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Abstract. Multiple Kernel Clustering (MKC) is helpful to leverage
complementary information from various contexts and alleviate the diffi-
culty of kernel determination. However, the key weighting strategies for
optimal kernel learning around individual kernels are not derived from
their optimization problems but embedded in a plug-and-play manner
and lead to sub-optimal objective function value. More seriously, the
hyper-parameters, introduced by the additive balance of these two cou-
pled sub-tasks, are hard to determine in unsupervised learning scenarios
and lead to inconsistent and less satisfying results. To avoid the problems
mentioned above, we present a novel parameter-free MKC method with
the trace ratio criterion (TRMKC in short), which minimizes the approx-
imation errors between consensus and base kernels using the corr-entropy
induced metric and maximizes the mean similarities based on the con-
sensus kernel. The trade-off between these two coupled sub-procedures
can be automatically balanced, and the performance could be mutually
reinforced. To solve the trace ratio criterion and the corr-entropy induced
non-quadratic function optimization problem, we present an alternative
strategy with monotonic convergence proof, which reformulates it into a
series of sub-problems with trace difference and quadratic programming
by utilizing the half-quadratic optimization technique. Extensive MKC
experimental results well demonstrate the effectiveness of TRMKC.
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1 Introduction

As a fundamental research field in machine learning and data mining, cluster-
ing has been widely used in various applications. The Multiple Kernel Clustering
(MKC) methods are widely investigated to incorporate complementary informa-
tion across kernels and avoid the kernel selection or design problem. The paradigm
of MKC has received considerable attentions, and several methods have been pro-
posed recently. In general, existing MKC algorithms can be roughly grouped into
three categories. The first category takes the early fusion strategy, where one sub-
task is to learn the consensus kernel from multiple candidate kernels, and another
is to perform clustering on the single consensus kernel [5,7,8,10]. The second cat-
egory algorithms also take the early fusion strategy via the paradigm of multiple
graph clustering. One sub-task is to extract multiple affinity graphs from multiple
kernels, and another one is to integrate these affinity graphs to get the final con-
sensus graph. These two sub-tasks can be concatenated separately as in [6,15] or
optimized jointly as in [14,16]. The third category utilizes the late fusion strategy,
where multiple base partitions are first generated from individual kernels and then
integrated to build the final consensus partition [9,11,17].

Based on the inherent connection between consensus kernel learning and clus-
tering on consensus kernel, most existing MKC algorithms jointly optimize these
procedures within a unified learning framework, where these targets are often man-
ually balanced by additional hyper-parameters. These algorithms often perform
well with suitable parameters detected by the grid search strategy, which uses the
ground truth to determine the proper parameters. However, the limitation of such
a strategy is also clear. On the one hand, the performance of MKC algorithms
is less stable and largely dependent on the choice of hyper-parameters. On the
other hand, it is less applicable and even infeasible to search for the best hyper-
parameters via the so-called grid search strategy for the unsupervised MKC sce-
nario, where no label information is available. Therefore, it is much preferable to
develop MKC methods without parameter turning or even parameter-free.

To address the problems mentioned above on candidate kernel weighting and
hyper-parameter sensitivity, we propose to learn the optimal neighborhood kernel
called TRMKC by minimizing the approximation errors between consensus and
base kernels using the corr-entropy induced metric, where the large errors caused
by poor quality kernels could be largely suppressed. In contrast, good kernels cor-
responding to small errors could be carefully emphasized. It should be noted that
the kernel weight can be estimated directly from the optimization problem, not
like the plug-and-play strategy as [13,19]. TRMKC is proposed to integrate con-
sensus kernel learning and clustering by maximizing the trace ratio criterion with-
out introducing additional hyper-parameters, where the balance between these
two coupled sub-procedures can be automatically balanced, and the performance
could be mutually reinforced. To solve the optimization problem with the trace
ratio criterion and the corr-entropy induced non-quadratic function, we present
an alternative optimization strategy with monotonic convergence proof, which
reformulates it into a series of sub-problems with trace difference and quadratic
programming by utilizing the half-quadratic optimization techniques. Extensive
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MKC experimental results on 11 benchmark datasets with ten recent MKC algo-
rithms well demonstrate the effectiveness of TRMKC.

2 Design of TRMKC

Given multiple kernel grammatrices {Ki}m
i=1 on n samples, where Ki ∈ Rn×n

is the i-th kernel matrix and it is PSD as required. The MKC algorithm aims to
identify the c consensus cluster structure across these candidate kernels.

2.1 Consensus Kernel Learning via CIM

Instead of using a traditional quadratic function like [13,19], the approximation
error between consensus kernel K and single individual kernel Ki is measured
by the corr-entropy induced non-quadratic loss function, which leads to the fol-
lowing optimization problem for consensus kernel learning,

min
K

m∑

i=1

�(K,Ki) =
m∑

i=1

(
1 − exp(−||K − Ki||2

δ2
)
)

, s.t. K � 0, (1)

where δ is the bandwidth of the Gaussian function, which is estimated automat-
ically in this paper. From the perspective of the loss function, the benefits of
the above non-quadratic loss function against the traditional quadratic one are
two folds. Firstly, the CIM loss is upper bounded and change slowly for large
errors. Therefore, the effect of a low-quality kernel with large error could be large
suppressed. Secondly, the CIM loss changes quickly on small errors. As a result,
similar high-quality kernels, which correspond to small errors, could be carefully
distinguished. The different behavior of CIM function on large and small errors
makes it is appropriate to characterize the expectation of consensus kernel across
these candidate kernels.

From the perspective of kernel weighting, the implicit kernel weights can also
be derived from the CIM loss function according to the half-quadratic optimiza-
tion theory [1]. It assigns larger weights to good kernels with small errors and
small weights to bad kernels with large errors. Moreover, we further introduce
the explicit weight for each kernel by solving the following problem,

min
K,s

m∑

i=1

1
si

(
1 − exp(−||K − Ki||2

δ2
)
)

, s.t. K � 0,

m∑

i=1

si = 1, si ≥ 0, ∀i,

(2)

where s ∈ Rm×1 and 1
si

can be seen as the explicit weight for the i-th kernel.

2.2 Clustering on Consensus Kernel

Spectral clustering and k-means are two major traditional clustering methods.
Ratio cut aims to maximize the mean similarities between data points in the
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same cluster while k-means aim to minimize the mean distances between points
in the same cluster. Recently, it has been shown that both k-means and ratio
cut can be unified into the following framework [12],

max
H

tr(HTAH), s.t. HTH = I, (3)

where H ∈ Rn×c is the partition matrix and A ∈ Rn×n is the similarity matrix.
The mere difference between ratio-cut and k-means is that the former usually
uses the Gaussian kernel to capture the pairwise similarity, while k-means adopts
the linear kernel. Based on such a unified view of these two methods, the final
clustering on consensus kernel can also be achieved by solving the optimization
problem in Eq. (3), where we have A = K.

2.3 The Proposed TRMKC

We have two sub-tasks, i.e., minimizing Eq. (2) for consensus kernel learning
and maximizing Eq. (3) for clustering on consensus kernel. Instead of intro-
ducing additional hyper-parameter to balance these targets, we take the trace
ratio criterion to incorporate these two coupled procedures in a unified learning
framework, which can be presented as follows,

max
s,H,K

tr(HTKH)
∑m

i=1
1
si

(1 − exp(− ||K−Ki||2F
δ2 ))

(4)

s.t. HTH = I,K � 0,
m∑

i=1

si = 1, si ≥ 0,∀i.

Eq. (4) learns the consensus kernel around individual kernels by minimizing
the weighted corr-entropy induced non-quadratic loss in the denominator and
performs clustering on the consensus kernel by maximizing the quadratic term
in the nominator. The consensus kernel K is involved both in the nominator
and denominator. These two targets can be automatically balanced without the
involvement of hyper-parameters. Based on these discussions, the optimization
problem in Eq.(4) is suitable for MKC.

2.4 Optimization

We present an alternative learning algorithm to maximize Eq. (4).

Update H with fixed K Given s and K, the sub-problem with respect to H
can be simplified as

max
H

tr(HTKH), s.t. HTH = I. (5)

Since the consensus kernel K is PSD, the optimal solution of H can be obtained
by the c eigenvectors corresponding to the c largest eigenvalues.
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Update s with fixed K and H Denote hi = 1 − exp(− ||K−Ki||2F
δ2 ), the rest

problem w.r.t. H can be rewritten as

min
s

m∑

i=1

hi

si
, s.t.

m∑

i=1

si = 1, si ≥ 0,∀i. (6)

The optimal solution can be computed by si =
√

hi∑m
i′=1

√
hi′

.

Update K with fixed H and s Given H and s, the problem w.r.t. K can be
written as,

max
K

tr(HTKH)
∑m

i=1
1
si

(1 − exp(− ||K−Ki||2F
δ2 ))

, s.t. K � 0. (7)

The trace ratio problem in Eq. (7) can be solved by a series of trace difference
problems [3]. Given H, s and Kt−1 at the t − 1-th iteration, we first introduce
the following auxiliary variable at the t-th iteration,

λt =
tr(HTKt−1H)

∑m
i=1

1
si

(1 − exp(− ||Kt−1−Ki||2F
δ2 ))

, (8)

where the index of (t − 1) on H, s is omitted. Equation (7) can be reformulated
into the following trace difference problem,

max
K

tr(HTKH) − λt
m∑

i=1

1
si

(1 − exp(−||K − Ki||2F
δ2

)), s.t. K � 0. (9)

According to the HQ theory, we introduce the auxiliary variable g ∈ Rm×1 with
gi = exp(− ||Kt−1−Ki||2

δ2 ). Then Eq. (9) can be rewritten as,

min
K

λt
m∑

i=1

gi

si
||K − Ki||2 − tr(KT (HHT )), s.t. K � 0. (10)

By introducing the auxiliary variable K̂ = 1
∑m

i′=1

g
i′

s
i′

∑m
i=1

gi

si
Ki +

1

2λt
∑m

i′=1

g
i′

s
i′
HHT , the problem in Eq. (10) can be simplified as,

min
K

||K − K̂||2, s.t. K � 0. (11)

The above problem is the quadratic projection of K̂ within the positive semi-
definite space. The optimal solution can be obtained by setting

K = UK̂S+

K̂
VT

K̂
, (12)

where K̂ = USVT is the singular value decomposition (SVD) of K̂ and S+ is
the non-negative projection of S, i.e., S+ = max(S,0).
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3 Experiments

We compare TRMKC1 with 10 MKC algorithms to show the effectiveness and
provide the convergence analysis of TRMKC on benchmark datasets.

3.1 Experiment Setup

We use 11 widely used data sets for multiple kernel clustering comparison [2,4].
We omit the details of these data sets due to the space limitation. We com-
pare TRMKC with 10 recent developed MKC methods, including RMSC [18],
RMKKM [2], MKCMR [8], LKAM [5], ONKC [10], JMKSC [19], MKCSS [20],
ONALK [7], SPMKC [13], OPLF [9]. The codes are mostly provided by the
authors in public repository or emails. We adopt clustering accuracy (ACC) to
evaluate the clustering result.

Table 1. ACC(%) of 11 algorithms on 11 benchmark datasets

RMSC RMKKM MKCMR LKAM ONKC JMKSC MKCSS ONALK SPMKC OPLF TRMKC

JAFFE 67.14 79.34 95.77 88.26 97.18 82.16 38.03 93.90 96.24 96.71 98.59

CSTR 42.74 70.11 64.84 65.26 65.26 65.26 62.53 45.89 65.89 65.05 80.42

TR45 37.83 61.45 69.86 67.10 72.03 68.99 65.07 25.94 74.20 68.70 76.09

TR41 53.08 55.47 64.92 49.43 61.50 60.82 53.19 45.44 57.18 59.34 68.00

MPeg7 46.29 49.00 53.21 47.86 53.93 49.36 52.50 48.21 55.71 52.29 56.64

BA 33.69 43.45 45.80 41.24 44.09 29.06 45.44 46.23 34.54 37.11 52.28

COIL 58.75 61.88 64.51 60.21 65.90 58.96 71.67 67.64 64.10 56.04 78.96

Wap 36.22 44.62 44.10 41.35 46.35 36.47 35.26 32.95 47.88 43.91 59.81

Digit 59.43 78.91 83.14 76.74 83.08 65.33 87.76 87.65 78.02 80.30 88.48

Palm 56.90 70.55 73.50 59.05 78.80 76.70 74.80 71.05 80.80 78.05 88.15

K1B 66.84 75.73 64.10 58.08 67.48 78.29 84.57 63.33 63.03 72.44 84.79

Avg 50.81 62.77 65.80 59.51 66.87 61.04 60.98 57.11 65.24 64.54 75.65

We follow the same strategy in [2,19] to build 12 base kernels to evaluate the
clustering performance of the MKL methods. There are some parameters should
be set in advance for fair. So, it is non-trivial to choose the proper multiple
hyper-parameters corresponding to the best clustering performance for LKAM,
ONKC, JMKSC, MKCSS, ONALK, and SPMKC across different datasets. As a
result, some hyper-parameters of these algorithms are determined according to
the suggestions from their papers, while others are determined by observing the
corresponding sensitivity study results and choosing the stable value.

The concrete setting of hyper-parameters for all these algorithms are pre-
sented as follows. For all these MKC algorithms, the number of clusters is set to
the true number of classes for all the data sets. For RMSC, the regularization
parameter is set to λ = 0.005 as in [18]. For RMKKM, the parameter γ to con-
trol the kernel weight distribution is set to γ = 0.3 as in [2]. For MKCMR [8],
1 The cold of TRMKC has been released at https://github.com/YanChenSCU/

TRMKC-DASFAA-2022.

https://github.com/YanChenSCU/TRMKC-DASFAA-2022
https://github.com/YanChenSCU/TRMKC-DASFAA-2022
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the regularization parameter is fixed to λ = 2−2. For LKAM [5], the regulariza-
tion parameter and the neighborhood size are set to λ = 2−1 and τ = 0.05n.
For ONKC [10], the importance of the neighborhood kernel learning and the
kernel diversity balancing term are set to ρ = 2−4 and 2−7. For JMKSC, the
hyper-parameters are set to α = 10−1, β = 20, γ = 5 as suggested in [19]. For
MKCSS [20], the constrained rank value, the importance of the Frobenius term,
the kernel diversity balancing term and the number of neighbors are fixed as
0.1n, 10−4||Kavg||F, 2−2 and 0.01n. For ONALK [7], the kernel diversity balanc-
ing term, the importance of the neighborhood kernel learning and the threshold
of neighborhood similarity are set to λ = 2, ρ = 2−1, τ = 0.1. For SPMKC [13],
the hyper-parameters are set to λ1 = 4, λ2 = 1, λ3 = 100, λ4 = 1000. For OPLF,
it is free of hyper-parameters [9]. For TRMKC, we use the neighborhood kernel
as [20] and the local size is fixed to 5 log(n) on all the datasets without tuning.
For all these methods except for OPLF, we run k-means 10 times and obtain
the final result corresponding to the minimal value of k-means objective. The
variance for all the compared algorithms is 0 in our experiments.

3.2 Clustering Results Analysis

Based on the clustering result in Table 1, we can see that

– TRMKC outperforms all these 10 MKC algorithms on 11 benchmark data
sets in most cases. We can see that our method achieves 13.59% improvement
against the second-best result on averages in terms of ACC.

– The results for MKCMR, LKAM, ONKC, JMKSC, MKCSS, ONALK and
SPMKC degenerate in general and exhibit poor performance in many cases.
These algorithms would achieve better results by tuning the parameters
according to the grid-search strategy. However, it is infeasible in practice.
Since we run these algorithms with fixed hyper-parameters, the ubiquitous
degeneration indeed indicates that these algorithms are less stable without
careful tuning.

– Considering the difficulty of hyper-parameter determination in the MKC sce-
nario and the degeneration of exiting MKC algorithms on fixed parameters,
these experimental results motivate us to develop a parameter-free method
for the MKC task. Compared with baseline methods, the results of TRMKC
demonstrate not only the superiority in performance but also the stableness
across all data sets.

4 Conclusion

In this paper, we propose a novel parameter-free MKC method with the trace
ratio criterion (TRMKC), which minimizes the approximation errors for optimal
kernel learning and maximizes the mean similarities on the consensus one. An
alternative algorithm has been developed to solve the optimization problem with
trace ratio criterion and the non-quadratic CIM loss function. Comprehensive
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experimental results on 11 widely-used datasets show that exiting MKC methods
with hyper-parameters are indeed less stable and exhibit poor results without
proper parameter determination. Moreover, TRMKC consistently outperforms
the state-of-the-art competitors in terms of clustering performance.
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