
Chapter 8
Emphases in Algebraic Analysis After
Euler

d’Alembert: Philosophical Legitimation of Algebraic Analysis
as Well as His Critique of Euler’s Concept of Function

Jean-Baptiste le Rond d’Alembert (1717–83), another first-rate mathematician, was
a slightly younger contemporary of Euler. He was also active as a philosopher
and involved in politics. His name, together with that of Denis Diderot (1713–
84) personifies the French Encyclopédie, published in the years 1751–80, a work
which greatly influenced the French Enlightenment. (However, d’Alembert left the
scientific editorial staff of the Encyclopédie as early as 1758.)

d’Alembert’s Reflections on the Notion of Quantity

In volume 7 of the Encyclopédie, published in 1757, d’Alembert starts his entry
about Quantity with the following sentence: “It is one of those words, the entire
world believes to have a clear idea of, but which is nevertheless very difficult to
define precisely.”

d’Alembert’s Critique

D’Alembert starts with the very same notion of quantity which we have already
found in Euler: quantity is, what “can be increased or decreased without end”.
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At first, d’Alembert explains the importance of the “or” in this definition. Would
it instead read “and”, both zero and infinity would not meet the requirement of
the definition: for zero cannot not be decreased and infinity cannot be increased.
However, d’Alembert thinks it cannot be denied that both are “quantities”.

We realize: d’Alembert’s idea of the infinite is not like Euler’s or Johann
Bernoulli’s, but more like Leibniz’—because Euler as well as Johann Bernoulli
allows himself to increase the infinite (i): i + 1, i + 2, . . . ; in opposition to this,
Leibniz and d’Alembert do not.

d’Alembert’s Notion of Quantity

D’Alembert switches abruptly to his own understanding of “quantity” and declares:
“It appears to me that quantity can be defined well as being something which is
composed of parts.”

This brings d’Alembert back to Euclid, who had declared two thousand years
earlier: “A number is a multitude composed of units.” And: “A number is a part of
a number, the less of the greater, when it measures the greater.”

And by the way, the philosopher d’Alembert now explains the foundational
legitimacy of this Algebraic Analysis:

The quantity[1] exists in each finite being and it expresses itself in an indefinite number
which can only be known and understood with the help of a comparison and in relation
to another homogene magnitude.

Descartes’ universal unity is dismissed and the Law of Homogeneity restored,
albeit with a new meaning.

Assessment: d’Alembert’s Philosophical Legitimation of
Algebraic Analysis

Unfortunately we cannot know d’Alembert’s intention behind this formulation.
Maybe he did not want to say something different from what umpteen generations
of mathematicians have said already before him: only the fixing of a ruler (the
“unit”) allows the measuring of a quantity. However, closer inspection of the matter
(which includes the historical moment of d’Alembert’s writing) gives rise to read
this sentence as the philosophical legitimation of Algebraic Analysis:

It is not about definite values, but about all possible values, without any exception; only
that counts.

This was Euler’s demand, at the beginning of his textbook (p. 79).

1 d’Alembert first uses “quantité” for “quantity” but in the end he uses “grandeur”.
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d’Alembert’s Critique of Euler’s Notion of Function

For many years Euler and d’Alembert competed for the best mathematical descrip-
tion of the vibrating string. Unable to agree—each of them thought his own answer
to be superior. As so often in everyday life: they talked past each other. Neither of
them understood the other. They had different ideas of the notion of a function.

What Euler understood by “function” in this case, was shown on p. 83, but what
was d’Alembert’s idea?

D’Alembert did not have Johann Bernoulli as his teacher (as Euler did) and was
therefore further removed from the geometrical foundations of analysis. D’Alembert
stuck to the algebraic notion of function, given by Euler: a function is described by
a “calculatory expression”. Nonetheless, it was clear to d’Alembert that this was not
enough to deal with all the “curved lines” encountered in practical problems—but
only with the nice ones: those which Euler had called continuous (p. 81).

D’Alembert tried to liberalize this algebraic notion of function in two steps. His
principal idea was to replace the one calculatory expression by two of them.

1. At first d’Alembert allowed a “function” to be determined by an equation, that is
to say by two calculatory expressions, related by an equal sign.
Unfortunately this idea is of no great help. If we have an unknown on both sides
of the equation it is very doubtful whether we will be able to make y the subject
of the equation. (Since the nineteenth century it has been known that this can
already fail with equations of the fifth degree. During the eighteenth century one
was far more optimistic.) If one does not succeed in isolating the unknown? How
should the “function” be further inspected, if it is not given explicitly?

2. D’Alembert tried to modify the notion of function after 1761 and from 1780 he
became more specific.
His writing is not terribly clear, but two points can be discerned:

a. It is clear that he connects two functions and their “equations” with adjoining
domains to make up one “continuous” (because of the two expressions!)
function. That is to say, he changes his original notion of function decisively
by limiting its scope. For Euler this was unthinkable!

b. He carries over the notion of “continuous” from “curved line” to “function”.
Contrary to modern concepts, d’Alembert calls a compound “function”
“continuous”, if it describes a single “curve” and if these two different
“functions” at their meeting point (i) take the same “value” and (ii) have the
same (one-sided) derived function (increase or decrease of the tangent).

Thus, d’Alembert aims to give the notion of function more flexibility within the
conceptual realm of Algebraic Analysis, because the algebraic notion of function
as demanded by Euler is not very useful in practical circumstances.
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d’Alembert’s Impulse: Condorcet

If one digs even further into the mathematical sources of the late eighteenth century,
more precisely into the treatise On the continuity of arbitrary functions of Marie
Jean Antoine Nicolas de Caritat, Marquis de Condorcet (1743–94) from 1774, one
gets some evidence that d’Alembert’s last step was inspired by a much younger
contemporary with that illustrious name. However, such subtleties exceed the scope
of this book.

Lagrange: Making Algebra the Sole Foundation of Analysis

The last first-rate mathematician who completely subscribed to the spirit of Euler’s
analysis was Joseph Louis Lagrange (1736–1813). His textbook was published in
1797, the “year V” following the calendar of the revolution, and in 1813 in a second
edition. A German translation by Johann Philipp Grüson (1768–1857) appeared as
soon as 1798 under the title (in German) Theory of analytic functions, wherein the
principles of differential calculus are given, independently from considerations of
the infinitely small or vanishing quantities, the limits or fluxions, and grounded
in Algebraic Analysis. Eventually this text led to the establishment of “Algebraic
Analysis” as a title for the new theory. It is an apt name.

Lagrange’s New Foundation of Analysis: The Base

The lengthy title of the work encapsulates its content and plan. Lagrange aims to
present the theory of functions and the differential calculus as simply as possible—
and, consequently, independently of such complicated notions as “infinitely small”
quantities, “limit” or (as with Newton) “fluxion”. Analysis as easy as possible, a
commendable plan.

Lagrange’s idea is very consequential and can be understood in three steps.

First Step. Lagrange starts at the very beginning, with Euler’s notion of function.
Accordingly to Euler, a “function” is a “variable” quantity, which is described by a
calculatory expression. Lagrange radicalizes this and says:

A function is a calculatory expression.

Following this, any calculatory expression is a “function” for Lagrange—be it
the description of a variable quantity or not.

Here, he differs from Euler. Euler only considers a calculatory expression as a
“function” which describe a changing quantity. Lagrange no longer cares whether
the calculatory expression can take on only one or more values. For him every
calculatory expression is a “function”.



Lagrange: Making Algebra the Sole Foundation of Analysis 95

Let’s recapitulate Euler’s notion of “calculatory expression”.

1. The simplest calculatory expressions are the sums, finite ones like 2 + 3x − 5x2

or infinite ones like 1 − x + x2 − x3 + x4 − + . . .

2. However, a simple fraction can also be written as an (infinite) sum (see formula ∗
on p. 73):

1

1 − x
= 1 + x + x2 + x3 + . . .

or (see formula † on p. 87)

1

(1 + x)2 = 1 − 2x + 3x2 − 4x3 + 5x4 − + . . .

3. Therefore Euler is convinced that every function can be described as such an
(infinite) sum. This he noted in § 59 of his textbook on differential calculus:

Thereupon it should be beyond doubt that every function can be transformed into such
an expression that runs towards the infinite

Axα + Bxβ + Cxγ + Dxδ + · · · , (‡)

wherein the exponents α, β, γ, δ . . . stand for any numbers whatsoever.

Euler chooses Greek letters (alpha, beta, gamma, delta) as exponents. They can
also be arbitrary numbers.

The Idea of Lagrange

To implement his plan, Lagrange—in his second step—seizes on a fact which was
originally advanced by Johann Bernoulli (in the year 1694) and again, very clearly
and repeatedly, by Euler. In his Integral Calculus, Euler restated a theorem, which
he had already proven in his Differential Calculus (and earlier, see p. 75):

Theorem. If y denotes a function of x, which changes to b, if z = a, and if we put dy
dz = P ,

dP
dz = Q, dQ

dz = R, dR
dz = S etc., then we obtain the general expression:

y = b + P(z − a) − 1
2 Q(z − a)2 + 1

6 R(z − a)3

− 1
24 S(z − a)4 + 1

120 T (z − a)5 − etc.

For a better understanding of the main idea we simplify this calculatory
expression. If (z − a) is replaced by x and the differential quotients P , Q, R, etc.
are shortened to 1P = p, − 1

2Q = q, 1
6R = r , − 1

24S = s, . . . we get the following
condensed expression:



96 8 Emphases in Algebraic Analysis After Euler

f (a + x) = f (a) + p · x + q · x2 + r · x3 + s · x4 + t · x5 + etc. (§)

Euler had shown that each function, each calculatory expression can be
represented in this way. The left side of the equation is new, instead of “f (x)” we
now have “f (a + x)”.

It is now Lagrange’s idea—his third step—to prove that the scheme ‡ is nothing
other than Eq. §. In other words, Lagrange proves the following theorem:

Theorem. EACH function f (x) can be written as a calculatory expression of the form §.

The proof of this theorem is Lagrange’s opening to his textbook on analysis.
If Lagrange were really able to prove this theorem, he would stage a coup d’état.

Because of Euler’s theorem which we have cited above, one then was able to deduce
that the coefficient p of the second summand in § is the first differential quotient of
the function (viz dy

dz ); the coefficient q of the third summand on the right in § is

the second differential quotient (in Euler: dP
dz ) inclusive of the factor 1

1·2 and the
sign; the coefficient r of the forth summand on the right in § is the third differential
quotient of the function ( dQ

dz ) inclusive of the factor 1
1·2·3 ; etc. In other words: if

Lagrange can prove this theorem he would be able to obtain for every function all
differential quotients. In this case, the differential calculus is founded all at once
and entirely without the use of the commonly applied notions like “infinitely small”
quantities etc.

Lagrange introduces also a new notation which is still used today. Instead of
the “first differential quotient” dy

dz of the function f Lagrange simply writes “f ′ ”;

instead of the second differential quotient dP
dz he writes “f ′′ ” etc. Until today, f ′,

f ′′ etc. are called the “first”, “second”, . . . “derivatives” of the function f .

A Contemporary Criticism on Lagrange’s Plan

August Leopold Crelle (1780–1855), who does not count as a first-rate mathemati-
cian, edited Lagrange’s textbook in a new German translation in 1823. Crelle saw
fit to launch a fundamental criticism of Lagrange. He wrote:

In my opinion, the proof that the series expansion of an arbitrary function f (a + x) only
contains positive integer powers of the quantity x, is firstly defective or at least very weak
and much too complicated to found the principles of a whole science; and, secondly, I think
such a proof is completely superfluous.

That is strong stuff, and the latter judgement is very noteworthy: why is the proof
of this theorem in Crelle’s eyes “superfluous”?

Crelle makes it easy for himself and says: later in the book it is shown, how it
works—but if you show how it works, you need not prove that it works.

This is obviously self-deception. Of course, Lagrange does not show in his book
how to expand all functions in a series: the book is finite (the original has 296 pages),
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but there are infinitely many functions! And of course, Lagrange (without any doubt
being a first-rate mathematician) did not resort to such kind of argument. He was
sure to have a watertight, general proof for his theorem.

How Does Lagrange Proceed?

Lagrange’s idea that his theorem is correct is simple. It goes as follows: the essential
argument is to show that alpha, beta, gamma, delta, . . . in Euler’s calculatory
expression ‡ (p. 95) can only be taken by positive integers 1, 2, 3, . . . However,
this is self-evident, for (and that’s the point!) in case of an exponent different from
a positive integer the corresponding expression is one-to-many, whereas the given
function, clearly, is one-to-one.—And this is all there is to it!

That is to say, Lagrange’s argument is this: x
1
2 = √

x has two value s (
√

4 = ±2);

x
1
3 = 3

√
x has three values ( 3

√
1 has the value 1 and the two values 1

2 ±
√−3

2 ) etc.
This is a real fact—if one is to accept the “complex” numbers.

The Fundamental Gap in Lagrange’s Proof

Nevertheless, Lagrange’s proof has a gap. This gap is of a fundamental nature and

can be described as follows: Lagrange resorts to the argument that the “function” x
1
2

has two “values”. However, only the following is true: there exist two “values” X

to be discovered from the instruction x
1
2 (= √

x), i.e. X2 = x. (Example: we have
22 = 4 as well as (−2)2 = 4—and consequently two values for X.) But calculating
is one thing—and mathematics another!

Lagrange did not set out to present an elementary calculation, but to prove a
theorem! And within his proof he clearly uses the notion “value of a function”—

e.g. by arguing that x
1
3 has three values. This argument is wrong, if one only

considers “real” functions—as we do today in our first course at university. Three
real numbers (i.e. those without the component

√−1), which can be calculated

following the instruction x
1
3 = 3

√
x do not exist.

Well, you might object and say: Lagrange does not restrict himself to real
functions—and, consequently, this objection is irrelevant.

The objection is only true in so far as Lagrange, indeed, did not write a
theory of real functions, but (as we say today:) a theory of complex functions.
Nevertheless, Crelle’s argumentation is too weak, as it only deals with the given
example (restriction to a real analysis) but not the essence. The essence remains:

Nowhere does Lagrange specify the concept “value of a function”.

However, he implicitly uses the concept. This is definitely a deficiency in
mathematical rigour.
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You may say: what a tiresome thing, “value of a function”—isn’t it obvious, what
this means?

Counter-question: is it really so obvious? What is the “value of the function” for
1
x

in case of x = 0? Or in case of x = ∞? That is to say: what is 1
0 , what is 1

∞? And
moreover: what is the value of the function log 0, or tan π

2 ? Or of sin ∞? This we
do not know beforehand or through calculating, these answers need a theory—and
that means: we are to do some mathematics!

That is why we have to launch some criticism at Lagrange: nowhere do you
declare what you take the notion “value of a function” to be! And it is unacceptable
in mathematics to base a proof on an undefined notion!

Usually, Lagrange is criticized for something quite different. He is accused of
making a technical mathematical error: that he has not taken into consideration that
the representation § does not work in particular cases.

However, this criticism is completely unfounded. A first-rate mathematician such
as Lagrange does not make such a technical mistake. If one reads his book carefully,
one can see that he treated the said technical problem extensively and explained what
he thought about it. Therefore, he knew about this problem—but this aspect does
not touch his theorem and, in particular, it does not refute it. Because, just like with
Euler, Lagrange’s theorem is about “quantities”, but not about particular “values”.
Unfortunately, today’s mathematicians (as well as historians of mathematics) often
do not follow this argumentation.
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