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Abstract. Representation learning for the Temporal Knowledge Graphs
(TKGs) is an emerging topic in the knowledge reasoning community.
Existing methods consider the internal and external influence at either
element level or fact level. However, the multi-granularity information is
essential for TKG modeling and the connection in between is also under-
explored. In this paper, we propose the method that Aligning-internal
Regularity and external Influence of Multi-granularity for Temporal
knowledge graph Embedding (ARIM-TE). In particular, to prepare
considerate source information for alignment, ARIM-TE first models
element-level information via the addition between internal regularity
and the external influence. Based on the element-level information, the
merge gate is introduced to model the fact-level information by combin-
ing their internal regularity including the local and global influence with
external random perturbation. Finally, according to the above obtained
multi-granular information of rich features, ARIM-TE conducts align-
ment for them in both structure and semantics. Experimental results
show that ARIM-TE outperforms current state-of-the-art KGE models
on several TKG link prediction benchmarks.

Keywords: Temporal knowledge graph · Representation learning ·
Multi-granularity information alignment

1 Introduction

Knowledge Graph (KG) has proved its powerful strength in various downstream
tasks, such as recommender systems [18,44], question answering [6,42] and rela-
tion extraction [29,37]. Despite its great benefits, most of the KGs suffer from
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incompleteness [36] due to the emergence of new facts. To alleviate this problem,
Knowledge Graph Embedding (KGE) is often regarded as an effective approach
for Knowledge Graph Completion (KGC) which focuses on deriving new facts
based on existing ones. Specifically, KGE methods embed KG elements (i.e.,
entities and relations) into a low-dimensional vector space while preserving the
original semantic and structural information [13]. Recently, Temporal Knowl-
edge Graphs (TKGs) have gained increasing attention. In order to accurately
present the temporal knowledge, TKGs include the valid time of each fact, e.g.,
the fact that Pierre Curie won the Nobel Prize is presented as (Pierre Curie,
wonPrize, Nobel Prize, 1903).

Generally, Temporal Knowledge Graph Embedding (TKGE) methods can
consider the important information from internal and external perspectives. The
internal information models the regularity of evolution in TKG while the exter-
nal information takes the randomness into consideration. Existing methods try
to model the information from either element-level or fact-level: (i) Element-level
modeling methods [7,8,10,41] focus on learning the evolving characteristics of
the entities and relations in TKG. The external influence is usually modeled as
element-level uncertainty. (ii) Fact-level modeling methods [4,20,32,45] aim at
incorporating the regularity information or randomness of facts in structure and
semantics along the time. However, the information from multi-granularity is
integral for TKGE. Specifically, on the one hand, only modeling the important
evolution characteristics of the elements, the vital influence from the neighbor-
ing facts would be neglected, e.g., the Tokyo 2020 Olympic Games postponed
to 2021 due to the occurrence of COVID-19 pandemic. On the other hand,
only considering the fact-level modeling would weaken the element-level evolu-
tion characteristics in representation, e.g., the Olympics are held every four years
rather than a coincidence. Therefore, the alignment should be adopted to explore
the semantic and structural characteristics of multi-granular information. Based
on the well-modeled features in multi-granularity, alignment could effectively
establish an informative and interactive mechanism in between to promote the
modeling of multi-granular information and enhance the representation of the
TKG. Although some recent methods [15,21] consider the element-level evolution
characteristics and the fact-level concurrent or temporally adjacent facts. These
methods aim at acquiring better representations in a single granularity. Besides,
the external influence in multi-granularity is also ignored. To address the above
issues, we propose the method that Aligning internal Regularity and exter-
nal Influence of Multi-granularity for Temporal knowledge graph Embedding
(ARIM-TE). ARIM-TE leverages the multi-granular information and explores
consistence in between through semantic and structural alignment. In order to
achieve fully alignment with abundant features, ARIM-TE models the internal
regularity with external influence at both element-level and fact-level. Specifi-
cally, ARIM-TE first models element-level information as the addition between
the internal regularity and external perturbation. Secondly, based on the infor-
mation flowing from the element level, fact-level information is modeled as the
fusion of the internal and external information by introducing the merge gate.
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On the one hand, supported by the internal regularity at element level, the
modeling of fact-level internal regularity includes the local property of temporal
adjacent facts and the global structure revealed by the evolving local property in
sequence. On the other hand, the external influence at fact level is modeled as a
modification of its respective element-level external influence through introduc-
ing Gaussian distributed random perturbation so as to tackle with occasional
facts. Finally, ARIM-TE conducts the information alignment in structure and
semantics between the multi-granular information.

In summary, our main contributions are as follows:

– We introduce a new TKGE model, namely ARIM-TE, which is the first to
simultaneously consider element-level and fact-level information with their
respective internal regularity and external influence.

– We propose the merge gate to learn the fact-level information by fusing the
internal information with external gaussian distributed random perturbations
based on corresponding element-level information.

– We craft the alignment between multi-granular information in structure and
semantics to achieve an informative TKGE.

– Experimental results on link prediction task show that our ARIM-TE out-
performs the state-of-the-art KGE models on ICEWS14 and GDELT.

2 Related Work

2.1 Static Knowledge Graph Embedding

Traditional KGE methods can be generally divided into two categories: transla-
tional distance methods and semantic matching methods [34].

Translational distance methods assume the relation as the translation from
the head entity to the counterpart of the tail entity in embedding space.
TransE [2] is a typical translation-based model, which cannot precisely deal with
complex relations (e.g., 1-to-N, N-to-1 and N-to-N relations) due to its strong
assumption. TransH [35] utilizes the hyperplanes to divide the facts based on dif-
ferent relations. TransR [22], TransD [11] and TranSparse [12] construct different
projection functions to learn a better representation of KG elements.

Semantic matching methods such as tensor factorization approaches [17,27,
28,33,43] model the KG as a three-way tensor and learn the representation of
each element by tensor-decomposition. Other approaches [1,5,9,23,26,31] con-
duct semantic matching through various kinds of neural networks.

Different from the above methods which ignore the temporal information of
facts, our paper mainly focuses on TKGE.

2.2 Temporal Knowledge Graph Embedding

TKGE methods model the information from internal and external perspectives.
Some methods only pay attention to characteristics of elements. TA-DistMult [7]
focuses on modeling time-aware representations of relations with a recurrent
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neural network. By Graph Convolution Neural Network, TeMP [38] models the
structural information of entities within graph and integrates the information
across time. TeRo [40] embeds the evolution of entities as rotations. ChronoR [30]
models time and relation as the rotation transformation from head entity to tail
entity. DE-SimplE [8] obtains the diachronic embeddings for relations and enti-
ties. DyERNIE [10] and HERCULES [25] pay attention to hyperbolic embed-
dings for TKG. DyERNIE leverages velocity vectors to learn dynamic entity
representations on Riemannian manifolds. HERCULES utilizes temporal rela-
tions as the curvature of Riemannian manifolds. Rather than methods men-
tioned above, which only consider the internal information, ATiSE [41] reckons
the information from external through including the randomness in additive time
series decomposition.

Other methods pay attention to fact-level information. HyTE [4] projects
each triple into its corresponding time hyperplane. ConT [24] learns a new core
tensor for each timestamp. TTransE [20] models the temporal information as
a translational vector in score function. TNTComplEx [19] and TeLM [39] uti-
lize discrete timestamps and conduct 4th-order tensor factorization to obtain
embeddings. CygNet [45] models the whole fact with copy mode and generation
mode. The fact-level external influence is usually modeled with probabilistic,
e.g. Know-Evolve [32] leverages temporal point process to model the occurrence
of each fact.

Recent methods consider the importance of information in multi-granularity.
Re-Net [15] models the joint probability for each fact based on the evolution
characteristics of each element and the information on neighborhood aggregator.
RE-GCN [21] embeds elements with evolved representations by considering the
concurrent or temporally adjacent facts and the static property of entities in their
name strings. However, they ignore the external influence in multi-granularity
and the lack of alignment in structure and semantics would lead inconsistency
in final representation. Different from the existing methods, ARIM-TE conducts
semantic and structural alignment in multi-granularity with information which
is riched of both internal and external features.

3 Problem Formulation

The notations in this paper are as follows: the lower-case letters denote the
scalars, the boldface lower-case letters denote the vectors, and the boldface
upper-case letters denote the matrices. Additionally, σ(·) is the sigmoid func-
tion, tanh is an activation function, ◦ denotes the Hadamard product. For vectors
v1 ∈ R

d1 and v2 ∈ R
d2 , [v1;v2] ∈ R

d1+d2 is the concatenation operation.
The TKG G consists of temporal facts in the form of (h, r, t, τ), where τ ∈ T

represents the valid time of the fact and T is the set of timestamps. h, t ∈ E , r
∈ R, where E , R denote the set of entities and relations, respectively. The TKG
can be divided into several sub-KGs: G = G1 ∪ G2 ∪ · · · ∪ GK based on the valid
time of the fact, K denotes the number of time steps in TKG. The sub-KG Gk

consists of facts that are valid at time step k.
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Fig. 1. The overview of our ARIM-TE, consists of element-level information modeling
(Sect. 4.1), fact-level information modeling (Sect. 4.2) and multi-granular information
alignment (Sect. 4.3).

Temporal Knowledge Graph Embedding aims at learning the low-dimensional
representation of head entity h ∈ R

d×1, tail entity t ∈ R
d×1 and relation r ∈

R
d×1. The task of Temporal Knowledge Graph Completion is to derive new facts

based on existing ones. In this paper, we focus on interpolation problem [16]
which only considers the facts that are valid on the timestamp τ ∈ T during
link prediction. We adopt entity prediction task for evaluation.

4 Methodology

We propose a three-step method, which Aligning internal Regularity and exter-
nal Influence of Multi-granularity for Temporal knowledge graph Embedding
(ARIM-TE). Figure 1 illustrates the overview of our ARIM-TE. As the source of
alignment, the multi-granular information is fully modeled with features of both
internal regularity and external influence. In the first step, ARIM-TE obtains the
periodicity and trend as internal evolution regularity, together with the external
perturbation as external influence for each element (Sect. 4.1). In the second step,
ARIM-TE utilizes merge gate to model the fact-level information as the fusion of
internal regularity and external influence (Sect. 4.2). In the last step, ARIM-TE
conducts the information alignment in structure and semantics with informative
features in multi-granularity. Considering the form of the fact, ARIM-TE aligned
element-level information based on their structure (i.e., (head, relation, tail)).
Additionally, the information in multi-granularity is aligned semantically so as
to enhance the representation of the TKG (Sect. 4.3).
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4.1 Element-Level Information Modeling

The semantic information of each entity and relation in TKG is varied along
the time. Some characteristics evolve regularly. For example, the growth of a
person shows a trend and the scenic spots usually have peak season and off
season. Compared to entities, the semantic information of relations evolves at a
lower rate and is relatively more stable during a short period of time [8]. Con-
sequently, representing the regular semantic evolution of each relation with a
time-agnostic vector is sufficient. In addition to the internal evolution character-
istics, ARIM-TE also measures the external influence of each element to alleviate
the incompleteness problem of the TKG. The information out of TKG is mod-
eled as the external perturbation. In this paper, we utilize addition operation to
combine the characteristics in learning the element-level information.

μ =

{
αesin(ρse

ϕτ + νse
) + ρue

ϕτ + νue
if entity,

αr if relation.
(1)

δ =

{
βeζτe if entity,

βrζτr if relation.
(2)

z = μ + δ, (3)

where ϕτ represents the time embeddings, μ denotes the evolution regularity
of entity or relation. For entity e, αe denotes the periodicity feature, sin( · )
models the periodic activation function which is parameterized by ρse

and νse
.

ρue
and νue

fit the semantic evolution trend for entities. Because the semantic
information of each relation is relatively stable, μ simplifies into αr when rep-
resenting the relation r. Considering different semantic information stability of
relation and entity, the external perturbation δ for entity and relation includes
the separate time variable ζτe , ζτr and element-related characteristics βe, βr.
Finally, the element-level embedding z is obtained by the combination of evo-
lution regularity μ and external perturbation δ. All of the vectors mentioned
above have d dimensions.

After training with the score function scoree, the fact f = (h, r, t, τ) in TKG
is initialized with element-level information.

scoree = ‖zh + zr − zt‖. (4)
zf = μf + δf = [μh;μr;μt] + [δh; δr; δt] = [zh;zr;zt]. (5)

where μf and δf denotes the fact that initialized by evolution regularity and
external perturbation, respectively.

4.2 Fact-Level Information Modeling

In TKG, the knowledge is presented in the form of fact. Though the important
evolution characteristics of the elements is obtained after element-level infor-
mation modeling, the truth that some facts may have correlations or causation
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relationships in between is still under-explored. The external influence out of the
TKG should also be concerned at fact level. Therefore, the merge gate is pro-
posed to combine the external influence with internal local property under the
guidance of the global structure. For internal regularity modeling at fact level,
ARIM-TE considers the local property of neighboring facts at corresponding
time step based on the element-level evolution regularity. The evolving property
along the time facilitates the modeling of global structure in TKG which super-
vise the local property at each time step. The external influence at fact-level is
modeled as Gaussian distributed random perturbation based on the correspond-
ing element-level information.

Local Property Encoding. Indeed, the occurrence of each fact would some-
how influence the upcoming events. The ignored relevance between facts would
lead the imprecise representation modeling. Though some events would have
a long-lasting influence on the others, such as the advent of electricity which
changed the way people live. The facts that happened within a short time period
are more likely to have strong dependencies. Consequently, ARIM-TE adopts
local property sequence to aggregate the information of neighboring facts at
different time steps. According to the valid time τ , the TKG is divided into
sequence Gk(k ∈ {1, 2, 3, ...,K}) of length K without overlaps. The specific
semantic information of neighboring facts at time step K is modeled on a local
hyperplane ok with its corresponding property projection vector ωk. For a fact
(h, r, t, τ) initialized with element-level regularity characteristics μ at time step
k, the local property is encoded as:

ok(h) = μh − (ωT
k μhωk),

ok(r) = μr − (ωT
k μrωk),

ok(t) = μt − (ωT
k μtωk),

(6)

Global Structural Modeling. The modeling of local influence only focuses
on the information of neighboring facts at corresponding time step, separately.
However, some facts would have long-lasting effects. Therefore, ARIM-TE adopts
Gated Recurrent Unit (GRU) [3] to obtain the global structure information of
the TKG across the time. During global structure learning, ARIM-TE models
the local property at each time step with new-coming facts as well as the vital
information in history.

hk = GRU(ok,hk−1). (7)

With the property projection ωk at time step k, the hidden representation is
updated to hk which contains structural information up to time step k. In order
to keep a consecutive sequence, the hidden representation hk should be close to
the property projection vector ωk+1 on the hyperplane ok+1 of the time step
k+1. ARIM-TE introduces auxiliary loss to guide the modeling of local property
in sequence with TKG’s global structure.
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lossaux =
1

T − 1

T−1∑
k=1

‖hk − ωk+1‖22. (8)

Internal and External Influence Merging. Because of the limited cover-
age of the TKG, the external information should also be considered in order to
supplement the information internal. The external influence nf for fact is mod-
eled as Gaussian distributed random perturbation ε based on the element-level
external influence δf .

nf = δfε = [δhεh; δrεr; δtεt] (9)

Through the merge gate, the internal regularity in local and global would further
merged with external influence through gate mechanism, e.g. a fact(h, r, t, τ):

af = [ok(h); ok(r); ok(t)]
mn = σ(Unaf + W nnf ),
ma = σ(Uaaf + W anf ), (10)

m̃h = tanh(Uhaf + W h(ma ◦ nf )),
mf = (1 − mn) ◦ m̃h + mn ◦ nf .

af represents internal regularity of the fact which encoded with corresponding
local property. Specifically, the local property in sequence is originally fused with
global structural of TKG through training with auxiliary loss. mn focuses on
keeping the necessary external influence of the fact. ma decides the requirement
of internal information. Similar to GRU, we introduce a hidden state m̃h in
merge gate. Finally, the fact-level representation mf is calculated by mixing
internal regularity and external influence of TKG. Un,Ua,Uh,W n,W a,W h

are the weight matrices of the merge gate.

4.3 Multi-granular Information Alignment

After element-level information learning, ARIM-TE learns the element-level
internal evolution regularity and measures the external influence as external
perturbation. Further, fact-level information is obtained through the merge gate
which fuses the internal regularity with the external random perturbation based
on the element-level information within facts. In order to explore the consis-
tence of the information in multi-granularity, ARIM-TE conducts interactive
information alignment in structure and semantics.

Considering the facts are denoted with relations and entities in order (i.e., the
head entity, the relation and the tail entity), the structure of the facts with dif-
ferent types of relations are ignored through the simple combination of element-
level information. Consequently, ARIM-TE aligns each type of relation in the
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form of fact with its related entity pairs in order (h, t) and in reverse (t, h),
respectively:

q = pr[zh;zt], (11)
q

′
= p

′
r[zt;zh], (12)

sf = [pr;p
′
r; q; q − q

′
]. (13)

The entity pairs are presented with element-level information z. q, q
′
represents

the corresponding relation-specific structural information with entity pairs in
order and in reverse. The information in multi-granularity should be semantic
consistence since the fact is the combination of its elements. To align the semantic
information of the fact at element-level zf and fact-level mf , ARIM-TE conducts
the introspective alignment instead of simple concatenation.

cf = [zf ;zf ◦ mf ;zf − mf ;mf ]. (14)

The operations zf − mf and zf ◦ mf are element-wise subtraction and multi-
plication which are targeted at capturing contradiction and amplifying signals,
respectively. With the concatenation of structure alignment sf and semantic
alignment cf information, the plausibility of each potential fact is measured
through a multi-layer perceptron (MLP) with the learnable parameters θ.

scoref = MLP ([cf ; sf ]; θ). (15)

4.4 Model Learning

We adopt negative sampling strategy which randomly replace the head entity or
tail entity for each positive fact f = (h, r, t, τ) ∈ G. In model learning, we build
the query of head entity (?, r, t, τ) and tail entity (h, r, ?, τ), then construct
the candidate set Sf,h and Sf,t, respectively. Each candidate set consists of the
target key and a number of entities selected by negative sampling. Finally, the
cross-entropy loss for fact f ∈ G with head query and tail query is formulated
as:

lossce = −(
∑
f∈G

log
exp(score(f))∑

h′ ∈Sf,h
exp(score(h′ , r, t, τ))

+log
exp(score(f))∑

t′ ∈Sf,t
exp(score(h, r, t′ , τ))

).
(16)

where score(·) could be changed in different learning steps. ARIM-TE adopts
scoree in element-level information learning. With scoref the total loss in latter
learning process is formulated as:

loss = lossce(scoref ) + γlossaux. (17)

Specifically, lossaux is utilized to assist the modeling of local property with global
structure, γ denotes the trade-off hyper-parameter for the auxiliary loss.
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5 Experiments

5.1 Datasets

We evaluate our model on two public datasets, i.e., ICEWS14 [7] and
GDELT [32]. ICEWS14 is a common benchmark in TKG evaluation which
is selected from the public dataset Integrated Crisis Early Warning System
(ICEWS). GDELT is the subset of the Global Database of Events, Language,
and Tone which was extracted by Trivedi. ICEWS14 includes the facts that hap-
pened in 2014 and GDELT retains the facts that occurred from April 1, 2015
to March 31, 2016. Each fact in datasets is annotated with its corresponding
valid timestamp. e.g., (Barack Obama, make a visit, France, 2014.02.12). The
statistics of each dataset is shown in Table 1.

Table 1. Statistics of experimental datasets.

E R T Train Valid Test

ICEWS14 7,128 230 365 72,826 8,941 8,963

GDELT 500 20 366 2,735,685 341,961 341,961

5.2 Evaluation Metrics and Baselines

We evaluate our ARIM-TE on link prediction task. The link prediction task refers
to answer two kinds of queries (i.e., (?, r, t, τ) and (h, r, ?, τ)) generated from
each fact (h, r, t, τ) in the test set. Take the head entity prediction (?, r, t, τ)
as an example, we score and rank all potential entities in the filtered setting [2]
which filters the entities according to the facts in TKG, since other entities except
for the target head entity h may also link the query as a valid fact in TKG. We
follow a similar approach for the tail entity prediction (h, r, ?, τ) to get the rank
of the target entity. We report the Hit@n to show the proportion that the target
entity in test set is included in the top-n of the filtered candidate list. Usually,
the n is set to 1, 3 and 10. We also provide the Mean Reciprocal Rank (MRR)
calculated by averaging the reciprocated rank of the target entity for each query.
We compare our ARIM-TE with previous state-of-the-art methods including
three static KGE models which ignore the temporal information: TransE [2],
DistMult [43], SimplE [17]. We also select several competitive temporal KGE
methods: ConT [24], TTransE [14], HyTE [4], TA-DistMult [7], DE-SimplE [8],
ATiSE [41], TNTComplEx [19], TeRo [40] and TeMP [38].

5.3 Implementation Details

Our ARIM-TE is implemented using PyTorch. The time granularity in the exper-
iment is set to month so as to alleviate the unbalance issue on each time step.
Following the experimental set-up in DE-SimplE, the dimension of embeddings



ARIM-TE 159

Table 2. Comparison of different models on ICEWS14 and GDELT. The best results
among all models are in bold.

Model ICEWS14 GDELT

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0.280 9.4 – 63.7 0.113 0.0 15.8 31.2

DistMult 0.439 32.3 – 67.2 0.196 11.7 20.8 34.8

SimplE 0.458 34.1 51.6 68.7 0.206 12.4 22.0 36.6

ConT 0.185 11.7 20.5 31.5 0.144 8.0 15.6 26.5

TTransE 0.255 7.4 – 60.1 0.115 0.0 16.0 31.8

HyTE 0.297 10.8 41.6 65.5 0.118 0.0 16.5 32.6

TA-DistMult 0.477 36.3 – 68.6 0.206 12.4 21.9 36.5

DE-SimplE 0.526 41.8 59.2 72.5 0.230 14.1 24.8 40.3

ATiSE 0.545 42.3 63.2 75.7 – – – –

TNTComplEx 0.607 51.9 65.9 77.2 – – – –

TeRo 0.562 46.8 62.1 73.2 – – – –

TeMP-GRU 0.601 47.8 68.1 82.8 0.275 19.1 29.7 43.7

TeMP-SA 0.607 48.4 68.4 84.0 0.232 15.2 24.5 37.7

ARIM-TE 0.624 56.3 65.1 74.1 0.503 42.9 53.1 64.6

d is 100. We choose the Adam optimizer in the training process. In GDELT,
the negative ratio is 5 along the whole process. The batch size is 4096 at ele-
ment level, then drops to 1024 with the purpose of improving the generalization
performance. The learning rate is 1e-3 at element level, then drops to 3e-4. Con-
sidering the datasets with different sizes, in ICEWS14 the negative ratio is 500
at element level, then increase to 1000. The batch size is 512 at element level.
Same as in GDELT, we adopt a smaller batch size of 128 in latter learning. The
learning rate for ICEWS14 is 3e-4 in the whole training process. The trade-off
hyper-parameter γ for global structural loss is set to 10 for the two datasets.
The two-layer MLP with 1024 and 512 hidden sizes is chosen in information
alignment. The dropout rate is tuned from {0.0, 0.2, 0.4}.

5.4 Results

In this section, we report the performance of our ARIM-TE and compare it with
previous state-of-the-art models on two TKG datasets: ICEWS14 and GDELT.
The best link prediction evaluation results of each baseline model and our ARIM-
TE are shown in Table 2. Table 2 shows that ARIM-TE outperforms the base-
line methods on two datasets and achieves SOTA performance on GDELT. On
GDELT, ARIM-TE has great improvements in link prediction of 22.8% in MRR,
23.8% in Hit@1, 23.4% in Hit@3 and 20.9% in Hit@10 over the best baseline
method. On ICEWS14, ARIM-TE gets the improvement of 4.4% in Hit@1 and
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1.7% in MRR compared to the best baseline method, which confirms the impor-
tance of multi-granular information in getting accurate representation. Com-
pared to ICEWS14, GDELT has denser training data on each snapshot. Our
ARIM-TE fully learns the local property and the global structure on GDELT
with its denser training data. Additionally, with more informative interactions
between entities in GDELT, the element-level information is explored adequately.
The alignment of expressive multi-granularity information significantly enhances
the representation of the TKG and greatly improves the link prediction perfor-
mance on GDELT compared to all the baselines. Though the data in ICEWS14
is relatively sparse, ARIM-TE still gets more accurate link prediction perfor-
mance which implies that our ARIM-TE could effectively model the information
internal and external with alignment of multi-granular information.

5.5 Ablation Study

To better understand our ARIM-TE, we run experiments on GDELT with several
variants. The power of multi-granular information is measured through the vari-
ant ARIM-TE-E which only considers the element-level information. With the
purpose of validating the effectiveness of two different components in element-
level evolution regularity modeling, we construct the variants which only models
trend ARIM-TE-ET or periodic characteristics ARIM-TE-ES. The performance
of global structure and external influence is measured in the variant ARIM-TE-
FG and ARIM-TE-FO, respectively. We also test the effectiveness of merge gate
in variant ARIM-TE-FM which simply models the combination of the time prop-
erty internal and external with sum. Finally, we measure the power of alignment
in variant ARIM-TE-A which simply combine the multi-granularity information
through concatenation. The variant ARIM-TE-AS only considers the alignment
in semantics to test effectiveness of the structure alignment.

Table 3. Results for different variants of our ARIM-TE on GDELT. The best results
among all models are in bold.

Variant MRR Hit@1 Hit@3 Hit@10

ARIM-TE 0.503 42.9 53.1 64.6

ARIM-TE-E 0.166 0.0 26.8 42.0

ARIM-TE-ET 0.484 40.8 51.1 63.0

ARIM-TE-ES 0.483 40.8 51.0 62.9

ARIM-TE-FG 0.482 40.6 50.9 62.8

ARIM-TE-FO 0.461 38.3 48.8 61.2

ARIM-TE-FM 0.448 36.9 47.4 60.1

ARIM-TE-A 0.431 35.1 45.6 58.4

ARIM-TE-AS 0.472 39.6 49.7 61.9
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The results in Table 3 show that the multi-granular information greatly
improves the performance of our ARIM-TE. ARIM-TE gains 42.9% Hit@1 and
33.7% MRR improvements over the variant ARIM-TE-E. The alignment in
semantics and structure would significantly improve the performance with 7.8%
in Hit@1. The external information at fact level would improve the performance
with 4.2% in MRR and 4.6% in Hit@1 than ARIM-TE-FO. The well-combination
of the fact-level information internal and external would boost its performance.
The merge gate effectively fuses the information with the improvements of 6.0%
in Hit@1 and 5.5% in MRR than simply add them together in ARIM-TE-FM.
The structure alignment is also important and improves the performance of TKG
with 3.3% in Hit@1. The lack of either trend or seasonal characteristics in evo-
lution regularity modeling would weaken the performance of TKGE. Besides,
ARIM-TE could better learn the evolving structure of TKG across time with
more accuracy through considering the global influence in TKG.

6 Conclusion

We propose a novel model ARIM-TE based on multi-granular information with
alignment in structure and semantics to enhance the performance of represen-
tation for TKGs. To prepare for an effective alignment, we consider element-
level and fact-level information from both perspectives of internal regularity and
external influence. Moreover, fact-level information is modeled by the message
flow from its respective elements and is further fused by an elaborated merge
gate. Experimental results indicate the effectiveness and superior performance
of our ARIM-TE on several TKG benchmarks.
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