
MCRF: Enhancing CTR Prediction
Models via Multi-channel Feature

Refinement Framework

Fangye Wang1,2, Hansu Gu3, Dongsheng Li4, Tun Lu1,2, Peng Zhang1,2(B),
and Ning Gu1,2

1 School of Computer Science, Fudan University, Shanghai, China
{fywang18,lutun,zhangpeng ,ninggu}@fudan.edu.cn

2 Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
3 Seattle, USA

4 Microsoft Research Asia, Shanghai, China
dongsli@microsoft.com

Abstract. Deep learning methods have recently achieved huge success
in Click-Through Rate (CTR) prediction tasks mainly due to the abil-
ity to model arbitrary-order feature interactions. However, most of the
existing methods directly perform feature interaction operations on top
of raw representation without considering whether raw feature repre-
sentation only obtained by embedding layer is sufficiently accurate or
not, which leads to suboptimal performance. To address this issue, we
design a model-agnostic and lightweight structure named Gated Fea-
ture Refinement Layer (GFRL), which dynamically generates flexible
and informative feature representation by absorbing both intra-field and
contextual information based on specific input instances. We further pro-
pose a generalized framework Multi-Channel Feature Refinement Frame-
work (MCRF), which utilizes GFRLs to generate multiple groups of
embedding for richer interactions without exploding the parameter space.
GFRL and MCRF can be well generalized in many existing CTR predic-
tion methods to improve their performance. Extensive experiments on
four real-world datasets show that GFRL and MCRF can achieve statisti-
cally significant performance improvements when applied to mainstream
CTR prediction algorithms. The integration of MCRF and FM can fur-
ther push the state-of-the-art performance of CTR prediction tasks. We
also identify that refining feature representation is another fundamental
but vital direction to boost the performance of CTR prediction models.

Keywords: CTR prediction · Feature refinement · Recommendation

1 Introduction

CTR prediction, which aims to estimate the likelihood of an ad or item being
clicked, is essential to the success of several applications such as computational

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13246, pp. 359–374, 2022.
https://doi.org/10.1007/978-3-031-00126-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00126-0_28&domain=pdf
https://doi.org/10.1007/978-3-031-00126-0_28


360 F. Wang et al.

advertising [13], and recommender systems [1]. Accurate CTR prediction plays
a vital role to improve revenue, and customer engagement of the platform [4,12].
However, in CTR tasks, the input data is typically high-dimensional and sparse
multi-field categorical features, which takes great difficulty for making an accu-
rate prediction. Many models have been proposed such as Logistic Regression
(LR) [17], and Factorization Machines (FM) based methods [5,10,16,19,23].

With its strong ability to learn high-order feature interaction informa-
tion, deep learning-based models gain popularity and achieve great success in
CTR prediction tasks [1,2,4,5,25]. Meanwhile, various researchers improve per-
formance by modeling sophisticated high-order feature interaction, including
DCN [20], DeepFM [4], xDeepFM [11], FiBiNET [9], AutoInt [18], TFNet [21],
etc. Most CTR models comprise of three components: 1) embedding layer; 2)
feature interaction layer; 3) prediction layer. However, despite the great success
of the above-mentioned methods, two key research challenges remain unsolved.

Firstly, obtaining more informative and flexible feature representation before
performing feature interaction remains challenging. Precise feature representation
is the basis of feature interaction and prediction layer. However, raw feature rep-
resentation only obtained by embedding layer may not be sufficiently accurate.
NON utilizes intra-field information to refine raw features [13]. However, for the
same feature in different input instances, its representation is still fixed in NON.
In the NLP area, contextual information is leveraged in Bert [3] and other meth-
ods to obtain word embedding dynamically based on the sentence context where
the word appears. It is also reasonable to refine feature representation according
to other concurrent features in each input instance for CTR prediction tasks. For
example, we have two input instances: {female, student, red, lipstick} and {female,
student, white, computer}. Apparently, the feature “female” is more important
for click probability in the former instance, which is affected by the instance it
appears [24]. So it remains a big challenge to learn more flexible feature represen-
tation for downstream feature interaction and prediction layer.

Secondly, given the huge possible combinations of raw features, interactions
are usually numerous and sparse. FM [16] and most deep methods utilize a sin-
gle embedding for each feature but fail to capture multiple aspects of the same
feature. Field-aware factorization machine (FFM) introduces a separate feature
embedding for each field [10]. However, it sometimes creates more parameters
than necessary. Meanwhile, most parallel-structured models (i.e., DeepFM [4],
DCN [20]) perform different sub-networks to capturing feature interaction based
on the unique shared embedding. Intuitively, different interaction functions
should contain discriminative embedding for optimal performance. Those bring
up the question of how to generate multiple groups of embeddings for richer
feature interaction information without exploding the parameter space.

To address the above two issues, we firstly propose a model-agnostic and
lightweight structure named Gated Feature Refinement Layer (GFRL), which
dynamically refines raw feature’s embedding by absorbing both intra-field and
contextual information. Based on GFRL, we further propose a generalized Multi-
Channel Feature Refinement Framework (MCRF), which is comprised of three
layers. In multi-channel refinement layer, we employ several independent GFRLs



MCRF: Multi-channel Feature Refinement Framework 361

to generate multiple refined embeddings for further feature interactions. In aggre-
gation layer, we adopt mainstream feature interaction operations in each channel
and aggregate all generated interactions using attention mechanism. Finally, we
utilize a DNN to generate the final output in prediction layer.

In summary, our main contributions are as follows: (1) We design a
lightweight and model-agnostic module GFRL to refine feature representation by
integrating intra-field and contextual information simultaneously. (2) Based on
GFRL, we propose MCRF, which enables richer feature interaction information
by generating multiple discriminative refined embedding in different channels.
(3) Comprehensive experiments are conducted to demonstrate the effectiveness
and compatibility of GFRL and MCRF on four datasets.

2 Related Work

FM-based methods are widely used to address CTR prediction tasks. FM [16] mod-
els all pairwise interactions using factorized parameters, which can handle large-
scale sparse data via dimension reduction. Because of its efficiency and robustness,
there are many subsequent works to improve FM from different angles, such as
FFM [10], Field-weighted Factorization Machines (FwFM) [14], Attentional FM
(AFM) [22], Neural FM (NFM) [5], Input-aware FM (IFM) [24], etc.

In recent years, leveraging deep learning to model complex feature interac-
tion draws more interest. Models, such as FNN [25], WDL [1], DeepFM [4] uti-
lizes plain DNN module to learn higher-order feature interactions. Meanwhile,
DeepFM replaces the wide component of WDL with FM to reduce expensive
manual feature engineering. xDeepFM [11] improve DeepFM by a novel Com-
pressed Interaction Network (CIN) which learns high-order feature interactions
explicitly. PNN [15] feeds the concatenation of embedding and pairwise inter-
actions into DNN. DCN [20] model feature interactions of bounded-degree by
using a cross network. And self-attention is a commonly used network to capture
high-order interaction, such as AutoInt [18].

All aforementioned CTR prediction methods feed the raw embeddings to fea-
ture interaction layer for modeling arbitrary-order feature interaction. Differ to
model feature interactions, researchers start to focus on refining feature represen-
tation before the feature interactions. FiBiNET [9] utilize the Squeeze-Excitation
Network (SENET) [8] to generate SENET-like embedding for further feature
interactions by assigning each feature unique importance. Similarly, IFM [24]
also improves FM by learning feature importance with the proposed Factor
Estimating Network (FEN). NON [13] leverages field-wise network to extract
intra-field information and enrich raw features. In our work, GFRL considers
intra-field information and contextual information simultaneously and refines
original embedding more flexible and fine-grained.

3 The Structure of MCRF

We aim to refine raw features by encoding both intra-field information and con-
textual information and enable multiple embedding channels for richer useful



362 F. Wang et al.

Fig. 1. Architectures of the proposed (a) MCRF, (b) GFRL, and (c) FLU.

feature interactions. To this end, we propose GFRL and MCRF for CTR pre-
diction. As depicted in Fig. 1a, MCRF is composed of three layers:

– Multi-Channel Refinement Layer. In multi-channel refinement layer, we
propose a model-agnostic structure named GFRL, which is applied on top
of Embedding Layer to refine original embedding. GFRL contains Feature
Learning Unit (FLU), and Gate Unit. FLU focuses on integrating both intra-
field and contextual information and Gate Unit controls the selection proba-
bility of the supplementary embedding and original embedding for generating
final refined representation.

– Aggregation Layer. In aggregation layer, we utilize attention mechanism
to select and aggregate useful feature interactions based on multiple refined
embeddings enabled by the multi-channel design.

– Prediction Layer. In prediction layer, a DNN is used to output the final
prediction based on the features from the aggregation layer.

3.1 Embedding Layer

In most CTR prediction tasks, the raw data is typically in a multi-field cate-
gorical format, which is usually represented as a high-dimensional sparse vector
(binary) by one-hot encoding [4,12]. For example, an input instance (Gender =
Female, Item = Lipstick, Color = Red, Name = Amy) can be represented as:

(0, 1)
︸ ︷︷ ︸

Gender=Female

(0, . . . , 1, 0, 0)
︸ ︷︷ ︸

Item=Lipstick

(0, 1, . . . , 0, 0)
︸ ︷︷ ︸

Color=Red

(1, 0, 0, . . . , 0)
︸ ︷︷ ︸

Name=Amy

. (1)



MCRF: Multi-channel Feature Refinement Framework 363

In most DNN-based methods, an embedding layer is used to transform high-
dimensional sparse feature data into low-dimensional dense vectors. Each input
instance has f feature fields, after inputting into the embedding layer, each field
i (1 ≤ i ≤ f) is represented by low-dimensional vector ei ∈ R

d. Each input
instance can be represented by embedding matrix E = [e1, ..., ei, ..., ef ] ∈ R

f×d,
where d is the dimension of embedding layer, ei is the embedding of field i.

3.2 Gated Feature Refinement Layer

GFRL dynamically refines raw feature embedding by absorbing intra-field and
contextual information simultaneously. And more informative and expressive
representation can boost the performance of other basic models. As shown in
Fig. 1b, GFRL consists of FLU and Gate Unit presented as follows.

Feature Learning Unit. FLU focuses on encoding intra-field and contextual
information explicitly. We use two independent FLUs to generate supplementary
features and a group of weight matrix. As illustrated in Fig. 1c, FLU is comprised
of two steps: encoder step and combination step.

Encoder. This step encodes intra-field and contextual information by a local
and global encoder. In local encoder, we assign a separate Fully Connected (FC)
layer for each field. The parameters in FCs are used to store the intra-field
information, then the output is computed by:

zi = FCi(ei), (2)

where ei, zi and FCi are the original embedding, output embedding, and FC
of the i-th field respectively. In practice, each field has the same structure as
the FC, so we calculate them all together by applying matrix multiplication
once (stacking inputs and weights of each FC [13]). We denote Bi ∈ R

b×d and
Wi ∈ R

d×d as the batch of inputs and weights of the FCi, where b is the mini-
batch size. Formally, we formulate the local encoder as follows:

Zori = stack[B1, ..., Bi, ..., Bf ] ∈ R
f×b×d, (3)

Wlocal = stack([W1, ...,Wi, ...,Wf ]) ∈ R
f×d×d, (4)

Zlocal = matmul(Zori,Wlocal) + bl ∈ R
f×b×d, (5)

where d is the input and output dimension of FCi. bl ∈ R
f×1×d is bias term

and matmul is batch matrix multiplication which is supported by Pytorch.1

Zlocal = [z1, ..., zi, ..., zf ] is the output of local encoder.
After encoding intra-field information, we proceed to capture contextual

information with a global encoder. Contextual information indicates the envi-
ronment in which a feature is located. The concatenate all the embedding is
represented by Econ ∈ R

fd, and feed them to a simple DNN as follows:

eglobal = σ2(W2σ1(W1Econ + b1) + b2), (6)
1 https://pytorch.org/docs/1.1.0/torch.html?#torch.matmul.

https://pytorch.org/docs/1.1.0/torch.html?#torch.matmul


364 F. Wang et al.

where W1 ∈ R
dk×fd, W2 ∈ R

d×dk , b1 and b2 are learnable parameters; σ(·) is the
ReLU function. We model eglobal as the contextual information, which represents
the specific context information of each instance.

Combination. In this step, we combine intra-field and contextual information,
using the following equation:

ẑi = F (zi, eglobal) = zi � eglobal ∈ R
d, (7)

where F (·) is a function, we choose the Hadamard product denoted by � here,
which is parameter-free and widely used in recommendation systems [4,15,16].
Finally, the supplementary features are generated as Ẑ = [ẑ1, ..., ẑi, ..., ẑf ] ∈
R

f×d, which explicitly integrates both intra-field and contextual information.
Compared to NON, FLU further absorbs contextual information, enabling

the same feature to obtain various feature representations dynamically. It is
also affected by the specific instance it appears, represented by contextual infor-
mation here. To further enhance the expressive power of feature learning, we
design a Gate Unit to select salient features from the original and supplemen-
tary embedding adaptively.

Gate Unit. Inspired by Long Short Term Memory Network (LSTM) [7], we
leverage gate mechanism to obtain refined features by controlling the selection
probability of supplementary features and raw features. As shown in Fig. 1b,
we compute one supplementary embedding matrix Ẑ2 and one group of weight
matrix Ẑ1 by two independent FLUs. Then we generate a group of probabilities
σ by adding a sigmoid function after matrix Ẑ1, which can control information
flow in bit-level. Finally, we obtain the refined feature embedding Z as follows:

Ẑ1 = FLU1(E) ∈ R
f×d, (8)

Ẑ2 = FLU2(E) ∈ R
f×d, (9)

σ = sigmoid(Ẑ1) ∈ R
f×d, (10)

Z = Ẑ2 � σ + E � (1 − σ), (11)

where Z ∈ R
f×d denotes the refined features. σ is the weight matrix, which con-

trols the information flow like a gate in bit-level. Ẑ2�σ represents the portion of
each element that can be retained in supplementary features. E�(1−σ) denotes
a selective “forgetness” of the raw features, and it only retains the important
portion of the raw features. These two parts are complementary to each other.
It should be noted that we do not use activation function in local encoder. As we
have applied ReLU in Eq. 6. If functions like ReLU were used in local encoder
again, the outputs of FLU would be greater than 0, which would cause all the
probabilities to be greater than 0.5. In that case, the gate function would not
help identify useful features. We believe that the use of gate unit helps improve
the stability of the GFRL module.

In summary, GFRL utilizes two FLUs to generate supplementary features
and weights matrix by integrating intra-field and contextual information and



MCRF: Multi-channel Feature Refinement Framework 365

Fig. 2. The interaction layer of IPNN [15].

leverages gate unit to choose important information from both the raw and the
supplementary features. It can be used as a building block in a plug-and-play
fashion to improve base models’ performance, we will discuss this in Sect. 4.3.

3.3 Multi-channel Feature Refinement Framework

To enable multiple embedding channels for richer feature interactions, we design
MCRF (Fig. 1a) based on GFRL. It is comprised of three layers: Multi-Channel
Refinement Layer, Aggregation Layer, and Prediction Layer.

Multi-channel Refinement Layer. Given the numerous combinations of raw
features, feature interactions usually suffer from sparsity issues. FM-based and
most deep methods address the issue by proposing feature embeddings, improv-
ing the model’s generalization performance but performing feature interaction
only based on the raw embedding matrix. FFM learns a separate feature embed-
ding for each field, although achieving a significant performance boost, cause
an explosion of parameters and compromise memory usage. We utilize multiple
GFRLs to output multiple refined feature matrices that only scale the param-
eter space based on the number of parameters within GFRL and then perform
feature interaction independently. In this way, we leverage richer embeddings
through multiple channels without exploding the parameter space. We input the
raw embedding matrix E into multiple GFRLs as follows:

Zc = GFRL(E) ∈ R
f×d, (12)

where Zc denotes refined embedding in c-th (1 ≤ c ≤ n) channel. We denote
Z = (E,Z1, ..., Zc, ..., Zn) as all the embedding matrices, and we also keep the
raw embedding E. When channel number is zero, we directly use the base model.

Aggregation Layer. In the previous layer, we obtain n+1 embedding matrices,
n is the channel numbers. In this layer, we first apply basic feature interaction
operation in each channel to get a feature vector. Then all vectors are aggre-
gated by the attention mechanism. To be mentioned, any other advanced inter-
action operations can be applied to generate feature vector, e.g., bi-interaction
in NFM [5], attention in AFM [22], etc. For ease of presentation, we take the
interaction operation in IPNN as an example, as shown in Fig. 2.



366 F. Wang et al.

IPNN concatenates pairwise inner-product and input vectors to model feature
interaction. We denote ec

f and icf as the embedded features and the inner-product
features in the c-th channel. We can calculate ec

f and icf as follow:

ec
f = concat(Zc) = concat([zc1; ...; z

c
i ; ...; z

c
f ]), (13)

icf = [p(1,2), p(2,3), ..., p(f−1,f)], (14)
p(i,j) =< zci , z

c
j >, (15)

where Zc ∈ R
f×d and zci are the embedding matrix and i-th field embedding

in c-th channel respectively. p(i,j) is the value of the “inner-product” operation
between the i-th and j-th features. Concatenating ec

f and icf obtains the inter-

action vector Ic = [ec
f , icf ] ∈ R

nf in c-th channel, where nf = fd + (f−1)f
2 .

Considering the input Z, we obtain a total of n + 1 interaction vectors I =
[I0, I1, ..., Ic, ..., In] ∈ R

(n+1)×nf .
As the embedding matrix Zc is different in each channel, each interaction

vector captures different interaction information. To aggregate all interaction
vectors, we adopt attention on vector set I. Formally, the attentional aggregation
representation Iagg can be described as follows:

Iagg = AttentionAgg(I) =
n

∑

c=0

αcIc, (16)

αc =
exp

(

hT ReLU (W cIc)
)

∑

c′∈n+1 exp
(

hT ReLU (W cIc′)
) , (17)

where αc denotes the attention score in c-th channel; W c ∈ R
s×nf are learnable

parameters; h ∈ R
s is the context vector; and s is the attention size. Experiments

show attention size does not affect results apparently, we set s equals to nf .
Briefly, we implement basic interaction operation in each channel for gener-

ating the interaction vector, and each vector stores supplementary interaction
information. For simplicity, we share the learning parameters in basic feature
interaction layer. Actually, most operations like inner product, outer product
and bi-interaction are parameter-free. Finally, we utilize an attention mecha-
nism to aggregate all the interaction vectors generated in multiple channels.

Prediction Layer. After the aggregation layer, we collect the aggregated rep-
resentation Iagg. Then, we feed it into a DNN for the final prediction ŷ as follows:

ŷ = sigmoid (DNN (Iagg)) . (18)

The learning process aims to minimize the following objective function:

L(y, ŷ) = − 1
N

N
∑

i=1

(yi log (ŷi) + (1 − yi) ∗ log (1 − ŷi)) (19)

where yi ∈ {0, 1} is the true label and ŷi ∈ (0, 1) is the predicted CTR, and N
is the total size of samples.



MCRF: Multi-channel Feature Refinement Framework 367

4 Experiments

To comprehensively evaluate MCRF and its major component GFRL, we con-
duct experiments by answering five crucial research questions. During the pro-
cess, we essentially break down and evaluate different components of MCRF, so
the whole experiment serves as a comprehensive ablation study.

– (Q1) How do GFRL and MCRF perform compared to mainstream methods
while applying them to FM?

– (Q2) Can GFRL and MCRF improve the performance of other state-of-the-
art CTR prediction methods?

– (Q3) What are the important components (FLU and Gate Unit) in GFRL?
– (Q4) How does GFRL perform compared to other structures?
– (Q5) How does the number of channels impact the performance of MCRF?

4.1 Experimental Setup

Datasets. We conduct empirical experiments on four real-world datasets.
Table 1 lists the statistics of four real-world datasets.

Criteo2 is a famous benchmark dataset, which contains 13 continuous feature
fields and 26 categorical feature fields. It includes 45 million user click records.
We use the last 5 million sequential records for test and the rest for training
and validation [6]. We further remove the infrequent feature categories and treat
them as a “〈unknown〉” category, where the threshold is set to 10. And numerical
features are discretized by the function discrete(x) = �log2(x)	, where �.	 is the
floor function, which is proposed by the winner of Criteo Competition.3

Avazu4 is provided by Avazu to predict whether a mobile ad will be clicked.
We also remove the infrequent feature categories, the threshold is set to five [18].

Frappe5 is used for context-aware recommendation. Its target value indicates
whether the user has used the app [2].

MovieLens6 is used for personalized tag recommendation. Its target value
denotes whether the user has assigned a particular tag to the movie [2]. We
strictly follow AFM [22] and NFM [5] to divide the training, validation and test
set for MovieLens and Frappe.

Evaluation Metrics. We use AUC (Area Under the ROC curve) and Logloss
(cross-entropy) as the metrics. Higher AUC and lower Logloss indicate better
performance [2,12,13]. It should be noted that 0.001-level improvement in AUC
or Logloss is considered significant [2,13,20] and likely to lead to a significant
increase in online CTR prediction [4,12]. Considering the huge daily turnover of
platforms, even a few lifts in CTR bring extra millions of dollars each year [12].
2 https://www.kaggle.com/c/criteo-display-ad-challenge.
3 https://www.csie.ntu.edu.tw/∼r01922136/kaggle-2014-criteo.pdf.
4 https://www.kaggle.com/c/avazu-ctr-prediction.
5 https://www.baltrunas.info/context-aware/frappe.
6 https://grouplens.org/datasets/movielens/.

https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.baltrunas.info/context-aware/frappe
https://grouplens.org/datasets/movielens/


368 F. Wang et al.

Table 1. Datasets statistics (K indicates thousand.)

Datasets Positive Training Validation Test Features Fields

Criteo 26% 35,840K 5,000K 5,000K 1,087K 39

Avazu 17% 32,343K 4,043K 4,043K 1,544K 23

Frappe 33% 202K 58K 29K 5K 10

MovieLens 33% 1,404K 401K 201K 90K 3

Comparison Methods. We select the following existing CTR prediction mod-
els for comparison, including FM [16], IFM [24], FFM [10], FwFM [14], WDL [1],
NFM [5], DeepFM [4], xDeepFM [11], IPNN [15], OPNN [15], FiBiNET [9],
AutoInt+ [18], AFN+ [2], TFNet [21], NON [13]. As xDeepFM, FiBiNET and
AFN has outperformed LR, FNN, AFM, DCN, we do not present their results.
Meanwhile, our experiments also show the same conclusions.

Reproducibility. All methods are optimized by Adam optimizer with a learning
rate of 0.001, and a mini-batch size of 4096. To avoid overfitting, early-stopping is
performed according to the AUC on the validation set. We fix the dimension of
field embedding for all models to be a 10 for Criteo and Avazu, 20 for Frappe and
MovieLens, respectively. Borrowed from previous work [2,4,9], for models with the
DNN, the depth of layer is set to 3, and the number of neurons per layer is 400.
ReLU activation functions are used, and the dropout rate is set to 0.5. For other
models, we fetch the best setting from its original literature.

To ensure fair comparison, for each model on each dataset, we run the exper-
iments five times and report the average value. Notably, all the standard devi-
ations are in the order of 1e−4, showing our results are very stable. Further-
more, the two-tailed pairwise t-test is performed to detect significant differences
between our proposed methods and the best baseline methods.

4.2 Overall Performance Comparison (Q1)

To verify the effectiveness of GFRL and MCRF, we choose FM as the basic
method, represented by FM+GFRL and FM+MCRF-4.7 FM is the most simple
and effective feature interaction method. The performance of different models
on the test set is summarized in Table 2. The key observations are as follow:

Firstly, most of the deep-learning models outperform shallow models. One
of the reasons is that many deep models apply well-designed feature interaction
operations, such as CIN in xDeepFM, self-attention in AutoInt, etc.

Secondly, by applying GFRL on top of embedding layer, FM+GFRL out-
performs FM and other mainstream models, only second to FM+MCRF-4. It

7 As the output of FM is a scalar value, we omit the attention layer when we apply
MCRF with FM. Meanwhile, we feed all outputs in multiple channels to a simple
LR than DNN in the prediction layer, which makes FM+MCRF more efficient.



MCRF: Multi-channel Feature Refinement Framework 369

Table 2. Overall performance comparison. (� : p < 10−2; �� : p < 10−4)

Datasets Criteo Avazu Frappe MovieLens

Model AUC Logloss AUC Logloss AUC Logloss AUC Logloss

Shallow models FM 0.8028 0.4514 0.7812 0.3796 0.9708 0.1934 0.9391 0.2856

FFM 0.8066 0.4477 0.7873 0.3758 0.9780 0.1980 0.9485 0.2682

FwFM 0.8072 0.4470 0.7855 0.3770 0.9740 0.2164 0.9457 0.2840

IFM 0.8066 0.4470 0.7839 0.3778 0.9765 0.1896 0.9471 0.2853

Deep models WDL 0.8068 0.4474 0.7880 0.3753 0.9776 0.1895 0.9403 0.3045

NFM 0.8057 0.4483 0.7828 0.3782 0.9746 0.1915 0.9437 0.2945

DeepFM 0.8084 0.4458 0.7875 0.3758 0.9789 0.1770 0.9465 0.3079

xDeepFM 0.8086 0.4456 0.7884 0.3751 0.9792 0.1889 0.9480 0.2889

IPNN 0.8088 0.4454 0.7882 0.3754 0.9791 0.1759 0.9490 0.2785

OPNN 0.8096 0.4446 0.7885 0.3752 0.9795 0.1805 0.9497 0.2704

FiBiNET 0.8089 0.4453 0.7887 0.3746 0.9756 0.2767 0.9435 0.3427

AutoInt+ 0.8088 0.4456 0.7882 0.3751 0.9786 0.1890 0.9501 0.2813

AFN+ 0.8095 0.4447 0.7886 0.3747 0.9791 0.1824 0.9509 0.2583

TFNet 0.8092 0.4449 0.7885 0.3745 0.9787 0.1942 0.9493 0.2714

NON 0.8095 0.4446 0.7886 0.3748 0.9792 0.1813 0.9505 0.2625

Our models FM+GFRL 0.8107�� 0.4439�� 0.7889�� 0.3746�� 0.9803� 0.1774� 0.9549� 0.2453�

FM+MCRF-4 0.8114�� 0.4433�� 0.7898�� 0.3740�� 0.9821� 0.1720� 0.9589�� 0.2409��

demonstrates that the refined feature representation is extremely efficient, which
captures more information by absorbing intra-field and contextual information.
And compared to modeling feature interaction, refining feature representation is
more effective, considering FM only models second-order feature interaction.

Finally, with the help of four groups of refined embeddings, FM+MCRF-
4 achieves the best performance. Specifically, it significantly outperforms basic
FM 1.07%, 1.10%, 1.16% and 2.11% in terms of AUC(1.79%, 1.48%, 11.07%,
and 15.65% in terms of Logloss) on four datasets. Those facts verify that the
additional group of embeddings can provide more information. In subsection 4.6,
we will discuss the impact of channel numbers in detail.

4.3 Compatibility of GFRL and MCRF with Different Models (Q2)

We implement GFRL and MCRF on five base models: FM, AFM, NFM, IPNN,
and OPNN. GFRL can be applied after embedding layer to generate informative
and expressive embedding. For a fair comparison, we only use one channel in
MCRF to obtain another group feature embedding. The results are presented
in Table 3. We focus on BASE, GFRL, and MCRF-1 and draw the following
conclusions.

All base models achieve better performance after applying GFRL and MCRF,
demonstrating the effectiveness and compatibility of GFRL and MCRF. Mean-
while, MCRF-1 consistently outperforms the building block GFRL, which verifies
that MCRF-1 successfully aggregates more useful interactions from raw features
and refined features by attention mechanism.

Compared to IPNN and OPNN, FM-based models get better improvements
by applying GFRL and MCRF-1. Especially, FM+GFRL and FM+MCRF-1



370 F. Wang et al.

Table 3. Model performance of different modules based upon various basic mainstream
models on Criteo and Avazu datasets.

(a) Criteo Dataset

Models FM AFM NFM IPNN OPNN

Modules AUC Logloss AUC Logloss AUC Logloss AUC Logloss AUC Logloss

BASE 0.8028 0.4514 0.7999 0.4535 0.8057 0.4483 0.8088 0.4454 0.8096 0.4444

SENET 0.8057 0.4484 0.7990 0.4544 0.8052 0.4486 0.8090 0.4451 0.8093 0.4449

FEN 0.8066 0.4470 0.7954 0.4570 0.8063 0.4475 0.8092 0.4451 0.8088 0.4454

FWN 0.8049 0.4491 0.7884 0.4637 0.8070 0.4476 0.8090 0.4451 0.8098 0.4446

FLU 0.8098 0.4446 0.8082 0.4461 0.8097 0.4445 0.8093 0.4450 0.8100 0.4445

GFRL 0.8107 0.4439 0.8091 0.4453 0.8103 0.4441 0.8097 0.4444 0.8104 0.4440

MCRF-1 0.8110 0.4435 0.8092 0.4452 0.8106 0.4437 0.8099 0.4444 0.8107 0.4439

(b) Avazu dataset.

Models FM AFM NFM IPNN OPNN

Modules AUC Logloss AUC Logloss AUC Logloss AUC Logloss AUC Logloss

BASE 0.7812 0.3796 0.7727 0.3849 0.7828 0.3782 0.7882 0.3754 0.7885 0.3752

SENET 0.7831 0.3785 0.7743 0.3847 0.7847 0.3743 0.7883 0.3751 0.7887 0.3747

FEN 0.7839 0.3778 0.7731 0.3854 0.7830 0.3783 0.7886 0.3746 0.7885 0.3751

FWN 0.7846 0.3776 0.7731 0.3854 0.7853 0.3768 0.7884 0.3750 0.7886 0.3748

FLU 0.7875 0.3755 0.7840 0.3780 0.7881 0.3750 0.7885 0.3750 0.7888 0.3746

GFRL 0.7889 0.3746 0.7854 0.3773 0.7883 0.3750 0.7887 0.3746 0.7890 0.3745

MCRF-1 0.7891 0.3745 0.7856 0.3768 0.7887 0.3747 0.7889 0.3745 0.7895 0.3742

achieve the best result on Criteo dataset, although the other four basic models
have more complex structures. Those facts show that inaccurate feature rep-
resentation limits the effectiveness of these models, and learning precise and
expressive representation is more basic but practical.

The key structure GFRL can improve the performance of base models and
accelerate the convergence. Figure 3 exhibits the test AUC of three models dur-
ing the training process before and after applying GFRL. Base models with
GFRL can speed up the training process significantly. Specifically, within five
epochs, base models with GFRL outperform the best results of the base models,
indicating that refined representation generated by GFRL can capture better
features and optimize the subsequent operations, and lead to more accurate pre-
diction. This justifies the rationality of GFRL’s design of integrating intra-field
and contextual information before performing feature interaction, which is the
core contribution of our work. It is worth mentioning that, MCRF-1 shows better
result than GFRL, but for simplicity, we just show GFRL’s training process.

4.4 Effectiveness of GFRL Variants (Q3)

We conduct ablation experiments to explore the specific contributions of FLU
and Gate Unit in GFRL based on five models. FWN is proposed in NON [13],
which only captures intra-field information. FLU adds contextual information



MCRF: Multi-channel Feature Refinement Framework 371

Fig. 3. The convergence curves of training process.

based on FWN. And GFRL is comprised of two FLUs and a Gate Unit. As
observed from Table 3, both FLU and Gate Unit are necessary for GFRL.

Firstly, FLU is always better than FWN, which directly certifies our idea that
contextual information is necessary. The same feature has different representa-
tions in various instances by absorbing contextual information, which makes it
more flexible and expressive.

Secondly, GFRL always outperforms FLU and FWN, which shows the impor-
tance of Gate Unit. It further confirms the effectiveness of the Gate Unit, which
can select useful features from original and supplementary representation with
learned weight in bit-level. As a comparison, both SENET and FEN learn the
importance in vector-level.

4.5 Superiority of GFRL Compared to Other Structures (Q4)

We select several modules from other models as comparisons to verify the supe-
riority of GFRL. SENET [9] and FEN [24] are proposed to learn the importance
of features. With FWN, we have four different modules: 1) SENET; 2) FWN; 3)
FEN; 4) GFRL. Those are applied after the embedding layer to generate new
feature representation. As shown in Table 3, we reach the following conclusions:

(1) In most cases, all four modules can boost base models’ performance. It
proves that refining feature representation before performing feature inter-
action is necessary and deserves further study. Meanwhile, from these unop-
timized examples, we can know that randomly adding a module to a specific
model sometimes doesn’t lead to incremental results.

(2) With the help of GFRL, all the base models are improved significantly.
Meanwhile, GFRL consistently outperforms other modules (FWN, SENET,
FEN). Furthermore, GFRL is the only structure that improves the per-
formance of all models. All those facts demonstrate the compatibility and
robustness of GFRL, which can be well generalized in the majority of main-
stream CTR prediction models to boost their performance.

(3) By checking the learning process of AFM, we find it updates slowly. This
situation does not get modified either after using SENET, FWN, and FEN,
or even worse. However, GFRL solves the problem, we show the training
process of AFM, GFRL+AFM in Fig. 3. The possible reason is that Gate



372 F. Wang et al.

Fig. 4. The performance of different number of channels in MCRF based upon various
base models on Criteo and Avazu datasets.

Unit allows the gradient to propagate through three paths in GFRL. This
illustrates the soundness and rationality of the GFRL’s design again.

4.6 The Impact of Channel Numbers of MCRF (Q5)

The number of channels is the critical hyper-parameter in MCRF. In previous
sections, we have shown that MCRF-1 improves the performance of several main-
stream models and outperforms GFRL with one additional channel. Here, we
change the number of channels from 1 to 4 to show how it affects their perfor-
mance. Note that we treat the base model as #channel = 0. Fig. 4 depicted the
experimental results and have the following observations:

(1) As the number of channels increases, the performance of base models is
consistently improved, especially for FM, AFM, and NFM. Unlike several
parallel-structured models (e.g., DeepFM, xDeepFM), MCRF performs the
same operation in different channels based on discriminative feature repre-
sentations generated by GFRLs. Our results verify our design that it is effec-
tive to absorb more informative feature interactions from multiple groups
of embeddings.

(2) Surprisingly, FM+MCRF achieves the best performance on two datasets.
Especially on the Criteo dataset, with the help of MCRF, FM and NFM
always outperform IPNN and OPNN. It proves that the FM successfully cap-
tures more useful feature interactions from multiple refined representations.
Furthermore, considering the results of FM+GFRL, those experiments fur-
ther verify that the idea of refining feature representation is highly efficient



MCRF: Multi-channel Feature Refinement Framework 373

and reasonable. With informative representation, even simple interaction
operations (such as the sum of inner product in FM) can get better results
than some complicated feature interaction operations. FM+MCRF may be
a good candidate for achieving state-of-the-art CTR prediction models with
ease of implementation and high efficiency.

5 Conclusion

Unlike modeling feature interaction, we focus on learning flexible and infor-
mative feature representation according to the specific instance. We design a
model-agnostic module named GFRL to refine raw embedding by simultane-
ously absorbing intra-field and contextual information. Based on GFRL, we fur-
ther propose a generalized framework MCRF, which utilizes GFRLs to gener-
ate multiple groups of embedding for richer interactions without exploding the
parameter space. A detailed ablation study shows that each component of GFRL
contributes significantly to the overall performance. Extensive experiments show
that while applying GFRL and MCRF in other CTR prediction models, better
performance is always achieved, which shows the efficiency and compatibility of
GFRL and MCRF. Most importantly, with the help of GFRL and MCRF, FM
achieves the best performance compared to other methods for modeling complex
feature interaction. Those facts identify a fundamental direction for CTR pre-
diction tasks that it is essential to learn more informative and expressive feature
representation on top of the embedding layer.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (NSFC) under Grants 61932007 and 62172106.

References

1. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceed-
ings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10
(2016)

2. Cheng, W., Shen, Y., Huang, L.: Adaptive factorization network: learning adaptive-
order feature interactions. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, pp. 3609–3616 (2020)

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

4. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017)

5. He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics
(2017)

6. He, X., Du, X., Wang, X., Tian, F., Tang, J., Chua, T.S.: Outer product-based
neural collaborative filtering. arXiv preprint arXiv:1808.03912 (2018)

7. Hochreiter, S., urgen Schmidhuber, J., Elvezia, C.: Long short-term memory. Neu-
ral Comput. 9(8), 1735–1780 (1997)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1703.04247
http://arxiv.org/abs/1808.03912


374 F. Wang et al.

8. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141
(2018)

9. Huang, T., Zhang, Z., Zhang, J.: FiBiNET: combining feature importance and
bilinear feature interaction for click-through rate prediction. In: Proceedings of the
13th ACM Conference on Recommender Systems, pp. 169–177 (2019)

10. Juan, Y., Zhuang, Y., Chin, W.S., Lin, C.J.: Field-aware factorization machines for
CTR prediction. In: Proceedings of the 10th ACM Conference on Recommender
Systems, pp. 43–50 (2016)

11. Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xDeepFM: combining
explicit and implicit feature interactions for recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1754–1763 (2018)

12. Liu, B., Tang, R., Chen, Y., Yu, J., Guo, H., Zhang, Y.: Feature generation by
convolutional neural network for click-through rate prediction. In: The World Wide
Web Conference, pp. 1119–1129 (2019)

13. Luo, Y., Zhou, H., Tu, W., Chen, Y., Dai, W., Yang, Q.: Network on net-
work for tabular data classification in real-world applications. arXiv preprint
arXiv:2005.10114 (2020)

14. Pan, J., et al.: Field-weighted factorization machines for click-through rate predic-
tion in display advertising. In: Proceedings of the 2018 World Wide Web Confer-
ence, pp. 1349–1357 (2018)

15. Qu, Y., et al.: Product-based neural networks for user response prediction over
multi-field categorical data. ACM Trans. Inf. Syst. (TOIS) 37(1), 1–35 (2018)

16. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on
Data Mining, pp. 995–1000. IEEE (2010)

17. Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-
through rate for new ads. In: Proceedings of the 16th International Conference on
World Wide Web, pp. 521–530 (2007)

18. Song, W., et al.: AutoInt: automatic feature interaction learning via self-attentive
neural networks. In: Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pp. 1161–1170 (2019)

19. Tang, W., Lu, T., Li, D., Gu, H., Gu, N.: Hierarchical attentional factorization
machines for expert recommendation in community question answering. IEEE
Access 8, 35331–35343 (2020)

20. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions.
In: Proceedings of the ADKDD 2017, pp. 1–7 (2017)

21. Wu, S., et al.: TFNet: multi-semantic feature interaction for CTR prediction. In:
Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 1885–1888 (2020)

22. Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., Chua, T.S.: Attentional factorization
machines: learning the weight of feature interactions via attention networks. arXiv
preprint arXiv:1708.04617 (2017)

23. Yang, B., Chen, J., Kang, Z., Li, D.: Memory-aware gated factorization machine
for top-N recommendation. Knowl.-Based Syst. 201, 106048 (2020)

24. Yu, Y., Wang, Z., Yuan, B.: An input-aware factorization machine for sparse pre-
diction. In: IJCAI, pp. 1466–1472 (2019)

25. Zhang, W., Du, T., Wang, J.: Deep learning over multi-field categorical data. In:
Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 45–57. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30671-1 4

http://arxiv.org/abs/2005.10114
http://arxiv.org/abs/1708.04617
https://doi.org/10.1007/978-3-319-30671-1_4

	MCRF: Enhancing CTR Prediction Models via Multi-channel Feature Refinement Framework
	1 Introduction
	2 Related Work
	3 The Structure of MCRF
	3.1 Embedding Layer
	3.2 Gated Feature Refinement Layer
	3.3 Multi-channel Feature Refinement Framework

	4 Experiments
	4.1 Experimental Setup
	4.2 Overall Performance Comparison (Q1)
	4.3 Compatibility of GFRL and MCRF with Different Models (Q2)
	4.4 Effectiveness of GFRL Variants (Q3)
	4.5 Superiority of GFRL Compared to Other Structures (Q4)
	4.6 The Impact of Channel Numbers of MCRF (Q5)

	5 Conclusion
	References




