(1[X>x], 1[Y )>y]) = P(X > x, Y > y)

− P(X > x)P (Y > y), x, y ∈ R.

Proof. Let (X1, Y1) and (X2, Y2) be independent random vectors distributed as
(X, Y ). Note that 1(u,∞)(X1) − 1(u,∞)(X2) is 1 if X2 < u < X1, −1 if X1 <

u < X2, and 0 otherwise. Thus, by the fundamental theorem of calculus,

3 Fortuin et al. (1971).
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f (X1) − f (X2) =
∫ ∞

−∞
f ′(u){1(u,∞)(X1) − 1(u,∞)(X2)}du.

Similarly,

g(X1) − g(X2) =
∫ ∞

−∞
g′(u){1(u,∞)(Y1) − 1(u,∞)(Y2)}du.

Thus,

2Cov(f (X), g(Y ))

= E[f (X1) − f (X2)][g(Y1) − g(Y2)]

= E

∫ ∞

−∞

∫ ∞

−∞
(
1[X1>u] − 1[X2>u]

)(
1[Y1>v] − 1[Y2>v]

)
f ′(u)g′(v)dudv.

The formula follows by an application of Fubini’s theorem to interchange expected
value with integrals, after canceling the factors of 2, since expanding the product
of indicators one also has by independence and the specified common joint
distributions of (Xi, Yi), i = 1, 2, that

E
(
1[X1>u]−1[X2>u]

)(
1[Y1>v]−1[Y2>v]

) = 2{P(X1 > u, Y1 > v)−P(X1 > u)P (Y1 > v)}.
�

Remark 23.1. Under the same conditions, the covariance formula may be
expressed equivalently as

Cov(f (X), g(Y )) =
∫
R

∫
R

Cov(1[X>x], 1[Y>y])f ′(x)g′(y)dxdy.

Definition 23.3. A pair of real-valued random variables X, Y for which

P(X > u, Y > v) − P(X > u)P (Y > v) ≥ 0 for all u, v ∈ R,

is said to be positive quadrant dependent4

Proposition 23.1. Associated random variables are (pairwise) positive quadrant
dependent.

Proof. Simply note that for any fixed number a ∈ R, a function of the form f (u) =
1[a,∞)(u) is non-decreasing. �

Newman’s proof of the central limit theorem exploits the covariance formulae
to compare characteristic functions of sums of random variables with the corre-

4 The notion of positive quadrant dependence was introduced by Lehmann (1966).
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sponding product of characteristic functions through the following key lemma. The
non-negativity of the covariance is essential to this comparison.

Lemma 2 (Newman). Suppose that f (X), g(Y ) ∈ L2(Ω,F , P ) where X, Y are
positive quadrant dependent and f, g are continuously differentiable complex-
valued functions on R with bounded derivatives. Then

|Cov
(
f (X), g(Y )

)| ≤ ||f ′||∞||g′||∞Cov(X, Y ),

where || · ||∞ denotes the essential supremum norm. In particular,

|EeirX+isY − EeirX
EeisY | ≤ |r||s|Cov(X, Y ), r, s ∈ R.

Proof. Using Lemma 1, the assertion follows from the triangle inequality, bounding
the derivatives, and the positivity of H(x, y). Specifically,

|Cov
(
f (X), g(Y )

)| ≤ ||f ′||∞||g′||∞
∫ ∞
−∞

∫ ∞
−∞

H(x, y)dxdy = ||f ′||∞||g′||∞Cov(X, Y ).

This completes the proof of the general bound. The second bound is simply an
application. �

Let us say that a collection of functions C is association determining if one may
restrict the FKG inequalities to f, g ∈ C to establish association. A proof of the
following proposition is left to Exercise 8.

Proposition 23.2. The collections of coordinatewise non-decreasing binary 0 −
1-valued functions, and of coordinatewise non-decreasing bounded continuous
functions, respectively, are each association determining.

The following properties are useful in “tracking association” and/or building
examples of associated families of random variables.

Proposition 23.3.

1. Any subcollection of associated random variables is associated.
2. The union of independent collections of associated random variables is associ-

ated.
3. Measurable coordinatewise non-decreasing or coordinatewise nonincreasing

functions of associated random variables are associated.
4. If for each n, X

(n)
1 , . . . , X

(n)
m is associated and if (X

(n)
1 , . . . , X

(n)
m ) converges in

distribution to (X1, . . . , Xm), then X1, . . . , Xm is associated.
5. A singleton {X1} is associated.
6. Independent random variables are associated.
7. If X, Y are binary random variables, the X, Y are associated if and only if

Cov(X, Y ) ≥ 0.
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Proof. Part (1) follows directly from definition by considering functions whose
values do not depend on variables not included in the subset. For (2), let X =
(X1, . . . , Xm) and Y = (Y1, . . . , Yn) be two independent sequences of associated
random variables. Let Z = (X1, . . . , Xm, Y1, . . . Yn). For non-decreasing bounded
measurable functions f, g of m + n variables, since the joint distribution of X and
Y is a product measure by independence, one has

Cov(f (Z), g(Z)) = Ef (Z)g(Z) − Ef (Z)Eg(Z)

=
∫
Rn

∫
Rm

f (z1, . . . , zm+n)g(z1, . . . , zm+n)PX(dz1 × · · · × dzm)PY (dzm+1 × · · · × dzm+n)

−
∫
Rn

∫
Rm

f (z1, . . . , zm+n)PX(dz1 × · · · × dzm)PY (dzm+1 × · · · × dzm+n)

×
∫
Rn

∫
Rm

g(z1, . . . , zm+n)PX(dz1 × · · · × dzm)PY (dzm+1 × · · · × dzm+n)

=
∫
Rn

{ ∫
Rm

f (z1, . . . , zm+n)g(z1, . . . , zm+n)dPX

−
∫
Rm

f (z1, . . . , zm+n)dPX

∫
Rm

g(z1, . . . , zm+n)dPX

}
dPY

+
∫
Rn

{ ∫
Rm

f (z1, . . . , zm+n)dPX

∫
Rm

g(z1, . . . , zm+n)dPX

}
dPY

−
∫
Rn

∫
Rm

f (z1, . . . , zm+n)dPXdPY

∫
Rn

∫
Rm

g(z1, . . . , zm+n)dPXdPY

=
∫
Rn

Cov
(
f (X1, . . . , Xm, zm+1, . . . , zn+m), g(X1, . . . , Xm, zm+1, . . . , zn+m)

)
dPY

+ Cov

(∫
Rm

f (z1, . . . , zm, Y1, . . . , Yn)dPX,

∫
Rm

g(z1, . . . , zm, Y1, . . . , Yn)dPX

)
≥ 0,

where dPX = PX(dz1 × · · · × dzm), dPY = PX(dzm+1 × · · · × dzm+n).
The proof of part (3) follows directly from the definition since if X1, . . . , Xm

are associated and Yi = hi(X1, . . . , Xm) for measurable coordinatewise non-
decreasing functions h1, . . . , hm, then f (h1, . . . , hm) and g(h1, . . . , hm) are
bounded measurable coordinatewise non-decreasing whenever the same is true of
f, g. For the coordinatewise nonincreasing case the composites f (h1, . . . , hm)

and g(h1, . . . , hm) are bounded measurable coordinatewise nonincreasing for
coordinatewise non-decreasing f, g. Now, Cov

(
f (h1, . . . , hm), g(h1, . . . , hm)

) =
Cov

(−f (h1, . . . , hm),−g(h1, . . . , hm)
)

and −f (h1, . . . , hm) and −g(h1, . . . , hm)

are bounded measurable coordinatewise non-decreasing. For part (4), by definition
of weak convergence, Cov(f (X), g(X)) = limn→∞ Cov(f (X(n)), g(X(n))) for
bounded continuous functions f, g. Therefore the result follows since, by the
previous proposition, bounded continuous coordinatewise non-decreasing are
association determining. To prove (5) restrict to the association determining class
of non-decreasing binary functions, and observe that for non-decreasing binary
functions f, g of a single variable one has either f ≤ g or g ≤ f . Without loss of
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generality consider the case f ≤ g. Then Cov(f (X1), g(X1)) = Ef (X1)g(X1) −
Ef (X1)Eg(X1) = Ef (X1) − Ef (X1)Eg(X1) = Ef (X1)(1 − g(X1)) ≥ 0.
Property (6) follows by application of (2) and (5). Obviously Cov(X, Y ) ≥ 0
is necessary for X, Y to be associated. For binary 0 − 1-valued, X, Y , suppose
Cov(X, Y ) ≥ 0. Then the only binary coordinatewise non-decreasing 0 − 1-
valued functions of X, Y are f0 ≡ 0, f1 ≡ 1, g0(x, y) = x, g1(x, y) = y,
h(x, y) = x ∨y, x ∈ {0, 1}. Also, f0 ≤ g0, g1 ≤ h ≤ f1. In particular, this ordering
trivially implies that Cov(fj (X, Y ), gi(X, Y ))] ≥ 0, Cov(gi(X, Y ), h(X, Y )) ≥ 0,
Cov(fj (X, Y ), h(X, Y )) ≥ 0 for i, j = 0, 1. The case Cov(g0(X, Y ), g1(X, Y )) ≥
0 is the hypothesis. Thus, X, Y is an associated pair proving part (7). �
Remark 23.2. An alternative proof of the association of a single random variable
by coupling is an Exercise 2 in Chapter 24.

Example 1 (A Tendency to Align Under Associated Dependence). The purpose of
this example5 is to illustrate the tendency for alignment under associated depen-
dence. Consider identically distributed Bernoulli 0 − 1-valued random variables
Y0, Y1 with distribution specified by P(Y0 = j) = 1/2, P (Y1 = j |Y0 = j) =
p, j = 0, 1 for p ∈ (0, 1). Association requires that Y1 be most likely to align with
the given value of Y0. That is,

Proposition 23.4. Y0, Y1 is associated if and only if p ≥ 1/2.

Proof. First observe that taking f (i, j) = i and g(i, j) = j , i, j = 0, 1, one has that
Cov(f (Y0, Y1), g(Y0, Y1)) = Cov(Y0, Y1) = 1

2p − 1
4 ≥ 0 if and only if p ≥ 1/2.

Thus p ≥ 1/2 is necessary for association. Since Y0, Y1 are binary, it likewise
follows from Proposition 23.3(g) that p ≥ 1/2 is sufficient as well. �
Remark 23.3. In the context of statistical physics association is often expressed as
a property of the joint distribution μ of coordinate maps Xx, x ∈ Λ, on the product
space Ω = {−1, 1}Λ for some finite set Λ of integer lattice points connected to the
origin; i.e., Xx(ω) = ωx, ω ∈ Ω . The probability measure μ is said to satisfy the
FKG inequalities if for any coordinatewise non-decreasing functions f, g on Ω one
has

∫
Ω

f (Xx)g(Xy)dμ ≥
∫

Ω

f (Xx)dμ

∫
Ω

g(Xy)dμ, x, y ∈ Λ. (23.1)

Equivalently, the FKG inequalities are the property that the collection of spin
±1-valued random variables Xx, x ∈ Λ have associated dependence. The
ferromagnetic Ising model (see Chapter 13, Exercise 13) provides a well-known
example in this context. The FKG inequalities for the ferromagnetic Ising model will
be proved in Chapter 24, Proposition 24.12. The magnetic spin alignment reflected
by association is a distinct feature of ferromagnets, responsible for their ability

5 Also see Exercise 8 in Chapter 24 in this regard.
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to be magnetized by placement in an external magnetic field. Other more general
inequalities to be considered in Chapter 24 are available that imply association.6

The proof of the central limit theorem exploits the following basic inequality.

Lemma 3 (Newman’s Inequality). Suppose that X1, . . . , Xm are associated random
variables having finite variance. Then for any r1, . . . , rm ∈ R one has

|E exp{i
m∑

j=1

rjXj } −
m∏

j=1

Eeirj Xj | ≤
∑

1≤j<k≤m

|rj ||rk| Cov(Xj ,Xk).

Proof. The proof is by induction on m. The case m = 1 is obvious and the case
m = 2 was proven in Lemma 2. Assume the inequality holds for all m ≤ M

and rearrange the indices (if necessary) in such a way that sgn(rj ) is constant, say
ε (either +1 or −1), for 1 ≤ j ≤ m0, and sgn(rj ) is also constant, say δ, for
m0 + 1 ≤ j ≤ M . Then εrj ≥ 0, δrj ≥ 0, so that each of X = ∑m0

j=1 εrjXj

and Y = ∑M+1
j=m0+1 δrjXj is a non-decreasing function of associated variables

X1, . . . , XM+1 and therefore associated. Also
∑M+1

j=1 rjXj = εX + δY . Thus,
applying Lemma 2 and the induction hypothesis, one has

∣∣∣∣∣∣E exp

⎧⎨
⎩i

M+1∑
j=1

rjXj

⎫⎬
⎭−

M+1∏
j=1

Eeirj Xj

∣∣∣∣∣∣

≤
∣∣∣Eei(εX+δY ) − EeiεX

EeiδY
∣∣∣+

∣∣∣∣∣∣EeiεX
EeiδY − EeiεX

M+1∏
j=m0+1

Eeirj Xj

∣∣∣∣∣∣

+
∣∣∣∣∣∣EeiεX

M+1∏
j=m0+1

Eeirj Xj −
⎛
⎝ m0∏

j=1

Eeirj Xj

⎞
⎠ M+1∏

j=m0+1

Eeirj Xj

∣∣∣∣∣∣

≤ |ε||δ|Cov(X, Y ) +
∣∣∣∣∣∣EeiδY −

M+1∏
j=m0+1

Eeirj Xj

∣∣∣∣∣∣+
∣∣∣∣∣∣EeiεX −

m0∏
j=1

Eeirj Xj

∣∣∣∣∣∣

≤ Cov

⎛
⎝ m0∑

j=1

εrjXj ,

M+1∑
k=m0+1

δrkXk

⎞
⎠+

∑
m0+1≤j<k≤M+1

|rj ||rk| Cov(Xj ,Xk)

+
∑

1≤j<k≤m0

|rj ||rk| Cov(Xj ,Xk)

=
∑

1≤j<k≤M+1

|rj ||rk| Cov(Xj ,Xk).

�

6 See den Hollander and Keane (1986).
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Of course, one may prefer the equivalent expression of Newman’s bound as

1

2

∑
1≤j,k≤m,j 
=k

|rj ||rk| Cov(Xj ,Xk) =
∑

1≤j<k≤M+1

|rj ||rk| Cov(Xj ,Xk). (23.2)

Lemma 4. Let X := {Xx : x ∈ Z
k} be a translation invariant random field of

associated random variables having finite second moments. Assume that

γ :=
∑
x∈Zk

Cov(X0, Xx) < ∞.

Let

B(N)
x := {y ∈ Z

k : Nxl ≤ yl < N(xl + 1), l = 1, . . . , k}

denote a “block of lattice sites of length N located near Nx”, x = (x1, . . . , xk), and
define a random field of centered and rescaled “block sum averages” by

A(N)
x = N− k

2
∑

y∈B
(N)
x

(Xy − EXy), x ∈ Z
k.

Then

lim
N→∞ Var(A(N)

x ) = γ, and lim
N→∞ Cov(A(N)

x , A(N)
y ) = 0 x 
= y.

Proof. By translation invariance it suffices to check the asserted limits for the case
x = 0. Clearly

Var(A(N)
0 ) = N−k

∑
x∈B

(N)
0

∑
y∈B

(N)
0

Cov(X0, Xy−x) ≤ N−k
∑

x∈B
(N)
0

∑
y∈Zk

Cov(X0, Xy−x).

In particular, letting N → ∞,

lim sup
N→∞

Var(A(N)
0 ) ≤ γ.

For the reverse inequality let 0 < ε < 1/2 and define

B
(N)
0 (ε) := {z = (z1, . . . , zk) : εN < zi < (1 − ε)N, i = 1, . . . , k}.

Note that for x ∈ B
(N)
0 , y /∈ B

(N)
0 , |x − y| ≥ εN , so that
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Var(A(N)
0 ) ≥ N−k

∑
x∈B

(N)
0 (ε)

∑
y∈B

(N)
0

Cov(X0, Xy−x)

≥ N−k
∑

x∈B
(N)
0 (ε)

∑
|y−x|≤εN

Cov(X0, Xy−x) = |B(N)
0 (ε)|
Nk

∑
|z|≤εN

Cov(X0, Xz),

where |B| denotes cardinality of the set B. Choosing a sequence such that εN ↓ 0
and εNN → ∞, one obtains

lim inf
N→∞ Var(A(N)

0 ) ≥ γ.

This proves the asserted asymptotic variance. For the covariance decay choose a
sequence MN ≤ N such that MN/N → 1 and N − MN → ∞ as N → ∞.

Var(A(N)
0 − A

(MN)
0 )

= Var(A(N)
0 ) + Var(A(MN)

0 ) − 2(NMN)− k
2 Cov(

∑
y∈B

(N)
0

Xy,
∑

y∈B
(MN )

0

Xy)

≤ Var(A(N)
0 ) + Var(A(MN)

0 ) − 2(
MN

N
)

k
2 Var(X(MN)

0 ) → 0.

One has for z 
= 0,

Cov(A
(N)
0 , A(N)

z ) = Cov(A
(N)
0 − A

(MN)
0 , A(N)

z ) + Cov(A
(MN)
0 , A(N)

z )

≤
√

Var(A(N)
0 − A

(MN)
0 )

√
Var(A(N)

z ) + Cov(A
(MN)
0 , A(N)

z ).

Thus the proof of covariance decay is therefore completed by the following
calculation

Cov(A
(MN)
0 , A(N)

z ) = M
− k

2
N N− k

2
∑

x∈B
(MN )

0

∑
y∈B

(N)
z

Cov(X0, Xx−y)

≤
(

MN

N

) k
2

M−k
N

∑
x∈B

(MN )

0

∑
|y−x|≥N−MN

Cov(X0, Xx−y)

=
(

MN

N

) k
2 ∑

|y|≥N−MN

Cov(X0, Xy) → 0,

as N → ∞. �



370 23 ST: Associated Random Fields

To state Newman’s central limit theorem it is helpful to have some extra notation.
For x = (x1, . . . , xk) ∈ Z

k , a “block of lattice sites of length N located near Nx” is
denoted

B(N)
x := {y ∈ Z

k : Nxl ≤ yl < N(xl + 1), l = 1, . . . , k}.

Given a translation invariant random field with finite second moments X := {Xx :
x ∈ Z

k}, the random field of centered and rescaled “block sum averages” is denoted

A(N)
x = N− k

2
∑

y∈B
(N)
x

(Xy − EXy).

Theorem 23.5 (Newman’s Central Limit Theorem). Let X := {Xx : x ∈ Z
k} be

a translation invariant random field of associated random variables having finite
second moments. Assume that

γ :=
∑
x∈Zk

Cov(X0, Xx) < ∞.

Then for any finite number n of lattice sites z1, . . . , zn, the (finite dimensional)
distribution of (A

(N)
z1 , A

(N)
z2 , . . . , A

(N)
zn

) converges weakly as N → ∞ to the
Gaussian distribution with mean zero and covariance matrix diag(γ, . . . , γ ).

Proof. By Newman’s inequality and association inherited by the A
(N)
z , z ∈ Z

k ,
and the previous lemma, it suffices to show convergence of A

(N)
z , i.e., n = 1, to

obtain convergence for finite dimensional distributions of arbitrary size n ≥ 1. More

specifically, if one can show EeirA
(N)
z → e− γ

2 r2
as N → ∞, then

lim
N→∞

∣∣∣∣∣∣Ee
i
∑n

j=1 rj A
(N)
zj −

n∏
j=1

e
− γ

2 r2
j

∣∣∣∣∣∣ ≤ lim
N→∞

∑
1≤m<j≤n

|rm||rj | Cov(A
(N)
zm

, A
(N)
zj

) = 0.

(23.3)
As noted earlier, by translation invariance it is sufficient to consider the case z = 0.
For fixed M = 1, 2, . . . , let MN = M[ N

M
] ≤ N , where [·] denotes integer-part.

In the proof of the previous lemma it was shown that Var(A(N)
0 − A

(MN)
0 ) → 0 as

N → ∞. Thus, one has

∣∣∣∣EeirA
(N)
0 − EeirA

(MN )

0

∣∣∣∣ ≤ E

∣∣∣∣eir(A
(N)
0 −A

(MN )

0 ) − 1

∣∣∣∣
≤ E

∣∣∣A(N)
0 − A

(MN)
0

∣∣∣ ≤
√

Var(A(N)
0 − A

(MN)
0 ) → 0.
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Next, using the simple property of the block averages that

A
(N1N2)
0 = N

− k
2

1

∑
y∈B

(N1)

0

A
(N2)
0 , (23.4)

(for MN = M[ N
M

] = N1N2), one has by Newman’s inequality (applied to A
(M)
0 )

∣∣∣∣∣∣∣∣
Ee

irA
(M[ N

M
])

0 −
⎛
⎝Ee

ir[ N
M

]−
k
2 A

(M)
0

⎞
⎠

([ N
M

])k
∣∣∣∣∣∣∣∣
≤ 1

2

∑

x,y∈B
([ N

M
])

0 x 
=y

r2
([

N

M

])−k

Cov
(
A

(M)
x ,A

(M)
y

)
.

This upper bound may be equivalently expressed using the block average prop-
erty (23.4) as

r2

2

⎧⎪⎪⎨
⎪⎪⎩

Cov

(
A

(M[ N
M

])
0 , A

(M[ N
M

])
0

)
−
[

N

M

]−k ∑

y∈B
([ N

M
])

0

Cov
(
A(M)

y , A(M)
y

)
⎫⎪⎪⎬
⎪⎪⎭

= r2

2

{
Var

(
A

(M[ N
M

])
0

)− Var
(
A

(M)
0

)} → r2

2

{
γ − Var

(
A

(M)
0

)}
.

Letting N → ∞ with M fixed, it follows that

(
Eeir[ N

M
]− k

2 A
(M)
0

)([ N
M

])k
=

(
1 − r2

2

([N

M

])−k Var(A(M)
0 ) + o

([N

M

]−k))

→ e− Var(A(M)
0 )

2 r2
. (23.5)

Thus, combining these estimates, one has

lim sup
N→∞

∣∣∣EeirA
(N)
0 − e− γ

2 r2
∣∣∣ ≤ r2

2

{
γ − Var(A(M)

0 )
}

+
{

e− Var(A(M)
0 )

2 r2 − e− γ
2 r2

}
.

Finally, letting M → ∞ completes the proof. �
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The following example7 is a significant framework8 in which association
naturally occurs.

Example 2 (Two-dimensional Bond Percolation Model). The independent bond
percolation model9 on Z

2 can be defined as follows: Each lattice site x ∈ Z
2

has four nearest neighbor sites of the form y = x ± e where e is either (1, 0)

or (0, 1). A pair of such nearest neighbor sites x, y, in turn, defines a (unoriented)
bond b = {x, y} of Z2. Let L2 denote the collection all such bonds of Z

2. Let
{Yb : b ∈ L

2} be the i.i.d. random field of Bernoulli 0 − 1 valued random variables
with p = Pp(Yb = 1) defined by coordinate projections on the product probability

space Ω = {0, 1}L2
equipped with the σ -field F generated by finite dimensional

cylinder sets and product measure Pp = ∏
L2(qδ{0} + pδ{1}), where q = 1 − p.

Declare the bonds b as open or closed according to whether the value of Yb is 1 or
0, respectively. The usual interpretation of percolation is as a model for a disordered
porous medium in which the open bonds permit fluid flow between nearest neighbor
sites, while closed bonds block the passage of fluid. Two sites x, z ∈ Z

2 are said to
be connected by an open path, denoted x ↔ z if there is a succession of sites in Z

2,
x0 = x, x1, . . . xm = z, m ≥ 1, such that pairs xi, xi+1 are nearest neighbor with
bi = {xi, xi+1} open (i = 0, . . . , m − 1). A cluster C(x) at site x ∈ Z

2 is defined
by the (random) set

C(x) := {z ∈ Z
2 : x ↔ z}, x ∈ Z

2.

The cluster size refers to the (possibly infinite) cardinality of C(x) and is denoted by
|C(x)|. The set C(x) is referred to as a percolation cluster10 at x if |C(x)| = ∞.

Definition 23.4. The existence of an infinite cluster that is the event E :=
∪x∈Z2 [|C(x)| = ∞] is referred to as the percolation event. Also, the percolation
probability is defined by

ρ ≡ ρ(p) := Pp(E) = Pp(∪x∈Z2 [|C(x)| = ∞]). (23.6)

7 The survey article Last et al. (2020) is a source of a wide variety of additional examples of
associated stochastic random fields. Extension of Newman’s central limit theorem for Poisson
cluster processes and random measures was developed in Burton and Waymire (1985), and
independently by Evans (1989), provides an illustrative setting for applications of positive
dependence.
8 Also see Newman (1980) for examples in the context of mathematical physics.
9 The mathematical interest in percolation models is usually traced to Broadbent and Hammersley
(1957). Broadbent’s work at the British Coal Utilization Research Association involved the design
of porous gas masks for coal miners. The critical nature of pore size was empirically realized in
this context, motivating the subsequent development of simpler models of such phenomena of wide
interest in probability and mathematical physics.
10 Uniqueness of such percolation clusters was originally established by Aizenmann et al. (1987).
A widely recognized very simple proof of uniqueness was subsequently made by Burton and Keane
(1989). This has become a standard approach to uniqueness.
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Proposition 23.6. Define

θ ≡ θ(p) := Pp(|C(0)| = ∞). (23.7)

Then ρ(p) = 0 or ρ(p) = 1 if and only if θ(p) = 0 or θ(p) > 0, respectively.

Proof. Note that the percolation event E = ∪x∈Z2 [|C(x)| = ∞] is a tail event
for a countable collection of i.i.d. random variables {Yb : b ∈ L

2}. The assertion
follows immediately from subadditivity and Kolmogorov’s zero-one law.11 Namely,
ρ(p) = 0 or 1, θ(p) ≤ ρ(p), and ρ(p) ≤ ∑

x∈Z2 θ(p). So ρ(p) = 0 if and only if
θ(p) = 0, and θ(p) > 0 if and only if ρ(p) = 1. �
Remark 23.4. A proof of the monotonicity of the percolation probability p →
θ(p) as a function of p by monotone coupling techniques is given for Proposi-
tion 24.3 in Chapter 24.

Definition 23.5. The critical probability for existence of an infinite cluster, i.e.,
percolation, is defined by

pc = sup{p ∈ [0, 1] : θ(p) = 0}.

Remark 23.5. An important role for the FKG inequalities occurs in a simplified
proof of the criticality of p = 1/2 for bond percolation by Bollabás and Riordan
(2006). The original proof is the result of Kesten (1980), after completing the upper
bound calculation from two-decades earlier by Harris (1960), that pc = 1/2 for
2d-bond percolation. The upper bound pc ≤ 1/2 had already involved inequalities,
now known as Harris inequalities, that may be viewed as a special case of the FKG
inequalities for product measure.

For probability measures μ1 and μ2 on the compact space (for product topology)
S = {0, 1}Λ, where Λ is a finite or countably infinite set, the Holley inequalities12

are a generalization of associated dependence of the form

∫
S

f dμ1 ≥
∫

S

f dμ2, (23.8)

for coordinatewise non-decreasing functions f on S; equivalently it is non-
decreasing with respect to the partial order � on S defined by x � y if and only
if xj ≤ yj , j ∈ Λ for x, y ∈ S,

To see that (23.8) embodies association of a probability distribution μ on S, let
f , g be nonnegative coordinatewise non-decreasing functions on S. Take dμ1 =

gdμ∫
S gdμ

, μ2 = μ. Holley’s inequalities for μ1 and μ2 are then equivalent to the FKG

11 See BCPT, p. 87.
12 Holley (1974).
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inequalities for μ. The so-called log-convexity type conditions13 on μ, μ1, μ2 are
available to ensure either FKG inequalities or Holley inequalities, respectively.

In the so-called disordered phase14 defined by 0 < p < pc, the lattice a.s.
consists of infinitely many disjoint finite random clusters of lattice sites connected
by open bonds. The following simple path counting argument demonstrates the
existence of a disordered phase.

Proposition 23.7. pc > 0.

Proof. Consider the number Nn of open (self-avoiding) paths of length n starting at
the origin. Clearly, noting that such a path can connect to any of the 4 neighbors of
(0, 0) and continue in n − 1 self-avoiding steps, Nn ≤ 4(3n−1). Thus for p < 1/3,
applying a useful but very simple inequality for nonnegative integer-valued random
variables,

Pp(Nn ≥ 1) ≤ EpNn ≤ 4(3n−1)pn → 0 as n → ∞.

In particular,15 since θ(p) ≤ Pp(Nn ≥ 1) for all n ≥ 1, one has θ(p) = 0 for
p < 1/3 and hence pc ≥ 1/3. �

Lemma 5 (Harris’ Lemma16). Let Xx = 1[C(x) 
=∅], x ∈ Z
2. Then {Xx : x ∈ Z

2} is
a translation invariant random field of associated random variables.

Proof. Translation invariance follows directly from the definition and the fact that
the distribution of the underlying random field {Yb : b ∈ L

2} is invariant under
translation of the lattice Z

2. Also each Xx , x ∈ Z
2, is a (coordinatewise) non-

decreasing function of Y ≡ {Yb : b ∈ L
2}. Apply Proposition 23.3. �

For an application of the central limit theorem in this context we will establish
the asymptotic normality of the cumulative size

∑
x∈B

(N)
0

|C(x)| of all clusters

connected to points in the cube B
(N)
0 , suitably centered and scaled for 0 < p <

1/3. Additional applications17 along these lines are given in the exercises. The
conditions for the theorem will be checked in a sequence of simple lemmas, the
first of which is a special case of an inequality known as the BK Inequality after its
originators van den Berg and Kesten (1985).

13 den Hollander and Keane (1986).
14 Physicists often refer to the absence of long-range connectivities as “disorder.”
15 In his celebrated paper, Kesten (1980), it was proved that pc = 1/2.
16 A stronger version of this type result was first formulated and proven by Harris (1960) as a
special case.
17 The example given here serves the pedagogical purpose of simply illustrating the theorem.
For more substantial applications, but requiring elements of percolation theory which are outside
the scope of this exposition, consult the comprehensive text by Grimmett (1999), and numerous
references therein.
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To prepare for the BK inequality let us refer to a random variable X defined on
Ω as increasing if X(ω1) ≤ X(ω2) whenever ω1, ω2 ∈ Ω satisfy ω1(b) ≤ ω2(b)

for all b ∈ L
2; the latter set of coordinatewise inequalities defines a partial order

on Ω which we denote as ω1 � ω2. Similarly we say that an event A ∈ F is an
increasing event if 1A is an increasing random variable. Connectivity events of the
form [x ↔ y] are prototypical increasing events. From here out we restrict to this
case.

Definition 23.6. The disjoint occurrence of two increasing events A = [x ↔ y],
B = [z ↔ w] is an event denoted by A ◦ B and defined by

[x ↔ z] ◦ [y ↔ w] = [x ↔ z, x /∈ C(y), y ↔ w].

Lemma 6 (BK Inequality-Special Case). For x, y,w, z ∈ Z
2

Pp([x ↔ z] ◦ [y ↔ w]) ≤ Pp(x ↔ z)Pp(y ↔ w).

Proof. Observe that

Pp([x ↔ z] ◦ [y ↔ w]) = E(1[x↔z]1[x /∈C(y)]1[y↔w])

= E(1[x↔z]1[x /∈C(y)]1[x /∈C(w)]1[y↔w])

= Pp(x ↔ z, x /∈ C(y), x /∈ C(w), y ↔ w)

= Pp(y ↔ w|x ↔ z, x /∈ C(y), x /∈ C(w))Pp(x ↔ z, x /∈ C(y), x /∈ C(w))

≤ Pp(y ↔ w|x ↔ z, x /∈ C(y), x /∈ C(w))Pp(x ↔ z). (23.9)

So it suffices to show that

Pp(y ↔ w|x ↔ z, x /∈ C(y), x /∈ C(w)) ≤ Pp(y ↔ w). (23.10)

Let A be an arbitrary but fixed finite connected subgraph of L2 with vertices x and
z connected in A, but not connected to y nor w, i.e., having the properties of the
conditioning. The graph A is referred to as a lattice animal. Denote the vertex and
edge sets of A by Av and Ae, respectively. Also define the edge boundary ∂eA as
the set of (closed) edges which do not belong to Ae but have at least one endvertex
in Av . First consider the case in which y is “interior” to the lattice animal A and w

is “exterior” to A in the sense that any path of bonds connecting y to w must include
a bond from ∂eA. Then, since on [C(x) = A] the edges in ∂eA are all closed, one
has for this case that

Pp(y ↔ w,C(x) = A|x ↔ z, x /∈ C(y), x /∈ C(w)) = 0.

On the other hand, for the case when ∂eA does not obstruct the existence of a path
of open bonds connecting y to w, let us see that one may use association (FKG
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inequalities) to establish that

Pp(y ↔ w,C(x) = A|x ↔ z, x /∈ C(y), x /∈ C(w)) ≤ Pp(y ↔ w). (23.11)

To prove (23.11) consider a lattice animal A such that x ↔ z and x /∈ C(y), x /∈
C(w) and for which y,w are not separated by ∂eA in the previous sense. Then
1[y↔w] and 1[C(x)=A] are, respectively, increasing and decreasing functions of
independent random variables. Thus, by association (see Exercise 5),

Pp(y ↔ w,C(x) = A, x ↔ z, x /∈ C(y), x /∈ C(w)) = Pp(y ↔ w,C(x) = A)

≤ Pp(y ↔ w)Pp(C(x) = A)

= Pp(y ↔ w)Pp(C(x) = A, x ↔ z, x /∈ C(y), x /∈ C(w)).

Divide by the common (positive) probability Pp(C(x) = A, x ↔ z, x /∈ C(y), x /∈
C(w)) to obtain the bound (23.11). Then summing over such lattice animals A

completes the proof of (23.10) and thus the BK inequality follows. �
Lemma 7.

Cov(1[x↔z], 1[y↔w]) ≤ E(1[x↔z]1[x↔y]1[x↔w]).

Proof. Let τ(x, z, y,w) := E(1[x↔z]1[x↔y]1[x↔w]). Note that

E(1[x↔z]1[y↔w]) = τ(x, z, y,w) + E(1[x↔z]1[x /∈C(y)]1[y↔w])

= τ(x, z, y,w) + Pp([x ↔ z] ◦ [y ↔ w]). (23.12)

Now apply the BK inequality to the second term. Subtracting E1[x↔z]E1[y↔w] from
both sides establishes the assertion of the lemma. �
Lemma 8. Let Ux = |C(x)| = ∑

z 1[x↔z]. Then

γ =
∑
x∈Z2

Cov(U0, Ux) ≤ E|C(0)|3.

Proof. Using bi-linearity of covariance and the bound from the first lemma,

Cov(1[0↔w], 1[y↔z]) ≤ τ(0, w, y, z) = E(1[0↔w]1[w↔y]1[y↔z]),

it follows that

∑
y∈Z2

Cov(U0, Uy) ≤
∑
y,w,z

τ (0, w, y, z) =
∑
y,w,z

E(1[0↔w]1[0↔y]1[0↔z])
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= E

(∑
y,w,z

1[0↔w]1[0↔y]1[0↔z]

)
= E|C(0)|3.

�
Lemma 9. E|C(0)|m < ∞ for all m ≥ 0.

Proof. Note from the proof of Proposition 23.7 that for p < 1/3, τ(0, x) = Pp(0 ↔
x) ≤ 4

3e−c|x|, where c = − ln(3p) > 0. Thus, denoting by Rk the complimentary
region to the (two-dimensional) square of side-lengths 2k + 1 centered at 0, one has
the tail probability bound

Pp(|C(0)| ≥ (2k + 1)2) ≤
∑
x∈Rk

τ (0, x) ≤ 4

3

∑
x∈Rk

e−c|x|

≤ c′
∞∑

j=k+1

je−cj ≤ c′′ke−c′′k,

for a suitable c′′ > 0. The second to the last inequality is a consequence of
summing over x on the perimeters at respective distances j from the origin,
noting that the number of sites on the perimeter is linear in j . It now follows that∑∞

k=1 k2m−1P(
√|C(0)| ≥ k) < ∞, and therefore E|C(0)|m = E(

√|C(0)|)2m <

∞. �
In view of Newman’s central limit theorem this series of lemmas establishes the
following fluctuation law.

Theorem 23.8. Consider two-dimensional bond percolation with 0 < p < 1/3.
Then the centered and rescaled cumulative size 1

N

∑
x∈B

(N)
0

{|C(x)| − E|C(0)|} of

all clusters connected to points in the cube B
(N)
0 is asymptotically normal with mean

zero and variance 0 < γ = ∑
x∈Z2 Cov(|C(0)|, |C(x)|) ≤ E|C(0)|3 < ∞.

We close this chapter with a celebrated result of Loren Pitt on association of
positively correlated normal random variables. We provide the essence of his18 very
clever proof leaving the technical details to exercises.

Theorem 23.9 (Pitt). Let X = (X1, . . . , Xk) be a positively correlated normal
random vector. Then {X1, . . . , Xk} is an associated family.

Proof. First consider the case in which the covariance matrix Γ = ((γi,j )) is
non-singular matrix with nonnegative entries. One may show that the collection
of coordinatewise non-decreasing functions f, g on R

k that are continuously
differentiable with bounded partials is association determining (Exercise 12). As

18 Pitt (1982).
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a result, one may restrict to such functions f, g. Let Z = (Z1, . . . , Zk) be an
independent copy of X and define

Y (λ) = λX + (1 − λ2)
1
2 Z.

Then, Y (λ) is mean-zero normal with covariance matrix

Cov(Yi(λ), Yj (λ)) = λ2γi,j + (1 − λ2)γi,j = γi,j .

Also, Cov(X, Y (λ))i,j = λγi,j . Consider

F(λ) = Ef (X)g(Y (λ)).

Then, Cov(f (X), g(X)) = F(1) − F(0). So it suffices to show F ′(λ) exists and
is positive for 0 ≤ λ < 1. This is where the analysis is required. Namely, writing
Γ −1 = ((ci,j )), let

ϕ(x) = (2π)−
k
2 (det Γ )−

1
2 exp

⎧⎨
⎩−1

2

k∑
i,j=1

ci,j xixj

⎫⎬
⎭

denote the Gaussian pdf19 of X. Then the conditional pdf of Y (λ) given [X = x] is

p(λ; x, y) = (1 − λ2)−
k
2 ϕ((1 − λ2)−

1
2 (y − λx)).

That is, p(λ; x, y) is normal with covariance matrix (1−λ2)Γ and mean vector λx.
Thus,

F(λ) =
∫
Rk

f (x)ϕ(x)g(λ, x)dx,

where

g(λ, x) =
∫
Rk

g(y)p(λ; x, y)dy.

Observing that

g(λ, x) = ϕ(λ, ·) ∗ g(λx),

where ϕ(λ, x) = (1−λ2)− k
2 ϕ((1−λ2)− 1

2 x), one sees that ∂g(λ, x)/∂λ exists and is
nonnegative, while ∂g(λ, x)/∂xj exists and is bounded. To compute ∂p

∂λ
, let h(t, y)

19 BCPT, p. 130.
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denote the pdf of Γ
1
2 Bt , where B is k-dimensional standard Brownian motion. Then

one has

p(λ; x, y) = h(1 − λ2, y − λx).

Using the chain rule and an application of the heat equation for multivariate
Brownian motion20 one arrives at

∂p

dλ
= −1

λ

⎧⎨
⎩
∑
i 
=j

γi,j

∂p

∂xi, ∂xj

−
∑

i

xi

∂p

∂xi

⎫⎬
⎭ .

Thus,

F ′(λ) = −1

λ

∫
Rk

f (x)ϕ(x)

⎧⎨
⎩
∑
i 
=j

γi,j

∂g(λ, x)

∂xi, ∂xj

−
∑

i

xi

∂g(λ, x)

∂xi

⎫⎬
⎭ dx.

Finally, with an integration by parts one arrives at

F ′(λ) = 1

λ

∫
Rk

ϕ(x)

⎧⎨
⎩
∑
i 
=j

γi,j

∂f (x)

∂xi

∂g(λ, x)

∂xj

⎫⎬
⎭ dx ≥ 0.

In the case Γ is singular one may replace Γ by the non-singular matrix
Γ + ε1k×k, ε > 0, and observe that for continuous f, g, Cov(f (X), g(X)) depends
continuously on Γ . Thus positivity is preserved in the limit as ε → 0. �

Exercises

1. Let X1, . . . , Xn be associated random variables, and Yj = fj (X1, . . . , Xn),
j = 1, . . . , m where fj is coordinatewise non-decreasing for j = 1, . . . , m.
Show that (a) P(Y1 ≤ y1, . . . , Yk ≤ yk) ≥ ∏k

j=1 P(Yj ≤ yj ), and (b)

P(Y1 > y1, . . . , Yk > yk) ≥ ∏k
j=1 P(Yj > yj ). [Hint: Define non-decreasing

functions of Zj ’s by Zj = 1[Yj >yj ], j = 1, . . . , m, and note that Z1 · · · Zi , and
Zi+1 · · · Zm are non-decreasing functions of Zj ’s. Apply the FKG inequalities
iteratively for i = 1, . . . , m, noting EZj = P(Zj = 1). (c) Suppose that

X1, . . . Xn are independent random variables and let Sj = ∑j

i=1 Xi, j =
1, . . . , n. Show that P(S1 ≤ s1, . . . , Sn ≤ sn) ≥ ∏n

i=1 P(Si ≤ si) for

20 For the heat equation connection see Bhattacharya and Waymire (2021), Chapter 6, Remark 6.2.
Pitt uses a related computational device of Plackett (1954).
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all s1, . . . , sn. [Hint: Sj is a non-decreasing function of X1, . . . , Xn, and
independent random variables are associated.]

2. Suppose f is a continuous function on [0, 1] and consider the Bernstein
polynomial defined by fn(x) = ∑n

j=0

(
n
j

)
xj (1 − x)n−j = Ef (

Sn(x)
n

), 0 ≤ x ≤
1, where Sj (x) = X1(x) + · · ·Xj(x), for i.i.d. Bernoulli 0 − 1-valued random
variables with P(Xj (x) = 1) = x, j = 1, . . . , n. (a) Show that fn → f

uniformly on [0, 1] as n → ∞. (b)(Seymour-Welsh) Show21 that for non-
decreasing f, g on [0, 1], (fg)n(x) ≥ fn(x)gn(x), 0 ≤ x ≤ 1.

3. Show that binary 0−1-valued random variables X, Y are associated if and only
if they are positively quadrant dependent.

4. Complete the details for the extension of Hoeffding’s lemma used in the
generalization Lemma 2.

5. Suppose that X = (X1, . . . , Xm) is a vector of associated random variables.
Let f, g be, respectively, coordinatewise increasing and decreasing functions.
Show that Cov(f (X), g(X)) ≤ 0. Extend this to countably many associated
random variables.

6. Prove the alternative formula

HX,Y (x, y) = P(X ≤ x, Y ≤ y) − P(X ≤ x)P (Y ≤ y).

7. Suppose f (X), g(Y ) ∈ L2(Ω,F , P ), where X, Y are real-valued random
variables bounded below by a constant b ∈ R, and f, g are continuously dif-
ferentiable complex functions with bounded derivatives. Prove the Hoeffding-
Newman formula in this case, starting from the familiar moment formulae

E(f (X) − f (b)) = E

∫ X

b

f ′(x)dx =
∫ ∞

b

P (X > x)f ′(x)dx,

and

E(f (X) − f (b))(g(Y ) − g(b)) = E

∫ X

b

∫ Y

b

f ′(x)g′(y)dxdy.

8. Show that each of the collections of non-decreasing binary 0 or 1-valued
functions and those of non-decreasing bounded continuous functions are
association determining.

9. Consider the spatial intermittency of clusters as reflected in the density of
isolated points and/or non-isolated points. A site x ∈ Z

2 is isolated whenever
[C(x) = ∅]. The numbers of isolated points and non-isolated points in a square
B

(N)
0 are perfectly correlated since their total is (fixed) |B(N)

0 |. It is convenient to

consider the number of non-isolated sites in the square B
(N)
0 (including surface

sites for simplicity) as given by

21 Seymour and Welsh (1975).
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DN =
∑

x∈B
(N)
0

1[C(x) 
=∅].

Show that EDN = (1−q4)N2 and compute the asymptotic distribution of DN ,
suitably centered and scaled, as N → ∞.

10. Fix a positive integer k and obtain the asymptotic fluctuation law for the
numbers of sites x in B

(N)
0 belonging to a cluster of size at most k, i.e., such

that |C(x)| ≤ k.
11. Let N = {N(A) : A ∈ B} be a Poisson point process on R

n. Show that N is an
associated family of random variables.

12. Show that the collection of coordinatewise non-decreasing functions f, g on
R

k that are continuously differentiable with bounded partial derivatives is
association determining. [Hint: (a) Check that any measurable increasing
functions is a pointwise a.s. limit of continuous increasing functions. (b) Check
that if ρε, ε > 0 is a nonnegative C∞-mollifier,22 then f ∗ρε is C∞ increasing
with bounded partials such that f ∗ ρε → f pointwise, uniform boundedly.]

22 See BCPT, p.77, for a mollifier example.
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