
Chapter 22
Special Topic: Applications of Large
Deviation Theory

This chapter includes two applications of the large deviation theory presented
in Chapter 21. One concerns an application to a problem in cryptography
in which, among other motivations, hackers attempt to break a password
by guessing. The other is an application to the efficiency of large sample
statistical tests of hypothesis.

Example 1 (Encrypted Security Systems1). The problem to be considered here is
of interest to cryptographers analyzing, for example, attempts by a hacker to enter a
password protected system by robotically guessing it. The problem can be abstractly
stated as follows: For a given finite set S = {1, 2, . . . k}, say, Alice randomly
generates a cipher X(n) = x ∈ Sn of length n, where X(n) = (X1, . . . , Xn) ∈ Sn has
a joint probability mass function pX(n) (x1, . . . , xn), xj ∈ S, 1 ≤ j ≤ n. According
to some guessing strategy, Bob systematically steps through the messages y ∈ Sn

in some specified order, and Alice responds X(n) = y with “yes” or “no,” according
to whether y = x or not. The goal is to quantify the effort required by guessing.
Throughout it will be assumed without further mention that the message source
X1, X2, . . . is a stationary process.

Mathematically, guessing is given by a bijection G : Sn → {1, 2, . . . , |S|n}
prescribing the orders in which guesses y ∈ Sn are made in the guessing strategy.
G(x) is then the number of guesses to reach the given cipher x.

1 This example is based on Hanawal and Sundaresan (2011).
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To minimize the expected number of guesses, an optimal choice is a guessing
function G∗ that would therefore make the order of selections according to
decreasing probabilities f (y), y ∈ Sn. Note that if f (y) = f (z), then the order
in which y and z are guessed will not affect the number of guesses to unlock the
password. In particular, an optimal G is not unique with regard to minimizing the
expected number of guesses.

As a measure of the attackers effort, cryptologists consider an optimal G∗ to
define an optimal guessing exponent by

g(ρ) = lim
n→∞

1

n
lnEG∗(X(n))ρ, (22.1)

when the limit exists. The primary focus of this chapter is on the computation
of g(ρ) in some generality via large deviation theory. This is achieved by sys-
tematically establishing a succession of equivalent computations: Proposition 22.2
recasts the problem in terms of an equivalent computation for word lengths,
Proposition 22.3 recasts this in terms of a Rényi entropy computation, and finally
Theorem 22.4, Corollary 22.5 in terms of a large deviation computation for the so-
called information spectrum.

Remark 22.1. Calculations have been made for g(ρ) in the case of i.i.d. encodings
X1, . . . , Xn by Arikan (1996), and irreducible Markov chain encodings by Malone
and Sullivan (2004). These will appear as applications of the large deviation results
of Hanawal and Sundaresan (2011) at the end of this example.

It will be helpful to introduce the guessing length function LG : Sn → N
associated with G defined by

LG(x) = �− ln
1

CG(x)
�, x ∈ Sn, (22.2)

where �·� is the ceiling function, i.e., �x� is the smallest integer not smaller than x,
and C = ∑

x∈Sn
1

G(x) is a normalization constant. In particular,

QG(x) = 1

CG(x)
, x ∈ Sn, (22.3)

defines a probability mass function on Sn. Note that since C ≥ 1,

G(x) = 1

CQG(x)
≤ 1

QG(x)
. (22.4)

Clearly, lnG(x) ≤ LG(x), x ∈ Sn by definition, and

lnG(x) = − lnQG(x) − lnC ≥ �− lnQG(x)� − 1 − lnC, (22.5)
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so that, in summary,

LG(x) − 1 − lnC ≤ lnG(x) ≤ LG(x). (22.6)

To denote the dependence of G and L on the message length n, we write Gn,
Ln, Cn, respectively, when necessary. Note that Ln satisfies the so-called Kraft
inequality (Exercise 4)

∑

x∈Sn

exp{−Ln(x)} ≤ 1. (22.7)

In general any function L : Sn → N satisfying the Kraft inequality will be referred
to as a length function. We let Ln denote the set of all such functions on Sn. L∗ will
denote a length function that minimizes E exp{ρL(X(n))}.

Suppose that X1, X2, . . . is a stationary process and let Q ∈ Pn denote the
distribution of (X1+m, . . . , Xn+m) (m=1,2,. . . ). The Shannon entropy2 expressed in
nats, i.e., using natural logarithms, is defined by

H(X1, . . . , Xn) ≡ H(Q) = −
∑

x∈Sn

Q({x}) lnQ({x}).

Shannon’s entropy of the stationary process is defined by

H = lim
n→∞

H(X1, X2, . . . , Xn)

n
,

for which existence is a direct consequence of subadditivity using Fekete’s lemma
from Chapter 5. Specifically, lettingQn denote the distribution of (X1, X2, . . . , Xn),
one has

H(Qn+m) ≡ H(X1, . . . , Xn+m)

≤ H(X1, . . . , Xn) + H(Xn+1, . . . , Xn+m)

= H(X1, . . . , Xn) + H(X1, . . . , Xm) = H(Qn) + H(Qm), (22.8)

where the essential second line is left as Exercise 2.

Remark 22.2. Note the existence of a length function L for which the (approxi-
mate) expected lengths are minimal, i.e., the problem

min
L∈Ln:∑x e−L(x)≤1

∑

x∈Sn

pX(n) (x)L(x)

2 See Bhattacharya and Waymire (1990, 2009), pp.184–189 for a related treatment of Shannon
entropy.
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can be shown to have a solution by the method of Lagrange multipliers (Exercise 5)
providing one permits non-integer solutions.

Theorem 22.1 (Shannon). For a length function L one has

H(X1, . . . , Xn) ≤ EL(X1, . . . , Xn),

with equality if and only if pX(n)(x) = e−L(x). Moreover, letting L∗(X1, . . . , Xn)

denote the lengths having smallest expected value possible for the word
(X1, . . . , Xn), one has

H(X1, . . . , Xn) ≤ EL∗(X1, . . . , Xn) ≤ H(X1, . . . , Xn) + 1.

In particular,

H(X1, . . . , Xn)

n
≤ EL∗(X1, . . . , Xn)

n
≤ H(X1, . . . , Xn)

n
+ 1

n
,

lim
n→∞E

L∗(X1, . . . , Xn)

n
= H.

Proof. To prove the lower bound let q(x) = e−L(x)
∑

y∈Sn e−L(y) , andK = ∑
y∈Sn e−L(y) ≤

1, by the Kraft inequality. Then,

EL(X1, . . . , Xn) − H(X1, . . . , Xn)

=
∑

x∈Sn

pX(n) (x)L(x) −
∑

x∈Sn

pX(n) (x) ln
1

pX(n) (x)

= −
∑

x∈Sn

pX(n) (x) ln e−L(x) +
∑

x∈Sn

pX(n) (x) lnpX(n) (x)

=
∑

x∈Sn

pX(n) (x) ln
pX(n) (x)

q(x)
− lnK

= D(pX(n) ||q) + ln
1

K
≥ 0. (22.9)

Note that approximately if L(x) = ln 1
p

X(n) (x)
, then H = L. However, such a choice

for L is not an integer. Taking L(x) = �ln 1
p

X(n) (x)
�, the Kraft inequality is preserved

by this choice Now, for this choice of lengths, a simple calculation yields,

H(X1, . . . , Xn) ≤ EL(X1, . . . , Xn) ≤ H(X1, . . . , Xn) + 1.
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Since EL∗(X1, . . . , Xn) ≤ EL(X1, . . . , Xn) both the lower and upper bounds are
satisfied by EL∗(X1, . . . , Xn). �
Lemma 1. Let G be a guessing function and LG its associated length function.
Then,

∣
∣
∣
∣
1

ρ
lnEG∗(X(n))ρ − 1

ρ
lnE exp

{
ρL∗(X(n))

}∣
∣
∣
∣ ≤ 1 + lnC, (22.10)

where C = ∑
x∈Sn

1
G(x) .

Proof. For a length function L ∈ Ln, let GL be the guessing function that guesses
in the increasing order of L-lengths. Messages of the same L-length are ordered
according to an arbitrary fixed rule, say lexicographical order on Sn. Define a
probability mass function on Sn by

QL(x) = exp{−L(x)}
∑

y∈Sn exp{−L(y)} , x ∈ Sn. (22.11)

Note that GL guesses in the decreasing order of QL probabilities. In particular,
GL(x) ≤ ∑

y∈Sn 1[QL(y) ≥ QL(x)] ≤ ∑
y∈Sn

QL(y)
QL(x)

= 1
QL(x)

, so that

lnGL(x) ≤ − lnQL(x) x ∈ Sn. (22.12)

Also, by definition of QL and using Kraft’s inequality (22.7),

1

QL(x)
= exp{L(x)}

∑

y∈Sn

exp{−L(y)} ≤ exp{L(x)},

so that

− lnQL(x) ≤ L(x), x ∈ Sn. (22.13)

From these inequalities one deduces that for any B ≥ 1,

{x : LG(x) ≥ B + 1 + lnC} ⊂ {x : G(x) ≥ eB} ⊂ {x : LG(x) ≥ B}, (22.14)

and

{x : GL(x) ≥ eB} ⊂ {x : L(x) ≥ B}. (22.15)

Now, by (22.12) followed by (22.6),

E exp{ρL(X(n))} ≥ EGL(X(n))ρ ≥ EG∗(X(n))ρ

≥ E exp{ρLG∗(X(n))} exp{−ρ(1 + lnC)}
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≥ E exp{ρL∗(X(n))} exp{−ρ(1 + lnC)}. (22.16)

Thus,

EGL(X(n))ρ

EG∗(X(n))ρ
≤ E exp{ρL(X(n))}

E exp{ρL∗(X(n))} exp{ρ(1 + lnC)}, (22.17)

and, in terms of the length function LG associated with G, one similarly has

EG(X(n))ρ

EG∗(X(n))ρ
≥ E exp{ρLG(X(n))}

E exp{ρL∗(X(n))} exp{−ρ(1 + lnC)}. (22.18)

The lemma now follows from these bounds upon taking logarithms with L = L∗
in (22.16). That is

1 ≥ EG∗(X(n))ρ

E exp{ρL∗(X(n))} ≥ exp{−ρ(1 + lnC)}, (22.19)

so that 0 ≥ lnEG∗(X(n))ρ − lnE{ρL∗(X(n))} ≥ −ρ(1 + lnC). �
The existence and determination of g(ρ) will ultimately follow from an appli-

cation of Varadhan’s integral formula applied to a related function of X1, . . . , Xn

obtained from the next three propositions and their lemmas.

Proposition 22.2. The guessing exponent g(ρ) exists if and only if

�(ρ) = lim
n→∞ inf

L∈Ln

1

n
lnE exp{ρL(X(n))} (22.20)

exists. Moreover g(ρ) = �(ρ) when either exists.

Proof. Note thatCn ≤ 1+n ln |S|. Dividing both sides of the inequality in Lemma 1
by n, one has

∣
∣
∣
∣
1

nρ
lnEG∗ρ(X(n)) − 1

nρ
lnE(exp{ρL∗(X(n))})

∣
∣
∣
∣ ≤ 1

n
(1 + lnCn) = O

(
ln n

n

)

.

(22.21)
Thus the sequences differ by o(1) as n → ∞. �

The next proposition requires the Rényi entropy rate of order α �= 1 defined by

Hα(pX(n) ) = 1

1 − α
ln

∑

x∈Sn

pα
X(n) (x)) ≡ 1

1 − α
lnEpα−1

X(n) (X
(n)). (22.22)
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Proposition 22.3. limn→∞ infL∈Ln

1
n
lnE exp{ρL(X(n))}, or equivalently limn ln

EG∗(X(n))ρ , exists if and only if limn→∞ 1
n
Hα(pX(n) ) exists for α = 1

1+ρ
.

Moreover, if the latter limit exists, then it is given by g(ρ)
ρ

.

Proof. The equivalence is the content of Proposition 22.2. We focus on the former
limit. For each n the Donsker–Varadhan variational formula of Corollary 21.17
yields, upon replacing g by L(X(n)), λ by ρ, Q by pX(n) , and P by Q, that

lnE exp{ρL(X(n))} = sup
Q∈Pn

{ρEQL(X(n)) − D(Q||pX(n))}. (22.23)

Taking the infimum on both sides over all length functions L ∈ Ln and applying
Fan’s minimax exchange of supremum and infimum, one has

inf
L∈Ln

lnE exp{ρLn(X
(n))} = inf

L∈Ln

sup
Q∈Pn

{ρEQLn(X
(n)) − D(Q||pX(n))}

= sup
Q∈Pn

inf
L∈Ln

{ρEQLn(X
(n)) − D(Q||pX(n))}

= sup
Q∈Pn

{ρH(Q) − D(Q||pX(n))} + O(1)

= ρH 1
1+ρ

(pX(n) ) + O(1), (22.24)

where to justify the use of Fan’s minimax formula one notes firstly convexity of the
map (Q,L) ∈ Pn × Ln → EQ{ρL(X(n)) − D(Q||pX(n)) = ∑

x∈Sn{ρL(x) +
lnQ(x) − lnpX(n) (x)}Q(x), as a function of Q ∈ Pn, and the linearity
as a function of L. The next equation follows from Theorem 22.1, namely
infL∈Ln

EQ∈Pn
{L(X(n))} = H(Q) + O(1). Finally, the last equation follows

by writing

sup
Q∈Pn

{
ρH(Q) − D(Q||pX(n) )

} = (1 + ρ) sup
Q∈Pn

{

EQ

[

− ρ

1 + ρ
lnpX(n) (X

(n))

]

−D(Q||pX(n) )

}

,

and then applying the Donsker–Varadhan variational formula of Corollary 21.17,
as in the first equation, with g replaced by lnpX(n)(X(n)), λ replaced by 1

1+ρ
, P

replaced by Q to get the scaled Rényi entropy. That is,

sup
Q∈Pn

{ρH(Q) − D(Q||pX(n))} + O(1)

= sup
Q∈Pn

{

−ρ
∑

x

Q(x) lnQ(x) −
∑

x

Q(x) lnQ(x) +
∑

x

Q(x) lnpX(n) (x)

}

= sup
Q∈Pn

{
∑

x

Q(x) lnpX(n) (x) − (1 + ρ)
∑

x

Q(x) lnQ(x)

}
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= (1 + ρ) sup
Q∈Pn

{

EQ

1

1 + ρ
lnpX(n) (X

(n)) − D(Q||pX(n))

}

+ O(1)

= (1 + ρ) lnEp
1

1+ρ
−1

X(n) (X(n)) + O(1)

= ρH 1
1+ρ

(pX(n) ) + O(1).

Scale by 1
n
and let n → ∞ to complete the proof. �

The information spectrum is defined by − 1
n
lnpX(n) (X(n)). The next step is to

show that the Rényi entropy rate can be computed from the distributions of the
information spectra.

Theorem 22.4 (Hanawal and Sundaresan (2011)). Let νn be the distribution of the
information spectrum − 1

n
lnpX(n)(X(n)). If νn, n ≥ 1, satisfy a LDP with rate

function I , then the limiting Rényi entropy rate of order α = 1
1+ρ

exists and is

given by β−1 supt∈R{βt − I (t)}, where β = ρ
1+ρ

.

Proof. Let νn denote the distribution of the information spectrum 1
n
lnpX(n)(X(n)).

Then, with An = {− 1
n
lnpX(n) (x) : x ∈ Sn}, one has

∫

R

exp(nβt)νn(dt) =
∑

t∈An

exp(nβt)
∑

{x:p
X(n) (x)=exp(−nt)}

pX(n) (x)

=
∑

x∈Sn

pX(n) (x)1−β

=
∑

x∈Sn

pX(n) (x)
1

1+ρ

= exp{βH 1
1+ρ

(pX(n) )}. (22.25)

Now, scaling by 1
n
and taking logarithms, one may apply the Varadhan integral

formula to the left side to obtain in the limit β−1 supt∈R{βt − I (t)}, while one
has on the right side β limn

1
n
H 1

1+ρ
(pX(n) ). �

Corollary 22.5. If the distributions of the information spectra satisfies a LDP with
rate I , then the guessing exponent exists and is given by

g(ρ) = (1 + ρ) sup
t∈R

{
ρ

1 + ρ
t − I (t)

}

.

Proof. By Proposition 22.3 the limiting Rényi entropy is g(ρ)
ρ

. Thus, one has g(ρ) =
ρβ−1 supt∈R{βt − I (t)} = (1 + ρ) supt∈R{βt − I (t)}. �
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First let us apply this theory to the case of i.i.d. message sources.

Theorem 22.6 (I.I.D. Case). Assume that X1, X2, . . . is i.i.d. with common proba-
bility mass function p on the finite alphabet S. Then, the limit defining the guessing
exponent g(ρ) exists and is given by g(ρ) = (1+ρ)H 1

1+ρ
(p), where Hα(p) denotes

the Rényi entropy rate of order α of the probability mass function p.

Proof. From Proposition 22.3 one can compute g(ρ) from the Rényi entropy rate
which, in turn, is given by 1+ρ

ρ
I ∗( ρ

1+ρ
), where I (·) is the large deviation rate for

the energy spectrum

−1

n
lnpX(n) (X

(n)) = −1

n
ln

n∏

j=1

p(Xj ) = −1

n

n∑

j=1

lnp(Xj ).

In particular, I (h) = c∗(h) is the Legendre transform of the cumulant generating
function of − lnp(X1), namely

c(h) = lnEeh(− lnp(X1)) = lnEp−h(X1) = hH1−h(p).

Since the Legendre transform operation ∗ is idempotent (see Exercise 6), it follows
that

I ∗
(

ρ

1 + ρ

)

= (c∗)∗
(

ρ

1 + ρ

)

= c

(
ρ

1 + ρ

)

.

In particular, g(ρ) = (1 + ρ)
ρ

1+ρ
H 1

1+ρ
= ρH( 1

1+ρ
), as asserted. �

Theorem 22.7 (Irreducible Markov Case). Let X1, X2, . . . be an irreducible
Markov chain on S with homogeneous transition probability matrix p =
((p(y|x)))x,y∈S . Then the guessing exponent g(ρ) exists and is given by

g(ρ) = (1 + ρ)λ+
(

ρ

1 + ρ

)

,

where λ+(h) is the largest eigenvalue of the matrix ((π1−h(y|x)))x,y∈S .

Proof. As in the i.i.d. case, from Proposition 22.3 one can compute g(ρ) from the
Rényi entropy rate which, in turn, is given by 1+ρ

ρ
I ∗( ρ

1+ρ
), where I (·) is the large

deviation rate for the energy spectrum

−1

n
lnpX(n)(X

(n)) = −1

n

⎧
⎨

⎩
lnp(X1) +

n−1∑

j=1

lnp(Xj+1|Xj)

⎫
⎬

⎭
.

Note that Yj = (Xj ,Xj+1), j = 1, 2, . . . is also a stationary Markov chain with
one-step transition probabilities
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p̃((w, z)|(x, y)) =
{

p(z|y), y = w,

0, y �= w.

To compute I (·) it suffices to compute the large deviation rate for
∑n

j=1 ϕ(Yj ),
where g(Yj ) = − lnp(Xj+1|Xj). Let v(x, y) = − lnp(y|x), (x, y) ∈ S ×S. Then,

Thf (x, y) =
∑

(w,z)∈S×S

f (w, z)e−h lnp(z|w)p̃((w, z)|(x, y))

=
∑

z∈S

f (y, z)p−h(z|y)p(z|y) =
∑

z∈S

f (y, z)p1−h(z|y). (22.26)

Observe that Thg(x, y) = λg(x, y), (x, y) ∈ S × S implies g(x, y) = g(y),
i.e., is constant in x. In particular, λ+(h) = λ(1 − h), where λ(a) is the largest
eigenvalue of the matrix ((pa(y|x))(x,y)∈S×S . In particular, I (h) = λ∗(h). Again
using idempotency, of the Legendre transform, I ∗(t) = λ(t). It follows that the
entropy rate is given by 1+ρ

ρ
ln λ(

ρ
1+ρ

), and therefore the guessing exponent is

g(ρ) = ρ
1+ρ
ρ

ln λ(
ρ

1+ρ
) where λ(

ρ
1+ρ

) is the largest eigenvalue of the matrix

((p
1

1+ρ (y|x)))(x,y)∈S×S . �
Remark 22.3. Alternative representations of the guessing exponent in both of these
cases can be obtained by consideration of level-2 large deviations as given in
Hanawal and Sundaresan (2011). Moreover, the computation of the guessing
exponent by these methods for other general classes of message sources can be
found there.

The Kraft inequality for lengths plays an essential role in this application,
specifically in Theorem 22.1 and its application in the proof of Proposition 22.3. In
the classic monograph of Shannon (1948) messages are defined as sequences from
a finite alphabet S, referred to as ciphers.3 In the context of message compression,
for a positive integer b one often defines a b-ary coding function as an injective map
c : Sn → ∪∞

m=1{0, 1, . . . , b−1}m that renders a message x ∈ Sn of length n, as a b-
ary sequence c(x) of length m for some m. One seeks codes c for which the average
length EL(X(n)), of a message X(n), is minimal. A b-ary coding function is said to
be prefix-free (or instantaneous) if for x �= y c(x) is not a prefix of c(y). A prefix-
free code may be represented as leaves on a rooted b-ary tree obtained by coding the
path from the root to the leaves (terminal vertices) with labels {0, 1, 2, . . . , b − 1}
from left to right at each level of the tree. Therefore, a prefix-free codeword can be
instantaneously decoded without reference to future codewords since the end of a
codeword is immediately recognizable as a leaf.

3 The textbook by Cover and Thomas (2006) provides a good foundation for the general concepts
and results encountered in information theory.
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Fig. 22.1 Prefix-free code: S = {α, β}, n = 3, b = 3; L(α, β, β) = 1, L(α, α, α) = L(α, α, β) =
2; L(β, β, β) = · · · = L(β, α, α) = 3.

Proposition 22.8. Given any positive integers L1, . . . , L|S|n , satisfying Kraft
inequality, there is a prefix-free b-ary code on Sn, b ≥ 3, whose code words
have lengths L1, . . . , L|S|n .

Proof. Observe that for positive integers L(x), x ∈ Sn, b ≥ 3, since 2 < e <

3,
∑

x∈Sn b−L(x) ≤ 1 if
∑

x∈Sn exp{−L(x)} ≤ 1. Let m = |S|n, Lmax =
max{L1, . . . , Lm} and construct a full rooted b-ary tree of height Lmax for a b ≥ 3.
Then the total number of leaves available is bLmax , at vertices of height Lmax having
height one label from {0, 1, . . . , b − 2} (see Figure 22.1). This uses (b − 1)bLmax−1

of the leaves, with bLmax − (b − 1)bLmax−1 = bLmax−1 remaining for coding words
having lengths at most Lmax − 1. Proceed inductively. �
Remark 22.4. The prefix-free b-ary code constructed in the proof of Proposi-
tion 22.8 is referred to as the Shannon code. The units for message compression
are referred to as “bits” when the logarithm is base 2, and “nats” for the natural
logarithm. Natural logarithms are mathematically more convenient to the problem
at hand and can be used without loss of generality.
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The significance of Proposition 22.8 for the present chapter is that one may
assume any given lengths, i.e., subject to the Kraft inequality, to be those of a prefix-
free code.

Remark 22.5. The approximate code lengths L(x) = ln 1
p

X(n)
can be obtained as

the solution to minimizing expected code lengths subject to Kraft inequality by
the method of Lagrange multipliers (Exercise 5). However, as noted, these are not
necessarily positive integers. The existence of an optimal code is a consequence
of Theorem 22.1 and Proposition 22.8 by consideration of the prefix-free code
associated with L(x) = �ln 1

p
X(n)

�.
The next example illustrates a role for large deviation theory in large sample

statistical inference.

Example 2 (Efficiency of Statistical Tests of Hypothesis in Large Samples). A
common statistical test of hypothesis about an unknown parameter θ based on a
random sample of size n from some distribution may be stated as follows:

The null hypothesis H0 : θ ≤ θ0 is to be tested against the alternative hypothesis
H1 : θ > θ0. The test is of the form: Reject H0 (in favor of H1) if X > a, where X

is the (sample) mean of i.i.d. variables (X1, . . . , Xn) based on the random sample,
and a is an appropriate number. The objective is to have small error probabilities
αn = P(X > a|H0), and βn = P(X ≤ a|H1).

There are several competing notions for the Asymptotic Relative Efficiency
(ARE) of such tests. For example, in the so-called location problem, the distribution
function of X is of the form F(x − θ), θ ∈ R. In particular, F may be the normal
distribution N(θ, 1). The Normal test M is of the form: Reject H0 iff X > a. The
t-test T is of the form: Reject H0 iff X/s > a, where s is the sample standard
deviation. The Sign test S is of the form: Reject H0 iff 1

n

∑
1≤i≤n[Xi −θ0 ≥ 0] > a.

The a-values of these tests are not necessarily the same.
The most commonly used test ARE is the Pitman ARE EP test,4 which fixes

a “small” level αn = α, and compares two tests A,B, say, based on the smallness
of their βn. Specifically, the Pitman ARE of B with respect to A is EP (A,B) =
n/h(n), where h(n) is the sample size needed for B to attain the same level βn as
attained by A based on a sample size n. The asymptotics here are generally based
on weak convergence, especially the CLT (central limit theorem).

The two other important AREs we discuss in detail here are mainly based on
large deviations. Chernoff-ARE:5 Based on large deviation estimates for each test
A,B, Chernoff’s (modified) test picks the value of a that minimizes αn + λβn over
all a for some fixed λ > 0. (It turns out the ARE does not depend on λ). The ratio
of the large deviation rates I (A), I (B) of decay of this minimum value δn, say, of
αn + λβn is compared for the tests A and B, and the Chernoff ARE of B with
respect to A is EC(A,B) = I (B)/I (A).

4 Serfling (1980), Chapter 10, Bhattacharya et al. (2016), Chapter 8.
5 Serfling (1980), Chapter 10; Chernoff (1952).
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Proposition 22.9. Assume mi(h) = E(exp{hX1}|Hi) < ∞ for all − ∞ < h <

∞(i = 0, 1). Let

ci(a) = sup{ah − lnmi(h) : h ∈ R}(i = 0, 1), d(a) = min{c0(a), c1(a)},
I = max{d(a) : θ0 ≤ a ≤ θ1},

and ρ = exp{−I }. Then

lim
n→∞

1

n
ln δn = −I. (22.27)

Proof. By the upper bound in the Cramér–Chernoff theorem (i.e., Chernoff’s
Inequality), αn + λβn ≤ exp{−nc0(a)} + λ exp{−nc1(a)} ≤ (1 + λ) exp{−nd(a)}.
Minimizing over a, one arrives at the inequality δn ≤ (1+ λ)ρn, or 1

n
ln δn ≤ −I +

1
n
ln(1+λ), and lim supn

1
n
ln δn ≤ −I . For the lower bound for δn, note that, by the

Crameér–Chernoff theorem, lim inf 1
n
lnαn ≥ −c0(a), lim infn 1

n
lnβn ≥ −c1(a).

That is, given η > 0, for all sufficiently large n, min{αn, βn} ≥ exp{−n(d(a) + η)},
or αn + λβn ≥ (1 + λ) exp{−n(d(a) + η)}. Hence, taking the minimum over a,
δn ≥ (1 + λ) exp{−n(I + η)}, or 1

n
ln δn ≥ −(I + η) + 1

n
ln(1 + λ); so that

lim inf 1
n
ln δn ≥ −(I + η) for all η > 0. Hence lim infn 1

n
ln δn ≥ −I . �

The Location Problem Consider the tests M,T, S for the location problem for
F(x−θ) described in the first paragraph. Assume that F has a density f , continuous
at θ = 0, and a finite variance σ 2

f . Then for the test H0 : θ ≤ 0, to be tested against

the alternative hypothesis H1 : θ ≥ θ1 > 0, one can show6 that EP (S,M) =
4σ 2

f f 2(0). In particular, (i) if F is N(θ, 1), then EP (S,M) = 2/π < 1, (ii) if F is

Double exponential (i.e., f (x − θ) = 1
2 exp{−|x − θ |}), then EP (S,M) = 2, and

(iii) if f is uniform on [− 1
2 − θ, 1

2 − θ ], then EP (S,M) = 1/3. In all these cases
(and more broadly) EP (T ,M) = 1, where T is the t-test.

More interesting are Pitman comparisons among nonparametric tests for the
so-called two-sample problems. Here two independent samples (X1, . . . , Xm),
(Y1, . . . , Yn) of sizes m and n are drawn from an unknown distribution whose
density is of the form f ((x − θ)/σ ), θ ∈ R, σ > 0. One wishes to test H0 : θ = 0,
against H1 : θ > 0. More generally, one wishes to test if the Y -distribution is
stochastically larger than the X-distribution (i.e., P(Y > z) ≥ P(X > z) for all z,
with strict inequality for at least some z). The most commonly used test for this
uses the (nonparametric) statistic T = Y − X, which rejects H0 if T exceeds a
critical value. (The critical value is determined approximately by the CLT to meet
the requirement α = P(RejectH0|H0)). It turns out that appropriate nonparametric

6 See Serfling (1980), Chapter 10; Bhattacharya and Waymire (2016), Chapter 8.
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tests based on ranks of the combined observations Xi’s and Yj ’s, mostly outperform
T .7

Chernoff Index Computation The Chernoff indices I are generally difficult to
compute, since the indices try to minimize a linear combination of both error
probabilities αn and βn. We consider the simple case where F = N(θ, 1), and
H0 : θ = 0, H1 : θ = θ1, θ1 > 0. Again consider the test M: Reject H0 if
X > a, otherwise Reject H1. We leave it as an exercise to show that I (M) = θ21 /8
(Exercise 8). For the sign test S: Reject H0 if 1

n

∑
1≤i≤n 1[Xi > 0]) > a for some

appropriate a, as considered in the discussion of the Chernoff-ARE above, one may
compute the Chernoff index I (S) from the distribution B(n, p) with p = Φ(θ1), Φ
being the distribution function of N(0, 1). Namely,

I (S) = ln{2(b(θ1))
b(θ1)(1 − b(θ1))

1−b(θ1)}, (22.28)

where b(θ) = ln[1 − Φ(θ)]/[(ln{(1 − Φ(θ))/Φ(θ)}] (Exercise 10). The
ratio I (S)/I (M) provides the Chernoff-ARE EC(S,M). One may check that
EC(S,M) → 2/π = EP (S,M) as θ1 ↓ 0 (Exercise 11).

Bahadur-ARE As mentioned above, the Chernoff-ARE is generally difficult to
compute. In addition, the threshold of the test itself is modified by the requirement of
this notion of efficiency. The most popular ARE for tests based on large deviations
is due to Bahadur (1960). Here is a brief description following Serfling (1980). The
Bahadur-ARE is based on a large deviation rate comparison of the p-values of the
tests. Consider a test of hypothesis H0 : θ ∈ Θ0, with a real-valued test statistic
Tn based on observations X1, . . . , Xn, rejecting H0 if Tn is large. The p-value of
the test is Ln = sup[1 − Fθn(Tn) : θ ∈ Θ0] = 1 − Fθ0n

(Tn), say, where Fθn is
the distribution function of the statistic under the parameter value θ . Thus Ln is the
random quantity which is the probability (under H0) of the statistic being larger than
what is observed, i.e., of showing a discrepancy from the null hypothesis as large
or larger than what is observed. Statisticians routinely use Ln to decide whether
to reject H0: smaller the p-value, stronger is the evidence against H0. Under H0,
assuming that the distribution function F

θ
(0
n

of Tn is continuous, F
θ

(0)
n

(Tn) has the
uniform distribution on [0, 1], and so is the distribution ofLn = 1−F

θ
(0)
n

(Tn). Under

fairly general conditions, −2n−1 lnLn converges almost surely to a constant c(θ),
which is referred to as Bahadur’s (exact) slope for Tn, for θ ∈ Θ1. The Bahadur
relative efficiency of a test I with respect to test II is defined by the ratio of their
corresponding slopes (a.s. large deviation rates) eB(I, II ) = cI (Θ)/cII (Θ).

The following is a basic result which may be used to compute the slope of tests
such as H0 : θ ≤ θ0, against H1 : θ > θ0.8 Write Θ1 = Θ\Θ0.

7 Bhattacharya et al. (2016), Chapter 8.
8 We follow Serfling (1980), Chapter 10, for the proof of the following result of Bahadur (1960;
1971).
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Theorem 22.10 (Bahadur (1960)). For a test sequence Tn which rejects H0 for

large Tn, assume (i) n− 1
2 Tn converges a.s. (under θ ) to a finite b(θ), for all θ ∈ Θ1,

and (ii) one has

lim
n→∞ −2n−1 ln sup[1 − Fθn(n

1
2 t) : θ ∈ Θ0] = g(t), (22.29)

where g is continuous on an open interval I containing {b(θ) : θ ∈ Θ1}. Then
∀ θ ∈ Θ1, with Pθ -probability one,

lim
n→∞ −2n−1 lnLn = g(b(θ)) = c(θ). (22.30)

Proof. Fix a θ ∈ Θ1, and let ω be any point in the sample space of Pθ for which the
limit (i) holds. Fix ε > 0 sufficiently small that (b(θ) − ε, b(θ) + ε) is contained in

I . By (i), there exists n = n(ω) such that b(θ) − ε ≤ n− 1
2 Tn(ω) ≤ b(θ) + ε for all

n ≥ n(ω), i.e., n
1
2 (b(θ) − ε) ≤ Tn(ω) ≤ n

1
2 (b(θ) + ε) for all n ≥ n(ω). Plugging

these in −2n−1 ln sup[1 − Fθn(n
1
2 t) : θ ∈ Θ0], one then has

−2n−1 ln sup[1 − Fθn(b(θ) − ε)) : θ ∈ Θ0])
≤ −2n−1 lnLn(ω)

≤ −2n−1 ln sup[1 − Fθn(b(θ) + ε)) : θ ∈ Θ0])∀ n ≥ n(ω). (22.31)

The limits as n → ∞ of the two extreme sides are g(b(θ) − ε) and g(b(θ) + ε).
Therefore, the limit points of the middle term in (22.31) all lie in this interval. By
continuity of g, it follows that the middle term converges to g(b(θ)). �

The exact Bahadur slopes for the mean test M and the t-test T may be computed
for testingH0 : θ ≤ 0, versus the alternativeH1 : Θ > 0 in the modelN(θ, 1), using
the upper tail of the standard normal N(0, 1), and that of the (Student’s) t-statistic
with n − 1 degrees of freedom. Using Bahadur’s theorem, one finds cM(θ) = θ2,
cT (θ) = ln(1 + θ2) (Exercise 12). Thus eB(T ,M) < 1 for all θ ∈ Θ1. This is in
contrast with both Pitman’s ARE and Chernoff’s ARE, for each of which the ARE

is one.

Remark 22.6. Bahadur’sARE also distinguishes between the frequency chi-square
and the likelihood ratio test in the multinomial model, showing the latter is
asymptotically more efficient than the former. Again the Pitman ARE is one
between the two tests.9

9 Abrahamson (1965).
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Exercises

1. (Shannon & Renyi Entropies) Show that the Shannon entropy H may be
expressed in terms of the Renyi entropy as

H(X1, . . . , Xn) = lim
α→1

Hα(X1, . . . , Xn).

2. Complete the proof of (22.8) by showing that for random vectors H(X, Y ) ≤
H(X) + H(Y). [Hint: Show how to express H(X) + H(Y) − H(X, Y ) as
D(p(X,Y )||pX � pY ) ≥ 0, where p(X,Y ), pX, pY are the joint and marginal
distributions, respectively.

3. Let P,Q be probability measures on Sn. For convenience relabel Sn =
{1, . . . , k}, k = |S|n, qj = Q({j}), pj = P({j}). Prove Gibbs inequality:
∑

j pj lnpj ≥ ∑
j pj ln qj . [Hint: Consider

∑
j pj ln

qj

pj
and bound ln x ≤

x − 1, x > 0.
4. Give a proof of the Kraft inequality for the message length associated with G.

[Hint:
∑

x e�lnQG(x)� ≤ ∑
x elnQG(x).

5. Show that the problem minL∈Ln:∑x e−L(x)≤1
∑

x∈Sn pX(n)L(x) has a solution.
[Hint: Use Lagrange multipliers to minimize J = ∑

x∈Sn pX(n)L(x) +
λ

∑
x∈Sn e−L(x). Derivatives with respect to each L(x) are zero and λ can be

determined from the constraint
∑

x e−L(x) ≤ 1.
6. Let u, v be twice-continuously differentiable functions on R with Legendre

transforms u∗, v∗, respectively, where f ∗(x) = suph∈R{xh − f (h)}, x ∈ R.
Show that (a) u∗ is convex. (b) (Idempotency) u∗∗ = u[Hint: Write u∗(x) =
xh(x) − u(h(x)) and use the smoothness hypothesis on u to optimize.

7. Give a proof for (22.6).
8. Show that I (M) = θ21 /8.
9. Give a proof of (22.6).

10. Verify the hypotheses (i),(ii) in Theorem 22.10 for the tests M,T, S. [Hint: For

M , let Tn = n
1
2 (X−θ0), then (i) is satisfied, since for θ > θ0, n

− 1
2 Tn → θ −θ0.

For assumption (ii) assume that Xj has a finite moment generating function,
and use the Cramér-Chernoff large deviation rate. A similar, but little longer,
proof applies to the statistic T , using independence of the sample mean and
sample variance. For S one uses the moment generating function of Bernoulli
variables.]

11. Show that EC(S,M) → 2/π = EP (S,M) as θ1 ↓ 0.
12. Show using Bahadur’s theorem, that cM(θ) = θ2, cT (θ) = ln(1 + θ2).
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