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Preface

The author’s recent book Random Walk, Brownian Motion and Martingales broadly
provides an in-depth introduction to cornerstone elements of the theory of stochastic
processes and their applications, and might be viewed as a first course. The present
book, Stationary Processes and Discrete Parameter Markov Processes, singles out
two particularly prominent areas of the general theory of stochastic processes for
more focused investigations. Both treatments are stand alone, and otherwise depend
on one’s pedagogical goals and interests.

Two distinct theories of processes that evolve at random provide the dominant
theme of this book. The first focuses on mean zero processes for which no
distributional assumptions are made, except for the invariance under time shifts of
the second order moments. That there exists for these weakly stationary processes
an elegant and rather complete (stochastic) spectral representation theory, adequate
for prediction and filtering, should come as a pleasant surprise ! The second theory,
on the other hand, is based on the assumed Markov property which, given an initial
state and one-step transition probabilities, completely identifies the distribution of
the process. Still its breadth is enormous, with applications to most areas of physical,
biological, and social sciences, as well as engineering.

The prerequisite is a one-semester/quarter of graduate level probability. Some
familiarity with the standard models and methods introduced in Bhattacharya and
Waymire (2021) will be helpful to have as background. However, efforts were
made to make this book self-contained relative to the graduate level probability
prerequisite. Throughout the book, the authors provide references to the second
edition of their text Bhattacharya and Waymire (2016) A Basic Course in Probability
Theory denoted BCPT, as an appendix for prerequisite material in analysis and
probability as needed. However, there are many excellent texts and online resources
that can be used for this purpose as well.

Much of the first part of this book is devoted to aspects of weakly stationary
processes, or time series, and translation invariant random fields. The spectral theory
for weakly stationary processes is introduced, including the necessary and sufficient
condition of absolute continuity of the spectral measure for representing the process
as a (linear) two-sided moving average. A further condition on integrability of the
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viii Preface

logarithm of the spectral density is then shown to be necessary and sufficient for a
representation of a one-sided moving average, which leads to Kolmogorov’s theory
of prediction. This portion of the text is not used in the subsequent developments of
the text and, accordingly, may be omitted on first reading.

An introduction to the ergodic theory of strictly stationary stochastic processes
and dynamical systems, and their connections, is a major topic in this general
framework. The central theme of the latter is Birkhoff’s ergodic theorem.

The second part of this book concerns discrete parameter Markov processes.
Discrete parameter stochastic processes are often viewed as models of temporal
evolution for which there are definable past, present, and future periods of the
evolution. When, at any given time, the future distribution of the process depends
on the past and present only through the present state, the stochastic process is
said to be a Markov process. Such processes comprise a manifestly important
class of stochastic processes from points of view of both mathematical theory and
application. The first half of this book is primarily devoted to the case of Markov
processes taking values in a countable state space, referred to as Markov chains,
while the second half of this book concerns processes with general state space. Much
of the basic theory addresses questions pertaining to the time-asymptotic behavior
of these processes. In particular, one seeks conditions for the existence of a unique
invariant (steady state) distribution. Conditions for recurrence and ergodicity are
developed in this connection. Also, under an invariant initial distribution, the process
is stationary. Laws of large numbers and central limit theory are developed from the
perspectives of renewal decompositions and, another, using martingale theory.

In the final chapters, rates of convergence to steady state are developed for
possibly non-irreducible Markov processes on general state spaces by methods
of a theory of i.i.d. iterated random maps. Non-irreducibility in the context of
general state spaces provides exciting challenges and opportunities for the continued
development of the theory.

An extended Perron–Frobenius theorem is presented for application to the
Donsker–Varadhan theory of large deviations for Markov processes on a general
state space, extending Cramér’s large deviation theory for i.i.d. random variables,
and Sanov’s theorem on large deviations of empirical measures.

Special topics chapters include applications of the large deviation theory devel-
oped in Chapter 21. Others are a simple exposition of the Kalman filter, and another
on the theory of “positive dependence” of the type found in areas ranging from
reliability theory to statistical physics and interacting particle systems. This latter
chapter culminates with Newman’s central limit theorem for associated random
fields and Pitt’s theorem for positively correlated Gaussian random vectors. An
application to a two-dimensional bond percolation model is included for illustration.
Another special topics chapter on coupling methods includes proofs of Choquet–
Deny theorem for harmonic functions, Strassen’s theorem for stochastic ordering,
and the role of log-convexity in Holley’s inequalities and the FKG inequalities,
together with a proof of the FKG inequalities for Ising ferromagnets. The latter
has strong ties with the special topics chapter on associated random fields as well.



Preface ix

The authors are grateful to Springer Editor Loretta Bartolini for patience and
guidance. We would like to thank our colleagues Sunder Sethuraman, William
Faris. and Enrique Thomann for their continued advice and encouragement. We
are grateful to the University of Arizona graduate students Duncan Bennettt
and Eric Roon for technical assistance with some TikZ and LaTeX code. The
authors gratefully acknowledge partial support (DMS1811317, DMS-1408947) of
the National Science Foundation during the preparation of this book.

Tucson, AZ, USA Rabi Bhattacharya
Corvallis, OR, USA Edward C. Waymire



Ten-Week Course Suggestions

(A) Stationary Processes: 1-6, 23, 25
(B) Markov Chains: 4, 5, 7-11, 12-14
(C) Markov Processes: 4, 8-12, 15-21

FA = FourierAnalysis
ET = ErgodicTheory
MC = MarkovChains
MP = MarkovProcesses

Chapter Dependency Diagram

FA ET MC

1 4 7

2 5 6 8 15

3 9 17 16 21 22

23 25 10 18

24 11 19 20

12

13

14

MP



Contents

1 Fourier Analysis: A Brief Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Weakly Stationary Processes and Their Spectral Measures . . . . . . . . . . . 5
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Spectral Representation of Stationary Processes . . . . . . . . . . . . . . . . . . . . . . . 21
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Birkhoff’s Ergodic Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Subadditive Ergodic Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 An Introduction to Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Markov Processes with General State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9 Stopping Times and the Strong Markov Property . . . . . . . . . . . . . . . . . . . . . . 127
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10 Transience and Recurrence of Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . 135
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

11 Birth–Death Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

12 Hitting Probabilities & Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xi



xii Contents

13 Law of Large Numbers and Invariant Probability for
Markov Chains by Renewal Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

14 The Central Limit Theorem for Markov Chains by Renewal
Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

15 Martingale Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

16 Stationary Ergodic Markov Processes: SLLN & FCLT . . . . . . . . . . . . . . . . 215
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

17 Linear Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

18 Markov Processes Generated by Iterations of I.I.D. Maps . . . . . . . . . . . . 237
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

19 A Splitting Condition and Geometric Rates of Convergence
to Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

20 Irreducibility and Harris Recurrent Markov Processes . . . . . . . . . . . . . . . 287
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

21 An Extended Perron–Frobenius Theorem and Large
Deviation Theory for Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

22 Special Topic: Applications of Large Deviation Theory . . . . . . . . . . . . . . . . 345
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

23 Special Topic: Associated Random Fields, Positive
Dependence, FKG Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

24 Special Topic: More on Coupling Methods and Applications . . . . . . . . . 383
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

25 Special Topic: An Introduction to Kalman Filter . . . . . . . . . . . . . . . . . . . . . . 399
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

A Spectral Theorem for Compact Self-Adjoint Operators and
Mercer’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

B Spectral Theorem for Bounded Self-Adjoint Operators . . . . . . . . . . . . . . . 415

C Borel Equivalence for Polish Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419



Contents xiii

D Hahn–Banach, Separation, and Representation Theorems in
Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Related Textbooks and Monographs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443



Symbol Definition List

Special Sets and Functions:
In the classic notation of G.H. Hardy, one writes a(x) = O(b(x)) to mean that
there is a constant c (independent of x) such that |a(x)| ≤ c|b(x)| for all x. Also
a(x) = o(b(x)) indicates that the ratio a(x)/b(x)→ 0 according to specified limit.

Z+, set of non-negative integers
Z++, set of positive integers
R+, set of non-negative real numbers
R++, set of positive real numbers
Z2, the group of integers modulo two
Z
m
2 , m-dimensional hypercube (product space)
D(0 : r), disc of radius r centered at 0.
∂A, boundary of set A
Ao, interior of set A
A−, closure of set A
Ac, complement of set A
1B(x), indicator of the set B
[X ∈ B], inverse image of the set B under X
#A, |A|, cardinality for finite set A
δx , Dirac delta (point mass)
⊗, σ -field product
τB , time of first arrival in B
τ
(r)
B , r ≥ 1, r-th return time to B
τ |n, restriction of tree graph to first n generations
v|n, restriction of tree vertex to first n generations
c, d , closed interval [c, d]⊗

, product of σ -fields
S
⊗
n, the n-fold product σ -field of S

B, Borel σ -field
J , invariant σ -field
⊕, orthogonal sum

xv



xvi Symbol Definition List

i → j , j is accessible from i
i ↔ j , i and j communicate, or graph connectivity in percolation
∂�, boundary points of �
∂e, edge boundary in percolation
	, Sarkovskii order symbol for dynamical systems
[0, n]0 = {0, 1, . . . , n− 1, n}

x�, the ceiling function
[x], greatest integer function
R(γ ), the range of the map γ
�, partial order
≤s , stochastically less than or equal
p(x, dy), homogeneous (stationary) one-step discrete parameter transition prob-

ability
fX|Y (x|y), density of conditional distribution of X on [Y = y].
((pij )), countable state (one step) Markov transition probability matrix

((p
(n)
ij )), countable state n-step Markov transition probability matrix

p(x, y), q(x, y), q(y|x), (variously) a one-step transition probability density
p(t; x, dy), homogeneous (stationary) continuous parameter transition probabil-

ity
p(s, t : x, dy), nonhomogeneous (nonstationary) continuous parameter transition

probability
p
(n)
A (x, B), transition probability from x to B in n steps before reaching A

Ap(x, B), transition probability from x to B eventually and before reaching A
D(ν||μ), Kulback-Liebler divergence of ν with respect to μ
H(·), Shannon entropy
Hα(·), Renyi entropy
ARE, asymptotic relative efficiency
A ◦ B, disjoint occurrence of events A, B in percolation
∧ ∨, lattice min and max operations
Function Spaces, Elements and Operations:
C[0, 1], set of continuous, real-valued functions defined on [0, 1]
R

∞, infinite sequence space
C([0,∞) : Rk), set of continuous functions on [0,∞) with values in R

k

Cb(S), set of continuous bounded, real-valued functions on a metric (or topolog-
ical) space S

B(S), set of bounded, measurable real-valued functions on a measurable space
(S,S)

BL, the space of bounded Lipschitz functions
dP , Prohorov metric on P(S)
dBL, bounded-Lipschitz metric on P(S)
C0
b(S), continuous functions on a metric or topological space vanishing at infinity
C(S : C), set of complex-valued functions on S
P(S), space of probability measures on S
|| · ||tv , total variation norm



Symbol Definition List xvii

|| · ||op, operator norm
⊗eξ , Navier-Stokes projected convolution
ei , e i-th coordinate of unit vector
i.o., infinitely often
f ∗ g, convolution of functions
Q1 ∗Q2, convolution of measuresQ1,Q2
Cov, covariance
V ar , variance
⇒, weak convergence
At , vt matrix transpose



Chapter 1
Fourier Analysis: A Brief Survey

A few of the basic concepts and definitions from Fourier analysis that will be
used in the next few chapters are recalled.

As remarked in the Preface, throughout the text the authors’ footnote references to
the second edition of their text Bhattacharya and Waymire (2016), A Basic Course
in Probability Theory, denoted BCPT, are used as an Appendix for prerequisite
material in analysis and probability as needed. However there are many excellent
texts and online resources that can be used for this purpose.

The idea that general functions, including those with discontinuities, may be
expressed as superpositions, or linear combinations, of periodic functions with
different periods and amplitudes is due to the legendary French mathemati-
cian/physicist Joseph Fourier (1768–1830). Although exceptions were pointed out
by some other mathematicians, Fourier’s brilliant idea brought forth a revolution in
mathematics. Fourier analysis is a major tool used in this book, especially the first
few chapters comprising Part I.

We begin with Fourier series, namely Fourier analysis on the unit circle T in the
plane represented as [−π, π ], with −π and π identified. One may also conveniently
represent T as the unit circle in the complex plane, T = {exp{iθ} : −π <

θ ≤ π}. A (Borel measurable complex-valued) function on T may be thought
of as a (Borel measurable complex-valued) periodic function on the real line R,
with period 2π . The simplest such functions are exp{inx} and their superpositions.
One looks for representing, or approximating, a more general periodic function f
by such a superposition f ∼ ∑

n dn exp{inx}; a finite sum of this type is called
a trigonometric polynomial. According to a result of Weierstrass (Exercise 2),
such polynomials are dense in the set of all complex-valued continuous functions

© Springer Nature Switzerland AG 2022
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2 1 Fourier Analysis

C(T : C) endowed with the uniform norm: ||f ||u = supx∈T |f (x)|. It follows
that trigonometric polynomials are dense in the Hilbert space L2(T) of square
integrable functions on T with squared norm ||f ||2 = 1

2π

∫
T

|f (x)|2dx. It is
simple to check that the functions exp{inx}, n ∈ Z, form an orthonormal sequence
in L2(T), and, by the density in uniform norm of trigonometric polynomials in
C(T : C), they are a complete orthonormal sequence in L2(T) (Exercise 3). Thus
f (·) = ∑

n∈Z〈f, exp{in·}〉 exp{in·} or

f (x) =
∑

n∈Z
cn exp{inx}, (1.1)

where

cn = 〈f, exp{in·}〉 = 1

2π

∫

[−π,π ]
f (x) exp{−inx}dx (1.2)

is the n-th Fourier coefficient of f , and the expansion (1.1) is the Fourier series of
f . The equality in (1.1) is in L2(T). It follows from this orthogonal expansion that

||f ||2 =
∑

n∈Z
|cn|2, f ∈ L2(T). (1.3)

Thus the Fourier series is an isometry between L2(T) and L2(Z), where L2(Z) is
the space of sequences {an : n ∈ Z} endowed with the squared norm

∑
n |an|2. This

immediately implies that (Exercise 4)

〈f, g〉T = 〈{an}, {dn}〉Z, (1.4)

where {an} and {dn} are the Fourier coefficients of f and g, respectively. The
subscripts T and Z in (1.4) are used to distinguish the inner products in the two
Hilbert spaces: 〈f, g〉T = 1

2π

∫
[−π,π ] f (x)g(x)dx and 〈{an}, {dn}〉Z = ∑

n∈Z cndn.
We will drop these subscripts for the norms and inner products in the future
when there is no possibility of confusion. One may extend the notion of Fourier
coefficients to finite signed measures. The Fourier coefficients cn of a finite signed
measure μ are defined by

cn = 1

2π

∫

[−π,π ]
exp{−inx}μ(dx) (n ∈ Z). (1.5)

By usual approximation by functions (see BCPT , Proposition 6.3), one can
show that the Fourier coefficients of μ determine it. One may think of this as a
generalization of Fourier coefficients of integrable functions f by letting μ(dx) =
f (x)dx, noting that square integrable functions on T are integrable. An important
question arises in the theory pursued in the following chapters: Which sequences
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{cn} are Fourier coefficients of a finite measure on T ? The answer to this question
is provided by the important theorem by Herglotz1

Theorem 1.1 (Herglotz). A sequence {cn} is the sequence of Fourier coefficients of
a finite measure μ on T if and only if the sequence is positive-definite, i.e., if and
only if for every finite sequence zj (j = 1, . . . , n) of complex numbers, one has∑

1≤j,k≤n cj−kzj zk ≥ 0.

Turning to the Fourier analysis on R, one defines the Fourier transform of an
integrable function (with respect to Lebesgue measure) f as

f̂ (ξ) =
∫

R

f (x) exp{iξx}dx, ξ ∈ R. (1.6)

If one used exp{−iξx} instead of exp{iξx}, it would correspond to the defini-
tion (1.2) of the Fourier coefficient. But we will rather follow the usual convention
in the probability literature here. If f and f̂ both are integrable with respect to
Lebesgue measure, then one has the inversion formula (BCPT, Theorem 6.7 (a))

f (x) = 1

2π

∫

R

f̂ (ξ) exp{−iξx}dξ, x ∈ R. (1.7)

This corresponds to the Fourier series representation (1.1), except for the sign in
the exponent of exp. Because L1(R, dx)) ∩ L2(R, dx) is dense in L2(R, dx), with
respect to the L2-distance, one defines the Fourier transform (1.6) for functions
in L2(R, dx) also. One then has an isometry analogous to (1.3) (BCPT, Theo-
rem 6.7(b)):

(2π)||f ||22 = ||f̂ ||22 f ∈ L2(R, dx). (1.8)

This is known as the Plancherel identity. One also defines the Fourier transform μ̂

of a finite signed measure μ as

μ̂(ξ) =
∫

R

exp{iξx}μ(dx), ξ ∈ R. (1.9)

In the case μ is a probability measure, μ̂ is called the characteristic function of μ.
Corresponding to the theorem of Hergloz, Bochner’s theorem says that a

complex-valued function ϕ on R is the Fourier transform of a finite signed measure
if and only if it is positive-definite and continuous. Here a function ϕ is positive-
definite if and only if for any finite sequence of complex number {z1, . . . , zn}, one
has

∑
1≤j,k≤n zj zkϕ(zj − zk) ≥ 0 (BCPT, Theorem 6.13).

1 For a proof, see BCPT, p. 111.
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Exercises

1. (Complex Stone-Weierstrass Theorem) Let S be a compact metric space and Γ a
subalgebra of C(S : C) which separates points, contains constant functions, and
is closed under complex conjugation. Prove that Γ is dense in C(S : C). [Hint:
Let ΓR denote the set of real and imaginary parts of f , for all f ∈ Γ . Since
for all f ∈ Γ , Ref = (f + f )/2, Imf = (f − f )/2i, it follows that ΓR is a
subalgebra of C(S : R) which satisfies the hypothesis of the Stone–Weierstrass
theorem for C(S : R) and is, therefore, dense in it. But Γ = {g+ ih : g, h ∈ ΓR}
is then clearly dense in C(S : C).]

2. (Weierstrass Approximation Theorem for C(T : C)) Prove that the set
Γ of trigonometric polynomials, i.e., finite linear combinations of functions
exp{inx}, n ∈ Z, is dense in C(T : C) in the uniform norm. [Hint: Show that Γ
satisfies the hypothesis of Exercise 1.]

3. Prove that the sequence {exp{inx}, n ∈ Z} is an orthonormal and complete basis
of L2(T). [Hint: Apply Exercise 2 to prove completeness.]

4. (Polarization Identity) Give a proof of (1.4). [Hint: Use the fact that the inner
product 〈f, g〉 in a complex Hilbert space H satisfies the so-called polarization
identity: 4〈f, g〉 = ||f + g||2 − ||f − g||2 − i||f + ig||2 + i||f − ig||2.]



Chapter 2
Weakly Stationary Processes and Their
Spectral Measures

Stationary stochastic processes are analyzed at the level of their first and
second order characteristics, mean and covariance, using Fourier methods.

Some historic considerations that naturally lead to spectral considerations of the
type covered in the next few chapters often involved such phenomena as electrical
currents in a vacuum tube or components of turbulent fluid velocities in a wind
tunnel. In such arrangements, it is somewhat natural to at least formally view
the physical process as a sum of a mean process (the “signal”) and stochastic
fluctuations (the “noise”). The noise is often regarded to be stationary in the sense
that its distribution is invariant under translations in time. Second order quantities
such as the average electrical power dissipated by a current across a resistor (Joule’s
law) or the mean-square kinetic energy of the fluid after the mean is removed are
both proportional to the variance.

From a mathematical perspective, since the basic second order structure and
properties embodied in variances and covariances (correlations) can be conveniently
analyzed through the Fourier analysis, one may expect Fourier theory to provide the
appropriate framework. The survey of the basic notions and results from Fourier
analysis given in Chapter 1, and an occasional review of other concepts1 as they
occur, should be sufficient background orientation for the development of spectral
theory to follow.

1 See BCPT, Chap. VI.
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6 2 Weakly Stationary Processes

Definition 2.1. Let T = Z
+, Z, R+ or R. A stochastic process {Xt : t ∈ T } with

values in a measurable space (S,S) is said to be stationary, or strictly stationary, if
for every finite set of indices t1 < t2 < · · · < tk (k ≥ 1) and every s > 0 such that
ti+ s ∈ T for all i, the distribution of (Xt1+s , Xt2+s , . . . , Xtk+s) is the same as that
of (Xt1 , Xt2 , . . . , Xtk ).

The qualifying term “strictly” in Definition 2.1 is sometimes applied to a
stationary process to distinguish it from processes that are stationary in a much
weaker sense as follows.

Definition 2.2. Let T be as above, but take S = C with its Borel σ -field for S . A
complex-valued process {Xt = Ut + iVt : t ∈ T } is said to be weakly stationary if
its first two moment sequences are each finite and translation invariant, that is,

EXt = EX0 = μ, Cov(Xs,Xt+s) = Cov(X0, Xt ) = r(t) for all t, t + s ∈ T , s ≥ 0.

Here EXt = EUt + iEVt , Cov(Xs,Xt+s) = E(Xs − μ)(Xt+s − μ). In particular,
if the Xt ’s are real-valued, then one can omit Vt and the conjugation sign in the
covariance.

Example 1. Let {Xn : n ∈ Z
+} be a real- or complex-valued (uncorrelated) process

with constant mean μ and Cov(Xm,Xn) = δm,nσ
2 for some σ 2 ≥ 0. Then {Xn :

n ∈ Z
+} is weakly stationary. In particular, a weakly stationary sequence {Xn : n ∈

Z
+} of independent random variables will also be strictly stationary if and only if it

is an i.i.d. sequence.

Example 2 (Ornstein–Uhlenbeck Process). Let {B(t) : t ≥ 0} denote standard
Brownian motion started at B(0) = 0. Since Var(B(t)) = t grows with t ≥
0, standard Brownian motion is clearly non-stationary on the linear time scale.
However, consider the process Xt = e− t

2B(et ),−∞ < t < ∞. {Xt : t ∈
R} is Gaussian with EXt = 0 and, recalling Cov(B(s), B(t)) = min(s, t),

Cov(Xs,Xt ) = e−
|t−s|

2 , s, t ∈ R. In particular {Xt : t ∈ R} is a (strictly) stationary
process, referred to as the Ornstein–Uhlenbeck process.

Proposition 2.1. Let S be a Polish space with Borel σ -field S . (a) If {Xn : n ∈
Z

+} is a stationary process with values in S, one can construct a stationary process
{Yn : n ∈ Z} such that {Yn : n ∈ Z

+} has the same distribution as that of {Xn :
n ∈ Z

+}. (b) If {Xt : t ∈ R
+} is a stationary stochastic process with values in

S, one can construct a stationary process {Yt : t ∈ R} such that the distributions of
(Yt1, Yt2 , . . . ) and (Xt1 , Xt2 , . . . ) are the same for every sequence 0 ≤ t1 < t2 < · · ·
in R

+.

Proof. (a) The distribution of {Xn : n ∈ Z
+} is a probability measure on the

measurable space (SZ
+
,S⊗Z

+
), where S⊗Z

+
is the product σ -field. Let μn1,n2,...,nk

be the distribution of (Xn1, . . . , Xnk ), 0 ≤ n1 < n2 < · · · < nk . For every k-tuple of
integers n1 < n2 < · · · < nk in Z (k ≥ 1), define μn1,n2,...,nk := μ0,n2−n1,··· ,nk−n1 .
This defines a consistent family of finite dimensional distributions on (SZ,S⊗Z).
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By Kolmogorov’s existence theorem,2 the coordinate projections {Yn : n ∈ Z} on
this space have the desired property. (b) The proof of part (b) is entirely analogous.

�
Remark 2.1. A different proof of Proposition 2.1(a) may be given by defining for
each m ≥ 1 the left-shifted process X(m) as X(m)n := Xn+m for n ≥ −m and
extending it to indices n < −m by setting X(m)n = X0. Then X(m) converges in
distribution asm→ ∞ to the desired stationary process. A similar argument applies
to part (b) if Xt has continuous sample paths (a.s.) on R

+.

Let {Xt : t ∈ T } be a real- or complex-valued process with finite second
moments on an index set T contained in R or Z. The covariance function of the
process is

r(s, t) = Cov(Xs,Xt ) = E(Xs − EXs)(Xt − EXt). (2.1)

It is clearly (i) Hermitian symmetric in the sense that r(s, t) = r(t, s), and it is
(ii) positive definite. In the sense that for n ≥ 1 and arbitrary t1, . . . , tn ∈ T , and
(a1, a2, . . . , an) ∈ C

n, one has

∑

1≤j,k≤n
aj akr(tj , tk) = E|

n∑

j=1

aj (Xtj − EXtj )|2 ≥ 0. (2.2)

Strictly speaking the term nonnegative definite is more appropriate here. However
this abuse of terminology is somewhat standard.

Remark 2.2. The term autocovariance function is also often used in reference to
r(s, t). Also, since variances are constant under (weak) stationarity, covariance and
correlation are in constant proportion to each other.

In the case T = Z or R and the process is weakly stationary, we often write

ct = Cov(Xs,Xs+t ) = Cov(X0, Xt ), t ∈ T .

One has for all n ≥ 1

∑

1≤j,k≤n
aj akctk−tj ≥ 0 ((a1, . . . , an) ∈ C

n, tj ∈ T for 1 ≤ j ≤ n. (2.3)

One may check from (2.3) that (i) c0 ≥ 0 and (ii) c−t = ct (Exercise 3). The
normalized quantity ρt = ct/c0, where by weak stationarity Var(Xt ) = Var(X0) =
c0, t ∈ T , defines the correlation function.

2 BCPT, p. 168.
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Since for any tj , tk, tk − tj ∈ T , Cov(Xtj , Xtk ) = Cov(X0, Xtk−tj ), one sees that
{ct : t ∈ T } satisfying (2.3) is also positive definite in the sense of Herglotz’ and
Bochner’s theorems. Let us first consider this in the case of real-valued processes
indexed by the discrete parameter set T = Z.

Theorem 2.2. There is a one-to-one correspondence between the set of all covari-
ance sequences {cj : j ∈ Z} of real-valued weakly stationary processes {Xn : n ∈
Z} and the set of all finite symmetric measures F on [−π, π ], with {cj : j ∈ Z} as
the sequence of Fourier coefficients of F , i.e., cj = 1

2π

∫
[−π,π ] e

−ijλF (dλ), j ∈ Z.

Proof. The existence of the measure F follows from (2.3) and Herglotz’ theorem3

symmetry of F is due to the fact that cj ’s are real, so that c−j = cj for all j which,
since the Fourier coefficients determine the measure, holds if and only if F equals
the measure induced by the change of variable λ→ −λ on [−π, π ]. �
Remark 2.3. For purposes of integration on the unit circle [−π, π) with respect
to F , it is convenient to integrate on [−π, π ], treating π as distinct from −π , but
always with F({π}) = F({−π}), by splitting the mass at the point on the circle into
equal halves.

The finite measure F in Theorem 2.2 is called the spectral measure. Note that
the variance may be viewed as the accumulated total spectral mass,

Var(Xn) = Var(X0) = c0 = 1

2π

∫

[−π,π ]
F(dλ) = F([−π, π ])

2π
.

In the next chapter we will derive a representation of the process {Xn : n ∈ Z}
as a superposition of sinusoidal oscillations with random amplitudes for which
F(dλ)/2π may be interpreted as the contribution to the variance from the variance
in amplitude of an oscillation in the frequency range λ to λ+ dλ.

From Theorem 2.2, one has the simple corollary.

Corollary 2.2. Finite symmetric (spectral) measures are in a one-to-one correspon-
dence with mean-zero real-valued stationary Gaussian processes. The covariances
are given by

cj = 1

2π

∫

[−π,π ]
e−ijλF (dλ) = 1

2π

∫

[−π,π ]
cos(jλ)F (dλ) (j ∈ Z). (2.4)

In particular, c0 = F([−π, π ])/2π = σ 2 ≡ Var(Xj ).

Example 3 (Dirac Point Mass Spectral Measure). If the support of F is {0}, i.e.,
F(dλ) = bδ{0}(dλ) for a positive constant b, then cn = F({0})/2π = b/2π = σ 2

for all n ∈ Z. This implies Var(Xn) = c0 = σ 2 and Var(Xn−X0) = 2σ 2−2cn = 0
for all n. Hence, with probability one, Xn = X0 for all n. One may choose

3 See BCPT, p.110.
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X0 arbitrarily to be any random variable with variance σ 2. This is a case of
extreme dependence in the sense of no decay in the correlations with increasing
n. In particular, the sequence is “deterministic” in the sense that its value at one
n determines its values for all n. Note that the point mass of F at {0} may be
equivalently viewed as a jump discontinuity in the spectral distribution function
λ→ F [−π, λ],−π ≤ λ ≤ π, at λ = 0.

Example 4 (Lebesgue Spectral Measure). Let F(dλ) = bdλ be a multiple b of
Lebesgue measure for some b > 0. Then σ 2 = c0 = b, cn = 0 for all n �= 0. Hence
the sequence {Xn : n ∈ Z} is uncorrelated. In particular, all i.i.d. sequences with
(common) variance σ 2 = b have this form of the spectral measure.

The previous two examples are somewhat extreme illustrations of a connection
between the smoothness of the spectral distribution function λ→ F(−π, λ] and the
rate of decay of correlations, see Exercise 15.

Example 5 (Fractional Gaussian Noise Sequence). Fix 0 < h < 1 and consider
the (one-dimensional) continuous parameter fractional Brownian motion process
{B(h)t : t ≥ 0}. The fractional Brownian motion is defined by a mean-zero Gaussian
process starting at B(h)0 = 0 with stationary increments such that

Cov(B(h)s , B
(h)
t ) = �h(s, t) = σ 2

0

2

{
|s|2h + |t |2h − |s − t |2h

}
. (2.5)

Remark 2.4. The nomenclature, the reason for Gaussian, and the form of the
correlation function are suggested by a representation of this process as a “fractional
derivative of Brownian motion” to be developed in the next chapter. However, the
covariance function (2.5) characterizes fractional Brownian motion among mean-
zero Gaussian processes {Xt : t ≥ 0} starting at zero, having stationary increments
and variance scaling as EX2

t = σ 2
0 t

2h for an exponent h ∈ (0, 1); see Exercise 7.
This is a modification of the original definition of fractional Brownian motion given
by Lévy (1953). Lévy’s definition is valid for all h > 0.

For the present, we wish to consider the discrete parameter process

{W(h)
n = B(h)n+1 − B(h)n : n = 0, 1, . . . }.

This defines a stationary Gaussian sequence with, for n = 0, 1, 2, . . . ,

cn = E

{
(B
(h)
n+1 − B(h)n )B(h)1

}
= σ 2

0

2

(
|n+ 1|2h − 2|n|2h + |n− 1|2h

)
.

The computation of the spectral distribution F(dλ) will be postponed to an
application of the spectral representation theory to be developed in the next chapter.
This stationary process defined by the increments of the fractional Brownian motion
may be extended backward to a process again denoted {W(h)

n : n ∈ Z} and referred
to as fractional Gaussian noise. In the case h = 1/2, this is simply an i.i.d. mean-
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zero Gaussian sequence. In particular one has a trivial “central limit theorem” in

the sense that the distribution of 1√
n

∑n
j=1W

( 1
2 )

j has a standard normal distribution

for any n and hence in the limit as n → ∞. However, for h �= 1
2 , although the

distribution of the sum is Gaussian, to obtain a non-degenerate limit distribution,
the corresponding scaling is by n−h, not 1/

√
n. Since the fractional Gaussian noise

is a Gaussian process, this is a reflection of the statistical dependence exhibited in
the decay of the correlations. One may check that for h �= 1/2 (Exercise 8)

cn ∼ σ 2
0 h(2h− 1)n2h−2 as n→ ∞.

In particular, while cn → 0 as n → ∞ for any value of h ∈ (0, 1), the series∑∞
n=0 |cn| diverges for 1/2 < h < 1. Note also that the correlations are positive4

in the case 1/2 < h < 1. For future reference, let us also note that the fractional
Brownian motion has a natural extension backward in time to a process indexed by
t ∈ R, defined via the Kolmogorov extension theorem, as a mean-zero Gaussian
process with covariance function defined by (2.5).

The absolute summability of the covariance function is more generally related to
the absolute continuity of the spectral distribution F(dλ) and associated continuous
positive density as follows: the proof is left as Exercise 15. However it is not used
in the remainder of this chapter.

Proposition 2.4. Let F(dλ) denote the spectral measure of a covariance function
{cn : n ∈ Z} such that

∑
n∈Z |cn| < ∞. Then F(dλ) is absolutely continuous with

respect to Lebesgue measure with a continuous positive density given by

f (λ) =
∑

n∈Z
cne

inλ, −π ≤ λ ≤ π.

In this context the following sample statistic provides a natural quantity associated
with the spectral distribution.

Definition 2.3. For a positive integer N , the N-sample periodogram of a discrete
parameter real-valued weakly stationary process {Xn : n ∈ Z} is defined for
frequencies of the form λj = 2πj

N
∈ [−π, π ], j ∈ Z, by

SN(λj ) = 1

N
|
N∑

n=1

Xne
inλj |2.

For λ ∈ [−π, π ], consider the partition of [−π, π ] into subintervals of lengths
2π/N

4 According to a celebrated Theorem 23.9 in Chapter 23, this also provides an example of a special
type of associated statistical dependence.
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SN(λ) =
{
SN(λj ) if 2πj

N
− π
N
< λ ≤ 2πj

N
+ π
N
, 0 ≤ λ ≤ π,

SN(−λ) if − π ≤ λ < 0.

Observe that

SN(0) = N | 1

N

N∑

n=1

Xn|2.

Moreover, since for λj �= 0 one has for the simple (geometric) sum

N∑

n=1

einλj =
N∑

n=1

e−inλj = 0,

it follows that the definition of SN(λj ) is unchanged by centering each term Xn

of the sum by Xn − 1
N

∑N
k=1Xk . For that matter, one may replace each term Xn

by Xn − m without changing the value of SN(λj ), and therefore SN(λ), λ �= 0. In
particular, the following form is convenient for computations:

SN(λj ) =
∑

|n|<N

1

N

N−|n|∑

k=1

E(Xk −m)(Xk+|n| −m)einλj .

Corollary 2.5. Suppose that {Xn : n ∈ Z} is a weakly stationary process with mean
m and absolutely summable covariance function {cn : n ∈ Z} and spectral density
f . Then, in the limit as N → ∞, one has

ESN(0)−Nm2 → f (0),

ESN(λ)→ f (λ) λ �= 0.

If m = 0, then the second limit holds uniformly for all λ ∈ [−π, π ].
Proof. Note that

lim
N→∞

(
ESN(0)−Nm2

)
= lim
N→∞N Var

(
1

N

N∑

k=1

Xk

)

= lim
N→∞

1

N

∑

|n|<N
(N − |n|)cn (2.6)

=
∑

n∈Z
cn = f (0), (2.7)
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where the last limit follows, for example, by the dominated convergence theorem
since

∑
n∈Z |cn| <∞. For 0 < λ ≤ π , choose the smallest positive integer jN(λ) =

j to minimize |λ− λj |, and define jN(λ) = −jN(−λ) for −π ≤ λ < 0. Then

ESN(λ) = ESN(λjN (λ))

=
∑

|n|<N

1

N

N−|n|∑

k=1

E(Xk −m)(Xk+|n| −m)einλjN (λ) (2.8)

=
∑

|n|<N

(

1 − |n|
N

)

cne
inλjN (λ) .

Now, since
∑
n∈Z |cn| <∞, it follows, for example, using dominated convergence,

that
∑

|n|<N
(

1 − |n|
N

)
cne

inλ → f (λ) uniformly. Thus, since λjN(λ) → λ, it

follows that ESN(λ) → f (λ). The uniform convergence holds for all λ ∈ [−π, π ]
in the case m = 0 since the convergence λjN(λ) → λ as N → ∞ is uniform,
and the continuous function f on the compact set [−π, π ] must be uniformly
continuous. �
Remark 2.5. Unfortunately, the variance of SN(λ) does not go to zero as N → ∞
and, indeed, SN(λ) is not a consistent estimate of f (λ), as shown in Grenander
(1981, Theorem 1,p. 362). However, by smoothing it by convolution with a
continuous symmetric density γN(λ) which converges slowly to δ0 as N → ∞,
a consistent estimate can be obtained (Grenander 1981, Theorem 2, p. 367, and
Brockwell and Davis 1991, pp. 350–354). This useful result is known as the Wiener–
Khinchin theorem.

The following related proposition provides an alternative to the definition for
checking positive definiteness of an absolutely summable sequence of complex
numbers (see Exercise 5(c) for an application).

Proposition 2.6. A sequence {cn : n ∈ Z} of complex numbers such that∑
n∈Z |cn| < ∞ is positive definite if and only if

∑
n∈Z cneinλ is a positive (real)

number for each λ ∈ [−π, π ].
Proof. If f (λ) = ∑

n∈Z cneinλ > 0 for each λ ∈ [−π, π ], then positive definiteness
follows from Herglotz’ theorem, since {cn : n ∈ Z} are the Fourier coefficients
of the continuous periodic function f . Conversely, if {cn : n ∈ Z} is positive
definite and summable, then f (λ) is the density of a positive measure F(dλ) on the
circle. �
The fractional Brownian motion process is self-similar with exponent h in the
sense that for any t1, . . . , tm ∈ R (m ≥ 1), and λ > 0, the distributions
of (Xλt1 , . . . , Xλtm) and (λhXt1 , . . . , λ

hXtm) coincide (see Example 5). The non-
stationarity of fractional Brownian motion is intimately tied to its self-similarity
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and sample path regularity5 in a manner which is made clear as follows. First we
introduce a very mild regularity condition, e.g., satisfied by the Poisson process for
which the sample paths are (discontinuous) step functions (Exercise 12).

Definition 2.4. A complex-valued stochastic process {Xt : t ∈ R} is said to have
stochastically continuous sample paths if for each t ∈ R, Xtn → Xt in probability
whenever tn → t (tn ∈ R, n ≥ 1) as n→ ∞.

Definition 2.5. A complex-valued stochastic process {Xt : t ∈ R} is said to be
self-similar with exponent h if for any t1, . . . , tm ∈ R (m ≥ 1), and λ > 0, the
distributions of (Xλt1 , . . . , Xλtm) and (λhXt1 , . . . , λ

hXtm) coincide.

Proposition 2.7. If X = {Xt : t ∈ R} is a stationary and self-similar stochastic
process with stochastically continuous sample paths, then X is a.s. constant.

Proof. By stationarity, Xnt = Xt+(n−1)t and Xt have the same distribution for each
n = 1, 2, . . . . By self-similarity, therefore, nhXt and Xt have the same distribution.
Thus h = 0. ThusX 1

n
t

andXt have the same distribution for each n. ButX 1
n
t
→ X0

as n → ∞ by stochastic continuity. Since limits in probability are a.s. unique, it
follows that for each t ∈ R, one has Xt = X0 with probability one. �
Remark 2.6. The definitions of stationarity (translation invariance), self-similarity,
and stochastic continuity readily generalize to complex-valued random fields {Xt :
t ∈ R

k} indexed by T = Rk . The proof of the above proposition readily extends to
this setting as well.

In the full generality of T = Z and S = C, Herglotz’ theorem also provides a rep-
resentation of covariance functions of complex-valued weakly stationary processes
or of complex-valued (strictly) stationary Gaussian process, on Z. However here one
must adopt a convention to resolve nonuniqueness of the processes associated with
a given spectral measure through the covariance function. To see this, let {Xn =
Un + iVn : n ∈ Z} be a weakly stationary process with EXn = θ + iη (EUn = θ ,
EVn = η), and αj = Cov(U0, Uj ), βj = Cov(V0, Vj ), δj = Cov(V0, Uj ),
γj = Cov(U0, Vj ). Then

cj = Cov(Xn,Xn+j ) = Cov(X0, Xj )

= Cov(U0, Uj )+ Cov(V0, Vj )+ i{Cov(Uj , V0)− Cov(U0, Vj )}
= αj + βj + i(δj − γj ). (2.9)

The property c−j = cj yields

α−j + β−j = αj + βj , δ−j − γ−j = −δj + γj (j ∈ Z). (2.10)

5 Stationary (translation invariant) and self-similar phenomena are of rather widespread interest in
the sciences, especially in connection with critical phenomena. Thus the stochastic models for such
phenomena typically involve random measures and/or generalized functions.
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Since cj = aj + ibj , say, has only two parameters, while the right side in (2.9) has
four, it is clear that the correspondence between the Fourier coefficients {cj : j ∈ Z}
of a spectral measure and the covariance function is unfortunately not one-to-one
in this case (Exercises 10 and 11). To make the correspondence one-to-one, one
generally restricts attention to those processes for which one has

αj = βj = aj /2 (i.e., Cov(U0, Uj ) = Cov(V0, Vj )),

δj = −γj = bj /2 (i.e., Cov(V0, Uj ) = − Cov(U0, Vj )). (2.11)

With these somewhat arbitrary restrictions, we have the following consequence of
Herglotz’ theorem.

Theorem 2.8.

(a) There is a one-to-one correspondence between the set of all finite measures F
on the unit circle (or, F on [−π, π ] with F({−π}) = F({π})) and the set of all
covariance sequences of complex-valued weakly stationary processes {Xn : n ∈
Z} satisfying (2.11), with the covariances given by Fourier coefficients of F :

cj ≡ Cov(Xn,Xn+j ) = 1

2π

∫

[−π,π ]
e−ijλF (dλ) (j ∈ Z). (2.12)

(b) There is a one-to-one correspondence between complex zero-mean stationary
Gaussian sequences, satisfying ((2.11)), and finite (spectral) measures on
[−π, π ].

Remark 2.7. It is important to note that even for a symmetric measure F �= 0
on [−π, π ], the complex-valued (weakly) stationary process {Xn : n ∈ Z}
satisfying (2.11) has a nonzero imaginary part, as well as a nonzero real part. For,
by (2.11), Var(Uj ) = Var(Vj ) = c0/2 > 0 (also see Exercise 11). Thus, except for
trivial sequences Xn = θ for all n (for some θ ∈ R), corresponding to F = 0, no
(weakly) stationary process considered in Theorem 2.8 is real-valued. Theorem 2.2,
therefore, provides a different representation from Theorem 2.8 when the spectral
measure is symmetric. However, the spectral representation of a process in the next
chapter depends on the process itself and is unaffected by this apparent ambiguity.

Example 6 (Dirac Point Mass Spectral Measure). Fix λ0 ∈ [−π, π ], b > 0, and
consider the spectral measure F(dλ) = bδλ0 . Then cn = b

2π e
−iλ0n. Just as in the

case λ0 = 0, one arrives at E|Xn−e−inλ0X0|2 = 0, for all n ∈ Z, whereXj = Uj+
iVj such that, under the uniqueness convention, Cov(U0, Uj ) = Cov(V0, Vj ) =
b

4π cos(λ0j), and Cov(U0, Vj ) = − Cov(V0, Uj ) = b
4π sin(λ0j). Notice that the

process Xn = e−inλ0X0, n ∈ Z, is determined by its value at a single value of n.
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Now let us consider the continuous parameter case. In view of Bochner’s the-
orem,6 Theorem 2.8 extends to continuous parameter weakly stationary processes.
The continuity requirement in Bochner’s theorem is met by the following rather
mild condition.

Definition 2.6. Suppose T is an interval in R. A complex-valued stochastic process
{Xt : t ∈ T } is mean-square continuous at t ∈ T if

Xs
L2−→ Xt as s −→ t. (2.13)

A process is said to be mean-square continuous if it is mean-square continuous at
each t ∈ T .

Remark 2.8. One may easily check that since the increment Xt − Xs, s < t ,
of a Poisson process has mean and variance proportional to t − s, the process is
mean-square continuous (Exercise 12). Notice that for any ε > 0, by Chebyshev’s
inequality,

P(|Xt −Xs | > ε) ≤ E|Xt −Xs |2
ε2

= ‖Xt −Xs‖2

ε2
,

so that mean-square continuity easily implies stochastic continuity.

Lemma 1. Let {Xt : t ∈ T } be a mean-zero square-integrable complex-valued
process on an interval T ⊂ R, finite or infinite. Let r(s, t) = EXxXt (s, t ∈ T ) be
its covariance function. Then (s, t) → r(s, t) is continuous on T × T if and only
if (2.13) holds.

Proof. (Sufficiency). Suppose (2.12) holds. Then, writing < Y,Z >= EYZ,
‖Y‖2 = EYY = E|Y |2, by adding and subtracting terms and using the Cauchy–
Schwarz inequality, one has

|r(s + h1, t + h2)− r(s, t)|
= | < Xs+h1 , Xt+h2 > − < Xs,Xt > |
≤ | < Xs+h1 , Xt+h2 > − < Xs+h1 , Xt > | + | < Xs+h1 , Xt > − < Xs,Xt > |
≤ ‖Xs+h1‖ · ‖Xt+h2 −Xt‖ + ‖Xt‖ · ‖Xs+h1 −Xs‖ → 0 ash1 → 0, h2 → 0,

since ‖Xs+h1 −Xs‖2 = E|Xs+h1 −Xs |2 → 0 and ‖Xt+h2 −Xt‖2 → 0.
(Necessity). Suppose (s, t)→ r(s, t) is continuous. Fix t ∈ T . Then

E|Xt+h −Xt |2 = E|Xt+h|2 + E|Xt |2 − EXt+hXt − EXt+hXt
= r(t + h, t + h)+ r(t, t)− r(t + h, t)− r(t, t + h)→ 0

6 See BCPT, p.119.
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as h→ 0. �
As an immediate consequence of the lemma, it follows that the covariance

function t → r(t) = Cov(X0, Xt ) of a weakly stationary process {Xt : t ∈ R}
is continuous if and only if (2.13) holds. Applying Bochner’s theorem, we get
the following analogues of Theorems 2.2 and 2.8. For complex-valued weakly
stationary processes Xt = Ut + iVt , t ∈ R, we assume the analogue of (2.11):

Cov(U0, Ut ) = Cov(V0, Vt ) = 1

2
Rer(t); Cov(V0, Ut ) = − Cov(U0, Vt ) = 1

2
Imr(t),

(2.14)
where Rer(t) and Imr(t) are the real and imaginary parts of r(t), respectively.

Theorem 2.9.

(a) There is a one-to-one correspondence between the set of all covariance func-
tions r(·) of real-valued weakly stationary processes {Xt : t ∈ R} satisfy-
ing (2.13) and the set of all finite symmetric measures F on R, called the
spectral measure of {Xt : t ∈ R}, with r(·) being the Fourier transform of F :

r(t) =
∫ ∞

−∞
eitλF (dλ) =

∫ ∞

−∞
cos(tλ)F (dλ), (t ∈ R). (2.15)

(b) There is a one-to-one correspondence, via (2.15), between the set of all real-
valued mean-zero stationary Gaussian processes {Xt : t ∈ R} satisfying (2.13)
and the set of all finite symmetric measures on R.

For complex-valued processes, one has the following.

Theorem 2.10. There is a one-to-one correspondence between the set of all covari-
ance functions r(·) of complex-valued weakly stationary processes {Xt = Ut+iVt :
t ∈ R} satisfying (2.13) and (2.14) and the set of all finite measures F on R, called
the spectral measure of {Xt : t ∈ R}, with r(·) being the Fourier transform of F , as
given by the first equality in (2.15).

Remark 2.9. Once again (see Remark 2.7), one should note that Theorem 2.9 is
not a special case of Theorem 2.10, since the latter only yields complex-valued
processes with both real and imaginary parts nonzero, except in the trivial case F =
0.

Example 7. Let the spectral measure of a real-valued weakly stationary process be
F(dλ) = b exp{−c|λ|}dλ, for some b > 0, c > 0. Then, using the Fourier inversion
formula or Cauchy’s residue theorem from complex variables, or simply recalling
the characteristic function of the Cauchy distribution, one has r(s) = 2b[c(1 +
s2/c2)]−1

Example 8. Let F(dλ) = b[c(1 + λ2/c2)]−1dλ (b > 0, c > 0). Then r(s) =
bπe−c|s|. This follows by a direct evaluation of the integral or from the previous
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Example 7 through the Fourier inversion formula.7 In the case this process is real
Gaussian, then, recalling the covariance structure in Example 2, it is referred to as
an Ornstein–Uhlenbeck process.

Example 9. Let F(dλ) = b exp{−cλ2}dλ (b > 0, c > 0). Then r(s) =
(b

√
π/c ) exp{−s2/4c}.

Since finite dimensional distributions of mean-zero real-valued stationary Gaus-
sian processes are completely determined by their covariance functions r(s), and
since in Examples 7–9 one can derive versions of these processes with continuous
sample paths, the distributions of these processes on the space C(−∞,∞) of
continuous functions (paths) are entirely determined (Exercise 8). It is instructive
to determine the corresponding mean-zero complex-valued stationary Gaussian
processes satisfying (2.11) (Exercises 13–14).

Exercises

1. (Trend Removal by Differencing) Suppose that Xt = m(t) + Yt , t =
. . . ,−2,−1, 0, 1, 2, . . . , where m(t) = ∑k

j=0mj t
j is a polynomial trend of

degree k and Y is a mean-zero stationary process. Define a differencing operator
Δf (t) = f (t)−f (t−1), with iterates defined iteratively byΔmf = Δm−1Δf .
Show that ΔkX is a stationary process with mean k!mk .

2. (Seasonality Removal by Lag-Differencing) Suppose that Xt = m(t) + s(t) +
Yt , t = . . . − 2,−1, 0, 1, 2, . . . , where m(t) is a trend and s(t) a periodic
component with period d ≥ 2 and Y is a stationary process. Define a lag-d
differencing operator Δd by Δdf (t) = f (t) − f (t − d). Show that ΔdXt =
md(t)+ΔdYt , wheremd(t) = m(t)−m(t−d), andΔdY is a stationary process.

3. Let T = Z or R, and suppose {ct : t ∈ T } is positive definite in the sense (2.3).

(a) Show that c0 is real and nonnegative. [Hint: Take n = 1,a1 = 1, t1
arbitrary.]

(b) Show that c−t = ct for all t . [Hint: First take n = 2, a1 = a2 = 1, t1 = 0,
t2 = t , to prove that Imc−t = −Imct . Then take n = 2, a1 = i, a2 = 1,
t1 = 0, t2 = t , to show that Rec−t = Rect .]

4. Show that, for any real-valued X0 with mean-zero and finite variance, the
process Xn = (−1)nX0, n ∈ Z, is weakly stationary, and compute its
covariance function and spectral measure.

5. Determine which of the following is a covariance function. If so, compute the
corresponding spectral measure.

7 See BCPT, p. 112.
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(a) cn = sin(n), n ∈ Z.
(b) cn = cos(n), n ∈ Z.
(c) cn = ba|n|, n ∈ Z, for fixed b > 0, and a ∈ (−1, 1).

6. Calculate the covariance function cn for the spectral distributions on the unit
circle U = [−π, π ] given by F(dλ) = 1

2δπ/m(dλ) + 1
2δ−π/m(dλ), for a fixed

positive integer m.
7. Suppose that X = {Xt : t ≥ 0} is a mean-zero Gaussian process starting at
X0 ≡ 0 having stationary increments with variance scaling as EX2

t = σ 2
0 t

2h

for some exponent h ∈ (0, 1). Show thatX is distributed as fractional Brownian
motion.

8. Show that for the fractional Gaussian noise with h �= 1/2, one has cn ∼
σ 2

0 h(2h − 1)n2h−2 as n → ∞. [Hint: Factor out n2h and use Taylor
expansions for (1 ± x)2h, respectively.]

9. Compute the covariance function {cn : n ∈ Z} corresponding to the spectral
measure F having the triangular density f (λ) = π − |λ| (|λ| ≤ π). [Hint:
The triangular distribution on [−π, π ] is the convolution of two uniform
distributions on [−π/2, π/2].]

10. (a) Let {Un : n ∈ Z} and {Vn : n ∈ Z} be both i.i.d. standard normal
sequences independent of each other. Show that the complex-valued Gaus-
sian sequence Xn = Un + iVn (n ∈ Z) satisfies the restrictions (2.11), and
compute its spectral measure.

(b) Let {(Un, Vn) : n ∈ Z} be an i.i.d. two-dimensional Gaussian sequence
with EUn = EVn = 0, EU2

n = EV 2
n = 1, ρ = Cov(Un, Vn). Show that

{Xn+ iVn : n ∈ Z} has the same spectral measure as in (a), no matter what
ρ is (−1 ≤ ρ ≤ 1), and that for ρ �= 0, this process does not satisfy (2.11).

(c) Which real stationary Gaussian process has the same spectral measure as
in (a) and (b)?

11. (a) Let {Un : n ∈ Z} and {Vn : n ∈ Z} be both i.i.d. standard normal and
independent of each other. Define the stationary Gaussian sequence Xn =
Un + iVn + Un+1 + iVn+1 (n ∈ Z). Compute the corresponding spectral
measure.

(b) Consider now a two-dimensional i.i.d. Gaussian sequence {(Un, Vn) : n ∈
Z} with EUn = EVn = 0, EU2

n = EV 2
n = 1, but ρ ≡ Cov(Un, Vn) �= 0.

Show that the stationary process Xn = Un + iVn + Un+1 + iVn+1 has the
same spectral measure as in (a), but that the two Gaussian processes have
different distributions.

(c) Construct a real-valued stationary Gaussian process with the same spectral
measure as in (a) and (b).

(d) Show that of all the Gaussian processes in (a)–(c), only the one in (a)
satisfies the restrictions (2.11).

12. Show that a homogeneous Poisson process is both stochastically continuous
and mean-square continuous.
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13. Use the Kolmogorov–Chentsov criterion8 to prove that there exists a continuous
version of a mean-zero (stationary) Gaussian process with r(s) as specified in
each of Examples 7–9.

14. For each of Examples 7–9, specify the distribution of a mean-zero stationary
complex-valued Gaussian process {Xt = Ut + iVt : t ∈ R} with the covariance
function as specified, obeying the restrictions (2.14). [Hint: For each n ≥ 0,
specify the joint distribution of (U0, V0, U1, V1, . . . , Un, Vn).]

15. (a) Suppose the spectral measure F on [−π, π ] (with F({−π}) = F({π}) is
such that

∑
n≥1 |cn| < ∞. Show that F is absolutely continuous, with a

version of the density which is continuous on [−π, π ]. [Hint: Consider the
function defined by the Fourier series f (λ) = ∑

n∈Z cneinλ, and compute
1

2π

∫
[−π,π ] e

−inλf (λ)dλ.]
(b) Suppose the spectral measure F on (−∞,∞) is such that r(s) is integrable

with respect to Lebesgue measure Show that F is absolutely continuous
and has a (version of the) density which is uniformly continuous. [Hint:
Consider Fourier transform in place of Fourier series.]

16. A stationary sequence {Xn : n ∈ Z} is said to be time-reversible9 if
for any integers m and n1, . . . , nm, the finite dimensional distributions of
(Xn1, . . . , Xnm) and (X−n1, . . . , X−nm) coincide.

(a) Show that any stationary Gaussian sequence is time-reversible.
(b) Assume {Xn : n ∈ Z} is stationary and suppose that Yn = g(Xn), n ∈ Z,

where g is a one-to-one function. Show that {Yn : n ∈ Z} is time-reversible
if and only if {Xn : n ∈ Z} is time-reversible.

8 See Bhattacharya and Waymire (2021) or BCPT, p.180.
9 A metaphor for a stationary sequence is a process viewed as a data stream movie for which
statistically it does not matter when one arrives at the theater. Time-reversibility permits it to also
be run backward without changing the stochastic structure.



Chapter 3
Spectral Representation of Stationary
Processes

The spectral representation of a stationary process or random field broadly
refers to a stochastic Fourier representation in a mean-square sense.

Our goal in this chapter is to exploit the second order spectral structure to represent
weakly stationary processes, as well as more general processes with finite second
moments, as stochastic integrals with respect to orthogonal processes. The basic
idea for such a representation is formally as follows. Suppose one wishes to
represent a centered (mean-zero) weakly stationary process X = {Xt : t ∈ T }, say
real-valued for purposes of illustration, as a superposition of sinusoidal elements
eitλ with random amplitudes Z(dλ) in the frequency range λ to λ+ dλ, i.e.,

Xt =
∫

Λ

eitλZ(dλ), t ∈ T .

Then, from the previous chapter, one has (formally)

∫

Λ

eitλμ(dλ) = EX0Xt =
∫

Λ

∫

Λ

eitλE{Z(dλ)Z(dλ′)},

with

Λ = [−π, π ], μ(dλ) = F(dλ)/2π

when T = Z, and, assuming continuity of the covariance function,

Λ = R, μ(dλ) = F(dλ),
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when T = R. In particular, one needs to introduce a suitable notion of the
“stochastic integral” with respect to an additive random field Z(dλ) with covariance
structure EZ(dλ)Z(dλ′) concentrated on the diagonal λ = λ′ with value μ(dλ).
With this as the goal, we proceed as follows.

Definition 3.1. Let (Λ,L, μ) be a σ -finite measure space. An orthogonal random
field for this space is a family of complex-valued random variables

Z = {Z(B) : B ∈ L, μ(B) := E|Z(B)|2 <∞}

defined on some probability space (Ω,F , P ), satisfying

(i) EZ(B) = 0.
(ii) Z(B1 ∪ B2) = Z(B1)+ Z(B2) (a.s.), if B1 ∩ B2 = ∅.

(iii) (Z(B1), Z(B2)) := EZ(B1)Z(B2) = μ(B1 ∩ B2).

Let L2(Z) denote the closure (in the complex Hilbert space L2(Ω,F , P )) of
the space of all finite linear combinations (with complex coefficients) of the
random variables Z(B), B ∈ L. So, in particular, elements of L2(Z) are (equiv-
alence classes of) random variables on Ω obtained as mean-square limits of
“integral sums” of the form

∑m
j=1 ajZ(Bj ), equipped with the inner product

(
∑m

1 ajZ(Bj ),
∑n

1 bkZ(Ck)) = ∑
j,k aj bkμ(Bj ∩ Ck). Extended by taking limits

(in L2(Ω,F , P )), the resulting space L2(Z) is a complex Hilbert space.
We will use L2(μ) to denote the Hilbert space of complex-valued square

integrable (with respect to μ) functions on Λ with the inner product

〈f, g〉 :=
∫

Λ

f gdμ.

By a simple function in L2(μ), we mean a function of the form

f =
m∑

1

aj1Bj ,

withμ(Bj ) <∞ for all j ,Bj ’s pairwise disjoint, and a1, . . . , am complex numbers
(m ≥ 1).

Theorem 3.1. The map ϕ defined on the class of all simple functions on Λ, by

ϕ

(
m∑

1

aj1Bj

)

=
m∑

1

ajZ(Bj ), (3.1)

extends to a linear isometry of L2(μ) onto L2(Z):

(ϕ(f ), ϕ(g)) = 〈f, g〉, f, g ∈ L2(μ). (3.2)
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Proof. If f = ∑m
1 aj1Bj and g = ∑n

1 bk1Ck are two simple functions, then

(ϕ(f ), ϕ(g)) =
∑

j,k

aj bkμ(Bj ∩ Ck) = 〈f, g〉. (3.3)

Since simple functions are dense in L2(μ), for any given f in L2(μ), there exists a
sequence fn (n ≥ 1) of simple functions such that fn → f in L2(μ). Define ϕ(f )
to be the limit in L2(Ω,F , P ) of ϕ(fn). This limit is well defined, and it is simple
to check (3.2) for this extension. �

We will write ϕ for the extension (of the map (3.1)) in Theorem 3.1. From here
on, for an orthogonal random field {Z(B) : B ∈ L, μ(B) := E|Z(B)|2 < ∞}, we
will also define

∫

Λ

f dZ ≡
∫

Λ

f (λ)Z(dλ) := ϕ(f ) for all f ∈ L2(μ), (3.4)

i.e., as an L2(Ω,F , P )-limiting form of (3.1). Thus, from this point of view, one
has the following:

Proposition 3.2. The stochastic integral defined by

f →
∫

Λ

f (λ)Z(dλ), f ∈ L2(μ)

is a linear isometry between the Hilbert spaces L2(μ) and L2(Z) for a given
orthogonal random field Z.

It is sometimes also convenient to denote the orthogonal random field Z =
{Z(B) : B ∈ L} simply by Z(dλ) in this context.

The following general result will be used repeatedly in this chapter to obtain a
variety of representations. The spectral representations are important special cases,
where the essential idea for obtaining the orthogonal random field Z(dλ), i.e.,
{Z(B) : B ∈ L}, from the process X = {Xt : t ∈ t} is to first use the spectral
representation of the covariance function to define an isometry ϕ between L2(μ)

and the Hilbert space L2(X) which is the closure in L2(Ω,F , P ) of the linear span
of {Xt : t ∈ T }. In particular,

Xt = ϕ(f )

for a suitable f ∈ L2(μ) (depending on t). On the other hand, owing to the spectral
representation of the covariance function, by defining

Z(B) = ϕ(1B), B ∈ L,
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such an isometry ϕ will induce an isometry betweenL2(μ) andL2(Z). The isometry
so obtained, therefore, both defines the integral

∫

Λ

f (λ)Z(dλ) = ϕ(f ), f ∈ L2(μ),

and links it to Xt for a suitably chosen f ∈ L2(μ) (depending on t).

Theorem 3.3 (General Orthogonal Representation of Processes). Let {Xt : t ∈ T }
be a mean-zero real- or complex-valued process with finite second moments on
T = Z, or Z+, or a finite or infinite subinterval of R. Assume there exists a family
of functions ψ(t, ·) ∈ L2(μ), for all t ∈ T , such that

r(s, t) ≡ Cov(Xs,Xt ) =
∫

Λ

ψ(s, λ)ψ(t, λ)μ(dλ) for all s, t,∈ T . (3.5)

Assume further that L2(μ) is separable. Then there exists an orthogonal random
field Z(·) for L2(μ) such that

Xt =
∫

Λ

ψ(t, λ)Z(dλ) for all t ∈ T . (3.6)

Proof. Define ϕ(ψ(t, ·)) = Xt, t ∈ T . Let L2(X) be the closure (in L2(Ω,F , P ))
of the linear span of the random variables Xt (t ∈ T ). For functions of the form
f = ∑m

1 ajψ(sj , ·), sj ∈ T , define ϕ(f ) = ∑m
1 ajXsj . If f = ∑m

1 ajψ(sj , ·),
g = ∑m

1 bkψ(tk, ·), then, denoting by (·, ·) the inner product in L2(X), one has,
by (3.5),

(ϕ(f ), ϕ(g)) =
∑

j,k

aj bkr(sj , tk) =
∑

j,k

aj bk

∫

Λ

ψ(sj , λ)ψ(tk, λ)μ(dλ)

=
∫

Λ

f (λ)g(λ)μ(dλ) = 〈f, g〉. (3.7)

Suppose the set G of functions f (or g) of the above form is dense in L2(μ). Then
one can extend the map ϕ to a unique linear isometry on L2(μ) onto the Hilbert
space L2(X). Now define

Z(B) = ϕ(1B) (μ(B) <∞). (3.8)

Clearly,

(i) EZ(B) = 0.
(ii) If B1 ∩ B2 = ∅, then
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Z(B1∪B2) ≡ ϕ(1B1∪B2) = ϕ(1B1+1B2) = ϕ(1B1)+ϕ(1B2) = Z(B1)+Z(B2).

(iii) EZ(B1)Z(B2) = (ϕ(1B1), ϕ(1B2)) = 〈1B1 , 1B2〉 = μ(B1 ∩B2) for all B1, B2
with μ(Bj ) <∞ (j = 1, 2).

Since ϕ(ψ(t, ·)) = Xt , by definition of ϕ, (3.6) follows (as a limiting form of (3.1)).
Consider now the case when the set G of functions of the form

∑m
1 ajψ(sj , ·)

(m ≥ 1) is not dense in L2(μ). Separability of L2(μ) is equivalent to the
existence of a countable orthonormal basis since any countable dense subset
yields an orthonormal basis by the Gram–Schmidt process1 and, conversely,
any countable orthonormal basis yields a countable dense subset by taking finite
linear combinations with coefficients from a countable dense subset of C. Let ht ′n
(n = 1, 2, . . . ) be a complete orthonormal sequence (finite or infinite, as the case
may be) for the Hilbert space G⊥ of functions orthogonal to G. The index set
T ′ = {t ′1, t ′2, · · · } is chosen to be disjoint from T . Let Yt ′n (n = 1, 2, . . . ) be
real-valued i.i.d. standard normal random variables independent of {Xt : t ∈ T }
(constructed, if necessary, by enlarging (Ω,F , P )). First let

ϕ(ht ′n) = Yt ′n (n = 1, 2, · · · ),

ϕ

(
m∑

n=1

anht ′n

)

=
m∑

n=1

anYt ′n , (3.9)

noting that if f1 = ∑m
n=1 anht ′n , f2 = ∑k

n=1 bnht ′n , then

(ϕ(f1), ϕ(f2)) = E

(
m∑

n=1

anYt ′n ·
k∑

n=1

bnYt ′n

)

=
∑

n,n′
anbn′δnn′ = 〈f1, f2〉.

(3.10)
Now extend ϕ toG⊥ by taking limits in L2, using the isometry between L2(G⊥, μ)
and the subspace spanned by linear combinations of Yt ′n (n = 1, 2, . . . ), which
follows from (3.10). Finally, for an arbitrary h ∈ L2(μ), let h = f + g be the
unique decomposition of h with f ∈ G and g ∈ Gc = Gc, and define

ϕ(h) = ϕ(f )+ ϕ(g). (3.11)

It is simple to check, by taking limits and using (3.7) and (3.10), and using the
orthogonality (ϕ(f ), ϕ(g)) = 0 = 〈f, g〉 if f ∈ G and g ∈ G⊥, that

(ϕ(f ), ϕ(g)) = 〈f, g〉 for all f, g ∈ G⊕G⊥ = L2(μ). (3.12)

1 See BCPT p. 249.
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Now apply the first part of the proof to the family of random variables {Xt : t ∈
T ∪ T ′} with Xt ′n := Yt ′n noting that

r(s, t) =
⎧
⎨

⎩

∫
ψ(s, λ)ψ(t, λ)μ(dλ) if s, t ∈ T

0 if s ∈ T , t ∈ T ′ or vice versa
δst = ∫

hs(λ)ht (λ)μ(dλ) if s, t ∈ T ′.
(3.13)

The hypothesis of the theorem then holds with an extended family given by
ψ̃(s, λ) = ψ(s, λ) if s ∈ T and ϕ̃(s, λ) = hs(λ) if s ∈ T ′, with the linear span
of {ψ̃(s, λ) : s ∈ T ∪ T ′} dense in L2(μ). So the orthogonal random field Z(·) is
constructed by (3.8) with the extension of ϕ defined by (3.9) and (3.11). �
Definition 3.2. For a given symmetric positive definite complex-valued function
r(s, t), s, t ∈ T ⊂ R, a Hilbert space H(r) of functions on T such that for all
t ∈ T , one has (a) r(t, ·) ∈ H(r), and (b) (f, r(t, ·))H(r) = f (t), f ∈ H(r), t ∈ T ,
is called a reproducing kernel Hilbert space.

Property (b) of the definition says that the pointwise evaluation of f at t is via
a bounded linear functional, i.e., as an inner product with r(t, ·). In this context,
r(t, ·) is referred to as the representative evaluator at t . This function is also called
a reproducing kernel for the Hilbert space. Applying (b) to r(s, ·), one sees that

r(s, t) = 〈r(s, ·), r(t, ·)〉, s, t ∈ T .

This is the origin of the terminology “reproducing kernel.”
The Moore–Aronszajn2 theorem asserts the existence of a unique reproducing

Hilbert space associated with a positive definite function r(s, t) and conversely. In
particular, it can be stated as follows.

Theorem 3.4 (Moore–Aronszajn). The function r(s, t) is positive definite if and
only if it is a reproducing kernel. In particular, the reproducing Hilbert space H(r)
is uniquely determined by (a) and (b), as the closure of the set of functions of the
form f (s) = ∑n

j=1 aj r(tj , s), s ∈ T , in the norm ‖f ‖2
H(r) := ∑n

k,j=1 aj r(tj , tk)ak
induced by the inner product r(s, t) = 〈r(s, ·), r(t, ·)〉.

Although explicit use is not being made of this terminology, the previous
Theorem 3.3 may be viewed as an element of that framework withΛ = T ,ψ(s, t) =
r(s, t).

Theorems 3.5 and 3.6 below are immediate consequences of Theorem 3.3.

Theorem 3.5 (Spectral Representation of Weakly Stationary Processes on Z). Let
{Xn : n ∈ Z} be a real- or complex-valued mean-zero weakly stationary process
with spectral measure F(dλ) on Λ = U ≡ [−π, π ] (F ({−π}) = F({π})). Then

2 Aronszajn (1950).
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there exists an orthogonal random field Z(·) for L2(μ), with μ(dλ) := F(dλ)/2π ,
such that

Xn =
∫

[−π,π ]
einλZ(dλ) for all n ∈ Z. (3.14)

Proof. The hypotheses of Theorem 3.3 are satisfied with T = Z, ψ(t, λ) = eitλ

(t ∈ Z) and μ(dλ) = F(dλ)/2π on [−π, π ] = Λ (see (2.12)). Here ϕ(einλ) = Xn
(n ∈ Z) extends to a linear isometry between L2(μ). and L2(X). �

Theorem 3.6 (Cramér’s Spectral Representation of Weakly Stationary Processes on
R). Let {Xt : t ∈ R} be a real- or complex-valued weakly stationary process, with
continuous covariance function and with spectral measure F on Λ = R. Then there
exists an orthogonal random field Z(·) for L2(F ) such that

Xt =
∫

R

eitλZ(dλ) for all t ∈ R. (3.15)

Proof. In Theorem 3.3, take T = R, μ = F , ψ(t, λ) = e−itλ (t ∈ R). Also,
ϕ(e−itλ) = Xt (t ∈ R) extends to an isometry between L2(μ) and L2(X). �
Definition 3.3. A stochastic process {Xt : t ∈ T }, which admits a representation of
the form in Theorem 3.5 in the case T = Z or Theorem 3.6 in the case T = R, is
said to be (weakly) harmonizable.

Example 1 (Point Mass Spectral Distributions). It is interesting to consider the
case in which the spectral distribution has a point mass, i.e., jump discontinuity
at λ0, say b = F({λ0}) > 0. In the case T = Z, one has

Xn =
∫

[−π,π ]\{λ0}
einλZ(dλ)+ (

Z(λ0)− Z(λ−
0 )
)
einλ0 , n ∈ Z.

Moreover,

Var
(
Z(λ0)− Z(λ−

0 )
) = F({λ0}) = b.

The process Yn = (
Z(λ0)− Z(λ−

0 )
)
einλ0 , n ∈ Z, is a sinusoidal process of

frequency λ0. Moreover, it is a deterministic function of time since its values are
known for all time if a value is known for one time point n. Similar considerations
apply to the case T = R and when F(dλ) consists of a finite number of point
masses, say λ0, . . . , λk .

Theorem 3.7. For real-valued mean-zero weakly stationary sequences {Xn : n ∈
Z}, (3.14) may be expressed in the following form:
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Xn = U({0})+
∫

(0,π ]
(2 cos nλ)U(dλ)−

∫

(0,π ]
(2 sin nλ)V (dλ), (3.16)

where U(·) and V (·) are mutually orthogonal real-valued orthogonal random fields
on [0, π ] and

E(U(dλ))2 = E(V (dλ))2 = F(dλ)/4π.

Moreover,

V ({0}) = 0 a.s., E|U({0})|2 = F({0})/2π.

Proof. Write Z(·) in Theorem 3.5 as

Z(B) = U(B)+ iV (B),

where U(·) and V (·) are real-valued orthogonal random fields. The map ϕ(einλ) =
Xn (n ∈ Z) extends to a linear isometry between L2(μ) and L2(X). Hence if B is
Borel, one may express

1B(λ) =
∑

−∞<n<∞
ane

inλ,

i.e., the series converging to 1B in L2(μ). Hence

Z(B) =
∑

−∞<n<∞
anXn, a.s.

Since

1−B(−λ) = 1B(λ) =
∑

−∞<n<∞
ane

−inλ =
∑

−∞<n<∞
a−neinλ,

one has Z(−B) = ∑
−∞<n<∞ a−nXn = Z(B). That is,

U(−B)+ iV (−B) = U(B)− iV (B),

and hence

U(−B) = U(B) and V (−B) = −V (B) a.s. (3.17)
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If in particular, B ⊂ (0, π ], then B and −B are disjoint and 1B and 1−B are
orthogonal, so that

0 = EZ(B) · Z(−B) = EZ2(B) = E(U2(B)− V 2(B))+ 2iEU(B)V (B),

implying (together with F(B)/2π = E|Z(B)|2 = EU2(B)+ EV 2(B))

EU2(B) = EV 2(B) = F(B)/4π, EU(B)V (B) = 0 for all Borel B ⊂ (0, π ].
(3.18)

Furthermore, if B and C are disjoint Borel subsets of (0, π ], then from the
orthogonality of 1B , 1C and 1B , 1−C , it follows that

EZ(B)Z(C) = 0, EZ(B)Z(C) = 0,

so that EZ(B)U(C) = 0, which implies EV (B)U(C) = 0.
Now let B and C be arbitrary Borel subsets of (0, π ]. Then

EU(C)V (B) = E(U(B ∩ C)+ U(C\B ∩ C)) · (V (B ∩ C)+ V (B\B ∩ C))
= EU(B ∩ C) · V (B ∩ C) = 0, (3.19)

by (3.18).
Finally, (3.14) leads to

Xn = Z({0})+
∫

[−π,π ]\{0}
[(cos nλ)+ i(sin xλ)](U(dλ)+ iV (dλ))

= Z({0})+
∫

[−π,π ]\{0}
{(cos nλ)U(dλ)− (sin nλ)V (dλ)}

+i
∫

[−π,π ]\{0}
{(cos nλ)V (dλ)+ (sin nλ)U(dλ)}

= Z({0})+
∫

(0,π ]
(2 cos nλ)U(dλ)−

∫

(0,π ]
(2 sin nλ)V (dλ).

Z({0}) must be real, Z({0}) = U({0}), and V ({0}) = 0. From this, the
representation (3.16) follows. �

An argument entirely analogous to the preceding yields (from Theorem 3.6) the
following:

Theorem 3.8. If {Xt : t ∈ R} is a real-valued mean-zero weakly stationary process,
then

Xt = U({0})+
∫

[0,∞)
(2 cos tλ)U(dλ)−

∫

(0,∞)
(2 sin tλ)V (dλ), (3.20)
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where U(·) and V (·) are two mutually orthogonal real-valued orthogonal random
fields on [0,∞) satisfying

E(U(dλ))2 = E(V (dλ))2 = F(dλ)/2.

Moreover,

EV ({0})2 = V 2({0}) = 0, EU({0})2 = E|Z({0})|2 = F({0}).

Example 2. Let {Xn : n ∈ Z} be a mean-zero weakly stationary real-valued process
with spectral measure F with finite support {λj : −k ≤ j ≤ k}, λ−j = −λj
(1 ≤ j ≤ k), and

−π ≤ λ−k < λ−k+1 < · · · < λ0 = 0 < λ1 < · · · < λk ≤ π,

with

F({λ−j }) = F({λj }) = pj > 0, (j = 0, 1, . . . , k).

Then (3.16) yields

Xn = U({0})+
k∑

j=1

(2 cos nλj )U({λj })+
k∑

j=1

(2 sin nλj )V ({λj }), (n ∈ Z),

(3.21)
where U({0}), U({λj }) (1 ≤ j ≤ k), and V (λj ) (1 ≤ j ≤ k) are uncorrelated
mean-zero random variables, and

EU({λj })2 = pj/4π = EV ({λj })2, (1 ≤ j ≤ k),EU({0})2 = p0/2π.

One may express (3.21) as

Xn =
∑

−k≤j≤k
an,jZj , (n ∈ Z), (3.22)

where {Zj : −k ≤ j ≤ k} are orthonormal, i.e., mean-zero uncorrelated random
variables each with variance one, defined by

Z0 = U({0})/√p0/2π , an,0 :=
√
p0

2π
;

Zj = U({λj })/
√
pj/4π , an,j := (2 cos nλj )

√
pj

4π
(1 ≤ j ≤ k);

Z−j = V ({λj })/
√
pj/4π , an,−j := (2 sin nλj )

√
pj

4π
(1 ≤ j ≤ k).
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From equations such as (3.22), one may compute Zj in terms of Xn (n ∈
Z). In general, one may expect an infinite series on the right in (3.22). Also,
(weak) stationarity would suggest that Xn is a moving average as defined by the
representation:

Xn =
∑

−∞<j<∞
an−jZj ≡

∑

−∞<j<∞
ajZn−j (n ∈ Z). (3.23)

It turns out, however, that if {Xn : n ∈ Z} has a discrete spectral measure F , then it
cannot be represented by moving averages!

Theorem 3.9. A weakly stationary process {Xn : n ∈ Z} has a moving average
representation if and only if its spectral measure is absolutely continuous.

Proof. (Sufficiency). Suppose (3.23) holds. Then
∑ |aj |2 <∞ and

cm ≡ Cov(Xn,Xn+m) =
∑

−∞<j<∞
an−j an+m−j =

∑

−∞<j<∞
ajam+j ,

so that with

g(λ) =
∑

aj e
−ijλ, |g(λ)|2 =

∑

j,j ′
ajaj ′ei(j

′−j)λ =
∑

j,m

ajam+j eimλ,

(3.24)
one has

cm = 1

2π

∫

[−π,π ]
e−imλ|g(λ)|2dλ (m ∈ Z). (3.25)

Hence the spectral measure F is absolutely continuous with density |g(λ)|2.
(Necessity). Suppose, conversely, that F is absolutely continuous with density

f . Then, with g = √
f , one has g ∈ L2([−π, π), dx) with a Fourier expansion

g(λ) = ∑
bj e

ijλ, with
∑ |bj |2 <∞. Hence

Cov(Xn,Xn+m) = cm = 1

2π

∫

[−π,π ]
e−imλ|g(λ)|2dλ

= 〈e−imλg(λ), g(λ)〉 =
〈∑

bj e
−i(m−j)λ,

∑
bj ′eij

′λ
〉

=
∑

j,j ′
bjbj ′

(
1

2π

)∫

[−π,π ]
e−i(m−j)λ−ij ′λdλ

=
∑

j

bj bj−m =
∑

bjbm+j =
∑

j

bn+j bn+m+j .
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Therefore, the general representation Theorem 3.3 applies with T = Λ = Z, μ
counting measure, ψ(n, j) = bn+j . One may then write (3.6) as

Xn =
∑

j

bn+jZj =
∑

j

bn−jZ−j =
∑

j

an−jWj ,

with aj = bj , andWj = Z−j . �
A linear transformation of {Zj } involved in the moving average representa-

tion (3.23) is referred to as a filter. Specific features of the filter depend on the
choice of the coefficients aj , j ∈ Z. This and corresponding forms of covariance
functions and spectral densities are aptly illustrated by the examples below.

Example 3 (AutoregressiveAR(1)Models). Consider first an autoregressive model
AR(1) of order 1 defined by

Yn+1 = βYn + Zn+1 (n ≥ 0), (3.26)

where {Zn : n ≥ 1} is a real- or complex-valued uncorrelated sequence, EZn = 0,
EZnZn = σ 2 > 0. If |β| < 1, then repeated iteration yields

Yn = βnY0 +
n∑

j=1

βn−jZj = βnY0 +
n−1∑

j=0

βjZn−j , (3.27)

which is easily checked to be a Cauchy sequence in L2(Ω,F , P ) and, therefore,
converges in L2 to some Y∞, say, where

δ2 := Var Y∞ = σ 2
∞∑

j=0

|β|2j = σ 2/(1 − |β|2). (3.28)

Now let Y0 be a mean-zero random variable with variance δ2, uncorrelated with
{Zj : j ≥ 1}. Then it is simple to check that {Yn : n ≥ 0} is a weakly stationary
process with the (summable) covariance function

cm := Cov(Yn, Yn+m) = δ2β
m = σ 2β

m
/(1 − |β|2) (m ≥ 0). (3.29)

Motivated by (3.27), one may consider the process defined by

Xn :=
∞∑

j=0

βjZn−j (n ∈ Z), (3.30)

where {Zn : n ∈ Z} is a mean-zero uncorrelated sequence with variance σ 2 (|β| <
1). Then it is easy to check that {Xn : n ∈ Z} is a weakly stationary process on
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Z with the same (summable) covariance function as that of {Yn : n ∈ Z} in (3.29)
(and c−m = cm for m < 0). Note that {Xn : n ∈ Z} is a (one-sided) moving
average process in the sense of the representation (3.23), with coefficients aj = 0
for all j < 0. Note also that Xn satisfies the same equation as Yn extended to all
n ∈ Z. Namely,

Xn+1 = βXn + Zn+1 (n ∈ Z). (3.31)

Finally, the spectral density is readily computed using either Proposition 2.4 or
Theorem 3.9, as a sum of a geometric series (also see Exercise 7)

f (λ) =
∑

m∈Z
cme

imλ = σ 2

|1 − βe−iλ|2 , −π ≤ λ ≤ π. (3.32)

The spectral density changes qualitatively in the parameter regimes −1 < β <

0, β = 0, 0 < β < 1, see Exercise 6.
In the case |β| > 1, one may rewrite (3.26) as

Yn = (1/β)Yn+1 +Wn+1 (Wn := −(1/β)Zn), (3.33)

where {Wn : n ≥ 1} is a sequence of uncorrelated mean-zero random variables,
Cov(Yn,Wn+1) = 0 and Var(Wn) = σ 2

0 := |β|−2σ 2. Repeated iteration yields

Yn = β−nY2n +
n−1∑

j=0

β−jWn+j+1, n ≥ 0.

This leads to the definition of the weakly stationary process given by

Xn :=
∞∑

j=0

β−jWn+j+1 (n ∈ Z), (3.34)

which has the covariance function cm ≡ Cov(Xn,Xn+m) = σ 2β−m(|β|2 − 1)−1

(m ≥ 0), c−m = cm (m > 0). The process (3.34) satisfies

Xn+1 = βXn + Zn+1 (n ∈ Z), (3.35)

and, by (3.34), is a one-sided moving average. However, unlike (3.30), the uncor-
related random variables {Wn+1+j : j ≥ 0} in (3.34) are from the future,
as opposed to those in (3.30) which are from the past and the present. The
representation (3.30), corresponding to the case |β| < 1, is called causal, while that
in (3.34), corresponding to |β| > 1, is said to be noncausal. In particular, causality
refers to the nature of the transformation (filter) of {Zn : n ∈ Z} representing
{Xn : n ∈ Z}.
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Example 4 (Autoregressive AR(p) Models). An autoregressive process {Xn : n ∈
Z} of order p ≥ 1 is one in which Xn is a linear function of the past p values, plus
noise:

Xn = β0Xn−p + β1Xn−p+1 − · · · − βp−1Xn−1 + Zn (n ∈ Z), (3.36)

where β0 �= 0, and {Zn : n ∈ Z} is a mean-zero uncorrelated sequence, Var(Zn) =
σ 2 > 0 for all n. In order to analyze conditions under which such a process may
exist as a (weakly) stationary process, and to represent it as a moving average, it is
useful to introduce the backward shift operator B:

BXn = Xn−1, BZn = Zn−1, (3.37)

and consider its linear extension to L2(X) and L2(Z), the closure of the linear span
of Xn or Zn, (n ∈ Z) in L2(Ω,F , P ). Then

BjXn = Bj−1(BXn) = Bj−1Xn−1 = · · · = Xn−j (j ≥ 0), BjZn = Zn−j ,

and one may express (3.36) as

(I − ψ(B))Xn = Zn (n ≥ 0), (3.38)

where ψ(z) is a polynomial, say

ψ(z) =
p−1∑

0

βj z
b−j (z ∈ C), (3.39)

and

ψ(B) =
p−1∑

j=0

βjB
p−j . (3.40)

Theorem 3.10. Let ψ(z) be the polynomial (3.39), and suppose the zeros of the
polynomial 1 − ψ(z) all lie outside the unit circle {z : z ∈ C, |z| = 1}. Then there
exists a weakly stationary process {Xn : n ∈ Z} satisfying (3.36), which has the
one-sided moving average representation

Xn =
∞∑

j=0

ajZn−j (n ∈ Z), (3.41)

where a0 = 1, and
∑

˙ |aj | <∞.
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Proof. The hypothesis means that the roots of the equation 1 − ψ(z) = 0 all lie
outside the unit circle. Then there exists δ > 0 such that 1−ψ(z) = 0 has no roots in
{z ∈ C : |z| < 1+δ}. This implies (1−ψ(z))−1 is analytic in {z ∈ C : |z| < 1+δ},
with an absolutely convergent power series

∑∞
j=0 aj z

j expansion around z = 0,
with radius convergence greater than one. This implies

∑∞
j=0 |aj | < ∞. Note that

a0 = (1 − ψ(0))−1 = 1. Using the identity (1 − ψ(z))−1(1 − ψ(z)) = 1, one can
now easily check that a solution to (3.38) is given for all n ∈ Z by

Xn = (I − ψ(B))−1Zn :=
∞∑

j=0

ajB
jZn =

∞∑

j=0

ajZn−j (n ∈ Z).

Note that

Var(Xn) = σ 2
∞∑

j=0

|aj |2, cm := Cov(Xn,Xn+m) =
∞∑

j=0

ajaj+m (m ≥ 0),

c−m = cm (m > 0). �
It now follows that one may compute the spectral density as (see Exercise 7)

f (λ) = σ 2

|1 − ψ(e−iλ)|2 , −π ≤ λ ≤ π. (3.42)

Remark 3.1. The relation (3.36) implies that L2(Z) ⊂ L2(X), while (3.41) implies
L2(X) ⊂ L2(Z). Hence, under the hypothesis of Theorem 3.10, L2(X) = L2(Z).
The process {Xn : n ∈ Z} is causal since it depends only on the past and present
values of Zn. It is invertible, since Zn can be expressed in terms of the past and
present values of Xn. The backshift operator B is a linear isometry on

L2(Z) : ‖BY‖2 ≡ E(BY · BY) = ‖Y‖2 = E(Y · Y ),

for all Y = ∑
j bjZj , (

∑
j |bj |2 <∞). Hence

‖B‖ := sup{‖BY‖ : ‖Y‖ ≤ 1} = 1.

One may think of the expansion of (I − ψ(B))−1 in powers of B to be convergent
(with respect to this operator norm of B), noting that ‖ψ(B)‖ < 1, under the
hypothesis of Theorem 3.10.

Example 5 (Autoregressive-Moving Average ModelsARMA(p, q)). An autoregressive-
moving average model ARMA (p, q) (p ≥ 1, q ≥ 1) satisfies



36 3 Spectral Representation

Xn =
p−1∑

j=0

βjXn−p+j + Zn +
q−1∑

j=0

δjZn−q+j (n ∈ Z), (3.43)

where β0 �= 0, δ0 �= 0, and {Zn : n ∈ Z} are uncorrelated, with Var(Zn) = σ 2 > 0
for all n. In terms of the backshift operator B, one may express (3.43) as

(I − ψ(B))Xn = (I + θ(B))Zn, (n ∈ Z), (3.44)

where ψ(B) is as in (3.40) and

θ(B) =
q−1∑

j=0

δjB
q−j . (3.45)

Theorem 3.11. Suppose the equations 1 −ψ(z) = 0 and 1 + θ(z) = 0 do not have
any common root. (a) If all roots of the equation 1 − ψ(z) = 0 lie outside the unit
circle, then there exists a weakly stationary causal process {Xn : n ∈ Z} which
satisfies (3.43) and has the one-sided moving average representation

Xn =
∞∑

j=0

bjZn−j (n ∈ Z),

where b0 = 1 and
∑
j |bj | <∞.

(b) If the roots of 1 + θ(z) = 0, as well as those of 1 − ψ(z) = 0 all lie outside
the unit circle, then the ARMA(p, q) model is invertible.

Proof.

(a) The proof follows the same argument as in the proof of Theorem 3.10 and
expresses Xn as

Xn = (I − ψ(B))−1(I + θ(B))Zn

=
⎛

⎝
∞∑

j=0

ajB
j

⎞

⎠

⎛

⎝I +
q−1∑

j=0

δjB
q−j

⎞

⎠Zn

=
⎛

⎝
∞∑

j=0

bjB
j

⎞

⎠Zn =
∞∑

j=0

bjZn−j (n ∈ Z).

For example, b0 = 1, b1 = a1 + a0δq−1 = a1 + δq−1, b2 = a2 + a1δq−1 +
a0δq−2 = a2 + a1δq−1 + δq−2, etc.
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(b) Under the given hypothesis, z → (1 + θ(z))−1 is analytic in a circle {z ∈ C :
|z| < 1 + δ′} of radius greater than one. Hence one may express (3.44) as

Zn = (I + θ(B))−1(I − ψ(B))Xn

=
∞∑

j=0

djXn−j , (n ∈ Z),

say, with
∑∞
j=0 |dj | <∞.

�
It follows that in case (a) the spectral density is given by (see Exercise 7)

f (λ) = |1 + θ(e−iλ)|2|1 − ψ(e−iλ)|−2, −π ≤ λ ≤ π.

Remark 3.2. The AR(p) and ARMA(p, q) models are among the most widely
used models in time series analysis, after some adjustments are made to remove
trends and cyclical effects, if necessary. A different approach to these models may
be based on iterated random maps, i.e., random dynamical systems. For example,
the AR(1) model is that of a first order linear difference equation driven by random
(noise) forcing, and similarly AR(p) is a p-th order linear difference equation
driven by noise. In the analysis of these and other iterated random maps, one also
considers the polynomial ψ̃(λ) := β0 + β1λ+ · · · + βp−1λ

p−1 − λp and the roots
of the equation ψ̃(λ) = 0. Since ψ̃(λ) = λp(ψ(1/λ) − 1), the zeros of ψ̃(λ) are
the reciprocals of the zeros of 1 −ψ(z). There the convergence to a steady state for
the random dynamical system involves the hypothesis that the zeros of ψ̃(λ) are all
inside the unit circle. Finally, the assumption that there are no common roots of the
equations 1 − ψ(z) = 0 and 1 + θ(z) = 0 in Theorem 3.11 does not really restrict
the result since common factors can be canceled out. Indeed, its purpose is to make
sure that common zeroes (possibly lying on or inside the unit circle) are taken out
of consideration, and the moving average is economically derived.

It will be shown in the forthcoming Theorem 3.15 that a necessary and sufficient
condition for the one-sided moving average representation (3.30) is that, in addition
to absolute continuity of the spectral measure F(dλ), the logarithm of the spectral
density f (λ) be integrable. This is the case in most of the important examples,
such as the AR(p) and ARMA(p, q) models described above (Exercise 1). At the
moment, however, we present one of the most important results in the theory of
weakly stationary processes, namely a general representation of weakly stationary
processes due to H. Wold (1938). To state it involves a bit of nomenclature and
notation as follows.

Let Mn denote the closure in L2(Ω,F , P ) of the linear span of {Xm : −∞ <

m ≤ n}, M−∞ = ∩−∞<n<∞Mn, and let M = M∞ be the closure of the linear
space spanned by {Xm : −∞ < m <∞}.
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Definition 3.4. The process {Xn} is said to be deterministic ifMn = M−∞ for all n,
which implies (and is implied by) PMnXn+1 = Xn for all n, where PL denotes the
orthogonal projection onto a closed linear subspace L ofM∞.

Note that if the process is deterministic, then the expected squared error of
prediction is

σ 2 = E|Xn+1 − PMnXn+1|2 = 0.

A simple example of a deterministic process is Xn = Y for all n, where Y is a
mean-zero square-integrable random variable.

Definition 3.5. The process {Xn} is purely nondeterministic if M−∞ = (0), the
zero subspace of L2(Ω,F , P ).
Theorem 3.12 (The Wold Decomposition). A weakly stationary process {Xn : n ∈
Z} has a decomposition into two orthogonal components given by

Xn = Wn + Vn, (3.46)

where {Wn} is purely nondeterministic and {Vn} is deterministic and {Wn} and {Vn}
are mutually orthogonal.

Proof. One can express Xn as PMn−1Xn + a0ξn, where ξn is orthonormal to M
(and ξn ∈ Mn), i.e., ξn has mean zero, is orthogonal to Mn−1, and is of norm one.
Next, writing PMn−1Xn = Yn−1, one may express Yn−1 = PMn−2Yn−1 + a1ξn−1 =
Yn−2 + a1ξn−1, Xn = Yn−2 + a1ξn−1 + a0ξn. Suppose am �= 0. Continuing this
process indefinitely, one has the (one-sided) moving average representation

Xn =
∑

m≥0

amξn−m = Wn, n ∈ Z, (3.47)

where {ξn : n ∈ Z} is an orthonormal sequence and am, (m ≥ 0) is a sequence
of constants, as specified above,

∑
m≥0 |am|2 = E|X0|2 = σ 2, say. In this case

Vn = 0 for all n. If, on the other hand, the process of projections stops after n0
steps, say, i.e., PMn−n0

Yn−n0+1 = Yn−n0+1, then Yn = Yn−n0 for all n ≥ n0, and
Yn−n0+1 is deterministic, belonging toM−∞. In this case

Xn =
∑

0≤m≤n0

amξn−m + Yn−n0+1 = Wn + Vn, n ∈ Z, (3.48)

whereWn = ∑
0≤m≤n0

amξn−m and Vn = Yn−n0+1 are orthogonal to each other. �
Corollary 3.3. The one-step prediction error defined as

θ = E|Xn+1 − PMnXn+1|2
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is given by |a0|2, in the case n0 > 1, i.e., theW component is nonzero. If n0 = 1 so
thatWn = 0 for all n, {Xn} is deterministic, Xn = Vn for all n, and θ = 0.

Our next step is to determine conditions such that a one-sided moving average
representation (3.47) is possible for a weakly stationary process.

Proposition 3.14. A necessary and sufficient condition for representing a weakly
stationary process Xn,−∞ < n <∞ as a (one-sided) moving average (3.47) is
that its spectral measure is absolutely continuous with respect to Lebesgue measure
on [−π, π ] with a density f satisfying f (λ) = |g(λ)|2, where g is of the form

g(λ) =
∑

m≥0

bme
imλ,

∑

m≥0

|bm|2 <∞. (3.49)

Proof. (Necessity). Let {Xn} have the representation (3.47). Then

cn = EX0Xn

=
∑

m≥0

amam+n

= 1

2π

∫

[−π,π ]
exp{−inλ}

⎛

⎝
∑

m≥0

am exp{−imλ}
⎞

⎠

⎛

⎝
∑

m≥0

am exp{imλ}
⎞

⎠ dλ,

since the integral vanishes for all terms in the product of the two sums except
the terms amam+n. Letting g(λ) be as in (3.49) with bm = am, one then has
cn = 1

2π

∫
[−π,π ] exp{−inλ}|g(λ)|2dλ. That is, the spectral measure is absolutely

continuous with a density f (λ) = |g(λ)|2 with g(λ) of the form (3.49).
(Sufficiency). Assume that the spectral measure is absolutely continuous having

a density f = |g|2 with g of the form (3.49). Let the stochastic orthogonal measure
in the spectral representation of Xn be Z(dλ) (Theorem 3.5),

Xn =
∫

[−π,π ]
exp{inλ}Z(dλ), E|Z(dλ)|2 = F(dλ) = f (λ)dλ. (3.50)

Consider the orthogonal stochastic measure ζ on [−π, π ] defined by

ζ(dλ) = 1

g(λ)
Z(dλ). (3.51)

Note that E|ζ(dλ)|2 = dλ. In particular, g(λ) can be zero on at most a set of
Lebesgue measure zero since, otherwise, E|ζ(dλ)|2 = dλ would vanish on a set
of positive Lebesgue measure. Thus,
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Xn =
∫

[−π,π ]
exp{inλ}Z(dλ)

=
∫

[−π,π ]
exp{inλ}g(λ)ζ(dλ)

=
∑

m≥0

bm

∫

[−π,π ]
exp{i(n−m)λ}ζ(dλ)

=
∑

m≥0

amγn−m, (3.52)

where am = bm, and γk = ∫
[−π,π ] exp{ikλ}ζ(dλ) is a sequence of random variables

satisfying

Eγkγr = δk,r .

That is, {γk : −∞ < k <∞} is an orthonormal sequence, with

Xn =
∑

m≥0

amγn−m.

�
Our next task is to find a simple condition on the spectral density f such

that (3.49) holds. Its proof uses some results from complex variables, most of them
standard.3

Theorem 3.15. The (one-sided) moving average representation (3.47) holds for a
weakly stationary process {Xn : −∞ < n <∞} if and only if the spectral measure
is absolutely continuous with density f satisfying

∫

[−π,π ]
| ln f (λ)|dλ <∞. (3.53)

Proof. (Sufficiency). First, for each λ ∈ [−π, π ], consider the analytic function
z → h(z; λ) = (eiλ + z)/(eiλ − z) in the unit circle D(0 : 1) = {z ∈ C : |z| < 1}.
A little algebra shows that the real part of h(z; λ) is the so-called Poisson kernel
(Exercise 12)

Reh(z; λ) = (1 − r2)/[1 − 2r cos(θ − λ)+ r2] := P(r, θ − λ) (3.54)

3 An excellent source of all the results used is the complex variables part of the graduate text
(Rudin, 1974).
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for z = reiθ (0 ≤ r < 1, θ ∈ [−π, π ]). Also, w(z) = ∫
[−π,π ] ln f (λ)h(z; λ)dλ is

analytic, as is easily shown by the convergent expansion of z → h(z; λ) inD(0 : 1)
under the integral sign. The analytic function h(z; λ) is a harmonic function inD(0 :
1) for each λ, i.e., thought of as a function on the (x, y)-plane, with z = x + iy , its

Laplacian Δw(z) vanishes, where the Laplacian is defined as Δ = ∂2

∂x2 + ∂2

∂y2 . For
the real and imaginary parts of an analytic function are harmonic. Hence the real
part of 1

2π w(z), namely,

1

2π

∫

[−π,π ]
ln f (λ)P (r, θ − λ)dλ = u(r, θ), (3.55)

say, is harmonic since ln f (λ) is integrable, by hypothesis. Here, once again one4

expresses the real part ofw(z) as a function of (x, y), via the relation z = x+iy, r =
|z| = (x2 + y2)

1
2 . By Jensen’s inequality,

u(r, θ) ≤ 1

2π
ln
∫

[−π,π ]
f (λ)P (r, θ − λ)dλ. (3.56)

Define g(z) = exp{w(z)4π }. Then, by (3.56) and Jensen’s inequality,

|g(reiθ )|2 = |g(z)|2 = | exp{w(z)/2π}|
= | exp{Rew(z)/2π + iImw(z)/2π}|
= exp{Rew(z)/2π}
= exp{u(r, θ} ≤ 1

2π

∫

[−π,π ]
f (λ)P (r, θ − λ)dλ. (3.57)

Since the Poisson kernel is a probability density function on [−π, π ] (see
Remark 3.3), i.e., 1

2π

∫
[−π,π ] P(r, θ − λ)dλ = 1 for all θ , one has

1

2π

∫

[−π,π ]
|g(reiθ)|2dθ ≤ 1

2π

∫

[−π,π ]
f (λ)dλ <∞, for all 0 ≤ r < 1.

(3.58)
Moreover, limr↑1 |g(reiθ )|2 = limr↑1 exp u(r, θ) = f (θ) for almost all θ , with
respect to Lebesgue measure on [−π, π ]. To understand this result, note that
P(r, θ−λ) is the density of a distribution which converges weakly to the point mass
δθ (dλ) on [−π, π ], as r ↑ 1 (see Remark 3.3 below). Hence if ln f is continuous,
u(r, θ) in (3.55) converges to ln f (θ), so that |g(reiθ )|2 converges to f (θ) =
|g(eiθ )|2. If ln f is just integrable, then the convergence is almost everywhere
(Rudin 1974, Section 11.12). The function g(z) is analytic in D(0 : 1), so it has

4 Rudin (1974), Sections 11.3–11.5.
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an expansion g(z) = ∑
n≥0 bnz

n, the sum being absolutely convergent in D(0 : 1).
Therefore, g(reiθ ) = ∑

n≥0 bnr
neinθ converges to g(eiθ ) = ∑

n≥0 bne
inθ , as

r ↑ 1. The relation (3.58) now implies
∑
n≥0 |bn|2 < ∞, and the hypothesis of

Proposition 3.14 is satisfied.
(Necessity). By Proposition 3.14, the spectral measure is absolutely continuous

with a density f of the form f (θ) = |g(exp{iθ})|2, where g(exp{iθ}) =∑
n≥0 bne

inθ , with
∑
n≥0 |bn|2 <∞. Then

g(z) :=
∑

n≥0

bnz
n =

∑

n≥0

bnr
neinθ = g(r exp{iθ})

is analytic. Let A = {θ ∈ [−π, π ] : |g(r exp iθ)| ≤ 1}, and B = {θ ∈ [−π, π ] :
|g(r exp{iθ}| > 1}. Assume for the moment g(0) = 1. Write

∫

[−π,π ]
| ln |g(r exp{iθ})||dθ =

∫

A

+
∫

B

= 2
∫

B

−
∫

[−π,π ]
. (3.59)

By Jensen’s formula (Rudin 1974, Theorem 15.18) (see Exercise 16),

∫

[−π,π ]
| ln |g(r exp iθ)||dθ = ln

∏

1≤m≤s

r

|ym| ≥ 0, 0 < r < 1, (3.60)

where ym are the zeros of g(z) in D(0 : r). Hence, from (3.59) and the fact5 that
ln x ≤ x for all x ≥ 0,

∫

[−π,π ]
| ln |g(r exp iθ)||dθ ≤ 2

∫

B

ln |g(r exp{iθ})|dθ

=
∫

B

ln |g(r exp{iθ})|2dθ

≤
∫

B

|g(r exp{iθ})|2dθ

≤
∫

[−π,π ]
|g(r exp{iθ})|2dθ

=
∫

[−π,π ]
|
∑

n

bnr
neinθ |2dθ

≤ (2π)
∑

n≥0

|bn|2 <∞. (3.61)

5 Rudin (1974), Sections 11.12, 15.18.
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As argued in the “sufficiency” proof, one then has limr↑1 |g(reiθ )|2 = f (θ) almost
everywhere and, by Fatou’s lemma,

∫

[−π,π ]
| ln f (θ)|dθ =

∫

[−π,π ]
lim
r↑1

| ln |g(r exp{iθ})||2dθ

≤ lim sup
r↑1

∫

[−π,π ]
| ln |g(r exp{iθ})||dθ

= 2 lim sup
r↑1

∫

[−π,π ]
| ln |g(r exp{iθ})||dθ

≤ 2π
∑

n≥0

|bn|2 <∞. (3.62)

It only remains to consider the case g(0) �= 1. In this case if the first nonzero
term in the expansion of g(z) is akzk , then apply Jensen’s formula to the function
g̃(z) = g(z)/akz

k , so that g̃(0) = 1. Then, instead of the lower bound of 0, as
the last inequality of (3.60), one gets a lower bound of a finite number c, perhaps
negative, and the proof of finiteness of

∫
[−π,π ] | ln |g(r exp{iθ})||dθ in (3.61) goes

through (Exercise 16). �
Remark 3.3. The function λ → P(r, θ − λ) in (3.54) may be shown to be the
density of Bτ , where τ is the first time a two-dimensional standard Brownian motion
{Bt : t ≥ 0} hits the unit circle at a point (cos θ, sin θ), represented as exp{iθ},
starting from a point (r, θ) in polar coordinates or the point r exp{iθ} in complex
coordinates, 0 < r < 1 (Exercise 14).

It follows from the proof of Proposition 3.14 that the coefficients an in the
moving average expansion of Xn and the coefficients of bn in the expression for
g(λ) determine each other, namely, an = √

2π · bn. Especially, the prediction error
|a0|2 can be expressed in terms of the spectral density f using this relationship (see
Corollary 3.3).

Theorem 3.16 (Szegö–Kolmogorov Formula). Under the hypothesis of Theo-
rem 3.15, the prediction error is given by

E|Xn+1 − PMnXn+1|2 = |a0|2 = exp

{
1

2π

∫

[−π,π ]
ln f (λ)dλ

}

,

where f is the spectral density.

Proof. Recall from the proof of Theorem 3.15 the functions

g(z) = exp{w(z)/4π},
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and

w(z) =
∫

[−π,π ]
ln f (λ)[(eiλ + z)/(eiλ − z)]dλ. (3.63)

Now,

(eiλ + z)/(eiλ − z) = 1 + 2eiλz/(1 − e−iλz)
= 1 + 2eiλz

∑

n≥0

e−inλzn, (3.64)

and

w(z) =
∫

[−π,π ]
ln f (λ)dλ+ 2

∫

[−π,π ]
ln f (λ)

∑

n≥1

e−inλzndλ, (3.65)

so that

g(z) = exp

{
1

4π

∫

[−π,π ]
ln f (λ)dλ

}

· exp

⎧
⎨

⎩

1

2π

∫

[−π,π ]
ln f (λ)

∑

n≥1

e−inλzndλ

⎫
⎬

⎭
.

(3.66)
Equating this to g(z) = ∑

n≥0 bnz
n, one can express the coefficients bn in terms

of the spectral density f . As shown in the proof of Proposition 3.12, an = bn,
where an are the coefficients an of the time series (3.47). In particular, a0 = b0 =
exp{ 1

4π

∫
[−π,π ] ln f (λ)dλ}, and the prediction error is

|a0|2 = exp

{
1

2π

∫

[−π,π ]
ln f (λ)dλ

}

.

�
Remark 3.4. If a moving average is expressed as Xn = ∑

0≤m≤∞ amζn−m, where,
instead of being orthonormal, {ζn} is an orthogonal sequence with common variance
σ 2, then the prediction error is |a0|2σ 2, given by the Szegö–Kolmogorov formula.

Remark 3.5. If one wishes to compute the h-step prediction error, then, provided
that the representation is in terms of an orthonormal error sequence, one has

θ(h) = E|Xn − PMn−hXn| = |a0 + a1 + · · · + ah−1| = |b0 + b1 + · · · + bh−1|.

These constants may be obtained by computing the coefficients of zk(k =
0, . . . , h− 1) in (3.66).

Remark 3.6. Prediction theory, presented above in its most general form, is due to
Kolmogorov (1939, 1941a,b), with earlier contributions due to Wold (1938) and

Szegö (1920). In particular, Kolmogorov proved that the formula in Theorem 3.16)
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holds for arbitrary weakly stationary processes in the Wold decomposition, with
f being the absolutely continuous component of the spectral measure. Prediction
theory in the continuous parameter case was obtained by Wiener in 1941, indepen-
dently of Kolmogorov. We refer to Doob (1953), Chapter XII, for a comprehensive
presentation of prediction theory. Among other valuable references are Gihman and
Skokohod (1974), Chapter IV, Grenander (1981), Chapters 3–5, and Brockwell and
Davis (1991), Chapters 4,5.

Next we will obtain representations based on covariance structure for processes
which need not be weakly stationary. In this regard, the next result is the widely
used Karhunen–Loève expansion6 of a mean-zero real- or complex-valued process
{Xt : t ∈ T } with a continuous covariance function (s, t) → r(s, t) on a finite
interval T = [c, d], c < d or more generally random field (see remarks below).
Consider the integral operator K : L2([c, d])→ L2([c, d]) defined by

(Kf )(s) =
∫

[a,b]
f (t)r(s, t)dt. (3.67)

Then, by Mercer’s theorem (see Appendix A), K has a sequence of positive
eigenvalues λ1 ≥ λ2 ≥ · · · , with corresponding orthonormal eigenfunctions
ϕ1, ϕ2, · · · such that

∑∞
1 λ

2
n <∞ and

r(s, t) =
∞∑

n=1

λnϕn(s)ϕn(t) (s, t ∈ [c, d]), (3.68)

where the convergence is absolute and uniform. Observe also that K is a Hilbert–
Schmidt operator in the sense that

∑
n λ

2
n <∞, since

∞ >

∫

[c,d]

∫

[c,d]
|r(s, t)|2dsdt =

∑

n

λ2
n.

Theorem 3.17 (Karhunen–Loève Expansion). Assume the covariance function
r(s, t) is continuous on [c, d] × [c, d]. Define

Zn = λ− 1
2

n

∫

[c,d]
Xtϕn(t)dt (n = 1, 2, . . . ). (3.69)

Then {Zn}∞n=1 is an orthonormal sequence of random variables (in L2(Ω,F , P )),
and

6 This theorem is due to Karhunen (1946) and Loève (1948).
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Xt =
∞∑

n=1

√
λn ϕn(t)Zn (t ∈ T = [c, d]), (3.70)

with the sum on the right converging in L2(Ω,F , P ).
Proof. In view of (3.68), the general orthogonal representation Theorem 3.3 applies
with μ({n}) = λn on Λ = {1, 2, . . . }, and ψ(s, n) = ϕn(s) (n = 1, 2, . . . ). Hence
there exists an uncorrelated sequence Z({n}), n = 1, 2, . . . , such that E|Z({n})|2 =
λn for all n ≥ 1 and

Xt =
∞∑

n=1

ϕn(t)Z({n}). (3.71)

Now let Zn = λ−1/2
n Z({n}). �

Remark 3.7. The representation is also variously referred to as a principal com-
ponent decomposition, empirical orthogonal decomposition, or singular value
decomposition. The coefficients

√
λn are referred to as the singular values. The

above choice of T = [c, d] with Lebesgue measure provides a standard version
of the Karhunen–Loève expansion. However the above proof carries over without
change to (centered) random fields {Xt : t ∈ T } indexed by a compact metric space
T and a finite measure π(dt) on the Borel σ -field of T and fully supported7 on T,
for the Hilbert space L2(π) with the inner product defined by

〈f, g〉 :=
∫

T

f (t)g(t)π(dt), f, g ∈ L2(π).

Such generality has applications to random fields indexed by compact manifolds
representing biological organs, for example. Also, viewed this way, one obtains
the classical version of the singular value decomposition from linear algebra
corresponding to a finite set T = {1, 2, . . . ,M} and π({j}) = 1, for all j ∈ T ,
i.e., counting measure. In this case the operator K has the matrix representation by
((r(i, j)))1≤i,j≤M.

Remark 3.8. If one has many independent realizations (samples) of {Xt : t ∈ T },
then, using the law of large numbers, one can estimate the mean mt = EXt for
purposes of centering and the covariance kernel r(s, t). If one has only a single
realization, say for t ∈ T = [0, S], with S large, then one needs to assume
stationarity and ergodicity (to be treated in the next chapter), in order to properly
estimate r(s, t).

7 The full support is needed in order to obtain Mercer’s theorem in this generality; see the
Appendix.
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Remark 3.9. Pattern (or feature) extraction and dimension reduction are among
the most popular uses of Karhunen–Loève decompositions. These naturally involve
analysis of the eigenfunctions (i.e., principal components) and truncations corre-
sponding to the largest eigenvalues.8 Dimension reduction roughly occurs when
only a few of the eigenvalues are large and capture most of the variance.

Example 6 (Spectral Representation of Brownian Bridge and Brownian Motion).
Let {B∗

t : 0 ≤ t ≤ 1} be the Brownian bridge defined by

B∗
t = Bt − tB1, 0 ≤ t ≤ 1,

where {Bt : 0 ≤ t ≤ 1} is standard Brownian motion started at zero. The covariance
function of {B∗

t : 0 ≤ t ≤ 1} is readily computed as

r(s, t) =
{
s(1 − t) if s ≤ t ,
t (1 − s) if s > t .

(3.72)

Consider the integral operator K on the real Hilbert space L2 = L2([0, 1], dt)
having the kernel function r(s, t). In view of Mercer’s theorem and Theorem 3.17,
one then has the Karhunen–Loève expansion of the Brownian bridge B∗

t in terms of
an i.i.d. standard Gaussian sequence {Zn}∞n=1 (noting that the right side of (3.69) is
Gaussian),

B∗
t = 2

∞∑

n=1

sin(nπt)

nπ
Zn, 0 ≤ t ≤ 1. (3.73)

Using the Karhunen–Loève expansion of the Brownian bridge, one may also
represent standard Brownian motion Bt , 0 ≤ t ≤ 1, as

Bt = B∗
t + tB1 = 2

∞∑

n=1

sin nπt

nπ
Zn + tZ0, 0 ≤ t ≤ 1, (3.74)

where {Zn : n = 0, 1, . . . } is an i.i.d. standard Gaussian sequence. We have used
the fact that {Xt = Bt − tB1 : 0 ≤ t ≤ 1} is independent of B1,9 to derive
the representations (3.73) and (3.74). However, the expansion (3.74) is not really
the Karhunen–Loève expansion for Brownian motion, whose covariance function is
r(s, t) = min{s, t}. If K is the operator on L2([0, 1], dt) having this kernel, then
g(t) := Kf (t) (f ∈ L2([0, 1], dt)) is easily shown to satisfy

g′′(t) = −g(t), g(0) = 0, g′(1) = 0. (3.75)

8 For applications in this connection, see Glavaski et al. (1998).
9 Wiener (1923).
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The functions sin( 2n+1
2 πt) (n = 0, 1, · · · ) are eigenfunctions of K (but sin(nπt),

n ≥ 1, are not). In particular, it is straightforward to check that the Karhunen–Loève
representation for standard Brownian motion starting at zero is given by

Bt = √
2

∞∑

n=0

Zn
2 sin( 2n+1

2 πt)

(2n+ 1)π
, 0 ≤ t ≤ 1. (3.76)

The corresponding calculations readily extend to the Karhunen–Loève representa-
tion of Brownian sheet10 as well (Exercise 3).

To conclude this chapter, we will consider further representations for the special
case of Gaussian processes. Again, we do not assume weak stationarity for this
development. In the end this will provide a way to compute the spectral density for
fractional Gaussian noise.

Proposition 3.15. Let (S,S,m) be a σ -finite measure space such that L2(S,S,m)
is separable. Then there is a family of random variables {Z(h) : h ∈ L2(S,S,m)}
such that (i) Z(ah1 + bh2) = aZ(h1) + bZ(h2) a.s. for h1, h2 ∈ L2(S,S,m),
a, b ∈ R, and (ii) Z(h) is Gaussian with mean zero and variance EZ2(h) = ‖h‖2 ≡∫
S

|h(s)|2m(ds), for each h ∈ L2(S,S,m).

Proof. Let {ϕn : n ≥ 1} be an orthonormal basis for L2(S,S,m). One may apply
the Kolmogorov construction11 to obtain an i.i.d. sequence Z1, Z2, . . . of standard
normal random variables on a probability space (Ω,F , P ). Define

Z(h) =
∞∑

n=1

〈h, ϕn〉Zn, h ∈ L2(S,S,m),

noting the L2-convergence of each such series to an element of L2(S,S,m). �
In the case that h = 1B , for B ∈ S , withm(B) <∞, one writes Z(B) ≡ Z(1B).

This defines an orthogonal random field {Z(B) : B ∈ S}, sometimes referred to as
a Gaussian measure with intensity m. Although for disjoint B1, B2, . . . in S such
that m(Bj ) < ∞ for each j ≥ 1, one has Z(∪j≥1Bj ) = ∑

j≥1 Z(Bj ) a.s., and

in L2(S,S,m), the null set on which equality does not hold can depend on B. The
term “measure” is a standard abuse of terminology which must be interpreted with
care in this context. One may also denote it by Z(ds) with the meaning defined by
Proposition 3.15.

Example 7 (Spectral Representation of Fractional Brownian Motion). Recall that
for fixed 0 < h < 1 the covariance function for fractional Brownian motion

10 See Adler and Taylor (2007). Also see Noda (1987), for the more difficult case of Lévy Brownian
motion indexed by R

k and/or the k-dimensional sphere.
11 See BCPT, p.168.



3 Spectral Representation 49

{B(h)t : t ∈ R} is given by

r(s, t) = 1

2

{
|s|2h + |t |2h − |s − t |2h

}
, 0 ≤ s, t ∈ R.

Although fractional Brownian motion is not a stationary process, it is a Gaussian
process with stationary increments; see Example 5 in Chapter 2.

Letting Z(ds) denote a mean-zero Gaussian orthogonal random field with S =
R and m Lebesgue measure on the Borel σ -field S = B, one has the following
“moving average” type representation for fractional Brownian motion. Positive and
negative parts of a ∈ R are denoted by a+ = a ∨ 0 and a− = −(a ∧ 0) = (−a)+,
respectively.

Proposition 3.19. For 0 < h < 1, h �= 1/2, define

g(s, t) =
(

(t − s)
2h−1

2+ − (−s)
2h−1

2+
)

, s, t ∈ R.

Then12

B
(h)
t = 1

c(h)

∫

R

g(s, t)Z(ds), t ∈ R,

where

c(h) =
{∫ ∞

0

(
(1 + s) 2h−1

2 − s 2h−1
2

)2
ds + 1

2h

} 1
2

.

In the case h = 1
2 , this representation may be extended to include Brownian motion

with the convention that

B
( 1

2 )

t =
∫ t

0
1[0,∞)(t)Z(ds)−

∫ 0

t

1(−∞,0)(t)Z(ds), t ∈ R.

Proof. Denoting the right side of the asserted representation by Xt , one may
easily calculate EX2

t = |t |2h by explicit integration considering each of the cases
t ≥ 0, t < 0, separately, and checking square-integrability in neighborhoods of
singularities. For t ≥ 0, one has

12 This representation is sometimes loosely expressed as B(h)t = 1
c(h)

{∫ t−∞(t − s)
2h−1

2 Z(ds) −
∫ 0
−∞(−s)

2h−1
2 Z(ds)}, t ∈ R; however such integrals do not exist separately. We prefer to avoid

this particular abuse of notation, and however it does motivate the definition since the first integral
may be viewed as a “fractional derivative” of the Brownian paths Z(ds), and the second integral
suggests a centering adjustment to get L2-convergence of the integrand.
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g2(s, t) =

⎧
⎪⎨

⎪⎩

(t − s)2h−1 if 0 ≤ s ≤ t
(
(t − s) 2h−1

2 − (−s) 2h−1
2

)2
if s < 0,

0 if s > t .

(3.77)

Making a change of variable r = t/s, one arrives at

c2(h)E|Xt |2 =
∫

R

g2(s, t)ds

= t2h
{∫ 1

0
(1 − r)2h−1dr +

∫ ∞

0

(
(1 + r) 2h−1

2 − r 2h−1
2

)2
dr

}

.

= c2(h)t2h. (3.78)

The case t < 0 is similar. Also, for 0 < t1 < t2,

(g(s, t2)− g(s, t1))2 =

⎧
⎪⎨

⎪⎩

(
(t2 − s) 2h−1

2 − (t1 − s) 2h−1
2

)2
if s ≤ t1

(t2 − s)2h−1 if t1 < s < t2,
0 if s > t2.

(3.79)
This, together with a similar change of variables as above, first u = s − t1 and then
r = u/(t2 − t1), yields

c2(h)E
(
Xt2 −Xt1

)2 = c2(h)(t2 − t1)2h.

Thus, the desired calculation results from the identity

EXtXs = 1

2

{
EX2

t + EX2
s − E(Xt −Xs)2

}
.

In particular, therefore, {Xt : t ∈ R} is a version of {B(h)t : t ∈ R}. �
Remark 3.10. Moving average representations of the general form

Xt =
∫

R

g(s, t)Z(ds), t ∈ R, (3.80)

with

g(s, t) = ϕ(t − s)− ψ(0 − s)

for square-integrable functions ϕ,ψ also include, for example, an Ornstein–
Uhlenback process by taking ϕ(t) = e−t , t ≥ 0, and ϕ(t) = 0, t < 0, and ψ ≡ 0.
In particular, the representation defines a stationary (Markov) process in this special
case.
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A “Fourier dual” to this can be obtained (guessed then proven) by considering a
representation of the form B

(h)
t = ∫

R
ĝ(λ, t)Ẑ(dλ), where Ẑ(dλ) = Ẑ1(dλ) +

iẐ2(dλ), for a pair of real-valued independent mean-zero Gaussian orthogonal
random fields Ẑ1(ds), Ẑ2(ds) for L2(m), wherem(ds) = 1

4ds, and where Ẑ1(B) =
Ẑ1(−B), Ẑ2(B) = Ẑ2(−B), B ∈ B such that m(B) < ∞. For a complex square-
integrable integrand ĝ = ĝ1 + iĝ2 such that ĝ1 is an even and ĝ2 an odd function,
i.e., ĝ(−λ) = ĝ(λ), the integral

∫
R
ĝ(λ)Ẑ(dλ) is defined by

∫

R

ĝ(λ)Ẑ(dλ) :=
∫

R

ĝ1(λ)Ẑ1(dλ)−
∫

R

ĝ2(λ)Ẑ2(dλ). (3.81)

Remark 3.11. These definitions are suggested by considering a formal Parseval-
like relation for which

∫
R
ĝ(λ)Ẑ(dλ) = ∫

R
g(s)Z(ds). In addition, a further

heuristic argument leading to the next representation using these definitions will
be given following its proof.

Let us now see that such heuristics lead to a correct guess for the representation.
Namely,

Proposition 3.20. Let 0 < h < 1, h �= 1
2 . Then

B
(h)
t = 1

ĉ(h)

∫

R

eiλt − 1

iλ
|λ|− 2h−1

2 Ẑ(dλ), t ∈ R,

where

ĉ(h) =
{∫ ∞

0

sin2 r

r2
dr +

∫ ∞

0

(1 − cos(r))2

r2
dr

} 1
2

.

Proof. Since | eitλ−1
iλ

| is bounded in neighborhood of λ = 0 and decays as |λ|−1 as
λ→ ±∞, the integrand is clearly square-integrable. Thus the representation is well
defined. Denote it by Xt . Then, noting that |eiλ − 1|2 = 4 sin2( λ2 ) and using (3.81),
one obtains by a change of variable that

EX2
t = t2h 1

ĉ(h)2

{∫ ∞

0

sin2 r

r2 dr +
∫ ∞

0

(1 − cos(r))2

r2 dr

}

= t2h. (3.82)

The computation of E|Xt2 −Xt1 |2 is similar. One has

ĉ2(h)E|Xt2 −Xt1 |2 =
∫

R

|eiλ(t2−t1) − 1|2
λ2 |λ|−2h+1dλ

= |t2 − t1|2h4
∫

R

(1 − cos(r))2 r−2h−1dr.
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So the desired covariance structure again follows from the identity

EXtXs = 1

2

{
EX2

t + EX2
s − E(Xt −Xs)2

}
. �

Remark 3.12. A heuristic basis for this representation as a “coloring” of Gaussian

(white) noise can also be obtained by noticing that e
iλt−1
iλ

is the Fourier transform
of 1[0,t](s). The purely formal form of the (nonexistent) Fourier transform of

s
2h−3

2+ would have the (divergent) form
∫
R
eiλss

2h−3
2+ ds = |λ|− 2h−1

2
∫∞

0 eiyy
2h−3

2 dy.

Expressing the Fourier transform of convolution as a product of Fourier transforms,
together with the above Parseval-like stipulations defining Ẑ(dλ) and the integration
formula, formally leads to the form of Proposition 3.20 that was rigorously proven
to be correct.

As an application of this representation, it can be used to compute the spectral
distribution for the fractional Gaussian noiseW(h)

j = B(h)j+1 − B(h)j , j ≥ 0.

cj = EW
(h)
0 W(h)

j = EB
(h)
1 B(h)j+1 − EB

(h)
1 B(h)j

= 1

ĉ(h)2

∫

R

eiλj
∣
∣
∣
∣
eiλ − 1

iλ

∣
∣
∣
∣

2

|λ|−2h+1dλ

= 1

ĉ(h)2

∞∑

n=−∞

∫ π+2nπ

−π+2nπ
eiλj |eiλ − 1|2|λ|−2h−1dλ

= 1

ĉ(h)2

∞∑

n=−∞

∫ π

−π
eiλj |eiλ − 1|2|λ+ 2nπ |−2h−1dλ

= 1

ĉ(h)2

∫ π

−π
eiλj |eiλ − 1|2

∞∑

n=−∞
|λ+ 2nπ |−2h−1dλ. (3.83)

Thus13

F(dλ) = 2π

ĉ2(h)

∣
∣
∣eiλ − 1

∣
∣
∣
2 ∞∑

n=−∞
|λ+ 2πn|−2h−1 dλ, λ ∈ [−π, π ].

13 For this and a much more extensive treatment of fractional Brownian motion representations,
see Samorodnitsky and Taqqu (1994). An application of the Karhunen–Loéve expansion for
fractional Brownian motion to problems in fluid flow, which includes formal asymptotic estimates
of eigenvalues and eigenfunctions for the fractional Brownian covariance kernel, is given in
Bronski (2003). An insightful analysis in the contact of financial mathematics is given by Rogers
(1997).
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Writing F(dλ) = f (λ)dλ, then, since |eiλ − 1|2 ∼ |λ|2/2 as λ → 0, splitting off
the n = 0 term yields

f (λ) ∼ 2π

ĉ2(h)
|λ|1−2h as λ→ 0.

A stationary sequence with a spectral density of the form 1
|λ|θ for an exponent

0 < θ < 1 is often referred to as a 1
f

-noise. Thus one obtains a 1
f

-noise in the case
1/2 < h < 1. Notice that the convergence/divergence of

∑
n∈Z |cn| is also reflected

in the behavior of the spectral density as λ→ 0. Recall also that the correlations are
positive, i.e., cn > 0, in the case 1/2 ≤ h < 1. The fractional Gaussian noise
is sometimes said to exhibit long-range dependence when 1/2 < h < 1. It is
sometimes said to be chaotic in the case 0 < h ≤ 1/2. The case h = 1/2 of
uncorrelated increments is referred to as a white noise.

Finally one may note that when h �= 1/2 the fractional Gaussian noise sequence
provides an example of non-diffusive scaling for stationary processes in the sense
that one must scale the partial sums

∑n
j=1 Yj by nh to obtain a (Gaussian) limit

distribution as n→ ∞, see Exercise 11.

Exercises

1. Compute the Wold decomposition for an AR(1)model. [Hint: See Example 3.]
2. (Poisson Random Field) Let (Λ,L, μ) be an arbitrary measure space with μ a
σ -finite measure.

(a) Show that there exists a random field {N(B) : B ∈ L, μ(B) < ∞} such
that (i) N(B) is Poisson with mean μ(B), (ii) if B1 ∩B2 = ∅, then N(B1 ∪
B2) = N(B1)+N(B2) a.s., and (iii) if B1∩B2 = ∅, thenN(B1) andN(B2)

are independent. [Hint: First assume μ is a finite measure, and let ηi (i =
1, 2, · · · ) be i.i.d. random variables with distribution μ(dμ)/μ(Λ), and let
Y be a Poisson random variable with mean μ(S), independent of {ηi : i ≥
0}. Check that N(B) := ∑Y

i=1 1B(ηi) (1[Y≥1] has the desired properties by
using the moment generating function (mgf) of N(B) and the joint mgf of
N(B1) and N(B2) for disjoint B1 and B2. For the general case, let Dn be
pairwise disjoint sets in L such that 0 < μ(Dn) < ∞ and ∪∞

n=1Dn = Λ.

Then define an independent family of random variables {Yn, η(n)i : n =
1, 2, . . . ; i = 1, 2, . . . } with distributions given by P(η(n)i ∈ B) = μ(B ∩
Dn)/μ(Dn), B ∈ S , and P(Yn = k) = e−μ(Dn)μk(Dn)/k! (k = 0, 1, · · · ).
Let N(B) = ∑∞

n=1
∑Yn
i=1 1B(η

(n)
i ) 1[Yn≥1].]
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(b) Let {N(B) : B ∈ L, μ(B) <∞} be as in (a). Show that {Ñ(B) = N(B)−
μ(B) : B ∈ S , μ(B) < ∞} is a real-valued orthogonal random field for
(Λ,L, μ). [Hint: Check EÑ(B1)Ñ(B2) = μ(B1 ∩ B2).]

(c) Let Λ = [−π, π ], and let μ be a finite measure. Let U(dλ) and V (dλ) be
two independent real-valued orthogonal random fields as in (b). Define Xn
by (3.16) (or by (3.14) with Z(·) = U(·)+ iV (·)). Show that {Xn : n ∈ Z}
is weakly stationary with spectral measure F = 2πμ.

(d) For the case F has the two-point support: F({−π
2 }) = F({π2 }) = 2π ,

compute U(·), V (·) as in (c), and show that {Xn : n ∈ Z} is not
(strictly) stationary. [Hint: U({π2 }) = N1 − 1

2 , V ({π2 }) = N2 − 1
2 and

U([0, π ]\{π2 }) = 0 = V ([0, π ]\{π/2}) a.s., where N1 and N2 are
independent Poisson random variables each with mean 1

2 . Show that, for n

even, Xn = 2(−1)n/2(N1 − 1
2 ) and, for n odd, Xn = 2(−1)

n+1
2 (N2 − 1

2 ).]
(e) Check that, if μ(Λ) <∞, then N(·) and Ñ(·), as defined in (a) and (b) are

random measures: N(∪∞
n=1Bn) = ∑∞

n=1N(Bn) for every pairwise disjoint
sequence {Bn} ⊂ S . The same holds for Ñ . If μ(Λ) = ∞, let N(B) = ∞
a.s. if μ(B) = ∞. Then N(·) is a random measure on (Λ,L).

3. (Brownian motion and Brownian sheet)

(a) Verify the Karhunen–Loève expansion for Brownian motion by computing
the eigenfunctions and eigenvalues in the case of the kernel K(s, t) = s ∧
t, 0 ≤ s, t ≤ 1.

(b) The k-dimensional Brownian sheet is the mean-zero Gaussian random
field {B(t) : t ∈ [0, 1]k} having covariance kernel given by K(s, t) =∏k
j=1 sj ∧ tj , s = (s1, . . . , sk), t = (t1, . . . , tk) ∈ [0, 1]k. Compute the

Karhunen–Loève expansion for the Brownian sheet. [Hint: The eigenvalues
and eigenfunctions are products of those obtained for the one-dimensional
problem.]

4. (Gaussian Orthogonal Random Fields, White Noise)

(a) Let {Xn : n ∈ Z} be a stationary mean-zero complex-valued Gaussian
process. Show that the associated orthogonal random field Z(·) in the
representation (3.14) is Gaussian (i.e., Z(B) is a complex-valued Gaussian
random variable for all Borel B ⊂ [−π, π ]).

(b) If {Xn : n ∈ Z} is a real-valued stationary Gaussian process with
(symmetric) spectral measure F on [−π, π ], show that U(·) and V (·)
in (3.16) are two independent real-valued orthogonal Gaussian random
fields on [0, π ] and that for Borel B1, B2, · · · , Bn ⊂ (0, π ] the k random
variables U(Bj ), 1 ≤ j ≤ k, are jointly (mean-zero) Gaussian with
covariances Cov(U(Bj ), U(Bk)) = F(Bj ∩ Bk)/4π . The same is true for
V (·). However, U({0}) is mean-zero Gaussian with variance F({0})/2π ,
while V ({0}) = 0 a.s. In the particular case F/4π is Lebesgue measure on
[0, π ], U(·) (as well as V (·)) is called white noise on [0, π ].
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(c) Construct (Gaussian) white noise W(·) as an orthogonal real-valued ran-
dom field on R, and show that its restriction Bt := W([0, t]), t ≥ 0, has
the same finite dimensional distribution as Brownian motion.

5. Identify the random fields U(·) and V (·) in the representation (3.20) for the
Ornstein–Uhlenbeck process.

6. (Red, White, Blue AR(1) Spectra) Physicists assign colors to spectral distribu-
tions by considering colors displayed by equivalent frequency bands of light.
Red is displayed by decreasing power f (λ)dλ in bands of increasing frequency
|λ|, blue is displayed by increasing power f (λ)dλ in bands with increasing |λ|,
and white has constant power across equal frequency bands λ±dλ. Explain the
classification of the spectral distributions for AR(1) accordingly in each of the
cases of 0 < β < 1, β = 0, and −1 < β < 0, as red, white, and blue.

7. (a) Show that the spectral density of the AR(p) process, under the hypothesis
of Theorem 3.10, is |1−ψ(e−iλ)|−2. [Hint: Spectral density of {Zn : n ∈ Z}
is 1[−π,π), and

∑s
j=0 aj e

−ijλ = (1 − ψ(e−iλ))−1.]
(b) Show that the spectral density of the ARMA(p, q) process, under the

hypothesis of Theorem 3.11(a), is |1 + θ(e−iλ)|2|1 − ψ(e−iλ)|−2.
8. Show that the hypotheses of Theorems 3.10 and 3.11(a) are satisfied if

∑p−1
j=0 |βj | < 1.

9. Use (3.73) to derive the identity 4
∑∞
n=1

sin2(nπt)

n2π2 = t (1 − t), 0 ≤ t ≤ 1.

10. Estimate E|Xt − Xs |4 for the sum on the right in (3.73), and prove that Xt has
continuous sample paths (a.s.). Then deduce the process defined by the series
in (3.74) has, with probability one, continuous sample paths.

11. Let {Yj : j ∈ Z} denote the fractional Gaussian noise. Show that the finite
dimensional distributions of the partial sum process {n−hS[nt] : 0 ≤ t ≤ 1}
converge to those of the corresponding fractional Brownian motion {B(h)t : 0 ≤
t ≤ 1}.

12. (Poisson Kernel) Show that in D(0 : 1) the real part of h(z, λ) = (eiλ +
z)/(eiλ − z) is the Poisson kernel P(r, θ − λ). [Hint: h(z, λ) = [1 − r2 +
2ir sin(θ − λ)]/|1 − ze−iλ|2].]

13. Show how to modify the proof of “Necessity” of Theorem 3.15 for g(0) = 0.
[Hint: Use Jensen’s formula for the function g̃(z) = g(z)/akz

k , where the first
nonzero term in the expansion of g(z) is akzk(k > 0). Apply Jensen’s formula
to g̃(z), with g̃(0) = 1. Then

∫
[−π,π ] | ln |g̃(r exp iθ)||dθ < ∞. Use this to

prove the desired assertion.]
14. (Mean value property of the Poisson Integral) Let f be a continuous function

on the unit circle T, and Ψf (x, y) = Ex,yf (Bτ ), where (i) B is a standard
Brownian motion on R

2, starting at (x, y) in the unit discD(0 : 1), and τ is the
first time the Brownian motion reaches T.

(a) Show that Ψf (x, y) is harmonic, and it has the mean value property:
Ψf (x, y) = ∫

Ψf (u, v)μa(d(u, v)), where (u, v) is (a random) point
on the circle with center (x, y) and radius a contained in D(0 : 1), and
μa(d(u, v)) is the uniform distribution on this circle. [Hint: Use the strong
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Markov property of Brownian motion, with stopping time η, which is the
first time it reaches this circle.]

(b) Using the property that ΔΨf = 0 in D(0 : 1), and Ψf has the boundary
value f on T, check that the (unique) solution of this equation is the Poisson
integral Ψf (x, y) of f with density function λ → 1

2π P (r, θ − λ), where

r = (x2 +y2)1/2. That is, Ψf (z) = (1− r2) 1
2π

∫
[−π,π ] f̃ (λ)P (r, θ−λ)dλ,

(z = (x, y) = r(cos θ, sin θ), f̃ (λ) = f (cos λ, sin λ)).

15. Using the expansion of g in (3.62), calculate a1 = b1, and thereby, the step two
prediction error E|Xn − PMn−2Xn|2.

16. Let f be an analytic function in the disc D(0 : R) = {z : |z| < R}. Let
0 < r < R, and let a1, . . . , am be an enumeration (with possible multiplicities)
of the zeros of f in D(0 : r) and am+1, . . . , aN be the zeros, if any, on {z :
|z| = r}. Assume also that f (0) �= 0.

(a) Show that the function g(z) = f (z)
∏

1≤n≤m(r2 − anz)/(r(an −
z))

∏
n+1≤n≤N an/(an − z) is analytic in D(0 : r + ε) for a sufficiently

small ε > 0 and has no zeros in D(0 : r + ε). [Hint: The denominators of
g cancel out by factorization of f ; also ε > 0 may be chosen so that f has
no further zeros in D(0 : r + ε).]

(b) Show that log |g(z)| is harmonic in D(0 : r + ε) and therefore has
the mean value property log |g(0)| = ∫

[−π,π ] log |g(r exp{iθ})|dθ . [Hint:
There exists an analytic function w(z) = u(z)+ iv(z) onD(0 : r+ ε) such
that g(z) = exp{w(z)}. Now |g| = exp{u}, log |g| = u = Rew.]

(c) (i) Show that |g(0)| = |f (0)|∏1≤n≤m r
|an| , and (ii) log |g(r exp{iθ})| =

log |f (r exp{iθ})| − ∑
m+1≤n≤N log |1 − exp{i(θ − θn)}| where an =

r exp{iθn}, for m + 1 ≤ n ≤ N . [Hint: (i) follows from definition of g.
(ii) holds because on {z : |z| = r}, the modulus of each of the factors in the
first product in the expression for g(z) is one.]

(d) Prove that
∫
[−π,π ] log |1−exp{iθ}|dθ = 0. [Hint: This is proved by contour

integration in Rudin (1974), Lemma 15.17. Another idea is the following.
For 0 < b < 1,

∫

[−π,π ]
log |1 − b exp{iθ}|dθ

= 1

2

∫

[−π,π ]
log |1 − b exp{iθ}|2dθ

= 1

2

∫

[−π,π ]
log(1 − b exp{iθ})(1 − b exp{−iθ})dθ

= −1

2

∫

[−π,π ]

∑

k≥1

[(bk exp{ikθ}/k)+ (bk exp{−ikθ}/k)]dθ

= 0.
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Now let b ↑ 1. Unfortunately, the justification for the interchange of
integration and limit is not clear here.]

(e) (Jensen’s formula). Prove that

|f (0)|
∏

1≤n≤N
(r/|an|)

= |f (0)|
∏

1≤n≤m
(r/|an|)

= exp{(1/2π)
∫

[−π,π ]
log |f (r exp{iθ}|dθ.

[Hint: For the first equality, note that |r/an| = 1 for m + 1 ≤ n ≤ N . For
the second, use (b), (c), (d).]



Chapter 4
Birkhoff’s Ergodic Theorem

In the context of stochastic processes, ergodic theory relates the long-run
“time-averages” such as the sample mean of an evolving strictly stationary
processX0, X1, . . . to a “phase-average” computed as an expected value with
respect to a probability distribution on the state space. This is the perspective
developed in this chapter.

In addition to the examples of the previous chapters, Markov processes having
an invariant probability π also provide a broad class of examples in this regard.
The following is a useful re-formulation of the notion of stationarity given in
Definition 2.1 in the case of processes indexed by the nonnegative integers, as the
invariance of the distribution of the process under a time shift map T on the (path)
space S∞.

Definition 4.1. A discrete parameter stochastic process {Xn : n ≥ 0} on (Ω,F , P )
with values in a measurable space (S,S) is said to be (strictly) stationary if the
distribution of X := (X0, X1, X2, . . .) is the same as that of T mX ≡ X+

m :=
(Xm,Xm+1, Xm+2, . . .) for all m ≥ 0, where the transformation T = T 1, called
the shift transformation, is defined on S∞ into S∞ as T x = (x1, x2, . . . ) for
x = (x0, x1, x2, . . . ) ∈ S∞.

Note that the shift transformation is a measurable map on the sequence space
S∞ with respect to the product sigma-field S∞ generated by finite dimensional
projections.

The law of large numbers for stationary processes refers to a.s. limits of sample
averages 1

n

∑n−1
m=0 ϕ(Xm) to a limit l(ϕ) as n → ∞ for suitable functions ϕ : S →
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R. A far reaching generalization1 of the law of large numbers is the main topic of
this chapter. For this, we take an alternative perspective on the above average and
express it as follows:

1

n

n−1∑

m=0

ϕ(Xm) = 1

n

n−1∑

m=0

f (T mX), (4.1)

where f : S∞ → R is defined by f (x) = ϕ(x0), x = (x0, x1, . . . ), and
T : S∞ → S∞ is the shift transformation. Recall that the distribution of
(Xm,Xm+1, . . .) is the probability measure P ◦ (T mX)−1 induced on (S∞,S⊗∞)
by the map ω → (Xm(ω),Xm+1(ω), Xm+2(ω), . . .). From the perspective of
dynamical systems, where iterates of T furnish the evolution, “stationarity” of X
means that the probability (distribution) P ◦X−1 on sequence space S∞ is preserved
under the dynamics T . We will return to this perspective in Chapter 6.

Denote the σ -field generated by {Xn : n ≥ 0} by G. That is, G is the class of all
events of the form G = [X ∈ C] ≡ X−1C = {ω ∈ Ω : X(ω) ∈ C}, C ∈ S⊗∞.

Definition 4.2. For an event G = [X ∈ C] ∈ G, write T −1G := {ω ∈ Ω :
TX(ω) ∈ C} = [(X1, X2, . . .) ∈ C] = [X ∈ T −1C]. Such an event G is said to be
invariant if P(GΔT −1G) = 0, where Δ denotes the symmetric difference defined
by AΔB = (A ∩ Bc) ∪ (Ac ∩ B).
Note that while AΔB = ∅ if A = B, invariant events are allowed to differ by a
P -null event.

By iteration, it follows that ifG = [X ∈ C] is invariant, then P(GΔT −mG) = 0
for all m ≥ 0, where T −mG = [(Xm,Xm+1, Xm+2, . . .) ∈ C]. Let f be a real-
valued measurable function on (S∞,S⊗∞). Then ω → f (X(ω)) is G-measurable,
and, conversely, all G-measurable functions are of this composite form.

Definition 4.3. Let f be a real-valued measurable function on (S∞,S⊗∞). A G-
measurable function f (X) on (Ω,F , P ) is said to be invariant if f (X) = f (TX)
a.s.

Note that G = [X ∈ C] is an invariant event if and only if 1G = 1C(X) is an
invariant function. Again, by iteration, if f (X) is invariant, then f (X) = f (T mX)
a.s. for all m ≥ 1.

In connection with the strong law of large numbers, we are interested in the
following invariant events and functions. Given any G-measurable real-valued
function f (X), the functions (extended real-valued)

f̄ (X) := limn→∞ n−1(f (X)+ f (TX)+ · · · + f (T n−1X)),

f (X) := limn→∞n−1(f (X)+ · · · + f (T n−1X)) (4.2)

1 This result, which was motivated by considerations of the relationship between “time-averages”
and “phase-averages” in statistical physics and dynamical systems, is due to Birkhoff (1931).
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are invariant, and the event [f̄ (X) = f (X)] is invariant. The class I of all invariant
events (in G) is easily seen to be a σ -field.

Definition 4.4. The class I of all invariant events (in G) is called the invariant σ -
field. The invariant σ -field I is said to be trivial if P(G) = 0 or 1 for every G ∈ I.

Notice that a non-degenerate invariant event or function cannot depend on a finite
segment of the process.

Definition 4.5. The process {Xn : n ≥ 0} and the shift transformation T are said to
be ergodic if I is trivial.

Example 1. Let {Xn : n ≥ 0} be an i.i.d. sequence of real-valued random variables.
By Kolmogorov’s zero-one law,2 the tail σ -field T := ∩∞

n=1σ(Xn,Xn+1, . . . )

is trivial. Since the invariant σ -field is contained in T , the sequence is therefore
ergodic.

Example 2. Suppose that Y = (Y0, Y1, . . . ) and Z = (Z0, Z1, . . . ) are two i.i.d.
sequences of Bernoulli 0−1 (coin tossing) random variables defined on a probability
space (Ω,F , P ), with P(Yn = 1) = α and P(Zn = 1) = β, for α, β ∈ (0, 1).
Suppose A ∈ F with P(A) = p ∈ (0, 1). Define another process X by X(ω) =
Y(ω), ω ∈ A, and X(ω) = Z(ω), ω ∈ Ac. Then X is a stationary process. However,
if α �= β, then the strong law of large numbers, respectively, applied to Y and Z,
implies that the invariant event G = [limn→∞ 1

n

∑n−1
m=0Xm = α] has probability

p ∈ (0, 1). Thus X is not ergodic.

As noted in the previous chapter, the implementation of some of the representa-
tion theory there may require estimates of expected values for which f (x) = x0,
or variances/covariances for which, after centering, involves f (x) = x0xk (k fixed)
in the result below. In essence this is a generalization of the classical strong law of
large numbers.

Theorem 4.1 (Birkhoff’s Ergodic Theorem). Let {Xn : n ≥ 0} be a stationary
sequence on the state space S (having σ -field S). Let f (X) be a real-valued G-
measurable function such that E|f (X)| <∞. Then

a n−1 ∑n−1
m=0 f (T

mX) converges a.s. and inL1 to an invariant random variable g(X)
b g(X) = Ef (X) a.s. if I is trivial.

We first need an inequality.3 Write

Mn(f ) := max{0, f (X), f (X)+ f (TX), . . . , f (X)+ · · · + f (T n−1X)},
Mn(f ◦ T ) = max{0, f (TX), f (TX)+ f (T 2X), . . . , f (TX)+ · · · + f (T nX)},

M(f ) := lim
n→∞Mn(f ) = sup

n≥1
Mn(f ). (4.3)

2 See BCPT, p. 87.
3 The derivation presented here follows Garcia (1965).
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Proposition 4.2 (Maximal Ergodic Theorem). Under the hypothesis of Theo-
rem 4.1,

∫

[M(f )>0]∩G
f (X)dP ≥ 0 for all G ∈ I. (4.4)

Proof. Note that f (X) + Mn(f ◦ T ) = Mn+1(f ) on the event [Mn+1(f ) > 0].
Since Mn+1(f ) ≥ Mn(f ) and [Mn(f ) > 0] ⊂ [Mn+1(f ) > 0], it follows that
f (X) ≥ Mn(f )−Mn(f ◦ T ) on[Mn(f ) > 0]. Also,Mn(f ) ≥ 0,Mn(f ◦ T ) ≥ 0.
Therefore,

∫

[Mn(f )>0]∩G
f (X)dP ≥

∫

[Mn(f )>0]∩G
(Mn(f )−Mn(f ◦ T ))dP

≥
∫

G

Mn(f )dP −
∫

[Mn(f )>0]∩G
Mn(f ◦ T )dP

≥
∫

G

Mn(f )dP −
∫

G

Mn(f ◦ T )dP
= 0,

where the last equality follows from the invariance of G and the stationarity of
{Xn : n ≥ 0}. Thus, (4.4) holds with [Mn(f ) > 0] in place of [M(f ) > 0]. Now let
n ↑ ∞. �

Now consider the quantities

An(f ) := max

{

f (X),
1

2
(f (X)+ f (TX)), . . . ,

1

n

n−1∑

m=0

f (T mX)

}

,

A(f ) := lim
n→∞An(f ) = sup

n≥1
An(f ).

The following is a consequence of Proposition 4.2.

Corollary 4.3 (Ergodic Maximal Inequality). Under the hypothesis of Theo-
rem 4.1, one has, for every c ∈ R,

∫

[A(f )>c]∩G
f (X)dP ≥ cP ([A(f ) > c] ∩G) for all G ∈ I. (4.5)

Proof. Apply Proposition 4.2 to the function f − c to get

∫

[M(f−c)>0]∩G
f (X)dP ≥ cP ([M(f − c) > 0] ∩G).
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But [Mn(f − c) > 0] ⊂ [An(f − c) > 0] = [An(f ) > c], and [M(f − c) > 0] ⊂
[A(f ) > c]. �

We are now ready to prove Theorem 4.1, using (4.5).

Proof of Theorem 4.1. Write

f̄ (X) := limn→∞ 1
n

n−1∑

r=0
f (T rX), f (X) := limn→∞ 1

n

n−1∑

r=0
f (T rX),

Gc,d(f ) := [f̄ (X) > c, f (X) < d] (c, d ∈ R). (4.6)

Since Gc,d(f ) ∈ I and Gc,d(f ) ⊂ [A(f ) > c], (4.5) leads to

∫

Gc,d (f )

f (X)dP =
∫

[A(f )>c]∩Gc,d (f )
f (X)dP ≥ cP (Gc,d(f )). (4.7)

Now take −f in place of f and note that (−f ) = −f , (−f ) = −f ,
G−d,−c(−f ) = Gc,d(f ) to get from (4.7) the inequality − ∫

Gc,d (f )
f (X)dP ≥

−dP (Gc,d(f )), i.e.,

∫

Gc,d (f )

f (X)dP ≤ dP (Gc,d(f )). (4.8)

Now if c > d, then (4.7) and (4.8) cannot both be true unless P(Gc,d(f )) = 0.
Thus, if c > d, then P(Gc,d(f )) = 0. Apply this to all pairs of rationals c > d to
get P(f̄ (X) > f (X)) = 0. In other words, (1/n)

∑n−1
r=0 f (T

rX) converges a.s. to

h(X) := f̄ (X). To complete the proof of part (a), it is enough to assume f ≥ 0,
since n−1 ∑n−1

0 f+(T rX)→ f
+
(X) a.s. and n−1 ∑n−1

0 f−(T rX)→ f
−
(X) a.s.,

where f+ = max{f, 0},−f− = min{f, 0}. Assume then f ≥ 0. First, by Fatou’s
lemma and stationarity of {Xn},

Ef̄ (X) = Ef (X) ≤ limn→∞E

(
1

n

n−1∑

r=0

f (T r(X))

)

= Ef (X) <∞.

To prove the L1-convergence, it is enough to prove the uniform integrability of the
sequence {(1/n)Sn(f ) : n ≥ 1}, where4 Sn(f ) := ∑n−1

m=0 f (T
mX). Now since

f (X) is nonnegative and integrable, given ε > 0, there exists a constant Nε such
that ‖f (X)− fε(X)‖1 < ε, where fε(X) := min{f (X), Nε}. Then

4 See BCPT, p. 17 for this L1-convergence criteria.
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∫

[ 1
n
Sn(f )>λ]

1

n
Sn(f )dP ≤

∫

Ω

1

n
Sn(f − fε)dP +

∫

[ 1
n
Sn(f )>λ]

1

n
Sn(fε)dP

≤ ε +NεP
(

1

n
Sn(f ) > λ

)

≤ ε +NεEf (X)/λ. (4.9)

It follows that the left side of (4.9) goes to zero as λ → ∞, uniformly for all n.
Therefore Sn(f )/n converges in L1 to h(X). To show that h(X) = E(f (X)|I),
let G := [X ∈ C] ∈ I for some C ∈ S⊗∞, and observe that if we write 1G =
1C(X) = h(X), then h(T mX) = g(X) a.s. for every m = 1, 2, . . . . Hence, using
the measure-preserving property of T ,

E1G
1

n

n−1∑

m=0

f (T mX) = 1

n

n−1∑

m=0

Eg(T mX)f (T mX) = Eg(X)f (X) = E1Gf (X).

(4.10)
Letting n → ∞, we get the desired relation

∫
G
h(X)dP = ∫

G
f (X)dP . Part (b) is

an immediate consequence of part (a). �
Corollary 4.4. If {Xn : n ≥ 0} is a stationary process with state space (S,S) and f
is a real-valued measurable function on S such that E|f (X0)| <∞, then a.s. and in
L1

1

n

n−1∑

m=0

f (Xm)→ E(f (X0)|I)

as n→ ∞.

Example 3 (The Classical Strong Law of Large Numbers). Let {Xn : n ≥ 0} be
an i.i.d. sequence of real-valued random variables. As observed in Example 1, this
process is ergodic. If E|X0| < ∞, then it follows from the ergodic theorem that
1
n

∑n−1
m=0Xm → EX0 as n→ ∞ a.s. and in L1.

Example 4 (Exchangeable Sequences of Random Variables). Suppose that {Xn :
n ≥ 0} is a discrete parameter stochastic process with values in a measurable
space (S,S) defined on some probability space (Ω,F , P ). Assume for every m =
0, 1, 2, . . . the distributions of (X0, X1, . . . , Xm) and (Xn0 , . . . , Xnm) for any set of
m + 1 distinct indices n0, . . . , nm. Such a process (or its distribution) is said to be
exchangeable. Clearly an exchangeable process is stationary. The “mixture” (convex
combination) of two, or any finite number, of i.i.d. sequences is exchangeable. More
precisely, let μ1, . . . , μk be probabilities on (S,S) and suppose that {Xnj : n ≥ 0}
is an i.i.d. sequence on (Ω,F , P ) having distribution μj for each j = 1, 2, . . . , k.
Let J be a random index, independent of the processes {Xn,j : n ≥ 0} for
j = 1, 2, . . . , k, with P(J = j) = pj , with 0 < pj < 1,

∑k
j=1 pj = 1. Then
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define Xn = Xn,J , n = 0, 1, 2, . . . , for every m ≥ 0, B ∈ S⊗(m+1), and distinct
indices n0, . . . , nm,

P ((Xn0, . . . , Xnm) ∈ B) = EP((Xn0 , . . . , Xnm) ∈ B|J )

=
k∑

j=1

pjEP(Xn0 , . . . , Xnm) ∈ B|J = j)

=
k∑

j=1

pjP ((Xn0,j , . . . , Xnm,j ) ∈ B)

=
k∑

j=1

pjP ((X0,j , . . . , Xm,j ) ∈ B)

= P((X0,J , . . . , Xm,J ) ∈ B). (4.11)

Thus {Xn : n ≥ 0} is exchangeable. If f is a bounded real-valued measurable
function on (S,S), then a.s. 1

n

∑n−1
r=0 f (Xr) = 1

n

∑n−1
r=0 f (Xr,J ) → ∫

S
f dμJ ,

where
∫
S
f dμJ is a random variable which takes the value

∫
S
f dμj with proba-

bility pj , j = 1, . . . , k. In particular this shows that {Xn : n ≥ 0} is not ergodic.
More generally, let S be a Polish space and S its Borel σ -field. Let P(S) be the set
of all probabilities on (S,S) and B(P) its Borel σ -field for the weak topology.

According to the de Finetti theorem,5,6 therefore, every exchangeable sequence
{Xn : n ≥ 0} with values in (S,S) may be represented as a mixture of i.i.d.
sequences: Xn = Xn,J , n ≥ 0, where J is a random index with values in
(P(S),B(P)), and for each ν ∈ P(S), {Xnν : n ≥ 0} is an i.i.d. sequence
with common distribution ν. Thus if J is not a.s. constant, i.e., {Xn : n ≥ 0}
is exchangeable but not i.i.d., then {Xn : n ≥ 0} is not ergodic, and for every
measurable f : S → R such that E|f (X0)| <∞, one has a.s.

lim
n→∞

1

n

n−1∑

m=0

f (Xm) =
∫

S

f (x)μJ (dx). (4.12)

The following provides an alternative description of ergodicity in a weak sense
of “asymptotic independence” of events of the form [X ∈ A] and [T mX ∈ B].
Definition 4.6. A stationary process X = {X0, X1, . . . } with values in a measurable
space (S,S) is said to be weak mixing if for all A,B ∈ S⊗∞, one has

5 Bhattacharya and Waymire (2021), p. 162.
6 An extension of de Finetti’s theorem to exchangeable Markov processes was initiated in Diaconis
and Freedman (1980) that is worthy of mention here. Especially see James et al. (2008) for
inspiring connections to transient random walk.
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lim
n→∞

1

n

n−1∑

m=0

P([X ∈ A] ∩ [T mX ∈ B]) = P(X ∈ A)P (X ∈ B).

Proposition 4.5. A stationary process is ergodic if and only if it is weak mixing.

Proof. For sufficiency, suppose X = {X0, X1, . . . } is stationary and weak mixing.
Let [X ∈ A] ∈ I. Letting B = A, we get P(X ∈ A) = P(X ∈ A)P (X ∈ A) and,
therefore, P(X ∈ A) = 0 or 1. Thus X is ergodic. For the converse, suppose that X
is ergodic. Let A,B ∈ S⊗∞. Then a.s.

lim
n→∞ 1A(X)

1

n

n−1∑

m=0

1B(T mX) = 1A(X)P (X ∈ B). (4.13)

Taking expectations on both sides proves weak mixing. �
One needs stronger conditions than weak mixing to derive a central limit theorem

(CLT) for partial sums of a stationary process. We briefly mention one of these
strong mixing conditions here and state the corresponding CLT without proof. For a
comprehensive account of the vast literature on strong mixing conditions and CLTs
under them, we refer to Bradley (2003). Among other references, one may mention
Billingsley (1968, Theorem 21.1), Ibragimov and Linnik (1971), and Denker (1986).

Let (Ω,F , P ) be a probability space on which is defined a stationary process
{Xn : n = 0, 1, 2, . . . } with values in some measurable (state) space. Consider the
sigma-fields F tr = σ {Xn : r ≤ n ≤ t}, F∞

r = σ {Xn : n ≥ r}.
Definition 4.7. A stationary sequence {Xn} is said to be α-mixing, if

α(n) = sup{|P(A ∩ B)− P(A)P (B)| : A ∈ F t0, B ∈ F∞
t+n, t ≥ 0} → 0

as n→ ∞.

A CLT originally derived by Rosenblatt (1956), with an additional moment
condition that was relaxed by Cogburn (1960), can be stated as follows.

Proposition 4.6 (Rosenblatt–Cogburn CLT). Let {Xn : n = 0, 1, 2, . . . } be a real-
valued α-mixing stationary sequence such that EXn = 0, EX2

n < ∞. Denote Sn =
∑n
m=0Xm. If σ 2

n = ES2
n → ∞ as n → ∞, then Sn

σn
converges in distribution to the

standard normal distribution N(0, 1) as n→ ∞.

The technique for the proof involves breaking up the sum Sn into consecutive “large”
and “small” blocks, such that the large blocks are nearly independent of each other,
while the small blocks are negligible. The significance of the condition ES2

n → ∞
may be understood by considering the example in which Xn = Yn − Yn−1, where
{Yn} is an i.i.d. sequence.
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The main emphasis of the present book in the context of such asymptotic limit
theorems is on specific dependence structures such as martingales and Markov
processes, as detailed in Chapters 15, 16, and 19. The corresponding results
generally do not require stationarity in their formulation.

Exercises

1. Suppose that X1, X2, . . . is an i.i.d. sequence of random variables with
E|X1| < ∞. Let Sn = X1 + · · · + Xn, n ≥ 1. Use the ergodic maximal
inequality to prove the following for λ > 0:

(a) P(max1≤k≤n Skk ≥ λ) ≤ E|X1|
λ
, n ≥ 1..

(b) P(limn→∞ max1≤k≤n Skk ≥ λ) ≤ E|X1|
λ

.

2. Let X be a random variable on (Ω,F , P ). Define Xn = X, n = 0, 1, 2, . . . . i.
Show that {Xn} is a stationary process. ii. Show that {Xn} is ergodic if and only
if X is almost surely constant.

3. Suppose that Y = {Yn : n ≥ 1} and Z = {Zn : n ≥ 1} are two stationary
ergodic sequences of 0-1 valued random variables. Show that the distributions
of Y and Z are mutually singular if and only if P(Y1 = 1) �= P(Z1 = 1).
[Hint: Use the ergodic theorem to find a set C such that P(Y ∈ C) = 1 and
P(Z ∈ C) = 0.]

4. (Symmetric Difference) Let (Ω,F , P ) be a probability space.

(a) Show that P(AΔB) ≤ P(AΔC)+ P(CΔB) for any A,B,C ∈ F , where
AΔB = (A ∪ B)\(A ∩ B).

(b) Suppose that F = σ(C), where C is a π -system of subsets generating F .
Show that for any B ∈ F and ε > 0, there is a C ∈ C such that P(BΔC) <
ε. [Hint: Define C ⊂ L = {B ∈ F : for any ε > 0, there exists C ∈
C such that P(B ∩ C) < ε} ⊂ F and use Dynkin’s π − λ theorem.7]

5. Let X = {Xn : n ≥ 0} be a stationary process on a probability space (Ω,F , P )
with a measurable state space (S,S). Show that X is an ergodic process if and
only if it has the property that the only invariant functions (see Definition 4.3)
f (X) ∈ L2(Ω,F , P ) are almost surely constant functions.

6. (Shannon Entropy) Let S = {1, 2, . . . , k} be a finite set. Let π = (π1, . . . , πk)

be a probability mass function and p = ((pij ))i,j∈S a stochastic matrix, i.e.,∑
k∈S pik = 1, pij ≥ 0, for all i, j ∈ S. Assume

∑
i∈S πipij = πj ,∀ j ∈ S.

Apply the Kolmogorov extension theorem8 to construct a stochastic process
{Xn : n ≥ 0} on the product probability space (Ω = S∞,S⊗∞, Pπ ) such that

7 See BCPT p.4.
8 See BCPT p.168.
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Pπ(X0 = i0, X1 = i1, . . . , Xn = in) = πi0pi0,i1 · · ·pin−1,in , i0, i1, . . . , in ∈
S, n ≥ 0.

(a) Show that X = {Xn} is a stationary process.

(b) Show that the entropy, defined byH(X) = − limn→∞
log(πX0

∏n−1
m=0 pXm,Xm+1 )

n
,

exists Pπ -a.s. [Hint: View pX0,X1 as a function of X. Then, pXm,Xm+1 is the
said function of T mX, where T is the shift transformation.

(c) Show that if X can be proven to be ergodic, then H(X) = −∑
i,j∈S πipij

logpij . [Ergodicity will indeed be proven in Chapter 16 in more generality.]

7. Compute limn→∞ Xn
n

for the non-ergodic stationary process defined in Exam-
ple 2.

8. (Range of Random Walk)9 Let {Xn : n ≥ 1} be i.i.d. R
k-valued random

variables and Sn = X1 + · · · + Xn, n ≥ 1, S0 = 0, and consider the
number Rn = |{S0, S1, . . . , Sn}| of distinct sites visited by time n, i.e.,
the range of the random walk in time n. Use Birkhoff’s ergodic theorem
to show Rn/n → P(Sj �= 0, j = 1, 2, . . . ) a.s. as n → ∞. [Hint:
Write Sn(ω) = ∑n

m=1X1(T
mω), n ≥ 1, ω = (ω1, ω2, . . . ) ∈ (Rk)∞ for

X1(ω) = ω1 and the shift map T . Check that for arbitrary k ≥ 1, Rn(ω) ≤
k + ∑n−k

j=1 1[Sj �=0,j=1,...,k](T jω), n > k. In particular, lim supn
Rn
n

≤ P(Sj �=
0,∀j ≥ 1|J ). Similarly, find a (simpler) lower bound for each n to show
lim infn

Rn
n

≥ P(Sj �= 0, j = 1, 2, . . . |J ). The result follows by calculating
the indicated conditional probability.]

9. (Doubly Stochastic Poisson Process/Cox Process) Suppose that Λ is a positive
non-degenerate random variable and, conditionally given Λ = λ, T1, T2, . . . is
an i.i.d. sequence of exponentially distributed random variables with parameter
λ > 0. Show that limn→∞ Sn

n
= Λ with probability one, where Sn = T1 +· · ·+

Tn.
10. Prove deFinnetti’s representation of exchangable 0-1 valued stochastic pro-

cesses {Xn : n ≥ 1} by using the Riesz representation theorem10 by completing
the following steps:

(a) Let λh,k = P(X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xh = 0), 1 ≤ k <

h, h ≥ 2, with λ0,0 = 1, λ0,k = P(X1 = 1, . . . , Xk = 1), λ1,0 = P(X1 =
0), and check that λh,k = λh+1,k + λh+1,k+1.

(b) Define a linear functional � on the dense subspace of polynomials inC[0, 1]
by linearity and �(xk) = λ0,k, k ≥ 0. Show that � has a continuous
extension to a bounded linear functional on C[0, 1].

(c) Let μ denote the probability measure in the Riesz representation of �, i.e.,
�(f ) = ∫ 1

0 f (x)μ(dx), f ∈ C[0, 1]. Show that P(X1 = 1, . . . , Xk =

9 See Spitzer (1964), p. 38., where the result is attributed to Kesten, H., F. Spitzer, and W. Whitman.
This result had been obtained for the k-dimensional simple symmetric random walk in an earlier
paper by Dvoretzky and Erdos (1951).
10 See BCPT, p.237.
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1, Xk+1 = 0) = ∫ 1
0 x

k(1−x)μ(dx). [Hint: [X1 = 1, . . . , Xk = 1, Xk+1 =
0] = X1 = 1, . . . , Xk = 1]\[X1 = 1, . . . , Xk = 1, Xk+1 = 1].]

(d) Extend (c) by inclusion–exclusion to show P(X1 = ε1, . . . , Xkεk) =
∫ 1

0 x
∑k
j=1 εj (1 − x)k−

∑k
j=1 εj dx for any ε1, . . . , εk ∈ {0, 1}k .

(e) Consider an i.i.d. sequence {Yn : −∞ < n < ∞}, EYn = 0, EY 2
n = 1. Let

Xn = Yn − Yn−m (n = 0, 1, . . . ) for some fixed m ≥ 1.

(i) Prove that {Xn} is m-dependent, i.e., Fkj = σ {Xn : j ≤ n < k} is
independent, of F∞

k+m for every j < k <∞.

(ii) Given any sequence of constants βn → ∞, show that Sn
βn

→ 0 in
probability as n→ ∞.

(f) Consider an i.i.d. sequence {Yn} as in Exercise 10, and let Xn = Yn +
Yn+m(n = 0, 1, 2, . . . ) for some fixed m ≥ 1. Prove that the m-dependent
sequence {Xn} satisfies the hypothesis of Proposition 4.6.



Chapter 5
Subadditive Ergodic Theory

Subadditivity of a sequence of positive real numbers x1, . . . refers to the
property xm+n ≤ xm + xn, n ≥ 1. For such sequences, it is a calculus
exercise to verify that limn→∞ xn

n
= infm≥1

xm
m

. The extension of this notion
to almost sure convergence of a corresponding class of stochastic processes is
the objective of this chapter.

Subadditivity of sequences of non-negative numbers is easily seen to result in
asymptotic stability. Specifically, one has the following solution1 to the calculus
problem raised in the abstract.

Proposition 5.1 (Fekete). Suppose that {an}∞n=1 is a sequence of numbers with the
subadditivity property:

am+n ≤ am + an, n,m ≥ 1.

Then

lim
n→∞

an

n
= inf
m≥1

am

m
.

Proof. One has

an

n
≤ m

n

am

m
+ n−m

n

an−m
n−m.

1 Fekete (1923).
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Thus, limn
an
n

∈ [infm≥1
am
m
, supm≥1

an
n

] if the limit exists. In particular,

lim inf
n

an

n
≥ inf
m≥1

am

m
.

Conversely, write n = km+ � for any m, 0 ≤ � < m. Then an ≤ kam + a�, so that

an

n
≤ km

km+ �
am

m
+ a�

n
.

Thus, for m = 1, 2, . . . ,

lim sup
n

an

n
≤ am

m
,

and hence

lim sup
n

an

n
≤ inf
m≥1

am

m
.

�
An important stochastic version2 can be stated as follows.3 To distinguish the

subadditivity property am+n ≤ am + an, we will henceforth refer to the condition
(a) below as array subadditivity.

Theorem 5.2 (Kingman–Liggett Subadditivity Theorem). Let {Zm,n : 0 ≤ m <

n, n = 1, 2, . . . } be a collection of random variables such that

a (Array Subadditivity): Z0,n ≤ Z0,m + Zm,n, 0 < m < n, n = 1, 2, . . .
b For each m ≥ 0, {Zm,m+k : k ≥ 1} has the same distribution as {Z0,1, Z0,2, . . . }.
c For each k ≥ 1,{Zk,2k, Z2k,3k, . . . } is a stationary process.

d EZ+
0,1 <∞, and infn E

Z0,n
n

∈ [−∞,∞).
Then, letting γ = infn 1

n
EZ0,n, one has

i limn→∞ 1
n
EZ0,n = γ

ii limn 1
n
Z0,n = Z

exists a.s. for some random variable Z and, if γ > −∞, then it exists in L1 with
EZ = γ as well. If the stationary process {Zk,2k, Z2k,3k, . . . } is ergodic, thenZ = γ
a.s.

2 Kingman (1976) provided the initial breakthrough in exploiting subadditivity for an ergodic
theory of stationary processes. Liggett (1985) provided the strengthening given here and finds
applications for which the hypothesis of Kingman is too strong. The original version of Kingman
contains assumption (d), but he required the conditions thatZm,k+Zk,n ≥ Zm,n,m = 2, . . . , n−1,
and that the distribution of {Zm+k,n+k : m = 0, 1, . . . , n− 1} be independent of k. These prove to
be too strong for some applications.
3 The proof here follows Kallenberg (2002) and Durrett (1991).
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Proof. First, (a) implies Z+
0,n ≤ Z+

0,m + Z+
m,n. Also, EZ+

m,n = EZ+
0,n−m by (b).

Hence EZ+
0,n ≤ EZ+

0,1 + EZ+
1,n = EZ+

0,1 + EZ+
0,n−1 ≤ · · · ≤ nEZ+

0,1. Thus EZm,n
exists and is finite, and {EZ0,n : n ≥ 1} and {EZ+

0,n : n ≥ 1} are subadditive

(Exercise 5). In particular, by Proposition 5.1, limn→∞ 1
n
EZ0,n = γ < ∞. This

proves (i), with γ ∈ [−∞,∞). For (ii), assume γ ∈ (−∞,∞) first. The array
subadditivity property implies that, for each k ≥ 1, Z0,n ≤ Z0,mk + Zmk,n ≤
Z0,(m−1)k + Z(m−1)k,mk + Zmk,n. Iterating repeatedly, with m = [n

k
], the integer

part of n
k

, one arrives at

Z0,n

n
≤ 1

n

[ n
k
]∑

j=1

Z(j−1)k,jk + 1

n

n∑

j=[ n
k
]k+1

Zj−1,j , k, n = 1, 2, . . . (5.1)

By Birkhoff’s ergodic theorem applied to the stationary process Z(j−1)k,jk, j =
1, 2 . . . , one has 1

n

∑[ n
k
]

j=1 Z(j−1)k,jk → Z0,k
k

a.s. and in L1, where Z0,k is the

conditional expectation given the shift-invariant σ -field Tk . In particular, EZ0,k =
EZ0,k . Also, the second term is o(1) a.s. and in L1 since, by the ergodic theorem,
1
n

∑n
j=1 Zj−1,j converges to Z0,1 accordingly. Now, since the bound (5.1) con-

verges to Z0,k
k

for each k = 1, 2, . . . , letting n → ∞ in (5.1), one obtains a.s.
and in L1

lim sup
n→∞

Z0,n

n
≤ inf

k

Z0,k

k
= Z <∞. (5.2)

Since convergence in L1 implies4 uniform integrability, it follows that

E lim sup
n→∞

Z0,n

n
≤ E inf

n

Z0,n

n
≤ inf

n
E
Z0,n

n
= inf

n
E
Z0,n

n
= γ <∞. (5.3)

For the reverse inequality, first note that by subadditivity of the numerical sequence
EZ0,j , j = 1, 2, . . . , one has

lim
n→∞

1

n
{EZ0,n+k − EZ0,k} = inf

n

1

n
EZ0,n = γ, k = 1, 2, . . . (5.4)

Noting that 1
n

∑n
m=1 EZm,m+k = EZUn,Un+k , where Un is uniformly distributed on

{1, 2, . . . n} and independent of Zj,k’s, it is convenient to define

Xk,n = ZUn,Un+k, Yk,n = Z0,Un+k − Z0,Un+k−1. (5.5)

4 BCPT, p.17.
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Then hypothesis (b) implies that for each n, {X1,n, X2,n, . . . } and {Z0,1, Z0,2, . . . }
have the same distribution. Moreover, Yk,n, n ≥ 1, is also uniformly integrable since
Yk,n is distributed as Z0,k+1 − Z0,k for all n ≥ 1. It follows from (5.4) that a.s. as
n→ ∞, one has

EYk,n = 1

n

n∑

m=1

[EZ0,m+k − EZ0,m+k−1] = 1

n
[EZ0,n+k − EZ0,k] → γ

(see Exercise 2(d)). In particular, therefore, supn E|Yk,n| < ∞, so that the
sequence Yk,n, n = 1, 2, . . . , is tight for each k. Extracting a weakly convergent
subsequence,5 one has as n→ ∞,

({Xk,n}∞k=1, {Yk,n}∞k=1)⇒ ({Xk}∞k=1, {Yk}∞k=1),

for some random variables Xk, Yk, k ≥ 1, with {Xk}∞k=1 distributed as {Z0,k}∞k=1.
By array subadditivity, one has

Y1,n + · · · + Yk,n = Z0,Un+k − Z0,Un ≤ ZUn,Un+k = Xk,n.

Thus, letting n→ ∞, one has a.s. that Y1 +· · · Yk ≤s Xk for each k, and, therefore,
{Yk : k ≥ 1} is a stationary integrable sequence. Here V ≤s W denotes that V is
stochastically smaller thanW , i.e., P(W > t) ≥ P(V > t) for all t ∈ R. Also note
that the distribution of (Y1,n, . . . , Yk,n) is the same as that of (Yj+1,n, . . . , Yj+k,n)
for all j ≥ 1, k ≥ 1 (and n ≥ 1). Thus, again using the ergodic theorem, one has
a.s. and in L1, as n→ ∞,

1

n
Z0,n ≥s 1

n

n∑

k=1

Yk → Ỹ , (5.6)

for some integrable random variable Ỹ . It follows that the negative parts 1
n
Z−

0,n, n ≥
1, and hence 1

n
Z0,n, n ≥ 1, are uniformly integrable sequences (Exercise 2). With

this and uniform integrability of Y+
k,n, one has

γ = lim
n→∞EY1,n = EY1 = EỸ

≤ E lim inf
n

1

n
Z0,n (by (5.6))

≤ E lim sup
n

1

n
Z0,n

≤ EZ ≤ γ (by (5.3)). (5.7)

5 BCPT, pp. 142–145.
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In particular, therefore, EZ = γ . Moreover, it now follows that 0 ≤
E[lim supn

1
n
Z0,n− lim infn 1

n
Z0,n] = 0, so limn

Z0,n
n

exists a.s. and, noting uniform
integrability (recall γ is assumed finite), also in L1 (see Exercise 2). Combining this
with 0 ≤ E[Z− lim supn

1
n
Z0,n] = 0, one gets Z0,n

n
→ Z a.s. and in L1 as n→ ∞.

In the case γ = −∞, a truncation argument outlined in Exercise 7 shows that
a.s. convergence in the previous theorem is still valid, but the uniform integrability
arguments for L1 convergence are not applicable.

Finally, if {Zk,2k, Z2k,3k, . . . } is ergodic, then Z0,n = EZ0,n a.s. for each n and,
therefore, Z = γ almost surely. �
Example 1. For a very special case, consider an i.i.d. sequence X1, X2, . . . with
finite first moment. Define Z0,0 = 0 and Zm,n = Xm+1 + · · · + Xn, 0 ≤ m < n.
Then one has the additivity property

Z0,n = Z0,m + Zm,n.

Almost sure convergence follows directly from the strong law of large numbers,
i.e., ergodic theorem in the i.i.d. case, and the other conditions provide uniform
integrability for convergence in L1. In this sense, one may view the theorems of
Kingman and Liggett as extensions of Birchoff’s ergodic theorem to subadditive
arrays.

Example 2 (Range of Random Walk). For a more substantive illustration, let {Sn =∑n
j=1 : n = 1, 2, . . . } denote a random walk on Z

k starting at S0 = 0, and consider
the number of lattice sites visited in steps j = m+ 1, . . . , n as defined by

Zm,n = |{Sj : m ≤ j ≤ n}|.

Then one has the subadditivity property

Z0,n ≤ Z0,m + Zm,n.

It follows from the subadditive ergodic theorem that limn→∞
|{Sj :0<j≤n}|

n
exists,

where | · | denotes the cardinality of the enclosed set. To identify the limit, observe
that Sk contributes a new point to the range if and only if Sk /∈ {0, S1, . . . , Sk−1}.
By the time-reversal symmetries of lattice random walk sums, one has

1

n
E

n∑

k=1

1[Sk /∈ {0, S1, . . . , Sk−1}] = 1

n

n∑

k=1

P(Sk − Sj �= 0 for all j ≤ k − 1)

= 1

n

n∑

k=1

P

⎛

⎝
k∑

i=j+1

Xi �= 0 for all j ≤ k − 1

⎞

⎠
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= 1

n

n∑

k=1

P

⎛

⎝
j∑

i=1

Xi �= 0 for all j ≤ k
⎞

⎠

→ P(Sj �= 0 for all j).

Example 3 (Branching Random Walk). A binary branching random walk is a
family of random variables Xv indexed by v ∈ ∪∞

n=0{1, 2}n, such that for each
v ∈ {1, 2}∞, X∅, Xv|0, Xv|1, . . . , is a random walk on R starting at Xv|0 = 0,
say, where v|0 = ∅, v|j = (v0, v1, . . . , vj ), j ≥ 1. The distribution of X∅ =
0, Xv|0, Xv|1, . . . , does not depend on the path defined by v ∈ {1, 2}∞. Assume
further that ψ(t) := Ee−tXv|1 < ∞ for some t > 0. Let us observe here that a.s.
and L1-existence of the limit defining the speed is also assured by subadditivity. Let
Z0,n = inf|v|=n Xv denote the left-most position of a walker in the nth generation
of a binary branching random walk. Consider the minimum displacement over the
first k generations, and start there to compute the minimum displacement for that
subtree over the next n − k generations. The minimum over n generations may not
involve the minimum over the first k generations. So, although the shortest path in
n + k generations need not overlap the shortest paths in the first n and second k
generations, one clearly has

Z0,n+k ≤ Z0,n + Zk,n,
where Zk,n is independent of Z0,n−k and identically distributed. It follows from the
subadditive ergodic theorem6 that the speed of the left-most particle

lim
n→∞

Z0,n

n
≡ lim
n→∞ inf|v|=n

EXv|n
n

= γ

exists a.s. and in L1.

Remark 5.1. The speed of an extremal particle in a branching random walk is
calculated in Bhattacharya and Waymire (2021), Chapter 21, under the assumption
that the limit exists. The result obtained is

γ = − inf
t

ψ(t)

t
, (5.8)

where ψ(t) = ln(2Ee−tX1) (assumed to be finite for some t > 0). It is interesting to
consider this formula in the context of some of the large deviation rates in the i.i.d.
case in Chapter 21. In view of the one-sided nature of the deviation rates, for the
left-most particle, it is most reasonable to consider the deviation rate of −X, where
X is a generic displacement random variable. That is, let

6 From the perspective of subadditivity, this example illustrates the need for the generalization
provided by Liggett (1985,b).
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I (a) = sup
h

{
ah− lnEe−hX

}
. (5.9)

Then an alternative formula to (5.8) may be expressed in terms of the large deviation
rate of −X via (Exercise 13)

γ = − inf{a : I (a) > ln 2}. (5.10)

Interesting phenomena involving the speed of extremal particles also naturally arise
in the case that branching random walks are replaced by branching Markov chains.7

Example 4 (Products of Random Matrices). The following theorem8 is an often
cited application9 of subadditive ergodic theory.

Theorem 5.3 (Furstenberg–Kesten). Suppose that An = ((A
(n)
ij )), n = 1, 2, . . . , is

an i.i.d. sequence of k × k matrices with positive entries. Assume E| lnA(n)ij | < ∞
for all i, j . Then limn→∞ 1

n
ln(A(1) · · ·A(n))ij exists a.s. and in L1. Moreover the

limit does not depend on i, j .

Proof. Denote the negative logarithm of the element of the first row and column of
the matrix product

∏n
r=m+1A

(r)

Zm,n = − ln((A(m+1) · · ·A(n))11), 0 ≤ m < n.

By hypothesis, E|Z0,1| <∞. Moreover,

(A(1) · · ·A(n))11 =
∑

1≤jn−1,...,j1≤k
A
(1)
1j1

· · ·A(n)jn−11 ≤ kn−1
n∏

r=1

max
i,j
A
(r)
ij .

Thus,

Z0,n − (n− 1) ln k ≤
n∑

r=1

max
i,j

lnA(r)ij ≤
n∑

r=1

∑

i,j

| lnA(r)ij |.

In particular,

1

n
EZ0,n ≤ ln k +

∑

i,j

E| lnA(1)ij | <∞.

7 See Dascaliuc et al. (2022a) for related calculations.
8 Furstenberg and Kesten (1960).
9 This purely mathematical result has important consequences in physics where it is used to
quantify important notions of disorder and localization. Comtet et al. (2013) provide a readable
review from this perspective.
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Since Zm,n is subadditive and satisfies the stationarity requirements for the subad-
ditive ergodic theorem, it follows that there is an invariant random variable Z such
that 1

n
Z0,n → Z a.s. and in L1 as n → ∞. In view of the i.i.d. assumptions,

Z = γ is an almost sure constant. Next consider 1
n

ln((A(2) · · ·A(n+1))ij ) for
arbitrary 1 ≤ i, j ≤ k. One has

A
(2)
i1 (A

(3) · · ·A(n))11A
(n+1)
1j ≤ (A(2) · · ·A(n+1))ij ≤ (A(1)1i A

(n+2)
j1 )−1(A(1) · · ·A(n+2))11.

By the strong law of large numbers, it follows that 1
n

lnA(n)ij → 0 a.s. and in L1 as
n→ ∞. Therefore

ln((A(3) · · ·A(n))11)+ o(n) ≤ ln((A(2) · · ·A(n+1))ij ) ≤ ln((A(1) · · ·A(n+2))11)+ o(n). (5.11)

Thus, one obtains a.s. and in L1 that

lim
n→∞

1

n
ln(A(2) · · ·A(n+1))ij = γ. (5.12)

�
Additional illustrative examples are given in the exercises.

Exercises

1. Suppose that the sequence {an : n ≥ 1} is superadditive, i.e., am+n ≥ am + an,
m, n = 1, 2, . . . . Show that limn→∞ an

n
= supn≥1

an
n

.
2. (a) Show that the array subadditivity property of {Zm,n} implies that of {Z+

m,n}.
(b) Prove that, under the hypothesis of Theorem 5.2, {EZ+

0,n} and {EZ0,n} are
subadditive sequences (allowing the latter to assume the value −∞).

(c) Assuming γ to be finite, show that EZ0,n is finite for all n ≥ 1, that
EZ0,n ≤ nEZ0,1, and that the same holds for {Z+

0,n.
(d) Assuming γ finite, prove that {Yk,n : n ≥ 1} is uniformly integrable, for

each k. [Hint: Yk,n has the same distribution as Z0,k+1 −Z0,k , whatever be
n.]

3. Prove that, in the case γ is finite, the sequence {Zmk,n}, with m = [ k
n
],

is uniformly integrable and Zmk,n
n

goes to zero a.s. and in L1 as n → ∞.
[Hint: Zmk,n = Zmk,mk+r for some r = 1, . . . , k − 1, or Zmk,n = 0 if
n = mk, or if r = 0, in which case take Zmk,mk = 0]. Now Zmk,mk+r has
the same distribution as Z0,r (although r may depend on m). Hence |Zmk,n|
is stochastically smaller than

∑k−1
r=1 |Z0,r |, proving uniform integrability. Also,

for any given ε > 0,
∑
m≥1 P(|Zmk,n| > nε) ≤ ∑

m≥1 P(|Z0,j | > mkε) ≤
∑k−1
j=1 E

|Z0,j |
kε

<∞.
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4. Assume the hypothesis of Theorem 5.2, together with finiteness of γ :=
limn→∞ E

Z0,n
n

.

(a) Prove that Z+
0,n/n, n ≥ 1, is uniformly integrable. [Hint: Use the analogue

of (5.1) for {Z+
mk,n/n} and use the analog of Exercise 3 for this sequence.]

(b) Using (5.6), prove that the sequence Z−
0,n/n, n ≥ 1, is uniformly integrable

and goes to zero, a.s. and in L1. Use (a) to prove that {Z0,n/n} is uniformly
integrable and goes to zero, a.s. and in L1. [Hint: Z−

0,n/n is stochastically
smaller than the middle term in (5.6), which converges to integrable Y− a.s.
and in L1.]

5. Prove subadditivity of {EZ0,n : n ≥ 1}, {EZ+
0,n : n ≥ 1} in part (a) of the proof

of Theorem 5.2.
6. (Gelfand Formula) Suppose that T : V → V is a nontrivial bounded

linear operator on a normed vector space V, || · ||. Define ||T ||op =
sup||x||=1 ||T x||. Show that ρ(T ) = limn→∞ ||T n||

1
n
op exists and is given

by infn≥1 ||T n||
1
n
op. [Hint: Noting that if S and T are bounded linear operators,

then ||ST ||op = sup||x||=1 ||S( T x||T x|| )|| · ||T x|| ≤ ||S||op · ||T ||op, and check
that n→ ln ||T n||op, n ≥ 1, is subadditive.]

7. Show that a.s. convergence continues to hold in the subadditive ergodic theorem
in the case that γ = −∞ by verifying the following steps. First define
truncations for integer m ∈ Z

W
(m)
k,n = Zk,n ∨m(n− k), k = 0, 1, . . . , n− 1

and γ (m) = infn 1
n
E(Z0,n ∨mn) ≥ m.

(a) Verify that 1
n
(Z0,n ∨ mn) = ( 1

n
Z0,n) ∨ m → W(m) a.s. for some random

variable W(m). [Hint: Check that the conditions for the subadditivity
theorem hold with γ replaced by γ (m).]

(b) Show that EW(m) = γ (m).
(c) Show that 1

n
Z0,n → infmW(m) = W , say.

(d) Show that EW ≤ infm γ (m) = γ = −∞.

8. (Self-avoiding lattice path counts) A connected polygonal directed nearest
neighbor path γ in the two-dimensional integer lattice is said to be self-avoiding
if γ (s) �= γ (t) for s �= t . Let κn denote the number of such paths with n

steps and distinct up to translation. The limit μ = limn→∞ κ
1
n
n defines the

connectivity constant.

(a) Show that μ exists. [Hint: Consider subadditivity of ln κn.
(b) Show that 2 < μ < 3. [Hint: Argue that 4(2n − 1) ≤ κn ≤ 4 · 3n−1.]

9. (The Furstenberg–Kesten theorem)
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(a) Show that the Furstenberg–Kesten theorem remains valid for any stationary
sequence of k × k random matrices with almost surely positive elements
subject to the moment assumptions E| lnA(n)ij | < ∞ for all i, j , but with a
possibly random limit.

(b) Define Zm,n = log ||A(m) · · ·A(n)||op, where || · ||op is a matrix operator
norm, i.e., ||A||op = sup||x||=1 ||Ax|| for a given norm || · || on R

k . Show
that the subadditive ergodic theorem applies to Zm,n as well.

10. (First Passage Percolation)10 Consider the k-dimensional (k ≥ 2) integer lattice
Z
k to be a graph whose vertices are the lattice points and (undirected) edges
e = e(x, y) are assigned to adjacent vertices x, y, |x − y| = 1. A fluid is
injected at a vertex x and requires time Te to traverse the edge between x and
an adjacent vertex y. Assume that the respective times are i.i.d. with finite first
moment. Let π(m, n) denote a possible nearest neighbor path from vertex me
to vertex ne, e = (1, 0, . . . , 0), and consider the shortest time

Zm,n = min
π(m,n)

∑

e∈π(m,n)
Te,

for fluid to travel along this path. Show that (a) limn→∞ Z0,n
n

exists a.s., and (b)
the limit is a.s. constant.

11. The overall rate at which the dynamics separate infinitesimally close initial
points is often measured by the maximal Lyapunov exponent11 of a continuous
transformation T : S → S, defined on a metric space (S, ρ), by the expression
λ = limn→∞ 1

n
lim supρ(x,y)→0 ln ρ(T

nx,T ny)
ρ(x,y)

. Show that the limit defining λ

exists and is given by λ = infn 1
n

lim supρ(x,y)→0
ln ρ(T nx,T ny)

ρ(x,y)
. [Hint: Check

the subadditivity of the sequence an = 1
n

lim supρ(x,y)→0 ln ρ(T
nx,T ny)
ρ(x,y)

.]
12. Compute the speed of the left-most particle in the branching random walk with

displacements.

(a) X is normal with mean μ and variance σ 2.
(b) X = 1 almost surely.

13. Give a proof of the equivalence of (5.8) and (5.10). [Hint: Use the respec-
tive meanings of the greatest lower bound and least upper bound to show
(5.8)≤(5.10) and (5.8)≥(5.10). For the latter inequality, add ε > 0 to (5.8).]

14. Compute the maximal Lyapunov exponent for (a) irrational rotations x → (x+
α)mod(1) and (b) the doubling map x → 2x(1). [Hint: ρ(x, y) = |x − y| ∧
(1 − |x − y|).]

10 Hammersley and Welsh, (1965). Also see Auffinger et al. (2017) .
11 See Key (1987) and the references therein for examples and illustrative applications of the
maximal Lyapunov exponent.



Chapter 6
An Introduction to Dynamical Systems

Ergodic theory was originally developed to study the long time behavior of
dynamical systems, especially arising in statistical mechanics. Our aim in
this chapter is to analyze some basic features of dynamical systems, such as
attractive and repelling periodic orbits, bifurcations, and chaotic phenomena,
via some important families of one-dimensional maps. The logistic, or
quadratic, family provides an important example.

We first turn briefly to an alternative view of stationary processes as deterministic
dynamical systems in a state of equilibrium. Much of the focus of the chapter is,
however, on a dynamical system as a law of evolution of a process in time and on
the nature of this evolution.

Definition 6.1. A dynamical system is a triple (T ,Ω,F) consisting of a measurable
map T : Ω → Ω on the measurable state space (Ω,F). If μ is a probability
measure on (Ω,F) such that μ ◦ T −1(B) ≡ μ(T −1(B)) = μ(B), for all B ∈ F ,
then T is said to be measure-preserving. A set G ∈ F is said to be invariant if
μ(GΔT −1G) = 0. The class I of invariant sets is said to be trivial if μ(G) ∈ {0, 1}
for all G ∈ I, and, in such a case, the map T and measure μ are said to be ergodic.

One may note that the collection I of invariant sets is always a σ -field. In the
language of this definition, Birkhoff’s ergodic theorem may be recast as follows.

Theorem 6.1 (Birkhoff’s Ergodic Theorem). Let T be a measure-preserving map
on (Ω,F , μ). Then, for every f ∈ L1(Ω,F , μ),

© Springer Nature Switzerland AG 2022
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lim
n→∞

1

n

n−1∑

m=0

f (T mω) = g(ω) μ− a.s., and L1, (6.1)

where g : Ω → R has the invariance property g = g ◦ T μ−a.s. If in addition T is
ergodic, then g is the constant

∫
Ω
f dμ.

The dynamical systems version and stationary process version are equivalent in
the following senses. Assuming the dynamical systems version Theorem 6.1, one
may take (Ω,F , μ) to be a canonical model of a stationary process {Xn : n ≥ 0}
with state space (S,S), i.e., Ω = S∞,F = S⊗∞, and μ a probability on
(S∞,S⊗∞) such that the shift map T ω := (ω1, ω2, . . . ), ω = (ω0, ω1, ω2, . . . ) ∈
Ω = S∞ is measure-preserving, and Xn(ω) = ωn, n ≥ 0. Then the canonical
version of Theorem 4.1 becomes a special case of Theorem 6.1, and a non-canonical
version follows immediately since its assertion depends only on the distribution
of X.

Conversely, given a measure-preserving transformation T on (Ω,F , μ), define
the stationary process Xn(ω) := T nω(n ≥ 1),X0(ω) = T 0(ω) := ω, for ω ∈ Ω .
Let P = μ ◦ X−1 be the probability induced by μ under the map X : Ω → Ω∞,
where X(ω) := (X0(ω),X1(ω), . . . ), ω ∈ Ω . Then (i) {Xn : n ≥ 0} is a stationary
sequence, i.e., the shift map T̃ ω := (ω1, ω2, . . . ), ω = (ω0, ω1, . . . ) ∈ Ω∞, is
measure-preserving for (Ω∞,F⊗∞, P ), (ii) G ≡ σ(X) = σ(X0) ≡ F , since
ω = X0(ω) determines X(ω) = (X0(ω),X1(ω), . . . ) = (ω, T ω, T 2ω, . . . ), and
(iii) the invariant σ -field I of the dynamical system equals the invariant σ -field,
say Ĩ, of the stationary process {Xn : n ≥ 0}. Hence Theorem 6.1 follows from
Theorem 4.1. Thus the two versions of Birkhoff’s ergodic theorem are equivalent.
In particular, the previous representation theory developed for stationary processes
is also available for the analysis of certain classes of dynamical systems.

Example 1 (Rotation Maps). LetΩ = [0, 1) and F its Borel σ -field. Fix c ∈ [0, 1)
and define T x = x + c mod1, x ∈ Ω . Then T preserves the Lebesgue measure μ
on Ω . One may also think of Ω as parameterizing the unit circle S1 in the complex
plane by S1 := {e2πix : x ∈ [0, 1)}. This gives T a geometric interpretation of
rotation U of the circle in the counterclockwise direction by an angle 2πc, i.e.,
U(e2πix) = e2πi(x+c) = e2πice2πix, and μ induces the normalized arc length
measure ν, say, on the circle S1.

Case i: (Rational Rotations). Assume that c is a rational number. First consider
c = 1/q, where q ≥ 2 is a positive integer. In this case, T is not ergodic since the
set Ar := ∪qj=1[ j−1

q
,
j−1
q

+ r
q
), 0 < r < 1, is invariant, but μ(Ar) = r . Note that

on the circle S1, the set Ar represents the union of q cyclically placed arcs each
of length r/q(< 1/q), and the rotation map moves one arc on to the next. Next
consider c = p/q, 1 < p < q, with p, q relatively prime, positive integers. This
time the first interval is moved by T onto the p-th interval, the second onto the
p+ 1−th, . . . , the j−th interval onto the p+ j modq-th interval, 1 ≤ j ≤ q. Note
that {p + jmod(q) : j = 1, 2, . . . q} = {1, 2, . . . , q}. To see that T is not ergodic
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in this case, simply note that every x has a periodic orbit {x + (j − 1)p
q
mod(1) :

j = 1, 2, . . . , q} of period q. That is to say, q is the smallest positive integer such
that T qx = x, and each x has the periodic orbit {x, T x, T 2x, . . . , T q−1x}. It is now
easily checked that for every real-valued function g on Ω,

lim
n→∞

1

n

n−1∑

m=0

g(T mx) = 1

q

q−1∑

j=0

g

(

x + jp

q

)

, x ∈ Ω. (6.2)

Case ii: (Irrational Rotations). Let 0 < c < 1 be an irrational number. We will
see in this case that T is ergodic. For this, let A be an invariant set. Then, 1A(x) =
1A(x+ c) μ−a.s. Expand each of these in a Fourier series in L2([0, 1), μ); μ being
Lebesgue measure.

1A(x) =
∑

n∈Z
ane

2πinx, 1A(x + c) =
∑

n∈Z
ane

2πince2πinx, (6.3)

where an := ∫
[0,1) 1A(x)e−2πinxdx (n ∈ Z = {0,±1,±2, . . . }). In view of the

invariance of A, one has an = ane
2πinc for every n ∈ Z. Since c is irrational,

e2πinc �= 1 unless n = 0. Thus an = 0, for all n �= 0, and hence 1A(x) = a0 =
μ(A) a.s., i.e., μ(A) = 0 or 1. This proves T is ergodic. By the ergodic theorem,
one therefore has for every f ∈ L1([0, 1), μ) and irrational 0 < c < 1,

lim
n→∞

1

n

n−1∑

m=0

g(T mx) = lim
n→∞

1

n

n−1∑

m=0

g(x+mc) =
∫

[0,1)
g(y)dy μ−a.s. (6.4)

In the following we will often write f instead of T and f (n) instead of T n, for the
nth iterate of f , f (2) = f ◦ f, f (3) = f ◦ f ◦ f, . . . . This is especially convenient
when Ω is an interval or a rectangle S. We first consider the class of contracting
dynamical systems. Such systems, even under this apparently stringent hypothesis,
are among the most widely applicable.

Theorem 6.2.

(a). (Contraction Mapping Theorem). If (S, ρ) is a compact metric space and T is
a strict contraction, i.e., ρ(T x, T y) < ρ(x, y), x, y ∈ S, x �= y, then there is a
unique fixed point x∗ of T .

(b). (Banach Fixed Point Theorem). Let (S, ρ) be a complete metric space and T
a uniformly strict contraction, i.e., ρ(T x, T y) < cρ(x, y)x, y ∈ S, x �= y,

where c ∈ [0, 1). Then T has a unique fixed point x∗, say, and T nx → x∗ as
n→ ∞ for every x ∈ S.

Proof. (a) Let x∗ be a minimizer of the function x → ρ(x, T x). Note that T is
continuous, and a real-valued continuous function on a compact metric space attains
its infimum. Then T x∗ = x∗; otherwise, ρ(T x∗, T 2x∗) < ρ(x∗, T x∗), which
contradicts the fact that x∗ is a minimizer of ρ(x, T x). (b) Choose x ∈ S arbitrarily.
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Then ρ(T nx, T n+1x) < cρ(T n−1x, T nx) < · · · < cnρ(x, T x) → 0 as n → ∞.
Thus {T nx}n≥0 is a Cauchy sequence (Exercise) and, by the completeness of S, the
sequence converges to a limit x∗, say. Clearly, T x∗ = x∗; for T n+1x = T T nx →
T x∗, but T n+1x → x∗ as well. Next, let y �= x. Then y∗ ≡ limn→∞ T ny is a fixed
point of T . However, ρ(y∗, x∗) = ρ(T y∗, T x∗) < cρ(y∗, x∗), which is impossible
if y∗ �= x∗. �

The following result is simply a rewriting of Theorem 6.2(b), T = f , T n = f (n),
the n-th iterate of f .

Corollary 6.1. Let (S, ρ) be a complete metric space and f a continuous function
on S such that T k = f (k) is a uniformly strict contraction for some k ≥ 1. Then the
conclusion of Theorem 6.2(b) holds.

Example 2 (Contracting Quadratic Map). Let S = [0, 1], f (x : θ) = θx(1 − x),
0 ≤ θ < 1. Then f is a uniformly strict contraction, since |f ′(x)| = θ |1 − 2x| < 1
on [0, 1] and Theorem 6.2(b) applies: f (n)(x) converges to the unique fixed point
x∗ = 0 as n→ ∞, uniformly on [0, 1].
Remark 6.1. Although the hypotheses of Theorem 6.2 and Corollary 6.1 appear
rather strong, they have many important applications. We will later consider
applications of the corollary to monotone Markov processes {Xn : n = 0, 1, . . . }
on a closed subset C of Rd , with S as the space of probabilities on C given an
appropriate metric, and f defined on S by f (μ)(B) = ∫

p(z, B)μ(dz), where
p(z, B) is the transition probability of the process landing in the set B in one step if
it starts in state z:

p(z, B) = P(X1 ∈ B|X0 = z); (6.5)

see Theorem 19.1 for a detailed treatment.

Remark 6.2. There are also important applications of fixed point theorems to
nonlinear partial differential equations, including the celebrated problem of the
existence and uniqueness of global solutions to the incompressible Navier–Stokes
equations in 3d for small initial data.1

Moving away from contracting maps, there are interesting examples of dynami-
cal systems (f, S), which have multiple fixed points as well as periodic points.

Definition 6.2. A point x∗ is said to be periodic with period k, if there are k distinct
points x1 = x∗, x2 = f (x1), xj = f (xj−1), j = 2, . . . , k, such that f (xk) = x∗.
In this case (x1, ..., xk) is said to be a period k orbit. A fixed point is a periodic
point with period k = 1. A fixed point x∗ of f on a metric space (S, ρ) is said
to be attracting (or locally stable) if there exists an open set U containing x∗ such
that f (n)(x) → x∗ as n → ∞, for every x ∈ U . More generally, a periodic point

1 See, for example, Bhattacharya and Waymire (2021) and the references therein.
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x∗ of f , or its orbit, is said to be attracting if there is an open set U containing
the orbit of x∗ such that, as n → ∞, f (n)(x) converges to the orbit of x∗, that is,
ρ(f (n)(x), {orbit of x∗})→ 0, for all x ∈ U . A periodic point x∗ (including a fixed
point), or its orbit, is said to be repelling, if there exists an open set U containing
the orbit of x∗ such that if x ∈ U\{orbit of x∗}, then f (k)(x) does not belong to U
for some k = k(x) ≥ 1.

Proposition 6.4. Suppose S is an interval of the real line, and x∗ is a fixed point
of a continuously differentiable function f on S into S. If |f ′(x∗)| < 1, then x∗ is
an attractive fixed point, and if |f ′(x∗)| > 1, then x∗ is repelling. More generally,
a periodic point x∗ of period k, or its orbit, is attracting if |f (k)(x∗))′| < 1 and
repelling if |(f (k)(x∗))′| > 1.

Proof. First consider the case of a fixed point x∗ such that |f ′(x∗)| < c < 1. Let
δ > 0 be such that |f ′(x)| < c on [x∗ − δ, x∗ + δ] ∩ S = I, say. Then for all x ∈ I,
|f (x) − x∗| = |f (x) − f (x∗)| < c|x − x∗| < δ, so that f (x) ∈ I, implying by
iteration that f (n)(x) ∈ I for all n. Also, |f (n)(x) − x∗| = |f (n)(x) − f (n)(x∗)| =
|f ◦f (n−1)(x)−f ◦f (n−1)(x∗)| < c|f (n−1)(x)−f (n−1)(x∗)| < · · · < cn|x−x∗| →
0 as n → ∞, uniformly on I. If, on the other hand, x∗ is a fixed point such that
|f ′(x∗)| > 1, and c is such that |f ′(x∗)| > c > 1, then there exists δ > 0 such that
|f ′(x)| > c > 1 for all x ∈ [x∗ − δ, x∗ + δ] ∩ S = I, and S\I has a nonempty
interior. Then the inequalities for |f (n)(x) − x∗| = |f (n)(x) − f (n)(x∗)| above get
reversed, and for some n = n(x), f (n(x))(x) lies outside I. It may be noted that if
for some n > n(x), y = f (n)(x) ∈ I again, then there is an integer n(y) such that
f (n(y))(y) lies outside I, so that f (n(x)+n(y))(x) lies outside I. It follows that f (n)(x)
lies outside I for infinitely many n. Next suppose x∗ is a periodic point with period
k > 1. Let {x∗ = x1, x2 = f (x1), . . . , xk = f (xk−1)} be the periodic orbit of x∗.
Note that f (k)(x∗) = f (xk) and, more generally, each point in the orbit is a fixed
point of f (k). By the rule for differentiation of composite functions, one has, with
x1 = x∗,

(f (k))′(x1) = f ′(f (k−1)(x1)) · f ′(f (k−2)(x1)) · f ′(f (k−3)(x1)) · · · f ′(x1)

= f ′(xk)f ′(xk−1) · · · f ′(x2)f ′(x1). (6.6)

It follows from this that (f (k)
′
)(xj ) is the same for all j = 1, . . . , k. Assume

now that |(f (k)(x∗))′| < 1. Then |(f (k)(xj ))′| < 1 for all j = 1, . . . , k. Since
x1, . . . , xk are then attractive fixed points of f (k), there exists an open interval Vj
around xj such that f (nk)(x) → xj as n → ∞, for every x ∈ Vj (j = 1, . . . , k).
Let V = ∪kj=1Vj . Let [n/k] denote the integer part of n/k. If x ∈ V , say

x ∈ Vj , then the distance between f (n)(x) = f (n−[n/k]k) ◦ f ([n/k]k)(x) and the
orbit of x∗ goes to zero as n → ∞. For f ([n/k]k)(x) → xj as n → ∞, and
f (n−[n/k]k) ∈ {f (0), f, f (2), . . . , f (k−1)}, where f (0) is the identity map. The proof
that x∗ is repelling if |(f (k)(x∗))′| > 1 may be similarly fashioned and is left as
Exercise 10. �
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For an important example, we consider again the quadratic family of maps, but
over a wider range of the parameter θ .

Remark 6.3. Below we often make use of the fact that if a subinterval I of S =
[0, 1] is left invariant by f , i.e., f (I) ⊂ I, and f is monotone increasing on I,
then f (n) is increasing on I for all n. If, in addition, f (x) ≤ x for all x ∈ I, then
f (n+1)(x) ≤ f (n)(x) for all n = 1, 2, . . . , i.e., f (n)(x) is a decreasing sequence for
x ∈ I. If, instead, x ≤ f (x) on I, then f (n−1)(x) ≤ f (n)(x) for all n = 1, 2, . . . ,
i.e., f (n)(x) is an increasing sequence for x ∈ I.

Example 3 (Logistic Map and The Quadratic Family). In studying the mechanism
of population growth from one generation to the next, in units of the so-called
carrying capacity of the environment, biologists have considered the model f (x) ≡
f (x, θ) = θx(1 − x) for x ∈ [0, 1] = S. For 0 ≤ θ ≤ 4, the map defines
a dynamical system. In Chapter 18 on discrete time Markov processes, we will
consider random perturbations2 of this model to take into account the effect of
external factors influencing the population size or concentration at time n+ 1 given
that at time n.

Proposition 6.5. (a) Let 0 ≤ θ ≤ 1. Then f (n)(x, θ) → 0, as n → ∞, whatever
be x ∈ [0, 1]. Thus 0 is an attracting fixed point, and it is the only fixed point of
f (x, θ). (b) Let 1 < θ ≤ 3. Then f (n)(x, θ) → pθ ≡ 1 − 1/θ for all x ∈ (0, 1).
Hence there are two fixed points 0, pθ , of which 0 is repelling and pθ is attracting.
(c) For 3 < θ ≤ 1 + √

5, f (·, θ) has an attracting period-two orbit and repelling
fixed points 0, pθ = 1 − 1/θ .

Proof. First note that a fixed point of f is a solution of the quadratic equation θx(1−
x) = x, provided this solution lies in [0, 1]. The two solutions are x = 0 and
x = pθ = 1 − 1/θ . The second solution is in [0, 1] only if θ ≥ 1, and for θ = 1 it is
0. Thus the quadratic family f (x) = f (x, θ) has two fixed points 0, pθ = 1 − 1/θ
for all θ ∈ (1, 4], and only one fixed point for θ ∈ [0, 1].
(a) For θ = 0, f (x, θ) = 0 for all x, so that 0 is an attractive fixed point. Let

0 < θ ≤ 1. Then 0 < f (x, θ) < x for all x ∈ (0, 1], and x → f (x, θ) is
increasing on [0, 1/2] and decreasing on [1/2, 1] (f (·, θ) is symmetric about
1/2). Also, [0, 1/2] is an invariant interval: f ([0, 1/2], θ) ⊂ [0, 1/2]. Hence
0 < f (n+1)(x, θ) < f (n)(x, θ) for all x ∈ (0, 1/2]. Thus f (n)(x, θ) ↓ as n ↑,
and x∗ = limn f (n)(x, θ) is a fixed point of f (·, θ). But the only fixed point of
f (x, θ) is 0. Hence x∗ = 0. If x ∈ [1/2, 1], then f (x, θ) ∈ [0, 1/2]. Hence, by
the preceding argument, f (n)(x, θ)→ 0 for all x ∈ [0, 1] and 0 is attracting.

(b) First let 1 < θ ≤ 2. Then f (x, θ) < pθ for all x ∈ (0, pθ ), and x →
f (x, θ) is increasing on (0, pθ ), since pθ ≤ 1/2. Hence f (x, θ) < f (2)(x, θ) <
pθ for all x ∈ (0, pθ ), and iterating, one obtains f (n)(x, θ) < f (n+1)(x, θ) <

2 Also see Peckham et al. (2018) and the references therein for related applications to sustainability
of a biological population subject to random disturbances.
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pθ for all x ∈ (0, pθ ). Let x∗ be the limit of the increasing sequence f (n)(x, θ).
But the only positive fixed point of f (x, θ) is pθ , so that x∗ = pθ . Now let
x ∈ [pθ , 1/2]. Then f (x, θ) is increasing and pθ ≤ f (x, θ) ≤ x ≤ 1/2.
Iterating, one gets pθ ≤ f (n+1)(x, θ) ≤ f (n)(x, θ) ≤ 1/2 for all n. Hence
the sequence f (n)(x, θ) decreases to a limit y∗, pθ ≤ y∗ ≤ 1/2. Since y∗ is a
fixed point, it must equal pθ . For x ∈ (1/2, 1), f (x, θ) ∈ (0, 1/2). Hence, by
the convergence of f (n)(x, θ) to pθ on (0, 1/2], it follows that f (n)(x, θ) →
pθ for all x ∈ (0, 1). This shows that pθ is an attractive fixed point and 0 is a
repelling fixed point.

Next, for 2 < θ ≤ 1 + √
5, [1/2, θ/4] is an invariant interval for f (·, θ).

To see this, note that f (x, θ) ≤ θ/4 for all x. Hence it is enough to show that
f (x, θ) ≥ 1/2 on [1/2, θ/4]. Since f is decreasing on [1/2, θ/4], one needs
to show that f (θ/4, θ) ≥ 1/2. To establish this, use the fact that the function
θ → g(θ) = f (θ/4, θ) = θ(θ/4)(1 − θ/4) has the derivative θ2 (1 − 3θ

8 ), which
is positive on [2, 8/3). Therefore, g(θ) increases on [2, 8/3) with g(2) = 1/2.
Also, g(θ) decreases for θ > 8/3, and it is simple to check that it attains
the value 1/2 at θ = 1 + √

5. This establishes the invariance of [1/2, θ/4].
[Note: This is the role of 1 + √

5 in part (c)]. Since x → f (x, θ) is decreasing
on [1/2, θ/4], x → f (2)(x, θ) is increasing on [1/2, θ/4], which is invariant
under f (·, θ) (and, therefore, under f (2)). It follows that f (2n+2)(θ/4, θ) =
f (2n)(f (2)(θ/4, θ), θ) ≤ f (2n)(θ/4, θ) (since f (2)(θ/4, θ) ≤ θ/4). That is,
f (2n)(θ/4, θ) is a decreasing sequence. Let f (2n)(θ/4, θ) ↓ q1. Similarly,
f (2n)(1/2, θ) is an increasing sequence and has a limit q0. Clearly, q0 and
q1 are fixed points of f (2)(x, θ). Because 1/2 ≤ pθ ≤ θ/4, f (2n)(1/2, θ) ≤
f (2n)(pθ , θ)(= pθ) ≤ f (2n)(θ/4, θ), one gets 1/2 ≤ q0 ≤ pθ ≤ q1 ≤ θ/4.

Now let 2 < θ ≤ 3. It may be shown that the fourth degree polynomial
f (2)(x, θ) has no fixed points other than 0, pθ (Exercise 13). Hence q0 = q1 =
pθ if 2 ≤ θ ≤ 3. If 1/2 ≤ x ≤ θ/4, then f (2n)(1/2, θ) ≤ f (2n)(x, θ) ≤
f (2n)(θ/4, θ). Hence f (2n)(x, θ) → pθ as n → ∞ for every x ∈ [1/2, θ/4].
Next note that f (2n+1)(x, θ) = f (f (2n)(x, θ)) → f (pθ , θ) = pθ as n → ∞.
We have proved that f (n)(x, θ) → pθ as n → ∞, for every x ∈ [1/2, θ/4].
One can easily check that 1/2 < pθ < θ/4 for 2 < θ ≤ 3. Hence pθ is an
attracting fixed point if 2 < θ ≤ 3, since (1/2, θ/4) is an open neighborhood
of pθ . To prove that f (n)(x, θ) → pθ as n → ∞ for every x ∈ (0, 1), let
x ∈ (0, 1/2]. Since f (·, θ) is increasing and f (x, θ) > x on (0, 1/2], f (n)(x, θ)
strictly increases with n as long as the sequence remains in (0, 1/2]. This is a
finite sequence; otherwise, the limit would be a fixed point in (0, 1/2]. Hence
there exists n = n(x) such that 1/2 < f (n)(x, θ) ≤ θ/4. It follows from
above that f (n)(x, θ) → pθ as n → ∞ for all x ∈ (0, θ/4]. Since f (x, θ) ∈
(0, θ/4] for all x ∈ (0, 1), the last assertion in italics is proved.

(c) Finally, let 3 < θ ≤ 1 + √
5. Since f ′(x, θ) = θ − 2xθ, f ′(0, θ) = θ > 1, and

f ′(1 − 1/θ, θ) = 2 − θ < −1, both fixed points are repelling. The argument
in the second paragraph of the proof of (b) shows that f (2)(x, θ) has attractive
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fixed points q0 and q1 satisfying 1/2 ≤ q0 ≤ pθ ≤ q1 ≤ θ/4. Since pθ is
repelling, one must have 1/2 ≤ q0 < pθ < q1 ≤ θ/4. �

Remark 6.4. One says that a bifurcation occurs at θ = 1; for a new fixed point
pθ appears when θ crosses 1 (θ > 1) and, further, this fixed point is attractive and
the previous fixed point 0 becomes repelling. It follows from Proposition 6.5 that the
threshold θ = 3 is also a bifurcation point of the quadratic family, since an attractive
period 2 orbit appears for the first time when θ crosses the value 3. It is known that
the next bifurcation occurs at θ = 1 +√

6, with a period 4 attracting orbit occurring
under each θ in (1 + √

6, 1 + √
6 + ε] for some ε > 0, all other periodic points,

including fixed points, being repelling. This period doubling cascade continues,
and after its accumulation point, cascades of intervals of θ appear giving rise to
new attractive periodic orbits whose periods are odd multiples of a power of 2, in
decreasing order of powers. The odd multiples (excluding 1) of the power of 2 in
such a cascade also appear in a decreasing order and end with an interval of θ under
which the quadratic map has an attractive orbit of period 3 times the power of 2
(following one with orbits of period 5 times the power of 2). The last such cascade
of intervals of θ , corresponding to the smallest power of 2, namely 2, ends with
one having attractive orbits of period 3 × 2. Finally, a cascade of intervals with
attractive orbits of odd periods, other than 1, appears, again in decreasing order,
ending with one of period 3. After the appearance of this attractive period 3 orbit,
the maps with higher values of θ cannot give rise to orbits with new periods since
all periods have already appeared in this scheme known as Sarkovskii’s theorem.3

Here is Sarkovskii’s scheme for the appearance of new periods, in reverse order:

3	5	7	· · ·	2·3	2·5	2·7	· · ·	22 ·3	22 ·5	22 ·7	· · ·	23 ·3	23 ·5	23 ·7	· · ·	23	22	1.

Each new period appears with an attractive periodic orbit which remains attractive
for a range of θ , while all previous periodic orbits become repelling. Sarkovskii’s
scheme is actually universal. That is, if a continuous map f has a periodic orbit of
period k, and if k 	m, then f must have an orbit of period m. Later in this chapter,
we will consider the case of θ = 4, where a new phenomenon appears. This new
phenomenon known as chaos is our next topic for discussion. It is a remarkable fact
due to Graczyk and Swiatek (1997) that the set of all θ with attractive periodic orbits
is dense.

The notion that deterministic dynamical systems may “appear” to be random is
further quantified by the following notion without explicit reference to a probability
space.

Definition 6.3. Suppose thatΩ is a metric space with metric ρ and Borel σ -field F .
A dynamical system (T ,Ω,F)with the following properties is said to be chaotic:

3 For a simple proof of the theorem, we refer to Devaney (1989). A comprehensive treatment of
this complex and rich phenomenon is given in Collet and Eckmann (1980).
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1. Sensitive Dependence on Initial Conditions. There is a δ > 0 such that for any
given ω ∈ Ω and neighborhood V of ω, there is an ω′ ∈ V and n ≥ 0 for which
ρ(T nω, T nω′) > δ.

2. Periodic Points Are Dense in Ω . The subset of points defined by Per(T ) := {ω ∈
Ω : T nω = ω for some n ≥ 1} is dense in Ω.

3. Topological Transitivity. For each pair of nonempty open sets V1 and V2, there is
an n > 0 such that (T nV1) ∩ V2 �= ∅.
Intuitively, sensitivity to initial conditions limits predictability of the evolution

in the sense that an arbitrarily small perturbation ω′ from ω will still lead to
a separation of states T nω and T nω′ in time n by a fixed positive amount δ.
Topological transitivity is a type of irreducibility of the evolution in the sense that
the evolution cannot settle into disjoint invariant subregions. The density of periodic
points provides some degree of repetitiveness in the evolution. Variations on the
precise definition of chaotic dynamics can be found throughout the mathematics
and physics literature.

Example 4 (Rotation Maps (Continued)). Let S = [0, 1] and fix f (x) = x + c for
a constant c ∈ [0, 1). This dynamical system is not chaotic, whether c is rational or
not, since every rotation leaves the distance (arc length) between points invariant.

Example 5 (Infinite Convolution with Shift as a Chaotic Dynamical System). Let
S = {0, 1} be a two-point set and consider the space Ω := S∞ of binary
sequences. ThenΩ is a compact metric space for the metric defined by ρ(ω, ω′) :=∑∞
n=1 2−n|ωn − ω′

n|, ω = (ω1, ω2, . . . ), ω
′ = (ω′

1, ω
′
2, . . . ). Let F be the Borel σ -

field; equivalently F is the σ -field generated by finite dimensional sets of the form
A = {(ω1, . . . , ωn)} × S∞, ωj ∈ S, 1 ≤ j ≤ n. Let T be the shift transformation
T ω = (ω2, ω3, . . . ), ω = (ω1, ω2, . . . ) ∈ Ω = S∞. Let us see that this dynamical
system (T ,Ω,F) is chaotic. To check sensitive dependence on initial conditions,
simply take δ = 1/4. Let ω = (ω1, ω2, . . . ) ∈ Ω , and let Bm = {ω′ ∈ Ω : ω′

j = ωj
for all j ≤ m} denote the open (and closed) ball of radius 2−m centered at ω.

Any open set containing ω must contain Bm for suitably large m. Then choose
ω′ ∈ Bm with ω′

m+1 = 1 − ωm+1 and n = m, so T nω = (ωm+1, ωm+2, . . . ). Then
ρ(T nω, T nω′) ≥ 1/2 > 1/4. To prove density of periodic points, let ω ∈ Ω and
ε > 0. Choose n such that

∑∞
j=n+1 2−j < ε and define ω′ to be the infinite periodic

extension of (ω1, ω2, . . . , ωn). Then ρ(ω, ω′) < ε. Finally, to prove topological
transitivity, we will show a stronger property known as topological mixing. Namely,
let us observe that there is an ω∗ ∈ Ω whose orbit {ω∗, T ω∗, T 2ω∗, . . . } is dense
in Ω . To construct ω∗ proceed as follows: the first two bits of ω∗ are 0 and 1,
followed by all possible two bit blocks 0, 0, 0, 1, 1, 0, 1, 1 in some order, and
then all three bit blocks in some order, and so on. Then given any ω ∈ Ω , the
first m digits will eventually appear as a block of ω∗, say, starting from n. Thus,
the first m digits of T nω∗ will match (ω1, . . . , ωm), and hence ρ(T nω∗, ω) <
2−m. Topological transitivity follows from this (Exercise 7). Finally let us note
that there are uncountably many mutually singular ergodic invariant probabilities
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(having infinite support) for T since, for each p ∈ [0, 1], the infinite Bernoulli
product measure μp is an invariant probability; i.e., for finite dimensional cylinder

sets μp({(ω1, . . . , ωn)} × S∞) = p
∑n
j=1 ωj (1 − p)

∑n
j=1(1−ωj ), ωj ∈ {0, 1}. The

distribution of an i.i.d. coin tossing sequence (infinite product measure) is invariant
under a shift in the sequence. That the support of each μp is infinite for 0 < p < 1
and that the measures are mutually singular can be seen from the strong law of large

numbers, i.e., the support of μp is contained in {ω ∈ Ω : limn→∞
∑n
j=1 ωj

n
= p},

which is a closed set.

Remark 6.5. It is known that in the quadratic family f (x; θ) = θx(1−x), 0 ≤ x ≤
1, chaos first occurs at the end of the period doubling cascade at θ = 3.56995 . . .
and last on the Sarkovskii order. This marks the first appearance of a period 3 orbit
and the onset of chaos.4 From here on until θ = 3.82843, known as the Pomeau–
Manneville region, the dynamics are marked by stable periodic phases interrupted
by bursts of chaos, which have applications to semiconductor devices.5

The following definition is very useful for showing that two dynamical systems
are equivalent, one being the relabeling of the other.

Definition 6.4. Let S and S̃ be two metric spaces and f and g two maps on them,
respectively. The dynamical systems (f, S) and (g, S̃) are topologically conjugate
if there is a homeomorphism h : S → S̃ such that h ◦ f = g ◦ h or, equivalently,
g = h ◦ f ◦ h−1.

We now provide examples of a number of important one-dimensional chaotic
systems, especially the quadratic system (Example 7) with θ = 4, known as the
Ulam–von Neumann map.

Example 6. Consider the map g : S1 → S1 given by g(θ) = 2θ(mod2π). We will
show that this dynamical system is chaotic. For this, first note that 0 = 2π(mod2π)
is a fixed point, and a period n (n ≥ 1) orbit (including orbits of periods that are
factors of n) is given by the solutions of g(n)(θ) ≡ 2nθ(mod2π) = θ(mod2π), i.e.,
2nθ = θ + 2kπ for some nonnegative integer k, so that θ = 2kπ/(2n − 1)(k =
0, 1, 2, . . . , 2n− 2). Note that this is an equidistant set of 2n− 1 points in [0, 2π).
This being true for all n ≥ 1, it follows that the set of all periodic points is dense in
S1. To establish topological transitivity, note that if θ belongs to an open arcC in S1,
and θ ′ ( �= θ ) lies in an open arc C′, there exists n ≥ 1 such that g(n)(C′) = S1, since
after each iteration the length of C′ doubles (or equals S1 ). In particular, g(n)(C′)
intersects C. Finally, in order to prove sensitive dependence on initial conditions, let
θ belong to an open arc C in S1, and let n be such that g(n)(C) = S1, which implies
that there exists a point θ ′ �= θ in C such that the distance between g(n)(θ) and
g(n)(θ ′) will be as large as half the arc length of S1. Hence the dynamical system is
chaotic.

4 See May (1976).
5 See Jeffries and Perez (1982).
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Remark 6.6. As the above arguments show, if for every nonempty open setU , there
exists a positive integer n such that f (n)(U) = S, and then the dynamical system
(f, S) is topologically transitive and has sensitive dependence on initial conditions.

Example 7 (Ulam–von Neumann map). Let g : S1 → S1 by g(θ) = 2θ(mod2n).
Using Example 6, we will show that the Ulam–von Neumann map f (x) ≡
f (x, 4) = 4x(1 − x) on [0, 1] is chaotic. For this, first note the map g1(x) =
2x2 − 1 on [−1, 1] is topologically conjugate to f (x, 4) via the homeomorphism
h : [−1, 1] → [0, 1] given by h(x) = (1/2)(1 − x), since f ◦ h(x) = 2(1 − x)(1 −
1
2 (1 − x)) = 1 − x2 = h ◦ g1(x). Next consider the map ϕ : S1 → [−1, 1] given by
ϕ(θ) = cos θ , which is the projection of the circle S1 = {(x, y) : x2 + y2 =
1}(x = cos θ, y = sin θ) onto the x-axis. Let ψ = h ◦ ϕ. This map is not a
homeomorphism because it is two-to-one (except at θ = 0): cos θ = cos(2π − θ).
But one still has the relation ϕ ◦ g(θ) = cos 2θ = 2 cos2 θ − 1 = g1 ◦ ϕ(θ). (Such
systems ψ are sometimes called semiconjugate). In the following discussion, we
make use of the relation f ◦ h ◦ ϕ(θ)(= h ◦ g1 ◦ ϕ(θ)) = h ◦ ϕ ◦ g(θ). Hence
f ◦ψ = f ◦h◦ϕ = h◦g1 ◦ϕ = h◦ϕ ◦g = ψ ◦g. Iterating, one obtains f (2) ◦ψ =
f ◦f ◦h◦ϕ = f ◦ψ ◦g = ψ ◦g◦g = ψ ◦g(2), . . . f (n)◦ψ = ψ ◦g(n), n = 1, 2, . . . .
To show that the Ulam–von Neumann system (f, [0, 1]) is topologically transitive,
let U,V be nonempty open intervals in [0, 1]. Then Ũ = h−1(U) and Ṽ = h−1(V )

are open intervals in [−1, 1]. There exist open arcs Û and V̂ in the upper half of
the circle S1 such that ϕ : Û → Ũ is one-to-one and onto ϕ(Û) = Ũ , and the
same is true of ϕ : V̂ → Ṽ , ϕ(V̂ ) = Ṽ . Then h ◦ ϕ(Û) = U and h ◦ ϕ(V̂ ) = V .
Using f (n) ◦ (h ◦ ϕ) = (h ◦ ϕ) ◦ g(n), it follows that f (n)(U) = h ◦ ϕ ◦ g(n)(Û ),
f (n)(V ) = h ◦ ϕ ◦ g(n)(V̂ ). Choose n ≥ 1 such that g(n)(V̂ ) = S1 (Example 6).
Then f (n)(V ) = [0, 1] because f (n)(V ) = h ◦ ϕ(S1) = [0, 1].

From the above argument and Remark 6.6, it follows that (f (x, 4), [0, 1]) is
topologically transitive and has sensitive dependence on initial conditions, with δ
any positive number smaller than 1/2. Finally, let V be a nonempty open interval in
[0, 1] and θ0 ∈ V̂ a periodic point of some period n for (g, S1), where V̂ is an open
arc in the upper half of S1 as described above. Then g(n)(θ0) = θ0. Therefore, the
projection h◦ϕ(θ0) = x0, say, of θ0 on [0, 1] satisfies f (n)(x0) = f (n) ◦h◦ϕ(θ0) =
h ◦ ϕ ◦ g(n)(θ0) = h ◦ ϕ(θ0) = x0. That is, x0 is a periodic point of f of period n.
Since the set of periodic points of g in S1 is dense in S1 , so is the set of periodic
points of g in the upper half of S1. Hence the set of periodic points of f = f (·, 4)
is dense in [0, 1].
Example 8 (The Tent Map). The tent map (t, [0, 1]) is defined by

t (u) =
{

2u if 0 ≤ u < 1/2

2 − 2u if 1/2 ≤ u ≤ 1.
(6.7)

We will see that the tent map, and the Ulam–von Neumann map f (x) = f (x, 4) =
4x(1 − x), x ∈ [0, 1], are topologically conjugate. Consider the change of variable
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u→ x, given by x = sin2 πu
2 = h(u), say, of [0, 1] onto [0, 1]. Note that h′(u) > 0

on (0, 1), and h′(u) = 0 for u = 0, 1. Hence h is strictly increasing (and continuous)
on [0, 1]; also h−1(x) = 2

π
arcsin

√
x. One has f ◦ h(u) = 4 sin2 πu

2 cos2(πu2 ) =
sin2(πu) and h−1 ◦f ◦h(u) = 2

π
arcsin(sinπu). For 1/2 < u ≤ 1, formally this has

two values 2u and 2 − 2u (since sinπu = sin(π − πu)), of which 2u falls outside
[0, 1]. Hence

h−1 ◦ f ◦ h(u) =
{

2
π

arcsin(sinπu) = 2u if 0 ≤ u < 1/2
2
π
(π − πu) = 2 − 2u if 1/2 ≤ u ≤ 1.

(6.8)

That is, t = h−1 ◦ f ◦ h, so that f and t are topologically conjugate. By Example 7,
it follows that the tent map is chaotic as well.

Finally, it is simple to check that the uniform distribution on [0, 1] is invariant
under the tent map t (Exercise 11). Hence the density of the corresponding invariant
distribution of the Ulam–von Neumann map is given by m(x) = du/dx =
dh−1(x)/dx = d 2

π
arcsin(

√
x)/dx. Thus,

m(x) = 1

π
√
x(1 − x) , 0 < x < 1. (6.9)

Proposition 6.6. Let t be the tent map and let X0 have the uniform distribution λ
on [0, 1]. The stationary process Xn = tnX0(n = 0, 1, . . . ) is ergodic with respect
to the shift transformation TX = (X1, Xn, . . . ), X = (X0, X1, . . . ).

Proof. First observe that X = (X0, X1, . . . ) is a Markov process with transition
probability p(x, dy) = δt(x)(dy). Hence for every shift-invariant event F = [X ∈
C], C a Borel subset of [0, 1]∞, there exists a t-invariant Borel subset B of [0, 1]
(i.e., almost surely, 1B(X0) = 1B(X1) = 1B(t (X0))) such that 1B(X0) = 1C(X),
almost surely (Exercise 12). Therefore, to prove ergodicity, it is enough to show that
λ(B) ∈ {0, 1}. Suppose λ(B) > 0, and consider the Fourier expansion

1B(x) =
∞∑

k=−∞
ck exp{2πikx},

(

ck =
∫

[0,1]
1B(x) exp{−2πikx}dx, for all k

)

,

(6.10)
the convergence of the series being in L2([0, 1], λ). For 0 < x < 1/2, 1B(x) =
1B(2x), λ-almost surely. Hence, λ-almost surely

∞∑

k=−∞
ck exp{2πikx} =

∞∑

k=−∞
ck exp{4πikx}, (0 < x < 1/2), (6.11)

This implies ck = c2k for all k. By iteration, one obtains ck = c2mk for every positive
integer m. But for k �= 0, c2mk → 0 as m→ ∞. Thus,

ck = 0 for all k �= 0. (6.12)
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Since the Fourier series for 1B is thus identified, namely, 1B = c0, and the proof
of the proposition is complete, one could also use a similar argument for x > 1/2,
t (x) = 2(1 − x), to obtain

∞∑

k=−∞
ck exp{2πikx} =

∞∑

k=−∞
ck exp{4πik − 4πikx} =

∞∑

k=−∞
ck exp{−4πikx},

(6.13)
This implies ck = c−2k = · · · = c−2mk for all integers m > 0, and c2mk → 0 as
m → ∞, for k �= 0. Hence again 1B(x) = c0 for 1/2 < x < 1 (λ-a.s.). Therefore,
1B(x) = λ(B) for all x (λ-a.s.); that is, λ(B) = 1. �

In view of the conjugacy between the tent map and the Ulam–von Neumann map,
one obtains the following result.

Corollary 6.7. Let f be the Ulam–von Neumann map f (x) = 4x(1 − x) on [0, 1],
and letX0 have the distribution with density (6.9). Then the stationary processXn =
f (n)X0(n = 0, 1, . . . ) is ergodic; that is, the shift-invariant sigma-field is trivial.

Remark 6.7. The Ulam–von Neumann map or some modifications that are still
chaotic have many practical uses6,7 in science and engineering, including random
number generation, cryptography, economics, population biology, social networks,
etc. Dynamical systems in continuous time are called flows which are governed by
smooth autonomous ordinary differential equations or systems of them in the case of
multidimension. In view of the Poincare-́-Bendixson theorem,8 chaotic phenomena
cannot arise in two dimensions (or less). Roughly, this theorem says that, apart from
fixed points which may be attractive, repelling, or saddle points, a flow (x(t), y(t))
that remains in a bounded domain for all times t ≥ 0 is either cyclic, i.e., lies on a
closed curve and moves periodically on it, or approaches such a cycle as t → ∞.9

Exercises

1. Let T be a measure-preserving transformation on the probability space
(Ω,F , μ). Define X0(ω) = ω,Xn(ω) = T nω, ω ∈ Ω,n ≥ 1.

6 Among many publications on the subject, we refer to the articles by Ulam and von Neumann
(1947), Derrida and Flyvbjerg (1987), and Yu et al. (1990).
7 Many applications of dynamical systems to economic theory may be found in Bhattacharya and
Majumdar (2007), Chapter 1, which also contains an expository account of the elements of chaos
theory in discrete time. The classic work of Samuelson (1947) (enlarged edition published in 1983),
based on his 1941 Harvard thesis, is a pioneering study of optimization of economic phenomena
governed by systems of differential equations, their equilibrium, and stability, as well as what
would now be called bifurcations.
8 See, e.g., Hurewicz (1958).
9 The first example of a chaotic flow in dimension three is due to Lorenz (1963).
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(a) Show that {Xn : n ≥ 0} is a stationary process on (Ω,F , μ).
(b) Show that σ(X0, X1, . . . ) = F and that the invariant σ -fields of T and of

{Xn : n ≥ 0} coincide.

2. Suppose T is an ergodic transformation on a probability space (Ω,F , μ). For
B ∈ F , show limn→∞ |{m≤n:T mω∈B}|

n
= μ(B), where | · | denotes cardinality.

3. (Normal numbers)

(a) Show that any irrational real number x ∈ [0, 1] has a unique expansion,
x = ∑∞

j=1 xjb
−j , to a base b ∈ N.

(b) Show that for any k ∈ {0, 1, . . . , b − 1}, limn→∞
|{j≤n:xj=k}|

n
= 1

b
, for

Lebesgue a.e. x ∈ [0, 1], i.e., each digit in the base b expansion occurs
with equal frequency. Such numbers are said to be normal.10

4. Let Ω = [0, 1) with Borel σ -field F and Lebesgue measure μ. Consider the
map T x = x + cmod(1), with c = p/q where p and q are relatively prime
positive integers. Show that (a) each x ∈ [0, 1) has a periodic orbit Ox =
{x, T x, . . . , T q−1x} of period q, and (b) T is measure-preserving and ergodic
with respect to the uniform distribution on Ox (which assigns zero probability
on Ω\Ox).

5. If T is an ergodic measure-preserving transformation on (Ω,F , μi), i = 1, 2,
then either μ1 = μ2 or μ1 and μ2 are mutually singular. [Hint: Let A be such
that μ1(A) �= μ2(A). Use the ergodic theorem for 1A.]

6. Let Ω = {x1, x2, . . . , xm} be a finite set and F the power set of Ω. Let T be
a permutation, i.e., a one-to-one map of Ω onto itself. Let μ be the uniform
distribution on Ω, i.e., μ({xi}) = 1/m, i = 1, 2, . . . , m.

(a) Show that T is measure-preserving on (Ω,F , μ).
(b) Show that T is ergodic if and only if it has no periodic point of period less

than m; a point x is a periodic point of period q if q is the smallest integer
such that T qx = x, and {x, T x, . . . , T q−1x} is a periodic orbit.

(c) Suppose that T has two cycles, i.e., there exists x �= y and q < m such
that T qx = x, T m−qy = y. Let μ1 be the uniform distribution on Ω1 =
{x, T x, . . . , T q−1x} and μ2 that on Ω2 = {y, T y, . . . , T m−q−1y}.

(i) Show that T is ergodic on Ω1 and on Ω2.

(ii) If μi denotes the extension of μi to Ω defined by μi = μi on Ωi and
μi(Ω\Ωi) = 0, then show T is measure-preserving and ergodic on
(Ω,F , μi).

(iii) Let ν = αμ1 + (1 − α)μ2 for some 0 < α < 1. Show that T is
measure-preserving on (Ω,F , ν) but not ergodic.

10 It is conjectured that
√

2, e, π, ln 2 are normal numbers, but not proven. An example of a normal
number was computed by Sierpinski (1917). Also see Becher and Figueira (2002).



Exercises 95

7. Show that topological mixing implies its topological transitivity for a dynamical
system (T ,Ω) on a metric space Ω , provided that (i) Ω is connected or, more
generally, (ii) every nonempty open subset of Ω has infinitely many points.

8. Show that irrational rotations of the circle are topologically transitive but do not
have sensitive dependence on initial conditions.

9. Show that the chaotic shift map T on Ω = {0, 1}∞ is expansive in the sense
that there is a δ > 0 such that for any two distinct points ω,ω′ ∈ Ω there is an
n such that |T nω − T nω′| > δ. Show that, in general, an expansive dynamical
system has the property of sensitive dependence on initial conditions.

10. Show that x∗ in Proposition 6.4 is repelling if |f (k)(x∗))′| > 1.
11. Verify that the uniform distribution on [0, 1] is an invariant measure for the tent

map.
12. In reference to the proof of Proposition 6.6, show that there is a t-invariant

Borel set B ⊂ [0, 1] such that 1C(X) = 1B(X0) a.s. as asserted. [Hint: X =
(X0, X1, . . . ) = (X0, tX0, t

2X0, . . . ) depends only on X0.]
13. Consider the quadratic map f (x; θ) = θx(1 − x), x ∈ [0, 1] (0 < θ ≤ 4).

Show that f (2)(x; θ) has only two fixed points, 0 and pθ = 1 − 1
θ

.



Chapter 7
Markov Chains

This chapter focusses on a construction and parameterization of discretely
indexed Markov chains on a finite or countably infinite state space.

This chapter begins the theory of discrete parameter/time Markov processes which
is the subject matter of the rest of the book. In general, the (one-step) transition
probability p(x, dy), x belonging to the state space S, contains all the information
about the process. Each transition probability corresponds to a unique Markov
process. The asymptotic behavior of a wide variety of these Markov processes is
explored. The discrete parameter Markov processes on finite or countable state
spaces, called Markov chains, provide a fairly complete asymptotic theory to be
considered in this and a few later chapters.

Suppose that {Xn : n = 0, 1, 2, . . . } is a discrete parameter stochastic process
defined on a probability space (Ω,F , P ) and having a countable, i.e., finite or
countably infinite state space S. Throughout this chapter the σ -field of measurable
events S is naturally the power set 2S consisting of all subsets of S. Think of
X0, X1, . . . , Xn−1 as “the past,” Xn as “the present,” and Xn+1, Xn+2, . . . as “the
future” of the process relative to time n. The law of evolution of a stochastic process
is often viewed in terms of the conditional distribution of the future given the present
and past states of the process. In the case of a sequence of independent random
variables or of a random walk, for example, this conditional distribution does not
depend on the past. Various illustrative models with this structure are described in
the Exercises 13–20.

To simplify notation explicit reference to the underlying probability space
(Ω,F , P ) will often be suppressed.
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Definition 7.1. A stochastic process {X0, X1, . . . , Xn, . . .} with countable state
space S has the Markov property if, for each n andm, the conditional distribution of
Xn+1, . . . , Xn+m given X0, X1, . . . , Xn is the same as its conditional distribution
given Xn alone. Such a process having the Markov property is called a discrete
parameter Markov chain.

From the definition of conditional probability it is enough to check that for each
B ∈ S⊗m, the conditional probability P((Xn+1, . . . , Xn+m) ∈ B|σ(X0, . . . , Xn))

is a function of Xn alone; i.e., if so, the function must be P((Xn+1, . . . , Xn+m) ∈
B|σ(Xn)), Exercise 4. An equivalent formulation of the Markov property may be
cast as the conditional independence of the future {Xn+1, . . . , Xn+m} and the past
{X0, . . . , Xn−1} given the present Xn, for each n,m = 1, 2, . . . , see Exercise 4.
The denumerability of S makes [(Xn+1, . . . , Xn+m) ∈ B] = ∪(j1,...,jm)∈B [Xn+1 =
j1, . . . , Xn+m = jm] a countable disjoint union for each B ⊂ Sm, i.e., B ∈ S⊗m.
Thus the Markov property may be expressed: For any j1, . . . , jm ∈ S,m ≥ 1,

P (Xn+1 = j1, . . . , Xn+m = jm|σ(X0, . . . , Xn))

= P(Xn+1 = j1, . . . , Xn+m = jm|σ(Xn)) = fn(Xn). (7.1)

Here the dependence of the function fn on the fixed quantities j1, . . . , jm and m is
suppressed.

The property (7.1) may be stated in elementary terms as

P(Xn+1 = j1, . . . , Xn+m = jm|X0 = i0, . . . , Xn = in)
= P(Xn+1 = j1, . . . , Xn+m = jm|Xn = in), j1, . . . , jm ∈ S. (7.2)

In view of the next proposition, it is actually enough to take m = 1 in any of these
formulations.

Proposition 7.1. A stochastic process X0, X1, X2, . . . with countable state space
S has the Markov property if and only if for each n the conditional distribution of
Xn+1 given X0, X1, . . . , Xn is a function only of Xn.

Proof. The necessity of the condition is obvious. For sufficiency we use induction
on m. Observe that if P(X0 = i0, . . . , Xn = in) > 0, then

P(Xn+1 = j1, . . . , Xn+m = jm | X0 = i0, . . . , Xn = in)
= P(Xn+1 = j1 | X0 = i0, . . . , Xn = in)

×P(Xn+2 = j2 | X0 = i0, . . . , Xn = in,Xn+1 = j1)
×P(Xn+3 = j3 | X0 = i0, . . . , Xn = in,Xn+1 = j1, Xn+2 = j2)
× · · · × P(Xn+m = jm | X0 = i0, . . . , Xn = in,Xn+1 = j1, . . . , Xn+m−1 = jm−1)

= P(Xn+1 = j1 | Xn = in)P (Xn+2 = j2 | Xn+1 = j1)
×P(Xn+3 = j3 | Xn+2 = j2)× · · · × P(Xn+m = jm | Xn+m−1 = jm−1).
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The first equality follows from general rules of probability, while the second (last)
uses the Markov property with only one immediate future state in place of an
arbitrary number of future states (i.e., the case m = 1 in Definition 7.1). Notice that
the last expression does not depend on the past states, but only on the “present” state,
namely that of Xn, proving the general Markov property given in Definition 7.1. �
Yet another equivalent formulation of the Markov property will be given in the next
chapter (cf. Proposition 8.3).

A Markov chain {X0, X1, . . .} is said to have a homogeneous or stationary
transition law if the conditional distribution of Xn+1, . . . , Xn+m given Xn depends
on the state at time n, namely Xn, but not on the time n. Otherwise, the transition
law is called nonhomogeneous. An i.i.d. sequence {Xn}n≥1 on the integers Z or
k-dimensional integer lattice Zk , and its associated (unrestricted) general random
walk on Z or Zk, {Sn := S0 + ∑n

j=1Xj }n≥0, possess time-homogeneous transi-
tion laws, while an independent nonidentically distributed sequence {Xn}n≥1 and
its associated random walk have nonhomogeneous transitions. Unless otherwise
specified, by a Markov chain we shall mean a Markov chain with a homogeneous
transition law from here on.

It is convenient to introduce a matrix p to describe the probabilities of transition
between successive states in the evolution of the process. As a notational convention,
when the meaning is unambiguous, pij is often used in place of pi,j to denote the
ith row and j th column matrix entry.

Definition 7.2. A transition probability matrix or a stochastic matrix is a square
matrix p = ((pij )), where i and j vary over a countable set S, satisfying

1. pij ≥ 0 for all i and j ,
2.
∑
j∈S pij = 1 for all i.

The set S is called the state space and its elements are states.

Informally, think of a particle that moves from point to point in the state space
according to the following scheme. At time n = 0 the particle is set in motion either
by starting it at a fixed state i0, called the initial state, or by randomly locating it
in the state space according to a probability distribution μ on S, called the initial
distribution. In the former case, μ is the distribution concentrated at the state i0, i.e.,
μj = 1 if j = i0, μj = 0 if j �= i0. In the latter case, the probability is μi that at
time zero the particle will be found in state i, where 0 ≤ μi ≤ 1 and

∑
i μi = 1.

Given that the particle is in state i0 at time n = 0, a random trial is performed, with
probabilities pi0j ′ of the respective states j ′ ∈ S. If the outcome of the trial is the
state i1, then the particle moves to state i1 at time n = 1. A second trial is performed
with probabilities pi1j ′ of states j ′ ∈ S. If the outcome of the second trial is i2, then
the particle moves to state i2 at time n = 2, and so on.

A typical sample point of this experiment is a sequence of states, say
(i0, i1, i2, . . . , in, . . . ), representing a sample path. The set of all such sample
paths may be taken as the sequence space sample space Ω = S∞. The position Xn
at time n is a random variable whose value is given by Xn(ω) = in if the sample
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path is ω = (i0, i1, . . . , in, . . .) ∈ Ω . The precise specification of the probability
Pμ on Ω for the above experiment is given by

Pμ({i0} × · · · × {in} × S∞) ≡ Pμ(X0 = i0, X1 = i1, . . . , Xn = in)
:= μi0pi0i1 · · ·pin−1in . (7.3)

More generally, for finite-dimensional events of the form

A = [(X0, X1, . . . , Xn) ∈ B]
≡ B × S∞ ⊂ Ω = S∞, (7.4)

where B is an arbitrary subset of (n+ 1)-tuples of elements of S, the probability of
A is specified by

Pμ(A) ≡ P((X0, . . . , Xn) ∈ B) :=
∑

(i0,i1,...,in)∈B
μi0pi0i1 · · ·pin−1in . (7.5)

By Kolmogorov’s existence theorem, Pμ extends uniquely as a probability measure
on the smallest σ -field F = S⊗∞ containing the class of all events of the form
(7.4).

Definition 7.3. The probability space (Ω,F , Pμ) with Xn(ω) = ωn, ω ∈ Ω ,
is referred to as the canonical model for the Markov chain with (homogeneous)
transition probabilities ((pij )) and initial distribution μ. A stochastic process {Xn :
n = 0, 1, . . . } defined on a general probability space is said to be Markov with
transition probability p(x, dy) and initial distribution μ(dx) if its distribution is
Pμ as defined by the canonical model.

The Markov property will be established below at (7.9)–(7.12). In the case of a
Markov chain starting in state i, that is, μi = 1, we write Pi in place of Pμ in the
canonical model.

To specify various joint distributions and conditional distributions associated
with this Markov chain, it is convenient to use the notation of matrix multiplication,
with p = ((pij )). By definition the (i, j) element of the matrix p2 is given by

p
(2)
ij =

∑

k∈S
pikpkj . (7.6)

The elements of the matrix pn are defined recursively by pn = pn−1p so that the
(i, j) element of pn is given by

p
(n)
ij =

∑

k∈S
p
(n−1)
ik pkj =

∑

k∈S
pikp

(n−1)
kj , n = 2, 3, . . . . (7.7)

It is easily checked by induction on n that the expression for p(n)ij is given directly in
terms of the elements of p according to
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p
(n)
ij =

∑

i1,...,in−1∈S
pii1pi1i2 · · ·pin−2in−1pin−1j . (7.8)

Now let us check the Markov property of this probability model. Using (7.3)
and summing over unrestricted coordinates, the joint distribution of X0, Xn1 ,

Xn2 , . . . , Xnk , with 0 = n0 < n1 < n2 < · · · < nk , is given by

P(X0 = i, Xn1 = j1, Xn2 = j2, . . . , Xnk = jk)
=
∑

1

∑

2

· · ·
∑

k

(μipii1pi1i2 · · ·pin1−1j1)(pj1in1+1pin1+1in1+2 · · ·pin2−1j2)

× · · · × (pjk−1ink−1+1pink−1+1ink−1+2pink−1jk ), (7.9)

where
∑
r is the sum over the rth block of indices inr−1+1, . . . , inr (r = 1, 2, . . . , k).

The sum
∑
k , keeping indices in all other blocks fixed, yields the factor p(nk−nk−1)

jk−1jk
using (7.8) for the last group of terms. Next sum successively over the (k−1)st, . . . ,
second, and first blocks of factors to get

P(X0 = i, Xn1 = j1, Xn2 = j2, . . . , Xnk = jk) = μip(n1)
ij1
p
(n2−n1)
j1j2

· · ·p(nk−nk−1)

jk−1jk
.

(7.10)
Now sum over i ∈ S to get

P(Xn1 = j1, Xn2 = j2, . . . , Xnk = jk) =
(
∑

i∈S
μip

(n1)
ij1

)

p
(n2−n1)
j1j2

· · ·p(nk−nk−1)

jk−1jk
.

(7.11)
Using (7.10) and the elementary definition of conditional probabilities the following
proposition is obtained.

Proposition 7.2. Let {Xn : n = 0, 1 . . . } be a Markov chain with arbitrary initial
distribution μ and transition probability matrix p. The conditional distribution of
Xn+m given X0, X1, . . . , Xn is given by

P(Xn+m = j | X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i)
= p(m)ij = P(Xn+m = j | Xn = i) = P(Xm = j | X0 = i), m ≥ 1, j ∈ S.

Although by Proposition 7.1 the case m = 1 would have been sufficient to prove
the Markov property, Proposition 7.2 justifies the terminology that pm := ((p

(m)
ij ))

is the m-step transition probability matrix. Note that pm is a stochastic matrix for
all m ≥ 1 (in the sense of Definition 7.2).

The calculation of the distribution of Xm follows from (7.10), (7.11). We have

Pμ(Xm = j) =
∑

i

Pμ(Xm = j,X0 = i) =
∑

i

Pμ(X0 = i)Pμ(Xm = j | X0 = i)

=
∑

i

μip
(m)
ij = (p(m)′μ)j , (7.12)
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where p(m)
′

denotes the transpose matrix, and (p(m)
′
μ)j is the j th element of this

column vector.

Example 1. S = {0, 1}. p =
[
a 1 − a

1 − b b

]

, 0 ≤ a, b ≤ 1. Excluding the case a +

b = 2 in which p =
[

1 0
0 1

]

, with, say, a < 1, one may check that p has two distinct

eigenvalues λ1 = 1, λ2 = a + b − 1 < 1 with corresponding eigenvectors

[
1
1

]

and
[

1
b−1
1−a

]

; notice that a stochastic matrix will always have λ = 1 as an eigenvalue,

and, since px averages x, the magnitude of the others cannot exceed 1, (Exercise 7).
Now, writing A for the matrix whose columns are these eigenvectors, one has

A =
[

1 1
1 b−1

1−a

]

, A−1 = 1

2 − a − b
[

1 − b 1 − a
1 − a a − 1

]

,

pA = A
[
λ1 0
0 λ2

]

, p = A
[
λ1 0
0 λ2

]

A−1, pn = A
[
λn1 0
0 λn2

]

A−1.

Thus

p(n) = (2−a−b)−1
[

1 − b + (1 − a)(a + b − 1)n 1 − a − (1 − a)(a + b − 1)n

1 − b − (1 − b)(a + b − 1)n 1 − a + (1 − b)(a + b − 1)n

]

.

It is interesting to notice the behavior of p(n), as a function of n, in each of the
distinct cases a + b = 1, 1 < a + b ≤ 2, and 0 ≤ a + b < 1.

Exercises

1. Consider the simple symmetric random walk on {0, 1, 2} with reflecting
boundaries at 0 and 2.

(a) Show 1
n

∑n
r=1 p(r) converges to the matrix whose rows are identically

(1/4, 1/2, 1/4).
(b) Show that π0 = π2 = 1/4, π2 = 1/2 is the unique invariant probability.
(c) Start {Xn : n ≥ 0} with the invariant initial distribution. Show that {Xn :

n ≥ 0} is ergodic, but {X2n : n ≥ 0} is not ergodic.

2. Consider the Markov chain {Xn : n ≥ 0} on S = {1, 2, 3} with transition
probabilities p11 = 1, p23 = p32 = 1, and pij = 0 otherwise. Determine
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the extremal ergodic invariant probabilities and the collection of all invariant
probabilities. Calculate limn→∞ 1

n

∑n−1
m=0Xm for the initial distribution π =

(1/4, 3/8, 3/8).
3. (Random Walk on Integer Lattice) Show that any discrete parameter stochastic

process {Xn : n = 0, 1, . . . }, having independent increments on the integer
lattice state space Z

k is a Markov chain.
4. (a) Show that if P(A|σ(X0, . . . , Xn)) = fn(Xn), then fn(Xn) =

P(A|σ(Xn)).
(b) Let A,B,C be events with C,B ∩ C having positive probabilities. Verify

that the following are equivalent versions of the conditional independence
of A and B given C : P(A ∩ B | C) = P(A | C)P (B | C) if and only if
P(A | B ∩ C) = P(A | C).

(c) Prove that the Markov property (in Definition 7.1) is equivalent to the
property: Conditionally given Xn, the past {X0, . . . , Xn−1} and the future
{Xn+1, Xn+2, . . . } are independent.

5. (a) Let {Xn : n = 0, 1, 2, . . . } be a sequence of random variables with
countable state space S. Call {Xn : n ≥ 0} rth order Markov-dependent
if for i0, . . . , in, j ∈ S, n ≥ r

P (Xn+1 = j | X0 = i0, . . . , Xn = in)
= P(Xn+1 = j | Xn−r+1 = in−r+1, . . . , Xn = in).

Show that Yn = (Xn,Xn+1, . . . , Xn+r−1), n = 0, 1, 2, . . . is a (first-order)
Markov chain under these circumstances.

(b) Take S = Z
k, and let Vn = Xn+1 − Xn, n = 0, 1, 2, . . . . Show that if the

position process {Xn : n ≥ 0} is a Markov chain, then so is the position-
velocity process {(Xn, Vn) : n ≥ 0}. [Hint: Consider first {(Xn,Xn+1)} and
then apply a one-to-one transformation.]

6. Let {Yn : n ≥ 0} be an i.i.d. sequence of ±1-valued Bernoulli random variables
with parameter 0 < p < 1. Define a new stochastic process by Xn = (Yn +
Yn−1)/2, for n = 1, 2, . . . . Show that {Xn : n ≥ 1} does not have the Markov
property.

7. Suppose that S is a finite state space and p a stochastic matrix indexed by S ×
S. Show that |λ| ≤ 1 for all eigenvalues of p, and that λ = 1 must be an
eigenvalue. [Hint: View p as a matrix operator on a real vector space V :=
{x = (xj )j∈S : xj ∈ R} with norm defined by ‖x‖ = max{|xj | : j ∈ S}.]

8. Calculate p(n)ij for the unrestricted simple random walk on Z (see Exercise 8).
[Hint: Add up probabilities of sample paths by counting.]

9. Let p = ((pij )) denote the transition matrix for the unrestricted general random
walk on Z.

(a) Calculate p(2)ij in terms of the increment distributionQ.

(b) Show that p(n)ij = Q∗n(j − i), where the n-fold convolution is defined
recursively by
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Q∗n(j) =
∑

k

Q∗(n−1)(k)Q(j − k), Q∗(1) = Q.

10. Let {Zn : n = 0, 1, 2, . . .} be i.i.d. ±1-valued with P(Zn = 1) = p ∈ (0, 1).
Define Xn = ZnZn+1, n = 0, 1, 2, . . . .

(a) Show that for k ≤ n − 1, P (Xn+1 = j | Xk = i) = P(Xn+1 = j), i.e.,
Xn+1 and Xk are independent for each k = 0, . . . , n− 1, n ≥ 1. Note that
k ≤ n− 1.

(b) Show that {Xn : n ≥ 0} is a Markov chain if and only if p = 1/2.

11. (a) Show that the transition matrix for a sequence of independent and identi-
cally distributed (i.i.d.) integer-valued random variables is characterized by
the property that its rows are identical; i.e., pij = pj for all i, j ∈ S.

(b) Under what further condition is the Markov chain an i.i.d. sequence? [Hint:
Consider the initial distribution.]

12. (a) Let {Yn : n ≥ 0} be a Markov chain with a one-step transition matrix p.
Suppose that the process {Yn : n ≥ 0} is viewed only at everymth time step
(m fixed) and let Xn = Ynm, for n = 0, 1, 2, . . . . Show that {Xn : n ≥ 0}
is a Markov chain with one-step transition law given by pm.

(b) Suppose {Xn : n ≥ 0} is a Markov chain with transition probability matrix
p. Let n1 < n2 < · · · < nk . Prove that

P(Xnk = j | Xn1 = i1, . . . , Xnk−1 = ik−1) = p(nk−nk−1)

ik−1j
.

13. (Random Walks on a Group) Let G be a finite group with group operation
denoted by ⊕ and e its identity element. If ⊕ is commutative, i.e., x⊕y = y⊕x
for all x, y ∈ G, then G is called Abelian. Let X1, X2, . . . be i.i.d. random
variables taking values in G and having a common probability distribution Q
withQ({g}) = P(Xn = g), g ∈ G.

(a) Show that the random walk on G defined by Sn = X0 ⊕ X1 ⊕ · · · ⊕ Xn,
n ≥ 0, is a Markov chain and calculate its transition probability matrix.
Note that it is not necessary for G to be abelian for {Sn} to be Markov.

(b) (Top-In Card Shuffle) Construct a model for card shuffling as a Markov
chain on a (nonabelian) permutation group on N symbols in which the top
card of the deck is inserted at a randomly selected location in the deck at
each shuffle.

(c) Calculate the transition probability matrix forN = 3. [Hint: Shuffles are of
the form (c1, c2, c3)→ (c2, c1, c3) or (c2, c3, c1) only.]

14. (One-Dimensional Ising Ferromagnet) The one-dimensional Ising model
may be viewed as a doubly indexed stationary Markov chain {ηm : m =
0,±1,±2, . . . } on spin values S = {−1,+1} with invariant marginal

distribution (1/2, 1/2), and having transition probabilities

(
p q

q p

)

, where
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p11 = p−1−1 = p = eβJ

2 cosh(βJ ) is the Ising model parameterization with the
so-called inverse temperature parameter β > 0 and coupling constant J . The
ferromagnetic case in which neighboring spins are more likely to align (i.e.,
p > 1/2) is defined by J > 0.

(a) Show that if {−1,+1} is viewed as a multiplicative Abelian group, then
the Markov chain {ηm : m = 0,±1,±2, . . . } is simply a random walk on
{−1,+1}; that is, the increments ηm+1η

−1
m ≡ ηm+1ηm,m ∈ Z are i.i.d.

[Hint: Let σm,m ∈ Z be i.i.d. ±1-Bernoulli with parameter p = P(σm =
1) and show that the random walk defined by ηm+1 = ηmσm+1,m ∈ Z, has
the appropriate transition probabilities, and invariant marginal distributions
(1/2, 1/2).]

(b) Show that in the ferromagnetic case the distribution, say P , of the Markov
chain with invariant distribution π+1 = π−1 = 1/2 is infinitely divisible1

as a probability measure on the multiplicative Abelian product group G =
{−1,+1}Z with coordinatewise multiplication; that is, for any positive inte-
ger m there is a probability measure Qm on G such that P = Q∗m

m , where
m∗ denotes the m-fold convolution. [Hint: Show that the (coordinatewise)
product of two independent Markov chains with parameters, p1, p2 is also
a Markov chain with parameter p3 = 2p1p2 − p1 − p2 + 1 ∈ (1/2, 1) for
p1, p2 ∈ (1/2, 1).]

15. A random number of individuals with a highly contagious disease enter an
infinite population of healthy individuals. During each subsequent period, either
one of these carriers will surely infect a new person or be discovered and
removed by public health officials. An unremoved infected individual becomes
a carrier. Each carrier is discovered and removed, independently of the others,
with probability q = 1-p at each unit of time. The time evolution of the
number of infected individuals in the population is a Markov chain {Xn : n =
0, 1, 2, . . .}. What are its transition probabilities?

16. Suppose that at each unit of time each particle located in a fixed region of space
has probability p, independently of the other particles present, of leaving the
region. Also, at each unit of time a random number of new particles having
Poisson distribution with parameter λ enter the region independently of the
number of particles already present at time n. Let Xn denote the number of
particles in the region at time n. Calculate the transition matrix of the Markov
chain {Xn : n ≥ 0}.

17. We are given two boxes A and B containing a total of N labeled balls. A
ball is selected at random (all selections being equally likely) at time n from
among the N balls and then a box is selected at random. Box A is selected
with probability p and B with probability q = 1 − p independently of the
ball selected. The selected ball is moved to the selected box, unless the ball is

1 This property was investigated in Waymire (1984) and Glaffig and Waymire (1987) for Ising
models.
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already in it. Consider the Markov evolution of the number Xn of balls in box
A. Calculate its transition matrix.

18. Each cell of a certain organism contains N particles, some of which are of type
A and the others type B. The cell is said to be in state j if it contains exactly
j particles of type A. Daughter cells are formed by cell division as follows:
Each particle replicates itself and a daughter cell inherits N particles chosen
at random from the 2j particles of type A and the 2N − 2j particles of type
B present in the parental cell. Calculate the transition matrix of this Markov
chain.

19. (Length of a Queue) Suppose that items arrive at a shop for repair on a daily
basis but that it takes one day to repair each item. New arrivals are put on a
waiting list for repair. Let An denote the number of arrivals during the nth day.
Let Xn be the length of the waiting list at the end of the nth day. Assume that
A1,A2, . . . is an i.i.d. nonnegative integer-valued sequence of random variables
with a(x) = P(An = x), x = 0, 1, 2, . . . . Assume that An+1 is independent of
X0, . . . , Xn (n ≥ 0). Calculate the transition probabilities for {Xn : n ≥ 0}.

20. (A Renewal Process) A system requires a certain device for its operation that
is subject to failure. Inspections for failure are made at regular points in time,
so that an item that fails during the nth period of time between n − 1 and n is
replaced at time n by a device of the same type having an independent service
life. Let pn denote the probability that a device will fail during the nth period of
its use. Let Xn be the age (in number of periods) of the item in use at time n. A
new item is started at time n = 0, and Xn = 0 if an item has just been replaced
at time n. Calculate the transition matrix of the Markov chain {Xn : n ≥ 0}.



Chapter 8
Markov Processes with General State
Space

The focus of this chapter is that of discrete parameter Markov processes on
a general (measurable) state space S. Some general considerations for the
existence and uniqueness of invariant probabilities are provided.

Consider a discrete parameter stochastic process {Xn}n≥0 with general state space
S equipped with a σ -field S of subsets of S. Here the measurable space (S,S) may
be a countable set and S its power set as in the previous chapter, or more generally,
S may be a metric space and S its (Borel) σ -field generated by the open subsets
of S, for example. Unless stated otherwise, a map f on S into a metric space M is
(implicitly) referred to as measurable (or more explicitly, Borel measurable) if it is
measurable with respect to S on S and the Borel σ -field on M , i.e., if f−1(B) ∈ S
∀ Borel sets B in M . Also, for any family {Yλ : λ ∈ Λ} of random variables on a
probability space (Ω,F , P ), σ {Yλ : λ ∈ Λ} is the σ -field generated by the family
i.e., it is the smallest σ -field (⊂ F) with respect to which Yλ is measurable for each
λ ∈ Λ.

Definition 8.1. A stochastic process {X0, X1, . . . , Xn, . . .} having state space S
equipped with a σ -field S has the Markov property with regular transition prob-
abilities if for each n ≥ 0,

P(Xn+1 ∈ B|σ {X0, X1, . . . , Xn}) = pn(Xn, B), B ∈ S, (8.1)

where for each n,

1. For each B ∈ B, x → pn(x, B) is a measurable function on S.
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2. For each x ∈ S, B → pn(x, B) is a probability measure on S .

A stochastic process having the Markov property is called a Markov process with
transition probabilities pn(x, dy), n ≥ 0. The Markov process is said to be
homogeneous if the transition probabilities pn(x, dy) are the same for all n =
1, 2, . . . , say p(x, dy).

For the most part we will consider Markov processes with homogeneous
transition probabilities, and unless explicitly stated otherwise, by a Markov process
we will mean Markov process with homogeneous conditional probabilities from
here out.

The special case in which there is a σ -finite measure ν on (S,S) and a
nonnegative measurable function p(x, y) on S × S such that

∫
S
p(x, y)ν(dy) = 1

and p(x, B) = ∫
B
p(x, y)ν(dy), for all x ∈ S, occurs often. In this case, (8.7)

and (8.12) below are iterated integrals of p(x0, x1)p(x1, x2) . . . p(xn−1, xn). This
was the case, for example, in Chapter 7, where S is finite or countable and ν is the
counting measure.

The first task is to establish the following construction.

Proposition 8.1. Given an initial distribution μ and a transition probability
p(x, dy), there is a unique probability measure Pμ on the canonical space
(S∞,S⊗∞) with the property (8.1) for the coordinate projections Xn(x) = xn(n =
0, 1, 2, . . . ), where x = (x0, x1, x2, . . . ) ∈ S∞ ≡ S{0,1,2,... }, and S⊗∞ is the
product σ -field; i.e., the smallest σ -field on S∞ for which each of the respective
coordinate projection maps is measurable. Moreover,

Pμ(Xn+1 ∈ Bn+1|σ(X0, . . . , Xn)) = p(Xn, Bn+1), B ∈ S. (8.2)

Proof. To begin, one constructs a collection of probability measures Pμ,n, n =
0, 1, 2, . . . , on the finite dimensional product spaces (Sn,S⊗n), where Sn = S ×
· · · × S, and S⊗n = S ⊗ · · · ⊗ S , (n-fold), to represent the respective distributions
of (X0, X1, . . . , Xn), n = 0, 1, 2 . . . .

To this end, for a bounded S⊗n-measurable function f on Sn, define integrations
on the product spaces iteratively, beginning with the innermost integral (with respect
to p(xn−1, dxn)), keeping all variables except the last one, namely xn, fixed; that is,

∫

S

· · ·
∫

S

f (x0, x1, . . . , xn−1, xn)p(xn−1, dxn) · · ·p(x0, dx1)μ(dx0)

=
∫

S

· · ·
∫

S

f1(x0, x1, . . . , xn−1)p(xn−2, dxn−1) · · ·p(x0, dx1)μ(dx0)

=
∫

S

· · ·
∫

S

f2(x0, x1, . . . , xn−2)p(xn−3, dxn−2) · · ·p(x0, dx1)μ(dx0)

...
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=
∫

S

∫

S

fn−1(x0, x1)p(x0, dx1)μ(dx0)

=
∫

S

fn(x0)μ(dx0), (8.3)

where

f1(x0, x1, . . . , xn−1) =
∫

S

f (x0, x1, . . . , xn−1, xn)p(xn−1, dxn),

f2(x0, x1, . . . , xn−2) =
∫

S

f1(x0, x1, . . . , xn−1)p(xn−2, dxn−1),

and so on. To justify this integration, first observe that y → f (x0, . . . , xn−1, y) is
S-measurable for any fixed (x0, . . . , xn−1) ∈ Sn; namely, it is clear for indicators
of measurable rectangles C = B0 × · · · × Bn, (Bi ∈ S, i = 0, 1, . . . , n), therefore,
by the π − λ theorem for all C ∈ S⊗n. Since every bounded measurable function
is a pointwise (uniform) limit of a sequence of simple functions, the measurability
of y → f (x0, . . . , xn−1, y) follows for all bounded S⊗n-measurable functions f
on Sn. The S⊗n-measurability of the map (x0, . . . , xn−1) → f1(x0, . . . , xn−1) =∫
S
f (x0, x1, . . . , xn−1, y)p(xn−1, dy) follows.
Now, to define Pμ,n, take f = 1C,C ∈ S⊗n+1. Writing Cx0,...,xn−1 = {y ∈ S :

(x0, . . . , xn−1, y) ∈ C}, and f1(x0, x1, . . . , xn−1) = p(xn−1, Cx0,...,xn−1), define

Pμ,0 = μ, Pμ,1(C) =
∫

S

∫

S

1Cx0 (x1)p(x0, dx1)μ(dx0) C ∈ S⊗2. (8.4)

More generally, define for n ≥ 2

Pμ,n(C) =
∫

S
· · ·

∫

S
1Cx0,...,xn−1

(xn)p(xn−1, dxn)p(xn−2, dxn−1) · · ·p(x0, dx1)μ(dx0)

=
∫

S
· · ·

∫

S
p(xn−1, Cx0,...,xn−1)p(xn−2, dxn−1) · · ·p(x0, dx1)μ(dx0). (8.5)

In particular, for a measurable rectangle C = B0 × · · · × Bn, (8.5) reduces to

Pμ,1(B0 × B1) =
∫

B0

p(x0, B1)μ(dx0),

and

Pμ,n(B0 × · · · × Bn) =
∫

B0

· · ·
∫

Bn−1

p(xn−1, Bn)p(xn−2, dxn−1) · · ·p(x0, dx1)μ(dx0).
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Finite additivity of Pμ,n follows by writing 1C = ∑m
j=1 1Cj for disjoint Cj ∈ S⊗n,

and countable additivity then follows by the monotone convergence theorem. This
completes the construction of the finite dimensional distributions. It is simple to
check that this collection of probability measures is consistent in the sense of the
Kolmogorov existence theorem.1 Thus, by the Kolmogorov existence theorem

in the case that S is also a Borel subset of a Polish space or, more generally
by Tulcea’s theorem2 for an arbitrary measurable space (S,S), one arrives at a
probability measure Pμ on (S∞,S⊗∞) such that the distribution of the projection
(X0, X1, . . . , Xn) : S∞ → Sn+1 is Pμ,n, n = 0, 1, 2, . . . . For this, let Bn+1 ∈ S . If
C ∈ S⊗(n+1), then it follows from (8.5) that

Pμ,n+1(C × Bn+1)

=
∫

S
· · ·

∫

S
1C(x0, . . . , xn)1Bn+1(xn+1)Pμ,n+1(dx0 × · · · × dxn+1)

=
∫

C×S
p(xn, Bn+1)Pμ,n(dx0 × · · · × dxn). (8.6)

If one takes Bn+1 = S, then the consistency is checked: Pμ,n+1(C×S) = Pμ,n(C).
This completes the construction of Pμ on (S∞,S⊗∞). Finally, note that (8.6) also
expresses the Markov property in the form:

Pμ(Xn+1 ∈ Bn+1|σ(X0, . . . , Xn)) = p(Xn, Bn+1). �
With the construction carried out in the proof of Proposition 8.1, given a

transition probability p(x, dy) and an initial distribution μ(dx), one may make the
following definition.

Definition 8.2. A stochastic process {X0, X1, . . . } on an arbitrary probability space
(Ω,F , P ) is Markov with transition probability p(x, dy) and initial distribution
μ(dx) if its distribution is Pμ on (S∞,S⊗∞). If μ = δx , then we write Px for Pδx .

Note: To avoid a clutter of symbols, we will often abuse notation in probabilities
associated with Markov processes X = {Xn : n = 0, 1, . . . } defined on a (possibly
non-canonical probability space) (Ω,F , P ) as Pμ(X ∈ B) to indicate that X0 has
distribution μ. That is, we may use the expression for the corresponding probability
in canonical space, where Xn is the nth coordinate projection on S∞.

Proposition 8.2. If {Xn}∞n≥0 has the Markov property, then one may obtain the
distribution at m ≥ 1 time points into the future inductively for B1, B2, . . . , Bm ∈
S , as

P(Xn+1 ∈ B1, . . . , Xn+m ∈ Bm|σ {X0, X1, . . . , Xn})

1 See BCPT p. 236 or Billingsley (1968), p. 235.
2 see BCPT p. 168 or Billingsley (1986), pp. 510–511.
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= P(Xn+1 ∈ B1, . . . , Xn+m ∈ Bm|σ {Xn})
=
∫

B1

· · ·
∫

Bm

p(xm−1, dxm) . . . p(x1, dx2)p(Xn, dx1)

= Px(X1 ∈ B1, . . . , Xm ∈ Bm)|x=Xn, (8.7)

where the integration is an iterated integral.

Proof. The first equality follows from the Markov property. The second follows
from (8.6), as does the last. To prove this in detail, simply condition the left hand side
of (8.7) on the larger σ -field σ(X0, . . . , Xn+m−1) and use the smoothing property
of conditional expectations. Since

∫

Bm

p(xm−1, dxm) = p(xm−1, Bm),

the first integration yields

f1(Xn+1, . . . , Xn+m−1) = 1[Xn+1 ∈ B1, . . . , Xn+m−1 ∈ Bm−1] · p(Xm−1, Bm),

in the notation introduced earlier. That is, the left side of (8.7) equals

E(f1(Xn+1, . . . , Xn+m−1)|σ(X0, . . . , Xn)). (8.8)

Next taking the conditional expectation of (8.8), given σ(X0, . . . , Xn+m−2), one has

E(f2(Xn+1, . . . , Xn+m−2)|σ(X0, . . . , Xn))

= 1[Xn+1 ∈ B1, . . . , Xn+m−2 ∈ Bm−2]
∫

Bm−1

p(Xm−1, Bm)p(Xm−2, dxm−1).

Continuing in this way, the probability is ultimately given by a function of Xn of
the form:

P(Xn+m ∈ Bm, . . . , Xn+1 ∈ B1|σ {X0, X1, . . . , Xn})
= E(fm−1(Xn+1)|σ(X0, . . . , Xn)

= Efm−1(Xn+1|σ(Xn)) =
∫

B1

fm−1(x1)p(Xn, dx1). (8.9)

�
Observe that taking Bm = B ∈ S , B1 = B2 = · · · = Bm−1 = S in (8.7), one has

P(Xn+m ∈ B|σ {X0, . . . , Xn}) = p(m)(Xn, B), (8.10)

where the m-step transition probabilities are recursively given by
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p(m+1)(x, B) =
∫

S

p(m)(y, B)p(x, dy), B ∈ S, x ∈ S, (8.11)

with p(1)(x, B) ≡ p(x, B). Notice that by taking successive conditional expecta-
tions of 1[X0 ∈ B0, . . . , Xn−1 ∈ Bn−1, Xn ∈ Bn] given σ(X0, . . . , Xn−1), σ (X0,

. . . , Xn−2), . . . , one obtains

Pμ(X0 ∈ B0, . . . , Xn−1 ∈ Bn−1, Xn ∈ Bn)

=
∫

B0

∫

B1

· · ·
∫

Bn

p(xn−1, dxn)p(xn−2, dxn−1) · · ·p(x0, dx1)μ(dx0)

= Pμ,n(B0 × B1 × · · · × Bn),

where μ is the initial distribution of the process as defined by

μ(B) = P(X0 ∈ B), B ∈ S. (8.12)

The following is another equivalent version of the Markov property that is
commonly used.

Proposition 8.3. Let {Xn}n≥1 be a Markov process with a transition probability
p(x, dy) and some initial distribution μ. Then the conditional distribution of the
after-n process defined by X+

n := (Xn,Xn+1, . . . ), given σ {X0, . . . , Xn}, is PXn .
That is, it equals Px on the event [Xn = x] ⊂ Ω .

Proof. In view of (8.7), one has for finite dimensional events of the form C =
B0 × B1 × Bm × S∞, Bi ∈ S, 0 ≤ i ≤ m, that P(X+

n ∈ C|σ {X0, . . . , Xn}) =
PXn((X0, X1, . . . ) ∈ C). Now observe that the collection of sets C ∈ S⊗∞
such that this equation holds is a λ-system, which contains a π -system of finite
dimensional events. The assertion thus follows from an application of the π − λ

theorem. �
Situations in which there is an initial probability π for the Markov process which

is invariant under the evolution are of particular interest, especially because when
unique it represents the long term behavior of the process regardless of how it is
initiated.

Definition 8.3. A probability π on S is said to be an invariant probability or
steady state distribution for a Markov process {Xn}n≥0 with transition probabilities
p(x, dy) if

∫

S

p(x, B)π(dx) = π(B) for all B ∈ S. (8.13)

Notice that if π is an invariant initial probability for {Xn}n≥0, i.e., X0 has the
invariant distribution π , then the left side of (8.13) is P(X1 ∈ B). One has that
P(Xn ∈ B) = π(B), B ∈ S , that is,



8 General State Space 113

P(Xn+1 ∈ B) =
∫

S

p(x, B)P (Xn ∈ dx) =
∫

S

p(x, B)π(dx) = π(B), (8.14)

which for n = 0 is true by definition, and the general case follows by the Markov
property and induction. In addition to questions of

(i) Existence
(ii) Uniqueness

of invariant probabilities, one also seeks

(iii) Basins of Attraction

i.e., initial distributions under which convergence to a given invariant probability
will hold, and

(iv) Rates of Convergence

to name a few of the central topics of the theory. In view of (8.7),

P(Xn+1 ∈ B1, . . . , Xn+m ∈ Bm) = P(X1 ∈ B1, . . . , Xm ∈ Bm), Bi ∈ S.
(8.15)

In particular, in this context the distribution of the after-n process X+
n ≡ {Xn+m :

m = 0, 1, 2, . . .} coincides with that of X+
0 = {Xm : m = 0, 1, 2, . . .} for each

n = 1, 2, . . ., a property referred to as stationarity of the process {X0, X1, . . . },
as discussed in the earlier chapters of the text. From this perspective, theorems
providing

(v) Law of Averages

and

(vi) Fluctuation Law

in the forms of a strong law of large numbers (ergodic theorem) and a central
limit theorem for averages of the form 1

n

∑n−1
j=0 f (Xj ) in the presence of a unique

invariant initial distributions are also essential to a complete theory.
For the next definition and elsewhere in the book, B(S) denotes the set of all real-

valued bounded measurable functions on S, equipped with the sup-norm ‖f ‖ =
supx∈S |f (x)|.
Definition 8.4. Given a transition probability p(x, dy) on (S,S), the transition
operator T is the map on B(S) (into B(S)) defined by

Tf (x) =
∫

S

f (y)p(x, dy), f ∈ B(S). (8.16)

Note that the measurability of x → p(x, B) for every B ∈ S implies the
measurability of Tf (Exercise 1). The transition operator is a positive linear
contraction on B(S) such that T 1 = 1, where 1 ∈ B(S) is the constant function
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on S with constant numerical value one (Exercise 1). In particular, given any such
transition operator, one may recover p(x, B) = T 1B(x), x ∈ S,B ∈ S.

Note that for a Markov process {Xn : n = 0, 1, 2, . . . } with transition probability
p(x, dy), one has Tf (x) = E(f (X1)|X0 = x) ≡ E(f (X1)|σ(X0))|X0=x , which
may be expressed as Exf (X1). In fact, by the Markov property and induction,

Exf (Xn+1) = ExEx[f (Xn+1) | σ(X0, . . . , Xn)]
= ExEXnf (Xn+1)

= ExTf (Xn)

= ExE(Tf (Xn)|σ(Xn−1))

= ExT Tf (Xn−1) = ExT
2f (Xn−1) = · · · = ET nf (X1)

= T n+1f (x), x ∈ S, n ≥ 0,

i.e., T n is the transition operator defined by the n-step transition probability
p(n)(x, dy). The relation (8.13) implies (and is, therefore, equivalent to)

∫

S

(Tf )(x)π(dx) =
∫

S

f (x)π(dx) for all f ∈ B(S). (8.17)

Thus (8.17) also defines the convenient notation “π(dy) = ∫
S
p(x, dy)π(dx).” Just

as (8.13) implies (8.17), (8.14) implies

∫

S

(T nf )(x)π(dx) =
∫

S

f (x)π(dx) for all f ∈ B(S), for all n ≥ 1. (8.18)

One approach to obtain invariant probabilities is by consideration of long time
steady state distributions. In particular, one might anticipate that if for some x ∈
S, the distribution p(n)(x, dy) of the state Xn converges weakly as n → ∞ to
some limit probability distribution πx, then πx should be invariant under continued
evolution. However, as the following example shows, one must be careful.

Example 1 (Liggett). Let S = {0, 1, 1
2 ,

2
3 ,

3
4 , . . . ,

m
m+1 , . . .}, and let S be the power

set of S. Then S is a metric space with the usual distance on the line, d(x, y) =
|x − y|, and S is the Borel σ -field. Fix 0 < θ ≤ 1 and define

p
(

0,
{

1
2

})
= θ, p

(
0,
{

2
3

})
= 1 − θ

p
(
m
m+1 ,

{
m+1
m+2

})
= θ, p

(
m
m+1 ,

{
m+2
m+3

})
= 1 − θ, m = 1, 2, . . . .

p(1, {0}) = θ, p
(

1,
{

1
2

})
= 1 − θ.

Then p(n)(x, dy) converges weakly to δ{1}, but this is clearly not an invariant
probability.
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Note that weak convergence requires convergence of the sequences of integrals∫
S
f (y)p(n+1)(x, dy) = T n+1f (x) = T n(Tf )(x), for all f ∈ Cb(S), as n → ∞;

recall Cb(S) ⊂ B(S) denotes the subset of all bounded continuous functions on the
metric space S. As usual whenever S is a metric space, we take S to be the Borel
σ -field on S for the uniform norm on Cb(S).

Definition 8.5. A transition probability p(x, dy) on a metric space S is said to be
Feller continuous, or weakly Feller continuous, if for every f ∈ Cb(S), Tf ∈
Cb(S). In this case one also says p(x, dy) has the (weak) Feller property.

Observe that Feller continuity of p(x, dy) means that the map x → p(x, dy), on
S into the set P(S) of all probability measures on (S,S), is weakly continuous.
Moreover, T is a positive, linear contraction operator on Cb(S) with T 1 = 1.
Conversely, if S is a compact metric space, then any such operator on Cb(S)
uniquely determines Feller transition probabilities p(x, dy) by applying the Riesz
Representation Theorem3 from analysis to the bounded linear functional f →
Tf (x), f ∈ Cb(S), for each x ∈ S (Exercise 6).

Notice that since Cb(S) is measure-determining,4 the condition (8.17) defining
an invariant probability may be restricted to f ∈ Cb(S).

Another obstacle to this approach to the determination of invariant probabilities
is evident in the simple two-state example p01 = p10 = 1, p00 = p11 = 0. In this
case, π0 = π1 = 1/2 is the unique invariant probability, but p(n)01 oscillates between
1 and 0 as a function of n. However, these oscillations can be averaged out by
considerations of 1

2n+1

∑2n
r=0 p

(r)
0j → 1/2, as n→ ∞, for j = 0, 1. So this example

suggests that time averaging may be required, and Liggett’s Example 1 shows that
the hypothesis of Feller continuity in Proposition 8.4 cannot in general be dispensed
with in the weak convergence approach to invariant probabilities (Exercise 5). From
a probabilistic perspective, note also that

1

m

m−1∑

r=0

p(r)(x, B) = 1

m

m−1∑

r=0

Ex1[Xr ∈ B] = Ex

(∑m−1
r=0 1[Xr ∈ B]

m

)

(8.19)

is the expected proportion of visits to the set B ∈ S in time 0 tom−1, starting from
x.

Proposition 8.4. Suppose S is a metric space and p(x, dy) is a Feller continuous
transition probability on (S,S). (a) If for some x ∈ S there is a sequence of integers
1 ≤ n1 < n2 < . . . such that, as k → ∞,

1

nk

nk−1∑

r=0

p(r)(x, dy) converges weakly to πx(dy) (8.20)

3 BCPT p 237.
4 See BCPT, p. 11.
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for some probability measure πx , then πx is an invariant for p(x, dy).
(b) If, for some sequence 1 ≤ n1 < n2 . . . , (8.20) holds for every x ∈ S with the

same limit πx = π for all x, then π is the unique invariant probability.

Proof.

(a) The relation (8.20) says that

1

nk

nk−1∑

r=0

(T rf )(x) −→
∫

S

f (y)πx(dy) for all f ∈ Cb(S). (8.21)

Replacing f by Tf (which belongs to Cb(S) by hypothesis), one gets

1

nk

nk∑

r=1

T rf (x) −→
∫

S

Tf (y)πx(dy) for all f ∈ Cb(S). (8.22)

But the difference between the left sides of (8.21) and (8.22) equals in
magnitude |(T nkf )(x) − f (x)|/nk ≤ 2 sup{|f (x)| : x ∈ S}/nk , which goes
to zero as k → ∞. Hence the limits in (8.21) and (8.22) are the same. Thus,
since Cb(S) is measure-determining, one has πx(dz) = ∫

S
p(y, dz)πx(dy); see

Lemma 1 below.
(b) By (a), π is invariant. Suppose that, under the hypothesis of part (b), π ′ is

another invariant probability, and then integrating the two sides of (8.21) with
respect to π ′, one obtains

1

nk

nk−1∑

r=0

∫

S

(T rf )(x)π ′(dx) −→
∫

S

[∫

S

f (y)π(dy)

]

π ′(dx). (8.23)

By invariance of π ′, the left side equals
∫
f dπ ′ (see (8.18)), while the right side

is
∫
f dπ . Thus

∫
f dπ ′ = ∫

f dπ for every f ∈ Cb(S), implying π ′ = π since
Cb(S) is measure-determining. �

Lemma 1. If Q1 and Q2 are probability measures on the Borel σ -field of a metric
space S such that

∫
S
f dQ1 = ∫

S
f dQ2 for all bounded continuous real-valued

functions f on S, thenQ1 = Q2.

Proof. Let C be the collection of Borel sets B such that Q1(B) = Q2(B). Then
it is simple to check that C is a σ -field. Since B the Borel σ -field is the smallest
σ -field containing all closed sets, it is sufficient to show that C contains all closed
sets. For this, it is enough to show that for each (closed) F ⊂ S, there exists a
sequence of nonnegative functions {fn} ⊂ Cb(S) such that fn ↓ 1F as n ↑ ∞.
Since F is closed, one may view x ∈ F in terms of the equivalent condition that
ρ(x, F ) = 0, where ρ(x, F ) := inf{ρ(x, y) : y ∈ F }. Let hn(r) = 1 − nr for
0 ≤ r ≤ 1/n, hn(r) = 0 for r ≥ 1/n. Then take fn(x) = hn(ρ(x, F )). In
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particular, 1F (x) = limn fn(x), x ∈ S, and Lebesgue’s monotone convergence
theorem applies to show F ∈ C. �

As an immediate corollary, one gets the following corollary:

Corollary 8.5. If a transition probability p(x, dy) on a metric space has the (weak)
Feller property and there exists a Caesaro limit in the weak topology, namely,

lim
n→∞

1

n

n−1∑

r=0

p(r)(x, dy) = π(dy) (8.24)

such that the probability measure π does not depend on x, then π is the unique
invariant probability.

Many important Markov processes do not admit an invariant probability, such as
the case, for example, of a random walk on R

k with an arbitrary step size distribution
Q �= δ{0} (Exercise 8). There is one case, namely that of a compact state space,
where every Feller transition probability admits at least one invariant probability.

Proposition 8.6. Let S be a compact metric space and S its Borel σ -field. If
p(x, dy) is a Feller transition probability on (S,S), then it admits an invariant
probability.

Proof. Fix x ∈ S and consider the sequence of probability measures μn, n ≥ 1,
given by μn(B) = (1/n)

∑n
m=1 p

(m)(x, B), B ∈ S . Since P(S) is a weakly
compact metric space,5 there exists a subsequence {μnk : k = 1, 2, . . . }, which
converges weakly to a probability measure πx , say. By Proposition 8.4, πx is
invariant. �
As a simple corollary, we get the following result for finite Markov chains.

Corollary 8.7. A Markov chain on a finite state space S has at least one invariant
probability.

Proof. This follows from Proposition 8.6 by making S a compact metric space with
the metric d(x, y) = 1 if x �= y, d(x, x) = 0. Then S ≡ B(S) is the class of all
subsets of S, and every real-valued function on S is continuous. �
Remark 8.1. A direct proof of Corollary 8.7, which does not use Proposition 8.6
will be given later (see Corollary13.8 in Chapter 13).

The next approach to invariant probabilities is based on symmetries. For the
definition below, consider a stationary Markov process {Xn}n≥0 on a state space
(S,S) with transition probability p(x, dy). Since the distribution of such a process
is invariant under time shift, i.e., {Xn}n≥0 and {Xn}n≥k have the same distribution,
one may use Kolmogorov’s existence theorem to construct a stationary Markov

5 See BCPT, p.142.
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process {Zn}−∞<n<∞ having the same transition probability p and the same
invariant probability π .

Definition 8.6. A Markov process with a transition probability p and an invariant
probability π is said to be time-reversible if the stationary Markov process
{Zn}−∞<n<∞, with this transition probability and this invariant distribution, has
the same distribution as the time-reversed process {Yn}−∞<n<∞, where Yn := Z−n
(−∞ < n <∞). We refer to {Zn}−∞<n<∞ as the double-sided version.

In the context of the “movie metaphor,” the statistics of a stationary data stream does
not depend on when viewing begins, while a time-reversible data stream sequence
is the same whether it is viewed forward or backward.

For the propositions below, assume that the transition probability p(x, dy) has
a density p(x, y) with respect to a σ -finite measure μ on (S,S), with (x, y) →
p(x, y) measurable (on (S × S,S ⊗ S) into ([0,∞),B[0,∞))).

Proposition 8.8 (Detailed Balance Condition). Let π(dy) be a probability measure
on (S,S) with a density π(y) with respect to μ. (a) If

π(x)p(x, y) = π(y)p(y, x) a.e. (μ× μ), (8.25)

then π is a time-reversible invariant probability for the Markov process. (b) For a
Markov process with transition probability density p(x, y) and invariant probability
density π(y), (8.25) is necessary for the process to be time-reversible.

Proof.

(a) Let p and π satisfy (8.25). Then for every Borel measurable f ,

∫
S Tf (x)π(dx) = ∫

S Tf (x)π(x)μ(dx) = ∫
S

(∫
S f (y)p(x, y)μ(dy)

)
π(x)μ(dx)

= ∫
S

∫
S f (y)p(x, y)π(x)μ(dy)μ(dx)

= ∫
S

(∫
S f (y)p(y, x)μ(dx)

)
π(y)μ(dy)

= ∫
S f (y)π(y)μ(dy) = ∫

S f (y)π(dy),

implying π is invariant. Let {Xn}n≥0 be a stationary Markov process with
transition probability p and invariant initial distribution π . Then, by the Markov
property, the joint density of (Xn,Xn+1, . . . , Xn+k), with respect to μ×· · ·×μ,
at (y0, y1, . . . , yk) ∈ Sk+1 is

g(y0, y1, . . . , yk) := π(y0)p(y0, y1)p(y1, y2) . . . p(yk−1, yk), (8.26)

while the joint density of (Xn+k, Xn+k−1, . . . , Xn), at the same point
(y0, y1, . . . , yk) ∈ Sk+1, is
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h(y0, y1, . . . , yk) := g(yk, yk−1, . . . , y1, y0)

= π(yk)p(yk, yk−1)p(yk−1, yk−2) · · ·p(y1, y0)

= π(yk−1)p(yk−1, yk)p(yk−1, yk−2) · · ·p(y1, y0)

= p(yk−1, yk)π(yk−1)p(yk−1, yk−2) · · ·p(y1, y0)

= p(yk−1, yk)π(yk−2)p(yk−2, yk−1) · · ·p(y1, y0)
...

= p(yk−1, yk)p(yk−2, yk−1) · · ·p(y1, y2)π(y1)p(y1, y0)

= p(yk−1, yk)p(yk−2, yk−1) · · ·p(y1, y2)π(y0)p(y0, y1)

= g(y0, y1, . . . , yk).

Since this is true for all k ≥ 1, the finite dimensional distributions of the double-
sided version {Zn}−∞<n<∞ and {Yn}−∞<n<∞ with Yn := Z−n (−∞ < n <

∞), described in Definition 8.6, coincide. Thus, using the π − λ theorem,6 it
follows that the process {Zn}−∞<n<∞ and its time-reversal {Yn}−∞<n<∞ have
the same distribution.

(b) For the stationary Markov process {Zn}−∞<n<∞ to be time-reversible, it is
necessary that the distribution of (Z0, Z1) is the same as that of (Y0, Y1) ≡
(Z0, Z−1). But the latter has the same distribution as (Z1, Z0). The left side
of (8.25) is the p.d.f. of (Z0, Z1) at (x, y), while the right side is the p.d.f. of
(Z1, Z0) at (x, y). Thus for time-reversibility, (8.25) must hold. �

If π is an invariant probability, then by Jensen’s inequality,

∫

S

(

∫

S

|f (y)|p(x, dy))2π(dx) ≤
∫

S

∫

S

f 2(y)p(x, dy)π(dx) =
∫

S

f 2(y)π(dy),

so that one may extend the transition operator T to L2(S, π) ⊇ B(S).We will now
show that, in analytical terms, time-reversibility of a Markov process means that the
transition operator T is self-adjoint on L2(S, π), i.e.,

〈Tf, g〉 = 〈f, T g〉 for all f, g ∈ L2(S, π). (8.27)

Here 〈 〉 is the inner product on the Hilbert space L2(S, π),

〈g, h〉 =
∫

S

g(y)h(y)π(dy).

We will denote by ‖g‖ the L2–norm: ‖g‖2 = 〈g, g〉.
Proposition 8.9. Let π be an invariant probability of a Markov process. (a) The
transition operator T is a contraction on L2(S, π). (b) If π is a time-reversible
invariant probability, then T is self-adjoint.

6 See BCPT, p. 4.
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Proof.
(a) This is proved in (8.28).
(b) Let f, g ∈ L2(S, π), and assume π is time-reversible in the sense of

Definition 8.6. Then, conditioning on X0, one has

〈Tf, g〉 =
∫

S

(∫

S

f (y)p(x, dy)

)

g(x)μ(dx)

= E
(
E(f (X1)|σ(X0))g(X0)

) = Ef (X1)g(X0)

= Ef (X0)g(X1) = 〈f, T g〉. �
Recall in the case of finite S that, given an initial distribution μ for X0, the

distribution μ1 of X1 may be obtained by the transformation μ → μ1 = p′μ,
where p′ is the transpose matrix, see (7.12). More generally, one may define an
adjoint operator as follows.

Definition 8.7. Given a transition probability p(x, dy) on (S,S), the adjoint linear
operator T ∗ is defined on the linear space M(S) of all finite signed measures on
(S,S) by

(T ∗μ)(B) =
∫

S

p(x, B)μ(dx) (B ∈ S, μ ∈ M(S)). (8.28)

In general, if μ is a probability measure, then T ∗μ is the distribution of X1 where
X0 has distribution μ. In particular, π is an invariant probability if and only if

T ∗π = π. (8.29)

To see the connection between the L2(S, π)-adjoint of T and this more general
operator, then, irrespective of (8.27), identify f ∈ L2(S, π)with the signed measure
f dπ , and note that T ∗(f dπ)(dy) is given by

∫

S

g(y)T ∗(f dπ)(dy) =
∫

S

∫

S

g(y)p(x, dy)f (x)π(dx) =
∫

S

T g(x)f (x)π(dx)

= 〈T g, f 〉 = 〈g, T ∗f 〉, g ∈ L2(S, π), (8.30)

where, by an obvious abuse of notation, T ∗f ∈ L2(S, π) is given by the L2(S, π)-
adjoint operator to T . In the interpretation of T ∗ as an operator on L2(S, π), 1 is an
eigenvalue of T ∗ with the constant eigenvector f (·) ≡ 1. For the adjoint operator
on M(S), this eigenvector corresponds to the invariant measure π(dy) = 1 ·π(dy).

Define T ∗nμ = T ∗(T ∗n−1μ) iteratively on M(S). In the case μ is a probability
measure, and X0 has distribution μ, T ∗μ is the distribution of X1, T ∗2μ is the
distribution of X2, . . . , T

∗nμ is the distribution of Xn. Thus, whereas iterates of the
transition operator T govern the “evolution of states” via T nf (x) = Exf (Xn), the
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iterates of the adjoint T ∗ govern the “evolution of probability distributions” of the
Markov process.

Now, T ∗n is a linear operator on M(S), as is T n on Cb(S). The term adjoint
operator given to T ∗ (or, T ∗n) is more fully justified in terms of the basic identities

∫

S

Tf (x)μ(dx) =
∫

S

f (x)(T ∗μ)(dx),
∫

S

T nf (x)μ(dx) =
∫

S

f (x)(T ∗nμ)(dx).
(8.31)

The first equality in (8.31) follows from (8.28), first for simple functions f and then
by approximating f ∈ B(S) uniformly by simple functions. The second equality in
(8.31) follows by induction on n. When μ is a probability measure, then the second
equality says Eμ[E(f (Xn) | X0)] = Eμf (Xn), with X0 having distribution μ.

Example 2. S = {0, 1}, p =
[
a 1 − a

1 − b b

]

, 0 ≤ a, b ≤ 1. S is a metric space

with the discrete metric d(0, 0) = d(1, 1) = 0, d(1, 0) = d(0, 1) = 1, S is the
power set, and every function f : S → R is a bounded, continuous function. By
the computation at the end of the previous chapter, one has for a + b < 2, with
a + b �= 0,

lim
n→∞ p(n) =

[
1−b

2−a−b
1−a

2−a−b
1−b

2−a−b
1−a

2−a−b

]

.

In particular, the invariant probability (vector) π = (π0, π1)
′ is given by

π0 = limn→∞ p(n)i0 = 1−b
2−a−b

π1 = limn→∞ p(n)i1 = 1−a
2−a−b , i = 0, 1.

Alternatively, one may determine π0, π1 from time-reversibility via the detailed
balance and total probability one equations. In this case one could then use the
L2(S, π) theory for self-adjoint operators to obtain convergence (Exercise 7).

In the cases a + b = 2 and a + b = 0, one has p =
[

1 0
0 1

]

and p =
[

0 1
1 0

]

,

respectively. In the former case every probability on S = {0, 1} is an invariant
probability, and hence there are infinitely many invariant probabilities. In the latter
case there is a unique invariant probability given by π0 = π1 = 1

2 ; but pn does not
have a limit, although (8.24) holds.

Example 3. Suppose S = R with Borel σ -field S . Let ε1, ε2, . . . be an i.i.d.
sequence of standard normal random variables and let b ∈ R. Consider the sequence
of random variables

Xn+1 = bXn + εn+1, n = 0, 1, 2, . . . .

Iterating the recursion, one has that



122 8 General State Space

Xn+1 = bn+1X0 +
n∑

j=0

bj εn+1−j .

In particular, the m-step transition probability p(m)(x, dy) is given by the Gaussian

distribution with mean bmx and variance
∑m−1
j=0 b

2j = b2m−1
b2−1

if |b| �= 1. In the

case b = ±1, p(m)(x, dy) is Gaussian with mean (±1)mx and variance m. In any
case p(x, dy) clearly has the (weak) Feller property, and in particular, if |b| <
1, then p(m)(x, dy) converges (weakly) as m → ∞ to the invariant distribution

π(dy) = 1√
2π(1−b2)−1

e− 1−b2
2 y2

dy, y ∈ S = (−∞,∞), possessing a Gaussian

density with respect to Lebesgue measure. Note that for |b| < 1, if X is N(0, σ 2)

and Z is standard normal and independent of X, then X =dist bX + Z (equality
in distribution) if and only if σ 2 = (1 − b2)−1. One may check that π is also a
time-reversible invariant probability (Exercise 13).

Example 4 (Random Walk on a Finite Graph). A finite graph consists of a finite set
S = {v1, . . . , vk} of k vertices together with a relation E ⊂ {1, . . . , k} × {1, . . . , k},
with the property that (i, j) ∈ E if and only if (j, i) ∈ E , defining edges as
follows: there is an edge eij connecting vertices vi and vj if and only if (i, j) ∈ E ,
denoted by means of the obvious abuse of notation eij ∈ E . The graph is said to
be connected if for any pair of distinct vertices vi, vj there is a path of m ≥ 1
edges eii1 , ei1i2 , . . . eim−1im with im = j . For a fixed vertex vi , the integer di :=
card{j : eij ∈ E} is called the degree of vi . A random walk on a finite connected
graph (S, E) may be defined as a Markov chain with state space S and transition
probabilities given by pvi,vj = 1/di if and only if eij ∈ E , else pvi,vj = 0. It
is straightforward to check that up to normalization, the vertex degrees define the
unique time-reversible invariant probability for a random walk on a finite connected
graph (see Exercise 12).

An approach to the construction of invariant probabilities, similar to that in
Proposition 8.4 but which is valid without the Feller property, is given below.

Proposition 8.10. Let p(x, dy) be a transition probability on a state space (S,S).
a If for some x ∈ S there is a sequence of integers 1 ≤ n1 < n2 < · · · such that, as
k → ∞,

1

nk

nk−1∑

r=0

p(r)(x, B) −→ πx(B) for all B ∈ S (8.32)

for some probability measure πx on (S,S), then πx is an invariant probability
for p.

b If, for some sequence {nk : k ≥ 1}, (8.32) holds for every x ∈ S with the same
limit πx = π for all x, then π is the unique invariant probability for p.
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Proof. The proof is essentially the same as that of Proposition 8.4, with Cb(S)
replaced by B(S)—the space of real-valued bounded measurable functions on S.
Note that (8.32) implies

1

nk

nk−1∑

r=0

(T rf )(x) −→
∫

S

f (y)πx(dy) for all f ∈ B(S). �
To close this chapter, let us note that a large class of examples of Markov chains

occur as functions of a given, perhaps more primitive Markov chain. Of course, one-
to-one functions are simply relabeling of the states and do not affect the dependence
structure. A more general class of functions can be obtained as follows7.

Definition 8.8. A measurable function ϕ on (S, S) to a measurable space (S′, S ′), is
said to be an invariant function of a group G of transformations on S if (i) ϕ(gx) =
ϕ(x) for all g ∈ G, x ∈ S. If, in addition, (ii) every measurable invariant function is
a measurable function of ϕ, then ϕ is said to be a maximal invariant.

Example 5.

1. For each x ∈ S, the orbit of x under G is defined by o(x) = {gx : g ∈ G}. Note
that each invariant function is constant on orbits. Let S and S′ be metric spaces
and ϕ : S → S′ a measurable surjection such that (a) ϕ is constant on orbits,
(b) ϕ(x) �= ϕ(y) if o(x) �= o(y), i.e., ϕ is a relabeling of o(x), and S′ may be
viewed as a relabeling of the space of orbits. Then ϕ is a maximal invariant since
(i) invariance is obvious by (a), and (ii) if ϕ(x) = ϕ(y), then ρ(x) = ρ(y) for
any invariant function ρ by (b), i.e., ρ is a function of ϕ.

2. ϕ(x) = |x| is a maximal invariant of the reflection group {e,−e}, where ex =
x, (−e)x = −x, x ∈ S = R, S′ = [0,∞).

Proposition 8.11. Suppose X = {Xn} is a Markov process on S whose transition
probabilities are invariant under the group G of transformations from S to S’, i.e.,

p(gx, g(B)) = p(x, B), ∀ x ∈ S, g ∈ G,B ∈ S.

If ϕ is a maximal invariant, then {ϕ(Xn)} is Markov.

Proof. Take conditional expectations with respect to the larger σ(Xm : m ≤ n),
followed by the smaller σ(ϕ(Xm) : m ≤ n), n = 1, 2, . . . , to get

P(ϕ(Xn+1) ∈ B|ϕ(Xm),m ≤ n) = E{p(Xn, ϕ−1(B))|ϕ(Xm),m ≤ n}. (8.33)

By invariance of ϕ, ϕ ◦ g = ϕ, and one has from (i),

7 The continuous parameter version of this result is given in Bhattacharya and Waymire (1990,
2009), pp. 502–503, for non-injective functions of a Markov process. Also see Bhattacharya and
Waymire (1990).
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p(x, ϕ−1(B)) = p(g−1x, g−1(ϕ−1(B)))

= p(g−1x, ϕ−1(B)). (8.34)

That is, the function x → p(x, ϕ−1(B)) is invariant. By (ii), therefore, it is a
function q(ϕ(x), B), say, of ϕ. Thus,

P(ϕ(Xn+1) ∈ B|ϕ(Xm),m ≤ n) = E{p(Xn, ϕ−1(B))|ϕ(Xm),m ≤ n}
= E{q(ϕ(Xn), B)|ϕ(Xm),m ≤ n}
= q(ϕ(Xn), B). (8.35)

Thus, {ϕ(Xn)} is Markov with one-step transition probabilities q(ϕ(x), B). �

Example 6 (Reflecting Simple Symmetric Random Walk). Consider the unrestricted
simple symmetric random walk on Z starting at the origin, defined by Sn :=∑n
j=1Xj , n ≥ 1, S0 = 0, where the displacements Xn : n ≥ 1 are i.i.d. ±1-

valued symmetric Bernoulli random variables. Then, since pij = 1
2δi−1(j) +

1
2δi+1(j), i, j ∈ Z is invariant under the reflection group G = {e,−e} where
e(i) = i, i ∈ Z, it follows that {Rn := |Sn|}n is a Markov chain. (Also see
Example 11.1.)

Exercises

1. Prove that for a transition probability p the measurability x → p(x, B)

for all B ∈ S implies that x → Tf (x) is measurable for all f ∈ B(S). Show
that (i) T is a linear operator on B(S), (ii) ||Tf || ≤ ||f ||, f ∈ B(S), ||f || =
supx∈S |f (x)|, (iii)T 1 = 1, where 1(x) = 1, for all x ∈ S, and (iv) Tf ≥ 0 on
S if f ∈ B(S) is a nonnegative function.

2. Let p(x, dy) be a transition probability on (S,S).
(a) Show that x → Px(B) is S-measurable for all B ∈ S⊗∞, and letting X

denote the identity map on S∞, the function y → Eyf (X) is S-measurable
for all bounded measurable f : S∞ → R.

(b) For every bounded S⊗n-measurable function f on Sn, show that the
function (x0, x1, . . . , xn−1) → ∫

S
f (x0, x1, . . . , xn−1, y)p(xn−1, dy) is

S⊗n-measurable.

3. Express time-reversibility and detailed balance without requiring densities.
[Hint: Detailed balance may be stated as π(dx)p(x, dy) = π(dy)p(y, dx),
suitably interpreted, and the consequent time-reversibility compares the joint
distribution of (X0, . . . , Xk) with that of (Xk,Xk−1, . . . , X0).]

4. Prove that T nf (x) = ∫
S
f (y)p(n)(x, dy) = E(f (Xn)|X0 = x), x ∈ S, for all

bounded, measurable functions f on S, and n ≥ 1.
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5. Show that the transition probability p in Example 1 (i) is not Feller continuous,
and (ii) does not satisfy the hypothesis of Proposition 8.10. [Hint: (i) has the
relative topology of [0, 1] so that all points m/(m + 1),m = 0, 1, . . . , are
isolated and only 1 is a point of accumulation. Hence a real-valued function
on S is continuous if and only if f ( m

m+1 ) → f (1) as m → ∞. For (ii),

p(n)(x, dy) → δ(dy) weakly as n→ ∞ for all x ∈ S.]
6. Let S be a locally compact separable metric space. Suppose that T is a

positive linear contraction operator on Cb(S) with T 1 = 1. Use the Riesz
Representation Theorem to show that T uniquely determines Feller transition
probabilities p(x, dy) such that Tf (x) = ∫

S
f (y)p(x, dy).

7. In the case of the two-state Markov chain in Example 2, use time-reversibility
to compute the invariant probability π and establish convergence by an appeal
to the spectral theorem for self-adjoint linear operators on L2(S, π).

8. LetX0, Xn := X0 +Z1 +· · ·+Zn (n ≥ 1) be a (general) random walk S = R
k

with step size distribution Q, i.e., {Zn : n ≥ 1} is an i.i.d. sequence with
common distribution Q on (Rk,Bk), independent of X0. Show that (i) {Xn :
n ≥ 0} is Markov and (ii) no invariant probability exists ifQ �= δ{0}.

9. (Birth–Death Chain with Two Reflecting Boundaries) Let S = {0, 1, 2, . . . , d}
(d > 1), p(x, x + 1) = βx , p(x, x − 1) = δx ≡ 1 − βx , with 0 < βx < 1
(x = 1, 2, . . . , d − 1), β0 ≡ p(0, 1) = 1, δd ≡ p(d, d − 1) = 1. Prove
that there exists a unique invariant probability π , and the Markov process with
this initial distribution is time-reversible. [Hint: There is a unique probability π
for which (8.25) holds (with μ as counting measure). To solve for π , note that
(8.25) implies π(x + 1)/π(x) = βx/δx+1 (x = 0, 1, . . . , d − 1). Check that
this must be true of the ratios for any invariant probability.]

10. (Time-Reversed Stationary Markov Process) Let {Xn : n ≥ 0} be a stationary
Markov process on (S,S) with a transition probability density p(x, y) (w.r.t.
a σ -finite measure μ) and an invariant probability density π(y), y ∈ S. Let
{Zn : −∞ < n < ∞} be a stationary Markov process such that {Zn : n ≥ 0}
has the same distribution as {Xn : n ≥ 0}. Show that {Yn := Z−n : n ∈
Z} is (i) stationary and (ii) Markov with the transition probability density
q(x, y) := (π(y)/π(x))p(y, x); note that this is simply “Bayes formula” for
(Xn,Xn+1). [Hint: Check that π is an invariant probability for q, and then
construct a stationary double-sided Markov process {Rn}−∞<n<∞ with these
transition probabilities and invariant probability. Then check that the processes
{Yn : n ∈ Z} and {Rn : n ∈ Z} have the same distribution by considering finite
dimensional events.]

11. Let {Xn : n ≥ 0} be a Markov chain on the countable state space S. Assume
that for any i, j ∈ S, one has p(n)ij > 0 for some n ≥ 1.We say that p = ((pij ))
is irreducible in this case. Define Yn = (Xn,Xn+1), n = 0, 1, 2, . . . .

(a) Show that {Yn : n ≥ 0} is a Markov chain on S′ = {(i, j) ∈ S × S : pij >
0}.

(b) Show that if {Xn : n ≥ 0} is irreducible, then so is {Yn : n ≥ 0}.



126 8 General State Space

(c) Show that if {Xn : n ≥ 0} has invariant distribution π = (πi), then { Yn :
n ≥ 0} has invariant distribution (πipij ).

(d) Show that an irreducible Markov chain on a state space S with an
invariant initial distribution π is time-reversible if and only if (Kolmogorov
Condition):

pii1pi1i2 · · ·piki = piikpikik−1 · · ·pi1i for all i, i1, . . . , ik ∈ S, k ≥ 1.

(e) If there is a j ∈ S such that pij > 0 for all i �= j in (d), then for time-
reversibility it is both necessary and sufficient that pijpjkpki = pikpkjpji
for all i, j, k.

12. (A General Finite State Space Graph) Let {Xn : n ≥ 0} be an irreducible
Markov chain on a finite state space S; i.e., for each i, j ∈ S, there is an n ≥ 1
such that p(n)ij > 0. Define a graph G having states of S as vertices with edges
joining i and j if and only if either pij > 0 or pji > 0.

(a) Show that G is connected; i.e., for any two sites i and j , there is a path of
edges from i to j .

(b) Show that if {Xn : n ≥ 0} has an invariant distribution π , then for any
A ⊂ S,

∑

i∈A

∑

j∈S\A
πipij =

∑

i∈A

∑

j∈S\A
πjpji

i.e., the net probability flux across a cut of S into complementary sub-
sets A, S \ A is in balance. [Hint: Notice that

∑
i∈A

∑
j∈S πipij =∑

i∈A
∑
j∈S πipji .]

(c) Show that if G contains no cycles of three or more vertices, i.e., m = 3
or more distinct vertices v1, . . . , vm such that vi and vi+1 are joined by an
edge for i = 1, . . . , m and vm+1 = v1, then the process is time-reversible
started with π . A connected graph without cycles is called a tree graph.
[Hint: Proceed inductively on the number of states.]

(d) Give a graphical proof that an invariant probability for a birth–death
Markov chain on {0, 1, . . . , N} with reflecting boundaries at 0, N must be
time-reversible.

13. Prove the time-reversibility of Example 3 when |b| < 1 and {εn : n ≥ 1} is an
i.i.d. standard normal sequence.

14. Consider a Markov process {Xn : n = 0, 1, 2, . . . } on a metric space S defined
recursively byXn+1 = g(Xn, εn+1), n ≥ 0, where (i) {εn : n ≥ 1} is a sequence
of i.i.d. random variables with values in a metric space U , and independent of
X0, and (ii) g : S × U → S is continuous. Show that the Markov process
{Xn : n = 0, 1, 2, . . . } has the Feller property.



Chapter 9
Stopping Times and the Strong Markov
Property

Given a stopping time τ , the Markov property for discrete parameter Markov
processes is extended to the conditional distribution of the process “after” time
τ given the σ -field generated by the process up to time τ . This is referred to
as a strong Markov property.

One of the most useful general properties of discrete time Markov processes is that
the Markov property holds even when the “past” is given up to certain types of
random times. Indeed, we have tacitly used it in proving that the simple symmetric
random walk reaches every state infinitely often with probability 1. This argument
is more generally revisited below in Example 1.

A class of special random times, called stopping times or Markov times, may be
defined as follows. Let {Xn : n = 0, 1, 2, . . .} be a stochastic process having state
space S and defined on some probability space (Ω,F , P ). A positive (possibly
infinite) integer-valued random variable τ is a stopping time if and only if [τ ≤
n] ∈ σ({X0, . . . , Xn}), n = 0, 1, . . . . Intuitively, whether or not to stop by time
τ = m can be decided by observing the stochastic process up to time m. For an
example, consider the first time τB the process {Xn : n ≥ 0} reaches B (∈ S),
defined by

τB(ω) = inf{n ≥ 0 : Xn(ω) ∈ B}. (9.1)

If ω is such that Xn(ω) �∈ B whatever be n (i.e., if the process never reaches B),
then take τB(ω) = ∞. Observe that

© Springer Nature Switzerland AG 2022
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[τB ≤ m] := {ω : τB(ω) ≤ m} =
m⋃

n=0

{ω : Xn(ω) ∈ B}. (9.2)

Thus [τB ≤ m] ∈ Fm := σ {X0, . . . , Xm}, m ≥ 0. Hence τB is a stopping time, as
are the rth return times τ (r)B to B defined recursively by

τ
(1)
B (ω) = inf{n ≥ 1 : Xn(ω) ∈ B},

for r = 2, 3, . . .
τ
(r)
B (ω) = inf{n > τ(r−1)

B (ω) : Xn(ω) ∈ B}, (9.3)

(Exercise 1). Once again, the infimum over an empty set is to be taken as ∞. If B is
a singleton {y} we will often write τy for τ{y}, and τ (r)y instead of τ (r){y} .

In view of Proposition 8.3, the Markov property may be expressed that given
the “past” and “present” Fm := σ {X0, . . . , Xm} up to time m, the conditional
distribution of the “after-m” stochastic process X+

m = {(X+
m)n : n ≥ 0} := {Xm+n :

n = 0, 1, . . .} is PXm . In other words, if the process is re-indexed after time m
with m + n being regarded as time n, then this stochastic process is conditionally
distributed as a Markov chain having transition probability p(x, dy) and initial
state Xm.

Suppose now that τ is a stopping time. Given the “past up to time τ” means given
the values of τ and X0, X1, . . . , Xτ ; that is, conditionally given the pre-τ σ -field
Fτ defined by the collection of events G ∈ σ {Xn : n ≥ 0} such that

G ∩ [τ = m] ∈ Fm for all 0 ≤ m <∞. (9.4)

Equivalently for discrete parameter processes, this is the σ -field generated by the
stopped process, i.e., Fτ = σ(Xτ∧n : n = 0, 1, 2, . . . ), (see Exercise 2).

By the after-τ process we now mean the stochastic process

X+
τ = {(X+

τ )n = Xτ+n : n = 0, 1, 2, . . .},

which is well defined only on the set [τ <∞]. Observe that (9.4) is equivalent to

G ∩ [τ ≤ m] ∈ Fm for all 0 ≤ m <∞. (9.5)

The use of the natural filtration Fm = σ {X0, . . . , Xm},m = 0, 1, 2, . . . in
defining stopping times above can be easily generalized as follows.

Definition 9.1. Let F0 ⊂ F1 ⊂ · · ·Fm ⊂ · · · ,m = 0, 1, 2, . . . be an arbitrary
filtration of a probability space (Ω,F , P ). An extended real-valued random variable
τ : Ω → [0,∞] is called a {Fm : m ≥ 0}-stopping time if [τ ≤ m] ∈ Fm for each
m = 0, 1, . . . . A Markov process {Xn : n = 0, 1, 2, . . . } on a state space (S,S) is
said to be {Fn}-adapted if (i) Xn is Fn-measurable for all n, and (ii) the conditional
distribution of the after-n process X+

n , given Fm is PXm .
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Definition 9.2. A {Fn}-adapted Markov process {Xn : n ≥ 0} has the strong
Markov property if for every {Fn}∞n=0–stopping time τ the conditional distribution
of the after-τ process X+

τ , given the pre-τ σ -field Fτ , is PXτ on the set [τ < ∞].
That is, for every C ∈ S⊗∞ and G ∈ Fτ ,

P([X+
τ ∈ C] ∩G ∩ [τ <∞]) = E(1G∩[τ<∞]PXτ (C)). (9.6)

Theorem 9.1. Every discrete parameter {Fn}-adapted Markov process {Xn : n =
0, 1, 2, . . .} has the strong Markov property.

Proof. Choose and fix a positive integer k along with k time points 0 ≤ m1 < m2 <

· · · < mk , and B1, . . . , Bk ∈ S . Let G ∈ Fτ . Then,

P([(X+
τ )mi ∈ Bi, 1 ≤ i ≤ k] ∩G ∩ [τ <∞])

=
∞∑

m=0

P([Xm+mi ∈ Bi, 1 ≤ i ≤ k] ∩G ∩ [τ = m])

=
∞∑

m=0

EE(1(G ∩ [τ = m])1([Xm+mi ∈ Bi, 1 ≤ i ≤ k])|Fm)

=
∞∑

m=0

E
(
1(G ∩ [τ = m])E(1([Xm+mi ∈ Bi, 1 ≤ i ≤ k])|Fm)

)

=
∞∑

m=0

E {1(G ∩ [τ = m])h(Xm)} = E{1(G ∩ [τ <∞])h(Xτ )}, (9.7)

where h(x) = Px(Xmi ∈ Bi , 1 ≤ i ≤ k). The desired Theorem 9.1 follows from
(9.7) by the π − λ theorem. �
Remark 9.1. We will sometimes omit the term {Fn}-adapted for a Markov process
{Xn : n = 0, 1, 2, . . . } if Fn = σ(X0, X1, . . . , Xn), or if the context makes the
filtration clear. There are many examples where the natural and more convenient
filtration is larger than that defined by the sequence itself. This is especially
true for function of Markov chains such as (a) {|Sn|}, the modulus of simple
symmetric random walk (Exercise 6, Chapter 7), or (b) the residual life {Rn} in
a renewal process for i.i.d. nonnegative integer valued random variables considered
in Proposition 8.4, Chapter 8, Bhattacharya and Waymire (2021).

Example 1. Consider the case of the simple symmetric random walk on Z defined
by Xn = X0 + Z1 + · · · + Zn, n ≥ 1, where Z1, Z2, . . . are i.i.d. symmetrically
distributed ±1 random variables, and X0 is an integer-valued random variable
independent of Z1, Z2, . . . .̌ One wishes to prove that P(τy < ∞) = 1 for
y ∈ Z. This may be obtained from the (ordinary) Markov property applied to
ϕ(x) := P(τy < τa|X0 = x), a ≤ x ≤ y, by conditioning on σ(X0, X1) as
follows: For a < x < y, conditioning on σ(X0, X1), i.e., by σ(Sx1 ),
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ϕ(x) = P([X+
1 reaches y before reaching a] ∩ [X1 = x + 1]|X0 = x)

+P([X+
1 reaches y before reaching a] ∩ [X1 = x − 1]|X0 = x)

= 1

2
ϕ(x + 1)+ 1

2
ϕ(x − 1) (9.8)

with boundary values ϕ(y) = 1, ϕ(a) = 0. Solving one obtains ϕ(x) = (x −
a)/(y − a), for all x < y. Thus P(τy < ∞|X0 = x) = 1 follows by letting
a → −∞. Similarly, or by symmetry, P(τy < ∞|X0 = x) = 1 for all x > y. If

x = y, then τ (1)y = 1 + τy and, noting that [τ (1)y <∞] = [τy(X+
1 ) <∞], condition

on σ(X0, X1) to get (by Proposition 8.1)

Px(τ
(1)
y <∞) = ExPX1τ

(1)
y <∞)

= 1

2
Px−1(τy <∞)+ 1

2
Px+1(τy <∞) = 1.

Since τy = τ (1)y for x �= y, we have shown that P(τ (1)y <∞|X0 = x) = 1, for all x.
While this calculation only required the Markov property, next consider the problem
of showing that the process will return to y infinitely often. One would like to argue
that conditioning on the process up to its return to y, it merely starts over. This of
course is the strong Markov property. So let us examine carefully the calculation to
show that τ (r)y < ∞ a.s. for every r = 1, 2, . . . . Now let x �= y. Then τy = τ

(1)
y ,

and τ (1)y := inf{n ≥ 1 : (X+
τy
)n = y}, the first return time to y of the process X+

τy
,

one has

Px(τ
(2)
y <∞)ExPX

τ
(1)
y

(τ (1)y <∞) = ExPy(τ
(1)
y <∞) = 1. (9.9)

The second equality uses Theorem 9.1, the last equality follows from (9.8). Now this
argument remains valid if one replaces τ (1)y by τ (r−1)

y and τ (2)y by τ (r)y and assumes

that τ (r−1)
y <∞ almost surely. Hence, by induction, P(τ (r)y <∞|X0 = x) = 1 for

all positive integers r . This is equivalent to the recurrence of the state y in the sense
that

P(Xn = y for infinitely many n|X0 = x) = P(∩∞
r=1[τ (r)y <∞]|X0 = x) = 1.

The importance of the strong Markov property will be amply demonstrated through-
out the text.
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Exercises

1. (r-th Passage Time)

(a) Let τ and η be stopping times with respect to a filtration Fn, n ≥ 0. Which
of the following are stopping times? (i) τ ∨ η = max{τ, η}, (ii) τ ∧ η =
min{τ, η}, (iii) τ + η, (iv) τ 2, (v) τ

1
2 .

(b) Show that for any r ≥ 1, the r-th passage time to a set B ∈ S defined by
(9.3) is a stopping time.

2. (Stopped Process) Suppose that {Xn : n ≥ 0} is a discrete parameter Markov
process and τ is a stopping time. Let {Yn = Xτ∧n : n ≥ 0} denote the stopped
process, i.e., Yn = Xn, n ≤ τ, and Yn = Xτ , n ≥ τ.
(a) Let τ ≡ τB be the first passage (or hitting time) of B ∈ S defined at

(9.1). Then, τ is a stopping time (recall (9.2)). Show that {Yn : n ≥ 0} is a
(homogeneous) Markov process.

(b) Give an example to show that, in general, the stopped process is not a
Markov process. [Hint: Consider the time τ of the second visit to b in a
two–state Markov chain on S = {a, b}.]

3. For the stopped process defined in the preceding Exercise 2, show that Fτ =
σ(Y0, Y1, . . . ), where Fn = σ(X0, . . . , Xn), n ≥ 1.

4. A balanced six-sided die is rolled repeatedly. Let Z denote the smallest number
of rolls for the occurrence of all six possible faces. Let Zj = smallest number
of tosses to obtain the j th new face after j − 1 distinct faces have occurred.
Then Z = Z1 + · · · + Z6.

(a) Use the strong Markov property to give a proof that Z1, . . . , Z6 are
independent random variables. [Hint: Let X1, X2, . . . be the respective
outcomes on the successive tosses. Check that each τj , j ≥ 2, denoting
the first time after τj−1 that Xn is not among X1, . . . , Xτj−1 , with τ1 = 1,
defines a stopping time. Then Zj = τj − τj−1, j ≥ 2.]

(b) Calculate the distributions of Z2, . . . , Z6.
(c) Calculate EZ and VarZ.

5. (Coupon Collector’s Problem) A box contains N balls labeled 0, 1, 2, . . . , N −
1. Let T ≡ TN be the number of selections (at random with replacement)
required until each ball is sampled at least once. Let Tj be the number of
selections required to sample j distinct balls.

(a) Show that if Xn is the outcome of the nth draw, i.e., Xn = j if the ball
labeled j is selected at the nth draw, then Tj is a stopping time with respect
to the filtration Fn = σ {X1, . . . , Xn}, n ≥ 1.

(b) T = (TN −TN−1)+ (TN−1 −TN−2)+· · ·+ (T2 −T1)+T1, where T1 = 1,
T2 − T1, . . . , Tj+1 − Tj , . . . , TN − TN−1 are independent geometrically
distributed with parameters (N − j)/N , respectively.
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(c) Let τj be the number of selections to get ball j . Then τj is geometrically
distributed.

(d) P(T > m) ≤ Ne−m/N . [Hint: P(T > m) ≤ ∑N
j=1 P(τj > m).]

(e) P(T > m) =
N∑

k=1

(−1)k+1
(
N

k

)(

1 − k

N

)m
. [Hint: Use inclusion–

exclusion on [T > m] = ∪Nj=1[τj > m].]
(f) Let X1, X2, . . . be the successive labels on the balls selected. Is T a

stopping time for {Xn : n ≥ 0}?
6. (Independent Coupling Process) Let {Xn : n ≥ 0} and {Yn : n ≥ 0} be

independent Markov chains with common transition probability matrix p.

(a) Show that {(Xn, Yn) : n ≥ 0} is a Markov chain on the state space S × S.
(b) Calculate the transition law of {(Xn, Yn) : n ≥ 0}.
(c) Let T = inf{n : Xn = Yn}. Show that T is a stopping time for the process

{(Xn, Yn) : n ≥ 0}.
(d) Let {Zn : n ≥ 0} be the process obtained by watching {Xn : n ≥ 0} up

until time T and then switching to {Yn : n ≥ 0} after time T ; i.e., Zn = Xn,
n < T , and Zn = Yn, for n ≥ T . Show that {Zn : n ≥ 0} is a Markov chain
and calculate its transition law.

7. (Record Times) Let X1, X2, . . . be an i.i.d. sequence of nonnegative random
variables having a continuous distribution (so that the probability of a tie is
zero). Define R1 = 1, Rk = inf{n ≥ Rk−1 + 1 : Xn ≥ max(X1, . . . , Xn−1)},
for k = 2, 3, . . . .

(a) Show that {Rn : n ≥ 1} has the Markov property and calculate its
transition probabilities. [Hint: All ik! rankings of (X1, X2, . . . , Xik ) are
equally likely. Consider the event [R1 = 1, R2 = i2, . . . , Rk = ik] and
count the number of rankings of (X1, X2, . . . , Xik ) that correspond to its
occurrence.]

(b) Let Tn = Rn+1 − Rn. Is {Tn : n ≥ 0} a Markov chain? [Hint: Compute
P(T3 = 1 | T2 = 1, T1 = 1) and P(T3 = 1 | T2 = 1).]

8. (Record Values) Let X1, X2, . . . be an i.i.d. sequence of nonnegative integer-
valued random variables. Define the record times R1 = 1, R2, R3, . . . as in
Exercise 7. Define the record values by Vk = XRk , k = 1, 2, . . . .

(a) Show that each Rk is a stopping time for {Xn : n ≥ 1}.
(b) Show that {Vk} is a Markov chain and calculate its transition probabilities.
(c) Extend (b) to the case when the distribution function of Xk is continuous.

9. Let Sx0 = x, Sxn = x + Z1 + · · · + Zn, n ≥ 1, be a simple symmetric random
walk starting at an integer x, i.e., Zj , j ≥ 1, is an i.i.d. sequence of ±1- valued
random variables with equal probabilities. Let Fn = σ {Z1, . . . , Zn}, n ≥ 1,
and let F0 be the trivial sigmafield {∅,Ω}.
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(a) Prove that Qn = (Sxn )
2 − n, n = 0, 1, 2, . . . is a martingale1 with respect

to the filtration Fn, n ≥ 0.
(b) Let τ = inf{n ≥ 0 : Sxn ∈ {a, b}} be the first time the random walk reaches

integers a or b starting at x, a ≤ x ≤ b. Compute Eτ using the optional
stopping theorem.2

10. (Lazy Random Walk) Consider the lazy symmetric simple random walk starting
at x obtained by allowing the distribution of displacements Zj , j ≥ 1, in
Exercise 9 to be ±1, 0 with P(Zj = 1) = P(Zj = −1) = δ, and
P(Zj = 0) = 1 − 2δ, j ≥ 1, for fixed δ ∈ (0, 1).
(a) Show that the corresponding lazy random walk Sxn = x+Z1+· · ·+Zn, n ≥

1, Sx0 = x, is a martingale, and use this to compute the probability ψ(x)
that it reaches a before b starting from x, a ≤ x ≤ b. Show that ψ(x) does
not depend on δ and, in particular, coincides with the probability obtained
in the case δ = 1/2.

(b) Prove that Qn = (Sxn )
2 − nEZ2

n, n = 0, 1, 2, . . . , is a martingale with
respect to the filtration Fn, n ≥ 0.

(c) Define the escape time τ as in Exercise 9 and compute Eτ .

11. (Asymmetric Simple Random Walk) Consider the asymmetric simple random
walk starting at x obtained by allowing the distribution of displacements
Zj , j ≥ 1, in Exercise 9 to be ±1 with P(Zj = 1) = p, P (Zj = −1) =
q = 1 − p, j ≥ 1, for fixed p ∈ (0, 1), p �= q. Show that En = (

q
p
)S
x
n , n ≥ 0,

is a martingale and apply the optional stopping theorem, with τ = inf{n : Sxn ∈
{a, b}}, to compute the probability that Sxn , n ≥ 0, reaches a before b.

1 BCPT p. 53.
2 BCPT p. 61.



Chapter 10
Transience and Recurrence of Markov
Chains

Two fundamental long term properties of states of Markov chains on a finite
or countably infinite state space are those of transience and recurrence,
respectively. The former refers to a class of unstable states in the sense that
the process will eventually no longer visit them, while the latter are sure to be
visited infinitely often. The recurrent states are further classified in terms of
the average time required to return. Those for which the expected return time
is finite are referred to as positive-recurrent, or ergodic states.

The unrestricted simple random walk {Sn}n≥0 is an example in which any state
i ∈ S can be reached from every state j in a finite number of steps with positive
probability. If p denotes its transition probability matrix, then p2 is the transition
probability matrix of {Yn}n≥0 := {S2n : n = 0, 1, 2, . . .}. However, for the Markov
chain {Yn}n≥0, transitions in a finite number of steps are possible from odd to odd
integers and from even to even, but not otherwise. For {Sn}n≥0 one says that there is
one class of “essential” states and for {Yn}n≥0 that there are two classes of essential
states.

A different situation occurs when the random walk has two absorbing boundaries
on S = {c, c+1, . . . , d−1, d}, i.e., the nonzero transition probabilities are specified
by pcc = pdd = 1, px,x+1 = p, px,x−1 = q = 1 − p, c + 1 ≤ x ≤ d − 1. The
states c, d can be reached (with positive probability) from c+1, . . . , d−1. However,
c + 1, . . . , d − 1 cannot be reached from c or d. In this case c + 1, . . . , d − 1 are
called “inessential” states while {c}, {d} form two classes of essential states. The
“inessential” will not play a role in the long-run behavior of the process. If a chain
has several essential classes, the process restricted to each class can be analyzed
separately.
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Definition 10.1. Write i → j and read it as “j is accessible from i” if p(n)ij > 0
for some n ≥ 1. Write i ↔ j and read “i and j communicate” if i → j and j → i.
Say “i is essential” if i → j implies j → i (i.e., if any state j is accessible from
i, then i is accessible from that state). We shall let E denote the set of all essential
states. States that are not essential are called inessential.

Since

p
(n)
ij =

∑

i1,i2,...,in−1∈S
pii1pi1i2 · · ·pin−1j , (10.1)

i → j if and only if there exists a path of states i, i1, i2, . . . , in−1, j such that pii1 ,
pi1i2 , . . . , pin−1j are strictly positive.

Proposition 10.1.

a For every i there exists (at least one) j such that i → j .
b i → j, j → k imply i → k.
c “i essential” implies i ↔ i.
d i essential, i → j imply “j is essential” and i ↔ j .
e On E the relation “↔” is an equivalence relation (i.e., reflexive, symmetric, and

transitive).

Proof.

(a) For each i,
∑
j∈S pij = 1. Hence there exists at least one j for which pij > 0;

for this j one has i → j .
(b) i → j, j → k means that there exist m ≥ 1, n ≥ 1 such that p(m)ij > 0,

p
(n)
jk > 0. Hence,

p
(m+n)
ik =

∑

l∈S
p
(m)
il p

(n)
lk = p(m)ij p

(n)
jk +

∑

l �=j
p
(m)
il p

(n)
lk ≥ p(m)ij p

(n)
jk > 0. (10.2)

Thus, i → k. Note that the first equality is a consequence of the relation pm+n =
pmpn.

(c) Suppose i is essential. By (a) there exists j such that pij > 0. Since i is

essential, this implies j → i, i.e., there exists m ≥ 1 such that p(m)ji > 0.
But then

p
(m+1)
ii =

∑

l∈S
pilp

(m)
li = pijp(m)ji +

∑

l �=j
pilp

(m)
li > 0. (10.3)

Hence i → i and, therefore, i ↔ i.
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(d) Suppose i is essential, i → j . Then there existm ≥ 1, n ≥ 1 such that p(m)ij > 0

and p(n)ji > 0. Hence i ↔ j . Now suppose k is any state such that j → k, i.e.,

there existsm′ ≥ 1 such that p(m
′)

jk > 0. Then, by (b), i → k. Since i is essential,
one must have k → i. Together with i → j this implies (again by (b)) k → j .
Thus, if any state k is accessible from j , then j is accessible from that state k,
proving that j is essential.

(e) If E is empty (which is possible, as, for example, in the case pi,i+1 = 1, i = 0,
1, 2, . . . ), then there is nothing to prove. Suppose E is nonempty. Then: (i) On E
the relation “↔” is reflexive by (c). (ii) If i is essential and i ↔ j , then (by (d))
j is essential and, of course, i ↔ j and j ↔ i are equivalent properties. Thus
“↔” is symmetric (on E as well as on S). (iii) If i ↔ j and j ↔ k, then i → j

and j → k. Hence i → k (by (b)). Also, k → j and j → i imply k → i (again
by (b)). Hence i ↔ k. This shows that “↔” is transitive (on E as well as on S).

�
From the proof of (e) the relation “↔” is seen to be symmetric and transitive on

all of S (and not merely E). However, it is not generally true that i ↔ i (or, i → i)
for all i ∈ S. In other words, reflexivity may break down on S.

Example 1 (One-Dimensional Simple Random Walk). S = {0,±1,±2, . . .}.
Assume 0 < pi,i+1 = p < 1, pi,i−1 = 1 − p. Then i → j for all states
i ∈ S, j ∈ S. Hence E = S.

Example 2 (Simple Random Walk with Two Absorbing Boundaries). Here S =
{c, c + 1, . . . , d}. pcc = pdd = 1, pi,i+1 = p, pi,i−1 = 1 − p, c + 1 ≤ i ≤ d − 1.
Then E = {c, d}. Note that c is not accessible from d, nor is d accessible from c.

Example 3 (Simple Random Walk with Two Reflecting Boundaries). Here S =
{c, c+1, . . . , d}. pc,c+1 = pd,d−1 = 1, pi,i+1 = p ∈ (0, 1), pi,i−1 = 1−p, c+1 ≤
i ≤ d − 1. Then, E = S.

Definition 10.2. A transition probability matrix p having one essential class and no
inessential states is called irreducible. A Markov chain with an irreducible transition
probability matrix is also called irreducible.

Since ↔ is an equivalence relation on E , i.e., it is reflexive, symmetric, and
transitive, as a general rule it may be decomposed into disjoint equivalence classes
of the form E(i) = {j : j ↔ i} (Exercise 1).

Our last item of bookkeeping concerns the role of possible cyclic motions within
an essential class. In the unrestricted simple random walk example, note that pii = 0
for all i = 0,±1, ±2, . . . , but p(2)ii = 2pq > 0. In fact p(n)ii = 0 for all odd n, and

p
(n)
ii > 0 for all even n. In this case, we say that the period of i is 2. More generally,

if i → i, then the period of i is the greatest common divisor of the integers in the
set A = {n ≥ 1 : p(n)ii > 0}. If d = di is the period of i, then p(n)ii = 0 whenever n
is not a multiple of d and d is the largest integer with this property.
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Proposition 10.2.

a If i ↔ j , then i and j possess the same period. In particular “period” is constant
on each equivalence class.

b Let i ∈ E have a period d = di . For each j ∈ E(i) there exists a unique integer
rj , 0 ≤ rj ≤ d−1, such that p(n)ij > 0 implies n = rj ( mod d) (i.e., n = 0modd,
or n = sd + rj with s ≥ 0, an integer, and 1 ≤ rj ≤ d − 1).

Proof.

(a) Clearly,

p
(a+m+b)
ii ≥ p(a)ij p(m)jj p

(b)
ji (10.4)

for all positive integers a,m, b. Choose a and b such that p(a)ij > 0 and p(b)ji > 0.

If p(m)jj > 0, then p(2m)jj ≥ p(m)jj p
(m)
jj > 0, and

p
(a+m+b)
ii ≥ p(a)ij p(m)jj p

(b)
ji > 0, p

(a+2m+b)
ii ≥ p(a)ij p(2m)jj p

(b)
ji > 0.

(10.5)

Therefore, d (the period of i) divides a+m+b and a+2m+b, so that it divides
the difference m = (a + 2m + b) − (a + m + b). Hence, the period of i does
not exceed the period of j . By the same argument (since i ↔ j is the same as
j ↔ i), the period of j does not exceed the period of i. Hence the period of i
equals the period of j .

(b) Choose a such that p(a)ji > 0. If p(m)ij > 0, p(n)ij > 0, then p(m+a)
ii ≥ p(m)ij p

(a)
ji >

0, and p(n+a)ii ≥ p
(n)
ij p

(a)
ji > 0. Hence d, the period of i, divides m + a, n + a

and, therefore,m−n = m+a− (n+a). Since this is true for allm, n such that
p
(m)
ij > 0, p(n)ij > 0, it means that the difference between any two integers in

the set A{n : p(n)ij > 0} is divisible by d. This implies that there exists a unique
integer rj , 0 ≤ rj ≤ d − 1, such that n = rj ( mod d) for all n ∈ A (i.e.,
n = sd + rj for some integer s ≥ 0 where s depends on n). �

It is generally not true that the period of an essential state i is min{n ≥ 1 : p(n)ii >
0}. To see this consider the chain with state space {1, 2, 3, 4} and transition matrix

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 1

2 0 1
2

1 0 0 0

⎤

⎥
⎥
⎦ .

Schematically, only the following one-step transitions are possible.
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4 → 1

1 → 2 → 3

2

Thus p(2)11 = 0, p(4)11 > 0, p(6)11 > 0, etc., and p(n)11 > 0 for all odd n. The states
communicate with each other and their common period is 2, although min{n :
p
(n)
11 > 0} = 4. Note that min{n ≥ 1 : p(n)ii > 0} is a multiple of di since di

divides all n for which p(n)ii > 0. Thus, di ≤ min{n ≥ 1 : p(n)ii > 0}.
Proposition 10.3. Let i ∈ E have period d > 1. Let Cr be the set of j ∈ E(i)
such that rj = r , where rj is the remainder term as defined in Proposition 10.2(b).
Then

a C0, C1, . . . , Cd−1 are disjoint,
⋃d−1:
r=0 Cr = E(i).

b If j ∈ Cr , then pjk > 0 implies k ∈ Cr+1, where we take r + 1 = 0 if r = d − 1.

Proof.

(a) Follows from Proposition 10.2(b).
(b) Suppose j ∈ Cr and p(n)ij > 0. Then n = sd + r for some s ≥ 0. Hence, if

pij > 0, then

p
(n+1)
ik ≥ p(n)ij pjk > 0, (10.6)

which implies k ∈ Cr+1 (since n + 1 = sd + r + 1 = r + 1( mod d)), by
Proposition 10.2(b). �

Here is what Proposition 10.3 means. Suppose i is an essential state and has a
period d > 1. In one step (i.e., one time unit) the process can go from i ∈ C0 only
to some state in C1 (i.e., pij > 0 only if j ∈ Cj ). From states in C1, in one step
the process can go only to states in C2. This means that in two steps the process can
go from i only to states in C2 (i.e., p(2)ij > 0 only if i ∈ C2), and so on. In d steps
the process can go from i only to states in Cd+1 = C0, completing one cycle (of d
steps). Again in d + 1 steps the process can go from i only to states in C1, and so
on. In general, in sd + r steps the process can go from i only to states in Cr .

Example 4. In the case of the unrestricted simple random walk, the period is 2
and all states are essential and communicate with each other. Fix i = 0. Then
C0 = {0,±2,±4, . . .}, C1 = {±1,±3,±5, . . .}. If we take i to be any even
integer, then C0, C1 are as above. If, however, we start with i odd, then C0 =
{±1,±3,±5, . . .}, C1 = {0,±2,±4, . . .}.
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Let {Xn : n ≥ 0} be a Markov chain with countable state space S and transition
probability matrix p = ((pij )). As in the case of random walks, the frequency of
returns to a state is an important feature of the evolution of the process.

Definition 10.3. A state j is said to be recurrent if

Pj (Xn = j i.o.) = 1, (10.7)

and transient if

Pj (Xn = j i.o.) = 0. (10.8)

In view of the Borel–Cantelli Lemma (Part II), an easy example of a recurrent
state j is provided by an i.i.d. (hence Markov) sequence X0, X1, X2, . . . such
that P(X1 = j) > 0. In particular, the second part of the Borel–Cantelli lemma∑∞
n=1 P(Xn = j) = ∞ holds. However, in what follows we will see this condition

does continue to be necessary and sufficient under Markov dependence.
Recall the successive return times to the state j defined by

τ
(0)
j = 0, τ

(1)
j := inf{n > 0 : Xn = j}, τ

(r)
j = inf{n > τ(r−i)j : Xn = j},

(10.9)

for r = 1, 2, . . ., with the convention that τ (r)j = ∞ if there is no n > τ(r−1)
j for

which Xn = j . Write

ρij = Pi(Xn = j for some n ≥ 1) = Pi(τ (1)j <∞). (10.10)

Using the strong Markov property (Theorem 9.1) we get by the same calculation as
in the example of the previous section that

Pi(τ
(r)
j <∞) = Pi(τ

(r−1)
j <∞ and X

τ
(r−1)
j +n = j for some n ≥ 1)

= Ei (1[τ (r−1)
j <∞]PXτ(r−1)

j

(Xn = j for some n ≥ 1))

= Ei (1[τ (r−1)
j <∞])ρjj = Pi(τ (r−1)

j <∞)ρjj . (10.11)

Therefore, by iteration,

Pi
(
τ
(r)
j <∞) = Pi

(
τ
(1)
j <∞)

ρr−1
jj = ρijρr−1

jj (r = 2, 3, . . .). (10.12)

In particular, with i = j ,

Pj
(
τ
(r)
j <∞) = ρrjj (r = 1, 2, 3, . . .). (10.13)
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Now

Pj (Xn = j i.o.) = Pj (∩∞
r=1[τ (r)

j
<∞]) = lim

r→∞Pj (τ
(r)
j
<∞) =

{
1 if ρjj = 1.
0 if ρjj < 1.

(10.14)
Further, write N(j) ≡ ∑∞

n=0 1[Xn=j ] for the number of visits to the state j by the
Markov chain {Xn}n≥0, and denote its expected value by

G(i, j) = EiN(j) =
∞∑

n=0

p
(n)
ij = (I − p)−1. (10.15)

G(i, j) is also referred to as the (discrete parameter) Green’s function of the Markov
chain, (see Examples 5 and 6 below). Now using (10.12)

EiN(j) =
∞∑

r=0

Pi(N(j) > r) = δij +
∞∑

r=0

Pi
(
τ
(r+1)
j <∞) = δij + ρij

∞∑

r=0

ρrjj ,

(10.16)
where δij is 1 or 0 according to i = j or i �= j . Thus,

G(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

δij if i �→ j, i.e., ρij = 0,

δij + ρij /(1 − ρjj ) if i → j and ρjj < 1,

∞ if i → j and ρjj = 1.

(10.17)

This calculation provides two useful characterizations of recurrence; one is in terms
of the long-run expected number of returns and the other in terms of the probability
of eventual return.

Theorem 10.4.

a Every state is either recurrent or transient. A state j is recurrent iff ρjj = 1 iff
G(j, j) = ∞, and transient iff ρjj < 1 iff G(j, j) ≡ (1 − ρjj )−1 < ∞. If j is

transient p(n)ij → 0 as n→ ∞ for all i.
b If i is recurrent, i → j , then j is recurrent, and ρij = ρji = 1. Thus, recurrence

(or transience) is a class property. In particular, if all states communicate with
each other, then either they are all recurrent, or they are all transient.

c Let i be recurrent, and S(i) := {j ∈ S : i → j} be the class of states which
communicate with i. Let π̄ be a probability distribution on S(i). Then

Pπ̄ (Xn visits every state in S(i) i.o.) = 1. (10.18)

Proof. Part (a) follows from (10.14), (10.15), (10.17). For part (b), suppose i is
recurrent and i → j (j �= i). Let Ar denote the event that the Markov chain visits
j between the r-th and (r + 1)st visits to state i. Then under Pi , Ar(r ≥ 0) are
independent events and have the same probability θ , say. Now θ > 0. For if θ = 0,
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then Pi(Xn = j for some n ≥ 1) = Pi(⋃r≥0Ar) = 0, contradicting i → j . It now
follows from the second half of the Borel–Cantelli Lemma that Pi(Ar i.o.) = 1.
This implies G(i, j) = ∞ and hence, by (10.17), ρjj = 1. Hence j is recurrent.
Also, ρij ≥ Pi(Ar i.o.) = 1. By the same argument, ρji = 1. Note that G(j, j) =
1 + ρjj /(1 − ρjj ) = 1/(1 − ρjj ) for transient states j ∈ S.

To prove part (c) use part (b) to get for arbitrary i ∈ S(j),

Pπ̄ (Xn visits i i.o.)
∑

k∈S(j)
π̄ kPk(Xn visits i i.o.)

∑

k∈S(j)
π̄ k = 1. (10.19)

Hence

Pπ̄

⎛

⎝
⋂

i∈S(j)
[Xn visits i i.o.]

⎞

⎠ = 1. (10.20)

�
Theorem 10.4 shows that the difference between recurrence and transience is

quite dramatic. If j is recurrent, then Pj (N(j) = ∞) = 1. If j is transient, not only
is it true that Pj (N(j) <∞) = 1 but also Ej (N(j)) <∞.

Corollary 10.4. Every inessential state is transient.

Proof. If j is inessential, then there exist i ∈ S and m ≥ 1 such that

p
(m)
ji > 0 and p

(n)
ij = 0 for all n ≥ 1. (10.21)

Hence, using the Markov property,

Pj (N(j) <∞) ≥ Pj (Xm = i, Xn �= j for n > m)

= p
(m)
ji Pi(Xn �= j for n > 0) = p(m)ji > 0. (10.22)

By Proposition 10.4, j is transient, since (10.22) says j is not recurrent. �
Corollary 10.5. Assume there exists an invariant probability π = {πj : j ∈ S} for
p. (a) If πj > 0, then j is recurrent. (b) If the chain is irreducible, then all states are
recurrent.

Proof. (a) Suppose πj > 0. If j is transient, then πj = ∑
i∈S πi · p(n)ij → 0 as

n → ∞, since p(n)ij → 0, a contradiction. (b) From (a) and the fact that there exists
some j such that πj > 0, it follows that j is recurrent. All states are then recurrent
by Theorem 10.4(b). �
Example 5. The Green’s function for the (transient) simple random walk with p >
1
2 can be computed from the first passage time probabilities (Exercise 18) as
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G(i, j) =
⎧
⎨

⎩

(
q
p

)i−j/
(2p − 1) for i > j,

1/(2p − 1) for i ≤ j.
(10.23)

Example 6 (Polya’s Theorem). Suppose p is the transition probability matrix for
the simple symmetric random walk {Xn}∞n=0 on the k-dimensional integer lattice
Z
k . The i.i.d. increments of the random walk take 2k values ±ei , i = 1, 2, . . . , k,

with equal probability; here ei denotes the standard unit vector with 1 in the i-
th coordinate and 0 otherwise. The rather straightforward proof of recurrence in
one-dimension (Exercise 14) extends to two dimensions by a 45 degree rotation of
coordinate axes to render the coordinates as independent one-dimensional random
walks (Exercise 15). However, the transience of the random walk for k ≥ 3 is a
distinct phenomenon. Although somewhat cumbersome, one can use combinatorial

arguments to show that p0,0 ≤ cn− k
2 for a positive constant1 c. By irreducibility one

has G(x, y) < ∞ for all x, y ∈ Z
k, k ≥ 3. Moreover, since G(x, y) = ρxy/(1 −

ρxx) ≤ (1 − ρxx)−1 = (1 − ρ00)
−1, where the last equality uses the translation

invariance ρxx = ρ00, it follows that G(x, y) is uniformly bounded for all x, y ∈
Z
k, k ≥ 3. An alternative proof of transience for the cases k ≥ 3 can be obtained as

follows. Write Sn = Z1 +· · ·+Zn, n ≥ 1,where Z1, Z2, . . . are i.i.d. ±ej− valued
random vectors with equal probabilities 1

2k , j = 1, 2, . . . k, and the ith component
of ej is the Kronecker delta δij . Since Sn takes values in the integer lattice, its
characteristic function

ϕn(ξ) = Eeiξ ·Sn = (Eeiξ ·Z1)n (10.24)

is periodic and its Fourier coefficients may be alternatively computed from

ϕn(ξ) = Eeiξ ·Sn =
∑

y

eiξ ·yP (Sn = y) (10.25)

according to (Exercise 5):

p(n)xy = P(Sn = y − x) = (2π)−k
∫

(−π,π ]k
e−iξ ·(y−x)ϕn(ξ)dξ. (10.26)

Thus

G(x, y) ≤ (2π)−k
∞∑

n=0

∫

(−π,π ]k
|ϕ(ξ)|ndξ = (2π)−k

∫

(−π,π ]k
dξ

1 − |ϕ(ξ)| .
(10.27)

1 See, e.g., Bhattacharya and Waymire (1990, 2009), pp. 13–15, or Bhattacharya and Majumdar
(2007), pp. 156–157.
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By definition of Z1 one easily has |ϕ(ξ)| = | 1
2k

∑k
m=1(e

iξm + e−iξm)| =
| 1
k

∑k
m=1 cos(ξm)|. For convergence of the integral in (10.27) it is enough to check

convergence of
∫
U

dξ
1−|ϕ(ξ)| for neighborhoods U ⊂ (−π, π ]k of the singularities

(0, . . . , 0), (±π, . . . ,±π) of the integrand. Since (1−cos(x))/x2 → 1/2 as x → 0,

by continuity for sufficiently small ε > 0, if |ξm| < ε, then 0 < cos ξm ≤ 1 − ξ2
m

4

and thus for ξ ∈ U = (−ε, ε)k, |ϕ(ξ)| = ϕ(ξ) ≤ 1 − 1
4k

∑k
m=1 ξ

2
m, and hence for

k ≥ 3,

∫

U

dξ

1 − |ϕ(ξ)| ≤ 4k
∫

U

dξ
∑k
m=1 ξ

2
m

= ck(ε)
∫ 1

0

rk−1dr

r2 <∞, (10.28)

for a positive constant ck(ε) by a polar coordinate change of variables. Similarly
one may check convergence at the other singularities for k ≥ 3 (Exercise 6). Note
that in addition to finiteness of G(x, y) one again sees from (10.27) that G(x, y) is
uniformly bounded for all x, y ∈ Z

k, k ≥ 3.

Remark 10.1. An interesting notion to capture highly transient phenomena was
introduced by James and Peres (1997), and explored further in James et al (2007),
in which there would be cut points j such that for some m, one has Xm = j and the
set {X0, . . . , Xm} is disjoint from the set {Xm+1, Xm+2, . . . }. Lawler (1991) proved
that the simple symmetric random walk on Z

k, k ≥ 4, has infinitely many cut points
almost surely. This, and more, was extended to the case of random walks on Z

3 by
Blachère (2003).

Exercises

1. Let S be a countable set and ↔ an equivalence relation on it. Prove that S is
the disjoint union of equivalence classes of the form E(i) = {j ∈ S : j ↔ i}.
[Hint: E(i) = E(j) or E(i) ∩ E(j) = ∅.]

2. Construct a finite state Markov chain such that

(a) There is only one inessential state.
(b) The set E of essential states decomposes into two equivalence classes with

periods d = 1 and d = 3.

3. (a) Give an example of a transition matrix for which all states are inessential.
(b) Show that if S is finite, then there is at least one essential state.

4. Classify all states for p given below into essential and inessential subsets.
Decompose the set of all essential states into equivalence classes of commu-
nicating states.
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
3 0 0 0 2

3 0 0
0 0 0 1

3 0 0 2
3

1
6

1
6

1
6

1
6

1
6

1
6 0

0 1
2 0 0 0 1

2 0
2
5 0 0 0 3

5 0 0
0 0 0 5

6 0 0 1
6

0 1
4 0 0 0 3

4 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

5. Derive the formula (10.26). [Hint: Multiply by e−iξ ·z, z ∈ Z
k, and integrate

(as iterated integrals) with respect to ξ . Note that for integral z,
∫ π
−π e

−izξ dξ =
(2π)−1δz0.]

6. Check convergence of the integral
∫
U

dξ
1−|ϕ(ξ)| for neighborhoods U of

(±π, . . . ,±π).
7. Let p be the transition matrix on S = {0, 1, 2, 3} defined below.

⎡

⎢
⎢
⎣

0 1
2 0 1

2
1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0

⎤

⎥
⎥
⎦ .

Show that S is a single class of essential states of period 2 and calculate pn for
all n.

8. Show by induction on N that all states communicate in the Top-In Card
Shuffling example of Exercises 13(b) of Chapter 7.

9. Prove that {Rn} = {|Sn|} is Markov, where Sn is the simple symmetric random
walk on Z. Classify all states of {Rn : n ≥ 0}.

10. (A Birth or Collapse Model) Consider the two cases:

(a) pi,i+1 = 1
i+1 , pi,0 = i

i+1 , i = 0, 1, 2, . . . .

(b) pi,0 = 1
i+1 , pi,i+1 = i

i+1 , i ≥ 1, p0,1 = 1.

Determine in each case whether the Markov chain is transient, null recurrent,
or positive recurrent. Can you generalize this to birth–collapse with p01 = 1,
and p12 . . . pn,n+1 → 0 as n→ ∞?

11. Let pi,i+1 = p, pi,0 = q, i = 0, 1, 2, . . . . Classify the states of S =
{0, 1, 2, . . .} as transient or recurrent (0 < p < 1, q = 1 − p).

12. Fix i, j ∈ S. Write

rn = Pi(Xn = j) ≡ p(n)ij (n ≥ 1), r0 = 1,

fn = Pi(Xm �= j for m < n,Xn = j) (n ≥ 1).

(a) Using the strong Markov property show that rn = ∑n
m=1 fmrn−m (n ≥ 1).
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(b) Sum (a) over n to give an alternative proof of (10.17).
(c) Use (a) to indicate how one may compute the distribution of the time of

the first visit to state j (after time zero), starting in state i, in terms of p(n)ij
(n ≥ 1). [Hint: Consider generating functions f̂ (t) = ∑

n fnt
n, r̂(t) =∑

n rnt
n.]

13. An invariant measure for a transition matrix ((pij )) is a sequence of nonneg-
ative numbers (mi) such that

∑
i mipij = mj for all j ∈ S. An invariant

measure may or may not be normalizable to a probability distribution on S.

(a) Let pi,i+1 = pi and pi,0 = 1 − pi for i = 0, 1, 2, . . . . Show
that there is a unique invariant measure (up to multiples) if and only if
limn→∞

∏n
k=1 pk = 0; i.e., if and only if the chain is recurrent, since the

product is the probability of no return to the origin.
(b) Show that invariant measures exist for the unrestricted simple random walk

but are not unique in the transient case and are unique (up to multiples) in
the recurrent case.

(c) Let p00 = p01 = 1
2 and pi,i−1 = pi,i = 2−i−2, and pi,i+1 = 1 − 2−i−1,

i = 1, 2, 3, . . . . Show that the probability of not returning to 0 is positive
(i.e., transience), but that there is a unique invariant measure.

14. For the one-dimensional simple symmetric random walk prove that (i) p(n)00 = 0

for all odd n, and p(2n)00 = cn− 1
2 for a positive constant c, (ii) the random walk is

recurrent. [Hint: (i) p(2n)00 = (2n
n

)
2−2n, (Stirling’s formula): n! ∼ √

2πnnne−n
in the sense that the ratio is one in the limit as n → ∞, (ii) Check that the
random walk is irreducible and apply Theorem 10.4(b).]

15. Let Zn, n ≥ 0, be i.i.d. two-dimensional random vectors, with P(Zn =
(±1, 0)) = P(Zn = (0,±1) = 1/4, respectively, for the four cases. Define the
two-dimensional simple symmetric random walk,, starting at x on the integer
lattice Z

2 ≡ Z × Z by Sxn = x + Z1 + · · · + Zn, n ≥ 1, Sx0 = x ∈ Z
2.

(a) Show that the two-dimensional simple symmetric random walk is irre-
ducible.[Hint: Let (i, j), (k, l) ∈ Z

2. There is a polygonal path of finite
length m = |i − k| + |l − j | from (i, j) to (k, l), in increments of (±1, 0)
and/or (0,±1), and the random walk can move along this with positive
probability, i.e., p(m)(i,j),(k,l) ≥ (1/4)m > 0.]

(b) Consider the transformed random vectors Wn = √
2ZnA, n ≥ 0, where

A is the matrix (rotation) A =
(

1√
2

1√
2

− 1√
2

1√
2

)

. Show that the coordi-

nates of Wn = (W
(1)
n ,W

(2)
n are symmetrically distributed independent

Bernoulli ±1-valued random variables, and use the estimate p(2n)0,0 for the
one-dimensional simple symmetric random walk to show that the two-
dimensional simple symmetric random walk is also recurrent.
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16. Show that the two-dimensional random walk with increments Wn, n ≥ 0, in
the previous exercise, is not irreducible. [Hint: Check that the random walk
with increments Wn partitions the state space into two equivalence classes of
states (j, k) in which j and k are of the same parity, and another in which (j, k)
have opposite parity.] Show that every state is recurrent regardless of which
equivalence class it belongs.

17. Let k ≥ 3 be an integer, and suppose Wn = (W
(1)
n , . . . ,W

(k)
n ), n ≥ 1, is a

sequence of i.i.d. k-dimensional random vectors with independent, symmetric
Bernoulli ±1-valued coordinates. Show that T xn = z + W1 + · · · + Wn, n ≥
1, T x0 = x ∈ Z

k , is transient, but not irreducible having 2k−1 equivalence
classes. Show that for k ≥ 3 there is no one-to-one map between T xn , n ≥ 0 and
the k-dimensional symmetric simple random walk Sxn , n ≥ 0, defined by the
2k possible independent equally likely displacements of the form (0, . . . , 0 ±
1, 0, . . . 0)

18. Consider the one-dimensional simple asymmetric random walk, p �= q = 1−p,
0 < p < 1. Let p > 1/2.

(a) Show that ρxy = 1 if x < y, and ρxy = (q/p)x−y if x > y.
(b) Calculate ρxx .
(c) Calculate ρxy for the case p < 1/2. Determine the Greens’ function for

this random walk.



Chapter 11
Birth–Death Chains

Birth–death Markov chains comprise a special class of Markov processes on
the integers which move to nearest neighbor states to the left or right, or stay
put, in single transitions. Simple random walks provide examples for which
the one-step transition probabilities do not depend on the states from which
transitions are made.

The birth–death Markov chains, which include simple random walk, may be
regarded as space-time discretizations of diffusion processes such as Brownian
motion. The transition law defining a birth–death Markov chain has the form

pij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βi if j = i + 1

δi if j = i − 1

αi if j = i
0 otherwise,

(11.1)

where αi + βi + δi = 1. In particular, the displacement probabilities may depend
on the state in which the process is located. However, it has a special “pseudo-
continuity type”, or skip-free, property, in that it cannot skip over states in its
evolution.

For the unrestricted birth–death chain, i.e., S = Z, one assumes βi > 0, δi >
0, for all i ∈ S. Hence the Markov chain is irreducible. The state space for a birth–
death chain is either all of Z or a finite or semi-infinite “interval” of contiguous
states. The transition probabilities at left or right boundaries of the state space are
permitted to be zero or one. In any case, the long-run behavior of a birth–death chain
depends on the nature of its (local) transition probabilities pi,i+1 = βi, pi,i−1 = δi
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at interior states i, as well as on its transitions at boundaries when present. In
this section our aim is to obtain explicit conditions on these parameters under
which, according to the more general theory of the preceding sections, various
long-run behaviors may occur, e.g., transience, recurrence, positive recurrence, and
convergence to steady state distributions.

Proposition 11.1 (Unrestricted Birth–Death Chain). Let S = Z ≡ {0,±1,
±2, . . .} and assume that 0 < βi, δi < 1, βi + δi ≤ 1, for all i ∈ S. Let c, d ∈ S,
c < d, and define for c ≤ i ≤ d, i ∈ S,

ψ(i) := Pi(Xτ{c,d} = c, τ{c,d} <∞) = Pi({Xn} reaches c before d | X0 = i)
= Pi(τc < τd), (11.2)

where τj denotes the first time the chain reaches j, and τ{c,d} = τc ∧ τd is the first
hitting time of the set {c, d}. Then

ψ(y) =
∑d−1
x=y

δxδx−1···δc+1
βxβx−1···βc+1

1 +∑d−1
x=c+1

δxδx−1···δc+1
βxβx−1···βc+1

(c + 1 ≤ y ≤ d − 1). (11.3)

Proof. One has

ψ(i) = (1 − βi − δi)ψ(i)+ βiψ(i + 1)+ δiψ(i − 1),

or equivalently,

βi(ψ(i + 1)− ψ(i)) = δi(ψ(i)− ψ(i − 1)) (c + 1 ≤ i ≤ d − 1). (11.4)

The boundary conditions for ψ are

ψ(c) = 1, ψ(d) = 0. (11.5)

Rewrite (11.4) as

ψ(i + 1)− ψ(i) = δi

βi
(ψ(i)− ψ(i − 1)), (11.6)

for (c + 1 ≤ i ≤ d − 1). Iteration now yields

ψ(x + 1)− ψ(x) = δx

βx

δx−1

βx−1
· · · δc+1

βc+1
(ψ(c + 1)− ψ(c)) (11.7)

for c + 1 ≤ x ≤ d − 1. Summing (11.7) over x = y, y + 1, . . . , d − 1, one obtains

ψ(d)− ψ(y) =
d−1∑

x=y

δxδx−1 · · · δc+1

βxβx−1 · · ·βc+1
(ψ(c + 1)− ψ(c)). (11.8)
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Let y = c + 1 and use (11.5) to obtain

ψ(c + 1) =
∑d−1
x=c+1

δxδx−1···δc+1
βxβx−1···βc+1

1 +∑d−1
x=c+1

δxδx−1···δc+1
βxβx−1···βc+1

. (11.9)

Using this in (11.8) (and using ψ(d) = 0, ψ(c) = 1) one gets the desired result. �
Corollary 11.2. Let {Xn : n ≥ 0} be an unrestricted birth–death chain on S = Z

under the conditions of the Proposition 11.1. For c < y with y, c ∈ Z, define

ρyc := Py(τc <∞) ≡ Py(Xn = c for some n ≥ 1). (11.10)

Then

ρyc = 1 for all y > c iff
∞∑

x=1

δ1δ2 · · · δx
β1β2 · · ·βx = ∞,

< 1 for all y > c iff
∞∑

x=1

δ1δ2 · · · δx
β1β2 · · ·βx <∞. (11.11)

Similarly for y < d, y, d ∈ Z,

ρyd = 1 for all y < d iff
0∑

x=−∞

βxβx+1 · · ·β0

δxδx+1 · · · δ0 = ∞,

< 1 for all y < d iff
0∑

x=−∞

βxβx+1 · · ·β0

δxδx+1 · · · δ0 <∞. (11.12)

Proof. Observe that (Exercise 1),

ρyc = lim
d↑∞ψ(y) = 1 if

∞∑

x=c+1

δxδx−1 · · · δc+1

βxβx−1 · · ·βc+1
= ∞,

< 1 if
∞∑

x=c+1

δxδx−1 · · · δc+1

βxβx−1 · · ·βc+1
<∞ (c < y). (11.13)

Since, for c + 1 ≤ 0,

∞∑

x=c+1

δxδx−1 · · · δc+1

βxβx−1 · · ·βc+1
=

0∑

x=c+1

δc+1δc+2 · · · δx
βc+1βc+2 · · ·βx

+ δc+1δc+2 · · · δ0
βc+1βc+2 · · ·β0

∞∑

x=1

δ1δ2 · · · δx
β1β2 · · ·βx (11.14)
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and a similar equality holds for c + 1 > 0. By relabeling the states i as −i (i =
0,±1,±2, . . .), one gets (11.12) (Exercise 2). �
Corollary 11.3. Let {Xn : n ≥ 0} be an unrestricted birth–death chain on S = Z

under the conditions of the Proposition 11.1. (i) If both sums in (11.11) and (11.12)
diverge, then all states are recurrent, i.e.,

ρyy = 1, for all y ∈ S. (11.15)

(ii) If one of the sums (11.11) or (11.12) is convergent, then all states are transient,
i.e.,

ρyy < 1, y ∈ S. (11.16)

Proof. By the Markov property, conditioning on X1,

ρyy = δyρy−1,y + βyρy+1,y + (1 − δy − βy)ρy,y (11.17)

ρy−1,y = 1, ρy+1,y = 1, so that (11.17) implies (11.15). For (ii), say (11.11) is
convergent, then by (11.17) we get (11.16). �

Natural restrictions on birth–death chains may occur in the form of boundary
conditions at endpoints of finite or semi-infinite intervals. Possibilities include
absorption, and pure or partial reflection as illustrated in the following example.

Example 1 (The Bernoulli–Laplace Model). A simple model to describe the mix-
ing of two incompressible liquids in possibly different proportions can be obtained
by the following considerations. Consider two containers labeled box I and box II,
respectively, each having N balls. Among the total of 2N balls, there are 2r red and
2w white balls, 1 ≤ r ≤ w. At each instant of time, a ball is randomly selected
from each of the boxes, and moved to the other box. The state at each instant is the
number of red balls in box 1. In this example, the state space is S = {0, 1, . . . , 2r}
and the evolution is a Markov chain on S with transition probabilities given for
1 ≤ i ≤ 2r − 1,

pi,i+1 = (w + r − i)(2r − i)
(w + r)2

pii = i(2r − i)
(w + r)2 + (w + r − i)(w − r + i)

(w + r)2 (11.18)

pi,i−1 = i(w − r + i)
(w + r)2

and

p00 = p2r,2r = w − r
w + r p01 = p2r,2r−1 = 2r

w + r . (11.19)
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Definition 11.1. A state a will be called an absorbing boundary for the birth–death
chain if αa = 1 − βa − δa = 1. If δa = 0 and βa > 0, then we will say that a is
a (left side) reflecting boundary. If βa = 0 and δa > 0, then we will say that a is
a (right side) reflecting boundary. A reflecting boundary with βa = 1 or δa = 1 is
said to be purely reflecting.

Remark 11.1. Let us note that a birth–death Markov chain {Xn : n = 0, 1, . . . }
on S = {0, 1, 2, . . . } with absorbing boundary at zero may be constructed from
an unrestricted birth–death chain {Yn : n = 0, 1, . . . } on Z, and having the same
birth–death probabilities on S, but otherwise arbitrary, by starting on S and defining
Xn = Yn∧τ0, n = 0, 1, . . . , where τ0 = inf{n ≥ 0 : Yn = 0} ≤ ∞ (Exercise 13).
A more interesting case is that of constructing a birth–death Markov chain {Xn :
n = 0, 1, . . . } on S = {0, 1, 2, . . . }, with reflecting boundary at zero, from an
unrestricted birth–death chain {Yn : n = 0, 1, . . . } on Z. For this one extends the
birth and death probabilities by β−i = δi, δ−i = βi, i = 1, 2, . . . , leaving β0, δ0
arbitrary, and defines Xn = |Yn|, n = 0, 1, 2, . . . . One may apply Proposition 8.11
to show that {Xn : n = 0, 1, 2, . . . } is Markov (Exercise 14).

Proposition 11.4 (Two Reflecting Boundaries). Let S = {0, 1, 2, . . . , N}, and
suppose that 0 and N are reflecting boundaries, and 0 < βi, δi < 1, 1 ≤ i ≤ N − 1.
Then all states are recurrent.

Proof. Take c = 0, d = N in (11.2). Then ψ(y) gives the probability that the
process starting at y reaches 0 before reaching N . The probability ϕ(y), for the
process to reach N before 0 starting at y, may be obtained in the same fashion by
changing the boundary conditions (11.5) to ϕ(0) = 0, ϕ(N) = 1 to get that ϕ(y) =
1 − ψ(y). Alternatively, check that ϕ(y) ≡ 1 − ψ(y) satisfies the equation (11.6)
(with ϕ replacing ψ) and the boundary conditions ϕ(0) = 0, ϕ(N) = 1. We leave
it as an exercise to argue that such a solution is necessarily unique (Exercise 4). All
states are recurrent, by Corollaries 8.7, 10.5 (see Exercise 5 for an alternative proof).

�

Proposition 11.5 (One Absorbing Boundary). Let S = {0, 1, 2, . . . }, and suppose
that 0 is an absorbing boundary, but 0 < βi, δi < 1, for i = 1, 2, . . . . Then 0 is
recurrent and each i ≥ 1 is transient.

Proof. For c, d ∈ S, the probability ψ(y) is given by (11.3) and the probability ρy0,
which is also interpreted as the probability of eventual absorption starting at y > 0,
is given by

ρy0 = lim
d↑∞

d−1∑

x=y
δxδx−1···δ1
βxβx−1···β1

1 +
d−1∑

x=1

δxδx−1···δ1
βxβx−1···β1

= 1 iff
∞∑

x=1

δ1δ2 · · · δx
β1β2 · · ·βx = ∞ (for y > 0). (11.20)
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Whether or not the last series diverges,

ρy0 ≥ δyδy−1 · · · δ1 > 0, for all y > 0 (11.21)

and

ρyd ≤ 1 − δyδy−1 · · · δ1 < 1, for d > y > 0,
ρ0d = 0, for all d > 0.

(11.22)

By (11.17), ρy,y = (δyρy−1,y + βyρy+1,y)/(βy + δy). Since (11.21) implies
ρy−1,y < 1, one has

ρyy < 1 (y > 0). (11.23)

Thus, all nonzero states y are transient. �

Proposition 11.6 (One Reflecting Boundary). Let S = {0, 1, 2, 3, . . .} and suppose
that 0 is a reflecting boundary, but βi > 0 for all i, and δi > 0 for i ≥ 1, βi+δi ≤ 1.
Then all states are recurrent if and only if the infinite series (11.20) diverges, i.e., if
and only if ρy0 = 1.

Proof. First assume that the infinite series in (11.20) diverges, i.e., ρy0 = 1 for all
y > 0. Then condition on X1 to get

ρ00 = (1 − β0)ρ00 + β0ρ10, (11.24)

so that

ρ00 = 1. (11.25)

By Theorem 10.4, the chain is recurrent. On the other hand, if the series in (11.20)
converges, then ρy0 < 1 for all y > 0. In particular, from (11.24), we see ρ00 < 1.
Again, by Theorem 10.4, the chain is transient. �

The determination of conditions for recurrence and transience, under various
other boundary possibilities such as two absorbing, or one absorbing and one
reflecting boundary, are left to the exercises.

We next turn to the question of existence and uniqueness of invariant probabilities
of birth–death chains. Recall that a Markov chain with transition probability matrix
p an invariant probability is a probability π = (πj : j ∈ S) on S such that

p′π = π . (11.26)

Then p′(n)π = π for each time n = 1, 2, . . . . That is, π is invariant under the
transition law p. Recall also that if {Xn : n ≥ 0} is started with an invariant initial
distribution π , then {Xn : n ≥ 0} is stationary.
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Proposition 11.7 (Two Reflecting Boundaries). Let S = {0, 1, 2, . . . , N} and
assume that 0, N are both reflecting boundaries. If 0 < βi, δi < 1, 1 ≤ i ≤ N − 1,
then all states are recurrent and the unique invariant probability π is given by

πj = β0 · · ·βj−1

δ1 · · · δj π0 (1 ≤ j ≤ N),

π0 =
⎛

⎝1 +
N∑

j=1

β0β1 · · ·βj−1

δ1δ2 · · · δ1

⎞

⎠

−1

. (11.27)

Proof. All states are recurrent by Proposition 11.4. The unique invariant probability
is easily obtained by solving

π0(1 − β0)+ π1δ1 = π0,

πj−iβj−1 + πj (1 − βj − δj )+ πj+1δj+1 = πj (j = 1, 2, . . . , N − 1), (11.28)

or

πj−1βj−1 − πj (βj + δj )+ πj+1δj+1 = 0, (11.29)

subject to πj ≥ 0 for all j and
∑
j πj = 1. The solutions are easily checked to be

given by (11.29). The solution as a probability measure is unique. �
Example 2 (Equilibrium for the Bernoulli–Laplace Model). For the Bernoulli–
Laplace model the invariant distribution π = (πi : i = 0, 1, . . . , 2r) is the
hypergeometric distribution calculated from (11.27) as

πj = β0 · · ·βj−1

δ1 · · · δj π0 = 2r(w + r)
j (w − r + j)

j−1∏

i=1

(w + r − i)(2r − i)
i(w − r + i) π0

=
(2r
j

)( 2w
w+r−j

)

(2w+2r
w+r

) π0. (11.30)

Proposition 11.8 (One Reflecting Boundary). Let S = {0, 1, 2, . . .} with 0 as a
reflecting boundary and 0 < β1, δi < 1, i ≥ 1. Then there exists an invariant
probability given by

πj = β0β1 · · ·βj−1

δ1δ2 · · · δj π0 (j ≥ 1) (11.31)

if and only if
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∞∑

j=1

β0β1 · · ·βj−1

δ1δ2 · · · δj <∞, (11.32)

in which case π0 = (1 + ∑∞
j=1

β1···βj−1
δ1···δj )

−1. The invariant probability is unique
under the condition (11.32).

Proof. The system of equations p′π = π are

π0(1 − β0)+ π1δ1 = π0, (11.33)

πj−1βj−1 + πj (1 − βj − δj )+ πj+1δj+1 = πj (j ≥ 1).

The solution in terms of π0 is given by (11.31). In order that this may be a probability
distribution one must have (11.32). In this case one must take

π0 =
⎛

⎝1 +
∞∑

j=1

β0β1 · · ·βj−1

δ1δ2 · · · δj

⎞

⎠

−1

.

�

Proposition 11.9 (Unrestricted Birth–Death Chain). Let S = {0,±1,±2, . . .} and
assume 0 < βi, δi < 1, for all i ∈ S. Then the recurrent and an invariant probability
exists and is given by

πj =
⎧
⎨

⎩

β0β1···βj−1
δ1δ2···δj π0 (j ≥ 1),
δj+1δj+2···δ0
βj βj+1···β−1

π0 (j ≤ −1),
(11.34)

if and only if

∑

j≤−1

δj+1δj+2 · · · δ0
βjβj+1 · · ·β−1

<∞,
∑

j≥1

β0β1 · · ·βj−1

δ1δ2 · · · δj <∞, (11.35)

in which case

π0 =
⎛

⎝1 +
∑

j≤−1

δj+1δj+2 · · · δ0
βjβj+1 · · ·β−1

+
∑

j≥1

β0β1 · · ·βj−1

δ1δ2 · · · δj

⎞

⎠

−1

. (11.36)

The invariant probability is unique.

Proof. The equations p′π = π are

πj−1βj−1+πj (1−βj−δj )+πj+1δj+1 = πj (j = 0,±1,±2, . . .) (11.37)

which are uniquely solved in terms of π0 under the conditions as asserted. �
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Remark 11.2. One may notice that the convergence of the series in (11.35)
explicitly implies the divergence of the series in (11.11), (11.12). In other words,
one explicitly sees that the existence of an equilibrium distribution for the chain
implies its recurrence. The same remark applies to the birth–death chain with one
or two reflecting boundaries.

Example 3 (The Ehrenfest Model of Heat Exchange). The Ehrenfest model illus-
trates the process of heat exchange between two bodies that are in contact and
insulated from the outside. The temperatures are assumed to change in steps of
one unit and are represented by the numbers of balls in two boxes. The two boxes
are marked I and II and there are 2d balls labeled 1, 2, . . . , 2d. Initially some of
these balls are in box I and the remainder in box II. At each step a ball is chosen at
random (i.e., with equal probabilities among ball numbers 1, 2, . . . , 2d) and moved
from its box to the other box. If there are i balls in box I, then there are 2d − i balls
in box II. Thus there is no overall heat loss or gain. Let Xn denote the number of
balls in box I after the nth trial. Then {Xn : n = 0, 1, . . .} is a Markov chain with
state space S = {0, 1, 2, . . . , 2d} and transition probabilities

pi,i−1 = i

2d
, pi,i+1 = 1 − i

2d
, for i = 1, 2, . . . , 2d − 1,

p01 = 1, p2d,2d−1 = 1,

pij = 0, otherwise. (11.38)

This is a birth–death chain with two reflecting boundaries at 0 and 2d. The transition
probabilities are such that the mean change in temperature, in box I, say, at each step
is proportional to the negative of the existing temperature gradient, or temperature
difference, between the two bodies. We will first see that the model yields Newton’s
law of cooling at the level of the evolution of the averages. Assume that initially
there are i balls in box I. Let Yn = Xn − d, the excess of the number of balls in
box I over d. Writing en = Ei (Yn), the expected value of Yn given X0 = i, one has

en = Ei (Xn − d) = Ei[Xn−1 − d + (Xn −Xn−1)]

= Ei (Xn−1 − d)+ Ei (Xn −Xn−1) = en−1 + Ei

(
2d −Xn−1

2d
− Xn−1

2d

)

= en−1 + Ei

(
d −Xn−1

d

)

= en−1 − en−1

d
=
(

1 − 1

d

)

en−1.

Note that in evaluating Ei (Xn−Xn−1)we first calculated the conditional expectation
of Xn − Xn−1 given Xn−1 and then took the expectation of this conditional mean.
Now, by successive applications of the relation en = (1 − 1/d)en−1,

en =
(

1 − 1

d

)n
e0 =

(

1 − 1

d

)n
Ei (X0 − d) = (i − d)

(

1 − 1

d

)n
. (11.39)
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Suppose in the physical model the frequency of transitions is τ per second. Then in
time t there are n = tτ transitions. Write ν = (− log(1 − 1

d
)
)
τ . Then

en = (i − d)e−νt , (11.40)

which is Newton’s law of cooling. The equilibrium distribution for the Ehrenfest
model is easily seen, using (11.27), to be

πj =
(

2d

j

)

2−2d , j = 0, 1, . . . , 2d. (11.41)

That is, π = (πj : j ∈ S) is binomial with parameters 2d, 1
2 . Note that d = EπXn

is the (constant) mean temperature under equilibrium in (11.40).
The physicists P. and T. Ehrenfest in 1907, and later Smoluchowski in 1916, used

this model in order to explain an apparent paradox that at the turn of the century
threatened to wreck Boltzmann’s kinetic theory of matter. In the kinetic theory, heat
exchange is a random process, while in thermodynamics it is an orderly irreversible
progression toward equilibrium. In the present context, thermodynamic equilibrium
would be achieved when the temperatures of the two bodies became equal, or at
least approximately or macroscopically equal. But if one uses a kinetic model such
as the one described above, from the state i = d of thermodynamical equilibrium the
system will eventually pass to a state of extreme disequilibrium (e.g., i = 0) owing
to recurrence. This would contradict irreversibility of thermodynamics. However,
one of the main objectives of kinetic theory was to explain thermodynamics, a
largely phenomenological macroscopic-scale theory, starting from the molecular
theory of matter.

Historically it was Poincaré who first showed that statistical-mechanical systems
have a recurrence property. A scientist named Zermelo then forcefully argued that
recurrence contradicted irreversibility. Although Boltzmann rightly maintained that
the time required by the random process to pass from the equilibrium state to a
state of macroscopic nonequilibrium would be so large as to be of no physical
significance, his reasoning did not convince other physicists. The Ehrenfest and
Smoluchowski finally resolved the dispute by demonstrating how large the passage
time may be from i = d to i = 0 in the present model.

It follows from (11.27) that the expected return times for the Ehrenfest model are

E(τj (1)|X0 = j) = 1

πj
≡ 22d/

(
2d

j

)

, (j = 0, . . . , 2d). (11.42)

To compute the expected time to reach one state from another (e.g., from the
“equilibrium state” d to extreme disequilibrium 0), we consider more generally a
birth–death-chain on S = {0, 1, . . . , N}, N > 2, with reflecting boundaries {0, N}.
Thus we take βj + δj = 1 for all j, 0 < βj < 1 for j = 1, . . . , N − 1, β0 =
1, δN = 1. We now turn to the computation of expected times of reaching one state
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from another. Let τy = inf{n ≥ 0 : Xn = y}.m(i) := E(τ0|X0 = i) for 0 < j ≤ N .
For 0 < j < N , one has m(j) = 1 + βjm(j + 1) + δjm(j − 1). For 1 < j < N ,
this may be expressed as βj (m(j + 1) − m(j)) − δj (m(j) − m(j − 1)) = −1.
Multiplying through by β1 · · ·βj−1/δ1 · · · δj one obtains

β1 · · ·βj
δ1 · · · δj [m(j + 1)−m(j)] − β1 · · ·βj−1

δ1 · · · δj−1
[m(j)−m(j − 1)] = − β1 · · ·βj−1

δ1 · · · δj−1δj
.

(11.43)
Summing these over j = N − 1, . . . , i, (i > 1), one obtains

β1 · · ·βN−1

δ1 · · · δN−1
[m(N)−m(N−1)]−β1 · · ·βi−1

δ1 · · · δi−1
[m(i)−m(i−1)] = −

N−1∑

j=i

β1 · · ·βj−1

δ1 · · · δj−1δj
,

(11.44)
or, noting that m(N) = 1 +m(N − 1), δN = 1,

m(i)−m(i − 1) = δ1 · · · δi−1

β1 · · ·βi−1

N∑

i=1

β1 · · ·βj−1

δ1 · · · δj−1δj
, i > 1. (11.45)

In particular,

m(2)−m(1) = (δ1/β1)

N∑

j=2

β1 · · ·βj−1

δ1 · · · δj−1δj
. (11.46)

On the other hand, one has m(1) = 1 + β1m(2) + δ1m(0) = 1 + β1m(2), since
m(0) = 0, so that β1(m(2)−m(1)) = δ1m(1)−1. Using this in (11.44) one obtains

m(1) = (β1/δ1)(m(2)−m(1))+1/δ1 =
N∑

j=2

β1 · · ·βj−1

δ1 · · · δj−1δj
+ 1

δ1
=

N∑

j=1

β1 · · ·βj−1

δ1 · · · δj .

(11.47)
Summing (11.45) over i = k, . . . , 2, and using (11.47), one obtains

m(k) = m(1)+
k∑

i=2

δ1 · · · δi−1

β1 · · ·βi−1

N∑

j=i

β1 · · ·βj−1

δ1 · · · δj−1δj

=
N∑

j=1

β1 · · ·βj−1

δ1 · · · δj +
k∑

i=2

δ1 · · · δi−1

β1 · · ·βi−1

N∑

j=1

β1 · · ·βj−1

δ1 · · · δj−1δj
. (11.48)

Next, for a state 0 < d < N , we calculate E(τd |X0 = j) ≡ m̄(j), say. Then
(11.43) holds for m̄(j), 0 < j < d. Also, note the boundary conditions: m̄(0) −
m̄(1) = 1, and m̄(d) = 0, so that for j = 2, . . . , d − 1,
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β1 · · ·βj
δ1 · · · δj [m̄(j + 1)− m̄(j)] − β1 . . . βj−1

δ1 · · · δj−1
[m̄(j)− m̄(j − 1)] = −β1 . . . βj−1

δ1 · · · δj ,

(11.49)
and

β1

δ1
[m̄(2)− m̄(1)] + 1 = − 1

δ1
= −β0

δ1
. (11.50)

Summing over j = i, i − 1, . . . ., 1, one has, using β0 = 1, to write the sum
compactly,

β1 · · ·βi
δ1 · · · δi [m̄(i + 1)− m̄(i)] + 1 = −

i∑

j=1

β1 · · ·βj
δ1 · · · δj−1δj

, (11.51)

or

m̄(i + 1)− m̄(i) = δ1 · · · δi
β1 · · ·βi [−1 −

i∑

j=1

β1 . . . βj−1

δ1 · · · δj−1δj
], (11.52)

for i = 1, . . . , d − 1. Thus summing this over i = 1, . . . , d − 1, and recalling
m̄(d) = 0, one gets

m̄(d)− m̄(1) = −m̄(1) = −
d−1∑

i=1

δ1 · · · δi
β1 · · ·βi [1 +

i∑

j=1

β1 . . . βj−1

δ1 · · · δj−1δj
]. (11.53)

This gives the value of m̄(1). Using this in (11.52) (i.e., summing up from i =
k− 1, . . . , 1) one may obtain m̄(k). In particular, using the boundary condition at 0,
one has

m̄(0) = 1 + m̄(1)

= 1 +
d−1∑

i=1

δ1 · · · δi
β1 · · ·βi

⎡

⎣1 +
i∑

j=1

β1 · · ·βj−1

δ1 · · · δj

⎤

⎦ . (11.54)

We now apply these computations to the Ehrenfest model where S =
{0, 1, . . . , 2d}, βi = 2d−i

2d , δi = i
2d (i = 1, 2, . . . , 2d − 1), β0 = 1, δ2d = 1.

Letting k = d in (11.48), we get the first sum as

2d∑

i=1

[(2d − 1) . . . (2d − i + 1)/(2d)i−1]/[j !/(2d)i] =
2d∑

i=1

(
2d

j

)

= 22d − 1.

(11.55)
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Similarly, the second (double) sum in (11.48) equals
∑d
i=2

(i−1)!(2d−i)!
(2d)!

∑2d
j=i

(2d
j

) =
∑d
i=2

( 2d
i−1

)∑2d
j=i

(2d
j

)
. Therefore,

m(d) = E(τ0|X0 = d) = 22d − 1 +
d∑

i=2

[
(

2d

i − 1

)−1 2d∑

j=i

(
2d

j

)

> 22d . (11.56)

For the computation of E(τd |X0 = 0), (11.54) yields

m̄(0) = E(τd |X0 = 0)

= 1 +
d−1∑

i=1

δ1 · · · δi
β1 · · ·βi

⎡

⎣1 +
i∑

j=1

β0β1 · · ·βj−1/δ1 · · · δj−1δj

⎤

⎦

= 1 +
d−1∑

i=1

i!(2d − i − 1)!/(2d − 1)!
⎡

⎣1 +
i∑

j=1

(2d)!/(2d − j)!j !
⎤

⎦

= 1 +
d−1∑

i=1

⎡

⎣
i∑

j=0

(
2d

j

)
⎤

⎦ /

(
2d − 1

i

)

, (11.57)

which is smaller than 1 + d(d − 1)/2. Indeed, a careful calculation shows yields
(Exercise 19)

m̄(0) = d + d log d + 0(1) as d → ∞. (11.58)

Remark 11.3. For d = 10 000 balls and rate of transition one ball per second, it
follows that

m̄(0) ≤ 102 215 seconds < 29 hours,

m(d) > 106000 years. (11.59)

Thus it takes only about a day on the average for the system to reach equilibrium
from a state farthest from equilibrium but takes an average time inconceivably large,
even compared to cosmological scales, for the system to go back to that state from
equilibrium. For d = 10 000 one gets, using Stirling’s approximation for the second
estimate,

E(τ
(1)
0 |X0 = 0) ( 220 000, E(τ

(1)
d |X0 = d) ( 100

√
π. (11.60)

Thus, within time scales over which applications of thermodynamics make sense,
one would not observe a passage from equilibrium to a (macroscopic) nonequilib-
rium state. Although Boltzmann did not live to see it, this vindication of his theory
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ended a rather spirited debate on its validity and contributed in no small measure to
its eventual acceptance by physicists.

The spectral representation for p is left as an Exercise. The 2d eigenvalues that
one obtains are given by αj = j/d, j = ±1,±2, . . . ,±d (Exercise 18).

Example 4 (Random Walk on the Hypercube Z
m
2 and the Ehrenfest Model). Con-

sider the group generated additively modulo 2 by m + 1 basis elements given by
the column vectors ei having 1 in the ith coordinate and zeros in the remaining
m − 1 coordinates (i = 1, . . . , m), together with the identity element given by e0
and having zeros in all m coordinates. The group operation is (coordinate wise)
Euclidean addition modulo 2. The group has 2m elements, and can be viewed as the
m-dimensional hypercube G = Z

m
2 . The uniform distribution H (Haar measure) on

this group assigns mass 2−m to each element of G. The nearest neighbor random
walk on Z

m
2 is a Markov chain {Xn : n ≥ 0} defined by

P(Xn+1 = x + ei (mod 2)|Xn = x) = 1

m+ 1
(i = 0, 1, . . . , m), x ∈ Z

m
2 .

(11.61)
It is simple to check that the m-step transition probability of this Markov chain
satisfies p(m)(x, y) ≥ 1

mm
, for all x, y ∈ G, so that, by Doeblin’s theorem, one has

(Exercise 20)

sup
x∈Zm2

||p(n)(x, ·)−H ||T V ≤ (1−(2/m)m)[n/m] ∼ exp

{

− n
m

(
2

m

)m}

. (11.62)

A much improved cut-off phenomena, pioneered by Persi Diaconis1 and colleagues
and students, shows the following (Diaconis (1988), p.28):

sup
x∈Zm2

||p(k)(x, ·)−H ||T V ≤ 1

2
(exp{e−c} − 1), for k = (1/4)(m+ 1)(logm+ c),

(11.63)

and given any ε > 0, there exists C < 0 such that for c < C, with k as in (11.63)
and all sufficiently large m,

inf
x∈Zm2

||p(kn)(x, ·)−H ||T V ≥ 1 − ε. (11.64)

Note that, with c positive and large, the right side of (11.63) can be made arbitrarily
small. But if one takes c < C(< 0), C depending on ε, then the left side of (11.64)
is greater than 1 − ε for all sufficiently largem. Thus there is a sharp cutoff at c = 0
in (11.63), i.e., for k on either side of 1

4 (m+ 1) logm. The proof, given by Diaconis

1 See Diaconis (1996) for historical background.
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(1988) loc. cit, uses group representation theory, or Fourier transform on Abelian
groups.

Let us now observe that the Markov chain in this example for m = 2d on the
hypercube Z

d
2 is the same as the Ehrenfest model, except that the underlying birth–

death chain in the present example has a probability of 1/(2d + 1) of staying at its
present state; referred to as a lazy random walk. This corresponds to the possible
occurrence of the identity e0 of the group as an increment. Thus, instead of (11.38),
the parameters are

βi = pi,i+1 = 2d

2d + 1

2d − i
2d

, pi,i = αi = 1

2d + 1
, 0 ≤ i ≤ 2d − 1,

δi = pi,i−1 = 2d

2d + 1

i

2d
, 1 ≤ i ≤ 2d, p2d,2d = α2d = 1

2d + 1
. (11.65)

This does not change the invariant probability π (See (11.41)). But the Ehrenfest
model is periodic with period 2, and therefore convergence in total variation norm
to equilibrium only happens separately on the set of odd integers and on the set
of even integers, i.e., p(n)(x, dy) does not converge in total variation norm to π .
On the other hand, the (lazy) random walk on Z

2d
2 is aperiodic. This variant on the

Ehrenfest model is the one treated above.
Along these lines, it is also interesting to compare the expected time to the

equilibrium state, defined by the average d of π , starting from the farthest
nonequilibrium states 0 (or 2d), with the exponent k for the speed of convergence
in the modified model given by (.86)[n/k], where k = 1

4 (2d + 1)(log 2d + 1). The
latter is also indicative of the order of time at which the steady state equilibrium is
reached (approximately).

Exercises

1. Let Ad be the set {ω : X0(ω) = y, {Xn(ω) : n ≥ 0} reaches c before d}, where
y > c. Show that Ad ↑ A = {ω : X0(ω) = y, {Xn(ω) : n ≥ 0} ever reaches c},
as d ↑ ∞.

2. Prove (11.12) by using (11.11) and looking at {−Xn : n ≥ 0}.
3. Prove (11.4), (11.17), and (11.24) by conditioning on X1 and using the Markov

property.
4. Suppose that ϕ(i) (c ≤ i ≤ d) satisfy the equations (11.4) and the boundary

conditions ϕ(c) = 0, ϕ(d) = 1. Prove that such a ϕ is unique.
5. Consider a birth–death chain on S = {0, 1, . . . , N} with both boundaries

reflecting.

(a) Prove that Pi(Tj > mN) ≤ (1 − δNδN−1 · · · δ1)m if i > j , and ≤ (1 −
β0β1 · · ·βN−1)

m if i < j . Here Tj = inf{n ≥ 1 : Xn = j}.
(b) Use (i) to prove that ρij ≡ Pi(Tj <∞) = 1 for all i, j .
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6. Consider a birth–death chain on S = {0, 1, . . .} with 0 reflecting. Argue as in
Exercise 5 to show that ρ0y = 1 for all y.

7. Consider a birth–death chain on S = {0, 1, . . . , N} with 0, N absorbing.
Calculate

lim
n→∞ n

−1
n∑

m=1

p
(m)
ij , for all i, j.

8. Let 0 be a reflecting boundary for a birth–death chain on S = {. . . ,−3,−2,−1,
0}. Derive the necessary and sufficient condition for recurrence.

9. If 0 is absorbing, and N reflecting, for a birth–death chain on S =
{0, 1, . . . , N}, then show that 0 is recurrent and all other states are transient.

10. Let p be the transition probability matrix of a birth–death chain on S =
{0, 1, 2, . . .} with

βj = j + 2

2(j + 1)
, δj = j

2(j + 1)
, j = 0, 1, 2, . . . .

(a) Are the states transient or recurrent?
(b) Compute the probability of reaching c before d, c < d, starting from state

i, c ≤ i ≤ d .

11. Suppose p is the transition matrix of a birth–death chain on S = {0, 1, 2, . . .}
such that β0 = 1, βj ≤ δj = 1−βj for j = 1, 2, . . . . Show that all states must
be recurrent.

12. Let {Xn : n ≥ 0} be the asymmetric simple random walk on S = {0, 1, 2, . . .}
with βj = p < 1

2 , j = 1, 2, . . . and (partial) reflection at 0 with p0,0 = p0,1 =
1
2 .

(a) Calculate the invariant initial distribution π .
(b) Calculate EπXn as a function of p < 1

2 .

13. Show that the construction of a birth–death process with absorbing boundary
at zero in Example 11.1 is a Markov process with the given birth–death
probabilities.

14. Show that the construction of a birth–death process with reflecting boundary
at zero in Remark 11.1 is a Markov process with the given birth–death
probabilities.[Hint: Express the (extended) unrestricted transition probabilities
as pij = δiδi−1,j + βiδi+1,j , i, j ∈ Z, where δ�,k is the Kronecker delta. See
Example 6.]

15. (A Birth–Death Queue) During each unit of time either one customer arrives for
service and joins a single line or no customers arrive for service. The probability
of one customer arriving is λ, and no customer arrives with probability 1 − λ.
Also during each unit of time, independently of new arrivals, a single service is
completed with probability p or continues into the next period with probability
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1 − p. Let Xn be the total number of customers (waiting in line or being
serviced) at the nth unit of time.

(a) Show that {Xn : n ≥ 0} is a birth–death chain on S = {0, 1, 2, . . .}.
(b) Discuss transience, recurrence, positive recurrence.
(c) Calculate the invariant initial distribution when λ < p.
(d) Calculate EπXn when λ < p, where π is the invariant initial distribution.

16. Suppose that balls labeled 1, . . . , N are initially distributed between two boxes
labeled I and II. The state of the system represents the number of balls in box I.
Determine the one-step transition probabilities for each of the following rules
of motion in the state space.

(a) At each time step a ball is randomly (uniformly) selected from the numbers
1, 2, . . . , N . Independently of the ball selected, box I or II is selected with
respective probabilities p1 and p2 = 1 − p1. The ball selected is placed in
the box selected.

(b) At each time step, if possible, a ball is randomly (uniformly) selected
from the numbers in box I with probability p1, or from those in II with
probability p2 = 1−p1. If the box selected is empty, then a ball is selected
from the other box. A box is then selected with respective probabilities in
proportion to number of balls in it, which could be zero. The ball selected
is placed in the box selected.

(c) At each time step a ball is randomly (uniformly) selected from the numbers
in box I with probability proportional to the current size, of I, which could
be zero, or from those in II with the complementary probability. A box is
also selected with probabilities in proportion to current number of balls in
it. The ball selected is placed in the box selected.

17. Calculate the invariant distribution for Exercise 16(a) where

pi,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N−i
N
p1, ifj = i + 1,

i
N
p1 + (N−i)

N
p2, if j = i, i = 0, 1, . . . , N,

i
N
p2, if j = i − 1,

0, otherwise.

Discuss the situation for Exercise 16(b) and (c).
18. (Ehrenfest Model)

(a) Compute the unique invariant probability π for the Ehrenfest model.
(b) Show that the transition operator T of a birth–death Markov chain on

S = {0, 1, . . . , N} with reflecting boundaries is a self-adjoint operator on
L2(S, π).

(c) For the Ehrenfest model show that the eigenvalues of the transition operator
are αj = j

d
, j = ±1, . . . ,±d.

19. Verify the asymptotic formula (11.58).
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20. Verify (11.62).
21. (A Cut-Off Phenomena) Suppose that a deck of N cards is shuffled by

repeatedly taking the top card and inserting it into the deck at a random location.
Let GN be the (nonabelian) group of permutations on N symbols and let
X1, X2, . . . be i.i.d. GN -valued random variables with

P(Xk = 〈i, i − 1, . . . , 1〉) = 1/N for i = 1, 2, . . . , N,

where 〈i, i − 1, . . . , 1〉 is the permutation in which the card in the ith location
from the top moves to i − 1, i − 1 to i − 2, . . . , 2 to 1, and 1 to i. Let S0 be
the identity permutation and let Sn = X1 · · ·Xn, where the group operation of
composition of maps is being expressed multiplicatively. Let T denote the first
time the original bottom card arrives at the top and is inserted back into the
deck. Then

(a) T is a stopping time.
(b) T has the additional property that P(T = k, Sk = g) does not depend on

g ∈ GN .
[Hint: Show by induction onN that at time T −1 the (N−1)! arrangements
of the cards beneath the top card are equally likely.]

(c) Property (ii) is equivalent to P(Sk = g | T = k) = 1/|GN |; i.e., the deck
is mixed at time T .2

(d) Show that

max
A

∣
∣
∣
∣P(Sn ∈ A)− |A|

|GN |
∣
∣
∣
∣ ≤ P(T > n) ≤ Ne−n/N .

[Hint: Write P(Sn ∈ A) = P(Sn ∈ A, T ≤ n) + P(Sn ∈ A, T > n) and
condition.]

2 This property is referred to as the strong uniform time property by Aldous and Diaconis (1986),
who introduced this example and approach to cut-offs.



Chapter 12
Hitting Probabilities & Absorption

Absorbing boundary conditions can be imposed on (sets of) states of a discrete
parameter Markov chain by simply modifying the transition probabilities to
make the states inescapable once reached. Calculations of time to absorption,
i.e., hitting times of the absorbed states, will be formulated as boundary value
problems.

Let {Xn : n ≥ 0} denote a discrete parameter Markov chain with countable state
space S, starting in state i ∈ S. Consideration of the time at which a state or set of
states will be reached may also be made as follows. Suppose that p is a transition
probability matrix for {Xn : n ≥ 0}. Let τj denote the time required to reach j ,

τj = inf{n : Xn = j}. (12.1)

To calculate the distribution of τj , consider that

Pi(τj > m) =
∑∗

pii1pi1i2 · · ·pim−1im, (12.2)

where
∑∗ denotes summation over all m-tuples (i1, i2, . . . , im) of elements from

S\{j}. Now let p0 denote the matrix obtained by deleting the j th row and j th
column from p,

p0 = ((pik : i, k ∈ S\{j})). (12.3)
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The matrix p0 is the transition probability law for the killed process {Xn : n <
τj }; i.e., the process can only be observed prior to its arrival in state j, where it is
removed from the state space S. Then, by definition of matrix multiplication, the
calculation (12.2) may be expressed as

Pi(τj > m) =
∑

k

p
0(m)
ik , (12.4)

and, therefore,

Pi(τj = m) =
∑

k

p
0(m−1)
ik −

∑

k

p
0(m)
ik , m > 1. (12.5)

The proof of the following result is left as Exercise 1.

Proposition 12.1. Let p be a transition probability matrix for a Markov chain {Xn :
n ≥ 0} starting in state i. Let B be a nonempty subset of S, i /∈ B. Let

τB = inf{n ≥ 0 : Xn ∈ B}. (12.6)

Then,

Pi(τB ≤ m) = 1 −
∑

k

p
0(m)
ik , m = 1, 2, . . . , (12.7)

where p0 is the matrix obtained by deleting the rows and columns of p correspond-
ing to the states in B.

While the matrix p0 is not a proper transition probability matrix on the state space
S, if, instead, each of the rows in p corresponding to states j ∈ B is replaced by
rows e′j having 1 in the j th place and 0 elsewhere, then the resulting matrix p̂, say,
is a proper (stochastic) transition probability matrix and

Pi(τB ≤ m) = 1 −
∑

k /∈B
p̂
(m)
ik . (12.8)

The matrix p̂ is the transition probability matrix of the stopped process {XτB∧n :
n = 0, 1, 2, . . . }.

The reason (12.8) holds is that up to the first passage time τB the distribution of
Markov chains having transition probability matrices p0 and p̂ (starting at i) are the
same. In particular,

p̂
(m)
ik = p0(m)

ik for i, k /∈ B. (12.9)

Notice that the states belonging to B are absorbing and hence recurrent under p̂.
It will be convenient for what follows to consider the operators
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Tf (i) =
∑

j∈S
f (j)pij , Af (i) = Tf (i)− f (i) = pf (i)− f (i), i ∈ S,

(12.10)
for any bounded, or possibly unbounded nonnegative function f on S.

Corollary 12.2. Let B ⊂ S and suppose that p = p̂ such that all states in Bc are
transient. Then given a nonnegative function f on S which is superharmonic on Bc,
i.e., Tf ≤ f on Bc, there is a unique pair g ≥ 0, h ≥ 0 such that Af = −g on Bc,
Af = g = 0 on B, Ah = 0 on S, and f = Gg + h on S, where G = (I − p)−1 is
the Greens function of the (transient) Markov chain restricted to Bc.

Proof. Note that since p = p̂, any function is harmonic on B in the sense that
Tf (i) = ∑

j∈S f (j)pij = ∑
j∈S f (j)δij = f (i), for all i ∈ B. Under the stated

conditions G(i, j) < ∞ for all i, j ∈ S (see (10.15), (10.17)). Define g = 0 on
B and g = −Af on Bc. Then, Gg(i) = ∑

j∈Bc G(i, j)g(j) is well-defined and
f = Gg on Bc. Define h = limn→∞ T nf . The limit exists, since T nf = f on B
for all n, and 0 ≤ T nf ≤ f is a decreasing nonnegative sequence on Bc, deceasing
to zero. As already noted, since p = p̂, one has h = f on B. The remainder of the
proof is left as part of Exercise 1. �
Proposition 12.3. Within the framework of the above corollary, let τB = inf{n ≥
0 : Xn ∈ B} and let f (i) = EiτB, i ∈ S. Then

f ≡ 0 on B, Af = −1 on Bc. (12.11)

Proof. On Bc one has using the Markov property and the fact that τB = τB(X+
1 )+1

f (i) = EiτB = EiEi (τB |σ(X0, X1))

= EiEX1τB + 1 = Eif (X1)+ 1 = Tf (i)+ 1. (12.12)

Thus Af = −1 on Bc. Also f = 0 on B since [τB = 0] ⊇ [X0 = i] for i ∈ B. �
In addition to the hitting probability problem for a subset B ⊂ S, it is natural to

consider the hitting distribution of the state upon arrival in B, namely

fj (i) := Pi(τB <∞, XτB = j) (j ∈ B, i ∈ S). (12.13)

Of course, if Pi(τB < ∞) < 1, then XτB is a defective random variable under Pi ,
being defined on the set [τB <∞] of Pi-probability less than 1. For this probability
observe that fj (i) = δij , i ∈ B. On the other hand, if i ∈ Bc, then

fj (i) = EiPi(τB <∞, XτB = j) = Eifj (X1) = Tfj (i), i ∈ Bc. (12.14)

In other words, for fixed j ∈ B, the function u = fj solves the following exterior
Dirichlet problem with ϕ = δ·j on B.
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Definition 12.1. Let B ⊂ S and suppose let ϕ : B → R is a bounded function. A
solution to the (exterior) Dirichlet problem for T (or for A = T − I ) is a bounded
function u such that Au(i) = 0, i ∈ Bc, and u(i) = ϕ(i), i ∈ B. The term exterior
is used when Bc is unbounded.

Example 1. Recall that for the one-dimensional simple symmetric random walk
starting at x ∈ [a, b] this is precisely the boundary value problem solved for
u(x) = Px(τa < τb) = Px(τ{a,b} < ∞, Xτ{a,b} = a), with boundary values
u(a) = 1, u(b) = 0.

The (exterior) Dirichlet problem stipulates that the function should be “harmonic
on Bc” with prescribed values on B. Notice that by the Markov property, (condition
on X1 in (12.13)),

fj (i) =
∑

k

p̂ikfj (k) (j ∈ B, i ∈ S). (12.15)

Denoting by fj the function (fj (i) : i ∈ S), one may express (12.15) as follows:
For fixed j ∈ B,

fj = p̂fj . (12.16)

Equivalently, fj is harmonic on S with respect to the transition matrix p̂ of the
stopped process. We have thus proved part (a) of the following proposition.

Proposition 12.4. Let p be a transition probability matrix and B a nonempty subset
of S.

a Then for each j ∈ B, fj (i) = Pi(τB < ∞, XτB = j), i ∈ S, is a solution to the
exterior Dirichlet problem with ϕ(i) = δij , i ∈ B.

b This is the unique bounded solution if and only if

Pi(τB <∞) = 1 for all i ∈ S. (12.17)

Proof. Since (a) has been proven it is enough to establish (b). Let i ∈ Bc. Then for
i, k ∈ Bc

p̂
(n)
ik ≤

∑

j∈Bc
p̂
(n)
ij = Pi(τB > n) ↓ Pi(τB = ∞) as n ↑ ∞. (12.18)

Hence, if (12.17) holds, then

lim
n→∞ p̂

(n)
ik = 0 for all i, k ∈ Bc. (12.19)
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On the other hand, if i ∈ Bc, k ∈ B, then

p̂
(n)
ik = Pi(τB ≤ n,XτB = k) ↑ Pi(τB <∞, XτB = k) = fk(i). (12.20)

Moreover, p̂(n)ik = δik for all n, if i ∈ B, k ∈ S. Now, for fixed j ∈ B, let a
be another solution with same values on B, a(i) = δij , i ∈ B, besides fj . Then a
satisfies (12.16), which on iteration yields a = p̂na. Taking the limit as n ↑ ∞, and
using (12.19), (12.20), one obtains for each i ∈ Bc, using Scheffé’s Theorem,

a(i) = lim
n→∞

∑

k

p̂
(n)
ik a(k)

=
∑

k∈B
fk(i)a(k) = fj (i) (12.21)

for all i ∈ Bc, since a(k) = 0 for k ∈ B\{j} and a(j) = 1. Hence fj is the unique
solution with fj (i) = δij , i ∈ B. Conversely, if Pi(τB < ∞) < 1 for some i ∈ Bc,
then the function h = (h(i) : i ∈ S) defined by

h(i) := 1 − Pi(τB <∞) = Pi(τB = ∞) (i ∈ S), (12.22)

may be checked to be p-harmonic in Bc with (boundary-) value zero on B. The
harmonic property is a consequence of the Markov property (Exercise 6),

h(i) = Pi(τB = ∞) =
∑

k

pikPk(τB = ∞)

=
∑

k

pikh(k) =
∑

k

p̂ikh(k) (i ∈ Bc). (12.23)

Since Pi(τB = 0) = 1 for i ∈ B, h(i) = 0 for i ∈ B. It follows that both fj and
fj + h satisfy (12.16). Since h �= 0, the solution of (12.16) is not unique. �
Corollary 12.5. Assume that Pi(τB < ∞) = 1 for all i ∈ S. Then the exterior
Dirichlet problem for B and bounded ϕ : B → R has the unique (bounded) solution

u(i) := Eiϕ(XτB ). (12.24)

Proof. One may directly verify that Eiϕ(XτB ) = ∑
j ϕ(j)Pi(XτB = j) =∑

j ϕ(j)fj (i) solves the problem from the corresponding result for fj . Similar
limit arguments used in the proof of Proposition 12.4 may be applied to obtain
uniqueness. �
Remark 12.1. One may notice that {u(XτB∧n) : n = 0, 1, 2 . . . } is a bounded
martingale if u solves the exterior Dirichlet problem for B. This can be used to
give an alternative proof of the corollary as follows. Pi(τB < ∞) = 1, then with
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probability one XτB∧n = XτB for all n sufficiently large, so that u(XτB∧n) →
u(XτB ) a.s. as n → ∞. Thus, since martingales have constant expected values
u(i) = Eiu(XτB∧n) → Eiu(XτB ) as n → ∞ by the dominated convergence
theorem.

Remark 12.2. It may seem somewhat surprising given the transience/recurrence
dichotomy for random walk according to dimension, but according to the Choquet–
Deny theorem the only bounded harmonic functions for the simple symmetric
random walk on Z

k are the constants. The proof is postponed to Chapter 24 where
it is provided as an application of coupling methods.

We will conclude this section with an absorption probability calculation for a
popular model in population genetics.

Example 2 (Wright–Fisher and Cannings’ Gene Frequency Models). A general
class of gene frequency models was identified by Cannings (1973) that includes
some of the more well-known models of mathematical biology, such as the Wright–
Fisher model which will serve as motivation here.

To reduce the more technical biological1 jargon, consider a system of 2N
individual highly capricious voters. LetXn denote the number of individuals in favor
of the issue at times n = 0, 1, . . . . In the evolution, each one of the individuals will
randomly re-decide their position under the influence of the current overall opinion
as follows. Let θn = Xn/2N denote the proportion in favor of the issue at time
n. Then given X0, X1, . . . , Xn, each of the 2N individuals, independently of the
choices of the others, elects to favor the issue with probability θn, or oppose it with
probability 1 − θn. That is,

P(Xn+1 = k | X0, X1, . . . , Xn) =
(

2N

k

)

θkn (1 − θn)2N−k, (12.25)

for k = 0, 1, . . . , 2N . So {Xn : n ≥ 0} is a Markov chain with state space S =
{0, 1, . . . , 2N} and one-step transition matrix p = ((pij )), where

pij =
(

2N

j

)(
i

2N

)j (

1 − i

2N

)2N−j
, i, j = 0, 1, . . . , 2N. (12.26)

Notice that {Xn : n ≥ 0} is an aperiodic Markov chain. The “boundary” states {0}
and {2N} form closed classes of essential states. The set of states {1, 2, . . . , 2N−1}
constitute an inessential class. One may easily check that absorption is sure to
occur (Exercise 14), so the main objective of this example is the calculation of
Pi(τ{0,2N} > m). For this we use Cannings’ observation that one may express
(Exercise 17)

Xn+1 =
Xn∑

k=1

Yk, (12.27)

1 For the biological interpretations and approach presented here see Cannings (1974) and Durrett
(2008).
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where (Y1, . . . , Y2N) is a {0, 1, . . . , 2N}2N -valued random vector having a symmet-
ric multinomial distribution, independently of Xn. That is,

P(Y1 = y1, . . . , Y2N = y2N) = (2N)!
y1! · · · y2N !

(
1

2N

)2N 2N∑

k=1

yk = 2N.

(12.28)

More generally, Cannings (1973) observed that extensions of this class of models to
those in which the distribution of (Y1, . . . , Y2N) is invariant under permutations of
the indices, i.e., exchangeable, will include a number of gene frequency models that
occur in mathematical biology.

Proposition 12.6. Assume that the random vector (Y1, . . . , Y2N) has an exchange-
able distribution and that

∑2N
k=1 Yk = 2N in the model (12.27). Let λ1, λ2, . . . , λ2N

denote the eigenvalues of the transition probability matrix p = ((pij )). Then

λj = E
∏j

k=1 Yk, j = 0, 1, 2, . . . , 2N . Moreover, λ0 = λ1 = 1 < λ2, and
λj ≥ λj+1, j = 3, . . . , 2N − 1.

Proof. Define a matrix V = ((vij )) by vij = ij , (00 = 1). Then (pV )ij =
∑
k pikk

j = E(X
j

n+1|Xn = i). On the other hand, one may write (Exercise 16)

E(X
j

n+1|Xn = i) = (V U)ij =
j∑

k=0

ikukj , (12.29)

where U = ((uij )) is an upper triangular matrix. Therefore, pV = VU and,
hence p = VUV −1 since V is invertible (Exercise 15). It follows that since
VUV −1 − λI = V (U − λI)V −1, the matrices p and U have the same eigenvalues.
SinceU is upper triangular, its eigenvalues are simply its diagonal elements. In view
of (12.29) the diagonal elements are the coefficients ujj of the highest powers of i

in the polynomial expansion for E(X
j

n+1|Xn = i). But expanding E(
∑j

k=1 Yk)
i

and using (exchangeability) permutation invariance of EY
j1
1 · · · Y jii , as well as

∑2N
k=1 Yk = 2N , one sees that the coefficient of the highest power of i is E

∏j

k=1 Yk .
To see that the eigenvalues appear in decreasing order, consider

E

j∏

i=1

Yi = E

j−1∏

i=1

Yi

⎛

⎝2N −
∑

k �=j
Yk

⎞

⎠

= NE

j−1∏

i=1

Yi − (j − 1)E

⎛

⎝
j−2∏

i=1

Yk

⎞

⎠ Y 2
j−1 − (2N − j)E

j∏

i=1

Yi . (12.30)



174 12 Hitting Probabilities & Absorption

Therefore

E

j∏

i=1

Yi = NE
∏j−1
i=1 −(j − 1)E

∏j−2
i=1 YiY

2
j−1

2N − j + 1

≤ E

j−1∏

i=1

Yi = λj−1. (12.31)

�
Corollary 12.7 (Wright–Fisher Fixation Rate). For the Wright–Fisher model one

has2 λ0 = λ1 = 1, λj = (2N)j
(2N)2N

, j = 2, . . . , 2N .

Pi(τ{0,2N} > m) ∼
(

1 − i

2N

)m
as m→ ∞.

Proof. Since 2N = E
∑2N
i=1 Yi = 2NEY1, it follows that λ1 = EY1 = 1. For

2 ≤ j ≤ 2N one has with a change of variable and multinomial theorem from
algebra,

λj = E

j∏

k=1

Yk

= (2N)−2N
∑

∑2N
i=1 yi=2N

j∏

i=1

yi
(2N)!
∏2N
i=1 yi !

= (2N)!
(2N)2N

∑

∑2N
i=1 yi=2N−j

1
∏2N
i=1 yi !

= (2N)!
(2N)2N

(2N)2N−j

(2N − j)! = (2N)j
(2N)j

.

Thus,

λj = (2N)j
(2N)j

=
(

1 − 1

2N

)

· · ·
(

1 − j − 1

2N

)

, 1 ≤ j ≤ 2N. (12.32)

Noting that λ0 = λ1 = 1, the largest nontrivial eigenvalue is λ2 = (2N)2
(2N)2

= 1 − 1
2N .

To see that this is the fixation rate, first note that since U is upper triangular, the

2 This computation had been made previously by Feller (1951) by other methods.
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diagonal elements of Um are umjj = λmj . Therefore, writing V −1 = ((vij )), one has

Pi
(
τ{0,2N} > m

) =
2N−1∑

j=1

p̂
(m)
ij =

2N−1∑

j=1

2N∑

k=0

λmk vikv
kj =

2N∑

k=0

⎛

⎝
2N−1∑

j=1

vikv
kj

⎞

⎠ λmk .

(12.33)
Since the left side of (12.33) must go to zero asm→ ∞, the coefficients of λm0 ≡ 1
and λm1 ≡ 1 must be zero. Thus,

Pi(τ{0,2N} > m) =
2N∑

k=0

2N−1∑

j=1

vikv
kjλmk

= λm2

⎡

⎣

⎛

⎝
2N−1∑

j=1

vi2v
2j

⎞

⎠+
2N∑

k=3

⎛

⎝
2N−1∑

j=1

vikv
kj

⎞

⎠
(
λk

λ2

)m
⎤

⎦

∼ (const.)λm2 for large m. (12.34)

Taking logarithms one obtains the asserted rate. �

Example 3 (Discrete Gaussian Free Field). The main purpose of this example is to
illustrate a role for the two-dimensional simple symmetric random walk on a finite
domain in Z

2 with absorbing boundary for the calculation of the covariance of a
Gaussian random field arising from physics,3 variously referred to as the (discrete)
Gaussian free field (DGFF), the discrete massless free field, or the harmonic crystal.
The DGFF is defined by a Gaussian random field of mean zero real random variables
Φn = {Φn(x) : x ∈ Λn}, indexed by a subset Λn = [0, n]0 × [0, n]0 of the
two-dimensional integer lattice, and taking zero values on the boundary ∂Λn. (Here
[0, n]0 = {0, 1, . . . , n−1, n}, and the boundary ∂Λn consists of sites x ∈ Λn having
a nearest neighbor x ± u outside of Λn. The interior of Λn is defined by Λn\∂Λn.)
The distribution of Φn is defined as a Gibbs distribution with energy Hamiltonian
given by

Hn(ϕ) = 1

16

∑

x,y∈Λn:|x−y|=1

(ϕx − ϕy)2. (12.35)

More specifically,

Definition 12.2 (Discrete Gaussian Free Field). The discrete Gaussian free field
(DGFF) onΛn with Dirichlet boundary is the random fieldΦn = {Φn(x) : x ∈ Λn},
indexed by Λn with values in the product space (RΛn,B⊗Λn), such that Φn(x) = 0

3 For the physics and more general related models defined by random walks on finite graphs see
the expository papers by Sheffield (2007), and by Berestycki and Powell (2021).
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Fig. 12.1 Discrete Gaussian
Free Field

for x ∈ ∂Λn, and having the pdf Z−1
n exp{−Hn(ϕ)}1ϕx=0,x∈∂Λn, ϕ ∈ R

Λn , with
respect to Lebesgue measure on R

Λn , where Zn is the normalization (constant) to a
probability.

Remark 12.3. One may picture the discrete Gaussian free field as a model of a
pixelated random surface (see Figure4 12.1) where Φn(x) is the (signed) height
of the pixel location x ∈ Λn. It serves a role in the analysis of the continuum
Gaussian free field model formally analogous to that played by the random walk in
the analysis of the limiting Brownian motion.

A simple equivalent definition of the DGFF could be made based on a pre-
scription of the covariance function. For this calculation observe that the energy
Hamiltonian may be equivalently expressed in terms of the transition probabilities
of a simple symmetric random walk on Λn = [0, n]0 × [0, n]0 with absorbing
boundary. These transition probabilities are given by p(x, x ± u) = 1/4 for
x = (i, j),−n < i, j < n, u = (1, 0), (0, 1), and p(x, x) = 1 if x ∈ ∂Λn.
Therefore,

Hn(ϕ) = 1

4

∑

x,y∈Λn
p(x, y)(ϕx − ϕy)2. (12.36)

4 This figure is a sample realization generated by Eric Roon, using code written by Samuel S.
Watson https://math.mit.edu/~sswatson/code.html.

https://math.mit.edu/~sswatson/code.html
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As a consequence the covariance can be obtained as the Greens function Gn of the
random walk with Dirichlet boundary as follows.

Proposition 12.8.

Cov(Φn(x),Φn(y)) = Ex

τ∂Λn−1∑

m=0

1[Sm=y] = (I − P)−1
xy , x, y ∈ Λn\∂Λn,

(12.37)
where {Sm : m = 0, 1, . . . } is the random walk, τ∂Λn = inf{m : Sm ∈ ∂Λn}
denotes the time to reach the (absorbing) boundary, P is the (defective) one-step
transition probability matrix for the absorbing random walk with the rows and
columns corresponding to absorbing states removed, and I is the identity matrix.

Proof. To see this observe that, ignoring normalization, with a little matrix algebra
one may express the quadratic form defining the pdf as

exp

⎧
⎨

⎩
− 1

16

∑

x,y∈Λn:|x−y|=1

(ϕx − ϕy)2
⎫
⎬

⎭
= exp

{

−1

2
ϕ′(I − P)ϕ

}

, (12.38)

where ϕ′ denotes the transpose of the vector ϕ = (ϕx)x∈Λn , P is the (defective)
one-step transition probability matrix for the absorbing random walk with the rows
and columns corresponding to absorbing states removed, and I is the identity
matrix. Thus, ((Gn(x, y))) = (((I − P)−1

x,y)) is the covariance matrix for the (non-
normalized) Gaussian pdf (12.38) and, denoting the x, y matrix entry by subscript,
one has

Cov(Φn(x),Φn(y)) = (I − P)−1
x,y

=
( ∞∑

m=0

Pm

)

x,y

=
∞∑

m=0

P(Sm = y,m < τ∂Λn |S0 = x)

= Ex

τ∂Λn−1∑

m=0

1[Sm=y].
�

The following is a direct argument that (I − P)−1 can serve to define a covariance
matrix.

Proposition 12.9. (I − P)−1 is symmetric and positive-definite.

Proof. Let 〈·, ·〉 denote the usual Euclidean inner product. While symmetry is
obvious from that of I − P , for positive-definiteness let ϕ = (ϕx)x∈Λn �= 0 ∈ R

Λn ,
and first note that since
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〈(I − P)−1ϕ, ϕ〉 = 〈(I − P)ϕ̃, ϕ̃〉,

where ϕ = (I − P)ϕ̃, it is sufficient to check positive-definiteness for I − P . Now,

〈(I − P)ϕ, ϕ〉 = |ϕ|2 −
∑

x

(
∑

y

p(x, y)ϕy

)

ϕx (12.39)

is positive since, by Lyapunov’s inequality5, the double sum is no more than
∑
x(
∑
y p(x, y)|ϕy |2)

1
2 |ϕx | which, in turn, using the Cauchy–Schwarz inequality

and symmetry of P , is bounded above by

(
∑

x

∑

y

p(y, x)ϕ2
y

) 1
2

|ϕ| =
(
∑

y

|ϕy |2
) 1

2

|ϕ| = |ϕ|2,

since
∑
x p(y, x) = 1. �

An alternative proof is sketched as an Exercise 11.

Remark 12.4. Higher (and lower) dimensional generalizations of this definition are
made possible by simply replacing Λn by a d-dimensional integer lattice [0, n]d0 ,
and replacing the two-dimensional simple symmetric random walk accordingly.
However, it is also interesting to consider the one-dimensional model obtained by
replacing Λn by [0, n]0. The one-dimensional Gaussian free field (discrete) and
its limiting relation to the Brownian bridge6 is considered in the exercises. (See
Exercise 19).

Exercises

1. Prove Proposition 12.1, and complete the proof of Corollary 12.2.
2. Let {Xn : n ≥ 0} be a two-state Markov chain on S = {0, 1} and let τ0 be the

first time {Xn : n ≥ 0} reaches 0. Calculate P1(τ0 = n), n ≥ 1, in terms of the
parameters p10 and p01.

3. Let {Xn : n ≥ 0} be a three-state Markov chain on S = {0, 1, 2} where 0,
1, 2 are arranged counterclockwise on a circle, and at each time a transition
occurs one unit clockwise with probability p or one unit counterclockwise with
probability 1 − p. Let τ0 denote the time of the first return to 0. Calculate
P(τ0 > n), n ≥ 1.

5 BCPT p. 13.
6 See Bhattacharya and Waymire (2021) for Brownian bridge background.
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4. Let τ0 denote the first time starting in state 2 that the Markov chain in Chapter
6, Exercise 8, reaches state 0. Calculate P2(τ0 > n).

5. Verify that the Markov chains starting at i having transition probabilities p and
p̂, and viewed up to time τA have the same distribution by calculating the
probabilities of the event [X0 = i, X1 = i1, . . . , Xm = im, τA = m] under
each of p and p̂.

6. Write out a detailed explanation of (12.23).
7. Let p be the transition probability matrix on S = {0,±1,±2, . . .} defined by

pij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
i

if i > 0, j = 0, 1, 2, . . . , i − 1
1
|i| if i < 0, j = 0,−1,−2, . . . ,−i + 1

1 if i = 0, j = 0

0 if i = 0, j �= 0.

(a) Calculate the absorption rate.
(b) Show that the mean time to absorption starting at i > 0 is given by∑i

k=1(1/k).

8. Let {Xn : n ≥ 0} be the simple branching process on S = {0, 1, 2, . . .} with
offspring distribution {fj }, ∑∞

j=0 jfj ≤ 1.

(a) Show that all nonzero states in S are transient and that limn→∞ P1(Xn =
k) = 0, k = 1, 2, . . . .

(b) Describe the unique invariant probability distribution for {Xn : n ≥ 0}.
9. Consider the simple symmetric random walk {Xn : n ≥ 0} on Z

k. Show that for
any subsetA ⊂ Z

k the function h(x) = Px(Xn ∈ Ai.o.) is a bounded harmonic
function (and, hence, constant by the Choquet–Deny theorem 24.1 to be proven
in Chapter 24).

10. Let Gn denote the Greens function of the two-dimensional discrete Gaussian
free field with Dirichlet boundary. Show, for each fixed x ∈ Λn, y → Gn(x, y)

solves the Poisson equation

ΔGn(x, y) = −δx,y, y ∈ Λn\∂Λn Gn(x, y) = 0, y ∈ ∂Λn,

where Δ denotes the discrete graph-Laplacian Δϕ(x) = 1
4

∑
y:|x−y|=1(ϕx −

ϕy). [Hint: Condition the expected number of visits to y on the first displace-
ment of the random walk and then use a symmetry argument.]

11. Show that the Greens function (matrix) (I − P)−1 for the discrete
Gaussian free field is positive-definite by defining a weighted inner-product
〈ϕ, θ〉x = ∑

y ϕyθyp(xy) on the real L2 space of functions ϕ, θ on Λn.

Write (
∑
y p(x, y)ϕy)

2 = 〈ϕ, 1〉2
x , where 1 is the constant vector on Λn with

value one. Use the Cauchy–Schwarz inequality to show (
∑
y p(x, y)ϕy)

2 ≤
∑
y ϕ

2
yp(x, y).

12. Consider the generalization of the discrete Gaussian free field with Dirichlet
boundary on the d-dimensional lattice with Λn = [0, n]d0(d ≥ 1), obtained
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by replacing the two-dimensional random walk by the corresponding simple
symmetric random walk, as described in Remark 12.4. Show that in the limit
as n → ∞, Gn(x, x) ∼ c1n for d = 1, Gn(x, x) ∼ c2 ln n for d = 2,
and Gn(x, x) ∼ cd for d ≥ 3. [Hint: Recall Polya’s theorem for the simple
symmetric random walk.]

13. Show that the Wright–Fisher process {Xn : n = 0, 1, . . . } is a nonnegative
martingale.

14. Consider the Wright–Fisher model, and let fj (i) denote the probability of
ultimate absorption at j = 0 or at j = 2N starting from state i ∈ S.

(a) Show that f2N satisfies the (exterior) Dirichlet problem: f2N(i) =∑
k pikf2N(k) for 0 < i < 2N,

f2N(2N) = 1, f2N(0) = 0.
(b) Derive a similar boundary value problem for f0.
(c) Show that f2N(i) = 1

2N , f0(i) = 2N−i
2N , i = 0, . . . , 2N ,

(d) Show that P(τ{0,2N} <∞) = 1.

15. Show that the matrix V = ((ij )) is invertible.
16. Show that there is an upper triangular matrix U such that (12.29) holds. Show

also that the leading coefficient of the resulting polynomial is E
∏j

i=1 Yi . [Hint:

For a start, compute E(X
j

n+1|Xn = i) in the cases j = 0, 1, 2 as a polynomial

in i. Use exchangeability and the constraint
∑2N
i=1 Yi = 2N to gather together

common polynomial coefficients.]
17. Suppose that (Y1, . . . , Y2N) has the symmetric multinomial distribution given

by (12.28). Show that for any 1 ≤ i ≤ 2N ,
∑i
k=1 Yk has a binomial distribution

with parameters 2N,p = i
2N .

18. (Alternative Construction of Discrete Gaussian Free Field) Define a Dirichlet
inner product 〈ϕ1, ϕ2〉 = 1

2d

∑
x∈Λn ∇ϕ1(x) ·∇ϕ2(x), where the ith component

of the gradient vector ∇ϕ(x) is defined as ϕ(x + ui) − ϕ(x), and ui the
standard unit ith coordinate unit vector. Let {hj : j = 1, 2, . . . , (n + 1)d}
be an orthonormal basis for the finite dimensional Hilbert space H = {ϕ :
Λn → R, ϕ(x) = 0, x ∈ ∂Λn} with the Dirichlet inner product. For
i.i.d. standard normal random variables Z1, Z2, . . . , Z(n+1)d , define Φn(x) =
∑(n+1)d

j=1 Zjhj (x), x ∈ Λn. Show thatΦn is distributed as the discrete Gaussian
free field with Dirichlet boundary.

19. (One-dimensional Gaussian Free Field) The one-dimensional discrete Gaus-
sian free field with Dirichlet boundary may be defined as the mean zero Gaus-
sian processΦn = {Φn(x) : x ∈ [0, n]0}, where [0, n]0 = {0, 1, 2, . . . , n}, such
that Φn(0) = Φn(n) = 0, and for x, y ∈ [0, n]0\{0, n}, Cov(Φn(x),Φn(y)) =∑∞
m=0 P(Sm = y,m < τ{0,n}|S0 = x), where {Sm : m = 0, 1, 2, . . . } is the

simple symmetric random walk on [0, n]0 with absorbing boundaries 0, n.

(a) Compute the covariance function of Φn. [Hint: Recall the spectral (eigen-
value) diagonalization in Chapter 11 for simple symmetric random walk
with absorption and compute (I − P)−1

x,y .]
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(b) Show that { 1√
n
Φn([xn]) : 0 ≤ x ≤ 1} converges weakly to

√
2B(0), where

B(0) is the standard Brownian bridge7 [Hint: Check that conditionally on
the event [∑n−1

x=0(Φn(x + 1) − Φn(x)) = 0], Φn(x + 1) − Φn(x) : x =
0, 1, . . . , n− 1} are i.i.d. Gaussian with mean zero and variance 2.]

(c) Use the Hilbert space construction in Exercise 18 for dimension d = 1
to describe the limit in terms of the Lévy-Ciesielski construction8 of the
Brownian bridge in the limit.

(d) Let Ωn = {ω : Λn → Z : |ωx − ωy | = 1, x, y ∈ Λn,ωx = 0, x ∈ ∂Λn}.
Assume all ω ∈ Ωn to be equiprobable. Show9 that in dimensions d = 1,

the sequence of random fields Ψn(ω, x) = n− 1
2ω[nx], x ∈ [0, 1]0, ω ∈ Ωn

converges in distribution to Brownian bridge.

7 See Bhattacharya and Waymire (2021).
8 See BCPT, Chapter IX.
9 The corresponding weak convergence problem is open for d = 2. A limit is expected to exist as
a generalized random field on [0, 1]2

0.



Chapter 13
Law of Large Numbers and Invariant
Probability for Markov Chains by
Renewal Decomposition

The renewal decomposition refers to a decomposition of the sample paths of
a countable state Markov chain into i.i.d. recurrent “cycles” of the process
between returns to a given state. The long term behavior of the process is then
computed in terms of (i.i.d.) averages over these cycles.

For Markov chains with countable state space S, the existence of an invariant dis-
tribution is intimately connected with the limiting frequency of returns to recurrent
states. For a process in steady state, one expects the equilibrium probability of a state
j to coincide with the fraction of time spent on the average by the process in state
j . To this effect, a major goal of this chapter is to obtain the invariant distribution as
a consequence of a (strong) law of large numbers.

Assume from now on, unless otherwise specified, that S comprises a single class
of (communicating) recurrent states under p for the Markov chain {Xn : n ≥ 0}.
Let f be a real-valued function on S, and define the cumulative sums

Sn =
n∑

m=0

f (Xm) (n = 1, 2, . . .). (13.1)

For example, if f (i) = 1 for i = j and f (i) = 0 for i �= j , then Sn/(n + 1) is
the average number of visits to j in time 0 to n. As in (10.9), let τ (r)j denote the time
of the rth visit to state j . Write the contribution to the sum Sn from the rth block of
time (τ (r)j , τ

(r+1)
j ] as
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Zr =
τ
(r+1)
j∑

m=τ (r)j +1

f (Xm) (r = 0, 1, 2, . . .). (13.2)

Proposition 13.1. The sequence of random variables {Z1, Z2, . . .} is i.i.d., no
matter what the initial distribution of {Xn : n = 0, 1, 2, . . .} may be.

Proof. By the strong Markov property, the conditional distribution of the process
{X
τ
(r)
j

, X
τ
(r)
j +1

, . . . , X
τ
(r)
j +n, . . .}, given the past up to time τ (r)j , i.e., F

τ
(r)
j

, is

Pj , which is the distribution of {X0, X1, . . . , Xn, . . .} under X0 = j . Hence,

the conditional distribution of Zr given the process up to time τ (r)j is that of
Z0 = f (X1)+· · ·+f (X

τ
(1)
j

), given X0 = j . This conditional distribution does not

change with the values of X0, X1, . . . , X
τ
(r)
j

(= j), τ (r)j . Hence, Zr is independent

of all events that are determined by the process up to time τ (r)j , i.e., independent of
F
τ
(r)
j

. In particular, Zr is independent of Z1, . . . , Zr−1. �

The decomposition in the preceding proof will be referred to as the renewal
decomposition. The strong law of large numbers now provides that, with proba-
bility 1,

lim
r→∞

1

r

r∑

s=1

Zs = EZ1, (13.3)

provided that E|Z1| < ∞. In what follows, we will make the stronger assumption
that

E

τ
(2)
j∑

m=τ (1)j +1

|f (Xm)| <∞. (13.4)

The objective is to relate the reciprocal of the asymptotic proportion of time spent
at a given state j with the average recurrence time of j . We will make use of the
following elementary fact along the way.

Lemma 1. If for a sequence of numbers ar , (r = 1, 2, . . . ), 1
N

∑N
r=1 ar converges

to a finite limit c, say, as N → ∞, then aN/N → 0 as N → ∞.

Proof. To see this, simply note that

aN

N
= 1

N

N∑

r=1

ar − 1

N − 1

N−1∑

r=1

ar + 1

N(N − 1)

N−1∑

r=1

ar .
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Clearly, the right side goes to 0 as N → ∞, and thus the left side as well. �
Theorem 13.2. Assume the condition (13.4), and letNn denote the number of visits
to state j by time n given by

Nn = max
{
r ≥ 0 : τ (r)j ≤ n

}
. (13.5)

Then,

lim
n→∞

n

Nn
= lim
n→∞

τ
(Nn)
j + n− τ (Nn)j

Nn
= E

(
τ
(2)
j − τ (1)j

)
. (13.6)

Proof. Start with the decomposition

Sn =
τ
(1)
j∑

m=0

f (Xm)+
Nn∑

r=1

Zr −
τ
(Nn+1)
j∑

m=n+1

f (Xm). (13.7)

For each sample path, there are a finite number, τ (1)j + 1, of summands in the first
sum on the right side, except for a set of sample paths having probability zero.
Therefore,

lim
n→∞

1

n

τ
(1)
j∑

m=0

f (Xm) = 0, with probability 1. (13.8)

The last sum on the right side of (13.7) has at most τ (Nn+1)
j − τ (Nn)j summands, this

number being the time between the last visit to j by time n and the next visit to j .
Although this sum depends on n, under the condition (13.4), we still have that

∣
∣
∣
∣
∣
∣
∣

1

n

τ
(Nn+1)
j∑

m=n+1

f (Xm)

∣
∣
∣
∣
∣
∣
∣
≤ 1

n

τ
(Nn+1)
j∑

m=τ (Nn)j +1

|f (Xm)| → 0 a.s. as n→ ∞. (13.9)

For this, we use Lemma 1. In particular, noting that: (i) Nn → ∞ a.s. as n → ∞,

(ii) 1
N

∑N
r=1

∑j (r+1)

m=j (r)+1
|f (Xm)| converges to the finite limit given by (13.4), and

(iii) n ≥ Nn, it follows that (13.9) holds. Therefore,

Sn

n
= 1

n

Nn∑

r=1

Zr + Rn =
(
Nn

n

)
1

Nn

Nn∑

r=1

Zr + Rn, (13.10)
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where Rn → 0 as n → ∞ with probability 1 under (13.4). Also, for each sample
path outside a set of probabilities 0, Nn → ∞ as n→ ∞ and therefore by (13.3),

lim
n→∞

1

Nn

Nn∑

r=1

Zr = EZ1 (13.11)

if (13.4) holds. Now, replacing f by the constant function f ≡ 1 in (13.11), we
have

lim
n→∞

τ
(Nn+1)
j − τ (1)j

Nn
= E

(
τ
(2)
j − τ (1)j

)
, (13.12)

assuming that the right side is finite. Similarly,
τ
(Nn)
j

Nn
= Nn−1

Nn

1
Nn−1

∑Nn−1
r=1 Zr +

τ
(1)
j

Nn
→ Ej τ

(1)
j a.s. as n→ ∞. Thus

n− τ (Nn)j ≤ τ (Nn+1)
j − τ (Nn)j = o(Nn),

a.s. as n→ ∞, and one has

lim
n→∞

n

Nn
= lim
n→∞

τ
(Nn)
j + n− τ (Nn)j

Nn
= E

(
τ
(2)
j − τ (1)j

)
. �

Remark 13.1. Note that the right side, E(τ (2)j −τ (1)j ), is the average recurrence time

Ej τ
(1)
j of the state j , and the left side is the reciprocal of the asymptotic proportion

of time spent at j ; here, for simplicity, we write Ej (·) for E(·|X0 = j), without
explicitly requiring that the Xj ’s are coordinate projections of the canonical model.

Definition 13.1. A state j is positive recurrent if

Ej τ
(1)
j <∞. (13.13)

We will eventually obtain that positive recurrence is a class property (also see
Theorem 13.6). Combining (13.10)–(13.12) gives the following result.

Proposition 13.3. Suppose j is a positive recurrent state under p and that f is a
real-valued function on S such that

Ej {|f (X1)| + · · · + |f (X
τ
(1)
j

)|} <∞. (13.14)

Then the following are true:
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(a) With Pj -probability 1,

lim
n→∞

1

n

n∑

m=0

f (Xm) = Ej (f (X1)+ · · · + f (X
τ
(1)
j

))/Ej τ
(1)
j . (13.15)

(b) If S comprises a single class of essential states (irreducible), then the limit in
(13.15) holds with probability one regardless of the initial distribution.

Theorem 13.4. Suppose S consists of a single recurrent class of communicating
states, and there exists a positive recurrent state j . (a) Then the function π defined by

π(B) = Ej

(
Number of visits to B during

[
1, τ (1)j

])
/Ej τ

(1)
j , j ∈ S,B ⊂ S,

(13.16)
is a probability measure on S. Also, whatever the initial state or initial distribution
of the Markov chain {Xn := 0, 1, . . . }, for every function f integrable with respect
to π , one has

1

n

n∑

m=1

f (Xm)→
∫

S

f dπ as n→ ∞, (13.17)

with probability one, and for every bounded f ,

lim
n→∞

1

n

n∑

m=1

∫

f (y)p(m)(i, dy) =
∫

S

f dπ, for all i ∈ S. (13.18)

(b) This measure π is the unique invariant probability for p.

Proof. (a) First note that π defined by (13.16) is a probability measure on S. Next, it
has been shown, see (13.1)–(13.6) and Proposition 13.3, that (13.17) holds for every
function f on S that is integrable with respect to π , no matter what the initial state
i (or initial distribution) may be. By Lebesgue’s dominated convergence theorem,
(13.17) implies (13.18) when the initial state is i. (b) Specializing to f = 1B in
(13.18), one has for every B ⊂ S, i ∈ S,

lim
n→∞

1

n

n∑

m=1

p(m)(i, B) = π(B). (13.19)

By Proposition 8.10, it now follows that π is the unique invariant probability. �
Remark 13.2. It will be shown later (Theorem 13.6) that if one state in a recurrent
class is positive recurrent, then all states in the class are positive recurrent.
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Remark 13.3. In combination with Proposition 16.1, it will follow that the notion
of an irreducible positive recurrent Markov chain on a countable state space is equiv-
alent to that of an irreducible stationary ergodic Markov chain, see Corollary 16.2.

Remark 13.4. Under the hypothesis of Theorem 13.4, one has the important
formula

πj ≡ π({j}) = 1

Ej τj
, j ∈ S. (13.20)

Also, πk > 0 for all k, since the probability of a visit to k starting from j in time
[1, τ (1)j ] is positive.

The next problem is to determine what happens if S comprises a single class of
recurrent states that are not positive recurrent.

Definition 13.2. A recurrent state j is said to be null recurrent if

Ej τ
(1)
j = ∞. (13.21)

Proposition 13.5. If j is a null recurrent state, then limn→∞ 1
n+1

∑n
m=0 p

(m)
ij = 0

for any i ∈ S.

Proof. If i � j , then p(m)ij = 0 for all m. Assume i → j . The sequence {Zr : r =
1, 2, . . .} defined by (13.2) with f ≡ 1 is still an i.i.d. sequence of random variables,
but the common mean is infinity. It follows from the strong law of large numbers
(Exercise 4) that, with Pi-probability 1,

lim
n→∞

τ
(Nn)
j

Nn
= ∞.

Since n ≥ τ (Nn)j , we have

lim
n→∞

n

Nn
= ∞

and, therefore,

lim
n→∞

Nn

n+ 1
= 0 with Pi − probability 1. (13.22)

Since 0 ≤ Nn/(n + 1) ≤ 1 for all n, Lebesgue’s dominated convergence theorem
applied to (13.22) yields

lim
n→∞Ei

(
Nn

n+ 1

)

= 0. (13.23)
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But

EiNn = Ei

(
n∑

m=0

1[Xm=j ]

)

=
n∑

m=1

p
(m)
ij , (13.24)

and (13.23), (13.24) lead to

lim
n→∞

1

n+ 1

n∑

m=0

p
(m)
ij = 0. (13.25)

�
Remark 13.5. Note that (13.18) holds if S comprises a single class of positive
recurrent states. Moreover, recall in the case that j is transient, and (10.17) implies
that the Green’s function G(i, j) <∞, i.e.,

∞∑

m=0

p
(m)
ij <∞.

In particular, therefore,

lim
n→∞p

(n)
ij = 0 (i ∈ S), (13.26)

if j is a transient state.

Example 1. Consider the cyclic two-state Markov chain on S = {0, 1} with
p01 = p10 = 1, p00 = p11 = 0. If f : S → R, then observe that almost surely
τ
(r+1)
j − τ (r)j = 2 and limn→∞ 1

n

∑n
m=0 f (Xm) = f (0)+f (1)

2 = 1
2f (0) + 1

2f (1) =
∑
i∈S f (i)πi, where π0 = π1 = 1

2 is the unique invariant probability.

The main results of this chapter may be summarized as follows.

Theorem 13.6. Assume that all states communicate with each other. Then one has
the following results:

(i) Either all states are recurrent, or all states are transient.
(ii) If all states are recurrent, then they are either all positive recurrent or all null

recurrent.
(iii) There exists an invariant distribution if and only if all states are positive

recurrent. Moreover, in the positive recurrent case, the invariant distribution
π is unique and is given by

πj =
(
Ej τ

(1)
j

)−1
(j ∈ S). (13.27)
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(iv) In case the states are positive recurrent and the invariant distribution is π , and
Eπ |f (X1)| <∞, then regardless of the initial distribution μ

lim
n→∞

1

n

n∑

m=1

f (Xm) =
∑

i∈S
πif (i) = Eπf (X1) (13.28)

with Pμ-probability 1.

Proof. Part (i) follows from Theorem 10.4. (ii) Let S be a recurrent class of states.
If j is positive recurrent, then, by Theorem 13.4, there exists a unique invariant
probability π . If possible, suppose k is a null recurrent state in the essential class
S, then one has, by Proposition 13.5, 1

n

∑n
m=1 p

(m)
ik → 0 as n → ∞ for all i ∈ S.

Integrating with respect to π , i.e., multiplying by πi and summing over i, the left
side equals πk for every n, while the right is zero in the limit as n → ∞. This is
a contradiction, see Remark 13.4. Hence, all states are positive recurrent if one is.
Parts (iii) and (iv) now follow from Theorem 13.4. �
Remark 13.6. If the assumption that “all states communicate with each other” in
Theorem 13.6 is dropped, then S can be decomposed into a set J of inessential
states and (disjoint) classes S1, S2, . . . , St of essential states. The transition
probability matrix p may be restricted to each one of the classes S1, . . . , St , and the
conclusions of Theorem 13.4 will hold individually for each class. If more than one
of these classes is positive recurrent, then more than one invariant distribution exist,
and they are supported on disjoint sets. Since any convex combination of invariant
distributions is again invariant, an infinity of invariant distributions exist in this case.
The following result takes care of the set J of inessential states in this connection.

Corollary 13.7. Every invariant distribution assigns zero probability to inessential,
transient, and null recurrent states.

Proof. Recall that every inessential state is transient, so there is some redundancy
in the statement of the corollary. Suppose π is an invariant probability. Use (13.26),
(13.25), and invariance of π, and argue as in the proof of part (b) of Theorem 13.6
to conclude that πj = 0 if j is either transient or null recurrent. �
Corollary 13.8. If S is finite, then there exists at least one positive recurrent state
and therefore at least one invariant distribution π . This invariant distribution is
unique if and only if all positive recurrent states communicate.

Proof. Suppose that all states are either transient or null recurrent. Then

lim
n→∞

1

n+ 1

n∑

m=0

p
(m)
ij = 0 for all i, j ∈ S. (13.29)

Since (n+ 1)−1 ∑n
m=0 p

(m)
ij ≤ 1 for all i, j , and there are only finitely many states

j , by Lebesgue’s dominated convergence theorem,
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∑

j∈S
lim
n→∞

(
1

n+ 1

n∑

m=0

p
(m)
ij

)

= lim
n→∞

∑

j∈S

(
1

n+ 1

n∑

m=0

p
(m)
ij

)

= lim
n→∞

⎛

⎝ 1

n+ 1

n∑

m=0

∑

j∈S
p
(m)
ij

⎞

⎠ (13.30)

= lim
n→∞

(
1

n+ 1

n∑

m=0

1

)

= lim
n→∞

n+ 1

n+ 1
= 1.

But the first term in (13.31) is zero by (13.29). We have reached a contradiction.
Thus, there exists at least one positive recurrent state. The rest follows from
Theorem 13.3 and the remark following its proof. �

The approach based on renewal decompositions requires “point recurrence” that
is generally not available on general state spaces. So proofs of law of large numbers
for Markov processes on general state spaces will require alternative methods. An
approach based on Birkhoff’s ergodic theorem will be given in Chapter 16.

Exercises

1. Provide a detailed case-by-case analysis of the summary results given in
Theorem 13.6 in the context of the general two-state transition probabilities of
Example 1 in Chapter 7.

2. Let p be the transition probability matrix for the asymmetric random walk on
S = {0, 1, 2, . . .} with 0 absorbing and pi,i+1 = p > 1

2 for i ≥ 1. Show for fixed
i > 0,

μn({j}) := 1

n

n∑

m=1

p
(m)
ij , j ∈ S,

does not converge weakly to the unique invariant probability δ0({j}) as n→ ∞.
3. Let Y1, Y2, . . . be an i.i.d. sequence of nonnegative random variables with EY1 =

∞, Sn = Y1 +· · ·+Yn, and then Sn/n→ ∞ a.s. as n→ ∞. [Hint: Use Sn ≥ Yn
and Borel–Cantelli lemma on P(Yn > nBi.o.) for arbitrary B > 0.]

4. Prove

lim
n→∞

τ
Nn
j

Nn
= ∞

Pi—a.s. for a null recurrent state j such that i ↔ j .
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5. (General Birth–Collapse) Let p be a transition probability matrix on S = {0, 1,
2, . . .} of the form pi,i+1 = pi , pi,0 = 1 − pi , i = 0, 1, 2, . . . , 0 < pi < 1,
i ≥ 1, p0 = 1. Show:

(a) All states are recurrent

iff lim
k→∞

k∏

j=1

pj = 0 iff
∞∑

j=1

(1 − pj ) = ∞.

(b) If all states are recurrent, then positive recurrence holds

iff
∞∑

k=1

k∏

j=1

pj <∞.

(c) Calculate the invariant distribution in the case pj = 1/(j + 2).

6. Calculate the invariant distribution for the renewal model of Chapter 7, Exer-
cise 20, in the case that pn = pn−1(1 − p), n = 1, 2, . . . , where 0 < p < 1.

7. (Large Sample Consistency in Statistical Parameter Estimation) Let Xn = 1
or 0 according to whether the nth day at a specified location is wet (rain) or
dry. Assume {Xn : n ≥ 0} is a two-state Markov chain with parameters β =
P(Xn+1 = 1 | Xn = 0) and δ = P(Xn+1 = 0 | Xn = 1), n = 0, 1, 2, . . . , 0 <
β < 1, 0 < δ < 1. Suppose that {Xn} is in equilibrium with the invariant initial
distribution π = (π1, π0). Define statistics based on the sample X0, X1, . . . , Xn
to estimate β, π1, respectively, by π̂ (n)1 = Sn/(n + 1) and β̂(n) = Tn/n, where

Sn = X0+· · ·+Xn is the number of wet days and Tn = ∑n−1
k=0 1[(Xk,Xk+1)=(0,1)] is

the number of dry-to-wet transitions. Calculate limn→∞ π̂ (n)1 and limn→∞ β̂(n).
8. (One-Dimensional Nearest Neighbor Ising Model) The one-dimensional nearest

neighbor Ising model of magnetism consists of a random distribution of ±1-
valued random variables (spins) at the sites of the integers n = 0, ±1, ±2, . . . .
The parameters of the model are the inverse temperature β = 1

kT
> 0, where

T is the temperature and k is a universal constant called Boltzmann’s constant,
an external field parameter H , and an interaction parameter (coupling constant)
J . The spin variables Xn, n = 0, ±1,±2,±3, . . . , are distributed according to
a stochastic process indexed by Z on the state space {−1, 1} with the Markov
property and having stationary transition law given by

P(Xn+1 = η | Xn = σ) = exp{βJση + βHη}
2 cosh(βH + βJσ)

for σ, η ∈ {+1,−1}, n = 0,±1,±2, . . .; by the Markov property is meant that
the conditional distribution of Xn+1 given {Xk : k ≤ n} does not depend on
{Xk, k ≤ n− 1}.
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(a) Calculate the unique invariant distribution π for p.
(b) Calculate the large-scale magnetization (i.e., ability to pick up nails), defined

by

MN = [X−N + · · · +XN ]/(2N + 1),

in the so-called bulk (thermodynamic) limit as N → ∞.
(c) Calculate and plot the graph (i.e., magnetic isotherm) of EX0 as a function

of H for fixed temperature. Show that in the limit as H → 0+ or H →
0−, the bulk magnetization EX0 tends to 0, i.e., there is no (zero) residual
magnetization remaining when H is turned off at any temperature.

(d) Determine when the process (in equilibrium) is reversible for the invariant
distribution.



Chapter 14
The Central Limit Theorem for Markov
Chains by Renewal Decomposition

This chapter builds on the renewal decomposition of the previous chapter to
obtain a central limit theorem for fluctuations in the i.i.d. cycles under second
moment assumptions.

Let us suppose that {Xn : n = 0, 1, . . . } is an irreducible positive recurrent
Markov chain on a countable state space S with invariant probability π. For a
function f : S → R such that Eπ |f (X0)| < ∞, one has the SLLN for Sn/n =
1
n

∑n
m=1 f (Xm) → μ = Eπf (X0) a.s. as n → ∞. It is natural to consider the

asymptotic fluctuation law for
√
n(Sn/n−μ) = S̄n√

n
, where S̄n = ∑n

m=1 f̄ (Xm) :=
∑n
m=1(f (Xm) − μ), i.e., f is replaced by f̄ := f − μ. We will see that the same

“point recurrence (renewal) decomposition” as used in Chapter 12 can be applied to
this problem. Specifically, fixing j ∈ S, we will see that a CLT for a (random) sum
of i.i.d. random variables Z̄1, Z̄2, . . . may be applied under a finite second moment
hypothesis, where

Z̄r =
τ
(r+1)
j∑

m=τ (r)j +1

f̄ (Xm), r = 1, 2, . . . , (14.1)

and we assume

σ 2
j := EZ̄2

1 = Ej

∣
∣
∣
∣
∣

τj∑

m=1

f (Xm)

∣
∣
∣
∣
∣

2

<∞. (14.2)

© Springer Nature Switzerland AG 2022
R. Bhattacharya, E. C. Waymire, Stationary Processes and Discrete Parameter
Markov Processes, Graduate Texts in Mathematics 293,
https://doi.org/10.1007/978-3-031-00943-3_14

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00943-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-00943-3_14


196 14 Central Limit Theorem by Renewal Decomposition

Observe that EZ̄1 = (Ej τ
(1)
j )Eπ f̄ (X0) = 0 (r = 1, 2, . . .). Thus {Z̄r : r =

1, 2, . . .} is an i.i.d. sequence with mean zero and finite variance σ 2
j = EZ̄2

1.

Now by the classical central limit theorem for i.i.d. sequences with finite second
moment, n → ∞, (1/

√
n)
∑n
r=1 Z̄r converges in distribution to the Gaussian law

with mean zero and variance σ 2
j . One may easily check that the limit distribution of

of (1/
√
n)S̄n is the same as that of (Exercise 1)

1√
n

Nn∑

r=1

Z̄r =
(
Nn

n

)1/2 1√
Nn

Nn∑

r=1

Z̄r . (14.3)

Thus we need an extension of the classical central limit theorem for i.i.d. summands
that applies to sums of random numbers of i.i.d. random variables.

Proposition 14.1. Let {Ym : m ≥ 1} be i.i.d., EYm = 0, 0 < σ 2 := EY 2
m <∞. Let

{νn : n ≥ 1} be a sequence of nonnegative integer-valued random variables with

lim
n→∞

νn

n
= α in probability (14.4)

for some constant α > 0. Then
∑νn
m=1 Ym/

√
νn converges in distribution to

N(0, σ 2).

Proof. Without loss of generality, let σ = 1. Write Sn := Y1 + · · · + Yn. Consider
that

Sνn√
νn

=
√

[nα]
νn

(
S[nα]√[nα] + Sνn − S[nα]√[nα]

)

. (14.5)

Choose ε > 0 arbitrarily. Then, for 0 < an → ∞ to be determined,

P(|Sνn − S[nα]| ≥ ε([nα])1/2)

≤ P(|νn − [nα]| ≥ an)+ P
(

max{m:|m−[nα]|<an}
|Sm − S[nα]| ≥ ε([nα])1/2

)

.

The first term on the right will go to zero as n→ ∞ if we take an = cn, some c > 0,
by (14.4). The second term is estimated by Kolmogorov’s maximal inequality,1 as
being no more than

2
(
ε([nα])1/2

)−2
an = ε (14.6)

1 See BCPT p.160.
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by taking an = ε3[nα]/2 (Exercise 1(b)). Thus,

Sνn − S[nα]
([nα])1/2 → 0 in probability. (14.7)

Since S[nα]/([nα])1/2 converges in distribution to N(0, 1), it follows from (14.7)
that so does Sνn/([nα])1/2. The desired convergence now follows from (14.4). �

By Proposition 14.1, N−1/2
n

∑Nn
r=1 Z̄r is asymptotically Gaussian with mean

zero and variance σ 2
j . Since Nn/n converges to (Ej τ

(1)
j )

−1 = πj , it follows that
the expression in (14.3) is asymptotically Gaussian with mean zero and variance
(Ej τ

(1)
j )

−1σ 2
j . This is then the asymptotic distribution of n−1/2S̄n. Moreover,

defining

Wn(t) = S̄[nt]√
n+ 1

W̃n(t) = Wn(t)+ 1√
n+ 1

(nt − [nt]X[nt]+1) (t ≥ 0), (14.8)

all the finite dimensional distributions of {Wn(t)}, as well as {W̃n(t)}, converge in
distribution to those of Brownian motion with zero drift and diffusion coefficient

D =
(
Ej τ

(1)
j

)−1
σ 2
j (14.9)

(Exercise 3). In fact, the convergence of the full distribution can also be obtained
by consideration of the above renewal argument. The precise form of the FCLT for
Markov chains may be stated as follows.

Theorem 14.2 (Functional Central Limit Theorem (FCLT)). If S is a positive
recurrent class of states and if (14.2) holds, then, as n→ ∞,Wn(1) = (n+1)−1/2S̄n
converges in distribution to a Gaussian law with mean zero and variance D given
by (14.9). Moreover, the stochastic process {Wn(t)} (or {W̃n(t)}) converges in
distribution to Brownian motion with zero drift and diffusion coefficient D.

Proof. First consider

X
(n)
t := 1

σ
√
n
(Z̄1 + · · · + Z̄[nt]).

Since Z̄1, Z̄2,. . . are i.i.d. with finite second moment, the FCLT2 provides that
{X(n)t } converges in distribution to standard Brownian motion. The corresponding
result for {Wn(t)} follows by an application of the maximal inequality to show

2 See e.g., BCPT Theorem 11.8.
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sup
0≤t≤1

∣
∣
∣X
(n)
t −W[nEj τ ](t)

∣
∣
∣ → 0 in probability as n→ ∞, (14.10)

where τ is the first return time to j . �

Exercises

1. (a) Let Y1, Y2, . . . be i.i.d. with EY 2
1 <∞. Show that max(Y1, . . . , Yn)/

√
n→ 0

a.s. as n→ ∞. [Hint: Show that P(Y 2
n > nε i.o.) = 0 for every ε > 0.]

(b) With the notation (14.1)–(14.8), verify that n−1/2S̄n has the same limiting
distribution as (14.3).

(c) Use Kolmogorov’s maximal inequality to justify (14.6), (14.7) to complete
the steps in the proof of Proposition 14.1.

2. Consider the two-state Markov chain {Xn : n ≥ 0} with S = {−1,+1} having
transition probabilities p−1,−1 = p1,1 = q = 1 − p, p−1,1 = p1,−1 = p, with
0 < p ≤ 1. Calculate the asymptotic variance (as a function of p) for the CLT
applied to 1√

n

∑n−1
m=0Xm.

3. Let {Wn(t) : t ≥ 0} be the path process defined in (14.4). Let t1 < t2 < · · · <
tk, k ≥ 1, be an arbitrary finite set of time points. Show that (Wn(t1, . . . ,Wn(tk))
converges in distribution as n → ∞ to the multivariate Gaussian distribution
with mean zero and variance–covariance matrix ((Dmin{ti , tj })), where D is
defined by (14.9).

4. Suppose that {Xn : n ≥ 0} is a positive recurrent Markov chain with state space
S = {1, 2, . . . , r} having unique invariant distribution (πj ). Let

Nn(i) = #{k : Xk = i, 1 ≤ k ≤ n}, i ∈ S.

(a) Show that

√
n

(
Nn(1)

n
− π1, . . . ,

Nn(r)

n
− πr

)

is asymptotically Gaussian under Pπ , with mean 0 and variance–covariance
matrix Γ = ((γij )), where

γij = δijπi − πiπj +
∞∑

k=1

(
p
(k)
ij πi − πiπj

)

+
∞∑

k=1

(
p
(k)
ji πj − πjπi

)
, for 1 ≤ i, j ≤ r.
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[Hint: Express Nn(i) = ∑n
k=0 1[Xk=i] for the calculations of mean and

variance–covariance. For centering the latter, note that
∑n
k=1

∑k−1
m=1 πiπj =

1
2n(n− 1)πiπj .]

(b) Show how this formula reduces in the case of a two-state Markov chain with
symmetric transition probabilities. [Hint: See Example 1 of Chapter 7 with
a = b = p ∈ [0, 1).]

5. Let {Xn} be a Markov chain on S and define Yn = (Xn,Xn+1), n = 0, 1, 2,
. . . Let p = ((pij )) be the transition matrix for {Xn}.
(a) Show that {Yn : n ≥ 0} is a Markov chain on the state space defined by

S′ = {(i, j) ∈ S × S : pij > 0}.
(b) Show that if {Xn : n ≥ 0} is irreducible and aperiodic, then so is {Yn : n ≥

0}.
(c) Suppose that {Xn : n ≥ 0} has invariant distribution π = (πi). Calculate the

invariant distribution of {Yn : n ≥ 0}.
(d) Let (i, j) ∈ S′, and let Tn be the number of one-step transitions from i

to j by X0, X1, . . . , Xn started with the invariant distribution π . Calculate
limn→∞(Tn/n) and describe the fluctuations about the limit for large n.

6. Use the result of Exercise 5 of Chapter 7 to describe an extension of the SLLN
and the CLT to certain rth order dependent Markov chains.

7. In reference to Exercise 5, assume that {Xn : n ≥ 0} is irreducible and positive
recurrent with invariant probability π. Let g ∈ l2(S, π) be arbitrary and consider
f (y) = f (y1, y2) := g(y2)−g(y1). Calculate the asymptotic variance parameter
D for 1√

n+1

∑n
m=0 f (Ym).

8. For the one-dimensional nearest neighbor Ising model of Exercise 8 in Chap-
ter 13, calculate the following:

(a) The pair correlations ρn,m = Cov(Xn,Xm).
(b) The large-scale variance (magnetic susceptibility) parameter Var(X0).
(c) Describe the distribution of the fluctuations in the (bulk limit) magnetization

(cf. Chapter 13, Exercise 8(b)).



Chapter 15
Martingale Central Limit Theorem

The martingale central limit theorem provides convergence of suitably cen-
tered and scaled sums of martingale difference sequences having finite second
moments that encompass a wide range of applications that extend well beyond
the classical formulations for i.i.d. summands. The approach is based upon
infinitesimal conditions for a stochastic process to be a Gaussian process of
interest in their own right.

Let {Xk,n : 1 ≤ k ≤ kn} be, for each n ≥ 1, a square-integrable martingale
difference sequence, with respect to an increasing family of σ -fields {Fk,n : 0 ≤
k ≤ kn}, with kn → ∞ as n→ ∞.Write

σ 2
k,n := E

(
X2
k,n | Fk−1,n

)
, s2

k,n :=
k∑

j=1

σ 2
j,n, Sn,kn :=

kn∑

j=1

Xj,n,

Mn := max
{
σ 2
k,n; 1 ≤ k ≤ kn

}
,

Lk,n(ε) :=
k∑

j=1

E

(
X2
j,n1[|Xj,n|>ε] | Fj−1,n

)
. (15.1)

Theorem 15.1 (Brown’s Martingale CLT1). Assume that, as n→ ∞, (i) s2
kn,n

→ 1
in probability and (ii) Lkn,n(ε) → 0 in probability, for every ε > 0. Then Skn,n
converges in distribution to N(0, 1).

1 Brown (1971).
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Proof. Consider the conditional characteristic functions

ϕk,n(ξ) := E(exp{iξXk,n} | Fk−1,n), (ξ ∈ R). (15.2)

It would be enough to show that:

a E

(
exp{iξSkn,n}
∏kn

1 ϕk,n(ξ)

)

= 1, provided |∏kn
1 (ϕk,n(ξ))

−1| ≤ δ(ξ), a constant.

b
kn∏

1

ϕk,n(ξ)→ exp{−ξ2/2} in probability.

Indeed, if |(∏kn
1 ϕk,n(ξ))

−1| ≤ δ(ξ), then (a), (b) imply

|E exp{iξSkn,n} − exp{−ξ2/2}|
= exp{−ξ2/2}E

∣
∣
∣
∣
∣

E exp{iξSkn,n}
exp{−ξ2/2} − E

(
exp{iξSkn,n}
∏kn

1 ϕk,n(ξ)

)∣
∣
∣
∣
∣

≤ exp{−ξ2/2}E
∣
∣
∣
∣
∣

1

exp{−ξ2/2} − 1
∏kn

1 ϕk,n(ξ)

∣
∣
∣
∣
∣
→ 0.

Now part (a) follows by taking successive conditional expectations given Fk−1,n

(k = kn, kn − 1, . . . , 1), if
(∏kn

1 ϕk,n(ξ)
)−1

is integrable. Note that the martingale

difference property is not needed for this. It turns out, however, that in general
∏kn

1 ϕk,n(ξ) cannot be bounded away from zero. Our first task is then to replace
Xk,n by new martingale differences Yk,n for which this integrability does hold and
whose sum has the same asymptotic distribution as Skn,n. To construct Yk,n, first
use assumption (b) to check that Mn → 0 in probability. Therefore, there exists a
nonrandom sequence δn ↓ 0 such that

P(Mn ≥ δn)→ 0 as n→ ∞. (15.3)

Similarly, there exists, for each ε > 0, a nonrandom sequence Θn(ε) ↓ 0 such that

P(Lkn,n(ε) ≥ Θn(ε))→ 0 as n→ ∞. (15.4)

Consider the events

Ak,n(ε) :=
[

σ 2
k,n < δn, Lk,n < Θn(ε), s

2
k,n < 2

]

, (1 ≤ k ≤ kn). (15.5)

Then Ak,n(ε) is Fk−1,n-measurable. Therefore, Yk,n defined by

Yk,n := Xk,n1Ak,n(ε) (15.6)
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has zero conditional expectation, given Fk−1,n. Although Yk,n depends on ε, we will
suppress this dependence for notational convenience. Note also that

P(Yk,n = Xk,n for 1 ≤ k ≤ kn) ≥ P
(
kn⋂

k=1

Ak,n(ε)

)

= P(Mn < δn, Lkn,n(ε) < Θn(ε), s2
n,kn

< 2)→ 1.

(15.7)

We will use the notation (15.1–15.2) with a “tilde” symbol to denote the correspond-
ing quantities for {Yk,n}. For example, using the fact E(Yk,n | Fk−1,n) = 0 and a
Taylor expansion,

∣
∣
∣ϕ̃k,n(ξ)−

(
1 − ξ2

2 σ̃
2
k,n

)∣
∣
∣

= E

∣
∣
∣
∣E

[

exp(iξYk,n)−
(

1 + iξYk,n + (iξ)2

2
Y 2
k,n

)

| Fk−1,n

]∣
∣
∣
∣

= E

∣
∣
∣
∣E

[

−ξ2Y 2
k,n

∫ 1

0
(1 − u)(exp{iuξYk,n} − 1)du | Fk−1,n

]∣
∣
∣
∣

≤ ε |ξ |3
2
σ̃ 2
k,n + ξ2

E(Y 2
k,n1[|Yk,n|>ε] | Fk−1,n)

≤ ε |ξ |3
2
σ̃ 2
k,n + ξ2

E(X2
k,n1[|Yk,n|>ε] | Fk−1,n).

(15.8)

Fix ξ ∈ R
1. Since M̃n < δn, 0 ≤ 1 − (ξ2/2)σ̃ 2

k,n ≤ 1 (1 ≤ k ≤ kn) for all large n.
Therefore, using (15.5, 15.8),

∣
∣
∣
∣
∣

kn∏

1

ϕ̃k,n(ξ)−
kn∏

1

(

1 − ξ2

2
σ̃ 2
k,n

)∣∣
∣
∣
∣
≤

kn∑

k=1

∣
∣
∣
∣ϕ̃k,n(ξ)−

(

1 − ξ2

2
σ̃ 2
k,n

)∣
∣
∣
∣

≤ |ξ |3ε + ξ2Θn(ε),

(15.9)

and

E

∣
∣
∣
∏kn

1

(
1 − ξ2

2 σ̃
2
k,n

)
− exp

{
− ξ2

2 s̃
2
k,kn

}∣
∣
∣

= E

∣
∣
∣
∣
∣

kn∏

1

(

1 − ξ2

2
σ̃ 2
k,n

)

−
kn∏

1

exp

{

−ξ
2

2
σ̃ 2
k,n

}∣∣
∣
∣
∣

= ξ4

8

∑
σ̃ 4
k,n ≤ ξ4

8
δns̃

2
n,kn

≤ ξ4

4
δn.

(15.10)

Therefore,

∣
∣
∣
∣
∣

kn∏

1

ϕ̃k,n(ξ)− exp

{

−ξ
2

2
s̃n,kn

}∣∣
∣
∣
∣
≤ E|ξ |3ε + ξ2Θn(ε)+ ξ4

4
δn. (15.11)
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Moreover, (15.11) implies

|∏kn
1 ϕ̃k,n(ξ)| ≥ exp

{

−ξ
2

2
s̃2
n,kn

}

− E(|ξ |3ε + ξ2Θn(ε)+ ξ4

4
δn)

≥ exp{−ξ2} − |ξ |3ε − E

(

ξ2Θn(ε)+ ξ4

4
δn

)

.

(15.12)

By choosing ε sufficiently small, one has for all sufficiently large n (depending on
ε), |∏kn

1 ϕ̃k,n(ξ)| is bounded away from zero (uniformly in n). Therefore, (a) holds
for {Yk,n}, for all sufficiently small ε (and all sufficiently large n, depending on ε).
By using relations as in (15.3) and the inequalities (15.11, 15.12) and the fact that
s̃2
n,kn

→ 1 in probability, we get

limn→∞
∣
∣
∣
∣
∣
E exp{iξ S̃n,kn} − exp

{

− ξ
2

2

}∣
∣
∣
∣
∣

≤ exp

{

− ξ
2

2

}

limn→∞ E

∣
∣
∣
∣
∣
∣

(

exp

{

− ξ
2

2

})−1

−
⎛

⎝
kn∏

1

ϕ̃k,n(ξ)
−1

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ exp

{

− ξ
2

2

}

exp

{
ξ2

2

}(

exp

{

− ξ
2

2

}

− |ξ |3ε
)−1

limn→∞ E

∣
∣
∣
∣
∣
∣

kn∏

1

ϕ̃k,n(ξ)− e−ξ2/2

∣
∣
∣
∣
∣
∣

≤
(

exp

{

− ξ
2

2

}

− |ξ |3ε
)−1

|ξ |3ε.

Finally,

limn→∞
∣
∣
∣
∣E exp{iξSkn,n} − exp

{

−ξ
2

2

}∣
∣
∣
∣

≤ limn→∞ |E exp{iξSkn,n} − E exp{iξ S̃kn,n}|
+ limn→∞

∣
∣
∣E exp{iξ S̃kn,n} − exp

{
− ξ2

2

}∣
∣
∣

= 0 + limn→∞
∣
∣
∣E exp{iξ S̃kn,n} − exp

{
− ξ2

2

}∣
∣
∣

≤
(

exp
{
− ξ2

2

}
− |ξ |3ε

)−1 |ξ |3ε.

The extreme right side of (15.13) goes to zero as ε ↓ 0, while the extreme left does
not depend on ε. �
The classical Lindeberg CLT is an immediate consequence of Theorem 15.1
(Exercise 1). Condition (ii) of the theorem is called the conditional Lindeberg
condition.
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We next derive an important versatile theorem2 whose consequences include
(a) an interesting property of a class of Markov processes known as diffusions.
What is also remarkable is that, with the verification of its criteria and a tightness
condition, Theorem 15.2 also yields (b) the Billingsley–Ibragimov functional central
limit theorem (FCLT) for square-integrable martingales with stationary increments
over equidistant intervals (Theorem 15.5). The latter result plays an important role
in the derivation of the FCLT for functions of ergodic Markov processes in the next
chapter. It may be emphasized that Donsker’s FCLT and invariance principle are
immediate offshoots of (b), whose proof here does not require the use of the central
limit theorem, neither for the classical case for i.i.d. sequences nor for the martingale
CLT derived above (Theorem 15.1). Indeed, the latter CLTs just follow as simple
consequences!

We now provide infinitesimal conditions for a process to be a Gaussian process
with time-dependent mean and variance function. The original idea goes back to
Khinchin (1933) and was made use of by Rosén (1967) and Billingsley (1968).

Let {X(t) : 0 ≤ t ≤ T } be a real-valued stochastic process on (Ω,F , P ) having
continuous sample paths. Assume that β(t) and σ(t) are continuous on [0, T ], and
for all 0 ≤ t1 < t2 < · · · < tk ≤ t ≤ T , and real numbers u1, u2, . . . , uk , one has

lim
h↓0
(1/h)E

{

exp

( ∑

1≤j≤k
iujX(tj )

)

[X(tk + h)−X(tk)− hβ(tk)X(tk)]
}

= 0,

(15.13)

lim
h↓0
(1/h)E

{

exp

( ∑

1≤j≤k
iujX(tj )

)

[(X(tk + h)−X(tk))2 − hσ 2(tk)]
}

= 0.

(15.14)
Further, suppose

sup
0≤t≤T

EX2(t) <∞. (15.15)

Also either assume: (i) there exists K such that, for all t1 < t2 < t3,

(i) E(X(t2)−X(t1))2(X(t3)−X(t2))2 ≤ K(t3 − t1)2, (15.16)

or, for every t .

(ii) lim
λ→∞ lim sup

h↓0

1

h

∫

[(X(t+h)−X(t))2>λh]
(X(t + h)−X(t))2dP = 0. (15.17)

For fixed 0 ≤ t1 < t2 < · · · < tk and (u1, u2, . . . uk), consider the characteristic
function of (X(t1), . . . , X(tk),X(t)), as a function of t ≥ tk and u given by

2 See Rosén (1967), Billingsley (1968) for original versions.
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y(t, u) = E exp{iu1X(t1)+ · · · + iukX(tk)+ iuX(t)}
= E exp{iZ + iuX(t)}, (15.18)

say. One has

∂

∂u
y(t, u) = E(iX(t) exp{iZ + iuX(t)}). (15.19)

Theorem 15.2. Under the above hypotheses (15.13)–(15.17), and notation,

y(t, u) = E exp{iZ + iua(t)X(tk)} exp{−(1/2)u2b2}, (15.20)

where

a(t) = exp

{∫

[tk ,t]
β(s)ds

}

, b2(t) =
∫

[tk,t]
σ 2(r) exp

{

2
∫

[r,t]
β(s)ds

}

dr,

(15.21)

which implies that Y (t) ≡ X(t)− a(t)X(tk) is normally distributed with mean zero
and variance b2(t) and independent of (X(t1), . . . X(tk)).

Proof. The main idea of the proof is to derive the equation

∂

∂t
y(t, u) = uβ(t) ∂

∂u
y(t, u)− (1/2)u2σ 2(t)y(t, u) (t ≥ tk) (15.22)

and solve it. To derive (15.22), note that its left side is the limit, as h ↓ 0, of

(1/h)E exp{iZ + iuX(t)}[exp{iuX(t + h)− iuX(t)} − 1]
= (1/h)E exp{iZ + iuX(t)}[iu(X(t + h)−X(t)]

+(1/2)(iu(X(t + h)−X(t)))2)+ R(t, h)], (15.23)

say, where the remainder is estimated, using | exp(iux) − 1 − iux + u2x2/2| ≤
min{u2x2, |u3x3|}, as

|R(t, h)| ≤ (1/h)E(min{|u(X(t + h)−X(t))|2, |u(X(t + h)−X(t))|3})
≤ (1/h)E{|u(X(t + h)−X(t))|31[u(X(t + h)−X(t))|2 ≤ λh]}
+ (1/h)E|u(X(t + h)−X(t))|21[u(X(t + h)−X(t))|2 > λh]
≤ |u3λ3/2h1/2| + (1/h)u2

E(X(t + h)−X(t))21

[|X(t + h)−X(t)|2 > λh].
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By (15.17ii), R(t, h) goes to zero as h ↓ 0 and then λ → ∞. By assumptions
(15.13), (15.14), one now has the limit of (15.23) given by (15.22). It remains to
solve (15.22), written as

∂

∂t
y(t, u)− uβ(t) ∂

∂u
y(t, u) = −(1/2)u2σ 2(t)y(t, u). (15.24)

The left side is the directional derivative of y(t, u) in the direction (1,−uβ(t)) in
the (t, u)-plane. Letting α(t : v) = v exp{− ∫

[tk,t] β(s)ds}, v ∈ R. The directional
derivative of y along the characteristic curve (t, α(t : v)), along with (15.24), yields

d

dt
y(t, α(t : v)) = (∂/∂t)y(t, w)|w=α(t :v) − ∂

∂w
y(t, w)|w=α(t :v)

β(t)α(t : v) = −(1/2))α(t : v)2σ 2(t)y(t, α(t : v)),
d

dt
log y(t, α(t : v)) = −(1/2)α(t : v)2σ 2(t), (15.25)

which on integration over [tk, t] yields, with y(tk, v) = E exp{iZ + ivX(tk)} (see
(15.18)),

y(t, α(t : v)) = y(tk, v) exp

{

− (1/2)
∫

[tk ,t]
α(s : v)2σ 2(s)ds

}

. (15.26)

Now choose v = u exp{∫[tk ,t] β(s)ds} = ua(t), so that α(t : v) = ua(t). Then
(15.26) reduces to

y(t, u) = y(tk, ua(t)) exp

{

− (u2/2)
∫

[tk,t]
a2(s)σ 2(s)ds

}

= E exp{iZ + iua(t)X(tk)} exp{−u2b2/2}. (15.27)

This completes the proof. �
Corollary 15.3. Under the hypothesis of Theorem 15.2, {X(t) : 0 ≤ t ≤ T }, is a
Gaussian process.

Proof. First take k = 0, i.e., t1 = · · · = tk = 0 < t . This proves X(t) is normal
for every t > 0. Next let k = 1, 0 < t1 < t . Then X(t1) and X(t) − a(t)X(t1)
are independent with X(t) − a(t)X(t1) normal. Together with the case k = 0, this
impliesX(t1) andX(t) are jointly normal. Continuing in this way (or, by induction),
one shows that X(t1), . . . X(tk),X(t) are jointly normal. �
Our next task is to derive an asymptotic version (limit theorem) of Theorem 15.2.
Let {Xn(t) : 0 ≤ t ≤ T } be a sequence of processes with continuous sample paths
satisfying the following asymptotic versions of (15.13)–(15.17).
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lim
h↓0

lim sup
n→∞

(1/h)|E exp

( ∑

1≤j≤k
iujXn(tj )

)

[Xn(tk + h)−Xn(tk)− hβ(tk)Xn(tk)]| = 0,

(15.28)

lim
h↓0

lim sup
n→∞

(1/h)|E exp

( ∑

1≤j≤k
iujXn(tj )

)

[(Xn(tk+h)−Xn(tk))2−hσ 2(tk)]| = 0.

(15.29)
Further, suppose

sup
0≤t≤T

lim sup
n→∞

EX2
n(t) <∞. (15.30)

Also assume either: (i) there exists K such that for all t1 < t2 < t3, and all n,

(i) E(Xn(t2)−Xn(t1))2(Xn(t3)−Xn(t2))2 ≤ K(t3 − t1)2, (15.31)

or, for every t ,

(ii) lim sup
h↓0

lim sup
n→∞

Eλ[(Xn(t + h)−Xn(t))2/h] → 0 as λ→ ∞, (15.32)

where EλU = E(U1[U > λ]).
Theorem 15.4. Let {Xn(t) : 0 ≤ t ≤ T } be a sequence of processes with con-
tinuous sample paths satisfying (15.28)–(15.32). If, in addition, their distributions
on C[0, T ] are a tight sequence, then they converge in distribution to a continuous
process {X(t) : 0 ≤ t ≤ T }, satisfying the conclusions of Theorem 15.2.

Proof. Because of tightness, there exists a process X in C[0, T ], such that a subse-
quence {Xn′ }, say, of {Xn}, converges in distribution to X. One may now check that
the conditions (15.28)–(15.32) imply that X satisfies all the assumptions (15.13)–
(15.17) of Theorem 15.2 (Exercise 2). Therefore, Xn converges in distribution to a
process X characterized by Theorem 15.2. �

We are now ready to prove the Billingsley–Ibragimov FCLT for martingales.

Theorem 15.5 (FCLT for Martingales with Stationary Increments). Let {Zn :
n = 1, 2, . . . } be a sequence of stationary ergodic square-integrable martingale
differences, i.e., denoting by Fn the sigma-field generated by {Z1, . . . , Zn}, one has

E(Zn|Fn−1) = 0, E(Z2
n) = σ 2 > 0 for all n = 1, 2, . . . (15.33)

Then, writing Sn = Z1 + · · · + Zn(n ≥ 1), S0 = 0, the polygonal process Xn(t) =
S[nt]/

√
n + (nt − [nt])Z[nt]+1/

√
n (t ≥ 0) converges to a Brownian motion with

mean zero and variance parameter σ 2.
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Proof. First, let us construct a doubly infinite sequence {Z̃n : −∞ < n <

∞} such that {Z̃n : j + 1 ≤ n ≤ j + m} has the same distribution as
{Z1, Z2, . . . , Zm}, (−∞ < j < ∞,m = 1, 2, . . . ). This being a consis-
tent specification, Kolmogorov’s existence theorem provides a doubly stationary
sequence whose consecutive m terms have the same joint distribution as that of
(Z1, Z2, . . . , Zm), for every m ≥ 1. With a minor abuse of notation, let us denote
this doubly infinite sequence also as {Zn}. Let Gn be the sigma-field generated by
{Zj : −∞ < j ≤ n} for all integers n, positive, negative, or zero. One may now
check that

E(Zn+1|Gn) = 0, for all n. (15.34)

By stationarity, E(Zn+1|σ {Zn+1−j : j = 1, . . . , m}) = E(Zm+1|σ {Z1, . . . , Zm}) =
0. This being true for all m = 1, 2, . . . , one arrives at (15.34). We will now verify
the hypotheses of Theorem 15.4 with β(t) = 0 and σ 2(t) = σ 2 for all t . In order to
verify the hypothesis of Theorem 15.4, note that

Xn(tk + h)−Xn(tk)
=

∑

[ntk]<j<[n(tk+h)]
Zj/

√
n+ (n(tk + h)− [n(tk + h)])Z[n(tk+h)]+1/

√
n

−(ntk − [ntk])Z[n(tk+h)]+1/
√
n− (ntk − [ntk])Z[ntk]+1/

√
n

=
∑

[ntk]<j<[n(tk+h)]+1

Zj/
√
n+ E(n, h), (15.35)

where EE2(n, h) goes to zero as n→ ∞, uniformly for all h. Then, recalling G[nt] =
σ {Zj : j ≤ [nt]}, one has E(

∑
[ntk]<j<[ntk+h] Zj/

√
n|G[ntk]) = 0, so that (15.28)

holds. To verify (15.29), fix an h > 0. In view of (15.35), it is enough to prove

E(1/h)

( ∑

[ntk]<j<[n(tk+h]
Zj/

√
n)2|G[ntk]

)

→ σ 2, (15.36)

in L1 as n→ ∞. Using (15.34), the left side of (15.36) equals

E

( ∑

[ntk]<j<[n(tk+h)]
Z2
j /nh|G[ntk]

)

, (15.37)

which has the same distribution as the sequence E(
∑

0<j<m(n) Z
2
j /[nh]|G0), where

m(n) = [n(tk + h)] − [ntk] differs from [nh] by at most 2. Hence, (15.37) differs in
distribution from E(

∑
0<j<[nh] Z2

j /[nh]|G0) by a quantity that goes to zero in L1.
But by Birkhoff’s mean ergodic theorem (see Theorem 4.1), the latter sum divided
by nh converges in L1 to E(Z2

1) = σ 2. Thus, (15.29) follows, with σ 2 = σ 2(tk).



210 15 Martingale Central Limit Theorem

As to (15.30), one has supn EXn(t)
2 ≤ (T + 1)σ 2. We now proceed to the proof

of (15.32) and tightness of the sequence {Xn(t) : 0 ≤ t ≤ 1}. First, consider the
estimate of ES4

n assuming |Zj | is bounded by a constant C. Of the n4 terms in the
expansion, the expectation vanishes of every term in which the term with the highest
index k, say Zk , occurs once as one of the four factors. The remaining terms yield
ES4

n = ∑
k EZ

4
k+4

∑
j<k EZjZ

3
k+6

∑
i,j<k EZiZjZ

2
k . The number of summands

in the first two terms together is no more than n + 4n(n − 1)/2 < 2n2. The third
term is bounded by

6C2
∑

k>1

E(S2
k−1) = 6C2σ 2

∑

k>1

(k − 1) = 3C4n(n− 1) < 3C4n2.

Hence,

E(S4
n) < 5C4n2. (15.38)

One may use this estimate to prove tightness3 and also the condition (15.32) for
bounded Zk (Exercise 3). To prove them under the second moment condition, we
will use the following truncation argument. For every nonnegative random variable
U and every λ > 0, let EλU = E(U1[U > λ]). Define the truncated variable
Zk,u = Zk1[Zk ≤ u], and Yk,u = Zk,u − E(Zk,u|Gk−1), and the remainder Wk,u =
Zk−Yk,u = Zk−Zk,u−E(Zk−Zk,u|Gk−1), since E(Zk|Gk−1) = 0. Both sequences
{Yk,u}, {Wk,u} are martingale differences. Their respective partial sums are denoted
by Sk,u = ∑

1≤j≤k Yj,u and Rk,u = ∑
1≤j≤k Wj,u. We will prove that

lim
λ→∞Eλ(1/n) max

1≤k≤n S
2
k = 0. (15.39)

The tightness of the sequence of processes {Xn} will then follow from Lemma 3
below. Observe the following inequalities, for some Δ > 0,

(1/n) max
1≤k≤n S

2
k ≤ (2/n) max

1≤k≤n S
2
k,u + (2/n) max

1≤k≤n R
2
k,u;

EΔ(1/n) max
1≤k≤n S

2
k,u ≤ (1/Δ)E(1/n2) max

1≤k≤n S
4
k,u ≤ (1/Δ)(4/3)45(2u)4.

(15.40)

The second relation above follows from a Chebyshev type inequality, while the
last inequality is just Doob’s maximal inequality for 4th moments using (15.38)
for the martingale {Sk,u}, recalling that E|Yk,u| ≤ 2u. Also, using Doob’s maximal
inequality for second moments for the martingale {Rk,u}

3 See BCPT Lemma 3, p. 150.
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E
1

n
max

1≤k≤nR
2
k,u ≤ 4

n
ER2

n,u

= 4E(Z1 − Z1,u − E(Z1 − Z1,u|Gk−1))
2 ≤ 4E(Z1 − Z1,u)

2

= 4EuZ
2
1 . (15.41)

From (15.40) and (15.41), and Billingsley’s inequality (Exercise 4) EΔ(U + V ) ≤
2(EΔ/2U+EΔ/2V ), one obtains EΔ(1/n)max1≤k≤n S2

k ≤ 8Eu2Z2
1+Au4/Δ, where

A is an absolute constant. Let u = Δ1/8 to get the desired result (15.39), with
λ = Δ. Theorem 15.5 now follows from Lemma 3 below, since

P( max
1≤j≤n |Sk+j − Sj | ≥ λσ√

n) ≤ Eλ2

(
1

n
max

1≤j≤n S
2
j /σ

2
)

. (15.42)

This completes the proof. �
The following are useful tools for establishing tightness under quite general

conditions.4 For the first two lemmas, let {Pn : n ≥ 1} be a sequence of
probability measures on (C[0, 1],B). Then the Arzelá–Ascoli theorem provides a
useful identification of compact sets in C[0, 1] for purposes of checking tightness
as follows.5

Lemma 1. The sequence {Pn : n ≥ 1} is tight if:

a For each η > 0, there is an a such that Pn(ω ∈ C[0, 1] : |ω(0)| > a) ≤ η, n ≥
1.

b For each ε > 0, η > 0, there exist δ, 0 < δ < 1, and integer n0 such that
Pn(ω ∈ C[0, 1] : wω(δ) := sup|s−t |<δ |ω(s)− ω(t)| ≥ ε) ≤ η, n ≥ n0.

Remark 15.1. One may use the Arzelá–Ascoli theorem to show that the conditions
in Lemma 1 are also necessary for tightness.

Lemma 2. The sequence {Pn : n ≥ 1} is tight if:

a For each η > 0, there is an a such that

Pn(ω ∈ C[0, 1] : |ω(0)| > a) ≤ η, n ≥ 1.

b For each ε > 0, η > 0, there exist a 0 < δ < 1, and integer n0 such that for all
0 ≤ t ≤ 1,

Pn(ω ∈ C[0, 1] : sup
t≤s≤(t+δ)∧1

|ω(s)− ω(t)| ≥ ε) ≤ δη, n ≥ n0.

4 See Billingsley (1968) for a more comprehensive treatment of such conditions.
5 For a proof, see BCPT (Errata), p. 149, Lemma 2.
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Proof. Fix δ > 0, and define At = {ω ∈ C[0, 1] : supt≤s≤t+δ∧1 |ω(s) − ω(t)| ≥
ε}. Each s, t belong to an interval of the form [jδ, (j + 1)δ]. So, in particular, if
|s − t | < δ, then the two such intervals either coincide or abut. Hence, Pn(ω ∈
C[0, 1] : wω(δ) ≥ 3ε) ≤ Pn(∪j≤1/δAjδ). Now, condition (b) implies that Pn(ω ∈
C[0, 1] : wω(δ) ≥ 3ε) ≤ (1 + [δ−1])δη < 2η. Lemma 1 applies to complete the
proof. �

For the case that Pn is the distribution of a polygonal process, let Z1, Z2, . . .

be an arbitrary sequence of real-valued random variables on a probability space
(Ω,F , P ), Sn = Z1 + · · · + Zn, n ≥ 1, S0 = 0, σ > 0 a constant, and define

Xn(t, ω) = 1

σ
√
n
S[nt](ω)+ (nt − [nt]) 1

σ
√
n
Z[nt]+1(ω). (15.43)

Lemma 3. The sequence Xn ∈ C[0, 1] defined by (15.43) is tight if for each ε > 0
there is a λ > 1, and integer n0 such that for n ≥ n0

P(max
j≤n |Sk+j − Sk| ≥ λσ√

n) ≤ ε

λ2 , k = 0, 1, 2, . . .

Proof. Since Xn(0) = 0, the tightness of (distributions of) {Xn(0)} is trivial. In
view of Lemma 2, it is sufficient to show for ε > 0, η > 0, there is 0 < δ < 1 and
integer n0 such that for 0 ≤ t ≤ 1, n ≥ n0,

P( sup
t≤s≤(t+δ)∧1

|Xn(s)−Xn(t)| ≥ ε) ≤ δη. (15.44)

For t = k/n and t + δ = j/n, i.e., t, δ integral multiples of 1/n, this is the same as
requiring

P

(

max
i≤δn

1

σ
√
n
|Sk+i − Sk| ≥ ε

)

≤ δη. (15.45)

More generally, if k/n ≤ t < (k + 1)/n and (j − 1)/n ≤ t + 1
2δ < j/n, the

polygonal path satisfies

sup
t≤s≤t+ 1

2 δ

|Xn(s)−Xn(t)| ≤ 2 max
0≤i≤j−k

1

σ
√
n
|Sk+i − Sk|. (15.46)

Thus, taking n ≥ 4/δ, one has j−k ≤ nδ, so that the maximum on the upper bound
is not larger than the maximum over i ≤ δn. Thus, for tightness of the sequence (of
distributions) of {Xn}, it suffices to check for ε, η > 0, there is a 0 < δ < 1, and
integer n0, such that (15.45) holds for all k and all n ≥ n0. Note that if δn = m is
an integer, then (15.45) simplifies to
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P(max
i≤m |Sk+i − Sk| ≥ εσ√

m/
√
δ) ≤ δη. (15.47)

Let λ = ε/√δ. Then one has the further simplification

P(max
i≤m |Sk+i − Sk| ≥ λσ√

m) ≤ ηε2

λ2
. (15.48)

With ηε2 in place of ε, the condition of the lemma yields λ > 0 and n1 such that for
n ≥ n1, k ≥ 1,

P(max
i≤n |Sk+i − Sk| ≥ λσ√

n) ≤ ηε2

λ2
.

Write δ = ε2

λ2 ∈ (0, 1). Take an integer n0 ≥ n1/δ, so that [nδ] ≤ n1. Then it now
follows for n ≥ n0, and hence, [δn] ≥ n1,

P(max
i≤[δn] |Sk+i − Sk| ≥ λσ√[δn]) ≤ ηε2

λ2 .

Since λ
√[δn] ≤ ε

√
n, and ηε2/λ2 = δη, the desired condition (15.45) is

satisfied. �
Remark 15.2. As mentioned before, the statement of Theorem 15.2, Donsker’s
Theorem (and, therefore, the classical CLT), for sums of i.i.d. random variables is
an immediate consequence of Theorem 15.5, whose proof depends on Prokhorov’s
theorem on tightness6 that, in the present context, depends on Doob’s maximal
inequalities. Paul Lévy’s martingale characterization of Brownian motion also
follows, but with the additional assumption of stationarity (Exercise 5). The result
without stationarity can be established using stochastic differential equations.7

Exercises

1. Show how each of the following classical limit theorems for independent random
variables follows from the more general martingale central limit theory.

(a) (Lindeberg CLT) For each n,X1,n, . . . , Xkn,n are independent random vari-
ables such that EXj,n = 0, σ 2

j,n = EX2
j,n < ∞,∑kn

j=1 σ
2
j,n = 1, and

kn → ∞ as n→ ∞. Assume the

6 See the Lemma 3, or BCPT, Theorem 7.11, p. 145.
7 See Ikeda and Watanabe (1981), Theorem 6.1, p.74.
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[Lindeberg Condition] lim
n→∞

kn∑

j=1

E(X2
j,n1[|Xj,n| > ε]) = 0

(15.49)

for each ε > 0. Then
∑kn
j=1Xj,n converges in distribution to the standard

normal as n→ ∞.
(b) (Lyapunov CLT) For each n,X1,n, . . . , Xkn,n are independent random vari-

ables such that
∑kn
j=1Xj,n = μ,∑kn

j=1 V arXj,n = σ 2 > 0. Assume that

[Lyapunov Condition] lim
n→∞

kn∑

j=1

E|Xj,n − EXj,n|2+δ = 0,

(15.50)

for some δ > 0. Then
∑kn
j=1Xj,n converges in distribution to the mean μ

and variance σ 2 normal distribution as n→ ∞.
(c) (Classical I.I.D. CLT) Assume X1, X2, . . . is an i.i.d. sequence of ran-

dom variables with EX2
1 < ∞. Let μ = EX1, σ

2 = V arX1. Then
1√
n

∑n
i=1(Xi − μ) converges in distribution to the standard normal distri-

bution as n→ ∞.
2. In reference to the proof of Theorem 15.4, verify that the conditions (15.28)–

(15.32) imply thatX satisfies all the assumptions (15.13)–(15.17) of the theorem.
3. Use this estimate (15.38) to prove tightness (see BCPT, Lemma 3, p. 150) and

also the condition (15.32) for bounded Zk in the proof of Theorem 15.5.
4. (Billingsey’s Inequality) Show that for nonnegative random variables X, Y , and
t > 0,

E{(X + Y )1[X+Y≥t]} ≤ 2E{X1[X≥ t
2 ]} + 2E{Y1[Y≥ t

2 ]}, t > 0.

[Hint: Use [X + Y > t] ⊂ [X > t/2] ∪ [Y > t/2] and inclusion–exclusion to
see that 1[X+Y>t] ≤ 1[X>t/2] + 1[Y>t/2]. Then consider the cases [X > t/2, Y >
t/2], [X > t/2, Y ≤ t/2], [X ≤ t/2, Y > t/2] individually.]

5. Let X = {Xt : t ≥ 0} be a continuous parameter martingale with (a) continuous
sample paths, (b) finite second moments, and (c) stationary ergodic increments
over disjoint intervals of the same length. Prove that X is a Brownian motion.
[Hint: Use Theorem 15.5.]

6. (Ornstein–Uhlenbeck Process) Let X = {X(t) : t ≥ 0} be a stochastic process
with continuous sample paths, satisfying (15.13)–(15.17), with β(t) = β,
σ 2(t) = σ 2 > 0, constants. Show that X is Gaussian as well as Markov.



Chapter 16
Stationary Ergodic Markov Processes:
SLLN & FCLT

For discrete parameter Markov processes on a general state space, Birkhoff’s
ergodic theorem provides a natural approach to the existence of invariant
probabilities and the corresponding strong law of large numbers in some
generality. In addition, it is shown that the notion of an irreducible positive
recurrent Markov chain on a countable state space is equivalent to being
irreducible ergodic stationary Markov chain having a unique invariant initial
distribution.

The strong law of large numbers (SLLN) and the functional central limit theorem
(FCLT) for stochastic processes are of great significance in theory and applications.
A complete treatment of these for Markov processes with countable state spaces
(Markov chains) was given in Chapter 12 using the renewal method. The present
brief chapter is devoted to the SLLN and FCLT for Markov processes on general
state spaces via Birkhoff’s ergodic theorem and martingale theory, respectively.

Proposition 16.1. Let X = {X0, X1, . . . } be a Markov process on a state space
(S,S) with transition probability p(x, dy) and invariant probability π . If for every
x outside a π -null set, one has

lim
n→∞

1

n

n∑

m=1

p(m)(x, B) = π(B), for all B ∈ S, (16.1)

then the stationary process X = {X0, X1, . . . } is ergodic for the initial distribu-
tion π .
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Before we prove this proposition, let us recall that (16.1) is equivalent to the
statement that for all x outside a π -null set

lim
n→∞

∫

S

f (y)
1

n

n∑

m=1

p(m)(x, dy) =
∫

S

f (y)π(dy) (16.2)

for all f ∈ B(S). The proof of (16.2) is by the method of approximation by simple
functions

Proof. Since S⊗∞ is generated by finite dimensional sets of the form A = C ×
S∞, C ∈ S⊗m+1,m ≥ 0, by the π−λ theorem, it is enough to prove the proposition
with A of this form. For such A, letting B ∈ S⊗∞ and r > m, we have

P([X ∈ A] ∩ [T rX ∈ B]) = P([(X0, . . . , Xm) ∈ C] ∩ [(Xr,Xr+1, . . . , ) ∈ B])
= E{1C(X0, . . . , Xm)PXr (B)}

= E{1C(X0, . . . , Xm)

∫

S

Py(B)p
(r−m)(Xm, dy)},

where Py is the distribution of the Markov process with initial state y and transition
probability p(x, dy) and P,E denote the distribution of X, and expected value
under the initial distribution π . Summing over r = m+1, . . . , n and letting n→ ∞,
one gets

1

n

n−1∑

r=0

P([X ∈ A] ∩ [T rX ∈ B])

= 1

n

m∑

r=0

P([X ∈ A] ∩ [T rX ∈ B])+ 1

n

n−1∑

r=m+1

P([X ∈ A] ∩ [T rX ∈ B])

( n−m− 1

n
E

{

1A(X)
1

n−m− 1

n−m−1∑

r=1

Py(B)p
(r)(Xm, dy)

}

→ E

{

1A(X)
∫

S

Py(B)π(dy)

}

= P(X ∈ A)P (X ∈ B), (16.3)

where ( indicates that the difference between the two sides goes to zero as
n → ∞. The convergence in (16.3) derives from (16.2) with f (y) = Py(B). By
Proposition 4.5, X is ergodic. �

Combining Proposition 16.1 and Theorem 13.3, one may conclude that positive
recurrence and ergodicity are equivalent notions for irreducible Markov processes
having a countable state space. Namely, one has the following.
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Corollary 16.2. Let {Xn} be an irreducible Markov chain on a denumerable state
space. Then {Xn} is positive recurrent with invariant probability π if and only if
{Xn} is a stationary ergodic Markov process with invariant initial distribution π .

Proof. In view of Corollary 8.5, see (13.19), positive recurrence implies ergodicity
of {Xn}. Conversely, if {Xn} is an irreducible ergodic Markov chain, then positive
recurrence follows from Birkhoff’s ergodic theorem by taking f (X) = 1[X0=j ](X)
for fixed but arbitrary j ∈ S, for then f (T mX) = 1[Xm=j ](X). �
Remark 16.1. Out of this theory, one has an alternative characterization of ergod-
icity of stationary Markov chains on a finite state space as the property that 1 is a
simple eigenvalue of the transition probability matrix p (see Exercise 16).

The following result is now a consequence of Birkhoff’s ergodic theorem
(Theorem 4.1).

Corollary 16.3 (SLLN for Markov Processes on General State Spaces). Suppose
the transition probability p(x, dy) has an invariant probability π and that (16.1)
holds for every x outside a π -null set. Let f ∈ L1(S, π), and define

B :=
{

x = (x0, x1, . . . ) ∈ S∞ : lim
n

1

n

n−1∑

m=0

f (xm) =
∫

S

f dπ

}

. (16.4)

Then Py(B) = 1 for every y outside a π -null set.

Proof. By Birkhoff’s ergodic theorem (Theorem 4.1(b))

1 = P(X ∈ B) = EP(X ∈ B|X0) = EPX0(B) =
∫

S

Py(B)π(dy). (16.5)

Hence, Py(B) = 1 outside a π -null set. �
In the next few chapters, we will find broad classes of Markov processes

that have invariant probabilities π for which the hypothesis of Proposition 16.1
holds. Ergodicity of the Markov process equivalently refers to the existence of an
invariant probability π under which the stationary process with initial distribution
π is ergodic in the sense of Definition 4.5. The following Definition 16.1 and
Theorem 16.4 capture this essential role of the invariant measure π .

Definition 16.1. An invariant probability π for a transition probability p(x, dy) is
said to be ergodic if the stationary Markov process with the transition probability
p(x, dy) and initial distribution π is ergodic.

Remark 16.2. It should be noted that Birkhoff’s ergodic theorem (Theorem 4.1(b)),
applied to a stationary ergodic Markov process, implies the hypothesis of Proposi-
tion 16.1 (Exercise 16).

Example 1. This example shows that, for a given transition probability, the exis-
tence of an ergodic invariant probability does not imply uniqueness nor preclude
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the existence of an infinite σ -finite invariant measure. Let S = [−2, 2] and define
Xn+1 = f (Xn) + εn+1, n = 0, 1, 2, . . . , where f (x) = (x + 1)1[−2,0](x)+
(x − 1)1(0,2](x), x ∈ S, and εn, n ≥ 1 is an i.i.d. Bernoulli ±1 sequence with equal
probabilities. Then, for each fixed x ∈ (0, 2], if one starts in state X0 = x, the two-
point state X1(x) is identically distributed as X1(x − 2). In particular, X1(x) and
X2(x) are independent with the same two-point distribution given by the ergodic
invariant probability (for x ∈ (0, 2])

π+
x = 1

2
δ{x} + 1

2
δ{x−2},

and similarly, for x ∈ [−2, 0],

π−
x = 1

2
δ{x} + 1

2
δ{x+2},

are mutually singular ergodic invariant probabilities. In addition, for fixed but
arbitrary 0 < a1 < a2 < · · · < 2, the infinite σ -finite measure

m =
∞∑

n=1

(δ{an} + δ{an−2})

is a σ -finite invariant measure. (See Exercise 10 for the case εn, n ≥ 1, are i.i.d.
uniform on [−1,1].)

We next present an elegant alternative approach to the SLLN for Markov
processes whose proof shows, in particular, that the invariant sigma-field may be
identified with a sub-sigma-field of S .

Theorem 16.4 (Ergodicity, SLLN, and the Uniqueness of Invariant Probabilities).
Suppose X = {Xn : n ≥ 0} is a stationary Markov process on a state space
(S,S) having a transition probability p(x, dy) and invariant initial distribution π .
The process is ergodic if and only if there does not exist an invariant distribution
π ′ �= π such that π ′ << π .

Proof. The crucial step in the proof is to first identify the shift-invariant events. For
this, let us show that every shift-invariant bounded measurable h(X) is a.s. equal to
a random variable g(X0) where g is a bounded measurable function on (S,S). Let
T denote the shift transformation, and let I denote the shift-invariant sigma-field.
If h(X) is invariant, then h(X) = h(T nX) a.s. for all n ≥ 1. Then, by the Markov
property,

E(h(X)|σ(X0, X1, . . . Xn)) = E(h(T nX)|σ(X0, X1, . . . Xn))

= E(h(T nX)|σ(Xn)) = g(Xn),

where g(x) = E(h(X0, X1, . . . )|X0 = x). By the martingale convergence theorem
applied to the martingale g(Xn) = E(h(X)|σ(X0, X1, . . . Xn), it follows that g(Xn)



16 Stationary Ergodic Markov Processes: SLLN & FCLT 219

converges, a.s. and in L1, to E(h(X)|σ(X0, X1, . . . )) = h(X). But g(Xn)−h(X) =
g(Xn)− h(T nX) has the same distribution as g(X0)− h(X) for each n ≥ 1. Thus,
letting n→ ∞, it follows that g(X0)−h(X) = 0 a.s. In particular, forG ∈ I, there
is B ∈ S such that G = [X0 ∈ B] a.s. This implies π(B) = P(X0 ∈ B) = P(G).
If X is not ergodic, then there exists G ∈ I such that 0 < P(G) < 1 and, therefore,
0 < π(B) < 1 for a corresponding set B ∈ S as above. But the probability πB
defined by πB(A) = π(A ∩ B)/π(B),A ∈ I, is invariant. To see this, observe that

∫

S

p(x,A)πB(dx) = 1

π(B)

∫

B

p(x,A)π(dx)

= P(X0 ∈ B,X1 ∈ A)/π(B)
= P(X1 ∈ B,X1 ∈ A)/π(B),

by invariance of the event [X0 ∈ B]. In particular, by stationarity,

∫

S

p(x,A)πB(dx) = P(X0 ∈ A ∩ B)/π(B)
= π(A ∩ B)/π(B) = πB(A).

Since πB(B) = 1 > π(B), and πB << π , the contrapositive is proven.
To prove the other half, suppose that X is ergodic and π ′ is also invariant and

absolutely continuous with respect to π . Fix A ∈ S . By Birkhoff’s ergodic theorem,
and conditioning on X0, one has as n → ∞, 1

n

∑n−1
j=0 p

(j)(x;A) → π(A) for all x
outside a π -null set, and hence outside a π ′-null set. The invariance of π ′ implies

∫

S

1

n

n−1∑

j=0

p(j)(x;A)π ′(dx) = π ′(A)

for all n ≥ 1. Thus π(A) = π ′(A). Since A ∈ S is arbitrary, the proof is
complete. �

We saw above that the strong law of large numbers extends to Markov processes
with general state spaces, even if point recurrence does not hold. That is, even for
Markov processes having a unique invariant distribution, there may not be any point
in the state space to which the process returns (infinitely often) with probability
one. Thus a more general approach than the renewal decomposition will also be
required in order to obtain a central limit theorem. One such more general approach
that applies to all ergodic Markov processes is via martingales. So let us now see
how to apply the martingale central limit theorem (Theorem 15.5) to an ergodic
Markov process {Xn : n ≥ 0} on a state space S (with σ -field S), having a
transition probability p(x, dy) with invariant probability π . As usual, write T for
the transition operator, T g(x) := ∫

g(y)p(x, dy). Then for f ∈ L1(S, π), with
μ = ∫

S
f dπ, T mf̄ (x) = T mf (x)− μ for all m ≥ 0, where f = f − μ.
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As will be clear from the proof below, the key to this application is the
following representation of sums of the form

∑n−1
m=0 f (Xm) for suitable functions

f ∈ L2(S, π). Namely, assume (centering)
∫
S
f dπ = 0, i.e., f ∈ 1⊥ := {f ∈

L2(S, π) : 〈f, 1〉π ≡ ∫
S
f dπ = 0}, and that f belongs to the range of −A := I−T

as an operator on L2(S, π), i.e., f = (I − T )g for some g ∈ L2(S, π). Then

n−1∑

m=0

f (Xm) =
n−1∑

m=0

[g(Xm)−T g(Xm)] =
n∑

m=1

[g(Xm)−T g(Xm−1)]+g(X0)−g(Xn)
(16.6)

for which Zn := ∑n
m=1[g(Xm) − T g(Xm−1] defines a martingale, i.e., g(Xm) −

T g(Xm−1),m = 1, 2, . . . , is a martingale difference sequence and, by Chebyshev
inequality, (g(X0)− g(Xn)) = o(√n) in probability as n→ ∞ (Exercise 16).

To obtain a sufficient condition for the range requirement, suppose for f ∈ 1⊥,
the series gn(x) := ∑n

0(T
mf )(x) converges in L2(S, π) to g, i.e.,

∫

(gn − g)2dπ → 0 as n→ ∞. (16.7)

In this case, g satisfies the “Poisson equation”

T g(x)− g(x) = −f (x), or (T − I )g = −f, (16.8)

i.e., f belongs to the range of I − T regarded as an operator on L2(S, π).

Theorem 16.5 (Gordin–Lifsic FCLT for Discrete Parameter Markov Processes1).
Assume that p(x, dy) admits an invariant probability π and that under this initial
invariant distribution the stationary process {Xn : n ≥ 0} is ergodic. AssumeX0 has
distribution π , and let f be a real-valued function on S such that Ef 2(X0) < ∞.
Also let μ = ∫

f dπ , and assume that f̄ := f − μ is in the range of I − T , as an
operator on L2(S, π), with Ag = −f̄ , g ∈ L2(S, π), where A = T − I . Let

Sn =
n−1∑

m=0

(f (Xm)− μ).

Then the polygonal process {Zn(t) = S[nt]√
n

+ (nt − [nt])X[nt]+1√
n

: t ≥ 0}, with

values in C[0,∞), converges in distribution to σB where B := {Bt : t ≥ 0}
denotes the standard Brownian motion starting at 0 and σ 2 = ||g||2π − ||T g||2π =
2〈g, f̄ 〉π − 〈f̄ , f̄ 〉π .

1 Gordin and Lifsic (1978). Also see Bhattacharya (1982).
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Proof. Suppose that g ∈ L2(S, π) satisfies

g(x)− T g(x) = f̄ (x), or (I − T )g = f̄ , (16.9)

i.e., f̄ belongs to the range of I − T regarded as an operator on L2(S, π). Now it is
simple to check that

g(Xn)− T g(Xn−1) (n ≥ 1) (16.10)

is a martingale difference sequence. It is also stationary and ergodic (Exercise 16).
Write

Zn :=
n∑

m=1

(g(Xm)− T g(Xm−1)). (16.11)

Then, by the Billingsley–Ibragimov FCLT (Theorem 15.5), one obtains the asserted
convergence in distribution to σB where

σ 2 = E(g(X1)− T g(X0))
2 = Eg2(X1)+ E(T g)2(X0)− 2E[T g(X0)g(X1)].

(16.12)

Since E[g(X1) | {X0}] = T g(X0), we have E[T g(X0)g(X1)] = E(T g)2(X0), so
that (16.12) reduces to

σ 2 = EE(g2(X1)−E(T g)2(X0) =
∫

g2dπ −
∫

(T g)2dπ = 2〈g, f̄ 〉π −〈f̄ , f̄ 〉π .
(16.13)

The last equality is obtained by writing T g = g − f̄ . Also, by (16.9),

Zn =
n∑

m=1

(g(Xm)− T g(Xm−1)) =
n−1∑

m=0

(g(Xm)− T g(Xm))+ g(Xn)− g(X0)

=
n−1∑

m=0

f̄ (Xm)+ g(Xn)− g(X0).

(16.14)
Since

[Eg(Xn)− g(X0))/
√
n]2 ≤ 2

n
(Eg2(Xn)+ Eg2(X0)) = 4

n

∫

g2dπ → 0.
�

Example 2. Recall that the (deterministic) cyclic motion on the two-state set S =
{0, 1} defined by the transition probabilities p01 = p10 = 1 is irreducible with
unique invariant probability π0 = π1 = 1/2. However, the average of any function
over a cycle and the return time are both a.s. constants. Thus the asymptotic normal
distribution obtained above is degenerate, i.e., the asymptotic variance is σ 2 = 0.
Also see Exercise 14.
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A special case of Theorem 16.5 with countable state space S stated below is of
much interest.

Proposition 16.6. Consider an irreducible positive recurrent Markov chain {Xn :
n = 0, 1, 2, . . . } with countable state space S. It has a unique invariant probability
π . If f belongs to the range of T − I , then the conclusion of Theorem 16.5 holds.
Moreover, if

∑∞
k=1 T

kf̄ converges inL2(S, π), then f̄ belongs to the range of T −I
(Exercise 16).

Remark 16.3. Knowing when 0 < σ 2 < ∞ is tantamount to knowing that
√
n is

the correct scaling for the fluctuations. The central limit theorem provides finiteness
of σ 2, but not necessarily its positivity. In particular, note that for the above example
of deterministic cyclic motion on two states S = {0, 1}, a time-reversible Markov
process for which T is self-adjoint with eigenvalues ±1, f̄ belongs to the range
if and only if f̄ (0) = −f̄ (1). But this condition is equivalent to centering. This
example is ruled out by the convergence of the numerical series defining γ, but not
a range condition on f̄ .

Corollary 16.7. In addition to the hypothesis of Theorem 16.5, assume that π is
time-reversible and λ = −1 does not belong to the spectrum of T . Then one has
σ 2 > 0 if and only if f is not constant.

Proof. Consider the contrapositive statement that σ 2 = 0 if and only if f is
constant. Clearly, if f is constant, then f̄ ≡ 0 and one already obtains σ 2 = 0
from the variance in Theorem 16.5. Conversely, suppose that σ 2 = 0. Then one
has 〈g, g〉π = 〈T g, T g〉π . We have f̄ belonging to the range of A = T − I with
Ag = f̄ .

Since T is a self-adjoint contraction on the Hilbert space L2(S, π) with T 1 =
1, we may apply the functional calculus associated with the spectral measure for
self-adjoint bounded operators, see Appendix B. Let νg(dλ) = d〈Eλg, g〉π , where
T = ∫

[−1,1] λdEλ is the spectral decomposition of T . Then
∫

[−1,1]
νg(dλ) = 〈g, g〉π = 〈T g, T g〉π = 〈T 2g, g〉π =

∫

[−1,1]
λ2νg(dλ),

(16.15)
so that

∫

[−1,1]
(1 − λ2)νg(dλ) = 0. (16.16)

Since −1 does not belong to σ(T ), 1−λ2 > 0 for all λ ∈ σ(T )\{1}. It follows from
(16.16) that g is an eigenvector of T with λ = 1. Hence, T 2g = T g = g, and

〈f̄ , f̄ 〉π = 〈T g − g, T g − g〉π
= 〈T 2g, g〉π − 2〈T g, g〉π + 〈g, g〉π
= 〈T 2g − 2T g + g, g〉π = 0, (16.17)

and hence, f̄ = 0, and f is a constant π -a.s. �
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Remark 16.4. An important case for positivity of σ 2 is provided in Exercise 16,
for the case when p(n)(x, dy), is mutually absolutely continuous with respect to the
invariant measure π .

Remark 16.5. Note that

〈f̄ , T kf̄ 〉π = Covπ {f (X0), f (Xk)},
m∑

k=1

〈f̄ , T kf̄ 〉π =
m∑

k=1

Covπ {f (X0), f (Xk)}.

The convergence condition of Proposition 16.6 is the condition that the correlation
decays to zero at a sufficiently rapid rate for time points k units apart as k → ∞.

Exercises

1. (Simple Eigenvalues) Let {Xn} be a Markov chain on a finite state space S =
{1, 2, . . . , k} with positive invariant measure π = (π1, . . . , πk) and transition
probability matrix p = ((pij ))i,j∈S . Show that ergodicity of {Xn} is equivalent
to the property that 1 is a simple eigenvalue of p. [Hint: Simple implies that
the invariant initial distribution π for the stationary process is unique as an
eigenvector (with eigenvalue one) and hence as an invariant probability. On the
other hand, an ergodic process implies limn 1

n

∑n−1
m=0 p

m = q, a matrix with
identical rows π . An eigenvector v of p (with eigenvalue one) is an eigenvector
of q. Constant rows imply v is a multiple of π , i.e., 1 is simple.

2. (a) In the context of Proposition 16.1, prove that if g = ∑∞
k=0 T

kf̄ converges
in L2(S, π), then f̄ belongs to the range of I − T and (I − T )g = f̄ .

(b) Suppose S is finite and the Markov chain on S is aperiodic, positive
recurrent. Prove that the conclusion of Theorem 16.5 holds for all f ∈
L2(S, π), with f̄ = f − ∫

S
f dπ , and that σ 2 > 0 if f is not a constant.

[Hint: I − T has a bounded inverse on 1⊥.]
3. (a) Check that T is self-adjoint on L2({0, 1}, 1

2δ{0} + 1
2δ{1}) in Example 2, but

λ = −1 is an eigenvalue.
(b) Extend the example to a finite state space S = {0, 1, . . . , k}(k ≥ 1), with

a cyclic motion p(i, (i + 1)modk) = 1 (i = 0, 1, . . . , k), with unique
invariant probability uniform on S.

4. Suppose π is an invariant probability for a Markov process with transition
probability p(x, dy).

(a) Assume that for some n ≥ 1, p(n)(x, dy) is mutually absolutely continuous
with respect to π , for each x ∈ S. Prove that π is the unique invariant
probability, and

(b) The variance parameter σ 2 in Theorem 16.5 is strictly positive if f ∈
L2(S, π) is non-constant π -a.s. [Hint: Say f̄ = (T − I )g. Consider
contrapositive with σ 2 = 0. For n = 1, ||T g||2π = ||g||2π if and only if
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(
∫
S
g(y)p(x, dy))2 = ∫

S
g2(y)p(x, dy), for π -a.e. x ∈ S. Argue that this

holds iff g(y) is a constant, say c(x), on a set A(x), p(x, ·)-a.s. Next fix
x0 ∈ S, and explain that p(x,A(x0)) = 1 for all x ∈ S. Deduce that
π(g = c(x0)) = 1,

∫
S
gdπ = 0, and therefore, g = 0, π a.s. Conclude that

f̄ = 0 π -a.s. For n > 1, use the (contraction) property T ng||2π ≤ ||T g||2π .]

5. Consider the simple symmetric random walk on {0, 1, 2} with reflecting
boundaries at 0 and 2.

(a) Show 1
n

∑n
r=1 p

(r) converges to the matrix whose rows are identically
(1/4, 1/2, 1/4).

(b) Show that π0 = π2 = 1/4, π2 = 1/2 is the unique invariant probability.
(c) Start {Xn : n ≥ 0} with the invariant initial distribution. Show that {Xn :

n ≥ 0} is ergodic, but {X2n : n ≥ 0} is not ergodic.

6. Consider the Markov chain {Xn : n ≥ 0} on S = {1, 2, 3} with transition
probabilities p11 = 1, p23 = p32 = 1, and pij = 0 otherwise. Determine
the extremal ergodic invariant probabilities and the collection of all invariant
probabilities. Calculate limn→∞ 1

n

∑n−1
m=0Xm for the initial distribution π =

(1/4, 3/8, 3/8).
7. Suppose that a stationary Markov process satisfies the SLLN, i.e., assume that

limn→∞ 1
n

∑n−1
m=0 f (Xm) = ∫

S
f dπ almost surely for every f ∈ B(S). Show

that the hypothesis of Proposition 16.1 holds.
8. Let X = (X0, X1, . . . ) be a Markov process satisfying the hypoth-

esis of Proposition 16.1. Let f ∈ L1(S∞,S⊗∞, Pπ ). Prove that
limn→∞ 1

n

∑n−1
m=0 f (T

mX) = ∫
S∞ f (x)Pπ(dx) Py-almost surely for every

y ∈ S outside a π -null set.
9. For g ∈ L2(S, π), show that Zm = g(Xm) − T g(Xm−1),m = 1, 2, . . . , is a

stationary and ergodic martingale difference sequence and (g(X0)− g(Xn)) =
o(

√
n) in probability as n→ ∞.

10. Let a Markov process on S = [−2, 2] be defined by the equation Xn+1 =
f (Xn)+εn+1, n ≥ 0, with f as in Example 1, but εn+1, n ≥ 0, i.i.d. uniform on
[−1, 1]. Show that the triangular distribution π with density π(y) = (2−|y|)/4,
is the unique invariant probability on S, and that the stationary process with
initial distribution π is ergodic.



Chapter 17
Linear Markov Processes

The linear Markov processes are most readily described in terms of evolutions
obtained by i.i.d. iterated affine linear maps. This chapter addresses the
ergodic theory for such processes.

The canonical construction of Markov chains on the space of trajectories is based on
Kolmogorov’s or Tulcea’s existence theorem1. In the present and next few sections,
another widely used general method of construction of Markov processes by i.i.d.
iterated random maps on arbitrary state spaces is illustrated. Markovian models in
this form arise naturally in many fields, and they are often easier to analyze in this
noncanonical representation.

Example 1 (The Linear Autoregressive Model of Order One, or the AR(1) Model).
Let b be a real number and {εn : n ≥ 1} an i.i.d. sequence of real-valued
random variables defined on some probability space (Ω,F , P ). Given an initial
random variable X0 independent of {εn}, define recursively the sequence of random
variables {Xn : n ≥ 0} as follows:

X0, X1 := bX0 + ε1, Xn+1 := bXn + εn+1 (n ≥ 0). (17.1)

Equivalently, this may be viewed as a composition of “random maps”

Xn = αn · · · α1(X0), (17.2)

1 See BCPT pp. 167–170.
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where α1,α2, . . . is an i.i.d. sequence of random maps αi : R → R defined by
αi (x) := bx + εi, x ∈ R, i = 1, 2, . . . . For now, also observe that X0, X1, . . . , Xn
are determined by {X0, ε1, . . . , εn}, and εn+1 is independent of the latter. One has,
for all Borel sets C,

P(Xn+1 ∈ C | σ {X0, X1, . . . , Xn}) = P(bx + εn+1 ∈ C)|x=Xn
= P(εn+1 ∈ C − bx)|x=Xn
= Q(C − bXn), (17.3)

whereQ is the common distribution of the random variables εn. Thus, {Xn : n ≥ 0}
is a Markov process on the state space S = R, having the transition probability (of
going from x to C in one step)

p(x, C) := Q(C − bx), (17.4)

and the initial distribution given by the distribution of X0. The analysis of this
Markov process is, however, facilitated more by its representation (17.1) than by
an analytical study of the asymptotics of n-step transition probabilities as evidenced
by the proof of the following proposition.

Proposition 17.1. Let b be a real number with |b| < 1. Then

E log+ |ε1| <∞ (17.5)

is necessary and sufficient that the Markov process {Xn : n = 0, 1, 2, . . . } defined
by the random iteration (17.1) converges weakly (in distribution) to a unique
invariant probability π given by the distribution of the a.s. limit of the random series∑∞
n=0 b

nεn+1.

Proof. (Sufficiency) First note that successive iteration in (17.1) yields

X1 = bX0 + ε1, X2 = bX1 + ε2 = b2X0 + bε1 + ε2 · · ·
Xn = bnX0 + bn−1ε1 + bn−2ε2 + · · · + bεn−1 + εn (n ≥ 1). (17.6)

The distribution of Xn is, therefore, the same as that of

Yn := bnX0 + ε1 + bε2 + b2ε3 + · · · + bn−1εn (n ≥ 1). (17.7)

Equivalently, Y1, Y2, . . . is defined by the backward iteration

Yn = α1 · · · αn(X0), n ≥ 1. (17.8)

We assume that

|b| < 1. (17.9)
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First consider the case |εn| ≤ c with probability 1 for some constant c. Then it
follows from (17.7) that

Yn →
∞∑

n=0

bnεn+1 a.s., (17.10)

regardless of X0. Let π denote the distribution of the random variable on the right
side in (17.10). Then Yn converges in distribution to π as n → ∞ (Exercise).
Because the distribution ofXn is the same as that of Yn, it follows thatXn converges
in distribution to π . Therefore, π is the unique invariant distribution for the Markov
process {Xn : n ≥ 0}, i.e., for p(x, dy). Next consider the more general hypothesis
(17.5). Note that this is equivalent to assuming

∑
P(|εn+1| > cδn) < ∞ for some

c > 0, δ > 1 (see Exercise 17) so that, by the Borel–Cantelli lemma,

P(|εn+1| ≤ cδn for all but finitely many n) = 1.

Now choose δ such that 1 < δ < 1/|b|. Then, with probability 1, |bnεn+1| ≤
c(|b|δ)n for all but finitely many n. Since |b|δ < 1, the series on the right side of
(17.10) is convergent and is the limit of Yn.
(Necessity) Assume E log+ |ε1| = ∞. Let δ > (1/|b|) ∨ 1. Then, writing Zn =
log+ |εn|/ log δ, one has P(|εn| > δn) = P(Zn > n) = P(Z1 > n), and 1 +∑∞
n=1 P(Z1 > n) ≥ EZ1 = ∞. Since theZn, n ≥ 1, is an i.i.d. sequence, it follows

by Borel–Cantelli II2 that is P(Zn > n i.o.) = 1. Thus P(bn|εn| > (bδ)n i.o.) = 1,
and therefore, the series

∑∞
n=1 b

nεn+1 diverges almost surely. �
Remark 17.1. The role of the moment condition (17.5) cannot be overemphasized.
If this moment is infinite, then no matter how small |b| may be, barring the case
b = 0, the process does not have an invariant probability3 (Exercise 6(c) below).

Next, Example 1 has an extension to multidimensional state space.

Example 2 (General Linear Time Series Model). Let {εn : n ≥ 1} be a sequence of
i.i.d. random vectors with values in R

m and common distributionQ, and let B be an
m×m matrix with real entries bij . Suppose X0 is an m-dimensional random vector
independent of {εn}. Define recursively the sequence of random vectors

X0, Xn+1 := BXn + εn+1 (n = 0, 1, 2, . . . ). (17.11)

As in (17.3), (17.4), {Xn : n ≥ 0} is a Markov process with state space R
m and

transition probability

p(x, C) := Q(C − Bx) (for all Borel sets C ⊂ R
m). (17.12)

2 BCPT p. 34.
3 See Bhattacharya and Majumdar (2017), Theorem 2.1, pp. 290–302
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Recall that the norm of a matrix H can be defined by

‖H‖ := sup
|x|=1

|Hx|, (17.13)

where |x| denotes the Euclidean length of x in R
m. For a positive integer n > n0,

write n = jn0 + j ′, where 0 ≤ j ′ ≤ n0. To state some sufficient conditions for the
hypothesis of this general result to apply, let us recall the definition of the spectral
radius r(B) of a matrix B as the maximum modulus of the eigenvalues of B. The
following lemma from linear algebra shows that if r(B) < 1, then

‖Bn0‖ < 1 for some positive integer n0. (17.14)

Lemma 1. Let B be an m×m matrix. Then the spectral radius r(B) satisfies

r(B) ≥ lim
n→∞‖Bn‖1/n. (17.15)

Proof. Let λ1, . . . , λm be the eigenvalues of B. This means det(B − λI) = (λ1 −
λ)(λ2 − λ) · · · (λm− λ), where det is shorthand for determinant and I is the identity
matrix. Let λm have the maximum modulus among the λi , i.e., |λm| = r(B). If
|λ| > |λm|, then B−λI is invertible, since det(B−λI) �= 0. Indeed, by the definition
of the inverse, each element of the inverse of B − λI is a polynomial in λ (of degree
m− 1 or m− 2) divided by det(B − λI). Therefore, one may write

(B − λI)−1 = (λ1 − λ)−1 · · · (λm − λ)−1(B0 + λB2 + · · · + λm−1Bm−1)

(|λ| > |λm|), (17.16)

where Bj (0 ≤ j ≤ m − 1) are m × m matrices that do not involve λ. Writing
z = 1/λ, one may express (17.16) as

(B − λI)−1 = (−λ)−m(1 − λ1/λ)
−1 · · · (1 − λm/λ)−1λm−1

m−1∑

j=0

(1/λ)m−1−jBj

= (−1)mz(1 − λ1z)
−1 · · · (1 − λmz)−1

m−1∑

j=0

zm−1−jBj

=
(

z

∞∑

n=0

anz
n

)
m−1∑

j=0

zm−1−jBj , (|z| < |λm|−1), (17.17)

for appropriate constants an. On the other hand,

(B − λI)−1 = −z(I − zB)−1 = −z
∞∑

k=0

zkBk
(

|z| < 1

‖B‖
)

. (17.18)
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To see this, first note that the series on the right is convergent in norm for |z| <
1/‖B‖, and then check that term-by-term multiplication of the series

∑∞
k=0 z

kBk by

I − zB yields the identity I after all the cancelations. In particular, writing b(k)ij for

the (i, j) element of Bk , the series

− z
∞∑

k=0

zkb
(k)
ij (17.19)

converges absolutely for |z| < 1/‖B‖. Since (17.19) is the same as the (i, j)
element of the series (17.17), at least for |z| < 1/‖B‖, their coefficients coincide
(Exercise 17) and, therefore, the series in (17.19) is absolutely convergent for
|z| < |λm|−1 (as (17.17) is).

This implies that, for each ε > 0,

|b(k)ij | < (|λm| + ε)k for all sufficiently large k. (17.20)

For if (17.20) is violated, one may choose |z| sufficiently close to (but less

than) 1/|λm| such that |zk′b(k′)ij | → ∞ for a subsequence {k′}, contradicting the
requirement that the terms of the convergent series (17.19) must go to zero for
|z| < 1/|λm|.

Now ‖Bk‖ ≤ m1/2 max{|b(k)ij | : 1 ≤ i, j ≤ m} (Exercise 17). Since m1/2k → 1
as k → ∞, (17.20) implies (17.15). �
Remark 17.2. The indicated lim sup in (17.15) is actually a limit, with equality4,
referred to as Gelfand’s formula (see Exercise 17). A version is proven for bounded
self-adjoint operators on a Hilbert space in Appendix B.

Proposition 17.2. Assume that r(B) < 1. Also assume

E log+ |ε1| <∞. (17.21)

Then the Markov process {Xn : n ≥ 0} defined by the random iteration (17.11)
converges weakly (in distribution) to a unique invariant probability π given by the
distribution of the a.s. limit of the random series

Y :=
∞∑

n=0

Bnεn+1. (17.22)

Proof. Using the fact ‖B1B2‖ ≤ ‖B1‖‖B2‖ for arbitrary m × m matrices B1,B2
(Exercise 17), one gets

4 See Halmos (2017), p. 182.
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‖Bn‖ = ‖Bjn0Bj
′ ‖ ≤ ‖Bno‖j ‖Bj

′ ‖ ≤ c‖Bn0‖j , c := max{‖Br‖ : 0 ≤ r < n0}.
(17.23)

From (17.14) and (17.23), it follows, as in Example 1, that the series
∑

Bnεn+1
converges a.s. in Euclidean norm if (17.21) holds. Write, in this case,

Y :=
∞∑

n=0

Bnεn+1. (17.24)

It also follows, as in Example 1, that no matter what the initial distribution (i.e.,
the distribution of X0) is, Xn converges in distribution to the distribution π of Y.
Therefore, π is the unique invariant distribution for p(x, dy). �

Two well-known time series models will now be treated as special cases of
Example 2, special due to the respective structures of the coefficient matrix B.
These are the pth order autoregressive (or AR(p)) model and the autoregressive
moving average model ARMA(p, q). These models typically arise in the statistical
time series analysis of highly fluctuating data in a wide variety of fields. Questions
pertaining to the stationarity of the model are fundamental to such analysis.

Example 3 (AR(p) Model). Let p > 1 be an integer, β0, β1, . . . , βp−1 real
constants. Given a sequence of i.i.d. real-valued random variables {ηn : n ≥ p}, and
p other random variables U0, U1, . . . , Up−1 independent of {ηn}, define recursively

Un+p :=
p−1∑

i=0

βiUn+i + ηn+p (n ≥ 0). (17.25)

The sequence {Un : n ≥ 0} is not in general a Markov process, but the sequence of
p-dimensional random vectors

Xn := (Un,Un+1, . . . , Un+p−1)
′ (n ≥ 0) (17.26)

is Markovian. Here, the prime (′) denotes transposition, so Xn is to be regarded as
a column vector in matrix operations. To prove the Markov property, consider the
sequence of p-dimensional i.i.d. random vectors

εn := (0, 0, . . . , 0, ηn+p−1)
′ (n ≥ 1), (17.27)

and note that

Xn+1 = BXn + εn+1, (17.28)

where B is the p × p matrix
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B :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...
...
...
...
. . .

...
...

0 0 0 0 · · · 0 1
β0 β1 β2 β3 · · · βp−2 βp−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (17.29)

Hence, arguing as in (17.3), (17.4), or (17.12), {Xn : n ≥ 0} is a Markov process on
the state space R

P . Write

B − λI =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−λ 1 0 0 · · · 0 0
0 −λ 1 0 · · · 0 0
...

...
...
...
. . .

...
...

0 0 0 0 · · · −λ 1
β0 β1 β2 β3 · · · βp−2 βp−1 − λ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Expanding det(B − λI) by its last row, and using the fact that the determinant of a
matrix in triangular form (i.e., with all zero off-diagonal elements on one side of
the diagonal) is the product of its diagonal elements (Exercise 17), one gets

det(B − λI) = (−1)p+1(β0 + β1λ+ · · · + βp−1λ
p−1 − λp). (17.30)

Therefore, the eigenvalues of B are the roots of the equation

β0 + β1λ+ · · · + βp−1λ
p−1 − λp = 0. (17.31)

Finally, in view of (17.15), the following proposition holds (see (17.21) and
Exercise 17).

Proposition 17.3. Suppose that the roots of the polynomial equation (17.31) are all
strictly inside the unit circle in the complex plane and that the common distribution
G of {ηn : n ≥ 1} satisfies

E log+ |ηn| <∞. (17.32)

Then, (i) there exists a unique invariant distribution π for the Markov process {Xn :
n ≥ 0} and (ii) no matter what the initial distribution, Xn, converges in distribution
to π . In particular, the time series {Un : n ≥ 0} converges in distribution to a steady
state πU given, for all Borel sets C ⊂ R, by

πU(C) := π({x = (x1, . . . , xp) ∈ R
p : x1 ∈ C}). (17.33)
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Proof. To see that the last statement follows, simply note that Un is the first
coordinate of Xn, so that Xn converges to π in distribution implies Un converges
to πU in distribution. �
Corollary 17.4. Assume that the roots of the polynomial equation (17.31) are all
strictly inside the unit circle in the complex plane and that E|ηn|r < ∞ some order
r > 0. Then the conclusion of Proposition 17.3 holds.

Proof. Simply observe that this implies (17.32) holds by Jensen’s inequality.5 �
Example 4 (ARMA(p, q) Model). The autoregressive moving average model of
order (p, q), in short ARMA(p, q), is defined by

Un+p :=
p−1∑

i=0

βiUn+i +
q∑

j=1

δjηn+p−j + ηn+p (n ≥ 0), (17.34)

where p, q are positive integers, βi(0 ≤ i ≤ p − 1) and δj (1 ≤ j ≤ q) are real
constants, {ηn : n ≥ p − q} is an i.i.d. sequence of real-valued random variables,
and Ui (0 ≤ i ≤ p − 1) are arbitrary initial random variables independent of
{ηn : n ≥ 1}. Consider the sequence {Xn : n ≥ 0}, {εn : n ≥ p − q} of (p + q)-
dimensional vectors

Xn := (Un, . . . , Un+p−1, ηn+p−q, . . . , ηn+p−1)
′,

εn := (0, 0, . . . , 0, ηn+p−1, 0, . . . , 0, ηn+p−1)
′ (n ≥ 0), (17.35)

where ηn+p−1 occurs as the pth and (p + q)th elements of εn.

Xn+1 = HXn + εn+1 (n ≥ 0), (17.36)

where H is the (p + q)× (p + q) matrix

H :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b11 · · · · b1p 0 · · · · · 0 0
· · · · · · · · · · · · · ·
bp1 · · · · bpp δq δq−1 · · · · δ2 δ1
0 · · · · 0 0 1 0 · · · 0 0
0 · · · · 0 0 0 1 · · · 0 0
· · · · · · · · · · · · · ·
0 0 · · · · · 0 0 · · · 0 1
0 0 · · · · · 0 0 · · · 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

the first p rows and p columns of H being the matrix B in (17.29).

5 BCPT p. 13.
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Note that U0, . . . , Up−1, ηp−q , . . . , ηp−1 determine X0, so that X0 is independent
of ηp and, therefore, of ε1. It follows by induction that Xn and εn+1 are independent.
Hence, {Xn : n ≥ 0} is a Markov process on the state space R

p+q .
In order to apply the lemma above, expand det(H − λI) in terms of the elements

of its pth row to get (Exercise 17)

det(H − λI) = det(B − λI)(−λ)q. (17.37)

Therefore, the eigenvalues of H are q zeros together with the roots of (17.31). Thus,
one has the following proposition.

Proposition 17.5. Under the hypothesis of Proposition 17.3, the ARMA(p, q)
process {Xn : n ≥ 0} has a unique invariant distribution π , and Xn converges in
distribution to π no matter what the initial distribution is.

Corollary 17.6. Under the hypothesis of Proposition 17.5, the time series {Un : n ≥
0} converges in distribution to πU given for all Borel sets C ⊂ R by

πU(C) := π({x = (x1, . . . , xp+q) ∈ R
p+q : x1 ∈ C}), (17.38)

regardless of the distribution of (U0, U1, . . . , Up−1).

In the case that εn is Gaussian, it is simple to check that under the hypothesis
(17.14) in Example 2 the random vector Y in (17.22) is Gaussian. Therefore, π is
Gaussian, so that the stationary vector-valued process {Xn : n ≥ 0} with initial
distribution π is Gaussian. In particular, if ηn are Gaussian in Example 3, and the
roots of the polynomial equation (17.31) lie inside the unit circle in the complex
plane, then the stationary process {Un : n ≥ 0}, obtained when (U0, U1, . . . , Up−1)

have distribution π in Example 3, is Gaussian. A similar assertion holds for
Example 4.

Exercises

1. (a) Show that the a.s. convergence of the backward iteration implies the con-
vergence in distribution of the corresponding Markov process Xn, n ≥ 0.

(b) Let {εn : n = 1, 2, . . . } be an i.i.d. sequence of symmetric ±1-valued
Bernoulli random variables. Define a Markov process by Xn+1 = .5Xn +
εn+1, n = 0, 1, 2, . . . . (i) Show that the uniform distribution π on [−2, 2]
is the unique invariant probability. (ii) Calculate the asymptotic variance in
the CLT for 1√

n

∑n−1
m=0Xm.

2. (a) Let B1,B2 be m × m matrices (with real or complex coefficients). Define
‖B‖ as in (17.13), with the supremum over unit vectors in R

m or Cm. Show
that
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‖B1B2‖ ≤ ‖B1‖‖B2‖.

(b) Prove that if B is an m×m matrix, then

‖B‖ ≤ m1/2 max{|bij | : 1 ≤ i, j ≤ m}.

(c) (Gelfand Formula) If B is an m × m matrix and ‖B‖ is defined to be the
supremum over unit vectors in C

m, show that ‖Bn‖ ≥ rn(B). Use this
together with (17.15) to prove that lim ‖Bn‖1/n exists and equals r(B).
[Hint: Let λm be an eigenvalue such that |λm| = r(B). Then there exists
x ∈ C

m, ‖x‖ = 1, such that Bx = λmx.]
3. Suppose

∑
anz

n and
∑
bnz

n are absolutely convergent and are equal for |z| <
r , where r is some positive number. Show that an = bn for all n. [Hint: Within
its radius of convergence, a power series is infinitely differentiable and may be
repeatedly differentiated term by term.]

4. Suppose ε1 is a random vector with values in R
k . Prove that if δ > 1 and c > 0,

then
∑∞
n=1 P(|ε1| > cδn) ≤ E|Z|, where Z = log |ε1|−log c

log δ .
5. Assume that εn, n ≥ 1, of Example 2 are i.i.d. with common mean vector μ

and finite covariance matrix D.

(a) Calculate the mean and the covariance matrix of the limiting distribution of
X.[Hint: Use (17.22).]

(b) If each εn is Gaussian N(μ,D), determine the limiting distribution of Xn.

6. (a) In Example 1, show that |b| < 1 is necessary for the existence of a unique
invariant probability. [Hint: Consider separately the cases |b| > 1 and
|b| = 1.]

(b) Show by example that |b| < 1 is not sufficient for the existence of a unique
invariant probability. [Hint: Find a distribution Q of the noise εn with an
appropriately heavy tail.]

(c) Suppose (17.5) does not hold, but 0 �= |b| < 1. Show that {Xn} does not
converge in distribution and does not have an invariant probability. [Hint:
Show that

∑∞
j=0 P(b

j εj+1| > ε) = ∑∞
j=1 P(log |ε1| > −j log |b|) +

P(log |ε1| > 0) = E
log+ |ε1|
− log |b| + P(log |ε1| > 0) = ∞. Apply the Borel–

Cantelli lemma.]
7. In Example 1, assume Eε2

n <∞, and write a = Eεn, Xn+1 = a+ bXn+ θn+1,
where θn = εn − a (n ≥ 1). The least squares estimates of a, b are âN , b̂N ,
which minimize

∑N−1
n=0 (Xn+1 − a − bXn)2 with respect to a, b.

(a) Show that âN = Ȳ− b̂N X̄, b̂N = ∑N−1
0 (Xn+1 −aY )(Xn−X̄)/∑N

1 (Xn−
X̄)2, where X := N−1 ∑N−1

0 Xn, Y := N−1 ∑N
1 Xn.

(b) In the case |b| < 1, prove that âN → a and b̂N → b a.s. as N → ∞.
(c) Suppose (17.5) does not hold, but |b| < 1, b �= 0. Show that {Xn} does

not converge in distribution and does not have an invariant probability.
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[Hint:
∑∞
j=0 P(|bj εj+1| > 1) = ∑∞

j=1 P(log |ε1| > −j log |b|) =
∑∞
j=1 P(log+ |ε1| > −j log |b|) + P(log |ε1| > 0) = E

log+ |ε1|
− log |b| +

P(log |ε1| > 0) = ∞. Apply the Borel–Cantelli lemma, Part 2, from here.]

8. In Example 2, let m = 2, b11 = −4, b12 = 5, b21 = −10, b22 = 3. Assume
ε1 has a finite absolute second moment. Show that ||B|| > 1. Does there exist
a unique invariant probability?

9. (a) Prove that the determinant of anm×mmatrix in triangular form equals the
product of its diagonal elements.

(b) Check (17.30) and (17.37).
10. (Yule–Walker equations) Consider a (non-degenerate) stationary mean-zero

(centered) AR(p) process Un+p = ∑p−1
j=0 βjUn+j + ηn+p, n = 0, 1, . . . .

Show that the first p autocorrelations defined by ρk = EU0Uk/EU
2
0 , k =

0, . . . , p − 1, satisfy the so-called Yule–Walker equations ρ = Rβ, where
ρ = (ρ0, . . . , ρp−1)

′, β = (β0, . . . , βp−1)
′, and R = ((ρ|i−j |))0≤i,j≤p−1.

In particular, R is of full rank and symmetric, hence invertible, and the model
coefficients are determined from the autocorrelations via β = R−1ρ.

11. Show that Propositions 17.1, 17.2 extend to the case of affine linear random
maps: (i) Xn+1 = c + bXn + εn, n ≥ 0, (ii) Xn+1 = c + BXn + εn+1, n ≥ 0,
for constants c, c. [Hint: Absorb the constants into εn.]



Chapter 18
Markov Processes Generated by
Iterations of I.I.D. Maps

While all discrete parameter Markov processes on a Polish state space can
be represented as i.i.d. iterations of random maps, the properties of the maps
obviously play a significant role in their long-run behavior. Non-decreasing
monotonicity is one such property for which definitive results can be
obtained, as illustrated in this chapter.

The method of construction of Markov processes by i.i.d. iterated random maps,
illustrated for linear time series models in Chapter 17, extends to more general
Markov processes. The present chapter is devoted to the construction and analysis of
some nonlinear models. Before turning to these models, recall that one may regard
the process {Xn : n ≥ 0} defined in the AR(1) example of the previous chapter to
be generated by successive iterations of an i.i.d. sequence of random maps α1, α2,
. . . , αn, . . . defined by

x → αnx = bx + εn (n ≥ 1),

{εn : n ≥ 1} being a sequence of i.i.d. real-valued random variables. Each αn is a
random (affine linear) map on the state space R

1 into itself. The Markov sequence
{Xn : n ≥ 0} is defined by successive compositions, or iterations,

Xn = αn · · · α1X0 (n ≥ 1), (18.1)

where the initial X0 is a real-valued random variable independent of the sequence
of random maps {αn : n ≥ 1}. A similar interpretation holds for the other examples
of Chapter 17. Indeed, Theorem 18.1 below says that, under a mild condition on
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the state space, every Markov process in discrete time may be represented as (18.1).
Thus the method of the last chapter and the present one is truly a general device
for constructing and analyzing Markov processes on general state spaces. We begin
with a precise definition of a random map.

Let (S,S) be a measurable (state) space, and (Ω,F , P ) be a probability space.

Definition 18.1. A random map α on S is a measurable function on Ω such that,
for each ω ∈ Ω , α(ω) is a map on S into itself and

(ω, x) −→ α(ω)x is measurable (18.2)

on (Ω × S,F ⊗ S) into (S,S).
The measurability condition (18.2) guarantees that

p(x, B) := P(αx ∈ B), (x ∈ S,B ∈ S) (18.3)

is a transition probability. For: (i) given x, ω → α(ω)x defines a measurable map
on Ω into S, so that {ω : α(ω)x ∈ B} ∈ F and the right side of (18.4) is
well defined and (ii) given any B ∈ S , x → p(x, B) is measurable due to the
measurability of α(ω)x on the product space (Ω × S,F ⊗ S), by a Fubini type
argument (Exercise 18).

A canonical model of a random map may be given as the identity map γ → γ

on a probability space (Γ,G,Q), where Γ is a set of maps on S into itself, G is a
σ -field on Γ such that the map

(γ, x) −→ γ x is measurable (18.4)

on (Γ × S,G ⊗ S) into (S,S), and Q is an arbitrary probability on (Γ,G). On the
other hand, given an arbitrary random map α, let Γ = {α(ω) : ω ∈ Ω}, and let G be
the σ -field on Γ generated by α. Then (18.4) follows from (18.2), and denoting by
Q the distribution of α on Γ , a canonical model for α is furnished by the identity
map γ → γ on (Γ,G,Q).
Theorem 18.1. Let S be a Borel subset of a complete separable metric space and
S its Borel σ -field. Given a transition probability p(x, dy) on (S,S), there exists a
random map α on some probability space (Ω,F , P ) such that (18.3) holds.

Proof. We will prove the theorem for the case S is a Borel subset of the real line.
The general case follows from the fact that there exists a one-to-one map h on S
onto a Borel subset C of R such that h and h−1 are both measurable; in other words,
(S,S) and (C,B1 ∩ C) are isomorphic, where B1 ∩ C = {B ∩ C : B Borel subset
of R}, see Appendix C.

Assume S is a Borel subset of the real line, and let p(x, dy) be a transition
probability on (S,S). Let Fx denote the distribution function of p(x, dy) (for each
given x), i.e., Fx(y) := p(x; (−∞, y]). Define the inverse of Fx by
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F−1
x (u) := inf{t : Fx(t) > u} u ∈ (0, 1). (18.5)

Let U be a random variable on a probability space (Ω,F , P ) such that U is
uniformly distributed on (0, 1). As is well known, the random variable F−1

x (U)

has the distribution function Fx (Exercise 18). Now define the random map α by

αx := F−1
x (U) (x ∈ R). (18.6)

The measurability condition (18.2) is easily checked (Exercise 18 4(ii)). �
The following result is an immediate consequence of Theorem 18.1.

Corollary 18.2. Under the hypothesis of Theorem 18.1, one can construct, on an
appropriate probability space (Ω,F , P ), an i.i.d. sequence of random maps {αn}n≥1
and a random variable X0 independent of this sequence such that Xn+1 := αn+1Xn
(n ≥ 0), X0, is a Markov process having the given transition probability p(x, dy)
and a given initial distribution of X0.

There are in general many different random maps α such that (18.3) holds for
a given transition probability p(x, dy). This is illustrated by Example 1 below. In
many applications, however, the specific representation Xn+1 = αn+1Xn (n ≥ 0)
arises from statistical, dynamical, or physical considerations. The ARMA models
are also of this kind.

Example 1 (Two-State Markov Chain). Let S = {0, 1} with transition probabilities
pij := p(i, {j}) (i, j = 0, 1). Assume, for simplicity, 0 < p00 < p10 < 1. Let
Γ = {γ1, γ2, γ3}, where

γ1(0) = γ1(1) = 0; γ2(0) = γ2(1) = 1; γ3(0) = 1, γ3(1) = 0. (18.7)

LetQ({γ1}) = p00,Q({γ2}) = p11,Q({γ3}) = p10 − p00. Then pij = P(αi = j),
where α is a random map on S with distribution Q. For example, take α to be the
identity map γ → γ on (Γ,G,Q) with G = class of all subsets of {0, 1}. One may
check that the (noncanonical) α given by (18.6) has this distribution Q. A different
representation is given by taking Γ = {γ1, γ2, γ3, γ4} with

γ1(0) = γ1(1) = 0; γ2(0) = γ2(1) = 1; γ3(0) = 0, γ3(1) = 1; γ4(0) = 1, γ4(1) = 0. (18.8)

TakeQ({γi}) = qi (i = 1, 2, 3, 4), where q1 +q2 +q3 +q4 = 1 and q1 +q3 = p00,
q1 + q4 = p10. Note that the preceding representation is a special case of this, with
q4 = 0; but one may obtain a one-parameter family of distributionsQ of the present
form, with q1 arbitrarily chosen from [0,min{p00, p10}].

As mentioned earlier, the representation of Markov processes by iterated maps
is often an effective means for analyzing them. In Chapter 17, this representation
is made use of to provide geometric rates of convergence to equilibrium for several
general classes of Markov processes. We conclude this chapter by showing how the
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so-called method of backward iterations may sometimes be used to prove existence
of and convergence to an invariant probability.

Let {αn}n≥1 be a sequence of i.i.d. random maps on S, and X0 independent of
{αn}n≥1. By the process obtained by backward iteration, we mean

Y0 = X0, Yn = α1α2 . . .αnX0 (n ≥ 1). (18.9)

Unlike the forward iterated process {Xn : n ≥ 0} given by (18.1), the pro-
cess {Yn}n≥0 is not in general Markov; in particular, the (joint) distributions of
(X0, X1, . . . , Xn) and (Y0, Y1, . . . , Yn) are generally not the same if n > 1
(Exercise). On the other hand, for each n, the (marginal) distribution of Yn is clearly
the same as that of Xn. Thus if one can show that Yn converges in distribution to
some probability, then so does Xn. For certain classes of Markov processes, the
sequence {Yn}n≥0 actually converges almost surely to some random variable Y , so
that Yn converges in distribution to (the law of) Y . This is indeed true of the linear
processes considered in Chapter 17 (see (17.7)–(17.10), (17.22)).

Example 2 (I.I.D. Monotone Increasing Maps). Let {αn}n≥1 be a sequence of i.i.d.
random maps on an interval S = I , with αn(ω) monotone increasing for every ω
outside a P -null set N . That is, for all x ≤ y in I , one has

αn(ω)x ≤ αn(ω)y if ω �∈ N (n ≥ 1). (18.10)

Assume that I has a smallest element a. For each x ∈ I , consider the backward
iterated sequence {Yn(x)}n≥0 starting at x,

Y0(x) = x Yn(x) = α1α2 . . .αnx (n ≥ 1). (18.11)

The sequence {Yn(a)}n≥1 is increasing almost surely. That is, if ω �∈ N , then

Y1(a) = α1(a) ≥ a = Y0(a),

Yn+1(a) ≡ α1 . . .αnαn+1(a) ≥ α1 . . .αn(a) = Yn(a) (n ≥ 1). (18.12)

Let Y denote the (a.s.) limit of Yn(a). If Y < ∞ a.s., and αn is continuous a.s.,
then the distribution π , say, of Y is an invariant probability for the Markov process
{Xn}n≥0 (Exercise 18). If, in addition, Yn(x) converges a.s. to the same limit Y for
every x ∈ I , then π is the unique invariant probability of {Xn}n≥0, since in this
case the distribution p(n)(x, dy) of Xn(x) converges weakly to π for every x ∈ I
(see Corollary 8.5). We next consider an important class of examples of this.

Example 3 (A Class of Markov Processes on S = [0,∞) Generated by IID
Monotone Maps). Let the Markov process on S = [0,∞) be defined by

Xn+1 = max{0, Xn + εn+1}, n = 0, 1, . . . , (18.13)
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where {εn : n ≥ 1} are i.i.d. random variables with values in (−∞,∞), independent
of X0 ∈ [0,∞). Consider the family of maps

fθ (x) = max{0, x + θ} = (x + θ)+, θ ∈ (−∞,∞). (18.14)

One may represent (18.13) as

Xn = αn ◦ αn−1 ◦ · · · ◦ α1X0, αnx := fεn(x) = (x + εn)+, n ≥ 1. (18.15)

For each θ ∈ (−∞,∞), fθ is an increasing map (i.e., if x ≤ y, then fθ (x) ≤
fθ (y)), so that {αn : n ≥ 1} is a sequence of i.i.d. monotone maps on S = [0,∞),
whose iterations generate the Markov process {Xn : n = 0, 1, 2, . . . }. Once again,
let us consider the nth backward iteration

Yn(z) = α1 ◦ α2 ◦ · · · ◦ αnX0 = fε1 ◦ fε2 ◦ · · · ◦ fεn(z), n = 0, 1, . . . , (18.16)

noting that Yn has the same distribution as Xn, starting with X0 = z. Also note that
Yn(0) ↑ as n ↑ ∞, and if the limit, Y , say, of Yn(0) is finite (almost surely), and
π is the distribution of Y , then π is an invariant probability, since the distribution
p(n)(0, dy) (of Xn(0)) converges weakly, i.e., in distribution, to π as n → ∞ (see
Proposition 8.4). We now explore the following important result.

Theorem 18.3. For the Markov process defined by (18.13), assume Eε1 < 0. Then
the Markov process has a unique invariant probability π , and p(n)(z, dy) converges
to π weakly as n→ ∞, for any z ∈ [0,∞).
Before proving the theorem, we consider a number of important applications.

1. (G/G/1 Queue) In this popular queuing model with a single server, customers
arrive one after another at times Tn, (n = 1, 2, . . . ), T0 = 0, such that the inter-
arrival times Un = Tn − Tn−1 are i.i.d. and independent of the service times Vn
(for the nth customer), n ≥ 1, which are also i.i.d. Then the waiting timesWn for
the nth customer, n ≥ 1, satisfy the recursive relation

Wn+1 = max{Wn + Vn − Un, 0} = max{0,Wn + εn}, εn+1 := Vn − Un+1.

(18.17)

Thus the waiting time approaches a steady state if the expected service time of a
customer is less than the expected inter-arrival time.

2. (Lindley–Spitzer Process of Resource Management) Consider a resource, such
as ground water, fish, etc., whose amount at time n (say in year n) is Xn ≥ 0.
At time n + 1, a random input Rn+1 (rainfall, hatchery, etc.) arrives, Rn, n ≥ 1,
i.i.d. nonnegative random variables. A desired consumption level is c > 0. If
Xn + Rn+1 ≥ c, then an amount c is consumed, and if Xn + Rn+1 < c, then
Xn + Rn+1 is consumed. In either case, the remaining amount of the resource at
time n + 1 is Xn+1 = max{0, Xn + Rn+1 − c}. Writing εn+1 = Rn+1 − c, one
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has the Markov model (18.13). If Eε1 < 0, that is, ERn+1 < c, then the Markov
process {Xn : n ≥ 0} has a unique invariant distribution.

3. (Problem of Ruin in Insurance) In the general renewal model of insurance,
also known as the Sparre–Andersen model, claims of strictly positive sizes
Z1, Z2, . . . arrive at random times T1, T2, . . . , and a constant premium c > 0
per unit of time is collected. The sequences {Zn : n ≥ 1} and {Tn : n ≥ 1}
are assumed to be independent. It is also assumed that the inter-arrival times
Ai = Ti − Ti−1(i = 1, 2, . . . ) are i.i.d. with T0 = 0, and EAi = 1/λ is finite.
For an insurance company with an initial cash reserve u > 0, the probability of
ruin is

ψ(u) = P(
n∑

i−1

Zi > u+ c
n∑

i=1

Ai for some n) = P(Sn > u for some n),

(18.18)
where Sn = ∑n

i=1 Zi, εi = Zi − cAi, (n ≥ 1), S0 = 0. The insurance company
requires the following net profit condition (npc):

Eε1 < 0. (18.19)

The (npc) implies thatM := sup{Sn : n ≥ 0} is finite almost surely, and one may
express the ruin probability (18.18) as

ψ(u) = P(M > u). (18.20)

Note thatM is the same as Y in the proof of Theorem 18.3, so that

ψ(u) = π(u,∞), (18.21)

where π is the unique invariant distribution of the Lindley–Spitzer process. If
one defines a Markov process {Xn : n = 0, 1, . . . } on S = [0,∞) as in
Theorem 18.3, with X0 = x ≥ 0, then of course π is its unique invariant
probability, and (18.21) holds.

In the problem of this application to insurance, that Markov process is rather
contrived. In the present application, the objective is to find the probability of ruin
as a function of the initial asset u. However, this formal link allows one to find
many details about the invariant probability of the Markov process in the general
context of Theorem 18.3, and in the special contexts of the queue and resource
applications, simply because of the huge existing literature on ruin probabilities
in insurance. Also see Exercise 18.

In order to prove Theorem 18.3, we first prove a simple lemma.

Lemma 1. With the notation and (18.14) as above, one has for all n ≥ 1 and all
θi, 1 ≤ i ≤ n,
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fθ1 ◦ fθ2 ◦ · · · ◦ fθn(0) = max

⎧
⎨

⎩
0,

j∑

i=1

θi, 1 ≤ j ≤ n
⎫
⎬

⎭
. (18.22)

Proof. We use induction. The result is obvious for n = 1, since fθ1(0) =
max{0, θ1 + 0} = max{0, θ1}. Assume that (18.22) holds for some n. Then

fθ1 ◦ fθ2 ◦ · · · ◦ fθn ◦ fθn+1(0) = fθ1(max{0,∑j

i=2 θi, 2 ≤ j ≤ n+ 1})
= max{0,max{0,∑j

i=2 θi, 2 ≤ j ≤ n+ 1} + θ1}
= max{0,∑j

i=1 θi, 1 ≤ j ≤ n+ 1}.

�
Proof. Consider the backward iteration Yn(z) in (18.16) that has, for each n, the
same distribution as Xn(z). For z = 0, one has by the above lemma,

Yn(0) = max{0,
j∑

i=1

εi, 1 ≤ j ≤ n}. (18.23)

It is easy to check directly using monotonicity and fεn+1(0) ≥ 0 that Yn(0) ↑ Y for
some Y as n→ ∞. This is also clear from (18.23). We will show that Y <∞ almost
surely under the hypothesis Eε1 < 0. It follows by the strong law of large numbers
that

∑n
i=1 εi → −∞ almost surely as n→ ∞. Hence, there exists N = N(ω) such

that
∑n
i=1 εi < 0 for all n > N(ω) and, therefore,

Y (ω) = max{0, sup(
n∑

i=1

εi, n ≥ 1)} = max{0,
j∑

i=1

εi, 1 ≤ j ≤ N(?)} <∞.
(18.24)

Letting π denote the distribution of Y , one then has Yn(0) converges in distribution
to π . Therefore, Xn(0) converges in distribution to π as n → ∞, i.e., p(n)(0, dy)
converges weakly to π(dy). Since the Markov process has the Feller property, it
follows that π is an invariant probability of the process {Xn : n ≥ 0}. To prove that
it is the unique invariant probability, consider that, for an arbitrary z ≥ 0, Yn(z) that
may be represented by the lemma, noting that fεn(z) = max{0, z+ εn} = fεn+z(0),
as

Yn(z) = fε1 ◦ fε2 ◦ · · · ◦ fεn(z)
= fε1 ◦ fε2 ◦ · · · ◦ fεn−1 ◦ fεn+z(0)

= max{0,
n−1∑

i=1

εi + εn + z}. (18.25)
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Once again, there existsN ′ = N ′(ω) such that
∑n−1
i=1 εi+εn+z < 0 for all n > N ′,

so that (18.25) reduces to Yn(z) = max{0,∑n−1
i=1 εi} for all n > N ′. Thus the limit

of Yn(z) is Y , the same as that for Yn(0), as n → ∞. Thus Yn(z) converges in
distribution to π for every z, and so doesXn(z). In particular, p(n)(z, dy)⇒ π(dy),
by Corollary 8.5. �
Remark 18.1. It is noteworthy that the limit distribution π of the Markov chain
{Xn} is reached in a finite number of backward iterations. In a Monte Carlo
simulation context, this phenomenon is referred to as a perfect simulation.

To conclude, let us consider the nature of the invariant probability π of the Lindley–
Spitzer process.

Proposition 18.4. Let (S,S) be a measurable space and p(x, dy) a transition
probability on S. Let ρ be a σ -finite measure on (S,S). Suppose that for some n,
the n-step transition probability measure p(n)(x, dy) is absolutely continuous with
respect to ρ(dy), for every x ∈ S. (i). If π is an invariant probability for p(x, dy),
then π is absolutely continuous with respect to ρ. (ii). Let x0 be a recurrent point
and p(n)(x0, dy), absolutely continuous with respect to ρ for every n > 0. Then π
is absolutely continuous with respect to ρ as well.

Proof. Suppose ρ(B) = 0 for some B ∈ S . (i) Since p(n)(x, B) = 0 for all x ∈ S,
by hypothesis, π(B) = ∫

S
p(n)(x, B)π(dx) = 0. (ii) In this case, p(n)(x0, B) = 0

for every n = 1, 2, . . . . Starting from any given x ∈ S, the process {Xn : n ≥ 0}
reaches x0 with probability one, but the probability is zero that from x0 the process
ever enters B. Since the expected amount of time the process spends in B in a single
cycle starting at x0 and returning to x0 is zero, π(B) = 0. �

Turning to the Lindley–Spitzer process satisfying EZi < 0, note that 0 is a
positive recurrent state. Denote by G the distribution of Z1. Let ρ be a sigma-
finite measure on (S,S) such that (i) ρ(0) > 0 and (ii) for every B ∈ B(0,∞)
for which ρ(B) = 0, one has G∗n(B) = 0 for every n = 1, 2, . . . . We will show
that π is absolutely continuous with respect to ρ. To see this, let ρ(B) = 0 for some
B ∈ B(0,∞). Then, for every n = 1, 2, . . . ,

p(n)(0, B) = P(max Sj : j = 1, . . . , n ∈ B) ≤
∑

1≤j≤n
P (Sj ∈ B) = 0.

Therefore, the hypothesis of Proposition 18.4 is satisfied. In particular, if G is
absolutely continuous with respect to Lebesgue measure, then one may take ρ to
be the measure that assigns a unit mass to {0} and Lebesgue measure on (0,∞).
Hence, if G is absolutely continuous on R, then π has a point mass at zero and a
density on (0,∞).
Remark 18.2. It is known from Spitzer (1956) that a necessary and sufficient
condition for the conclusion of Theorem 18.3 to hold is

∑∞
n=1

1
n
P (ε1 + ε2 + · · · +

εn > 0) <∞ (see Exercise 18).
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Remark 18.3. In Bhattacharya and Waymire (2021), the ruin problem was intro-
duced, and a treatment of ruin probabilities was given for the general renewal model
when the claim sizes are light tailed, i.e., having a finite moment generating function
in some neighborhood of zero, and in the so-called heavy-tail case. In the former
case, Feller’s approach using Blackwell’s ladder heights, as well as Blackwell’s
renewal theorem, plays crucial roles.1 Recent work has focused on the latter case
where Blackwell’s ladder heights are not applicable.

The results on linear Markov processes in Chapter 17 may be extended to
processes obtained by iterations of general i.i.d. contracting maps on a Polish
space (S, ρ). A map f : S → S is Lipschitz (with coefficient L) if there exists
L > 0 such that ρ(f (x), f (y)) ≤ Lρ(x, y), for all x, y in S. The map f is a
contraction if it is Lipschitz with the coefficient L = 1, and it is a strict contraction
if ρ(f (x), f (y)) < ρ(x, y), for all x, y in S. Let αn, n ≥ 1, be an i.i.d. sequence of
random contractions defined on a probability space (Ω,F , P ).

We begin with a result on compact metric spaces (S, ρ) due to Dubins and
Freedman (1966).

Theorem 18.5. Let (S, ρ) be a compact metric space and Γ the set of all contrac-
tions on S, endowed with the supremum norm || · ||. Let Q be a probability on the
Borel sigma-field of Γ . If a strict contraction belongs to the support of Q, then the
Markov process Xn(x) := αn . . . α2α1x (n ≥ 1), X0(x) = x (x ∈ S), converges in
distribution to its unique invariant probability, whatever be the initial state.

Proof. Let γ be a strict contraction in the support of Q. Then, writing γ j for the
j th iterate of γ , one has:

(i) diam
⋂

0≤j<∞ γ j (S) = a singleton, say, {x0}.
(ii) diam(γ j (S)) ↓ 0 as j ↑ ∞.
To prove (i), recall that by the finite intersection property,2 S0 := ⋂

0≤j≤∞ γ j (S))
is nonempty. If this set has more than one point say, x0 and y0, that would contradict
the fact that γ (S0) = S0. For, diam of S0 is ρ(x0, y0), while that of γ (S0) is
ρ(γ x0, γy0) < ρ(x0, y0). Note that x0 is the unique fixed point of γ . To prove
(ii), suppose, if possible, there exist δ > 0 and a positive integer j0 such that for all
j ≥ j0, diam(γ j (S)) ≥ δ. Then diam

⋂
j0≤j<∞ γ j (S) = diam

⋂
j0≤j<∞ γ j (S) ≥

δ, which contradicts (i). We next prove that, given x,

P(sup{ρ(Xn(x),Xn(y)) : y ∈ S})→ 0 as n→ ∞. (18.26)

For this, fix ε > 0. By (1)(ii), there exists j (ε) such that diamγ j (ε)(S) < ε. By
the support property, δ(ε) := Q(γ ′ ∈ Γ : ||γ ′ − γ || < ε/j (ε)) > 0. Consider the
sequence of independent events

1 See the specific subject matter texts by Ramasubramanian (2009) and by Rolski et al. (2010) for
comprehensive treatments of the ruin problem and much more.
2 BCPT, p. 242.
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Am = {||αj(ε)(m−1)+k − γ || < ε/j (ε) for all k = 1, . . . , j (ε)}(m ≥ 1).

ThenQ(Am) = δ(ε)j (ε) > 0. By Borel–Cantelli Lemma II,3

P(Amoccurs for infinitely manym) = 1.

But on Am,

||αj(ε)(m−1)+1αj(ε)(m−1)+2 . . . αj (ε)(m−1)+j (ε) − γ j (ε)|| < j(ε)ε/j (ε) = ε,

as is shown by the bound ε/j (ε) obtained by replacing the α’s successively by γ .
Hence, on Am, sup{ρ(Xm(x),Xm(y)) : x, y ∈ S} < ε. The proof of (18.26) is now
complete, recalling that all the α’s are contractions. Finally, in view of compactness
of the space P(S) of probabilities with the topology of weak convergence, and Feller
continuity (Proposition 8.6), there exists an invariant probability π . If one takes the
initial state to be X0 having distribution π , then it follows from (8.6) that, whatever
be the initial state y, Xn(y) converges in distribution to π as n → ∞. In particular,
π is the unique invariant probability (Corollary 8.5). �

For the next result, due to Silverstrov and Stenflo (1998), define the bounded
Lipschitzian distance dBL on the space P(S) of probability measures on (S,S) by

dBL(μ, ν) = sup

{∣
∣
∣
∣

∫

S

f dμ−
∫

S

f dν

∣
∣
∣
∣ : f ∈ BL

}

, (18.27)

where

BL := {f : S → R, |f (x)− f (y)| ≤ min(ρ(x, y), 1)}.4 (18.28)

The space BL of bounded, Lipschitz functions is endowed with the topology of
uniform convergence on compact subsets. A sequence of i.i.d. Lipschitz maps αn,
n ≥ 1, is defined on a probability space (Ω,F , P ) as random maps into BL.
We consider the Markov process Xn = αnαn−1 . . . α1X0, n ≥ 0, where X0 is
independent of {αn, n ≥ 1}. In particular, denote it by Xn(x) if X0 is the constant
x ∈ S. As before, Yn(x) = α1α2 . . . αnx, n ≥ 1, denotes the backward iteration.
The random Lipschitz coefficient of αkαk−1 . . . αj x is defined, for j ≤ k, by

Lkj = sup{ρ(αkαk−1 . . . αj x, αkαk−1 . . . αj y)/ρ(x, y) : x, y ∈ S, x �= y}.
(18.29)

Theorem 18.6. Let (S, ρ) be a Polish space and {αn, n ≥ 1}, {Xn, n ≥ 0}, {Lkj }, as
above. If for some r ≥ 1

3 BCPT, p. 34.
4 BCPT p.242, p. 34.
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E(logLr1) < 0, (18.30)

and, for some point x0 in S,

E log+ ρ(αrαr−1 . . . α1x0, x0) <∞, (18.31)

then the Markov process Xn, n ≥ 0, has a unique invariant probability π , and Xn
converges in distribution to π as n→ ∞, no matter what the initial state is.

Proof. First assume (18.30) holds for r = 1. We will establish the following two
assertions (a),(b) and then show that the desired result follows from them: (a)
sup{ρ(Yn(x), Yn(y)) : ρ(x, y) ≤ M} → 0 in probability as n→ ∞, for allM > 0.
(b) For some x0 in S, the sequence of distributions of ρ(Xn(x0), x0), n ≥ 1, is
relatively weakly compact. Assume (a), (b) hold. Let f ∈ BL andM > 0. Then

sup
ρ(x,y)≤M

|Ef (Xn(x))− Ef (Xn(y))| (18.32)

= sup ρ(x, y) ≤ M|Ef (Yn(x))− Ef (Yn(y))|
≤ sup
ρ(x,y)≤M

E(ρ(Yn(x), Yn(y)) ∧ 1)

→ 0 as n→ ∞

by (a). Also,

|Ef (Xn +m(x0))− Ef (Xn(x0))| (18.33)

= |Ef (Yn +m(x0))− Ef (Yn(x0))|
= |Ef (α1α2 . . . αnαn+1αn+2 . . . αn+mx0)− Ef (α1α2..αnx0)|
≤ E[ρ(α1α2 . . . αnαn+1αn+2 . . . αn+mx0, α1α2 . . . αnx0) ∧ 1)

≤ P(B1)+ E(1B2 .ρ(α1α2 . . . αnαn+1αn+2 . . . αn+mx0, α1α2 . . . αnx0) ∧ 1),

where

B1 = {ρ(αn+1αn+2 . . . αn+mx0, x0) > M}

and

B2 = {ρ(αn+1αn+2 . . . αn+mx0, x0) ≤ M}.

Note that P(B1) = P(ρ(α1α2 . . . αmx0, x0) > M)→ 0 uniformly inm = 1, 2, . . .,
as M → ∞, in view of (b). Given ε > 0, and m ≥ 1, choose M = M(ε) such
that P(B1) < ε. Writing X = αn+1αn+2 . . . αn+mx0, the second summand in the
last line of (18.33) may be expressed as E1B2(ρ(Yn(X), Yn(x0)) ∧ 1) ≤ EZ ∧ 1,
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where Z = sup{ρ(Yn(x), Yn(y) : ρ(x, y) ≤ M(ε)}. Now, given δ > 0, E(Z ∧ 1) =
E(1{Z>δ}Z ∧ 1) + E(1{Z≤δ}Z ∧ 1) ≤ P(Z > δ) + δ. By (a) P(Z > δ) → 0 as
n → ∞. Thus for all sufficiently large n, the first line of (18.33) can be made as
small as one likes. In other words,

sup{|Ef (Xn+m(x0))−Ef (Xn(x0))| : f ∈ BL} → 0 as n→ ∞ (m = 1, 2, . . .).
(18.34)

Thus {Xn(x0) : n ≥ 0} is Cauchy in the dBL distance, and the transition probability
is Feller continuous. Therefore, p(n)(x, dy) converges weakly to a unique invariant
probability π (See Lemma 2 and Theorem 18.7).

It remains to prove (a) and (b). To prove (a), let Ln (n ≥ 1) be the i.i.d. Lipschitz
coefficients of αn (n ≥ 1), with L1 ≡ L11 ,

Ln = sup{ρ(αn(x), αn(y))/ρ(x, y) : x �= y} (n = 1, 2, . . .), Ln(x, x) = 0.
(18.35)

Then

ρ(Yn(x), Yn(y)) = ρ(α1α2 . . . αnx, α1α2 . . . αny)

≤ L1ρ(α2 . . . αnx, α2 . . . αny)

≤ · · · ≤ L1L2 · · ·Lnρ(x, y),

so that

sup{ρ(Yn(x), Yn(y)) : ρ(x, y) ≤ M} ≤ L1L2 . . . LnM, (18.36)

and, by (18.30) and the strong law of large numbers, with probability one,

(logL1 + logL2 + . . .+ logLn + logM)/n→ E logL1 < 0, as n→ ∞;
(18.37)

logL1 + logL2 + . . .+ logLn → −∞.

Therefore, the right side of (18.36) goes to zero almost surely, as n → ∞.
This proves (a). We next turn to the verification of (b). Note that, by the triangle
inequality,

|ρ(α1α2 . . . αnαn+1αn+2 . . . αn+mx0, x0)− ρ(α1α2 . . . αnx0, x0)| (18.38)

≤ ρ(α1α2 . . . αnαn+1αn+2 . . . αn+mx0, α1α2 . . . αnx0)

≤
∑

1≤j≤m
ρ(α1 . . . αn+j x0, α1 . . . αn+j−1x0)

≤
∑

1≤j≤m
L1L2 . . . Ln+j−1ρ(αn+j−1x0, x0).
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First assume 0 < c := −E logL1 < ∞. Let 0 < ε < c. By (18.30)
and the strong law of large numbers, outside a P -null set N1, there exists n1 =
n1(ω) such that log(L1L2 . . . Ln)

1/n = (1/n)
∑

1≤k≤n logLk < −(c − ε/2), i.e.,
(L1L2 . . . Ln)

1/n < exp{−(c − ε/2)}, and

L1L2 . . . Ln < exp{−n(c − ε/2)} for all n ≥ n1(·). (18.39)

In view of (18.31), one now has

∑

1≤k<∞
P((log+ ρ(αkx0, x0))/(ε/2)) > k)

=
∑

1≤k<∞
P((log+ ρ(α1x0, x0))/(ε/2)) > k)

≤ EV <∞, (18.40)

where V = log+ ρ(α1x0, x0))/(ε/2). By the first Borel–Cantelli lemma, it now
follows that outside a P -null set N2, there exists n2 = n2(ω) such that

ρ(αkx0, x0) ≤ exp kε/2 for all k ≥ n2(·). (18.41)

Applying (18.39) and (18.41) to (18.38), it now follows that outside a P -null set
N = N1 ∪N2, one has

sup
m≥1

|ρ(α1α2 . . . αnαn+1 · · ·αn+mx0, x0)− ρ(α1α2 · · ·αnx0, x0)|

≤
∑

1≤j<∞
exp{−(n+ j − 1)(c − ε/2)+ (n+ j)ε/2}

=
∑

1≤j<∞
exp{−(n+ j)(c − ε)+ (c − ε/2)} for all n ≥ n3(·)

= max(n1(·), n2(·)). (18.42)

Since the last sum goes to zero as n→ ∞, it follows that {ρ(α1α2 . . . αnx0, x0), n ≥
1}, is a Cauchy sequence and, therefore, converges outside a P -null set N . This
clearly implies (b) in case c is finite, i.e., −E logL1 ≡ −E logL11 <∞. If c equals
∞, then (18.39) and (18.42) hold for any c > 0.

Finally, suppose (18.30) holds for some r > 1. The argument above may now
be applied to the transition probability p(r)(x, dy). It follows that, for every x ∈ S,
p(kr)(x, dy) converges to an invariant probability π̃ , say, in the distance dBL as
k → ∞ and, therefore, weakly. This implies that the distribution of Xkr with initial
distributionμ, namely, T ∗krμ, converges weakly to π̃ , for every probability measure
μ, as k → ∞. Letting μ = p(j)(x, dy), j > 0, one then gets p(kr+j)(x, dy)
converges weakly to π̃ , for every j=1,2,.., as k → ∞. On a Polish space (S, ρ),
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(P(S), dP ) is a complete separable metric space. In particular, a Cauchy sequence
in the Prokhorov distance dP converges. A proof of this and of the completeness
of the dBL distance is given in Theorems 18.7 and Proposition 18.8 below. This
completes the proof of Theorem 18.6. �

The distance function dBL may be obtained as a special case of Kantorovich–
Rubenstein–Wasserstein metrics (Rachev (1991)) and is independent due to Dudley
(1968). The following lemma implies that P(S) is Cauchy under the Prokhorov
distance dP , since it is so under the dBL distance.

Lemma 2. Let (S, ρ) be a metric space. On P(S), the following relation holds:
dP (μ, ν) ≤ (dBL(μ, ν))1/2.

Proof. Fix 0 < ε ≤ 1. For a Borel set B, the function f (x) = max{0, 1 −
ε−1ρ(x, B)} satisfies |f (x) − f (y)| ≤ ε−1ρ(x, y), so that εf ∈ BL : |εf (x) −
εf (y)| ≤ 1, |εf (x)− εf (y)| ≤ ρ(x, y). Now

ν(B) ≤
∫

S

f dν = ε−1
∫

S

εf dν

= ε−1
[ ∫

S

εf d(ν − μ)+
∫

S

εf dμ

]

≤ ε−1dBL(μ, ν)+ μ(Bε), (18.43)

where Bε = {x : ρ(x, B) < ε} ≥ 0 on S. The first inequality in (18.43) holds
because f = 1 on B and f ≥ 0 on S. The last inequality follows from the facts that
εf ∈ BL, and f = 0 outside Bε , 0 ≤ f ≤ 1 on S. Interchanging the roles of ν and
μ in (18.43), it now follows that dP (μ, ν) ≤ ε−1dBL(μ, ν). Letting dBL(μ, ν) =
ε2, one gets dP (μ, ν) ≤ ε, whatever be ε, 0 < ε ≤ 1. �
Remark 18.4. One importance of Theorem 18.6 is that it truly extends the linear
theory presented in Chapter 17. In other words, all the main results of Chapter 17
follow from Theorem 18.6 almost as immediate corollaries (Exercise 9).

Remark 18.5. Theorem 18.5, due to Dubins and Freedman (1966), cannot be
obtained as a special case of Theorem 18.6. One can easily construct contractions
with Lipschitz constant 1, perhaps with a strict contraction in the support, but not
an atom, for which Theorem 18.5 holds, but Theorem 18.6 does not. On the other
hand, Theorem 18.6 only requires E logL < 0, allowing larger Lipschitz constants
than 1 in the support.

Let (S, ρ) be a complete separable metric space. We will show that the space
P(S) of all probability measures on the Borel sigma-field S of S is complete under
the Prokhorov distance dP and also under the bounded Lipschitz distance dBL. That
dP metrizes the weak topology is a standard fact.5 It is simple to check that dBL is a

5 BCPT, Proposition 7.14, pp. 146,147.
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metric on P(S). From Lemma 2, it follows the metric topology under dBL P(S) is
at least as strong as the weak topology; the arguments below will show that the two
topologies are the same.

Theorem 18.7. On a complete separable metric space (S, ρ), the space (P(S), dP )
is a complete separable metric space.

Proof. The proof will involve two steps.

Step 1. Let us begin by proving that, under dP , a sequence Pn (n ≥ 1) in P(S) is
tight if, for each ε > 0, δ > 0, there exist a finite set {Bj : j = 1, . . . , m} of spheres
of radius δ such that Pn(

⋃
1≤j≤m Bj) > 1 − ε for all n. For this, fix ε > 0. By

the italicized condition, for each k, there exist a set of mk spheres {Bk1, . . . , Bkmk}
of radius 1/k such that Pn(

⋃
1≤j≤mk Bj ) > 1 − ε/2k (k = 1, 2, . . . ). The set

D = ⋂
k≥1(

⋃
1≤j≤mk Bj ) is totally bounded, since given η > 0, letting k be such

that 1/k < η, the mk balls of radius 1/k cover D: D ⊂ ⋃
1≤j≤mk Bj . On the other

hand, Pn(Dc) <
∑

1≤k<∞ ε/2k = ε, so that Pn(D) > 1 − ε for all n. Let K be the
closure of D. Then K is compact6 and Pn(K) > 1 − ε for all n. This proves that
{Pn : n ≥ 1} is tight.

Step 2. We now show that if {Pn : n ≥ 1} is a Cauchy sequence under dP , then
it is tight. We need to check the italicized condition in Step 1. Let ε > 0 and δ >
0. Consider η < min{ε, δ}/2, and find n(η) such that dP (Pn, Pn′) < η for all
n, n′ ≥ n(η). Because (S, ρ) is a separable metric space, there exist a finite number
of spheres Bj (j = 1, . . . , m) of radius η such that Pn(η)(

⋃
Bj : 1 ≤ j ≤ m) > 1−

η. LetG1, . . . ,Gm be the spheres with the same centers asB1, . . . , Bm, respectively,
but with radius 2η. Then (

⋃
Bj : 1 ≤ j ≤ m)η ⊂ (

⋃
Gj : j = 1, .., m), and, by

definition of dP , Pn((
⋃
Bj : 1 ≤ j ≤ m)η+η ≥ Pn(η)(⋃Bj : 1 ≤ j ≤ m) ≥ 1−η

for all n ≥ n(η). That is, Pn(
⋃
Gj : j = 1, . . . , m) ≥ Pn((⋃Bj : 1 ≤ j ≤ m)η) ≥

1 − 2η ≥ 1 − ε, for all n ≥ n(η). Since Gj are spheres of radius 2η < δ, it follows
from Step 1 that {Pn : n ≥ n(η)} is tight. One may include the other finitely many
Pn by using the separability argument to find a finite number of δ-spheres satisfying
the italicized requirement of Step 1 by enlarging the family Gj , still with a finite
union. �
Proposition 18.8. On a complete separable metric space (S, ρ), the distance dBL
metrizes the weak topology as a complete metric.

Proof. From Theorem 18.7 and Lemma 2, it follows that if Pn is Cauchy in the
distance dBL, then it converges weakly to a probability P . However, it does not
immediately follow that Pn converges to P in dBL, i.e., dBL(Pn, P ) → 0. A
natural proof of this comes from the fact7 that BL is a uniformity class for weak
convergence; that is, whatever be P and a sequence Pn converging weakly to P ,
sup{| ∫

S
f dPn − ∫

S
f dP | : f ∈ BL} → 0 as n → ∞. To see this, fix ε > 0.

6 BCPT, Lemma 4, p. 244.
7 See Bhattacharya and Ranga Rao (2010), p. 17.



252 18 Markov Processes Generated by Iterations of I.I.D. Maps

Let Pn converge weakly to P and K a compact set such that Pn(K) > 1 − ε for
all n, P(K) > 1 − ε. The set BL restricted to K is a compact metric space under
the supnorm || · ||K (by the Arzela–Ascoli Theorem).8 Hence, there exist functions
f1, . . . , fm, in BL with support contained in K such that ||f − fj ||K < ε for all
f ∈ BL and for all fj (j = 1, . . . , m). Then, writing the restriction of f to K as
f K (i.e., f K = f on K , and zero outside), one has

∣
∣
∣
∣

∫

S

f KdPn−
∫

S

f KdP

∣
∣
∣
∣ ≤ max

{∣
∣
∣
∣

∫

S

fjdPn−
∫

S

fjdP

∣
∣
∣
∣ : j = 1, .., m

}

+2ε ≤ 3ε,

for all n ≥ n1, where n1 is such that
∫
S

|fjdPn−
∫
S
fjdP | < ε for all j = 1, . . . , m

for all n ≥ n1. Next,

∣
∣
∣
∣

∫

S

f KdPn −
∫

S

f dPn

∣
∣
∣
∣ ≤ 2||f ||Pn(Kc) ≤ 2ε

for all f ∈ BL, and | ∫
S
f KdP − ∫

S
f dP | ≤ 2ε. Finally, for all n ≥ n1,

∣
∣
∣
∣

∫

S

f dPn −
∫

S

f dP

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

S

f KdPn −
∫

S

f KdP

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

S

f KdPn −
∫

S

f dPn

∣
∣
∣
∣+

∣
∣
∣
∣

∫

S

f KdP −
∫

S

f dP

∣
∣
∣
∣

≤ 3ε + 2ε + 2ε = 7ε.

Since these estimates hold for all f in BL,

sup

{∣
∣
∣
∣

∫

S

f dPn −
∫

S

f dP

∣
∣
∣
∣ : f ∈ BL

}

→ 0,

as n→ ∞. �

Exercises

1. (A One-Step Cut-off Map) Let Uθ =
(

cos θ − sin θ
sin θ cos θ

)

, 0 ≤ θ < 2π , denote the

group of counterclockwise rotation matrices on the unit circle S in R
2. Define

Xn = ∏n
j=1 UΘjX0, n = 1, 2, . . . , where X0 ∈ S, and Θ1,Θ2, . . . are i.i.d.

uniform on [0, 2π) under addition modulo 2π .

8 BCPT, pp. 244–245, or Folland (1984), p. 131.
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(a) Show that X1 is uniformly distributed on S after one iteration (see
Example 4 for another cut-off phenomena).

(b) Show that the uniform distribution on S is the unique invariant distribu-
tion. [Hint: Reformulate the problem in the complex plane using Euler’s
formula, and check that the distribution of the sum modulo 2π of two
independent uniform random variables is uniform on [0, 2π).]

2. Prove that (18.3) is a well-defined transition probability on (S,S) if α is a
random map according to Definition 18.1.

3. For the function F−1
x defined by (18.5), check that αx := F−1

x (U) satisfies
(18.2) and has the distribution function y → Fx(y) := p(x; (−∞, y]).

4. Prove that the process {Xn(x) := αn . . .α1x : n ≥ 0}, where {αn : n ≥ 1}
are i.i.d. random maps on (S,S), is a Markov process having the transition
probability (18.3). Show that this remains true if the initial state x is replaced
by a random variable X0 independent of {αn : n ≥ 1}.

5. Show that the hypothesis Eε1 < 0 in Theorem 18.3 implies that Spitzer’s
condition holds:

∑∞
n=1

1
n
P (ε1 + · · · + εn > 0) <∞.

6. Suppose εi in Theorem 18.3 has the shifted exponential distribution with
density h(x) = β−1 exp{− x+c

β
}1(c,∞)(x), (c > β > 0). Show that the

invariant distribution π has a point mass at 0 and a density on (0,∞) given
by π(0) = β/θ, π(x) = θ−1 exp{− x+c

θ
}, x > 0, where θ > β is the solution

of the equation 1 − β
θ

= e− c
θ .

7. Apply Exercise 18 to each of the following models:

(a) The Lindley–Spitzer resource management model in the case when the
distribution of the random input Rn has the exponential distribution with
mean β < c.

(b) The G/G/1 queuing model when the distributions of the inter-arrival
time U and the service time V are both exponential with means β, θ ,
respectively, with β < θ . Show that π({0}) = 1 − β/θ, π(x) = β

θ
(β−1 −

θ−1) exp{−(β−1 − θ−1)x}1(0,∞)(x).
(c) The insurance model with exponential with mean β claim size distribution,

exponential with mean 1/λ inter-arrival times of claims, and the premium c
per unit time satisfying θ = c/λ > β. Show that the probability of ruin with
initial asset u is ψ(u) = ∫

(u,∞) π(x)dx = β
θ

exp{−(β−1 − θ−1)u}, u > 0.

8. In reference to (18.12), show that if Y <∞ a.s., and αn is continuous a.s., then
the distribution π , say, of Y is an invariant probability for {Xn : n ≥ 0}.

9. Adapt the Lindley–Spitzer model to a non-profit organization (NP0) with
initial capital u and i.i.d. random donations (in dollars) each year. Assume a
commitment by the NPO to spend an annual amount of c dollars/year in support
of its cause. How do such models compare to the insurance models?

10. (a) Show that the results of convergence to a unique invariant probability of
the linear models AR(p) and ARMA(p, q) of Chapter 17 follow from
Theorem 18.6.
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(b) Show that the convergence results extend to affine linear maps as well, i.e.,
if one adds a constant vector to the deterministic part Hx.

11. Consider a Markov process generated by iterations of an i.i.d. sequence αn (n ≥
1) with common distribution Q (on a space Γ of functions on a metric space).
Give an example where the process converges to a unique invariant probability
irrespective of the initial distribution, with Q having a finite support and only
one element a strict contraction, while the others have Lipschitz coefficients
larger than 1.



Chapter 19
A Splitting Condition and Geometric
Rates of Convergence to Equilibrium

This chapter builds on the representation of Markov processes in terms of i.i.d.
iterated maps by developing the so-called “splitting techniques”that capture
the recurrence structure of certain iterated maps in a novel way.

The questions of whether a Markov process has a unique invariant probability and,
if so, how fast the process converges to this invariant probability starting from an
arbitrary initial state are of basic interest. In this chapter, a “splitting” criterion
is shown to imply the existence of a unique invariant probability and to yield
geometric, or exponentially, fast rates of convergence to equilibrium in appropriate
distances. The main result is first derived for Markov processes generated by the
iteration of i.i.d. maps satisfying such a criterion, and then it is applied to different
classes of Markov processes.

The results of this chapter may be used to derive important limit theorems such
as the central limit theorem in a broad range of contexts.

Let (S,S) be a measurable state space and {αn}n≥1 an i.i.d. sequence of random
maps on S. Thus each αn is a measurable map on a probability space (Ω,F , P )
into a measurable space of functions (Γ,G), such that (γ, x) → γ x is measurable
on (Γ × S,G ⊗ S) into (S,S), as in (18.4). Let the distribution of αn be Q. Then
(Γ,G,Q) is a probability space, and, for each n, the distribution of (α1, . . . ,αn)

is the product probability measure Q ×Q × · · · ×Q = Qn on (Γ n,G⊗n). In this
setting, the transition operator T of the Markov process and its iterates T n on the
space B(S) of real-valued bounded measurable functions on S may be expressed as
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Tf (x) = Ef (α1x) =
∫

Γ

f (γ x)Q(dγ ), (19.1)

T nf (x) = Ef (αn . . .α1x) =
∫

Γ n
f (γ x)Qn(dγ ), x ∈ S, f ∈ B(S), n ≥ 1.

As usual, the adjoint operator T ∗ and its iterates T ∗n are defined, on the space
P(S) of all probability measures on S, by letting T ∗μ be the distribution of α1X0
when X0 has distribution μ (X0 is independent of {αn}n≥1). For n ≥ 1, T ∗nμ is
the distribution of αn . . .α1X0. Hence, denoting by p(n)(x, dy) the n-step transition
probability of the Markov process Xn = αn . . .α1X0, n ≥ 1, one has

(T ∗nμ)(A) = P(αn . . .α1X0 ∈ A) =
∫

S

Qn({γ ∈ Γ n : γn . . . γ1x ∈ A})μ(dx)

=
∫

S

p(n)(x,A)μ(dx), μ ∈ P(S). (19.2)

Note that a probability measure π is invariant for the Markov process generated by
the iterated maps if π is a fixed point of T ∗ : T ∗π = π . That is, π is an invariant
initial distribution if X1 ≡ α1X0 has distribution π when X0 has distribution π .

The main result of this chapter, Theorem 19.1 below, estimates the distance
between p(n)(x, dy) and an invariant probability π in suitable metrics on P(S) of
the form

d(μ, ν) := sup
A∈A

|μ(A)− ν(A)|, (μ, ν ∈ P(S)), (19.3)

where A ⊂ S must be selected such that under d, P(S) is a complete metric space,
that is, if d(μn, μm)→ 0 as n,m→ ∞ for a sequence {μn}n≥1 ⊂ P(S), then there
exists ν ∈ P(S) such that d(μn, ν) → 0. Two typical selections are (i): A = S ,
in which case d is called the total variation distance and (P(S), d) is a complete
metric space (Exercise 19), and (ii) in the case S is an interval of R, with S the
Borel σ -field, the Kolmogorov metric is defined by the supremum distance between
distribution functions and is obtained here by taking A to be the class of all sets
S ∩ (−∞, x], x ∈ R. Again one may check that this defines a complete metric on
an interval S ⊂ R (Exercise 19).

For the statement below, recall that μ ◦ γ−1 is the image (measure) of μ under
the map γ (on S into S), i.e., (μ ◦ γ−1)(B) = μ(γ−1(B)), B ∈ S . Write R(γ ) for
the range of γ , i.e.,

R(γ ) := {γ (x) : x ∈ S}, (19.4)

and also write γ1n for the composition

γ1n := γnγn−1 . . . γ1 for γ = (γ1, γ2, . . . , γn) ∈ Γ n (n ≥ 1). (19.5)
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The splitting theorem will feature three basic hypotheses: (1) the complete metric
space hypothesis described above, (2) a contractive hypothesis, and (3) a splitting
condition. For the two metrics noted above, the complete metric space condition is
always implied. The second condition always holds for the total variation metric
and, in the case of monotone, maps on an interval. That the second condition holds
is also implied for the Kolmogorov metric. To gain some insight into the splitting
condition (3), let us first consider the “most ergodic” Markov process conceivable,
namely that of a sequence of i.i.d. random variables.

Example 1. Suppose that X1, X2, . . . is an i.i.d. sequence with state space (S,S)
and defined on a probability space (Ω,F , P )with a common distribution P ◦X−1

n =
μ. Then one may represent this Markov process by iterations of the i.i.d. constant
random maps defined for ω ∈ Ω,n ≥ 1, by αn(ω) : S → S via αn(ω)(x) =
Xn(ω), for all x ∈ S. So Γ = {ηz : ηz(x) = z for all x, z ∈ S}, with G = σ {{ηz :
z ∈ B} : B ∈ S}. Now observe that the range of the maps ηz is the singleton set {z},
so for any A ∈ S , the range of ηz is either a subset of A or a subset of Ac. It is in
such a sense that we say the maps “split” the class A := S.
Theorem 19.1. Let αn (n ≥ 1) be i.i.d. random maps on S with common
distributionQ. Suppose there exists A ⊂ S with the following properties:

1. (P(S), d) is a complete metric space, where d is defined by (19.3).
2. d(μ ◦ γ−1, ν ◦ γ−1) ≤ d(μ, ν) for all μ, ν ∈ P(S) and forQ-almost all γ ∈ Γ .
3. (Splitting) There exist δ > 0, N ∈ N, and for every A ∈ A a set ΓA ⊂ Γ N

belonging to G⊗N , such that: (i) QN(ΓA) ≥ δ and (ii) either R(γ1N) ⊂ A or
R(γ1N) ⊂ Ac, for all γ = (γ1, γ2, . . . , γN) ∈ ΓA.

Then the Markov process generated by the iteration of {αn}n≥1 has a unique
invariant probability π , and the distribution T ∗nμ of Xn = αn . . .α1X0, with initial
distribution μ, satisfies

d(T ∗nμ, π) ≤ (1 − δ)[n/N]d(μ, π) ≤ (1 − δ)[n/N], (n ≥ 1, μ ∈ P(S)),
(19.6)

where [x] denotes the integer part of x ∈ R.

Proof. Let A ∈ A. By assumption (3), if γ ∈ ΓA, then either μ(γ−1
1N (A)) = 1 for

all μ or μ(γ−1
1N (A)) = 0 for all μ (μ ∈ P(S)). Therefore, for all μ, ν ∈ P(S),

∣
∣
∣(T ∗Nμ)(A)− (T ∗Nν)(A)

∣
∣
∣ =

∣
∣
∣
∣

∫

ΓA

(μ ◦ γ−1
1N )(A)− (ν ◦ γ−1

1N )(A)Q
N(dγ )

∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∫

Γ cA

(μ ◦ γ−1
1N )(A))− (ν ◦ γ−1

1N )(A))Q
N(dγ )

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫

Γ cA

(μ ◦ γ−1
1N )(A)− (ν ◦ γ−1

1N )(A))Q
N(dγ )

∣
∣
∣
∣
∣

≤ (1 − δ)d(μ, ν). (19.7)
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We have used here the facts: (a) QN(Γ cA) ≤ 1 − δ and (b) d(μ ◦ γ−1
1N , ν ◦ γ−1

1N ) ≤
d(μ, ν) (a.e. QN ). Note that (b) follows from assumption (2) by induction on N .
The inequality (19.7) implies that

d(T ∗Nμ, T ∗Nν) ≤ (1 − δ)d(μ, ν), (μ, ν ∈ P(S)), (19.8)

that is, the map T ∗N on the (complete) metric space (P(S), d) is a strict contraction.
It now follows from the contraction mapping principle (see lemma below) that T ∗N
has a unique fixed point π ∈ P(S) and that, with k = n−[n/N ]N , n = k+[n/N ]N ,

d(T ∗nμ, π) = d(T ∗nμ, T ∗nπ) = d
(
T ∗k (T ∗[ n

N

]
Nμ

)
, T ∗k (T ∗[ n

N

]
Nπ

))

≤ d
(
T ∗[ n

N

]
Nμ, T ∗[ n

N

]
Nπ

)

≤ (1 − δ)
[
n
N

]

d(μ, π), (μ ∈ P(S)). (19.9)

The first inequality in (19.9) makes use of the assumption (2), implying
d(T ∗μ, T ∗ν) ≤ d(μ, ν), since for all A ∈ A,

|(T ∗μ)(A)− (T ∗ν)(A)| =
∣
∣
∣
∣

∫

Γ

(μ ◦ γ−1)(A)Q(dγ )−
∫

Γ

(ν ◦ γ−1)(A)Q(dγ )

∣
∣
∣
∣

≤ d(μ, ν). (19.10)

Finally, if one takes μ = T ∗π in place of μ in (19.9), one gets d(T ∗π, π) =
d(T ∗(n+1)π, π) → 0 as n → ∞. Hence, T ∗π = π . That is, π is a fixed point of
T ∗. To prove that π is the unique fixed point of T ∗, simply note that every fixed
point of T ∗ is a fixed point of T ∗N , and T ∗N has a unique fixed point.

Before deriving some important corollaries of Theorem 19.1, let us restate the
“splitting” condition 3 as the following:
3′ There exist δ > 0 and N such that, for each A ∈ A, there is a set FA ⊂ Ω with
the properties:

(a) P(FA) ≥ δ.
(b) For every ω ∈ FA, the range of α1,N ≡ αN · · ·α1 is contained either in A or in

Ac.

The statement (3) in the theorem is the canonical version of this with (Ω,F , P ) =
(Γ∞,G⊗∞,Q∞).

Corollary 19.2 (Doeblin Minorization Theorem1). Let p(x, dy) be a transition
probability on (S,S). Assume there exists a nonzero measure λ on (S,S) such that

1 See Bhattacharya and Majumdar (2007), Bhattacharya and Waymire (2002) for this and related
refinements.
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p(m)(x, B) ≥ λ(B) for all B ∈ S, x ∈ S, (19.11)

for some m ≥ 1. Then there exists a unique invariant probability π for p(x, dy),
and one has, for every μ ∈ P(S),

sup
B∈S

∣
∣(T ∗nμ)(B)− π(B)∣∣ ≤ (1 − δ)[n/m] (n ≥ 1), (19.12)

where δ := λ(S) > 0.

Proof. We will prove the assertion under the additional assumption that S is a Borel
subset of a Polish space and S is its Borel σ -field. A different proof applicable
without this extra assumption is sketched in Exercise 19. The result is simple to
check for the case δ = 1, in which case π = λ. Assume 0 < δ < 1. Then p(m) can
be represented as the sum

p(m)(x, B) = δμ(B)+ (1 − δ)q(x, B) (x ∈ S,B ∈ S), (19.13)

where μ = λ/λ(S) is a probability measure, and q is the transition probability
given by q(x, B) = (p(m)(x, B)− λ(B))/(1 − λ(S)). Now a Markov process with
transition probability p(m), thought of as a one-step transition probability, may be
generated by iterations of i.i.d. random maps {αn}n≥1 as follows. Let (Ω,F , P ) be
a probability space on which are defined three independent i.i.d. sequences {βn}n≥1,
{Zn}n≥1, and {εn}n≥1 with the following properties: (i) P(βnx ∈ B) = q(x, B) for
all x ∈ S,B ∈ S , (ii)Zn (n ≥ 1) have the common distributionμ, and (3) εn (n ≥ 1)
have the common Bernoulli distribution, P(εn = 1) = δ, and (εn = 0) = 1 − δ.
Define αn(ω) to be the (constant) map αn(ω)x = Zn(ω) (x ∈ S) if εn(ω) = 1 and
αn(ω) = βn(ω) if εn(ω) = 0. Then P(αnx ∈ B) = δP (Zn ∈ B)+(1−δ)P (βnx ∈
B) = δμ(B)+ (1 − δ)q(x, B) = p(m)(x, B).

We claim that {αn}n≥1 so defined satisfies the hypothesis of Theorem 19.1 with
A = S ,N = 1. To see this, first note that d is the total variation distance d(μ, ν) =
‖μ−ν‖T V := sup{|μ(B)−ν(B)| : B ∈ S}, under which P(S) is a complete metric
space. Also, d(μ ◦ γ−1, ν ◦ γ−1) = sup{|μ(γ−1(B)) − ν(γ−1(B))| : B ∈ S} ≤
d(μ, ν). Finally, we will prove “splitting” in the form of the italicized statement 3′
preceding the statement of the present theorem. For every A ∈ S , choose FA =
{ω : ε1(ω) = 1}. Then P(FA) = δ, and for every ω ∈ FA, the range of α1(ω)

is the singleton {Z1(ω)}, which is contained either in A or in Ac. If one writes
the adjoint operator T ∗

1 corresponding to the (one-step) transition probability p(m)

(i.e., (T ∗
1 μ)(B) = ∫

p(m)(x, B)μ(dx) = (T ∗mμ)(B)), then, by Theorem 19.1 with
N = 1, there exists a unique fixed point π of T ∗

1 and d(T ∗k
1 μ,π) ≤ (1 − δ)k

for every μ ∈ P(S). That is, d(T ∗mk, π) ≤ (1 − δ)k . Also, d(T ∗(mk+r), π) =
d(T ∗mkμ′, π) ≤ (1 − δ)k , with μ′ = T ∗rμ.

A simple application of Corollary 19.2 is to possibly non-irreducible Markov
chains on countable state spaces.



260 19 A Splitting Condition and Geometric Rates of Convergence

Corollary 19.3. Let p = ((pij ))i,j∈S be a transition probability on a countable state

space S. Suppose there exist m ≥ 1 and j ∈ S such that p(m)ij > ε > 0 for all i.
Then the Markov process has a unique invariant probability π , and

sup
i

∑

j∈S

∣
∣
∣p
(n)
ij − πj

∣
∣
∣ ≤ 2(1 − δ)[n/m] (n ≥ 1), (19.14)

where δ := ∑
j∈S inf{p(m)ij : i ∈ S}, πj := π({j}). Thus if δ > 0, one has

exponential convergence to equilibrium in total variation distance.

Proof. Use Corollary 19.2 with λ({j}) = δj := inf{p(m)ij : i ∈ S}, j ∈ S to prove
the existence of a unique invariant probability π and to get the estimate

sup
B⊂S

∣
∣
∣p(n)(i, B)− π(B)

∣
∣
∣ ≤ (1 − δ)[n/m], (19.15)

since λ(S) = ∑
j∈S δj = δ. It is simple to check that

∑
j∈S |p(n)ij − πj | is twice the

left side of (19.15) (Exercise 19).

Corollary 19.4 (Convergence to Equilibrium of Finite State Irreducible Chains).
Let p be an irreducible transition probability matrix on a finite state space S. Then
(a) p has a unique invariant probability π = {πj : j ∈ S}, and (b) if d is the period
of the chain, there exist δ > 0, and a positive integer ν such that

∑

j∈S

∣
∣
∣
∣
∣

1

d

d−1∑

u=0

p
(nd+u)
ij − πj

∣
∣
∣
∣
∣
≤ (1 − δ)[n/ν] (n ≥ 1). (19.16)

In particular,

sup
i∈S

∑

j∈S

∣
∣
∣
∣
∣

1

N

N∑

m=1

p
(m)
ij − πj

∣
∣
∣
∣
∣
≤ 1

[N/d]
[N/d]∑

n=0

(1 − δ)[n/ν] = O
(

1

N

)

, (N ≥ 1).

(19.17)

Proof. If p is aperiodic, then, by the lemma below, there exists an integer ν ≥ 1
such that p(ν)ij > 0 for all i, j , and Corollary 19.3 applies. Assume now that p is
periodic with period d > 1 and with the cyclical sets Cr , 0 ≤ r ≤ d − 1 (see
Proposition 10.3(b)). Then, for each r , pd is an aperiodic and irreducible transition
probability matrix on Cr . Let νr be the smallest integer such that p(νrd )ij > 0 for
all i, j ∈ Cr . Then, by Corollary 19.3, pd has a unique invariant probability π r =
{πr,j : j ∈ Cr} on Cr , and one has

sup
i∈Cr

∑

j∈Cr

∣
∣
∣p
(nd)
ij − πr,j

∣
∣
∣ ≤ (1 − δr )[

n
νr

]
(n ≥ 1), (19.18)
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where δr := min{p(νrd)ij : i, j ∈ Cr} > 0. It follows that if i ∈ Cs , j ∈ Cr with

p
(nd+u)
ij = 0 if u �= r − s(mod d),

∑

j∈Cr

∣
∣
∣p
(nd+u)
ij − dπj

∣
∣
∣ =

∑

j∈Cr

∣
∣
∣
∣
∣
∣

∑

k∈Cr
p
(u)
ik (p

(nd)
kj − dπj )

∣
∣
∣
∣
∣
∣

≤
∑

k∈Cr
p
(u)
ik

∑

j∈Cr

∣
∣
∣p
(nd)
kj − dπj

∣
∣
∣

≤ (1 − δr )[n/νr ] if u = r − s(mod d).

Let δ = min{δr : 0 ≤ r ≤ d − 1}.
Define the probability measure π = {πj : j ∈ S} as

π = (1/d)
d−1∑

r=0

π r , (19.19)

where π r is extended to S by setting π r (S\Cr) = 0.
Summing (19.19) over u = 0, 1, . . . , d − 1, one then obtains

1

d

d−1∑

u=0

p
(nd+u)
ij = 1

d
p
(nd+r)
ij (r := j − i (mod d)), (19.20)

so that for all i, j ,

∑

j∈S

∣
∣
∣
∣
∣

1

d

d−1∑

u=0

p
(nd+u)
ij − πj

∣
∣
∣
∣
∣
≤
d−1∑

r=0

∑

j∈Cr

∣
∣
∣
∣
1

d
p
(nd+r)
ij − 1

d
πr,j

∣
∣
∣
∣

≤
d−1∑

r=0

1

d
(1 − δ)[n/νr ] ≤ (1 − δ)[n/ν], (19.21)

where ν = max{νr : 0 ≤ r ≤ d − 1}. This proves (19.18). The inequality (19.17)
follows by breaking up the sum (over m) into consecutive blocks of d summands
and applying (19.16) to each block.

The invariance of π and its uniqueness follow from (19.17), using Corollary 8.5.

Part (b) of the following lemma was used in the above proof.

Lemma 1. Let p be an irreducible aperiodic transition probability matrix on a
countable state space S.

(a) Then, for each pair (i, j), there exists an integer ν(i, j) such that p(n)ij > 0 for
all n ≥ ν(i, j).
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(b) If S is finite, there exists ν0 such that p(n)ij > 0 for all i, j , if n ≥ ν0.

Proof.

(a) Let Bij = {ν ≥ 1 : p(ν)ij > 0}. For each j , Bjj is closed under addition, since

p
(ν1+ν2)
jj ≥ p

(ν1)
jj p

(ν2)
jj . By hypothesis, the greatest common divisor (g.c.d.) of

Bjj is 1. We now argue that, if B = Bjj is a set of positive integers closed
under addition, then the smallest subgroup G of Z (which is a group under
addition) is Z. Note that G equals {u − v : u, v ∈ B}. If B does not equal Z,
then 1 �∈ G, so that G = {rn : n ∈ Z} for some r > 1. But, since B ⊂ G, this
would imply that the g.c.d. of B ≥ r , a contradiction.

We have shown that 1 ∈ G, i.e., there exists an integer b ≥ 1 such that
b + 1, b both belong to Bjj . Let νj = (2b + 1)2. If n ≥ νj , one may write
n = q(2b+1)+ r , where r and q are integers, 0 ≤ r < 2b+1, and q ≥ 2b+1.
Then n = q{b + b + 1} + r{b + 1 − b} = (q − r)b + (q + r)(b + 1) ∈ B.
Thus b(n)jj > 0 for all n ≥ νj . Find k ≡ kij such that p(k)ij > 0 and then

p
(n+k)
ij ≥ p(k)ij p(n)jj > 0 for all n ≥ νj . Now take ν(i, j) = kij + νj .

(b) If S is finite, let ν0 = max{νj + kij : i, j ∈ S}. Then, for all i, j , one has

p
(n)
ij > 0 provided ν ≥ ν0.

Example 2 (A Non-irreducible Markov Chain with Unique Invariant Probability).
Consider the following transition probability matrix p on the state space S =
{1, 2, 3} in the context and notation of Corollary 19.3.

p =
⎡

⎣
q p 0
0 q p
0 p q

⎤

⎦ (0 < p < 1, q = 1 − p). (19.22)

Then, with m = 1, j = 2, δ1 = δ3 = 0 and δ2 = δ = min{p, q}. Also, it is easy
to solve for the invariant probability π to get π1 = 0, π2 = π3 = 1

2 . Then (19.14)
yields

3∑

j=1

∣
∣
∣p
(n)
ij − πj

∣
∣
∣ ≤ 2(1 − min{p, q})n (n ≥ 1). (19.23)

Note that the state 1 is inessential or transient. That is, if the initial state is 2 or 3,
then the Markov process will remain in {2, 3} and never visit 1; on the other hand,
if the initial state is 1, then, with probability one, the process will enter the set {2, 3}
and never return to 1 again.

The next example is that of a finite irreducible aperiodic Markov chain, namely,
the case p(m)ij > 0 for all i, j ∈ S, for some m ≥ 1.

Example 3 (A Birth–Death Chain with Two Reflecting Boundaries). Let S =
{1, 2, . . . , L}, and p = ((pij )) ≡ ((pi,j )) is given by
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pi,i−1 = δi > 0, pi,i = γi > 0, pi,i+1 = βi > 0, δi + γi + βi = 1 (2 ≤ i ≤ L− 1),

p1,1 = γ1 > 0, p12 = β1 = 1−γ1 > 0, p1,L−1 = δL > 0, pL,L = γL = 1−δL > 0.

It is simple to check that p(m)ij > 0 for all i, j if m = L− 1, so that (19.14) holds.

The study of the existence of unique invariant probabilities and stability is often
relatively simpler for those cases in which the transition probabilities p(x, dy) have
a density p(x, y), say, with respect to some reference measure μ(dy) on the state
space. In the case of Markov chains on a countable state space, this measure may
be taken to be the counting measure, assigning mass 1 to each singleton in the state
space.

Example 4 (Maps on the Real Number Line). For a class of simple examples with
an uncountable state space, let S = R and f a bounded measurable function on
R, a ≤ f (x) ≤ b. Let {εn} be an i.i.d. sequence of real-valued random variables
whose common distribution has a strictly positive continuous density ϕ with respect
to Lebesgue measure on R. Consider the Markov process

Xn+1 := f (Xn)+ εn+1 (n ≥ 0), (19.24)

withX0 arbitrary (independent of {εn}). Then the transition probability p(x, dy) has
the density

p(x, y) := ϕ(y − f (x)). (19.25)

Note that

ϕ(y − f (x)) ≥ ψ(y) for all x ∈ R, (19.26)

where

ψ(y) := min{ϕ(y − z) : a ≤ z ≤ b} > 0.

Now Corollary 19.2 applies with λ as the measure with density ψ and m = 1.
In contrast to this class, when p(x, dy) are mutually singular for all or most x,

one may have infinitely many mutually singular invariant probabilities. This may
happen, e.g., if in (19.24), the εn are discrete. The example below and Exercises 2–
19 demonstrate the dramatic difference in behavior of Xn, such as governed
by (19.24), that may arise with the same f but with εn having a positive density
in one case and being discrete in the other case. Assumptions such as monotonicity,
or contraction, of f are therefore invoked to guarantee stability in distribution, i.e.,
the convergence in distribution to a unique invariant probability, irrespective of X0.

Example 5 (An Erdös Problem). Let {εn : n = 1, 2, . . . } be an i.i.d. sequence of
symmetric Bernoulli ±1-valued random variables, and let 0 < b < 1. According
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to Proposition 17.1, the distribution πb of the random series
∑∞
n=0 ±bn :=∑∞

n=0 εn+1b
n is the unique invariant probability for the Markov chain Xn+1 =

bXn + εn+1, n = 0, 1, 2 . . . In the case b = 1/2, define T : [0, 1) → [−2, 2)
by T (x) := ∑∞

n=0(2θn+1 − 1)2−n, where x := ∑∞
n=1 θn2−n is the unique binary

expansion of x ∈ [0, 1) having θn = 0 for infinitely many n. Then π 1
2

= λ ◦ T −1,

where λ is Lebesgue measure on [0, 1). But T x = 4
∑∞
n=1 θn2−n − ∑∞

n=0 2−n =
4x − 2, x ∈ [0, 1). Thus π 1

2
is the normalized Lebesgue measure on [−2, 2).

Next consider the case b = 1
3 . Let K denote the standard Cantor subset of

[0, 1] obtained by successively removing middle one-third intervals, or equivalently,
K := {x = ∑∞

n=1 αn3−n : αn ∈ {0, 2} for all n}. Define T : K → [−3/2, 3/2]
by T (x) := ∑∞

n=0(αn+1 − 1)3−n, x ∈ K. Then π 1
3

= μ ◦ T −1, where μ is the

continuous singular Cantor distribution supported on K ⊂ [0, 1]. But T (x) =
3x − 3/2, x ∈ K. Thus π 1

3
is supported on a Cantor subset.2 A famous conjecture

by Paul Erdös that πb is absolutely continuous remained unresolved for nearly sixty
years until Solomyak (1995) proved it for 1/2 ≤ b < 1.

Example 6 (Markov Chain Monte Carlo/MCMC). In the Metropolis–Hastings
algorithm, one considers estimating an unknown strictly positive probability density
f on a state space (S,S, μ), with respect to a sigma finite measure μ, specified
up to a normalizing constant that is not computable, but the ratio f (x)/f (y) is
computable. For this, the algorithm constructs a Markov chain on S whose unique
invariant probability, and asymptotic distribution, is f . For this purpose, consider a
distribution given by a positive Markov kernel (proposal distribution), i.e., strictly
positive transition probability density q(x, y) ≡ q(y|x) from which it is easy to
select an observation y, given x. Beginning with an initial state X0 = x0, one
draws an observation Y0 with distribution q(·|x)μ(dy). One lets X1 = Y0 (as the
state of the Markov chain at time 1) with probability given by the acceptance ratio
a(X0, Y0), where

a(x, y) = min{f (y)q(x|y)
f (x)q(y|x) , 1}, (19.27)

and let X1 = X0 with probability 1 − a(X0, Y0). The transition probability of this
Markov chain is given by

p(x, dy) = q(y|x)a(x, y)μ(dy)+ [
∫

S

(1 − a(x, z))q(z|x)μ(dz)]δx(dy).
(19.28)

Letting

2 For further results on the problem of delineating the structure of πb beginning with early results
of Erdos (1937), see Peres et al. (1999).
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R(x) :=
∫

S

(1 − a(x, y))q(y|x)μ(dy), (19.29)

one has

p(x, B) =
∫

B

p(x, y)μ(dy)+ R(x)δx(B), 1 = p(x, S) =
∫

S

p(x, y)μ(dy)+ R(x).
(19.30)

That is, the chain has a density component p(x, y) ≡ p(y|x) = q(y|x)a(x, y) on
{y ∈ S : y �= x} and a point mass at {x} with probability R(x). Setting p(x, x) = 0
for all x, the transition density component p(x, y) satisfies the detailed balance
condition

f (y)p(y, x) = f (x)p(x, y) for all x, y ∈ S. (19.31)

To see this, note that if f (y)q(x|y) > f (x)q(y|x), then a(x, y) = 1, and
the right side in (19.31) equals f (x)q(y|x). But in this case, a(y, x) =
f (x)q(y|x)/[f (y)q(x|y)], and the left side of (19.31) is given by the ratio
f (y)q(x|y)f (x)q(y|x)/[f (y)q(x|y)] = f (x)p(x, y). The case f (y)q(x|y) <
f (x)q(y|x) is similar.

Theorem 19.5. The pdf f is an invariant probability density with respect to μ for
the Markov chain:

∫

S

p(x, B)f (x)μ(dx) =
∫

B

f (y)μ(dy) for all B ∈ S. (19.32)

Proof. First use (19.30) and then (19.31) to obtain that

∫

S
p(x, B)f (x)μ(dx) =

∫

S

[∫

B
(p(x, y)μ(dy)

]

f (x)μ(dx)+
∫

S
R(x)f (x)δx(B)μ(dx)

=
∫

S

[∫

B
p(y, x)f (y)μ(dy)

]

μ(dx)+
∫

B
R(x)f (x)μ(dx)

=
∫

B

[∫

S
p(y, x)μ(dx)

]

f (y)μ(dy)+
∫

B
R(y)f (y)μ(dy)

=
∫

B

[∫

S
p(y, x)μ(dx)+ R(y)

]

f (y)μ(dy)

=
∫

B
f (y)μ(dy).

For the last equality, we have used the last relation in (19.30).

Proposition 19.6. In the Metropolis–Hastings algorithm, assume f (y) >

0 for all y and q(x, y) = q(y|x) > 0 (μ-a.e. in y, for every x). Then, if h
is a bounded measurable function, 1

n

∑n−1
m=0 h(Xm) converges almost surely to
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∫
S
h(y)π(dy) for μ-almost every initial state X0 = x. Here π(dy) = f (y)μ(dy) is

the invariant measure of the Markov chain {Xn : n = 0, 1, . . . } constructed above.
(That is, π has the density f with respect to μ).

Proof. Consider the stationary Markov process starting with initial distribution π .
We denote by Pπ the distribution of the Markov process with initial distribution π
and by Px its distribution starting at x (X0 = x). According to Birkhoff’s ergodic
theorem, we need to show that the shift-invariant σ -field I is trivial. First note that,
since f is strictly positive (μ-a.e.), μ and π are absolutely continuous with respect
to each other (i.e., π(B) = 0 if and only if μ(B) = 0). Suppose now, if possible,
that I is not trivial so that there exists G ∈ I such that 0 < Pπ(G) < 1. From
the proof of Theorem 16.4, it follows that there exists a set B ∈ S such that [X0 ∈
B] = G almost surely (with respect to Pπ ) and that the probability πB defined
by πB(A) = π(A ∩ B)/π(B),A ∈ S , is an invariant probability for the Markov
process. In particular πB(Bc) = 0. However, since π(Bc) > 0, μ(Bc) > 0. This
leads to the contradiction

0 = πB(Bc) =
∫

S

p(x, Bc)πB(dx) ≥
∫

S

[∫

Bc
p(x, y)μ(dy)

]

πB(dx) > 0.

(19.33)

Here p(x, y) is the strictly positive density component of the transition probability
p(x, dy), see (19.30). The second equality in (19.33) follows from the invariance of
πB , while the last (strict) inequality follows from the positivity of the integral within
brackets [ ], for every x. Thus I is trivial, and the stationary Markov process with
distribution Pπ is ergodic. Therefore, by Birkhoff’s ergodic theorem, 1

n

∑n
j=1 h(Xj )

converges π -almost surely to
∫
S
h(y)π(dy). Conditioning on X0, it then follows

that for π -almost all x, 1
n

∑n
j=1 h(Xj ) converges to

∫
S
h(y)π(dy) almost surely,

with respect to Px . �
Remark 19.1. A simple illustration is obtained by taking q(x, y) = g(y), y ∈ S,
independent of x, i.e., independent sampling, and then γ = π/g is bounded. Note
that in this case, the acceptance ratio is a(x, y) = min{f (y)

f (x)
g(x)
g(y)

∧ 1} (Exercise 19).

We now turn to the so-called Gibbs sampler3 as an alternative to the Metropolis–
Hastings algorithm. The latter is difficult to apply directly to state spaces S
of dimension d > 1 partly because of the problem with directly generating
random vectors and partly because of the slow rate convergence to stationarity of
multidimensional chains. The Gibbs sampler alleviates these problems by using
several one-dimensional problems to manage a multidimensional problem. To
illustrate this, consider the two-dimensional problem with (X, Y ) having density
f (x, y), on S ⊂ R

2, with respect to the product μ × ν of two sigma-finite
measures on (S,S). Let fY |X(y|x) denote the conditional density of Y (at y) given

3 See Gelman et al. (1995) for an early exposition. Also see Chib and Greenberg (1995).
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[X = x]. Similarly, define fX|Y (x|y). Assume that it is possible to sample from the
conditional distributions.

Algorithm:

(i) Generate X1 with density fX|Y (·|y0).
(ii) Generate Y1 with density fY |X(·|X1).

(iii) Given (Xn, Yn), generate Xn+1 with density fX|Y (·|Yn), and generate Yn+1
with density fY |X(·|Xn+1), n = 1, 2, . . .

Theorem 19.7. Assume S is an open rectangle in R
2 and f (x, y) > 0 for all

(x, y) ∈ S. Then (a) the Markov chain {(Xn, Yn) : n ≥ 0} has the invariant density
f (x, y), and (b) for every bounded, measurable real-valued function h on S,

1

n

n−1∑

m=0

h(Xm, Ym)→
∫

S

h(x, y)μ(dx)ν(dy), (19.34)

almost surely for all initial states (x0, y0) outside a μ× ν-null set as n→ ∞.

Proof. (a) The transition probability density of the Markov chain (Xn, Yn), n ≥ 0,
is given by

q(x1, y1|x1, y0) = fX|Y (x1|y0)fY |X(y0|x1) = f (x1, y0)

fY (y0)

f (x1, y1)

fX(x1)
, (19.35)

so that
∫

S

q(x1, y1|x1, y0)f (x0, y0)μ(dx0)ν(dy0)

=
∫

S

(∫

S

f (x0, y0)μ(dx0)

)
f (x1, y0)f (x1, y1)

fY (y0)fX(x1)
ν(dy0)

=
∫

S

fY (y0)f (x1, y0)f (x1, y1)

fY (y0)fX(x1)
ν(dy0)

= f (x1, y1). (19.36)

This establishes part (a). For (b), the proof of convergence is similar to that of
Proposition 19.6 and left as Exercise 19.

The next application of Theorem 19.1 is to Markov processes generated by
iterations of i.i.d. monotone maps already introduced in Chapter 18. Indeed, the
basic notion of “splitting” in this chapter may be thought of as a generalization
of that appearing on iterations of i.i.d. continuous monotone maps on a compact
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interval,4 originally due to Dubins and Freedman (1966). We will say γ is monotone
increasing if γ x ≤ γy whenever x ≤ y. Similarly, γ is monotone decreasing if
γ x ≥ γy whenever x ≤ y.

Corollary 19.8 (Convergence of Iterations of I.I.D. Monotone Maps). Let S ⊂ R

be an interval, finite or infinite, and S its Borel σ -field. Suppose {αn}n≥1 is an i.i.d.
sequence of monotone random maps on S with the following property:

(Splitting) There exist m ≥ 1, x0 ∈ S, and δ > 0, such that

P(αm . . .α1x ≥ x0 for all x, or αm . . .α1x ≤ x0 for all x) ≥ δ. (19.37)

Then the Markov process {Xn(x) := αn . . .α1x}n≥0, x ∈ S, has a unique invariant
probability π and

sup
x∈S

|P(Xn(x) ≤ z)− π((−∞, z] ∩ S)| ≤ (1 − δ)[n/m] (n ≥ 1). (19.38)

Proof. One applies Theorem 19.1 with A = {(−∞, z] ∩ S : z ∈ R}, N = m. In
this case, d(μ, ν) is the supremum (or, uniform) distance between the distribution
functions of μ and ν and (P(S), d) is a complete metric space. Also, if γ is a
monotone increasing map on S, then d(μ ◦γ−1, ν ◦γ−1) = sup{μ(γ−1((−∞, z] ∩
S)) − ν(γ−1((−∞, z] ∩ S))| : z ∈ R}. If γ is monotone increasing, then
γ−1((−∞, z]∩S) is an interval of the type (−∞, z′]∩S or (−∞, z′)∩S (the latter
may arise if γ is not continuous). Clearly, |μ((−∞, z′] ∩ S)− ν((−∞, z′] ∩ S)| ≤
d(μ, ν). Since the distribution function is right continuous, and d is the uniform
distance, it follows that |μ((−∞, z′) ∩ S) − ν((−∞, z′) ∩ S)| ≤ d(μ, ν). If γ
is monotone decreasing, then the same argument works on taking the μ and ν-
measures of the complement of γ−1((−∞, z] ∩ S).

It remains to check the “splitting” condition 3. We will check the version of
3′ appearing in italics preceding the statement of Corollary 19.2. For each A =
(−∞, z] ∩ S, let FA be the set appearing in parentheses in (19.37). Fix ω ∈ FA,
and write γ := αm(ω) . . .α1(ω). If γ x ≤ x0 for all x, then γ x ∈ A ≡ (−∞, z] ∩
S for all x if z ≥ x0, and γ x ∈ Ac ≡ (z,∞) ∩ S for all x if z < x0. Similar
argument applies if γ x ≥ x0 for all x.

An important generalization of Corollary 19.8 to multidimension is provided by
Theorem 19.9 below. For its statement, define two metrics on the space P(S) of all
probability measures on the Borel sigma-field S of a Borel measurable subset S of
R
k (S is nonempty and not a singleton). Consider A ⊂ S comprising all sets A of

the form

A = {y ∈ S : ϕ(y) ≤ x}, (19.39)

4 The Corollary 19.8 also extends to closed sets S ⊂ R
k , with a coordinatewise partial order.

For this, see Bhattacharya and Lee (1988). Also see Bhattacharya and Majumdar (2010a), and
Chakroborty and Rao (1998).
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where ϕ a non-decreasing continuous function on S into R
k , x ∈ R

k , and define

dA(μ, ν) = {sup |μ(A)− ν(A)| : A ∈ A}, μ, ν ∈ P(S). (19.40)

Also define for a > 0, μ, ν ∈ P(S),

da(μ, ν) = sup{|
∫

S

hdμ−
∫

S

hdν| : h ∈ Ha}, (19.41)

where Ha is the class of all real-valued non-decreasing Borel measurable functions
h on S, 0 ≤ h ≤ a. The (partial) ordering ≤ on R

k used here is the coordinatewise
order: x ≤ y if x(i) ≤ y(i) for all 1 ≤ i ≤ k, (x = (x(1), . . . , x(k)), y =
(y(1), . . . , y(k))). Note that da(μ, ν) = ad1(μ, ν). Let Γ denote the class of all
non-decreasing Borel measurable functions on S into S, and G a sigma-field on Γ
such that (γ, x)→ γ (x) is measurable on (Γ × S,G ⊗ S) into (S,S).
Theorem 19.9 (Convergence to Equilibrium of Monotone Markov Processes in
Multidimension). Assume S is a closed subset of R

k . Let Q be a probability
measure on (Γ,G) with the following splitting property: (H): There exist a positive
integer N , δi > 0, and measurable subsets Fi of (Γ N,G⊗N)(i = 1, 2), and x0 ∈ S
such that:

1. QN(F1) = δ1, where F1 := {γ ∈ Γ N : γ̃ x ≤ x0 for all x ∈ S}
2. QN(F2) = δ2, where F2 := {γ ∈ Γ N : γ̃ x ≥ x0 for all x ∈ S}
where γ̃ is the composition

γ̃ = γNγN−1 · · · γ1 for γ = (γ1, . . . , γN) ∈ Γ N. (19.42)

Then, letting δ = min{δ1, δ2}, one has

d1(T
∗nμ, T ∗nν) ≤ (1 − δ)[n/N] for all μ, ν ∈ P(S), n ≥ 1. (19.43)

Also, there exists a unique invariant probability π of the Markov process generated
by i.i.d. iterations with common distributionQ, and the following holds:

d1(T
∗nμ, π) ≤ (1 − δ)[n/N ] for all μ ∈ P(S), n ≥ 1. (19.44)

Proof. For h ∈ H1, one has

∫

S

hd(T ∗Nμ)−
∫

S

hd(T ∗Nν) =
∫

S

{∫

Γ N
h(γ̃ x)QN(dγ )

}

μ(dx)

−
∫

S

{∫

Γ N
h(γ̃ x)QN(dγ )

}

ν(dx)
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=
∑

1≤i≤4

{∫

S

hi(x)μ(dx)−
∫

S

hi(x)ν(dx)

}

.

(19.45)

Here

h1(x) =
∫

F1\(F1∩F2)

h(γ̃ x)QN(dγ ),

h2(x) =
∫

F2\(F1∩F2)
h(γ̃ x)QN(dγ ),

h3(x) =
∫

(F1∪F2)c
h(γ̃ x)QN(dγ ),

h4(x) =
∫

F1∩F2

h(γ̃ x)QN(dγ ). (19.46)

Since γ̃ x = γ̃ x0 on F1 ∩ F2, the difference between the two integrals in (19.45)
for i = 4 vanishes. Now h1 and h3 are non-decreasing and 0 ≤ h1(x) ≤
h(x0)(Q

N(F1)−QN(F1 ∩ F2)) := a1, h1(x) ∈ Ha1 . Hence,

|
∫

S

h1(x)μ(dx)−
∫

S

h1(x)ν(dx)| ≤ a1d1(μ, ν). (19.47)

Also, 0 ≤ h3(x) ≤ 1 −QN(F1 ∪ F2) := a3, h3(x) ∈ Ha3 , so that

|
∫

S

h3(x)μ(dx)−
∫

S

h3(x)ν(dx)| ≤ a3d1(μ, ν). (19.48)

Next, consider the nonincreasing function

h′
2(x) =

∫

S

∫

F2\(F1∩F2)

(1 − h(γ̃ x))QN(dγ ), (19.49)

0 ≤ h′
2(x) ≤ (1 − h(x0))(Q

N(F2) − QN(F1 ∩ F2)) := a2, say, a2 − h′
2(x)

being a non-decreasing function, 0 ≤ a2 − h′
2(x) ≤ a2, belonging to Ha2 .

Hence, | ∫
S
h′

2(x)μ(dx) − ∫
S
h′

2(x))ν(dx)| ≤ a2d1(μ, ν). But the left side equals
| ∫
S
h2(x)ν(dx)−

∫
S
h2(x)μ(dx)|, so that

|
∫

S

h2(x)μ(dx)−
∫

S

h2(x)ν(dx)| ≤ a2d1(μ, ν). (19.50)

The relations (19.47)–(19.50) yield
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d1(T
∗Nμ, T ∗Nν) ≤ sup

h∈H1

(a1 + a2 + a3)d1(μ, ν)

= sup
h∈H1

{h(x0)(Q
N(F1)−QN(F1 ∩ F2)

+ (1 − h(x0))(Q
N(F2)−QN(F1 ∩ F2))

+ 1 − (1 −QN(F1 ∪ F2))d1(μ, ν)

≤ max{QN(F1)−QN(F1 ∩ F2),Q
N(F2)−QN(F1 ∩ F2)}

+QN(F1 ∪ F2)d1(μ, ν) = δd1(μ, ν). (19.51)

Iterating the inequality d1(T
∗Nμ, T ∗Nν) ≤ δd1(μν) with μ, ν replaced by

T ∗Nμ, T ∗Nν, and so on, and using

d1(T
∗μ, T ∗ν) = sup

h∈H1

{|
∫

S

[
∫

S

h(y)p(x, dy)]μ(dx)−
∫

S

[
∫

S

h(y)p(x, dy)]ν(dx)|}

= sup
h∈H1

|
∫

S

∫

Γ

h(γ̃ x)Q(dγ )μ(dx)−
∫

S

∫

Γ

h(γ̃ x)Q(dγ )ν(dx)|

≤ d1(μ, ν),

we arrive at (19.43). Note that the inner integral
∫
Γ
h(γ̃ x)Q(dγ ) above is a

non-decreasing function of x bounded between 0 and 1. If one could prove that
(P(S), d1) is a complete metric space, then the proof of the theorem would be
complete, letting π be the limit of the Cauchy sequence {T ∗nν} with ν = T ∗mμ
in (19.43). Unfortunately, that is a rather complex issue (see Remark 19.2). Instead,
we consider the metric dA, and note that d1 ≥ dA. h ≡ 1 − 1A ∈ H1 for every
A ∈ A. Hence, (19.43) holds with dA replacing d1. Lemma 2 below proves that
(P(S), dA) is a complete metric space. Hence, the Cauchy sequence {T ∗nμ} under
dA converges to a limit π , say, which is easily seen to be the unique invariant
probability of the Markov process. The relation (19.44) follows.

Lemma 2 (Completeness of (P(S), dA)). If S is a closed subset of R
k , then

(P(S), dA) is a complete metric space.

Proof. Let {Pn} be a Cauchy sequence in (P(S), dA). Due to the completeness of
R, Pn(A) converges uniformly on A to some function P∞(A), 0 ≤ P∞(A) ≤ 1.
Let P̂n be the extension of Pn to R

k , i.e., P̂n(B) = Pn(B ∩ S) for all Borel sets B
in R

k . Taking ϕ to be the identity map on S, ϕ(y) = y, as one of the functions in
the definition of A, the sequence {Fn(x) : x ∈ R

k} of distribution functions of {P̂n}
is a Cauchy sequence converging uniformly on R

k to a distribution function F of a
probability measure P̂ on R

k . Since S is closed and Pn(S) = 1 for all n, it follows
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from Alexandrov’s Theorem5 that 1 ≥ P̂ (S) ≥ lim supn Pn(S) = 1 so that P̂ (S) =
1. Let P be the restriction of P̂ to S. Then P ∈ P(S). We will show that P∞ = P .
Let O be an open subset of S. Then O = G ∩ S, where G is an open subset of
R
k . Now lim infn Pn(O) = lim infn P̂n(G) ≥ P̂ (G) = P(O), proving the desired

result that Pn converges weakly to P . Note that the two equalities here follow from
the definition of P̂ and P , while the inequality follows from Alexandrov’s Theorem,
using the weak convergence of P̂n to P̂ . We have proved that Pn converges weakly to
P . This implies that for every non-decreasing continuous function ϕ on S (into R

k),
Pn◦ϕ−1 (on R

k) converges weakly to P ◦ϕ−1, so that the distribution function Fn(x)
of Pn ◦ ϕ−1 converges to that of P ◦ ϕ−1, say F(x), uniformly (as argued above).
With A as defined in (19.39), this says that Pn(A) ≡ Fn(x) → F(x) ≡ P(A), as
n→ ∞. Hence, P(A) = P∞(A) for all A of the form (19.39).

The following example6 shows that the hypothesis that S is closed, or some such
restriction is necessary for the result of Theorem 19.9.

Example 7. Let C ⊂ [0, 1] be the Cantor “middle-third” set, P be the Cantor
distribution with support C, and X be a random variable with distribution P . The
distributions Pn of X + 3−n satisfy Pn([0, 1]\C) = 1, with distribution functions
converging uniformly to the distribution function of P , but P([0, 1]\C) = 0. Hence,
(P([0, 1]\C), dA) is not complete.

Remark 19.2. One can extend Theorem 19.9 to state spaces that are open or semi-
closed rectangles, finite, or infinite.7 But completeness of P(S) under the metric d1
seems to be a delicate issue.8

Definition 19.1. A Markov process on a Borel subset S of Rk having the transition
probability p(x, dy) is said to be monotone increasing if p(x, dy) is stochastically
larger than p(x′, dy) whenever x′ ≤ x.

This definition means that if X and X′ have distributions p(x, dy) and p(x′, dy),
respectively, then X is stochastically larger than X′: P(X > y) ≥ P(X′ > y)

for all y ∈ R
k . Equivalently, writing Fz as the distribution function of a random

variable with distribution p(z, dy), a monotone increasing Markov process satisfies
Fx(y) ≤ Fx′(y) for all y, if x′ ≤ x. In this sense, the Markov processes generated by
iterations of i.i.d. monotone non-decreasing maps are monotone increasing. Further
results pertaining to monotone Markov processes are presented in Chapter 24 in the
context of coupling.

5 See BCPT Theorem 7.1, pp. 137–139; Billingsley (1968): pp. 11–14.
6 [Personal communication (1994)] This example was kindly furnished by Professor B.V. Rao, ISI
Kolkata, India.
7 See Bhattacharya and Lee (1997).
8 Some general insights and detailed analysis for subsets S of R and R

2 may be found in
Chakroborty and Rao (1998).
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We leave the proof of the following corollary to Exercise 19. Note that there is a
certain symmetry in the splitting hypothesis (H).

Corollary 19.10 (Convergence to Equilibrium of Monotone Decreasing Markov
Processes). Theorem 19.9 holds for iterations of monotone nonincreasing i.i.d.
maps.

Remark 19.3. When the state space is an interval, the above corollary follows as
a special case of Corollary 19.8. However, a dramatic difference between non-
decreasing and nonincreasing cases is that the necessity condition for the existence
of a unique equilibrium in Proposition 19.7 may fail in the nonincreasing case. We
cite an example of randomly iterated quadratic maps γθi (x) = θix(1 − x)(i = 1, 2)
on [0, 4], with θ1 = 3.18, θ2 = 3.20. The maps leave the interval [u, v] invariant,
where u = min{1 − 1/θ1}, γθ1(θ2/4)} = 0.5088, v = θ2/4 = 0.80. The maps
γθi (i = 1, 2) are decreasing on [u, v]. They are also periodic, each with a two-
period stable orbit. An even number of random iterates are increasing satisfying the
splitting condition on a subinterval [u, q1] of [u, v], and also on [q2, v], while an
odd number of iterations take the first subinterval to the second and vice versa. The
Markov process is periodic, or cyclical, and the transition probability p(n)(x, dy)
converges only in Cesaro mean to a unique invariant probability, although no
splitting condition holds.9

The final result of this chapter is an FCLT for monotone Markov processes.

Theorem 19.11 (FCLT for Monotone Markov Processes). Let the hypothesis of
Theorem 19.9 hold for a Markov process {Xn : n ≥ 0} generated by i.i.d. monotone
non-decreasing maps. (a) (One-dimensional Case). Let S be an interval. If f may
be expressed as the difference between two monotone non-decreasing functions in
L2(S, π), then the FCLT holds for the polygonal process Yn(t) = (1/

√
n)Sn(t) =

(1/
√
n)[f (X1) + · · · + f (X[nt]) + (nt − [nt])f (X[nt]+1])] (0 ≤ t ≤ 1). (b)

(Multidimensional Case). For k > 1, let the state space be a closed subset S of Rk .
The FCLT holds for f that may be expressed as the difference between two bounded
measurable monotone increasing functions on S. (c) The variance parameter σ 2 for
the limiting Wiener measure in (a), (b) is given by σ 2 = ∫

S
g2dπ − ∫

S
(T g)2dπ ,

where (I − T )g = f − ∫
S
f dπ , i.e., f − ∫

S
f dπ belongs to the range of I − T in

L2(S, π).

Proof. (a) First let us state a simple result: for all probability measures μ on R such
that

∫
R
x2μ(dx) <∞, the following equality holds

∫

R

x2μ(dx)− (
∫

R

xμ(dx))2 = (1/2)
∫

R

∫

R

(x − y)2μ(dx)μ(dy), (19.52)

9 For the details, we refer to Bhattacharya and Majumdar (2007), p. 315.
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which is easily proved by expanding the square on the right side and integrating.
Next, let f be monotone non-decreasing on S, f ∈ L2(S, π). By (19.52), μ(dy) =
p(N)(x, dy), where p(x, dy) is the transition probability of the Markov process.
Writing f = ∫

S
f dπ and || · ||2 for the L2 norm in L2(S, π), one has using (19.52)

||T N(f − f )||22

=
∫

S

{∫

S

(f (y)− f )p(N)(x, dy)
}2

π(dx)

=
∫

S

[∫

S

(f (y)− f )2p(N)(x, dy)

−(1/2)
∫

S

∫

S

(f (y)− f (z))2p(N)(x, dy)p(N)(x, dz)
]

π(dx)

= ||f − f ||22 − (1/2)
∫

S

[∫

S

(f (y)− f (z))2p(N)(x, dy)p(N)(x, dz)
]

π(dx).

(19.53)

The splitting condition now yields (see (19.42))

∫

S

∫

S

(f (y)− f (z))2p(N)(x, dy)p(N)(x, dz)]

≥
∫

z≥x0

∫

y≤x0

(f (y)− f (x0))
2p(N)(x, dy)p(N)(x, dz)

+
∫

z≤x0

∫

y>x0

(f (y)− f (x0))
2p(N)(x, dy)p(N)(x, dz)

≥ QN(F2)

∫

y≤x0

(f (y)− f (x0))
2p(N)(x, dy)

+QN(F1)

∫

y>x0

(f (y)− f (x0))
2p(N)(x, dy)

≥ min{QN(F1),Q
N(F2)}

∫

S

(f (y)− f (x0))
2p(N)(x, dy). (19.54)

Therefore,

∫

S

[∫

S

∫

S

(f (y)− f (z))2p(N)(x, dy)p(N)(x, dz)
]

π(dx)

≥ min
{
QN(F1),Q

N(F2)
} ∫ ∫

(f (y)− f (x0))
2p(N)(x, dy)π(dx)
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= min
{
QN(F1),Q

N(F2)
} ∫

(f (y)− f (x0))
2π(dy)

≥ min
{
QN(F1),Q

N(F2)
}

||f − f ||22 ≥ δ||f − f ||22. (19.55)

The relations (19.53) and (19.55) imply that

||T N(f − f )||22 ≤ (1 − 1

2
δ)||f − f ||22. (19.56)

So,

||T N(f − f )||2 ≤ θ ||f − f ||2, (19.57)

where θ := (1 − 1
2δ)

1/2 < 1. If f is non-decreasing, then Tf is non-decreasing,
and T nf is non-decreasing for all n; it follows on iteration that ||T n(f − f )||2 ≤
θ [n/N] for all n, so that g := ∑

0≤n<∞ T n(f − f ) is well defined and belongs to
L2(S, π), and one has (I − T )g = f − f . That is, f − f belongs to the range
of I − T . The proof of the convergence in distribution to Brownian motion of
the process {Yn(t) : 0 ≤ t ≤ 1} now follows from the Billingsley–Ibragimov
FCLT (Theorem 15.5), provided the initial distribution is π . If f = f1 − f2 with
f1, f2, both monotone non-decreasing functions in L2(S, π), then both functions,
minus their means, are in the range of I − T , and so is their difference. Hence, the
Billingsley–Ibragimov FCLT applies for this f as well. It remains to prove (a) under
an arbitrary initial distribution. Assume for now that f ∈ L2(S, π) is monotone
non-decreasing. Let Xj(x), j = 0, 1, . . . denote the Markov process starting at x,
while, as above, Xj , j = 0, 1, . . . , is the process under initial distribution π . For
simplicity, write f̃ = f − f and

Sm,m′(x) = (1/√n)
∑

m≤j≤m′
f̃ (Xj (x)),

Sm,m′ = (1/√n)
∑

m≤j≤m′
f̃ (Xj ). (19.58)

Thus S0,n(x) = S0,n0−1(x) + Sn0,n(x), and similarly for S0,n(n0 < n). Note that
S0,n0(x), S0,n0 → 0 as n → ∞ (for every n0). Also, for every r ∈ R, y →
hn(y) := P(S0,n−n0(y) > r) is monotone non-decreasing, and P(Sn0,n(x) > r) =
Ehn(Xn0(x)) = ∫

S
hn(y)p

(n0)(x, dy). Therefore, by Theorem 19.9,

sup
n>n0

|
∫

S

hn(y)p
(n0)(x, dy)−

∫

S

hn(y)π(dy)|

= sup
n>n0

|P(S0,n(x) > r)− P(S0,n−n0 > r)| → 0, (19.59)
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as n0 → ∞. Hence, given ε > 0, one may choose n0 = n0(ε) such that the left side
of (19.59) is less than ε/3, and then choose n(ε) such that for all n ≥ n(ε), one has

|P(S0,n(x) > r)− P(S0,n > r)|
≤ |P(S0,n(x) > r)− P(S0,n−n0 > r)| + |P(S0,n > r)− P(S0,n−n0 > r)|
< ε, for all n ≥ n(ε). (19.60)

Note that S0,n and S0,n−n0 differ by a sum of n0 consecutive terms whose
distribution is that of S0,n0−1, which goes to zero as n→ ∞. By (19.60), for every x,
S0,n(x) converges in distribution to the corresponding limiting normal distribution
of S0,n. An entirely analogous argument shows that all finite dimensional distribu-
tions of the process {Yn}, starting at x, say {Yn(x)}, converge to those of the limiting
Brownian motion (Exercise 19). For the tightness of {Yn(x) : n = 0, 1, . . . }, define,
for each r > 0, and positive integers n0 < n1 = n0 + 1 < n2 = n0 + 2 < · · · <
nN+1 = n, the sets

A(y) =
[

max
0≤i≤N Sn0+i,n0+i+1(y) > r

]

, B(y) =
[

max
0≤i≤N Sn0+i,n0+i+1(y) ≥ −r

]

.

(19.61)
Let A,B be the corresponding events for the stationary sequence {Xj }. Since
P(A(y)), P (B(y)) are non-decreasing in y, Theorem 19.9 yields as n→ ∞,

P(A(y))− P(A) =
∫

S

P (A(y))p(n0)(x, dy)−
∫

S

P (A)p(n0)(x, dy)→ 0

P(B(y))− P(B) =
∫

S

P (B(y))p(n0)(x, dy)−
∫

S

P (B)p(n0)(x, dy)→ 0,

(19.62)

uniformly for all r > 0. Because the process {Yn}, corresponding to the sequence
{Xj }, i.e., with X0 having the distribution π , converges in distribution to Brownian
motion, (19.62) implies that {Yn(x) : n = 0, 1, . . . } is tight (Exercise 19) and,
therefore, converges in distribution to Brownian motion with variance parameter σ 2

(see Theorem 15.5 for the computation of σ 2). On integration of the distribution
of Yn(x) with respect to x, it now follows that {Yn} converges in distribution
to Brownian motion under every initial distribution. If f = f1 − f2, both
f1, f2 are monotone non-decreasing elements of L2(S, π), and let Y (1)n , Y

(2)
n

be the two processes as above corresponding to f1, f2, respectively. Letting
S(i)m,m′(y), S(i)m,m′(i = 1, 2), be the quantities corresponding to those in (19.58).
In place of A(y), consider the set A(1)(y) = [max0≤i≤N S(1)n0+i,n0+i+1(y) >

r1], A(2)(y) = [max0≤i≤N S(2)n0+i,n0+i+1(y) > r2], r1 > 0, r2 > 0, and
similarly define B(i)(y)(i = 1, 2). Apply the above results separately to these
quantities for i = 1, 2 (Exercise 19).
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(b) Unfortunately, for k > 1, the relation (19.55) does not hold.10

But the boundedness assumption simplifies much. It is enough to consider the
case f bounded, c ≤ f (x) ≤ d, c < d, by translation, if necessary, one may
assume c ≥ 0. Then, writing f̃ = f − ∫

S
f dπ , D(u) = {y : f (y) > u},

|Tnf̃ (x)| = |
∫

[c,d]
P(f (Xn(x)) > u)du−

∫

[c,d]
P(f (Xn) > u)du|

= |
∫

[c,d]
p(n)(x,D(u))du−

∫

[c,d]
π(D(u))du| ≤ (1 − δ)[n/N],

by Theorem 19.9. Note that 1D(u) belongs to H1. It follows that the infinite
series

∑
0≤n<∞ T nf̃ (x) converges uniformly to define a bounded non-decreasing

function, say g(x), on S, and (I − T )g = f̃ . The rest of the proof of part (b) is the
same as that of the proof of part (a).

The following result of Dubins and Freedman (1966) indicates the important role
of splitting for monotone Markov processes.

Proposition 19.7. Let {αn}n≥1 be an i.i.d. sequence of increasing continuous maps
on a closed bounded interval [a, b]. Then the condition (19.37) is necessary as well
as sufficient for the existence of a unique non-degenerate invariant probability π .

Proof. Define a backward iteration by

Y0(x) ≡ x, Yn(x) := α1α2 · · ·αnx (n ≥ 1). (19.63)

Then Yn(x) and Xn(x) have the same distribution. Also,

Y1(a) ≥ a, Y2(a) = Y1(α2a) ≥ Y1(a), . . .

Yn+1(a) = Yn(αn+1a) ≥ Yn(a), . . .

i.e., the sequence of random variables {Yn(a) : n ≥ 0} is increasing. Similarly,
{Yn(b) : n ≥ 0} is decreasing. Let the limits of these two sequences be Y, Ȳ ,
respectively. As Yn(a) ≤ Yn(b) for all n,Y ≤ Ȳ . If P(Y < Ȳ ) > 0, then Y and Ȳ
cannot have the same distribution. In other words, Yn(a) (and, therefore,Xn(a)) and
Yn(b) (and, therefore, Xn(b)) converge in distribution to different limits π1, π2, say,
both invariant probabilities by Proposition 8.4(a). On the other hand, if Y = Ȳ a.s.,
then these limiting distributions are the same, say π . Also, Yn(a) ≤ Yn(x) ≤ Yn(b)
for all x, so that in this case Yn(x) converges in distribution to the same limit π ,
whatever x may be. Therefore, π is the unique invariant probability. The assumption
of non-degeneracy of π , i.e., π , does not assign all its mass at a single point, and

10 [Personal Communication (2019)] This was kindly pointed out by Dr. Eduardo A. Silva of the
Universidade de Brasilia, Brazil.
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rules out the case that with probability 1 all α(ω) have a common fixed point. Then
there exist c < d such that P(Y < c) > 0 and P(Y > d) > 0. There exists
m such that P(Ym(b) < c) > 0 and P(Ym(a) > d) > 0. Now any x0 ∈ [c, d]
satisfies (19.37).

Remark 19.4. Example 3, Chapter 18, and Theorem 18.3 provide instances of
Markov processes on [0,∞) generated by i.i.d. continuous, monotone maps that
have unique invariant probabilities11 although, in general, splitting does not hold.

Example 8 (Iterates of Quadratic Maps12). Consider the random quadratic (logis-
tic) maps on [0, 1] of the form

γθ (x) = θx(1 − x), 0 ≤ x ≤ 1, (19.64)

for parameters θ ∈ (0, 4). One may check (Exercise 19) that if 1 < θ1 < θ2 < 4,
then for any θ ∈ [θ1, θ2], the interval [a, b] = [(1 − 1

θ1
) ∧ γθ1( θ24 ), θ24 ] is invariant

under γθ . Moreover, for 1 < θ1 < θ2 ≤ 3, γθi have attractive fixed points located
at pi = 1 − 1

θi
, i = 1, 2, respectively. Consider the case 1 < θ1 < θ2 < 2,

where γθi is selected with probability ui, 0 < ui < 1, u1 + u2 = 1, i = 1, 2. Let
S = [p1, p2] ⊂ [0, 1/2] and choose x0 ∈ (p1, p2) such that for m sufficiently
large γmθ1 (p2) < x0 and γmθ2 (p1) > x0. In particular, the maps γθi , i = 1, 2, are
both increasing on S = [p1, p2], and splitting holds in Corollary 19.8 with δ =
min{um1 , um2 }. Moreover, since for any x ∈ (0, 1)\[p1, p2], the successive iterates
will enter [p1, p2] in a finite number n(x) of steps. Thus one obtains the existence of
a unique invariant probability π on (0, 1) with an exponential rate of convergence
starting from any x ∈ (0, 1). Although the maps γθi are decreasing in the case
2 < θ1 < θ2 ≤ 3, the composites γθi γθj are increasing. Thus the conclusions are
similar with the details left as Exercise13 19.

The following example14 from economics provides an application of Corollary 19.8.

Example 9 (A Descriptive Model of Capital Accumulation). Consider an economy
that has a single producible good. The economy starts with an initial stock X0 =
x > 0 of this good that is used to produce an output Y1 in period 1. The output Y1
is not a deterministic function of the input x. In view of the randomness of the state
of nature, Y1 takes one of the values fr(x) with probability pr > 0 (1 ≤ r ≤ N).
Here, fr are production functions having the following properties:

11 For the speed of convergence to the invariant probability in these examples, see Lund and
Tweedie (1996) and Bhattacharya and Majumdar (2010a) (with polynomial rates).
12 Markov processes generated by i.i.d. iterations of quadratic maps were considered by Bhat-
tacharya and Rao (1993). Also see Athreya and Dai (2000), Bhattacharya and Majumdar (2004),
(2007).
13 These examples and much more are presented in Bhattacharya and Majumdar (2007).
14 This example may be found in Mirman (1980).
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(a) fr is twice continuously differentiable, f ′
r (x) > 0, and f ′′

r (x) < 0 for all x > 0.
(b) limx↓0 fr(x) = 0, limx↓0 f

′
r (x) > 1, limx↑∞ f ′

r (x) = 0.
(c) If r > r ′, then fr(x) > fr ′(x) for all x > 0.

The strict concavity of fr in (i) reflects a law of diminishing returns, while (iii)
assumes an ordering of the technologies or production functions fr , from the least
productive f1 to the most productive fN .

A fraction β (0 ≤ β < 1) of the output Y1 is consumed, while the rest (1 − β)Y1
is invested for the production in the next period. The total stock X1 at hand for
investment in period 1 is θX0 + (1 − β)Y1. Here, θ < 1 is the rate of depreciation
of capital used in production. This process continues indefinitely, each time with an
independent choice of the production function fr with probability pr , 1 ≤ r ≤ N .
Thus, the capital Xn+1 at hand in period n+ 1 satisfies

Xn+1 = θXn + (1 − β)ϕn+1(Xn) (n ≥ 0), (19.65)

where ϕn is the random production function in period n,

P(ϕn = fr) = pr > 0 (1 ≤ r ≤ N),

and the ϕn (n ≥ 1) are independent. Thus the Markov process {Xn(x) : n ≥ 0} on
the state space (0,∞) may be represented as

Xn(x) = αn · · ·α1x,

where, writing

gr(x) := θx + (1 − β)fr(x), 1 ≤ r ≤ N, (19.66)

one has

P(αn = gr) = pr (1 ≤ r ≤ N). (19.67)

Suppose, in addition to the assumptions already made, that

θ + (1 − β) lim
x↓0
f ′
r (x) > 1 (1 ≤ r ≤ N), (19.68)

i.e., limx↓0 g′̂r (x) > 1 for all r . As limx→∞ g′
r (x) = θ + (1 − β) limx→∞ f ′

r (x) =
θ < 1, it follows from the strictly increasing and strict concavity properties of gr
that each gr has a unique fixed point ar on the state space S = (0,∞)

gr(ar ) = ar (1 ≤ r ≤ N), (19.69)

namely, ar is the point where gr crosses the line y = x. Note that by property (iii)
of fr, a1 < a2 < · · · < aN . If y ≥ a1, then gr(y) ≥ gr(a1) ≥ g1(a1) = a1, so that
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Xn(x) ≥ a1 for all n ≥ 0 if x ≥ a1. Similarly, if y ≤ aN , then gr(y) ≤ gr(aN) ≤
gN(aN) = aN , so that Xn(x) ≤ aN for all n ≥ 0 if x < aN . As a consequence, if
the initial state x is in [a1, aN ], then the process {Xn(x) : n ≥ 0} remains in [a1, aN ]
forever. In this case, one may take S = [a1, aN ] to be the effective state space. Also,
if x ≥ a1, then the nth iterate of g1, namely g(n)1 (x), decreases as n increases. For

if x ≥ a1, then g1(x) ≤ x, g(2)1 (x) = g1(g1(x)) ≤ g1(x), etc. The limit of this
decreasing sequence is a fixed point of g1 (Exercise 19) and, therefore, must be a1.
Similarly, if x ≤ aN , then g(n)N (x) increases, as n increases, to aN . In particular,

lim
n→∞ g

(n)
1 (aN) = a1, lim

n→∞ g
(n)
N (a1) = aN .

Thus, there exists an integer n0 such that

g
(n0)
1 (aN) < g

(n0)
N (a1). (19.70)

This means that if x0 ∈ [g(n0)
1 (an), g

(n0)
N a1)], then

P(Xn0(x) ≤ x0 for all x ∈ [a1, aN ]) ≥ P(αn = g1 for 1 ≤ n ≤ n0) = pn0
1 > 0,

P (Xn0(x) ≥ x0 for all x ∈ [a1, aN ]) ≥ P(αn = gN for 1 ≤ n ≤ n0) = pn0
N > 0.

Hence, the condition (19.37) of Corollary 19.8 holds, with m = n0, and there exists
a unique invariant probability π , if the state space is taken to be [a1, aN ].

Next fix the initial state x in (0, a1). Then g(n)1 (x) increases, as n increases. The
limit must be a fixed point and, therefore, a1. Since gr(a1) > a1 for r = 2, . . . N ,
there exists ε > 0 such that gr(y) > a1 (2 ≤ r ≤ N) if y ∈ [a1 − ε, a1]. Now find
nε such that g(nε)1 (x) ≥ a1 − ε. If τ1 := inf{n ≥ 1 : Xn(x) ≥ a1}, then it follows
from the above that

P(τ1 > nε + k) ≥ pk1 (k ≥ 1),

because τ1 > nε + k implies that the last k among the first nε + k functions αn are
g1. Since pk1 goes to zero as k → ∞, it follows from this that τ1 is a.s. finite. Also
Xτ1(x) < aN as gr(y) ≤ gr(aN) ≤ gN(aN) = aN (1 ≤ r ≤ N) for y ≤ a1, so that
in a single step it is not possible to go from a state less than a1 to a state larger than
aN . By the strong Markov property, and the result in the preceding paragraph on the
existence of a unique invariant distribution and stability on [a1, aN ], it follows that
Xτ1+r (x) converges in distribution to π , as r → ∞ (Exercise 19). From this, one
may show that p(n)(x, dy) converges weakly to π(dy) for all x, as n → ∞, so that
π is the unique invariant probability on (0,∞) (Exercise 19).

In the same manner, it may be checked that Xn(x) converges in distribution to π
if x > aN . Thus, no matter what the initial state x is,Xn(x) converges in distribution
to π . Therefore, on the state space (0,∞), there exists a unique invariant distribution
π (assigning probability 1 to [a1, aN ]), and stability holds. In analogy with the case
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of Markov chains, one may call the set of states {x; 0 < x < a1 or x > aN }
inessential.

The theory presented here, and in the previous Chapter 19 on iterations of
monotone maps, extends to monotone maps on general partial ordered spaces S.
We will illustrate this by an important example.

Example 10 (Propp–Wilson Algorithm and the Gibbs Sampler for an Ising Model:
Coupling from the Past). Consider the problem of random sampling from a
distribution π on a finite but enormously large state space S, where π is given
only up to a normalizing constant that is extremely difficult to calculate. A basic
approach here is Gibbs sampling, in which an appropriate Markov chain Xn is
constructed having π as an invariant distribution and such that the distribution of
Xn converges to π (say, in total variation distance) as n→ ∞. Then an observation
of Xn for a large enough n may be viewed, approximately, as an observation from
π . Having a large number of independent observations of this kind enables one
to obtain an empirical distribution that is a good estimate of π . Example 6 above
also deals with this problem, but under somewhat different assumptions. In the
present example, S is the space of configurations on the finite two-dimensional
lattice L = {(i, j) : 1 ≤ i, j ≤ M}, i.e., S = {−1,+1}L. For all considerations
below, one may alternatively choose S to be a subset {−1,+1}L1 of {−1,+1}L by
fixing the signs at all sites in L\L1, referred to as the boundary of L1. Thus an
element s = {sij : (i, j) ∈ L} of S is an assignment of −1 or +1 to each of theM2

lattice sites of L. The probability measure15 π of interest is given by

π({s}) = cβeβH(s), s ∈ S (β > 0), (19.71)

where β is a real-valued parameter and

H(s) =
∑

(i,j),(i′,j ′)
sij si′j ′, (19.72)

the sum being over neighboring sites (i, j), (i′, j ′), i.e., either |i − i′| = 1 and
j = j ′, or i = i′ and |j−j ′| = 1. The Markov chain we construct has the following
transition probabilities p(s, {s′}): given a configuration s ∈ S and a site (k, �) ∈ L,
let sk�+ denote the element of S that is the same as s at all sites (i, j) except perhaps
at (k, �), and at (k, �) the value of sk�+ is +1. Similarly, sk�− is obtained by setting
−1 at the site (k, �), but keeping it the same as s at all other sites. Define

15 In the physics literature, both in the definition of H(s) and the exponent, defining π , each, has
a minus sign. The signs are included there to make alignment of spins the least energetic (ground
states), as well as to make them the most likely in the case β > 0. However, since they cancel, we
omit them for convenience.
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p
(
s, {sk�+}

)
= 1

M2π+(k�|s), p
(
s, {sk�−}

)
= 1

M2π−(k�|s), (k, �) ∈ L, s ∈ S,
(19.73)

where

π+(k�|s) = π({sk�+})
π({sk�+})+ π({sk�−}) , π−(k�|s) = 1 − π+(k�|s). (19.74)

All other transitions have zero probabilities. Note that the normalizing constant cβ
cancels out from the numerator and denominator in (19.74). Indeed, since the signs
of only the sites neighboring to (k, �) are affected by switching from s to sk�±, one
has

p
(
s, {sk�+}

)
= 1

M2

(
exp{β∑∗k�

sij }
exp{β∑∗k�

sij } + exp{−β∑∗k�
sij }

)

, (19.75)

where
∑∗k� is the sum over all sites (i, j) in L neighboring to (k, �). Similarly,

p(s, {sk�−}) is given by (19.75) with β replaced by −β in the numerator. One may
now check that

p
(
s, {sk�+}

)
π({s}) = p(sk�+, {s})π

(
{sk�+}

)
,

p
(
s, {sk�−}

)
π({s}) = p

(
sk�−, {s}

)
π
(
{sk�−}

)
, for all (k, �) ∈ L, s ∈ S. (19.76)

Observe that s = sk�+ if sk� = +1 and s = sk�− if sk� = −1. Thus if sk� = +1,
the first relation in (19.76) is trivially true. If sk� = +1, then the numerator on
the left side of the second relation equals (cβ/M2) exp{βak�}, say, where ak� =
H(s) − ∑∗k�

sij , and the same is true for the right side; the denominators of both
sides are obviously the same. An entirely analogous argument applies to the case
sk� = −1. From Proposition 8.8, it now follows that π is invariant and the chain is
time-reversible.

Assume henceforth that β > 0, referred to as the ferromagnetic model. We now
construct monotone increasing i.i.d. maps αn (n ≥ 1) whose iterations give rise to a
Markov process with the above transition probability. For (k, �) ∈ L and u ∈ (0, 1),
define the map fk�,u on S by setting fk�,u(s) = s′, where s′ equals s at all sites
(i, j) �= (k, �) and with s′k� = +1 if 0 < u < π+(k�|s), s′ij = −1 if π+(k�|s) ≤
u < 1. Let us show that fk�,u is monotone increasing on S with respect to the usual
partial order: s ≤ s′ if sij ≤ s′ij for all (i, j) ∈ L. If s ≤ t , then, for every
(i, j) �= (k, �), one has (fk�,u(s))ij = sij ≤ tij = (fk�,u(t))ij . At the site (k, �), if
u ≥ π+(k�|s), then (fk�,u(s))k� = −1 ≤ (fk�,u(t))k�. Thus it remains to show that
π+(k�|s) ≤ π+(k�|t), i.e., if fk�,u(s) is +1 at (k, �), so is fk�,u(t). Now, π+(k�|s)
is an increasing function of

∑∗k�
sij since β > 0 and u → eu/(eu + e−u) =

e2u/(e2u+1) is increasing on (0,∞). Using the fact that
∑∗k�

sij ≤ ∑∗k�
tij , it now

follows that π+(k�|s) ≤ π+(k�|t). Thus fk�,u is increasing on S for all (k, �), u.
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Let (Ω,F , P ) be a probability space on which are defined two independent i.i.d.
sequences {Un}n≥1 and {εn}n≥1, where Un are uniform on (0, 1) and εn is uniform
on L. Define αn = fεn,Un (n ≥ 1). Then (1) αn (n ≥ 1) generate, by iteration,
the Markov process whose transition probability is given by (19.73), or (19.75), and
(2) αn are monotone increasing on S. This is true whether S is unrestricted, i.e.,
S = {−1,+1}L, or S = {−1,+1}L1 , L1 ⊂ L.

Consider the backward iterations starting at the smallest element a and the largest
element b of S. Thus, a is the constant function assigning −1 to all sites (except
at boundary points, if there is a boundary). Similarly, b is the constant function
assigning +1 to all sites (excluding the boundary). Let

Yn(a) = α1 . . .αna, Yn(b) = α1 . . .αnb (n ≥ 1). (19.77)

Now Yn(a) increases as n increases, since Yn+1(a) = Yn(αn+1a) ≥ Yn(a);
similarly, Yn(b) decreases as n increases, and Yn(a) ≤ Yn(b) for all n. Since there
are only finitely many sites, and the probability that Yn(a) remains constant for
infinitely many n is zero (Exercise 19), it follows that there is a finite (random) time
T such that16 YT (a) = YT (b). Also, as shown in the proof of Proposition 19.7, the
distribution of YT (a) (= YT (b)) is the unique invariant probability π of the Markov
chain. Thus one has achieved an exact random sampling of one observation from
the distribution π , by recording YT (a) = YT (b). By repeating this procedure, each
time independently of all the preceding, one may take a random sample of any size.

Remark 19.5. While the ferromagnetic case rests on monotonicity of the maps for
the Propp–Wilson algorithm, an extension has been developed for the so-called anti-
monotone models with some success as well.17

Exercises

1. (Doeblin Minorization Theorem) Use the following steps to give an alternate
derivation of Corollary 19.2:

(i) Letting d denote the total variation metric, show that d1(μ, ν) :=
sup{| ∫

S
f dμ − ∫

S
f dν| : f ∈ B(S), |f | ≤ 1} = 2d(μ, ν), for

all μ, ν ∈ P(S). [Hint: Here is an outline of an argument. Let f =∑k
i=1 ci1[Ai ], where |ci | ≤ 1, and the A′

is are disjoint. Then | ∫
S
f dμ −∫

S
f dν| = ∑

i∈I+ ci(μ(Ai)− ν(Ai))+∑
i∈I− ci(μ(Ai)− ν(Ai)), where

I+ := {i ≤ k : μ(Ai) > ν(Ai)} and I− := {1, 2, . . . , k}\I+. Thus,

16 A version of this so-called coupling from the past method already appears in the proof of
Proposition 19.7. The application to Monte Carlo simulations was effectively developed by Propp
and Wilson (1998).
17 See Haggstrom and Nelander (1998) for an extension exploiting earlier ideas of Wilfrid Kendall.
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| ∫
S
f dμ − ∫

S
f dν| ≤ μ(A+) − ν(A+) + μ(A−) − ν(A−) ≤ 2d(μ, ν),

where A+ := ∪i∈I+Ai,A− := ∪i∈I−Ai. Thus d1(μ, ν) ≤ 2d(μ, ν).
Conversely, forA ∈ S , take f = 1A−1S\A, so that | ∫

S
f dμ−∫

S
f dν| =

2|μ(A)− ν(A)|.
(ii) Use (19.13) to show d1(T

∗mμ, T ∗mν) ≤ (1 − δ)d1(μ, ν).

(iii) Iterate (ii) (by induction) to prove

d1(T
∗mkμ, T ∗mkν) ≤ (1 − δ)kd1(μ, ν), k ≥ 1.

(iv) Show that for all μ ∈ P(S), the sequence {T ∗mkμ : k ≥ 1} is Cauchy
for the metric d1 and therefore has a limit π that is the unique invariant
probability.

(v) Use (iii) and (iv) with ν = π to complete the proof of (19.12).

2. Consider the mixture p(x, dy) = αλ(dy)+βq(x, dy), x, y ∈ S, α > 0, β ≥ 0,
α + β = 1, where λ(dy) and q(x, dy) are probability measures on (S,S) for
each x ∈ S. Show that p(x, dy) satisfies Doeblin minorization.

3. (i) Show that P(S) is a complete metric space under the total variation metric.
(ii) Show that the Komogorov metric makes P(S) a complete metric space
when S is an interval.

4. In the context of Corollary 19.3, show that

∑

j∈S
|p(n)ij − πj | = 2 sup

B⊂S

∣
∣
∣p(n)(i, B)− π(B).

∣
∣
∣

5. Calculate the invariant probability and acceptance ratio in the case of indepen-
dence sampling, where q(x, y) = g(y), y ∈ S is independent of x ∈ S.

6. Verify that the probability that Yn(a) remains constant for infinitely many n is
zero where Yn(a) is given by (19.77).

7. Let S = [−2, 2], Xn+1 = f (Xn) + εn+1 (n ≥ 0), X0 independent of the i.i.d.
sequence {εn : n ≥ 1} on [−1, 1], and f (x) = (x+1)1[−2,0](x)+(x−1)1(0,2].
Suppose P(εn = 1) = P(εn = −1) = 1

2 .

(i) Show that with X0 ≡ x ∈ (0, 2], {Xn(x) : n ≥ 1} is i.i.d. with common
distribution πx = 1

2δx + 1
2δx−2 (i.e., πx({x}) = πx({x − 2}) = 1

2 ), so that
πx is invariant.

(ii) If X0 ≡ x ∈ [−2, 0], show that {Xn(x) : n ≥ 1} is i.i.d. with common
distribution γx = 1

2δx + 1
2δx+2, which is, therefore, invariant.

(iii) Show that the Markov process has uncountably many mutually singular
invariant probabilities.

(iv) Show that the uniform distribution π (with p.d.f. 1
4 ) on [−2, 2] is invariant,

and prove that ifX0 has distribution π , (X0 +· · ·+Xn)/(n+1) converges
a.s. to a nonconstant random variable Z as n → ∞. Find the distribution
of Z.

8. In Exercise 19, assume εn are i.i.d. uniform on [−1, 1].
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(i) Prove that {X2n(x) : n ≥ 1} is i.i.d. with common p.d.f. given by π(y) =
(1/4)(2 − |y|)1[−2,2](y) if x ∈ [−2, 2].

(ii) Show that π is the unique invariant probability, and (X0 + X1 + · · · +
Xn)/(n + 1) converges a.s. to a constant as n → ∞, no matter what the
initial distribution is.

(iii) Show that the sequence {Xn : n ≥ 1} is 2-dependent. [A sequence {Xn :
n ≥ 1} is m-dependent if, for every k ≥ 0, {Xj : 1 ≤ j ≤ k} and
{Xj : j ≥ k +m} are independent.]

9. In Exercise 19, modify f as follows. Let 0 < δ < 1
2 . Define fδ(x) := f (x) for

−2 ≤ x < −δ, and δ ≤ x ≤ 2, and linearly interpolate between (−δ, δ), so
that fδ is continuous.

(i) Show that, for x ∈ [δ, 1] (or, x ∈ [−1,−δ]), {Xn(x) : n ≥ 1} is i.i.d. with
common distribution πx (or, γx).

(ii) For x ∈ (1, 2] (or, [−2,−1)){Xn(x) : n ≥ 2} is i.i.d. with common
distribution πx (or, γx).

(iii) For x ∈ (−δ, δ){Xn(x) : n ≥ 1} is i.i.d. with common distribution π−x+1.

10. In reference to the capital accumulation example 9, complete the argument that
Xτ1+r converges in distribution to π and, consequently, p(n)(x, dy) converges
weakly to π as well.

11. Let {Zn : n ≥ 1} be an i.i.d. sequence with values in a measurable space (A,A).
Let Xn = g(Zn, Zn+1, . . . , Zn+m−1), n ≥ 1, where g is a measurable function
on (An,A⊗s) into a measurable state space (S,S). Show that {Xn : n ≥ 1} is
m-dependent.

12. Let {αn : n ≥ 1} be i.i.d. random contractions on a compact metric space
(S, ρ) : ρ(αnx,αny) ≤ ρ(x, y) for all x, y (a.s.), defined on a probability
space (Ω,F , P ). Suppose there exists F ∈ F such that: (i) P(F) > 0 and
(ii) α1(ω) is a strict contraction for ω ∈ F , i.e., ρ(α1(ω)x, α1(ω)y) < ρ(x, y)

for all x, y ∈ S. Prove that there exists a unique invariant probability π for
Xn := αn · · ·α1X0 (n ≥ 0) and thatXn converges in distribution to π , whatever
be X0.

13. In reference to Example 8, assume 1 < θ1 < θ2 < 4. Show that: (a) For
any θ ∈ [θ1, θ2], the interval [a, b] = [(1 − 1

θ1
) ∧ γθ1( θ24 ), θ24 ] is invariant

under γθ . (b) For 1 < θ1 < θ2 < 3, γθi have attractive fixed points located
at pi = 1 − 1

θi
, i = 1, 2, respectively. (c) For 1 < θ1 < θ2 < 2, both maps

are increasing. (d) For 2 < θ1 < θ2 < 3, both maps are decreasing, but θiθj
is increasing for i, j = 1, 2. Complete the proof of the existence of a unique
invariant probability for i.i.d. random iterates of the maps in this case.

14. Suppose that S comprises a single essential class of aperiodic states. Show that
there is an integer ν such that p(ν)ij > 0 for all i, j ∈ S by filling in the details
of the following steps:

(a) For a fixed (i, j), let Bij = {ν ≥ 1 : p(ν)ij > 0}. Then for each state j, Bjj
is closed under addition.
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(b) (Basic Number Theory Lemma) If B is a set of positive integers having
greatest common divisor 1 and if B is closed under addition, then there is
an integer b such that n ∈ B for all n ≥ b. [Hints:

(i) Let G be the smallest additive subgroup of Z that contains B. Then
argue thatG = Z since if d is the smallest positive integer inG, it will
follow that if n ∈ B, then, since n = qd + r, 0 ≤ r ≤ d, one obtains
r = n− qd ∈ G and hence r = 0, i.e., d divides each n ∈ B and thus
d = 1.

(ii) If 1 ∈ B, then each n = 1 + 1 + · · · + 1 ∈ B. If 1 /∈ B, then by
(a), 1 = α − β for α, β ∈ B. Check b = (α + β)2 + 1 suffices; for
if n > (α + β)2, then writing n = q(α + β) + r , 0 ≤ r < α + β,
n = q(α + β) + r(α − β) = (q + r)α + (q − r)β, and in particular
n ∈ B since q+ r > 0 and q− r > 0 by virtue of n > (r+1)(α+β).]

(c) For each (i, j), there is an integer bij such that ν ≥ bij implies ν ∈ Bij .
[Hint: Obtain bjj from (ii) applied to (i) and then choose k such that p(k)ij >
0. Check that bij = k + bjj suffices.

(d) Check that ν = max{bij : i, j ∈ S} suffices for the statement of the
exercise.

15. Complete the proof of part (b) of Theorem 19.7. [Hint: Follow similar argument
as that for Proposition 19.6.

16. Provide a proof for Corollary 19.10.
17. Show that all finite dimensional distributions of the process {Yn}, starting at x,

say {Yn(x)}, converge to those of the limiting Brownian motion as asserted in
the proof of Theorem 19.11.

18. In the context of Theorem 19.11, show that convergence in distribution (to
Brownian motion) of the process {Yn} corresponding to the sequence {Xj },
when X0 has the distribution π , implies that the sequence {Yn(x) : n =
0, 1, . . . } is tight in the case X0 = x.

19. Complete the proof of part (a) for Theorem 19.11 as indicated.
20. Let Γ be a finite set, say Γ = {γ1, γ2, . . . , γk}, and assume the support

of Q is Γ . Show that if ∪kj=1γj (S) is a finite set {x1, x2, . . . , xm}, then d
defined by (19.3) is not a metric on P(S) if P(S) includes a μ for which
μ({x1, x2, . . . , xm}) = 0.



Chapter 20
Irreducibility and Harris Recurrent
Markov Processes

Unlike discrete parameter Markov processes on a finite state space where
notions of irreducibility and recurrence properties may be defined pointwise
on the state space, for Markov processes on a general state space this may not
be possible. Various notions of “neighborhood recurrence” become possible
either through topological considerations or measure theoretic considerations
relative to some reference measure. The notion of Harris recurrence consid-
ered in this chapter is of the latter type.

Suppose that {Xn}∞n=0 is a Markov process taking values in a measurable state space
(S,S) and having transition probabilities

P(Xn+1 ∈ A|X0, X1, . . . , Xn) = p(Xn,A), A ∈ S.

When S is a finite or countably infinite set with power set S then irreducibility and
recurrence refer to the properties that for each x, y ∈ S

p(n)x,y ≡ p(n)(x, {y}) = Px(Xn = y) > 0 for some n ≥ 1, (20.1)

and

Px(Xn = y for some n ≥ 1) = 1, (20.2)

respectively. Such “point–recurrence” is illustrated by the simple symmetric random
walk on the integers. However, considerations of a general random walk on S = R,
say, having continuously distributed increments makes it clear that this is not always
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an appropriate way to describe regenerative structures. As it would be for these
examples, without any significant loss of generality we will assume throughout this
chapter that S is Borel subset of a Polish space without explicitly repeating it.

A quite natural generalization1 is given as follows.

Definition 20.1. Let ϕ be a nonzero σ -finite measure on (S,S). A Markov process
{Xn}∞n=0 is said to be ϕ-irreducible if for each x ∈ S, A ∈ S with ϕ(A) > 0,

p(n)(x,A) = P(Xn ∈ A|X0 = x) > 0 for some n = n(x) ≥ 1.

If {Xn}∞n=0 is ϕ-irreducible and for each x ∈ S, A ∈ S with ϕ(A) > 0, it is also true
that

P(Xn ∈ A for some n ≥ 1|X0 = x) = 1,

then {Xn}∞n=0 is said to be ϕ-recurrent, or Harris recurrent.

In the case when S is finite or countably infinite, the notions of ϕ-
irreducibility/recurrence coincide with the pointwise notions with counting measure
ϕ(A) = cardinality of A ⊂ S.

Another form of irreducibility and recurrence is given by the following definition.

Definition 20.2. Suppose that {Xn}∞n=0 is a Markov process with values in a
measurable state space (S,S) having transition probabilities p(x, dy). If there is
a set A0 ∈ S such that

P(Xn ∈ A0 for some n ≥ 1|X0 = x) = 1 for all x ∈ S,

then A0 is said to be a recurrent set, and {Xn : n = 0, 1, 2, . . . } is said to be
A0−recurrent.

Definition 20.3. If there exists a setA0 ∈ S , a probability ν on (S,S)with ν(A0) =
1, a positive integer N , and a positive number λ such that

p(N)(x,A) ≥ λ · ν(A), for all A ∈ S, x ∈ A0, (20.3)

then we say {Xn}∞n=0 is locally minorized, and the set A0 is called a small set (with
respect to ν).

Notice that in the case A0 = S Definition 20.3 is simply Doeblin’s minorization
(See Corollary 19.2).

1 The basic ideas in this generality are due to Harris (1956).
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Example 1. Consider the Markov process2 X = {Xn : n ≥ 0} on [0,∞) defined
by iterated maps of the form γu,t (x) = ux + t, x ≥ 0, where u ∈ [0, 1] and
t ≥ 0. Specifically, suppose that (Un, Tn), n = 1, 2, . . . , is an i.i.d. sequence
independent of X0, for which Un is uniform on [0, 1] and Tn is, independently of
Un, exponentially distributed with mean 1/2. Then Xn = γn · · · γ1(X0), n ≥ 1, i.e.,
Xn+1 = Un+1Xn+Tn+1, n ≥ 0. One may check thatX has an absolutely continuous

transition probability with continuous density p(x, y) = 2e−2y e2(x∧y)−1
2x , x, y ≥ 0.

Moreover the probability π , with pdf π(x) = 4xe−2x, x ≥ 0, is easily checked
to be a time-reversible invariant probability (Exercise 5). For sufficiently large
k > 1, 0 ≤ δ < 1, the interval A0 ≡ A0(k, δ) = [δk, k] is a small set
with respect to the probability measure πk,δ(dy) = {(2δk + 1)e−2δk − (2k +
1)e−2k}−14ye−2y1[kδ,k](y)dy with N = 1 since, for x ∈ A0, A ∈ B[0,∞), one
has upon splitting the integral over [kδ, k] = [kδ, x] ∪ (x, k] for kδ < x < k,

p(x,A) ≥
∫

A∩[δk,k]
p(x, y)dy

≥ 1

2k

∫

A∩[kδ,k]
4ye−2ydy

= λk,δπk,δ(A), (20.4)

where πk,δ(A) = π(A∩A0)
π(A0)

, and

λk,δ = 1

2k
π(A0)

=
{

2kδ + 1

2k
e−2δk − 2k + 1

2k
e−2k

}

≤ 2k + 1

2k

(
e−2δk − e−k

)
< 1, (20.5)

for k sufficiently large such that e−2δk < 2k
2k+1 . Also see Exercise 5(c).

Remark 20.1. Clearly, an A0-recurrent locally minorized Markov process is ν-
irreducible and Harris recurrent. It may be shown3 that the converse is also true if S
is countably generated, e.g., if S is a Borel subset of a Polish space with S = B(S).
Indeed, if the Markov process on S is ϕ-irreducible, then for every B with ϕ(B) > 0
there is an A0 ⊂ B such that ϕ(A0) > 0 and A0 is a small set.4

2 This example arises naturally in the analysis of the Le Jan-Sznitman cascade associated with
the Navier–Stokes equations in the case of the Bessel majorizing kernel; see Bhattacharya and
Waymire (2021),Chapter 28, and Dascaliuc et al. (2022a,b).
3 See Orey (1971).
4 See Meyn and Tweedie (1993) page 109. Also see Orey (1971), Chapter 6.
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Let us see how to use the local minorization and recurrence of A0 by observing
the motion at times when it reaches A0. We first consider the case N = 1.
Specifically, starting with X0 ∈ A0, let

τ (0) ≡ τ (0)A0
= 0, τ (j) ≡ τ (j)A0

= inf
{
n > τ

(j−1)
A0

: Xn ∈ A0

}
, j = 1, 2, . . . ,

(20.6)
denote the successive times at which the process {Xn}∞n=0 visits A0. Then, by the
strong Markov property the process Xτ(0) = x ∈ A0, Xτ(1) , Xτ(2) , . . ., viewed
only on its visits to A0 is a Markov process with state space A0 having transition
probabilities (Exercise 12) given, for x ∈ A0, B ∈ A0 ∩ S , by

pA0(x, B) = P(X
τ
(1)
A0

∈ B|X0 = x)

=
∞∑

n=1

P
(
Xn ∈ B, τ (1)A0

= n|X0 = x
)
. (20.7)

First notice that if {Xn}∞n=0 isA0-recurrent and locally minorized onA0 withN = 1,
say, then

pA0(x, B) ≥ P(X1 ∈ B|X0 = x) ≥ λν(B) for all B ∈ A0 ∩ S, x ∈ A0.

(20.8)
That is, the process viewed on its visits to A0 satisfies Doeblin’s minorization and
therefore there is a unique invariant probability measure π0 on (A0, A0 ∩ S) such
that (see Corollary 19.2)

sup
x∈A0

B∈A0∩S

∣
∣
∣p
(n)
A0
(x, B)− π0(B)

∣
∣
∣ ≤ (1 − λ)n. (20.9)

Similar considerations apply for N > 1 by observing the process on a time scale of
every N steps and as it visits A0. In the case N = 1 the locally minorized Harris
recurrent process is called strongly aperiodic.

Consider the extension of pA0(x, ·) in (20.7) to a nonnegative set function on
(S,S) by defining, for each x ∈ S,B ∈ S, (B �= ∅),

pA0(x, B) :=
∞∑

n=1

P(Xn ∈ B,Xj ∈ Ac0, 1 ≤ j < n|X0 = x)

=
∞∑

n=1

A0p
(n)(x, B), (20.10)

where A0p
(n)(x, B) := P(Xn ∈ B,Xj ∈ Ac0, 1 ≤ j < n|X0 = x). Note that

pA0(x, B) is the expected number of visits to B by {Xn : n ≥ 0} during the cycle
[1, τA0 ](= [1,∞) if τA0 = ∞), that is, it equals E(N(B)|X0 = x), where
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N(B) :=
∞∑

n=1

1[Xn∈B,Xj∈Ac0 for 1≤j<n]. (20.11)

One might guess that averaging p(x, ·) over A0 with respect to an invariant
probability πA0 , say, for the process viewed on its returns to A0 might produce
an invariant measure for the process. That this is the case and, moreover, that it is
a unique (up to constant multiples) σ -finite invariant measure is the objective from
here.

The following lemma estimates EN(B) for a particular class of sets, without the
requirements of irreducibility or recurrence.

Lemma 1. Define B(m, δ) := {x ∈ Ac0 : p(m)(x,A0) > δ},m ≥ 1, δ > 0. Then
for x ∈ A0,

pA0(x, B(m, δ)) ≤ m
(

1 + 1

δ

)

(m ≥ 1, δ > 0). (20.12)

Proof. First consider B ≡ B(1, δ), x ∈ A0. Let τ (k) denote the time of the k-th visit
to B = B(1, δ) before returning to A0. Then

pA0(x, B) = ExN(B) ≤ 1 +
∞∑

k=1

Px(N(B) ≥ k+ 1) = 1 +
∞∑

k=1

Px

(
τ (k+1) <∞

)
.

(20.13)

Note that [N(B) ≥ k + 1] = [τ (k+1) < ∞], k ≥ 0, and, noting B ⊂ Ac0, so
that [τ (k+1) < ∞] ⊂ [τ (k) < ∞, Xτ(k)+1 ∈ Ac0]. Therefore, by the strong Markov
property with stopping time τ (k), one has

Px(τ
(k+1) <∞) ≤ Px(τ (k) <∞, Xτ(k)+1 ∈ Ac0|Fτ (k) )

≤ Px(τ (k) <∞)(1 − δ) ≤ (1 − δ)kPx(τ (1) <∞)
≤ (1 − δ)k. (20.14)

Hence,

ExN(B(1, δ)) ≤ 1 +
∞∑

k=1

(1 − δ)k−1 = 1 + 1

δ
. (20.15)

Next let m > 1 and apply the same argument to the m-step time scale process
Xmj , j = 0, 1, 2, . . . .

Harris recurrent Markov processes admit a nontrivial σ -finite invariant measure
which is unique up to scalar multiples, though not necessarily a probability. We
prove this under the alternative characterization of Harris recurrence indicated in
Remark 20.1.
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Before embarking on the main tasks of this chapter, the following simple but
useful result may be noted.

Lemma 2. Let ϕ be a nonzero σ -finite measure. Consider a ϕ-irreducible and ϕ-
recurrent Markov process with transition probability p(x, dy). If π is a nonzero
σ -finite invariant measure for p(x, dy), then ϕ is absolutely continuous with respect
to π .

Proof. If π(B) = 0, then
∫
S
p(n)(x, B)π(dx) = 0. Thus, for each n ≥ 1,

p(n)(x, B) = 0 π -a.s. This implies that B is not a ϕ-recurrent set, and therefore
ϕ(B) = 0.

Theorem 20.1. Assume that there exists a recurrent set A0 ∈ S which is also
a small set. Then the following hold: (a) The transition probability pA0(x, ·) on
(A0, A0 ∩ S) admits a unique invariant probability πA0 and

sup
x∈A0,B∈A0∩S

|p(Nk)A0
(x, B)− πA0(B)| ≤ (1 − λ)k, k = 1, 2, . . . , (20.16)

where N ≥ 1 and λ > 0 are as in Definition 20.3. (b) The measure π defined by

π(B) :=
∫

A0

pA0(x, B)πA0(dx), B ∈ S (20.17)

is σ -finite and it is, up to scalar multiples, the unique σ -finite invariant measure for
p(x, dy).

Proof. We first derive two general identities for every nonempty A ∈ S . Note that
the quantities Ap(n+1)(x, dy) satisfy (see (20.10)), upon conditioning with respect
to Fn = σ {X0, X1, . . . Xn},

Ap
(n+1)(x, B) ≡ P(Xn+1 ∈ B,Xj ∈ Ac for 1 ≤ j ≤ n|X0 = x)

= E(p(Xn, B)1[Xn ∈ Ac]1[Xj ∈ Ac, 1 ≤ j ≤ n− 1]|X0 = x)

=
∫

Ac
p(y, B)Ap

(n)(x, dy), n ≥ 1. (20.18)

From this one gets (see (20.10))

pA(x, B) = p(x, B)+
∫

Ac
p(y, B)pA(x, dy), x ∈ S, B ∈ S. (20.19)

Hence, under the given assumption for x ∈ A0, applying (20.14) to the N-step
transition probability, one has

pA0(x, B) ≥ p(N)(x, B) ≥ λν(B), B ∈ A0 ∩ S, (20.20)
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where N, λ > 0 and the probability measure ν are as in Definition 20.3. Part (a)
now follows from the Doeblin minorization theorem (Corollary 19.2). To prove (b),
observe that due to recurrence of A0, one has S = ∪∞

m=1 ∪∞
n=1 B(m,

1
n
), where

B(m, 1
n
) = {x ∈ S : p(m)(x,A0) >

1
n
}. By Lemma 1, π(B(m, 1

n
)) ≤ m(1 + n).

Hence π is σ -finite. The invariance of π follows from (20.19) and the fact that
π = πA0 on (A0, A0 ∩ S). Namely,

∫

S

p(y, B)π(dy) =
∫

A0

p(y, B)πA0(dy)+
∫

Ac0

p(y, B)

∫

A0

pA0(x, dy)πA0(dx)

=
∫

A0

[p(x, B)+
∫

Ac0

p(y, B)pA0(x, dy)]πA0(dx)

=
∫

A0

pA0(y, B)πA0(dy) = π(B). (20.21)

For the proof of uniqueness, let π ′ be a nonzero σ -finite invariant measure. Let
us first show that the restriction of π ′ to A0 is invariant for the process on A0, i.e.,
with respect to pA0(x, dy). For this we derive the following sequence of identities
(see (20.10) for notation)

π ′(C) =
n∑

k=1

∫

A0

A0p
(k)(x, C)π ′(dx)+

∫

S\A0

A0p
(n)(x, C)π ′(dx), C ∈ S, n = 1, 2, . . . .

(20.22)
For n = 1,A0 p

(n)(x, C) ≡ p(x, C) so that (20.22) is just the invariance of π ′. As
induction hypothesis, assume (20.22) holds for some n. Using the invariance of π ′,
and (20.18), one obtains

∫

S\A0

A0p
(n)(x, C)π ′(dx) =

∫

S

∫

S\A0

A0p
(n)(x, C)p(y, dx)π ′(dy)

=
∫

A0

∫

S\A0

A0p
(n)(x, C)p(y, dx)π ′(dy)

+
∫

S\A0

∫

S\A0

A0p
(n)(x, C)p(y, dx)π ′(dy)

=
∫

A0

A0p
(n+1)(y, C)π ′(dy)

+
∫

S\A0

A0p
(n+1)(y, C)π ′(dy). (20.23)

Replace the second integral in (20.22) by this to derive the desired relation for n+1,
completing the induction argument. Letting n → ∞ in (20.22), using (20.10), and
using the fact that the second term in (20.22) goes to zero as n → ∞, because of
recurrence of A0, we have
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π ′(C) =
∫

A0

pA0(x, C)π
′(dx), C ∈ S. (20.24)

In particular,

π ′(C) =
∫

A0

pA0(x, C)π
′(dx), C ∈ A0 ∩ S. (20.25)

This proves the invariance (with respect to pA0 ) of the restriction of π ′ to A0.

Moreover, this makes π ′(·)
π ′(A0)

an invariant probability on A0, so that by uniqueness
of the invariant probability π on A0 ∩ S , one has π ′(·) = π ′(A0)π(·) on A0 ∩ S .
From (20.25), and with π ′ = π ′(A0)π , the uniqueness of π ′ up to a constant
multiple (π ′(A0)) follows.

As an important consequence we note some conditions under which the invariant
measure π obtained under Harris recurrence is normalizable to an invariant proba-
bility.

Corollary 20.2. Assume that there exists a recurrent set A0 which is also a small
set. If supx∈A0

ExτA0 < ∞, then the Markov process {Xn : n ≥ 0} with transition
probability p(x, dy) has a unique invariant probability π .

The corollary follows using (20.10), (20.11), and the statement following them.
Due to the significance of this last result, we present another proof, which will

further show that 1
n

∑n
m=1 p

(m)(x, dy) converges to π(dy) in the total variation
metric as n→ ∞, for every initial state x, under the assumption of Corollary 20.2.

Proposition 20.1 (Regeneration Lemma). Let {Xn}∞n=0 be a Markov process on
(S,S). Assume that the process is A0–recurrent and locally minorized on A0
with N = 1. (a): {Xn}∞n=0 has a representation by i.i.d. random cycles between
regeneration times ρ(1), ρ(2), . . ., namely

Uj :=
(
Xρ(j)+1, . . . , Xρ(j+1) , ρ

(j+1) − ρ(j)
)
, j = 0, 1, 2, . . . (20.26)

are independent for j ≥ 0 and identically distributed for j ≥ 1. (b): If, in addition,
c := supx∈A0

E(τ (1)|X0 = x) <∞, then E(ρ(j+1) − ρ(j)) ≤ c/λ.

Proof. The idea of the proof is simple. When the current state is x then in the next
step it moves to y following the transition probability p(x, dy). For x ∈ A0, the
transition probability has the representation on A0 × S , with 0 < λ < 1 (see
Definition 20.3), x ∈ A0, given by

p(x, dy) = λν(dy)+ (1 − λ)q(x, dy), q(x, dy) = (1 − λ)−1{p(x, dy)− λν(dy)}.
(20.27)

That is, when x ∈ A0, in the next step with probability λ it has distribution ν(dy),
and with probability 1 − λ it has distribution q(x, dy). So one way to construct
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a Markov process with transition probabilities p(x, dy) starting at any initial state
x0 is to first let θn, n ≥ 0, be an iid sequence of Bernoulli random variables with
P(θn = 1) = λ, P (θn = 0) = 1−λ. Then the process moves according to p(x, dy)
until Xn ∈ A0, in which case Xn+1 has distribution ν(dy) if θn = 1, and has
distribution q(Xn, dy) if θn = 0.Let τ (0) = 0, τ (1) = τA0 = inf{n ≥ 1 : Xn ∈
A0}, τ (j+1) = inf{n > τ(j) : Xn ∈ A0}, n = 0, 1, 2 . . . . By the recurrence of A0,
τ (j) < ∞ a.s. for all j . The process (X, θ) = {(Xn, θn) : n = 0, 1, 2, . . . } is a
Markov process on S×{0, 1}, with the obvious product σ -field S̃ = {B×{0} : B ∈
S} ∪ {B × {1} : B ∈ S} (Exercise 6). For this process define the stopping times

ρ(0) = 0, ρ(j) = inf{n > ρ(j−1) : Xn ∈ A0, θn = 1}, j = 1, 2, . . . . (20.28)

It is simple to check that ρ(j) <∞ a.s. for all j (Exercise 6). By the strong Markov
property, at time ρ(j), the process (X, θ) starts afresh with initial distribution ν ×
δ{1}, Xρ(j) has distribution ν and θρ(j) = 1, independently of the past, i.e., the pre-
ρ(j)sigma-field Gρ(j) , say, for j = 1, 2, . . . . This proves part (a).

To prove part (b) observe that for j ≥ 1, E(ρ(j+1)− ρ(j)) = E(ρ(1)− ρ(0)|X0 ∈
A0, θ0 = 1) = E(ρ(1)|X0 ∈ A0, θ0 = 1), since in this case ρ(0) = 0 and

ρ(1) − ρ(0) = ρ(1) =
∞∑

j=1

τ (j)1[θ
τ(i)

=0 for 1≤i<j, θ
τ(j)

=1], (20.29)

the first term on the right being τ (1)1[θ
τ(1)=1]. Taking expectations and noting that

(i) θτ(j) is independent of F̃τ (j−1) := σ {(Xn, θn) : n ≤ τ (j−1)}, and of τ (j), and (ii)
E(τ (j) − τ (j−1)|F̃τ (j−1) ) ≤ c := supx∈A0

E(τ (1)|X0 = x), one has

Eρ(1) =
∞∑

j=1

E

(
1[θ

τ(i)
=0,1≤i≤j−1]τ (j)E(1[θ

τ(j)
=1])

)

= λ

∞∑

j=1

EE

(
1[θ

τ(i)
=0,1≤i≤j−1]{τ (j−1) + E(τ (j) − τ (j−1)|F̃τ (j−1)

)

≤ λ

∞∑

j=1

E

(
1[θ

τ(i)
=0,1≤i≤j−1]{τ (j−1) + c}

)

= λ

∞∑

j=1

c(1 − λ)j−1 + λ
∞∑

j=1

E

(
1[θ

τ(i)
=0,1≤i≤j−1]τ (j−1)

)

= c + λ
∞∑

j=1

E

(
1[θ

τ(i)
=0,1≤i≤j−2]{τ (j−2) + E{1[θ

τ(j−1)=0](τ (j−1) − τ (j−2)|F̃τ (j−2) )}
)

= c + cλ
∞∑

j=2

(1 − λ)j−1 + λ(1 − λ)
∞∑

j=3

E

(
1[θ

τ(i)
=0, 1≤i≤j−2]τ (j−2)

)
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≤ · · · ≤ c + c(1 − λ)+ c(1 − λ)2 + · · ·

= c

∞∑

j=1

(1 − λ)j−1 = c/λ.

This completes the proof of part (b).

Theorem 20.4 (Ergodicity of Strongly Aperiodic Harris Recurrent Processes). Let
p(x, dy) be a transition probability on (S,S). Assume that a Markov process
{Xn : n ≥ 0} with this transition probability is A0-recurrent and locally minorized,
according to Definition 20.3, and that the process is strongly aperiodic, i.e., N = 1.
If, in addition,

sup
x∈A0

Exτ
(1) <∞,

then there exists a unique invariant probability π and, whatever the initial distribu-
tion of {Xn : n ≥ 0},

sup
A∈S⊗∞

∣
∣
∣Q(n)(A)−Qπ(A)

∣
∣
∣ −→ 0 as n→ ∞, (20.30)

where Q(n) is the distribution of the after-n process X+
n := {Xn+m : m ≥ 0}, and

Qπ is the distribution of the process with initial distribution π . In particular,

sup{|p(n)(x, B)− π(B)| : B ∈ S} → 0 for all x ∈ S. (20.31)

Proof. The proof of the existence and uniqueness of an invariant probability follows
from Corollary 20.2. The proof of (20.30) follows by a coupling argument. We will
first show that the measure π1 defined by

π1(B) := Eν

ρ(1)∑

n=ρ(0)+1

1[Xn∈B] (B ∈ S) (20.32)

is invariant under p(x, dy). Here Eν denotes expectation of events in σ {Xn : n ≥
0} when X0 has distribution ν. Note that the right side in (20.32) also equals the
expectation of the sum over ρ(j) + 1 ≤ n ≤ ρ(j+1), whatever be the distribution of
X0. Now for nonnegative bounded measurable f on (S,S), define

Vj (f ) :=
ρ(j)∑

n=ρ(j−1)+1

f (Xn). (20.33)
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By Proposition 20.1, Vj (f ), j ≥ 1, are i.i.d. with expected value
∫
S
f dπ1. By the

strong law of large numbers, N−1 ∑N
j=1 Vj (f ) → ∫

S
f dπ1 a.s. as N → ∞. In

particular, with f = 1, a.s. as N → ∞ one has

ρ(N) − ρ(0)
N

→ E(ρ(1) − ρ(0)) = π1(S),
ρ(N)

N
→ π1(S). (20.34)

For each n = 1, 2, . . . , define

Nn := sup{j ≥ 1 : ρ(j) ≤ n}. (20.35)

Then by (20.34) one has a.s. as n→ ∞,

ρ(Nn)

Nn
→ π1(S). (20.36)

But 0 ≤ n−ρ(Nn) ≤ ρ(Nn+1)−ρ(Nn), and ρ(Nn+1)−ρ(Nn)
Nn

→ 0 a.s. since ρ
(k+1)−ρ(k)

k
=

ρ(k+1)

k+1
k+1
k

− ρ(k)

k
→ 0 a.s. as k → ∞. Hence (20.36) implies a.s. as n→ ∞,

n

Nn
→ π1(S). (20.37)

In the same manner for all n > ρ(1), if f is bounded and measurable, then a.s. as
n→ ∞,

1

n

n∑

m=1

f (Xm) = 1

n

ρ(1)∑

m=1

f (Xm)+ 1

n

Nn−1∑

j=1

Vj (f )+ 1

n

n∑

m=Nn
f (Xm)

= 1

Nn − 1

Nn − 1

n

Nn−1∑

j=1

Vj (f )+ 1

n

ρ(1)∑

m=1

f (Xm)+ 1

n

n∑

m=Nn
f (Xm)

→ 1

π1(S)

∫

S

f dπ1. (20.38)

Hence π(B) := π1(B)/π1(S) is the unique invariant probability for {Xn : n ≥ 0},
i.e., for p(x, dy).

We will complete the proof by a coupling argument. One may construct a (com-
mon) probability space (Ω ′,F ′, P ′), say, on which are defined two independent
families {(Xn, θn) : n ≥ 0} and {(X̃n, θ̃n) : n ≥ 0} as above with {(θn : n ≥ 0} and
{θ̃n : n ≥ 0} iid Bernoulli 0 − 1 (1 − λ, λ) and independent of X0 and X̃0. Let X0
have (an arbitrary initial) distribution μ and let X̃0 have the invariant distribution.
Let {ρ(j) : j ≥ 0} and {ρ̃(j) : j ≥ 0} denote the corresponding independent
sequences of regeneration times, and let {Y0 = ρ(0), Yk = ρ(k) − ρ(k−1) (k ≥ 1)},
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{Ỹ0 = ρ̃(0), Ỹk = ρ̃(k)−ρ̃(k−1) (k ≥ 1)} be the corresponding sequences of lifetimes
of two independent renewal processes. Under the hypothesis, Yk , or Ỹk (k ≥ 1)
has a lattice span 1, and EYk = EỸk = E(ρ(2) − ρ(1)) < ∞. Hence, as in the
coupling proof of the Renewal Theorem 8.5 in Bhattacharya and Waymire (2021),
ρ := inf{n ≥ 0 : Rn = R̃n = 0} <∞ a.s., where {Rn : n ≥ 0} and {R̃n : n ≥ 0} are
the two residual lifetime processes corresponding to {Yk : k ≥ 0} and {Ỹk : k ≥ 0},
respectively. Note that ρ is the first common renewal epoch, i.e., there arem, m̃ such
that ρ(m) = ρ̃(m̃) = ρ. Now define

X′
n :=

{
X̃n if ρ > n,

Xn if ρ ≤ n. (20.39)

Since ρ is a stopping time for the Markov process {(Wn, W̃n) : n ≥ 0}, withWn :=
(Xn, θn), W̃n = (X̃n, θ̃n), one may use the strong Markov property to see that {Xn :
n ≥ 0} and {X′

n : n ≥ 0} have the same distribution. Hence, for all A ∈ S⊗∞,

|P(X+
n ∈ A)− P(X̃+

n ∈ A)| ≤ |P((X′)+n ∈ A, ρ ≤ n)− P(X̃+
n ∈ A, ρ ≤ n)|

+|P((X′)+n ∈ A, ρ > n)− P(X̃+
n ∈ A, ρ > n)|

≤ P(ρ > n). (20.40)

Here we have used the fact (X′)+n = X+
n on [ρ ≤ n].

Remark 20.2. For the case N > 1, one first constructs X0, X1, . . . , XN−1 with
transition probabilities p(x, dy). Then apply the above proof to the N (N -skeleton)
Markov processes given by {XNk : k ≥ 0}, {X1+Nk : k ≥ 0}, . . . , {XN−1+Nk : k ≥
0}, each having transition probability p(N)(x, dy). Let π0, . . . , πN−1, respectively,
be the invariant probabilities to which these Markov processes converge in total
variation distance. Then the Markov process {Xn : n ≥ 0} converge in total variation
distance to π = 1

N

∑N−1
j=0 πj .

Remark 20.3. Theorem 20.4 is due to Athreya and Ney (1978), and Nummelin
(1978). In the context of Harris recurrence, the bivariate regenerative model
(X, θ) introduced here is often referred to as a splitting model.5 An essentially
identical construction that exploits local minorization, often referred to as Nummelin
splitting,6 provides an approach to results of the type given here based on the
construction of a representation of the process having an atom; that is a set of states
B for which transition probabilities from states x ∈ B do not otherwise depend on
x. For this purpose one defines a bivariate Markov process on S∗ = S × {0, 1} as
follows. Assume local minorization by a small set A0 with respect to a probability
measure ν on (S,S), concentrated on A0, i.e., for some 0 < λ < 1, p(x,A) ≥

5 Athreya and Ney (1978).
6 Nummelin (1978).
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λ1A0ν(A), x ∈ S,A ∈ S . For x ∈ S, A ∈ S , define x(0) = (x, 0), x(1) = (x, 1),
A(0) = A× {0}, A(1) = A× {1}, A∗ = A× {0, 1}. A(0) and A(1) are considered to
be (coded) copies of A. Let S∗ = σ {A(0), A(1) : A ∈ S}. Give S∗ the product
σ -field. If γ is a probability measure on (S,S), then the splitting of γ is the
probability γ ∗ on (S∗,S∗) defined by γ ∗(A(0)) = (1−λ)γ (A∩A0)+λγ (A∩Ac0),
γ ∗(A(1)) = λγ (A∩A0). The transition probabilities ofX∗ are then defined as above
by splitting transition probabilities in such a way that X∗ = (X, θ) ∈ S∗ inherits
Harris recurrence from X. Moreover, X is a Markov process with the transition
probabilities p(x,A), x ∈ S,A ∈ S . The set B = A

(1)
0 is an atom of X∗ since

p(x(1), ·) does not depend on x(1) ∈ B. From here techniques from renewal theory
developed for countable state Markov chains can be extended and applied.

We conclude this chapter by consideration of conditions for an exponential rate
of convergence for the total variation convergence (20.31) provided in the preceding
Ergodic Theorem 20.4, referred to as geometric ergodicity.

Definition 20.4 (Geometric Ergodicity). A Markov process on (S,S) with invari-
ant probability π is geometrically ergodic if

||p(n)(x, ·)− π(·)||T V = sup
B∈S

|p(n)(x, B)− π(B)| ≤ C(x)rn, n = 1, 2, . . . ,

for some r < 1, where C(x) < ∞ for π -a.e. x ∈ S. The process is said to be
uniformly ergodic in the case that C is a constant.

The obvious first question is to provide some condition under which local minoriza-
tion of a Harris recurrent Markov process provides geometric ergodicity. A standard
approach to this problem borrows a notion of Lyapunov function V : S → [1,∞],
with V (x) <∞ for x ∈ A0, to control the drift of the Markov process as follows.

Theorem 20.5 (Foster–Tweedie Drift Condition). Suppose that X is a ϕ-
irreducible, aperiodic Markov process with invariant probability π on a state space
(S,S). Assume the local minorization condition p(x,A) ≥ λ1A0(x)ν(A), x ∈ S,
for some 0 < λ < 1 and probability ν. If there is a Lyapunov function V ≥ 1, with
V (x) <∞ for x ∈ A0, such that for some 0 < β < 1,

ExV (X1) ≤ βV (x)+ b1A0(x), for all x ∈ S, (20.41)

then X is geometrically ergodic.

We will prove an alternate version of this theorem7 using coupling with the
advantage of providing a computable rate of convergence, but under somewhat
stronger conditions. The coupling is an independent coupling of two Markov

7 See Rosenthal (2002), Roberts and Rosenthal (2004), for both this and its extension to the more
general Foster–Tweedie Theorem 20.5.
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processes X,X′ that occurs when the two processes enter the small set A0 and an
independent coin toss is “head”, (an outcome with probability λ).

Theorem 20.6. Let X = {Xn : n = 0, 1, . . . } be a Markov process on the state
space (S,S) starting atX0 = x ∈ S and having transition probabilities p(x, dy) and
invariant initial probability π . Assume that there is a small set A0 ⊂ S, a Lyapunov
function V ≥ 1 satisfying the drift condition (20.41) with parameters β < 1, b ∈ R,
a probability measure ν on S, and λ > 0 such that local minorization (20.3) holds
with parameters N = 1, λ. Assume also that

(i) sup
x∈A0

V (x) <∞, and (ii) d = inf
x∈Ac0

V (x) >

[
b

1 − β
]

− 1. (20.42)

Let α = β + b
d+1 < 1, and B = max{1, α−1(1 − λ) sup(x,y)∈A0×A0

Rv}, where,

v(x, y) = V (x)+V (y)
2 , and for (x, y) ∈ A0 × A0,

Rv(x, y) = (1 − λ)−2
∫

S

∫

S

v(z,w)(p(x, dz)− λν(dz))(p(y, dw)− λν(dw)).
(20.43)

Then, for any 1 ≤ j ≤ n,

||Px(Xn ∈ ·)− π(·)||T V ≤ (1 − λ)j + αnBj−1
∫

S

v(x, y)π(dy). (20.44)

In particular,

||Px(Xn ∈ ·)− π(·)||T V ≤ c(x)rn, (20.45)

for r = max{(1 − λ), Bα}, c(x) = 2B−1
∫
S
v(x, y)π(dy).

Proof. The proof is by a coupling that encompasses the type of “splitting”of
probabilities involved in the use of local minorization. Next let us define the Markov
processes (X,X′) to be coupled. To start, fix arbitrary x ∈ S. Let X0 = x and
X′

0 = x′ be a sampled value from the invariant distribution π . The process is defined
recursively as follows: Let θn, n = 0, 1, 2, . . . be an i.i.d. sequence of Bernoulli 1, 0
random variables with respective probabilities λ, 1 − λ, independent of X0, X

′
0. If

x = x′, then couple X1 = X′
1 with value sampled from the distribution p(x, dy).

Suppose x �= x′, but (x, x′) ∈ A0 × A0. If θ0 = 1, then sample X′
1 from ν,

but if θ0 = 0, then sample X′
1 from q(x′, dy) = p(x′,dy)−λν(dy)

1−λ . If θ0 = 1, then
take X1 = X′

1, but if θ0 = 0, then sample X1 from q(x, dy), independently from
X′

1. Finally, if x �= x′, (x, x′) /∈ A0 × A0, then independently sample X1 and X′
1

from p(x, dy) and p(x′, dy), respectively. Now repeat this sampling beginning with
X1, X

′
1 in place of x, x′, and so on. One may readily check thatX andX′ are Markov

processes starting from δx and π , respectively, and having the common transition
probability p(x, dy).



20 Harris Recurrent Processes 301

We first check that the technical condition (20.42) implies that the coupled
processes satisfy a (bivariate) drift condition outside A0 × A0 with Lyapunov
function v(x, x′) = V (x)+V (x′)

2 for the small set A0 × A0 and parameter α; by
assumption, v(x, x′) is bounded on A0 ×A0. Specifically, if (x, x′) /∈ A0 ×A0, then
either x ∈ Ac0 or x′ ∈ Ac0, or both; thus, v(x, x′) ≥ 1+d

2 and ExV (X1)+Ex′V (X1) ≤
βV (x)+ βV (x′)+ b. Then,

E(x,x′)v(X1, X
′
1) = 1

2
[ExV (X1)+ Ex′V (X′

1)]

= 1

2
[ExV (X1)+ Ex′V (X1)]

≤ 1

2
[βV (x)+ βV (x′)+ b]

= βv(x, x′)+ b

2

≤ βv(x, x′)+ b

2

v(x, x′)
1+d

2

= (β + b/(1 + d))v(x, x′)

= αv(x, x′), (x, x′) /∈ A0 × A0. (20.46)

In view of (ii) of (20.42), one has α = β+ b/(1 + d) < 1 as required for a bivariate
Lyapunov function.

Coupling occurs at time

Tc = inf{n : Xn = X′
n} = inf{n : (Xn,X′

n) ∈ A0 × A0, θn = 1}, (20.47)

the almost sure finiteness of which will follow from the bound on P(Xn �= X′
n) as

follows. Let Nn denote the number of visits to A0 × A0 by (Xk,X′
k) in time k ≤ n.

Then, for any 1 ≤ j ≤ n,

P(Xn �= X′
n) = P(Xn �= X′

n,Nn−1 ≥ j)+ P(Xn �= X′
n,Nn−1 < j)

≤ (1 − λ)j + P(Xn �= X′
n,Nn−1 < j), (20.48)

since the event [Xn �= X′
n,Nn−1 ≥ j ] implies that [θi = 0] for j distinct values of i

corresponding to visits to A0 ×A0; else Xn = X′
n. To bound the second term define

of (20.48)

Mn = α−nB−Nn−1v(Xn,X
′
n)1[Xn �=X′

n], n = 0, 1, 2 . . . , (N−1 = 0). (20.49)

We will first show thatMn, n ≥ 0, is a supermartingale, and therefore has decreasing
expected values with increasing n. This will be accomplished by considering the
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cases [(Xn,X′
n) /∈ A0 × A0] and [(Xn,X′

n) ∈ A0 × A0], separately. Observe that
for (Xn,X′

n) /∈ A0 × A0, Nn = Nn−1, so that, recalling that (X,X′) is Markov and
noting that [Xn+1 �= X′

n+1] ⊂ [Xn �= X′
n],

E[Mn+1|σ((Xj ,X′
j ), 1 ≤ j ≤ n)]

= α−n−1B−Nn−1E[v(Xn+1, X
′
n+1)1[Xn+1 �=X′

n+1]|σ(Xn,X′
n)]

≤ α−n−1B−Nn−1 1[Xn �=X′
n]E[v(Xn+1, X

′
n+1)|σ(Xn,X′

n)]
= MnE[v(Xn+1, X

′
n+1)|σ(Xn,X′

n)]/αv(Xn,X′
n)

≤ Mn, (20.50)

where this final inequality uses the bivariate Lyapunov drift bound outside A0 ×A0.
On the other hand, if (Xn,X′

n) ∈ A0 × A0, then Nn = Nn−1 + 1, so that

E[Mn+1|σ((Xj ,X′
j ), 1 ≤ j ≤ n)]

= α−n−1B−Nn−1−1
E[v(Xn+1, X

′
n+1)1[Xn+1 �=X′

n+1]|σ(Xn,X′
n)]

≤ α−n−1B−Nn−1−1
E[v(Xn+1, X

′
n+1)1[Xn �=X′

n]|σ(Xn,X′
n)]

= α−n−1B−Nn−1−1(1 − λ)Rv(Xn,X′
n)1[Xn �=X′

n]

= Mnα−1B−1(1 − λ)Rv(Xn,X′
n)/v(Xn,X

′
n) ≤ Mn, (20.51)

by definition of B. Thus, Mn is a supermartingale. As a consequence, one has the
following bound on the second term of (20.48), using B ≥ 1 and the property v ≥ 1,

P(Xn �= X′
n,Nn−1 < j) = P(Xn �= X′

n,Nn−1 ≤ j − 1)

≤ P(Xn �= X′
n, B

−Nn−1 ≥ B−(j−1))

≤ Bj−1
E[1[Xn �=X′

n]B
−Nn−1 ]

≤ Bj−1
E[1[Xn �=X′

n]B
−Nn−1v(Xn,X

′
n)]

= αnBj−1
EMn

≤ αnBj−1
EM0 = αnBj−1

Ev(X0, X
′
0). (20.52)

The theorem now follows from (20.48) using the Borel–Cantelli lemma.

Remark 20.4. If the local minorization and the Foster–Tweedie drift condition hold
for p(N)(x, dy) for some N > 1, rather than for p(x, dy), then apply the above
argument to the N -skeleton Markov processes {XNk : k ≥ 0}, . . . , {XN−1+Nk :
k ≥ 0}, each with transition probability p(N)(x, dy) as described in Remark 20.2.
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It follows that 1
N

∑N−1
j=0 p

(Nk+j)(x, ·) converges to π in the total variation norm as
k → ∞.

Remark 20.5. The assumption supx∈A0
V (x) < ∞ is redundant since it can be

deduced8 from the other conditions of the theorem. Also the condition (ii) of (20.42)
makes the choice of the bivariate Lyapunov function simpler, but is otherwise not
necessary.9

Observe that it follows from the exponential bound in the above proof that,
choosing j = [δn] for sufficiently small δ > 0, limn→∞ P(Xn �= X′

n) = 0 at
an exponential rate. In particular, the coupling time is almost surely finite (i.e.,
successful coupling). Moreover, since the time τA0 to reach A0 starting at x ∈ S
is smaller than the coupling time one obtains the following corollary.

Corollary 20.7. Let τA0 be the hitting time of the small set A0. Then, under the
conditions of Theorem 20.6, one has

Exs
τA0 <∞, x ∈ S, (20.53)

where 1 < s < max{(1 − λ)−δ, αB−δ}, for 0 < δ < lnα
lnB .

Proof. Simply observe that τA0 ≤ Tc, where Tc is the coupling time (20.47). So, for
s > 1

Exs
τA0 ≤ Exs

Tc

≤ s +
∞∑

n=1

snPx(Tc = n)

= s +
∞∑

n=1

sn{x(Tc > n− 1)− Px(Tc > n)}

≤ 1 + s + (s − 1)
∞∑

n=1

snPx(Tc > n)

≤ 1 + s + (s − 1)
∞∑

n=1

snc(x)rn <∞, (20.54)

for r = max{(1 − λ), αB} < 1, c(x) = 2B−1
∫
S
v(x, y)π(dy), 1 < s < 1

r
.

8 See Roberts and Rosenthal (2004) for proof.
9 See Roberts and Rosenthal (2004) for a more general statement.
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Remark 20.6. It is actually true10 that under geometric ergodicity for every A such
that π(A) > 0, there is an r = rA > 1 such that EπrτA <∞.

We now turn to an important consequence of Theorem 20.6.

Definition 20.5. A real-valued sequence {Xn : n ≥ 0} is a nonlinear autoregressive
process of order k > 1, if it is of the form

Xn+1 = h(Xn+1−k, . . . , Xn−1, Xn)+ ηn+1 n ≥ 0, (20.55)

where h is a real-valued measurable function on R
k and {ηn : n ≥ 0} is an i.i.d.

sequence.

Theorem 20.8 (Geometric Ergodicity of a Class of Nonlinear Autoregressive Pro-
cesses). Let {Xn : n ≥ 0} be a nonlinear autoregressive sequence of order k of the
form (20.55), with h bounded on compacts, and on the set {y = (y1, . . . , yk) : |y| =∑k
j=1 |yj | ≥ R} one has

|h(y)| ≤
∑

1≤i≤k
ai |yi | + c, (20.56)

where ai’s, c, and R are positive constants,
∑

1≤i≤k ai < 1, and the distribution of
ηn has an absolutely continuous component g (with respect to Lebesgue measure
λk), which is positive a.e. Also, assume E|ηn| < ∞. Then (a) the Markov process
{Yn = (Xn+1−k, . . . ., Xn)′ : n ≥ k − 1} is geometrically ergodic, and (b) the
distribution of Xn converges to a steady state distribution exponentially fast in total
variation.

Proof. We will show that the k-tuple (Xn,Xn+1, . . . , Xn+k−1), n ≥ k − 1, is a
geometrically ergodic Markov process. To simplify notation we take k = 2. The
general case is entirely analogous with a little messier notation (Exercise 7). Define
the Lyapunov function (for k = 2)

V (y) = max{|y1|, |y2|} + 1 y = (y1, y2) ∈ R
2. (20.57)

One has, defining the norm on R
2 by |y| = |y1| + |y2|, y = (y1, y2)

′, and writing
Yn = (Yn,1, Yn,2)′ to denote the components of of the random (column) vector Yn,

Yn+1 = [Xn, h(Yn)+ ηn+1]′ = [Yn,2, h(Yn)+ ηn+1]′,

Yn+2 = [h(Yn)+ηn+1, h(Yn+1)+ηn+2]′ = [h(Yn)+ηn+1, h([Yn,2), h(Yn)+ηn+1])+ηn+2]′,

|Yn+2,1| ≤ |h(Yn)+ ηn+1| + |Yn+2,2| = |[h(Yn,2, h(Yn)+ ηn+1)+ ηn+2|.

10 Nummelin and Tuominen (1983).
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One then has on the event [|Yn| > R],

|Yn+2,1| ≤ a1|Yn,1| + a2|Yn,2| + c + |ηn+1|, (20.58)

and

|Yn+2,2| ≤ |ηn+2| + [a1|Yn,2| + a2(|h(Yn)+ ηn+1| + c)1[|Yn,2|+a2|h(Yn)+ηn+1|≥R] + a2R + c
≤ |ηn+1| + |ηn+2| + c + a1|Yn,2| + a2(a1|Yn,1| + a2|Yn,2| + c)+ R. (20.59)

Therefore, on [Yn > R], one has

V (Yn+2) = max{|Yn+2,1|, |Yn+2,2|} + 1

≤ |ηn+1| + |ηn+2| + 1 + 2c + R + max{a1|Yn,1| + a2|Yn,2|, a1|Yn,2|
+ a2(a1|Yn,1| + a2|Yn,2|)}

≤ |ηn+1| + |ηn+2| + 2c + R + 1 + (a1 + a2)V (Yn). (20.60)

Now let θ > 1 be chosen so large that

(a1 + a2)+ 2(2E|η1| + 2c + 1 + R)/θR = 1 − ε < 1.

In the part of (20.60) without V (Yn) as a factor, multiply and divide by V (Yn). Using
the lower bound V (Yn) ≥ θR/2, for this ε > 0 one then obtains,

E[V (Yn+2)|Yn = y] ≤ (1 − ε)V (y) for all |y| > θR. (20.61)

Thus the relations (20.41) or (20.42) are easily verified with S = R
2, A0 = {y ∈

R
2 : |y| ≤ θR}, b = 0, for the Markov process {Y2n : n = 0, 1, . . . }, i.e., on the

time scale Y0, Y2, Y4, . . . . Next, note that this Markov process has an a.e. positive
density component no smaller than (Exercise 8)

u(x, y) = g(y1 − h(x))
∏

2≤j≤k
g(yj − h(xj , . . . , xk, y1, . . . yj−1), (k = 2).

(20.62)
In the case that the distribution of η1 is absolutely continuous with density g, u(x, y)
is the transition probability density of the Markov process {Y2n : n ≥ 0}. Because
of the a.e. positivity assumption for g, it is now straightforward to check that the
Markov process {Y2n : n ≥ 0} is (i) aperiodic and (ii) A0 is a recurrent set with
respect to Lebesgue measure λk (Exercise 9).

It remains to show that A0 is a small set. For the proof of this we make the
simplifying assumption that h is continuous and g is bounded below by a positive
(λ2-a.e.) function f (See Remark 20.7). Let G(x) = ∫

A0
u(x, y)λ2(dy). Then

G(x) ≥ F(x), where F is obtained by replacing in the last integral of g by f in
the expression for u(x, y) in (20.61). Here λ2 is Lebesgue measure on R

2. Then
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δ := inf{G(x) : x ∈ A0} ≥ inf{F(x) : x ∈ A0} > 0.

Let ν(B) = λ2(A0 ∩B)/λ(A0) for all Borel subsets B of R2. Then ν is a probability
measure on R

2, and denoting by q the transition probability of {Y2n : n ≥ 0},
one has q(x, B) ≥ δν(B)1A0(x). Hence the Markov process {Y2n : n ≥ 0}
is geometrically ergodic by Theorem 20.5 or 20.6. The same proof applies to
the process {Y2n+1 : n = 0, 1, . . . }. Also, the existence of a a nonzero density
component ηn (with full support) implies that the process is aperiodic (see (20.62)).
The geometric ergodicity of the process {Yn : n ≥ 0} follows easily from this
(Exercise 11). This proves part (a) of the theorem. Part (b) is an easy consequence
of this. �
Remark 20.7. Theorem 20.8 is a slightly extended version of Theorem 1 in
Bhattacharya and Lee (1995) (Correction, ibid, 1999). It implies several other
results, as described in the following example.

Example 2 (SETAR Model11). The so-called self-exciting threshold autoregressive
model (SETAR) is defined by

Xn+1 = h(Xn−k+1, . . . , Xn)+ ηn+1, (20.63)

where {ηn : n > 0} is an i.i.d. sequence with an absolutely continuous common
distribution with a positive density (a.e.) and h : Rk → R is specified as one of m
different linear autoregressive models depending on which of m regimes (intervals)
a random variable Z takes its values. Typically Z is one of the k coordinates, say
yj (j = 1, . . . , k), or some function of the k coordinates, or a variable independent
of {ηn : n ≥ 1}. Thus,

h(y) = ci +
∑

1≤j<k
aij yj , if ri−1 < Z ≤ ri, i = 1, . . . , m, y = (y1, . . . , yk),

(20.64)
where −∞ = r0 < r1 < · · · < rm = ∞. Under the condition that
max1≤i≤m

∑
ki−1≤j<ki |aij | < 1, the conclusions of Theorem 20.6 hold. One may

use the same Lyapunov function V (y) = max{|yi | : i = 1, . . . , k} + 1, as in the
proof of Theorem 20.8, on each regime, and arrive at the desired inequality on the
time scale Y0, Yk, Y2k, . . . , E[V (Ykn|Y(k−1)n = y] ≤ (1−ε)V (y); first for k = 2 for
simplicity, and then generally (Exercise 11). This result holds if ηn has an absolutely
continuous component which is a.e. positive, somewhat extending the original result
of Chan and Tong (1985).

11 Chan and Tong (1985).
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Exercises

1. Let Yj = Xτj , j ≥ 0, be the process defined on a recurrent set A0 (see (20.6)).
Use the strong Markov property to prove that {Yj : j ≥ 1} is a Markov process
on (A0, A0 ∩ S) with the transition probability pA0(x, dy) given by (20.7).

2. Suppose that p(x, dy) has, for each x ∈ R, a density with respect to Lebesgue
measure on R. Show that p(n)(x, {y}) = 0 for each singleton {y}.

3. Prove the regeneration lemma (Proposition 20.1) in the case λ = 0
4. Assume that A0 is recurrent and locally minorized (Definitions 20.2, 20.3).

Define, as in the proof of Theorem 20.1 (a), Fj := {Xn ∈ B for some n ∈
[τj , τj+1)}, j ≥ 0, with Y0 = X0 ∈ A0 having distribution πA0 . (i) In the
strongly aperiodic case (N = 1) show that the tail σ -field of the stationary
Markov process {Yj : j ≥ 0} is trivial. (ii) Show Py(∩∞

n=0 ∪∞
j=n Fj ) =

1 for all y ∈ A0. [Hint: Use (20.16) with N = 1. (iii) For general N ≥ 1,
show that {Yj : j ≥ 0} is a stationary ergodic Markov process. [An alternative
procedure for proving ergodicity of Yj , j ≥ 0, is to use Theorem 16.4.]

5. (a) Show that π(dy) = 4ye−2y1[0,∞)(y)dy is a time-reversible invariant
probability.[Hint: Consider A0 = [δk, k] for k ≥ 1 and V (x) = ecx, 0 < c <
1, x ≥ 0. (b) Recall Example 1 and prove geometric ergodicity of the Markov
process on [0,∞) defined by iterated mapsXn = γ(Un,Tn) · · · γ(U1,T1)(X0), n ≥
1, of the form γ(u, t)(x) = ux + t, t ≥ 0, where, independently of X0,
U1, U2, . . . is an iid sequence of uniformly distributed random variables on
[0, 1], and T1, T2, . . . is an i.i.d. sequence, independent of Un, n ≥ 1, of
exponentially distributed random variables with mean 1/2. (c) Show that one
may take the small set in Example 1 as A0 = (0, a] for some a > 0, and ν
having density 2e−2y1[a,∞)(y).

6. (a) In the context of the proof of Proposition 20.1, (i) show that {(Xn, θn) : n ≥
0} is a Markov process, (ii) for the proof of part (b) of the proposition show that
θτ(j) is independent of F̃τ (j−1) = σ {(Xn, θn) : 0 ≤ n ≤ τ (j−1)} and of τ (j).
(b) In the context of the proof of Theorem 20.4, show that both X and X′ are
Markov processes with the transition probability p(x, dy).

7. Extend the proof of Theorem 20.8 to the case of general k ≥ 2 under
the simplifying assumption in the last paragraph on h and on the absolutely
continuous component of the distribution of ηn.

8. Show that the density component of the transition probability of the process
{Ykn : n ≥ 0}, on the time scale 0, k, 2k, . . . , is no smaller than u(x, y)
in (20.62).

9. Under the hypothesis of Theorem 20.8 show that the Markov process {Ykn :
n ≥ 0} satisfies the hypothesis of Theorem 20.5 or 20.6. You may assume the
simplifying assumption to prove thatA0 is a small set made in the last paragraph
of the proof of the theorem.

10. Fix 0 < a < 1 and defineXn+1 = aXn+Tn+1, n = 0, 1, . . . , where Tn, n ≥ 1,
is an i.i.d. sequence of mean one exponentially distributed random variables.
Then, p(x, dy) = eaxe−y1[ax,∞)(y)dy. The objective is to establish geometric
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ergodicity for this example. Let A0 = [0, k]. (i) With N = 1, determine k such
thatA0 is a small set for νk given by νk(B) = ∫

B∩[ak,k] e
−ydy/λk , λk = e−ak−

e−k . [Hint: For x ∈ A0, B ⊂ A0, show that p(x, B) = eax
∫
B∩[ax,k] e

−ydy ≥
λkνk(B). Let Vc(x) = ecx . (ii) For x > k, show ExVc(X1) = eacx(1 − c)−1 ≤
βc,kVc(x), where βc,k = e−(1−a)ck(1 − c)−1 < 1 for k sufficiently large, i.e.,
k > 1

c(1−a) ln 1
1−c . (iii) For x ∈ [0, k], show that ExVc(X1) ≤ βc,kVc(x)+b, for

b sufficiently large. [Hint: Consider b ≥ max0≤x≤k eacx(1 − c)−1 = eack(1 −
c)−1. (iv) Determine 0 < c < 1 such that the condition (20.42)(ii) for the
bivariate drift holds. [Hint: Check ekc > ([ b

1−βc,k ] − 1), or equivalently, refine

k so that ekc > 2eack/(1 − c) k > 1
c(1−a) ln( 2

1−c ) is sufficient.
11. (a) Show that Theorem 20.5 applies to the the proof of Theorem 20.8, and so

does Theorem 20.6. (b) Write out a proof of the geometric ergodicity of the
SETAR model (Example 2).



Chapter 21
An Extended Perron–Frobenius Theorem
and Large Deviation Theory for Markov
Processes

An extension of the Perron–Frobenius theorem to compact linear operators
on Cb(S) for locally compact and σ -compact metric spaces S is presented.
This yields some of the basic large deviation theory originating with Cramér,
Sanov, Donsker, and Varadhan presented in three parts. In the first part
the extended Perron–Frobenius theorem is used to obtain a large deviation
theorem of the Cramér–Chernoff type for a class of Markov processes. In
the second part the large deviation framework is extended to large deviations
for the empirical distributions of a class of Markov processes originally
obtained by Donsker and Varadhan. As a corollary the third part involves large
deviations for empirical distributions of i.i.d. random variables originating
with Sanov.

Throughout this chapter (S, ρ) is a locally compact and σ -compact Polish space,
and for each x ∈ S, let q(x, dy) be a finite measure on the Borel σ -field S of S,
and such that supx q(x, S) < ∞, and x → q(x, B) is measurable for every B ∈ S .
Define a bounded linear operator Tq : Cb(S)→ Cb(S) by

Tqf (x) =
∫

S

f (y)q(x, dy), x ∈ S. (21.1)
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The notion of the support of a finite measure often appears in this chapter. Here is
the definition.

Definition 21.1. The support of a finite measure μ on (S,S) is the smallest closed
set Cμ such that μ(Cμ) = μ(S), i.e., Cμ := ∩C∈CC, where C is the class of all
closed subsets of S such that μ(C) = μ(S). Equivalently, Cμ = S \ ∪G∈OG where
O is the class of all open G ⊂ S with μ(G) = 0.

Theorem 21.1 (Extended Perron–Frobenius Theorem for Compact Tq ). Assume
that the operator Tq defined by (21.1) is compact, i.e., Tq maps bounded subsets
of Cb(S) to relatively compact subsets of Cb(S) for the uniform norm. Let Γ =
Tq(B

+
1 ) ∪ {1} be the closure of the set of images of B+

1 = {f ∈ Cb(S) : f >

0, ||f || = 1} under Tq , with added constant function f ≡ 1.
Define

Λ+ = {λ > 0 : Tqf ≥ λf on S for some f ∈ Γ }. (21.2)

Assume infx q(x, S) > 0, supx q(x, S) < ∞. Also assume the Doeblin minoriza-
tion condition: there is a finite nonzero measure ψ on (S,S) such that q(x, dy) ≥
ψ(dy), for all x ∈ S, and ψ is fully supported. Then

a Λ+ �= ∅, andΛ+ has a maximum element λ+, which can be paired with a function
f+ ∈ Γ such that Tqf+(x) = λ+f+(x) for all x ∈ S,

b There is a unique probability measure π̃ such that

lim
n→∞

∥
∥
∥
∥
∥

q(n)(x, dy)f+(y)
f+(x)λ+n − π̃(dy)

∥
∥
∥
∥
∥
tv

= 0, (21.3)

where || · ||tv denotes the total variation norm. Moreover the convergence in total
variation norm is exponentially fast, uniformly in x ∈ S. Also, π̃ is the unique
invariant probability of a Markov chain with transition probability p̃(x, dy) =
q(x,dy)f+(y)
f+(x)λ+ . In particular,

lim
n→∞

∫

S

g(y)q(n)(x, dy)
f+(y)

(λ+)nf+(x)
=
∫

S

gdπ̃, (21.4)

for all bounded measurable g, the convergence being uniform in x.

Proof. (a) Clearly,Λ+ is nonempty, since λm := inf{q(x, S) : x ∈ S} is an element;
for one may take f ≡ 1 and λ = λm in (21.2). Also Λ+ is bounded above by
λM := sup{q(x, S) : x ∈ S}. Denote the supremum of Λ+ by λ+, and let λn ∈ Λ+
increase to λ+ as n ↑ ∞. Also let fn be corresponding elements of Γ paired with
λn. There exists a subsequence of {fn : n ≥ 1} which converges to f = f+ ∈ Γ ,
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by the Arzela–Ascoli Theorem.1 To reduce notation, we let this paired subsequence
be denoted {(λn, fn)}. Then (21.2) leads to

Tqf
+(x) ≥ λ+f+(x) for all x ∈ S. (21.5)

We now show that there is equality in (21.5). For otherwise, there is some x = x0
such that Tqf+(x0) > λ

+f+(x0). In view of continuity, this implies that there exists
an open neighborhood U of x0 such that Tqf+(x) > λ+f+(x), or, Tqf+(x) −
λ+f+(x) > 0, for all x ∈ U , and Tqf+(x) − λ+f+(x) ≥ 0 outside U . Applying
Tq to the difference Tqf+−λ+f+, and using the fact that q(x, dy) ≥ ψ(dy) has full
support, it follows that Tq(Tqf+−λ+f+)(x) ≥ ∫

S
(Tqf

+(x)−λ+f+(x))ψ(dx) >
0 on S. Writing ε = infx∈S Tq(Tqf+−λ+f+)(x), one has Tq(Tqf+) ≥ λ+Tqf++
ε ≥ (λ+ + δ)Tqf

+, where δ = ε
||Tqf+|| . Also, f+

||f+|| ∈ B+
1 implies that g =

Tqf
+/||f+|| ∈ Γ . So, dividing the extreme sides by ||f+||, one gets a contradiction

to the maximality of λ+. Hence Tqf+ = λ+f+ on S. This proves (a). For (b),
first note that under the hypothesis for (a), f+(x) > 0 for all x ∈ S. Therefore,

p̃(x, dy) := q(x, dy)
f+(y)
λ+f+(x) , x ∈ S, defines a transition probability on S. That

is, apart from obvious measurability, p̃(x, dy) is a probability measure for every
x ∈ S. By the additional hypothesis imposed, this transition probability satisfies
Doeblin’s condition. Hence p̃(n)(x, dy) converges in variation norm to a unique
invariant probability π(dy) for p̃ (See Corollary 20.2). One also has the relation

p̃(n)(x, dy) = q(n)(x, dy) f+(y)
λ+nf+(x)

, n = 1, 2 . . . . (21.6)

This is easy to check for n = 2:

p̃(2)(x, dy) =
∫

S

1S(z)p̃(z, dy)p̃(x, dz)

=
∫

S

1S(z)q(z, dy)
f+(y)
λ+f+(z)

q(x, dz)
f+(z)
λ+f+(x)

=
∫

S

1S(z)(q(z, dy)q(x, dz))
f+(y)

λ+2f+(x)

= q(2)(x, dy)
f+(y)
λ+2f+(x)

. (21.7)

The general formula (21.6) now follows by induction on n (Exercise 2). To check
that p̃(x, dy) satisfies Doeblin’s condition, note that

1 Folland (1984), p. 131.
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p̃(x, dy) ≥ f+(y)
λ+f+(x)

ψ(dy) ≥ f+(y)
λ+ supx f+(x)

ψ(dy). (21.8)

Hence p̃(n)(x, dy) converges in total variation norm to the unique invariant prob-
ability π(dy), say, uniformly for all x ∈ S. Hence part (b) of the theorem holds.
Therefore, for all bounded measurable functions g on S,

lim
n→∞

∫

S

g(y)q(n)(x, dy)
f+(y)

λ+nf+(x)
=
∫

S

g(y)π̃(dy), (21.9)

uniformly in x ∈ S. �
Remark 21.1. It appears that part (a) of Theorem 21.1 may also be proven by an
application of a general theorem2 due to Krein and Rutman (1948). However the
statement and proof provided here is self-contained and particularly suited to its
application in large deviation theory.

Remark 21.2. We call λ+ in Theorem 21.1 the largest eigenvalue of Tq .

The following corollary is an immediate consequence of Theorem 21.1, and
relation (21.6). (Exercise 1)

Corollary 21.2. Let q(x, dy) = p(x, dy)ev(y) satisfy the hypotheses of Theo-
rem 21.1, where p(·, dy) is a transition probability of a Markov process X0 = x,
X1, X2, . . . , and v is a measurable function. Then (i) q(n)(x, S) = Exexp{v(X1)+
. . .+ v(Xn)}, and (ii) one has

lim
n→∞

1

n
log q(n)(x, S) = log λ+, (21.10)

where λ+ denotes the largest eigenvalue of the operator Tq defined by q(x, dy) =
p(x, dy)ev(y).

Remark 21.3. It is enough for the theorem to hold if the hypotheses hold for
q(n0)(x, dy) for some n0 ≥ 1 (Exercise 3). Also, Theorem 21.1 holds if q(x, dy)
has a density q(x, y) with respect to a measure μ(dy) with full support such that
y → q(x, y) is continuous in y and g(y) := infx q(x, y) > 0 for all y, and
supx,y q(x, y) <∞. In this case one takes ψ(dy) = g(y)μ(dy).
Remark 21.4. In Theorem 21.1 the assumption that the measure ψ has full support
is only used to show that there is equality in Tqf+ = λ+f+ for the maximum
element of Λ+. There are cases where this assumption is not needed to prove the
equality. For example, in the case q(x, dy) = ev(y)μ(dy), where μ(dy) is the
common distribution of i.i.d. random variables, it is simple to check that the equality

2 The authors thank Patrick De Leenheer for this resource.
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holds with λ+ = m(v) = ∫
S
ev(y)μ(dy), and f+ = 1. Here ψ(dy) may be taken to

be μ(dy).

Remark 21.5. In case the Xj ’s are i.i.d. with common distribution π , taking hv in
place of v(h ∈ R), (21.10) is just the statement that the moment generating function
m(h) of v(X1) satisfies 1

n
logm(h)n → logm(h), i.e., λ+ = m(h).

The so-called first-level large deviation problem can be stated as follows.
Let X0, X1, . . . be a stationary ergodic Markov process on S having transition
probability kernel p(x, dy) and unique invariant probability π . Let v be measurable
function on S and assume that Exehv(X1) < ∞ for all h ∈ R, and x0 = x ∈ S.
Then, just as in the i.i.d. case of the Cramér–Chernoff theorem,3 one seeks the
large deviation rate I (a) = − limn→∞ 1

n
logP(

∑n
j=1 v(Xj ) > na) for a deviation

from the sample mean given by a > m := ∫
S
v(x)π(dx). The size-bias approach

given here is precisely along the same lines as that of the classical Cramér–Chernoff
theorem for i.i.d random variables.

Remark 21.6. The proof that h → λ+(h) is differentiable and d
dh
λ+(h) �= 0

appears to require perturbation theory. A direct proof for finite S is indicated
in Exercise 18. For the i.i.d. case of the Cramèr-Chernoff theorem, it is also
simple to show, using moment generating functions, that the kernel qh(x, dy) =
p(x, dy)ehv(y) satisfies the hypothesis of Theorem 21.1 for all h ∈ R.

Lemma 1. Assume that the kernel qh(x, dy) = p(x, dy)ehv(y) satisfies the hypoth-
esis of Theorem 21.1 for all h ∈ R. Let λ+(h) denote the largest eigenvalue of
the transition operator for the (non-normalized) kernel qh(x, dy). Let X0, X1, . . .

be a Markov process with transition probability kernel p(x, dy) ≥ ψ(dy) sat-
isfying the Doeblin minorization with respect to a nonzero measure ψ , and let
X̃0, X̃1, . . . be the Markov process with transition probability kernel p̃(x, dy) =

f+(y)
λ+(h∗)f+(x) e

h∗v(y)p(x, dy) for a given h = h∗, where, suppressing the dependence

in f+ on h∗ for notational convenience, f+ is the normalized positive eigenfunction
of the operator Tqh∗f (x) = ∫

S
f (y)eh

∗v(y)p(x, dy) corresponding to λ+(h∗). Then
the respective distributions, Px,n and P̃x,n, of (X0, . . . , Xn) and (X̃0, . . . , X̃n),
starting at X0 = X̃0 = x, are mutually absolutely continuous with

dP̃x,n

dPx,n
(x0, . . . , xn) = f+(xn)

λ+n(h∗)f+(x0)
e
h∗ ∑n

j=1 v(xj ), (21.11)

and

dPx,n

dP̃x,n
(̃x0, . . . , x̃n) = f+(̃x0)λ

+n(h∗)
f+(̃xn)

e
−h∗ ∑n

j=1 v(̃xj ). (21.12)

3 See BCPT p. 94.
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IfX is stationary and ergodic with transition probability kernel p(x, dy) and unique
invariant probability π with Eπv(X0) = m, then X̃ has transition probabilities
p̃(x, dy) with a unique invariant probability π̃(dy) with

∫
S
v(y)π̃(dy) = a, say.

Proof. Consider the Markov process {X̃n : n ≥ 0} on S defined by the consistent
specification (x0 = x),

P̃x(X̃0 ∈ dx0, X̃1 ∈ dx1, . . . , X̃n ∈ dxn) =
n∏

j=1

p̃(xj−1, dxj )

= f+(xn)
f+(x0)λ+n(h∗)

e
∑n
j=1 h

∗v(xj )
n∏

j=1

p(xj−1, dxj )

= f+(xn)
f+(x0)λ+n(h∗)

e
∑n
j=1 h

∗v(xj )Px(X0 ∈ dx0, X1 ∈ dx1, . . . , Xn ∈ dxn).

Similarly, or by inversion,

Px(X1 ∈ dx1, . . . , Xn ∈ dxn) =
n∏

j=1

p(xj−1, dxj )

= p(x0, dx1)e
h∗v(x1)f+(x1)

λ+(h∗)f+(x0)
· p(x1, dx2)e

h∗v(x2)f+(x2)

λ+(h∗)f+(x1)
· · · p(xn−1, dxn)e

h∗v(xn)f+(xn)
λ+(h∗)f+(xn−1)

= f+(x0)λ
+n(h∗)

f+(xn)
e
−∑n

j=1 h
∗v(xj )

n∏

j=1

p(xj−1, dxj )

= f+(x0)λ
+n(h∗)

f+(xn)
e
−∑n

j=1 h
∗v(xj )Px(X̃0 ∈ dx0, X̃1 ∈ dx1, . . . , X̃n ∈ dxn).

This establishes the mutual absolute continuity of the distributions of (X0, X1,

. . . , Xn) and (X̃0, X̃1, . . . , X̃n), with X0 = X̃0 = x, as asserted.
That {X̃0, X̃1, . . . } has an unique invariant probability π̃ follows from Theo-

rem 21.1, or Corollary 21.2. �
Remark 21.7. In the case that π is a time-reversible invariant probability for
p(x, dy), one may readily check that π̃(dx) = Z−1(h∗)(f+(x))2eh∗v(x)π(dx)
is the time-reversible invariant probability for p̃(x, dy), where Z(h∗) =∫
S
(f+(x))2eh∗v(x)π(dx) is the normalization constant. (Exercise 4)

Remark 21.8. Under the hypothesis of Lemma 1, h → λ+(h) is continuous. Let
A = {y : v(y) > a} for some a > 0. If infx p(x,A) > 0, then one can show that
λ+(h)→ ∞ exponentially fast as h→ ∞. (Exercise 19)

Theorem 21.3 (Large Deviations for a Class of Markov Processes on Locally
Compact & σ -compact Polish S). Assume the conditions of the framework leading
up to Lemma 1 and that Eπv(X1) = 0. Then, for a > 0, the large deviation rate is
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given by

I (a) = − lim
n→∞

1

n
logPx

⎛

⎝
n∑

j=1

v(Xj ) ≥ na
⎞

⎠ = − inf
h>0

{log λ+(h)− ah}

= ah∗ − log λ+(h∗).

Define h∗ = ∞ if the infimum is not attained, i.e., the infimum is ∞.

Proof. First consider the case h∗ <∞. Observe that for h > 0,

q
(n)
h (x, S) = Exe

h
∑n
j=1 v(Xj )

≥ enhaPx
⎛

⎝
n∑

j=1

v(Xj ) ≥ na
⎞

⎠ . (21.13)

Now one has, using (21.6), the general relation

λ+nf+(x)
supy f+(y)

≤ q(n)h (x, S) ≤ λ+nf+(x)
infy f+(y)

.

In particular,

1

n
logPx

⎛

⎝
n∑

j=1

v(Xj ) ≥ na
⎞

⎠ ≤ 1

n

(
log q(n)h (x, S)− nha

)

≤ 1

n

{

log

(

λ+n(h) supx f
+(x)

infx f+(x)

)

− nha
}

≤ log λ+(h)+ 1

n
log

supx f
+(x)

infx f+(x)
− ha.(21.14)

Thus,

1

n
logPx

⎛

⎝
n∑

j=1

v(Xj ) ≥ na
⎞

⎠

≤ inf
h>0

{

log λ+(h)+ 1

n
log

maxx f+(x)
miny f+(y)

− ha
}

, (21.15)

and, for each h > 0,



316 21 Perron–Frobenius and Large Deviations

lim sup
n→∞

1

n
logPx

⎛

⎝
n∑

j=1

v(Xj ) ≥ na
⎞

⎠ ≤ log λ+(h)− ha, (21.16)

so that

lim sup
n→∞

1

n
logPx

⎛

⎝
n∑

j=1

v(Xj ) ≥ na
⎞

⎠ ≤ inf
h>0

{
log λ+(h)− ha} = log λ+(h̃)− h̃a,

(21.17)
say. For the lower bound we consider the mutually absolutely continuous size-
bias change of distribution of X0, X1, . . . defined in Lemma 1, under which
the transformed Markov process X̃0, X̃1, . . . is an ergodic Markov process
with unique invariant probability π̃ for the transition probability p̃(x, dy) =
f+(y)eh∗v(y)p(x, dy), where h∗ is the size-bias parameter such that Eπ̃ v(X̃0) = a.

Then, for any ε > 0, one has by the ergodic theorem that P̃ -a.s.

lim
n→∞

1

n

n∑

j=1

v(X̃j ) =
∫

S

v(y)π̃(dy) = a. (21.18)

Define

Dn =
⎧
⎨

⎩
(y1, . . . , yn) : 1

n

n∑

j=1

v(yj ) ∈ (a − ε, a + ε)
⎫
⎬

⎭
. (21.19)

Then, writing An = 1
n

∑n
j=1 v(Xj ), Ãn = 1

n

∑n
j=1 v(X̃j ), Px for the distribution

of (X0, X1, . . . ), P̃x for the distribution of (X̃0, X̃1, . . . ), and recalling that under
the invariant distribution π̃ for {X̃n : n ≥ 0}, v(X̃n) has mean a, one has using
Lemma 1,

Px(An > a − ε) ≥ Px(An ∈ (a − ε, a + ε)) = EPπ̃ 1[(X1, . . . , Xn) ∈ Dn]

≥ Ex1[(X1, . . . , Xn) ∈ Dn] exp{−nh∗(a + ε)+ h∗
n∑

j=1

v(Xj )}

= exp{−nh∗(a + ε)+ n log λ+(h∗)}Ex1[(X1, . . . , Xn) ∈ Dn] 1

λ+n(h∗)
e
h∗ ∑n

j=1 v(Xj )

= exp{−nh∗(a + ε)+ n log λ+(h∗)}Ẽx f
+(X̃0)

f+(X̃n)
1[(X̃1, . . . , X̃n) ∈ Dn]

= exp{−n[h∗(a + ε)− log λ+(h∗)]}Ex f
+(X̃0)

f+(X̃n)
1[Ãn ∈ (a − ε, a + ε)]. (21.20)

By the property of Harris positive recurrent Markov processes (see Chapter 20)
1[Ãn ∈ (a − ε, a + ε)] → 1 P̃x-a.s. as n → ∞. Also, it follows from Lebesgue
dominated convergence that
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lim
n→∞

{

Ẽx
f+(X̃0)

f+(Xn)
− Ẽx

f+(X̃0)

f+(Xn)
1[Ãn ∈ (a − ε, a + ε)]

}

= lim
n→∞ Ẽx

f+(X̃0)

f+(Xn)
1[Ãn /∈ (a − ε, a + ε)] = 0. (21.21)

It follows from the bound (21.20) that lim infn→∞ 1
n

logPπ̃ (An > a − ε) + h∗ε ≥
log λ+(h∗)− h∗a. Since the left side is an increasing function of ε, it follows that

lim inf
n→∞

1

n
logPπ̃ (An ≥ a) ≥ log λ+(h∗)− h∗a.

Thus,

lim inf
n→∞

1

n
logPπ̃ (An ≥ a) ≥ log λ+(h∗)− h∗a.

Since the lower bound cannot exceed the upper bound, and the infimum in (21.17)
is no more than λ+(h∗)− h∗a, one has h̃ = h∗.

Now consider the case h∗ = ∞. The proof for the upper bound holds with the
infimum equal to −∞ in (21.17), which implies that the “limit” is −∞. �
Remark 21.9. From Theorem 21.3, one obtains an indirect proof of the relation

dlogλ+(h)
dh

= m(h) = Eπ̃(h)v,

assuming h→ λ+(h) is differentiable.

Remark 21.10. By changing signs one may derive a large deviation rate for

lim
n→∞

1

n
logP

⎛

⎝
n∑

j=1

(v(Xj )− Eπ̃ v) ≤ −na
⎞

⎠

for all a > 0. (Exercise 18)

Remark 21.11. If S is compact the boundedness condition on p(x, y) will be
satisfied if p(x, y) is jointly continuous in (x, y).

The proof of the following corollary is left as Exercise 5.

Corollary 21.4. The conditions of Theorem 21.3 are satisfied if (i) x →∫
S
ehv(y)p(x, dy) is continuous in total variation norm for every h > 0, (ii)

infx∈S
∫
S
ehv(y)p(x, dy) > 0, (iii) p(x, dy) ≥ ψ(dy) for all x ∈ S, where the

minorizing measureψ(dy) has full support, and (iv) supx∈S
∫
S
ehv(y)p(x, dy) <∞.
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Corollary 21.5 (Cramér–Chernoff Large Deviations). Suppose that X1, . . . is an
i.i.d. sequence of random variables, and v a measurable function on S such that
m(h) = Eehv(X1) <∞ for all h ∈ R. Then, λ+(h) ≡ m(h) and, for a > Ev(X1),

lim
n→∞

1

n
logP

⎛

⎝
n∑

j=1

v(Xj ) ≥ na
⎞

⎠ = inf
h>0

{logm(h)− ha}.

Proof. Let S be the support of the distribution p(dy) of X1 on R. The conditions of
the theorem are easily checked for the canonical distribution on S (Exercise 21).
In particular, Tf (x) = ∫

S
f (y)ehv(y)p(dy) maps to constants, and T 1(x) =

∫
S
ehv(y)p(dy) = m(h)1(x), x ∈ S, for the constant function 1(x) ≡ 1∀x ∈ S.

Thus λ+(h) = m(h), and f+ ≡ 1 (Exercise 21). �
Remark 21.12. While we have focused this chapter on large deviations in the
presence of Markov dependence, another departure from the classic Cramér–
Chernoff theory occurs by considering i.i.d. summands for which the moment
generating function may be infinite. By contrast to such “light-tailed”conditions,
Nagaev (1969) considered large deviations for a class of distributions4 referred to
as stretched exponential distributions P(X > t) = ce−t r , t ≥ 0, for a parameter
0 < r < 1. In particular, for example, it is shown that if X1, X2, . . . is an i.i.d.
sequence of stretched exponentially distributed random variables with meanm, then
for a > m,

lim
n→∞

1

nr
logP(Sn > na) = −(a −m)r, (21.22)

where Sn = ∑n
j=1Xj , i.e., the probabilities of deviations of Sn

n
above the mean m

decay more slowly than exponentially. Such a deviation can occur when merely
one of the independent summands eventually takes a very large value, i.e., for
certain heavy-tailed distributions. Other naturally important directions involve non-
homogeneous Markov processes, e.g., Dietz and Sethuraman (2005), and Markov
processes in a random environment, e.g., Seppalainen (1994).

The following proposition provides a somewhat more friendly “operator norm”
lower bound5 on the large deviation rate than the precise rate derived from the
spectral radius.

Proposition 21.6 (Spectral Radius Bound). Suppose that S is compact. For a
bounded linear operator T acting on the Banach space Cb(S),

4 A generalization that includes results of Nagaev (1969) was recently given in Gantert et al. (2014).
5 In fact, for bounded linear operators on a Banach space one has the Gelfand formula for the

spectral radius as limn→∞ ||T n|| 1
n ; see Chapter 5, Exercise 6 as an application of the subadditive

ergodic theorem.
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λ+ ≤ ||T ||op := sup
||f ||u=1

||Tf ||u,

where ||f ||u = supx∈S |f (x)|.
Proof.

λ+||f+||u = ||λ+f+||u = ||Tf+||u.
Thus, dividing by ||f+||u,

λ+ ≤ sup
||f ||u=1

||Tf ||u = ||T ||op.

�
Example 1 (Two-State Markov Chain). This example illustrates the nature of
explicit computations involved in this theory. Consider S = {−1, 1} and transition
probabilities p−1,−1 = p = p1,1, p−1,1 = q = 1 − p = p1,−1, having invariant
probability π = ( 1

2 ,
1
2 ) with mean m = 0. Let v(y) = y, y ∈ {−1, 1}. Then

Tqh =
(
pe−h qeh
qe−h peh

)

has eigenvalue of maximum modulus

λ+(h) = p cosh(h)+
√

p2 cosh2(h)− p2 + q2, h > 0. (21.23)

Of course if p = 1/2, then this is the familiar moment generating function cosh(h)
for the i.i.d. case. The computation of the large deviation rate function

I (a) = − inf
h>0

{log λ+(h)− ah} = sup
h>0

{ah− log λ+(h)}, 0 < a < 1, (21.24)

generally requires numerical approximation methods.6 For the operator norm
bound, consider

det(T ′
qh
Tqh − ρI) = det

(
(p2 + q2)e−2h − ρ 2pq

2pq (p2 + q2)e2h − ρ
)

= ρ2 − 2(p2 + q2) cosh(2h)ρ + (p2 − q2). (21.25)

Thus, the eigenvalue of maximal magnitude for T ′
qh
Tqh is

ρ(h) = (p2 + q2) cosh(2h)+
√

(p2 + q2)2 cosh2(2h)− (p2 − q2)2, h > 0.
(21.26)

So, (Exercise 8)

6 MATLAB has a routine for numerically computing Legendre transforms.
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||Tqh ||op =
√

(p2 + q2) cosh(2h)+
√

(p2 + q2)2 cosh2(2h)− (p2 − q2)2.

(21.27)

In particular, the Legendre transform calculation is not computationally simplified
using this bound. In the special case p = 1/2 these calculations reduce to

λ+(h) = cosh(h) <
√

cosh(2h) = ||Tqh ||op, h > 0.

In particular, the lower bound on the large deviation rate derived from the operator
norm is precisely 1

2I (a) in this case (Exercise 8).

Example 2. Consider the random dynamical system

Xn+1 = g(Xn)+ σZn+1, n = 0, 1, 2 . . . , (21.28)

where Z1, Z2, . . . is an i.i.d. standard normal sequence, σ > 0, and g is a bounded
function on S = R. Then p(x, dy) = 1√

2πσ 2
exp{− 1

2σ 2 (y − g(x))2}dy, x ∈ S.

In this case, after completing the square in the exponent, one has for f ∈ C0(R),
v(y) = y, y ∈ S,

Tqhf (x) = e 1
2σ

2h2+g(x)h
Ef (σZ + σ 2h+ g(x)), (21.29)

where Z is a standard normal random variable. Thus,

||Tqh ||op ≤ eh||g||∞+ 1
2σ

2h2
,

so that log λ+(h)− ah ≤ 1
2σ

2h2 + h(||g||∞ − a). Thus, for a > ||g||∞,

inf
h>0

{log λ+(h)− ah} ≤ − (a − ||g||∞)2
2σ 2

.

Thus, I (a) = suph>0{ah− log λ+(h)} ≥ (a−||g||∞)2
2σ 2 , for a > ||g||∞.

For i.i.d. random variables a generalization of large deviations of sample averages
from the mean of the underlying distribution can also be formulated7 in terms of
large deviations of the empirical distribution function from that of the underlying
distribution. This leads to the next topic. To focus on the concepts rather than the
generality, we first consider i.i.d. random variables taking finitely many values.

Let S be a finite set, say S = {1, 2, . . . , r}. Consider the set P of all probability
measures on S with full support. Given a sequence of i.i.d. random variables
X1, . . . , Xn with values in S having common distribution μ, let En = 1

n
(δX1 +

7 Sanov (1957).
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· · · + δXn) be the empirical distribution. Denote by Pn the set of probabilities in
P in the range of En (as a map on Ω). Note that an element of Pn corresponds
to n observations partitioned into r groups or less. One may show by a simple
combinatorial argument that the number of such partitions is no more than (n+ 1)r

(Exercise 26). Then one has for ν ∈ Pn

Pμ(En = ν) =
[
r∏

i=1

μ(i)nν(i)

]

#Jq(ν)

= exp

{
r∑

i=1

nν(i) logμ(i)

}

#Jq(ν)

= exp {−n[D(ν||μ)+H(ν)]} #Jq(ν), (ν ∈ Pn), (21.30)

where (i) Jq(ν) stands for the type of ν, defined by the set of all permutations of
balls marked 1, . . . , n, distributed in r boxes such that the number of balls in box
i is nν(i) (i = 1, . . . , r), (ii) H(ν) = −∑

i ν(i) log ν(i) is the (Shannon) entropy
of ν, and (iii) D(ν||μ) = ∑

i ν(i) log[ν(i)/μ(i)] is the relative entropy of ν with
respect to μ, also called the Kullback–Liebler divergence. We will show that

(n+ 1)−r exp{nH(ν)} ≤ #Jq(ν) ≤ exp{nH(ν)}. ν ∈ Pn

For the right side use (21.30) to get, since D(ν||ν) = 0,

1 ≥ Pν(En = ν) = exp{−nH(ν)}#Jq(ν). ν ∈ Pn

For the left side,

1 =
∑

γ∈Pn
Pν(En = γ ) ≤ Pν(En = ν)(n+ 1)r = (n+ 1)r exp{−nH(ν)}#Jq(ν),

(21.31)
using (ν ∈ Pn), the fact that Pν(En = ν) is the maximum among Pν(En = γ ) over
all γ ∈ Pn (see Lemma below), and that #Pn is less than the number of ways n balls
may be distributed in r boxes. We then have from (21.30) and (ν ∈ Pn),

Theorem 21.7 (Method of Types).

(n+ 1)−r exp{−nD(ν||μ)} ≤ Pμ(En = ν) ≤ exp{−nD(ν||μ)}.

Theorem 21.8 (Sanov’s Theorem). (a) For every closed subset F of P ,

lim sup
n→∞

1

n
logPμ(En ∈ F) ≤ − inf

ν∈F exp{D(ν||μ)}.

(b) For every open subset G of P ,
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lim inf
n→∞

1

n
logPμ(En ∈ G) ≥ − inf

ν∈G exp{D(ν||μ)}.

Proof. For the proof of part (a), one has from Theorem 21.7,

Pμ(En ∈ F) =
∑

ν∈F∩Pn
Pμ(En = ν)

≤
∑

ν∈F∩Pn
exp{−nD(ν||μ)}

≤ #Pn sup
ν∈F

exp{−nD(ν||μ)}

= #Pn exp{sup
ν∈F

−nD(ν||μ)}

= #Pn exp{−n inf
ν∈F D(ν||μ)}

≤ (n+ 1)r exp{−n inf
ν∈F D(ν||μ)}. (21.32)

By taking logs on both sides and then dividing by n, the result follows. To prove
part (b) we will use the facts (i) ∪n≥rPn is dense in P , and (ii) ν → D(ν||μ) is
continuous in the weak topology on P . Therefore, given μ, there exists a sequence
νn ∈ G∩Pn, such thatD(νn||μ)→ infν∈G D(ν||μ). Hence, by the method of types
theorem, one has for all sufficiently large n,

Pμ(En ∈ G) =
∑

ν∈G
Pμ(En = ν) ≥ Pμ(En = νn) ≥ (n+ 1)−r exp{−nD(νn||μ)}.

(21.33)
So that

lim inf
n→∞

1

n
logPμ(En ∈ G) ≥ − limD(νn||μ) = − inf

ν∈GD(ν||μ).

�
It remains to prove the italicized statement that was used after (21.31).

Lemma 2.

Pν(En = ν) = max
γ∈Pn

Pν(En = γ ).

Proof. Let γ ∈ Pn. Then,

Pν(En = ν) =
(

n!/
[
r∏

i=1

(nν(i))!
])

r∏

i=1

ν(i)nν(i), (21.34)
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Pν(En = γ ) =
(

n!/
[
r∏

i=1

(nγ (i))!
])

r∏

i=1

ν(i)nγ (i). (21.35)

Therefore,

Pν(En = ν)/Pν(En = γ )

=
(
r∏

i=1

[(nγ (i))!]
)

/([(nν(i))!])
r∏

i=1

(ν(i)nν(i)−nγ (i))

≥
r∏

i=1

(nν(i))n(γ (i)−ν(i))
r∏

i=1

(ν(i)nν(i)−nγ (i)) (note k!/m! ≥ mk−m)

= nn
∑
i (ν(i)−γ (i)) = n0 = 1.

�
Remark 21.13. It may be noted that part (a) of Theorem 21.8 holds for all
measurable sets F , not just closed F . The proof of part (b), however, requires that
G be open.

Next we turn to the problem of obtaining large deviation rates for empirical
measures of Markov chains. This includes the Donsker–Varadhan extension to
Markov chains of Sanov’s Theorem 21.8 for large deviations of empirical measures
for i.i.d random variables. We begin with a definition. From this point on λ+(v) will
denote the maximum eigenvalue of the operator Tq with kernel ev(y)p(x, dy).

Definition 21.2. A sequence Pn, n ≥ 1, of probability measures on (the Borel
sigma-field of) S is said to satisfy the large deviation principle (LDP) with a rate
function I if

lim sup
n→∞

1

n
logPn(C) ≤ − inf(I (x) : x ∈ C) for all closed C ⊂ S, (21.36)

and

lim inf
n→∞

1

n
logPn(O) ≥ − inf(I (x) : x ∈ O) for all open O ⊂ S, (21.37)

where I : S → [0,∞] is lower semicontinuous, i.e., satisfies: {x : I (x) ≤ d} is
closed for every d ≥ 0.

We continue to assume that the state space S is a locally compact and σ -compact
Polish space, and a Markov process {Xn : n = 0, 1, 2, . . . } with state space S
defined on a probability space (Ω,F , P ) has the transition probability p(x, dy).
Let L(S) be the space of lower semicontinuous functions v bounded below such
that the transition operator Tq with kernel q = q(x : v) = p(x, dy) exp{v(y)} is
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compact and the hypothesis of Theorem 21.1 is satisfied. The space P of probability
measures on S, endowed with the weak (weak-star) topology is a Polish space.
Let En = n−1 ∑n

i=1 δXi denote the empirical measure of the Markov process.
We plan to establish an LDP for the distributions Pn of En, with initial state x.
The probabilities Px(·) expectations Ex(·) are computed under the given Markov
process, with initial value x.

One has, from Corollary 21.2 with F(γ ) = ∫
S
vdγ ,

∫

S

exp{nF }dPn = Ex exp{nF(En)} = Ex exp{v(X1)+ · · · + v(Xn)},

and

lim sup
1

n
log

∫

S

exp{nF }dPn = log λ+(v).

Writing G = F − log λ+(v), one then has

lim sup
1

n
log

∫

S

exp{nG}dPn = 0. (21.38)

For any Borel subset B of P one then has Pn(B) ≤ exp{sup(−nG(γ ) :
γ ∈ B)} ∫

S
exp{nG}dPn = exp{− inf[nG(γ ) : γ ∈ B]} ∫

S
exp{nG}dPn,

lim supn
1
n

logPn(B) ≤ − inf{G(γ ) : γ ∈ B} = − inf[∫
S
vdγ − log λ+(v) : γ ∈

B]. Optimizing over all such v ∈ L(S), one gets

lim sup
1

n
logPn(B) ≤ inf{− inf[

∫

S

vdγ − log λ+(v) : γ ∈ B] : v ∈ L(S)}

= − sup{inf[
∫

S

vdγ − log λ+(v) : γ ∈ B] : v ∈ L(S)}.
(21.39)

The following lemma shows that the supremum and infimum in the last line may be
interchanged for compact B.

Lemma 3. If C is compact, then, writing I (γ ) = sup{∫
S
v(y)γ (dy) − log λ+(v) :

v ∈ L(S)}, one has

lim sup
n→∞

1

n
logP(En ∈ C) ≤ − inf{I (γ ) : γ ∈ C}.

Proof. First note that the inequality (21.39) holds for all measurable sets in P , not
just compact C. Given γ ∈ C with I (v) < ∞ and ε > 0, find vγ ∈ L(S) such
that

∫
S
vγ (y)γ (dy)− log λ+(vγ ) > I (γ )− ε. Note that I is lower semicontinuous

(Exercise 11), and Oγ = {γ ′ : I (γ ′) > I (γ ) − ε} is an open neighborhood of
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γ . Since C is compact, there now exists a finite set {γ1, γ2, . . . , γm} such that C is
contained in ∪mi=1Oγi .

lim sup
n→∞

1

n
logP(En ∈ C) ≤ lim sup

n→∞
1

n
log[mmax{P(En ∈ Oγi ) : i = 1, .., m)}

= lim sup
n→∞

1

n
log max{P(En ∈ Oγi ) : i = 1, .., m}

= lim sup
n→∞

max[1

n
logP(En ∈ Oγi ) : i = 1, .., m].

(21.40)

But, by (21.39), which holds for all measurable sets B,

lim sup
n→∞

1

n
logPn(C)

≤ max
i=1,...,m

(

− sup

{

inf

[∫

S

vdγ − log λ+(v) : γ ∈ Oγi
]

: v ∈ L(S)
})

≤ max
i=1,...,m

{−I (γi)+ ε : i = 1, . . . , m}

= − min
i=1,...,m

|{I (γi)− ε : i = 1, . . . , m}

= − min{I (γi) : i = 1, . . . , m} + ε ≤ − inf[I (γ ) : γ ∈ C] + ε. (21.41)

The desired result follows by letting ε ↓ 0. �
We have therefore arrived at the following. Although the supremum in the propo-
sition below may be taken over the class L(S), in view of Lemma 3, it turns out it
is the same when taken over the smaller class Cb(S). In any case, the upper bound
surely holds over this smaller set.

Proposition 21.9. For compact C, the upper bound for the LDP holds for the
sequence Pn of distributions of the empirical measures En, with rate function

I (γ ) = sup{
∫

S

v(y)γ (dy)− log λ+(v) : v ∈ Cb(S)}.
For the upper bound for all closed sets C we need an additional condition defined
as follows.

Definition 21.3. A sequence of probability measures Pn, n = 1, . . . , on a metric
space S is said to be exponentially tight if for every d, however, large, there exists a
compact set Kd such that lim sup 1

n
logPn(S\Kd) ≤ −d.

Lemma 4. Suppose (21.36) holds, with S = P , for all compact C ⊂ P . If, in
addition, {Pn : n = 1, 2, . . . } is exponentially tight, then the upper bound holds for
all closed C ⊂ P .
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Proof. Let C be a closed subset of P . With Kd as in Definition 21.3 for the metric
space P . One has,

lim sup
n↑∞

1

n
logPn(C) = lim sup

1

n
log[Pn(C ∩Kd)+ Pn(C ∩Kcd)]

≤ lim sup
n

1

n
log(2 max[Pn(C ∩Kd), Pn(Kcd)])

= lim sup
n

1

n
log(max[Pn(C ∩Kd), Pn(Kcd)])

≤ max(lim sup
n

1

n
logPn(C ∩Kd),−d)

≤ max(− inf{I (γ ) : γ ∈ C ∩Kd},−d)
≤ max(− inf{I (γ ) : γ ∈ C},−d). (21.42)

The desired result follows by letting d ↑ ∞. �
A simple criterion for exponential tightness is the following.

Lemma 5. A sequence {Pn} of distributions on S is exponentially tight if there
exists a function F : S → R with the properties (i) {x : F(x) ≤ d} is compact
for all d > 0, and (ii) b := lim supn→∞ 1

n
log

∫
S

exp{nF }dPn <∞.

Proof. Assume (i),(ii). For a given d > 0, choose d ′ = b + d . Clearly, Pn(F >
d ′) ≤ exp{−nd ′} ∫

s
exp{nF }dPn. Therefore, lim supn→∞ 1

n
logPn(F > d ′) ≤

−d ′ + b = −d. Now let Kd = {x ∈ S : F(x) ≤ d ′}. �
We will assume exponential tightness for {Pn} for now, illustrating it for

the classical i.i.d. case of Sanov later. To avoid possible confusion, we denote
the operator with kernel q(x, dy) by T̃q , whileTpf (x) = ∫

S
f (y)p(x, dy). In

particular, given a transition probability p(x, dy), let q(x, dy) = ev(y)p(x, dy).
For the lower bound in (21.37), consider a lower semicontinuous function f on
the state space S, f (x) > 0 a.e. with respect to a finite nonzero measure μ
dominating the transition probability p(x, dy) = p(x, y)μ(dy). Assume that
Tpf (x) = ∫

S
f (y)p(x, dy) is finite, and the kernel q,with v(y) = log f (y)

Tpf (y)

satisfies the hypothesis of Theorem 21.1. Then,

q(x, dy) = p(x, dy) exp{v(y)} = p(x, dy) f (y)
Tpf (y)

. (21.43)

∫

S

q(x, dy)Tpf (y) =
∫

S

p(x, dy)f (y) = Tpf (x), (21.44)

or
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T̃qTpf (x) = Tpf (x). (21.45)

That is, Tpf (x) is an eigenfunction of the T̃q , and

p̃(x, dy) = p(x, dy) exp{v(y)}Tpf (y)
Tpf (x)

= p(x, dy)
f (y)

Tpf (x)
, (v(y) := log

f (y)

Tpf (y)
). (21.46)

Denote by γ (f ) the unique invariant probability of the Markov process with
transition probability p̃ in (21.46). Let γ = γ (f ) ∈ O, where O is an open subset
of P . Tilting the distribution to the Markov process with transition probability p̃,
one has

Pn(O) = P(En ∈ O) =
∫

S

Rn1

[
1

n

n∑

i=1

δxi ∈ O
]

dQ̃n, (21.47)

where Q̃n is the distribution of the Markov process (X̃0 = x, X̃1, . . . , X̃n) with
transition probability p̃, and Qn that of (X0 = x,X1, . . . , Xn) with transition
probability p. Then, by Lemma 1, relation(21.12),

Rn = dPn

dP̃n
= f+(x̃n)λ+(0)n

f+(x̃0)
exp

⎧
⎨

⎩
−

n∑

j=1

v(x̃j )

⎫
⎬

⎭
. (21.48)

SinceO is open and γ ∈ O, under P̃n the indicator function in (21.47) converges in
probability to 1, as n→ ∞. Hence

1

n
logPn(O) = 1

n
log Ẽ

∏

1≤i≤n

Tpf (X̃i−1)

f (X̃i)
+ o(1)

≥ Ẽ
1

n

∑

1≤i≤n
log
Tpf (X̃i−1)

f (X̃i)
+ o(1), (21.49)

where Ẽ denoting expectation under P̃n. By ergodicity under p̃, γ (f ), (21.49)
converges to

∫

S

∫

S

log
Tpf (x)

f (y)
γ (f )(dx)p̃(x, dy)

=
∫

S

∫

S

(log(Tpf (x))γ (f )(dx)−
∫

S

∫

S

(log f (y))γ (f )(dx)p̃(x, dy)
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=
∫

S

(log(Tpf (x))γ (f )(dx)−
∫

S

log f (y)γ (f )(dy)

=
∫

S

(log
Tpf (x)

f (x)
)γ (f )(dx), (21.50)

using (i)
∫
S
p(x, dy) = 1 and (ii)

∫
S
p̃(x, dy)(γ (f )(dx)) = γ (f )(dy). Thus

lim inf 1
n

logPn(O) ≥ ∫
S
(log Tpf (x))

f (x)
)γ (f )(dx). Since this is true for every γ =

γ (f ) ∈ O, one gets

lim inf
n→∞

1

n
logPn(O)

≥ sup

{∫

S

(

log
Tpf (x)

f (x)

)

γ (f )(dx) : f > 0, Tpf <∞, γ = γ (f ) ∈ O)
}

= − inf

{∫

S

log
f (x)

Tpf (x)
γ (f )(dx) : f > 0, Tpf <∞, γ = γ (f ) ∈ O)

}

.

(21.51)

We have mostly arrived at the following main result.

Theorem 21.10 (Donsker–Varadhan Large Deviation Theorem for Markov Pro-
cesses). Under the hypothesis of Theorem 21.1, for all kernels q(x, dy) =
p(x, dy) exp{v(y)}, the following LDP holds (a) For all closed set C,

lim sup
n→∞

1

n
logPn(C) ≤ − inf{I (γ ) : γ ∈ C}, (21.52)

where I (γ ) is given in Proposition 21.9
(b) For all open sets O,

lim inf
n→∞

1

n
logPn(O) ≥ − inf{I (γ ) : f > 0, f measurable, Tpf <∞, γ = γ (f ) ∈ O},

(21.53)
where I (γ (f )) is given by

I (γ ) = I (γ (f )) =
∫

S

(log[f (x)/Tpf (x)])γ (f )(dx). (21.54)

Proof. Note that (21.53) is the same as (21.51). Part (a) follows from Proposi-
tion (21.9) and exponential tightness for which we refer to Rezakhanlou (2017).8

�

8 Rezakhanlou (2017).
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Remark 21.14. The rate function for the LDP in Theorem 21.10 is that given in
Proposition 21.9. That this rate function holds for open sets O is not proved here.
For finite state Markov chains a proof, using variational arguments, may be found
in Varadhan (2008). For the general case we refer to Donsker and Varadhan (1975–
1983), or the comprehensive presentation of their results by Rezakhanlou (2017).
We will derive it for the i.i.d. case in Sanov’s theorem.

The following interesting and useful lemma by Donsker and Varadhan shows
that the large deviation rate I (γ ) in Sanov’s Theorem is the same as the Kullback–
Liebler divergenceD(ν||μ), whereμ is the common distribution of the i.i.d. random
variables.

Lemma 6. Let D(ν||μ) = ∫
S
(log( dν

dμ
))dν the Kullback–Liebler divergence of ν

with respect to μ, μ and ν being probability measures on the Borel σ -field S of S.
The following relations hold:

D(ν||μ) = sup
f∈Cb(S)

[∫

S

f dν − log

(∫

S

ef dμ

)]

= sup
f∈Bb(S)

[∫

S

f dν − log

(∫

S

ef dμ

)]

, (21.55)

where Bb(S) is the set of all bounded Borel measurable functions on S.

Proof. Let9 us write the first supremum in (21.55) as I1(ν), and the second one as
I2(ν). To show that D(ν||μ) ≥ I2(ν), let dν

dμ
= h for some measurable function h.

Note that if ν is not absolutely continuous with respect to μ, then D(ν||μ) = ∞.
One has, for every f ∈ Bb(S),

∫

f dν −D(ν||μ) =
∫

h(f − logh)dμ

= log exp{
∫

(f − logh)hdμ}

≤ log

[∫

exp{f − logh}hdμ
]

= log
∫

exp{f }dμ,

proving D(ν||μ) ≥ I2(ν). Next, to prove I1(ν) = I2(ν) one uses, for each ε > 0,
Lusin’s theorem10 approximating f ∈ Bb(S) by a continuous function fε such that
||fε || ≤ ||f ||, and (μ+ ν){x : fε(x) �= f (x)} ≤ ε. In particular, | ∫ (f − fε)dν| ≤

9 The proof follows Rezakhanlou (2017).
10 Folland (1984), p. 211.
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2ε||f ||,
∫

fεdν ≤ log

(∫

S

exp{fε}dμ
)

+ I1(ν),

and,
∫

f dν =
∫

fεdν +
∫

(f − fε)dν

≤
∫

fεdν + 2ε||f || ≤ 2ε||f || + I1(ν)+ log{
∫

exp{fε}dμ}

≤ 2ε||f || + I1(ν)+ log

[∫

exp{f − 2ε||f ||}dμ
]

= 4ε||f || + I1(ν)+ log

[∫

exp{f }dμ
]

. (21.56)

Letting ε ↓ 0, one arrives at the desired result I2(ν) ≤ I1(ν) and hence I1(ν) =
I2(ν).

Finally, to prove D(ν||μ) ≤ I2(ν), first assume that I2(ν) is finite. In this case ν
is absolutely continuous with respect to μ: ν << μ. To see this, let μ(B) = 0 for
some Borel set. Let f = L1B in (21.56). We get (after letting ε ↓ 0),Lν(B) ≤ I1(ν)
(= I2(ν)), which cannot hold for all L unless ν(B) = 0. Assume that h = dν

dμ
is

bounded away from zero and infinity. Let f = logh in (21.56).
If logh is bounded, then (letting ε ↓ 0 in (21.56)) one has

∫

log hdν ≤ I1(ν)− log
∫

hdμ = I2(ν). (21.57)

This proves the desired result if log h is bounded. In general, let

hε,M =
⎧
⎨

⎩

ε if h ≤ ε
h if ε < h < M
M if h ≥ M.

Then, by (21.56),

∫

log hε,Mdν ≤ I1(ν)+ log
∫

hε,Mdμ.

By letting ε ↓ 0, and using the monotone convergence theorem, one obtains, with
hM = limε↓0 hε,M ,

∫

loghMdν ≤ I2(ν)+ log
∫

hMdμ.
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Next, letM ↑ ∞, and using the dominated convergence theorem with hM ≤ h, one
gets

∫

loghdν ≤ I1(ν)+ log
∫

hdμ.

In the case the supremum in I2(ν) is not achieved, given δ > 0< chose v = gδ such
that

∫
gδdν − log

∫
exp{gδ}dμ > I2(ν)− δ. �

We now show that for i.i.d. random variables with common distribution μ the
rate function given in Proposition 21.9, namely D(ν||μ) applies to open sets in
Theorem 21.10, as for closed sets. For this fix ν = hdμ, i.e., dν

dμ
= h. Suppose the

supremum in

sup{
∫

vdν − log λ+(v) : v ∈ Cb(S)} (21.58)

is attained at v∗. Note that here λ+(v) = ∫
ev(y)μ(dy).

Let g ∈ Cb(S). For all ε > 0 one has

∫

(v∗ + εg)dν − log λ+(v∗ + εg) ≤
∫

v∗dν − log λ+(v∗),

i.e.,

ε

∫

gdν − [
log λ+(v∗ + εg)− log λ+(v∗)

] ≤ 0.

Dividing by ε and letting ε ↓ 0, one obtains (Exercise 22)

∫

gdν ≡
∫

ghdμ ≤
∫

gev
∗
dμ/λ+(v∗). (21.59)

Replacing g by −g, one gets

∫

−gdν ≡
∫

−ghdμ ≤
∫

−gev∗
dμ/λ+(v∗).

Therefore,

∫

gdν ≡
∫

ghdμ =
∫

gev
∗
dμ/λ+(v∗).

Since this is true for all g ∈ Cb(S), we get

h = ev∗
/λ+(v∗) a.e.(μ).



332 21 Perron–Frobenius and Large Deviations

This says that v∗ = logh attains the supremum in (21.58). (Note that λ+(log h) ≡∫
eloghdμ = 1.) A similar but somewhat more elaborate argument holds for Markov

processes. We refer to Varadhan (2008) for the case of finite state Markov chains,
and Donsker and Varadhan (1975a, 1976, 1983), or Rezakhanlou (2017) for the
general case. The proof of Theorem 21.10 (b) provides a hint for the computation of
I (ν) for invariant probabilities ν of tilted chains with transition probabilities of the
form p̃(x, dy) = p(x, dy) f (y)

Tpf (x)
for f > 0, Tpf <∞.

For the next result for i.i.d. random variables with common distribution π , let

c(v) = log
∫

S

exp{v(y)}π(dy).

Corollary 21.11 (Sanov’s Theorem). Consider a sequence of i.i.d. random variables
Xn(n = 1, 2, . . . ) with values in S, with common distribution π , and let Pn denote
the distribution of the empirical En = 1

n

∑
1≤i≤n δxi (n = 1, 2, . . . ). Then the

sequence {Pn} satisfies the LDP with rate function

I (γ ) = sup

{∫

S

vdγ − c(v) : v ∈ Cb(S)
}

= D(ν||π). (21.60)

Proof. The result follows immediately from Theorem 21.10, with exponential
tightness derived in Proposition 21.12, and Lemma 6. Remark 21.11 shows that
the same I (γ ) applies to open sets as well. �
Remark 21.15. It may be shown that I (γ ) in (21.60) equals the relative entropy, or
Kullback–Liebler divergence D(γ ||π).
Remark 21.16. If one specializes (21.54) (21.53) to the i.i.d. cases, one readily
shows that γ (f ) is the probability f dπ∫

f dπ
, and I (γ (f )) = D(γ (f )||π). Thus only

those γ are considered which are absolutely continuous with respect to π . All other
γ such that D(γ ||π) = ∞, and, therefore, can be omitted.

Proposition 21.12. In the case of i.i.d. random variables the sequence {Pn} of
distributions of empirical measures is exponentially tight.

Proof. LetKj(j = 1, 2, . . .) be compact subsets of S such that π(Kcj ) ≤ exp{−j2},
where π is the common distribution of the i.i.d. sequence. Define

Dj = {γ ∈ P : γ (Kcj ) ≤ j−1} (j = 1, 2, . . .).

Then the sets Dj are closed and the sets Cd = ⋂∞
j=1Dj are compact, by

Prokhorov’s theorem (Exercise 12). One then has
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Pn(Cd) = Pn
⎛

⎝
∞⋃

j=d
Dcj

⎞

⎠ = P
⎛

⎝En ∈
∞⋃

j=d
Dcj

⎞

⎠

≤
∞∑

j=d
P (En ∈ Dcj ) =

∞∑

j=d
P (En(K

c
j ) ≥ j−1)

=
∞∑

j=d
P (nj2En(K

c
j ) ≥ nj)

=
∞∑

j=d
e−njE

(
exp{njEn(Kcj )}

)
(by Chebyshev’s inequality)

=
∞∑

j=d
e−nj

[
n∑

r=0

exp{nj2 r

n
} · P(En(Kcj ) = r

n
)

]

=
∞∑

j=d
e−nj

[
n∑

r=0

exp{rj2}
(
n

r

)

(π(Kcj ))
rπ(Kj )

n−r
]

=
∞∑

j=d
e−nj

[
exp{j2}π(Kcj )+ π(Kj )

]n

≤
∞∑

j=d
e−nj [1 + π(Kj )]n ≤ 2n

n∑

j=d
e−nj ≤ 2n+1e−nd .

From this exponential tightness of {Pn} follows (Exercise 13). �
It is interesting to see how Sanov’s Theorem 21.8 implies the Cramér–Chernoff

theorem. In the case of bounded random variables, this is essentially a consequence
of the following (Exercise 23)

Lemma 7 (Contraction Principle). Suppose the sequence {Pn} of distributions of
En = 1

n

∑n
m=1 log δXm {Pn} satisfies a LDP with rate function I , on (S, ρ). Let

ϕ : S → S′ be a continuous map into a Polish space (S′, ρ′). Then the family
{P ′
n = Pn◦ϕ−1} satisfies the LDP with rate function I ′(x′) = inf{I (x) : ϕ(x) = x′}.

Corollary 21.13 (Cramér–Chernoff). Let X1, X2, . . . be an i.i.d. sequence of ran-
dom variables on (Ω,F , P ) with values in R

d having distribution π . Let λ(u) =
logEeu·X1 = log

∫
Rd
eu·xπ(dx). Assume

∫
Rd
ex·rπ(dx) <∞. Define

Pn(A) = P(1

n

n∑

j=1

Xj ∈ A), A ∈ B, n = 1, 2, . . . ,
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where B is the Borel σ -field of Rd .
Then {Pn : n ≥ 1} satisfies the LDP with rate function

I (x) = λ∗(x) = sup
u∈Rd

(x · u− λ(u)).

Proof. To use the contraction principle to prove Cramér–Chernoff we first restrict
the proof to the case of bounded random variables, say π(S) = 1, S = {x ∈ R

d :
|x| ≤ m}, and define a linear functional ϕ on P = P(S) by

ϕ(ν) =
∫

S

xν(dx), ν ∈ P .

Apply Lemma 7 to P(S) in place of S.
Then, since f (x) = x is bounded and continuous on S, ϕ is continuous for the

weak*topology on P . Let Pn denote the distribution of 1
n

∑n
j=1Xj , and define

P ′
n(A) = Pn({ν : ϕ(ν) ∈ A}, A ∈ B.

Equivalently,

P ′
n(A) = P

⎛

⎝1

n

n∑

j=1

δXj ∈ {ν : ϕ(ν) ∈ A}
⎞

⎠

= P

(∫

S

1

n

∑
xδXj (dx) ∈ A

)

= P

⎛

⎝1

n

n∑

j=1

Xj ∈ A
⎞

⎠ . (21.61)

It now follows from the contraction principle (Lemma 7) that {P ′
n} satisfies the LDP

with rate

I ′(a) = inf
ν∈P

{D(ν||π) : ϕ(ν) = a}. (21.62)

So the objective is to show that I ′ may be equivalently expressed in the familiar
form

I (a) = sup
u∈Rd

(a · u− log
∫

S

eu·xπ(dx)). (21.63)

To show that I ′ = I we will use the Minimax Lemma 21.14 given below in
order to interchange a supremum with an infimum that occurs in the following re-
expression of the large deviation rate I ′. For this one simply notes the continuity of
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ν → D(ν||π) and ν → ∫
S
u · xν(dx).

I ′(a) = inf
ν∈P

{D(ν||π) : ϕ(ν) = a}

= inf
ν∈P

sup
u∈Rd

{

D(ν||π)− u ·
(∫

S

xν(dx)− a
)}

= inf
ν∈P

sup
u∈Rd

{

D(ν||π)−
∫

S

u · xν(dx)+ u · a
}

= sup
u∈Rd

inf
ν∈P

{

D(ν||π)−
∫

S

u · xν(dx)+ u · a
}

= sup
u∈Rd

{

− log
∫

S

eu·xπ(dx)+ u · a
}

= I (a), (21.64)

where the first equality follows from the fact that the supremum is ∞ unless ϕ(ν) =
a, and the last equality follows because for any bounded, measurable function f
on S one has log

∫
S
ef (x)π(dx) = supν∈P {∫

S
f dν − D(ν||π)} (Exercise 27). To

remove the boundedness assumption complete the steps in Exercise 24. �
The exchange of the supremum with infimum used in the above proof involves a
minimax formula due to Fan (1953). Another application of the minimax lemma
occurs in the Special Topics Chapter 22. The simple proof given here is due to
Borwein and Zhuang (1986). The lemma relies on a definition that captures the
property of a function of two variables that is convex-like in one variable, and
concave like in the other.

Definition 21.4. A function f : X × Y → R is said to be convex-concave like
on X × Y if for 0 ≤ t ≤ 1, (a) for x1, x2 ∈ X there is an x3 ∈ X such that
f (x3, y) ≤ tf (x1, y) + (1 − t)f (x2, y) for all y ∈ Y ; and (b) for y1, y2 ∈ Y there
is a y3 ∈ Y such that f (x, y3) ≥ tf (x, y1)+ (1 − t)f (x, y2) for all x ∈ X.

To simplify notation write supY ≡ supy∈Y , and similarly for minX.

Proposition 21.14 (Fan’s Minimax Formula). Suppose thatX, Y are nonempty sets
with f convex-concave like on X × Y . If X is compact and f (·, y) is lower
semicontinuous on X for each y ∈ Y , then

p := inf
X

sup
Y

f (x, y) = sup
Y

inf
X
f (x, y).

Proof. If p = −∞, then the result is trivial since infX supY f (x, y) ≥
supY infX f (x, y). So assume p is finite. Let a ∈ R with a < p. Since
K(y) = {x ∈ X : f (x, y) ≤ a} is compact for each y, and ∩y∈YK(y) = ∅,
there exist y1, . . . , yn in Y such that a < minX sup1≤j≤n f (x, yj ). Let

C = {(z, r) = (z1, . . . , zn, r) ∈ R
n×R : ∃ x ∈ X, f (x, yj ) ≤ r+zj , j = 1, ..., n}.
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Then C is convex subset of R
n+1 since f (·, y) is convex-like. Also, by

construction, the point (z, r) = (0, 1 + max1≤j≤n f (x, yj )) belongs to the
interior Co of C for any x ∈ X. Moreover, the point (z, r) = (0, a) /∈ C

since a < minX sup1≤j≤n f (x, yj ). By the separation theorem11 there exists
(λ1, . . . , λn, r) �= 0, such that for (z, r) ∈ C, z = (z1, . . . , zn), r ∈ R,

n∑

j=1

λj zj + rr ≥ ra.

Since C + R
n+1+ ⊂ C, one has λj ≥ 0, r ≥ 0. Moreover, clearly the point (z, r) =

(0, 1+max1≤j≤n f (x, yj )) ∈ C0 so that, in fact, one has r > 0. Thus, for all x ∈ X,
r ∈ R, writing zj = f (x, yj ) + r, 1 ≤ j ≤ n, z = (z1, . . . , zn), then (z,−r) ∈ C,
so that one has

n∑

j=1

λj

r
f (x, yj )+

⎛

⎝
n∑

j=1

λj

r
− 1

⎞

⎠ r ≥ a. (21.65)

Thus, considering r → −∞, one must have

n∑

j=1

λj

r
= 1. (21.66)

Since f (x, ·) is concave like, it follows from (21.66) and (21.65) that for j =
1, . . . n, some y ∈ Y , f (x, y) ≥ a for all x ∈ X. In particular, supY infX f (x, y) ≥
a. Since a ≤ p is arbitrary, one has supY infX f (x, y) ≥ infX supY f (x, y). Now
use lower semicontinuity of f (x, y) and supY f (x, y) on the compact set X to
obtain the asserted equality. �
Corollary 21.15. Suppose that X, Y are nonempty sets with f concave-convex like
onX×Y . IfX is compact and f (·, y) is upper semicontinuous onX for each y ∈ Y ,
then

p := sup
X

inf
Y
f (x, y) = inf

Y
sup
X

f (x, y).

Proof. Note that since

inf
X

sup
Y

f (x, y) = − sup
X

(− sup
Y

f (x, y)) = − sup
X

inf
Y
(−f (x, y)),

11 See BCPT, p. 12 for a proof in one-dimension.
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the roles of infimum and supremum can be interchanged assuming the correspond-
ing exchange of convex-concave like conditions to concave-convex like, and lower
to upper semicontinuity conditions entailed in replacing f by −f . �

The following proposition yields a simple variational formula as a corollary.

Proposition 21.16. Let g be a bounded measurable function, P,Q probability
measures such that P << Q. Let λ > 0. Then,

∫

S

gdP − λD(P ||Q) = λ log
∫

S

eg/λdQ− λD(P ||P ∗), (21.67)

where

dP ∗

dQ
= eg/λ
∫
S
eg/λdQ

. (21.68)

Proof. The left side of the asserted equation may be expressed as follows:

∫

S

gdP − λD(P ||Q) =
∫

S

gdP − λ
∫

S

log

(
dP

dQ

)

dP

=
∫

S

gdP − λ
∫

S

log

(
dP

dP ∗

)

dP − λ
∫

S

log

(
dP ∗

dQ

)

dP

=
∫

S

(

g − λ log

(
dP ∗

dQ

))

dP − λD(P ||P ∗)

=
∫

S

(

g − λ log

(
e
g
λ

∫
S
eg/λdQ

))

dP − λD(P ||P ∗)

=
∫

S

(

g − λ log
(
e
g
λ

)
+ λ log

(∫

S

eg/λdQ

))

dP − λD(P ||P ∗)

=
∫

S

(

g − λg/λ+ λ log

(∫

S

eg/λdQ

))

dP − λD(P ||P ∗)

=
∫

S

λ

(

log
∫

S

eg/λdQ

)

dP − λD(P ||P ∗)

= λ log
∫

S

eg/λdQ− λD(P ||P ∗). (21.69)

This completes the proof. �
Corollary 21.17 (Donsker–Varadhan Variational Formula). Under conditions of
the theorem one has

logEQe
λg = max

P∈P
(
λ

∫

S

gdP −D(P ||Q)). (21.70)

Moreover, the argmax P ∗ is unique.
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Proof. Replace g by λ2g in Proposition 21.16. Then,

λ log
∫

S

eλgdQ− λD(P ||P ∗) = λ2
∫

S

gdP − λD(P ||Q).

Thus, for all P << Q

log
∫

S

eλgdQ = λ

∫

S

gdP −D(P ||Q)+D(P ||P ∗)

≥ λ
∫

S

gdP −D(P ||Q), (21.71)

with equality if and only if P = P ∗ (Exercise 17). The asserted identity now
follows. �

As an application of the large deviation theory one may obtain the following
consequence.

Theorem 21.18 (Varadhan’s Integral Formula). Suppose that {Xn : n ≥ 1}
satisfies a LDP on S with rate function I , and let ϕ : S → R be a bounded
continuous function. If the level sets {x ∈ S : I (x) ≤ B} are compact for all
B > 0, then

lim sup
n→∞

1

n
logEenϕ(Xn) = sup

x∈S
{ϕ(x)− I (x)}. (21.72)

Proof. We view the asserted equality as an upper bound and a lower bound on the
left hand side. Assume |ϕ(x)| ≤ M , for all x ∈ S for some M > 0. For the lower
bound fix x0 ∈ S and δ > 0. Let G = {x ∈ S : ϕ(x) > ϕ(x0)− δ}. Then G is open
since ϕ is continuous. Now,

lim inf
n→∞

1

n
logEenϕ(Xn) ≥ lim inf

n→∞
1

n
logEenϕ(Xn)1[Xn∈G]

≥ ϕ(x0)− δ + lim inf
n→∞

1

n
logP(Xn ∈ G)

≥ ϕ(x)− I (x0)− δ. (21.73)

The lower bound follows by letting δ ↓ 0 since x0 ∈ S is arbitrary.
For the upper bound, for each N ≥ 1, partition the interval [−N,M] into a finite

numberm of closed subintervals JN,j of length 1
N

, and let FN,j = ϕ−1(JN,j ). Then
each FN,j is closed, the oscillation of ϕ on FN,j is at most 1

N
, and ϕ ≤ −N outside

∪Nj=1FN,j . Now,
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lim sup
n

1

n
log

∫

S

enϕ(x)P (Xn ∈ dx)

= lim sup
n

1

n
log

[∫

∪mj=1FN,j

enϕ(x)P (Xn ∈ dx)+
∫

∩mj=1F
c
N,j

enϕ(x)P (Xn ∈ dx)
]

≤ max
1≤j≤m lim sup

n

1

n
log

[∫

FN,j

enϕ(x)P (Xn ∈ dx)
]

∨ (−N)

≤ max
1≤j≤m lim sup

n

[
1

n
log e

n supx∈FN,j ϕ(x) + 1

n
logP(Xn ∈ FN,j )

]

∨ (−N)

≤ max
1≤j≤m

[

sup
x∈FN,j

ϕ(x)− inf
x∈FN,j

I (x)

]

∨ (−N)

≤ max
1≤j≤m sup

x∈FN,j

[

ϕ(x)− I (x)+ 1

N

]

∨ (−N). (21.74)

Let N → ∞ to obtain the desired upper bound. �
An application of major elements of this theory to a problem in cryptography

is provided in the Special Topics Chapter 22. Statistical physics provides another
area of application that motivated aspects of the theoretical development of large
deviation theory, e.g., see Ellis (1985), Dembo and Zeitouni (1998), Den Hollander
(2008).

Exercises

1. Prove Corollary 21.2. [Hint: q(x, S) = Exe
v(X1), q(2)(x, S)

= ∫
S

∫
S
ev(y)p(x, dy)ev(z)p(y, dz) = Exe

v(X1)+v(X2) (conditioning on X1
first). Now use induction. For the limit use (21.3), noting f+ ≤ 1, and f+
bounded away from zero.]

2. Complete the induction following (21.7) .
3. Show that it is sufficient that q(n0)

h satisfying hypothesis of the Perron–
Frobenius theorem for some n0 ≥ 1.

4. Prove the assertion under time reversibility in Remark 21.7 .
5. Prove the Corollary 21.4. [Hint:Compactness of Tq follows from the Arzela-

Ascoli theorem (BCPT p. 244.)]
6. Show that λ+ is a simple eigenvalue, i.e., the space of associated eigenfunctions

is one-dimensional. [Hint: Assume that f is another eigenfunction and, for

fixed x ∈ S, choose g(y) = f (y)
f+(x)
f+(y) in the definition of convergence in

total variation 21.3. With this choice show that f (x) = cf+(x) for a constant
c > 0.
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7. Suppose that T is an n× n real matrix, with transpose T t . Show that

(a) If T = T t , then, letting E denote the set of eigenvalues of T , one has
||T ||op = maxλ∈E |λ|. [Hint: Diagonalize T.

(b) ||T ||op = √||T tT ||op. [Hint: Use the Euclidean norm and Cauchy–
Schwarz to derive ||T v||2 = 〈T v, T v〉 ≤ ||T tT v|| · ||v|| ≤ ||T tT ||op · ||v||2
to see that ||T ||2op ≤ ||T tT ||op. Then apply Gelfand’s formula to ||T tT ||op.

(c) Show that ||T ||op is the square root of the largest of magnitudes of
eigenvalues of ||T tT ||. [Hint: Apply the above to T tT .

8. This exercise is in reference to Example 1.

(a) Compute λ+(h).
(b) Use Exercise 7 to calculate the operator norm ||Tqh ||op.
(c) In the case p = q = 1/2 compute I (a), 0 < a < 1, and show that the

lower bound on the large deviation rate furnished by the operator norm is
precisely 1

2I (a).

9. LetX1, X2, . . . be i.i.d. real-valued random variables with common distribution
function G, and let Gn(t) = 1

n

∑n
j=1 1(−∞,t](Xj ) denote the empirical

distribution function. (a) Show that for each fixed t ∈ R, Gn(t) → G(t) as
n→ ∞, with probability one. (b) Show that

sup
−∞<t<∞

|Gn(t)−G(t)| → 0 in probability as n→ ∞.

(c) The Glivenko–Cantelli Theorem asserts that (b) in fact holds almost surely.
Prove this by completing the following steps.

(a) For each t , the event [Gn(t−)→ G(t−)] has probability one.
(b) Let τ(y) = inf{t : G(t) ≥ y}, 0 < y < 1. Then G(τ(y)−) ≤ y ≤

G(τ(y)).
(c) Let Dm,n = max1≤k≤m{|Gn(τ(k/m)) − G(τ(k/m))|, |Gn(τ(k/m)−) −

G(τ(k/m)−)|}. Then, by considering the cases τ
(
k−1
m

)
≤ t <

τ
(
k
m

)
, t < τ

(
1
m

)
or if t ≥ τ(1), show that supt |Gn(t) − G(t)| ≤

Dm,n + 1
m
.[Hint: Check that both Gn(t) − G(t) ≤ Dm,n + 1

m
and

Gn(t) −G(t) ≥ −Dm,n − 1
m

by using monotonicity, followed by adding
and subtracting appropriate terms.

(d) C =
∞⋃

m=1

m⋃

k=1

[Gn(τ(k/m)) �→ (G(τ(k/m))] ∪ [Gn(τ(k/m)−) �→ G(τ(k/m)−)]

has probability zero, and for ω ∈ Cc and each in m ≥ 1 Dm,n(ω) →
0 as n→ ∞.

(e) supt |Gn(t, ω)−G(t)| → 0 as n→ ∞ for ω ∈ Cc.
(c) For an interpretation of Sanov’s theorem in the context of Glivenko–
Cantelli, show that for a closed set F not containing G one has P(Gn ∈ F)→
0 as n→ ∞, and Sanov’s theorem gives the rate.



Exercises 341

10. Let f : S → (−∞,∞] be a lower semicontinuous function on a metric
space (S, ρ), f bounded below. Prove that the functions fn(x) = infy(f (y) +
nρ(x, y)) are (i) non-decreasing, (ii) continuous, and (iii) limn→∞ fn(x) =
f (x) for all x ∈ Sx . [Hint: Assume without essential loss of generality that
f ≥ 0, (i) is obvious; for (ii) note that |fn(x) − fn(z)| ≤ supy |nρ(x, y) −
nρ(z, y)| ≤ nρ(x, z). To prove (iii), fix x and ε > 0; {y : f (y) > f (x)− ε} is
open, so it contains a ball B(x, δ) of center x and radius δ > 0. If y ∈ B(x, δ)c,
then for all sufficiently large n, nρ(x, y) ≥ nδ > f (x). Therefore, for such n,
fn(x) > f (x)− ε, i.e., f (x)− ε < fn(x) ≤ f (x).

11. Show that I (γ ) defined in Lemma 3 is lower semicontinuous [Hint: For a
continuous and bounded v, γ → ∫

vdγ is continuous on P in the weak-star
topology. For v ∈ L(S), let vn be continuous ↑ v, as in Exercise 10. ForM > 0,
γ → ∫

(vn ∧ M)dγ is continuous. Letting M ↑ ∞, γ → ∫
vndγ is lower

semicontinuous and the increasing sequence of lower semicontinuous functions
is lower semicontinuous.

12. Show that the derived inequality Pn(Ccd) ≤ 2−(n+1)e−nd for compact Cd (d =
1, 2, . . .) implies exponential tightness.

13. Show that in Theorem 21.1, λ+(v) is the largest eigenvalue of Tq as an operator
on Cb(S), and f+ is the eigenfunction, unique up to a scalar multiple.

14. Consider the Ehrenfest birth–death chain X on S = {0, 2, . . . , 2d} with
transition probabilities pi,i+1 = βi = 2d−i

2d , and pi,i−1 = δi = i
2d , for

i = 0, 1, . . . , 2d. (a) Show that πj = (2d
j

)
2−2d is a time-reversible invariant

probability. (b) Compute the operator norm bound on the spectral radius and
corresponding large deviation rate. (c) Compute the precise large deviation rate
if X is replaced by an i.i.d. sequence distributed as π .

15. (Life Insurance Risk) Let X1, X2, . . . be i.i.d. Bernoulli 0 − 1 valued random
variables with P(X1 = 1) = p = 1 − q, and Sn = X1 + · · · + Xn. Consider
a portfolio of life insurance contracts containing n individuals in the same risk
category. Let p > 0 denote the probability of an individual death in a given
year of coverage. One may assume that the life spans of the insured individuals
are independent. Then the total claims is given by gSn, where g > 0 is the
amount paid to an individual upon death, and Sn is binomial with parameters
n, p. A standard problem for actuaries is to determine an annual individual life
insurance premium π to be paid for coverage such that P(gSn > nπ) ≤ r for a
given risk tolerance r ∈ (0, 1). Use the upper bound on P(

∑n
j=1 v(Xj ) > a),

where v(x) = gx, a = nπ , to determine an equation sufficient to determine π
for given values of the parameters g, n, r, p.

16. Let X1, X2, . . . be i.i.d. with lognormal distribution having parameters μ, σ 2,
i.e., X1 = eσZ+μ, for standard normal Z. Show that there is a large deviation

principle for the distributions of Xn = (
∏n
j=1Xj)

1
n , n ≥ 1, and compute the

rate function.
17. Show thatD(P ||Q) ≥ 0 with equality if and only if P = Q.[Hint: Use Jensen’s

inequality.
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18. Let S be finite, say S = {1, 2, . . . , k}, and ((pij )) a transition probability matrix
on S, pij > 0, for all i, j ∈ S. Prove that h → λ+(h) is differentiable. [Hint:
Let qh(i, j) = ehv(j)pij . By the (classical) Perron–Frobenius theorem qh =
((qh(i, j))) has, for each h, a simple eigenvalue λ+(h). Write det(q)= det(qh−
λI ) as

∏n
j=1(λ − aj (h)), with each aj (h) analytic. For given h∗, λ − λ+(h)

appears only once, say λ+(h) = aj (h) in a neighborhood of h∗.
19. Prove that λ+(h) → ∞ exponentially fast as h → ∞ under the hypothesis

of Remark 21.8. [Hint: As in the proof of Theorem 21.1, λ+(h) ≥ λm(h) =
infx qh(x, S). But infx

∫
S
ehv(y)p(x, dy)→ ∞ exponentially fast as h→ ∞.

20. Derive the large deviation rate for

lim
n→∞P

⎛

⎝
n∑

j=1

(v(Xj )− Eπv) < −na
⎞

⎠

for a > 0, under the hypothesis of Theorem 21.1 for q(x, dy) = ev(y)p(x, dy).
21. Verify the hypothesis of the Cramér–Chernoff theorem for the canonical

distribution as noted in the proof of Corollary 21.5.
22. Check the inequality (21.59). [Hint: For bounded v and g, λ+(v + εg) =∫

S
ev+εgdμ = ∫

S
ev{(1 + εg)dμ+ o(ε2)}.]

23. (Contraction Principle) Suppose {Pn} satisfies a LDP with rate function I , on
a metric space (S, ρ). Let ϕ : S → S′ be a continuous map into a metric
space (S′, ρ′). Prove that the family {P ′

n = Pn ◦ ϕ−1} satisfies the LDP with
rate function I ′(x′) = inf{I (x) : ϕ(x) = x′}. [Hint: Let F be a closed
subset of S′, then ϕ−1(F ) is a closed subset of S. lim sup 1

n
logP ′

n(F ) =
lim sup 1

n
logPn(ϕ−1(F )) = − infx∈ϕ−1(F ) I (x) = − infx:ϕ(x)∈F I (x) =

− infz∈F infx:ϕ(x)=z I (x). The lower semicontinuity of I ′ follows from that of
I .]

24. Let {Pn} be a sequence of probability measures on S that satisfies a LDP with
rate function I .

(a) Suppose that S, S′, are both locally compact and σ -compact Polish spaces
and ϕ : S → S′ is Borel measurable. Suppose that there are compact
sets Km ⊂ S,m ≥ 1, such that ϕ is continuous on S. Show that if
limm→∞ lim supn→∞ 1

n
logPn(Kcm) = −∞, then the sequence {Pn ◦ ϕ−1}

satisfies the LDP with rate I ′(a) = inf{I (x) : ϕ(x) = a}.
(b) Show for the case S = R

d and
∫
S
eu·xπ(dx) < ∞ for all u ∈ R

d ,
there is an increasing function τ : [0,∞) → [0,∞) such that τ(0) =
0, t−1τ(t)→ ∞ as t → ∞, and such that

∫
S
eτ (|x|)π(dx) <∞.

(c) Use these to complete the proof of Corollary 21.13 using Sanov’s theorem.
[Hint: Consider the cases in which Km = {ν ∈ P(Rd) : ∫

S
τ (|x|)ν(dx) ≤

m}, for each m ≥ 1.

25. In Example 2, let g(x) = βx, |β| < 1, i.e., consider the discrete Ornstein–
Uhlenbeck model Xn+1 = βXn + σZn+1, where {Zn} is i.i.d. N(0, 1), σ > 0.
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Compute the large deviation rate I (a) = limn→∞ 1
n

logP(
∑n
j=1Xj > na) of

the Cramér–Chernoff theorem for this example.
26. In the context of the method of types, show that #Pn is no more than (n +

1)r . [Hint: Think of positioning n balls marked 1, . . . , n in a row, with n − 1
locations between successive balls, and one to the left of ball 1 and one to the
right of ball n. Distribute r sticks, one at a time, at random in these locations.
Label sticks according to position (left to right). The number of balls to the left
of stick 1 is the size of group 1 observations. The number of balls to the right of
stick r is the size of group r . If all sticks fall to the left of ball 1, then take the
size of group r as n, and if all sticks fall the right of ball n, then take the size of
group 1 as n, and the number of balls between (i-1)th and ith sticks as the size
of group i observations, i = 2, . . . , r − 1.]

27. In the context of Cramér-Sanov large deviation theory for i.i.d. random vari-
ables with common distribution π , show that for every bounded, measurable f
on S, one has log

∫
S
ef dπ = supν∈P(S)(

∫
S
f dν−D(ν||π)). [Hint: By (21.56),

log
∫
S
ef dπ ≥ supν∈P(S)(

∫
S
f dν − D(ν||π)). In the arguments preceding

Sanov’s theorem (see (21.58), (21.59), etc.), it is shown that the supremum
in (21.57) is attained at v = logh, where h = dν

dμ
. That is, given f , and

ν determined by dν
dπ

= ef , one has log
∫
S
ef dπ = ∫

S
f dν − D(ν||π) ≤

supν∈P(S)(
∫
S
f dν − D(ν||π)). On the other hand, (21.56) shows the opposite

inequality.]



Chapter 22
Special Topic: Applications of Large
Deviation Theory

This chapter includes two applications of the large deviation theory presented
in Chapter 21. One concerns an application to a problem in cryptography
in which, among other motivations, hackers attempt to break a password
by guessing. The other is an application to the efficiency of large sample
statistical tests of hypothesis.

Example 1 (Encrypted Security Systems1). The problem to be considered here is
of interest to cryptographers analyzing, for example, attempts by a hacker to enter a
password protected system by robotically guessing it. The problem can be abstractly
stated as follows: For a given finite set S = {1, 2, . . . k}, say, Alice randomly
generates a cipherX(n) = x ∈ Sn of length n, whereX(n) = (X1, . . . , Xn) ∈ Sn has
a joint probability mass function pX(n) (x1, . . . , xn), xj ∈ S, 1 ≤ j ≤ n. According
to some guessing strategy, Bob systematically steps through the messages y ∈ Sn
in some specified order, and Alice responds X(n) = y with “yes” or “no,” according
to whether y = x or not. The goal is to quantify the effort required by guessing.
Throughout it will be assumed without further mention that the message source
X1, X2, . . . is a stationary process.

Mathematically, guessing is given by a bijection G : Sn → {1, 2, . . . , |S|n}
prescribing the orders in which guesses y ∈ Sn are made in the guessing strategy.
G(x) is then the number of guesses to reach the given cipher x.

1 This example is based on Hanawal and Sundaresan (2011).
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To minimize the expected number of guesses, an optimal choice is a guessing
function G∗ that would therefore make the order of selections according to
decreasing probabilities f (y), y ∈ Sn. Note that if f (y) = f (z), then the order
in which y and z are guessed will not affect the number of guesses to unlock the
password. In particular, an optimal G is not unique with regard to minimizing the
expected number of guesses.

As a measure of the attackers effort, cryptologists consider an optimal G∗ to
define an optimal guessing exponent by

g(ρ) = lim
n→∞

1

n
lnEG∗(X(n))ρ, (22.1)

when the limit exists. The primary focus of this chapter is on the computation
of g(ρ) in some generality via large deviation theory. This is achieved by sys-
tematically establishing a succession of equivalent computations: Proposition 22.2
recasts the problem in terms of an equivalent computation for word lengths,
Proposition 22.3 recasts this in terms of a Rényi entropy computation, and finally
Theorem 22.4, Corollary 22.5 in terms of a large deviation computation for the so-
called information spectrum.

Remark 22.1. Calculations have been made for g(ρ) in the case of i.i.d. encodings
X1, . . . , Xn by Arikan (1996), and irreducible Markov chain encodings by Malone
and Sullivan (2004). These will appear as applications of the large deviation results
of Hanawal and Sundaresan (2011) at the end of this example.

It will be helpful to introduce the guessing length function LG : Sn → N
associated with G defined by

LG(x) = 
− ln
1

CG(x)
�, x ∈ Sn, (22.2)

where 
·� is the ceiling function, i.e., 
x� is the smallest integer not smaller than x,
and C = ∑

x∈Sn 1
G(x) is a normalization constant. In particular,

QG(x) = 1

CG(x)
, x ∈ Sn, (22.3)

defines a probability mass function on Sn. Note that since C ≥ 1,

G(x) = 1

CQG(x)
≤ 1

QG(x)
. (22.4)

Clearly, lnG(x) ≤ LG(x), x ∈ Sn by definition, and

lnG(x) = − lnQG(x)− lnC ≥ 
− lnQG(x)� − 1 − lnC, (22.5)
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so that, in summary,

LG(x)− 1 − lnC ≤ lnG(x) ≤ LG(x). (22.6)

To denote the dependence of G and L on the message length n, we write Gn,
Ln, Cn, respectively, when necessary. Note that Ln satisfies the so-called Kraft
inequality (Exercise 4)

∑

x∈Sn
exp{−Ln(x)} ≤ 1. (22.7)

In general any function L : Sn → N satisfying the Kraft inequality will be referred
to as a length function. We let Ln denote the set of all such functions on Sn. L∗ will
denote a length function that minimizes E exp{ρL(X(n))}.

Suppose that X1, X2, . . . is a stationary process and let Q ∈ Pn denote the
distribution of (X1+m, . . . , Xn+m) (m=1,2,. . . ). The Shannon entropy2 expressed in
nats, i.e., using natural logarithms, is defined by

H(X1, . . . , Xn) ≡ H(Q) = −
∑

x∈Sn
Q({x}) lnQ({x}).

Shannon’s entropy of the stationary process is defined by

H = lim
n→∞

H(X1, X2, . . . , Xn)

n
,

for which existence is a direct consequence of subadditivity using Fekete’s lemma
from Chapter 5. Specifically, lettingQn denote the distribution of (X1, X2, . . . , Xn),
one has

H(Qn+m) ≡ H(X1, . . . , Xn+m)

≤ H(X1, . . . , Xn)+H(Xn+1, . . . , Xn+m)

= H(X1, . . . , Xn)+H(X1, . . . , Xm) = H(Qn)+H(Qm), (22.8)

where the essential second line is left as Exercise 2.

Remark 22.2. Note the existence of a length function L for which the (approxi-
mate) expected lengths are minimal, i.e., the problem

min
L∈Ln:∑x e

−L(x)≤1

∑

x∈Sn
pX(n) (x)L(x)

2 See Bhattacharya and Waymire (1990, 2009), pp.184–189 for a related treatment of Shannon
entropy.
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can be shown to have a solution by the method of Lagrange multipliers (Exercise 5)
providing one permits non-integer solutions.

Theorem 22.1 (Shannon). For a length function L one has

H(X1, . . . , Xn) ≤ EL(X1, . . . , Xn),

with equality if and only if pX(n)(x) = e−L(x). Moreover, letting L∗(X1, . . . , Xn)

denote the lengths having smallest expected value possible for the word
(X1, . . . , Xn), one has

H(X1, . . . , Xn) ≤ EL∗(X1, . . . , Xn) ≤ H(X1, . . . , Xn)+ 1.

In particular,

H(X1, . . . , Xn)

n
≤ EL∗(X1, . . . , Xn)

n
≤ H(X1, . . . , Xn)

n
+ 1

n
,

lim
n→∞E

L∗(X1, . . . , Xn)

n
= H.

Proof. To prove the lower bound let q(x) = e−L(x)∑
y∈Sn e−L(y)

, andK = ∑
y∈Sn e−L(y) ≤

1, by the Kraft inequality. Then,

EL(X1, . . . , Xn)−H(X1, . . . , Xn)

=
∑

x∈Sn
pX(n) (x)L(x)−

∑

x∈Sn
pX(n) (x) ln

1

pX(n) (x)

= −
∑

x∈Sn
pX(n) (x) ln e−L(x) +

∑

x∈Sn
pX(n) (x) lnpX(n) (x)

=
∑

x∈Sn
pX(n) (x) ln

pX(n) (x)

q(x)
− lnK

= D(pX(n) ||q)+ ln
1

K
≥ 0. (22.9)

Note that approximately if L(x) = ln 1
p
X(n)

(x)
, thenH = L. However, such a choice

for L is not an integer. Taking L(x) = 
ln 1
p
X(n)

(x)
�, the Kraft inequality is preserved

by this choice Now, for this choice of lengths, a simple calculation yields,

H(X1, . . . , Xn) ≤ EL(X1, . . . , Xn) ≤ H(X1, . . . , Xn)+ 1.
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Since EL∗(X1, . . . , Xn) ≤ EL(X1, . . . , Xn) both the lower and upper bounds are
satisfied by EL∗(X1, . . . , Xn). �
Lemma 1. Let G be a guessing function and LG its associated length function.
Then,

∣
∣
∣
∣
1

ρ
lnEG∗(X(n))ρ − 1

ρ
lnE exp

{
ρL∗(X(n))

}∣∣
∣
∣ ≤ 1 + lnC, (22.10)

where C = ∑
x∈Sn 1

G(x) .

Proof. For a length function L ∈ Ln, let GL be the guessing function that guesses
in the increasing order of L-lengths. Messages of the same L-length are ordered
according to an arbitrary fixed rule, say lexicographical order on Sn. Define a
probability mass function on Sn by

QL(x) = exp{−L(x)}
∑
y∈Sn exp{−L(y)} , x ∈ Sn. (22.11)

Note that GL guesses in the decreasing order of QL probabilities. In particular,
GL(x) ≤ ∑

y∈Sn 1[QL(y) ≥ QL(x)] ≤ ∑
y∈Sn

QL(y)
QL(x)

= 1
QL(x)

, so that

lnGL(x) ≤ − lnQL(x) x ∈ Sn. (22.12)

Also, by definition ofQL and using Kraft’s inequality (22.7),

1

QL(x)
= exp{L(x)}

∑

y∈Sn
exp{−L(y)} ≤ exp{L(x)},

so that

− lnQL(x) ≤ L(x), x ∈ Sn. (22.13)

From these inequalities one deduces that for any B ≥ 1,

{x : LG(x) ≥ B + 1 + lnC} ⊂ {x : G(x) ≥ eB} ⊂ {x : LG(x) ≥ B}, (22.14)

and

{x : GL(x) ≥ eB} ⊂ {x : L(x) ≥ B}. (22.15)

Now, by (22.12) followed by (22.6),

E exp{ρL(X(n))} ≥ EGL(X
(n))ρ ≥ EG∗(X(n))ρ

≥ E exp{ρLG∗(X(n))} exp{−ρ(1 + lnC)}
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≥ E exp{ρL∗(X(n))} exp{−ρ(1 + lnC)}. (22.16)

Thus,

EGL(X
(n))ρ

EG∗(X(n))ρ
≤ E exp{ρL(X(n))}

E exp{ρL∗(X(n))} exp{ρ(1 + lnC)}, (22.17)

and, in terms of the length function LG associated with G, one similarly has

EG(X(n))ρ

EG∗(X(n))ρ
≥ E exp{ρLG(X(n))}

E exp{ρL∗(X(n))} exp{−ρ(1 + lnC)}. (22.18)

The lemma now follows from these bounds upon taking logarithms with L = L∗
in (22.16). That is

1 ≥ EG∗(X(n))ρ

E exp{ρL∗(X(n))} ≥ exp{−ρ(1 + lnC)}, (22.19)

so that 0 ≥ lnEG∗(X(n))ρ − lnE{ρL∗(X(n))} ≥ −ρ(1 + lnC). �
The existence and determination of g(ρ) will ultimately follow from an appli-

cation of Varadhan’s integral formula applied to a related function of X1, . . . , Xn
obtained from the next three propositions and their lemmas.

Proposition 22.2. The guessing exponent g(ρ) exists if and only if

�(ρ) = lim
n→∞ inf

L∈Ln
1

n
lnE exp{ρL(X(n))} (22.20)

exists. Moreover g(ρ) = �(ρ) when either exists.

Proof. Note thatCn ≤ 1+n ln |S|. Dividing both sides of the inequality in Lemma 1
by n, one has

∣
∣
∣
∣

1

nρ
lnEG∗ρ(X(n))− 1

nρ
lnE(exp{ρL∗(X(n))})

∣
∣
∣
∣ ≤ 1

n
(1 + lnCn) = O

(
ln n

n

)

.

(22.21)
Thus the sequences differ by o(1) as n→ ∞. �

The next proposition requires the Rényi entropy rate of order α �= 1 defined by

Hα(pX(n) ) = 1

1 − α ln
∑

x∈Sn
pα
X(n)
(x)) ≡ 1

1 − α lnEpα−1
X(n)
(X(n)). (22.22)
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Proposition 22.3. limn→∞ infL∈Ln 1
n

lnE exp{ρL(X(n))}, or equivalently limn ln
EG∗(X(n))ρ , exists if and only if limn→∞ 1

n
Hα(pX(n) ) exists for α = 1

1+ρ .

Moreover, if the latter limit exists, then it is given by g(ρ)
ρ

.

Proof. The equivalence is the content of Proposition 22.2. We focus on the former
limit. For each n the Donsker–Varadhan variational formula of Corollary 21.17
yields, upon replacing g by L(X(n)), λ by ρ,Q by pX(n) , and P byQ, that

lnE exp{ρL(X(n))} = sup
Q∈Pn

{ρEQL(X(n))−D(Q||pX(n))}. (22.23)

Taking the infimum on both sides over all length functions L ∈ Ln and applying
Fan’s minimax exchange of supremum and infimum, one has

inf
L∈Ln

lnE exp{ρLn(X(n))} = inf
L∈Ln

sup
Q∈Pn

{ρEQLn(X(n))−D(Q||pX(n))}

= sup
Q∈Pn

inf
L∈Ln

{ρEQLn(X(n))−D(Q||pX(n))}

= sup
Q∈Pn

{ρH(Q)−D(Q||pX(n))} +O(1)

= ρH 1
1+ρ
(pX(n) )+O(1), (22.24)

where to justify the use of Fan’s minimax formula one notes firstly convexity of the
map (Q,L) ∈ Pn × Ln → EQ{ρL(X(n)) − D(Q||pX(n)) = ∑

x∈Sn{ρL(x) +
lnQ(x) − lnpX(n) (x)}Q(x), as a function of Q ∈ Pn, and the linearity
as a function of L. The next equation follows from Theorem 22.1, namely
infL∈Ln EQ∈Pn{L(X(n))} = H(Q) + O(1). Finally, the last equation follows
by writing

sup
Q∈Pn

{
ρH(Q)−D(Q||pX(n) )

} = (1 + ρ) sup
Q∈Pn

{

EQ

[

− ρ

1 + ρ lnpX(n) (X
(n))

]

−D(Q||pX(n) )
}

,

and then applying the Donsker–Varadhan variational formula of Corollary 21.17,
as in the first equation, with g replaced by lnpX(n)(X

(n)), λ replaced by 1
1+ρ , P

replaced byQ to get the scaled Rényi entropy. That is,

sup
Q∈Pn

{ρH(Q)−D(Q||pX(n))} +O(1)

= sup
Q∈Pn

{

−ρ
∑

x

Q(x) lnQ(x)−
∑

x

Q(x) lnQ(x)+
∑

x

Q(x) lnpX(n) (x)

}

= sup
Q∈Pn

{
∑

x

Q(x) lnpX(n) (x)− (1 + ρ)
∑

x

Q(x) lnQ(x)

}
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= (1 + ρ) sup
Q∈Pn

{

EQ
1

1 + ρ lnpX(n) (X
(n))−D(Q||pX(n))

}

+O(1)

= (1 + ρ) lnEp
1

1+ρ−1

X(n)
(X(n))+O(1)

= ρH 1
1+ρ
(pX(n) )+O(1).

Scale by 1
n

and let n→ ∞ to complete the proof. �

The information spectrum is defined by − 1
n

lnpX(n) (X
(n)). The next step is to

show that the Rényi entropy rate can be computed from the distributions of the
information spectra.

Theorem 22.4 (Hanawal and Sundaresan (2011)). Let νn be the distribution of the
information spectrum − 1

n
lnpX(n)(X

(n)). If νn, n ≥ 1, satisfy a LDP with rate
function I , then the limiting Rényi entropy rate of order α = 1

1+ρ exists and is

given by β−1 supt∈R{βt − I (t)}, where β = ρ
1+ρ .

Proof. Let νn denote the distribution of the information spectrum 1
n

lnpX(n)(X
(n)).

Then, with An = {− 1
n

lnpX(n) (x) : x ∈ Sn}, one has

∫

R

exp(nβt)νn(dt) =
∑

t∈An
exp(nβt)

∑

{x:p
X(n)

(x)=exp(−nt)}
pX(n) (x)

=
∑

x∈Sn
pX(n) (x)

1−β

=
∑

x∈Sn
pX(n) (x)

1
1+ρ

= exp{βH 1
1+ρ
(pX(n) )}. (22.25)

Now, scaling by 1
n

and taking logarithms, one may apply the Varadhan integral
formula to the left side to obtain in the limit β−1 supt∈R{βt − I (t)}, while one
has on the right side β limn 1

n
H 1

1+ρ
(pX(n) ). �

Corollary 22.5. If the distributions of the information spectra satisfies a LDP with
rate I , then the guessing exponent exists and is given by

g(ρ) = (1 + ρ) sup
t∈R

{
ρ

1 + ρ t − I (t)
}

.

Proof. By Proposition 22.3 the limiting Rényi entropy is g(ρ)
ρ

. Thus, one has g(ρ) =
ρβ−1 supt∈R{βt − I (t)} = (1 + ρ) supt∈R{βt − I (t)}. �
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First let us apply this theory to the case of i.i.d. message sources.

Theorem 22.6 (I.I.D. Case). Assume that X1, X2, . . . is i.i.d. with common proba-
bility mass function p on the finite alphabet S. Then, the limit defining the guessing
exponent g(ρ) exists and is given by g(ρ) = (1+ρ)H 1

1+ρ
(p), whereHα(p) denotes

the Rényi entropy rate of order α of the probability mass function p.

Proof. From Proposition 22.3 one can compute g(ρ) from the Rényi entropy rate
which, in turn, is given by 1+ρ

ρ
I ∗( ρ

1+ρ ), where I (·) is the large deviation rate for
the energy spectrum

−1

n
lnpX(n) (X

(n)) = −1

n
ln

n∏

j=1

p(Xj ) = −1

n

n∑

j=1

lnp(Xj ).

In particular, I (h) = c∗(h) is the Legendre transform of the cumulant generating
function of − lnp(X1), namely

c(h) = lnEeh(− lnp(X1)) = lnEp−h(X1) = hH1−h(p).

Since the Legendre transform operation ∗ is idempotent (see Exercise 6), it follows
that

I ∗
(

ρ

1 + ρ
)

= (c∗)∗
(

ρ

1 + ρ
)

= c
(

ρ

1 + ρ
)

.

In particular, g(ρ) = (1 + ρ) ρ
1+ρH 1

1+ρ
= ρH( 1

1+ρ ), as asserted. �

Theorem 22.7 (Irreducible Markov Case). Let X1, X2, . . . be an irreducible
Markov chain on S with homogeneous transition probability matrix p =
((p(y|x)))x,y∈S . Then the guessing exponent g(ρ) exists and is given by

g(ρ) = (1 + ρ)λ+
(

ρ

1 + ρ
)

,

where λ+(h) is the largest eigenvalue of the matrix ((π1−h(y|x)))x,y∈S .

Proof. As in the i.i.d. case, from Proposition 22.3 one can compute g(ρ) from the
Rényi entropy rate which, in turn, is given by 1+ρ

ρ
I ∗( ρ

1+ρ ), where I (·) is the large
deviation rate for the energy spectrum

−1

n
lnpX(n)(X

(n)) = −1

n

⎧
⎨

⎩
lnp(X1)+

n−1∑

j=1

lnp(Xj+1|Xj)
⎫
⎬

⎭
.

Note that Yj = (Xj ,Xj+1), j = 1, 2, . . . is also a stationary Markov chain with
one-step transition probabilities
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p̃((w, z)|(x, y)) =
{
p(z|y), y = w,
0, y �= w.

To compute I (·) it suffices to compute the large deviation rate for
∑n
j=1 ϕ(Yj ),

where g(Yj ) = − lnp(Xj+1|Xj). Let v(x, y) = − lnp(y|x), (x, y) ∈ S×S. Then,

Thf (x, y) =
∑

(w,z)∈S×S
f (w, z)e−h lnp(z|w)p̃((w, z)|(x, y))

=
∑

z∈S
f (y, z)p−h(z|y)p(z|y) =

∑

z∈S
f (y, z)p1−h(z|y). (22.26)

Observe that Thg(x, y) = λg(x, y), (x, y) ∈ S × S implies g(x, y) = g(y),
i.e., is constant in x. In particular, λ+(h) = λ(1 − h), where λ(a) is the largest
eigenvalue of the matrix ((pa(y|x))(x,y)∈S×S . In particular, I (h) = λ∗(h). Again
using idempotency, of the Legendre transform, I ∗(t) = λ(t). It follows that the
entropy rate is given by 1+ρ

ρ
ln λ( ρ

1+ρ ), and therefore the guessing exponent is

g(ρ) = ρ
1+ρ
ρ

ln λ( ρ
1+ρ ) where λ( ρ

1+ρ ) is the largest eigenvalue of the matrix

((p
1

1+ρ (y|x)))(x,y)∈S×S . �
Remark 22.3. Alternative representations of the guessing exponent in both of these
cases can be obtained by consideration of level-2 large deviations as given in
Hanawal and Sundaresan (2011). Moreover, the computation of the guessing

exponent by these methods for other general classes of message sources can be
found there.

The Kraft inequality for lengths plays an essential role in this application,
specifically in Theorem 22.1 and its application in the proof of Proposition 22.3. In
the classic monograph of Shannon (1948) messages are defined as sequences from
a finite alphabet S, referred to as ciphers.3 In the context of message compression,
for a positive integer b one often defines a b-ary coding function as an injective map
c : Sn → ∪∞

m=1{0, 1, . . . , b−1}m that renders a message x ∈ Sn of length n, as a b-
ary sequence c(x) of lengthm for somem. One seeks codes c for which the average
length EL(X(n)), of a message X(n), is minimal. A b-ary coding function is said to
be prefix-free (or instantaneous) if for x �= y c(x) is not a prefix of c(y). A prefix-
free code may be represented as leaves on a rooted b-ary tree obtained by coding the
path from the root to the leaves (terminal vertices) with labels {0, 1, 2, . . . , b − 1}
from left to right at each level of the tree. Therefore, a prefix-free codeword can be
instantaneously decoded without reference to future codewords since the end of a
codeword is immediately recognizable as a leaf.

3 The textbook by Cover and Thomas (2006) provides a good foundation for the general concepts
and results encountered in information theory.
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Fig. 22.1 Prefix-free code: S = {α, β}, n = 3, b = 3;L(α, β, β) = 1, L(α, α, α) = L(α, α, β) =
2;L(β, β, β) = · · · = L(β, α, α) = 3.

Proposition 22.8. Given any positive integers L1, . . . , L|S|n , satisfying Kraft
inequality, there is a prefix-free b-ary code on Sn, b ≥ 3, whose code words
have lengths L1, . . . , L|S|n .

Proof. Observe that for positive integers L(x), x ∈ Sn, b ≥ 3, since 2 < e <

3,
∑
x∈Sn b−L(x) ≤ 1 if

∑
x∈Sn exp{−L(x)} ≤ 1. Let m = |S|n, Lmax =

max{L1, . . . , Lm} and construct a full rooted b-ary tree of height Lmax for a b ≥ 3.
Then the total number of leaves available is bLmax , at vertices of height Lmax having
height one label from {0, 1, . . . , b − 2} (see Figure 22.1). This uses (b − 1)bLmax−1

of the leaves, with bLmax − (b − 1)bLmax−1 = bLmax−1 remaining for coding words
having lengths at most Lmax − 1. Proceed inductively. �
Remark 22.4. The prefix-free b-ary code constructed in the proof of Proposi-
tion 22.8 is referred to as the Shannon code. The units for message compression
are referred to as “bits” when the logarithm is base 2, and “nats” for the natural
logarithm. Natural logarithms are mathematically more convenient to the problem
at hand and can be used without loss of generality.
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The significance of Proposition 22.8 for the present chapter is that one may
assume any given lengths, i.e., subject to the Kraft inequality, to be those of a prefix-
free code.

Remark 22.5. The approximate code lengths L(x) = ln 1
p
X(n)

can be obtained as

the solution to minimizing expected code lengths subject to Kraft inequality by
the method of Lagrange multipliers (Exercise 5). However, as noted, these are not
necessarily positive integers. The existence of an optimal code is a consequence
of Theorem 22.1 and Proposition 22.8 by consideration of the prefix-free code
associated with L(x) = 
ln 1

p
X(n)

�.

The next example illustrates a role for large deviation theory in large sample
statistical inference.

Example 2 (Efficiency of Statistical Tests of Hypothesis in Large Samples). A
common statistical test of hypothesis about an unknown parameter θ based on a
random sample of size n from some distribution may be stated as follows:

The null hypothesis H0 : θ ≤ θ0 is to be tested against the alternative hypothesis
H1 : θ > θ0. The test is of the form: Reject H0 (in favor of H1) if X > a, where X
is the (sample) mean of i.i.d. variables (X1, . . . , Xn) based on the random sample,
and a is an appropriate number. The objective is to have small error probabilities
αn = P(X > a|H0), and βn = P(X ≤ a|H1).

There are several competing notions for the Asymptotic Relative Efficiency
(ARE) of such tests. For example, in the so-called location problem, the distribution
function of X is of the form F(x − θ), θ ∈ R. In particular, F may be the normal
distribution N(θ, 1). The Normal test M is of the form: Reject H0 iff X > a. The
t-test T is of the form: Reject H0 iff X/s > a, where s is the sample standard
deviation. The Sign test S is of the form: RejectH0 iff 1

n

∑
1≤i≤n[Xi−θ0 ≥ 0] > a.

The a-values of these tests are not necessarily the same.
The most commonly used test ARE is the Pitman ARE EP test,4 which fixes

a “small” level αn = α, and compares two tests A,B, say, based on the smallness
of their βn. Specifically, the Pitman ARE of B with respect to A is EP (A,B) =
n/h(n), where h(n) is the sample size needed for B to attain the same level βn as
attained by A based on a sample size n. The asymptotics here are generally based
on weak convergence, especially the CLT (central limit theorem).

The two other important AREs we discuss in detail here are mainly based on
large deviations. Chernoff-ARE:5 Based on large deviation estimates for each test
A,B, Chernoff’s (modified) test picks the value of a that minimizes αn + λβn over
all a for some fixed λ > 0. (It turns out the ARE does not depend on λ). The ratio
of the large deviation rates I (A), I (B) of decay of this minimum value δn, say, of
αn + λβn is compared for the tests A and B, and the Chernoff ARE of B with
respect to A is EC(A,B) = I (B)/I (A).

4 Serfling (1980), Chapter 10, Bhattacharya et al. (2016), Chapter 8.
5 Serfling (1980), Chapter 10; Chernoff (1952).
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Proposition 22.9. Assume mi(h) = E(exp{hX1}|Hi) < ∞ for all − ∞ < h <

∞(i = 0, 1). Let

ci(a) = sup{ah− lnmi(h) : h ∈ R}(i = 0, 1), d(a) = min{c0(a), c1(a)},
I = max{d(a) : θ0 ≤ a ≤ θ1},

and ρ = exp{−I }. Then

lim
n→∞

1

n
ln δn = −I. (22.27)

Proof. By the upper bound in the Cramér–Chernoff theorem (i.e., Chernoff’s
Inequality), αn + λβn ≤ exp{−nc0(a)} + λ exp{−nc1(a)} ≤ (1 + λ) exp{−nd(a)}.
Minimizing over a, one arrives at the inequality δn ≤ (1 + λ)ρn, or 1

n
ln δn ≤ −I +

1
n

ln(1+λ), and lim supn
1
n

ln δn ≤ −I . For the lower bound for δn, note that, by the
Crameér–Chernoff theorem, lim inf 1

n
lnαn ≥ −c0(a), lim infn 1

n
lnβn ≥ −c1(a).

That is, given η > 0, for all sufficiently large n, min{αn, βn} ≥ exp{−n(d(a)+ η)},
or αn + λβn ≥ (1 + λ) exp{−n(d(a) + η)}. Hence, taking the minimum over a,
δn ≥ (1 + λ) exp{−n(I + η)}, or 1

n
ln δn ≥ −(I + η) + 1

n
ln(1 + λ); so that

lim inf 1
n

ln δn ≥ −(I + η) for all η > 0. Hence lim infn 1
n

ln δn ≥ −I . �
The Location Problem Consider the tests M,T, S for the location problem for
F(x−θ) described in the first paragraph. Assume that F has a density f , continuous
at θ = 0, and a finite variance σ 2

f . Then for the test H0 : θ ≤ 0, to be tested against

the alternative hypothesis H1 : θ ≥ θ1 > 0, one can show6 that EP (S,M) =
4σ 2
f f

2(0). In particular, (i) if F is N(θ, 1), then EP (S,M) = 2/π < 1, (ii) if F is

Double exponential (i.e., f (x − θ) = 1
2 exp{−|x − θ |}), then EP (S,M) = 2, and

(iii) if f is uniform on [− 1
2 − θ, 1

2 − θ ], then EP (S,M) = 1/3. In all these cases
(and more broadly) EP (T ,M) = 1, where T is the t-test.

More interesting are Pitman comparisons among nonparametric tests for the
so-called two-sample problems. Here two independent samples (X1, . . . , Xm),
(Y1, . . . , Yn) of sizes m and n are drawn from an unknown distribution whose
density is of the form f ((x − θ)/σ ), θ ∈ R, σ > 0. One wishes to test H0 : θ = 0,
against H1 : θ > 0. More generally, one wishes to test if the Y -distribution is
stochastically larger than the X-distribution (i.e., P(Y > z) ≥ P(X > z) for all z,
with strict inequality for at least some z). The most commonly used test for this
uses the (nonparametric) statistic T = Y − X, which rejects H0 if T exceeds a
critical value. (The critical value is determined approximately by the CLT to meet
the requirement α = P(RejectH0|H0)). It turns out that appropriate nonparametric

6 See Serfling (1980), Chapter 10; Bhattacharya and Waymire (2016), Chapter 8.
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tests based on ranks of the combined observationsXi’s and Yj ’s, mostly outperform
T .7

Chernoff Index Computation The Chernoff indices I are generally difficult to
compute, since the indices try to minimize a linear combination of both error
probabilities αn and βn. We consider the simple case where F = N(θ, 1), and
H0 : θ = 0, H1 : θ = θ1, θ1 > 0. Again consider the test M: Reject H0 if
X > a, otherwise Reject H1. We leave it as an exercise to show that I (M) = θ2

1 /8
(Exercise 8). For the sign test S: Reject H0 if 1

n

∑
1≤i≤n 1[Xi > 0]) > a for some

appropriate a, as considered in the discussion of the Chernoff-ARE above, one may
compute the Chernoff index I (S) from the distribution B(n, p) with p = Φ(θ1), Φ
being the distribution function of N(0, 1). Namely,

I (S) = ln{2(b(θ1))
b(θ1)(1 − b(θ1))

1−b(θ1)}, (22.28)

where b(θ) = ln[1 − Φ(θ)]/[(ln{(1 − Φ(θ))/Φ(θ)}] (Exercise 10). The
ratio I (S)/I (M) provides the Chernoff-ARE EC(S,M). One may check that
EC(S,M)→ 2/π = EP (S,M) as θ1 ↓ 0 (Exercise 11).

Bahadur-ARE As mentioned above, the Chernoff-ARE is generally difficult to
compute. In addition, the threshold of the test itself is modified by the requirement of
this notion of efficiency. The most popular ARE for tests based on large deviations
is due to Bahadur (1960). Here is a brief description following Serfling (1980). The
Bahadur-ARE is based on a large deviation rate comparison of the p-values of the
tests. Consider a test of hypothesis H0 : θ ∈ Θ0, with a real-valued test statistic
Tn based on observations X1, . . . , Xn, rejecting H0 if Tn is large. The p-value of
the test is Ln = sup[1 − Fθn(Tn) : θ ∈ Θ0] = 1 − Fθ0

n
(Tn), say, where Fθn is

the distribution function of the statistic under the parameter value θ . Thus Ln is the
random quantity which is the probability (underH0) of the statistic being larger than
what is observed, i.e., of showing a discrepancy from the null hypothesis as large
or larger than what is observed. Statisticians routinely use Ln to decide whether
to reject H0: smaller the p-value, stronger is the evidence against H0. Under H0,
assuming that the distribution function F

θ
(0
n

of Tn is continuous, F
θ
(0)
n
(Tn) has the

uniform distribution on [0, 1], and so is the distribution ofLn = 1−F
θ
(0)
n
(Tn). Under

fairly general conditions, −2n−1 lnLn converges almost surely to a constant c(θ),
which is referred to as Bahadur’s (exact) slope for Tn, for θ ∈ Θ1. The Bahadur
relative efficiency of a test I with respect to test II is defined by the ratio of their
corresponding slopes (a.s. large deviation rates) eB(I, II ) = cI (Θ)/cII (Θ).

The following is a basic result which may be used to compute the slope of tests
such as H0 : θ ≤ θ0, against H1 : θ > θ0.8 Write Θ1 = Θ\Θ0.

7 Bhattacharya et al. (2016), Chapter 8.
8 We follow Serfling (1980), Chapter 10, for the proof of the following result of Bahadur (1960;
1971).
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Theorem 22.10 (Bahadur (1960)). For a test sequence Tn which rejects H0 for

large Tn, assume (i) n− 1
2 Tn converges a.s. (under θ ) to a finite b(θ), for all θ ∈ Θ1,

and (ii) one has

lim
n→∞ −2n−1 ln sup[1 − Fθn(n

1
2 t) : θ ∈ Θ0] = g(t), (22.29)

where g is continuous on an open interval I containing {b(θ) : θ ∈ Θ1}. Then
∀ θ ∈ Θ1, with Pθ -probability one,

lim
n→∞ −2n−1 lnLn = g(b(θ)) = c(θ). (22.30)

Proof. Fix a θ ∈ Θ1, and let ω be any point in the sample space of Pθ for which the
limit (i) holds. Fix ε > 0 sufficiently small that (b(θ)− ε, b(θ)+ ε) is contained in

I . By (i), there exists n = n(ω) such that b(θ)− ε ≤ n− 1
2 Tn(ω) ≤ b(θ)+ ε for all

n ≥ n(ω), i.e., n
1
2 (b(θ) − ε) ≤ Tn(ω) ≤ n

1
2 (b(θ) + ε) for all n ≥ n(ω). Plugging

these in −2n−1 ln sup[1 − Fθn(n
1
2 t) : θ ∈ Θ0], one then has

−2n−1 ln sup[1 − Fθn(b(θ)− ε)) : θ ∈ Θ0])
≤ −2n−1 lnLn(ω)

≤ −2n−1 ln sup[1 − Fθn(b(θ)+ ε)) : θ ∈ Θ0])∀ n ≥ n(ω). (22.31)

The limits as n → ∞ of the two extreme sides are g(b(θ) − ε) and g(b(θ) + ε).
Therefore, the limit points of the middle term in (22.31) all lie in this interval. By
continuity of g, it follows that the middle term converges to g(b(θ)). �

The exact Bahadur slopes for the mean testM and the t-test T may be computed
for testingH0 : θ ≤ 0, versus the alternativeH1 : Θ > 0 in the modelN(θ, 1), using
the upper tail of the standard normal N(0, 1), and that of the (Student’s) t-statistic
with n − 1 degrees of freedom. Using Bahadur’s theorem, one finds cM(θ) = θ2,
cT (θ) = ln(1 + θ2) (Exercise 12). Thus eB(T ,M) < 1 for all θ ∈ Θ1. This is in
contrast with both Pitman’s ARE and Chernoff’s ARE, for each of which theARE
is one.

Remark 22.6. Bahadur’sARE also distinguishes between the frequency chi-square
and the likelihood ratio test in the multinomial model, showing the latter is
asymptotically more efficient than the former. Again the Pitman ARE is one
between the two tests.9

9 Abrahamson (1965).
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Exercises

1. (Shannon & Renyi Entropies) Show that the Shannon entropy H may be
expressed in terms of the Renyi entropy as

H(X1, . . . , Xn) = lim
α→1

Hα(X1, . . . , Xn).

2. Complete the proof of (22.8) by showing that for random vectors H(X, Y ) ≤
H(X) + H(Y). [Hint: Show how to express H(X) + H(Y) − H(X, Y ) as
D(p(X,Y )||pX , pY ) ≥ 0, where p(X,Y ), pX, pY are the joint and marginal
distributions, respectively.

3. Let P,Q be probability measures on Sn. For convenience relabel Sn =
{1, . . . , k}, k = |S|n, qj = Q({j}), pj = P({j}). Prove Gibbs inequality:
∑
j pj lnpj ≥ ∑

j pj ln qj . [Hint: Consider
∑
j pj ln

qj
pj

and bound ln x ≤
x − 1, x > 0.

4. Give a proof of the Kraft inequality for the message length associated with G.
[Hint:

∑
x e


lnQG(x)� ≤ ∑
x e

lnQG(x).
5. Show that the problem minL∈Ln:∑x e

−L(x)≤1
∑
x∈Sn pX(n)L(x) has a solution.

[Hint: Use Lagrange multipliers to minimize J = ∑
x∈Sn pX(n)L(x) +

λ
∑
x∈Sn e−L(x). Derivatives with respect to each L(x) are zero and λ can be

determined from the constraint
∑
x e

−L(x) ≤ 1.
6. Let u, v be twice-continuously differentiable functions on R with Legendre

transforms u∗, v∗, respectively, where f ∗(x) = suph∈R{xh − f (h)}, x ∈ R.
Show that (a) u∗ is convex. (b) (Idempotency) u∗∗ = u[Hint: Write u∗(x) =
xh(x)− u(h(x)) and use the smoothness hypothesis on u to optimize.

7. Give a proof for (22.6).
8. Show that I (M) = θ2

1 /8.
9. Give a proof of (22.6).

10. Verify the hypotheses (i),(ii) in Theorem 22.10 for the testsM,T, S. [Hint: For

M , let Tn = n 1
2 (X−θ0), then (i) is satisfied, since for θ > θ0, n

− 1
2 Tn → θ−θ0.

For assumption (ii) assume that Xj has a finite moment generating function,
and use the Cramér-Chernoff large deviation rate. A similar, but little longer,
proof applies to the statistic T , using independence of the sample mean and
sample variance. For S one uses the moment generating function of Bernoulli
variables.]

11. Show that EC(S,M)→ 2/π = EP (S,M) as θ1 ↓ 0.
12. Show using Bahadur’s theorem, that cM(θ) = θ2, cT (θ) = ln(1 + θ2).



Chapter 23
Special Topic: Associated Random Fields,
Positive Dependence, FKG Inequalities

The notion of association is a form of positive dependence among random
variables independently introduced in reliability theory, percolation theory
and statistical physics, where it is expressed in a form known as the “FKG-
Inequalities.” The main focus of this chapter is (i) a proof of Newman’s central
limit theorem for associated random fields with summable fast decay of
correlations, and (ii) Pitt’s characterization of association of multidimensional
Gaussian distributions by non-negativity of covariances.

The notion of association as a form of positive dependence has proved to be of much
interest in statistical physics,1 but its potential importance goes beyond statistical
physics applications. In 1980 C. M. Newman2 announced a central limit theorem
for associated random fields that will be the focus of this chapter. For stationary
random fields the role of association in the asymptotic distribution of centered and
scaled sums may be compared to that of martingales for stationary sequences, where
only the finiteness of second moments come into play.

In their paper Esary et al. (1967), the notion is developed as a natural extension of weaker forms
of positive dependence motivated by applications to reliability theory. It first appeared in Harris
(1960), and was later generalized in Fortuin et al. (1971).
1 A notion of negative dependence was explored by Pemantle (2000) from the perspective of
statistical physics by way of stimulating examples and conjectures. However, the development
of a comparable mathematical theory appears to be much less fruitful.
2 The central limit theorem of Newman (1980) was extended to a functional central limit theorem
for stationary associated sequences in Newman and Wright (1981).
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We will restrict the exposition to random fields of real-valued random variables
{Xx : x ∈ Z

k} defined on a probability space (Ω,F , P ) and indexed by the
k-dimensional integer lattice Z

k . Here the natural extension of stationarity of
sequences to that of random fields is as follows.

Definition 23.1. The random field X := {Xx : x ∈ Z
k} is said to be translation

invariant if for each fixed z ∈ Z
k the random field {Xx+z : x ∈ Z

k} is distributed as
X.

Definition 23.2. A finite set of random variables X1, . . . , Xm is said to be associ-
ated if

Cov(f (X1, . . . , Xm), g(X1, . . . , Xm))

≡ Ef (X1, . . . , Xm)g(X1, . . . , Xm)− Ef (X1, . . . , Xm)Eg(X1, . . . , Xm) ≥ 0

for any pair of bounded measurable coordinatewise non-decreasing functions f, g.
An arbitrary collection {Xλ : λ ∈ Λ} is said to be associated if every finite
subcollection is associated.

The inequalities (23.1) are referred to as the Fortuin–Kasteleyn–Ginbre (FKG)
Inequalities.3 Let us begin with a useful formula for covariance in this context. The
special case of this formula with f (x) = x, g(y) = y was derived in Lehmann
(1966) with attribution to Hoeffding (1940). Newman (1980) noticed the simple but
significant extension presented here. (Recall the Definition 2.1 of the covariance of
complex-valued random variables.)

Lemma 1 (Hoeffding-Newman Covariance Formula). Suppose that f (X), g(Y ) ∈
L2(Ω,F , P ) and assume f, g are continuously differentiable complex-valued
functions on R having bounded derivatives. Then,

Cov(f (X), g(Y )) =
∫

R

∫

R

f ′(x)g′(y)HX,Y (x, y)dxdy,

where

HX,Y (x, y) = Cov(1[X>x], 1[Y )>y]) = P(X > x, Y > y)
− P(X > x)P (Y > y), x, y ∈ R.

Proof. Let (X1, Y1) and (X2, Y2) be independent random vectors distributed as
(X, Y ). Note that 1(u,∞)(X1) − 1(u,∞)(X2) is 1 if X2 < u < X1, −1 if X1 <

u < X2, and 0 otherwise. Thus, by the fundamental theorem of calculus,

3 Fortuin et al. (1971).
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f (X1)− f (X2) =
∫ ∞

−∞
f ′(u){1(u,∞)(X1)− 1(u,∞)(X2)}du.

Similarly,

g(X1)− g(X2) =
∫ ∞

−∞
g′(u){1(u,∞)(Y1)− 1(u,∞)(Y2)}du.

Thus,

2Cov(f (X), g(Y ))

= E[f (X1)− f (X2)][g(Y1)− g(Y2)]

= E

∫ ∞

−∞

∫ ∞

−∞
(
1[X1>u] − 1[X2>u]

)(
1[Y1>v] − 1[Y2>v]

)
f ′(u)g′(v)dudv.

The formula follows by an application of Fubini’s theorem to interchange expected
value with integrals, after canceling the factors of 2, since expanding the product
of indicators one also has by independence and the specified common joint
distributions of (Xi, Yi), i = 1, 2, that

E
(
1[X1>u]−1[X2>u]

)(
1[Y1>v]−1[Y2>v]

) = 2{P(X1 > u, Y1 > v)−P(X1 > u)P (Y1 > v)}.
�

Remark 23.1. Under the same conditions, the covariance formula may be
expressed equivalently as

Cov(f (X), g(Y )) =
∫

R

∫

R

Cov(1[X>x], 1[Y>y])f ′(x)g′(y)dxdy.

Definition 23.3. A pair of real-valued random variables X, Y for which

P(X > u, Y > v)− P(X > u)P (Y > v) ≥ 0 for all u, v ∈ R,

is said to be positive quadrant dependent4

Proposition 23.1. Associated random variables are (pairwise) positive quadrant
dependent.

Proof. Simply note that for any fixed number a ∈ R, a function of the form f (u) =
1[a,∞)(u) is non-decreasing. �

Newman’s proof of the central limit theorem exploits the covariance formulae
to compare characteristic functions of sums of random variables with the corre-

4 The notion of positive quadrant dependence was introduced by Lehmann (1966).
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sponding product of characteristic functions through the following key lemma. The
non-negativity of the covariance is essential to this comparison.

Lemma 2 (Newman). Suppose that f (X), g(Y ) ∈ L2(Ω,F , P ) where X, Y are
positive quadrant dependent and f, g are continuously differentiable complex-
valued functions on R with bounded derivatives. Then

|Cov
(
f (X), g(Y )

)| ≤ ||f ′||∞||g′||∞Cov(X, Y ),

where || · ||∞ denotes the essential supremum norm. In particular,

|EeirX+isY − EeirXEeisY | ≤ |r||s|Cov(X, Y ), r, s ∈ R.

Proof. Using Lemma 1, the assertion follows from the triangle inequality, bounding
the derivatives, and the positivity of H(x, y). Specifically,

|Cov
(
f (X), g(Y )

)| ≤ ||f ′||∞||g′||∞
∫ ∞
−∞

∫ ∞
−∞

H(x, y)dxdy = ||f ′||∞||g′||∞Cov(X, Y ).

This completes the proof of the general bound. The second bound is simply an
application. �

Let us say that a collection of functions C is association determining if one may
restrict the FKG inequalities to f, g ∈ C to establish association. A proof of the
following proposition is left to Exercise 8.

Proposition 23.2. The collections of coordinatewise non-decreasing binary 0 −
1-valued functions, and of coordinatewise non-decreasing bounded continuous
functions, respectively, are each association determining.

The following properties are useful in “tracking association” and/or building
examples of associated families of random variables.

Proposition 23.3.

1. Any subcollection of associated random variables is associated.
2. The union of independent collections of associated random variables is associ-

ated.
3. Measurable coordinatewise non-decreasing or coordinatewise nonincreasing

functions of associated random variables are associated.
4. If for each n, X(n)1 , . . . , X

(n)
m is associated and if (X(n)1 , . . . , X

(n)
m ) converges in

distribution to (X1, . . . , Xm), then X1, . . . , Xm is associated.
5. A singleton {X1} is associated.
6. Independent random variables are associated.
7. If X, Y are binary random variables, the X, Y are associated if and only if

Cov(X, Y ) ≥ 0.
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Proof. Part (1) follows directly from definition by considering functions whose
values do not depend on variables not included in the subset. For (2), let X =
(X1, . . . , Xm) and Y = (Y1, . . . , Yn) be two independent sequences of associated
random variables. Let Z = (X1, . . . , Xm, Y1, . . . Yn). For non-decreasing bounded
measurable functions f, g of m + n variables, since the joint distribution of X and
Y is a product measure by independence, one has

Cov(f (Z), g(Z)) = Ef (Z)g(Z)− Ef (Z)Eg(Z)

=
∫

Rn

∫

Rm

f (z1, . . . , zm+n)g(z1, . . . , zm+n)PX(dz1 × · · · × dzm)PY (dzm+1 × · · · × dzm+n)

−
∫

Rn

∫

Rm

f (z1, . . . , zm+n)PX(dz1 × · · · × dzm)PY (dzm+1 × · · · × dzm+n)

×
∫

Rn

∫

Rm

g(z1, . . . , zm+n)PX(dz1 × · · · × dzm)PY (dzm+1 × · · · × dzm+n)

=
∫

Rn

{ ∫

Rm

f (z1, . . . , zm+n)g(z1, . . . , zm+n)dPX

−
∫

Rm

f (z1, . . . , zm+n)dPX
∫

Rm

g(z1, . . . , zm+n)dPX
}
dPY

+
∫

Rn

{
∫

Rm

f (z1, . . . , zm+n)dPX
∫

Rm

g(z1, . . . , zm+n)dPX
}
dPY

−
∫

Rn

∫

Rm

f (z1, . . . , zm+n)dPXdPY
∫

Rn

∫

Rm

g(z1, . . . , zm+n)dPXdPY

=
∫

Rn

Cov
(
f (X1, . . . , Xm, zm+1, . . . , zn+m), g(X1, . . . , Xm, zm+1, . . . , zn+m)

)
dPY

+ Cov

(∫

Rm

f (z1, . . . , zm, Y1, . . . , Yn)dPX,

∫

Rm

g(z1, . . . , zm, Y1, . . . , Yn)dPX

)

≥ 0,

where dPX = PX(dz1 × · · · × dzm), dPY = PX(dzm+1 × · · · × dzm+n).
The proof of part (3) follows directly from the definition since if X1, . . . , Xm
are associated and Yi = hi(X1, . . . , Xm) for measurable coordinatewise non-
decreasing functions h1, . . . , hm, then f (h1, . . . , hm) and g(h1, . . . , hm) are
bounded measurable coordinatewise non-decreasing whenever the same is true of
f, g. For the coordinatewise nonincreasing case the composites f (h1, . . . , hm)

and g(h1, . . . , hm) are bounded measurable coordinatewise nonincreasing for
coordinatewise non-decreasing f, g. Now, Cov

(
f (h1, . . . , hm), g(h1, . . . , hm)

) =
Cov

(−f (h1, . . . , hm),−g(h1, . . . , hm)
)

and −f (h1, . . . , hm) and −g(h1, . . . , hm)

are bounded measurable coordinatewise non-decreasing. For part (4), by definition
of weak convergence, Cov(f (X), g(X)) = limn→∞ Cov(f (X(n)), g(X(n))) for
bounded continuous functions f, g. Therefore the result follows since, by the
previous proposition, bounded continuous coordinatewise non-decreasing are
association determining. To prove (5) restrict to the association determining class
of non-decreasing binary functions, and observe that for non-decreasing binary
functions f, g of a single variable one has either f ≤ g or g ≤ f . Without loss of
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generality consider the case f ≤ g. Then Cov(f (X1), g(X1)) = Ef (X1)g(X1) −
Ef (X1)Eg(X1) = Ef (X1) − Ef (X1)Eg(X1) = Ef (X1)(1 − g(X1)) ≥ 0.
Property (6) follows by application of (2) and (5). Obviously Cov(X, Y ) ≥ 0
is necessary for X, Y to be associated. For binary 0 − 1-valued, X, Y , suppose
Cov(X, Y ) ≥ 0. Then the only binary coordinatewise non-decreasing 0 − 1-
valued functions of X, Y are f0 ≡ 0, f1 ≡ 1, g0(x, y) = x, g1(x, y) = y,
h(x, y) = x∨y, x ∈ {0, 1}. Also, f0 ≤ g0, g1 ≤ h ≤ f1. In particular, this ordering
trivially implies that Cov(fj (X, Y ), gi(X, Y ))] ≥ 0, Cov(gi(X, Y ), h(X, Y )) ≥ 0,
Cov(fj (X, Y ), h(X, Y )) ≥ 0 for i, j = 0, 1. The case Cov(g0(X, Y ), g1(X, Y )) ≥
0 is the hypothesis. Thus, X, Y is an associated pair proving part (7). �
Remark 23.2. An alternative proof of the association of a single random variable
by coupling is an Exercise 2 in Chapter 24.

Example 1 (A Tendency to Align Under Associated Dependence). The purpose of
this example5 is to illustrate the tendency for alignment under associated depen-
dence. Consider identically distributed Bernoulli 0 − 1-valued random variables
Y0, Y1 with distribution specified by P(Y0 = j) = 1/2, P (Y1 = j |Y0 = j) =
p, j = 0, 1 for p ∈ (0, 1). Association requires that Y1 be most likely to align with
the given value of Y0. That is,

Proposition 23.4. Y0, Y1 is associated if and only if p ≥ 1/2.

Proof. First observe that taking f (i, j) = i and g(i, j) = j , i, j = 0, 1, one has that
Cov(f (Y0, Y1), g(Y0, Y1)) = Cov(Y0, Y1) = 1

2p − 1
4 ≥ 0 if and only if p ≥ 1/2.

Thus p ≥ 1/2 is necessary for association. Since Y0, Y1 are binary, it likewise
follows from Proposition 23.3(g) that p ≥ 1/2 is sufficient as well. �
Remark 23.3. In the context of statistical physics association is often expressed as
a property of the joint distribution μ of coordinate maps Xx, x ∈ Λ, on the product
space Ω = {−1, 1}Λ for some finite set Λ of integer lattice points connected to the
origin; i.e., Xx(ω) = ωx, ω ∈ Ω . The probability measure μ is said to satisfy the
FKG inequalities if for any coordinatewise non-decreasing functions f, g onΩ one
has

∫

Ω

f (Xx)g(Xy)dμ ≥
∫

Ω

f (Xx)dμ

∫

Ω

g(Xy)dμ, x, y ∈ Λ. (23.1)

Equivalently, the FKG inequalities are the property that the collection of spin
±1-valued random variables Xx, x ∈ Λ have associated dependence. The
ferromagnetic Ising model (see Chapter 13, Exercise 13) provides a well-known
example in this context. The FKG inequalities for the ferromagnetic Ising model will
be proved in Chapter 24, Proposition 24.12. The magnetic spin alignment reflected
by association is a distinct feature of ferromagnets, responsible for their ability

5 Also see Exercise 8 in Chapter 24 in this regard.
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to be magnetized by placement in an external magnetic field. Other more general
inequalities to be considered in Chapter 24 are available that imply association.6

The proof of the central limit theorem exploits the following basic inequality.

Lemma 3 (Newman’s Inequality). Suppose thatX1, . . . , Xm are associated random
variables having finite variance. Then for any r1, . . . , rm ∈ R one has

|E exp{i
m∑

j=1

rjXj } −
m∏

j=1

EeirjXj | ≤
∑

1≤j<k≤m
|rj ||rk| Cov(Xj ,Xk).

Proof. The proof is by induction on m. The case m = 1 is obvious and the case
m = 2 was proven in Lemma 2. Assume the inequality holds for all m ≤ M

and rearrange the indices (if necessary) in such a way that sgn(rj ) is constant, say
ε (either +1 or −1), for 1 ≤ j ≤ m0, and sgn(rj ) is also constant, say δ, for
m0 + 1 ≤ j ≤ M . Then εrj ≥ 0, δrj ≥ 0, so that each of X = ∑m0

j=1 εrjXj

and Y = ∑M+1
j=m0+1 δrjXj is a non-decreasing function of associated variables

X1, . . . , XM+1 and therefore associated. Also
∑M+1
j=1 rjXj = εX + δY . Thus,

applying Lemma 2 and the induction hypothesis, one has

∣
∣
∣
∣
∣
∣
E exp

⎧
⎨

⎩
i

M+1∑

j=1

rjXj

⎫
⎬

⎭
−
M+1∏

j=1

EeirjXj

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣Eei(εX+δY ) − EeiεXEeiδY

∣
∣
∣+

∣
∣
∣
∣
∣
∣
EeiεXEeiδY − EeiεX

M+1∏

j=m0+1

EeirjXj

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣
EeiεX

M+1∏

j=m0+1

EeirjXj −
⎛

⎝
m0∏

j=1

EeirjXj

⎞

⎠
M+1∏

j=m0+1

EeirjXj

∣
∣
∣
∣
∣
∣

≤ |ε||δ|Cov(X, Y )+
∣
∣
∣
∣
∣
∣
EeiδY −

M+1∏

j=m0+1

EeirjXj

∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣
EeiεX −

m0∏

j=1

EeirjXj

∣
∣
∣
∣
∣
∣

≤ Cov

⎛

⎝
m0∑

j=1

εrjXj ,

M+1∑

k=m0+1

δrkXk

⎞

⎠+
∑

m0+1≤j<k≤M+1

|rj ||rk| Cov(Xj ,Xk)

+
∑

1≤j<k≤m0

|rj ||rk| Cov(Xj ,Xk)

=
∑

1≤j<k≤M+1

|rj ||rk| Cov(Xj ,Xk).

�

6 See den Hollander and Keane (1986).
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Of course, one may prefer the equivalent expression of Newman’s bound as

1

2

∑

1≤j,k≤m,j �=k
|rj ||rk| Cov(Xj ,Xk) =

∑

1≤j<k≤M+1

|rj ||rk| Cov(Xj ,Xk). (23.2)

Lemma 4. Let X := {Xx : x ∈ Z
k} be a translation invariant random field of

associated random variables having finite second moments. Assume that

γ :=
∑

x∈Zk
Cov(X0, Xx) <∞.

Let

B(N)x := {y ∈ Z
k : Nxl ≤ yl < N(xl + 1), l = 1, . . . , k}

denote a “block of lattice sites of length N located near Nx”, x = (x1, . . . , xk), and
define a random field of centered and rescaled “block sum averages” by

A(N)x = N− k
2
∑

y∈B(N)x

(Xy − EXy), x ∈ Z
k.

Then

lim
N→∞ Var(A(N)x ) = γ, and lim

N→∞ Cov(A(N)x , A(N)y ) = 0 x �= y.

Proof. By translation invariance it suffices to check the asserted limits for the case
x = 0. Clearly

Var(A(N)0 ) = N−k ∑

x∈B(N)0

∑

y∈B(N)0

Cov(X0, Xy−x) ≤ N−k ∑

x∈B(N)0

∑

y∈Zk
Cov(X0, Xy−x).

In particular, letting N → ∞,

lim sup
N→∞

Var(A(N)0 ) ≤ γ.

For the reverse inequality let 0 < ε < 1/2 and define

B
(N)
0 (ε) := {z = (z1, . . . , zk) : εN < zi < (1 − ε)N, i = 1, . . . , k}.

Note that for x ∈ B(N)0 , y /∈ B(N)0 , |x − y| ≥ εN , so that
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Var(A(N)0 ) ≥ N−k ∑

x∈B(N)0 (ε)

∑

y∈B(N)0

Cov(X0, Xy−x)

≥ N−k ∑

x∈B(N)0 (ε)

∑

|y−x|≤εN
Cov(X0, Xy−x) = |B(N)0 (ε)|

Nk

∑

|z|≤εN
Cov(X0, Xz),

where |B| denotes cardinality of the set B. Choosing a sequence such that εN ↓ 0
and εNN → ∞, one obtains

lim inf
N→∞ Var(A(N)0 ) ≥ γ.

This proves the asserted asymptotic variance. For the covariance decay choose a
sequenceMN ≤ N such thatMN/N → 1 and N −MN → ∞ as N → ∞.

Var(A(N)0 − A(MN)0 )

= Var(A(N)0 )+ Var(A(MN)0 )− 2(NMN)
− k

2 Cov(
∑

y∈B(N)0

Xy,
∑

y∈B(MN )0

Xy)

≤ Var(A(N)0 )+ Var(A(MN)0 )− 2(
MN

N
)
k
2 Var(X(MN)0 )→ 0.

One has for z �= 0,

Cov(A(N)0 , A(N)z ) = Cov(A(N)0 − A(MN)0 , A(N)z )+ Cov(A(MN)0 , A(N)z )

≤
√

Var(A(N)0 − A(MN)0 )

√

Var(A(N)z )+ Cov(A(MN)0 , A(N)z ).

Thus the proof of covariance decay is therefore completed by the following
calculation

Cov(A(MN)0 , A(N)z ) = M
− k

2
N N− k

2
∑

x∈B(MN )0

∑

y∈B(N)z

Cov(X0, Xx−y)

≤
(
MN

N

) k
2

M−k
N

∑

x∈B(MN )0

∑

|y−x|≥N−MN
Cov(X0, Xx−y)

=
(
MN

N

) k
2 ∑

|y|≥N−MN
Cov(X0, Xy)→ 0,

as N → ∞. �
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To state Newman’s central limit theorem it is helpful to have some extra notation.
For x = (x1, . . . , xk) ∈ Z

k , a “block of lattice sites of length N located near Nx” is
denoted

B(N)x := {y ∈ Z
k : Nxl ≤ yl < N(xl + 1), l = 1, . . . , k}.

Given a translation invariant random field with finite second moments X := {Xx :
x ∈ Z

k}, the random field of centered and rescaled “block sum averages” is denoted

A(N)x = N− k
2
∑

y∈B(N)x

(Xy − EXy).

Theorem 23.5 (Newman’s Central Limit Theorem). Let X := {Xx : x ∈ Z
k} be

a translation invariant random field of associated random variables having finite
second moments. Assume that

γ :=
∑

x∈Zk
Cov(X0, Xx) <∞.

Then for any finite number n of lattice sites z1, . . . , zn, the (finite dimensional)
distribution of (A(N)z1 , A

(N)
z2 , . . . , A

(N)
zn ) converges weakly as N → ∞ to the

Gaussian distribution with mean zero and covariance matrix diag(γ, . . . , γ ).

Proof. By Newman’s inequality and association inherited by the A(N)z , z ∈ Z
k ,

and the previous lemma, it suffices to show convergence of A(N)z , i.e., n = 1, to
obtain convergence for finite dimensional distributions of arbitrary size n ≥ 1. More

specifically, if one can show EeirA
(N)
z → e−

γ
2 r

2
as N → ∞, then

lim
N→∞

∣
∣
∣
∣
∣
∣
Ee
i
∑n
j=1 rjA

(N)
zj −

n∏

j=1

e
− γ

2 r
2
j

∣
∣
∣
∣
∣
∣
≤ lim
N→∞

∑

1≤m<j≤n
|rm||rj | Cov(A(N)zm ,A

(N)
zj ) = 0.

(23.3)
As noted earlier, by translation invariance it is sufficient to consider the case z = 0.
For fixed M = 1, 2, . . . , let MN = M[N

M
] ≤ N , where [·] denotes integer-part.

In the proof of the previous lemma it was shown that Var(A(N)0 − A(MN)0 ) → 0 as
N → ∞. Thus, one has

∣
∣
∣
∣Ee

irA
(N)
0 − EeirA

(MN )

0

∣
∣
∣
∣ ≤ E

∣
∣
∣
∣e
ir(A

(N)
0 −A(MN )0 ) − 1

∣
∣
∣
∣

≤ E

∣
∣
∣A
(N)
0 − A(MN)0

∣
∣
∣ ≤

√

Var(A(N)0 − A(MN)0 )→ 0.
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Next, using the simple property of the block averages that

A
(N1N2)
0 = N− k

2
1

∑

y∈B(N1)
0

A
(N2)
0 , (23.4)

(forMN = M[N
M

] = N1N2), one has by Newman’s inequality (applied to A(M)0 )

∣
∣
∣
∣
∣
∣
∣
∣

Ee
irA
(M[ N

M
])

0 −
⎛

⎝Ee
ir[ N
M

]−
k
2 A(M)0

⎞

⎠

([ N
M

])k
∣
∣
∣
∣
∣
∣
∣
∣

≤ 1

2

∑

x,y∈B([
N
M

])
0 x �=y

r2
([
N

M

])−k
Cov

(
A
(M)
x ,A

(M)
y

)
.

This upper bound may be equivalently expressed using the block average prop-
erty (23.4) as

r2

2

⎧
⎪⎪⎨

⎪⎪⎩
Cov

(

A
(M[ N

M
])

0 , A
(M[ N

M
])

0

)

−
[
N

M

]−k ∑

y∈B([
N
M

])
0

Cov
(
A(M)y , A(M)y

)

⎫
⎪⎪⎬

⎪⎪⎭

= r2

2

{

Var
(
A
(M[ N

M
])

0

)− Var
(
A
(M)
0

)
}

→ r2

2

{
γ − Var

(
A
(M)
0

)}
.

Letting N → ∞ withM fixed, it follows that

(

Eeir[
N
M

]− k2 A(M)0

)([ N
M

])k
=

(

1 − r2

2

([N

M

])−k Var(A(M)0 )+ o([N
M

]−k)
)

→ e−
Var(A(M)0 )

2 r2
. (23.5)

Thus, combining these estimates, one has

lim sup
N→∞

∣
∣
∣EeirA

(N)
0 − e− γ

2 r
2
∣
∣
∣ ≤ r2

2

{
γ − Var(A(M)0 )

}
+
{

e−
Var(A(M)0 )

2 r2 − e− γ
2 r

2

}

.

Finally, lettingM → ∞ completes the proof. �
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The following example7 is a significant framework8 in which association
naturally occurs.

Example 2 (Two-dimensional Bond Percolation Model). The independent bond
percolation model9 on Z

2 can be defined as follows: Each lattice site x ∈ Z
2

has four nearest neighbor sites of the form y = x ± e where e is either (1, 0)
or (0, 1). A pair of such nearest neighbor sites x, y, in turn, defines a (unoriented)
bond b = {x, y} of Z2. Let L2 denote the collection all such bonds of Z

2. Let
{Yb : b ∈ L

2} be the i.i.d. random field of Bernoulli 0 − 1 valued random variables
with p = Pp(Yb = 1) defined by coordinate projections on the product probability

space Ω = {0, 1}L2
equipped with the σ -field F generated by finite dimensional

cylinder sets and product measure Pp = ∏
L2(qδ{0} + pδ{1}), where q = 1 − p.

Declare the bonds b as open or closed according to whether the value of Yb is 1 or
0, respectively. The usual interpretation of percolation is as a model for a disordered
porous medium in which the open bonds permit fluid flow between nearest neighbor
sites, while closed bonds block the passage of fluid. Two sites x, z ∈ Z

2 are said to
be connected by an open path, denoted x ↔ z if there is a succession of sites in Z

2,
x0 = x, x1, . . . xm = z, m ≥ 1, such that pairs xi, xi+1 are nearest neighbor with
bi = {xi, xi+1} open (i = 0, . . . , m − 1). A cluster C(x) at site x ∈ Z

2 is defined
by the (random) set

C(x) := {z ∈ Z
2 : x ↔ z}, x ∈ Z

2.

The cluster size refers to the (possibly infinite) cardinality of C(x) and is denoted by
|C(x)|. The set C(x) is referred to as a percolation cluster10 at x if |C(x)| = ∞.

Definition 23.4. The existence of an infinite cluster that is the event E :=
∪x∈Z2 [|C(x)| = ∞] is referred to as the percolation event. Also, the percolation
probability is defined by

ρ ≡ ρ(p) := Pp(E) = Pp(∪x∈Z2 [|C(x)| = ∞]). (23.6)

7 The survey article Last et al. (2020) is a source of a wide variety of additional examples of
associated stochastic random fields. Extension of Newman’s central limit theorem for Poisson
cluster processes and random measures was developed in Burton and Waymire (1985), and
independently by Evans (1989), provides an illustrative setting for applications of positive
dependence.
8 Also see Newman (1980) for examples in the context of mathematical physics.
9 The mathematical interest in percolation models is usually traced to Broadbent and Hammersley
(1957). Broadbent’s work at the British Coal Utilization Research Association involved the design
of porous gas masks for coal miners. The critical nature of pore size was empirically realized in
this context, motivating the subsequent development of simpler models of such phenomena of wide
interest in probability and mathematical physics.
10 Uniqueness of such percolation clusters was originally established by Aizenmann et al. (1987).
A widely recognized very simple proof of uniqueness was subsequently made by Burton and Keane
(1989). This has become a standard approach to uniqueness.
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Proposition 23.6. Define

θ ≡ θ(p) := Pp(|C(0)| = ∞). (23.7)

Then ρ(p) = 0 or ρ(p) = 1 if and only if θ(p) = 0 or θ(p) > 0, respectively.

Proof. Note that the percolation event E = ∪x∈Z2 [|C(x)| = ∞] is a tail event
for a countable collection of i.i.d. random variables {Yb : b ∈ L

2}. The assertion
follows immediately from subadditivity and Kolmogorov’s zero-one law.11 Namely,
ρ(p) = 0 or 1, θ(p) ≤ ρ(p), and ρ(p) ≤ ∑

x∈Z2 θ(p). So ρ(p) = 0 if and only if
θ(p) = 0, and θ(p) > 0 if and only if ρ(p) = 1. �
Remark 23.4. A proof of the monotonicity of the percolation probability p →
θ(p) as a function of p by monotone coupling techniques is given for Proposi-
tion 24.3 in Chapter 24.

Definition 23.5. The critical probability for existence of an infinite cluster, i.e.,
percolation, is defined by

pc = sup{p ∈ [0, 1] : θ(p) = 0}.

Remark 23.5. An important role for the FKG inequalities occurs in a simplified
proof of the criticality of p = 1/2 for bond percolation by Bollabás and Riordan
(2006). The original proof is the result of Kesten (1980), after completing the upper
bound calculation from two-decades earlier by Harris (1960), that pc = 1/2 for
2d-bond percolation. The upper bound pc ≤ 1/2 had already involved inequalities,
now known as Harris inequalities, that may be viewed as a special case of the FKG
inequalities for product measure.

For probability measures μ1 and μ2 on the compact space (for product topology)
S = {0, 1}Λ, where Λ is a finite or countably infinite set, the Holley inequalities12

are a generalization of associated dependence of the form

∫

S

f dμ1 ≥
∫

S

f dμ2, (23.8)

for coordinatewise non-decreasing functions f on S; equivalently it is non-
decreasing with respect to the partial order � on S defined by x � y if and only
if xj ≤ yj , j ∈ Λ for x, y ∈ S,

To see that (23.8) embodies association of a probability distribution μ on S, let
f , g be nonnegative coordinatewise non-decreasing functions on S. Take dμ1 =
gdμ∫
S gdμ

, μ2 = μ. Holley’s inequalities for μ1 and μ2 are then equivalent to the FKG

11 See BCPT, p. 87.
12 Holley (1974).
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inequalities for μ. The so-called log-convexity type conditions13 on μ, μ1, μ2 are
available to ensure either FKG inequalities or Holley inequalities, respectively.

In the so-called disordered phase14 defined by 0 < p < pc, the lattice a.s.
consists of infinitely many disjoint finite random clusters of lattice sites connected
by open bonds. The following simple path counting argument demonstrates the
existence of a disordered phase.

Proposition 23.7. pc > 0.

Proof. Consider the number Nn of open (self-avoiding) paths of length n starting at
the origin. Clearly, noting that such a path can connect to any of the 4 neighbors of
(0, 0) and continue in n− 1 self-avoiding steps, Nn ≤ 4(3n−1). Thus for p < 1/3,
applying a useful but very simple inequality for nonnegative integer-valued random
variables,

Pp(Nn ≥ 1) ≤ EpNn ≤ 4(3n−1)pn → 0 as n→ ∞.

In particular,15 since θ(p) ≤ Pp(Nn ≥ 1) for all n ≥ 1, one has θ(p) = 0 for
p < 1/3 and hence pc ≥ 1/3. �

Lemma 5 (Harris’ Lemma16). Let Xx = 1[C(x) �=∅], x ∈ Z
2. Then {Xx : x ∈ Z

2} is
a translation invariant random field of associated random variables.

Proof. Translation invariance follows directly from the definition and the fact that
the distribution of the underlying random field {Yb : b ∈ L

2} is invariant under
translation of the lattice Z

2. Also each Xx , x ∈ Z
2, is a (coordinatewise) non-

decreasing function of Y ≡ {Yb : b ∈ L
2}. Apply Proposition 23.3. �

For an application of the central limit theorem in this context we will establish
the asymptotic normality of the cumulative size

∑
x∈B(N)0

|C(x)| of all clusters

connected to points in the cube B(N)0 , suitably centered and scaled for 0 < p <

1/3. Additional applications17 along these lines are given in the exercises. The
conditions for the theorem will be checked in a sequence of simple lemmas, the
first of which is a special case of an inequality known as the BK Inequality after its
originators van den Berg and Kesten (1985).

13 den Hollander and Keane (1986).
14 Physicists often refer to the absence of long-range connectivities as “disorder.”
15 In his celebrated paper, Kesten (1980), it was proved that pc = 1/2.
16 A stronger version of this type result was first formulated and proven by Harris (1960) as a
special case.
17 The example given here serves the pedagogical purpose of simply illustrating the theorem.
For more substantial applications, but requiring elements of percolation theory which are outside
the scope of this exposition, consult the comprehensive text by Grimmett (1999), and numerous
references therein.
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To prepare for the BK inequality let us refer to a random variable X defined on
Ω as increasing if X(ω1) ≤ X(ω2) whenever ω1, ω2 ∈ Ω satisfy ω1(b) ≤ ω2(b)

for all b ∈ L
2; the latter set of coordinatewise inequalities defines a partial order

on Ω which we denote as ω1 � ω2. Similarly we say that an event A ∈ F is an
increasing event if 1A is an increasing random variable. Connectivity events of the
form [x ↔ y] are prototypical increasing events. From here out we restrict to this
case.

Definition 23.6. The disjoint occurrence of two increasing events A = [x ↔ y],
B = [z ↔ w] is an event denoted by A ◦ B and defined by

[x ↔ z] ◦ [y ↔ w] = [x ↔ z, x /∈ C(y), y ↔ w].

Lemma 6 (BK Inequality-Special Case). For x, y,w, z ∈ Z
2

Pp([x ↔ z] ◦ [y ↔ w]) ≤ Pp(x ↔ z)Pp(y ↔ w).

Proof. Observe that

Pp([x ↔ z] ◦ [y ↔ w]) = E(1[x↔z]1[x /∈C(y)]1[y↔w])

= E(1[x↔z]1[x /∈C(y)]1[x /∈C(w)]1[y↔w])

= Pp(x ↔ z, x /∈ C(y), x /∈ C(w), y ↔ w)

= Pp(y ↔ w|x ↔ z, x /∈ C(y), x /∈ C(w))Pp(x ↔ z, x /∈ C(y), x /∈ C(w))
≤ Pp(y ↔ w|x ↔ z, x /∈ C(y), x /∈ C(w))Pp(x ↔ z). (23.9)

So it suffices to show that

Pp(y ↔ w|x ↔ z, x /∈ C(y), x /∈ C(w)) ≤ Pp(y ↔ w). (23.10)

Let A be an arbitrary but fixed finite connected subgraph of L2 with vertices x and
z connected in A, but not connected to y nor w, i.e., having the properties of the
conditioning. The graph A is referred to as a lattice animal. Denote the vertex and
edge sets of A by Av and Ae, respectively. Also define the edge boundary ∂eA as
the set of (closed) edges which do not belong to Ae but have at least one endvertex
in Av . First consider the case in which y is “interior” to the lattice animal A and w
is “exterior” toA in the sense that any path of bonds connecting y tow must include
a bond from ∂eA. Then, since on [C(x) = A] the edges in ∂eA are all closed, one
has for this case that

Pp(y ↔ w,C(x) = A|x ↔ z, x /∈ C(y), x /∈ C(w)) = 0.

On the other hand, for the case when ∂eA does not obstruct the existence of a path
of open bonds connecting y to w, let us see that one may use association (FKG
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inequalities) to establish that

Pp(y ↔ w,C(x) = A|x ↔ z, x /∈ C(y), x /∈ C(w)) ≤ Pp(y ↔ w). (23.11)

To prove (23.11) consider a lattice animal A such that x ↔ z and x /∈ C(y), x /∈
C(w) and for which y,w are not separated by ∂eA in the previous sense. Then
1[y↔w] and 1[C(x)=A] are, respectively, increasing and decreasing functions of
independent random variables. Thus, by association (see Exercise 5),

Pp(y ↔ w,C(x) = A, x ↔ z, x /∈ C(y), x /∈ C(w)) = Pp(y ↔ w,C(x) = A)
≤ Pp(y ↔ w)Pp(C(x) = A)
= Pp(y ↔ w)Pp(C(x) = A, x ↔ z, x /∈ C(y), x /∈ C(w)).

Divide by the common (positive) probability Pp(C(x) = A, x ↔ z, x /∈ C(y), x /∈
C(w)) to obtain the bound (23.11). Then summing over such lattice animals A
completes the proof of (23.10) and thus the BK inequality follows. �
Lemma 7.

Cov(1[x↔z], 1[y↔w]) ≤ E(1[x↔z]1[x↔y]1[x↔w]).

Proof. Let τ(x, z, y,w) := E(1[x↔z]1[x↔y]1[x↔w]). Note that

E(1[x↔z]1[y↔w]) = τ(x, z, y,w)+ E(1[x↔z]1[x /∈C(y)]1[y↔w])

= τ(x, z, y,w)+ Pp([x ↔ z] ◦ [y ↔ w]). (23.12)

Now apply the BK inequality to the second term. Subtracting E1[x↔z]E1[y↔w] from
both sides establishes the assertion of the lemma. �
Lemma 8. Let Ux = |C(x)| = ∑

z 1[x↔z]. Then

γ =
∑

x∈Z2

Cov(U0, Ux) ≤ E|C(0)|3.

Proof. Using bi-linearity of covariance and the bound from the first lemma,

Cov(1[0↔w], 1[y↔z]) ≤ τ(0, w, y, z) = E(1[0↔w]1[w↔y]1[y↔z]),

it follows that

∑

y∈Z2

Cov(U0, Uy) ≤
∑

y,w,z

τ (0, w, y, z) =
∑

y,w,z

E(1[0↔w]1[0↔y]1[0↔z])
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= E

(
∑

y,w,z

1[0↔w]1[0↔y]1[0↔z]

)

= E|C(0)|3.

�
Lemma 9. E|C(0)|m <∞ for all m ≥ 0.

Proof. Note from the proof of Proposition 23.7 that for p < 1/3, τ(0, x) = Pp(0 ↔
x) ≤ 4

3e
−c|x|, where c = − ln(3p) > 0. Thus, denoting by Rk the complimentary

region to the (two-dimensional) square of side-lengths 2k+ 1 centered at 0, one has
the tail probability bound

Pp(|C(0)| ≥ (2k + 1)2) ≤
∑

x∈Rk
τ (0, x) ≤ 4

3

∑

x∈Rk
e−c|x|

≤ c′
∞∑

j=k+1

je−cj ≤ c′′ke−c′′k,

for a suitable c′′ > 0. The second to the last inequality is a consequence of
summing over x on the perimeters at respective distances j from the origin,
noting that the number of sites on the perimeter is linear in j . It now follows that∑∞
k=1 k

2m−1P(
√|C(0)| ≥ k) < ∞, and therefore E|C(0)|m = E(

√|C(0)|)2m <
∞. �
In view of Newman’s central limit theorem this series of lemmas establishes the
following fluctuation law.

Theorem 23.8. Consider two-dimensional bond percolation with 0 < p < 1/3.
Then the centered and rescaled cumulative size 1

N

∑
x∈B(N)0

{|C(x)| − E|C(0)|} of

all clusters connected to points in the cube B(N)0 is asymptotically normal with mean
zero and variance 0 < γ = ∑

x∈Z2 Cov(|C(0)|, |C(x)|) ≤ E|C(0)|3 <∞.

We close this chapter with a celebrated result of Loren Pitt on association of
positively correlated normal random variables. We provide the essence of his18 very
clever proof leaving the technical details to exercises.

Theorem 23.9 (Pitt). Let X = (X1, . . . , Xk) be a positively correlated normal
random vector. Then {X1, . . . , Xk} is an associated family.

Proof. First consider the case in which the covariance matrix Γ = ((γi,j )) is
non-singular matrix with nonnegative entries. One may show that the collection
of coordinatewise non-decreasing functions f, g on R

k that are continuously
differentiable with bounded partials is association determining (Exercise 12). As

18 Pitt (1982).
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a result, one may restrict to such functions f, g. Let Z = (Z1, . . . , Zk) be an
independent copy of X and define

Y (λ) = λX + (1 − λ2)
1
2Z.

Then, Y (λ) is mean-zero normal with covariance matrix

Cov(Yi(λ), Yj (λ)) = λ2γi,j + (1 − λ2)γi,j = γi,j .

Also, Cov(X, Y (λ))i,j = λγi,j . Consider

F(λ) = Ef (X)g(Y (λ)).

Then, Cov(f (X), g(X)) = F(1) − F(0). So it suffices to show F ′(λ) exists and
is positive for 0 ≤ λ < 1. This is where the analysis is required. Namely, writing
Γ −1 = ((ci,j )), let

ϕ(x) = (2π)− k
2 (detΓ )−

1
2 exp

⎧
⎨

⎩
−1

2

k∑

i,j=1

ci,j xixj

⎫
⎬

⎭

denote the Gaussian pdf19 of X. Then the conditional pdf of Y (λ) given [X = x] is

p(λ; x, y) = (1 − λ2)−
k
2 ϕ((1 − λ2)−

1
2 (y − λx)).

That is, p(λ; x, y) is normal with covariance matrix (1−λ2)Γ and mean vector λx.
Thus,

F(λ) =
∫

Rk

f (x)ϕ(x)g(λ, x)dx,

where

g(λ, x) =
∫

Rk

g(y)p(λ; x, y)dy.

Observing that

g(λ, x) = ϕ(λ, ·) ∗ g(λx),

where ϕ(λ, x) = (1−λ2)− k
2 ϕ((1−λ2)− 1

2 x), one sees that ∂g(λ, x)/∂λ exists and is
nonnegative, while ∂g(λ, x)/∂xj exists and is bounded. To compute ∂p

∂λ
, let h(t, y)

19 BCPT, p. 130.
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denote the pdf of Γ
1
2Bt , where B is k-dimensional standard Brownian motion. Then

one has

p(λ; x, y) = h(1 − λ2, y − λx).

Using the chain rule and an application of the heat equation for multivariate
Brownian motion20 one arrives at

∂p

dλ
= −1

λ

⎧
⎨

⎩

∑

i �=j
γi,j

∂p

∂xi, ∂xj
−
∑

i

xi
∂p

∂xi

⎫
⎬

⎭
.

Thus,

F ′(λ) = −1

λ

∫

Rk

f (x)ϕ(x)

⎧
⎨

⎩

∑

i �=j
γi,j
∂g(λ, x)

∂xi, ∂xj
−
∑

i

xi
∂g(λ, x)

∂xi

⎫
⎬

⎭
dx.

Finally, with an integration by parts one arrives at

F ′(λ) = 1

λ

∫

Rk

ϕ(x)

⎧
⎨

⎩

∑

i �=j
γi,j
∂f (x)

∂xi

∂g(λ, x)

∂xj

⎫
⎬

⎭
dx ≥ 0.

In the case Γ is singular one may replace Γ by the non-singular matrix
Γ + ε1k×k, ε > 0, and observe that for continuous f, g, Cov(f (X), g(X)) depends
continuously on Γ . Thus positivity is preserved in the limit as ε → 0. �

Exercises

1. Let X1, . . . , Xn be associated random variables, and Yj = fj (X1, . . . , Xn),
j = 1, . . . , m where fj is coordinatewise non-decreasing for j = 1, . . . , m.
Show that (a) P(Y1 ≤ y1, . . . , Yk ≤ yk) ≥ ∏k

j=1 P(Yj ≤ yj ), and (b)

P(Y1 > y1, . . . , Yk > yk) ≥ ∏k
j=1 P(Yj > yj ). [Hint: Define non-decreasing

functions of Zj ’s by Zj = 1[Yj>yj ], j = 1, . . . , m, and note that Z1 · · ·Zi , and
Zi+1 · · ·Zm are non-decreasing functions of Zj ’s. Apply the FKG inequalities
iteratively for i = 1, . . . , m, noting EZj = P(Zj = 1). (c) Suppose that

X1, . . . Xn are independent random variables and let Sj = ∑j

i=1Xi, j =
1, . . . , n. Show that P(S1 ≤ s1, . . . , Sn ≤ sn) ≥ ∏n

i=1 P(Si ≤ si) for

20 For the heat equation connection see Bhattacharya and Waymire (2021), Chapter 6, Remark 6.2.
Pitt uses a related computational device of Plackett (1954).
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all s1, . . . , sn. [Hint: Sj is a non-decreasing function of X1, . . . , Xn, and
independent random variables are associated.]

2. Suppose f is a continuous function on [0, 1] and consider the Bernstein
polynomial defined by fn(x) = ∑n

j=0

(
n
j

)
xj (1 − x)n−j = Ef (

Sn(x)
n
), 0 ≤ x ≤

1, where Sj (x) = X1(x)+ · · ·Xj(x), for i.i.d. Bernoulli 0 − 1-valued random
variables with P(Xj (x) = 1) = x, j = 1, . . . , n. (a) Show that fn → f

uniformly on [0, 1] as n → ∞. (b)(Seymour-Welsh) Show21 that for non-
decreasing f, g on [0, 1], (fg)n(x) ≥ fn(x)gn(x), 0 ≤ x ≤ 1.

3. Show that binary 0−1-valued random variablesX, Y are associated if and only
if they are positively quadrant dependent.

4. Complete the details for the extension of Hoeffding’s lemma used in the
generalization Lemma 2.

5. Suppose that X = (X1, . . . , Xm) is a vector of associated random variables.
Let f, g be, respectively, coordinatewise increasing and decreasing functions.
Show that Cov(f (X), g(X)) ≤ 0. Extend this to countably many associated
random variables.

6. Prove the alternative formula

HX,Y (x, y) = P(X ≤ x, Y ≤ y)− P(X ≤ x)P (Y ≤ y).

7. Suppose f (X), g(Y ) ∈ L2(Ω,F , P ), where X, Y are real-valued random
variables bounded below by a constant b ∈ R, and f, g are continuously dif-
ferentiable complex functions with bounded derivatives. Prove the Hoeffding-
Newman formula in this case, starting from the familiar moment formulae

E(f (X)− f (b)) = E

∫ X

b

f ′(x)dx =
∫ ∞

b

P (X > x)f ′(x)dx,

and

E(f (X)− f (b))(g(Y )− g(b)) = E

∫ X

b

∫ Y

b

f ′(x)g′(y)dxdy.

8. Show that each of the collections of non-decreasing binary 0 or 1-valued
functions and those of non-decreasing bounded continuous functions are
association determining.

9. Consider the spatial intermittency of clusters as reflected in the density of
isolated points and/or non-isolated points. A site x ∈ Z

2 is isolated whenever
[C(x) = ∅]. The numbers of isolated points and non-isolated points in a square
B
(N)
0 are perfectly correlated since their total is (fixed) |B(N)0 |. It is convenient to

consider the number of non-isolated sites in the square B(N)0 (including surface
sites for simplicity) as given by

21 Seymour and Welsh (1975).
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DN =
∑

x∈B(N)0

1[C(x) �=∅].

Show that EDN = (1−q4)N2 and compute the asymptotic distribution ofDN ,
suitably centered and scaled, as N → ∞.

10. Fix a positive integer k and obtain the asymptotic fluctuation law for the
numbers of sites x in B(N)0 belonging to a cluster of size at most k, i.e., such
that |C(x)| ≤ k.

11. Let N = {N(A) : A ∈ B} be a Poisson point process on R
n. Show that N is an

associated family of random variables.
12. Show that the collection of coordinatewise non-decreasing functions f, g on

R
k that are continuously differentiable with bounded partial derivatives is

association determining. [Hint: (a) Check that any measurable increasing
functions is a pointwise a.s. limit of continuous increasing functions. (b) Check
that if ρε, ε > 0 is a nonnegative C∞-mollifier,22 then f ∗ρε is C∞ increasing
with bounded partials such that f ∗ ρε → f pointwise, uniform boundedly.]

22 See BCPT, p.77, for a mollifier example.



Chapter 24
Special Topic: More on Coupling
Methods and Applications

Coupling methods originated as a probabilistic tool for the analysis of a given
process by (possibly dependently) linking its sample path behavior to that of
a “target process” whose long term properties may be better understood or
known. This chapter illustrates the reach of coupling, extending well beyond
Doeblin’s original ideas, with a sample of applications to random fields.

The notion of coupling was introduced by Doeblin (1938) as a method to prove
convergence to a unique invariant probability for irreducible aperiodic finite state
Markov chains. Coupling was illustrated in Bhattacharya and Waymire (2021),
Chapter 8, with three significant applications: (i) Error in Poisson approximation
to the binomial distribution (ii) Convergence to steady state for a class of discrete
parameter Markov chains on a countable state space, (iii) A renewal theorem
for lattice distributions, and a fourth in Chapter 20 of the present text on (iv)
Convergence of Markov chains on general state spaces. In the present text coupling
also occurred in the proof of the geometric convergence rate1 to equilibrium given
in Theorem 20.6.

Definition 24.1. Let X, Y be two random maps defined on a probability space
(Ω,F , P ) with values in the measurable space (S,S). A coupling of X and Y ,

1 Although not covered in the present book, it is worthy of mention that the power of Doeblin’s
coupling was fully realized in the constructions of optimal couplings for continuous parameter
Markov chains, as well as for a class of diffusions on manifolds, by Chen and Wang (1995),
Chen (1996) and his student. These couplings involve sharp estimates of the L2-spectral gap
of the infinitesimal generator and are remarkable for the contribution to mathematics outside of
probability theory. See Chen (1997) for an insightful overview.

© Springer Nature Switzerland AG 2022
R. Bhattacharya, E. C. Waymire, Stationary Processes and Discrete Parameter
Markov Processes, Graduate Texts in Mathematics 293,
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or a coupling of their respective distributions PX and PY , is any bivariate random
map (X̃, Ỹ ) with values in (S × S,S ⊗ S) whose marginals coincide with PX and
PY , respectively.

Example 1 (Choquet–Deny Theorem for Simple Symmetric Random Walk on
Z
k(k ≥ 1)). As already noted in Chapter 12, the Choquet–Deny theorem asserts

for any k ≥ 1 that the only bounded, harmonic functions for the simple symmetric
random walk are the constant functions. A simple application of this theorem was
cited in Exercise 12 of Chapter 12.

Theorem 24.1 (Choquet–Deny2 for Simple Symmetric Random Walk on Z
k(k ≥ 1)).

The only bounded harmonic functions for the simple symmetric random walk on
Z
k, (k ≥ 1) are the constant functions.

Proof. Let x, y ∈ Z
k, |x − y| = 1, and let h be a bounded harmonic function

with respect to a simple, symmetric random walk {Xn : n ≥ 0} on Z
k; that is,

h(x) = Exh(X1), x ∈ Z
k . We wish to show that h(x) = h(y). For this we construct

a Markov coupling (X̃, Ỹ ) = {(X̃n, Ỹn) : n ≥ 0} starting at (x, y) ∈ Z
k × Z

k such
that the marginal processes are simple symmetric random walks starting at x and y,
respectively, and such that the coupling time T = inf{n ≥ 1 : X̃n = Ỹn} is almost
surely finite, i.e., the coupling is successful. For then one has

|h(x)− h(y)| = |Exh(Xn)− Eyh(Xn)|
= |E(x,y)h(X̃n)− E(x,y)h(Ỹn)|
≤ 2 sup

x
|h(x)|P(T > n)→ 0 as n→ ∞. (24.1)

To make a coupling that is successful regardless of dimension one proceeds as
follows: Let ε1, ε2, . . . and ε′1, ε′2, . . . be independent, i.i.d. symmetric Bernoulli
±1-valued random variables. At each time step n ≥ 1, select a common coordinate,
say the mth, of (X̃(1)n−1, . . . , X̃

(k)
n−1) and (Ỹ (1)n−1, . . . , Ỹ

(k)
n−1) to make displacements

according to the following rules: If X̃(m)n−1 = Ỹ
(m)
n−1, then take X̃(m)n = X̃

(m)
n−1 + εn =

Ỹ
(m)
n−1 +εn = Ỹ (m)n . On the other hand, if X̃(m)n−1 �= Ỹ (m)n−1, then take X̃(m)n = X̃(m)n−1 +εn

and Ỹ (m)n = Ỹ
(m)
n−1 + ε′n. All other coordinates are left fixed at this time step. Then

the Markov chain (X̃, Ỹ ) is easily checked to be a coupling. That this coupling
is successful follows from the pointwise recurrence of 0 in the one-dimensional
(lazy) simple symmetric random walk

∑n
j=1(εj − ε′j ), n ≥ 1. This shows, together

with (24.1), that h does not depend on itsmth coordinate. Since, the argument holds
for each m = 1, . . . , k, the function h is constant. �

2 The Choquet–Deny theorem is valid more generally for irreducible general random walks on
locally compact Abelian groups; Choquet and Deny (1960).
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The property that all bounded, harmonic functions are constant is sometimes
referred to as the Liouville property in reference to its counterpart in analysis.

Remark 24.1. One may note that bounded harmonic functions for a Markov chain
are constant if it is possible to construct a successful coupling with arbitrary initial
states x, y. See Exercise 5 for a generalization.

Example 2 (Association of a Singleton). Recall that random variables X, Y are
associated if Cov(f (X), g(Y )) ≥ 0 for bounded increasing functions f, g. A proof
that a singleton X is associated, i.e., Proposition 23.3(e) can be made by coupling
X to an independent copy Y . Then for bounded, increasing functions f, g one has,
on the one hand, that

E(f (X)− f (Y ))(g(X)− g(Y )) = 2Ef (X)g(X)− 2Ef (X)Eg(X), (24.2)

and, on the other hand, by monotonicity the factors f (X)− f (Y ) and g(X)− g(Y )
are of the same sign in the following decomposition. That is,

E(f (X)− f (Y ))(g(X)− g(Y ))
= E1[X≥Y ](f (X)− f (Y ))(g(X)− g(Y ))+ E1[X<Y ](f (X)− f (Y ))(g(X)− g(Y ))
≥ 0. (24.3)

Thus, 0 ≤ Ef (X)g(X)− Ef (X)Eg(X) = Cov(f (X), g(X)).

Another important context for coupling is that of stochastic ordering. Some
related ideas pertaining to stochastic order were already considered in Chapter 23,
and will be revisited here in the illustrative examples.

Definition 24.2. Suppose that X1 and X2 are real-valued random variables with
respective distributions μi, i = 1, 2. Then X1 is said to be stochastically dominated
by, or stochastically smaller than, X2, denoted X1 ≤s X2, if μ1[x,∞) ≤ μ2[x,∞)
for all x ∈ R. The probability measure μ1 is said to be stochastically smaller than,
or stochastically dominated by, μ2, also denoted μ1 ≤s μ2.

For real-valued random variables the following proposition is rather elementary.

Proposition 24.2 (Coupling & Stochastic Order on R). X1 ≤s X2 if and only if
there is a coupling (X̃1, X̃2) of X1 and X2 such that P(X̃1 ≤ X̃2) = 1.

Proof. Assume that the coupling exists. Then

μ1[x,∞) = P(X̃1 ≥ x) ≤ P(X̃2 ≥ x) = μ2[x,∞).

Suppose next that X1 ≤s X2. Define X̃i = F−1
i (U), i = 1, 2, where U is uniform

on [0, 1] and F−1
i (u) := inf{x ∈ R : Fi(x) > u}. Then X̃i has distribution μi , i.e.,

a coupling is achieved. Moreover, F1(x) ≥ F2(x) for all x is the complimentary



386 24 ST: Coupling

equivalent to stochastic domination and, by the definition of the (generalized)
inverse function, P(X̃1 ≤ X̃2) = P(F−1

1 (U) ≤ F−1
2 (U)) = 1. �

Our goal now is to extend this to random maps (or their distributions) with
values in partially ordered spaces. The cornerstone theory for this is a theorem of
Strassen (1965) for the case of partially ordered Polish spaces. Strassen’s proof was
simplified by Lindvall (1999) using rather standard methods of functional analysis
presented here and in Appendix D.

Remark 24.2. An alternative proof for compact spaces is given in Liggett (1985),
that relies heavily on Nachbin (1966) interpolation theorems between semicontinu-
ous functions on a compact partially ordered space having a closed partial order, in
addition to the more standard theorems from functional analysis. In the case of finite
partially ordered sets, an especially elegant (bipartite) graph theoretic presentation is
given in Koperberg (2016) that relates Strassen’s theorem to the Max Flow-Min Cut
Theorem of Ford and Fulkerson (1956), as well as to Marriage Theorem of Philip
Hall (1935).

To introduce the framework for Strassen’s theorem for Polish partially ordered
spaces let us first recall some basic definitions.

Definition 24.3. Let S be a set. A partial order � on S is a relation such that for
every x, y, z ∈ S,

i x � x,
ii x � y � x iff x = y,

iii x � y � z implies x � z.
The pair (S,�) is referred to as a partially ordered set (poset). In the case (iii)
is removed, � is referred to as a pre-order. If S is a topological space and the set
{(x, y) : x � y} is a closed set, then � is said to be closed.

Definition 24.4. Let X1, X2 be random variables taking values in a partially
ordered space (S,�). Assume that M = {(x, y) : x � y} is measurable for the
product space. A coupling (X̃1, X̃2) of (X1, X2) such that P(X̃1 � X̃2) = 1 is
referred to as a monotone coupling. Equivalently, ifX1,X2 have respective marginals
μ1,μ2, then the joint distribution μ̃ of (X̃1, X̃2) has marginalsμ1,μ2 and μ̃(M) = 1.
μ̃ is referred to as a monotone coupling of μ1, μ2.

To provide some orientation, the following example provides an illustration of the
connection between monotone couplings on a partially ordered space and stochastic
ordering for which a monotone coupling can be explicitly constructed (without
appeal to Strassen’s theorem for its existence).

Example 3 (Monotonicity in Bond Percolation). Recall the bond percolation model
defined in Example 2 of Chapter 23.

Definition 24.5 (Uniform Bernoulli Coupling). Let X1 and X2 be Bernoulli 0 − 1-
valued random variables with P(Xi = 1) = pi, i = 1, 2 with p1 < p2. Let U
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be a uniformly distributed random variable on [0, 1]. Define X̃i = 1[U≤pi ], i =
1, 2. Then, the coupling (X̃1, X̃2) of (X1, X2) is referred to as uniform Bernoulli
coupling.

The uniform Bernoulli coupling is easily checked to be a monotone coupling, and
underlies the proof of monotonicities of the following type. Denote the set of nearest
neighbor bonds (edges) in the integer lattice Z

2 by E . The configuration space
S = {0, 1}E is a compact metric space for the product topology. Coordinatewise
inequality provides a natural partial order � for which x � y iff xb ≤ yb for all b ∈
E . In particular, xb = 1 implies yb = 1.

Remark 24.3. Let Λ be a countable set. One may view the compact space S =
{0, 1}Λ as the power set of Λ, i.e., the collection of all subsets of Λ coded by
elements of Λ as being either “in(1)” or “out(0).” In this dual view, the partial order
on {0, 1}Λ, x � y, defined coordinatewise, is equivalent to the partial order x ⊂ y

on the power set of Λ since for j ∈ Λ, xj = 1, i.e., j ∈ x, implies yj = 1, i.e.,
j ∈ y. In particular, note that if x ∈ S is identified withA = {j ∈ Λ : xj = 1} ⊂ Λ,
and y ∈ S is identified accordingly with a set B ⊂ Λ, then A ∪ B corresponds to
the maximum x∨y ∈ S, i.e., (x∨y)m = xm∨ym,m ∈ Λ, and A∩B the minimum
x ∧ y. The coordinatewise partial order corresponds to set inclusion. The choice of
representation is generally a matter of convenience to methods.

Recall from Chapter 23 that an event A ⊂ {0, 1}E is said to be an increasing set
if x ∈ A and x � y implies that y ∈ A. This definition extends to any poset S.
Note also that the set A is increasing if and only if the indicator 1A is an increasing
function.

Proposition 24.3 (Monotonicity of Bond Percolation Probabilities). Let X(i) =
(X
(i)
b )b∈E , be i.i.d. Bernoulli random fields on {0, 1}E with parameters pi , respec-

tively, where pi = P(X
(i)
b = 1), i = 1, 2. (i) Suppose that A is an increasing

set in {0, 1}E . If p1 ≤ p2, then P(X(1) ∈ A) ≤ P(X(2) ∈ A). In particular, (ii)
θ(p1) ≤ θ(p2) for p1 ≤ p2, where θ(p) denotes the percolation probability at the
origin defined in Example 2 of Chapter 23.

Proof. Let {Ub : b ∈ E} be i.i.d. uniform random variables on [0, 1), and define
respective families of i.i.d. monotone uniform Bernoulli couplings X̃(i) := {X̃(i)b ≡
1[Ub≤pi ] : b ∈ E}, i = 1, 2. Then, X̃(1) � X̃(2). Thus, by monotonicity of A,
[X̃(1) ∈ A] ⊂ [X̃(2) ∈ A], and the assertion (i) follows. For the (ii) simply note that
the set A of configurations x ∈ {0, 1}E such that the set {b ∈ E : xb = 1} contains
an infinite path of nearest neighbor bonds connected to the origin, is an increasing
set. �
Definition 24.6. A function f : S → R is said to be increasing if f (x) ≤ f (y)

whenever x � y, x, y ∈ S.
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Definition 24.7. Let μ1, μ2 be probability distributions on a partially ordered
Polish space S with partial order �, and Borel σ -field B. Then μ1 ≤s μ2 if and
only if

∫
S
f dμ1 ≤ ∫

S
f dμ2 for all increasing bounded measurable functions f .

We will require a couple of standard theorems from functional analysis, stated
below with proofs given in Appendix D.

Theorem 24.4 (Separation Theorem). Suppose that A and B are disjoint,
nonempty, convex sets in a topological vector space V . If A is compact, B closed,
and V locally convex, then there is a �0 ∈ V ∗, γ1, γ2 ∈ R, such that

�0(u) < γ1 < γ2 < �0(v),

for every u ∈ A, v ∈ B.

For the following representation theorem3 note that if V is a topological vector
space, then each v ∈ V may be viewed as a linear functional on its dual space V ∗ by
defining v(�) = �(v), � ∈ V ∗. The weakest topology on V ∗ that makes each v ∈ V
continuous as a linear functional on V ∗ is called the weak∗ topology.

Theorem 24.5 (Dual Representation Theorem). Given a vector space V , let V ′ be a
vector space of linear functionals on V that separate points of V . Then V , equipped
with the weakest topology on V that makes each � ∈ V ′ continuous, is a locally
convex space whose dual is V ′.

The proof of the typical statement of Strassen’s monotone coupling theorem as it
usually appears in probability will follow as a corollary to the following main result
of Strassen (1965).

Theorem 24.6 (Strassen). Assume that S is a Polish space. Let Π = P(S × S)

be the set of probability measures on S × S, and Λ ⊂ Π a convex set which is
closed under weak convergence. Then for probability measures μ1, μ2 on S there is
a probability measure μ̃ ∈ Λ with marginals μ1, μ2 if and only if

∫

S

f dμ1 +
∫

S

gdμ2 ≤ sup
ν∈Λ

∫

S×S
(f (x)+ g(y))ν(dx × dy),

for all continuous functions f, g on S such that 0 ≤ f, g ≤ 1.

Proof. Define

V = {(f, g) : f, g ∈ Cb(S)} = Cb(S)× Cb(S). (24.4)

Then

||(f, g)|| = ||f ||u + ||g||u, f, g ∈ V, (24.5)

3 See Appendix D for more background from functional analysis.
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defines a norm on V . Let

H = P(S)× P(S), (24.6)

where P(S) is the set of probability measures on S.
Observe that (μ1, μ2) ∈ H defines a linear functional, denoted �(μ1,μ2), or, by

an abuse of notation, simply as (μ1, μ2),

(f, g)→ �(μ1,μ2)(f, g) :=
∫

S

f dμ1 +
∫

S

gdμ2, (f, g) ∈ V. (24.7)

Let V ′ denote the space spanned by such linear functionals on V . Note that V =
(V ′)′ separates points of V ′, where, for (f, g) ∈ V , by another abuse of notation,
(f, g)(�) = �(f, g), � ∈ V ′. In view of Theorem 24.5, V is the dual space of V ′.
Now define

HΛ = {(μ1, μ2) ∈ H : ∃ μ̃ ∈ Λ having marginals μ1, μ2}. (24.8)

Due to the convexity assumption on Λ, HΛ is convex, viewed as a subset of
V ′ in accordance with (24.7). Applying Theorems 24.4 and 24.5 (with V ′ as the
topological vector space), one has that

(a) If B is a closed and convex subset of V ′ and �′ ∈ V ′\B, then there exists a
weak∗ continuous linear functional �0 on V ′ such that �0(�

′) > supβ∈B �0(β).
Replacing �0 by −�0 in Theorem 24.4 gives separation in the reverse order.

(b) All weak∗ continuous functionals �0 on V ′ are of the form �0(�) =
�(f0, g0), � ∈ V ′, for some (f0, g0) ∈ V .

The aim is to show that the non-existence of a coupling probability in Λ implies
that Strassen’s condition does not hold. So, suppose that (μ1, μ2) /∈ HΛ. Note
again that each (μ1, μ2) may be viewed as a linear functional �(μ1,μ2) ∈ V ′. Taking
�′ = �(μ1,μ2), B = HΛ in (a), there is a continuous linear functional �0 on V ′ that
separates �(μ1,μ2) from HΛ. That is,

�0(�(μ1,μ2)) > sup
�∈HΛ

�0(�).

Now find (f0, g0) representing �0 according to (b), i.e., �→ �0(�) ≡ �(f0, g0), � ∈
V ′. Then, one has

�(μ1,μ2)(f0, g0) > sup
�∈HΛ

�(f0, g0). (24.9)

In particular, writing out the meaning of (24.9) in terms ofμ1 andμ2, this separation
is in direct contradiction to Strassen’s condition that

∫
S
f0dμ1 + ∫

S
g0dμ2 ≤
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supν∈Λ
∫
S
(f (x) + g(y))ν(dx × dy) for all continuous functions 0 ≤ f, g ≤ 1

on S. Thus (μ1, μ2) ∈ HΛ.
It remains to prove that HΛ is closed in V ′. To that end, we first note that the

relativized weak∗ topology on H is metrizable. Indeed, let P(S × S) denote the set
of probability measures on S × S. Then the mapping φ : H → P(S × S), defined
by φ(μ1, μ2) = μ1 × μ2, is a homeomorphism from H onto a closed subset of
P(S × S) endowed with the weak∗topology. But that topology is metrizable4 by
the Prokhorov metric, This means that in order to prove that HΛ is weak∗ closed, it
suffices to show that the limit of a convergent sequence of elements in HΛ remains
in HΛ. So, let (μ(1)n , μ

(2)
n ), n ≥ 1, be a sequence in HΛ which is weak∗ convergent

to (μ1, μ2). Then μ(1)n ⇒ μ1, and μ(2)n ⇒ μ2. This implies that any sequence
{νn}∞n=1 such that νn has marginals μ(1)n , μ

(2)
n for n ≥ 1 is tight. Indeed, take any

ε > 0 and let K(1)ε , K(2)ε be compact sets such that infn μ
(1)
n (K

(1)
ε ) > 1 − ε/2

and infn μ
(2)
n (K

(2)
ε ) > 1 − ε/2. It follows that infn νn(K

(1)
ε × K(2)ε ) > 1 − ε, and

K
(1)
ε ×K(2)ε is compact in S × S. Now apply Prokhorov’s theorem to find a cluster

point μ̃ of {νn}∞n=1. Since Λ is closed, we have μ̃ ∈ Λ. Moreover μ̃ has respective
marginals μ1 and μ2 by the Mann–Wald5 continuous mapping theorem applied to
the projections (μ1, μ2)→ μ1 and (μ1, μ2)→ μ2. �
Remark 24.4. Note that if S is compact, then H is tight, so that HΛ = HΛ is also
compact6 in the weak∗ topology.

Corollary 24.7 (Strassen’s Monotone Coupling). Let (S,�) be a Polish partially
ordered space with Borel σ -field. Assume that � is closed in the sense that M =
{(x, y) ∈ S × S : x � y} is a closed set. Then, for probability measures μ1, μ2 on
(S,B), μ1 ≤s μ2 if and only if there is a monotone coupling μ̃ of μ1, μ2.

Proof. The sufficiency of the existence of a monotone coupling for stochastic order
is obvious from the definitions. Let Λ = {ν ∈ P(S × S) : ν(M) = 1}. Then Λ is
convex and closed in P(S × S) under weak convergence. Then,

∫

S

gdμ2 ≤
∫

S

g∗dμ2 ≤
∫

S

g∗dμ1,

where g∗(x) = sup{g(y) : x � y}, since g ≤ g∗ and g∗ is decreasing. Thus, for
continuous functions f, g on S with 0 ≤ f, g ≤ 1,

4 See BCPT, Theorem 7.10, p. 144.
5 See BCPT, Theorem 7.4, p. 140.
6 See BCPT, Proposition 7.6, p. 142.
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∫

S

f dμ1 +
∫

S

gdμ2 ≤
∫

S

(f + g∗)dμ1

≤ sup
x
(f (x)+ g∗(x)) ≤ sup

(x,y)∈M
(f (x)+ g(y))

≤ sup
ν∈Λ

∫

S

(f (x)+ g(y))ν(dx × dy). (24.10)

Thus Strassen’s main theorem provides the existence of the monotone coupling μ̃.
�

Let us now consider some applications of Strassen’s theorem.

Theorem 24.8 (Strassen’s Stochastic Ordering of Markov Chains). Let {Xn : n ≥
0} and {Yn : n ≥ 0} be Markov chains on a Polish poset (S,�) with transition
probabilities p(x, dy) and q(x, dy), respectively. Assume that q(y, ·) stochastically
dominates p(x, ·) for each x, y ∈ S, x � y. Then for any x0 � y0 there is a coupling
{(X̃n, Ỹn) : n ≥ 0} of {Xn : n ≥ 0} started at x0 and {Yn : n ≥ 0} started at y0 such
that a.s. Xn � Yn, for each n. Furthermore, if the Markov chains have stationary
distributions μX and μY , respectively, then μX ≤s μY .

Proof. By Strassen’s theorem there is a monotone coupling p̃((x0, y0), ·)) of
p(x0, ·) and q(y0, ·) such that p̃((x0, y0), S̃) = 1, where S̃ = {(x, y) ∈ S × S :
x � y}. The monotone coupling is the Markov chain {(X̃n, Ỹn) : n = 0, 1, . . . } on
S̃ starting at (x0, y0) having transition probabilities p̃((x, y), ·).

To see that μX � μY , use the ergodic theorem for Markov chains to write
μX(·) = limn p(n)(x0, ·) and μY (·) = limn q(n)(y0, ·). Then for an increasing
bounded continuous function f on S one has

EμXf (X0) = lim
n

1

n

n−1∑

m=0

f (Xm) ≤ lim
n

1

n

n−1∑

m=0

f (Ym) = EμY f (Y0). (24.11)

Thus, μX ≤s μY . �
Corollary 24.9. Suppose Λ is a countable set and S = {0, 1}Λ with the product
topology, Borel σ -field, and coordinatewise partial order �. Ifμ1, μ2 are probability
measures on S such that μ1 ≤s μ2, and if

μ1({x ∈ S : x(m) = 1}) = μ2({x ∈ S : x(m) = 1}), for all m ∈ Λ, (24.12)

then μ1 = μ2.

Proof. Let μ̂ be the monotone coupling of μ1, μ2 furnished by Strassen’s theorem.
Then
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μ̃({(x, y) ∈ S × S : x(m) = 0, y(m) = 1})
= μ̃({(x, y) : y(m) = 1})− μ̃({(x, y) : x(m) = 1)

+μ̃({(x, y) : x(m) = 1, y(m) = 0})
= μ̃({(x, y) : y(m) = 1})− μ̃({(x, y) : x(m) = 1, y(m) = 1})
= μ2({y : y(m) = 1})− μ1({x : x(m) = 1}) = 0. (24.13)

Thus, with E = {(x, y) ∈ S × S : x = y}, μ̃(E) = 1, and therefore, for B ∈ B(S),

μ1(B) = μ̃(B × S) = μ̃((B × S) ∩ E) = μ̃(S × B) = μ2(B). �

Example 4 (Holley Inequalities). In Chapter 23 more general inequalities, known
as Holley inequalities,7 were noted in the context of associated random variables.
In this example we see that these inequalities can be derived from a relative log-
convexity condition using coupling techniques. As corollaries a log-convexity
condition8 for FKG and Harris inequalities will follow.

Again, let S denote the power set of a finite set Λ, and define a partial order �
on S by A � B iff A ⊂ B. Then S is finite, with all of its subsets measurable.
Equivalently, one may view S = {0, 1}Λ as functions ω : Λ → {0, 1}, with the
coordinatewise partial order �, x � y iff xm ≤ ym, for all m ∈ Λ, x, y ∈ S.

In the following we consider probability measures in terms of their densities
with respect to counting measure, i.e., their probability mass functions. In a slight
abuse of notation clarified by context, notions defined for probability measures
are sometimes applied to their densities. For example, if μ1, μ2 are probability
densities, then we also write μ1 ≤s μ2 to indicate stochastic ordering of their
corresponding probability measures. Similarly, as in the next definition, the log-
convexity properties defined in terms of densities are often expressed in terms of
their corresponding probability measures.

Definition 24.8 (Relative Log-Convexity). Consider probability measures on the
power set S of Λ having densities (probability mass functions) μ,μ1, μ2. (i) μ2
is log-convex with respect to μ1 iff μ2(A ∪ B)μ1(A ∩ B) ≥ μ2(A)μ1(B), for all
A,B ⊂ S. (ii) μ is said to be log-convex if μ2 = μ is log-convex with respect to
μ1 = μ.

Note that for the representation of configurations in S = {0, 1}Λ as functions
ω : Λ → {0, 1} with the coordinatewise partial, the log-convexity of a density μ2
with respect to μ1 takes the form

μ2(ω ∨ η)μ1(ω ∧ η) ≥ μ2(ω)μ1(η), ω, η ∈ S,

where ∨, ∧ are the max, min lattice operations.

7 Holley (1974).
8 Fortuin et al. (1971).
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Theorem 24.10 (Holley’s Inequalities). Let μ1, μ2 be probability densities on the
finite poset (S,�), above. Suppose that μ2 is relatively log-convex with respect to
μ1. Then μ1 ≤s μ2.

Proof. The idea is to construct a monotone coupling of Markov chains having
invariant probabilities with densities μ1, μ2, in a manner similar to that used in
Markov Chain Monte Carlo (MCMC) simulations such as Propp-Wilson algorithm
and the Gibbs sampler considered in Chapter 19. From here the result follows from
Strassen’s theorem for Markov chains (Theorem 24.8).

We will employ the representation of configurations in S = {0, 1}Λ as functions
ω : Λ → {0, 1}, with the coordinatewise partial order �. The proof that μ1 ≤s μ2
is achieved by constructing a monotone coupling (X̃, Ỹ ) = {(X̃n, Ỹn) : n ≥ 0} of
aperiodic, irreducible Markov chains X = {Xn : n ≥ 0} and Y = {Yn : n ≥ 0} on
S having stochastically ordered transition probabilities and invariant probabilities
with densities μ1, μ2. The one-step transitions will involve simultaneous single
coordinate changes designed so that an increase in a coordinate of X̃ does not occur
with a decrease in the same coordinate of Ỹ .

For ω ∈ S,m ∈ Λ, let ωm denote the configuration obtained from ω by flipping
the value of ω at m from ωm to 1 − ωm.

Let N = |Λ|, and let p1, p2 ∈ (0, 1) to be determined. To construct a Markov
chain with invariant probability density μ1, consider transitions with positive
probability of the form ω → ωm with one-step transition probabilities defined
accordingly by

p(ω,ωm) =
{

1
N
p1p2 if ωm = 0

1
N
p1p2

μ1(ω
m)

μ1(ω)
if ωm = 1,

(24.14)

and p(ω,ω) = 1 − ∑
η:|η−ω|1=1 p(ω, η), where |ω|1 = ∑

m∈Λ |ωm|. The
transition probability q(ω, η) is defined the same way with μ1 replaced by μ2.
Naturally, p1 must be sufficiently small to make p(ω,ω), q(ω, ω) both nonnegative.
The parameter p2 will be further restricted for the coupling construction. It is
straightforward to check that p(ω, η) and q(ω, η) are aperiodic, with irreducible
transition probabilities having time-reversible invariant probability densities μ1 ≤s
μ2, respectively, e.g., using (ωm)m = ω, p(ω,ωm)μ1(ω) = p(ωm,ω)μ1(ω

m).
To show that that for ω � η one has p(ω, ·) ≤s q(η, ·) it suffices by

Theorem 24.8 to construct a monotone coupling. For this it will be useful to note
that if μ2 is log-convex with respect to μ1 and ω � η, then when ωm = 1 and
ηm = 1, one has ω ∨ ηm = η, and ω ∧ ηm = ωm, μ2(η)μ1(ω

m) ≥ μ2(η
m)μ1(ω).

In particular,

μ1(ω
m)

μ1(ω)
≥ μ2(η

m)

μ2(η)
. (24.15)
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The coupling construction is as follows.
Coupling Algorithm9 Let ω � η.

1. Toss a coin with probability p1 for heads, 1 − p1 for tails. On the event T that
tail occurs, (ω, η)→ (ω, η).

2. Otherwise, on the event H that head occurs, independently select M = m ∈ Λ
(uniformly) with probability 1

N
, and make a transition from (ω, η) by a double or

single coordinate flip according to the following conditional probabilities given
H ∩ [M = m] depending on (ω, η):

3. If (ωm, ηm) = (0, 0), then for 0 < p2 sufficiently small for positivity of the
indicated conditional probabilities,

(ω, η)→
{
(ωm, ηm) with conditional probability p2

(ω, η) with conditional probability 1 − p2.

4. If (ωm, ηm) = (1, 1), then

(ω, η)→

⎧
⎪⎪⎨

⎪⎪⎩

(ωm, ηm) with conditional probability p2
μ2(η

m)
μ2(η)

(ωm, η) with conditional probability p2(
μ1(ω

m)
μ1(ω)

− μ2(η
m)

μ2(η)
)

(ω, η) with conditional probability 1 − p2
μ1(ω

m)
μ1(ω)

.

5. If (ωm, ηm) = (0, 1), then

(ω, η)→

⎧
⎪⎪⎨

⎪⎪⎩

(ωm, η) with conditional probability p2

(ω, ηm) with conditional probability p2
μ2(η

m)
μ2(η)

(ω, η) with conditional probability 1 − p2{1 + μ2(η
m)

μ2(η)
}.

It is straightforward to check, for example, that unconditionally on H ∩ [M =
m], if ωm = 0, ηm = 0, then p(ω,ωm) = P(ω,η)(X̃1 = ωm) = P(ω,η)(X̃1 =
ωm, Ỹ1 = ηm) = 1

N
p1p2 = q(η, ηm) = P(ω,η)(Ỹ1 = ηm). Similarly, if ωm =

1, ηm = 1, then p(ω,ωm) = P(ω,η)(X̃1 = ωm, Ỹ1 = ηm)+ P(ω,η)(X̃1 = ωm, Ỹ1 =
η) = 1

N
p1p2

μ2(η
m)

μ2(η)
+ 1
N
p1{μ1(ω

m)
μ1(ω)

− μ2(ω
m)

μ2(ω)
} = 1

N
p1p2

μ1(ω
m)

μ1(ω)
≤ 1
N
p1p2

μ2(η
m)

μ2(η)
=

q(η, ηm) = P(ω,η)(Ỹ1 = ηm), and so on.
It follows from Strassen’s theorem that for ω � η, p(ω, ·) ≤s q(η, ·). Since μ1

and μ2 are densities of (time-reversible) invariant initial probabilities, for p and q,
respectively, it follows that μ1 ≤s μ2 by Theorem 24.8. �

9 The original coupling construction by Holley (1974) involved a monotone coupling of continuous
parameter Markov chains. Converting it to a discrete parameter coupling was inspired by Roch
(2020).
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Corollary 24.11. Suppose that μ is a log-convex probability density on the finite
poset S. Then the FKG inequalities are valid for the probability measure with density
μ, i.e., for increasing f, g on S = {0, 1}Λ

∑

ω∈S
f (ω)g(ω)μ(ω) ≥

∑

ω,η∈S
f (ω)g(η)μ(ω)μ(η).

Proof. Without loss of generality, assume g > 0 by adding a constant if needed.
It suffices to consider nonnegative and increasing functions f, g. Define μ2(ω) =
g(ω)μ(ω)∑
γ∈S g(γ )μ(γ )

and μ1 = μ. Then μ2 is easily checked to be log-convex with respect

to μ1. It follows from Theorem 24.10 that the FKG inequalities follow from the
Holley inequalities. �
Remark 24.5. The conclusion μ1 ≤s μ2 of Corollary 24.11 may be expressed in
the more familiar form of nonnegative covariance as:

∑

ω∈S
f (ω)g(ω)μ(ω)−

∑

η∈S
f (η)μ(η)

∑

γ∈S
g(γ )μ(γ ) ≥ 0,

for increasing functions f, g on (S,�).
Example 5 (Ising Ferromagnet). Let Λ be a finite subset of the integer lattice Z

d .
Define ∂Λ = {m ∈ Z

d\Λ : |m−j | = 1 for some j ∈ Λ}. The Ising ferromagnet on
Λ with boundary values ω ∈ {−1, 1}∂Λ is the probability measure on S = {−1, 1}Λ
defined by

μ
(ω)
Λ (σ ) = Z−1

Λ e
−βH(ω)Λ (σ ), σ ∈ S, (24.16)

where H(ω)Λ (σ ) = −∑
i,j∈Λ,|i−j |1=1 σiσj −∑

i∈Λ,j∈∂Λ,|i−j |1=1 σiωj , β > 0, and

ZΛ = ∑
σ∈S e−βH

(ω)
Λ (σ ) normalizes the exponentials e−βH

(ω)
Λ to a probability. H(ω)Λ

is called the energy Hamiltonian, ZΛ is the partition function, β > 0 is the inverse
temperature parameter, , and σ ∈ S is a spin configuration.

Proposition 24.12. The spin random variables σj , j ∈ Λ are associated, i.e., satisfy
the FKG inequalities.

Proof. The log-convexity condition for μ(ω)Λ may be expressed as follows for σ, η ∈
S,

exp
{
−β(H(ω)Λ (σ ∨ η)+H(ω)Λ (σ ∧ η)−H(ω)Λ (σ )−H(ω)Λ (η)

)} ≥ 1.
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Then it suffices to show

∑

i,j∈Λ,|i−j |1=1

{(σ ∨ η)i(σ ∨ η)j + (σ ∧ η)i(σ ∧ η)j }

+
∑

i∈Λ,j∈∂Λ,|i−j |1=1

{(σ ∨ η)i + (σ ∧ η)i}ωj

≥
∑

i,j∈Λ,|i−j |1=1

(σiσj + ηiηj )+
∑

i∈Λ,j∈∂Λ,|i−j |1=1

(σi + ηi)ωj . (24.17)

For this note that

{(σ ∨ η)i + (σ ∧ η)i}ωj = (σi + ηi)ωj , (24.18)

and for i, j ∈ Λ, |i − j |1 = 1, if σi �= ηi and σj �= ηj ,

(σ ∨ η)i(σ ∨ η)j + (σ ∧ η)i(σ ∧ η)j = (1)(1)+ (−1)(−1) = 2 ≥ σiσj + ηiηj ,
(24.19)

while the case σi = ηi one obtains σi(σ ∨ η)j + σi(σ ∧ η)j = σi{(σ ∨ η)j + (σ ∧
η)j } = σiσj + σiηj . Thus H(σ ∨ η)+H(σ ∧ ∨) ≥ H(σ)+H(η). �
Remark 24.6. Note that Example 5 may be abstracted to association of a two-state,
say α < β, Markov chain such that pα,α = pβ,β ≥ 1/2. (Exercise 8).

In the independent case, the FKG inequalities are due to Harris (1960).

Corollary 24.13 (Harris Inequalities). Let f, g be nondecreasing functions on S =
{0, 1}Λ for a finite set Λ and let Y = {Ym : m ∈ Λ} be independent random
variables. Then, Ef (Y )g(Y ) ≥ Ef (Y )Eg(Y ).

Proof. The proof is by induction on |Λ| to check log-convexity of the distribution μ
of the random field Y . For then the assertion follows from the FKG inequalities. �

Remark 24.7. Positive dependence inequalities and coupling are also important
tools for analysis of continuous time Markov processes, including interacting
particle systems.10

Remark 24.8. Although not treated here, path coupling11 is an extension12 of
Doeblin’s coupling methods for Markov chains which have proved to be more

10 Liggett (1983). Also see Burton and Waymire (1986) for a related application to renewal
processes.
11 Path coupling was introduced by Bubley and Dyer (1997).
12 Further extensions of path coupling to aggregate path coupling were developed by Kovchegov
and Otto (2018).
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efficient for mixing time estimates for Markov chain sampling from models in
statistical mechanics and percolation.

Exercises

1. (a) Suppose p is an irreducible periodic transition probability matrix on a
countable state space S (if period d > 1). Then the Markov chain {Xn :=
(X
(1)
n , X

(2)
n ) : n ≥ 0} with {X(i)n : n ≥ 0}, i = 1, 2, independent Markov

chains each with transition probability p, then {Xn : n ≥ 0} is not irreducible
and has d equivalence classes.

(b) Example:

p =

⎡

⎢
⎢
⎣

0 1 0 0
1
2 0 1

2 0
0 1

2 0 1
2

0 0 1 0

⎤

⎥
⎥
⎦ (d = 2).

2. (Maximal Coupling)13 Suppose that μ1, μ2 are probability measures on defined
on the power set of a finite set S. Let C denote the set of all couplings (X1, X2)

of μ1, μ2. Show that ||μ1 − μ2||T V = inf(X1,X2)∈C P(X1 �= X2), where
|| · ||T V denotes the total variation norm.14 [Hint: Show that the infimum
is achieved by the coupling (X∗

1, X
∗
2) defined as follows: Let S1 = {x ∈

S : μ1(x) > μ2(x)}, S2 = Sc1, p∗
i = ∑

x∈Si |μ1 − μ2|, p∗ = p∗
1 + p∗

2 .
With probability p∗, choose a value X∗

1 = X∗
2 = x from the distribution

1
p∗μ1(x) ∧ μ2(x) or, with probability 1 − p∗ choose a value X∗

1 from the

distribution 1
1−p∗ (μ1(x) − μ2(x)), x ∈ S1, and independently choose a value

X∗
2 from the distribution 1

1−p∗ (μ2(x)−μ1(x)), x ∈ S2. Check that (X∗
1, X

∗
2) ∈ C

and P(X∗
1 �= X∗

2) = 1 − p∗ = ||μ1 − μ2||T V . ]
3. Show that the bounded harmonic functions for the simple symmetric random

walk on Z
k and those for a lazy simple symmetric random walk on Z

k coincide.
That is, for p(x, y) = 1

2k , |x − y| = 1, x, y ∈ Z
k , or for pε(x, x) = ε ∈

(0, 1), x ∈ Z
k , and pε(x, y) = 1−ε

2k , |x − y| = 1, x, y ∈ Z
k , one has h(x) =

∑
y p(x, y)h(y), for all x ∈ Z

k if and only if h(x) = ∑
y pε(x, y)h(y), for all

x ∈ Z
k .

4. Show that Strassen’s condition for the existence of a coupling of probability
measures μ1, μ2 is always satisfied when Λ = P(S × S).

13 A more general version of this result for probabilities on Polish spaces is given in the monograph
Lindvall (2002). This provides a proof of the maximality of the coupling used for the Poisson
approximation.
14 BCPT, p. 136.
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5. Show that if, for any pair of initial states, there is a successful coupling of
the corresponding Markov chains with transition probabilities ((pxy))x,y∈S on
a countable state space S, then the only bounded, harmonic functions for the
Markov chain with the given transition probabilities are constant functions.

6. (Site Percolation) Take Λ to be a finite set, and let p ∈ (0, 1) and consider the
probability measure obtained by independently assigning Ym ∈ {0, 1} values to
points in m ∈ Λ with respective probabilities p, 1 − p. Let, μ(A) = P(Ym =
1,m ∈ A, Ym = 0,m ∈ Λ\A) = p|A|(1 − p)|Λ\A|, A ⊂ Λ. Then, show
μ(A ∪ B) ≥ μ(A)μ(B). [Hint: Observe that for A,B ⊂ Λ, i.e., A,B ∈ S,
f (·) = 1[·⊃A], g(·) = 1[·⊃B], are increasing functions on S, and apply the Harris
inequalities.]

7. (Ising ferromagnet) In reference to the Ising ferromagnet in Example 5 Let ω±
j =

±1, for all j ∈ ∂Λ, and show for any other boundary spin values ω one has
μω

−
Λ ≤s μωΛ ≤s μω+

Λ .
8. Prove, as asserted in Remark 24.6, the two-state Markov chain is associated if

and only if p ≥ 1/2.



Chapter 25
Special Topic: An Introduction to
Kalman Filter

The Kalman filter is often heralded as among the most impactful mathematical
plural concepts and algorithms of applied mathematics of the twentieth
century. The basic mathematical theory is presented in this chapter, together
with an often cited example to illustrate the nature of the computations
required for estimation and prediction with the Kalman filter.

The Kalman1 filter provides an approach to estimation and prediction of the state of
a linear dynamical system based on indirect measurements (observations), possibly
lower dimensional than the state variables. Its applications and extensions are far
reaching, including navigation systems, robotics, and time series models arising in
signal processing and econometrics.

Consider a state variable x ∈ R
p of interest governed by an autonomous (or

time-invariant) randomly forced linear dynamical system

Xt+1 = FXt +Wt+1 t = 0, 1, 2, . . . , (25.1)

where F is a p × p matrix and {W1,W2, . . . } is a sequence of R
p-valued i.i.d.

random variables with zero mean and covariance matrix Q, independent of the
initial state X0. Our interest here lies in the situation in which the state process
is not directly observable, and information about the state is to be gleaned from the
R
m-valued measurements Zt , t = 0, 1, . . . , governed by the relation

Zt = HXt + Vt t = 0, 1, 2, . . . , (25.2)

1 Kalman (1960).
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with H being a m × p matrix and {Vt : t = 0, 1, 2, . . . } an i.i.d. mean-zero
sequence of R

m-valued random variables with covariance matrix S, independent
of the sequence {Wt : t ≥ 0} and X0. It is assumed that F andH are known, as well
as the covariance matricesQ, S ofWt and Vt , respectively.

In summary, the Kalman state space and measurement equations are given:

Xt+1 = FXt +Wt+1

Zt = HXt + Vt , t = 0, 1, 2, . . . (25.3)

The estimation problem is to provide an estimate X̂t of Xt from (measurements)
observations {Z0, Z1, . . . , Zt } and X0, based on minimizing the expected squared
error E|Xt−X̂t |2, or equivalently, minimizing the trace trDt of the estimation error
covariance matrix Dt = E(Xt − X̂t )(Xt − X̂t )′. Related prediction problems are
to update the estimation error covariance and the state vector to the next time step
t + 1, based on measurements up to time t .

This may be thought of as a generalized hidden Markov model. In the hidden
Markov model, Xt is estimated from Zt (and not Z0, Z1, . . . , Zt−1, Zt }; see
Exercise 1). In any case, the Kalman filter is a recursive method of estimatingXt and
predicting Xt+1 as linear combinations of the measurements Z0, Z1, . . . , Zt (with
a given X0) that minimizes the expected squared error of estimation. The estimate
for the present state is denoted as X̂t (fltering), while the estimate of the next step
Xt+1 is called the predictor.

The procedure begins with a prior estimate ofXt , say X̃t , and corrects or updates
it according to

X̂t = X̃t +Kg,t (Zt −HX̃t ), (25.4)

for a special determination the p ×m matrix Kg,t , referred to as the Kalman gain,
and so chosen as to minimize the expected squared error E|Xt − X̂t |2 among all
linear combinations of Z0, Z1, . . . Zt . For this purpose, (25.4) may be expressed as

X̂t = X̃t+Kg,t (HXt+Vt−HX̃t ) = (I−Kg,tH)X̃t+Kg,t (HXt+Vt ). (25.5)

Then, for the next time step, the estimate (25.4) is used to obtain the prior estimate of
Xt+1, i.e., X̃t+1 = FX̂t . This completes the recursion, starting with some estimate
X0 of the initial state at time t = 0. This initial estimate may be a constant, e.g., a
guess of the expected value of the state at time zero.

The main problem is then to find the Kalman gain Kg,t . For this, observe that
using bi-linearity, the error covariance matrix Xt − X̂t can be expressed as

Dt = E(Xt − X̂t )(Xt − X̂t )′

= E(Xt − X̃t −Kg,t (HXt + Vt −HX̃t ))(Xt − X̃t −Kg,t (HXt + Vt −HX̃t )′

= (I −Kg,tH)[E(Xt − X̃t )(Xt − X̃t )′(I −Kg,tH)′ +Kg,tE(VtV ′
t )K

′
g,t
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= (I −Kg,tH)D̃t (I −Kg,tH)′ +Kg,t SK ′
g,t

= D̃t −Kg,tHD̃t − D̃tH ′K ′
g,t +Kg,t (HD̃tH ′ + S)K ′

g,t , (25.6)

where Dt is the error covariance matrix and D̃t denotes the prior error covariance
matrix E(Xt − X̃t )(Xt − X̃t )′. The expected squared error E|Xt − X̂t |2 is the trace
trDt .

E|Xt−X̂t |2 = trD̃t− trKg,tHD̃t− trD̃t (Kg,tH)′+ trKg,tHD̃t (Kg,tH)′+ trKg,t SK ′
g,t .

(25.7)
Minimization of this is achieved by differentiating this with respect to Kg,t and
setting the derivative to be zero. This equation is (Exercise 2)

− 2HD̃t + 2HD̃t (Kg,tH)
′ + 2SK ′

g,t = 0, (25.8)

or taking the transpose, and recalling that D̃t and S are symmetric,

−2(HD̃t )
′ + 2Kg,tHD̃tH

′ + 2Kg,tS = 0,

whose solution is given by the Kalman gain formula

Kg,t = (D̃tH ′)(HD̃tH ′ + S)−1. (25.9)

Using this optimal Kg,t in (25.6), one arrives at the covariance matrix of the error
as

Dt = D̃t −Kg,tHD̃t − D̃tHK ′
g,t +Kg,t (HD̃tH ′ + S)K ′

g,t

= (I −Kg,tH)D̃t − [D̃tH −Kg,t (HD̃tH ′ + S)]K ′
g,T

= (I −Kg,tH)D̃t − [D̃tH − D̃tH ]K ′
g,T

= D̃t −Kg,tHD̃t
= (I −Kg,tH)D̃t . (25.10)

The recursive equation of the prior error covariance matrix D̃t is by

D̃t+1 = E(Xt+1 − X̃t+1)(Xt+1 − X̃t+1)
′

= E(FXt +Wt+1 − FX̂t )(FXt +Wt+1 − FX̂t )′
= E(F (Xt − X̂t )+Wt+1)(F (Xt − X̂t )+Wt+1)

′

= EF(Xt − X̂t )(Xt − X̂t )′F ′ +Q
= FD̃tF

′ +Q. (25.11)
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From now on, we will denote by D̃t the sequence obtained by the recursion (25.11),
beginning with an initial guess, or estimate D̃0. Using this sequence, we will express
Dt by (25.10) or, equivalently, by the last line of (25.6).

Finally, one begins with X̃0 = X0 as a guess, perhaps a constant, e.g., what
the expected value of X0 at time zero might be. Similarly, one begins with a guess
of the (prior) error covariance matrix D̃0. Putting it altogether, the results can be
summarized in a theorem as follows.

Theorem 25.1 (Kalman Recursion). Consider the state space and measurement
models defined by (25.3) with given initial state vector X̃0 and initial (prior) error
covariance D̃0. The Kalman filter prediction X̃t+1 of the state vector at time t + 1
can be generated recursively

X̃t+1 = F Ŝt = FX̃t + FD̃tF ′(HD̃tH ′ + S)−1(Zk −HX̃t ), (25.12)

where D̃t is the error covariance of X̂t and recursively generated via

D̃t+1 = FD̃t
(
I −H ′(HD̃tH ′ + S)−1HD̃t

)
F ′ +Q. (25.13)

Proof. The predicted state X̂t at time t is then given by (25.4), where the Kalman
gain Kg,t is given by (25.9). The prediction error covariance matrix Dt is given
by (25.10) and (25.9). �

If the matrix F is stable (i.e., all its eigenvalues lie in the interior of the unit
circle in the complex plane), then even a bad guess gets corrected pretty quickly.
From then on, one uses X̃t = FX̂t−1, and the recursion proceeds using (25.11),
(25.10), (25.9), and (25.4). As mentioned earlier, the optimal predictor of the state
Xt+1, based on measurements up to time t , is FX̂t = X̃t+1.

Remark 25.1. If S is non-singular, then so is the matrix in (25.9). Even if S = 0,
butQ is non-singular and H is of full rank, then HD̃tH ′ is also non-singular.

One may think of the optimization with respect to the Kalman gain as a
convenient way to obtain the best linear predictor2 based on Z1, . . . , Zt .

Remark 25.2. It is possible to change the linear models (25.1), (25.2) to affine
linear models by absorbing a constant in Wt (and/or in Vt ). This, however,
complicates the algebra, e.g., see how (25.6) changes with covariance S replaced
by E(Wt + a)(Wt + a)′ = EWtW

′
t + a′a.

Remark 25.3. In case of non-linearity in the deterministic part of (25.4) or (25.5),
one may use linear approximations over small time steps. In such a case, one need
to use time dependence of the matrices F or H (see Exercise 3).

2 See Brockwell and Davis (1991): §12.2.
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Remark 25.4. It is important to note that the derivation of the Kalman filter does
not require the hypotheses of independence stated at the outset of this chapter. One
only needs the random variablesWt as well as Vt to be only uncorrelated over time.3

Example 1 (Fuel Tank Depths). A common illustrative application of Kalman
filters occurs in the estimation of tank depths, e.g., fuel tank level, based on depth
measurements from a floating sensor. One assumes that the level increases at a
constant fill rate r per unit time, so that the depth levels at successive time units
Δ are given by Lt+1 = Lt + rt +W(1)

t+1, t = 0, 1, . . . , L0 = 0. To view this linear,
rather than affine linear, dynamical system, one may consider the state variable as
Xt = (Lt , Rt )

′, t ≥ 0. In continuous time, Rt = dLt
dt

is the derivative of the depth
level. Then

Xt+1 =
(
Lt+1

Rt+1

)

=
(

1 Δ
0 1

)(
Lt

Rt

)

+
(
W
(1)
t+1

W
(1)
t+1

)

= FXt +Wt+1, t = 0, 1, . . . .

(25.14)
Suppose that the sensor measurements provide readings for Lt but not the rate Rt .
So,

Zt+1 = HXt + Vt , t = 0, 1, . . . (25.15)

Here

F =
(

1 Δ
0 1

)

(25.16)

is a 2 × 2 matrix with eigenvalues λ = 1, and

H = (
1 0

)
(25.17)

is a 1 × 2 matrix. Thus, setting Δ = 1,

(
Lt+1

Rt+1

)

=
(
Lt + Rt +W(1)

t+1

Rt +W(2)
t+1,

)

(25.18)

and

Zt = Lt + Vt , t = 0, 1, 2, . . . (25.19)

Assume Vt has mean zero and variance S = s2 > 0, and Wt has mean zero and

covariance matrix Q =
(
σ 2 γ

γ σ 2

)

. If one guesses D̃0 =
(
κ2 0
0 κ2

)

, then the initial

3 The succinct treatment presented here follows Lacey (2020).
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Kalman gain is given by Kg,0 = HD̃′
0(HD̃0H

′ + S)−1. In particular,

Kg,0 = κ2
(
(κ2 + s2)−1

0

)

. (25.20)

X̃1 = FX̃0 + FD̃0H
′(HD̃0H

′ + S)−1(Z0 −HX̃0)

=
(
r

r

)

+
(
κ2

0

)
1

κ2 + s2 z0

=
(
r + z0κ

2

κ2+s2

r

)

. (25.21)

After further tedious matrix multiplications, one obtains

D̃1 = FD̃0(I −H ′(HD̃0H
′ + S)−1HD̃0)F

′ +Q

=
(
κ2 + σ 2 + κ2s2

κ2+s2 κ
2 + γ

κ2 + γ κ2 + σ 2

)

. (25.22)

For this example, the eigenvalue 1 of F is not interior to the unit circle. Notice
that the variance in the fluid level and rate are larger than σ 2.

Full implementation of the recursions will clearly be aided by computational
software.4 The intention here is to merely indicate the nature of the computations in
a realistic example.

Remark 25.5. There has been a great deal of work on nonlinear filters during
the past fifty years or so. We refer to Budhiraja (2003) for references and for the
asymptotic properties of the filter in the model Yt = ∫

[0,t] h(Xs)ds + Wt, t ≥ 0,
where the signal process {Xt } is a Markov process on a Polish space S, h is a
function on S to R

d , {Wt } is a standard d-dimensional Brownian motion, and {Yt }
is the observation process. The objective is to find the conditional distribution of Xt
given the process {Ys : 0 ≤ s ≤ t}.

Exercises

1. (Hidden Markov Model) A bivariate Markov process (Xt , Zt ), t = 0, 1, . . .
such that both (the hidden component) {Xt : t ≥ 0} and the bivariate process
{(Xt , Zt ) : t ≥ 0} are (homogeneous) Markov processes, and Zt is a (possibly

4 For example, MATLAB has special packages for Riccati equation iteration of the type required
by Theorem 25.1.
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random) function of Xt is referred to as a hidden Markov process. (a) Show
that (25.1), (25.2) may be viewed as a hidden Markov model. (b) Assuming
EX2

t < ∞, show that the least squares estimate of Xt as a function of Zt is
E(Xt |Zt).

2. Verify the critical equation (25.8) for optimality.
3. Extend the calculations for the Kalman filter with time-dependent matrices
Ft ,Ht in place of F , H .

4. Suppose thatX is normally distributed with meanμ and variance σ 2 > 0, and the
conditional distribution of Z given X is normal with mean a + bX and variance
s2 > 0. Show that the conditional distribution of X given Z is normal with mean
X̂ and variance v2, where v2 ∈ (0,∞) and X̂ are uniquely determined by

1

v2 = 1

σ 2 + b2

s2 ,
X̂

v2 = μ

σ 2 + bZ − a
s2 .

5. Consider a vehicle that moves at a constant speed v, starting from a position
X0 = x0. After one unit of time, the position is given by

X1 = x0 + v + σW1,

whereW1 is the standard normal and σ 2 ≥ 0 is the variance in the intrinsic noise
term σW1. The position is also measured, by GPS or odometer, say, to be given
by

Z1 = X1 + sV1,

where V1 is the standard normal and s2 > 0 is the variance in the observation
error sV1. The problem is to estimate the position. Intuitively, one might expect
a convex combination λEX1 + (1 − λ)Z1 to be optimal for some appropriate
weighting 0 ≤ λ ≤ 1 depending on the respective uncertainties in each. (a) Show

that such intuition is correct in minimizing mean-square error with λ = s2

σ 2+s2 .
(b) Verify that this is the Kalman filter solution.

6. Suppose thatX is normally distributed with meanμ and variance σ 2 > 0, and the
conditional distribution of Z given X is normal with mean a + bX and variance
s2 > 0. Show that the conditional distribution of X given Z is normal with mean
X̃ and variance v2, where v2 ∈ (0,∞) and X̃ are uniquely determined by

1

v2
= 1

σ 2
+ b2

s2
,

X̃

v2
= μ

σ 2
+ bZ − a

s2
.



Appendix A
Spectral Theorem for Compact
Self-Adjoint Operators and Mercer’s
Theorem

LetH be a real or complex separable Hilbert space. We will consider a special class
of compact linear operatorsK onH in this section. The main result for this appendix
is Theorem A.3, where H is the space L2([c, d], dx) of square-integrable functions
(with respect to Lebesgue measure dx on [c, d]), andK is an integral operator of the
form (A.2) in the example application. With such structure in mind we often denote
elements ofH by symbols f, g, . . . . The focus is on a spectral theorem for compact
self-adjoint operators. This will be expanded to bounded self-adjoint operators in
the next Appendix B.

Some basic concepts and notation are provided within the following definition.

Definition A.1. A linear operator A on H is bounded if ‖A‖ := sup{‖Af ‖ : f ∈
H, ‖f ‖ = 1} < ∞, in which case ‖A|‖ defines the norm of A. A is compact if the
set A(D) = {Af : f ∈ D} is precompact, i.e., if A(D) has compact closure, for
every norm-bounded subset D of H .

Choosing D = {f ∈ H : ‖f ‖ = 1} makes it clear that a compact operator is a
bounded operator since compact subsets of H are norm bounded.

Let H ∗ denote the dual space of H , i.e., the space of bounded linear functionals
onH . Then, by the Riesz representation theorem,1 for � ∈ H ∗ there is a unique f� ∈
H such that �f = 〈f, f�〉, for all f ∈ H . In particular, H and H ∗ are algebraically
isomorphic and topologically isometric spaces.

Proposition A.1. Given a bounded linear operator A there is a unique bounded
linear operator A∗ on H , referred to as the adjoint, such that 〈Af, g〉 = 〈f,A∗g〉,
for all f, g ∈ H . Moreover ‖A‖ = ‖A∗‖.

Proof. The (Banach space) adjoint, denoted A′ : H ∗ → H ∗, is defined by

1 BCPT, Theorem 1.2, p. 248–249.
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A′�(f ) = �(Af ), � ∈ H ∗, f ∈ H.

One may readily check that A′ ∈ H∗. In view of the Riesz representation theorem,
there is a linear isometry L : H → H ∗ defined by f → Lf where L(f )(g) :=
〈f, g〉, g ∈ H . With this one may define

A∗ = L−1AL

to obtain the (Hilbert space) adjoint map A∗ with the asserted properties. �
Definition A.2. Let A ∈ L(H). The operator A∗ is referred to as the adjoint to A.
A is said to be self-adjoint if A = A∗, i.e., 〈Af, g〉 = 〈f,Ag〉 for all f, g ∈ H . A
self-adjoint operatorA is positive if 〈Af, f 〉 ≥ 0 for all, f ∈ H . The null space ofA
is the set NA = {h ∈ H : Ah = 0}. The range of A, is the set RA = {Af : f ∈ H }.
ForD ⊆ H ,D⊥ ≡ {f : 〈f, g〉 = 0 for all, g ∈ D}. One writes A ⊥ B if 〈h, g〉 = 0
for all, h ∈ A, for all, g ∈ B. If ‖f ‖ = 1, f is called a unit vector. A sequence of
unit orthogonal vectors is said to be orthonormal.

Remark A.1. More succinctly stated, for arbitrary fixed g ∈ H , the map f →
〈Af, g〉, f ∈ H , defines a bounded linear functional on H . Thus, by the Riesz
representation theorem, for each g ∈ H there is a unique h ∈ H such that 〈Af, g〉 =
〈f, h〉 for all f ∈ H . In this way, A∗g = h defines a bounded linear operator A∗ :
H → H , referred to as the adjoint of A. The self-adjointness property, 〈Af, g〉 =
〈f,Ag〉 for all f, g ∈ H , may also be viewed as the operator equivalence A∗ = A.

Lemma 1. Let A be a bounded self-adjoint operator. Then

(a) sup{|〈Af, f 〉| : ‖f ‖ = 1} = ‖A‖,

(b) R⊥
A = R⊥

A = NA.
Proof. (a) For every f with ‖f ‖ = 1, |〈Af, f 〉| ≤ ‖Af ‖ ≤ ‖A‖; hence it suffices
to show that ‖Af ‖ ≤ d := sup{|〈Ag, g〉| : ‖g‖ = 1}. For this use, for all c > 0 and
for all f with ‖f ‖ = 1, the relations

‖Af ‖2 = 1

4

[〈

A

(

cf + 1

c
Af

)

, cf + 1

c
Af

〉

−
〈

A

(

cf − 1

c
Af

)

, cf − 1

c
Kf

〉]

≤ 1

4

[

d‖cf + 1

c
Af ‖2 + d‖cf − 1

c
Af ‖2

]

= d

2

[

c2‖f ‖2 + 1

c2 ‖Af ‖2
]

= d

2

[

c2 + 1

c2
‖Af ‖2

]

. (A.1)

The minimum value of the last term (as a function of c2 > 0) is attained for c2 =
‖Af ‖, so that (A.1) yields ‖Af ‖2 ≤ d‖Af ‖, or, ‖Af ‖ ≤ d.

(b) For h ∈ NA, one has Ah = 0. Thus 〈f,Ah〉 = 0 for all f , and therefore

〈Af, h〉 = 0 for all f . In particular, {h} ⊥ RA. Hence NA ⊆ R⊥
A = R⊥

A . On the
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other hand, if h �∈ NA, then ‖Ah‖2 > 0, i.e., 〈Ah,Ah〉 ≡ 〈h, Ã(Ah)〉 > 0, so that
h �∈ R⊥

A . Hence NA ⊇ R⊥
A . �

Theorem A.2 (Spectral Theorem for Self-Adjoint Compact Operators). Let K be
a self-adjoint compact operator on H . Then the following are true:

(a) The eigenvalues ofK are real and countable and the eigenspace of each nonzero
eigenvalue is finite dimensional.

(b) Either the set of nonzero eigenvalues of K is finite, in which case RK = RK is
finite dimensional, or the nonzero eigenvalues λn may be ordered by decreasing
magnitude: |λ1| = ‖K‖ ≥ |λ2| ≥ . . . , and form a denumerable sequence
converging to zero.

(c) If K is also positive, then the eigenvalues are all nonnegative.
(d) Let gi (i ≥ 1) denote an orthonormal sequence of eigenvectors with respective

eigenvalues λi (i ≥ 1), counting multiplicities. That is, there are r mutually
orthogonal unit eigenvectors (among the gi) with a nonzero eigenvalue λ of
multiplicity r . Then {gi}∞i=1 form a complete orthonormal sequence for RK : so
that if g ∈ RK one has the expansion g = ∑

i〈g, gi〉gi . In particular,

Kf =
∑

i

〈Kf, gi〉gi =
∑

i

λi〈f, gi〉gi for all f ∈ H.

Proof. We omit the trivial case K = 0. (a) If g is an eigenvector of norm one with
a nonzero eigenvalue λ, then λ = 〈λg, g〉 = 〈Kg, g〉 = 〈g,Kg〉 = 〈g, λg〉 =
λ〈g, g〉 = λ. Let E = {v1, v2, · · · } be an orthonormal basis of the eigenspace
of λ �= 0. If E is not finite, then the sequence fn = vn/λ (n = 1, 2, . . . ) is
bounded (each having norm 1/|λ|) so that, by compactness of K , the sequence
vn = Kfn (n = 1, 2, . . . ) has a convergent (and, therefore, Cauchy) subsequence.
But this is impossible since ‖vn − vm‖2 = 2 for all n �= m.

(b) One can find fn, ‖fn‖ = 1 (n = 1, 2, . . . ) such that |〈Kfn, fn〉| → ‖K‖
(by Lemma 1(a)). By compactness of K , there is a subsequence fn′ → g1 ∈ H ,
‖g1‖ = 1. Then |〈Kg1, g1〉| = ‖K‖, so that 〈Kg1, g1〉 = λ1 with λ1 = ‖K‖ or
−‖K‖. Now 0 ≤ ‖Kg1 − λ1g1‖2 = ‖Kg1‖2 + λ2

1 − 2λ2
1 = ‖Kg1‖2 − λ2

1 ≤
‖K‖2 − λ2

1 = 0. Hence Kg1 = λ1g1, so that λ1 is an eigenvalue of K with a unit
eigenvector g1. Consider now the subspace H1 = {g1}⊥ and note that if g ∈ H1,
then 〈Kg, g1〉 = 〈g,Kg1〉 = λ1〈g, g1〉 = 0; that is, K maps H1 into H1. Apply the
above argument to H1 to find an eigenvalue λ2 with a unit eigenvector g2, |λ2| ≤
|λ1|. Let H2 = {g1, g2}⊥ and consider K on H2 to find a unit eigenvector g3 ∈ H2
with eigenvalue λ3 such that |λ3| ≤ |λ2|, and so on. The process terminates after
n steps if Hn+1 = {g1, g2, . . . , gn}⊥ = {0}, or if 〈Kg, g〉 = 0 for all g ∈ Hn+1.
In either case, Hn+1 is then the null space of K . For, by Lemma 1(a), ‖K‖ =
0 on Hn+1. If the process does not terminate after a finite number of steps, then
there are infinitely many eigenvalues λi such that |λ1| ≥ |λ2| ≥ · · · , with unit
eigenvectors g1, g2, · · · as defined above. Suppose, for sake of contradiction, that
λi does not converge to zero. Then the sequence fi = gi/λi , i ≥ 1, is bounded,
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since ‖fi‖ = 1/|λi |. By compactness of K , there exists a convergent subsequence
of gi := K(gi/λi), i ≥ 1. But this is impossible, since ‖gi −gj‖2 = 2 for all i �= j .
Hence λi → 0.

(c) If K is positive and λ is an eigenvalue with unit eigenvector g, then λ =
〈Kg, g〉 ≥ 0.

(d) From the procedure described in the proof of part (b), it follows that
{g1, g2, · · · }⊥ is the null space NK of K , whether the process terminates or not.
Also, clearly, the linear span L, say, of {g1, g2, · · · } is contained in RK , and
L⊥ = NK . It now follows that L = RK . Therefore, {gi}∞i=1 is a complete
orthonormal basis of RK , and for every f ∈ RK the expansion f = ∑

i〈f, gi〉gi
holds. Also, Kf = ∑

i〈Kf , gi〉gi = ∑
i λi〈f , gi〉gi holds for all f ∈ H . �

An important example of a compact self-adjoint operator is an integral opera-
tor K defined on H = L2([c, d], dx) ≡ L2 as

(Kf )(x) =
∫

[c,d]
K(x, y)f (y)dy f ∈ L2, (A.2)

where the kernel function K(·, ·) is a real- or complex-valued continuous function
on [c, d] × [c, d] satisfying

K(x, y) = K(y, x). (A.3)

It is simple to check that K is self-adjoint: 〈Kf, g〉 = 〈f,Kg〉. To show that it is
compact, note that

|(Kf )(x1)− (Kf )(x2)| ≤ (d − c) 1
2 ‖f ‖ max{|K(x1, y)−K(x2, y)| : y ∈ [c, d]}.

(A.4)
This shows that on any subset D of L2([c, d], dx) which is bounded in L2-norm,
Kf is equicontinuous and bounded. Therefore, by the Arzella–Ascoli Theorem
(BCPT, p. 244.), K(D) is precompact in the supnorm distance, and hence in
the L2-distance. Let λi (i ≥ 1) denote the nonzero eigenvalues of K (counting
multiplicities) with corresponding unit eigenvectors gi (i ≥ 1), as stated in
Theorem A.2. Since Kf (x) is continuous for all f ∈ L2, gi(x) ≡ K(gi/λi)(x)

is continuous for all i.
To proceed we record a basic result from advanced calculus for ease of reference.

Lemma 2 (Dini’s Theorem). Let {hn : n ≥ 1} be a pointwise nondecreasing
sequence of continuous real-valued functions on a compact metric space S. If
limn→∞ hn(x) = h(x) exists for each x ∈ S and if h is continuous, then this
convergence is uniform.

Proof. For each n ∈ S let gn = h − hn. Then {gn : n ≥ 1} is a sequence of
pointwise nonincreasing, nonnegative functions converging to zero at each x ∈ S.
Let ε > 0. For x ∈ S there is a positive integer Nx such that gNx (x) <

ε
2 . Since gNx

is continuous at x, there is an open ball Bx centered at x such that gNx (y) <
ε
2 for
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all y ∈ Bx . By compactness of S ⊆ ∪x∈SBx there is a finite subcover S ⊆ ∪kj=1Bxj .
Let N = max{Nxj : 1 ≤ j ≤ k}. Then, for arbitrary y ∈ S, one has y ∈ Bxj for
some 1 ≤ j ≤ k, and therefore gNxj (y) < ε. Thus, since N ≥ Nxj , 0 ≤ gN(y) <

gNxj (y) < ε. Since y ∈ S is arbitrary, this proves uniform convergence of gn to
zero, and hence uniform convergence of hn to h. �

We may now obtain the intended main result.

Theorem A.3 (Mercer’s Theorem). If, in addition to the above hypotheses of
continuity of K(·, ·) and (A.3), K is positive, then K(·, ·) has the eigenfunction
expansion

K(x, y) =
∑

i

λigi(x)gi(y) (x, y) ∈ [c, d] × [c, d], (A.5)

where the convergence of the series is absolute and uniform in (x, y). Here ‖K‖ =
λ1 ≥ λ2 ≥ · · · are the positive eigenvalues of K with corresponding complete
orthonormal sequence {gi}∞i=1 of unit eigenvectors in RK .

Proof. Consider the kernel function

Kn(x, y) = K(x, y)−
n∑

i=1

λigi(x)gi(y), (A.6)

which is continuous in (x, y), satisfies the symmetry condition, namely Kn(y, x) =
Kn(x, y). The corresponding operator Kn is nonnegative:

〈Knf, f 〉 = 〈Kf, f 〉 −
n∑

i=1

λi〈f, gi〉〈gi, f 〉

=
∞∑

i=1

λi〈f, gi〉〈gi, f 〉 −
n∑

i=1

λi〈f, gi〉〈gi, f 〉

=
∞∑

i=n+1

λi |〈f, gi〉|2 ≥ 0, (A.7)

where we have used the expansion of Kf using Theorem A.2(d). It follows that
Kn(x, x) ≥ 0 for all x. For if Kn(x0, x0) < 0, then there exists ε > 0 such that
Kn(x, y) < 0 for all x, y belonging to (x0 − ε, x0 + e), which would imply

0 ≤ 〈
Kn1(x0−ε,x0+ε), 1(x0−ε,x0+ε)

〉 ≡
∫

(x0−ε,x0+ε)2
Kn(x, y)dxdy < 0,

a contradiction. Since, by (A.6),
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Kn(x, x) = K(x, x)−
n∑

i=1

λi |gi(x)|2 ≥ 0 for all x,∀ n, (A.8)

it follows that

∞∑

i=1

λi |gi(x)|2 ≤ K(x, x) ≤ M ≡ max{K(x, x) : c ≤ x ≤ d}. (A.9)

As a consequence, by the Cauchy–Schwarz inequality,

∣
∣
∣
∣
∣

n∑

m

λigi(y)gi(x)

∣
∣
∣
∣
∣

2

≤
(
n∑

m

λi |gi(y)|2
)(

n∑

m

λi |gi(x)|2
)

≤ M
n∑

m

λi |gi(x)|2. (A.10)

Thus the series
∑
i xigi(x)gi(y) converges absolutely to some quantity whose

magnitude is no more thanM . LetG(x, y) denote the limit of this series. By (A.10),
for each fixed x, the sequence of functions y → ∑n

1 λigi(x)gi(y) converges
uniformly (in y) to G(x, y). Hence y → G(x, y) is continuous for each fixed x.
Now note that for all f ∈ L2,

∫

G(x, y)f (y)dy =
∑

i

(∫

λigi(y)f (y)dy

)

gi(x) =
∑

i

λi〈f, gi〉gi(x).
(A.11)

By Theorem A.2(d), the last series on the right equals Kf (x) for all x outside a
subset of [c, d] of Lebesgue measure zero. We will show that the series actually
converges to the (continuous) function Kf (x) uniformly in x. For this write f (x)n =∑n

1〈f, gi〉gi(x). Then

|Kfn(x)−Kf (x)|2 =
∣
∣
∣
∣

∫

[c,d]
K(x, y)[fn(y)− f (y)]dy

∣
∣
∣
∣

2

≤ M2
1‖fn − f ‖2,

(A.12)
where M1 = max{|K(x, y)| : x, y ∈ [c, d]}. Hence Kfn(x) → Kf (x) uniformly
in x as n → ∞. Thus the convergence of the last series in (A.11) is to Kf (x)
(uniformly) for all x. Therefore,

∫

[c,d]
(G(x, y)−K(x, y))f (y)dy = 0 for all f ∈ L2 (∀ x ∈ [c, d]).

(A.13)
Letting f (y) = (G(x, y)−K(x, y)), it follows that G(x, y) = K(x, y) for all y ∈
[c, d], x ∈ [c, d]. We have established the absolute convergence of the series in (A.5)
toK(x, y). To prove uniform convergence of the series, consider the above absolute



A Spectral Theorem for Compact Self-Adjoint Operators and Mercer’s Theorem 413

convergence with y = x to get
∑n
i=1 λi |gi(x)|2 ↑ K(x, x). Since x /→ K(x, x)

is continuous and [c, d] compact, this convergence is also uniform in x by Dini’s
theorem. Hence, by the first inequality in (A.11), |∑n

m λigi(y)gi(x)| may be made
smaller than any preassigned ε > 0 by letting n ≥ m ≥ mε for a suitable integer
mε. Thus the convergence of the series in (A.5) is uniform for x, y ∈ [c, d]. �
Remark A.2. Let r(s, t), c ≤ s, t ≤ d, be a continuous covariance function of a
mean-zero real- or complex-valued process {Xt : t ∈ [c, d]}. For arbitrary tj ∈
[c, d], 1 ≤ j ≤ n, and arbitrary aj ∈ C, 1 ≤ j ≤ n, one has

∑

j,k

aj akr(tj , tk) = E

∣
∣
∣
∣
∣

n∑

1

ajXtj

∣
∣
∣
∣
∣

2

≥ 0. (A.14)

From this it follows by usual Riemann sum approximation of continuous functions
f on [c, d] that

∫
[c,d] r(s, t)f (t)f (s)dsdt ≥ 0. Since continuous functions are

dense in L2, r(s, t) is seen to be the kernel of a nonnegative integral operator.

Remark A.3. It follows from Mercer’s theorem that

∞ >

∫

[c,d]2
|K(x, y)|2dxdy =

∫

[c,d]2

⎛

⎝
∑

i

λigi(y)gi(x)

⎞

⎠

⎛

⎝
∑

j

λj gj (y)gj (x)

⎞

⎠ dxdy

=
∑

λ2
i . (A.15)

A compact self-adjoint operatorK whose eigenvalues λi satisfy
∑
λ2
i <∞ is called

a Hilbert–Schmidt operator.

Example 1. Consider the integral operator K on the real Hilbert space L2 =
L2([0, 1], dx) with the kernel function

K(x, y) = x(1−y) if 0 ≤ x ≤ y ≤ 1, and K(x, y) = (1−x)y if 0 ≤ y < x ≤ 1.
(A.16)

By direct calculation using integration by parts, one can check that ϕn(x) =√
2 sin(nπx) is a unit eigenfunction ofK with eigenvalue λn = (n2π2)−1, for every

n = 1, 2, · · · . To show that {ϕn(·)}∞n=1 is a complete orthonormal sequence for RK
(or RK ) first note that RK comprises twice differentiable functions vanishing at 0
and 1:

d2

dx2 (Kf )(x) = −f (x), (Kf )(0) = 0 = (Kf )(1), (f ∈ L2). (A.17)
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Secondly, it follows from the theory of Fourier series2 that the functions sin(nπx)
(n = 1, 2, · · · ) are dense in the set of odd functions in L2([−1, 1], dx). Given an
f ∈ L2([0, 1], dx)), extend g = Kf to an odd function on [−1, 1] by setting
g(x) = −g(−x) for −1 ≤ x < 0. Then g can be approximated on [−1, 1]
(and, therefore, on [0, 1]) arbitrary closely by linear combinations of the functions
sin(nπx) (n ≥ 1). Therefore, by Mercer’s theorem,

K(x, y) = 4
∞∑

n=1

(n2π2)−1 sin(nπx) sin(nπy). (A.18)

This kernel K is the Green’s function (or, fundamental solution) of the following
boundary value problem: For an arbitrarily given f ∈ L2([0, 1], dx) find g such
that

g′′(x) = −f (x), g(0) = g(1) = 0. (A.19)

x → K(x, y) is the (distributional) solution of (A.19) when f is the delta function
δy(·).

2 BCPT, Chapter VI.



Appendix B
Spectral Theorem for Bounded
Self-Adjoint Operators

H will continue to denote a real or complex Hilbert space with inner product 〈·, ·〉
and norm ||f || = √〈f, f 〉, f ∈ H . The space of bounded linear operators on H
will be denoted L(H), with norm ‖A‖ = sup||f ||=1 ||Af ||, A ∈ L(H); the context
will be used to distinguish the operator norm from the vector space norm.

Definition B.1. Let A be a bounded linear operator on H .

(a) The resolvent set of A is ρ(A) = {μ ∈ C : μ−A is a bijection with bounded
inverse }, where (μ− A)f = μf − Af, f ∈ H .

(b) The complementary set σ(A) = ρc(A) is called the spectrum of A.
(c) λ ∈ C is an eigenvalue ofA if there is an f ∈ H , f �= 0, such thatAf = λf . As

a subset of σ(A), the set of eigenvalues of A is referred to as the point spectrum
of A.

(d) The maximum modulus of the spectrum r(A) = supλ∈σ(A) |λ| is referred to as
the spectral radius of A.

The following propositions display additional significant consequences of self-
adjoint symmetry. As noted in Appendix A, it is simple to check directly from
the definition that eigenvalues (point spectra) of self-adjoint operators must be real
numbers. As the first proposition shows, the same is true for all of σ(A).

Proposition B.1. Let A ∈ L(H) be self-adjoint. Then,

(a) σ(A) ⊂ R

(b) ρ(A) = {μ = a + bi : b �= 0}.
Proof. Let a, b ∈ R, μ = a + bi. Then let us show that if b �= 0, then μ /∈ σ(A).

||(A− μ)f ||2 = ||(A− a)f ||2 + b2||f ||2 ≥ b2||f ||2. (B.1)

Thus if b �= 0, then μ cannot be an eigenvalue, i.e., not in the point spectrum. In fact,
by this inequality, if b �= 0, then A−μ is injective and has a bounded inverse on its
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range. In particular, therefore, the range of A− μ is a closed subspace. If there is a
y ∈ H such that y �= (A− μ)f for all f ∈ H , then, using the projection theorem,1

one can construct a bounded linear functional �y such that �y(y) = inff∈H ||y −
f || > 0 and �y vanishes on the range of A − μ, i.e., �y(μf − Af ) = 0 for all
f ∈ H . But this makes μ an eigenvalue of the Banach space adjoint A′. Therefore
μ = a − bi is an eigenvalue of A = A∗. But this violates the inequality (B.1) if
b �= 0. So the range of A − μ is all of H , and A − μ is bijective with a bounded
inverse, i.e., μ ∈ ρ(A) = σc(A) if b �= 0. �
Proposition B.2. If A ∈ L(H) is self-adjoint, then

r(A) = lim
n→∞ ‖An‖ 1

n = ‖A‖ <∞.

Proof. The existence of the limit is obtained by a subadditivity technique below.
With this one can then identify ‖A‖ as the limit by using self-adjointness to see by

induction that ‖A2n‖ = ‖A‖2n for n = 1, 2, . . . , so that ‖A‖ = ‖A2n‖ 1
2n , n =

1, 2, . . . . Now, for existence let an = ‖An‖, n ≥ 1. Since ‖AnAm‖ ≤ ‖An‖ · ‖Am‖,
one has the subadditivity property an+m ≤ an + am. In particular, amn+r ≤ nam +
ra1. Fix m and write n = mq + r, 0 ≤ r ≤ m − 1 according to Euclidean division
algorithm. Then

an

n
≤ qam

qm
+ (m− 1)a1

mq
≤ am

m
+ a1

q
.

Letting q, r → ∞, it follows that for any m ≥ 1 one has

lim sup
n→∞

an

n
≤ am

m
.

Thus, lim supn→∞ an
n

≤ infm
am
m

≤ lim infm→∞ am
m

and, hence, the limit exists as
asserted. �

The essential tool required for the spectral theorem is a functional calculus for
which F(A) is a well-defined bounded linear operator for continuous functions
f defined on σ(A), e.g., F(A) = ∑m

j=0 ajA
j for the polynomial f (λ) =

∑m
j=0 ajλ

j , λ ∈ σ(A).
Theorem B.3. LetA be bounded self-adjoint linear operator onH , and let L(H) be
the space of all bounded linear maps onH . Then there is a unique map ϕ : C(σ(A) :
C)→ L(H) such that for F,G ∈ C(σ(A)) ≡ C(σ(A) : C),
(a) ϕ(1) = I, ϕ(F ) = ϕ(F )∗.
(b) ϕ(id) = A where id(λ) = λ, λ ∈ σ(A).
(c) ϕ(FG) = ϕ(F )ϕ(G), ϕ(μF) = μϕ(F).

1 BCPT, p. 248.
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(d) ‖ϕ(F )‖ ≤ c||F ||∞, where ‖ · ‖ denotes the operator norm on L(H). In fact,
‖ϕ(F )‖ = ||F ||∞.

(e) If Af = λf , then ϕ(F )f = F(λ)f , f ∈ H .

Proof. The idea of the proof is to first consider polynomials F(A) = ∑m
j=0 ajA

j

since by Stone–Weierstrass approximation2 they are dense in C(σ(A)). Let us first
check for polynomial F

σ(F (A)) = {F(λ) : λ ∈ σ(A)}. (B.2)

To see this, let μ ∈ σ(F (A)) and factor the polynomial F(λ) − μ = c(λ −
λ1) · · · (λ−λm). Then λj ∈ σ(A) for some 1 ≤ j ≤ m, else F(A)−μ is invertible,
contradicting μ ∈ σ(F (A)). In particular, therefore, μ = F(λj ). On the other
hand, let λ′ ∈ σ(A) and factor the polynomial F(λ) − F(λ′) = (λ − λ′)G(λ),
where G is a polynomial. Then F(A) − F(λ′) = (A − λ′)G(A). In particular, it
follows that F(A) − F(λ′) is not invertible since A − λ′ is not invertible. Thus,
F(λ′) ∈ σ(F (A)). From (B.2) applied to the polynomial FF and the formula (B.2)
for the spectral radius, it follows that

‖F(A)‖2 = ‖F(A)∗F(A)‖
= ‖FF(A)‖
= sup
λ∈σ(FF(A))

|λ|

= sup
λ∈σ(A)

|FF(λ)|

= ( sup
λ∈σ(A)

|F(λ)|)2. (B.3)

Thus, ‖F(A)‖ = supλ∈σ(A) |F(λ)|. From here one defines ϕ(F ) = F(A) for
polynomials F ∈ C(σ(A)). Since ‖ϕ(F )‖ = ||F ||u(≡ supλ∈σ(A) |F(λ)|, it follows
from Stone–Weierstrass approximation that ϕ as a unique extension to C(σ(A)).
Most of the asserted properties of ϕ(F ) may be checked for polynomial F on σ(A)
and then extended to F ∈ C(σ(A)) by continuity. �
Definition B.2. For a given self-adjoint linear operator A on H and F ∈
C(σ(A);C), one defines F(A) = ϕ(A).

An important application of the functional calculus is, for example, in noting that√
A ∈ L(H) is definable for a bounded self-adjoint operator A. More generally, one

has the following.

2 BCPT, p. 242.
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Corollary B.3. Let A ∈ L(H) be self-adjoint. If F ∈ C(σ(A)) is a nonnegative
real-valued function, then F(A) is a positive self-adjoint operator.

Proof. Note that for real-valued F ∈ C(σ(A)) one has ϕ(F ) = ϕ(F ) = ϕ(F )∗,
i.e., ϕ(F ) is self-adjoint for real F . Write F = (

√
F)2 for F ≥ 0. Then F(A) ≡

ϕ(F ) = ϕ(√F)ϕ(√F) = ϕ(√F)∗ϕ(√F) is a positive operator. �
Now let us see how one may obtain a “spectral decomposition”of A using the

functional calculus. Fix g ∈ H . Then, the map F → 〈g, F (A)g〉, F ∈ C(σ(A)),
defines a positive, bounded linear functional on C(σ(A)). Thus, by the Riesz
representation theorem, for each g ∈ H , there is a unique measure νg on the Borel
σ -field of the closed and bounded set σ(A) ⊂ R such that

〈g, F (A)g〉 =
∫

σ(A)

F (λ)νg(dλ), g ∈ H. (B.4)

In particular, taking F(λ) = λ0(= 1),i.e., the constant polynomial, then F(A) is the
identity map and

∫

σ(A)

νg(dλ) = 〈g, g〉, g ∈ H, (B.5)

and taking F(λ) = λ, one has

∫

σ(A)

λνg(dλ) = 〈g,Ag〉, g ∈ H. (B.6)

The measure νg is referred to as the spectral measure of A. Note that one also has

〈g, F (A)f 〉 = 1

4
{
∫

σ(A)

F (λ)νg+f (dλ)−
∫

σ(A)

F (λ)νg−f (dλ)} (B.7)

from the polarization identity.



Appendix C
Borel Equivalence for Polish Spaces

Two measurable spaces (S,S) and (T , T ) are regarded as measurably equivalent if
there is bijection h : S → T such that h and h−1 are each measurable. In the case
that S and T are topological spaces and S = B(S), T = B(T ) are their respective
Borel σ−fields then measurable equivalence is referred to as Borel equivalence. In
particular, two homeomorphic topological spaces are Borel equivalent. A separable
metric space S is homeomorphic to a subset h(S) (in the relative topology) of the
Hilbert cube1 H = [0, 1]N (given the product topology on H). If S is also complete,
then we can show that h(S) is a Borel subset of H . In particular, we can prove the
following.

Proposition C.1. A complete and separable metric space (S, ρ) is Borel equivalent
to a Borel subset of the Hilbert cube (with the product topology on H ).

Proof. Without loss of generality assume 0 ≤ ρ(x, y) ≤ 1 for all x, y ∈ S;
else replace by ρ(x,y)

1+ρ(x,y) . As already noted it is sufficient from what has already
been proven to show that completeness implies that h(S) is a Borel subset of H .
Recall that using separability to get a countable dense subset {x1, x2, . . . } of S, the
homeomorphism h : S → H is defined by h(x) = (ρ(x, x1), ρ(x, x2), dots), x ∈
S. To see that h(S) is a Borel set, observe that since it is dense in its closure h(S),
by completeness of S it is aGδ subset of h(S); i.e., a countable intersection of open
(relative to h(S)) subsets, and hence a (relative) Borel subset of h(S). Finally note
that the Borel subsets of any Borel set E ⊆ H are simply the Borel subsets of A
which are contained in E. Thus h(S) is a Borel subset of H . �

Another Borel equivalence which is somewhat standard in probability theory is
that between [0, 1] and the product space {0, 1}N obtained by binary expansion. The
proof can be made most transparent with the help of the following simple lemma.

1 BCPT, p.143.
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Lemma 1. If S and T are metric spaces and if S0 ⊆ S and T0 ⊆ T are both
countable subsets, then a Borel equivalence between the complimentary spaces
S\S0 and T \T0 may be extended to a Borel equivalence between S and T .

Proof. Since S0 and T0 are both countable there is a bijection between them which
extends any bijection h between S\S0 and T \T0. With this extension of the given
Borel equivalence h, first note that any countable subset of a metric is clearly an
Fσ set since points are closed; i.e., a countable union of closed sets. Similarly the
union and relative complement of a Borel set with a countable set is a Borel set.
In particular, therefore, a subset of S (respectively of T ) is Borel if and only if its
intersection with S\S0 (respectively T \T0) is a Borel set. So the extended map must
be a Borel equivalence. �
Proposition C.2. The unit interval is Borel equivalent to {0, 1}N.

Proof. Let S0 = {(ε1, ε2, . . . ) ∈ {0, 1}N : either εj = 0 for all but finitely many j,
or εj = 1 for all but finitely many j}. Let T0 = {x ∈ [0, 1] : x =
m2−n for some m, n ∈ N}. Define h : {0, 1}N\S0 → [0, 1]\T0 by h(ε1, ε2, . . . ) =∑∞
j=1 εj2

−j . Then since S0 and T0 are both countable and since h is easily checked
to be a homeomorphism, the assertion follows. �

Before coming to the main result of this appendix we require another simple
observation,

Lemma 2. If S is an arbitrary topological space, then R = SN and T = R
N

are homeomorphic under their respective product topologies, and hence Borel
equivalent. In particular, [0, 1] is Borel equivalent to H = [0, 1]N.

Proof. Since the product N × N is a countable set, it may be enumerated, setting
up an obvious homeomorphism between R and T . For the last assertion simply note
that For the last assertion simply note that [0, 1] is Borel equivalent to R = {0, 1}N
which, in turn, is Borel equivalent to RN and hence to [0, 1]N. �

Thus we have arrived at the main result of this appendix for Polish spaces.

Theorem C.3. Each complete and separable metric space is Borel equivalent to a
Borel subset of [0, 1].
Proof. Since a complete and separable metric space is Borel equivalent to a Borel
subset of H and since H is Borel equivalent to [0, 1] the assertion follows. �



Appendix D
Hahn–Banach, Separation, and
Representation Theorems in Functional
Analysis

Let (S,�) be a partially ordered set. A totally ordered subset T ⊂ S is a subset with
the property that for every pair x, y ∈ T , either x � y or y � x. u ∈ S is said to be
an upper bound for T ⊂ S if x � u for all x ∈ T . If m ∈ S has the property that
m � x implies m = x, then m is referred to as a maximal element.

Axiom (Zorn’s Lemma).1 Let (S,�) be a partially ordered set. If every totally
ordered subset has an upper bound, then (S,�) contains at least one maximal
element.

Definition D.1. Let V be a vector space over the real numbers. A function p : V →
R such that

p(u+ v) ≤ p(u)+ p(v), for all u, v ∈ V, p(cv) = cp(v), c ≥ 0, v ∈ V,

is referred to as a sublinear functional on V .

Theorem D.1 (Hahn–Banach). Let U be a subspace of a real vector space V ,
Suppose that � : U → R is a linear functional such that �(u) ≤ p(u), u ∈ U ,
for some sublinear functional p on V . Then � can extended to a linear functional �̃
on V and such that �̃(v) ≤ p(v), v ∈ V .

Proof. The proof has two parts. The first part shows how to linearly extend a linear
functional from a proper subspace to the space spanned by adjoining a single vector,
while preserving the domination by the semilinear functional p. The second part
relies on Zorn’s lemma to obtain a maximal extension to a subspace of V with

1 Zorn’s lemma is equivalent to the axiom of choice in Zermelo–Fraenkel (ZF) set theory. In
particular, it is not constructive in producing a maximal element. See Folland, p.
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domination by p. The first part and this maximality then show that this subspace is
in fact all of V .

If U �= V , then choose v0 ∈ V \U . Let Y = {u + tv0 : t ∈ R, u ∈ U}. Then
Y is a subspace of V . Using sublinearity of p and linearity of �, after adding and
subtracting v0 in the argument for p, one has

�(u)+ �(v) = �(u+ v) ≤ p(u− v0)+ p(v0 + v),

and therefore

�(u)− p(u− v0) ≤ p(v + v0)− �(v), for all u, v ∈ U. (D.1)

Let a be the upper bound on the left side of (D.1) as a function of u ∈ U . Then

�(u)− a ≤ p(u− v0), �(v)+ a ≤ p(v + v0). (D.2)

Define �̃ on Y by

�̃(u+ tv0) = �(u)+ ta, u ∈ U, t ∈ R. (D.3)

Then �̃ is linear and �̃ = � on U . To see that domination by p is preserved, note that
from (D.3), the right side of (D.2), and Definition D.1, one has

�̃(t−1u+ v0) = �(t−1u)+ a ≤ p(t−1u+ v0). (D.4)

Thus,

(̃u+ tv0) = t �̃(t−1u+ v0)

≤ tp(t−1u+ v0) = p(u+ tv0), for all t > 0, u ∈ U. (D.5)

For t < 0, using the left inequality of (D.2) to get for all u ∈ V, t < 0,

�̃(u+ tv0) = −t �̃(−t−1u− v0) = −t (�(t−1u)− a)
≤ −tp(−t−1u− v0) = p(u+ tv0).

Let L denote the set of all linear functionals �̃, with respective (linear) domains
D
�̃

⊇ U , that linearly extend � and are, respectively, dominated by p on D
�̃
. Then,

in view of the first part, L �= ∅. Let us define a partial order � on L by �̃1 � �̃2
if and only if �̃2 is a linear extension of �̃1. It is simple to check that � satisfies
the conditions of Zorn’s lemma for the existence of a maximal �̃ ∈ L. Namely, if
T = {�̂t }, say, is a totally ordered subset of L, then define �̂ on ∪tD�̂t by

�̂(u) = �̂s(u) where u ∈ D
�̂s
. (D.6)
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The total ordering of T implies that ∪tD�̂t is a vector space, and that �̂ is a well-
defined linear functional. Thus, (D.6) defines an upper bound for T . Now it follows
from Zorn’s lemma that L has a maximal element �̃ ∈ L, on a (linear) domain D

�̃
,

extending � such that �̃(u) ≤ p(u), u ∈ D�̃. Also D�̃ = V or else, by the first part
of this proof, �̃ could be extended in contradiction to its maximality. �

In addition to the Hahn–Banach theorem, the separation results2 to follow are
also essential tools for Lindvall’s proof of Strassen’s theorem.

Lemma 1. Suppose that K,F are disjoint subsets of a topological vector space V .
If K is compact and F is closed, then 0 has a neighborhood U such that (K +U)∩
(F + U) = ∅.

Proof. Observe that ifW is a neighborhood of 0 in V , then there is a neighborhood
U of 0 such that U = −U and U +U ⊂ W . This is because 0 + 0 = 0 and addition
is continuous so that there are neighborhoods U1, U2 of 0 such that U1 + U2 ⊂ W .
Take U = U1 ∩ U2 ∩ (−U1) ∩ (−U2). In fact this can be iterated by replacing W
by U to get U + U + U + U ⊂ W , etc. This observation can be a useful tool as
follows.

Without loss of generality assume K �= ∅, and let v ∈ K . Since v /∈ F and
Fc is open, there exists an open neighborhood of v, say G, which is disjoint from
F . One may write G = W + v, where W is an open neighborhood of 0. Since,
by continuity of the vector space operations, the topology of V is invariant under
translations, the observation above shows that 0 has a symmetric neighborhood Uv
such that (v + Uv + Uv) ∩ (F + Uv) = ∅. Since K is compact, there are finitely
many v1, . . . , vn in K such that K ⊂ ∪ni=1(vi + Uvi ). Let U = ∩ni=1Uvi . Then

K + U ⊂ ∪ni=1(vi + Uvi + U) ⊂ ∪ni=1(vi + Uvi + Uvi ),

and no terms in the last union meet F + U . �

Definition D.2. Let A ⊂ V be a convex set. Then A is said to be absorbing if for
each v ∈ V there is a t = tv > 0 such that v ∈ tA = {tu : u ∈ A}. A is said to
be balanced if tA ⊂ A for all |t | ≤ 1. The Minkowski functional μA of a convex,
absorbing set A is defined by

μA(v) = inf{t > 0 : t−1v ∈ A}, v ∈ V.

Definition D.3. A topological vector space is said to be locally convex if every
neighborhood of zero contains a convex, balanced, and absorbing open set.

Lemma 2. If A ⊂ V is a convex, absorbing set, then μA is a sublinear functional.

2 These theorems appear in Rudin (1973), pp. 55–59.
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Proof. For v ∈ V , define HA(v) = {t > 0 : t−1v ∈ A}. Now observe that each
HA(v) is a half-line whose left endpoint is μA(v). To see this let t ∈ HA(v) and
s > t . Then, since 0 ∈ A and A is convex, it follows that s ∈ HA(v). Suppose that
μA(u) < s, μA(v) < t , r = s + t . Then since A is convex,

r−1(u+ v) = s

r
(s−1u)+ t

r
(t−1v) ∈ A.

The sublinearity of μA now follows. �
Let us recall that a topological vector space is a vector space for which singletons

are closed sets and addition and multiplication by scalars are continuous vector
space operations. Translation invariance of the topology refers to the property that
a set A is open iff all of its translates v + A are open. In particular, the topology is
determined by any local base.

Theorem D.2 (Separation Properties). Suppose that A and B are disjoint,
nonempty, convex sets in a locally convex topological vector space V . (i) If A
is open, then there is an � ∈ V ∗ and γ ∈ R such that

�(u) < γ ≤ �(v),

for all u ∈ A, v ∈ B. (ii) If A is compact, B closed, then there is a � ∈ V ∗,
γ1, γ2 ∈ R, such that

�(u) < γ1 < γ2 < �(v),

for every u ∈ A, v ∈ B.

Proof. Consider part (i). Fix a0 ∈ A, b0 ∈ B, and let v0 = b0 − a0. Let G =
A − B + v0. Then G is a convex, absorbing neighborhood of 0 in V . Let p = μG
on V ; then p(v0) ≥ 1 since v0 /∈ G, because A,B are disjoint. Define �(tv0) = t

on the subspace U = {tv0 : t ∈ R}. Then � is a linear map on U with � ≤ p. By
the Hahn–Banach theorem one may extend � to V with �(v) ≤ p(v), for all v ∈ V .
Thus � ≤ 1 on G, and therefore � ≥ −1 on −G. So |�| ≤ 1 on the neighborhood
G∩ (−G) of 0. But this implies that � is continuous, i.e., � ∈ V ∗ since given ε > 0,
taking W = εG ∩ (−G), one has |�(v)| < ε for all v ∈ W . In view of the linearity
of � continuity in a neighborhood of zero implies continuity at each v ∈ V . Thus,
� ∈ V ∗. Now, if u ∈ A, v ∈ B, then

�(u)− �(v)+ 1 = �(u− v + v0) ≤ p(u− v + v0) < 1,

since �(v0) = 1, u− v + v0 ∈ G, and G is open. Thus �(u) < �(v). It follows that
�(A), �(B) are disjoint convex subsets of R, with �(A) to the left of �(B). Since
non-constant continuous linear functionals on V map open sets to open sets, �(A) is
open by hypothesis. Take γ as the right endpoint of �(A).
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For part (ii), use Lemma 1 to obtain a convex neighborhood U of 0 in V such that
(A+U)∩B = ∅. Now apply part (i) withA+U in place ofA, to obtain � ∈ V ∗ such
that �(A+U) and �(B) are disjoint convex subsets of R, with �(A+U) open and to
the left of �(B). The assertion follows since �(A) is a compact subset of �(A+U).�
Lemma 3. Let �1, . . . , �n and � be linear functionals on a real vector space V . Let

N = ∩ni=1{v ∈ V : �i(v) = 0}.

The following are equivalent:

(a) Thee are scalars α1, . . . , αn such that � = ∑n
i=1 αi�i .

(b) There is an r <∞ such that |�(v)| ≤ r max1≤i≤n |�i(v)|, v ∈ V .
(c) �(v) = 0 for all v ∈ N .

Proof. Clearly (a) implies (b) implies (c). So it is sufficient to show that (c) implies
(a). Define π : V → R

n by

π(v) = (�1(v), . . . , �n(v)), v ∈ V.

Then � is constant on {v : π(v) = c}, c ∈ R
n, implying that �(v) = �n ◦ π for a

linear functional �n on R
n. Thus,

�n(x1, . . . , xn) =
n∑

i=1

αixi, (x1, . . . , xn) ∈ R
n,

for some α1, . . . , αn. But this proves (a) since

�(v) = �n(π(v)) =
n∑

i=1

αiαi(v), v ∈ V.

�
Theorem D.3. Suppose that V is a vector space and V ′ is a vector space of linear
functionals on V that separate points of V . Then V , equipped with the weakest
topology on V that makes each � ∈ V ′ continuous, is a locally convex space whose
dual is V ′.

Proof. The linearity of � ∈ V ′ shows that the topology is translation invariant. If
�1, . . . , �n ∈ V ′, then for positive numbers r1, . . . , rn

U = {v : �i(v) < ri, i = 1, . . . , n} (D.7)

is a convex, balanced, absorbing, and open set for the topology. Since V ′ separates
points, the topology is Hausdorff. In fact the collection of all open sets U of this
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form provide a local base for the topology, making it a locally convex topology.
Since 1

2U + 1
2U = U , addition is continuous. To see that multiplication by scalars

is continuous, let v ∈ V and α ∈ R. Then v ∈ sU for some s > 0. If |β − α| < r
and u− v ∈ rU , then, for suitably small r that r(s + r)+ |α|r < 1, one has

βu− αv = (β − α)u+ α(u− v) ∈ U.

Thus, multiplication by scalars is continuous. Finally, to see that V ′ is the dual space
it is sufficient to show that if � is a continuous linear functional for this topology,
then � ∈ V ′, since, by hypothesis, each � ∈ V ′ is continuous. If � is a continuous
linear functional, then |�(u)| < 1 for all u in some set U of the form (D.7). Thus, by
Lemma 3, there are scalars αi such that � = ∑

i αi�i, �i ∈ V ′. Since V ′ is a vector
space it follows that � ∈ V ′. �

Note that if V is a topological vector space, then each v ∈ V may be viewed
as a linear functional on its dual space V ∗ by defining v(�) = �(v), � ∈ V ∗. So
viewed, V clearly separates points. The weakest topology on V ∗ that makes each
v ∈ V continuous as a linear functional on V ∗ is called the weak∗ topology. From
this perspective one has the following representation as a corollary to Theorem D.3
by simply replacing V by V ∗ and V ′ by V there.

Corollary D.1 (Dual Representation Theorem). Let V be a topological vector
space with dual V ∗, and give V ∗ the weak∗ topology. Then V ∗ is a locally convex
topological vector space and every weak∗ continuous linear functional �∗ on the
dual space V ∗ has the form �∗(�) = �(v), � ∈ V ∗, for some v ∈ V .
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birth–death chain, 154
Invariant event, 60
Invariant function, 60
Invariant initial distribution, 256
Invariant measure, 146
Invariant probability, 112
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Invariant probability existence, 113, 117
Invariant probability uniqueness, 113
Invariant set, 81
Invariant σ -field, 61
Inverse temperature, 395
Invertible moving average, 35
Irrational rotations, 83
Irreducibility, 287
Irreducible transition probability, 137
Irreversible process, 158
Ising model, 192, 199, 281, 366, 395, 398
Iterated quadratic maps, 278
Iterated random maps, 237

K
Kalman gain, 400, 401
Karhunen–Loève expansion, 45

dimension reduction, 47
random fields, 46

Karhunen–Loève expansion of Brownian
bridge, 47

Karhunen–Loève expansion of Brownian
motion, 47, 54

Karhunen–Loève expansion of Brownian
sheet, 54

Karhunen–Loève representation
standard version, 46

Killed process, 168
Kolmogorov metric, 256
Kolmogorov time-reversibility condition, 126
Kraft inequality, 347
Kullback–Liebler divergence, 321

L
Laplacian, 41
Large deviation method of types, 321
Large deviation principle, 323
Large deviations for random dynamical

system, 320
Large deviation theorem for Markov processes,

314
Lattice animal, 375
Law of diminishing returns, 279
Law of large numbers for Markov chain, 195
Lazy random walk, 133, 163, 397
Left-shifted stationary process, 7
Length function, 347
Liapounov central limit theorem, 214
Lindeberg central limit theorem, 213

Lindley–Spitzer model for resource
management, 241, 253

Linear AR(p) time series, 230
Linear autoregressive model, 225
Liouville property, 385
Local minorization, 288
Location problem, 356
Log-convexity, 392
Log-convexity of probability measures, 392
Logistic map, 86
Long-range dependence, 53
Lyapounov exponent, 80
Lyapounov function, 299

M
Magnetism, 192, 366
Markov chain, 98–100

finite irreducible aperiodic, 262
Markov Chain Monte Carlo (MCMC), 264
Markov chain on finite graph, 126
Markov process construction, 108
Markov process defined, 110
Markov property, 98, 107, 110
Massless free field (discrete), 175
Maximal coupling, 397
Maximal ergodic theorem, 61
Mean-square continuity, 15
Mean-square continuous, 15
Mean value property of Poisson integral, 55
Measurably equivalent, 419
Measure preserving transformation, 81
Mercer’s theorem, 411
Message source, 345
Metropolis–Hastings algorithm, 264, 265
Minorize, 288
Monotone coupling, 386
Monotone decreasing iterated maps, 273
Monotone increasing Markov process, 272
Monotone maps, 267
Moore–Aronszajn theorem, 26
Moving average, 31, 50
Moving average representation, 31
Multidimensional montone Markov processes,

269

N
Neighboring sites, 281
Newman’s central limit theorem for associated

random fields, 370
Newman’s inequality, 367
Newton’s law of cooling, 157, 158
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Non-irreducible Markov chain with unique
invariant probability, 262

Noncausal, 33
Nonlinear autoregressive process, 304
Nonnegative definite, 7
Normal numbers, 94
Normal test, 356
Null recurrent, 188
Number theory lemma, 286

O
One-sided moving average, 33
Open and closed bonds, 372
Optimal guessing exponent, 346
Optimal guessing function, 346
Orbit, 123
Ornstein–Uhlenbeck process, 6, 17, 50, 214
Orthogonal random field, 22, 48
Orthonormal, 30

P
Partially ordered set, 386
Partition function, 395
Path coupling, 396
Percolation cluster, 372
Percolation probability, 372
Perfect simulation, 244
Period doubling, 88
Period of state, 137
Periodogram, 10
Pitman ARE EP test, 356
Plancherel identity, 3
Poincaré recurrence, 158
Point mass spectral distributions, 27
Point spectrum, 415
Poisson equation, 179, 220
Poisson kernel, 40, 55
Poisson random field, 53
Polarization identity, 4
Polya’s theorem for random walk, 143
Polygonal process, 220
Pomeau–Manneville region, 90
Poset, 386
Positive definite, 7
Positive definite function, 3
Positive definite sequence, 3
Positive dependence, 10, 53
Positive dependence inequalities, 396
Positive operator, 408
Positive quadrant dependence, 363
Positive recurrence, 186
Positive recurrent birth–death, 157

Predictor, 400
Prefix-free code, 354
Pre-order, 386
Principal component decomposition, 46
Propp–Wilson algorithm, 281, 393
Purely nondeterministic process, 38

Q
Quadratic family, 86
Quadratic maps, 84, 86
Queue length, 106

R
Random field, 46

Karhunen–Loève expansion, 46
Random map, 238
Random matrix products, 77
Random walk on finite Abelian group, 104
Random walk on finite graph, 122
Random walk on the hypercube, 162
Range of the random walk, 68, 75
Rates of convergence, 255
Rational rotations, 82
Record times, 132
Record values, 132
Recurrence, 287

birth–death chain, 152
Reflecting boundary, 153
Reflecting simple symmetric random walk, 124
Regeneration lemma, 294
Regenerative structure, 288
Relative entropy, 321
Relative log-convexity, 392
Renewal decomposition, 184
Renewal process, 106
Rényi entropy rate, 350
Representative evaluator, 26
Reproducing kernel, 26
Reproducing kernel Hilbert space, 26
Resolvent set of linear operator, 415
Rosenblatt–Cogburn CLT, 66
Rotation maps, 82, 89
Ruin problem in insurance, 242, 253

S
Sample path, 99
Sample space, 99
Sanov large deviation theorem, 320
Sanov’s theorem, 332
Sanov’s theorem for large deviations, 321
Sarkovskii’s scheme, 88
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Self-adjoint, 408
Self-avoiding path count, 79
Self-similarity, 13
Self-similar process, 13
Semiconjugate, 91
Semiconjugate dynamics, 91
Sensitive dependence on initial conditions, 89
SETAR model, 306
Shannon code, 355
Shannon entropy, 68, 321, 347
Sign test, 356
Simple eigenvalue, 339
Singular value, 46
Singular value decomposition, 46
Site percolation, 398
Size-bias lemma, 313
Skeleton, 298
SLLN (classical), 64
SLLN for Markov processes, 187, 217
Small set, 288
Sparre–Andersen model, 242
Spectral colors, 55
Spectral distribution function, 9
Spectral measure, 8, 16, 418
Spectral radius, 415
Spectral radius bound, 318
Spectral representation of weakly stationary

processes, 26
Spectrum of linear operator, 415
Spin configuration, 395
Spitzer condition for linear maps, 253
Splitting condition, 255, 257, 258, 268
Splitting model, 298
Stationarity, 113
Stationary, 6
Stationary process, 6

left-shifted, 7
Statistical parameter estimation consistency,

192
Steady state distribution, 112
Stochastic continuity, 13
Stochastic domination, 385
Stochastic integral, 22, 23
Stochastic matrix, 99
Stochastic order, 272
Stochastic order of densities, 392
Stochastic ordering of Markov chains, 391
Stochastically smaller, 74
Stone–Weierstrass theorem, 4
Stopped process, 128, 131
Stopping time, 127
Strassen’s theorem, 390
Stretched exponential distribution, 318
Strict contraction, 258, 285

Strictly stationary, 59
Strictly stationary process, 6
Strong law of large numbers (SLLN), 215, 217
Strongly aperiodic, 290
Strong Markov property, 129
Strong mixing, 66
Strong uniform time property, 166
Sublinear functional, 421
Successful coupling, 384
Superadditive, 78
Symmetric difference Δ, 60, 67
Szegö–Kolmogorov formula, 43

T
Tent map, 91
Thermodynamic equilibrium, 158
Tightness conditions, 211
Time-reversed stationary Markov process, 125
Time-reversible, 19, 118
Time series linear AR(p), 230
Time series, linear ARMA(p, q), 232
Topological mixing, 89
Topological transitivity, 89
Total variation distance, 256, 259
Trace, 400, 401
Transition operator, 113, 255
Transition probabilities, 99, 108
Transition probability convergence, 215
Transition probability, density, law, 137
Translation invariant random field, 362
Trivial σ -field, 61
t-test, 356
Two-dimensional bond percolation, 372
Two-dimensional simple symmetric random

walk, 146
Two-sample problems, 357
Type (distribution), 321

U
Ulam–von Neumann map, 90
Uniform Bernoulli coupling, 386
Uniformly ergodic, 299
Unrestricted birth-death chain, 150, 156

V
Varadhan, 337
Varadhan’s integral formula, 352

W
Weakly harmonizable, 27
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Weakly stationary, 6
Weak mixing, 65
Weak∗ topology, 388, 426
Weierstrass approximation theorem, 4
White noise, 52–54
Wiener, 47
Wiener–Khinchin theorem, 12

Y
Yule–Walker equations, 235

Z
Zorn’s lemma, 421
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