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Abstract. Cross-domain recommendation aims to model representa-
tions of users and items with the incorporation of additional knowl-
edge from other domains, so as to alleviate the data sparsity issue.
While recent studies demonstrate the effectiveness of cross-domain rec-
ommendation systems, there exist two unsolved challenges: (1) exist-
ing methods focus on transferring knowledge to generate shared fac-
tors implicitly, which fail to distill domain-shared features from explicit
cross-domain correlations; (2) The majority of solutions are unable
to effectively fuse domain-shared and domain-specific features. To this
end, we propose Inter- and Intra-domain Relation-aware Cross-Domain
Recommendation framework (I2RCDR) to explicitly learn domain-
shared representations by capturing high-order inter-domain relations.
Specifically, we first construct a cross-domain heterogeneous graph and
two single-domain heterogeneous graphs from ratings and reviews to pre-
serve inter- and intra-domain relations. Then, a relation-aware graph con-
volutional network is designed to simultaneously distill domain-shared
and domain-specific features, by exploring the multi-hop heterogeneous
connections across different graphs. Moreover, we introduce a gating
fusion mechanism to combine domain-shared and domain-specific fea-
tures to achieve dual-target recommendation. Experimental results on
public datasets show that the effectiveness of the proposed framework
against many strong state-of-the-art methods.

Keywords: Cross-domain recommendation · Inter-domain relations ·
Relation-aware graph convolutional network · Gating mechanism

1 Introduction

Recommendation systems learn representations from interactions between users
and items. Many traditional methods [1,11] leverage historical feedbacks (e.g.,
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Fig. 1. An illustrative example of inter-domain relations for CDR systems. Both the
reviews of items i4 and j1 are about the fantasy genre, while both the user u3 and u4

commented on the love theme in their reviews.

ratings) to capture users’ preferences on items. However, the user-item interac-
tions are usually sparse, which makes recommendation systems unable to gener-
ate optimal representations of users who give few ratings. Therefore, recent efforts
[3,17,31] merge extra information from auxiliary domains into target domains to
build Cross-Domain Recommendation (CDR).

Existing CDR approaches can be divided into two categories, transferring
knowledge in different directions. The first category transfers in a unidirectional
way, which focuses on learning the features of users and items from an auxiliary
domain and then transferring learned features to a target domain. The most pop-
ular unidirectional technique is EMCDR [20], which learns a mapping function
to execute target-domain recommendation utilizing the two-stage embedding-
and-mapping paradigm [7,32]. However, the unidirectional method could easily
accumulate noise in the intermediate steps and fall into sub-optimal learning
[30]. The second category transfers in a bidirectional way. Considering that each
domain is considerably richer in particular sorts of information, some recent
works leverage bidirectional knowledge transfer to improve the performance on
both domains simultaneously. This category selects overlapped users (or items)
as a bridge to extract shared factors or patterns, which are transferred between
two domains to achieve dual-target CDR [12,16,29].

Unfortunately, the aforementioned methods implicitly transfer knowledge to
generate shared factors, which fail to distill domain-shared features from explicit
correlations between cross-domain users (or items). In CDR systems, there are
many inter-domain user-user and item-item relations, which are domain inde-
pendent and could be used to explicitly portray domain-shared features. For
example, as shown in Fig. 1, the reviews of movie i4 in domain A and book j1 in
domain B which contain similar content (highlighted in boldface) show that the
two items both belong to the fantasy genre, so we think the two items have the
same property and there exists the inter-domain item-item relation. Similarly,
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the users u3 and u4 have the same preference and there exists the inter-domain
user-user relation. We argue that such inter-domain relations are beneficial for
learning domain-shared features, which are ignored by existing approaches.

Moreover, most models are incapable of fusing domain-shared and domain-
specific features efficiently. In fact, user’s (or item’s) features are comprised of
domain-shared part and domain-specific part, which reveal the cross-domain
consistency and single-domain peculiarity, respectively [15]. Recently, emerged
models simply conduct combination operations over domain-shared and domain-
specific features, such as concatenation or addition [5,17]. However, the linear
integration makes these models unable to fully explore the nonlinear interaction
between the two kinds of features.

In this paper, we aim to capture inter-domain relations associating different
domains to explicitly learn domain-shared features of users and items. However,
there are a few challenges. The first challenge is how to explicitly establish the
inter-domain relations between users (or items) from different domains. The most
of existing CDR methods only model the cross-domain interactions from distinct
domains, which are insufficient. Data from different domains may have similar
semantic relations. Book and movie as an example, contents on both domains
have some common topics, e.g., genre, plot, scene. As such, a good CDR model
should have the ability to capture correlated information across domains. The
second challenge is how to respectively distill domain-shared and domain-specific
features. Capturing inter-domain relations results in a reconsideration for the
current CDR methods that implicitly model intra-domain relations to generate
domain-shared features. We should distinguish inter-domain and intra-domain
relations to separately distill domain-shared and domain-specific features. Third,
an effective strategy should be used to fuse domain-shared and domain-specific
features, aiming to adaptively assign weights to balance cross-domain consistency
and single-domain peculiarity.

To tackle these challenges, we propose a graph-structured CDR framework,
namely I2RCDR, which can collectively model the high-order Inter- and Intra-
domain Relations for dual-target Cross-Domain Recommendation. First, we
construct a cross-domain heterogeneous graph from interactions (ratings and
reviews) to preserve inter-domain relations (including user-user and item-item
relations) and user-item relations within each domain. Motivated by the land-
mark research BERT [6], we apply the SentenceBERT [21], which fine-tunes the
BERT model and can transform reviews into semantic embeddings, to model
the inter-domain relations. Meanwhile, a single-domain heterogeneous graph for
each domain is also designed to represent intra-domain relations (including user-
user and item-item relations) and user-item relation. Second, we introduce a
relation-aware graph convolutional network (GCN) to extract domain-shared
and domain-specific features, which can not only explore the multi-hop het-
erogeneous connections between users and items but also inject relation prop-
erty into embedding propagation by encoding multi-typed relations. Finally, to
achieve dual-target recommendation, we propose a gating fusion mechanism that
can share partial parameters to seamlessly combine domain-shared and domain-
specific features. The main contributions of this paper are as follows:
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– We explore inter-domain relations to learn domain-shared representations of
users and items explicitly. Three heterogeneous graphs are constructed from
ratings and reviews to preserve not only cross-domain consistency and single-
domain peculiarity but also multi-typed relations.

– We propose a novel graph-structured CDR framework to jointly model the
inter- and intra-domain relations by the relation-aware graph convolutional
networks. A gating fusion mechanism is designed to combine domain-shared
and domain-specific features for dual-target recommendation.

– We perform extensive experiments on real-world datasets to show the effec-
tiveness of our approaches. The experimental results demonstrate that our
approaches significantly outperform the state-of-the-art approaches through
detailed analysis.

2 Related Work

2.1 Graph-Based Recommendation

The core idea of graph neural networks (GNNs) is to iteratively aggregate neigh-
bors’ features to update the target node feature via propagation mechanism. The
mainstream paradigm, such as GCN [14] and GraphSage [9], transforms inter-
actions into a user-item graph to explore the multi-hop connections. GC-MC
[1] designs one graph convolutional layer to construct user’s and item’s embed-
dings. NGCF [23] explicitly encodes collaborative signals in graph convolutional
network (GCN). DGCF [24] disentangles user intents to generate disentangled
representations. Furthermore, He et al. [10] propose LightGCN to systematically
study several essential components in GCN. However, only considering singular
user-item relation makes GNNs impossible to describe users’ various preferences.

GNNs can also be used to model heterogeneous graphs constructed from
other data. Recent efforts have exhibited incredible performance on many rec-
ommendation tasks. GHCF [2] and KHGT [26] design multi-behavior graphs
to model multi-typed interactive patterns between users and items. To address
the cold-start problem [28], Liu et al. [18] integrate social relation and semantic
relation into the user-item graph. Xu et al. [27] utilize interaction sequences to
construct a user-subsequence graph and an item-item graph to model user and
item similarity on behaviors. Wang et al. [22] incorporate knowledge graphs into
sequential recommendation model to enhance user representations.

2.2 Cross-Domain Recommendation

A popular path of CDR systems concentrates on learning a mapping function
to transfer knowledge across domains in the same space. Man et al. [20] first
introduce the embedding and mapping framework (EMCDR) to achieve cross-
domain recommendation step by step. Based on the EMCDR model, CDLFM
[25] incorporates users rating behaviors to generate precise latent factors. RC-
DFM [7] extend stacked denoising autoencoders to deeply fuse textual contents
and ratings. DCDCSR [32] and SSCDR [13] optimize the CDR model to obtain
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an accurate mapping function. However, the two-stage embedding-and-mapping
strategy prevents CDR systems from accomplishing global optimization.

Recently, some methods aim to distill domain-shared features as a bridge
between domains and apply symmetrical frameworks to accomplish dual-target
CDR. CoNet [12] designs collaborative cross networks to select valuable features
for dual knowledge transfer across domains. ACDN [16] integrates users aes-
thetic features into the CoNet model to transfer domain independent aesthetic
preferences. DDTCDR [15] design a latent orthogonal mapping function to cap-
ture domain-shared preferences. PPGN [29] and BiTGCF [17] treat overlapped
users as shared nodes to construct user-item graphs from ratings, then use GCN
to learn cross-domain high-order representations. DA-GCN [8] and π-Net [19]
utilize the recurrent neural network and GCN to accomplish the cross-domain
sequential recommendation. Differing from existing dual-target CDR works, our
method can explicitly transfer knowledge across domains and distill domain-
shared features and domain-specific features in a direct way.

3 Preliminaries

Given two specific domains A and B, where the set of users U (of size M = |U |)
are fully overlapped, the set of items in domains A and B are defined as I (of
size NA = |I|) and J (of size NB = |J |), respectively. u ∈ U indexes a user, i ∈ I
(or j ∈ J) indexes an item from A (or B). The user-item interaction matrices
are defined as RA ∈ R

M×NA

in domain A and RB ∈ R
M×NB

in domain B.

Definition 1: Single-domain Heterogeneous Graph. The single-domain
graphs GA = (VU ∪ VI , EA,RA) and GB = (VU ∪ VJ , EB ,RB) retain the intra-
domain relations and user-item relation in A and B, respectively.

Definition 2: Cross-domain Heterogeneous Graph. The cross-domain
graph GC = (VU ∪ VI ∪ VJ , EC ,RC) retains the inter-domain relations and
user-item relations within each domain, where VU , VI , and VJ are sets of nodes
indicating users, items in A and B, respectively.

Definition 3: Relations. Each edge e ∈ {EC , EA, EB} is associated with the
function ψ(e) : E → R. R defines the relations indicating edge types. Formally,
we define the type-specific relation Rr ∈ R, r = 1, 2, ..., 8. R1 = {inter-domain
user-user relation}, R2 = {inter-domain item-item relation}, R3 = {intra-
domain user-user relation in A}, R4 = {intra-domain user-user relation in
B}, R5 = {intra-domain item-item relation in A}, R6 = {intra-domain item-
item relation in B}, R7 = {user-item relation in A}, R8 = {user-item rela-
tion in B}. Particularly, RC = {R1,R2,R7,R8}, RA = {R3,R5,R7}, and
RB = {R4,R6,R8}.

Problem Formulation. Our task is to simultaneously predict the probability
ŷA
ui and ŷB

uj of unseen interaction between user u, item i in domain A, and item
j in domain B, to enhance the accuracy for dual-target recommendation.
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Fig. 2. An illustration of I2RCDR structure. The U-I relation, U-U relation, I-I relation
are short for user-item relation, user-user relation, and item-item relation, respectively.

4 Proposed Framework

Our proposed Inter- and Intra-domain Relation-aware heterogeneous graph con-
volutional networks for Cross-Domain Recommendation (I2RCDR) is an end-
to-end learning framework. The main structure of our proposed framework is
illustrated in Fig. 2.

4.1 Graph Construction and Embedding

Inter-domain Relation and Cross-Domain Graph. We first establish the
inter-domain user-user relation. For user u, we concatenate all the user’s reviews
to generate a document du. We introduce SentenceBERT [21] to convert the
documents du into a fixed-size text vector Du, which is formulated as:

Du = SentenceBERT (du). (1)

To capture the user-user relation between two users across different domains,
we compute the cosine similarity to generate the inter-domain semantic link.
Particularly, for user u in domain A and u′ in domain B, the existing probability
score Pr(u, u′) of the link between u and u′ is as follows:

Pr(u, u′) = ϕ(
DuDu′

‖Du‖ ‖Du′‖ ), (2)

where Pr(u, u′) indicates the weight of an edge between u and u′. ϕ(x) =
max(0, x) is the ReLU function that normalizes the cosine similarities.

We calculate all the similarities between users from different domains and
obtain the inter-domain user-user matrix CU ∈ R

M×M . Similarly, we can gen-
erate the inter-domain item-item relation matrix CI ∈ R

NA×NB

. With all the



Inter- and Intra-Domain Relation-Aware Heterogeneous Graph 59

matrices formally defined, we then describe the cross-domain graph GC as shown
below:

ÃC =

⎡
⎣
CU R�

A R�
B

RA 0 C�
I

RB CI 0

⎤
⎦ , (3)

where ÃC ∈ R
(M+NA+NB)×(M+NA+NB) is the adjacency matrix. RA and RB

are user-item interaction matrices in domains A and B, respectively. R�
A, R�

B,
and C�

I are the transposed matrices.

Intra-domain Relation and Single-Domain Graph. We explore the user-
user (or item-item) relation from domain A to establish the intra-domain user-
user relation matrix AU (or item-item relation matrix AI), which computes the
cosine similarities between users (or items) in domain A and gains the probability
scores as shown in Eq. (2). We describe the single-domain graph GA as shown
below:

ÃA =
[
AU R�

A

RA AI

]
, (4)

where ÃA ∈ R
(M+NA)×(M+NA) is the adjacency matrix. Similarly, we obtain

the adjacency matrix ÃB of graph GB.

Dense Embedding. For user u, item i in domain A, and item j in domain
B, we define them using one-hot encodings, namely xu ∈ R

M , xi ∈ R
NA

, and
xj ∈ R

NB

. For relation Rr which indexes edge type, we also define xr ∈ R
8.

Then, we map the one-hot encodings into dense embeddings as follows:

hu = Puxu,hi = Pixi,hj = Pjxj ,hr = Prxr, (5)

where Pu = {PC
u ,PA

u ,PB
u } ∈ R

(M+NA+NB)×d, Pi = {PC
i ,PA

i } ∈ R
(M+NA)×d,

Pj = {PC
j ,PB

j } ∈ R
(M+NB)×d and Pr ∈ R

8×d are transformation matrices. d

denotes the embedding size. hu = {hC
u ,hA

u ,hB
u } indicate embeddings of u in

GC , GA , and GB , respectively. hi = {hC
i ,hA

i } indicate embeddings of i in GC

and GA . hj = {hC
j ,hB

j } indicate embeddings of j in GC and GB .

4.2 Relation-Aware GCN Layer

Next, we introduce GCN to capture relation-aware multi-hop heterogeneous con-
nections between users and items in different graphs. Considering different types
of relations between nodes, we compose a neighboring node with respect to its
relation to model a relation-aware target node. Specifically, we incorporate the
relation embeddings into the propagation process via element-wise addition. We
take user u as an example and formulate relation-aware GCN as follows:

e(k+1)
u = σ

⎛
⎝ ∑

(vr)∈Nu

1√|Nu‖Nvr
|W

(k)
(
e(k)vr

⊕ e(k)r

)
⎞
⎠ , (6)
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where e
(k)
vr and e

(k)
r respectively denote the embeddings of node vr and relation

r after k layers propagation. σ is the nonlinear activate function and W (k) is the
weight matrix. 1√

|Nu‖Nvr | is a symmetric normalization constant. Nu and Nvr

denote the neighbors of u and vr. vr are the neighbors of user u under relation
type Rr. For example, in graph GC , the neighbors vr ∈ {v1, v7, v8} correspond to
three type-specific relations {R1,R7,R8}. ⊕ denotes the element-wise addition.
Note that other composition ways like element-wise product can also be used,
we leave it for future research. e(k)r defines the relation embeddings, which is
updated as follows:

e(k+1)
r = W (k)

r e(k)r , (7)

where W
(k)
r is a weight matrix which maps relations to the same space as nodes.

Note that hu, hi, hj and hr are defined as initial embeddings e
(0)
u , e(0)i ,e

(0)
j ,

and e
(0)
r for node u, i, j, and relation Rr, respectively.

To offer a easy-to-understand perspective of propagation mechanism, we use
matrix form to describe this propagation process (equivalent to Eq. (6)):

E(k+1)
u = σ

(
Â(E(k)

vr
⊕ E(k)

r )W (k)
)

, (8)

where E
(k)
vr and E

(k)
r are the embeddings of vr and corresponding relation Rr

obtained after k steps of propagation. Â = D− 1
2 ÃD− 1

2 denotes the symmet-
rically normalized matrix. Ã ∈ {ÃC , ÃA, ÃB} and D is the diagonal degree
matrix of Ã.

After aggregating and propagating with K steps, we generate and stack mul-
tiple embeddings of user u, namely

{
e
(0)
u ,e

(1)
u , · · ·,e(K)

u

}
. The combination of

embeddings refined from different order neighbors can better indicate the fea-
tures of user u. As such, we concatenate different embeddings with the following
formula and get the final embeddings of user u.

eu = e(0)u ‖ · · · ‖e(k)u ‖ · · · ‖e(K)
u , (9)

where ‖ denotes concatenation operation. e(k)u is the embeddings of user u with
k steps, k = 0, 1, 2, ...,K. eu ∈ R

d′
is the final embeddings of user u, d′ denotes

the embedding size after K steps of propagation and concatenation.
In this layer, we can utilize the relation-aware GCN to generate not only

domain-shared features eCu of user u in GC but also domain-specific features eAu
(or eBu ) of user u in GA (or GB). Similarly, we obtain domain-shared features
eCi of item i in GC , domain-shared features eCj of item j in GC , domain-specific
features eAi of item i in GA, and domain-specific features eBj of item j in GB .

4.3 Gating Fusion Layer

The relation-aware GCN can simultaneously model the inter- and intra-domain
relations to distill domain-shared and domain-specific features. Therefore, the
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combination of two types of features needs to balance the cross-domain con-
sistency and single-domain peculiarity. Motivated by the milestone work Gated
Recurrent Unit (GRU) [4], we introduce the gating mechanism to differentiate
the importance of domain-shared and domain-specific features for dual-target
recommendation. To combine user’s features eCu , eAu , and eBu , we use two neural
gating units that share partial parameters to generate two combination features
of domains A and B. The process is computed as:

GA
u = sigmoid

(
V C
u eCu + V A

u eAu
)
, (10)

GB
u = sigmoid

(
V C
u eCu + V B

u eBu
)
, (11)

zA
u = GA

u � eCu + (1 − GA
u ) � eAu , (12)

zB
u = GB

u � eCu + (1 − GB
u ) � eBu , (13)

where V C
u ∈ R

d′×d′
is a shared weight matrix for the two gating units, V A

u

and V B
u ∈ R

d′×d′
are weight matrices. zA

u and zB
u indicate the combination

features of user u in A and B, respectively. The shared parameters V C
u make

two combination features assigned to the same weight for bidirectional knowledge
transfer, ensuring the consistency of domain-shared part.

For the features eCi and eAi of item i in domain A, we apply a standard gating
unit to combine them adaptively with the following formula:

GA
i = sigmoid

(
V C
i eCi + V A

i eAi
)
, (14)

zA
i = GA

i � eCi + (1 − GA
i ) � eAi , (15)

where V C
i and V A

i ∈ R
d′×d′

are weight matrices. Similarly, we can gain the
combined feature zB

j of item j in domain B.

4.4 Prediction Layer

After the combination of features, we generate user features (zA
u and zB

u ) and
item features (zA

i and zB
j ). To endow the CDR systems with non-linearity, we

apply the multi-layer perception (MLP) to model the user-item interactions. The
formula in domain A is as follows:

φ1 = a1(S1

[
zA
u

zA
i

]
+ b1), (16)

. . . . . . (17)

φL = aL(SLφL−1 + bL), (18)

ŷA
ui = f(φL), (19)

where Sl and bl denote the trainable matrix and bias term for the l-th layer,
respectively. al denotes the activation function such as sigmoid, ReLU, and
hyperbolic tangent (tanh). φl denotes the output result for the l-th layer. f(·) is
the prediction function, which maps φL to the probability ŷA

ui. Analogously, we
generate the probability score ŷB

uj in domain B.
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4.5 Model Training

For CDR systems, an appropriate loss function can make the model achieve
global optimization and speed up the model convergence. Considering the nature
of implicit feedback, we select cross-entropy as the loss function which is defined
as follows:

L (ŷuv, yuv) = −
∑

(u,v)∈P+∪P−
yuv log ŷuv + (1 − yuv) log (1 − ŷuv) , (20)

where yuv defines an observed interaction and ŷuv defines its corresponding pre-
dicted interaction. P+ is the set of observed interactions, P− is a certain number
of negative instances that can be randomly sampled from unobserved interaction
to prevent over-fitting.

We aim to simultaneously enhance the performance of recommendation in
both domains. Hence, the joint loss function to be minimized for domain A (LA)
and domain B (LB) is defined as:

Ljoint = αLA + βLB + Lreg = αL(ŷA
ui, y

A
ui) + βL(ŷB

uj , y
B
uj) + γ‖Θ‖22, (21)

where L(ŷA
ui, y

A
ui) and L(ŷB

uj , y
B
uj) define the loss function in domains A and B,

respectively. Considering that the sparseness of interactions in the two domains
is inconsistent, we leverage α and β to control sample balance. Here, we set α =
β = 1, considering two recommendation tasks for domains A and B are of equal
importance. Lreg is a regularization term, in which γ is a hyper-parameter that
controls the importance of L2 regularization and Θ are network parameters.

5 Experiments

This section answers the following questions:
RQ1: How does I2RCDR perform compared with baselines?
RQ2: How do different designed modules (i.e., relation-aware GCN, gating fusion
mechanism, and MLP) contribute to the model performance?
RQ3: Do inter-domain relations provide valuable information?
RQ4: How does I2RCDR perform with different parameter settings?

5.1 Experimental Settings

Dataset. We examine the performance of our CDR framework on the real-world
and well-known Amazon dataset1, which includes abundant rating and review
data and is widely used in CDR systems. We choose three pairs of datasets
to organize our experiments. We first transform the ratings into implicit data,
where each interaction is marked as 0 or 1, indicating whether the user has rated
the item. We then select overlapped users from each pair of datasets and filter
out non-overlapped users. Table 1 summarizes the detailed statistics of datasets.
1 http://jmcauley.ucsd.edu/data/amazon/.

http://jmcauley.ucsd.edu/data/amazon/
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Table 1. Statistics of datasets.

Dataset # Users # Items # Interactions Density

Toys and Games (Toy) 1,380 6,773 19,831 0.212%

Video Games (Video) 1,380 6,667 21,359 0.232%

Sports and Outdoors (Sport) 3,908 13,057 43,996 0.086%

Clothing Shoes and Jewelry (Cloth) 3,908 13,044 35,115 0.069%

Home and Kitchen (Home) 14,059 25,995 179,543 0.049%

Health and Personal Care (Health) 14,059 17,663 174,998 0.071%

Evaluation Metric. We employ the leave-one-out strategy to conduct the
evaluation. Since we focus on the top-N recommendation tasks, we apply two
widely adopted metrics, namely Hit Ratio (HR) and Normalized Discounted
Cumulative Gain (NDCG) [13], to efficiently estimate the performance of our
method and baselines. For each user, we randomly sample 99 negative items
that have not been rated with the user and combine them with the positive
instance the user has been rated as the list waiting to be sorted in the ranking
procedure. We repeat this process 5 times and show the average ranking results.

Comparison Methods. We compare our proposed method with state-of-the-
art approaches and categorize the baselines into three groups: Single-Domain
Recommendation (SDR), MLP-based CDR, and GNN-based CDR.

– SDR. GC-MC [1] applies GNNs to recommendation tasks and converts rat-
ing user-item interaction into a bipartite graph. NGCF [23] explicitly injects
collaborative signals into the user-item graph. LightGCN [10] researches three
different components in GCN and demonstrates neighbor aggregation is the
most essential factor. HGNR [18] uses ratings, reviews, and social network
data to construct a heterogeneous graph.

– MLP-based CDR. MLP-based CDR mainly introduces MLP to learn hid-
den features. CoNet [12] designs cross-connection networks to achieve dual
knowledge transfer based on the cross-stitch network model. DTCDR [31]
proposes a dual-target CDR framework to integrate the domain-shared fea-
tures of overlapped users from two domains.

– GNN-based CDR. This group applies GNN to learn high-order features
from graphs. PPGN [29] fuses user-item graphs from two domains into a
holistic graph. BiTGCF [17] establishes a user-item graph for each domain
and uses the overlapped user as the bridge to fuse users domain-shared and
domain-specific features. GA-DTCDR [33] designs two independent hetero-
geneous graphs which are constructed from ratings and reviews.

Parameter Settings. We utilize Tensorflow to implement our framework and
all the baselines. In our model learning stage, we choose Adam as the optimizer
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Table 2. Recommendation performance of compared methods in terms of HR and
NDCG. The best performance is in boldface and the best baseline is underlined.

Dataset Toy & Video Home & Hearth Sport & Cloth

Toy Video Home Hearth Sport Cloth

Method H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10

GC-MC 0.276 0.135 0.317 0.154 0.284 0.138 0.275 0.136 0.371 0.194 0.385 0.201

NGCF 0.295 0.156 0.370 0.190 0.326 0.169 0.312 0.162 0.393 0.212 0.412 0.221

LightGCN 0.313 0.159 0.397 0.205 0.300 0.146 0.289 0.135 0.372 0.189 0.386 0.191

HGNR 0.323 0.170 0.405 0.224 0.356 0.202 0.311 0.164 0.404 0.234 0.410 0.233

CoNet 0.375 0.229 0.476 0.275 0.366 0.213 0.318 0.193 0.417 0.224 0.420 0.196

DTCDR 0.455 0.254 0.518 0.294 0.394 0.210 0.382 0.195 0.444 0.253 0.471 0.268

PPGN 0.457 0.265 0.498 0.285 0.396 0.174 0.386 0.197 0.446 0.234 0.460 0.228

BiTGCF 0.443 0.231 0.524 0.297 0.397 0.229 0.346 0.181 0.456 0.264 0.474 0.274

GA-DTCDR 0.464 0.254 0.521 0.302 0.425 0.226 0.398 0.212 0.459 0.266 0.481 0.286

I2RCDR 0.496 0.285 0.558 0.342 0.441 0.252 0.434 0.246 0.479 0.281 0.524 0.297

for all models to update model parameters and set the initial learning rate as
0.001. We sample four negative instances for each positive instance to gener-
ate the training dataset. The batch size is set to 512. we set d = 32 for the
embedding size of all the methods. Furthermore, we use dropout techniques to
further prevent over-fitting and fix the dropout rate as 0.1. For our proposed
method and GNN-based baselines, we set k = 4. For HGNR, we use reviews to
construct user-user graph instead of the social network graph. For DTCDR and
GA-DTCDR, we only consider the set of overlapped uses and model the review
information to ensure fairness.

5.2 RQ1: Performance Comparison

Table 2 reports the summarized results of our experiments on three pairs of
datasets in terms of HR@10 (H@10) and NDCG@10 (N@10). It can be seen that
I2RCDR consistently achieves the best performance compared with all the base-
lines, which reveals the superiority of modeling inter-domain and intra-domain
relations collectively by relation-aware GCN. Compared with SDR approaches
(GC-MC, NGCF, LightGCN, and HGNR), CDR models usually obtain bet-
ter performance, benefit from fusing more useful knowledge from both two
domains during the transfer learning phase. In CDR methods, GNN-based mod-
els (PPGN, BiTGCF, and GA-DTCDR) outperform MLP-based models (CoNet
and DTCDR) by 6.28% H@10 and 4.72% N@10 on average, respectively. This
observation justifies that GNNs can achieve better recommendation performance
by modeling the high-order representations. Furthermore, DTCDR and GA-
DTCDR relying on integrating review information into CDR systems, are indeed
better than other CDR models which only use rating information, but are still
weaker than our method which fuses reviews and ratings to learn domain-shared
and domain-specific features explicitly.
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Fig. 3. Performance of I2RCDR compared with different variants in terms of HR@10

5.3 RQ2: Ablation Study

We attempt to validate whether I2RCDR benefits from the influence of different
modules. Therefore, we compare I2RCDR with the following variant versions:

– -Rel. This method performs a typical GCN model [14] instead of our relation-
aware GCN.

– -Gating. This variant employs an element-wise attention mechanism to
replace our gating fusion mechanism.

– -MLP. This method removes MLP in the prediction layer and defines an
inner product as the interaction function.

As presented in Fig. 3, we observe that our I2RCDR is better than all the
variants in terms of HR@10. We overlook the performance of NDCG which
follows the similar trend due to the space limitation.

5.4 RQ3: Effect of Inter-domain Relations

To verify the effectiveness of inter-domain user-user and item-item relations, we
compare the performance of our method leveraging one or two kinds of rela-
tions in terms of HR@10 and NDCG@10. Figure 4 illustrates the comparison
results concerning I2RCDR-UI (without considering inter-domain relations),
I2RCDR-I (only considering user-user relation), I2RCDR-U (only considering
item-item relation), I2RCDR (simultaneously considering two kinds of rela-
tions). I2RCDR-I and I2RCDR-U both have better performance by adding inter-
domain user-user or item-item relation than I2RCDR. This proves the effective-
ness of integrating inter-domain relations in CDR tasks. In addition, we ignore
the results about the effect of intra-domain relations due to space limitations,
which exhibit a similar pattern to inter-domain relations.

5.5 RQ4: Parameter Analysis

We vary the layer numbers which are in the range of {2, 3, 4, 5, 6}, to verify
whether I2RCDR benefits from multiple propagation layers. Figure 5 shows the
results about different layers on three pairs of datasets in terms of HR@10. When
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Fig. 4. Performance of I2RCDR with different inter-domain relations

Fig. 5. Effect of propagation layer numbers

the number of layers is 4 or 5, we obtain the finest results. The performance
significantly improves as the number of layers increases. We think this is because
more potential relations have been mined with the increasing of model depth.
However, the results also show that longer layers (e.g., 6-hop) maybe make a lot
of noise, which affects the recommendation accuracy.

6 Conclusion and Future Work

In this paper, we propose I2RCDR, an end-to-end graph-structured framework
that naturally incorporates inter-domain relations into CDR systems. I2RCDR
designs the relation-aware GCNs to encode heterogeneous graphs and jointly
model inter- and intra-domain relations. To balance cross-domain consistency
and single-domain peculiarity, we design a gating fusion mechanism to fuse
domain-shared and domain-specific features for dual-target recommendation.
Extensive experiments are carried out on three pairs of datasets and the results
demonstrate the effectiveness of the proposed framework. Currently, we only
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deal with the holistic user-user and item-item relations produced from reviews.
In future work, we will consider disentangling semantic relations to extract mul-
tifaceted features and model users’ fine-grained preferences.
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