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Abstract. Transformers have achieved great success in many NLP
tasks. The self-attention mechanism of Transformer learns powerful rep-
resentation by conducting token-level pairwise interactions within the
input sequence. In this paper, we propose a novel entity matching frame-
work named GTA. GTA enhances Transformer for relational data repre-
sentation by injecting additional hybrid matching knowledge. The hybrid
matching knowledge is obtained via graph contrastive learning on a
designed hybrid matching graph, in which the dual-level matching and
multiple granularity interactions are modeled. In this way, GTA utilizes
the prelearned knowledge of both hybrid matching and language model-
ing. This effectively empowers Transformer to understand the structural
features of relational data when performing entity matching. Extensive
experiments on open datasets show that GTA effectively enhances Trans-
former for relational data representation and outperforms state-of-the-art
entity matching frameworks.

Keywords: Entity matching · Transformer · Pretrained language
model · Hybrid matching graph · Graph contrastive learning

1 Introduction

Entity matching (EM), also known as entity resolution and record linkage, aims
to identify records referring to the same real-world entity. Served as a long-
standing critical problem [5] in data integration [9,24] and data cleaning [1], EM
has been studied for many years [11] in plenty of fields such as e-commerce, med-
ical treatment, etc. Recently, deep learning technologies achieved great success
in database research, and have been a common way to solve EM tasks.

Figure 1 shows an example of EM tasks. Given a candidate record pair, the
goal of EM is to determine whether they are referring to the same real-world
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Fig. 1. An example of EM tasks. Records r1 and r2 can be seen as a matching
pair according to dual levels—attribute level (title, manufacturer) and token level
(microsoft, word, 2004, etc.).

entity. Due to the inherent hierarchical structure of the relational records, r1 and
r2 can be compared at two levels—attribute level and token level. All the neural
matching information between attribute values (e.g., values of title and man-
ufacturer) and tokens (e.g., microsoft, word, 2004 ) jointly determines whether
they match or not. Although the two values of attribute title are not exactly
the same, the same attribute-aligned tokens (e.g., word, 2004, mac, etc.) and
attribute-unaligned tokens (e.g., microsoft in attribute title and manufacturer),
as well as the same values of aligned attributes (e.g., manufacturer), provide
enough matching signals for the final result.

Depending on the level of comparisons, existing EM works can be divided into
three categories: attribute-centric, token-centric, and hybrid-centric. Attribute-
centric solutions [12,27] usually follow an alignment-comparison-summarization
paradigm. They compare the aligned attributes and aggregate the similarity
vectors to form the input to a binary classifier. However, these methods may fall
flat when encountering situation like schema heterogeneity (e.g., attributes price
and version in Fig. 1), which is a widespread scenario in real-world applications.
Thus, recent works are mainly token-centric [22] or hybrid-centric [15,32,33],
which additionally consider token-level matching information to provide EM
signals.

Recently, Transformer-based works [2,23,34] have made great progress in
EM tasks. They are token-centric solutions that cast EM as a sequence pair
classification problem to leverage the pretrained language models (Pretrained
LMs or PLMs) like BERT [8], RoBERTa [25] and DistilBERT [30], etc. By
representing the candidate record pairs using BERT’s [CLS] RECORD1 [SEP]
RECORD2 [SEP] input schema, they conduct token-level comparisons between
the two records via self-attention mechanism. However, vanilla Transformer is
not quite suitable for EM tasks, for the reasons that (1) self-attention mecha-
nism is originally designed for the semantic interaction of token level, and (2)
the masked language model (MLM) training objective concerns on token-level
prediction1. These two properties determine that Transformer is good at token-

1 RoBERTa has proved that removing next sentence prediction (NSP) training objec-
tive can improve downstream task performance.
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level interaction and less capable of relational data representation, especially for
the scenarios in Fig. 1. Since different levels (i.e., attribute and token) contain
various abstractions of knowledge [32], relational data’s hierarchical feature is
important and indispensable in EM tasks.

In this paper, our goal is to overcome the vanilla Transformer’s insufficiency
for relational data representation by injecting additional hybrid matching knowl-
edge. The modified Transformer is adapted to regard input entries as relational
records rather than natural language sentences to perform EM tasks. Thus, the
key issues in this paper we need to solve are (1) how to obtain hybrid match-
ing knowledge, i.e., Record-Token-Record (R-T-R) and Record-Attribute-Record
(R-A-R), and embed the learned knowledge into representations of attributes
and tokens, and (2) how to inject the above hybrid matching knowledge into
Transformer for downstream EM tasks. Following this insight, we propose GTA,
a novel EM framework that comprehensively integrates the hybrid matching
knowledge of relational data and the tremendous language knowledge of pre-
trained LM. GTA is a Graph-Transformer-Assembled architecture, which con-
sists of two parts, namely Graph-based Hybrid Embedding (GHE for short)
module and Adaptive Transformer-based Matching (ATM for short) module.
The GHE module models both attribute-level and token-level matching into the
graph topology, and then employs graph contrastive learning [26] to encode struc-
tural features into the embeddings of attributes and tokens. And then, the ATM
module modifies Transformer’s input format and embedding layer to absorb the
prelearned knowledge in GHE module. In this way, the input embeddings of
Transformer are structure-aware, which is to the benefit of the fine-tuning pro-
cess of the pretrained LM for EM tasks.

The main contributions can be summarized as follows:

• We propose GTA, a novel EM framework that empowers Transformer with
hybrid matching knowledge. GTA is a Graph-Transformer-Assembled archi-
tecture, which consists of GHE module for feature learning and ATM module
for Transformer’s fine-tuning for EM tasks.

• In GHE module, we model the hybrid matching (i.e., Record-Attribute-
Record, Record-Token-Record) on the graph topology, ensuring the inter-
actions between multiple granularities (i.e., Attribute-Attribute, Attribute-
Token, Token-Token) simultaneously. We then design graph contrastive learn-
ing as a pretext task to conduct neural message passing to obtain structure-
aware embeddings for attributes and tokens.

• In ATM module, we modify Transformer in two places—input format adap-
tation and prelearned knowledge injection, enabling Transformer to regard
input entries as relational records rather than natural language sentences to
perform EM tasks.

• We conduct extensive experiments on structured and dirty datasets and
demonstrate that our proposed GTA framework effectively improves Trans-
former’s representation for relational data, and outperforms state-of-the-art
EM methods.
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2 Related Work

Entity matching has attracted a lot of attention. Existing works can be clas-
sified into rule-based EM [7,13,31,37], crowdsourcing-based EM [16,18,36] and
learning-based EM [3,12,15,20,23,27,33,34]. Learning-based EM has achieved
great success recently. We then briefly introduce them according to the tech-
nologies (ML, DL, Transformer) they use.

Magellan [20] is a classical non-neural EM system based on machine learning
(ML), which provides a variety of classifiers (decision tree, random forest, and
SVM, etc.) to be trained on automatically generated features for EM. The tools
it provides can significantly accelerate the entire EM pipeline.

With the rapid development of deep learning (DL) and its success in NLP,
researchers introduce DL technologies into EM tasks to compare and aggregate
information of relational data. DeepER [12] is one of the earliest methods to
adopt word embeddings and LSTM neural networks to train an EM model.
DeepMatcher [27] designs a space for DL-based EM, and proves that DL outper-
forms ML-based solutions on textual and dirty data. MCA [38] is an integrated
multi-context attention framework for EM tasks that considers self-attention,
pair-attention, and global-attention for three types of context. Both HierMatcher
[15] and HAN [33] are end-to-end solutions for EM, which consider hybrid match-
ing information (token and attribute levels). The difference is that HierMatcher
performs token-level and attribute-level matching successively, and HAN solves
the two in a two-tower mode.

Graph Neural Networks (GNNs) attract great attention due to their success
in learning structural features in a lot of areas [14,17,29], thus recent works
introduce GNNs to EM tasks. EMBDI [3] is a generic framework for obtaining
local embeddings for data integration tasks, which leverages a compact tripartite
graph to represent syntactic and semantic relationships between cell values. Gra-
phER [22] encodes the semantic and structural features into an Entity Record
Graph (ER-Graph) and trains an Entity Record GCN (ER-GCN) to obtain soft-
structural embeddings for EM tasks. And GNEM [4] designs a record pair graph
that allows each record pair to interact with relevant records and conducts the
pairwise matching decision by borrowing valuable information from other pairs.

Recently, Transformer draws a great deal of concerns in both NLP [8] and
CV [10] fields, due to the outstanding performance of self-attention mechanism
in acquiring contextual information. Brunner et al. [2] proves the feasibility of
adapting the pretrained LMs (e.g., BERT [8]) to EM tasks. DITTO [23] leverages
pretrained LMs to solve EM tasks with three additional optimizations—domain
knowledge injecting, text summarization, and data augmentation. BERT-ER [21]
improves BERT-based EM model by delaying and enhancing BERT’s interaction
part, together with a blocking module to improve the EM efficiency. RPT [34]
proposes a pretrained tuple-to-tuple model that supports several data prepa-
ration tasks like data cleaning, entity resolution, and information extraction,
etc.

Our work is inspired by this paper [39] and Transformer-based related works
[2,23,34]. The personalized dialogue generation model proposed in [39] enriches
the dialogue context by additionally encoding the speakers’ persona with dia-
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logue histories, so as to enhance the Transformer’s representation of dialogue
context. So we carry on this idea to enhance Transformer for relational data
representation and verify its feasibility in EM tasks. The difference is that the
additional knowledge we inject into Transformer is obtained in a graph con-
trastive learning manner and meanwhile encoded into embeddings of attributes
and tokens. The knowledge learning process requires no supervision and man-
ual intervention. And then the modified Transformer is adapted to absorb these
structure-aware embeddings to perform the downstream EM tasks.

3 Entity Matching via GTA Framework

Fig. 2. The framework of GTA. This framework contains a Graph-based Hybrid
Embedding (GHE) module for obtaining the hybrid matching knowledge, and an Adap-
tive Transformer-based Matching (ATM) module for the downstream EM tasks.

The framework of GTA is shown in Fig. 2. The entire workflow is 1© GHE module
first constructs the hybrid matching graph GHM and its augmented view G′

HM to
model the dual-level matching and multiple granularity interactions, and then
performs contrastive learning (CL) on GHM and G′

HM to obtain the updated
embeddings. 2© GTA extracts the updated embeddings of attributes and tokens
and then maps them to the pretrained LM in ATM module. 3© ATM module
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modifies Transformer to absorb these structure-aware embeddings of attributes
and tokens and finally fine-tunes the pretrained LM for EM tasks.

We first start with the preliminaries and then introduce the components of
GTA framework, including a Graph-based Hybrid embedding (GHE) module
and an Adaptive Transformer-based Matching (ATM) module.

3.1 Preliminaries

Let r1 = {a11, a12, ..., a1m} and r2 = {a21, a22, ..., a2n} be a candidate record
pair from data sources S and S′ separately. Each attribute value a1i (or a2j ,
i ∈ [1,m] and j ∈ [1, n]) comprises a sequence of tokens like {t1, t2, ..., tT }. Each
token tp (p ∈ [1, T ]) in the sequence can be one of the string or numeric type.

Definition 1. Entity matching. Given two relational data sources S and S′, an
entity matching framework takes as input a pair of records (e.g., r1 from S and
r2 from S′) and outputs the matching probability P (y = 1|r1, r2).
Definition 2. Hybrid Matching Graph. A hybrid matching graph GHM = {V, E},
where V is the node set and E is the edge set. Each node v ∈ V can be one of
record, attribute, or token. And each edge e ∈ E connects a record node with its
contained attribute node or token node. GHM is designed to model the dual-level
matching and multiple granularity interactions of attributes and tokens. Each
relevant record pairs are connected within two hops by their common attribute
nodes or token nodes. And multiple granularity interactions of attribute-attribute,
attribute-token, and token-token can also be conducted within two hops via the
corresponding record nodes.

3.2 Graph-Based Hybrid Embedding Module

The GHE module is designed to obtain hybrid matching knowledge in the man-
ner of graph contrastive learning.

Hybrid Matching Graph Construction. As can be seen on the left side of
Fig. 2, we first design a hybrid matching graph GHM to model the relational
data’s dual-level matching process. In GHM , when two records have common
attributes or tokens, they will be indirectly connected within two hops via the
corresponding attribute nodes and token nodes, thus the neural matching infor-
mation can be passed through both attribute level and token level. For instance,
the dual-level matching information of r1 and r2 can be passed through both (1)
attribute value a1—microsoft corporation and (2) tokens—word and mac.

Beyond that, Fig. 3 shows more comprehensive analyses in attribute and
token views. Since the record view in Fig. 3(a) has been analyzed before, we will
not dwell on it. In Fig. 3(b) attribute view, the meta-path Attribute-Record-
Attribute (e.g., a1-r1-a2) implements the attribute-attribute interaction within
a record (e.g., r1). And the meta-path Attribute-Record-Token (e.g., a1-r1-
word) implements the attribute-token interaction within a record (e.g., r1).
And in Fig. 3(c) token view, the meta-path Token-Record-Token (e.g., word-
r1-mac) implements the token-token interaction within a record (e.g., r1). These
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Fig. 3. The neural message passing process in different views—record view, attribute
view, and token view.

meta-paths jointly ensure dual-level matching and multiple granularity inter-
actions, enabling the attribute nodes and token nodes to perceive structural
features for EM tasks.

Sampling and Training. We adopt contrastive learning as a pretext task to
perform graph representation learning on GHM . First, we apply two ways of
stochastic perturbation (edge dropping and node feature masking) on GHM , thus
we get two views, one is an original view GHM , and the other is an augmented
view G′

HM . And then, we employ a 2-layer GCN with residual connections as an
encoder to obtain node embeddings for both GHM and G′

HM :

F(X(l)) = σ( ˜D− 1
2 ˜A ˜D− 1

2 X(l)W (l)), (1)

X(l+1) = F(X(l)) + σ(X(l)), (2)

where ˜A = A + I is the adjacency matrix with self-connections of the hybrid
matching graph. ˜Dii =

∑

j
˜Aij is the degree matrix. X(l) ∈ R

N×D is the node
embedding matrix and W (l) ∈ R

D×D is a trainable weight matrix for the l-th
layer. σ(·) is a nonlinear activation function, like ELU [6]. The GCN settings
are designed based on the following considerations. Since all dual-level matching
and multiple granularity interactions can be conducted within two hops on GHM

and G′
HM , the 2-layer GCN is suitable for two-hop neural message passing. And

the residual connections are designed to prevent the over-smoothing problem.
The sampling strategy for graph contrastive learning is as follows. For each

record embedding q ∈ X in the original view GHM that acts as a query vector, we
sample its corresponding augmented embedding k+ ∈ X ′ in G′

HM as a positive
example. As for negative examples, we randomly select K record nodes which
are far more than 2 hops (i.e., at least 4 hops) from the original record node,
we denote each negative example as ki ∈ X. The training objective is InfoNCE
loss [28]:

LHM = − log
exp(q�k+/τ)

∑K−1
i=0 exp(q�ki/τ)

, (3)

where τ is the temperature hyperparameter that acts as an adjusting factor to
control the strength of penalties on hard negative examples [35].
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By closing the distances of the original records with their augmented ones,
and meanwhile pulling far from irrelevant negative records, the interactions
within the candidate record pairs and their contained attributes and tokens
are conducted in the graph contrastive learning process. And the updated
attribute and token embeddings are endowed with structural features which
help to improve the downstream Transformer-based EM performance.

3.3 Adaptive Transformer-Based Entity Matching

The above GHE module obtains hybrid matching information and multiple gran-
ularity interactions in a contrastive learning manner, we then extract and inject
the knowledge into a Transformer-based pretrained language model to perform
EM tasks. To absorb the prior knowledge, we modify the vanilla Transformer
architecture in two places—input format adaptation and prelearned knowledge
injection.

Input Format Adaptation. We first convert the raw record pair to a specific
format that Transformer can absorb. By appending special tokens [CLS] at the
beginning and [SEP] as a separator, we cast EM as a sentence pair classification
task that can utilize pretrained knowledge in LMs (e.g., BERT, RoBERTa, and
DistilBERT). Apart from that, we add a more fine-grained attribute-specific
token before each attribute value to enable Transformer to conduct attribute-
level interactions. For example, given a sequence as the value of attribute title,
we add a special token [TIT] before it to get an attribute-aware entry. Take the
record pair in Fig. 1 as an example, after the processing, the record pair can be
converted into

[CLS] RECORD1 [SEP] RECORD2 [SEP],

where RECORD1 refers to

[TIT] microsoft word 2004 mac [MAN] microsoft corporation [PRI] 229,

and RECORD2 refers to

[TIT] ms word for apple mac 2004 [MAN] microsoft corporation [VER]
2004.

So far, the record pairs as Transformer’s inputs have been tokenized to accommo-
date structural perception. The reason for adding attribute-specific tokens (e.g.,
[TIT]) is that we can slightly enable self-attention mechanism to focus on the
interactions of aligned attributes and meanwhile empower the attribute-specific
tokens with the prior knowledge learned in the GHE module. The details will be
illustrated in the next subsection.

Prelearned Knowledge Injection. After adapting the input format for Trans-
former, we then describe how to inject the prelearned knowledge into Trans-
former to perform EM tasks. Transformer-based LMs (e.g., BERT) design input
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Fig. 4. ATM’s input embeddings. The token, segment and position embeddings are
inherent in pretrained language model (PLM), and the hybrid matching embeddings
are extracted from the graph-based hybrid Embedding (GHE) module. Notice that,
some tokens are omitted in this figure.

embedding EINPUT as three components, they are token embedding ETOK ,
segment embedding ESEG, and position embedding EPOS . We retain the above
three embeddings and additionally add the hybrid matching embeddings EHM

as the supplements to improve Transformer’s EM performance.
In detail, we first extract all the updated attribute and token embeddings

from GHE module. For different types of EHM , we design different methods
for knowledge injection. For example in Fig. 4, the token type embeddings (e.g.,
EHM

microsoft and EHM
word) are directly mapped and injected without any additional

processing. The attribute-specific embeddings (e.g., EHM
[TIT ] and EHM

[MAN ]) are gen-
erated by averaging all corresponding attribute embeddings in GHE module. And
the inherent [CLS] and [SEP] embeddings (i.e., EHM

[CLS] and EHM
[SEP ]) are copied

from the PLM, which are equal to ETOK
[CLS] and ETOK

[SEP ]. Notice that, we do not add
EHM to the other three embeddings (i.e., ETOK , ESEG and EPOS) directly, but
normalize and then scale EHM using the scaling factor ψ before that. This helps
to avoid the internal covariate shift problem and control the influence strength
of GHE module by adjusting ψ, following the intuition that excessive knowledge
injection may collapse the LM’s inherence of language modeling.

Fine-Tuning Pretrained LM for EM Tasks. After hybrid matching knowl-
edge injection, we fine-tune the pretrained LM on EM datasets to output the
final decisions. The training objective is cross-entropy loss:

LCLS = − 1
|B|

|B|
∑

i=1

[yi log pi + (1 − yi) log(1 − pi)], (4)

where |B| is the size of training batch, yi ∈ {0, 1} is the label of i-th training
pair, and pi is the i-th output probability.
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4 Experimental Evaluation

In this section, we evaluate our proposed GTA framework and compare it with
existing works.

4.1 Experimental Settings

Datasets and Metric. We evaluate GTA framework on five open datasets2 pro-
posed in DeepMatcher. The datasets can be divided into two types (structured
or dirty) and cover a variety of domains including software, beer, restaurant, and
citation. The dataset sizes vary from 450 to 12, 363 to evaluate the scalability of
GTA. Positive ratios (# Pos./Size) cover the range from 0.10 to 0.18 shows that
EM is an unbalanced binary classification task. All EM datasets are split into
60%/20%/20% for training, validation, and test, which are the same as Deep-
matcher [27]. The details of EM datasets are shown in Table 1. Following the
previous works, we use F1 score as the metric to evaluate the EM performance.

Table 1. Details of EM datasets.

Dataset Type Domain Size # Pos. # Att.

Amazon-Google (AG) Structured Software 11,460 1,167 3

BeerAdvo-RateBeer (BR) Structured Beer 450 68 4

Fodors-Zagats (FZ) Structured Restaurant 946 110 6

DBLP-ACM (DA1) Structured Citation 12,363 2,220 4

DBLP-ACM (DA2) Dirty Citation 12,363 2,220 4

Implementation Details and Training Settings. The GTA framework con-
sists of two modules, GHE module and ATM module. For GHE module, we first
separate each record into several attribute values. For each sequence of attribute
value, we tokenize it with the pretrained tokenizer of the corresponding LM in
ATM module. This helps a lot for the token mapping in knowledge injection
process. For ease of knowledge injection, we adopt the same embedding dimen-
sion D = 768 for all the nodes in the hybrid matching graph GHM . We build
GHM and train the GHE module using Deep Graph Library3. The details of
GHM are shown in Table 2. The probabilities of stochastic perturbation (i.e.,
edge dropping and node feature masking) are both 20%, the number of nega-
tive samples is K = 64, and the temperature hyperparameter τ is 0.1 for the
InfoNCE loss. For ATM module, we fine-tune the pretrained LMs (bert-base-
uncased, roberta-base, distilbert-base-uncased) to perform EM using Hugging
Face4. Experiments show that RoBERTa achieves the best EM performance,
thus the experiment results we report are all using RoBERTa as the pretrained
LM. The whole GTA framework is implemented using PyTorch as a backend.
2 https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md.
3 https://www.dgl.ai/.
4 https://huggingface.co/.

https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
https://www.dgl.ai/
https://huggingface.co/


62 W. Dou et al.

Table 2. Details of hybrid matching graph GHM .

Dataset # Node # Edge

Amazon-Google (AG) 17,549 50,999

BeerAdvo-RateBeer (BR) 25,969 100,038

Fodors-Zagats (FZ) 7,669 15,878

DBLP-ACM (DA1) 19,069 98,427

DBLP-ACM (DA2) 19,435 95,345

We train 500 epochs for GHE module and fine-tune 20 epochs for ATM
module. The batch size B = 64 and learning rate lr = 3e − 5 are set for both
GHE and ATM modules. Adam algorithm [19] with warming up and linear decay
is used for optimization. The hybrid matching embeddings EHM are scaled by
multiplying a scaling factor ψ = 0.2 for Fodors-Zagats dataset and ψ = 0.1
for other datasets in knowledge injection. We conduct the experiments on a
workstation with Intel Xeon W-2255 CPU @ 3.70 GHz and NVIDIA RTX A4000
with 16 GB memory.

The EM frameworks to be compared are as follows:

• Magellan [20]: A state-of-the-art ML-based (non-DL) system for EM tasks.
It provides a variety of classifiers (decision tree, Naive Bayes, SVM, etc.) to
be trained on automatically generated features.

• RNN [27]: A DL-based EM solution proposed in DeepMatcher that adopts
Bi-GRU as an encoder to represent attribute values. Then it takes element-
wise absolute difference as the comparison result to form the input of the
classifier.

• Attention [27]: A DL-based EM solution proposed in DeepMatcher that
adopts decomposable attention to implement attribute summarization and
vector concatenation to perform attribute comparison.

• Hybrid [27]: A DL-based EM solution proposed in DeepMatcher that adopts
Bi-GRU with decomposable attention to represent attribute values. Then it
takes vector concatenation augmented with element-wise absolute difference
as the input of the classifier.

• MCA [38]: A DL-based EM solution that designs multi-context attention net-
work. MCA fully takes into account self-attention, pair-attention, and global-
attention from three types of context.

• HierMatcher [15]: A DL-based EM solution that jointly considers hierarchi-
cal levels of matching granularity (token, attribute, and entity). It designs a
cross-attribute token alignment module and attribute-aware attention mech-
anism that can solve EM in heterogeneous and dirty scenarios.

• DITTO [23]: A Transformer-based EM solution that leverages domain
knowledge, text summarization, and data augmentation to improve pre-
trained language models’ ability for EM tasks.

• BERT-ER [21]: A Transformer-based solution that improves EM perfor-
mance by delaying and enhancing BERT’s interaction part, together with an
adaptive blocking module to improve EM efficiency.
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• Baseline: We directly fine-tune the pretrained LM as a baseline. This can
be regarded the same as paper [2].

4.2 Main Results

Table 3 shows the results of GTA and existing works, including ML-based, DL-
based and Transformer-based EM frameworks. We also set a Baseline which
directly fine-tunes the pretrained LM to perform EM tasks without any opti-
mization.
Table 3. EM performance of GTA and existing works. All the experimental results of
the comparing methods are derived from the original papers, and the best results are
bolded. We calculate ΔF1 between our proposed GTA with Baseline which directly
fine-tunes pretrained LM to perform EM tasks.

AG BR FZ DA1 DA2

Magellan 49.1 78.8 100 98.4 91.9

RNN 59.9 72.2 100 98.3 97.5

Attention 61.1 64.0 82.1 98.4 97.4

Hybrid 69.3 72.7 100 98.4 98.1

MCA 70.3 78.8 – 98.6 –

HierMatcher 74.9 – – 98.8 98.1

DITTO 75.6 94.4 100 99.0 99.0

BERT-ER 75.3 87.5 – 98.7 –

Baseline 74.1 86.7 98.1 98.8 98.9

GTA 76.2 96.3 100 99.1 99.0

ΔF1 +2.1 +9.6 +1.9 +0.3 +0.1

In detail, we can draw conclusions as below:

• GTA outperforms or reaches state-of-the-art results compared with existing
EM frameworks. Compared to ML-based work (i.e., Magellan), GTA achieves
10.5 average F1 improvement, and compared to DL-based work (i.e., Hybrid),
GTA achieves 6.4 average F1 improvement. And for HierMatcher, which is
a hybrid-centric EM framework, GTA outperforms 1.3, 0.3, 0.9 F1 improve-
ment on Amazon-Google, DBLP-ACM 1 and DBLP-ACM 2 dataset respec-
tively. We can draw a conclusion that compared with these ML-based and
DL-based works, GTA achieves improvement by additionally utilizing Trans-
former architecture and pretrained LM’s prior knowledge, thus performs bet-
ter in record sequence representation.

• GTA shows competitive performance compared to Transformer-based works
(Baseline, DITTO and BERT-ER) and outperforms Baseline by an average
of 2.8 F1 score. Due to the introduction of graph-based hybrid embedding
(GHE) module, GTA encodes the dual-level matching information and mul-
tiple granularity interactions into a hybrid matching graph GHM . By con-
ducting contrastive learning as a pretext task on GHM , structural features of
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relational data can be obtained without any labeled data. Then the hybrid
matching embeddings EHM of attributes and tokens act as additional features
to enhance Transformer’s representation for relational data and improve the
final EM performance.

• GTA shows robustness on dirty data. As can be seen in Table 2, GTA achieves
state-of-the-art result on DBLP-ACM 2 dirty dataset. GTA’s robust perfor-
mance can be ascribed to two reasons: (1) both instance-level and hidden-level
data augmentation on the hybrid matching graph GHM , this ensures that the
prelearned hybrid matching embedding is generalized enough and not spe-
cialized to explicit attribute, token instances or feature dimensions, and (2)
comparison and aggregation on both attribute-level and token-level, which
ensures the attribute-unaligned tokens’ interaction to perform comparison.

4.3 Detailed Analysis

Ablation Study. To evaluate the contribution of each component, we conduct
an ablation study on GTA framework by ablating a specific component of GTA.
GTA (-HM) refers to dropping hybrid matching knowledge injection. GTA (-
AST) refers to dropping attribute-specific tokens. And GTA (-HM-AST) refers
to dropping both of them. According to the results in Table 4, we can draw a
conclusion that the additional attribute-specific tokens can accomplish finer sep-
arating to split various attributes, enabling Transformer to regard input entries
as relational records. And the injected additional knowledge can significantly
improve Transformer-based EM performance.

Table 4. Ablation study results compared with the full GTA framework.

AG BR FZ DA1 DA2

GTA 76.2 96.3 100 99.1 99.0

GTA (-HM) 74.3 87.3 98.1 98.9 98.9

−1.9 −9.0 −1.9 −-0.2 −0.1

GTA (-AST) 75.6 95.4 99.8 98.9 99.0

−0.6 −0.9 −0.2 −0.2 −0

GTA (-HM-AST) 74.1 86.7 98.1 98.8 98.9

−2.1 −9.6 −1.9 −0.3 -0.1

Various LMs in GTA. We evaluate GTA using various BERT-like language
models (i.e., BERT, RoBERTa, DistilBERT). As can be seen in Table 5, GTA
(RoBERTa) shows the leading F1 score in our GTA framework. This can be
attributed to that RoBERTa pretrains longer time on more data with bigger
batch size than BERT and DistilBERT. RoBERTa also removes the next sen-
tence prediction (NSP) objective of BERT, considering that the NSP objective
may harm the downstream task performance. GTA (DistilBERT) also achieves
good results, although the trainable parameter of DistilBERT (66M) is about
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half of RoBERTa (125M). For the challenging dataset Amazon-Google, GTA
(RoBERTa) outperforms GTA (DistilBERT) by 4.8 F1 score, but for datasets
like Fodors-Zagats, DBLP-ACM 1 and DBLP-ACM 2, the margins of F1 score
are 0.8, 0.4 and 0.6 separately.

Table 5. GTA’s F1 score using various language models.

AG BR FZ DA1 DA2

GTA (BERT) 72.6 95.9 98.4 98.8 98.8

GTA (RoBERTa) 76.2 96.3 100 99.1 99.0

GTA (DistilBERT) 71.4 93.9 99.2 98.7 98.4

5 Conclusion and Outlook

In this paper, we propose a novel entity matching framework named GTA. GTA
verifies the feasibility of knowledge injection for Transformer to perform EM
tasks. By injecting additional hybrid matching knowledge, which is obtained via
graph contrastive learning in a designed hybrid matching graph, GTA enhances
Transformer for relational data representation. This enables Transformer to
regard input entries as relational records to aggregate both attribute-level and
token-level matching information. Compared with existing EM works, our pro-
posed GTA framework effectively improves Transformer’s representation for rela-
tional data and achieves state-of-the-art results on open datasets. Just like other
related works, we hope to shed some light on this direction by conducting
researches on AI4DB, and making contributions to both DB and AI commu-
nities.
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