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Abstract. Social information is widely used in recommender systems
to alleviate data sparsity. Since users play a central role in both user-
user social graphs and user-item interaction graphs, many previous social
recommender systems model the information diffusion process in both
graphs to obtain high-order information. We argue that this approach
does not explicitly encode high-order connectivity, resulting in potential
collaborative signals between user and item not being captured. More-
over, direct modeling of explicit interactions may introduce noises into
the model and we expect users to pay more attention to reliable links. In
this work, we propose a new recommendation framework named Meta-
path Enhanced Lightweight Graph Neural Network (ME-LGNN), which
fuses social graphs and interaction graphs into a unified heterogeneous
graph to encode high-order collaborative signals explicitly. We consider
using a lightweight GCN to model collaborative signals. To enable users
to capture reliable information more efficiently, we design meta-paths to
further enhance the embedding learning by calculating meta-path depen-
dency probabilities. Empirically, we conduct extensive experiments on
three public datasets to demonstrate the effectiveness of our model.

Keywords: Social recommendation · Recommender systems · Graph
convolutional network · Collaborative filtering

1 Introduction

The volume of data is growing with the rapid development of society, leading
to information overload. In response, recommender systems have been proposed
for personalized information filtering, which centers on predicting whether a
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user will interact with a certain item. Collaborative filtering (CF) [4] has been
extensively studied in recommender systems, which uses user-item interaction
data to learn the user and item embeddings [9–13,16,17,19,23]. However, the
data sparsity that accompanies CF hinders the development of recommender
systems. With the rapid increase in social platforms, users are willing to make
friends and express their preferences on social platforms. Inspired by this, the
social recommendation was proposed to alleviate the data sparsity issue through
abundant social relationships.

As users take on an important role in both user-user social networks and
user-item interaction graphs, the key to social recommendation is that the
final embedding contains information from two interaction graphs. Traditional
social recommendation methods [5,10,20,26] aim at adding the influence of
social neighbors to the user embedding representation via a user-user interac-
tion matrix with the matrix factorization. These improvements can be seen as
utilizing first-order neighbors of the graph structure to make improvements. In
the following research, Wu et al. proposed Diffnet [18] and Diffnet++ [21] to fur-
ther enhance the embedding learning by incorporating high-order neighborhood
information into the embedding learning process. Although the performance of
the recommendation models of these social networks has improved, we believe
that there is still room for improvement in the present social recommendation
models. Specifically, these methods are not explicitly coded between the user and
the long-distance item. For example, there is such an association U4 → U1 → I1

in Fig. 1, then U4 and I1 are intrinsically related, but Diffnet does not explicitly
model these latent collaborative signals, we hope to encode such collaboration
signals in an explicit way. As well, during the training of the previous models,
all interactions between users and users (items) are coded uniformly, regardless
of the reliability of the connections between them. Some unreliable connections
may distract the nodes and lead to diminishing embedding representation capa-
bilities. Therefore, we expect users to focus on those users and items that are
more relevant to them in the modeling.

In this work, we propose a new recommendation framework named Meta-
path Enhanced Lightweight Graph Neural Network (ME-LGNN), which models
high-order collaborative signals explicitly. Specifically, we merge the user-user
social network and the user-item interaction graph into a unified social recom-
mendation HIN, then we utilize a lightweight graph convolution operation to
aggregate neighbors’ information. By stacking multiple layers, users and items
can obtain the characteristics of their high-order neighbors. In the aggregation
process, we use the attention network to adaptively aggregate the embedding
representation of different neighbors. In addition, to enable users to capture col-
laborative signals more efficiently, we devise a series of interpretable meta-paths
in HIN. To make the model focus more on reliable connections during train-
ing, we reduce noises by constraining the dependency probability of meta-paths,
making the embedding representation more capable. The two training processes
are alternated to improve the overall recommendation performance.
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Fig. 1. Heterogeneous information network (HIN) constructed by the user-item inter-
action graph and the social network. The blue node represents the user, the green node
represents the item, the orange dashed line indicates the interaction between the user
and the item, the purple dashed line indicates the trust relationship between the users.
(Color figure online)

In summary, the contributions of this work are as follows:

• We emphasize the significance of explicitly incorporating high-order collabo-
rative signals into embedding in social recommendation models.

• We fuse the user-user social network and the user-item interaction graph into
a unified heterogeneous network. On the basis of the network, we propose a
new social recommendation framework called ME-LGNN, which can model
high-order collaborative signals explicitly.

• To enable users to focus more on reliable connections, we designed a series of
meaningful meta-paths, which further improve embedding learning by con-
straining meta-path dependency probabilities.

• We conduct extensive experiments on three public datasets. Results demon-
strate competitive performance of ME-LGNN and the effectiveness of explicit
modelling of unified HINs.

2 Related Work

In this section, we briefly review the work related to social recommendation.
SoRec [15] is an early social recommendation model based on matrix factor-

ization, which proposed a factor analysis method using the probability matrix.
To incorporate the preferences of friends trusted by the user, Ma et al. pro-
posed a recommendation model RSTE [14] with weighted social information on
top of SoRec. However, this model does not propagate information about users’
preferences in the network, so SocialMF [10] was proposed, which is based on
the trust propagation mechanism of social networks to obtain the embedding
representation of users. Observing that users tend to give higher scores to items
that their friends like, Zhao et al. proposed the SBPR [26] model, which uses
social information to select training examples and incorporates social relation-
ships into the model. TBPR [20] was built on it by incorporating strong and weak
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ties in social relationships into social recommendations. These models proposed
different methods to address the sparse issue of collaborative filtering.

The recommender systems based deep learning aim to capture non-linear
features from the interaction graph. NeuMF [8] combines traditional matrix
factorization and Multilayer Perceptron (MLP) to extract both low and high
dimensional features with promising recommendation performance. DeepSoR [2]
proposed to learn embedding representations from social relationships and then
integrated the user’s embedding representation into a probability matrix fac-
torization for evaluating prediction. However, these methods do not encode the
interaction of information in an explicit way.

In recent years, graph neural networks are becoming well known for their
powerful performance in learning graph data. Recommendation tasks also can
be well represented as graph structures, so GNNs provide great potential for the
development of recommendation tasks. GC-MC [1] was proposed to construct
embedding of users and items by passing messages on the user-item interaction
graph, but this passing only operates on a layer of links and does not incorpo-
rate high order interaction information. The NGCF [19] proposed by Wang et
al. designs a graph convolution operation on the user-item interaction graph to
capture collaborative filtering signals in high-order connections. LightGCN [7]
makes the model more suitable for collaborative filtering tasks by removing fea-
ture transformations and non-linear variations from the GCN of the NGCF. To
incorporate social relationships, GraphRec [3] learns an adequate embedding rep-
resentation from the rich social relationships by fusing first-order interactions on
social networks and user-item interaction graphs with neural network processes.
Diffnet [18] leverages convolutional operations to perform recursive diffusion in
social networks to obtain high-order collaborative signals from users. With these
existing models, our work performs differently in that we fuse the social network
and user-item interaction graphs into a unified heterogeneous information graph
that explicitly encodes potential collaborative signals by propagating informa-
tion over the heterogeneous graph.

Considered from the perspective of heterogeneous graphs, a number of meta-
path-related models have been proposed to solve the recommendation task. The
recommendation model based on the meta-path can perform interpretable anal-
ysis of the recommendation results. Yu et al. proposed HteRec [25] which targets
implicit feedback and obtains different user preference matrices based on different
meta-paths, and then goes through a matrix factorization model to implement
recommendation tasks. Han et al. proposed the NeuACF [6] model to extract
different dimensions of information through multiple meta-paths in an attempt
to fuse different aspects of information. The IF-BPR [24] model also learns the
user’s embedding representation through a meta-path approach and then discov-
ers the user’s potential friends through an adaptive approach. On the contrary,
our work aims to enhance representation by calculating meta-path dependency
probabilities in such a way that users can focus on connections that are more
closely related to themselves and ignore connections that are more dissimilar to
themselves in a heterogeneous graph.
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3 Methodology

In general, ME-LGNN is composed of four parts: (1) Embedding Layer: pro-
viding the initial embedding of users and items. (2) Aggregation layer: learning
embedding representations of users and items through a lightweight GCN with
the attention mechanism; (3) Enhancement layer: designing some reasonable
meta-paths, through meta-path constraints to further enhance the embedding
representation capabilities. (4) Predicting Layer. We show the overall neural
architecture of ME-LGNN in Fig. 2. We first describe the problem formulation,
then introduce the four components of our model, and finally discuss the training
optimization process.

Fig. 2. Illustration of the ME-LGNN model architecture (arrow lines indicate informa-
tion flow). In the aggregation layer user (blue) and item (green) are aggregated through
multiple propagation layers for neighborhood aggregation, the output is subjected to
the first round of training, then further enhanced by a meta-path enhancement layer
for embedding learning, and its output is subjected to the final prediction. (Color figure
online)

3.1 Notation and Problem Formulation

We introduce necessary notations and definitions by describing the graph-based
collaborative filtering problem. In graph-based social recommendation, there are
two types of entities, user set U (| U |= M) and item set I (| I |= N). Two
interaction graphs are formed from U and I: (1) User-item interaction graph
Gu−i: we can use the adjacency matrix to represent the interactions in the
graph. R ∈ R

M×N is the interaction matrix between users and items. If there is
an interaction between the user u and the item i, yui is 1, otherwise it is 0. (2)
User-user social network Gu−u: S ∈ R

M×M is the interaction matrix between
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users. If the user u1 and the user u2 trust each other, yu1u2 is 1, otherwise it is
0. The type of relationship between entities a and b is rab. Relationship types
include social relationships between users and user ratings of items. We merge
the two networks to obtain a unified heterogeneous information network GH .
For social recommendation, given the evaluation matrix R of users and items
and the social network interaction matrix S, our goal is to predict the user’s
preference for unknown items. Next, we define the problems investigated in this
work as follows:

Input: user-user social network Gu−u, user-item interaction graph Gu−i,
user set U and item set I.

Output: a personalized ranking function that maps an item to a real value
for each user: fu : I → R.

In this process, we first merge the two input interaction graphs to obtain a
new heterogeneous information network GH . The rest of the training is carried
out on GH .

3.2 Embedding Layer

For social recommendation, we consider it as a representation learning problem.
Following some mainstream models [7,18,19,21], we use the embedding vector
eu ∈ R

d (ei ∈ R
d) to describe the user (item) and use the embedding vector

r ∈ R
d to describe the relationship type, d represents the dimension of the

embedding. We construct two parameter matrices as embedding lookup tables:

E = [
user embeddings
︷ ︸︸ ︷

eu1 , · · ·,euN
,

item embeddings
︷ ︸︸ ︷

ei1 , · · ·,eiM ],R = [
relationship type embeddings

︷ ︸︸ ︷

ruu, rui ]. (1)

3.3 Aggregation Layer

At the aggregation layer, we employ the attention network structure to aggregate
adaptively the learning embeddings of different neighbors in the heterogeneous
graph GH . Through iterative aggregation, information can be diffused and prop-
agated in the network. Some high-order cooperative information can also be cap-
tured, so the model can model high-order collaborative signals. Recent work [7]
has found that the most common feature transformations and non-linear activa-
tions in GCN contribute little to collaborative filtering and instead make training
more difficult and reduce recommendation performance. In our work, we remove
the two steps of feature transformation and nonlinear activation to reduce model
complexity. We aggregate all nodes in the heterogeneous information network,
the graph convolution operation in the ME-LGNN is defined as:

e∗
a = AGG (ea,N (a)) = ea +

∑

b∈N (a)

π̃ab · eb, (2)
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where e∗
a represents the embedding representation of node a, N (a) represents

the set of neighbors of a, and π̃ab is the attention value, which indicates that
how strongly node a is influenced by node b. The attention value is specifically
defined as follows:

π̃ab =
exp(πab)

∑

b′∈N (a) exp(πab′)
, (3)

πab = (ea � eb)T tanh(rab � eb), (4)

where rab is the interaction type between node a and node b. High-order correla-
tion is crucial for encoding collaborative signals and estimating correlation scores
between users and items. We iteratively execute the above aggregation process
and encode high-order collaborative signals to explore high-order connectivity
information.

3.4 Enhancement Layer

In the training process of the previous model, Fig. 1 shows that the interaction
information between all users and users (items) is uniformly coded, regardless of
the user’s high-order information relevance. Some unreliable links may distract
nodes. To alleviate the above problems, we do the following work to enhance the
representation learning ability.

Design Meta-path. Referring to [24], the interaction in this paper is undi-
rected. Here we have designed some reasonable meta-paths as shown in Table 1.
We generate these meta-paths by means of a random walk method on the het-
erogeneous graph GH . Then, a new path set P is obtained.

Table 1. Meta-paths designed for social recommendation.

Path Schema Description

P1 U–I–U Users who have consumed the same item are similar
P2 U–U–U Users may trust their friends’ friends
P3 U–U–I Users may have similar preferences to their friends
P4 U–U–U–U Users who share the same friends are similar with each

other
P5 U–U–U–I Users may have similar preferences as their friends’

friends
P6 U–U–I–U Users’ preferences may be similar to those of their

friends who have similar preferences
P7 U–I–U–U Users who have consumed the same items may have

similar preferences
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Calculate Dependent Path Probability. We reconstruct a dependency path.
For the path head and tail nodes, if there are interactions between the two nodes
in the ground-truth, the path will have a higher score, otherwise, it will have a
lower score. The goal is to enable users to pay more attention to the nodes that
are more likely to interact with themselves when learning embedding, so as to
further enhance the embedding learning.

Inspired by [22], we calculate the dependency probabilities of paths with the
following approach. Unlike [22] which proposed to model reconstructed sequences
as sequence generation, the sequence nature of paths in our study is not obvious.
Specifically, since there is a relationship between the two nodes in the path, we
use self-attention to calculate the hidden state pbl

of each node qbl−1
on the path

φ(n), as follows:
pbl = self-attention(pbl−1, qbl−1

), (5)

where pbl is the embedding of the node, and the initialization of pb0 is the output
of the aggregation layer. Then pbl is given to the softmax layer to calculate the
probability of node vbl in the path:

P (vbl | v<bl) =
exp

(

pbl
W rqbl

)

∑

n exp
(

pblW rqbn

) , (6)

where W r ∈ R
d×d is the parameter matrix. Then we get the set of node proba-

bilities for path φ(n) as {P (vb1 | v<b1), P (vb2 | v<b2), · · · , P (vbL | v<bL)}, finally,
the probability of path φ(n) is calculated as:

N(φ(n)) =
L

∏

l=1

P (vbl | v<bl) . (7)

3.5 Predicting Layer

After propagation through k layers, we obtain a representation of the user embed-
ding {e1u,e2u, · · · ,eku} and item embedding {e1i ,e2i , · · · ,eki } for each layer. Since
each layer may reflect different dimensions of user preferences, we concatenate
each layer of user representation as the final representation: e∗

u = [e0u ‖ e1u ‖
· · · ‖ eku]. we use a similar approach to get the final representation of item:
e∗
i = [e0i ‖ e1i ‖ · · · ‖ eki ]. Ultimately we calculate the user’s preference ŷui for a

certain item via inner product:

ŷui = e∗
u
Te∗

i . (8)

3.6 Model Training

To learn the model parameters, for the aggregation layer, we adopt cross-entropy
loss as the loss function:

LA =
∑

(u,i,j)∈O
− ln σ(ŷui − ŷuj), (9)
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where O = {(u, i, j) | (u, i) ∈ R+, (u, j) ∈ R−} denotes the pairwise training
data, R+ denotes positive samples, R− denotes negative samples.

For the enhancement layer, the ŷui was calculated using the same method
as in Eq. (8). We calculate the additional reconstruction loss for the generated
training set of reconstructed paths. We get fewer positive samples by random
walk through the meta-path, so we give a larger weight to the positive samples
during training. The difference with Eq. (9) is that here the training is performed
through a cross-entropy loss function with weights:

LE =
∑

(u,i,j)∈O
− ln σ(μŷui − ŷuj), (10)

μ =

√

‖ R+ ‖ + ‖ R− ‖
‖ R+ ‖ , (11)

where μ is the weight value of the positive sample.
The complete loss function of ME-LGNN is as follows:

L = LA + LE + λ‖Θ‖2, (12)

where Θ = {E,R,W r} represents all the trainable model parameters. It should
be noted here that the only training for our aggregation layer is the embedding
of the 0th layer. Compared with the traditional graph convolution operation,
the amount of parameters is reduced. Our enhancement layer model training
parameters and the conversion matrix in self-attention. λ is used to balance
the power of L2 regularization and prevent overfitting. LA and LE are trained
alternately to jointly improve the performance of the model. We adopt Adam
optimizer to optimize the aggregation layer and enhancement layer to update the
parameters. Adam is a commonly used optimizer which can adaptively adjust
the learning rate.

The specific process of ME-LGNN is presented in Algorithm 1. A training
epoch involves two stages: the aggregation layer (line 3–5) and the enhancement
layer (line 6–8). In each iteration, we execute the aggregation layer and the
enhancement layer in turn to enhance embedding learning.

3.7 Complexity Analysis

In this section, we analyse the complexity of our model.

Model Size. We adopt the alternative optimization strategy, the training
matrix of our model consists of three parts: user and item embeddings, the
parameter matrix, transformation matrixes. For the aggregation layer, we only
need to learn the 0th layer user embeddings U (0) ∈ R

N×d and item embeddings
I(0) ∈ R

M×d. For the enhancement layer, model training matrix W r and three
conversion matrixes in self-attention need to be learned. The number of param-
eters in each matrix is d × d. In total, the overall model size is approximately
(N + M + 4d)d. It can be seen that our model is very lightweight.
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Algorithm 1. ME-LGNN
Input: User-item interaction matrix R, user-user interaction matrix S, hetero-

geneous information network GH , user set U and item set I
Output: Prediction function fu : I → R

1: Initialize model parameters
2: for number of training iteration do
3: //the aggregation layer
4: Sample minibatch of positivite and negative interactions from R;
5: Update parameters by gradient descent on Equation (2)-(4), (8), (12);
6: //the enhancement layer
7: Obtain meta-paths by meta-path-based random walk method according

to Table 1 from GH ;
8: Update parameters by gradient descent on Equation (5)-(8), (12);
9: end for

10: Get the trained model parameters and calculate the prediction score

Time Complexity. Time consumption comes in five main parts: graph con-
volution, aggregation attention, self-attention, dependent path probability, and
prediction. We first calculate the number of interactions t =| R+ | + | S+ | in
the adjacency matrix, where | R+ | and | S+ | denote the number of nonzero
elements in R and S. For the graph convolution and attention through k lay-
ers, time consumption both are O(tdk), d is the dimension of embedding. The
self-attention and dependent path probability have computational complexity
O(Nd). For the prediction layer, only inner product calculations were carried
out, taking time O(NMd2). Since our model removes the feature transforma-
tions and non-linear transformations from the GCN according to [7], our model
is also more efficient in the training process than traditional GNN-based social
recommendation models.

4 Experiments

In this section, we conduct experiments on three real datasets, Yelp, Douban
and Lastfm-2k, to answer the following three questions:

RQ1 Can ME-LGNN perform better than other competitive methods?
RQ2 Does our proposed meta-path enhancement module improve recom-

mendation performance?
RQ3 Is ME-LGNN effective in mitigating data sparsity problems?

4.1 Experimental Settings

Dataset. To validate the performance of the model proposed in this paper, we
conduct experiments on three public datasets, Yelp, Douban and Lastfm-2k. The
three datasets are described in detail as follows.
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Table 2. The statistics of the three datasets.

Dataset Yelp Douban Lastfm-2k

Users 10580 12748 1892
Items 13870 22347 17632
Total links 79295 84575 84845
Ratings 102662 555739 55625
Link density 0.07% 0.05% 2.37%
Rating density 0.07% 0.19% 0.17%

• Yelp: The dataset is an online location-based social network where users rate
and interact with each other on top of the site.

• Douban: The dataset is a crawl of Douban reading data, which describes
the interaction behaviour of users on Douban.

• Lastfm-2k: The dataset contains the social networks of the 2K users set
from the Last.fm online music system, as well as information about the users’
listening.

With the dataset described above, we randomly selected 60% of the user inter-
action dataset as the training set, 20% as the test set and the remaining 20%
as the validation set to tune the hyperparameters. Next, we perform a negative
sampling strategy on the dataset, sampling the items that have not been con-
sumed by the users as negative samples. The information of the dataset after
pre-processing is shown in Table 2.

Evaluation Indicators. In this article, with an aim of evaluating the top-N,
We use two benchmarks which are commonly used in recommender systems,
Recall and Normalized Discounted Cumulative Gain (NDCG). Recall measures
how many positive examples are judged to be positive, NDCG considers not only
the ranking but also the relevance of the top positive examples.

Baselines. To verify the performance of our model, we compare ME-LGNN
with the following methods.

• TBPR [20]: The approach incorporates the important concept of strong and
weak ties into social recommendation, combining the BPR [16] model to dis-
criminate between strong and weak ties. The authors propose an EM model-
based algorithm for discriminating strong and weak ties in social networks,
which learns the potential feature vectors of users and items based on the
optimal recommendation accuracy.

• SocialMF [10]: The method constrains that a user’s preferences should be
as similar as possible to the average preferences of the social neighbors to
which the user is connected, and introduces trust propagation in the matrix
factorization so that users are represented as being close to the users they
trust.
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• NeuMF [8]: The method is a typical recommendation algorithm based on
deep learning. It combines traditional matrix factorization and a multi-layer
perceptron to extract both low and high dimensional features with impressive
recommendation results.

• Diffnet [18]: This approach uses GCN to model the user’s social network to
obtain the user’s embeddings then leverages the SVD++ [11] framework to
implement the recommendation task.

• LightGCN [7]: This model is also a graph-based model, where it explores
recommendation tasks on a user-item interaction graph. In this work, the
authors’ goal is to simplify the design of the GCN to make it cleaner and
more suitable for collaborative filtering tasks.

Parameter Settings. We use tensorflow to implement our model. For all mod-
els relying on gradient descent-based approaches in the model learning process,
we utilise Adam as the optimization method. For all comparison models, we tune
the learning rate between [0.001, 0.005, 0.01.0.02, 0.05] to get the best results.
The regularization factor was tuned between [10−6,10−5,· · · ,101,102] to obtain
the best results. The training batch size is set to 1024. For NeuMF, we set the
hidden layers as suggested in [8]. For Diffnet, LightGCN, we tune the GCN
layers between [1, 2, 3]. For our model, the number of GCN layers is set to 2.
Finally, we set the embedding dimension to 32 and 64 respectively to compare
the recommended performance.

4.2 Overall Comparison (RQ1)

In Table 3 and Table 4, we show the overall performance of the top-10 recom-
mendations for all models with different dimensional embeddings in the three
datasets. It can be observed that almost all the performances are improved
accordingly with increasing embedding dimension d. Both TBPR [20] and
SocialMF [10] leverage the social connections of users to mitigate the problem of
sparsity, and while TBPR [20] incorporates the strength of ties, SocialMF [10]
introduces the propagation of trust. NeuMF [8] introduce high-dimensional fea-
tures on the basis of traditional methods and achieve considerable results. Graph
convolution models Diffnet [18] and LightGCN [7] show a significant improve-
ment, as reflected in the great potential of graph-based recommendation models
for recommendation tasks. Our ME-LGNN is superior on almost all data sets,
which shows the effectiveness of explicit modeling for high-order collaborative
signals. We carry out further experiments on this aspect, the results are depicted
in Table 5 and Table 6. They present the experimental performance under differ-
ent Top-N when d = 64, which are consistent with our previous analysis, further
verifying the effectiveness of our model. Such results and explanations prove
that our model is effective through specific experiments. As can be seen from
the results of the experiment, the results perform best when the dimension is
64, so we will use d = 64 for model analysis in the following experiments.
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Table 3. Recall@10 comparisons for different dimension size d.

Models Yelp Douban Lastfm-2k

d = 32 d = 64 d = 32 d = 64 d = 32 d = 64

TBPR 0.0247 0.0256 0.0246 0.0358 0.0621 0.0605

SocialMF 0.0182 0.0245 0.0410 0.0438 0.0766 0.0725

NeuMF 0.0258 0.0283 0.0473 0.0456 0.0934 0.0936

Diffnet 0.0223 0.0218 0.0309 0.0453 0.0834 0.0865

LightGCN 0.0344 0.0361 0.0422 0.0512 0.1118 0.1033

ME-LGNN 0.0407 0.0412 0.0497 0.0514 0.1159 0.1200

Table 4. NDCG@10 comparisons for different dimension size d.

Models Yelp Douban Lastfm-2k

d = 32 d = 64 d = 32 d = 64 d = 32 d = 64

TBPR 0.0201 0.0198 0.0324 0.0631 0.0754 0.0734

SocialMF 0.0159 0.0218 0.0542 0.0605 0.0882 0.0873

NeuMF 0.0216 0.0226 0.0617 0.0636 0.1028 0.1171

Diffnet 0.0195 0.0207 0.0397 0.0585 0.0988 0.1068

LightGCN 0.0316 0.0334 0.0657 0.0696 0.1271 0.1282

ME-LGNN 0.0346 0.0353 0.0670 0.0691 0.1396 0.1415

Table 5. Recall@N comparisons for different top-N values.

Models Yelp Douban Lastfm-2k

N = 10 N = 20 N = 10 N = 20 N = 10 N = 20

TBPR 0.0256 0.0353 0.0358 0.0546 0.0605 0.0898

SocialMF 0.0245 0.0462 0.0439 0.0727 0.0724 0.1263

NeuMF 0.0283 0.0499 0.0456 0.0720 0.0937 0.1461

Diffnet 0.0219 0.0338 0.0453 0.0648 0.0866 0.1354

LightGCN 0.0361 0.0582 0.0512 0.0735 0.1033 0.1596

ME-LGNN 0.0412 0.0653 0.0514 0.0815 0.1200 0.1728

Table 6. NDCG@N comparisons for different top-N values.

Models Yelp Douban Lastfm-2k

N = 10 N = 20 N = 10 N = 20 N = 10 N = 20

TBPR 0.0198 0.0219 0.0631 0.0623 0.0733 0.0847

SocialMF 0.0218 0.0281 0.0605 0.0661 0.0874 0.1113

NeuMF 0.0226 0.0283 0.0636 0.0689 0.1171 0.1385

Diffnet 0.0207 0.0240 0.0585 0.0607 0.1060 0.1279

LightGCN 0.0334 0.0383 0.0696 0.0722 0.1282 0.1521

ME-LGNN 0.0353 0.0421 0.0691 0.0740 0.1415 0.1609
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4.3 Ablation Experiments (RQ2)

In this subsection, we examine whether our proposed meta-path enhancement
module is effective through ablation experiments. We remove the meta-path
enhancement module to train the model and obtain experimental results for the
model LGNN. The results of the experiment are shown in Table 7 and Table 8, it
can be observed that the addition of the meta-path enhancement module to the
LGNN yields the ME-LGNN, which further improves performance and demon-
strates the effectiveness of valuing reliable connections for modeling. Moreover,
after removing the meta-path enhancement module, our model still exhibits
impressive performance, further demonstrating its effectiveness in explicit mod-
eling of HINs.

Table 7. Recall@N comparisons for different top-N values.

Models Yelp Douban Lastfm-2k
N = 10 N = 20 N = 10 N = 20 N = 10 N = 20

LGNN 0.0407 0.0646 0.0509 0.0821 0.1163 0.1686
ME-LGNN 0.0412 0.0653 0.0514 0.0815 0.1200 0.1728

Table 8. NDCG@N comparisons for different top-N values.

Models Yelp Douban Lastfm-2k
N = 10 N = 20 N = 10 N = 20 N = 10 N = 20

LGNN 0.0345 0.0409 0.0685 0.0737 0.1390 0.1598
ME-LGNN 0.0353 0.0421 0.0691 0.0740 0.1415 0.1609

4.4 Performance Comparison Under Different Sparsity (RQ3)

To verify whether our model can mitigate the data sparsity problem, we con-
duct sparsity experiments on the Yelp and Douban datasets. For the users in the
training data, we first group them according to the quantity of interactions. For
example, [16, 32) means that the user interacts with the item at least 16 times
and at most 32 times in the training set. The experimental results are presented
in Fig. 3, from which we are able to observe a general trend of improved perfor-
mance with increasing numbers of interactions. The result is cognitive, since the
more interactions there are, the more information that can be captured. It can
also be noted that our model exhibits respectable performance in most cases,
with a significant improvement on the Yelp dataset in particular, indicating that
our model can mitigate the data sparsity problem.
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Fig. 3. Performance under different rating sparsity on two datasets.

5 Conclusion

In this work, we propose a new recommendation framework called Meta-path
Enhanced Lightweight Graph Neural Network (ME-LGNN) to explicitly model
high-order collaborative signals. In order to make users pay more attention to
reliable links, we design a series of meaningful meta-paths, random walk based on
the meta-paths, and constrain the links by calculating the dependency probabil-
ities of the meta-paths. Extensive experimental analysis on three public datasets
shows the effectiveness of our proposed model.

Currently, our approach shows promising performance in handling simple
heterogeneous information networks. In future, we consider improving our app-
roach to enable the handling of complex network structures with more attribute
information. We will also consider how to make more rational use of meta-paths
to improve the interpretability of recommendation results.
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