
Chapter 14
Analysis with or Without Paradoxes?

In this chapter, we shall introduce attempts to base the calculus on a different
concept from that of Weierstraß.

Built on Very Thin Ice: Cantor’s Diagonal Argument

The Presentation of Evidence

It is quite astonishing to discover which precarious arguments are sometimes
accepted as being mathematically sound.

An outstanding example thereof is the (time and time again, by experts and non-
experts alike) celebrated “proof for the existence of the uncountable infinity”. This
bizarre “proof” runs as follows (there should be added some technical details in case
the number ends with infinitely many nines, but this is just technical and does not
touch the essential reasoning; therefore, it can be omitted):

Suppose we could enumerate the numbers between 0 and 1, written as decimals.
If this is done, we arrive at a list

b1 = 0.a11a12a13a14 . . .

b2 = 0.a21a22a23a24 . . .

b3 = 0.a31a32a33a34 . . .

.

.

.

The akn are digits from 0 to 9.—Possibly, we have

b59284 = 0.5000 . . .

According to our assumption, the list includes each number between 0 and 1.
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The surprising “argument” that should supply the contradiction to our supposition
is as follows:

• Take the number c = 0.c1c2c3c4 . . ., defined by
c1 = any number, but not a11;
c2 = any number, but not a22;
c3 = any number, but not a33;
etc.

• This number c differs obviously from all bm. (This c deviates in the m-th digit from
bm, as this digit of bm is = amm �= cm.)

• Consequently, the list of the bm does not contain c.
• But this contradicts the initial assumption that we had a list bm of all numbers between

0 and 1.
• Contradiction. Presumed end of proof.

Every modern book on the mathematical infinite presents this “proof”, including
the book Proofs from THE BOOK from Martin Aigner and Günter M. Ziegler from
1998 as well (pp. 92f). And certainly the authors are excited: star writer David Foster
Wallace (1962–2008) e.g. called this proof “both ingenious and beautiful—a total
confirmation of art’s compresence in pure math” (p. 255). An appraisal such as
“ingenious” calls for attention, no doubt about that!

The Impotence of This Reasoning

Let us pause for thought and ask: does this actually convince anyone?
Let us work out the details. At once we realise:

The above “proof” is not necessarily valid.

(This is no news. I only repeat a well-known reasoning.)—Therefore, I ask two
questions.

(1) How many decimal numbers with n digits in between 0 and 1 do exist?

The answer is straightforward:

1. If n = 1, we have exactly 10, to wit: 0.0; 0.1; 0.2; . . . 0.9.
2. If n = 2, we have exactly 100 = 102, to wit: 0.00; 0.01; 0.02; . . . 0.99.

etc.
n. Consequently, in the general case n, we have 10n numbers.

And now my second question:

(2) How many digits of c are safely determined by this so-called proof?
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The answer to this question is evident: exactly n—one for each digit under
consideration. But what is the consequence? Plainly this: the number c defined by
this professed proof certainly differs from the first n numbers in the list—but this
does not demonstrate CONCLUSIVELY that it is not included in the list at all; instead,
it only proves: c = bm′ as well as m′ > n, nothing else.

To be practical, let n = 2. We write down the list of the 102 = 100 numbers in
between 0 and 1 with two digits after the decimal point:

b1 = 0.00 , b2 = 0.01
b3 = 0.02

. . . ,

b11 = 0.10
b12 = 0.11

. . . ,

. . . , b100 = 0.99 .

Let us take c = 0.12. Then we know c �= b1 and c �= b2; but we have c = b13.
c is not to be found among the first n = 2 numbers but later on it is included in the
list.

This reasoning imputes a (MOST) EXTREMELY STRANGE hidden assumption to
this “both ingenious and beautiful” “proof”. It is this one:

10∞ = ∞ .10∞ = ∞ .10∞ = ∞ .

For in fact it is proclaimed: The number c is not contained in the list of the bm.
What is true, however, is just this: The number c is not among the first infinitely
many (“∞”) numbers of the list, but only subsequently.

However, who is demanding to calculate with infinity in this way? It is true, e.g. Weierstraß
authorized this—i.e. 10∞ = ∞—but at the same time he demanded to exclude infinity
(“ ∞”) from analysis (p. 177).

But Euler did use infinity in his calculations. He even assumed i > i − 1 (p. 77) and
moreover

10i > i

for infinitely large i.

There is no obligation to think like Euler and also none to think like Weierstraß.

In mathematics we do not deal with dogmas but with arguments.

From Chap. 5 we know:

There exists no conclusive or ultimate reasoning for dealing with the
actual infinite in analysis.
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The Origin of the “Diagonal Argument”

The “proof”, which is described above, was invented by Georg Cantor. Cantor
demonstrated thus in 1891 for the third time:

Theorem. There exist infinite sets which cannot be related one-to-one
to the set of natural numbers.

Cantor designed his proof slightly differently. (He took only two different digits
instead of ten as we did.—Strikingly, this proof, given for binary numbers instead
of decimal numbers, is not only not conclusive but also wrong—why exactly? And:
is it permissible to make a proof about the real numbers dependent on the mode of
their representation?)

The True Understanding of the “Diagonal Argument”

It was Bertrand Russell who unearthed the rational essence of Cantor’s proof.

The true theorem of Cantor’s proof is this:
Theorem. The number of subsets of a set is larger than the number of the
elements of this set.

Let us take an example. The given set may contain two elements, a and b:

M = { a , b } .

Then M has the following 22 = 4 subsets, first of all the empty set { } = ∅:

∅ , { a } , { b } , { a , b } .

Hence, there are more subsets than elements: 4 > 2.
Now we faithfully present Russell’s general proof of his theorem (changed,

however, are the names of the sets—which Russell calls “classes”). Like Cantor,
Russell starts with a list of subsets signified by the elements. Russell calls this list a
“one-one correlation R ”.

When a one-one correlation R is established between all the members of M and some of its
sub-classes, it may happen that a given member x is correlated with a sub-class of which it
is a member; or, again, it may happen that x is correlated with a sub-class of which it is not
a member.

We interrupt Russell and illustrate his set-theoretical construction with the help
of our example, and that twice.
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1. Illustration. The list of the correspondences of the elements and the subsets of M =
{a , b} might be

a �→ { a } , b �→ { a , b } .

Then we have for both elements a and b that they correspond to a subset
that contains them as an element.

2. Illustration. A second list might be:

a �→ ∅ , b �→ { b } .

In this case, only element b corresponds to a subset, which contains itself as
an element, but element a does not.

Now we continue with Russell’s proof.

Let us form the whole class, N say, of those members x which are correlated with sub-
classes of which they are not a member.

In our first illustration, we have N = ∅; in the second, it is N = {a}. We continue
with the proof. Now follows the decisive sentence (I give it in italics):

This is a sub-class of M , and it is not correlated with any member of M .
For taking first the members of N , each of them is (by the definition of N ) correlated

with some sub-class of which it is not a member, and is therefore not correlated with N .
Taking next the terms that are not members of N , each of them (by the definition of

N ) is correlated with some sub-class of which it is a member, and therefore again is not
correlated with N .

Thus no member of M is correlated with N .
Since R was any one-one correlation of all members with some sub-classes, it follows

that there is no correlation of all members with all sub-classes.

It is extremely impressive how a few words can express a really entangled
reasoning. Those who are able to understand this demonstration from Russell may
be pleased with their capability of abstract thought.

If you love formalism, you may write down this proof in the following manner
(usually “2M” denotes the set of all subsets of M; “M \ N” indicates the difference
of the sets M and N ):

Let R : M −→ 2M ; therefore M � x
R�−→ R x ∈ 2M .

Let N = { x | x /∈ R x } � M . Then we have for all x ∈ M : R x �= N.

Proof :
1. Let x ∈ N . Then x /∈ R x , and consequently, N �= R x (for N � x �∈ Rx) .

2. Let x ∈ M \ N . Then we have x /∈ N ; therefore, x ∈ R x , and again R x �= N .

(In both cases, an element of one set is shown,

which is missing in the other set.)

1 & 2: x ∈ M 
⇒ R x �= N , as was claimed.
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In this way, Russell established:

Theorem. 2n is always larger than n—even if n is infinite.
This implies that the infinite cardinal numbers do not have a maximum.

The Significance of the “Diagonal Argument”

That is why the so-called Diagonal Argument from Cantor is a method of proof
in set-theory. It gives the means of proving e.g. that there always exist larger
“cardinalities”, even in the infinite.

The “numbers” in set-theory are “cardinal” numbers. In analysis they do not
feature (at least not in traditional analysis, in calculus). Calculus needs “numbers
for calculations”.

Therefore, Russell’s proof that 2n > n (which holds in set-theory) does not
contradict Weierstraß’ principle that 10∞ = ∞. Quite the contrary: if one accepts
Cantor’s Diagonal Argument as permissible reasoning in analysis, you must also
accept Weierstraß’ dictum that 10∞ = ∞, for otherwise the Diagonal Argument
fails! This is explained above.

So, if you think analysis (in this sense) and set-theory as one thing, you will be convinced
that 10∞ = ∞ (in analysis) and that 2n > n for all n, including infinite numbers (in
set-theory).

Some will like this . . . But in some vague sense, this does not look altogether
consistent. Luckily, one is not forced to think in this style.

For the record: on the case of numbers used for calculating, i.e. in analysis, you
may accept the Diagonal Argument. Or you may not. In any case, it is not conclusive
there. And if you want to relate it to the facts connected to the decimal numbers (for
which it CLAIMS validity), it is even less conclusive. For we have seen:

The Diagonal Argument demands the acceptance of an argument regarding infinity,
which is invalid in any finite case.

As we know, Leibniz once argued in the same way, thereby surprising Johann
Bernoulli (p. 55).

It might cross one’s mind to interpret this argument as a proof by induction:

• Start: choose c1 �= a11.
• Inductive step: Let cn �= ann. Then choose cn+1 �= an+1,n+1.

—Finished.

An objection to this kind of reasoning is obvious: it is presupposed that the first
part of each number 0.c1c2 . . . cn formed in this way is contained in the list of the bm:
0.c1c2 . . . cn = bm′ ; of course, it is m′ > n. So what? If any first part of c is
contained in the list of the bm—why should this hold no longer for c itself?

If you do not accept the Diagonal Argument in analysis (to repeat: this is as
legitimate as is the opposite), you are accepting the validity of
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10i > i

for infinite numbers used in calculations. Finally, we shall demonstrate where this
kind of thinking will lead to.

Paradox I: Conditionally Convergent Series

Let us finish our detour into set-theory and return to analysis. There are certain
curiosities that have arisen during the last three and a half centuries that caught the
attention of some analysts.

1 − 1
2 + 1

3 − 1
4 + 1

5 − + . . . = ln 2 .

Let us now tackle some of these curiosities in more detail, using the title “para-
doxes”. The creator of this name will be uncovered later.

In order to prepare for this, we now return to Riemann. We know: Riemann is
always one for offering a surprising perspective.

A Mathematical Monstrosity: The Riemann Theorem on
Rearrangements of 1854

Riemann proved the following oddity, nowadays called the “Riemann Theorem on
Rearrangements”, in his habilitation thesis of 1854:

Theorem. If a convergent series is no longer convergent when its terms are made
positive, the terms can be rearranged in such a way that the series converges on any
arbitrarily chosen value.

The proof seems to be straightforward. One assumes a convergent series of
numbers:

∞∑

k=1

ak = s .

Infinitely many terms have the sign +, and infinitely many have the sign −. We call
the positive terms of the series b, the negative ones c:

∞∑

i=1

bi =
k=∞∑

ak>0 and
k=1

ak as well as
∞∑

i=1

ci =
k=∞∑

ak<0 and
k=1

ak .
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So we have bi > 0 as well as ci < 0. Neither of those series converges:

∞∑

i=1

bi =
k=∞∑

ak>0 and
k=1

ak = ∞ as well as
∞∑

i=1

ci =
k=∞∑

ak<0 and
k=1

ak = −∞ .

If both series had finite sums, then the series
∑ |ak| would also converge, which

contradicts our assumption. If only one of these two series converges, the initial
series could not converge. That is why none of our partial series converges.

Now Riemann’s reasoning: let D, say D > 0, be an arbitrarily given value.
Then we approach D gradually—at first from below, then from above; and so on,
alternating. That is to say, we choose the smallest number n1 with

n1∑

k=1

bk > D ; thereafter, the smallest number m1 with
n1∑

k=1

bk +
m1∑

k=1

ck < D ,

etc. The difference to D will never be more than the absolute value of the term that
is the one before the last sign change. But

∑
ak converges, and therefore, bk as well

as |ck| are decreasing with increasing k below any given quantity; and so does the
difference to D—which seems to prove all.

This theorem is a monster. Weierstraß obviously did not like it, and he indeed
mentions the notion of conditional convergence (see p. 184), but he ignores this
concept in his own analysis.

Why is this theorem a monster? Because it assumes that a mathematician is able
to decide infinitely many times AT WILL to change between the partial series of the bi

and ci back and forth. “An infinite number of arbitrary choices is an impossibility”
says Russell. Infinitely many actual decisions have nothing in common with reality.

Note: A proof may be easy, but the proven statement may be absurd.

Mitigation

A theory of infinitely many single choices in analysis certainly is an extreme. An
essential mitigation is to think about a regular change of infinitely many terms of
a series. We might have more chance of acceptance if we concentrate on regular
mathematical constructions—although Weierstraß might still have taken a different
view.

Let us take an example. We start with a series A, halve every term, add both
series term-by-term, and regain the initial series, although slightly rearranged.

We have:

A = ln 2 = 1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + 1

7 − 1
8 + − . . .
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Therefore, 1
2 ln 2 = 1

2 − 1
4 + 1

6 − 1
8 + − . . . ,

and consequently B = 3
2 ln 2 = 1 + 1

3 − 1
2 + 1

5 + 1
7 − 1

4 + + − . . .

= [rearrangement of] ln 2.

Do we have A = B, i.e. ln 2 = 3
2 ln 2?

According to Weierstraß, this conclusion is a “fallacy” (p. 177). Why?—Is the
Riemann Theorem on Rearrangements an answer?—Is this answer satisfactory?

Paradox II: Methods of Summation

For divergent series like

A = 1 − 1 + 1 − 1 + 1 − 1 + − . . .

sometimes other summation methods are in use, e.g. the so-called method of
C-1 summation:

SC1 = lim
n→∞

s1 + s2 + s3 + . . . + sn

n
.

In case of series A, the partial sums are s1 = 1; s2 = 1 − 1; s3 = 1 − 1 + 1;
s4 = 1 − 1 + 1 − 1 etc., that is:

s1 = s3 = s5 = . . . = 1 ,

s2 = s4 = s6 = . . . = 0 ,

and consequently, the terms of SC 1 are

p1 = s1
1 = 1 ,

p2 = s1+s2
2 = 1

2 ,

p3 = s1+s2+s3
3 = 2

3 ,

p4 = s1+s2+s3+s4
4 = 2

4 = 1
2 ,

p5 = s1+s2+s3+s4+s5
5 = 3

5 ,

. . .

i.e. p2n−1 = n
2n−1 ,

p2n = n
2n

= 1
2 ,

all together: SC 1 = lim
n→∞ pn = 1

2 .
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With this method, we do get:

A = 1 − 1 + 1 − 1 + 1 − 1 + − . . . = 1
2 !?

Paradox III: The Convergence of Function Series

Let us take the geometric series

s(x) = 1 − x + x2 − x3 + x4 − + . . .

The well-known way to calculate the sum s(x) is to add sn(x) and x · sn(x):

sn(x) = 1 − x + x2 − x3 + x4 − x5 + − . . . + (−1)n−1xn−1

x · sn(x) = x − x2 + x3 − x4 + x5 − + . . . + (−1)n−2xn−1 + (−1)n−1xn

(1 + x) · sn(x) = 1 + (−1)n−1xn

and sn(x) = 1+(−1)n−1xn

1+x
if x �= −1.

The consequence is

If |x| < 1 we have s(x) = lim
n→∞ sn(x) = 1

1+x
,

if x = 1 we have s(1) = 1
2 (1 − 1 + 1 − 1 + − . . . ), which does not exist.

Yet, “does not exist” is not a beautiful result of a calculation.

Paradox IV: The Term-by-Term Integration of Series

Let us take the series of functions

fn(x) = nx

1 + n2x4 with 0 � x � 1 .

As lim
n→∞

nx
1+n2x4 = 0 if 0 � x � 1 , we usually conclude for the limit n → ∞:

f (x) = lim
n→∞ fn(x) = lim

n→∞
nx

1 + n2x4
= 0 . (‡‡)
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But if xn = 1√
n

(and consequently lim
n→∞ xn = lim

n→∞
1√
n

= 0), the value of f (x) at

the value 0 = lim
n→∞

1√
n

is

lim
n→∞ fn

(
1√
n

)
= lim

n→∞
√

n

1+ n2

n2

= lim
n→∞

√
n

2 = ∞ !

We remember: in these cases Cauchy concludes ∞ to be a value of the function
f (x) at the value x = 0 (p. 124). However, present-day analysis handles things
differently and demands:

f (0) = lim
n→∞ fn(0) = lim

n→∞
n · 0

1 + n2 · 0
= 0

1
= 0 ,

unambiguous and crystal-clear.
If we have, following ‡‡, f (x) = 0 for all 0 � x � 1, integration is easy:

1∫

0

f (x) dx =
1∫

0

0 · dx = 0 .

But let us integrate term-by-term:

1∫

0

fn(x) dx =
1∫

0

nx

1 + n2x4
dx .

Substituting z = nx2 gives dz = 2nx dx and we arrive at

= 1
2 ·

n∫

0

dz

1 + z2 = 1
2 · arctan z

z=n

z=0
= 1

2 · arctan n .

With the help of f (x) = lim fn(x), we conclude

∫ 1

0
f (x) dx = lim

n→∞

∫ 1

0
fn(x) dx = lim

n→∞
1
2 · arctan n = π

4 .

This contradicts the previous result. Consequently, the first equality in the last line
is wrong—the others being indubitable. So, for this series, it is not possible to
interchange integration and limit.

Conclusion: We need a theorem to tell us, in which cases the interchange
of integration and limit is allowed. Naturally, it would be more attractive if the
calculation itself would make the problem visible. Some analysts enjoy calculating
more than hunting for theorems that allow them to calculate.
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Is an Analysis Without Those Paradoxes Possible?

A Source from the Years 1948–53

Curt Schmieden (1905–91) was an eminent mathematician. In 1934, he became a
professor at the Technical University of Darmstadt, where he was awarded a chair
in mathematics in 1937, and in 1957/58 he was the rector of this university. In a
manuscript dating from 1948–53, Schmieden commented on examples of this kind
(ALL emphases added):

Such examples could be given endlessly; the deeper one penetrates into mathematics, the
more such paradoxes emerge—even if one completely disregards set-theory.

The most thrilling aspect of this kind of mathematics is that in spite of those paradoxes
one always arrives at a “true” result for each concrete problem. Consequently, it does
not surprise that some mathematicians decide at some point that the naive intuition about
infinity does no longer suffice in some way or other, whereas working along definite rules in
regard to infinity makes it possible to tame those quantities.

Nevertheless, there remains a feeling of discomfort. Also the question remains,
WHETHER IT IS NOT POSSIBLE AFTER ALL TO CONSTRUCT ANALYSIS IN SUCH A

WAY THAT IT WORKS ALONGSIDE FIXED RULES AS IT HAS BEEN DOING SO FAR, AND

THIS IN SUCH A WAY THAT the kinds of aforementioned PARADOXES DO NOT EMERGE.
Thus our naive intuition which according to Goethe, more often than not wishes “to
represent the infinite with the help of the finite” [1], would be granted.

Schmieden, being “fully aware of the imperfections of this attempt” stated some
foundational principles along those lines. Among them was the following that is
obviously inspired by Johann Bernoulli and Euler but which also surpasses both
conceptually:

Reason forcibly demands that there must exist infinitely large numbers, which can only be
meaningfully defined as follows:

An infinitely large natural number is a natural number, which cannot be
grasped by an unlimited continuation of the process of counting, for counting
is necessarily bound to the degree of finiteness.

Consequently, to arrive at such a “number”, it requires, figuratively speaking, a jump, or
as a metaphor: infinitely large numbers form the “horizon of finiteness”.

The idea is:

If we conceive an infinitely large number called � (capital omega), reached by such
a jump, obviously nothing speaks against but everything for it that we are allowed
to calculate with such a “number” in just the same way as with a usual number.

Basically, Johann Bernoulli and Euler had shared this opinion. A little later Schmieden gives
the following definition:

ω = 1
�

(small omega) is an infinitely small number which is smaller than each
positive rational number and which is defined by the level of finite numbers. (ω is
a “zero number”.)

1 This is the exact translation of Goethe’s words.
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In the same way as for any infinitely large number, there exists one of a larger order[2],
and there exists for any zero number one of a smaller order[2].

Therefore, our ordinary zero known from conventional analysis is only allowed to be
used as another notation of the identity a ≡ a.

The latter would have pleased Frege (p. 195), and Weierstraß, too, would have
given his approval in regard to such precision in relation to equality.

Finally, there is Schmieden’s foundational equation:

We define

lim
n→∞ n = � ;

each other limit has to be related to this expression.

(The sign “∞” is not a good choice here and should have been avoided
altogether.)

It is fairly evident that it is possible to construct from infinitely large natural
numbers suitable rational numbers, e.g. 1

�
or 1 + 1

�
etc. The essential question is:

Is this enough for analysis? After all, we now have “infinitely near” numbers, and
this also in the neighbourhood of each rational number. In Schmieden’s words:

Around each ordinary rational number there exists an ω-sphere which does not include any
other ordinary rational number, but which already contains infinitely many rational numbers
of the second class [i.e. level] in the lowest ω-level.

With the help of the enlarged notion of rational numbers, which inevitably follows from
the introduction of �, we reach the seemingly paradoxical result that analysis, if founded
on �-numbers, gets along with these [�-]rational numbers, and even more—that no other
numbers can occur, because each number defined via the usual limit arises in our system as
an �-rational number.

Here we have the essence of Schmieden’s idea: instead of the real numbers
(following Müller or Bertrand or Cantor or Dedekind), we take “�-rational”

numbers, e.g. q ± 1
�

or q ± 5�2−7�+3
�3− 3

4
, etc. These can be used in calculations in the

usual manner. The “�-rational” numbers should be enough because—as we know
since Euler—analysis consists essentially of calculations, especially of calculations
with the infinite.

Schmieden Dissolves the Paradoxes

It was the aim of Schmieden to dissolve such “paradoxes” as shown above with the
help of more precise calculations—i.e. with his �-numbers. Schmieden states:

We especially inspect those instances where analysis puts up signs with the warning: here
it is forbidden to calculate as in the finite case!

In what follows, representative examples of his method are shown.

2 emphases added
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Resolving paradox I (p. 227).

Take the series

ln 2 = 1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + 1

7 − 1
8 + − . . .

Schmieden now takes care in regard to the infinite (“+ − . . .”) and calculates
precisely:

ln 2 =
�∑

n=1

(−1)n−1

n
= 1 − 1

2 + 1
3 − 1

4 + 1
5 − 1

6 + 1
7 − 1

8 + − . . . + 1
�−1 − 1

�
=: A .

Here � is assumed to be even. But careful: “+ − . . .” has different meanings in the
last two lines of formulae. (a) In the first line, “+−. . .” indicates “and so on” without
last term. (b) In the second line, “+− . . .” marks a gap, like in 1+ 1

2 + 1
4 + . . .+ 1

2n .
Now Schmieden rearranges the series A and supposes that � divided by 4 leaves

no remainder. (Why not? If it is useful! At a pinch, make �′ = 4�.) He then realizes
the sum formula of the rearranged series:

�/4∑

n=1

(
1

4n−3 + 1
4n−1 − 2

4n

)
= 1+ 1

3 − 1
2 + 1

5 + 1
7 − 1

4 ++−. . .+ 1
�−3 + 1

�−1 − 1
�/2

=: B .

We see:

It is true, A and B have the same positive terms (all odd denominators, including � − 1),
but the second half of the negative terms of A (even denominators) are missing in B, up to
�:

− 1
�/2 + 2

− 1
�/2 + 4

− 1
�/2 + 6

− . . . − 1

�
= −

�/2∑

n= �
4 +1

1
2n

=: −C ,

and we have

A = B − C .

There you are! That is why we have B > A!

B is not at all a rearrangement of A, for it has infinitely fewer (negative) terms.

Schmieden even calculates the value of this difference C. This he does by
integration—using the fact that in case of a continuous function and an infinitely
small interval the estimated value of the area under this function only differs from
the integral by an infinitely small amount. We denote this just like we did in the case



Is an Analysis Without Those Paradoxes Possible? 229

of Johann Bernoulli (p. 62) with ≈ and observe that ω = 1
�

is infinitely small. We
are going to calculate

C =
�/2∑

n= �
4 +1

1
2n

· ω
ω

.

Schmieden defines z = 2nω, consequently dz = 2ω (as n always grows by 1),
and therefore ω

2nω
= 1

2
dz
z

. But 1
2nω

is continuous (in the sense of ε-δ). Lower limit:

z = 2nω = 2
(

�
4 + 1

) · ω = 1
2 + 2ω, upper limit: z = 2nω = 2

(
�
2

) · ω = 1, and
therefore:

C ≈ 1
2 ·

1∫

z= 1
2 +2ω

dz
z

≈ 1
2 · (ln 1 − ln 1

2 ) = 1
2 (ln 1 − ln 1 + ln 2) = 1

2 ln 2 .

So we get in fact

B − C ≈ 3
2 ln 2 − 1

2 ln 2 = ln 2 = A

resp. A − B = −C ≈ − 1
2 ln 2 ,

as we expected. Nothing of the kind 3
2 ln 2 = ln 2!

We record:

The investigation of regular “rearrangements” of conditionally convergent series leads
to comparable results: seemingly paradoxical equations of conventional analysis are
explained in calculations with �-numbers through the omission of infinitely many
terms with a finite sum.

Besides, the concept of “conditional” (i.e. not “absolute”) convergence is
dispensable. Instead, all series are treated equally, like finite sums. (This would have
pleased Weierstraß.)

Interestingly, in their publication from 1958, Schmieden and Laugwitz hint
at the fact that “nevertheless, the difference between absolute and conditional
convergence remains important for technical calculations, insofar as absolutely
convergent series do allow arbitrary rearrangements without further considerations”.
Obviously, this sentence is a concession by the authors and is probably due to the
pressure exerted by the editors of the journal—because essentially it contradicts the
foundational view of the authors: in their way of precisely calculating, all series are
treated equally.

Resolving paradox II (p. 223).

Schmieden considers the C-1 Summation of the series

A = 1 − 1 + 1 − 1 + 1 − 1 + − . . .
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from p. 223. There we examined the expression

SC 1 = lim
n→∞

s1 + s2 + s3 + . . . + sn

n
.

Schmieden presents this series more conveniently via � instead of lim and ∞:

AC 1 = s1 + s2 + s3 + . . . + s�

�
.

This fraction he writes down in more detail. Thereby he pays attention to the
following: (i) The first 1 of series A is included in all partial sums sk; this amounts
to the first term being �

�
. (ii) The second 1 of series A is only included in � − 1 of

the partial sums sk (i.e. not in s1); this gives the second term as �−1
�

; etc.

AC 1 = �
�

− �−1
�

+ �−2
�

− + . . . + (−1)�
�−(�−2)

�
+ (−1)�+1

�

= 1 − (1 − ω) + (1 − 2ω) − + . . . + (−1)� · 2ω + (−1)�+1 · 1ω

He then considers the difference of A − AC 1 step-by-step, going from term to
term, as follows:

A − AC 1 = 0︸︷︷︸
0

−ω

︸ ︷︷ ︸
−ω

+2ω

︸ ︷︷ ︸
ω

−3ω

︸ ︷︷ ︸
−2ω

+4ω

︸ ︷︷ ︸
2ω

. . .

︸ ︷︷ ︸
...

+(−1)�+1(−ω)

︸ ︷︷ ︸

=
{

−�
2 ω = − 1

2 if � even, then A = 0

+�−1
2 ω ≈ + 1

2 if � odd, then A = 1 .

All this is very accurate. Note the sum A has the value 1
2 , but we have AC 1 = − 1

2
if � is even, if not we have AC 1 ≈ 1

2 . The sum A ALWAYS has one of the values 1
or 0.—No paradox whatsoever.

The following question presents itself:

What constitutes the sumAC 1 really?

Schmieden just calculates. For the general

A = a0 + a1 + a2 + . . . + a�−1
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he takes, as we have already seen,

AC 1 = 1
�

�−1∑

n=0

sn = 1
�

(�a0 + (� − 1)a1 + (� − 2)a2 + . . . + (� − (� − 1))a�−1) .

Especially, if

A(x) = 1 + x + x2 + . . . + x�−1,

he substitutes an = xn and gets

AC 1(x) = 1
�

�−1∑

n=0

sn = 1
�

(
� · 1 + (� − 1)x + (� − 2)x2 + . . . + (� − (� − 1))x�−1

)

= 1 − x(1 − ω) + x2(1 − 2ω) − + . . . + (−1)�−1x�−1(1 − (1 − �)ω)

=
�−1∑

n=0

(−1)nxn + ω

�−1∑

n=0

(−1)n+1nxn

= s�(x) + ω

�−1∑

n=0

(−1)n+1nxn .

Therefore, we have

s�(x) − AC 1(x) = ω

�−1∑

n=0

(−1)nnxn = K .

K generates the convergence of s�(x) to AC 1(x), but only in the infinite: As the
factor ω in K shows, a finite number of terms of K will have sum ≈ 0.

Resolving paradox III (p. 224).

From the formula

sn(x) = 1 + (−1)n−1xn

1 + x
if x �= −1 ,

Schmieden directly concludes

s�(x) = 1
1+x

(
1 + (−1)�−1x�

)
. (§§)

1. If |x| < 1 and |x| �≈ 1, we get x� ≈ 0, and consequently,

s�(x) ≈ 1
1+x

.
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2. If x = 1 , we get for an even or odd number � of terms:

s�(1) = 1
2

(
1 + (−1)�−1

) =
{

1 if � is odd

0 if � is even.

3. If x < 1 and x ≈ 1, the tricky x� is calculated by means of a trick. Like Euler,
Schmieden takes for ν > 0:

x := 1 − ξων

where ξ is finite and positive. He gets (remember from p. 77: instead of
lim

n→∞
(
1 + x

n

)n = ex , Schmieden has of course (1 + ωx)� ≈ ex) with the help

of the following subsidiary calculation:

x� = (
1 − ξων

)� =
(

1 − ω · ξων−1
)� ≈ e−ξων−1

⎧
⎪⎪⎨

⎪⎪⎩

≈ 1 if ν > 1 ,

= e−ξ if ν = 1 ,

≈ 0 if ν < 1 ,

and finally for §§ (as 1 + x ≈ 2), the result

s�(x) ≈

⎧
⎪⎪⎨

⎪⎪⎩

1
2

(
1 + (−1)�−1

)
if ν > 1 ,

1
2

(
1 + (−1)�−1e−ξ

)
if ν = 1 ,

1
2 if 0 < ν < 1 .

The case |x| > 1 is judged by Schmieden as being “nonsensical” (Fig. 14.1).

Fig. 14.1 The function s�(x) = 1 − x + x2 − + . . . in [0, 1], at right for x
<≈ 1
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Everything is exactly explained: if ν = 1 and:

(i) � is odd, the function s�(x) increases from the value 1
2 near x = 1 as

e-function 1
2

(
1 + e−ξ

)
up to the value 1 for x = 1 (i.e. up to ξ = 0).

(ii) � is even, the function decreases from the value 1
2 near x = 1 as

e-function 1
2

(
1 − e−ξ

)
up to the value 0 for x = 1.

In other words: depending on whether � is odd or even, the value of the function
near x = 1 decreases from 1

2 to 0 or increases from 1
2 to 1. This is by no means

indeterminate! Of course, some calculation is needed—in mathematics, you do not
get anything without work. The distinction between � being odd or even shows the
different possibilities of the results of your calculation.

Resolving paradox IV (p. 224).

Only Eq. ‡‡ is thorny. Schmieden considers yet again the details and studies

f�(x) = �x

1 + �2x4 .

As before, he takes x = ξων and gets

f�

(
ξων

) = ξων−1

1 + ξ4ω4ν−2
= ξ�1−ν

1 + ξ4�2−4ν
≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ν > 1 ,

ξ if ν = 1 ,

ξ−3�α , (0 < α < 2) , if 1
3 < ν < 1,

as ξ�1−ν

1+ξ4�2−4ν ∼ �1−ν−2+4ν

= �3ν−1

ξ−3 if ν = 1
3 ,

0 if 0 < ν < 1
3 .

Therefore near 0 in the case 1
3 � ν � 1, we unambiguously obtain

f� �= f !

Schmieden also deals with delta-functions (indeed, if you know �-numbers,
you have true delta-functions!). This would lead us astray, but one example of an
elementary delta-function will nevertheless be shown below.

The First Formal Version of a Nonstandard-Analysis in the
Year 1958

In 1954, the then young Detlef Laugwitz (1932–2000) was handed a manuscript
by Carl Friedrich von Weizsäcker (1912–2007) to report on it in his seminar in
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Göttingen. After Laugwitz’ affirmative reaction to it, Weizsäcker brought him into
contact with the author Curt Schmieden. This was the beginning of a very fruitful
cooperation, and in 1962, at the age of 29, Laugwitz took up a position as chair in
mathematics at the University of Darmstadt.

Four years earlier, in 1958, and after some quarrels behind the scenes, the
renowned journal Mathematische Zeitschrift had published an article by Schmieden
and Laugwitz in its volume 69. Later it turned out to be the first publication in a
field nowadays called “nonstandard-analysis”.

In it, the two authors expressively emphasize that:

It should be noticed that not only a rebuilding or a mere modification of the conventional
analysis emerges here, but that a true enlargement is also produced.

Right at the start, they showed that their new analysis incorporates the species of
Dirac’s delta-functions as true “functions”, without the necessity of modifying the
notion of a function. As an example of a delta-function, they presented

δ(x) = 1

π
· �

1 + �2x2
.

The typical features of a delta-function are easily confirmed: δ(x) ≈ 0, except when

x ≈ 0—where δ(x) is infinitely large, and
+∞∫
−∞

δ(x) dx = 1.

The Foundation in the Year 1958

Laugwitz formulated some of Schmieden’s principal ideas in the language of the
then fashionable algebra. He referred to the definitions of Cantor. Cantor had
defined convergent sequences of rational numbers as novel numbers, and he had
named these sequences “limits” (p. 191). The duo Schmieden/Laugwitz proposed
to take the totality of sequences of rational numbers and to define EACH of these
sequences as an individual “number”—independent of their convergence, just: all
these sequences! As a name for the sequences, they chose “Limit” (as Cantor did,
but with a capital “L” as a distinction) as well as “�-number”.

(an)n = a� = Lim
n=�

an ,

especially (n)n = �, ( 1
n
)n = ω and also ((−1)n)n = (−1)� .

That is to say, Schmieden’s “jump” from the process of counting 1, 2, 3, . . .
to � (see p. 226) now obtains as its final destination the complete sequence � =
(n)n! Even this divergent sequence defines an �-number, of course an infinitely
large one.

The preceding number to �, i.e. �−1, is the sequence (n−1)n = (0, 1, 2, 3, . . .);
its successor, i.e. � + 1, is the sequence (2, 3, 4, . . .), etc.



Is an Analysis Without Those Paradoxes Possible? 235

The discombobulating facts in favour of conventional analysis (that the new
numbers comprise zero divisors and therefore do not constitute a field—and
consequently division is not always possible—as well as the missing of their “total
order”) were clearly articulated in this chapter, but not a single word of valuation
was added.

For example, we have

(0, 1, 0, 1, 0, 1, . . .) · (1, 0, 1, 0, 1, 0, . . .) = 0 ,

although neither factor being 0 = (0, 0, 0, . . .). And, moreover, we are not able to
call one of these two factors greater than the other—although obviously they are
different.

Further Peculiarities of the New Analysis in the Year 1958

The authors also clearly identified those facts that appear in this new “enlargement”
of analysis differently from in conventional analysis:

• There are three different equivalence relations as orders of magnitude:
1. “finitely equal”, 2. “having the same magnitude” and 3. “having the same
order of magnitude”.

• Some theorems are stated and proved, which are wrong in conventional
analysis but true in the new enlargement.

1. Every limit exists. This is just the new definition of “number”.
In detail (in the case of sequences of �-numbers, we write their “index”
above): The limit of a sequence of �-numbers (a

(p)
� )p is defined for each

“positive integer” as well as for each “infinitely large” �-number g�, i.e.
g� = (gn)n where gn > gk > 0 if n > k. The limit

Lim
p=g�

a
(p)
� = a

(g�)
� = b�

is defined as the sequence of components

bn = a
(gn)
n ,

i.e. by the “diagonal sequence” defined from the sequence (a
(p)
� )p of �-

numbers a
(p)
� .—Examples: (a) In case of the constant sequence a� =(

1
n

)

n
= ω, we have lim

p=�
a

(p)
� =

(
1
n

)

n
= a� = ω, as it should be;

and lim
p=2�

a
(p)
� =

(
1

2n

)

n
= 1

2ω. (b) The sequence b
(p)
� with the pth term
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b
(p)
� =

(
1

p·n
)

n
is lim

p=�
b

(p)
� =

(
1

n·n
)

n
= 1

�·� = ω2 and lim
p=2�

b
(p)
� =

(
1

2n·n
)

n
= 1

2�·� = 1
2ω2—right?

2. Any two limits are interchangeable. The essential reason for this is that
limits are only indicated but not calculated.
In detail: Given a double sequence (a

p,q
� )p,q of �-numbers a

gn,hn

� , the limit

is given by the sequence of the components a
gn,hn
n .

Example:

ap,q = 1

1 + p
q

.

(The given �-numbers are constant sequences of rational numbers with the
constant components 1

1+p/q
.)

Conventionally, we have

lim
q→∞ lim

p→∞ ap,q = 0 , but lim
p→∞ lim

q→∞ ap,q = 1 .

However, for �-numbers, independently from the order, we have

Lim
p=g�
q=h�

ap,q = 1

1 + g�

h�

.

If you choose p = g� (conventionally: p → ∞) for taking the first limit,
you obtain

1
1+ g�

q

,

i.e. an infinitely small number for each finite q = 1, 2, 3, . . . Yet, if you
then choose for the other limit h� = g�, you nevertheless get the finite
value

1
1+ g�

h�

= 1
1+ g�

g�

= 1
1+1 = 1

2 ,

which says that the infinitely many small numbers 1
1+ g�

q

nevertheless have

a finite limit of the value 1
2 .

3. Divergent series are of equal rank to the others, as in the new version of
analysis the calculations are the same: in the finite and in the infinite.
As an example, the famous series:

�∑

p=1

1

p(p + 1)
=

�∑

p=1

(
1

p
− 1

p + 1

)
=

�∑

p=1

1

p
−

�+1∑

p=2

1

p
= 1 − 1

� + 1
≈ 1 .
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A convergent series on the left is split into the difference of two divergent
series, and then this difference is calculated to be a finite value. Conven-
tionally, an absolute no-go!

4. The limit function of a sequence of continuous functions is continuous. The
authors’ comment: “This theorem has no simple analogy in conventional
analysis”. There is no reference made to the “Cauchy Sum Theorem”
(p. 138). As an example, the sequence of functions xn, for the closed
interval 0 � x � 1, is given (already treated above on p. 140).

• The Weierstraß Approximation Theorem was also obtained for the new version
of analysis.

• Differentiation and integration were briefly mentioned. However, a “differ-
entiable” function does not need to have a derivative for each value! (“The
‘derivative’ might be ‘irrational’”.)

• The Mean Value Theorem is proved (for “normal” functions).

Naturally, the notion of “function” is precarious. Of course, complete freedom in
the sense of Bolzano (p. 111) could not be permitted. After all the starting point of
Schmieden/Laugwitz is conventional analysis (which they call “usual”)—and not a
completely new, extravagant shape of analysis. That is why they restrict themselves
to such functions that are “already completely defined, if their values are given for
the rational numbers of the domain”. Sensibly, the description of the values of the
function has to be given in a standardized mathematical language.

Finale

Curt Schmieden was a practitioner of calculating. As a consequence, he had the idea
of practicing analysis by calculating: no complicated general theorems that state
the rules of calculation or rule out certain techniques of calculation—just calculate
and, besides, treat the infinite (i.e. the specifically analytical) in just the same way
as the finite. (He expressed it this way: “calculating analysis”.) The result of the
calculation has to be assessed according to the requirements of the problem at the
end of that calculation.

That this is permissible was shown to him by his calculations (“exactly as in
the finite”—what should be wrong with this?) as well as by his results. To anchor
his technique of “Omega Analysis”—an enlarged version of “Value Analysis”—
reliably within the current foundational principles of mathematics, he left to others.

His enthusiastic colleague and co-worker Detlef Laugwitz gained credit for his
precise algebraic foundation of Schmieden’s ideas. This was first published in the
most general version in an article from 1958, which was signed by both of them.

In 1978, Laugwitz published a stronger algebraic construction, developed from
Schmieden’s essential ideas, and in 1986, he presented a new version, which
incorporates some features of formal logic.
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Laugwitz was always aware that Schmieden’s �-numbers are not a field because
one cannot divide by all non-zero numbers. This seemed to be a problem, especially
at a time, when all mathematics was dominated by Nicolas Bourbaki’s idea of
structure. Subsequently, in 1978, Laugwitz constructed, following others, a field
∗K by algebraic means. Later, in 1986, Laugwitz pretended to, but did not clearly
define a set �K with �-numbers. Instead of defining this, he changed to a formal
language and developed a theory where “the rules of an ordered field” are valid.

These attempts to represent Schmieden’s ideas within the actual methodology of
calculus could not do justice to Schmieden’s fundamental concerns. In a field that
includes �-numbers, it must be settled, whether �/2 is a natural number or not. The
mathematician might lack the means to decide which it is—but it will definitely be
one of the two. But this does not fit to Schmieden’s essential idea. Schmieden really
left open both possibilities—and if it were necessary, he distinguished both cases.
Methodical stipulations of this kind—even more if they were bound to be unknown
in every detail—were surely not his aim.

Foundational Problems

This first publication of a nonstandard analysis by these two men was soon followed
by versions from other authors.

The first was by Abraham Robinson (1918–74), a model theorist who also coined
the name “nonstandard-analysis”. This approach to nonstandard analysis requires
the knowledge of logics as a precondition to deal with continuous functions.

Willem A. J. Luxemburg (1929–2018) confined himself to algebraic construc-
tions, essentially relying on ultra-filters for his definition of a field with “infinite”
numbers.

In 1977, Edward Nelson (1932–2014) published a first axiom system for non-
standard analysis. Other versions followed.

This means that another mathematical theory (logics, universal algebra) is
always needed to provide nonstandard analysis with suitable “numbers”. This is
not satisfactory and is also a severe obstacle for an easy acceptance of this novel
approach to analysis, unless you simply confine yourself to an axiom system.

Axiomatics

When inspecting the actual textbooks of analysis, it appears that there is no adequate
consideration paid to the foundations. Generally, the real numbers are not introduced
constructively, as was taught by Müller, Bertrand and Dedekind or by Cantor and
Heine, but instead, following Hilbert, axiomatically. This helps to save time.
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Well, possibly, this fits excellently to the new role of mathematics as a security
police for all sciences, which was promulgated by Hilbert in 1917 (p. 209) in order to
teach the unconditional (at least provisional) acceptance of arbitrary axiom systems
detached from any informal substantial justifications.

If it is so, there is then no argument to be put forward against the idea of
taking an axiom system for nonstandard numbers (today usually called “hyper-
real numbers”)—possibly apart from the fact that the elaboration of a nonstandard
analysis differs in some respects from standard analysis. (This has been shown
with the help of some “paradoxes” as well as generalized: see from p. 235.) This
challenges one’s independent thought as well as impedes the usage of textbooks:
you always have to check which version of analysis the chosen author likes.
Standardization of the curriculum facilitates lecturing, especially if many students
have to be educated. In small circles of specialists, subtle discussions will be eased.

A Path to Independency

Schmieden’s intention had been to rescue conventional analysis from its “para-
doxes” as well as to give it a better form: fewer theorems, more computations.

An opposite development started in the 1980s. It continued for some decades in
small circles. Under the (for the laymen astonishing) title “constructive nonstandard-
analysis”, the theory was developed further as a special field in its own right in which
more advanced methods (like sheafs and topoi) were implemented. This leads to a
departure from the first origins of nonstandard analysis as well as from classical
calculus, but it undoubtedly created some marvellous mathematics.

After the discovery of Weierstraß’ construction of the real numbers in 2016, it
may well be possible to develop a new kind of approach to nonstandard analysis.

Nonstandard-Analysis and the History of Analysis

Not Schmieden and Laugwitz, but Robinson was the one who immediately started to
relate the new theory to historical texts. The theorem nowadays called the “Cauchy
Sum Theorem” (p. 138) came up fairly early for discussion. In his book from 1963,
Robinson gave an interpretation of Cauchy’s writings. His result was: Cauchy’s
theorem is correct if we add one of the two additional assumptions: (a) the series is
uniformly convergent or (b) the family (sn(x))n of partial sums is equicontinuous in
the interval.

Robinson’s idea of translating historical mathematical texts into the
language of Nonstandard-analysis impressed the philosopher of science Imre
Lakatos (1922–74). In a lecture, which appeared in print only after his death,
he claimed that “Cauchy’s theorem was true and his proof as correct as an informal
proof can be”. According to Lakatos, the Cauchy Sum Theorem does therefore
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not need any additional assumptions to gain validity. Thus Lakatos contradicted
Robinson.—The further development (i.e. that Lakatos was right in quite another
sense from what he thought) was traced on pp. 130f.

A Satisfying Finish

It was the aim of my dissertation of 1981 to substantiate Lakatos’ thesis. In contrast
to him, I based my arguments on the Darmstadt version of Nonstandard-analysis.
Today I am aware that my approach (see p. 132) was mistaken.

My doctor father Laugwitz was intrigued by my work, and it inspired him to
undertake his own detailed studies of former analysts, esp. of Cauchy’s works,
thereby producing quite a few articles on the topic.

My studies of Bolzano’s mathematics, which started in 1986, showed me the
inadequacy of Lakatos’ methodology in regard to the understanding of historical
mathematical writings. As a consequence, I had to change my approach. In winter
1990, I turned again to the study of Cauchy’s analysis, this time from a new
perspective. Prof Dr Laugwitz tried to hinder my work with a maximum of vigour.
After he failed, I lost his favour and consequently all local academic support (and
sadly, more than that). The Darmstadt University showed itself incapable of an
unbiased clarification of this issue until today.

If Prof Dr Laugwitz had been factually successful at his time (not only institu-
tionally), this book could not have been written.
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