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Abstract. In multi-view learning, leveraging features from various
views in an optimal manner to improve the performance on predic-
tive tasks is a challenging objective. For this purpose, a broad range
of approaches have been proposed. However, existing works focus either
on capturing (1) the common and complementary information across
views, or (2) the underlying between-view relationships by exploiting
view pair similarities. Besides, for the latter, we find that the obtained
similarities cannot representatively reflect the differences among views.
Towards addressing these issues, we propose a novel approach called
MELTS (Multi-viEw LatenT space learning with Similarity preservation)
for multi-view classification. MELTS first utilizes distance correlation to
explore hidden between-view relationships. Furthermore, by assuming
that different views share certain common information and each view
carries its unique information, the method leverages both (1) the simi-
larity information of different view pairs and (2) the label information
of distinct sample pairs, to learn a latent representation among multi-
ple views. The experimental results on both synthetic and real-world
datasets demonstrate that MELTS considerably improves classification
accuracy compared to other alternative methods.

Keywords: Multi-view classification · Latent representation learning ·
Distance correlation

1 Introduction

In the real world, an object can often be described by multiple different features.
For example, in the vision domain, a video can be described by language, visual
and audio features. These data are called multi-view data and are often collected
from different data sources or measured by different methods. Multi-view clas-
sification widely exist in real-world applications, such as image classification [9]
and disease diagnosis [11].
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Fig. 1. An illustration of the constituent components of the MELTS framework.

Multi-view data have two important principles: consensus and complemen-
tary principles [4]. Since different views share information, the consensus princi-
ple suggests that distinct views should be in agreement. Existing methods focus
primarily on extracting common information shared by all views (e.g. [3]). The
main idea is to map the original views into a latent subspace and maximize the
consensus among the learned representations from distinct views. This group of
methods reduce feature redundancy, however, they fail to capture the comple-
mentary information contained in individual views.

On the other hand, the complementary principle assumes that each view
contains some unique information. The recent methods [4,8] tend to learn rep-
resentations that contain both the consistency information shared by all views
and the complementary information of each individual view, simultaneously. To
further make effective use of complementary information, a diversity constraint
is added to enforce the learned representations from different views to be inde-
pendent of one other [7]. Promoting sufficient diversity across different views
essentially ignores the true underlying relationship among the views.

To explore the relationship among views, recently, [10] presented a method
that utilizes Jensen Shannon divergence (JS-divergence) to calculate the similar-
ities between view pairs. However, we observe that the view-pair similarities can-
not be captured correctly when the number of samples and some between-sample
distances are large, due to the manner in which JS-divergence is formulated.

To address the aforementioned issues, we propose a novel approach MELTS
(Multi-viEw LatenT space learning with Similarity preservation) aimed at pre-
serving similarities between view pairs as well as between sample pairs in the
learned representations. Figure 1 illustrates the framework of the approach.
MELTS learns a latent subspace that is composed of a shared component across
all views and a specific component for each view. To capture the relationship
among views, we propose to utilize distance correlation [6] to calculate the sim-
ilarity between each view pair in the original data. We assume that if two views
are less similar, then their specific components will contain more discriminative
information. Otherwise, their specific components will be similar to each other.
Such a latent representation true learning approach would tend to preserve the
latent relationships between views. In addition, by taking label information into
account, MELTS minimizes the distances between any sample pairs in the sub-
space if they are from the same class, which further enhances the separability
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of the learned features. After learning the representations, a linear classifier is
applied for classification.

The contributions of this work are summarized as follows:

– We identified the cause of the problem of using JS-divergence to calculate the
relationship between view pairs and proposed to utilize distance correlation
as a remedy.

– We proposed a method MELTS that simultaneously leverages both (1) the
similarity information for different view pairs and (2) the label consistency of
sample pairs to learn a latent representation among multiple views.

2 Proposed Approach

Let the matrix Xi =
[
xi
1, · · · ,xi

n

] ∈ R
di×n represent a set of data samples in the

i-th view, where di denotes the feature dimension of the i-th (i = 1, · · · , k) view
and k denotes the number of views. Further, let Y ∈ R

n×c be the label matrix,
where c is the number of classes and each row is a label vector in which the b-th
entry is 1 and the rest are −1 if its corresponding sample falls in the b-th class.
The goal is to classify each sample by learning the latent representations among
k different views of the training samples. Since an individual sample is described
by multiple views, we assume that the latent representations contain a shared
component Z ∈ R

n×ds among all views and a specific component Zi ∈ R
n×d

within each single view, where ds and d are the dimensions of the shared and
specific components, respectively.

2.1 View Pair Correlation Preserving

Before describing our model, we first introduce the view pair correlation pre-
serving term, which intends to capture the discriminative information among
multiple views by exploring correlation between view pairs. We hypothesize that
if a view-pair correlation under the original representation is strong, then the
view-specific components of two views should be similar. For example, if two
views’ original representations Xi and Xj are correlated, we expect that Zi

and Zj are similar, which means Zi and Zj are close to each other in the pro-
jected space. By utilizing this term, the latent relationships between the views
can be preserved. However, each view may contain different feature dimension,
which brings a challenge to measure the between-view correlation. To address
this issue, one recent work [10] applies JS-divergence to measure the similarity
between view pairs. Specifically, they first calculate the distance between any
two samples in each view. After computing the distance probability between
all sample pairs in each view, they use JS-divergence to calculate the similarity
between view pairs. When view pairs are more similar, JS-divergence is closer
to zero.

Computing the difference of distance probability distributions in two views
allows to measure the similarity between views with different feature dimen-
sions. However, we found that when (1) the number of samples is large (or even
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when some values of sample pairs’ distances are large) and (2) the difference of
distance probability between two views is small; the view pair similarity calcu-
lated by JS-divergence tends to be small, which fails to capture the relationship
among the views. The main reason is that larger values of the number of samples
and sample pairs’ distances make the distance probabilities smaller and cause
negligible difference between the distance probability distributions of two views,
which leads to the JS-divergence being close to zero.

In our model, we adopt the idea of distance correlation [6], which originally
was designed to describe the dependence between two random variables. Distance
correlation utilizes distance covariance to capture the relationship between views
and avoids to calculate the distance probability, which can overcome the prob-
lem of using JS-divergence. Let lia,b represent the Euclidean distance between
the samples a and b in the i-th view, and let Li be the distance matrix con-
taining all pairwise distances. After double centering of each distance, the dis-
tance correlation between views i and j is: dCorr(Xi,Xj) = dCov(Xi,Xj)√

dV ar(Xi)dV ar(Xj)
,

where dCov(Xi,Xj) =
√

1
n2

∑n
a=1

∑n
b=1 tia,bt

j
a,b and dV ar(Xi) = dCov(Xi,Xi).

The view pair correlation preserving is achieved by minimizing the following
term: 1

k(k−1)

∑
i<j ‖Zi −Zj‖2F Ci,j , where Ci,j = dCorr(Xi,Xj) acts as a weight

based on the correlation between the views i and j. When the correlation value
is large, the term intends to pull the specific components of the two views closer
in the projected space. Otherwise, it tries to pull them further apart.

2.2 Label Pair Consistency Preserving

To further leverage the label information, we introduce a term that enforces
the samples from the same class to be closer to one another in the latent
space, which enhance the separability of the learned representations. Specifi-
cally, by concatenating the latent representations of all views results in H =
[Z Z1 · · · Zk] ∈ R

n×(ds+kd), we obtain the samples that contain all views’ infor-
mation in the projected space. For samples q and l, the learned features are
Hq ∈ R

(ds+kd) and Hl ∈ R
(ds+kd), respectively. The consistency weights are

defined as follows: if q and l are from the same class, sq,l = 1; otherwise,
sq,l = 0; where q, l = 1, ..., n. Therefore, the sample label pair consistency

term is: 1
n2

∑n
q=1

∑n
l=1

∥
∥
∥Hq − Hl

∥
∥
∥
2

2
sq,l = 2

n2 tr(HTLH), where L = D − S is
the Laplacian of the similarity matrix S, and D is the diagonal matrix with
dq,q =

∑n
l=1 sq,l. By minimizing the sample label pair consistency term, when

two samples are from the same class, the distance between their latent represen-
tations is reduced.

2.3 Complete Objective Function

Recall that multi-view data follows the consensus and complementary principles.
Our goal is to learn a latent representation for each view that preserves (1)
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the information shared among all views and (2) specific information coming
from each single view. Following [8], this can be achieved by minimizing the
following term:

∑k
i=1 ‖XT

i Pi + 1bT
i − [Z Zi] ‖2F , where Pi ∈ R

di×(ds+d) is the
transformation matrix of the i-th view used to map the original representation
Xi into the latent space; bi ∈ R

(ds+d) is a bias term and 1 ∈ R
n is an all-

ones vector. The learned feature vector for the i-th view [Z Zi] ∈ R
n×(ds+d)

consists of the shared component Z across all views and the specific component
Zi of the i-th view. After learning the view specific and shared components,
a linear classifier is designed for classification. Following [8], the corresponding

loss function is formulated as:
∥
∥
∥HW + 1bT − Y

∥
∥
∥
2

F
, where W ∈ R

(ds+kd)×c

is a transformation matrix that maps the projected features H into the label
space and b ∈ R

c is a bias term. By minimizing the loss function, the difference
between the predicted outputs HW + 1bT and the ground-truth Y tends to
reduce.Therefore, the complete objective function is defined as:

min
W,Pi,Z,Zi,b,bi

k∑

i=1

∥∥XT
i Pi + 1bT

i − [Z Zi]
∥∥2

F
+

α

k(k − 1)

∑

i<j

‖Zi − Zj‖2F Ci,j

+
β

n2

n∑

q=1

n∑

l=1

∥∥Hq − Hl
∥∥2

2
sq,l + γ

∥∥HW+ 1bT − Y
∥∥2

F
+ θ ‖W‖2F , (1)

where ‖W‖2F is a regularization term included to help prevent overfitting. Note
that the first three terms aim to learn the latent representation among multiple
views by utilizing the label information of the sample pairs and the similarity
information of the view pairs. The last two terms constitute a regularized loss
between the predicted outputs and the ground-truth.

2.4 Optimization Procedure

For the objective function from Eq. (1), we solve the problem by using an alter-
nating optimization strategy and update W, {Pi}k

i=1, Z, {Zi}k
i=1, b, {bi}k

i=1,
iteratively to optimize these variables.

First, we fix W, Z, {Zi}k
i=1, b and update {Pi}k

i=1, {bi}k
i=1: by setting the

derivative of Eq. (1) w.r.t. Pi, bi to zero, we get Pi = −(XiXT
i )−1Xi(1bT

i −
[Z Zi]) and bi = 1

n [Z Zi]T1 − 1
nP

T
i Xi1.

Next, we fix {Pi}k
i=1, {bi}k

i=1, Z, {Zi}k
i=1 and update W, b: by setting

the derivative of the Eq. (1) w.r.t. W, b to zero, yields W = −(HTH +
θ
γ I)

−1HT (1bT − Y) and b = 1
nY

T1 − 1
nW

THT1.
Lastly, we fix {Pi}k

i=1, {bi}k
i=1, W, b and update Z, {Zi}k

i=1: Note that
we update Zi in a view-by-view manner. When updating Zi, Z and {Zj}j �=i are

fixed. Now, considering that H = [Z Z1 · · · Zk], β
n2

∑n
q=1

∑n
l=1

∥
∥
∥Hq − Hl

∥
∥
∥
2

2
sq,l

can be rewritten as 2β
n2 (tr(ZTLZ) + · · · + tr(ZT

k LZk)). By setting B = 1bT −Y

and E1 = Zw +
∑k

j �=i Zjwj + B, γ
∥
∥
∥HW + 1bT − Y

∥
∥
∥
2

F
can be rewritten as

γ ‖Ziwi + E1‖2F , where wi ∈ R
d×c.
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By setting Ai = XT
i Pi + 1bT

i and denoting Pi = [Pi1 Pi2], Pi1 ∈ R
di×ds ,

Pi2 ∈ R
di×d, bi = [bi1 bi2], bi1 ∈ R

ds , and bi2 ∈ R
d, we get Ai = [Ai1 Ai2] =

[XT
i Pi1 +1bT

i1 XT
i Pi2 +1bT

i2]. Taking the derivative of Eq. (1) and setting it to
zero yields 2β

n2LZi +Zi

(
I + α

k(k−1) (
∑

j �=i Ci,j)I + γwiwT
i

)
= Ai2 + α

k(k−1)

∑
j �=i

Ci,jZj −γE1wT
i , where I ∈ R

d×d is an identity matrix. The closed-form solution
of the given term can be computed using the algorithm from [1].

When updating Z, {Zi}k
i=1 are fixed. By setting E2 =

∑k
i=1 Ziwi + B and

the derivative of Eq. (1) w.r.t. Z to zero, we obtain 2β
n2LZ+Z

(
k ∗ I + γwwT

)
=

∑k
i=1 Ai1 − γE2wT, where I ∈ R

ds×ds is an identity matrix. The optimization
problem of the given term can also be solved using the algorithm from [1].

3 Experiments

3.1 Experiment Setting

Three publicly available and widely used datasets, including image, text, or
even multi-source data, were used in the experiments. MSRC-V1 [12] is a scene
image dataset. For a given image, the task is to predict the image’s category. The
dataset consists of six views, 7 classes and a total of 210 samples. TweetFit [2]
consists of recordings from individual users’ sensors and the data were collected
from multiple social media. For a given user, the task is to predict the user’s body
mass index (BMI). We selected users with data available for all data sources,
which consists of 8 classes, 205 samples and three views. BBCSport1 is a sport
news text dataset. For a given text, the task is to predict the text’s category.
The dataset consists of 116 samples, 5 classes and four views.

We compared the classification accuracy of MELTS with the following meth-
ods. SVM applied to the concatenation of multiple views. MVDA [5] deter-
mines a discriminant common space by learning linear transforms of each view.
MVCS [8] learns a latent subspace from multiple views by simultaneously con-
sidering the correlated information across the views and the unique information
within each single view. WeReg [9] adaptively assigns weights to distinct views
to account for view importance.

In all experiments, standard fivefold cross-validation was utilized and the
average accuracies along with their standard deviations on each dataset were
reported. For each of the 5 trials, we randomly choose 75% of the data for
training, and the rest for validation.

The parameters were fine-tuned based on validation performance. PCA
was used on the original data to initialize the shared component Z and
each specific component Zi. Let d∗

i denote the feature dimension of the i-
th view representation obtained by PCA and d∗ denote the minimum of
{d∗

1, · · · , d∗
k}. As for the hyperparameters of MELTS, α, β, γ, θ were selected from

{10−3, 10−2, · · · , 102, 103} based on optimal performance, while ds and d were
selected from {1, 1

4d∗, 1
2d∗, 3

4d∗, d∗}. The tradeoff parameter C, i.e. the inverse

1 http://mlg.ucd.ie/datasets/segment.html.

http://mlg.ucd.ie/datasets/segment.html


Multi-view Latent Space Learning 695

regularization strength, for SVM was selected from {10−3, 10−2, · · · , 102, 103}.
For MVDA, a 1-Nearest Neighbor classifier was applied to the low-dimensional
representations for classification. Since MELTS is built on the basis of MVCS,
it was compared to MVCS under the same ds and d to show the influence of the
added terms. In the case of WeReg, for fair comparison, a sample’s label is pre-
dicted based on the maximum label probability instead of using the kNN-based
prediction approach from [9].

3.2 Results on Synthetic Data and Real-World Datasets

We initially assess the performance of the proposed method on the synthetic
data. We generated a dataset with three views containing 300 samples, each
having 200 features. The samples were generated from six normal distributions
with different parameters, thus defining six separate classes of samples. 50 out
of the 200 features were generated to be similar to increase feature redundancy.
To better understand the effect of view similarity, we generate similar parameter
values for the first two views and generate the third view by using distinct param-
eter values. The pairwise between-view similarities based on distance correlation
are following: dCorr(X1,X2) = 0.99, dCorr(X1,X3) = dCorr(X2,X3) = 0.59.
It can be inferred that view 1 is more similar to view 2, than to view 3.

Table 1 shows the classification accuracies obtained by all models on the syn-
thetic data. First, SVM and WeReg perform poorly since these three methods
directly concatenate the features of all views and ignore the feature redundancy
across multi-view representations. Compared with SVM and WeReg, MELTS
attains an improvement of 39% and 35%, respectively. Second, MELTS achieves
34% higher accuracy than MVDA since the method ignores the hidden spe-
cific information of each single view. Furthermore, MELTS produces 2% higher
accuracy than MVCS, which suggests that leveraging the sample pairs’ label
information and the view pairs’ similarities can help learn more relevant and
discriminative features.

The experimental results on the three real-world datasets are also reported
in Table 1. Compared with MVCS, MELTS achieves considerable improvements
on the three datasets. For example, MELTS achieves 7% higher accuracy than
MVCS on MSRC-V1 and 14% on TweetFit. WeReg obtains lower performance
than MELTS on the three datasets, as it ignores the latent relationships among
the different views. The results obtained by MVDA are much lower than those
of MELTS on all datasets. Moreover, on most datasets, MELTS obtains the
smallest standard deviation, which demostrates the stability of our method.
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Table 1. Average accuracy obtained by MELTS and the alternative methods.

Methods MSRC-V1 TweetFit BBCSport Synthetic data

SVM 0.97 ± 0.01 0.34 ± 0.04 0.89 ± 0.05 0.19 ± 0.03

MVDA 0.93 ± 0.02 0.29 ± 0.04 0.80 ± 0.08 0.24 ± 0.07

MVCS 0.91 ± 0.07 0.24 ± 0.07 0.74 ± 0.07 0.56 ± 0.05

WeReg 0.96 ± 0.02 0.33 ± 0.05 0.94 ± 0.05 0.23 ± 0.07

MELTS 0.98 ± 0.01 0.38 ± 0.01 0.95 ± 0.05 0.58 ± 0.07

4 Conclusion

In this paper, we proposed MELTS, a novel multi-view learning approach.
MELTS learns a latent subspace, containing the common information across
all views and the individual information carried by each view. MELTS effec-
tively models the between-view relationships and utilizes the label information
to enhance the discriminability in the learned latent subspace. The results indi-
cate that MELTS achieves better classification performance than other methods.
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