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Abstract. The Graph Neural Network (GNN) is a rising graph analysis
model family that encodes node features into low-dimensional representa-
tion vectors by aggregating local neighbor information. Nevertheless, the
performance of GNNs is limited since GNNs are trained only over predic-
tions of the labeled data. Hence, effectively incorporating a great num-
ber of unlabeled nodes into GNNs will upgrade the performance of GNNs.
To address this issue, we propose a Contrastive Semi-supervised learn-
ing based GNN (CSGNN) that improves the GNN from extra supervision
predicted by contrastive learning. Firstly, CSGNN utilizes multi-loss con-
trast to learn node representations via maximizing the agreement between
nodes, edges and labels of different views. Then, a semi-supervised fine-
tuner learns from few labeled examples while making the best use of
unlabeled nodes. Finally, we introduce the knowledge distillation based
on label reliability, which further distills the node labels predicted by
contrastive learning into the GNN. Experimentally, CSGNN effectively
improves the classification performance of GNNs and outperforms other
state-of-the-art methods in accuracy over a variety of real-world datasets.

Keywords: Contrastive learning · Semi-supervised learning · Graph
Neural Network

1 Introduction

Graph Neural Networks (GNNs) have aroused more and more attention on
account of the ability to handle the graph-structured data defined on irregular
or non-Euclidean domains. GNNs compute graph node representations through
a propagation process which iteratively aggregates local structural information.
GNNs are clearly superior to traditional graph-based algorithms in quite a few
tasks [6]. Unfortunately, GNNs, as data-driven inference models, are also not free
of the bottleneck when training data is inadequate. The reason is that GNNs are
trained only over predictions of labeled nodes by minimizing the supervised loss,
and predictions of unlabeled nodes do not contribute to the training. In order to
tackle the intrinsic hardness, various researches have emphasized incorporating
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unlabeled data into GNNs via combining them with self-supervised learning [8]
or augmenting topology and attributes of graphs in different ways [12].

Recently, Contrastive Learning (CL) achieves great success in graph repre-
sentation learning [15,16]. As a popular form of self-supervised learning, CL
seeks to maximize the mutual information between the input and its representa-
tions by contrasting positive pairs with negative-sampled counterparts. However,
CL learns embeddings in a task-agnostic way without using labeled data. This
leads us to explore a fusion mechanism of CL and GNNs for graph-based semi-
supervised learning. In the latest studies on graph-based CL, [11] proposes a
contrastive semi-supervised model CG, which minimizes the contrastive loss, the
graph generative loss and the classification loss between graph views together.
But CG does not bring out the full power of CL. One of the state-of-the-art
researches in computer vision also proposes a contrastive semi-supervised model
SIMCLRv2 [1]. SIMCLRv2 distills the generated embeddings of unlabeled data
into the downstream student model. Nevertheless, SIMCLRv2 cannot be directly
applied to graph-based data.

Based on the above discussion, we propose a Contrastive Semi-supervised
learning based GNN (CSGNN) which utilizes knowledge distillation to combine
CL with GNNs, with a CL model as the teacher model and a GNN as the
student model. To the best of our knowledge, CSGNN is the first research on
combining contrastive learning with GNNs through knowledge distillation. Our
contributions are summarized as follows:

– This paper provides a contrastive semi-supervised based GNN which could
comprehensively leverage the abundant structural and semantic information
of unlabeled nodes.

– In the teacher model, a multi-loss contrastive learning method is introduced to
learn representations by contrasting positive and negative examples between
nodes, edges and labels.

– We design a reliable knowledge distillation method via computing the label
reliability based on the Shannon entropy of teacher and student’s predictions.

– In experiments, we demonstrate that CSGNN can greatly improve the perfor-
mance of GNNs in node classification task compared with the state-of-the-art
methods on real-world datasets.

2 Related Works

For graph data, graph contrastive learning applies the idea of CL on GNNs.
These methods can be categorized based on how the positive and negative sam-
ples are constructed. One is to measure the loss of different parts of a graph
in latent space by contrasting nodes and the whole graph, nodes and nodes or
nodes and subgraphs [5]. The other one uses different data augmentation meth-
ods to generate contrastive pairs. GraphCL [13] develops contrastive learning
with node dropping, edge perturbation, subgraph sampling and feature mask-
ing. MVGRL [3] constructs multiple graph views by sampling subgraphs based
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Fig. 1. The overview of CSGNN

on random walks. GCA [16] leverages the network centrality to augment the
graph adaptively on both topology and attribute levels. CG [11] augments the
graph via localized graph convolution and hierarchical graph convolution and
designs a new semi-supervised contrastive loss. Most CL models cannot achieve
the best performance for specific tasks through unsupervised learning.

3 Overview

The overall framework of CSGNN is shown in Fig. 1. Given a graph G =
(V,A,X) with a node set V = {v1, v2, ..., vN}, a graph adjacent matrix A ∈
RN×N and a node attribute matrix X ∈ RN×F where F is the dimension of
node attributes, we firstly input A and X of into a trained teacher GNN to gen-
erate the node general representation. The teacher GNN is trained via multi-loss
contrastive learning, which can measure mutual information in multiple dimen-
sions and obtain the main features of nodes without focusing on the details.
The node embedding after fine tuning represents the category probability of
each node. For further improving predictive performance and obtaining a com-
pact model, we train the student GNN on the labeled data with ground truths
and the unlabeled data with predicted labels from the fine-tuned teacher GNN.
Finally, we can generate predictions directly from the student GNN, regardless
of the teacher model.

4 Teacher Model with Contrastive Learning

The training process of the teacher model involves the following stages: (1) the
adaptive graph augmentation stage, which transforms the original graph into
different views; (2) the encoding stage, which generates the node representations
via the teacher GNN; (3) the contrasting stage, which contrasts the latent vectors
between nodes, edges and labels.
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Graph Augmentation. We augment the graph by perturbing possibly unim-
portant links and features following the schemes proposed in GCA [16] which
tends to keep important structures and attributes unchanged. Augmentation is
divided into topology-level and attribute-level. On topology-level, we define edge
centrality seuv for edge euv to measure its influence based on PageRank central-
ity of two connected nodes. On attribute-level, we add noises to node attributes
via randomly masking a fraction of dimensions with zeros in node attributes.
We sample a random mask mi Bernoulli(P ai

perturbing) for each attribute i. To
evaluate the importance of attribute i, we assume that attributes frequently
appearing in influential nodes should be important.

Augmented Graphs Encoding. At each iteration, we generate two graph
views based on the augmentation scheme above, denoted as G1 and G2. Then
G1 and G2 are input into the teacher GNN with shared parameters. The node
embeddings are denoted as U = f(X1, A1) and V = f(X2, A2).

Contrastive Learning. After that, we employ the contrastive loss to train
the teacher GNN. We conduct joint contrastive losses between nodes, edges and
labels to make the embeddings more conducive to classification. For any node
i, its embedding is ui in view G1 and vi in view G2. The node contrastive loss
between a pair of positive examples ui and vi is given as follows:

�ui,vi
= − log

exp(sim(g(ui), g(vi))/τ)
∑

k �=i exp(sim(g(ui), g(vk))/τ) +
∑

k �=i exp(sim(g(ui), g(uk))/τ)
(1)

where sim(·, ·) is the cosine similarity, g(·) is a non-linear transformation
network,

∑
k �=i exp(sim(g(ui), g(vk))/τ) is the loss between inter-view negative

pairs and
∑

k �=i exp(sim(g(ui), g(uk))/τ) is the loss between intra-view negative
pairs. Since the symmetric among the views, our unsupervised node contrastive
loss Lnodes can be presented as:

Lnodes =
1

2N

N∑

i=1

(�ui,vi
+ �vi,ui

) (2)

The goal of the edge contrastive loss is to distinguish between existing edges
and non-existing edges within and between views. We reconstruct the adjacency
matrix A∗

1 and A∗
2 based on the node embedding of each view. We also reconstruct

the adjacency matrix A∗
1,2 between two views. We calculate the inner product of

node embeddings as the possibility that two nodes have edges for reconstructing
the adjacency matrix. Given edge ei,j in graph G, the corresponding edge in A∗

1,
A∗

2 and A∗
1,2 are positive examples, and non-existing edges are negative examples.

Here, the unsupervised edge contrastive loss can be computed as:

Ledges =
1

3|E| (�
edges
G1

+ �edgesG2
+ �edgesG1,G2

) (3)

�edgesG1
= − log

∑
e∈E exp(A∗

1e/τ)
∑

ê/∈E exp(A∗
1ê/τ)

(4)
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where E is the edge set of graph G and A∗
1e is the value of edge e in A∗

1.
�edgesG2

and �edgesG1,G2
are similar to Eq. 4.

Our supervised contrastive learning loss will distinguish nodes of the same
category and nodes of different categories within and between views, which is
defined as:

Llabels =
1

2L|
∑

l∈L

(�labels,G1
l + �labels,G2

l ) (5)

�labels,G1
l = − log

∑
k∈S(l) exp(sim(g(l), g(k))/τ)

∑
̂k∈Diff(l) exp(sim(g(l), g(k̂))/τ)

(6)

where L is the set of labeled nodes, S(·) is the set of nodes with the same
label, Diff(·) is the set of nodes with different labels. �labels,G2

l is similar to
Eq. 6.

By combining node, edge and label contrastive losses, we arrive at the fol-
lowing multi-loss contrastive learning:

L = Lnodes + λ1Ledges + λ2Llabels (7)

where λ1 and λ2 are hyperparameters that control the proportion of the
corresponding loss. After training, we input the node embeddings into an L2-
regularized logistic regression classifier to generate fine-tuned prediction results.

5 Student Model with Reliable Distillation

5.1 Label Reliability Based on Shannon Entropy

Since the correctness of unlabeled nodes’ label predictions is difficult to evaluate,
Shannon entropy is used to evaluate the probability of reliable label predictions.
However, there are also correct predictions for nodes with high entropy. There-
fore, we can compare the prediction results of the student model and the teacher
model to enhance the evaluation of label reliability. Formally, we define the label
reliability of a node i prediction as follows:

Ri =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if i ∈ L

1, if t(i) = s(i) and H(Ti) < Hmax

exp(−(H(Ti) + H(Si))) if t(i) = s(i) and H(Ti) > Hmax

0, if t(i) �= s(i)

(8)

where H(·) computes the Shannon entropy of the vector, t(·) is the label
of the teacher’s prediction, s(·) is the label of the student’s prediction, T is the
node prediction vector of the teacher model, S is the prediction vector of student
model and Hmax is the max reliable threshold of entropy.
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5.2 Model Training

We train the model based on labeled nodes with ground truths and unlabeled
nodes with reliable labels. For each iteration, we update the reliability of the
unlabeled nodes. With the improvement of the accuracy of the student model,
more and more reliability nodes can be chosen to teach the student GNN. The
training loss of the student GNN is defined as:

Lstudent =
1

|L|
∑

l∈L

CE(yl, ŷl) +
1

|U |
∑

u∈U

R(u)CE(ỹu, ŷu) (9)

where L is the set of labeled nodes, U is the set of unlabeled nodes, yl is
the label of labeled node l, ỹu is the label of unlabeled node u which is learned
from the teacher model, ŷ is the prediction of the student GNN and CE(·) is
the cross-entropy loss function.

6 Experiments

6.1 Experiment Setting

Five real-world graph datasets are used for the experiments including Cora, Cite-
seer, Pubmed, Amazon Computers and Amazon Photo [11]. As for baselines, we
opt a series of methods including the Label Propagation(LP) [14], Chebyshev [2],
GCN [4], GAT [9], DGI [10], GMI [7], MVGRL [3], GCA [16] and CG [11]. For
Cora, Citeseer and Pubmed datasets, we use 20 nodes per class as the training
set and 30 nodes per class as the validation set. For Amazon Computers and
Amazon Photo datasets, we use 30 labeled nodes per class as the training set,
30 nodes per class as the validation set. We report the mean accuracy and the
stand derivations of 20 runs. For the hyperparameters of different GNNs, we set
them as suggested by their authors. For CSGNN, we set a 2-layer GCN as the
teacher GNN and a 2-layer GAT as the student GNN. The hyperparameters of
CSGNN are the optimal parameters selected based on experimental results.

6.2 Semi-supervised Classification

The semi-supervised node classification results are reported in Table 1. The
results for five datasets exhibit similar trends: CSGNN yields predictions com-
parable or superior to those of the other contestants. For example, compared
to GCN, CSGNN reaches nearly 3.3%, 3.5%, 1.1%, 7.1%, 3.5% gain on five
datasets respectively. We also have the following observations: (1) Some unsu-
pervised contrastive learning methods present better performance than baseline
semi-supervised learning methods; (2) Two contrastive learning methods GCA
and CG are strong competitors for the best performance. They perform well on
some datasets, but also fail in some datasets, while CSGNN consistently per-
forms well on all datasets. Hence, we believe that CSGNN can steadily improve
GNNs’ performance, even better than the state-of-the-art methods.
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Table 1. Results of semi-supervised node classification (%)

Cora Citeseer Pubmed Computers Photo

LP 68.0 45.3 63.0 70.8 ± 0.0 67.8 ± 0.0

Chebyshev 79.3 ± 1.3 67.4 ± 1.5 75.3 ± 0.5 62.6 ± 0.8 74. 3 ± 0.5

GCN 81.5 ± 0.6 70.7 ± 0.4 79.3 ± 0.2 76.3 ± 0.5 87.3 ± 1.0

GAT 83.1 ± 0.5 72.5 ± 0.7 79.5 ± 0.5 79.3 ± 1.1 86.2 ± 1.5

DGI 81.7 ± 0.6 71.5 ± 0.7 77.3 ± 0.6 75.9 ± 0.6 83.1 ± 0.5

GMI 82.7 ± 0.2 73.0 ± 0.3 80.1 ± 0.2 76.8 ± 0.1 85.1 ± 0.1

MVGRL 82.9 ± 0.7 72.6 ± 0.7 79.4 ± 0.3 79.0 ± 0.6 87.3 ± 0.3

GCA 80.9 ± 0.6 68.1 ± 2.0 80.3 ± 0.9 82.3 ± 0.3 90.4 ± 0.2

CG 83.4 ± 0.7 73.6 ± 0.8 80.2 ± 0.8 79.9 ± 0.6 89.4 ± 0.5

CSGNN 84.8 ± 1.0 74.2 ± 1.2 80.8 ± 0.4 83.4 ± 1.4 90.8 ± 0.1

6.3 Ablation Study

This section provides an ablation analysis to validate the contributions of differ-
ent components of CSGNN on three citation datasets. For the variants, we use
“T” as the teacher model, “S/R” as the student model without evaluating label
reliability, “S” as the student model, “w/o KD” as the GAT without knowledge
distillation, “CL-N” as CL with the node loss, “CL-N-E” as CL with node and
edge losses, and “CL-ALL” as CL with all losses. The results are summarized
in Table 2. It exhibits three interesting patterns: (1) The node, edge and label
losses benefit the contrastive learning; (2) Without label reliability, distillation
will reduce the performance of the student model, and the performance of “S/R”
variants are even lower than the model without distillation; (3) Among different
techniques, distillation improves performance more than contrastive learning.

Table 2. Ablation results of semi-supervised node classification(%)

Cora CiteSeer PubMed

T S/R S T S/R S T S/R S

w/o KD – – 83.1 – – 72.5 – – 79.5

CL-N 80.9 81.3 84.0 68.1 69.6 72.8 80.3 78.2 80.4

CL-N-E 81.1 83.4 84.2 69.3 71.0 74.2 80.4 77.3 80.7

CL-ALL 81.3 83.6 84.4 69.4 70.8 74.6 80.5 79.5 80.9

7 Conclusion

In this paper, we explore contrastive learning methods for graph-based data and
propose a contrastive semi-supervised learning based GNN by knowledge distilla-
tion, named CSGNN. CSGNN is able to learn from reliable unlabeled nodes when
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we distill the predictions of contrastive learning with multi-loss into the down-
streaming student model. Extensive experiments demonstrate that CSGNN can
consistently outperform the state-of-the-art models in node classification accu-
racy on real-world datasets.
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9. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

10. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep
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