
Arnab Bhattacharya · Janice Lee Mong Li ·
Divyakant Agrawal · P. Krishna Reddy ·
Mukesh Mohania · Anirban Mondal ·
Vikram Goyal · Rage Uday Kiran (Eds.)

LN
CS

 1
32

45

27th International Conference, DASFAA 2022
Virtual Event, April 11–14, 2022
Proceedings, Part I

Database Systems
for Advanced Applications

Lecture Notes in Computer Science 13245

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Arnab Bhattacharya · Janice Lee Mong Li ·
Divyakant Agrawal · P. Krishna Reddy ·
Mukesh Mohania · Anirban Mondal ·
Vikram Goyal · Rage Uday Kiran (Eds.)

Database Systems
for Advanced Applications
27th International Conference, DASFAA 2022
Virtual Event, April 11–14, 2022
Proceedings, Part I

Editors
Arnab Bhattacharya
Indian Institute of Technology Kanpur
Kanpur, India

Divyakant Agrawal
University of California, Santa Barbara
Santa Barbara, CA, USA

Mukesh Mohania
Indraprastha Institute of Information
Technology Delhi
New Delhi, India

Vikram Goyal
Indraprastha Institute of Information
Technology Delhi
New Delhi, India

Janice Lee Mong Li
National University of Singapore
Singapore, Singapore

P. Krishna Reddy
IIIT Hyderabad
Hyderabad, India

Anirban Mondal
Ashoka University
Sonepat, Haryana, India

Rage Uday Kiran
University of Aizu
Aizu, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-00122-2 ISBN 978-3-031-00123-9 (eBook)
https://doi.org/10.1007/978-3-031-00123-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-1238-5174
https://doi.org/10.1007/978-3-031-00123-9

General Chairs’ Preface

On behalf of the Organizing Committee, it is our great pleasure to welcome you to the
proceedings of the 27th International Conference on Database Systems for Advanced
Applications (DASFAA2022), which was held during April 11–14, 2022, in Hyderabad,
India. The conference has returned to India for the second time after a gap of 14 years,
moving from New Delhi in 2008 to Hyderabad in 2022. DASFAA has long estab-
lished itself as one of the leading international conferences in database systems. We
were expecting to welcome you in person and give you a feel of our renowned Indian
hospitality. However, unfortunately, given the Omicron wave of COVID-19 and the
pandemic circumstances, we had to move the conference to a fully online mode.

Our gratitude goes first and foremost to the researchers, who submitted their work to
the DASFAA 2022 main conference, workshops, and the data mining contest. We thank
them for their efforts in submitting the papers, as well as in preparing high-quality online
presentation videos. It is our distinct honor that five eminent keynote speakers graced the
conference: Sunita Sarawagi of IIT Bombay, India, Guoliang Li of Tsinghua University,
China, GautamDas of theUniversity of Texas at Arlington, IoanaManolescu of Inria and
Institut Polytechnique de Paris, and Tirthankar Lahiri of the Oracle Corporation. Each of
them is a leader of international renown in their respective areas, and their participation
significantly enhanced the conference. The conference program was further enriched
with a panel, five high–quality tutorials, and six workshops on cutting-edge topics.

We would like to express our sincere gratitude to the contributions of the
Senior Program Committee (SPC) members, Program Committee (PC) members, and
anonymous reviewers, led by the PC chairs, Arnab Bhattacharya (IIT Kanpur), Lee
Mong Li Janice (National University of Singapore), and Divyakant Agrawal (University
of California, Santa Barbara). It is through their untiring efforts that the conference had
an excellent technical program. We are also thankful to the other chairs and Organizing
Committeemembers: industry track chairs, PrasadM.Deshpande (Google), Daxin Jiang
(Microsoft), and Rajasekar Krishnamurthy (Adobe); demo track chairs, Rajeev Gupta
(Microsoft), Koichi Takeda (Nagoya University), and Ladjel Bellatreche (ENSMA);
workshop chairs,MayaRamanath (IITDelhi),WookeyLee (InhaUniversity), andSanjay
Kumar Madria (Missouri Institute of Technology); tutorial chairs, P. Sreenivasa Kumar
(IIT Madras), Jixue Liu (University of South Australia), and Takahiro Hara (Osaka
university); panel chairs, Jayant Haritsa (Indian Institute of Science), Reynold Cheng
(University of Hong Kong), and Georgia Koutrika (Athena Research Center); Ph.D.
consortium chairs, Vikram Pudi (IIIT Hyderabad), Srinath Srinivasa (IIIT Bangalore),
and Philippe Fournier-Viger (Harbin Institute of Technology); publicity chairs, Raj
Sharma (Goldman Sachs), Jamshid Bagherzadeh Mohasefi (Urmia University), and
Nazha Selmaoui-Folcher (University of New Caledonia); publication chairs, Vikram
Goyal (IIIT Delhi), and R. Uday Kiran (University of Aizu); and registration/local
arrangement chairs, Lini Thomas (IIITHyderabad), SatishNarayanaSrirama (University
ofHyderabad),ManishSingh (IITHyderabad), P.RadhaKrishna (NITWarangal), Sonali
Agrawal (IIIT Allahabad), and V. Ravi (IDRBT).

vi General Chairs’ Preface

We appreciate the hosting organization IIIT Hyderabad, which is celebrating its
silver jubilee in 2022. We thank the researchers at the Data Sciences and Analytics
Center (DSAC) and the Kohli Center on Intelligent Systems (KCIS) at IIIT Hyderabad
for their support. We also thank the administration and staff of IIIT Hyderabad for their
help. We thank Google for the sponsorship. We feel indebted to the DASFAA Steering
Committee for its continuing guidance.

Finally, our sincere thanks go to all the participants and volunteers. There would be
no conferencewithout them.We hope all of you enjoy theseDASFAA2022 proceedings.

February 2022 P. Krishna Reddy
Mukesh Mohania
Anirban Mondal

Program Chairs’ Preface

It is our great pleasure to present the proceedings of the 27th International Conference on
Database Systems for Advanced Applications (DASFAA 2022). DASFAA is a premier
international forum for exchanging original research results and practical developments
in the field of databases.

For the research track, we received 488 research submissions from across the world.
We performed an initial screening of all submissions, leading to the desk rejection of 88
submissions due to violations of double-blind and page limit guidelines. For submissions
entering the double-blind review process, each paper received at least three reviews from
Program Committee (PC) members. Further, an assigned Senior Program Committee
(SPC) member also led a discussion of the paper and reviews with the PC members.
The PC co-chairs then considered the recommendations and meta-reviews from SPC
members in making the final decisions. As a result, 72 submissions were accepted as
full papers (acceptance ratio of 18%), and 76 submissions were accepted as short papers
(acceptance ratio of 19%). For the industry track, 13 papers were accepted out of 36
submissions. Nine papers were accepted out of 16 submissions for the demo track.
For the Ph.D. consortium, two papers were accepted out of three submissions. Four
short research papers and one industry paper were withdrawn. The review process was
supported by Microsoft’s Conference Management Toolkit (CMT).

The conference was conducted in an online environment, with accepted papers
presented via a pre-recorded video presentationwith a liveQ&A session. The conference
program also featured five keynotes from distinguished researchers in the community, a
panel, five high–quality tutorials, and six workshops on cutting-edge topics.

Wewish to extend our sincere thanks to all SPCmembers, PCmembers, and external
reviewers for their hardwork in providing uswith thoughtful and comprehensive reviews
and recommendations. We especially thank the authors who submitted their papers to
the conference. We hope that the readers of the proceedings find the content interesting,
rewarding, and beneficial to their research.

March 2022 Arnab Bhattacharya
Janice Lee Mong Li
Divyakant Agrawal

Prasad M. Deshpande
Daxin Jiang

Rajasekar Krishnamurthy
Rajeev Gupta
Koichi Takeda

Ladjel Bellatreche
Vikram Pudi

Srinath Srinivasa
Philippe Fournier-Viger

Organization

DASFAA 2022 was organized by IIIT Hyderabad, Hyderabad, Telangana, India.

Steering Committee Chair

Lei Chen Hong Kong University of Science and
Technology, Hong Kong

Honorary Chairs

P. J. Narayanan IIIT Hyderabad, India
S. Sudarshan IIT Bombay, India
Masaru Kitsuregawa University of Tokyo, Japan

Steering Committee Vice Chair

Stephane Bressan National University of Singapore, Singapore

Steering Committee Treasurer

Yasushi Sakurai Osaka University, Japan

Steering Committee Secretary

Kyuseok Shim Seoul National University, South Korea

General Chairs

P. Krishna Reddy IIIT Hyderabad, India
Mukesh Mohania IIIT Delhi, India
Anirban Mondal Ashoka University, India

Program Committee Chairs

Arnab Bhattacharya IIT Kanpur, India
Lee Mong Li Janice National University of Singapore, Singapore
Divyakant Agrawal University of California, Santa Barbara, USA

x Organization

Steering Committee

Zhiyong Peng Wuhan University, China
Zhanhuai Li Northwestern Polytechnical University, China
Krishna Reddy IIIT Hyderabad, India
Yunmook Nah Dankook University, South Korea
Wenjia Zhang University of New South Wales, Australia
Zi Huang University of Queensland, Australia
Guoliang Li Tsinghua University, China
Sourav Bhowmick Nanyang Technological University, Singapore
Atsuyuki Morishima University of Tsukaba, Japan
Sang-Won Lee Sungkyunkwan University, South Korea
Yang-Sae Moon Kangwon National University, South Korea

Industry Track Chairs

Prasad M. Deshpande Google, India
Daxin Jiang Microsoft, China
Rajasekar Krishnamurthy Adobe, USA

Demo Track Chairs

Rajeev Gupta Microsoft, India
Koichi Takeda Nagoya University, Japan
Ladjel Bellatreche ENSMA, France

PhD Consortium Chairs

Vikram Pudi IIIT Hyderabad, India
Srinath Srinivasa IIIT Bangalore, India
Philippe Fournier-Viger Harbin Institute of Technology, China

Panel Chairs

Jayant Haritsa Indian Institute of Science, India
Reynold Cheng University of Hong Kong, China
Georgia Koutrika Athena Research Center, Greece

Sponsorship Chair

P. Krishna Reddy IIIT Hyderabad, India

Organization xi

Publication Chairs

Vikram Goel IIIT Delhi, India
R. Uday Kiran University of Aizu, Japan

Workshop Chairs

Maya Ramanath IIT Delhi, India
Wookey Lee Inha University, South Korea
Sanjay Kumar Madria Missouri Institute of Technology, USA

Tutorial Chairs

P. Sreenivasa Kumar IIT Madras, India
Jixue Liu University of South Australia, Australia
Takahiro Hara Osaka University, Japan

Publicity Chairs

Raj Sharma Goldman Sachs, India
Jamshid Bagherzadeh Mohasefi Urmia University, Iran
Nazha Selmaoui-Folcher University of New Caledonia, New Caledonia

Organizing Committee

Lini Thomas IIIT Hyderabad, India
Satish Narayana Srirama University of Hyderabad, India
Manish Singh IIT Hyderabad, India
P. Radha Krishna NIT Warangal, India
Sonali Agrawal IIIT Allahabad, India
V. Ravi IDRBT, India

Senior Program Committee

Avigdor Gal Technion - Israel Institute of Technology, Israel
Baihua Zheng Singapore Management University, Singapore
Bin Cui Peking University, China
Bin Yang Aalborg University, Denmark
Bingsheng He National University of Singapore, Singapore
Chang-Tien Lu Virginia Tech, USA
Chee-Yong Chan National University of Singapore, Singapore
Gautam Shroff Tata Consultancy Services Ltd., India
Hong Gao Harbin Institute of Technology, China

xii Organization

Jeffrey Xu Yu Chinese University of Hong Kong, China
Jianliang Xu Hong Kong Baptist University, China
Jianyong Wang Tsinghua University, China
Kamalakar Karlapalem IIIT Hyderabad, India
Kian-Lee Tan National University of Singapore, Singapore
Kyuseok Shim Seoul National University, South Korea
Ling Liu Georgia Institute of Technology, USA
Lipika Dey Tata Consultancy Services Ltd., India
Mario Nascimento University of Alberta, Canada
Maya Ramanath IIT Delhi, India
Mohamed Mokbel University of Minnesota, Twin Cities, USA
Niloy Ganguly IIT Kharagpur, India
Sayan Ranu IIT Delhi, India
Sourav S. Bhowmick Nanyang Technological University, Singapore
Srikanta Bedathur IIT Delhi, India
Srinath Srinivasa IIIT Bangalore, India
Stephane Bressan National University of Singapore, Singapore
Tok W. Ling National University of Singapore, Singapore
Vana Kalogeraki Athens University of Economics and Business,

Greece
Vassilis J. Tsotras University of California, Riverside, USA
Vikram Pudi IIIT Hyderabad, India
Vincent Tseng National Yang Ming Chiao Tung University,

Taiwan
Wang-Chien Lee Pennsylvania State University, USA
Wei-Shinn Ku Auburn University, USA
Wenjie Zhang University of New South Wales, Australia
Wynne Hsu National University of Singapore, Singapore
Xiaofang Zhou Hong Kong University of Science and

Technology, China
Xiaokui Xiao National University of Singapore, Singapore
Xiaoyong Du Renmin University of China, China
Yoshiharu Ishikawa Nagoya University, Japan
Yufei Tao Chinese University of Hong Kong, China

Program Committee

Abhijnan Chakraborty IIT Delhi, India
Ahmed Eldawy University of California, Riverside, USA
Akshar Kaul IBM Research, India
Alberto Abell Universitat Politecnica de Catalunya, Spain
An Liu Soochow University, China
Andrea Cali Birkbeck, University of London, UK

Organization xiii

Andreas Züfle George Mason University, USA
Antonio Corral University of Almeria, Spain
Atsuhiro Takasu National Institute of Informatics, Japan
Bin Wang Northeastern University, China
Bin Yao Shanghai Jiao Tong University, China
Bo Jin Dalian University of Technology, China
Bolong Zheng Huazhong University of Science and Technology,

China
Chandramani Chaudhary National Institute of Technology, Trichy, India
Changdong Wang Sun Yat-sen University, China
Chaokun Wang Tsinghua University, China
Cheng Long Nanyang Technological University, Singapore
Chenjuan Guo Aalborg University, Denmark
Cheqing Jin East China Normal University, China
Chih-Ya Shen National Tsing Hua University, Taiwan
Chittaranjan Hota BITS Pilani, India
Chi-Yin Chow Social Mind Analytics (Research and

Technology) Limited, Hong Kong
Chowdhury Farhan Ahmed University of Dhaka, Bangladesh
Christos Doulkeridis University of Pireaus, Greece
Chuan Xiao Osaka University and Nagoya University, Japan
Cindy Chen University of Massachusetts Lowell, USA
Cuiping Li Renmin University of China, China
Dan He University of Queensland, Australia
Demetrios Zeinalipour-Yazti University of Cyprus, Cyprus
De-Nian Yang Academia Sinica, Taiwan
Dhaval Patel IBM TJ Watson Research Center, USA
Dieter Pfoser George Mason University, USA
Dimitrios Kotzinos University of Cergy-Pontoise, France
Fan Zhang Guangzhou University, China
Ge Yu Northeast University, China
Goce Trajcevski Iowa State University, USA
Guoren Wang Beijing Institute of Technology, China
Haibo Hu Hong Kong Polytechnic University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Hiroaki Shiokawa University of Tsukuba, Japan
Hongzhi Wang Harbin Institute of Technology, China
Hongzhi Yin University of Queensland, Australia
Hrishikesh R. Terdalkar IIT Kanpur, India
Hua Lu Roskilde University, Denmark
Hui Li Xidian University, China
Ioannis Konstantinou University of Thessaly, Greece

xiv Organization

Iouliana Litou Athens University of Economics and Business,
Greece

Jagat Sesh Challa BITS Pilani, India
Ja-Hwung Su Cheng Shiu University, Taiwan
Jiali Mao East China Normal University, China,
Jia-Ling Koh National Taiwan Normal University, Taiwan
Jian Dai Alibaba Group, China
Jianqiu Xu Nanjing University of Aeronautics and

Astronautics, China
Jianxin Li Deakin University, Australia
Jiawei Jiang ETH Zurich, Switzerland
Jilian Zhang Jinan University, China
Jin Wang Megagon Labs, USA
Jinfei Liu Zhejiang University, China
Jing Tang Hong Kong University of Science and

Technology, China
Jinho Kim Kangwon National University, South Korea
Jithin Vachery National University of Singapore, Singapore
Ju Fan Renmin University of China, China
Jun Miyazaki Tokyo Institute of Technology, Japan
Junjie Yao East China Normal University, China
Jun-Ki Min Korea University of Technology and Education,

South Korea
Kai Zeng Alibaba Group, China
Karthik Ramachandra Microsoft Azure SQL, India
Kento Sugiura Nagoya University, Japan
Kesheng Wu Lawrence Berkeley National Laboratory, USA
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Kostas Stefanidis Tempere University, Finland
Kripabandhu Ghosh Indian Institute of Science Education and

Research Kolkata, India
Kristian Torp Aalborg University, Denmark
Kyoung-Sook Kim Artificial Intelligence Research Center, Japan
Ladjel Bellatreche ENSMA, France
Lars Dannecker SAP, Germany
Lee Roy Ka Wei Singapore University of Technology and Design,

Singapore
Lei Cao Massachusetts Institute of Technology, USA
Leong Hou U. University of Macau, China
Lijun Chang University of Sydney, Australia
Lina Yao University of New South Wales Australia
Lini Thomas IIIT Hyderabad, India

Organization xv

Liping Wang East China Normal University, China
Long Yuan Nanjing University of Science and Technology,

China
Lu-An Tang NEC Labs America, USA
Makoto Onizuka Osaka University, Japan
Manish Kesarwani IBM Research, India
Manish Singh IIT Hyderabad, India
Manolis Koubarakis University of Athens, Greece
Marco Mesiti University of Milan, Italy
Markus Schneider University of Florida, USA
Meihui Zhang Beijing Institute of Technology, China
Meng-Fen Chiang University of Auckland, New Zealand
Mirella M. Moro Universidade Federal de Minas Gerais, Brazil
Mizuho Iwaihara Waseda University, Japan
Navneet Goyal BITS Pilani, India
Neil Zhenqiang Gong Iowa State University, USA
Nikos Ntarmos Huawei Technologies R&D (UK) Ltd., UK
Nobutaka Suzuki University of Tsukuba, Japan
Norio Katayama National Institute of Informatics, Japan
Noseong Park George Mason University, USA
Olivier Ruas Inria, France
Oscar Romero Universitat Politècnica de Catalunya, Spain
Oswald C. IIT Kanpur, India
Panagiotis Bouros Johannes Gutenberg University Mainz, Germany
Parth Nagarkar New Mexico State University, USA
Peer Kroger Christian-Albrecht University of Kiel, Germany
Peifeng Yin Pinterest, USA
Peng Wang Fudan University, China
Pengpeng Zhao Soochow University, China
Ping Lu Beihang University, China
Pinghui Wang Xi’an Jiaotong University, China
Poonam Goyal BITS Pilani, India
Qiang Yin Shanghai Jiao Tong University, China
Qiang Zhu University of Michigan – Dearborn, USA
Qingqing Ye Hong Kong Polytechnic University, China
Rafael Berlanga Llavori Universitat Jaume I, Spain
Rage Uday Kiran University of Aizu, Japan
Raghava Mutharaju IIIT Delhi, India
Ravindranath C. Jampani Oracle Labs, India
Rui Chen Samsung Research America, USA
Rui Zhou Swinburne University of Technology, Australia
Ruiyuan Li Xidian University, China

xvi Organization

Sabrina De Capitani di Vimercati Università degli Studi di Milano, Italy
Saiful Islam Griffith University, Australia
Sanghyun Park Yonsei University, South Korea
Sanjay Kumar Madria Missouri University of Science and Technology,

USA
Saptarshi Ghosh IIT Kharagpur, India
Sebastian Link University of Auckland, New Zealand
Shaoxu Song Tsinghua University, China
Sharma Chakravarthy University of Texas at Arlington, USA
Shiyu Yang Guangzhou University, China
Shubhadip Mitra Tata Consultancy Services Ltd., India
Shubhangi Agarwal IIT Kanpur, India
Shuhao Zhang Singapore University of Technology and Design,

Singapore
Sibo Wang Chinese University of Hong Kong, China
Silviu Maniu Université Paris-Saclay, France
Sivaselvan B. IIIT Kancheepuram, India
Stephane Bressan National University of Singapore, Singapore
Subhajit Sidhanta IIT Bhilai, India
Sungwon Jung Sogang University, South Korea
Tanmoy Chakraborty Indraprastha Institute of Information Technology

Delhi, India
Theodoros Chondrogiannis University of Konstanz, Germany
Tien Tuan Anh Dinh Singapore University of Technology and Design,

Singapore
Ting Deng Beihang University, China
Tirtharaj Dash BITS Pilani, India
Toshiyuki Amagasa University of Tsukuba, Japan
Tsz Nam (Edison) Chan Hong Kong Baptist University, China
Venkata M. Viswanath Gunturi IIT Ropar, India
Verena Kantere National Technical University of Athens, Greece
Vijaya Saradhi V. IIT Guwahati, India
Vikram Goyal IIIT Delhi, India
Wei Wang Hong Kong University of Science and

Technology (Guangzhou), China
Weiwei Sun Fudan University, China
Weixiong Rao Tongji University, China
Wen Hua University of Queensland, Australia
Wenchao Zhou Georgetown University, USA
Wentao Zhang Peking University, China
Werner Nutt Free University of Bozen-Bolzano, Italy
Wolf-Tilo Balke TU Braunschweig, Germany

Organization xvii

Wookey Lee Inha University, South Korea
Woong-Kee Loh Gacheon University, South Korea
Xiang Lian Kent State University, USA
Xiang Zhao National University of Defence Technology,

China
Xiangmin Zhou RMIT University, Australia
Xiao Pan Shijiazhuang Tiedao University, China
Xiao Qin Amazon Web Services, USA
Xiaochun Yang Northeastern University, China
Xiaofei Zhang University of Memphis, USA
Xiaofeng Gao Shanghai Jiao Tong University, China
Xiaowang Zhang Tianjin University, China
Xiaoyang Wang Zhejiang Gongshang University, China
Xin Cao University of New South Wales, Australia
Xin Huang Hong Kong Baptist University, China
Xin Wang Tianjin University, China
Xu Xie Peking University, China
Xuequn Shang Northwestern Polytechnical University, China
Xupeng Miao Peking University, China
Yan Shi Shanghai Jiao Tong University, China
Yan Zhang Peking University, China
Yang Cao Kyoto University, Japan
Yang Chen Fudan University, China
Yanghua Xiao Fudan University, China
Yang-Sae Moon Kangwon National University, South Korea
Yannis Manolopoulos Aristotle University of Thessaloniki, Greece
Yi Yu National Institute of Informatics, Japan
Yingxia Shao Beijing University of Posts and

Telecommunication, China
Yixiang Fang Chinese University of Hong Kong, China
Yong Tang South China Normal University, China
Yongxin Tong Beihang University, China
Yoshiharu Ishikawa Nagoya University, Japan
Yu Huang National Yang Ming Chiao Tung University,

Taiwan
Yu Suzuki Gifu University, Japan
Yu Yang City University of Hong Kong, China
Yuanchun Zhou Computer Network Information Center, China
Yuanyuan Zhu Wuhan University, China
Yun Peng Hong Kong Baptist University, China
Yuqing Zhu California State University, Los Angeles, USA
Zeke Wang Zhejiang University, China

xviii Organization

Zhaojing Luo National University of Singapore, Singapore
Zhenying He Fudan University, China
Zhi Yang Peking University, China
Zhixu Li Soochow University, China
Zhiyong Peng Wuhan University, China
Zhongnan Zhang Xiamen University, China

Industry Track Program Committee

Karthik Ramachandra Microsoft, India
Akshar Kaul IBM Research, India
Sriram Lakshminarasimhan Google Research, India
Rajat Venkatesh LinkedIn, India
Prasan Roy Sclera, India
Zhicheng Dou Renmin University of China, China
Huang Hu Microsoft, China
Shan Li LinkedIn, USA
Bin Gao Facebook, USA
Haocheng Wu Facebook, USA
Shivakumar Vaithyanathan Adobe, USA
Abdul Quamar IBM Research, USA
Pedro Bizarro Feedzai, Portugal
Xi Yin International Digital Economy Academy, China
Xiangyu Niu Facebook

Demo Track Program Committee

Ahmed Awad University of Tartu, Estonia
Beethika Tripathi Microsoft, India
Carlos Ordonez University of Houston, USA
Djamal Benslimane Université Claude Bernard Lyon 1, France
Nabila Berkani Ecole Nationale Supérieure d’Informatique,

Algeria
Philippe Fournier-Viger Shenzhen University, China
Ranganath Kondapally Microsoft, India
Soumia Benkrid Ecole Nationale Supérieure d’Informatique,

Algeria

Organization xix

Sponsoring Institutions

Google, India

IIIT Hyderabad, India

Contents – Part I

Database Queries

Approximate Continuous Top-K Queries over Memory Limitation-Based
Streaming Data . 3

Rui Zhu, Liu Meng, Bin Wang, Xiaochun Yang, and Xiufeng Xia

Cross-Model Conjunctive Queries over Relation and Tree-Structured Data 21
Yuxing Chen, Valter Uotila, Jiaheng Lu, Zhen Hua Liu,
and Souripriya Das

Leveraging Search History for Improving Person-Job Fit . 38
Yupeng Hou, Xingyu Pan, Wayne Xin Zhao, Shuqing Bian, Yang Song,
Tao Zhang, and Ji-Rong Wen

Efficient In-Memory Evaluation of Reachability Graph Pattern Queries
on Data Graphs . 55

Xiaoying Wu, Dimitri Theodoratos, Dimitrios Skoutas, and Michael Lan

Revisiting Approximate Query Processing and Bootstrap Error Estimation
on GPU . 72

Hang Zhao, Hanbing Zhang, Yinan Jing, Kai Zhang, Zhenying He,
and X Sean Wang

µ-join: Efficient Join with Versioned Dimension Tables . 88
Mika Takata, Kazuo Goda, and Masaru Kitsuregawa

Learning-Based Optimization for Online Approximate Query Processing 96
Wenyuan Bi, Hanbing Zhang, Yinan Jing, Zhenying He, Kai Zhang,
and X. Sean Wang

Knowledge Bases

Triple-as-Node Knowledge Graph and Its Embeddings . 107
Xin Lv, Jiaxin Shi, Shulin Cao, Lei Hou, and Juanzi Li

LeKAN: Extracting Long-tail Relations via Layer-Enhanced
Knowledge-Aggregation Networks . 122

Xiaokai Liu, Feng Zhao, Xiangyu Gui, and Hai Jin

xxii Contents – Part I

TRHyTE: Temporal Knowledge Graph Embedding Based
on Temporal-Relational Hyperplanes . 137

Lin Yuan, Zhixu Li, Jianfeng Qu, Tingyi Zhang, An Liu, Lei Zhao,
and Zhigang Chen

ExKGR: Explainable Multi-hop Reasoning for Evolving Knowledge Graph 153
Cheng Yan, Feng Zhao, and Hai Jin

Improving Core Path Reasoning for the Weakly Supervised Knowledge
Base Question Answering . 162

Nan Hu, Sheng Bi, Guilin Qi, Meng Wang, Yuncheng Hua,
and Shirong Shen

Counterfactual-Guided and Curiosity-Driven Multi-hop Reasoning
over Knowledge Graph . 171

Dan Shi, Anchen Li, and Bo Yang

Visualizable or Non-visualizable? Exploring the Visualizability
of Concepts in Multi-modal Knowledge Graph . 180

Xueyao Jiang, Ailisi Li, Jiaqing Liang, Bang Liu, Rui Xie, Wei Wu,
Zhixu Li, and Yanghua Xiao

Spatio-Temporal Data

JS-STDGN: A Spatial-Temporal Dynamic Graph Network Using
JS-Graph for Traffic Prediction . 191

Pengfei Li, Junhua Fang, Pingfu Chao, Pengpeng Zhao, An Liu,
and Lei Zhao

When Multitask Learning Make a Difference: Spatio-Temporal Joint
Prediction for Cellular Trajectories . 207

Yuan Xu, Jiajie Xu, Junhua Fang, An Liu, and Lei Zhao

Efficient Retrieval of Top-k Weighted Spatial Triangles . 224
Ryosuke Taniguchi, Daichi Amagata, and Takahiro Hara

DIOT: Detecting Implicit Obstacles from Trajectories . 232
Yifan Lei, Qiang Huang, Mohan Kankanhalli, and Anthony Tung

Exploring Sub-skeleton Trajectories for Interpretable Recognition of Sign
Language . 241

Joachim Gudmundsson, Martin P. Seybold, and John Pfeifer

Significant Engagement Community Search on Temporal Networks 250
Yifei Zhang, Longlong Lin, Pingpeng Yuan, and Hai Jin

Contents – Part I xxiii

Influence Computation for Indoor Spatial Objects . 259
Yue Li, Guojie Ma, Shiyu Yang, Liping Wang, and Jiujing Zhang

A Localization System for GPS-free Navigation Scenarios 268
Jiazhi Ni, Xin Zhang, Beihong Jin, Fusang Zhang, Xin Li, Qiang Huang,
Pengsen Wang, Xiang Li, Ning Xiao, Youchen Wang, and Chang Liu

Systems

HEM: A Hardware-Aware Event Matching Algorithm for Content-Based
Pub/Sub Systems . 277

Wanghua Shi and Shiyou Qian

RotorcRaft: Scalable Follower-Driven Raft on RDMA . 293
Xuecheng Qi, Huiqi Hu, Xing Wei, and Aoying Zhou

Efficient Matrix Computation for SGD-Based Algorithms on Apache Spark 309
Baokun Han, Zihao Chen, Chen Xu, and Aoying Zhou

Parallel Pivoted Subgraph Filtering with Partial Coding Trees on GPU 325
Yang Wang, Yu Gu, and Chuanwen Li

TxChain: Scaling Sharded Decentralized Ledger via Chained Transaction
Sequences . 333

Zheng Xu, Rui Jiang, Peng Zhang, Tun Lu, and Ning Gu

Zebra: An Efficient, RDMA-Enabled Distributed Persistent Memory File
System . 341

Jingyu Wang, Shengan Zheng, Ziyi Lin, Yuting Chen, and Linpeng Huang

Data Security

ADAPT: Adversarial Domain Adaptation with Purifier Training
for Cross-Domain Credit Risk Forecasting . 353

Guanxiong Zeng, Jianfeng Chi, Rui Ma, Jinghua Feng, Xiang Ao,
and Hao Yang

Poisoning Attacks on Fair Machine Learning . 370
Minh-Hao Van, Wei Du, Xintao Wu, and Aidong Lu

Bi-Level Selection via Meta Gradient for Graph-Based Fraud Detection 387
Linfeng Dong, Yang Liu, Xiang Ao, Jianfeng Chi, Jinghua Feng,
Hao Yang, and Qing He

xxiv Contents – Part I

Contrastive Learning for Insider Threat Detection . 395
M. S. Vinay, Shuhan Yuan, and Xintao Wu

Metadata Privacy Preservation for Blockchain-Based Healthcare Systems 404
Lixin Liu, Xinyu Li, Man Ho Au, Zhuoya Fan, and Xiaofeng Meng

Blockchain-Based Encrypted Image Storage and Search in Cloud
Computing . 413

Yingying Li, Jianfeng Ma, Yinbin Miao, Ximeng Liu, and Qi Jiang

Applications of Algorithms

Improving Information Cascade Modeling by Social Topology and Dual
Role User Dependency . 425

Baichuan Liu, Deqing Yang, Yuchen Shi, and Yueyi Wang

Discovering Bursting Patterns over Streaming Graphs . 441
Qianzhen Zhang, Deke Guo, and Xiang Zhao

Mining Negative Sequential Rules from Negative Sequential Patterns 459
Chuanhou Sun, Xiaoqi Jiang, Xiangjun Dong, Tiantian Xu, Long Zhao,
Zhao Li, and Yuhai Zhao

CrossIndex: Memory-Friendly and Session-Aware Index for Supporting
Crossfilter in Interactive Data Exploration . 476

Tianyu Xia, Hanbing Zhang, Yinan Jing, Zhenying He, Kai Zhang,
and X. Sean Wang

GHStore: A High Performance Global Hash Based Key-Value Store 493
Jiaoyang Li, Yinliang Yue, and Weiping Wang

Hierarchical Bitmap Indexing for Range Queries on Multidimensional
Arrays . 509

Luboš Krčál, Shen-Shyang Ho, and Jan Holub

Membership Algorithm for Single-Occurrence Regular Expressions
with Shuffle and Counting . 526

Xiaofan Wang

(p, n)-core: Core Decomposition in Signed Networks . 543
Junghoon Kim and Sungsu Lim

TROP: Task Ranking Optimization Problem on Crowdsourcing Service
Platform . 552

Jiale Zhang, Haozhen Lu, Xiaofeng Gao, Ailun Song, and Guihai Chen

Contents – Part I xxv

HATree: A Hotness-Aware Tree Index with In-Node Hotspot Cache
for NVM/DRAM-Based Hybrid Memory Architecture . 560

Gaocong Liu, Yongping Luo, and Peiquan Jin

A Novel Null-Invariant Temporal Measure to Discover Partial Periodic
Patterns in Non-uniform Temporal Databases . 569

R. Uday Kiran, Vipul Chhabra, Saideep Chennupati, P. Krishna Reddy,
Minh-Son Dao, and Koji Zettsu

Utilizing Expert Knowledge and Contextual Information
for Sample-Limited Causal Graph Construction . 578

Xuwu Wang, Xueyao Jiang, Sihang Jiang, Zhixu Li, and Yanghua Xiao

A Two-Phase Approach for Recognizing Tables with Complex Structures 587
Huichao Li, Lingze Zeng, Weiyu Zhang, Jianing Zhang, Ju Fan,
and Meihui Zhang

Towards Unification of Statistical Reasoning, OLAP and Association Rule
Mining: Semantics and Pragmatics . 596

Rahul Sharma, Minakshi Kaushik, Sijo Arakkal Peious, Mahtab Shahin,
Amrendra Singh Yadav, and Dirk Draheim

A Dynamic Heterogeneous Graph Perception Network with Time-Based
Mini-Batch for Information Diffusion Prediction . 604

Wei Fan, Meng Liu, and Yong Liu

Graphs

Cascade-Enhanced Graph Convolutional Network for Information
Diffusion Prediction . 615

Ding Wang, Lingwei Wei, Chunyuan Yuan, Yinan Bao, Wei Zhou,
Xian Zhu, and Songlin Hu

Diversify Search Results Through Graph Attentive Document Interaction 632
Xianghong Xu, Kai Ouyang, Yin Zheng, Yanxiong Lu, Hai-Tao Zheng,
and Hong-Gee Kim

On Glocal Explainability of Graph Neural Networks . 648
Ge Lv, Lei Chen, and Caleb Chen Cao

Temporal Network Embedding with Motif Structural Features 665
Zhi Qiao, Wei Li, and Yunchun Li

xxvi Contents – Part I

Learning Robust Representation Through Graph Adversarial Contrastive
Learning . 682

Jiayan Guo, Shangyang Li, Yue Zhao, and Yan Zhang

What Affects the Performance of Models? Sensitivity Analysis
of Knowledge Graph Embedding . 698

Han Yang, Leilei Zhang, Fenglong Su, and Jinhui Pang

CollaborateCas: Popularity Prediction of Information Cascades Based
on Collaborative Graph Attention Networks . 714

Xianren Zhang, Jiaxing Shang, Xueqi Jia, Dajiang Liu, Fei Hao,
and Zhiqing Zhang

Contrastive Disentangled Graph Convolutional Network
for Weakly-Supervised Classification . 722

Xiaokai Chu, Jiashu Zhao, Xinxin Fan, Di Yao, Zhihua Zhu, Lixin Zou,
Dawei Yin, and Jingping Bi

CSGNN: Improving Graph Neural Networks with Contrastive
Semi-supervised Learning . 731

Yumeng Song, Yu Gu, Xiaohua Li, Chuanwen Li, and Ge Yu

IncreGNN: Incremental Graph Neural Network Learning by Considering
Node and Parameter Importance . 739

Di Wei, Yu Gu, Yumeng Song, Zhen Song, Fangfang Li, and Ge Yu

Representation Learning in Heterogeneous Information Networks Based
on Hyper Adjacency Matrix . 747

Bin Yang and Yitong Wang

Author Index . 757

Contents – Part II

Recommendation Systems

MDKE: Multi-level Disentangled Knowledge-Based Embedding
for Recommender Systems . 3

Haolin Zhou, Qingmin Liu, Xiaofeng Gao, and Guihai Chen

M 3-IB: A Memory-Augment Multi-modal Information Bottleneck Model
for Next-Item Recommendation . 19

Yingpeng Du, Hongzhi Liu, and Zhonghai Wu

Fully Utilizing Neighbors for Session-Based Recommendation with Graph
Neural Networks . 36

Xingyu Zhang and Chaofeng Sha

Inter- and Intra-Domain Relation-Aware Heterogeneous Graph
Convolutional Networks for Cross-Domain Recommendation 53

Ke Wang, Yanmin Zhu, Haobing Liu, Tianzi Zang, Chunyang Wang,
and Kuan Liu

Enhancing Graph Convolution Network for Novel Recommendation 69
Xuan Ma, Tieyun Qian, Yile Liang, Ke Sun, Hang Yun, and Mi Zhang

Knowledge-Enhanced Multi-task Learning for Course Recommendation 85
Qimin Ban, Wen Wu, Wenxin Hu, Hui Lin, Wei Zheng, and Liang He

Learning Social Influence from Network Structure for Recommender
Systems . 102

Ting Bai, Yanlong Huang, and Bin Wu

PMAR: Multi-aspect Recommendation Based on Psychological Gap 118
Liye Shi, Wen Wu, Yu Ji, Luping Feng, and Liang He

Meta-path Enhanced Lightweight Graph Neural Network for Social
Recommendation . 134

Hang Miao, Anchen Li, and Bo Yang

Intention Adaptive Graph Neural Network for Category-Aware
Session-Based Recommendation . 150

Chuan Cui, Qi Shen, Shixuan Zhu, Yitong Pang, Yiming Zhang,
Hanning Gao, and Zhihua Wei

xxviii Contents – Part II

Multi-view Multi-behavior Contrastive Learning in Recommendation 166
Yiqing Wu, Ruobing Xie, Yongchun Zhu, Xiang Ao, Xin Chen, Xu Zhang,
Fuzhen Zhuang, Leyu Lin, and Qing He

Joint Locality Preservation and Adaptive Combination for Graph
Collaborative Filtering . 183

Zhiqiang Guo, Chaoyang Wang, Zhi Li, Jianjun Li, and Guohui Li

Gated Hypergraph Neural Network for Scene-Aware Recommendation 199
Tianchi Yang, Luhao Zhang, Chuan Shi, Cheng Yang, Siyong Xu,
Ruiyu Fang, Maodi Hu, Huaijun Liu, Tao Li, and Dong Wang

Hyperbolic Personalized Tag Recommendation . 216
Weibin Zhao, Aoran Zhang, Lin Shang, Yonghong Yu, Li Zhang,
Can Wang, Jiajun Chen, and Hongzhi Yin

Diffusion-Based Graph Contrastive Learning for Recommendation
with Implicit Feedback . 232

Lingzi Zhang, Yong Liu, Xin Zhou, Chunyan Miao, Guoxin Wang,
and Haihong Tang

Multi-behavior Recommendation with Two-Level Graph Attentional
Networks . 248

Yunhe Wei, Huifang Ma, Yike Wang, Zhixin Li, and Liang Chang

Collaborative Filtering for Recommendation in Geometric Algebra 256
Longcan Wu, Daling Wang, Shi Feng, Kaisong Song, Yifei Zhang,
and Ge Yu

Graph Neural Networks with Dynamic and Static Representations
for Social Recommendation . 264

Junfa Lin, Siyuan Chen, and Jiahai Wang

Toward Paper Recommendation by Jointly Exploiting Diversity
and Dynamics in Heterogeneous Information Networks . 272

Jie Wang, Jinya Zhou, Zhen Wu, and Xigang Sun

Enhancing Session-Based Recommendation with Global Context
Information and Knowledge Graph . 281

Xiaohui Zhang, Huifang Ma, Zihao Gao, Zhixin Li, and Liang Chang

GISDCN: A Graph-Based Interpolation Sequential Recommender
with Deformable Convolutional Network . 289

Yalei Zang, Yi Liu, Weitong Chen, Bohan Li, Aoran Li, Lin Yue,
and Weihua Ma

Contents – Part II xxix

Deep Graph Mutual Learning for Cross-domain Recommendation 298
Yifan Wang, Yongkang Li, Shuai Li, Weiping Song, Jiangke Fan,
Shan Gao, Ling Ma, Bing Cheng, Xunliang Cai, Sheng Wang,
and Ming Zhang

Core Interests Focused Self-attention for Sequential Recommendation 306
Zhengyang Ai, Shupeng Wang, Siyu Jia, and Shu Guo

SAER: Sentiment-Opinion Alignment Explainable Recommendation 315
Xiaoning Zong, Yong Liu, Yonghui Xu, Yixin Zhang, Zhiqi Shen,
Yonghua Yang, and Lizhen Cui

Toward Auto-Learning Hyperparameters for Deep Learning-Based
Recommender Systems . 323

Bo Sun, Di Wu, Mingsheng Shang, and Yi He

GELibRec: Third-Party Libraries Recommendation Using Graph Neural
Network . 332

Chengming Zou and Zhenfeng Fan

Applications of Machine Learning

Hierarchical Attention Factorization Machine for CTR Prediction 343
Lianjie Long, Yunfei Yin, and Faliang Huang

MCRF: Enhancing CTR Prediction Models via Multi-channel Feature
Refinement Framework . 359

Fangye Wang, Hansu Gu, Dongsheng Li, Tun Lu, Peng Zhang,
and Ning Gu

CaSS: A Channel-Aware Self-supervised Representation Learning
Framework for Multivariate Time Series Classification . 375

Yijiang Chen, Xiangdong Zhou, Zhen Xing, Zhidan Liu, and Minyang Xu

Temporal Knowledge Graph Entity Alignment via Representation Learning 391
Xiuting Song, Luyi Bai, Rongke Liu, and Han Zhang

Similarity-Aware Collaborative Learning for Patient Outcome Prediction 407
Fuqiang Yu, Lizhen Cui, Yiming Cao, Ning Liu, Weiming Huang,
and Yonghui Xu

Semi-supervised Graph Learning with Few Labeled Nodes 423
Cong Zhang, Ting Bai, and Bin Wu

xxx Contents – Part II

Human Mobility Identification by Deep Behavior Relevant Location
Representation . 439

Tao Sun, Fei Wang, Zhao Zhang, Lin Wu, and Yongjun Xu

Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training . 455

Shenglai Zeng, Zonghang Li, Hongfang Yu, Yihong He, Zenglin Xu,
Dusit Niyato, and Han Yu

Transportation-Mode Aware Travel Time Estimation via Meta-learning 472
Yu Fan, Jiajie Xu, Rui Zhou, and Chengfei Liu

A Deep Reinforcement Learning Based Dynamic Pricing Algorithm
in Ride-Hailing . 489

Bing Shi, Zhi Cao, and Yikai Luo

Peripheral Instance Augmentation for End-to-End Anomaly Detection
Using Weighted Adversarial Learning . 506

Weixian Zong, Fang Zhou, Martin Pavlovski, and Weining Qian

HieNet: Bidirectional Hierarchy Framework for Automated ICD Coding 523
Shi Wang, Daniel Tang, Luchen Zhang, Huilin Li, and Ding Han

Efficient Consensus Motif Discovery of All Lengths in Multiple Time Series . . . 540
Mingming Zhang, Peng Wang, and Wei Wang

LiteWSC: A Lightweight Framework for Web-Scale Spectral Clustering 556
Geping Yang, Sucheng Deng, Yiyang Yang, Zhiguo Gong, Xiang Chen,
and Zhifeng Hao

Dual Confidence Learning Network for Open-World Time Series
Classification . 574

Junwei Lv, Ying He, Xuegang Hu, Desheng Cai, Yuqi Chu, and Jun Hu

Port Container Throughput Prediction Based on Variational AutoEncoder 590
Jingze Li, Shengmin Shi, Tongbing Chen, Yu Tian, Yihua Ding,
Yiyong Xiao, and Weiwei Sun

Data Source Selection in Federated Learning: A Submodular Optimization
Approach . 606

Ruisheng Zhang, Yansheng Wang, Zimu Zhou, Ziyao Ren, Yongxin Tong,
and Ke Xu

Contents – Part II xxxi

MetisRL: A Reinforcement Learning Approach for Dynamic Routing
in Data Center Networks . 615

Yuanning Gao, Xiaofeng Gao, and Guihai Chen

CLZT: A Contrastive Learning Based Framework for Zero-Shot Text
Classification . 623

Kun Li, Meng Lin, Songlin Hu, and Ruixuan Li

InDISP: An Interpretable Model for Dynamic Illness Severity Prediction 631
Xinyu Ma, Meng Wang, Xing Liu, Yifan Yang, Yefeng Zheng, and Sen Wang

Learning Evolving Concepts with Online Class Posterior Probability 639
Junming Shao, Kai Wang, Jianyun Lu, Zhili Qin, Qiming Wangyang,
and Qinli Yang

Robust Dynamic Pricing in Online Markets with Reinforcement Learning 648
Bolei Zhang and Fu Xiao

Multi-memory Enhanced Separation Network for Indoor Temperature
Prediction . 656

Zhewen Duan, Xiuwen Yi, Peng Li, Dekang Qi, Yexin Li, Haoran Xu,
Yanyong Huang, Junbo Zhang, and Yu Zheng

An Interpretable Time Series Classification Approach Based on Feature
Clustering . 664

Fan Qiao, Peng Wang, Wei Wang, and Binjie Wang

Generative Adversarial Imitation Learning to Search in Branch-and-Bound
Algorithms . 673

Qi Wang, Suzanne V. Blackley, and Chunlei Tang

A Trace Ratio Maximization Method for Parameter Free Multiple Kernel
Clustering . 681

Yan Chen, Lei Wang, Liang Du, and Lei Duan

Supervised Multi-view Latent Space Learning by Jointly Preserving
Similarities Across Views and Samples . 689

Xiaoyang Li, Martin Pavlovski, Fang Zhou, Qiwen Dong, Weining Qian,
and Zoran Obradovic

Market-Aware Dynamic Person-Job Fit with Hierarchical Reinforcement
Learning . 697

Bin Fu, Hongzhi Liu, Hui Zhao, Yao Zhu, Yang Song, Tao Zhang,
and Zhonghai Wu

xxxii Contents – Part II

TEALED: A Multi-Step Workload Forecasting Approach Using
Time-Sensitive EMD and Auto LSTM Encoder-Decoder . 706

Xiuqi Huang, Yunlong Cheng, Xiaofeng Gao, and Guihai Chen

Author Index . 715

Contents – Part III

Text and Image Processing

Emotion-Aware Multimodal Pre-training for Image-Grounded Emotional
Response Generation . 3

Zhiliang Tian, Zhihua Wen, Zhenghao Wu, Yiping Song, Jintao Tang,
Dongsheng Li, and Nevin L. Zhang

Information Networks Based Multi-semantic Data Embedding for Entity
Resolution . 20

Chenchen Sun, Derong Shen, and Tiezheng Nie

Semantic-Based Data Augmentation for Math Word Problems 36
Ailisi Li, Yanghua Xiao, Jiaqing Liang, and Yunwen Chen

Empowering Transformer with Hybrid Matching Knowledge for Entity
Matching . 52

Wenzhou Dou, Derong Shen, Tiezheng Nie, Yue Kou, Chenchen Sun,
Hang Cui, and Ge Yu

Tracking the Evolution: Discovering and Visualizing the Evolution
of Literature . 68

Siyuan Wu and Leong Hou U

Incorporating Commonsense Knowledge into Story Ending Generation
via Heterogeneous Graph Networks . 85

Jiaan Wang, Beiqi Zou, Zhixu Li, Jianfeng Qu, Pengpeng Zhao, An Liu,
and Lei Zhao

Open-Domain Dialogue Generation Grounded with Dynamic Multi-form
Knowledge Fusion . 101

Feifei Xu, Shanlin Zhou, Yunpu Ma, Xinpeng Wang, Wenkai Zhang,
and Zhisong Li

KdTNet: Medical Image Report Generation via Knowledge-Driven
Transformer . 117

Yiming Cao, Lizhen Cui, Fuqiang Yu, Lei Zhang, Zhen Li, Ning Liu,
and Yonghui Xu

Fake Restaurant Review Detection Using Deep Neural Networks
with Hybrid Feature Fusion Method . 133

Yifei Jian, Xingshu Chen, and Haizhou Wang

xxxiv Contents – Part III

Aligning Internal Regularity and External Influence of Multi-granularity
for Temporal Knowledge Graph Embedding . 149

Tingyi Zhang, Zhixu Li, Jiaan Wang, Jianfeng Qu, Lin Yuan, An Liu,
Lei Zhao, and Zhigang Chen

AdCSE: An Adversarial Method for Contrastive Learning of Sentence
Embeddings . 165

Renhao Li, Lei Duan, Guicai Xie, Shan Xiao, and Weipeng Jiang

HRG: A Hybrid Retrieval and Generation Model in Multi-turn Dialogue 181
Deji Zhao, Xinyi Liu, Bo Ning, and Chengfei Liu

FalCon: A Faithful Contrastive Framework for Response Generation
in TableQA Systems . 197

Shineng Fang, Jiangjie Chen, Xinyao Shen, Yunwen Chen,
and Yanghua Xiao

Tipster: A Topic-Guided Language Model for Topic-Aware Text
Segmentation . 213

Zheng Gong, Shiwei Tong, Han Wu, Qi Liu, Hanqing Tao, Wei Huang,
and Runlong Yu

SimEmotion: A Simple Knowledgeable Prompt Tuning Method for Image
Emotion Classification . 222

Sinuo Deng, Ge Shi, Lifang Wu, Lehao Xing, Wenjin Hu, Heng Zhang,
and Ye Xiang

Predicting Rumor Veracity on Social Media with Graph Structured
Multi-task Learning . 230

Yudong Liu, Xiaoyu Yang, Xi Zhang, Zhihao Tang, Zongyi Chen,
and Zheng Liwen

Knowing What I Don’t Know: A Generation Assisted Rejection
Framework in Knowledge Base Question Answering . 238

Junyang Huang, Xuantao Lu, Jiaqing Liang, Qiaoben Bao,
Chen Huang, Yanghua Xiao, Bang Liu, and Yunwen Chen

Medical Image Fusion Based on Pixel-Level Nonlocal Self-similarity
Prior and Optimization . 247

Rui Zhu, Xiongfei Li, Yu Wang, and Xiaoli Zhang

Knowledge-Enhanced Interactive Matching Network for Multi-turn
Response Selection in Medical Dialogue Systems . 255

Ying Zhu, Shi Feng, Daling Wang, Yifei Zhang, and Donghong Han

Contents – Part III xxxv

KAAS: A Keyword-Aware Attention Abstractive Summarization Model
for Scientific Articles . 263

Shuaimin Li and Jungang Xu

E-Commerce Knowledge Extraction via Multi-modal Machine Reading
Comprehension . 272

Chaoyu Bai

PERM: Pre-trainingQuestion Embeddings via RelationMap for Improving
Knowledge Tracing . 281

Wentao Wang, Huifang Ma, Yan Zhao, Fanyi Yang, and Liang Chang

A Three-Stage Curriculum Learning Framework with Hierarchical Label
Smoothing for Fine-Grained Entity Typing . 289

Bo Xu, Zhengqi Zhang, Chaofeng Sha, Ming Du, Hui Song,
and Hongya Wang

PromptMNER: Prompt-Based Entity-Related Visual Clue Extraction
and Integration for Multimodal Named Entity Recognition 297

Xuwu Wang, Junfeng Tian, Min Gui, Zhixu Li, Jiabo Ye, Ming Yan,
and Yanghua Xiao

TaskSum: Task-Driven Extractive Text Summarization for Long News
Documents Based on Reinforcement Learning . 306

Moming Tang, Dawei Cheng, Cen Chen, Yuqi Liang, Yifeng Luo,
and Weining Qian

Concurrent Transformer for Spatial-Temporal Graph Modeling 314
Yi Xie, Yun Xiong, Yangyong Zhu, Philip S. Yu, Cheng Jin, Qiang Wang,
and Haihong Li

Towards Personalized Review Generation with Gated Multi-source Fusion
Network . 322

Hongtao Liu, Wenjun Wang, Hongyan Xu, Qiyao Peng, Pengfei Jiao,
and Yueheng Sun

Definition-Augmented Jointly Training Framework for Intention Phrase
Mining . 331

Denghao Ma, Yueguo Chen, Changyu Wang, Hongbin Pei, Yitao Zhai,
Gang Zheng, and Qi Chen

Modeling Uncertainty in Neural Relation Extraction . 340
Yu Hong, Yanghua Xiao, Wei Wang, and Yunwen Chen

xxxvi Contents – Part III

Industry Papers

A Joint Framework for Explainable Recommendation with Knowledge
Reasoning and Graph Representation . 351

Luhao Zhang, Ruiyu Fang, Tianchi Yang, Maodi Hu, Tao Li, Chuan Shi,
and Dong Wang

XDM: Improving Sequential Deep Matching with Unclicked User
Behaviors for Recommender System . 364

Fuyu Lv, Mengxue Li, Tonglei Guo, Changlong Yu, Fei Sun, Taiwei Jin,
and Wilfred Ng

Mitigating Popularity Bias in Recommendation via Counterfactual
Inference . 377

Ming He, Changshu Li, Xinlei Hu, Xin Chen, and Jiwen Wang

Efficient Dual-Process Cognitive Recommender Balancing Accuracy
and Diversity . 389

Yixu Gao, Kun Shao, Zhijian Duan, Zhongyu Wei, Dong Li, Bin Wang,
Mengchen Zhao, and Jianye Hao

Learning and Fusing Multiple User Interest Representations for Sequential
Recommendation . 401

Ming He, Tianshuo Han, and Tianyu Ding

Query-Document Topic Mismatch Detection . 413
Sahil Chelaramani, Ankush Chatterjee, Sonam Damani,
Kedhar Nath Narahari, Meghana Joshi, Manish Gupta,
and Puneet Agrawal

Beyond QA: ‘Heuristic QA’ Strategies in JIMI . 425
Shuangyong Song, Bo Zou, Jianghua Lin, Xiaoguang Yu,
and Xiaodong He

SQLG+: Efficient k-hop Query Processing on RDBMS . 430
Li Zeng, Jinhua Zhou, Shijun Qin, Haoran Cai, Rongqian Zhao,
and Xin Chen

Modeling Long-Range Travelling Times with Big Railway Data 443
Wenya Sun, Tobias Grubenmann, Reynold Cheng, Ben Kao,
and Waiki Ching

Multi-scale Time Based Stock Appreciation Ranking Prediction via Price
Co-movement Discrimination . 455

Ruyao Xu, Dawei Cheng, Cen Chen, Siqiang Luo, Yifeng Luo,
and Weining Qian

Contents – Part III xxxvii

RShield: A Refined Shield for Complex Multi-step Attack Detection
Based on Temporal Graph Network . 468

Weiyong Yang, Peng Gao, Hao Huang, Xingshen Wei, Wei Liu,
Shishun Zhu, and Wang Luo

Inter-and-Intra Domain Attention Relational Inference for Rack
Temperature Prediction in Data Center . 481

Fang Shen, Zhan Li, Bing Pan, Ziwei Zhang, Jialong Wang,
Wendy Zhao, Xin Wang, and Wenwu Zhu

DEMO Papers

An Interactive Data Imputation System . 495
Yangyang Wu, Xiaoye Miao, Yuchen Peng, Lu Chen, Yunjun Gao,
and Jianwei Yin

FoodChain: A Food Delivery Platform Based on Blockchain for Keeping
Data Privacy . 500

Rodrigo Folha, Valéria Times, Arthur Carvalho, André Araújo,
Henrique Couto, and Flaviano Viana

A Scalable Lightweight RDF Knowledge Retrieval System 505
Yuming Lin, Chuangxin Fang, Youjia Jiang, and You Li

CO-AutoML: An Optimizable Automated Machine Learning System 509
Chunnan Wang, Hongzhi Wang, Bo Xu, Xintong Song, Xiangyu Shi,
Yuhao Bao, and Bo Zheng

OIIKM: A System for Discovering Implied Knowledge from Spatial
Datasets Using Ontology . 514

Liang Chang, Long Wang, Xuguang Bao, and Tianlong Gu

IDMBS: An Interactive System to Find Interesting Co-location Patterns
Using SVM . 518

Liang Chang, Yuxiang Zhang, Xuguang Bao, and Tianlong Gu

SeTS3: A Secure Trajectory Similarity Search System . 522
Yiping Teng, Fanyou Zhao, Jiayv Liu, Mengfan Zhang, Jihang Duan,
and Zhan Shi

Data-Based Insights for the Masses: Scaling Natural Language Querying
to Middleware Data . 527

Kausik Lakkaraju, Vinamra Palaiya, Sai Teja Paladi,
Chinmayi Appajigowda, Biplav Srivastava, and Lokesh Johri

xxxviii Contents – Part III

Identifying Relevant Sentences for Travel Blogs from Wikipedia Articles 532
Arnav Kapoor and Manish Gupta

PhD Constorium

Neuro-Symbolic XAI: Application to Drug Repurposing for Rare Diseases 539
Martin Drancé

Leveraging Non-negative Matrix Factorization for Document
Summarization . 544

Alka Khurana

Author Index . 549

Database Queries

Approximate Continuous Top-K Queries
over Memory Limitation-Based

Streaming Data

Rui Zhu1(B), Liu Meng1, Bin Wang2, Xiaochun Yang2, and Xiufeng Xia1

1 School of Computer Science, Shenyang Aerospace University, Shenyang, China
{zhurui,xiufengxia}@mail.sau.edu.cn

2 College of Computer Science and Engineering, Northeastern University,
Shenyang, China

{binwang,yangxc}@mail.neu.edu.cn

Abstract. Continuous top-k query over sliding window is a fundamental
problem over data stream. It retrieves k objects with the highest scores
when the window slides. Existing efforts include exact-based algorithms
and approximate-based algorithms. Their common idea is maintaining a
small subset of objects in the window. When the window slides, query
results could be found from this set as much as possible. However, the
space cost of all existing efforts is high, i.e., linear to the scale of objects
in the window, cannot work under memory limitation-based streaming
data, i.e., a general environment in real applications.

In this paper, we define a novel query named ρ−approximate contin-
uous top-k query, which returns error-bounded answers to the system.
Here, ρ is a threshold, used for bounding the score ratio between approx-
imate and exact results. In order to support ρ−approximate continuous
top-k query, we propose a novel framework named ρ−TOPK. It can self-
adaptively adjust ρ based on the distribution of streaming data, and
achieve the goal of supporting ρ−approximate continuous top-k query
over memory limitation-based streaming data. Theoretical analysis indi-
cates that even in the worsst case, both running cost and space cost of
ρ−TOPK are all unrelated with data scale.

Keywords: Data stream · Continuous top-k query · Approximate ·
Memory limitation

1 Introduction

Continuous top-k query over sliding window is a fundamental problem in
the domain of streaming data management, yet has been deeply studied over
15 years [1]. Formally, a continuous top-k query q, expressed by the tuple
q〈n, F, k, s〉, monitors the window W , which returns k objects with the high-
est scores to the system whenever the window slides. The query window can be

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 3–20, 2022.
https://doi.org/10.1007/978-3-031-00123-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_1

4 R. Zhu et al.

time- or count-based [2–5]. For simplicity, in this paper, we only focus on count-
based windows. However, our techniques also can be applied to answer top-k
queries over time-based sliding window. Under this setting, n refers to the num-
ber of objects contained in the window, s refers to the number of objects arriving
in/expiring from the window whenever the window slides. In other words, a con-
tinuous top-k query q monitors a window containing n objects. Whenever the
window slides, s object arrive in the window, and another s objects expire from
the window, q returns k objects {o1, o2, · · · , ok} from the query window that
have the highest scores {F (o1), F (o2), · · · , F (ok)}.

Based on whether exact query results are required, the state-of-the-art efforts
can be divided into exact-based and approximate-based algorithms [6–9]. Their
common idea is selecting a set of objects in the window as candidates, incremen-
tally maintaining them. When the window slides, query results could be found
from these candidates as much as possible. However, as discussed in Sect. 2, the
space cost of all exact algorithms is high, i.e., O(n) in the worst cases. Some
approximate algorithms are proposed for reducing space cost [10]. They are
allowed to return deviation-bounded results to the system via introducing a user
defined “error threshold”. Compared with exact algorithms, they can use fewer
candidates for supporting approximate top-k search. However, such threshold is
usually set in advance, which is inflexible and cannot be self-adaptively adjusted
based on the changing of streaming data distribution. Obviously, if the thresh-
old is large, they cannot provide users with high quality query results. If the
threshold is small, the space cost of such algorithms is still high. Therefore, it
is difficult for them to use as low as space cost to support query processing in
the premising of providing users with high quality query results. Note, in real
applications, memory resource of streaming data management system is usually
limited. Using linear space cost for supporting a signal query is usually unac-
ceptable especially under memory limitation-based streaming data, a general
environment in real applications.

For example, continuous top-k search could be applied in stock recommenda-
tion system, which can recommend stocks for users via monitoring the 10 most
significant transactions within the last one hour. However, the importance of
transactions could be evaluated based on different score functions defined by
different users, the system has to submit thousands of continuous queries with
different score functions so as to satisfy requirements of different users. Therefore,
the system has to allocate limited memory for each query, and it is unaccept-
able for an algorithm to use high space cost for supporting one signal query. As
another example, continuous top-k search also could be applied in road moni-
toring system. A RSU (short for Road Side Unit) timely takes photo for vehicles
passing it, and then analyses content of photos via machine learning, reports 5
vehicles with the highest probability that may violate traffic regulations within
the last 10 min to the system. As memory size of each RSU is limited, size of each
photo is usually large, each RSU only can store a small number of photos other
than maintaining a large number of photos. Therefore, existing efforts cannot
effectively work under such environment.

Approximate Continuous Top-K Queries over Memory Limitation 5

Table 1. Frequent notations

F (o) The score of the object o

T (o) The arrived order of o

o.d The dominate number of o

C The candidate set

M The maximal number of objects the system can maintain

|C| The number of objects in C

SKρ The ρ−skyband set

Cρ The set of objects in the ρ−MSET

In order to solve the above problems, in this paper, we propose a novel
framework named ρ−TOPK to support approximate continuous top-k search
over memory limitation-based streaming data with ρ being an error threshold
ranging from 0 to 1. Let M be the maximal number of objects the system can
maintain, C be the candidate set maintained by ρ−TOPK. When |C| < M , we use
exact algorithm to support query processing. Here, |C| refers to the number of
candidates in C. Otherwise, we compute a suitable ρ based on objects in C, and
then form the set ρ−MSET Cρ (short for ρ−Minimum-SET),i.e., a subset of C
with minimal scale based on ρ, for supporting approximate query processing. Let
{o1, o2, · · · , ok} be exact query results, {a1, a2, · · · , ak} be approximate query
results. ∀i, F (ai)

F (oi)
≥ ρ should be guaranteed (Table 1).

Challenges. In order to make ρ−TOPK effectively work, we should overcome the
above challenges. Firstly, as distribution of streaming data is timely changed, it
is difficult to find a suitable ρ. Secondly, even ρ could be found, it is also difficult
to form, as small as possible, a set to support approximate top-k search. To deal
with the above challenges, the contributions of this paper are as follows.

– (i) We propose a novel query named ρ-approximate continuous top-k query.
Here, ρ is a threshold. We use it for bounding the score ratio between exact
and approximate results;

– (ii) We propose a baseline algorithm and an optimization algorithm for sup-
porting ρ−selection. The key of ρ−selection is partitioning objects in C into a
group of partitions, and then evaluating ρ based on score/arrived order rela-
tionship among objects in these partitions. We can guarantee that the run-
ning and space cost of ρ−selection is bounded by O(M log k) and O(log M)
respectively.

– (iii) We propose the ρ−MSET construction algorithm, where we use a min-
heap for evaluating which objects could be selected as elements of ρ−MSET.
Theoretical analysis shows that the running and space cost of forming Cρ are
bounded by O(M log k) and O(log M) respectively. Overall, the incremental
maintenance cost and space cost of ρ−TOPK are bounded by O(log k + M

s)
and O(M) respectively.

6 R. Zhu et al.

The rest of this paper is as follows. Section 2 reviews the related work and
proposes the problem definition. Section 3 explains the framework ρ−TOPK.
Section 4 evaluates the performance of ρ−TOPK. Section 5 concludes this paper.

2 Preliminary

In this section, we first review some important existing results about continuous
top-k queries over sliding window. Next, we introduce the problem definition.
Lastly, we will explain the algorithm S-Merge, an exact algorithm that can sup-
port continuous top-k query over data stream.

2.1 Related Works

Continuous top-k query and its variant over the sliding window is an important
query in the domain of streaming data management, which has been well studied
over 15 years. Based on whether approximate query results are allowed, existing
algorithms could be divided into two types: exact algorithms and approximate
algorithms.

Exact Algorithms. could be further divided into multi-pass based algorithms
and one-pass based algorithms. one-pass based algorithms use domination rela-
tionship among objects to support query processing. Specially, given two objects
o and o′ in the window, if o arrives no earlier than o′, and F (o) > F (o′), we
say o dominates o′. If o′ is dominated by less than k objects, we regard o′ as a
k-skyband object. Otherwise, o′ is regarded as a non-k−skyband object [7]. As k
objects with scores higher than F (o′) arrive no earlier than o′, o′ cannot become
a query result object before it expires from the window. Therefore, maintain-
ing all k-skyband objects in the window is enough to support query processing.
However, as shown in [1], its performance is sensitive to both the window size n
and data distribution. In the worst case, its space cost is O(n). The algorithm
minTopK improves k-skyband-based algorithm via using a natural property of
sidling window, i.e., s. When s � k, since a set of s objects flow into (or expire
from) the window at the same time, only k objects with the highest scores among
them have chance to become query results. In other words, the larger the s, the
lower the space cost of minTopK [3]. However, when s approaches to k, the space
cost of minTopK is still high, i.e., also O(n) in the worst cases. SMA [7] and SAP

[1] are two classical multi-pass based algorithms. As stated in [1], they should
restore all objects in the window with space cost O(n). Therefore, all exact algo-
rithms cannot be applied for supporting continuous top-k search over memory
limitation-based streaming data.

Approximate Algorithms. Zhu et al. [8] proposed an efficient framework,
named PABF, to support approximate continuous top-k query over sliding win-
dow. Compared with exact algorithms, a k−skyband object o could be discarded

Approximate Continuous Top-K Queries over Memory Limitation 7

if: (i)existing k objects have scores no smaller than F (o)+ε with ε being an error
threshold defined by users; (ii)the probability of o becoming a query result object
in the future is smaller than another threshold δ. Accordingly, it only maintains
a subset of k−skyband objects, and can return deviation-bounded results to the
system. However, a serious issue of PABF is both ε and δ are set in advance.
In real applications, it is difficult to find a suitable ε(and δ) especially when
the distribution of streaming data is timely changed. KRESIMIR [10] et al. pro-
posed a probabilistic k-skyband based algorithm. Compared with maintaining
all k-skyband objects, it evaluates the probability of each newly arrived object
o becoming a query result object. If the probability is smaller than a threshold,
o could be deleted directly. Similar with that of PABF, it is difficult to find a
suitable probabilistic threshold.

Discussion. In summary, the space cost of exact based algorithms is high,
which all cannot work under memory limited environment. Approximate-based
algorithms usually cannot find a suitable error threshold, leading that: (i) their
corresponding space cost is still high; or (ii) quality of query results is low.
Therefore, an approximate algorithm that can effectively work under memory
limitation-based environment in the premise of returning high quality approxi-
mate results is desired.

2.2 Problem Definition

A continuous top-k query q, expressed by the tuple q〈n, F, k, s〉, monitors the
window W , which returns k objects with the highest scores to the system when-
ever the window slides. A unique property of s is naturally partitioning the
window W into a group of partitions. Take an example in Fig. 1(a). The current
window W0 consists of 15 objects, which is partitioned into {s0, s2, · · · , s4}, i.e.,
s0 = {67, 42, 69}, s1 = {94, 76, 57}, and etc. Query results are {94, 92}. When
the window slides to W1, objects in s0 expire from the window, and objects in
the new partition s5 flow into the window. As no object with score larger than
92 flow into the window, query results are still {94, 92}. In the following, we will
formally explain the ρ-approximate continuous top-k query.

Fig. 1. k = 2, s = 3, M = 6, ρ = 0.95

8 R. Zhu et al.

Definition 1. ρ-Approximate Continuous Top-k Query. A ρ-approximate
continuous top-k query, denoted as 〈ρ, n, s, k, F 〉, monitors the window. When
the window slides, q returns k objects {a1, a2, · · · , ak} to the system. ∀i, it is
satisfied that F (ai)

F (oi)
≥ ρ.

Back to the example in Fig. 1(a). Let ρ be 0.95. Under W0, any object with
score no smaller than 94*0.95 and 92*0.95 could be used as the top-1 and top-2
approximate query results respectively. For example, {92, 91} could be used as
approximate top-2 results under W0 and W1. Note, approximate top-2 result set
is not unique. For example, {92, 88} also could be regarded as approximate top-2
results under W1.

2.3 The Algorithm S-Merge

This section explains an efficiently continuous top-k algorithm over data stream
named S-Merge [1], which is a sub-step of our proposed algorithm in Sect. 3.2. Let
W{s0, s1, · · · , sm−1} be the set of objects in the window, SK be the k−skyband
object set in the window, and sm be the set of newly arrived objects. As s objects
flow into the window at the same time, we scan objects in sm one by one, select
k objects with the highest scores as k-skyband objects, sort them based on their
scores, and then initialize their dominate numbers. The others could be deleted
directly. For example, if an object o ∈ sm has the i-th highest score (i < k), it
is dominated by i − 1 objects in sm. Its dominate number is set to i − 1, i.e.,
o.d = i − 1. Next, we merge these k objects into C. As objects in both C and
SKm are sorted in ascending order by their scores, merge sort could be applied.
During the merging, we update dominate number of objects in C. In Fig. 1(a).
When the window slides from W0 to W1, {78, 88, 67} flow into the window. As
k=2, {78, 88} are k-skyband objects. The dominate number of 78 and 88 are
set to 1 and 0 respectively. Next, we merge {78, 88} into C. During the merge,
as 78 > 77, the dominate number of 77 adds 2, i.e., it must be dominated by
{78, 88}.

3 The Framework ρ−TOPK

In this section, we propose a novel framework named ρ−TOPK for supporting
approximate continuous top-k query over memory limitation-based streaming
data.

3.1 The ρ-MSET

Definition 2. ρ-dominate. Given any two object o and o′ in the window W ,
if T (o) ≥ T (o′) and F (o) ≥ ρF (o′), we say o ρ−dominates o′ with ρ satisfying
0 < ρ ≤ 1. Here, T (o) refers to the arrived order of o.

Definition 3. kρ-skyband. Let o be an object in the window W . If o is ρ−domi-
nated by less than k objects, we call o as a kρ-skyband object.

Approximate Continuous Top-K Queries over Memory Limitation 9

Take an example in Fig. 1(a)–(b). Let ρ be 0.95. As T (94) < T (92) and
94∗0.95 < 92, we say 92 can ρ-dominate 94. Furthermore, as 94 is ρ−dominated
by {92, 91}, it is a non-kρ-skyband object. 92 is ρ−dominated by {91, 89}, which
is also a non-kρ-skyband object. All kρ-skyband objects in W1 from the kρ-
skyband set SKρ, which is {88, 78}. Note, compared with k−skyband object set
that can support exact continuous top-k search, we cannot use SKρ to support
approximate query processing. The reason behind it is, for each non-kρ-skyband
object o, objects that can ρ−dominate it also may be ρ−dominated by another
k objects, these objects are still not contained in SKρ. Thus, sometimes, we
cannot find enough high quality objects from SKρ for supporting approximate
top-k search.

Back to the example in Fig. 1(a)–(b). After the window slides to W1, the top-
2 objects in SKρ turn to {88, 78}, and the exact top-2 objects in the window
are {94, 92}. As 88

94 < 0.95 and 78
92 < 0.95, {88, 78} could not be used as an

approximate query result. The reason behind it is 94 is ρ−dominated by {92, 91},
92 is ρ−dominated by {91, 89}, both {94, 92} are out of SKρ. Also, {91, 92} are
out of SKρ due to the reason that they are ρ−dominated by 2 objects. Thus, we
cannot find enough high quality objects from SKρ for supporting approximate
top-k search. Based on the above observation, we propose the concept of ρ-MSET

(short for ρ−Minimum-SET). Our goal is to form, as small as, an object set to
support approximate top-k search. Here, OW refers to the set of objects in the
window.

Definition 4. ρ-MSET. The ρ-MSET Cρ is a subset of objects in the window
W satisfying that:

– (i) ∀o ∈ Cρ, it is ρ-dominated by less than k objects in Cρ;
– (ii) ∀o′ ∈ OW − Cρ, at least k objects in Cρ ρ−dominate o′.

According to Definition 4, SKρ is a subset of Cρ, some non kρ−skyband
objects are contained in Cρ. We can guarantee that, ∀o /∈ Cρ, at least k objects
in Cρ ρ−dominate it. Besides, ∀o′ ∈ Cρ, it is ρ−dominated by less than another
k objects in Cρ. Therefore, Cρ could be regarded as the set with minimal scale
that can support approximate top-k search.

Discussion. It is significant to find a suitable ρ based on both k−skyband scale
and maximal number of objects the system can maintain,i.e., M . Figure 1(b)
shows the ρ-MSET under different ρ with M being 6. If ρ = 0.99, as |C0.99| = 7,
C0.99 cannot be used as the error threshold. Here, C0.99 corresponds to Cρ with
ρ being 0.99. If ρ = 0.95, |C0.95| = 4 < M . It can be used as the threshold. Also,
the quality of query results is relatively high. If ρ = 0.90, |C0.90| is reduced, but
the quality of query results also turns to low. If ρ = 0.80, |C0.8|
 6, but it
cannot provide users with high quality query results any longer.

10 R. Zhu et al.

3.2 The Incremental Maintenance Algorithms

The Solution Overview. Let W 〈n, s〉 be the query window, M be the maximal
number of objects that the system can maintain, and C be the candidate set.
In order to make the quality of query results as high as possible, we use the
algorithm S-Merge to support exact top-k search when |C| ≤ M (line 1–2 in
algorithm 1). At the moment |C| achieves to M , we first find a suitable ρ (line
4–10), and then construct ρ−MSET Cρ (line 11–16), use Cρ for substituting C.
From then on, we repeatedly use S-Merge for supporting query processing. Along
with the window slides, when |C| achieves to M again, we re-invoke the ρ−MSET

algorithm, and then re-form C. In the following, we first discuss the ρ selection.

Algorithm 1: The Baseline Algorithm
Input: The Query Window W ,the Maximal Memory M , a set of s newly

arrived objects sm

Output: The Updated Result set R0, the updated candidate set C
1 C ←S-merge(sm);
2 if |C| ≤ M then
3 return C;

4 C ←SORT(C);
5 P ←formPartition(C);
6 H ← ∅;
7 for i from m to 1 do
8 H ←formMinHeap(H, P2i);
9 for j from k to 1 do

10 oj
2i−1.ρ ← F (Hmin)

F (o
j
2i−1)

;

11 ρ ←computeMedian(C);
12 H ←formMinHeap(P2m);
13 for i from |C| − k to 1 do
14 if ρF (oi) > F (Hmin) then
15 Cρ ← Cρ ∪ oi;
16 H ←updateHeap(H,Hmin,oi);

17 C ← Cρ;
18 return C;

The ρ Selection Algorithm. Let C be the set of objects sorted in ascending
order by their arrived order. We partition objects in C into {P1, P2, · · · , P2m}
satisfying:

– (i) ∀oi ∈ Pi, oj ∈ Pj , if i < j, T (oi) ≤ T (oj);
– (ii) |Pi| = k with |Pi| being the number of objects in Pi;

Approximate Continuous Top-K Queries over Memory Limitation 11

Fig. 2. Running example of ρ−MSET construction

Here, we assume that |C|
2k is an integer. However, our proposed techniques

also could be efficiently work under other cases. We call partitions {P1, P3, · · · ,
P2m−1} as s-partitions(short for substituted partitions), call {P2, P4, · · · , P2m}
as e-partitions (short for evaluation partitions). Our goal is to compute ρ via
comparing score relationship among objects in s-partitions and e-partitions. In
the initialization phase, we first associate each object o in s-partitions with a
variable, denoted as o.ρ with initial value 1. Next, we form a min-heap H based
on objects’ scores in the last partition P2m. After initialization, we reversely scan
objects in each partition, update H based on objects located at e-partitions,
compute o.ρ corresponding to each object o in s-partitions.

Specially, ∀oi
2m−1 ∈ P2m−1(i ∈ [1, k]), oi

2m−1.ρ is set to F (Hmin)
F (oi

2m−1)
. The intu-

ition behind it is if ρ is set to oi
2m−1.ρ and all elements in H are contained in

Cρ, there are at least k objects in Cρ ρ−dominating oi
2m−1, and we can safely

exclude oi
2m−1 from Cρ. Here, oi

2m−1 refers to the i-th object in the partition
P2m−1. After scanning objects in P2m−1, we reversely scan objects in P2m−2. As
P2m−2 is an e-partition, for each object in it, if its score is higher than F (Hmin),
we insert it into H, and then remove Hmin from H. After scanning objects in
P2m−2, we reversely scan objects in P2m−3, ∀oi

2m−3 ∈ P2m−3(i ∈ [1, k]), oi
2m−3.ρ

is set to F (Hmin)
F (oi

2m−3)
. From then on, we repeat the above operations until all objects

in C are accessed. Lastly, we set ρ to the median of {o11.ρ, o21.ρ, · · · , ok
2m−1.ρ}.

Figure 2 shows a running example of ρ−MSET construction with n = 24,
k = 3, M = 18 and s = 3. When the window slides to W1, {63, 64, 67} are merged
into C. Here, Fig. 2(b)-(c) shows k−skyband objects in W1 sorted by their scores
and arrived orders respectively. As |C| achieves to M(=18), we should compute
ρ. We first sort objects in C based on their arrived order, and then form partitions
{P1, P2, · · · , P6}. Among them, s-partitions are {P1, P3, P5}. The remaining par-
titions are e-partitions. After partitioning, we initialize H based on P6. Next, we
scan objects P5, compute o.ρ of each object o ∈ P5, i.e., 68.ρ = 0.93, 70.ρ = 0.90,
73.ρ = 0.86. From then on, we update H based on objects in P4, compute o.ρ
of each object o ∈ P3, update H based on objects in P2, compute o.ρ of each

12 R. Zhu et al.

object o ∈ P1 in turn. Finally, ρ is set to the median of o.ρ of these 9 objects,
which is 0.93.

The ρ−MSET Construction Algorithm. Once ρ is found, we now construct
the ρ−MSET Cρ. Firstly, we still form a min-heap H ′ to maintain objects in P2m

at the beginning. These k objects are also inserted into Cρ. Next, we reversely
scan the remaining objects. For each object o ∈ C −P2m, if ρF (o) > F (Hmin), it
means we cannot find k objects in Cρ that can ρ−dominate o. Thus, o is inserted
into both Cρ and H respectively. Also, Hmin is removed from H. The algorithm
is terminated after scanning objects in C. As is discussed in Theorem 1, it is
guaranteed that |Cρ|

|C| ≤ 3
4 . Lastly, C is updated to Cρ. As shown in Fig. 2(e), we

reversely scan objects in these 6 partitions, and then select objects for forming
Cρ. For example, when processing P5, as 63 < 73 ∗ 0.93, 73 is inserted into both
C0.93 and H, F (Hmin) is updated to 64. Also,as 64 < 70 ∗ 0.93, 70 is inserted
into C0.93 and H, where H is updated to {67, 70, 73}, F (Hmin) is updated to 68.
As 67 > 68 ∗ 0.93, it is out of C0.93. Lastly, 10 objects are selected as elements
of Cρ.

Theorem 1. Let {o1, o2, . . . , or} be a set of objects in ∪i=m
i=1 P2i−1, RH{o11.ρ,

o21.ρ, · · · , ok
2m−1.ρ} be o.ρ of objects located at s-partitions. If ρ is set to the

median of elements in RH, |Cρ| is bounded by 3|C|
4 .

Proof. Let o be an object contained in a s-partition P2i−1(1 ≤ i ≤ m), F (Hmin)
be the k − th highest score among objects contained in Cρ with arrived order no
smaller than o, and F (H ′

min) be the k−th highest score among objects contained
in e-partitions with partition ID larger than 2i−1. We first form another set C ′

ρ.
It contains: (i)all objects in e-partitions; (ii) each object o in s-partition P2i−1(i ∈
[1,m]) with score larger than F (H′

min)
ρ . Obviously, if ρ is set to the median of

elements in RH, half of objects located at s-partitions are excluded from C ′
ρ,

and |C′
ρ|

|C| ≤ 3
4 is guaranteed. Compared with C ′

ρ, as F (H ′
min) ≤ F (Hmin), more

objects located at s-partitions could be excluded from Cρ based on F (Hmin). In
addition, the ρ−MSET construction algorithm allows objects in e-partitions be
excluded from Cρ. Therefore, |C ′

ρ| ≥ |Cρ|, and |Cρ|
|C| ≤ 3

4 is guaranteed.

3.3 The Optimization Incremental Maintenance Algorithms

In this section, we improve algorithms discussed in Sect. 3.2 as follows. Firstly,
we propose a novel algorithm named DSORT(short for Domination-based SORT)
to sort objects in C in descending order by their arrived order. Compared with
using traditional sort algorithms, DSORT fully utilizes domination relationship
among objects to speed up the sort. Secondly, recalling Sect. 3.2, we compute o.ρ
for each object o located at s-partitions. The corresponding space cost is O(|C|).
It is obviously unacceptable under memory limitation-based environment. In this
section, we propose a novel algorithm named QGRS(short for Group Queue-based
Rho Selection), which could use O(log M) for ρ-selection.

Approximate Continuous Top-K Queries over Memory Limitation 13

The Algorithm DSORT. It is based on Theorem 2. Let C be the set of can-
didates sorted in descending order by their scores(before sorting). We first con-
struct k empty sets {S0, S1, · · · , Sk−1}. Next, we reversely scan objects in C,
insert objects in C into these k sets based on their dominate number,i.e., an
object o with dominate number i(o.d = i) is inserted into Si.

Theorem 2. Let o and o′ be two objects contained in the window W . If o.d =
o′.d and F (o) < F (o′), o must arrive later than that of o′.

Proof. We first explain a useful fact: let o1, o2 and o3 be 3 objects. If o1 dominates
o2, and o2 dominates o3, o1 must dominate o3. We go on proving this theorem.
Let {o1, o2, · · · , od} be the set of objects that dominate o, and {o′

1, o
′
2, · · · , o′

d} be
the set of objects that dominate o′, i.e., o.d = o′.d. Theorem 1 can be proved by
contradiction, where we assume that o arrives earlier than o′. As F (o) < F (o′),
if o arrives no later than o′, o mufst be dominated by o′. As o′ is dominated by
d objects, and these objects are also dominating o, the dominate number of o
must be larger than d. Thus, our assumption is invalid and hence o must arrive
later than that of o′.

Let Siu, Siv be two elements contained in the set Si, with Siu (or Siv) being
the u-th(or v-th) inserted element. As we reversely scan objects in C, and objects
in C are sorted in descending order by their score before sorting, if u < v, both
T (Siu) > T (Siv) and F (Siu) < F (Siv) (see Theorem 2) are guaranteed. In
other words, after {S0, S1, · · · , Sk−1} are formed, objects in Si must be sorted
in descending order by their scores(also sorted in ascending order by their arrived
order). Based on the above properties, we apply merge sort for speeding up the
sorting.

Specially, given {S0, S1, · · · , Sk−1}, we construct a min-heap SH to organize
these k sets based on their scale,i.e., top of SH is the set with minimal scale. Then
we select two sets,i.e., Si and Sj , with minimal size, merge Sj into Si via merge
sort, remove Sj from SH. From then on, we repeat the above operations until
all sets are merged into one set S. At that moment, objects in S must be sorted
in ascending order by their arrived order. Back to the example in Fig. 2(b)–(c).
We first construct three sets S0, S1 and S2. Next, we reversely scan objects in
C1 with descending order by their score, insert them into the right set based on
their dominate number, i.e.,S0 = {90, 81, 77, 75, 73, 67}, S1 = {85, 82, 80, 70, 64}
and S2 = {84, 79, 76, 74, 72, 68, 63}. As |S1| < |S0| < |S2|, we first merge S1 into
S0. Next, we merge S2 into S0. At the same time, objects in S0 must be sorted
by their arrival order.

The Optimization ρ Selection. We first apply DSORT for sorting objects in
the candidate set C based on their arrived order. Next, we still partition objects
in C into a group of partitions {P1, P2, · · · , P2m}, where {P1, P3, · · · , P2m−1} and
{P2, P4, · · · , P2m} are also regarded as s-partitions and e-partitions respectively.
From then on, we reversely scan objects in these 2m partitions, use different
strategies to access objects contained in them. Formally, if we meet an e-partition
Pi,i.e., i = {2m, 2m − 2, 2m − 4, · · · , 2}, we update H as the manner discussed

14 R. Zhu et al.

before. Otherwise (meet a s-partition Pj), we compute o.ρ of each object o ∈ Pj ,
and then input it into the function QGRS (short for Group Queue-based Rho
Selection). Here, GQRS is used for computing ρ based on o.ρ of each object o
located at s-partitions. Note, compared with the algorithm discussed in Sect. 3.2,
we do not retain o.ρ for o. By contrast, once o.ρ is computed, we input it into the
function QGRS, and then discard it at once. When all objects in C are scanned,
we compute ρ.

We now explain the algorithm GQRS. Let C be the candidate set. We first
initialize a group of u empty queues {Q1, Q2, · · · , Qu} with u being �log |C|

2 .
Maximal size of each queue is set to 3. In implementation, these queues are
regarded as static variables. In other words, they are always maintained until all
objects in C are processed, and it is unnecessary to repeatedly initialize them
whenever GQRS is invoked. From then on, the algorithm is run based on whether
these queues are full.

Algorithm 2: The Algorithm GQRS

Input: DOUBLE ρo, INT state
Output: The parameter ρ

1 Queue {Q1, Q2, · · · , Qu};
2 if state=FINISH then
3 ρ ← getMedian(qu);
4 return ρ;

5 q0 ← q0 ∪ ρo, Int i ← 0;
6 while qi is full do
7 DOUBLE ρm ← getMedian(qi);
8 qi+1 ← qi+1 ∪ ρm, qi ← ∅, i ← i + 1;

9 return 0;

Specially, we first insert o.ρ into Q1. If Q1 is not full, the algorithm is ter-
minated. Otherwise, we compute the median, i.e., denoted as ρm, of elements
in Q1. Next, we delete all elements in Q1, and then insert ρm into Q2. From
then on, we repeat the above operations to process these queues until meeting
a non-full queue. For example, after ρm is inserted into Q2, if Q2 is not full, the
algorithm is terminated. Otherwise, ρm is updated to the median of elements
in Q2, and then insert ρm into Q3. In particularly, when executing GQRS, if the
state is FINISH, it means all objects in C are accessed. At that moment, we
compute the median based on elements in Qu, use it as the final ρ.

Take an example in Fig. 3. When |C| achieves to 54 (M = 54), DSORT is
applied, and then ρ−election is invoked. Next, we partition objects in C into
18 partitions, where e-partition sets and s-partition sets are shown in Fig. 3(a)
respectively. Secondly, we form a group of �log 0.5 × 54(=3) queues,i.e., Q1, Q2

and Q3. Also, we form a min-heap H based on objects in P18. From then on,
we reversely scan objects in these 17 partitions. After 12 ∈ P17 is processed, Q1

Approximate Continuous Top-K Queries over Memory Limitation 15

turns to full, we insert the median of elements in Q1 into Q2, which is ρm = 0.15.
After 36 ∈ P13 is processed, Q2 turns to full, we insert the median of elements
in Q2 into Q3. After 88 ∈ P1 is processed, the algorithm is terminated. The
corresponding ρ is set to 0.87.

Fig. 3. Running example of optimization ρ Selection (k = 3, M = 54)

The Cost Analysis. We first analyze the running cost of forming ρ−MSET

under optimization algorithms. It includes: DSORT, ρ−selection and ρ−MSET

construction. For DSORT, the cost of forming these k sets is O(M). As the cost
of merge sort is linear to the data scale, and the scale of each min-heap is k,
the total merging cost is bounded by O(M log k). For optimization ρ−selection,
whenever 3i−1 objects are processed, the queue qi is updated one time. Therefore,

the total cost of maintaining these queues is bounded by O(
∑i=�log |C|

2 �
i=0

|C|
3i−1),

which is O(M). As the cost of maintaining min-heap is bounded by O(M log k),
the total cost of computing ρ is bounded by O(M log k+M), which is O(M log k).
Similarly, for the cost of ρ−MSET construction, the cost of maintaining min-
heap is O(M log k), the corresponding running cost is bounded by O(M log k).
Therefore, the cost of forming ρ−MSET is O(M log k).

We now analyze the incremental maintenance cost. When a set of s objects
arrive in the window, the cost of constructing SKm is bounded by O(s log k), and
the cost of merging is bounded by O(|C| + k). When we construct ρ−MSET Cρ,
the corresponding running cost is bounded by O(M log k). As is discussed in The-
orem 1, under baseline algorithm, once Cρ is formed, as |Cρ|

M ≤ 3
4 is guaranteed, it

implies ρ−MSET construction is invoked whenever at least sM
4k objects flow into

the window, and we can amortize this part of running cost to sM
4k objects. Under

improving algorithm, based on the median searching algorithm, the selected ρ
also could guarantee that M −|Cρ| is O(M). Therefore, the amortized incremen-
tal maintenance cost of each object is bounded by O(M log k

sM
k

+ |C|
s +log k), which

is O(log k + M
s)(|C| is bounded by M). For the space cost, as |C| is bounded

by M , the cost of ρ−selection is bounded by O(log M), the overall space cost is
bounded by O(M).

16 R. Zhu et al.

4 The Experiment

In this section, we conduct extensive experiments to demonstrate the efficiency
of the ρ-TOPK. In the following, we first explain the settings of our experiments.

4.1 Experiment Settings

Data Set. The experiments are based on one real dataset named Stock, and
two synthetic datasets named TimeR and TimeU respectively. Stock refers to
1GB stock transactions corresponding to 2,300 stocks from ShangHai/ShenZhen
Stock Exchange over two years. The two synthetic datasets are TimeR and
TimeU respectively. In TimeR, objects’ arrival orders are correlated with their
scores, i.e., F (o) = sin(π×o.t

106) with o.t being = 1, 2, 3 · · · . In TimeU , there is no
correlation between objects’ arrival orders and their scores.

Parameter Setting. In our experiment, we evaluate algorithms differences
via the following metrics, which are response time, candidate amount, and score
ratio as the main performance indicators. Here, response time refers to the total
running time that we spend after processing all objects. Candidate amount refers
to the average number of candidates we should maintain. Score ratio refers to the
degree of deviation between approximation results and accurate results. Besides,
four parameters are considered, which are window size n, the parameters s, k,
and M . Parameter Settings are shown in Table 2 with the default values bolded.

Table 2. Parameter setting

Parameter Value

n 100 KB, 200KB, 500KB, 1 MB, 5MB, 10MB

k 5, 10, 20, 50, 100, 500

s 0.1%, 0.5%,1%, 5%, 10%, 20%(×n)

M 2, 4, 8, 16, 32(×k)

In addition to ρ-TOPK, we also implement minTopK [3], PABF [8] and PA [10]
for answering continuous top-k query as competitors. minTopK is a representative
exact approach. The others are approximate algorithms. Note, these 3 algorithms
do not consider relationship between k−skyband object amount and memory size,
in implementation, if the candidate set scale under these 3 algorithms is larger
than M , we remove the object with minimal arrived order from the candidate set
directly. All the algorithms are implemented with C++, and all the experiments
are conducted on a CPU i7, running Microsoft Windows 10.

Approximate Continuous Top-K Queries over Memory Limitation 17

4.2 The Performance Evaluation

Effect of the Parameter ρ. First of all, we evaluate the effectiveness of
ρ−TOPK under different ρ. Compared with using a variable ρ, we set ρ in
advance. Whenever C achieves to M , we use this ρ for forming Cρ. As is shown
in Table 3, the running time of ρ−TOPK is reduced with the decreasing of ρ. The
reason behind it is the higher the ρ, the more k−skybands we should maintain.
However, after ρ is reduced to 0.9, the running time of ρ−TOPK is not dras-
tically changed. That is because when ρ is smaller than 0.9, the candidate set
scale is small enough. In this case, the mainly running cost is spent in process-
ing newly arrived objects. Furthermore, the error ratio of ρ−TOPK is increasing
with the decreasing of ρ. The reason is the lower the ρ, the more k−skybands are
deleted, and the higher the error ratio it is. Above all, when ρ is small enough,
its running time is no longer drastically changed, but it may significantly the
quality of query results. It is important to find a suitable ρ based on M and
scale k−skyband set.

Table 3. Effect of the parameter ρ

Dataset The parameter (ρ)

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 0.99

STOCK Running time 20.89 21.33 22.02 22.92 23.03 23.52 24.32 25.66 27.78 28.01 29.85

Accuracy 0.86 0.87 0.88 0.89 0.91 0.92 0.94 0.96 0.98 0.99 0.99

TimeU Running time 18.77 19.13 18.75 19.32 20.09 21.91 23.38 25.01 26.33 27.93 28.66

Accuracy 0.84 0.86 0.87 0.89 0.90 0.92 0.93 0.95 0.97 0.99 0.99

TimeR Running time 20.31 21.20 21.44 22.06 23.11 24.77 25.82 28.11 30.28 34.30 35.49

Accuracy 0.86 0.86 0.88 0.89 0.91 0.92 0.94 0.96 0.97 0.98 0.99

Running Time Comparison. We first evaluate the performance of differ-
ent algorithms under different n. The other parameters are default values. From
Fig. 4(a) to Fig. 4(c), we observe that ρ−TOPK performs the best in terms of run-
ning time. For example, it averagely consumes only 40% of minTopKs running
time and 70% of PABFs running time. This is no surprise since ρ−TOPK only
maintains a subset of k−skybands to support query processing. Compared with
that of PABF and PA, ρ−TOPK could use, as small as running cost, to construct
Cρ. Thus, it performs better than theirs. Next, we evaluate the performance of
different algorithms under different k. The other parameters are default values.
From Fig. 4(d)-4(f), we find that ρ−TOPK performs the best of all. Beside the
reasons discussed before, another reason is ρ−TOPK is not sensitive to the dis-
tribution of streaming data. For example, under TimeU , the running time of
other algorithms is much higher than of ρ−TOPK, where the candidate set scale

18 R. Zhu et al.

under this data set is M in many cases. Intuitively, the larger the candidate set
scale, the higher the running cost. Thus, it implies that ρ−TOPK is not sensitive
to data distribution. Thirdly, we evaluate the performance of these algorithms
under different s. The other parameters are default values. From Fig. 4(g) to
Fig. 4(i), ρ−TOPK still performs the best of all. We also find that, with the
increasing of s, the running time difference among these 4 algorithms all turn
to small. The reason behind it is, the larger the s, the more objects could be
filtered. When the k−skyband set is small enough, ρ−TOPK is equivalent to
minTopK. However, ρ−TOPK is more stable than others (Table 4).

Table 4. Candidate set size under different window length (MB)

Algorithm STOCK TIMEU TIMER

0.1 0.2 0.5 1 5 10 0.1 0.2 0.5 1 5 10 0.1 0.2 0.5 1 5 10

ρ−TOPK 71 86 103 124 133 140 69 82 92 119 130 141 73 89 109 125 137 142

minTopK 119 144 174 200 200 200 116 137 154 200 200 200 122 149 183 200 200 200

PA 93 113 135 162 174 179 91 114 125 155 167 174 96 117 143 154 169 179

PABF 83 101 121 146 156 165 82 102 112 140 153 167 88 109 127 145 158 171

Candidates Amount Comparison. In the following, we compare the candi-
date set scale under different algorithms. For the limitation of space, we only
compare candidate set scale under different n. The other parameters are default
values. We find that, candidate set scale are all increasing with the increas-
ing of n, but the candidate set scale under ρ−TOPK is the smallest of all. The
reason behind it is when |C| achieves to M , we should form ρ−MSET, whose
scale is roughly half of M in most cases. Therefore, the candidate amount under
ρ−TOPK is the smallest of all (Fig. 5).

Score Ratio Comparison. We find that the score ratio under ρ−TOPK is
the highest of all. Also, when M is small, the score ratio under ρ−TOPK is also
acceptable. The reason behind it is, ρ−TOPK could self-adaptively adjust ρ based
on k-skyband set scale and M . In this way, approximate results quality under
ρ−TOPK is the highest of all.

Approximate Continuous Top-K Queries over Memory Limitation 19

(a) STOCK (b) T imeU (c) T imeR

(d) STOCK (e) T imeU (f) T imeR

(g) STOCK (h) T imeU (i) T imeR

Fig. 4. Running time comparison of different algorithms under different data sets.

(a) STOCK (b) T imeU (c) T imeR

Fig. 5. Score rate of different algorithms under different data sets.

5 Conclusion

This paper proposes a novel framework named ρ−TOPK for supporting ρ−
approximate continuous top-k query over data stream. It can self-adaptively
adjust ρ based on distribution of streaming data, and supporting ρ−approximate
top-k query under memory limitation-based data stream. We have conducted

20 R. Zhu et al.

extensive experiments to evaluate the performance of ρ−TOPK on several
datasets under different distributions. The results demonstrate the superior per-
formance of ρ−TOPK.

Acknowledgment. This paper is partly supported by the National Natural Science
Foundation for Young Scientists of China (61702344, 61802268, 62102271, 62072088),
the Young and Middle-Aged Science and Technology Innovation Talent of Shenyang
under Grant RC200439, and Liaoning Provincial Department of Education Sci-
ence Foundation under Grant JYT2020066, Ten Thousand Talent Program (No.
ZX20200035), and Liaoning Distinguished Professor (No. XLYC1902057).

References

1. Zhu, R., Wang, B., Yang, X., Zheng, B., Wang, G.: SAP: improving continuous top-
k queries over streaming data. IEEE Trans. Knowl. Data Eng. 29(6), 1310–1328
(2017)

2. Bai, M., et al.: Discovering the k representative skyline over a sliding window.
IEEE Trans. Knowl. Data Eng. 28(8), 2041–2056 (2016)

3. Yang, D., Shastri, A., Rundensteiner, E.A., Ward, M.O.: An optimal strategy for
monitoring top-k queries in streaming windows. In: EDBT, pp. 57–68 (2011)

4. Wang, X., Zhang, Y., Zhang, W., Lin, X., Huang, Z.: SKYPE: top-k spatial-
keyword publish/subscribe over sliding window. Proc. VLDB Endow. 9(7), 588–599
(2016)

5. Jin, C., Yi, K., Chen, L., Yu, J.X., Lin, X.: Sliding-window top-k queries on uncer-
tain streams. VLDB J. 19(3), 411–435 (2010)

6. Chen, L., Cong, G.: Diversity-aware top-k publish/subscribe for text stream. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, 31 May–4 June 2015, pp. 347–362 (2015)

7. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries
over sliding windows. In: SIGMOD Conference, pp. 635–646 (2006)

8. Zhu, R., Wang, B., Luo, S., Yang, X., Wang, G.: Approximate continuous top-k
query over sliding window. J. Comput. Sci. Technol. 32(1), 93–109 (2017)

9. Shen, Z., Cheema, M.A., Lin, X., Zhang, W., Wang, H.: Efficiently monitoring
top-k pairs over sliding windows. In: ICDE, pp. 798–809 (2012)

10. Pripuzic, K., Zarko, I.P., Aberer, K.: Time- and space-efficient sliding window top-k
query processing. ACM Trans. Database Syst. 40(1), 1:1–1:44 (2015)

Cross-Model Conjunctive Queries over
Relation and Tree-Structured Data

Yuxing Chen1, Valter Uotila1, Jiaheng Lu1(B), Zhen Hua Liu2,
and Souripriya Das2

1 University of Helsinki, Helsinki, Finland
{yuxing.chen,valter.uotila,jiaheng.lu}@helsinki.fi

2 Oracle, Redwood City, USA
{zhen.liu,souripriya.das}@oracle.com

Abstract. Conjunctive queries are the most basic and central class of
database queries. With the continued growth of demands to manage
and process the massive volume of different types of data, there is little
research to study the conjunctive queries between relation and tree data.
In this paper, we study Cross-Model Conjunctive Queries (CMCQs) over
relation and tree-structured data (XML and JSON). To efficiently pro-
cess CMCQs with bounded intermediate results we first encode tree
nodes with position information. With tree node original label values
and encoded position values, it allows our proposed algorithm CMJoin
to join relations and tree data simultaneously, avoiding massive interme-
diate results. CMJoin achieves worst-case optimality in terms of the total
result of label values and encoded position values. Experimental results
demonstrate the efficiency and scalability of the proposed techniques to
answer a CMCQ in terms of running time and intermediate result size.

Keywords: Cross-model join · Worst-case optimal · Relation and tree
data

1 Introduction

Conjunctive queries are the most fundamental and widely used database queries
[2]. They correspond to project-select-join queries in the relational algebra.
They also correspond to non-recursive datalog rules [7]

R0(u0) ← R1(u1) ∧ R2(u2) ∧ . . . ∧ Rn(un), (1)

where Ri is a relation name of the underlying database, R0 is the output relation,
and each argument ui is a list of |ui| variables, where |ui| is the arity of the
corresponding relation. The same variable can occur multiple times in one or
more argument lists.

It turns out that traditional database engines are not optimal to answer con-
junctive queries, as all pair-join engines may produce unnecessary intermediate

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 21–37, 2022.
https://doi.org/10.1007/978-3-031-00123-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_2

22 Y. Chen et al.

R0(x,y,z)

⇐⇒

x

y z
∧R1(x,y,z)

Child(x,y)∧
Descendant(x,z)

R0(x,y,z)

∧R1(x,y,z)

(a) A CMCQ

x1

y1 z1

y2 z2

x1 y1 z1
x1 y2 z1
x2 y1 z1

(b) Instances

R0(x,y,z)

x1 y1 z1

(c) Result

Fig. 1. An example of a CMCQ

results on many join queries [26]. For example, consider a typical triangle con-
junctive query R0(a, b, c) ← R1(a, b)∧R2(b, c)∧R3(a, c), where the size of input
relations |R1| = |R2| = |R3| = N . The worst-case size bound of the output table
|R0| yields O(N

3
2). But any pairwise relational algebra plan takes at least Ω(N2),

which is asymptotically worse than the optimal engines. To solve this problem,
recent algorithms (e.g. NPRR [26], LeapFrog [31], Joen [8]) were discovered to
achieve the optimal asymptotic bound for conjunctive queries.

Conjunctive queries over trees have recently attracted attention [13], as trees
are a clean abstraction of HTML, XML, JSON, and LDAP. The tree structures
in conjunctive queries are represented using node label relations and axis rela-
tions such as Child and Descendant. For example, the XPath query A[B]//C is
equivalent to the conjunctive query:

R(z) ← Label(x, “A”) ∧ Child(x, y) ∧ Label(y, “B”)
∧ Descendant(x, z) ∧ Label(z, “C”).

(2)

Conjunctive queries with trees have been studied extensively. For example,
see [13] on their complexity, [3] on their expressive power, and [4,13] on the
satisfiability problem. While conjunctive queries with relations or trees have
been studied separately in the literature, hybrid conjunctive queries have gained
less attention.

This paper embarks on the study of a Cross-Model Conjunctive Query
(CMCQ) over both relations and trees. Figure 1 depicts a CMCQ. CMCQs
emerge in modern data management and analysis, which often demands a
hybrid evaluation with data organized in different formats and models, e.g. data
lake [16], multi-model databases [22], polystores [9], and computational linguis-
tics [32].

The number of applications that we have hinted at above motivates the study
of CMCQs, and the main contributions of this paper are as follows:

1. This paper embarks on the study of the cross-model conjunctive query
(CMCQ) and formally defines the problem of CMCQ processing, which inte-
grates both relational conjunctive query and tree conjunctive pattern.

2. We propose CMJoin-algorithm to process relations and encoded tree data
efficiently. CMJoin produces the worst-case optimal join result in terms of
the label values as well as the encoded information values. In some cases,
CMJoin is the worst-case optimal join in the absence of encoded information.

Cross-Model Conjunctive Queries over Relation and Tree-Structured Data 23

R0(ra,rb,rc)
R1(ra,rb) 2(ra,rc)

Descendant(ta, tb) Descendant(ta, tc)
Label(ta,ra) Label(tb,rb) Label(tc,rc)

(a) Conjunctive query form

R0(a,b,c) 1(a,b) 2(a,c)
a

b c
(b) Simplified expression

Fig. 2. Complete and simplified expressions of CMCQ

3. Experiments on real-life and benchmark datasets show the effectiveness and
efficiency of the algorithm in terms of running time and intermediate result
size.

The remainder of the paper is organized as follows. In Sect. 2 we provide
preliminaries of approaches. We then extend the worst-case optimal algorithm
for CMCQs in Sect. 3. We evaluate our approaches empirically in Sect. 4. We
review related works in Sect. 5. Section 6 concludes the paper.

2 Preliminary

Cross-model Conjunctive Query. Let R be a database schema and
R1, . . . , Rn be relation names in R. A rule-based conjunctive query over R is
an expression of the form R0(u0) ← R1(u1) ∧ R2(u2) ∧ . . . ∧ Rn(un), where
n ≥ 0, R0 is a relation not in R. Let u0, u1, . . . , un be free tuples, i.e. they may
be either variables or constants. Each variable occurring in u0 must also occur
at least once in u1, . . . , un.

Let T be a tree pattern with two binary axis relations: Child and
Descendant. The axis relations Child and Descendant are defined in the normal
way [13]. In general, a cross-model conjunctive query contains three components:
(i) the relational expression τ1 := ∃r1, . . . , rk : R1(u1) ∧ R2(u2) ∧ . . . ∧ Rn(un),
where r1, . . . , rk are all the variables in the relations R1, . . . , Rn; (ii) the
tree expression τ2 := ∃t1, . . . , tk : Child(v1) ∧ . . . ∧ Descendant(vn), where
t1, . . . , tk are all the node variables occurring in vi, for i ≥ 1 and each vi

is a binary tuple (ti1 , ti2); and (iii) the cross-model label expression τ3 :=
∃r1, . . . , rk, t1, . . . , tk : label1(ti1 , rj1) ∧ . . . ∧ labeln(tin , rjn), where Σ denotes a
labeling alphabet. Given any node t ∈ T , label(t, s) means that the label of the
node t is s ∈ Σ. The label relations bridge the expressions of relations and trees
by the equivalence between the label values of the tree nodes and the values of
relations.

By combining the three components together, we define a cross-model con-
junctive query with the calculus of form {e1, . . . , em | τ1 ∧ τ2 ∧ τ3}, where the
variables e1, . . . , em are the return elements which occur at least once in rela-
tions.

24 Y. Chen et al.

Figure 2a shows an example of a cross-model conjunctive query, which
includes two relations and one tree pattern. For the purpose of expression sim-
plicity, we do not explicitly distinguish between the variable of trees (e.g. ta)
and that of relations (e.g. ra), but simply write them with one symbol (i.e. a) if
label(ta, ra) holds. We omit the label relation when it is clear from the context.
Figure 2b shows a simplified representation of a query.

Revisiting Relational Size Bound. We review the size bound for the rela-
tional model, which Asterias, Grohe, and Marx (AGM) [2] developed. The AGM
bound is computed with linear programming (LP). Formally, given a relational
schema R, for every table R ∈ R let AR be the set of attributes of R and
A = ∪RAR. Then the worst-case size bound is precisely the optimal solution for
the following LP:

maximize ΣA
r xr

subject to ΣAR
r xr ≤ 1 for all R ∈ R,

0 ≤ xr ≤ 1 for all r ∈ A.

(3)

Let ρ denote the optimal solution of the above LP. Then the size bound of the
query is Nρ, where N denotes the maximal size of each table. The AGM bound
can be proved as a special case of the discrete version of the well-known Loomis-
Whitney inequality [20] in geometry. Interested readers may refer to the details
of the proof in [2]. We present these results informally and refer the readers to
Ngo et al. [27] for a complete survey.

For example, we consider a typical triangle conjunctive query R0(a, b, c) ←
R1(a, b) ∧ R2(b, c) ∧ R3(a, c) that we introduced in Sect. 1. Then the three LP
inequalities corresponding to three relations include xa + xb ≤ 1, xb + xc ≤ 1,
and xa + xc ≤ 1. Therefore, the maximal value of xa + xb + xc is 3/2, meaning
that the size bound is O(N

3
2). Interestingly, the similar case for CMCQ in Fig. 3,

the query Q = a[b]/c �� R(b, c) has also the size bound O(N
3
2).

3 Approach

In this section, we tackle the challenges in designing a worst-case optimal algo-
rithm for CMCQs over relational and tree data. We briefly review the existing
relational worst-case optimal join algorithms. We represent these results infor-
mally and refer the readers to Ngo et al. [27] for a complete survey. The first
algorithm to have a running time matching these worst-case size bounds is the
NPRR algorithm [26]. An important property in NPRR is to estimate the inter-
mediate join size and avoid producing a case that is larger than the worst-case
bound. In fact, for any join query, its execution time can be upper bounded
by the AGM [2]. Interestingly, LeapFrog [31] and Joen [8] completely abandon
a query plan and propose to deal with one attribute at a time with multiple
relations simultaneously.

Cross-Model Conjunctive Queries over Relation and Tree-Structured Data 25

R0(ra,rb,rc)

a

b c
R1(rb,rc)

(a) Tree query Q

rb rc
b0 c0
b0 c1
b1 c0
b1 c1

(b) Table DR1

a0

p0

b0

p1

b1

p2

b2

p3

b3

p4

c0

p5

c1

p6

c2

p7

c3

p8

(c) Encode Tree DT

Fig. 3. A CMCQ (a) and its table instance (b) and tree instance (c).

3.1 Tree and Relational Data Representation

To answer a tree pattern query, a positional representation of occurrences of tree
elements and string values in the tree database is widely used, which extends
the classic inverted index data structure in information retrieval. There existed
two common ways to encode an instance tree, i.e. Dewey encoding [23] and
containment encoding [6]. These decodings are necessary as they allow us to
partially join tree patterns to avoid the undesired intermediate result. After
encoding, each attribute j in the query node can be represented as a node
table in form of tj(rj , pj), where rj and pj are the label value and position
value, respectively. Check an example from a encoded tree instance in Fig. 3c.
The position value can be added in O(N) by one scan of the original tree. Note
that we use Dewey coding in our implementation but the following algorithm is
not limited to such representation. Any representation scheme which captures
the structure of trees such as a region encoding [6] and an extended Dewey
encoding [23] can all be applied in the algorithm.

All the data in relational are label data, and all relation tables and node
tables will be expressed by the Trie index structure, which is commonly applied
in the relational worst-case optimal algorithms (e.g. [1,31]). The Trie structure
can be accomplished using standard data structures (notably, balanced trees
with O(log n) look-up time or nested hashed tables with O(1) look-up time).

3.2 Challenges

In our context, tree data and twig pattern matching do make the situation
more complex. Firstly, directly materializing tree pattern matching may yield
asymptotically more intermediate results. If we ignore the pattern, we may lose
some bound constraints. Secondly, since tree data are representing both label
and position values, position value joining may require more computation cost
for pattern matching while we do not need position values in our final result.

Example 1. Recall that a triangle relational join query Q = R1(ra, rb) ��

R2(ra, rc) �� R3(rb, rc) has size bound O(N
3
2). Figure 3 depicts an example of

a CMCQ Q with the table R1(rb, rc) and twig query a[b]/c to return result
R0(ra, rb, rc), which also has size bound O(N

3
2) since the PC paths a/b and

a/c are equivalent to the constraints xa + xb ≤ 1 and xa + xc ≤ 1, respectively.

26 Y. Chen et al.

Figure 3b and Fig. 3c show the instance table DR1 and the encoded tree DT . The
number of label values in the result R0(ra, rb, rc) is only 4 rows which is O(N).
On the other hand, the result size of only the tree pattern is 16 rows which is
O(N2), where N is a table size or a node size for each attribute. The final result
with the position values is also O(N2). Here, O(N2) is from the matching result
of the position values of the attributes tb and tc.

EmptyHeaded [1] applied the existing worst-case optimal algorithms to pro-
cess the graph edge pattern matching. We may also attempt to solve relation-
tree joins by representing the trees as relations with the node-position and the
node-label tables and then reformulating the cross-model conjunctive query as a
relational conjunctive query. However, as Example 1 illustrated, such a method
can not guarantee the worst-case optimality as extra computation is required for
position value matching in a tree.

3.3 Cross-Model Join (CMJoin) Algorithm

In this part, we discuss the algorithm to process both relational and tree data.
As the position values are excluded in the result set while being required for
the tree pattern matching, our algorithm carefully deals with it during the join.
We propose an efficient cross-model join algorithm called CMJoin (cross-model
join). In certain cases, it guarantees runtime optimality. We discover the join
result size under three scenarios: with all node position values, with only branch
node position value, and without position value.

Lemma 1. Given relational tables R and pattern queries T , let Sr, Sp, and S′
p

be the sets of all relation attributes, all position attributes, and only branch node
position attributes, respectively. Then it holds that

ρ1(Sr ∪ Sp) ≥ ρ2(Sr ∪ S′
p) ≥ ρ3(Sr). (4)

Proof. Q(Sr) is the projection result from Q(Sr ∪ S′
p) by removing all position

values, and Q(Sr ∪S′
p) is the projection result from Q(Sr ∪Sp) by removing non-

branch position values. Therefore, the result size holds ρ1(Sr ∪ Sp) ≥ ρ2(Sr ∪
S′

p) ≥ ρ3(Sr).

Example 2. Recall the CMCQ Q in Fig. 3a, which is Q = R1(rb, rc) �� a[b]/c.
Nodes a, b, c in the tree pattern can be represented as node tables (ra, pa),
(rb, pb), and (rc, pc), respectively. So we have Q(Sr∪Sp) = R(ra, rb, rc, pa, pb, pc),
Q(Sr ∪ S′

p) = R(ra, rb, rc, pa), and Q(Sr) = R(ra, rb, rc). By the LP constraint
bound for the relations and PC-paths, we achieve O(N2), O(N

3
2), and O(N

3
2)

for the size bounds ρ1(Sr ∪ Sp), ρ2(Sr ∪ S′
p), and ρ3(Sr), respectively.

We elaborate CMJoin Algorithm 1 more in the following. In the case of
ρ1(Sr ∪ Sp) = ρ3(Sr), CMJoin executes a generic relational worst-case optimal
join algorithm [1,8] as the extra position values do not affect the worst-case final
result. In other cases, CMJoin computes the path result of the tree pattern first.

Cross-Model Conjunctive Queries over Relation and Tree-Structured Data 27

Algorithm 1: CMJoin
Input: Relational tables R, pattern queries T

1 R′ ← ∅ // Tree intermediate result

2 if ρ1(Sr ∪ Sp) ≤ ρ3(Sr) then // Theorem 1 condition (1)

3 foreach N ∈ T do
4 R′ ← R′ ∪ CN (rN , pN) // Nodes as tables

5 else
6 P ← T .getPaths()
7 foreach P ∈ P do
8 RP (Sr ∪ Sp) ← path result of P // Paths as tables

9 R′
P (Sr ∪ S′

p) ← project out non-branch position values of RP (Sr ∪ Sp)
10 R′ ← R′ ∪ {R′

P (Sr ∪ S′
p)}

11 Q(Sr ∪ S′
p) ← generic join(R ∪ R′)

12 Q(Sr) ← project out all position values Q(Sr ∪ S′
p)

Output: Join results Q(Sr)

In this case, we project out all position values of a non-branch node for the query
tree pattern. Then, we keep the position values of the only branch node so that
we still can match the whole part of the tree pattern.

Theorem 1. Assume we have relations R and pattern queries T . If either

(1) ρ1(Sr ∪ Sp) ≤ ρ3(Sr) or
(2) (i) ρ1(Sr ∪ S′

p) ≤ ρ3(Sr) and (ii) for each path P in T let S′′
r and S′′

p be the
set of label and position attributes for P so that ρ4(S′′

r ∪ S′′
p) ≤ ρ3(Sr).

Then, CMJoin is worst-case optimal to ρ3(Sr).

Proof. (1) Since the join result of the only label value ρ3(Sr) is the projection
of ρ1(Sr ∪Sp), we can compute Q(Sr ∪Sp) first, then project out all the position
value in linear of O(Nρ1(Sr∪Sp)). Since ρ1(Sr ∪ Sp) ≤ ρ3(Sr), we can estimate
that the result size is limited by O(Nρ3(Sr)).

(2) ρ1(S′′
r ∪S′′

p) ≤ ρ3(Sr) means that each path result with label and position
values are under worst-case result of ρ3(Sr). We may first compute the path
result and then project out all the non-branch position values. The inequality
ρ2(r, p′) ≤ ρ3(r) means that the join result containing all branch position values
has a worst-case result size which is still under ρ3(Sr). Then by considering those
position values as relational attribute values and by a generic relation join [1,26],
CMJoin is worst-case optimal to ρ3(Sr).

Example 3. Recall the CMCQ query Q = R1(rb, rc) �� a[b]/c in Fig. 3a. Since
ρ1(Sr∪Sp) > ρ3(r), directly computing all label and position values may generate
asymptotically bigger result (O(N2) in this case). So we can compute path results
of a/b and a/c, which are (ra, pa, rb, pb) and (ra, pa, rc, pc) and in O(N). Then
we obtain only branch node results (ra, pa, rb) and (ra, pa, rc). By joining these
project-out results with relation R1 using a generic worst-case optimal algorithm,
we can guarantee that the size bound is O(N

3
2).

28 Y. Chen et al.

Table 1. Intermediate result size (106) and running time (S) for queries. “/” and “–”
indicate “timeout” (≥10 min) and “out of memory”. We measure the intermediate size
by accumulating all intermediate and final join results.

Intermediate result size (106) Running time (second)

Query PG SJ VJ EH CMJoin PG SJ VJ EH CMJoin

Q1 7.87x 2.60x 2.00x 1.68x 0.15 18.02x 1.39x 1.51x 1.66x 3.22

Q2 / – 3.75x 4.83x 0.08 / – 4.52x 129x 1.96

Q3 86.0x 62.6x 3.63x 4.61x 0.08 21.3x 4.27x 1.99x 4.28x 3.06

Q4 / 1.96x 1.75x 1.64x 0.24 / 2.34x 2.63x 1.82x 3.55

Q5 / – 1.86x 1.77x 0.22 / – 4.75x 39.8x 3.11

Q6 / 2.24x 2.00x 1.85x 0.21 / 6.10x 3.30x 2.89x 3.00

Q7 133x 106x – 35.1x 0.29 4.82x 9.05x – 7.18x 8.36

Q8 350x 279.8x – / 0.11 4.36x 5.61x – / 13.8

Q9 8.87x 8.34x – 2.01x 4.62 1.12x 2.13x – 1.48x 35.0

Q10 110x 440x 4.86x / 0.07 2.91x 12.7x 1.22x / 5.62

Q11 110x 440x 4.86x / 0.07 2.11x 10.5x 0.88x / 6.84

Q12 110x 440x 4.86x / 0.07 2.68x 9.99x 1.06x / 7.25

Q13 1.04x 1.22x 1.22x 1.07x 43.2 1.37x 4.81x 4.79x 1.31x 34.2

Q14 19.7x 2.56x 2.56x 3.90x 0.39 2.04x 3.82x 3.79x 2.14x 2.73

Q15 14.2x 1.85x 1.85x 17.0x 0.54 1.68x 3.53x 3.54x 2.01x 2.87

Q16 1.24x 1.24x 6.81x 2.15x 0.37 2.88x 1.32x 1.96x 1.02x 12.9

Q17 1.59x 7.84x 2.28x 1.31x 0.32 7.03x 3.58x 3.38x 2.10x 5.08

Q18 1.59x 7.13x 1.59x 1.64x 0.32 14.1x 5.21x 5.02x 2.06x 2.98

Q19 / 5.47x 6.62x 1.77x 0.45 / 1.41x 1.94x 0.89x 14.7

Q20 7.80x 25.1x 7.30x 4.19x 0.10 12.1x 6.77x 6.39x 3.17x 3.37

Q21 12.0x 36.1x 18.4x 14.7x 0.10 14.6x 8.82x 8.75x 10.9x 2.89

Q22 1.00x 18.5x 18.5x 0.96x 0.57 1.16x 5.22x 4.31x 2.35x 12.7

Q23 18.5x 18.5x 18.5x 1.61x 0.57 1.92x 2.17x 1.83x 1.02x 15.8

Q24 14.3x 3.02x 4.02x 0.96x 0.57 >9kx >11kx >12kx 0.18x 0.01

AVG 5.46x 5.90x 1.92x 1.90x 2.24 4.37x 5.34x 3.33x 3.46x 8.54

4 Evaluation

In this section, we experimentally evaluate the performance of the proposed
algorithms and CMJoin with four real-life and benchmark data sets. We com-
prehensively evaluate CMJoin against state-of-the-art systems and algorithms
concerning efficiency, scalability, and intermediate cost.

4.1 Evaluation Setup

Datasets and Query Design. Table 2 provides the statistics of datasets and
designed CMCQs. These diverse datasets differ from each other in terms of the
tree structure, data skewness, data size, and data model varieties. Accordingly,

Cross-Model Conjunctive Queries over Relation and Tree-Structured Data 29

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

0

20

40

60

80
R
un

ni
ng

ti
m
e
(s
)

PG SJ VJ EH CMJoin

Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24

0

20

40

60

80

Fig. 4. Efficiency: runtime performance for all queries by PG, SJ , V J , EH, and
CMJoin. The performance time of more than 80 s is cut for better presentation.

we designed 24 CMCQs to evaluate the efficiency, scalability, and cost perfor-
mance of the CMJoin in various real-world scenarios.

Comparison Systems and Algorithms. CMJoin is compared with two types
of state-of-the-art cross-model solutions. The first solution is to use one query to
retrieve a result without changing the nature of models [25,34]. We implemented
queries in PostgreSQL (PG), that supports cross-model joins. This enables the
usage of the PG ’s default query optimizer.

The second solution is to encode and retrieve tree nodes in a relational engine
[1,5,29,35]. We implemented two algorithms, i.e. structure join (SJ) (pattern
matching first, then matching the between values) and value join (VJ) (label
value matching first, then matching the position values). Also, we compared to
a worst-case optimal relational engine called EmptyHeaded (EH) [1].

Experiment Setting. We conducted all experiments on a 64-bit Windows
machine with a 4-core Intel i7-4790 CPU at 3.6 GHz, 16 GB RAM, and 500 GB
HDD. We implemented all solutions, including CMJoin and the compared algo-
rithms, in-memory processing by Python 3. We measured the computation time
of joining as the main metric excluding the time used for compilation, data
loading, index presorting, and representation/index creation for all the systems
and algorithms. We employed the Dewey encoding [23] in all experiments. The
join order of attributes is greedily chosen based on the frequency of attributes.
We measured the intermediate cost metric by accumulating all intermediate and
final join results. For PG we accumulated all sub-query intermediate results.
We repeated five experiments excluding the lowest and the highest measure and
calculated the average of the results. Between each measurement of queries, we
wiped caches and re-loaded the data to avoid intermediate results.

Efficiency. Figure 4 shows the evaluation of the efficiency. In general, CMJoin
is 3.33–13.43 times faster in average than other solutions as shown in Table 1.
These numbers are conservative as we exclude the “out of memory” (OOM) and
“time out” (TO) results from the average calculation. Algorithms SJ, VJ, and

30 Y. Chen et al.

EH perform relatively better compared to PG in the majority of the cases as
they encoded the tree data into relation-like formats, making it faster to retrieve
the tree nodes and match twig patterns.

Specifically in queries Q1–Q6, CMJoin, SJ, VJ, and EH perform better than
PG, as the original tree is deeply recursive in the TreeBank dataset [32], and
designed tree pattern queries are complex. So, it is costly to retrieve results
directly from the original tree by PG. Instead, CMJoin, SJ, and VJ use encoded
structural information to excel in retrieving nodes and matching tree patterns
in such cases. In Q2 and Q5, EH performs worse. The reason is that it seeks
for a better instance bound by joining partial tables and sub-twigs first and
then aggregates the result. However, the separated joins yield more intermediate
results in such cases in this dataset. In Q1 and Q4, which deal with a single
table, SJ and VJ perform relatively close as no table joining occurs in these
cases. However, in Q2–Q3 and Q5–Q6, SJ performs worse as joining two tables
first leads to huge intermediate results in this dataset.

In contrast to the above, SJ outperforms VJ in Q7–Q9. The reason is that
in the Xmark dataset [30], the tree data are flat and with fewer matching results
in twig queries. The data in tables are also less skew. Therefore, SJ operates
table joins and twig matching separately yielding relatively low results. Instead,
VJ considers tree pattern matching later yielding too many intermediate results
(see details of Q7 in Fig. 5 and Fig. 6) when joining label values between two
models with non-uniform data. PG, which implements queries in a similar way
of SJ, performs satisfactorily as well. The above comparisons show that compared
solutions, which can achieve superiority only in some cases and can not adapt
well to dataset dynamics.

Queries Q10–Q12 have more complex tree pattern nodes involved. In these
cases VJ filters more values and produces fewer intermediate results. Thus it
outperforms SJ (∼10×) and PG (∼2×). For queries, Q10–Q12 EH also yields
huge intermediate results with more connections in attributes. The comparison
between Q7–Q9 and Q10–Q12 indicates that the solutions can not adapt well to
query dynamics.

Considering queries Q13–Q15 and Q22–Q24, PG performs relatively well
since it involves only JSON and relational data. PG performs well in JSON
retrieving because JSON documents have a simple structure. In Q14–Q15 most
of the solutions perform reasonably well when the result size is small but SJ,
and VJ still suffer from a large result size in Q13. With only JSON data, SJ and
VJ perform similarly, as they both treat a simple JSON tree as one relation.
In contrast in Q16–Q21, it involves XML, JSON and relational data from the
UniBench dataset [34]. CMJoin, SJ, VJ, and EH perform better than PG. This
is again because employing the encoding technique in trees accelerates node
retrieval and matching tree patterns. Also, CMJoin, SJ, VJ, and EH are able to
treat all the data models together instead of achieving results separately from
each model by queries in PG.

Though compared systems and algorithms possess advantages of processing
and matching data, they straightforwardly join without bounding intermediate

Cross-Model Conjunctive Queries over Relation and Tree-Structured Data 31

5% 50% 100%

0

5

10

15

20

R
un

ni
ng

ti
m
e
(s
)

Q1
PG SJ VJ EH CMJoin

5% 50% 100%

0

50

100
Q2

5% 50% 100%

0

20

40

60

Q5

5% 50% 100%

0

5

10

15

20
Q6

5% 50% 100%

0

50

100

150

200
Q7

5% 50% 100%

0

20

40

60

80
Q11

5% 50% 100%

0

50

100

150

Q13

5% 50% 100%

0

5

10
Q15

5% 50% 100%

0

20

40

Q16

5% 50% 100%

0

20

40

Q19

5% 50% 100%

0

20

40

Q20

5% 50% 100%

0

10

20

30

40
Q23

58.03494.41 tooom252.58
to

oom 123.79 to to oom to

to to to to

Fig. 5. Scalability: runtime performance of PG, SJ, VJ, EH, and CMJoin. The x-axis
is the percentage of data size. “oom” and “to” stand for “out of memory” error and
“timeout” (≥10 min), respectively.

results, thus achieving sub-optimal performance during joining. CMJoin is the
clear winner against other solutions, as it can wisely join between models and
between data to avoid unnecessary quadratic intermediate results.

Scalability. Figure 5 shows the scalability evaluation. In most queries, CMJoin
performs flatter scaling as data size increases because CMJoin is designed to
control the unnecessary intermediate output.

As discussed, CMJoin, SJ, VJ, and EH outperform PG in most of the queries,
as the encoding method of the algorithms speeds up the twig pattern matching
especially when the documents or queries are complex. However, PG scales better
when involving simpler documents (e.g. in Q15 and Q23) or simpler queries (e.g.
in Q7). Compared to processing XML tree pattern queries, PG processes JSON
data more efficiently.

Interestingly in Q2, SJ and PG join two relational tables separately from
twig matching, generating quadratic intermediate results, thus leading to the
OOM and TO, respectively. In Q7 VJ joins tables with node values without
considering tree pattern structural matching and outputs an unwanted non-
linear increase of intermediate results, thus leading to OOM in larger data size.
Likewise evaluating EH between Q2 and Q7, it can not adapt well with different
datasets. Performing differently in diverse datasets between SJ/PG and VJ/EH
indicates that they can not smartly adapt to dataset dynamics. While increasing
twig queries in Q11 compared to Q7, VJ filters more results and thus decreases
the join cost and time in Q11. The comparison between SJ/EH and VJ shows
dramatically different performance in the same dataset with different queries
that indicates they can not smartly adapt to query dynamics.

In Q11, both CMJoin and VJ perform efficiently as they can filter out most
of the values at the beginning. In this case, CMJoin runs slightly slower than VJ,
which is reasonable as CMJoin maintains a tree structure whereas VJ keeps only
tuple results. Overall, CMJoin judiciously joins between models and controls

32 Y. Chen et al.

0

0.2

0.4

0.6

0.8

1 ·106

In
te
rm

ed
ia
te

re
su
lt

si
ze

Q1

0

0.2

0.4

0.6

0.8

1 ·106 Q3
JS1 JS2 JS3 JS4 JS5 JS6 JS7

0

2

4

·105 Q4

0

2

4

·106 Q7

0

0.2

0.4

0.6

0.8

1 ·106 Q8

0

2

4

·107 Q9

0

0.2

0.4

0.6

0.8

1 ·106Q10

0

0.2

0.4

0.6

0.8

1 ·108Q13
P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1 ·107Q14

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1 ·106Q16

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1 ·106Q17

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1 ·106Q18

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1 ·106Q19

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1 ·106Q20

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1 ·106Q21

P
G S
J

V
J

E
H

C
M

0

2

4

·106Q24

Fig. 6. Cost: intermediate result size. CM: CMJoin. JS: Joining step.

unwanted massive intermediate results. The evaluation shows that it performs
efficiently and stably in dynamical datasets, with various queries and it also
scales well.

Cost Analysis. Table 1 presents the intermediate result sizes showing that
CMJoin outputs 5.46×, 5.90×, 1.92×, and 1.90× less intermediate results on
average than PG, SJ, VJ, and EH, respectively. Figure 6 depicts more detailed
intermediate results for each joining step. In general, CMJoin generates less
intermediate results due to its designed algorithmic process, worst-case opti-
mality, as well as join order selections. In contrast, PG, SJ, and VJ can easily
yield too many (often quadratic) intermediate results during joining in different
datasets or queries. This is because they have no technique to avoid undesired
massive intermediate results.

PG and SJ suffer when the twig matching becomes complex in datasets
(e.g. Q3 and Q10), while VJ suffers in the opposite case of simpler twig pat-
tern matching (e.g. Q7 and Q16). More specifically in Q3, PG and SJ output
significant intermediate results by joining of two relational tables. In turn, VJ
controls intermediate results utilizing the values of common attributes and tags
between two models. On the other hand, in Q7, Q9, and Q16 VJ does not con-
sider structural matching at first yielding unnecessary quadratic intermediate
results. The above two-side examples indicate that solutions considering only
one model at a time or joining values first without twig matching produce an
undesired significant intermediate result.

EH suffers when the queries and attributes are more connected which leads to
larger intermediate results during join procedures. The reason is that EH seeks a
better instance bound so that it follows the query plan based on the GHD decom-
position [1]. Our proposed method, CMJoin, by wisely joining between models,
avoids an unnecessary massive intermediate output from un-joined attributes.

Summary. We summarize evaluations of CMJoin as follows:

Cross-Model Conjunctive Queries over Relation and Tree-Structured Data 33

1. Extensive experiments on diverse datasets and queries show that averagely
CMJoin achieves up to 13.43× faster runtime performance and produces up to
5.46× less intermediate results compared to other solutions.

2. With skew data CMJoin avoids undesired huge intermediate results by wisely
joining data between models. With uniform data CMJoin filters out more
values by joining one attribute at a time between all models.

3. With more tables, twigs, or common attributes involved CMJoin seems to
perform more efficiently and scale better.

5 Related Work

Worst-Case Size Bounds and Optimal Algorithms. Recently, Grohe and
Marx [15] and Atserias, Grohe, and Marx [2] estimated size bounds for conjunc-
tive joins using the fractional edge cover. That allows us to compute the worst-
case size bound by linear programming. Based on this worst-case bound, several
worst-case optimal algorithms have been proposed (e.g. NPRR [26], LeapFrog
[31], Joen [8]). Ngo et al. [26] constructed the first algorithm whose running
time is worst-case optimal for all natural join queries. Veldhuizen [31] proposed
an optimal algorithm called LeapFrog which is efficient in practice to implement.
Ciucanu et al. [8] proposed an optimal algorithm Joen which joins each attribute
at a time via an improved tree representation. Besides, there exist research works
on applying functional dependencies (FDs) for size bound estimation. The ini-
tiated study with FDs is from Gottlob, Lee, Valiant, and Valiant (GLVV) [14],
which introduces an upper bound called GLVV-bound based on a solution of
a linear program on polymatroids. The follow-up study by Gogacz et al. [11]
provided a precise characterization of the worst-case bound with information-
theoretic entropy. Khamis et al. [19] provided a worst-case optimal algorithm
for any query where the GLVV-bound is tight. See an excellent survey on the
development of worst-case bound theory [27].

Multi-model Data Management. As more businesses realized that data, in
all forms and sizes, are critical to making the best possible decisions, we see a con-
tinuing growth of demands to manage and process massive volumes of different
types of data [21]. The data are represented in various models and formats: struc-
tured, semi-structured, and unstructured. A traditional database typically han-
dles only one data model. It is promising to develop a multi-model database to
manage and process multiple data models against a single unified backend while
meeting the increasing requirements for scalability and performance [21,24]. Yet,
it is challenging to process and optimize cross-model queries.

Previous work applied naive or no optimizations on (relational and tree)
CMCQs. There exist two kinds of solutions. The first is to use one query to
retrieve the result from the system without changing the nature of the model
[25,34]. The second is to encode and retrieve the tree data into a relational engine
[1,5,29,35]. Even though the second solution accelerates twig matching, they
both may suffer from generating large, unnecessary intermediate results. These
solutions or optimizations did not consider cross-model worst-case optimality.

34 Y. Chen et al.

T
a
b
le

2
.
D

a
ta

se
t

st
a
ti

st
ic

s
a
n
d

d
es

ig
n
ed

q
u
er

ie
s

(m
=

1
0
6
,
k

=
1
0
3
).

Cross-Model Conjunctive Queries over Relation and Tree-Structured Data 35

Some advances are already in development to process graph patterns [1,17,28].
In contrast to previous work, this paper initiates the study on the worst-case
bound for cross-model conjunctive queries with both relation and tree structure
data.

Join Order. In this paper, we do not focus on more complex query plan opti-
mization. A better query plan [10,12] may lead to a better bound for some
instances [1] by combining the worst-case optimal algorithm and non-cyclic join
optimal algorithm (i.e. Yannakakis [33]). We leave this as the future work to
continue optimizing CMCQs.

6 Conclusion and Future Work

In this paper, we studied the problems to find the worst-case size bound and
optimal algorithm for cross-model conjunctive queries with relation and tree
structured data. We provide the optimized algorithm, i.e. CMJoin, to compute
the worst-case bound and the worst-case optimal algorithm for cross-model joins.
Our experimental results demonstrate the superiority of proposal algorithms
against state-of-the-art systems and algorithms in terms of efficiency, scalability,
and intermediate cost. Exciting follow-ups will focus on adding graph struc-
tured data into our problem setting and designing a more general cross-model
algorithm involving three data models, i.e. relation, tree and graph.

Acknowledgment. This paper is partially supported by Finnish Academy Project
310321 and Oracle ERO gift funding.

References

1. Aberger, C.R., Tu, S., Olukotun, K., Ré, C.: EmptyHeaded: a relational engine for
graph processing. In: SIGMOD Conference, pp. 431–446. ACM (2016)

2. Atserias, A., Grohe, M., Marx, D.: Size bounds and query plans for relational joins.
In: FOCS, pp. 739–748. IEEE Computer Society (2008)

3. Benedikt, M., Fan, W., Kuper, G.: Structural properties of XPath fragments. The-
oret. Comput. Sci. 336(1), 3–31 (2005). Database Theory

4. Björklund, H., Martens, W., Schwentick, T.: Conjunctive query containment over
trees. In: Proceedings of the 11th International Conference on Database Program-
ming Languages. DBPL 2007 (2007)

5. Bousalem, Z., Cherti, I.: XMap: a novel approach to store and retrieve XML doc-
ument in relational databases. JSW 10(12), 1389–1401 (2015)

6. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern
matching. In: SIGMOD Conference, pp. 310–321. ACM (2002)

7. Chaudhuri, S., Vardi, M.Y.: On the equivalence of recursive and nonrecursive dat-
alog programs. In: PODS, pp. 55–66. ACM Press (1992)

8. Ciucanu, R., Olteanu, D.: Worst-case optimal join at a time. Technical report,
Oxford (2015)

9. Duggan, J., et al.: The BigDAWG polystore system. SIGMOD Rec. 44(2), 11–16
(2015)

36 Y. Chen et al.

10. Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decomposi-
tions: hard and easy cases. In: PODS, pp. 17–32. ACM (2018)

11. Gogacz, T., Toruńczyk, S.: Entropy bounds for conjunctive queries with functional
dependencies. arXiv preprint arXiv:1512.01808 (2015)

12. Gottlob, G., Grohe, M., Musliu, N., Samer, M., Scarcello, F.: Hypertree decom-
positions: structure, algorithms, and applications. In: Kratsch, D. (ed.) WG 2005.
LNCS, vol. 3787, pp. 1–15. Springer, Heidelberg (2005). https://doi.org/10.1007/
11604686 1

13. Gottlob, G., Koch, C., Schulz, K.U.: Conjunctive queries over trees. J. ACM 53(2),
238–272 (2006)

14. Gottlob, G., Lee, S.T., Valiant, G., Valiant, P.: Size and treewidth bounds for
conjunctive queries. J. ACM 59(3), 16:1–16:35 (2012)

15. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans.
Algorithms 11(1) (2014). https://doi.org/10.1145/2636918

16. Hai, R., Geisler, S., Quix, C.: Constance: an intelligent data lake system. In: SIG-
MOD Conference, pp. 2097–2100. ACM (2016)

17. Hogan, A., Riveros, C., Rojas, C., Soto, A.: A worst-case optimal join algorithm for
SPARQL. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 258–275.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6 15

18. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci.
Data 3, 160035 (2016)

19. Khamis, M.A., Ngo, H.Q., Suciu, D.: Computing join queries with functional
dependencies. In: PODS, pp. 327–342. ACM (2016)

20. Loomis, L.H., Whitney, H.: An inequality related to the isoperimetric inequality.
Bull. Am. Math. Soc. 55(10), 961–962 (1949)

21. Lu, J., Holubová, I.: Multi-model data management: what’s new and what’s next?
In: EDBT, pp. 602–605. OpenProceedings.org (2017)

22. Lu, J., Holubová, I.: Multi-model databases: a new journey to handle the variety
of data. ACM Comput. Surv. 52(3), 55:1-55:38 (2019)

23. Lu, J., Ling, T.W., Chan, C.Y., Chen, T.: From region encoding to extended dewey:
on efficient processing of XML twig pattern matching. In: VLDB, pp. 193–204.
ACM (2005)

24. Lu, J., Liu, Z.H., Xu, P., Zhang, C.: UDBMS: road to unification for multi-model
data management. CoRR abs/1612.08050 (2016)

25. Nassiri, H., Machkour, M., Hachimi, M.: One query to retrieve XML and relational
data. Procedia Comput. Sci. 134, 340–345 (2018). FNC/MobiSPC

26. Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-case optimal join algorithms. J.
ACM 65(3), 16:1-16:40 (2018)

27. Ngo, H.Q., Ré, C., Rudra, A.: Skew strikes back: new developments in the theory
of join algorithms. SIGMOD Rec. 42(4), 5–16 (2013)

28. Nguyen, D.T., et al.: Join processing for graph patterns: an old dog with new tricks.
In: GRADES@SIGMOD/PODS, pp. 2:1–2:8. ACM (2015)

29. Qtaish, A., Ahmad, K.: XAncestor: an efficient mapping approach for storing
and querying XML documents in relational database using path-based technique.
Knowl.-Based Syst. 114, 167–192 (2016)

30. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:
XMark: a benchmark for XML data management. In: VLDB, pp. 974–985. Morgan
Kaufmann (2002)

31. Veldhuizen, T.L.: Leapfrog triejoin: a simple, worst-case optimal join algorithm.
arXiv preprint arXiv:1210.0481 (2012)

http://arxiv.org/abs/1512.01808
https://doi.org/10.1007/11604686_1
https://doi.org/10.1007/11604686_1
https://doi.org/10.1145/2636918
https://doi.org/10.1007/978-3-030-30793-6_15
http://arxiv.org/abs/1210.0481

Cross-Model Conjunctive Queries over Relation and Tree-Structured Data 37

32. Xue, N., Xia, F., Chiou, F.D., Palmer, M.: The Penn Chinese TreeBank: phrase
structure annotation of a large corpus. Nat. Lang. Eng. 11(2), 207–238 (2005)

33. Yannakakis, M.: Algorithms for acyclic database schemes. In: VLDB, pp. 82–94.
IEEE Computer Society (1981)

34. Zhang, C., Lu, J., Xu, P., Chen, Y.: UniBench: a benchmark for multi-model
database management systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2018.
LNCS, vol. 11135, pp. 7–23. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-11404-6 2

35. Zhu, H., Yu, H., Fan, G., Sun, H.: Mini-XML: an efficient mapping approach
between XML and relational database. In: ICIS, pp. 839–843. IEEE Computer
Society (2017)

https://doi.org/10.1007/978-3-030-11404-6_2
https://doi.org/10.1007/978-3-030-11404-6_2

Leveraging Search History for Improving
Person-Job Fit

Yupeng Hou1, Xingyu Pan2, Wayne Xin Zhao1,4(B), Shuqing Bian2,
Yang Song3, Tao Zhang3, and Ji-Rong Wen1,2,4

1 Gaoling School of Artificial Intelligence, Renmin University of China,
Beijing, China

{houyupeng,jrwen}@ruc.edu.cn, batmanfly@gmail.com
2 School of Information, Renmin University of China, Beijing, China

bianshuqing@ruc.edu.cn
3 BOSS Zhipin, Beijing, China

{songyang,kylen.zhang}@kanzhun.com
4 Beijing Key Laboratory of Big Data Management and Analysis Methods,

Beijing, China

Abstract. As the core technique of online recruitment platforms,
person-job fit can improve hiring efficiency by accurately matching job
positions with qualified candidates. However, existing studies mainly
focus on the recommendation scenario, while neglecting another impor-
tant channel for linking positions with job seekers, i.e., search. Intuitively,
search history contains rich user behavior in job seeking, reflecting impor-
tant evidence for job intention of users.

In this paper, we present a novel Search History enhanced Person-
Job Fit model, named as SHPJF. To utilize both text content from
jobs/resumes and search histories from users, we propose two compo-
nents with different purposes. For text matching component, we design a
BERT-based text encoder for capturing the semantic interaction between
resumes and job descriptions. For intention modeling component, we
design two kinds of intention modeling approaches based on the Trans-
former architecture, either based on the click sequence or query text
sequence. To capture underlying job intentions, we further propose an
intention clustering technique to identify and summarize the major inten-
tions from search logs. Extensive experiments on a large real-world
recruitment dataset have demonstrated the effectiveness of our approach.

Keywords: Person-job fit · Self-attention · User intention

1 Introduction

With the rapid development of Web techniques, online recruitment has become
prevalent to match qualified candidates with suitable job positions or vacancies

Y. Hou—Work done during internship at BOSS Zhipin NLP Center.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 38–54, 2022.
https://doi.org/10.1007/978-3-031-00123-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_3&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_3

Leveraging Search History for Improving Person-Job Fit 39

through the online service. As the core technique of online recruitment, it is key
to develop an effective algorithm for the task of person-job fit [24], given the
huge increase in both job seekers and job positions.

On online recruitment platforms, businesses publish job descriptions intro-
ducing the requirement for the positions, while job seekers upload their resumes
stating their skills and the expectation about jobs. A job seeker can browse the
job listings, send applications to interested positions and further schedule the
interviews. Since both job descriptions and candidate resumes are presented in
natural language, person-job fit is typically casted as a text-matching task [24],
and a number of studies [1,2,15] aim to learn effective text representation models
for capturing the semantic compatibility between job and resume contents.

Existing studies mainly focus on the recommendation scenario, where the
system provides recommended job positions and a job seeker provides implicit
or explicit feedback to these recommendations through behaviors such as click-
ing or making an application. However, another important channel of search
has seldom been considered in previous studies: a user can also actively issue
queries and click interested jobs like in general-purpose search engine. Although
on online recruitment platforms recommendation takes a higher volume of user
behaviors, search also serves an important complementary function. According
to the statistics on the collected dataset, search takes a considerable proportion
of 19% volume of user behaviors against the major proportion of 81% by recom-
mendation. Intuitively, search history contains rich user behavior in job seeking,
reflecting important evidence for job intention of users. In particular, it will be
more important to consider when resume text is not well-written (noisy, short
or informal), or when the intention of the job seeker is unclear (e.g., low-skilled
job seekers tend to consider a diverse range of job categories).

Considering the importance of search history data, we aim to leverage these
valuable user data for improving the task of person-job fit. However, there are two
major challenges to effectively utilize search history data. First, search history is
usually presented in the form of short queries together with clicked (or applied)
jobs, and it is unclear how to capture actual job needs from search logs. Second,
the semantics reflected in search history can be redundant or diverse, and it is
difficult to find out the underlying major intentions for job seekers.

To this end, in this paper, we propose a novel Search History enhanced
Person-Job Fit model, named as SHPJF. It jointly utilizes text content from
job descriptions/resumes and search histories from users. On one hand, we design
a BERT-based text encoder for capturing the semantic interaction between
resumes and job descriptions, called text matching component. On the other
hand, we leverage the search history to model the intention of a candidate, called
intention modeling component. In intention modeling component, we design two
kinds of intention modeling approaches based on the Transformer architecture.
These two approaches consider modeling the click sequence and query text
sequence, respectively. To capture underlying job intentions, we further propose
an intention clustering technique to identify and summarize the major intentions
from search logs. Finally, we integrate the above two components together.

40 Y. Hou et al.

To the best of our knowledge, it is the first time that search history data has
been leveraged to improve the task of person-job fit. To evaluate our approach, we
construct a large real-world dataset from a popular online recruitment platform.
Extensive experiments have shown that our approach is more effective than a
number of competitive baseline methods.

2 Related Work

Person-Job Fit (PJF) has been extensively studied in the literature as an impor-
tant task in recruitment data mining [9,17]. The early research efforts of person-
job fit can be dated back to Malinowski et al. [14], who built a bilateral person-job
recommendation system using expectation maximization algorithm. Then, some
works casted this problem as a collaborative filtering task [12,22].

The major limitation of early methods lies in the ignorance of the seman-
tic information of job/resume documents. Thus, recent research mostly treats
person-job fit as a text-matching task. Several models are designed to extract
expressive representations from resume and job description documents via Con-
volutional Neural Network (CNN) [24], Recurrent Neural Network (RNN) [15]
and self-attention mechanisms [1,13]. Besides, rich features of candidates and
jobs are also leveraged, such as historical matched documents [19], multi-level
labels [11], multi-behavioral sequences [5] or other general contextual features [8].

Most previous work considers person-job interactions from the recommen-
dation scenario as implicit or explicit signals. As a comparison, we would like
to extend this body of research by leveraging search history of users on online
recruitment platforms, which is a valuable resource to understand the job inten-
tions of users. We are also aware that there are some general studies that jointly
consider search and recommendation [20,21]. However, to our knowledge, we are
the first to leverage search history for improving person-job fit task.

3 Problem Definition

Assume there are a set of job positions J = {j1, j2, . . . , jM} and a set of candi-
dates U = {u1, u2, . . . , uN}, where M and N represent the total number of job
positions and candidates respectively. Each job j (job ID) is associated with a
text of job description tj , and each candidate u (user ID) is associated with a
text of resume ru. And, an observed match set (recommendations with explicit
feedback) D = {〈u, j, yu,j〉|u ∈ U , j ∈ J } is given, where yu,j is the binary label
indicating the match result (1 for success and 0 for failure) for user u and job j.

Different from existing settings [1,15,24], we assume that the search his-
tory of each user u is also available. On recruitment platforms, a user can issue
queries, and then she clicks or applies for some jobs for interviews during the
session of this query. For user u, a L-length search history is formally denoted as
Hu = {〈q1, j1〉, . . . , 〈qL, jL〉}, where qi denotes a query (a short word sequence
describing the desired position) and ji denotes the job that user u clicks or
applies for this job during the query session for qi. The tuples in Hu are sorted

Leveraging Search History for Improving Person-Job Fit 41

in temporal order. Note that queries in one session might be the same, i.e., a
user applies for multiple jobs under the same query content. Besides, different
sessions might correspond to the same query content, i.e., a user issued the same
query at a different time. Based on the observed match set D and the search
history H, our task is to learn a predictive function f(u, j) ∈ [0, 1] to predict the
confident score that a user u ∈ U will accept job position j ∈ J each other.

Fig. 1. The overall architecture of SHPJF.

4 The Proposed Approach

In this section, we present the proposed Search History enhanced Person-Job
Fit model, named as SHPJF. It considers two kinds of data signals to develop
the matching model, either text content from resumes/job descriptions or search
histories issued by users. On one hand, we design a BERT-based text encoder
for capturing the semantic interaction between resumes and job descriptions,
called text matching component. On the other hand, we leverage the search his-
tory to model the intention of a candidate, called intention modeling component.
Based on the Transformer architecture, we design two kinds of intention model-
ing approaches, either with job ID sequence or with query text sequence. Figure 1
presents the overall architecture of our proposed approach.

4.1 Text Matching Component

On online recruitment platforms, a major criterion for person-job fit is that a
candidate’s resume should well match the job description in text contents. It
is not easy to learn a good semantic match model for this task, as candidate
resumes and job descriptions are likely to be described or presented in different
ways [24].

42 Y. Hou et al.

Recent years, self-attention mechanisms (e.g., Transformer [18]) and its
extensions on pre-trained model (e.g., BERT [4]) have made great progress in
various natural language processing tasks. Therefore, we adopt a standard BERT
model to develop the text matching component. Given a pair of resume ru and
job description tj , we firstly concatenate (1) a special symbol [CLS], (2) resume
document, (3) a special symbol [SEP], and (4) job description document, in
order and derive the input sequence for BERT. Then the concatenated sequence
is fed to the BERT model, so we have

oT = BERT([CLS]; ru; [SEP]; tj]), (1)

where oT is the final hidden vector corresponding to the first input token
([CLS]). The self-attention mechanism in BERT can effectively characterize the
semantic interaction between resume and job description.

Note that another possible architecture is to adopt a two-tower encoder
with two separate BERTs [1]. However, as shown in previous studies in dense
retrieval [7], the currently adopted single-tower encoder (also called cross
encoder) is more effective than the two-tower encoder, since it can capture fine-
grained semantic interaction between the texts on two sides.

4.2 Intention Modeling Component

Above, text-based matching component mainly measures the matching degree
between job and candidate based on semantic compatibility in content. As intro-
duced in Sect. 3, search history data is also available in our setting. Since search
history contains the issued queries and the applied (or clicked) jobs, it provides
important evidence for modeling user’s intention. To learn such intention, we
design a two-stream intention aggregation approach, where both job ID sequence
and query text sequence are modeled to capture the underlying intention seman-
tics. In particular, different queries are likely to correspond to the same inten-
tion, e.g., “layer” and “case source”. Considering this issue, we further design
an intention clustering technique. Finally, the derived representations in two
streams are combined as the final intention representation.

Intention Modeling with Job ID Sequence. Recall that the search history
for user u is given as Hu = {〈q1, j1〉, 〈q2, j2〉, . . . , 〈qL, jL〉} in Sect. 3. We first
consider extracting the intention semantic from the sequence of clicked or applied
job IDs, namely j1 → j2 . . . → jL, where these jobs reflect the job preference of
user u. We first embed the job IDs in the search history:

h1,h2, . . . ,hL =IDEmb(j1, j2, . . . , jL), (2)
HJ =[h1;h2; . . . ;hL], (3)

where hj denotes the embedding for job j with the IDEmb layer. Here, we apply
a look-up operation to obtain job ID embeddings from the IDEmb layer. Note

Leveraging Search History for Improving Person-Job Fit 43

that IDs of the recommended job and those in the search history are embedded
into the same semantic space (by the same look-up table IDEmb in Eqn. (2)).

Intention Clustering. As one candidate may have diverse job intentions, the
embeddings of interested jobs from search history are clustered into several inten-
tions. Formally, we have

CJ =PJHJ , (4)

PJ =softmax(W1H
�
J + b1), (5)

where PJ is a probability assignment matrix that gives the probabilities of a job
(from search history) into each cluster, and W1 and b1 are learnable parame-
ter matrix and bias respectively. Here, CJ ∈ R

k×dj is an intention embedding
matrix, where each of the k intentions is mapped into a b-dimensional vector.

Job-specific Intention Representation. After obtaining the representations
of k intentions (CJ) for user u, we next learn the intention representation of user
u given a recommended job position j. The basic idea is to consider the relevance
of job j with each of the learned intention representations. Intuitively, a job tends
to be accepted by a user if it highly matches with some specific intention of the
user. We adopt the self-attention architecture [18] to characterize this idea by
attending job j to each intention embedding. To be specific, we adopt multi-head
attention operation [18]:

MHAttn(Q,K,V) =[head1, . . . , headh]WO, (6)

headi =softmax
(
QWQ

i (KWK
i)�/

√
D

)
V W V

i , (7)

where WQ
i ,WK

i ,W V
i and WO are parameter matrices, and 1√

D
is the scaling

factor. With the above attention operation, we specially designed queries (job
embedding), keys (intention embedding) and values (intention embedding) as:

eJ = MHAttn(hj ,CJ ,CJ), (8)

where hj is the embedding for job j obtained from the IDEmb layer, and eJ ∈
R

dj denotes the learned intention representation based on job ID sequence. By
mapping job j (as a query) against a sequence of intentions (as keys), each
intention is assigned with a relevance score. Those highly relevant intentions (as
values) will receive a larger attention weight. Since the recommended job j has
attended to each intention, eJ encodes important evidence for measuring the
match degree between job j and user u.

Intention Modeling with Query Text Sequence. To learn user intention,
another kind of important data signal from search history is the query text, i.e.,
q1 → q2 . . . → qL. Each query is a short sequence of words, reflecting the user
intention in job seeking. We follow the similar approach as modeling job ID

44 Y. Hou et al.

sequence to model query text sequence. Firstly, we apply the look-up operation
and the average pooling to represent each query in low-dimensional space:

h̃1, h̃2, . . . , h̃L =Pooling
(
WordEmb(q1, q2, . . . , qL)

)
, (9)

HQ =[h̃1, h̃2, . . . , h̃L], (10)

where WordEmb(·) is a learnable embedding layer, and Pooling(·) is an average
pooling layer that aggregates several vectors into a single representation.

Intention Clustering. By considering both query text and job ID, we can
derive a more comprehensive intention learning approach by following Eqn. (4)
and (5):

CQ =PQHQ, (11)
C ′

J =PQHJ , (12)

PQ =softmax(W2[HQ;HJ]� + b2), (13)

where CQ ∈ R
k×dj and CJ ∈ R

k×dj denote the learned intention representations
(k intentions) based on query text and job ID, respectively, PQ is a probability
assignment matrix of the probabilities of jobs in the learned intentions (clusters),
and W2 and b2 are learnable parameter matrix and bias respectively.

Job-specific Intention Representation. After obtaining the representations
of k intentions (C ′

J and CQ) for user u, we next learn the intention representation
of user u given a recommended job position j. Following Eqn. (8), we still adopt
the multi-head attention to learn the intention representation:

eQ = MHAttn(htj ,CQ,CJ), (14)

where the representation of job description for j (denoted by tj) to be matched,
denoted as htj , is used as query, the clustered query representations are used
as key, and the clustered ID representations are used as value. Here the rele-
vance of job j to intentions is defined by the similarity between job description
representation htj and the clustered query text representations CQ. Intentions
associated with highly relevant queries are assigned with high attention weights.
The derived eQ can represent the learned intention through query text. A key
point is that we still adopt CJ as values, so that eQ and eJ can be subsequently
fused.

Intention Representation Fusion. To combine the above two kinds intention-
based representations, we apply a weighted linear combination:

ẽ = λeJ + (1 − λ)eQ, (15)

where eJ (Eqn. (8)) and eQ (Eqn. (14)) are the learned intention representations,
and λ is a tuning coefficient. If a recommended job well matches the job seeking

Leveraging Search History for Improving Person-Job Fit 45

intention of a user, it indicates that such a person-job pair should be more likely
to be successful. Following [15], we measure the match degree by fusion:

oI = MLP
(
[ẽ;hj ; ẽ − hj ; ẽ ◦ hj]

)
, (16)

where oI encodes the match information about this person-job pair based on
intention, hj is the embedding for job j, ẽ is the combined intention represen-
tation (Eqn. (15)), MLP is multilayer perceptron stacked with fully connected
layers, and “◦” denotes the hadamard product operation.

4.3 Prediction and Optimization

With the text matching and intention modeling component, we finally integrate
the two match representations to predict the confident score of a person-job pair:

ŷu,j = σ(MLP
(
[oT ;oI ; smatch]

)
), (17)

where ŷu,j ∈ [0, 1] indicates the matching degree between candidate u and job
j, oT and oI are the learned match representations in Eqns. (1) and (16),
respectively. In addition to two match representations, we also incorporate a
simple match score based on the user embedding and job embedding, i.e.,
smatch = h�

j · hu, where hu and hj are obtained from the IDEmb(·) layer.
We adopt binary cross entropy loss to optimize our model,

L =
∑

〈u,j,yu,j〉∈D
− [yu,j · log ŷu,j + (1 − yu,j) · log(1 − ŷu,j)] , (18)

where we iterate the training dataset and compute the accumulate loss.

Learning. In our model, various kinds of embeddings (IDEmb layer in Eqn. (2),
WordEmb layer in Eqn. (9)) and involved component parameters are the model
parameters. Note that each MHAttn (Eqns. (8) and (14)) and intention cluster-
ing layers (Eqns. (5) and (13)) are with different parameters. In order to avoid
overfitting, we adopt the dropout strategy with a rate of 0.2. More implementa-
tion details can be found in Sect. 5.1.

Time Complexity . For online service, it is more important to analyze online
time complexity for a given impression list of q job positions. Our text matching
component requires a time of O(lm2dw + lmd2w), where dw is the token embed-
ding dimension, m is the truncated length of input tokens and l is the number
of BERT layers. While the cross-encoder architecture can be efficiently accel-
erated with an approximately learned dual-encoder (e.g., distillation [10]). We
can also accelerate our text matching component with the two-tower architec-
ture described in Sect. 4.1. In this way, the representations of resumes and job
descriptions can be calculated offline, and we only need to perform an inner
product operation online.

As for our intention modeling component, we adopt a lazy-update tech-
nique to pre-calculate each user’s intention representations CJ (Eqn. (4)), C ′

J

46 Y. Hou et al.

(Eqn. (12)) and CQ (Eqn. (11)). We update user’s search history and update CJ ,
C ′

J and CQ offline every several hours. Thus, the complexity mainly depends
on the calculation of multi-head attention mechanism (Eqn. (8) and Eqn. (14)).
Suppose k is the number of clusters and dj is dimension of clustered inten-
tion representations. The complexity of one single pass of intention modeling
component is O(kd2j). Suppose MLP in Eqns. (16) and (17) are both s lay-
ers, the complexity of intention representation fusion (Eqn. (16)) is O(s · d2j).
For one pair of candidate and job, the complexity of prediction (Eqn. (17)) is
O(s · (dw + dj)2). The overall complexity of online serving for a session of n jobs
is O (

nlm2dw + nlmd2
w + nkd2j + ns(dw + dj)2

)
. Such a time complexity can be

further reduced with parallel efficiency optimization.

Table 1. Statistics of the datasets. L denotes the average length of search history per
candidate. |q| denotes the average number of words per query.

#candidates #jobs #positive #negative L |q|
53, 566 307, 738 257, 922 2, 109, 876 16.55 1.50

5 Experiments

In this section, we conduct extensive experiments to verify the effectiveness of
our model. In what follows, we first set up the experiments, and then present
and analyze the evaluation results.

5.1 Experimental Setup

Datasets. We evaluate our model on a real-world dataset provided by a popular
online recruiting platform. The records of our dataset are collected from the real
online logs between November 3 and November 12 in 2020. We anonymize all the
records by removing identity information to protect the privacy of candidates.
Our dataset and code are available at https://github.com/RUCAIBox/SHPJF.

There are three kinds of user behavior in our dataset, called Accept, Apply,
and Exposure. Accept means that a candidate and a company reach an agree-
ment on an offline interview. Apply means that a candidate applies for a job.
Generally, it means that the candidate shows a clear intention to the applied
job [11]. Exposure means that a job position has been exposed to the candidate
but the candidate may not perform further behavior. To construct the evaluation
dataset, all the job-user pairs with Accept are considered to be positive instances,
while those pairs with Exposure but without further behavior are considered to
be negative instances. Since the number of Exposure is huge so that for each
positive instance we pair it with several negative instances from the same expo-
sure of a recommendation list. The ratio of positive and negative instances is
approximately 1 : 8. Note that all the instances are from the recommendation

https://github.com/RUCAIBox/SHPJF

Leveraging Search History for Improving Person-Job Fit 47

Table 2. Performance comparisons of different methods. The improvement of our
model over the best baseline is significant at the level of 0.01 with paired t-test.

Method GAUC R@1 R@5 MRR

PJFNN 0.5313 0.1412 0.5192 0.4025

BPJFNN 0.5343 0.1391 0.5217 0.4008

APJFNN 0.5323 0.1403 0.5185 0.4000

BERT 0.5449 0.1515 0.5297 0.4129

MV-CoN 0.5463 0.1554 0.5307 0.4165

SHPJF (ours) 0.5785 0.1630 0.5516 0.4297

channel, we remove the ones which also appear in the search channel for the
same user to avoid data leakage.

We sort the records of the selected instances by timestamp. Records of the
last two days are used as validation set and test set respectively, while the others
are used for training. For a user, we also obtain her search history (queries
with clicked jobs). The number of browsing and clicking behaviors is very large
and noisy. Therefore, we only keep jobs with the status of Apply. We truncate
the search history before the timestamp of validation set. The statistics of the
processed data are summarized in Table 1.

Baselines. We compare our model with the following representative methods:

– PJFNN [24] is a convolutional neural network (CNN) based method, resumes
and job descriptions are encoded independently by hierarchical CNNs.

– BPJFNN [15] leverages bidirectional LSTM to derive the resume and job
description representations.

– APJFNN [15] proposes to use hierarchical RNNs and co-attention tech-
niques to process the job positions and resumes.

– BERT [4] is a broadly used pre-trained model for learning text representa-
tions. Here, we adopt the released pre-trained BERT-Base-Uncased model.
Then it was fine-tuned on our dataset as a sentence pair classification task.

– MV-CoN [1] is a BERT-based multi-view co-teaching network that is able
to learn from sparse, noisy interaction data for job-resume matching.

We finally report metrics on the test set with models that gain the highest
performance on the validation set.

Implementation Details. Text-matching module is initialized via the BERT-
Base-Uncased1. The dimensions of word embeddings and ID embeddings are
128 and 16 respectively. The dimension of the hidden state is 64. Hyperparame-
ters of baselines are tuned in the recommended range from the original papers.
We select combination coefficient λ as 0.6, number of clusters k as 4 and num-
ber of heads h as 1. The Adam optimizer is used to learn our model, and the
1 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers

48 Y. Hou et al.

Fig. 2. Comparison of low-skilled and high-skilled candidates. Each job position
belongs to one of the 950+ pre-defined job categories.

Table 3. Performance comparisons of different methods on low-skilled and high-skilled
candidates. APJFNN is taken as the base model to compute the RelaImpr.

Groups Low-skilled Candidates High-skilled Candidates

Method GAUC RelaImpr GAUC RelaImpr

PJFNN 0.5295 −4.53% 0.5318 −2.75%

BPJFNN 0.5399 +29.13% 0.5326 −0.31%

APJFNN 0.5309 0.00% 0.5327 0.00%

BERT 0.5381 +23.30% 0.5470 +43.73%

MV-CoN 0.5396 +28.16% 0.5484 +48.01%

SHPJF 0.5689 +122.98% 0.5814 +148.93%

learning rate is tuned in {0.01, 0.001, 0.00001}. The dropout ratio is tuned in
{0, 0.1, 0.2, 0.3, 0.5}. We adopt early stopping with patience of 5 epochs.

Evaluation Metrics. Given a candidate, we tend to rank the more appropri-
ate job positions higher in the recommended list. Thus, we adopt Grouped AUC
(GAUC), Recall@K (R@{1, 5}) and MRR to evaluate our models. As the tradi-
tional AUC metric doesn’t treat different users differently, we use GAUC [23,25],
which averages AUC scores over users.

5.2 The Overall Comparison

Table 2 presents the performance comparison between our model and the base-
lines on person-job fit. Overall, the three methods PJFNN, BPJFNN and
APJFNN tend to have similar performance on our dataset. Furthermore, the
two BERT-based methods (i.e., BERT and MV-CoN) seem to perform better
leveraging the excellent modeling capacities of pre-trained models. Different from
previous studies on person-job fit, our negative instances are more strong, i.e.,
they are from the same impression list with the positive instance. So, the text
match model should be capable of identifying fine-grained variations in seman-
tic representations. This may explain why BERT-based methods are better than

Leveraging Search History for Improving Person-Job Fit 49

traditional neural network-based methods. Another observation is that MV-CoN
is slightly better than BERT by further considering multi-view learning.

As a comparison, our model achieves the best performance on all the met-
rics. In specific, SHPJF can improve the best baseline’s GAUC result by 3.22%
and 5.89% absolutely and relatively, respectively. These results demonstrate the
effectiveness of our approach. In particular, we incorporate a special intention
component that learns user intention representations from search history. Such a
component is able to enhance the base text matching component (a cross encoder
based on BERT), which is the key to performance improvement.

5.3 Evaluation in Different Skill Groups

According to the employability in the labor market, candidates can be divided
into low-skilled and high-skilled candidates. Furthermore, candidates who
applied for jobs with less training participation and high task flexibility can
be classified as low-skilled candidates [3,16]. It is usually more difficult for low-
skilled candidates to find suitable job positions. Therefore, we would like to
examine the performance improvement w.r.t. different groups.

In our recruitment platform, domain experts manually annotate low-skilled
candidates in order to provide specific requirement strategies, so that each user
in our dataset will be associated with a label indicating that whether she/he is a
low-skilled candidate. Figure 2 shows the average resume lengths and the average
number of interested job categories in the two groups. As we can see, low-skilled
candidates have a shorter resume in text and a more diverse of interested job cat-
egories. These characteristics make it more difficult to apply text-based matching
algorithms in finding suitable job positions for low-skilled candidates. As a com-
parison, our method incorporates search history to enhance the matching model,
which is expected to yield larger improvement on low-skilled candidates.

To examine this, we follow [23] and introduce RelaImpr as a metric of the
relative improvements over the base model. Here, we adopt APJFNN as the base
model and check how the other methods improve over it in different groups. As
shown in Table 3, it is more difficult to recommend suitable jobs for low-skilled
candidates (lower performance). The improvement of BERT and MV-CoN is
actually very small, which means that BERT-based approaches mainly improve
the performance of high-skilled candidates. As a comparison, our method yields
substantial improvement in low-skilled candidates, which further indicates the
necessity of leveraging search history data.

5.4 Ablation Study

The major technical contribution of our approach lies in the intention mod-
eling component. It involves several parts and we now analyze how each part
contributes to the final performance.

We consider the following four variants of our approach for comparison: (A)
BERT is a BERT-based text matching model (same as the text matching com-
ponent in Sect. 4.1); (B) BERTGRU replaces the intention modeling component

50 Y. Hou et al.

Table 4. Ablation study of the variants for our model.

Variants GAUC R@1 R@5 MRR

BERT 0.5449 0.1515 0.5297 0.4129

BERTGRU 0.5557 0.1546 0.5334 0.4196

BERTquery 0.5572 0.1558 0.5342 0.4201

SHPJF w/o Q 0.5697 0.1599 0.5456 0.4270

SHPJF w/o J 0.5715 0.1634 0.5456 0.4286

SHPJF w/o C 0.5738 0.1581 0.5443 0.4237

SHPJF 0.5785 0.1630 0.5516 0.4297

Fig. 3. Performance tuning of our model on different hyper-parameters

with GRU4Rec [6] to encode the job ID sequence; (C) BERTquery replaces the
intention modeling component (Sect. 4.2) with a BERT-based model to encode
the concatenated query text sequence; (D) SHPJF w/o Q removes the part of
intention modeling with query text sequence; (E) SHPJF w/o J removes the
part of intention modeling with job ID sequence; (F) SHPJF w/o C removes
the intention clustering (Eqns. (4), (12) and (11)).

In Table 4, we can see that the performance order can be summarized as:
BERT < BERTGRU � BERTquery < SHPJF w/o Q < SHPJF w/o J � SHPJF
w/o C < SHPJF. These results indicate that all the parts are useful to improve
the final performance. Besides, GRU4Rec doesn’t perform well in our experi-
ments. We observe that user behavior sequences in person-job fit differ from
those in traditional sequential recommendation scenarios [6]. Existing research
also mainly treats person-job fit as a text-matching task but doesn’t directly
leverage user behavior sequences. We can see that the carefully designed Trans-
former architecture performs better in modeling search logs (e.g., BERTGRU <
SHPJF w/o Q, BERTquery < SHPJF w/o J). In particular, intention model-
ing with query text sequences brings more improvement than only with job ID
sequences, as query texts directly reflect users’ intention in job seeking.

Leveraging Search History for Improving Person-Job Fit 51

Fig. 4. Case study: a matched pair between a low-skilled candidate and a job position.

5.5 Performance Tuning

In this part, we examine the robustness of our model and perform a detailed
parameter analysis. For simplicity, we only incorporate the best baseline MV-
CoN from Table 2 as a comparison.

Varying the Combination Coefficient λ. We use a coefficient λ to combine
the two involved intention representations in Eqn. (15). Here, we vary the com-
bination coefficient λ in the range of 0 and 1 with a gap of 0.1. When λ = 1
and 0, the model degenerates to SHPJF w/o Q and SHPJF w/o J described in
Sect. 5.4 respectively. As Fig. 3a presented, our model achieves the best perfor-
mance when λ = 0.6. With a selection between 0.4 and 0.8, the performance
is relatively stable. The results indicate both intention modeling methods are
important for our task, which can complement each other in performance.

Varying the Number of Clusters. In the intention modeling component, we
introduce k to denote the number of clusters. The larger k is, the more fine-
grained the learned intentions will be. Here, we vary the number of clusters
in the set {1, 2, 4, 8, 16, 32}. As shown in Fig. 3b, our model achieves the best
performance when k = 4 and k = 16. Overall, the performance is relatively
stable with different values for k.

Varying the Length of Search History. In our work, we leverage search
history to enhance person-job fit. It is intuitive that the length of search history
will affect the final performance. Here, we vary the (maximum) sequence length of
search history in a selection of {4, 8, 16, 32, 64}. The tuning results are presented
in Fig. 3c. From Fig. 3c, we can see that our model gradually improves with the
increase of the sequence length. It shows that using more search history will
boost the match performance.

Varying the ID Embedding Dimensionality. We vary the embedding
dimensionality dj in a selection of {4, 8, 16, 32, 64, 128} to examine how the per-
formance changes. As shown in Fig. 3d, we find a small embedding dimensionality
(dj = 8 or 16) can lead to a good performance, which can be more efficient in
the industrial deployment.

52 Y. Hou et al.

5.6 Qualitative Analysis

In this part, we present a qualitative example, and intuitively illustrate how our
model works. In Fig. 4, we present a positive case (i.e., with the status Accept in
system) for a user and a job position. This interaction record is randomly sam-
pled from our dataset. Privacy information has been masked or removed. This
user is classified as a low-skilled candidate by a domain expert in our platform.
As we can see, his resume document is indeed very short, and the job intention
is not clearly stated. Given this case, it is difficult to match the candidate with
the current position, as the job description has few overlapping words with the
resume (semantically different). Therefore, previous text-based matching algo-
rithms [1,15,24] would fail in this matched case.

However, by checking the candidate’s search history, we find that he has
issued queries about several job intentions, like “Makeup Assistant”, “Photo-
graph”, “Lawyer”, etc. These intentions cannot be extracted or inferred from
his resume. While our intention modeling component is effective to derive mean-
ingful clusters about intentions. Then, the intention clusters with at least one
of the following conditions will be assigned high attentions weights: (1) contain
similar jobs in search history as the job position to be matched. (2) contain query
words highly related or similar to words in the job description, such as “source
of case - Case source” (marked in red) and “copyright owner - Law/Lawyer”
(marked in purple). Once the correct intention cluster has been identified (with
a large attention weight), we can indeed derive a job-specific intention represen-
tation (see Sect. 4.2). In this way, we can correctly match this job-candidate pair
even if their documents are semantically different.

This example shows that leveraging search history is able to improve the
performance for person-job fit. It also intuitively explains why our method can
yield performance improvement on low-skilled candidates (see Table 3).

6 Conclusion

In this paper, we presented the first study that leveraged search history data for
improving the task of person-job fit. Our approach developed a basic component
based on BERT for capturing the semantic interaction between resumes and job
descriptions. As the major technical contribution, we designed a novel intention
modeling component that was able to learn and identify the intention of job
seekers. It modeled two kinds of sequences, either the click sequence or query
text sequence. Furthermore, an intention clustering technique is proposed to
accurately capture underlying job intentions. Extensive experiments on a large
recruitment data have shown the demonstrated the effectiveness of our approach.

Besides search history, there are other kinds of side information for person-
job fit. As future work, we will consider developing a more general approach to
leverage various kinds of side information in a unified way.

Leveraging Search History for Improving Person-Job Fit 53

Acknowledgements. This work was partially supported by the National Natural
Science Foundation of China under Grant No. 61872369 and 61832017, Beijing Out-
standing Young Scientist Program under Grant No. BJJWZYJH012019100020098.

References

1. Bian, S., et al.: Learning to match jobs with resumes from sparse interaction data
using multi-view co-teaching network. In: CIKM (2020)

2. Bian, S., Zhao, W.X., Song, Y., Zhang, T., Wen, J.R.: Domain adaptation for
person-job fit with transferable deep global match network. In: EMNLP (2019)

3. De Grip, A., Van Loo, J., Sanders, J.: The industry employability index: Taking
account of supply and demand characteristics. Int. Lab Rev. 143, 211 (2004)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL (2019)

5. Fu, B., Liu, H., Zhu, Y., Song, Y., Zhang, T., Wu, Z.: Beyond matching: Model-
ing two-sided multi-behavioral sequences for dynamic person-job fit. In: DASFAA
(2021)

6. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. In: ICLR (2016)

7. Humeau, S., Shuster, K., Lachaux, M., Weston, J.: Poly-encoders: architectures
and pre-training strategies for fast and accurate multi-sentence scoring. In: ICLR
(2020)

8. Jiang, J., Ye, S., Wang, W., Xu, J., Luo, X.: Learning effective representations for
person-job fit by feature fusion. In: CIKM (2020)

9. Kenthapadi, K., Le, B., Venkataraman, G.: Personalized job recommendation sys-
tem at LinkedIn: practical challenges and lessons learned. In: RecSys (2017)

10. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a
lite BERT for self-supervised learning of language representations. In: ICLR (2020)

11. Le, R., Hu, W., Song, Y., Zhang, T., Zhao, D., Yan, R.: Towards effective and
interpretable person-job fitting. In: CIKM (2019)

12. Lu, Y., Helou, S.E., Gillet, D.: A recommender system for job seeking and recruiting
website. In: WWW (2013)

13. Luo, Y., Zhang, H., Wen, Y., Zhang, X.: ResumeGAN: an optimized deep repre-
sentation learning framework for talent-job fit via adversarial learning. In: CIKM
(2019)

14. Malinowski, J., Keim, T., Wendt, O., Weitzel, T.: Matching people and jobs: a
bilateral recommendation approach. In: HICSS (2006)

15. Qin, C., Zhu, H., Xu, T., Zhu, C., Jiang, L., Chen, E., Xiong, H.: Enhancing
person-job fit for talent recruitment: an ability-aware neural network approach. In:
SIGIR (2018)

16. Sanders, J., De Grip, A.: Training, task flexibility and the employability of low-
skilled workers. Int. J. Manpower 25, 1–21 (2004)

17. Shalaby, W., et al.: Help me find a job: a graph-based approach for job recommen-
dation at scale. In: BigData (2017)

18. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
19. Yan, R., Le, R., Song, Y., Zhang, T., Zhang, X., Zhao, D.: Interview choice reveals

your preference on the market: To improve job-resume matching through profiling
memories. In: SIGKDD (2019)

20. Zamani, H., Croft, W.B.: Joint modeling and optimization of search and recom-
mendation. In: DESIRES (2018)

54 Y. Hou et al.

21. Zamani, H., Croft, W.B.: Learning a joint search and recommendation model from
user-item interactions. In: WSDM (2020)

22. Zhang, Y., Yang, C., Niu, Z.: A research of job recommendation system based on
collaborative filtering. In: ISCID (2014)

23. Zhou, G., et al.: Deep interest network for click-through rate prediction. In:
SIGKDD (2018)

24. Zhu, C., et al.: Person-job fit: Adapting the right talent for the right job with joint
representation learning. In: TMIS (2018)

25. Zhu, H., et al.: Optimized cost per click in Taobao display advertising. In: KDD
(2017)

Efficient In-Memory Evaluation
of Reachability Graph Pattern Queries

on Data Graphs

Xiaoying Wu1, Dimitri Theodoratos2(B), Dimitrios Skoutas3, and Michael Lan2

1 Wuhan University, Wuhan, China
xiaoying.wu@whu.edu.cn

2 New Jersey Institute of Technology, Newark, USA
{dth,mll22}@njit.edu

3 R.C. Athena, Athens, Greece
dskoutas@imis.athena-innovation.gr

Abstract. Graphs are a widely used data model in modern data-
intensive applications. Graph pattern matching is a fundamental opera-
tion for the exploration and analysis of large data graphs. In this paper,
we present a novel approach for efficiently finding homomorphic matches
of graph pattern queries, where pattern edges denote reachability rela-
tionships between nodes in the data graph. We first propose the con-
cept of query reachability graph to compactly encode all the possible
homomorphisms from a query pattern to the data graph. Then, we
design a graph traversal-based filtering method to prune nodes from the
data graph which violate reachability conditions induced by the pat-
tern edges. We use the pruned data graph to generate a refined query
reachability graph which serves as a compact search space for the pattern
query answer. Finally, we design a multiway join algorithm to enumerate
answer tuples from the query reachability graph without generating an
excessive number of redundant intermediate results (a drawback of previ-
ous approaches). We experimentally verify the efficiency of our approach
and demonstrate that it outperforms by far existing approaches and a
recent graph DBMS on evaluating reachability graph pattern queries.

Keywords: Graph pattern matching · Edge-to-path homomorphism ·
Multi-way join

1 Introduction

Graphs model complex relationships among entities in a plethora of applica-
tions. A fundamental operation for querying, exploring and analysing graphs is
graph matching, which identifies the matches of a query pattern in the data
graph. Graph matching is crucial in many application domains, such as social

The research of the first author was supported by the National Natural Science Foun-
dation of China under Grant No. 61872276.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 55–71, 2022.
https://doi.org/10.1007/978-3-031-00123-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_4

56 X. Wu et al.

network mining, biological network analysis, cheminformatics, fraud detection,
and network traffic monitoring.

Existing graph matching approaches can be characterized by: (a) the type of
edges the patterns have and (b) the type of morphism used to map the patterns
to the data structure. An edge in a pattern can be either a child edge, which
is mapped to an edge in the data graph (edge-to-edge mapping), or a descen-
dant edge, which is mapped to a path in the data graph (edge-to-path map-
ping). The morphism determines how a pattern is mapped to the data graph: a
homomorphism is a mapping from pattern nodes to data graph nodes, while an
isomorphism is a one-to-one function from pattern nodes to data graph nodes.
Research has initially considered edge-to-edge mappings [13] for matching pat-
terns, with several algorithms being proposed [1,2,7,11]. However, isomorphisms
are very restricted [6] as they cannot represent reachability (transitive) relation-
ships. More recently, homomorphisms for matching patterns with descendant
edges have been considered [5,6,8,14,15]. By allowing edge-to-path mappings,
homomorphisms can extract matches “hidden” deep within large graphs, e.g.,
transitive subClassOf, partOf, influence or other relationships, which are missed
by isomorphisms.

Existing graph pattern matching algorithms can be broadly classified into the
following two approaches: the join-based approach (JM) [1,5,9] and the tree-based
approach (TM) [2,3,7,15]. Given a graph pattern query Q, JM first decomposes
Q into a set of binary (reachability) relationships between pairs of nodes. The
query is then evaluated by matching each binary relationship against the data
graph and joining together these individual matches. Unlike JM, TM first decom-
poses or transforms Q into one or more tree patterns using various methods,
and then uses them as the basic processing unit. Both JM and TM suffer from a
potentially exploding number of intermediate results which can be substantially
larger than the final output size of the query, thus spending a prohibitive amount
of time on examining false positives. As a consequence, they display limited scal-
ability. Our experimental results also reveal that query engines of existing graph
DBMS are unable to handle reachability graph pattern queries efficiently.

In this paper, we address the problem of evaluating graph pattern queries
with descendant edges (edge-to-path mapping) using homomorphisms over a
data graph. This is a general setting for graph pattern matching. We develop a
new graph pattern matching framework, which consists of two phases: (a) the
summarization phase, where a query-dependent summary graph is built on-the-
fly, serving as a compact search space for the given query, and (b) the enumer-
ation phase, where query solutions are produced using the summary graph.

Contribution. Our main contributions are summarized as follows:

• We propose the concept of query reachability graph to encode all possible
homomorphisms from a query pattern to the data graph. By losslessly sum-
marizing the occurrences of a given pattern, a query reachability graph rep-
resents results more succinctly. A query reachability graph can be efficiently
built on-the-fly and does not have to persist on disk.

Efficient In-Memory Evaluation of Reachability Graph Pattern 57

Fig. 1. A data graph G, a query Q, and query reachability graph GQ.

• We develop a node filtering method which traverses the data graph to effi-
ciently prune nodes violating reachability constraints imposed by query edges.
Using this filtering method, we build a refined query reachability graph to fur-
ther reduce the query answer search space.

• We develop a novel algorithm for enumerating the results of graph pattern
queries. In order to compute the results, our algorithm performs multiway
joins by intersecting node lists and node adjacency lists in the query reach-
ability graph. Unlike both JM and TM, it avoids generating a potentially
exploding number of intermediate results and has small memory footprint.
We integrate the above techniques to design a graph pattern matching algo-
rithm, called GM.

• We implement GM and experimentally verify its time efficiency and scalability
for evaluating reachability graph pattern queries on real datasets. We compare
GM with both the JM and TM approaches as well as the query engine of a
recent graph DBMS. The results show that GM can efficiently evaluate graph
pattern queries with varied structural characteristics and with tens of nodes
on data graphs, and that it outperforms by a wide margin both JM and TM
and the graph query engines.

2 Preliminaries and Problem Definition

We focus on directed, connected, and node-labeled graphs. However, the tech-
niques presented in this paper can be readily extended to handle other cases,
such as undirected/disconnected graphs and graphs with multiple labels on
nodes/edges.

Let G = (V,E) be a directed node-labeled graph, where V denotes the set
of nodes and E denotes the set of edges (ordered pairs of nodes) of G. Let L be
a finite set of node labels. Each node v ∈ V has a label label(v) ∈ L associated
with it. Given a label a ∈ L, the inverted list Ia is the list of nodes on G whose
label is a. Figure 1(a) shows a data graph G. Subscripts are used in the labels
of nodes in G to distinguish between nodes with the same label (e.g., nodes a1
and a2 whose label is a). The inverted list Ia of label a is {a1, a2}.

A node u is said to reach node v in G, denoted u ≺ v, if there exists a path
from u to v in G. Clearly, if (u, v) ∈ E, u ≺ v. Abusing tree notation, we refer
to v as a child of u (or u as a parent of v) if (u, v) ∈ E, and v as a descendant
of u (or u as an ancestor of v) if u ≺ v.

58 X. Wu et al.

Graph Pattern Query. We focus on queries which are graph patterns. Every
node x in a pattern Q = (VQ, EQ) has a label label(x) ∈ L. An edge (x, y) ∈ EQ

denotes that node y is reachable from node x. Figure 1(b) shows a graph pattern
query Q.

Graph Pattern Homomorphism. Given a pattern query Q and a data graph
G, a homomorphism from Q to G is a function m mapping the nodes of Q to
nodes of G, such that: (1) for any node x ∈ VQ, label(x) = label(m(x)); and (2)
for any edge (x, y) ∈ EQ, m(x) ≺ m(y) in G.

Query Answer. An occurrence of Q on G is a tuple indexed by the nodes of Q
whose values are the images of the nodes in Q under a homomorphism from Q to
G. The answer of Q on G is a relation whose schema is the set of nodes of Q, and
whose instance is the set of occurrences of Q under all possible homomorphisms
from Q to G.

If x is a node in Q labeled by label a, the occurrence set of x on G is a subset
Lx of the inverted list Ia containing only those nodes that occur in the answer
of Q on G for x (that is, nodes that occur in the column x of the answer).

Let (qi, qj) ∈ EQ, and vi and vj be two nodes in G, such that label(qi) =
label(vi) and label(qj) = label(vj). The pair (vi, vj) is called a match of the
query edge (qi, qj) if vi ≺ vj in G. The set of all the matches of an edge of Q is
called match set of this edge. For instance, the match set of edge (A,B) of Q is
{(a1, b1), (a2, b2), (a2, b3)}.

The answer of Q on G is the set of occurrences of Q on G. In the example of
Fig. 1(c) shows the answer of Q on G.

Problem Statement. Given a large directed graph G and a pattern query Q,
our goal is to efficiently find the answer of Q on G.

3 Query Reachability Graph

Given a graph pattern query Q, the data graph G constitutes the entire search
space for Q. However, many nodes and edges in G might be irrelevant for Q.
This motivates us to define the concept of query reachability graph of Q, which
serves as a, typically, much more compact search space for Q on G.

Definition 1 (Query Reachability Graph). A query reachability graph GQ

of Q on G is a k-partite graph such that: (i) Every node in GQ is incident to at
least one edge; (ii) Every node q ∈ VQ is associated with an independent node
set nq which is a subset of the inverted list Ilabel(q) of G; (iii) There exists an
edge (vx, vy) in GQ from a node vx ∈ nx to a node vy ∈ ny if and only if (vx, vy)
is a match of the query edge (x, y) ∈ EQ.

Figure 1(d) shows a query reachability graph GQ of Q over G. One can see
that GQ has the same structure as Q. The independent node set in GQ for query
node B is {b1, b2, b3}.

Let GT = (VT , ET) denote the transitive closure of G: VT = V , and GT has
an edge from node vx to node vy if and only if there exists a path from vx to

Efficient In-Memory Evaluation of Reachability Graph Pattern 59

vy in G. Edges in GQ correspond to edges in GT . Thus, GQ contains all the
reachability information between nodes of G relevant to query Q. Moreover, GQ

encodes the answer of Q on G as shown by the following proposition.

Proposition 1. Let GQ be a query reachability graph of a pattern query Q over
a data graph G. If there exists a homomorphism from Q to G that maps node
x ∈ VQ to node vx ∈ VG, then there is a homomorphism from Q to GQ which
maps x to node vx ∈ VGQ

.

According to Proposition 1, GQ is complete. That is, it encodes all the homo-
morphisms from Q to G. Thus, it can serve as a search space for the answer of
Q on G. Using the inverted lists of the query nodes as input and reachability
information between data graph nodes, GQ can be constructed by computing
the matches of every query edge.

Note that several recent subgraph matching algorithms also use query related
auxiliary data structures to represent the query answer search space [3,7]. These
auxiliary data structures are designed to support searching for subgraph isomor-
phisms. Unlike GQ, they are subgraphs of the data graph, hence they do not
contain reachability information between data nodes, and consequently, they
cannot be used for computing edge-to-path homomorphic matches.

While GQ is typically much smaller than G, it can still be quite large for
efficiently computing the query answer. The reason is that it may contain redun-
dant nodes (and their incident edges). Redundant nodes are nodes which are not
part of any occurrence of query Q. Obtaining a query reachability graph which is
minimal (that is, one which does not have redundant nodes) is an NP-hard prob-
lem even for isomorphisms and edge-to-edge mapping [2]. Therefore, we focus
on constructing a refined GQ whose independent node sets contain much less
redundant nodes while maintaining its ability of serving as a search space for
the answer of Q on G. We do so by providing next an efficient data graph node
filtering algorithm.

4 A Graph Traversal Filtering Algorithm

Existing data node filtering methods are either simply based on query node
labels [1,9], or use a BFS tree of the query to filter out data nodes violating
children or parent structural constraints of the tree [2,7]. They are unable to
prune nodes violating ancestor/descendant structural constraints of Q.

We present next a node filtering method based on graph traversal to effi-
ciently prune nodes violating ancestor/descendant structural constraints of Q.
Our filtering method is inspired by the node pre-filtering technique [4,15]. In
contrast to that technique which is restricted to directed acyclic graphs (dags),
our method is designed for filtering general graphs.

Graph Node Filtering Algorithm. Algorithm 1 shows our graph node fil-
tering algorithm, referred to as GraphFilter. Let p, q denote nodes in the query
Q, and u, v denote nodes in the data graph G. The algorithm uses the following
data structures: (1) We associate each query node q with three n-wide bit-vectors

60 X. Wu et al.

Algorithm 1. Algorithm GraphFilter (query Q, data graph G).

1. for (q ∈ VQ) do
2. Set bits corresponding to descendants of q in QBitVecDes[q] to 1;
3. Set bits corresponding to ancestors of q in QBitVecAnc[q] to 1;
4. Set the bit corresponding to q in QBit[q] to 1;
5. cis[q] := ∅; /*cis is the vector of candidate independent node sets*/
6. for (u ∈ VG) do
7. for (each p ∈ VQ where label(u)==label(p)) do
8. bitVecDes[u] := bitOR(bitVecDes[u], QBit[p]);
9. bitVecAnc[u] := bitOR(bitVecAnc[u], QBit[p]);

10. Set satDes[u][p] to false for each p ∈ VQ;
11. Compute the strongly connected components (SCC) graph Gs of G;
12. BUPCheck();
13. TDWCheck();
14. return The vector cis;

Procedure BUPCheck()

1. for (each Cs of Gs in a reverse topological order) do
2. repeat
3. for (each node u ∈ Cs) do
4. for (each child node v of u) do
5. bitVecDes[u] := bitOR(bitVecDes[u], bitVecDes[v]);
6. until (bit-vectors in bitVecDes have no changes)
7. for (each node u ∈ Cs and each p ∈ VQ where label(u)==label(p)) do
8. if (QBitVecDes[p] == bitAND(bitVecDes[u], QBitVecDes[p])) then
9. satDes[u][p]:=true;

10. else
11. bitVecDes[u] := bitAND(bitVecDes[u], ∼QBit[p]);

Procedure TDWCheck()

1. for (each Cs of Gs in a topological order) do
2. repeat
3. for (each node u ∈ Cs) do
4. for (each parent node v of u) do
5. bitVecAnc[u] := bitOR(bitVecAnc[u], bitVecAnc[v]);
6. until (bit-vectors in bitVecAnc have no changes)
7. for (each node u ∈ Cs and each p ∈ VQ where label(u)==label(p)) do
8. if (QBitVecAnc[p] == bitAND(bitVecDes[u], QBitVecAnc[p])) then
9. if (satDes[u][p]) then

10. add u to cis[p];
11. else
12. bitVecAnc[u] := bitAND(bitVecAnc[u], ∼QBit[p]);

QBit[q], QBitVecDes[q] and QBitVecAnc[q], where n is the number of nodes of Q.
The last two bit-vectors, QBitVecDes[q] and QBitVecAnc[q], encode the descen-
dant and ancestor query nodes of the query node q, respectively. (2) For each data
node u, we use two n-wide bit-vectors bitVecDes[u] and bitVecAnc[u] to record

Efficient In-Memory Evaluation of Reachability Graph Pattern 61

whether u has ancestors or descendants matching a particular query node. We
denote the strongly connected component (SCC) graph of G as Gs = (Vs, Es).
An element Cs in Vs represents a SCC in Gs. (Cs, C

′
s) ∈ Es iff there exists u ∈ Cs

and v ∈ C ′
s such that (u, v) ∈ EG.

Algorithm GraphFilter first initializes the bit vectors associated with query
nodes and graph nodes (lines 1–10). The SCC graph Gs of G is then com-
puted using Tarjan’s algorithm [12] (line 11). Then, GraphFilter conducts two
graph traversals on Gs (bottom-up and top-down) implemented by procedures
BUPCheck and TDWCheck, respectively. During the graph traversal, it updates
the bit-vectors of nodes of G and identifies nodes whose bit-vectors are inconsis-
tent with the vectors assigned to their corresponding query nodes (line 12–13).
After the traversals, a vector of candidate independent sets, indexed by query
nodes, is returned for constructing a refined query reachability graph (line 14).
We describe below the graph traversal procedures in more detail.

Procedure BUPCheck (bottom-up traversal) processes the nodes Cs of Gs,
in reverse topological order, as follows: the bit vectors of bitVecDes for nodes in
Cs are repeatedly updated until the fixpoint is reached (lines 2–6). Specifically,
for each node u in Cs, BUPCheck consolidates the bit-vectors of its child nodes
with its own bitVecDes[u] using a bitOR operation (lines 4–5). Once the bit vec-
tors become stable, BUPCheck proceeds to check whether bitVecDes[u] contains
QBitVecDes[p], for each node u in Cs and each query node p that has the same
label as u, using a bitAND operation (line 7–8). If this is the case, we say that
u downward matches p, and set satDes[u][p] to true (line 9), indicating that u
has descendants in the data graph which downward match descendants of p in
the query. Otherwise, the bit for p in bitVecDes[u] is reset to 0 (line 11).

Procedure TDWCheck (top-down traversal) processes each node Cs of Gs

in a forward topological order. The bit-vectors in bitVecAnc of the nodes Cs

of Gs are repeatedly consolidated with the bit-vectors of their parents, until no
more changes can be applied to them (lines 2–6). Then, nodes in Cs are checked
for upward matching with nodes of Q (lines 9–10). We say that a data node u
upward matches a query node p if bitVecAnc[u] contains QBitVecAnc[p]. All the
nodes satisfying both the upward and the downward matching conditions are
added to their corresponding candidate independent node sets (lines 8–10).

Example. We apply Algorithm GraphFilter to the graph pattern query Q and
the data graph G of Fig. 1. After the bottom-up processing by BUPCheck, the
algorithm identifies two redundant nodes a1 and c1 since they violate the down-
ward matching condition. Then, the top-down processing by TDWCheck identi-
fies a redundant node d1 violating the upward matching condition. The redun-
dant nodes are not added to the candidate independent node sets in vector cis.
Based on the refined candidate independent node sets, we can build a smaller
reachability graph for Q on G. In Fig. 1(c), red nodes denote redundant nodes
pruned from the original reachability graph GQ. The refined GQ contains only
the rest of the nodes.

Complexity. The preprocessing (lines 1–11) takes time O(|VG|+ |EG|+ |VQ|2 +
|VG||VQ|). The loop (lines 2–6 of BUPCheck and TDWCheck) is repeated O(|VG|)

62 X. Wu et al.

Algorithm 2. Algorithm MJoin(query Q, query eachability graph GQ).
1. Pick an order q1, . . . , qn for the nodes of Q, where n = |VQ|;
2. Let t be a tuple where t[i] is initialized to be null for i ∈ [1, n];
3. Enumerate(1, t);

Function Enumerate (index i, tuple t)

1. if (i = n + 1) then
2. return t;
3. Ni := {qj | (qi, qj) ∈ EQ or (qj , qi) ∈ EQ, j ∈ [1, i − 1]}
4. Ci := Si; /*Si denotes the node set of qi in GQ*/
5. for (every qj ∈ Ni) do
6. Cj

i := {vi ∈ Ci | (vi, t[j]) ∈ E(GQ) or (t[j], vi) ∈ E(GQ)};
7. Ci := Ci ∩ Cj

i ;
8. for (every node vi ∈ Ci) do
9. t[i] := vi;

10. Enumerate(i + 1, t);

times. Each iteration takes O(|EG||VQ|) time to update bit-vectors of nodes in
G. Checking possible (downward and upward) matching between nodes of G and
Q takes time O(|VG||VQ|2). Putting these together, Algorithm GraphFilter takes
O(|VG||EG||VQ| + |VG||VQ|2) time in the worst case.

5 A Join-Based Query Occurrence Enumeration
Algorithm

In this section, we present a novel multi-way join algorithm called MJoin (Algo-
rithm 2) to compute the query answer. Given query Q and data graph G, let Re

denote the relation containing the matches of each query edge e on G. Conceptu-
ally, MJoin produces occurrences of Q by joining multiple Res at the same time.
Given GQ as input, the multi-way join operator of MJoin works by multi-way
intersecting node adjacency lists of GQ.

Algorithm MJoin first picks a linear order of query nodes to match. Then,
it performs a recursive backtracking search to find candidate matches for query
nodes, considering query nodes one at a time by the given order, before returning
any result tuples.

More concretely, at a given recursive step i, function Enumerate first deter-
mines query nodes that have been considered in a previous recursive step and
are adjacent to the current node qi. These nodes are collected in the set Ni. Let
Si denote the node set of every qi ∈ VQ in GQ. To get the candidate occurrences
of qi, for each qj ∈ Ni, Enumerate intersects Si with the forward adjacency
list of t[j] in GQ when (qi, qj) ∈ EQ, or with the backward adjacency list of
t[j] when (qj , qi) ∈ EQ (lines 5–7). Next, Enumerate iterates over the candidate
occurrences (line 8). In every iteration, a candidate occurrence is assigned to t[i]
(line 9) and Enumerate proceeds to the next recursive step (line 10). In the final
recursive step, when i = n + 1, tuple t contains one specific occurrence for all
the query nodes and is returned as a result of Q (line 2).

Efficient In-Memory Evaluation of Reachability Graph Pattern 63

Example 1. In our running example, let GQ be the refined query reachability
graph, i.e., the graph of Fig. 1(c) without the red nodes and their incident edges.
Assume the matching order of Q is A,B,C,D. When i = 1, Algorithm MJoin
first assigns a2 to tuple t[1], then it recursively calls Enumerate(2, t). The inter-
section of a2’s adjacency list with the node set of B is {b2, b3}. Node b2 is assigned
to t[2] first. Similarly, at i = 3, c2 is the only node in the intersection and is
assigned to t[3]. At i = 4, since the intersection of adjacency lists of b2 and c2
with the node set of D is {d2}, MJoin assigns d2 to t[4], and returns a tuple
t ={a2, b2, c2, d2}. Then, MJoin backtracks, assigns the next node b3 from the
intersection result for node B to t[2] and proceeds in the same way. It returns
another tuple t ={a2, b3, c2, d2}.

6 Experimental Evaluation

We now present a thorough evaluation of our proposed approach for edge-to-path
based homomorphic graph pattern matching.

6.1 Setup

We implemented the join-based approach (JM) and the tree-based approach
(TM) for finding homomorphisms of graph pattern queries on data graphs. Our
approach is abbreviated as GM. Our implementation was coded in Java.

For JM, we first compute the occurrences for each edge of the input query on
the data graph, then find an optimized left-deep join plan through dynamic pro-
gramming, and finally use the plan to evaluate the query as a sequence of binary
joins. For TM, we first transform the graph pattern query into a tree query,
evaluate the tree query using a tree pattern evaluation algorithm, and filter out
occurrences of the tree query that violate the reachability relationships specified
by the missing edges of the original query. For the TM approach, we imple-
mented the recent tree pattern evaluation algorithm described in [14], which has
been shown to outperform other existing algorithms. In our implementation, we
applied our filtering algorithm GraphFilter (Sect. 4) to both approaches, JM and
TM.

The above three graph matching algorithms were implemented using a recent
efficient scheme, called Bloom Filter Labeling (BFL) [10], for reachability check-
ing which was shown to greatly outperform most existing schemes [10].

In addition to pure algorithms, we also compare with a recent graph query
engine1 GraphflowDB [9], referred to here as GF.

All the experiments reported were performed on a workstation running
Ubuntu 16.04 with 32GB memory and 8 cores of Intel(R) Xeon(R) processor
(3.5GHz). The Java virtual machine memory size was set to 16GB.

Datasets. We ran experiments on real-world graph datasets from the Stanford
Large Network Dataset Collection which have been used extensively in previous
1 https://github.com/queryproc/optimizing-subgraph-queries-combining-binary-and-

worst-case-optimal-joins.

https://github.com/queryproc/optimizing-subgraph-queries-combining-binary-and-worst-case-optimal-joins
https://github.com/queryproc/optimizing-subgraph-queries-combining-binary-and-worst-case-optimal-joins

64 X. Wu et al.

Table 1. Key statistics of the graph datasets used.

Domain Dataset # of nodes # of edges # of labels Avg #incident
edges

Biology Yeast 3.1K 12K 71 8.05

Human 4.6K 86K 44 36.9

HPRD 9.4K 35K 307 7.4

Social Epinions 76K 509K 20 6.87

DBLP 317K 1049K 20 6.62

Communication networks Email 265K 420K 20 2.6

Fig. 2. Templates of graph pattern queries used for evaluation (each pattern edge
denotes a descendant relationship between the associated nodes).

works [7,9,11]. Table 1 lists the properties of six datasets. Its last column displays
the average number of incident edges (both incoming and outgoing) per node.
The datasets have different structural properties and come from a variety of
application domains: biology, social networks, and communication networks. We
also ran experiments on other datasets. The results are similar and omitted due
to space limitations.

Queries. For each of the three datasets from the biology domain, we used a
query set of 10 queries selected from 200 randomly generated queries used in
[11]. For the rest of the datasets, we used a query set of 5 queries. The templates
of the 5 queries are shown in Fig. 2. These are representative queries commonly
used in existing work [5,9]. The number associated with each node of a query
template denotes the node id. Query instances are generated by assigning labels
to nodes.

Metrics. We measured the runtime of individual queries in a query set in sec-
onds (sec). This includes the preprocessing time (i.e., the time spent on filtering
vertices and building auxiliary data structures) and the enumeration time (i.e.,
the time spent on enumerating results). The number of occurrences for a given
query on a data graph can be quite large. Following usual practice [7,11], we
terminated the evaluation of a query after finding 107 matches covering as much
of the search space as time allowed. We stopped the execution of a query if it
did not complete within 10 min, so that the experiments could be completed in
a reasonable amount of time. We refer to these queries as unsolved.

Efficient In-Memory Evaluation of Reachability Graph Pattern 65

Table 2. Performance of JM, TM and GM for evaluating large queries.

Dataset Alg Time
out

Out of memory Solved
queries

Avg. time of solved
queries (sec.)

Human JM 1 7 2 1.51

TM 3 0 7 16.7

GM 0 0 10 0.53

HPRD JM 2 4 4 1.86

TM 1 0 9 134.21

GM 0 0 10 0.58

Yeast JM 5 3 2 0.14

TM 3 0 7 20.8

GM 0 0 10 0.34

6.2 Performance Results

Random Graph Patterns. We have measured the performance of JM, TM and
GM for evaluating 10 random queries over Human, HPRD and Yeast. These three
datasets are selected because have been used by recent contributions on graph
pattern matching [7,11] and have different structural properties. For instance,
Human is very dense. Because of its higher average degree and fewer distinct
labels, graph matching on it is harder. In contrast Yeast is sparse. The number
of nodes in the 10 queries for each data graph range from 4 to 20 for Human,
and from 4 to 32 for HPRD and Yeast. In Table 2, we record, for each algorithm,
the number of unsolved queries in two categories: time out and out of memory.
We also record the number of solved queries as well as the average runtime of
solved queries for each algorithm.

We observe that GM has the best performance overall among the three algo-
rithms. It is able to solve all the given queries. In contrast, JM is only able to
solve the first 2 or 4 queries on each data graph, and the number of nodes of
solved queries are no more than 8. TM solves more and larger queries than JM,
but it is up to two orders of magnitude slower than GM.

A large percentage of the failures of JM is due to an out-of-memory error,
since it generates a large number of intermediate results during the query eval-
uation. Another cause of the inefficiency of JM is due to the join plan selection.
As described in [5], in order to select an optimized join plan, JM uses dynamic
programming to exhaustively enumerate left-deep tree query plans. For queries
with more than 10 nodes, the number of enumerated query plans can be huge.
For example, for a query with 24 nodes on HPRD, JM enumerates 2,384,971
query plans in total.

Most of the failures of TM is due to a time out error. Recall that TM works
by evaluating a tree query of the original graph query. For each tuple of the
tree query, it checks the missing edges for satisfaction. Hence, its performance is
severely affected when the number of solutions of the tree query is very large.

66 X. Wu et al.

Fig. 3. Evaluation time of JM, TM and GM on Email and Epinions.

Designed Graph Patterns. Figure 3 shows the elapsed time of JM, TM and
GM on evaluating five queries instantiated from the five templates in Fig. 2 on
Email and Epinions. The average time of queries solved by each algorithm is
also shown in the figure.

GM again has the best performance among the three algorithms. JM only
solves Q1 for both Email and Epinions, and is unable to finish for the rest of
the cases due to out-of-memory issues. TM solves all the queries, but its average
time performance is around 2 times slower than GM. In particular, for Q3 and
Q4, it is outperformed by GM by up to 5 times. The results are consistent with
the random query results shown above.

We observe from the results (not shown due to space limitations) that the
time for constructing the query reachability graph dominates the total query
evaluation time of GM. Its percentage of the total query evaluation time is about
87% and 98.6% on Email and Epinions, respectively. The query reachability
graph is the core component used for the multi-way join phase of GM. Clearly, a
smaller query reachability graph requires a smaller construction time but it also
reduces the cost of multi-way join operations. This demonstrates the importance
of designing an effective filtering strategy.

Effect of Node Filtering. Figure 3 shows also the time performance of GM
on evaluating the queries on Email and Epinions without the node filtering
procedure. This approach is abbreviated as GM-NF. We observe that the node
filtering is highly effective, offering GM a speedup of up to 143 and 11 over GM-
NF on Email and Epinions, respectively. The average filtering time is very small,
around 5.6% and 0.4% of the query time on Email and Epinions, respectively.
The average percentage of nodes pruned from the input inverted lists of the
query nodes is about 79.5% and 68.4% on Email and Epinions, respectively.
By pruning redundant nodes, the node filtering procedure greatly reduces the
number of nodes accessed during query evaluation.

Scalability. We evaluated the scalability of the algorithms as the data set size
grows. For this experiment, we recorded the elapsed query time on increasingly
larger randomly chosen subsets of the DBLP data. Figure 4 shows the results

Efficient In-Memory Evaluation of Reachability Graph Pattern 67

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

Q
ue

ry
 T

im
e

(s
ec

)

Number of Nodes in Data (x1000)

JM TM GM

(a) Q4

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

Q
ue

ry
 T

im
e

(s
ec

)

Number of Nodes in Data (x1000)

JM TM GM

(b) Q5

Fig. 4. Elapsed time of Q4 and Q5 on increasingly larger subsets of DBLP.

of the three algorithms evaluating instantiations of the query templates Q4 and
Q5 shown in Fig. 2. The other queries gave similar results in our experiments.
We restrict the comparison on DBLP subsets of up to 105 nodes due to TM and
JM’s inability to handle larger data graphs. As expected, the execution time for
all algorithms increases when the total number of graph nodes increases. GM
scales smoothly compared to both TM and JM for evaluating the two queries.

6.3 Comparison with Graph DB Systems

We compared the performance of GM with the recent GraphFlow [9] (abbreviated
as GF) graph DBMS on evaluating reachability graph pattern queries.

Setup. Before evaluating queries, GM builds a reachability index on the input
data graph G using the BFL (Bloom Filter Labeling) algorithm [10].

The engine GF was designed to process graph pattern queries whose edges
are mapped with homomorphisms to edges in the data graph (therefore, it does
not need a reachability index). As GM is able to match edges to paths in data
graph, we designed an indirect way for GF to evaluate reachability graph pattern
queries: first generate the transitive closure G′ on the input graph G and then
use G′ as the input data graph to GF. In the experiments, we used the Floyd-
Warshall algorithm to compute the transitive closure of the data graph. As a join-
based method, GF enumerates and optimizes join plans based on a cost model.
In order to estimate join plan costs, for each input data graph, GF constructs a
catalog containing entries on cardinality information for subgraphs.

Comparison Results. Figure 5 presents the results on Email data graph.
Specifically, Table 5(a) shows the time for constructing the BFL reachability
index, the graph transitive closure and the catalog on Email graphs with dif-
ferent numbers of labels and nodes. As we can see, the time for constructing
BFL indices remains very small for graphs of different sizes (it is 0.38 sec. for
the original Email graph with 265K nodes). In contrast, the transitive closure
construction time grows very fast as the number of graph nodes increases. For
a graph with 3k nodes, the transitive closure construction takes more than one

68 X. Wu et al.

#lbs #nodes BFL(sec.) TC(sec.) CAT(sec.)
5 1k 0.01 22.95 5.52
10 1k 0.01 22.67 10.84
15 1k 0.01 23.07 55.97
20 1k 0.01 23.58 323.92
20 2k 0.01 207.93 outOfMemory
20 3k 0.02 765.65 outOfMemory
20 5k 0.03 4042.62 outOfMemory

(a) Building time of BFL, transitive clo-
sure (TC) and catalog (CAT).

Query Alg. #lbs=5 #lbs=10 #lbs=15 #lbs=20
Q2 GF 0.27 0.12 0.09 0.09

GM 1.12 0.1 0.01 0.01
Q4 GF 2.69 0.26 0.38 0.39

GM 13.84 0.31 0.03 0.03
Q5 GF 0.70 0.25 0.20 0.36

GM 4.34 0.11 0.07 0.01
(b) Query time (seconds) on Email
graphs of 1K nodes.

Fig. 5. Comparison of GM and GF for reachability graph pattern queries on Email
graphs.

hour. We observe also that the catalog construction is affected enormously by
the growing cardinality of the label and node sets of the graph.

Because the time for building transitive closures and catalogs on large-sized
graphs is prohibitive large, we used only 1k-sized Email graphs (with different
numbers of labels) to compare the query time of GM and GF. We evaluated
instantiations of the five query templates of Fig. 2. For each query, GM and GF
enumerate all the matchings of the query.

Table 5(b) shows only the query time of GM and GF for Q2, Q4, and Q5.
The results for the other queries are similar. We observe that GF performs better
than GM on the Email graph with 5 labels. However, GM greatly outperforms
GF when the number of labels increases from 10 to 20. Note that in reporting the
query times of GF, the transitive closure and the catalog construction times and
ignored since otherwise GF underperforms GM by several orders of magnitude
if feasible at all.

Summary. Overall, GM is much more efficient than GF on evaluating reacha-
bility graph pattern queries. To determine node reachability in graphs, it does
not need to compute the graph transitive closure. Instead, it uses a reachability
index (BFL) which can be computed efficiently. Also, unlike GF which relies on
statistics (i.e., catalogs) that are prohibitively expensive to compute, GM uses
a query reachability graph that can be built efficiently on-the-fly during query
processing and does not have to be materialized on disk.

Neo4j is the most popular graph DBMS and EmptyHeaded [1] is one of the
most efficient graph database systems. We did not directly compare GM with
Neo4j and EmptyHeaded because it is expected that it outperforms both on
evaluating reachability graph pattern queries since the evaluation results of [9]
show that GF largely outperforms Neo4j and EmptyHeaded.

7 Related Work

We review related work on graph pattern query evaluation algorithms. Our dis-
cussion focuses on in-memory algorithms designed for the evaluation of a single
query.

Efficient In-Memory Evaluation of Reachability Graph Pattern 69

Isomorphic Mapping Algorithms. The majority of algorithms for isomor-
phic mapping adopt a backtracking method [13], which recursively extends par-
tial matches by mapping query nodes to data nodes to find the query answer.
Many of the earlier algorithms directly explore the input data graph to enumer-
ate all results. Several recent ones [1,2,7] adopt the preprocessing-enumeration
framework, which performs preprocessing to find, for each query node, the set of
possible data nodes (called candidates), and builds an auxiliary data structure
(ADS) to maintain edges between candidates. Unlike ADS, our query reacha-
bility graph is not a subgraph of the data graph; instead, it is a summary of
the matches of a given query and is used by our multi-way join algorithm to
efficiently enumerate query matches.

An alternative approach to the backtracking method is JM, the join-based
approach, which converts graph pattern matching to a sequence of binary joins.
This is the method used by [5,9] and in database management systems such
as PostgreSQL, MonetDB and Neo4j. In this paper, we adopt homomorphisms
which can map edges to paths. This general framework is not constraint by the
restrictions of isomorphisms.

Homomorphic Mapping Algorithms. Homomorphisms for mapping graph
patterns similar to those considered in this paper were introduced in [6] (called
p-hom), which however did not address the problem of efficiently computing
graph pattern matches; instead, it uses the notion of p-hom to resolve a graph
similarity problem between two graphs.

Cheng et al. [5] proposed an algorithm called R-Join, which is a join-based
algorithm. An important challenge for join-based algorithms is finding a good
join order. To optimize the join order, R-Join uses dynamic programming to
exhaustively enumerate left-deep tree query plans. Due to the large number
of potential query plans, R-Join is efficient only for small queries (less than 10
nodes). As is typical with join-based algorithms, R-Join suffers from the problem
of numerous intermediate results. As a consequence, its performance degrades
rapidly when the graph becomes larger [8].

A graph pattern matching algorithm called DagStackD was developed in [4].
DagStackD implements a tree-based approach. Given a graph pattern query Q,
DagStackD first finds a spanning tree QT of Q, then evaluates QT and filters
out tuples that violate the reachability relationships specified by the edges of Q
missing in QT . To evaluate QT , a tree pattern evaluation algorithm is presented.
This algorithm decomposes the tree query into a set of root-to-leaf paths, evalu-
ates each query path, and merge-joins their results to generate the tree-pattern
query answer. Several pattern matching algorithm designed specifically for eval-
uating tree patterns on graphs have been proposed [8,14]. Among them, TPQ-
3Hop [8] is designed on top of a hop-based reachability indexing scheme. The
one presented in [14] leverages simulation to compute the query answer without
producing any redundant intermediate results.

Unlike existing algorithms that follow the tree-based or the join-based app-
roach, our graph pattern matching approach is holistic in the sense that it does

70 X. Wu et al.

not decompose the given query into subpatterns. Instead, it tries to match the
query against the input graph as a whole.

8 Conclusion

We have addressed the problem of efficiently evaluating graph patterns using
homomorphisms over a large data graph. By allowing edge-to-path mappings,
homomorphisms can extract matches “hidden” deep within large graphs which
might be missed by edge-to-edge mappings of subgraph isomorphisms. We have
introduced the concept of query reachability graph to compactly encode the
pattern matching search space. To further reduce the search space, we have
developed a filtering method to prune data nodes violating reachability con-
straints imposed by query edges. We have also designed a novel join-based query
occurrence enumeration algorithm which leverages multi-way joins realized as
intersections of adjacency lists and node sets of the query reachability graph.
We have verified experimentally the efficiency and scalability of our approach
and showed that it largely outperforms state-of-the-art approaches.

We are currently working on extending the proposed approach to handle more
general hybrid graph patterns (which consist of both child-edges and descendant-
edges) evaluation over large graph data. We are also investigating alternative
node filtering strategies.

References

1. Aberger, C.R., Tu, S., Olukotun, K., Ré, C.: Emptyheaded: a relational engine for
graph processing. In: SIGMOD, pp. 431–446 (2016)

2. Bhattarai, B., Liu, H., Huang, H.H.: CECI: compact embedding cluster index for
scalable subgraph matching. In: SIGMOD, pp. 1447–1462 (2019)

3. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph matching by
postponing cartesian products. In: SIGMOD, pp. 1199–1214 (2016)

4. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching
on DAGs. In: VLDB, pp. 493–504 (2005)

5. Cheng, J., Yu, J.X., Yu, P.S.: Graph pattern matching: a join/semi join approach.
IEEE Trans. Knowl. Data Eng. 23(7), 1006–1021 (2011)

6. Fan, W., Li, J., Ma, S., Wang, H., Wu, Y.: Graph homomorphism revisited for
graph matching. PVLDB 3(1), 1161–1172 (2010)

7. Han, M., Kim, H., Gu, G., Park, K., Han, W.: Efficient subgraph matching: Har-
monizing dynamic programming, adaptive matching order, and failing set together.
In: SIGMOD, pp. 1429–1446 (2019)

8. Liang, R., Zhuge, H., Jiang, X., Zeng, Q., He, X.: Scaling hop-based reachability
indexing for fast graph pattern query processing. IEEE Trans. Knowl. Data Eng.
26(11), 2803–2817 (2014)

9. Mhedhbi, A., Kankanamge, C., Salihoglu, S.: Optimizing one-time and continuous
subgraph queries using worst-case optimal joins. ACM Trans. Database Syst. 46(2),
6:1-6:45 (2021)

10. Su, J., Zhu, Q., Wei, H., Yu, J.X.: Reachability querying: can it be even faster?
IEEE Trans. Knowl. Data Eng. 29(3), 683–697 (2017)

Efficient In-Memory Evaluation of Reachability Graph Pattern 71

11. Sun, S., Luo, Q.: In-memory subgraph matching: an in-depth study. In: SIGMOD,
pp. 1083–1098 (2020)

12. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

13. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42
(1976)

14. Wu, X., Theodoratos, D., Skoutas, D., Lan, M.: Leveraging double simulation to
efficiently evaluate hybrid patterns on data graphs. In: WISE, pp. 255–269 (2020)

15. Zeng, Q., Zhuge, H.: Comments on “stack-based algorithms for pattern matching
on DAGs.”. PVLDB 5(7), 668–679 (2012)

Revisiting Approximate Query Processing
and Bootstrap Error Estimation on GPU

Hang Zhao1,2, Hanbing Zhang1,2, Yinan Jing1,2(B), Kai Zhang1,2,
Zhenying He1,2, and X Sean Wang1,2,3

1 School of Computer Science, Fudan University, Shanghai, China
{zhaoh19,hbzhang17,jingyn,zhangk,zhenying,xywangcs}@fudan.edu.cn

2 Shanghai Key Laboratory of Data Science, Shanghai, China
3 Shanghai Institute of Intelligent Electronics and Systems, Shanghai, China

Abstract. Sampling-based Approximate Query Processing (AQP) is
one of the promising approaches for timely and cost-effective analytics
over big data. There are mainly two methods to estimate errors of approx-
imate query results, namely analytical method and bootstrap method.
Although the bootstrap method is much more general than the first
method, it is rarely used in the existing AQP system due to its high
computation overhead. In this paper, we propose to use the powerful
GPU and a series of advanced optimization mechanisms to accelerate
bootstrap, thus make it feasible to address the essential err r estimation
problem for AQP by utilizing bootstrap. Besides, since modern GPUs
have bigger and bigger memory capacity, we can store samples in the
GPU memory and use GPU to accelerate the execution of AQP queries
in addition to using GPU to accelerate the bootstrap-based error estima-
tion. Extensive experiments on the SSB benchmark show that our GPU-
accelerated method is at most about two orders of magnitude faster than
the CPU method.

Keywords: Big data analytics · Approximate query processing ·
Bootstrap · GPU

1 Introduction

Online Analytical Processing (OLAP) is the core function of the data manage-
ment and analysis system. With the development of online commerce, Internet of
Things and scientific research, a large amount of data is created every moment.
These massive amounts of data play a vital role in the decision-making of gov-
ernments, enterprises and scientific research. However, the latency of analysis
on big data is very high, which is not conducive to OLAP. To solve this prob-
lem, the researchers propose approximate query processing (AQP) [11,17,21,22].
Sampling is one of the most commonly used techniques in AQP. By leveraging on
samples, the AQP system can provide an approximate answer with an accuracy
guarantee, such as confidence interval under a given confidence level. Confidence
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 72–87, 2022.
https://doi.org/10.1007/978-3-031-00123-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_5

Revisiting AQP and Bootstrap Error Estimation on GPU 73

interval help users decide whether to accept approximate result. This affiliated
process is also called error estimation.

In the past research, there are two ways to calculate the confidence interval,
namely analytical method [18] and bootstrap method [2]. The analytical method
is based on the central-limit theorem (CLT). CLT tells us the normalized sum of
sample tends toward a normal distribution. The analytical method is efficient,
but the application scope of this method is very limited. It only support COUNT,
SUM, AVG, and VARIANCE. Bootstrap is completely based on simulation and
is suitable for almost all functions. In contrast to the analytical method, boot-
strap does not require any confidence interval formula derivation, thus freeing
users from complex mathematical theorems. Of course, its shortcomings are also
obvious. A large number of simulations cause an explosion of computation, which
usually requires hundreds or thousands of bootstrap trials. Due to the high com-
putation overhead of bootstrap, bootstrap method is rarely used in the existing
AQP system. Although, some optimization mechanisms have been proposed for
bootstrap on CPU [13] and on GPU [5,7,9], it still cannot meet the real-time
response requirements of interactive analysis scenarios. In this paper, we propose
two approximate query processing models on GPU, namely coprocessor model
and main processor model. The difference between these two models is the role
played by GPU for AQP. As for the coprocessor model, we first use the CPU to
process the query on the original sample and then use the GPU to perform the
resampling of bootstrap. Finally, we send the multiple resampled samples from
GPU to CPU through the PCIE and calculate the confidence interval according
to these samples. With the development of modern GPUs, GPU can not only
be used as a coprocessor of CPU, but also it can be used as a main processor
for AQP. As for the main processor model, since the modern GPU has a big-
ger memory capacity, we can store samples in the GPU memory to avoid the
bandwidth bottleneck of PCIE between CPU and GPU. Therefore, in the main
processor model, both the query execution and the bootstrap can be performed
on the GPU. Furthermore, we propose some advanced optimization mechanisms
for the new bottlenecks encountered in the main processor model to further
improve the performance.

In summary, the main contributions of this paper are as follows.

– We propose two approximate query processing models on GPU, called copro-
cessor model and main processor model according to the different roles played
by GPU. The main processor model has higher performance compared to the
coprocessor model if GPU has engouh memory to store samples.

– We further propose two advanced optimization mechanisms for main proces-
sor model, called one-step calculation and count sampling. Experiments shows
that count sampling has better optimization effect.

– We extend the main processor model from bootstrap to the whole process
of AQP, providing fast query execution and error estimation capabilities.
Experiments shows our method can achieve nearly two orders of magnitude
performance improvement compared to the method on CPU.

74 H. Zhao et al.

Algorithm 1: Bootstrap Algorithm
Input: R: sample relation
Output: result : result of b bootstrap trials

1 Result result = {} ;
2 for i = 1 → b do
3 let R∗ = {} ;
4 for j = 1 → R.length do
5 let idx = rand() * R.length ;
6 R∗[j] = R[idx] ;

7 add q(R∗) to result ;

8 sort(result) ;
9 return result ;

This paper is organized as follows. Section 2 introduces the research background.
Section 3 describes two approximate query processing models and bootstrap on
GPU. Section 4 introduces two advanced optimization mechanisms. Section 5
describes our experiments. Finally, we conclude this paper in Sect. 6.

2 Preliminary

2.1 AQP and Bootstrap

AQP provides an approximate answer mainly through sampling techniques. To
make it credible, AQP introduces error estimation. There are two methods
of error estimation: analytical method and bootstrap method. The bootstrap
method is widely used in statistics because of its simplicity and high applicabil-
ity.

Bootstrap was first proposed by Bradley Efron [2] in 1979, and detailed
description and application instructions were given in [3]. Since bootstrap was
proposed, 40 years have passed. Although it has strong applicability, bootstrap
is computationally intensive. Because of the limitation of computing power in
the past, the response time was very long. Below we introduce how to use the
classic bootstrap for the error estimation of database AQP queries.

First, we have an original sample table R and an aggregate query q(R) on
this sample table. We want to know the distribution of the query results, so
as to derive the confidence interval of the query results and other important
information. In many cases, the analysis and derivation of these confidence limits
is not easy. However, using bootstrap can easily derive the distribution of q(R).
Bootstrap can be divided into b bootstrap trials. Each trial resamples the original
sample table R to generate a new sample table R∗, and then executes the query
q(R∗) to obtain b query results. After that, we sort the b query results and
take the quantile corresponding to the confidence level to obtain the confidence
interval. The specific algorithm is shown in Algorithm 1.

Revisiting AQP and Bootstrap Error Estimation on GPU 75

Fig. 1. Two approximate query processing models with GPU

It can be seen that bootstrap needs to execute bootstrap trial b times. A
bootstrap trial includes two phases: the re-sampling phase and the query exe-
cution phase. Resampling phase has the largest computation overhead. Each
re-sampling needs to generate the same amount of re-sampled samples as the
original samples. Computation overhead in the query execution phase is small,
because it runs on the sample whose size is small.

2.2 Two Approximate Query Processing Models with GPU

The main reason we use GPU is to solve the problem of time-consuming error
estimation in AQP. According to the relationship between GPU and CPU, we
proposed two models: coprocessor model and main processor model. As shown
in Fig. 1(a), in the coprocessor model, the original samples are mainly located
in the CPU memory. After the CPU performs the AQP query execution, the
original samples are transmitted to the GPU side through the PCIE bus. After
GPU resampling, b new samples are generated and transmitted to the CPU
through the PCIE bus, and the CPU performs the final bootstrap-based error
estimation. As shown in Fig. 1(b), in the main processor model, the original
samples are naturally stored in GPU memory. All data is processed on the GPU
side without going through the PCIE bus. Finally GPU passes the result to
CPU.

These two models have their own advantages and disadvantages. If we use
the GPU as the coprocessor of the CPU, the biggest problem is the need to
repeatedly transfer data between the CPU and the GPU. This price is unbear-
able, because as we all know, the interconnection bandwidth of CPU and GPU is
much lower than memory bandwidth. But the coprocessor model also has advan-
tages. Its implementation is simple and the changes to bootstrap are small. The
main processor model fully implements AQP and bootstrap on the GPU side. His
advantage is that it completely avoids the interconnection bottleneck between
CPU and GPU, and greatly improves the calculation speed of AQP and boot-
strap. Its disadvantage is that it needs to introduce new dependencies to achieve
query execution on GPU.

76 H. Zhao et al.

tuple0

tuple1

tuple2

tuple3

tuple4

tuple5

tuple6

…

tuple3

tuple4

tuple1

tuple5

tuple2

tuple0

tuple2

…

tuple2

tuple5

tuple2

tuple4

tuple3

tuple1

tuple0

…

tuple6

tuple2

tuple3

tuple1

tuple0

tuple2

tuple5

…

…

original sample samples

resample

Fig. 2. Resampling of boostrap: generate b new samples from original sample

3 AQP and Bootstrap-Based Error Estimation on GPU

3.1 Coprocessor Model

In the database field, past work [4,6,8,16] focused on using GPU as the copro-
cessor of the CPU to help the CPU run some computationally intensive tasks,
which we call the coprocessor model. We introduced this model in the second
section.

So, how to realize the parallelization of resampling? As shown in the Fig. 2,
bootstrap needs to perform resampling b times, and each resampling includes n
uniform samples. In the past parallelized bootstrap research [5,7,9] let b threads
perform a resample separately. The shortcomings of these parallelization studies
are obvious, that is, the upper limit of the degree of parallelism is the number of
bootstrap trials b, which is far lower than the highest degree of parallelism that
the GPU can achieve, and a lot of computing power is wasted. We found that the
n times of uniform sampling within one resampling are also independent, and can
be completely divided into n small tasks to achieve fine-grained parallelism. The
advantage of this is that the parallel capability of the GPU can be fully utilized,
and the cost needs to be more Threads, but GPUs are inherently suitable for
multi-threading, and increasing the number of threads will not cause additional
overhead.

In the specific implementation, we need a total of b ∗ n threads, so we need
to set appropriate blocknum and threadnum to cover b ∗ n in the CUDA kernel
function. The task of each thread is to solve two subscripts, and then construct
a sample from the original sample array to the resampled sample array based on
these two subscripts, and then copy the corresponding data. It can be seen that
the implementation logic is very simple, which is the advantage of the coprocessor
model.

Revisiting AQP and Bootstrap Error Estimation on GPU 77

Table 1. Crystal primitives [15]

Primitive Description

BlockLoad Copies a tile of items from global memory to shared memory. Uses
vector instructions to load full tiles

BlockLoadSel Selectively load a tile of items from global memory to shared
memory based on a bitmap

BlockStore Copies a tile of items in shared memory to device memory

BlockPred Applies a predicate to a tile of items and stores the result in a
bitmap array

BlockScan Co-operatively computes prefix sum across the block. Also returns
sum of all entries

BlockShuffle Uses the thread offsets along with a bitmap to locally rearrange a
tile to create a contiguous array of matched entries

BlockLookup Returns matching entries from a hash table for a tile of keys

BlockAggregate Uses hierarchical reduction to compute local aggregate for a tile of
items

3.2 Main Processor Model

Although the coprocessor model works well in our experiments, it still has a
lot of room for improvement. The coprocessor model needs to first transfer the
query-related columns to the global memory of the GPU. Then, each time the
GPU resamples, it sends the resampled samples back to the CPU memory. Using
PCIE bus with such a high flow rate requires several seconds of transmission.
What is even more intolerable is that if the amount of original sample data is
doubled, the total cost will increase b times.

In order to solve the problem of the interconnection bottleneck between the
CPU and GPU in the coprocessor mode, we proposed the main processor model.
The main processor model uses the GPU as the main processor for AQP and
error estimation, and uses the CPU as a coprocessor to process SQL Parsing. The
main processor model performs queries on the sample table on the GPU side,
and does not need to repeatedly transmit samples in the PCIE pipeline. In this
way, we have eliminated the interconnected IO bottleneck. However, this method
requires the GPU to have query execution capabilities that are not inferior to
the CPU. There have been many research results on this issue that can meet our
needs, such as YDB [19], HippogriffDB [10], Omnisci [14], etc. We found that
the latest research result Crystal [15] is the best in performance. The Crystal
library is a CUDA function library that provides a variety of function primitives
(kernel functions), as shown in the Table 1. By combining these functions, we
can achieve the main functions defined by the SQL syntax. Using GPU as the
main processor has far-reaching significance. As far as we know, no one has
used GPU as the main processor for AQP. The memory size of modern GPUs
is sufficient to accommodate all samples in the calculation process. In order to
avoid transferring samples through the PCIE pipeline during online query, we
can import the samples offline in advance into the GPU memory.

78 H. Zhao et al.

Algorithm 2: Main Processor Model
Input: R: sample relation
Output: result : result of b bootstrap trials

1 Result result = {} ;
2 for i = 1 → b do
3 Resample R to generate resampled samples R∗ ;
4 Execute query on R∗, and add the result to result ;

5 load back result from GPU memory to CPU memory ;
6 sort(result) ;
7 return result ;

We introduced Crystal to solve the query execution problem on the GPU. The
main difficulty lies in embedding Crystal in bootstrap. Crystal only provides a
series of function primitives, and we need to program them to combine them into
equivalent SQL statements. This process is very difficult. In the experiments in
Chap. 5, we programmed 13 SQL queries. But in the system, it should be imple-
mented automatically by the system. The system can obtain the physical plan
programmed by CUDA by scanning the logical plan of the query. This process
is usually called “code generation” [1]. The main processor model algorithm is
shown in the Algorithm 2.

4 Advanced Optimization

4.1 One-Step Calculation

Bootstrap can be divided into two phases: resampling and query execution. In the
previous algorithm, we regarded it as two phases, strictly following the logic of
re-sampling first, and then querying the re-sampled samples. However, previous
studies have shown that many aggregate functions can be calculated in a stream,
that is, we do not need to execute the query after the resampling, but calculate
the aggregate value of the query at the same time as the resampling. We refer to
the classic bootstrap as the two-step algorithm, and the new optimized version
as the one-step algorithm. As shown in the Fig. 3, we use a bootstrap trial of the
simplest SUM calculation to demonstrate one-step optimization.

4.2 Count Sampling

We analyze the main processor model proposed in Sect. 3 and get a very impor-
tant finding: when resampling, we copy the selected tuples to the new samples,
which is unnecessary. We can add a column to the original sample table to indi-
cate the number of times the tuple was sampled in a bootstrap trial. Then, the
new resampling algorithm becomes: we uniformly sample a tuple and then add
one to the count of the tuple in the new column. The new algorithm is shown in
the Fig. 4.

Revisiting AQP and Bootstrap Error Estimation on GPU 79

Two-step Calculation

One-step Calculation

Fig. 3. One-step calculation optimization

tuple0
tuple1

tuple2
tuple3
tuple4
tuple5
tuple6

…

tuple3
tuple4

tuple1
tuple5
tuple2
tuple0
tuple2

…

resample

(a) Basic Method

tuple0
tuple1

tuple2
tuple3
tuple4
tuple5
tuple6

…

1
2

0
1
0
2
0
…

count

resample

(b) Count Sampling Method

Fig. 4. Count sampling optimizations

Although the Count Sampling optimization did not reduce the time com-
plexity of resampling, considering the cost of each data copy, we can still save a
considerable amount of time. In our experiments, the Count Sampling optimiza-
tion saves about 1/4 time. Count Sampling optimization also greatly reduces the
space complexity. Originally, the entire resampled sample needs to be stored, but
now only an integer array is stored, which saves a lot of space when the number
of elements is the same.

4.3 One-Time Hashtable Building

Many of the benchmark queries used in this paper contain join statements. In
the real workloads, there are also many join statements in the queries. There
are many ways to implement join. The most commonly used is the hash join
method. When we use the Crystal library, we need to manually write the hash

80 H. Zhao et al.

join code. Hash join is divided into two phases: the building hashtable phase and
the detection phase. A hash optimization is for the building hashtable phase.
First, briefly explain the principle of hash join. In the star model, the object
of join is a fact table and multiple dimension tables. Hash join creates a hash
index for small tables (dimension tables) based on join columns and stores them
in memory. Then scan the large table (fact table) one by one, read one row of
data each time, and search the hash table according to the value (key) of the
join column. The overall time complexity of hash join is O(n), where n is the
number of rows in a large table.

When we applied hash join in the query execution of bootstrap, we found that
the hash table was repeatedly constructed. This is because we need to execute b
queries, and the hashtable must be recalculated each time the query is executed.
Since we only sample the fact table, the dimension table does not need to be
changed, so the hash table does not need to be changed. When we calculate b
queries, we can create a hash table only once.

5 Experiments

5.1 Experiment Setup

Our experiments are conducted on a machine with a ten-core Intel(R) Xeon(R)
Gold 5215 CPU and a NVIDIA TITAN RTX GPU. The hardware configura-
tion is shown in the Table 2. First, we compare the bootstrap cost between the
GPU-based computing models proposed in this paper and the existing methods.
Second, we compared the performance of the two advanced optimization mech-
anism proposed in this paper. Finally, we analyze several factors that affect the
main processor model through experiments, and demonstrate the superiority of
GPU over CPU. The number of bootstrap trials b is 100 by default.

We use the Star Schema Benchmark (SSB) [12]. This benchmark has been
widely used in various data analysis studies. SSB is simplified to a star model,
which is more in line with OLAP application scenarios. SSB has a fact table
LINEORDER and four dimension tables DATE, SUPPLIER, CUSTOMER,
PART, which are organized in a star schema and connected by foreign keys.
When generating the SSB dataset, you can control the size of the dataset by
specifying a scale factor. In our experiments, the scale factor is 100. This will
generate a dataset with a total size of approximately 60 GB, in which the fact
table has approximately 600 million tuples. Then we sample the fact table uni-
formly with a probability of 0.01, and obtain the sample fact table with a size
of about 600 MB.

A total of 13 queries are provided in the SSB benchmark, to evaluate per-
formance, we use all 13 queries in SSB. These queries are divided into four cat-
egories and queries in the same category has the same template with different
selectivities. These queries cover project, selection, join, sort and aggregations.

Revisiting AQP and Bootstrap Error Estimation on GPU 81

Table 2. Hardware configuration

Operating system Ubuntu Linux 18.04.5 64 bit

CPU Intel(R) Xeon(R) Gold 5215 CPU @ 2.50 GHz, 10 cores

Momory 64 GB

GPU NVIDIA TITAN RTX

GPU memory 24 GB

CUDA cores number 4608

q1.1 q1.2 q1.3 q2.1 q2.2 q2.3 q3.1 q3.2 q3.3 q3.4 q4.1 q4.2 q4.3

Resampling cost
Error estimation cost
Query execution cost

0.1

1

10

100

1000

10000

100000

A
Q

P
an

d
bo

ot
st

ra
p

co
st

 (m
s)

query in SSB benchmark

CPU Coarse-grained Parallel Model Coprocessor Model Main Processor Model

Fig. 5. Bootstrap cost comparison of four methods

5.2 Performance Comparison

Performance Comparison of Four Methods. We compare the bootstrap
cost of the CPU and GPU. This is the most time-consuming part. Its cost is
hundreds of times that of AQP query execution. The performance improvement
in this part comes from the new method proposed in this paper, so it is very
critical.

We implemented and compared four methods. The first method is based on
CPU, which is the most widely used method and the baseline of our experiments.
The second method is the state-of-the-art method called Coarse-grained Parallel
Model [7], which parallelize the bootstrap via dividing the b times bootstrap
trials roughly to b threads. The third method is the coprocessor model proposed
in Sect. 3.1. The fourth method is the main processor model proposed in Sect. 3.2.
Our parameters are: the number of bootstrap trials b = 100, and the size of the
sample table LO LEN = 6001171.

Figure 5 shows the bootstrap cost of four methods. The abscissa represents 13
kinds of queries defined in SSB, denoted as q1.1, q1.2, ..., q4.3. The ordinate values
are too different, so we use a logarithmic scale. The results show that, first of
all, Resampling is the most time-consuming phase in bootstrap. Error estimation
and AQP query execution does not cost much time. So we mainly compare the

82 H. Zhao et al.

0

200

400

600

800

1000

1200

1400

1600

1800

q1.1 q2.1 q3.1 q3.2 q4.1

bo
ot

st
ra

p
co

st
 (m

s)

query in SSB benchmark
Main Processor Model One-step Calculation Count Sampling

Fig. 6. Bootstrap cost comparison of two advanced optimizations

four methods on resampling cost. Second, the state-of-the-art method is an order
of magnitude (ten times) faster than the CPU method, but it is still far from
the second-level cost requirement of OLAP. Third, the coprocessor model has
increased the speed of the existing work by several times, indicating that fine-
grained parallelization can achieve higher benefits on modern GPUs. Forth, the
main processor model obtained the best performance, and the cost was controlled
at about 1000 ms. The performance improvement comes from Eliminating the
interconnection data transmission between CPU and GPU.

Performance Comparison on Advanced Optimization. We compare two
optimization mechanisms with the main processor model, One-step Calculation
and Count Sampling proposed in Sect. 4. We selected 5 representative queries in
SSB: q1.1, q2.1, q3.1, q3.2, q4.1. The tables they connect are different, the predi-
cates and grouping columns are also different, and the aggregate functions used
are all SUM. The results are shown in Fig. 6. The cost spent in One-step calcu-
lation is reduced by an average of 1/4 compared to the main processor model.
Compared with the main processor, the cost spent on Count Sampling is reduced
by an average of 1/2.

We can see that the optimization effect of One-step Calculation is not as good
as Count Sampling. This is an uncommon sense result, because One-step Calcu-
lation directly eliminates the intermediate step of saving the resampled samples
and directly calculates the final result. And Count Sampling still retains the
resampling results, but greatly compresses the volume. We further analyzed and
found that the SQL engine we used has vector computing capabilities imple-
mented by GPU. Count Sampling only optimizes the sampling phase and does
not involve query execution phase, so vector calculations can be used. One-step
Calculation integrates the two phases and can not use vector calculations.

5.3 Factor Analysis

Effect of the Number of Columns Involved in Query. We explore the
effect of the number of columns involved in the query on the bootstrap cost.

Revisiting AQP and Bootstrap Error Estimation on GPU 83

512.19

1121.11
1438.82

2236.34
2588.93

0

500

1000

1500

2000

2500

3000

0 2 4 6 8
bo

ot
st

ra
p

co
st

 (m
s)

number of predicates

Fig. 7. Effect of the number of columns involved in query on bootstrap cost

1079.84 2237.01
5682.47

11451.7

22985.2

0

5000

10000

15000

20000

25000

1 2 5 10 20

bo
ot

st
ra

p
co

st
 (m

s)

scale factor

Fig. 8. Effect of original sample size on bootstrap cost

Because we use columnar storage, a column is only loaded when needed, and each
column of data will generate resampled samples when resampling. Therefore, we
believe that the number of columns involved in the query is positively related to
bootstrap cost.

We chose the SSB query q1.1 as the test query, and changed the number of
columns involved in the query by modifying the number of predicates. When
there is no predicate, the query involves only two columns. After that, we keep
increasing the number of predicates (2, 4, 6, 8), and record bootstrap cost. While
increasing the number of predicates, we control the predicate selectivity at 50%
to reduce the influence of selectivity. The results are shown in Fig. 7. The results
are consistent with our expectations. As the number of predicates grows, boot-
strap cost grows linearly. This shows that the number of columns involved in the
query has a significant impact on bootstrap cost.

Effect of Original Sample Size. We explore the effect of original sample size
on bootstrap cost. We believe that the original sample size affects the size of the
re-sampling sample, which in turn affects bootstrap cost. We change the size of
the original sample, expressed by the SSB scale factor, set to 1, 2, 5, 10, 20, and
compare their bootstrap cost. The results are shown in Fig. 8, and it can be seen
that the two are roughly proportional. This is in line with our expectations. At
the same time, we should pay attention to that, because of the GPU memory

84 H. Zhao et al.

78.264
167.837

512.442 851.215
1569.57

4327.82
8017.768294.347

15373.593
48294.237

87224.215
170124.57

394872.82793765.76

1

10

100

1000

10000

100000

1000000

10 20 50 100 200 500 1000

bo
ot

st
ra

p
co

st
 (m

s)

GPU CPU

Fig. 9. Effect of b on bootstrap cost

0
10
20
30
40
50
60
70
80
90

100

10 20 50 100 200 500 1000

tru
e

va
lu

e
co

ve
ra

ge
 (%

)

Fig. 10. True value coverage of the confidence interval calculated by different b

size limitation, the original sample cannot be too large. In this query, the scale
factor can be up to 28.

Effect of the Number of Bootstrap Trials. We explore the effect of the
number of bootstrap trials (i.e., b) on bootstrap cost and confidence interval
accuracy. Obviously, the larger the b, the longer the bootstrap cost, and the
higher the accuracy of the confidence interval. But we want to know the specific
relationship between bootstrap cost and b, so that we can preset b according to
the cost that users can tolerate. We also want to know the specific relationship
between the accuracy of the confidence interval and b, so that we can set b
according to the accuracy that the user wants, and control the convergence of
the confidence interval.

We choose the SSB query q1.1 as the test query. We gradually increase b,
and record the bootstrap cost. The results are shown in Fig. 9. It can be seen
that the bootstrap cost is roughly proportional to b. In order to quantify the

Revisiting AQP and Bootstrap Error Estimation on GPU 85

0.00

0.50

1.00

1.50

2.00

2.50

3.00

10 20 50 100 200 500 1000

le
ng

th
 o

f c
on

fid
en

ce
 in

te
rv

al
 (%

)

Fig. 11. The length of confidence intervals calculated 100 times for eah different b

relationship between the accuracy of the confidence interval and b, we designed
a new experiment: We set b from 10 to 1000. For each value, we repeat bootstrap
100 times, and each time we can get a 90% confidence interval. We calculate
the true value coverage and the length of the confidence interval, as shown in
Figs. 10 and 11. When b increases, the coverage rate is roughly 90%, which does
not change significantly. For the length of the confidence interval, its average
value does not change significantly, but its distribution converges as b increases,
which indicate that the confidence interval is getting more and more accurate as
b increases.

From the Figs. 10 and 11, we can get the difference in the performance of
the bootstrap between CPU and GPU. We limit the bootstrap cost to 10 s. As
shown by the dotted line in the Fig. 9, the CPU can only execute bootstrap
trials 10 times, and the GPU can execute bootstrap trials 1000 times. According
to the number of bootstrap trials, we can find the corresponding accuracy of
the confidence interval in the Fig. 11. It can be seen that under the same cost
requirements, the accuracy of confidence interval calculated by GPU is 5 times
that of CPU.

6 Related Work

There are many studies on the serialization and parallelization of bootstrap. For
serialized bootstrap, Chris Jermaine proposed Tuple Augmentation (TA) [13].
His point is that when we try to reduce bootstrap cost, even if the user may
specify thousands of bootstrap trials, we should avoid running the basic query
multiple times in a certain way. Kai Zeng proposed Analytical Bootstrap Method
(ABM) [20]. The method is to establish a probabilistic multi-set relationship
model to represent all possible simulation data sets generated by bootstrap trials,
and then expand the relationship algebra on this basis. Through theoretical
derivation, predict the results of thousands of bootstrap trials. The advantage

86 H. Zhao et al.

of this method is that it avoids huge calculations, but it does not conduct real
bootstrap trials. It is just a prediction, which introduces new errors.

For parallelized bootstrap, due to the development of multi-core CPUs and
GPUs, using multiple computing cores for parallel computing, accelerating com-
putationally intensive algorithms has become a common method for data sci-
entists. G. Guo [5] proposed a parallelization method of bootstrap. He gave
the matrix representation of bootstrap and decomposed the algorithm coarse-
grained, that is, a single bootstrap trial was handed over to a single thread
for processing. This parallelization method is very simple to implement, but it
is very effective. This scheme is applicable to both CPU and GPU. In experi-
ments, several to ten times performance improvement can be obtained depending
on the number of cores. M. Iida et al. [7] studied the parallelization acceleration
of bootstrap to calculate the maximum expectation algorithm. MS Lee et al. [9]
studied the use of bootstrap to calculate the parallelization acceleration of a fully
homomorphic encryption algorithm. Their parallelization methods are similar to
G Guo, and they have made different optimizations for specific statistics. The
above three studies have improved the performance of bootstrap to a certain
extent.

7 Conclusion

This paper studies how to use GPU to accelerate approximate query process-
ing, focusing on the error estimation part of approximate query processing. We
proposed the GPU-based bootstrap algorithm which is a fine-grained paralleliza-
tion method to make full use of the parallel capabilities of the GPU. Further, we
migrated the approximate query processing to the GPU as a whole, and imported
the samples into the GPU memory in advance to minimize the interconnection
IO overhead. We call it main processor model. Experimental results show that
the error estimation speed of GPU is at most about two orders of magnitude
faster than that of the CPU method. This paper also analyzes and derives the
important factors that affect the performance of the main processor model.

Acknowledgement. This work is funded by the NSFC (No. 61732004 and No.
62072113), the National Key R&D Program of China (No. 2018YFB1004404) and the
Zhejiang Lab (No. 2021PE0AC01).

References

1. Armbrust, M., et al.: Spark SQL: relational data processing in spark. In: SIGMOD
(2015)

2. Efron, B.: Bootstrap methods: another look at the jackknife. In: Kotz, S., Johnson,
N.L. (eds.) Breakthroughs in Statistics. Springer Series in Statistics (Perspectives
in Statistics), pp. 569–593. Springer, New York (1992). https://doi.org/10.1007/
978-1-4612-4380-9 41

3. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, Boca
Raton (1994)

https://doi.org/10.1007/978-1-4612-4380-9_41
https://doi.org/10.1007/978-1-4612-4380-9_41

Revisiting AQP and Bootstrap Error Estimation on GPU 87

4. Govindaraju, N., Gray, J., Kumar, R., Manocha, D.: GPUteraSort: high perfor-
mance graphics co-processor sorting for large database management. In: SIGMOD
(2006)

5. Guo, G.: Parallel statistical computing for statistical inference. J. Statist. Theory
Pract. 6(3), 536–565 (2012)

6. He, B., et al.: Relational joins on graphics processors. In: SIGMOD (2008)
7. Iida, M., Miyata, Y., Shiohama, T.: Bootstrap estimation and model selection for

multivariate normal mixtures using parallel computing with graphics processing
units. Commun. Statist. Simul. Comput. 47(5), 1326–1342 (2018)

8. Kaldewey, T., Lohman, G., Mueller, R., Volk, P.: GPU join processing revisited.
In: Proceedings of the Eighth International Workshop on Data Management on
New Hardware. pp, 55–62 (2012)

9. Lee, M.S., Lee, Y., Cheon, J.H., Paek, Y.: Accelerating bootstrapping in FHEW
using GPUs. In: ASAP (2015)

10. Li, J., Tseng, H.W., Lin, C., Papakonstantinou, Y., Swanson, S.: HippogriffDB:
Balancing I/O and GPU bandwidth in big data analytics. Proc. VLDB Endow.
9(14), 1647–1658 (2016)

11. Mozafari, B.: Approximate query engines: commercial challenges and research
opportunities. In: SIGMOD (2017)

12. O’Neil, P.E., O’Neil, E.J., Chen, X.: The star schema benchmark (SSB). PAT 200,
50 (2007)

13. Pol, A., Jermaine, C.: Relational confidence bounds are easy with the bootstrap.
In: SIGMOD (2005)

14. Root, C., Mostak, T.: MapD: a GPU-powered big data analytics and visualization
platform. In: ACM SIGGRAPH 2016 Talks, pp. 1–2 (2016)

15. Shanbhag, A., Madden, S., Yu, X.: A study of the fundamental performance char-
acteristics of GPUs and CPUs for database analytics. In: SIGMOD (2020)

16. Sitaridi, E.A., Ross, K.A.: Optimizing select conditions on GPUs. In: Proceedings
of the Ninth International Workshop on Data Management on New Hardware, pp.
1–8 (2013)

17. Wu, Z., Jing, Y., He, Z., Guo, C., Wang, X.S.: POLYTOPE: a flexible sampling
system for answering exploratory queries. World Wide Web 23(1), 1–22 (2019).
https://doi.org/10.1007/s11280-019-00685-x

18. Yan, Y., Chen, L.J., Zhang, Z.: Error-bounded sampling for analytics on big sparse
data. Proc. VLDB Endow. 7(13), 1508–1519 (2014)

19. Yuan, Y., Lee, R., Zhang, X.: The Yin and Yang of processing data warehousing
queries on GPU devices. Proc. VLDB Endow. 6(10), 817–828 (2013)

20. Zeng, K., Gao, S., Mozafari, B., Zaniolo, C.: The analytical bootstrap: a new
method for fast error estimation in approximate query processing. In: SIGMOD
(2014)

21. Zhang, H., et al.: An agile sample maintenance approach for agile analytics. In:
ICDE (2020)

22. Zhang, Y., Zhang, H., He, Z., Jing, Y., Zhang, K., Wang, X.S.: Parrot: a progressive
analysis system on large text collections. Data Sci. Eng. 6(1), 1–19 (2021)

https://doi.org/10.1007/s11280-019-00685-x

µ-join: Efficient Join with Versioned
Dimension Tables

Mika Takata(B), Kazuo Goda, and Masaru Kitsuregawa

The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
{mtakata,kgoda,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. The star schema is composed of two types of tables; fact
tables record business process, whereas dimension tables store descrip-
tion of business resources and contexts that are referenced from the fact
tables. Analytical business queries join both tables to provide and ver-
ify business findings. Business resources and contexts are not necessarily
constant; the dimension table may be updated at times. Versioning pre-
serves every version of a dimension record and allows a fact record to
reference its associated version of the dimension record correctly. How-
ever, major existing versioning practices (utilizing a binary join opera-
tor and a union operator) cause processing redundancy in queries join-
ing a fact table and a dimension table. This paper proposes µ-join, an
extended join operator that directly accepts a fact table and an arbi-
trary number of dimension tables, and presents that this operator reduces
the redundancy and speeds up fact-dimension joins queries. Our experi-
ment demonstrates that µ-join offers speedup using the synthetic dataset
(up to 71.7%).

Keywords: Relational database · Join · Dimension table

1 Introduction

Versioning dimension tables is a widely employed practice to offer referential
integrity in the star schema [12]. The star schema is a popular approach for
organizing business data into relational database. The schema is composed of
two types of tables. Fact tables record business process, whereas dimension tables
store description of business resources and contexts. Analytical business queries
join both tables to provide and verify business findings. Business resources and
contexts are not necessarily constant. Suppose that database records a com-
pany’s sales history. Daily sales events are recorded into a fact table, whereas
product names and prices are stored in a dimension table. The company may
update its business resources or contexts, for example, by launching new prod-
ucts, discontinuing existing products, and changing products names or prices.
These updates are not necessarily frequent, but they may actually happen; the
updates of business resources and contexts are described in the dimension table.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 88–95, 2022.
https://doi.org/10.1007/978-3-031-00123-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_6&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_6

µ-join: Efficient Join with Versioned Dimension Tables 89

Versioning preserves every version of a dimension record and allows a fact
record to reference its associated version of the dimension record correctly. Exist-
ing versioning practices using a binary join and a union can answer queries join-
ing a fact table and a versioned dimension table. One major practice joins a
fact table and multiple versions of a dimension table one by one and then elimi-
nates redundant tuples. Another practice merges multiple versions of a dimension
table, joins it with the fact table, and then eliminates redundant tuples if nec-
essary. These practices do not necessarily offer optimized processing, but rather
induce inefficient processing.

This paper proposes, µ-join, an extended join operator, which can directly
join a fact table and multiple versions of a dimension table by considering the
join condition on a join key and a version compatibility. The µ-join operator
allows database engines to evaluate the join conditions at an early phase and to
reduce the version-related complication. Thus, the database engine potentially
improves the join performance. This paper presents our experiments to clarify
the benefit of µ-join in terms of query response time using a synthetic dataset.
To our knowledge, similar attempts have not been reported in literature.

The remainder of this paper is organized as follows. Section 2 describes ver-
sioned dimension tables and their problem. Section 3 defines a version-aware
fact-dimension join operation and presents the µ-join operator. Section 4 presents
the experimental study. Section 5 shows related work and Sect. 6 concludes the
paper.

2 Join with Multiple Versions of Dimension Tables

Let us exhibit another example of a versioned dimension table, which has moti-
vated this study. Figure 1 presents an example database of Japanese public
healthcare insurance claims. Japan has employed the universal service policy; all
the certified healthcare services necessary to the citizens are basically covered
by the public healthcare insurance system. When providing an insured patient
with healthcare services, healthcare service providers (e.g., hospitals) are sup-
posed to submit an insurance claim to request the compensation of the expense
to the public healthcare insurers. Let us think about the design of database
for managing the insurance claims. One typical solution is to record insurance
claims in a fact table (S in the figure). Each claim contains the description of
diagnosed diseases, which are coded in the standardized format. Such descrip-
tive information of disease codes is to be stored in a separate dimension table.
The disease code system does not remain unchanged. Rather, it may change at
times. Figure 1 presents a partial portion of the real Japanese disease code stan-
dard, indicating that the disease code system changed twice from June, 2020
to October, 2021. For example, the disease code indicating Apparent strabis-
mus changed from 8831256 to 3789010 after January, 2021. When healthcare
researchers analyze the database, they need to interpret each insurance claim by
referencing an appropriate disease description record according to the recorded
disease code and the claiming date. Thus, the database must keep all historical

90 M. Takata et al.

Fig. 1. An example of a fact table and versioned dimension tables

updates of the dimension tables (R1, R2, and R3 in the figure) for answering
such queries. This complication is not limited to disease codes. Insurance claims
contain more information such as medical treatments and medicinal drugs, the
descriptive information of which change every month, in order to reflect the
evolution of medical science and industry.

Versioning preserves every version of a dimension record and allows a fact
record to reference its associated version of the dimension record correctly.
Unfortunately, most current database management systems do not support such
dimension versioning explicitly. Instead, implementing the dimension versioning
on the relational schema is a major engineering approach. They can be roughly
grouped into three policies. Snapshot versioning stores every entire version of
a dimension table as a separate table. Differential versioning stores only the
difference of every version from the first version as a separate table. Incremental
versioning stores only the difference of every version from the previous version
as a separate table. Snapshot versioning is relatively simple, but it consumes
redundant space and may cause additional processing due to tuple redundancy.
Incremental versioning only consumes smaller space, but it is complicated, need-
ing additional processing to reproduce a tuple of a specific version.

Analytical queries often performed across a fact table and such a versioned
dimension table. Those queries must be written to guarantee that each fact
record can reference its associated version of the dimension record. One typical

µ-join: Efficient Join with Versioned Dimension Tables 91

practice uses a binary join operation to join a fact table and every version of a
dimension table, merges the join results, and then eliminates non-effective and
redundant tuples. This practice often causes inefficient processing due to redun-
dant work and elimination work. Another practice merges all possible versions
of a dimension table, joins the merged dimension table, and then eliminates non-
effective and redundant tuples. This practice do not necessarily offer optimized
processing, but it is likely to induce inefficient processing.

3 The µ-join Operator

In this section, we introduce a new database operator, named µ-join. The µ-join
operator extends the existing binary join and it can directly join a fact table and
multiple versions of a dimension table by considering the join condition on a join
key and a version compatibility. Being implementing this new operator, database
engines can efficiently perform version-aware fact-dimension join queries.

Version-Aware Fact-Dimension Join Operation. First, we define a ver-
sioned dimension table and version-aware fact-dimension join operation.

Definition 1 (Versioned dimension table). Let Ř be a versioned dimension
table, having <Ř> versions, where the k-th version Řk is defined as Řk := {r|r ∈
Ř∧ ek(r)}, where ek(r) is true if and only if a tuple r is effective at a point of a
version number k (0 ≤ k < <Ř>).

Definition 2 (Snapshot versioning). When snapshot versioning is deployed,
each version Řk is directly stored as a separate table R

(s)
k as R

(s)
k ← Řk.

Definition 3 (Differential versioning). When differential versioning is deployed,
the first version Ř0 is directly stored as a separated table R

(d)
0 and the difference

of each version Řk from the first version Ř0 is stored as a separate table R
(d)
k

in the database as R
(d)
0 ← Ř0, R

(d)
k ← Řk � Ř0(k > 0), where the operator �

produces the difference of a left-hand table from a right-hand table as a table1.

Definition 4 (Incremental versioning). When incremental versioning is deplo-
yed, the first version Ř0 is directly stored as a separate table R

(i)
0 and the dif-

ference of each version Řk from the first version Ř0 is stored as a separate table
R

(i)
k in the database as R(i)

0 ← Ř0, R
(i)
k ← Řk � Řk−1(k > 0).

Next, we define version-aware fact-dimension join operation that can be per-
formed over a fact table S and a versioned dimension table Ř.

1 Assuming that a record given in a right-hand table is deleted in a left-hand table,
the operator � returns the deleted record with the deleted flag. This is analogous to
the minus operator in the normal arithmetic system. The similar technique is widely
deployed in database logging [8]. In our implementation, the deleted flag is stored in
a separated attribute.

92 M. Takata et al.

Definition 5 (Version-aware fact-dimension join operation). A version-aware
fact-dimension join operation S ��v,Y=X Ř of a fact table S and a versioned
dimension table Ř is defined as S ��v,Y=X Ř :=

⋃
0≤k<<Ř>{s ∪ r|s ∈ S ∧ r ∈

Řk ∧sY = rX ∧v(s) = k}, where an attribute set Y is a foreign key of S, another
attribute set X is a primary key of Ř and a function v(s) return a version number
indicating a version of the dimension table Ř with which a tuple s of the fact
table S is associated. The equation Y = X denotes a join key condition and the
equation v(s) = k denotes a version compatibility condition.

µ-join Operator. The version-aware fact-dimension join operation presented
in Definition 5 can be expressed by a combination of multiple binary join oper-
ations, a union operation, and a selection operation. Thus, it can be performed
on conventional database engines. However, such practices are likely to cause
processing inefficiency as discussed in Sect. 2.

This paper proposes µ-join, a new database operator to be implemented in
database engines. The µ-join operator extends the existing binary join. This
operator directly accepts a fact table S and multiple versions of a dimension
table Ř0, Ř1, · · · , Ř<Ř>−1 to join them by considering the join condition on
a join key and a version compatibility according to Definition 5. The native
implementation of the µ-join operator allows the database engine to evaluate
the join key condition sY = rX and the version compatibility condition v(s) = k
at an early phase to reduce the redundant tuple processing that is likely to be
imposed by the binary-join practice.

In addition, the database engine is allowed to build a version index data
structure to identify target relational tables (storing a versioned dimension table)
with which each incoming fact tuple s joins. This is beneficial for differential
versioning and incremental versioning, which induces complexity in the identifi-
cation of target relational tables. Suppose a fact tuple s has an apparent version
k, meaning that the tuple s is supposed to join with Řk. In snapshot versioning,
obviously the target dimension tuple with which the tuple s joins is stored in the
dimension table R

(s)
k . However, the target dimension tuple with which the tuple

s joins is stored in any of R(d)
0 and R

(d)
k in differential versioning or R(i)

0 , · · · , R(i)
k

in incremental versioning. The version index data structure accepts a primary
key value x (for the attribute X) and an apparent version number k as input,
and returns a version number indicating a target relational table storing a ver-
sioned dimension table with which a fact tuple having x and k is associated.
The database engine is allowed to efficiently identify the target relational table
storing a versioned dimension table for each incoming fact tuple, thus improving
the efficiency of the join processing.

In the hash-based implementation of µ-join operator, hash tables are built
from target relational tables storing a versioned dimension table in the first
phase in similar to hash binary joins. At the same time, the version index data
structure is built from the target relational tables. Building the version index
data structure does not incur major performance overhead because dimension
tables are often much smaller than fact tables and the majority part of the version
index building is shared with the normal hash table building. In the second phase,

µ-join: Efficient Join with Versioned Dimension Tables 93

a fact table is scanned; each fact tuple probes in the version index data structure
to identify the target table, and then probes in the identified target table. Thus,
the µ-join operator offers an opportunity for database engines to improve the
processing efficiency for the version-aware fact-dimension join operation. Also,
µ-join is so intuitive that it can encapsulate the logic complication of version
management in the database engine. That would potentially relieve the database
designer’s effort.

4 Evaluation

We present our experiment to clarify the benefit of the µ-join operator in terms
of query response time. We revised the TPC-H data generator (dbgen) so that it
could produce versioned dimension tables. The revised generator was enabled to
produce multiple versions of dimension tables, where every version of a dimension
table contained different tuple content2 from its previous version, according to nv

(nv ≥ 1) that specifies the number of versions to be generated for each dimension
table. The first version is identical to the original dimension table according to
the TPC-H specification. In addition, the revised generator appended a version
attribute, for each fact table, indicating a dimension version with which each fact
tuple is supposed to join. For a given fact table, we divided the date attribute
(e.g., O ORDERDATE) space into nv periods and determined a version of each
fact tuple based the period with which the date value is associated. We generated
the TPC-H dataset with versioned dimension tables organized with three version
management policies.

For comparison, we tested the query execution according to the conventional
binary-join practices and the new µ-join operator. Binary join (naive) per-
forms the conventional binary-join operator to join a fact table and each version
of a dimension table, merges the join results, and eliminates non-effective or
redundant tuples. Binary join (pre-dedup 1) merges all possible versions of
a dimension table, performs the conventional binary-join operator to join a fact
table and the merged dimension table, and eliminates non-effective or redundant
tuples. Binary join (pre-dedup 2) merges all possible versions of a dimension
table, eliminates redundant dimension tuples as much as possible, performs the
conventional binary-join operator to join a fact table and the merged dimen-
sion table, and eliminates non-effective or redundant tuples. µ-join performs
the µ-join operator to directory join a fact tuple and all possible versions of a
dimension table, without generating any non-effective or redundant tuples. We
implemented these execution cases in the same code base from scratch and mea-
sured the average execution time of five trials for each test. We only employed
the on-core hash join algorithm (accommodating an entire hash table in mem-
ory) rather than the nested-loop join algorithm without any selection predicates.
The query execution was single-threaded and conducted on Linux with two Intel
2 We only updated a non-key attribute for each dimension table. For example, we gen-

erated a new version of PART by shifting the value of P RETAILPRICE randomly
within the ±5% range from its previous version.

94 M. Takata et al.

0
100
200
300
400
500
600
700
800

0 2 4 6 8 10 12

E
xe

cu
tio

n
tim

e
[s
ec

]

nv (number of versions)

(a) Snapshot versioning

0 2 4 6 8 10 12
nv (number of versions)

(b) Differential versioning

0 2 4 6 8 10 12
nv (number of versions)

Binary join (naive)
Binary join (pre-dedup 1)
Binary join (pre-dedup 2)
-join

(c) Incremental versioning

Fig. 2. Evaluation on different numbers of versions

Xeon two processors (56 processing cores in total running as 2.60 GHz) and 96GB
DRAM with 31TB RAID-6 storage by twenty-four disks.

Figure 2 presents the execution performance of a query joining LINEITEM
and versioned PART on different numbers of dimension versions. Figure 2(a)
shows µ-join speeds up a fact-dimension (w/two versions) join up to 31.7% from
the best case of binary-join practices on snapshot versioning. As more versions
are involved, µ-join achieves higher speedups up to 71.7% for twelve versions.
Figure 2(b) shows µ-join consistently achieves speedups up to 2.89% for two
versions and 48.9% for twelve versions on differential versioning. Figure 2(c)
shows µ-join performs comparably with the best case of binary-join practices
on incremental versioning. These results indicate that µ-join achieves significant
speedups by evaluating the join key condition and the version compatibility at
an early phase and by using the version index data structure to reduce the
redundant tuple processing.

5 Related Work

Various join operator was explored for improving analytical query performance
on database such as hash join, merge join, and nested loop join [1,2,13,15,16].
As a data structure, the columnar-based system was explored for statistical
process to enhance analytical query performance [9,14,17]. To evolve analytical
efficiency on database, many operations were implemented such as min, max,
and group-by [7]. Stored procedures were explored to incorporate a user’s specific
requirements into database systems [6,7,18]. Sql-like operators were extended by
the standard SQL to allow analysts easily do certain types of analytics [3–5,10].
Cohort analysis operation was attempted to integrate complicated processing
into an operator based on requirements from real world [11]. Although such
operators have been studied, join across a fact table and multiple versions of a
dimension table has not been studied yet in literature to our best knowledge.

6 Conclusion

This paper proposes µ-join, an extended join operator that directly accepts a
fact table and an arbitrary number of dimension tables, and presents that this

µ-join: Efficient Join with Versioned Dimension Tables 95

operator speeds up fact-dimension joins queries. Our experiment demonstrates
that µ-join offers speedup up to 71.7% from the best case of binary-join practices
for twelve versions using the synthetic dataset. There remain open problems.
The query language and the query optimization should be studied to allow users
to intuitively exploit µ-join on the standard query interface. We would like to
consider the problems in future research.

References

1. Barber, R., et al.: Memory-efficient hash joins. PVLDB 8(4), 353–364 (2014)
2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.

ACM 13(7), 422–426 (1970)
3. Bosc, P., Dubois, D., Pivert, O., Prade, H.: Flexible queries in relational databases

- the example of the division operator. Theor. Comput. Sci. 171(1–2), 281–302
(1997)

4. Bosc, P., Pivert, O.: SQLF: a relational database language for fuzzy querying.
IEEE Trans. Fuzzy Syst. 3(1), 1–17 (1995)

5. Chatziantoniou, D., Ross, K.A.: Querying multiple features of groups in relational
databases. In: VLDB, vol. 96, pp. 295–306 (1996)

6. Eisenberg, A.: New standard for stored procedures in SQL. SIGMOD Rec. 25(4),
81–88 (1996)

7. Gray, J., et al.: Data cube: a relational aggregation operator generalizing group-by,
cross-tab, and sub totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)

8. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, Burlington (1993)

9. Gupta, A., et al.: Amazon redshift and the case for simpler data warehouses. In:
SIGMOD, pp. 1917–1923 (2015)

10. Hosain, S., Jamil, H.: Algebraic operator support for semantic data fusion in
extended SQL. In: ICCTIS, pp. 1–6. IEEE (2010)

11. Jiang, D., et al.: Cohort query processing. PVLDB 10(1), 1–12 (2016)
12. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to

Dimensional Modeling. Wiley, Hoboken (2011)
13. Kitsuregawa, M., Tanaka, H., Moto-Oka, T.: Application of hash to data base

machine and its architecture. New Gener. Comput. 1(1), 63–74 (1983)
14. Manegold, S., Boncz, P.A., Kersten, M.L.: Optimizing database architecture for

the new bottleneck: memory access. VLDB J. 9(3), 231–246 (2000)
15. Patel, J.M., Carey, M.J., Vernon, M.K.: Accurate modeling of the hybrid hash join

algorithm. In: SIGMETRICS, pp. 56–66 (1994)
16. Shapiro, L.D.: Join processing in database systems with large main memories.

ACM Trans. Database Syst. 11(3), 239–264 (1986)
17. Stonebraker, M., et al.: C-store: a column-oriented DBMS. In: Making Databases

Work: The Pragmatic Wisdom of Michael Stonebraker, pp. 491–518. ACM/Morgan
& Claypool (2019)

18. Yu, X., et al.: PushdownDB: accelerating a DBMS using S3 computation. In: ICDE,
pp. 1802–1805. IEEE (2020)

Learning-Based Optimization for Online
Approximate Query Processing

Wenyuan Bi1,2, Hanbing Zhang1,2, Yinan Jing1,2(B), Zhenying He1,2,
Kai Zhang1,2, and X. Sean Wang1,2,3

1 School of Computer Science, Fudan University, Shanghai, China
{wybi19,hbzhang17,jingyn,zhenying,zhangk,xywangCS}@fudan.edu.cn

2 Shanghai Key Laboratory of Data Science, Shanghai, China
3 Shanghai Institute of Intelligent Electronics and Systems, Shanghai, China

Abstract. Approximate query processing (AQP) technique speeds up
query execution by reducing the amount of data that needs to be pro-
cessed, while sacrificing the accuracy of the query result to some extent.
AQP is essentially a trade-off between the accuracy of the query result
and the query latency. However, the heuristic AQP optimization and
error control mechanism used by the existing AQP system fails to meet
the accuracy requirements of users. This paper proposes a deep learning-
based error prediction model to guide AQP query optimization. By using
this model, we can estimate the errors of candidate query plans and select
the appropriate plans that can meet the accuracy requirement with high
probability. Extensive experiments show that the AQP system proposed
in this paper can outperform the state-of-the-art online sampling-based
AQP approach.

Keywords: Approximate query processing · OLAP · Error prediction

1 Introduction

For interactive data exploration (IDE), it is necessary to answer the query as
soon as possible to ensure the user’s concentration. Since in big data analytics,
many decisions can be made on the big picture of the data, we can use sampling-
based approximate query processing (AQP) system to speed up query process-
ing at the cost of accuracy. There are mainly two types of sampling-based AQP
methods, namely offline sampling and online sampling. Offline sampling-based
AQP systems [1,7] usually perform queries on pre-computed samples to speed up
query processing. The advantage of offline sampling-based AQP methods is that
they can quickly return query results. However, offline methods cannot give the
estimated error bound of the query before the query execution is completed, so
it is difficult to meet the user’s accuracy requirement. In addition, offline meth-
ods only work well when a priori knowledge of the workload is given. Online
sampling-based AQP methods perform sampling at the runtime. The represen-
tative of this type of AQP method is Quickr [3]. It incorporates the sampler
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 96–103, 2022.
https://doi.org/10.1007/978-3-031-00123-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_7

Learning-Based Optimization for Online AQP 97

as a logical operator into the query plan and uses a rule-based error control
mechanism to guide the sampler push-down optimization. However, for complex
queries and skewed data distribution in real datasets, the assumptions in Quickr
are not valid that makes the accuracy of the approximate query results will be
low, and the accuracy requirements specified by the user will not be met.

In this paper, instead of using the heuristic rule-based optimization strategy
like Quickr [3], we propose a learning-based AQP query optimization method,
which uses a priori error prediction model to guide the AQP query optimiza-
tion. Additionally, we combine the model with the SparkSQL-based AQP system
together. Given a query and the accuracy requirements specified by users, by
leveraging the error prediction model, the system can select query plans whose
error can meet the user’s requirements from all candidate query plans. In this
way, it can better balance the accuracy requirements put forward by users with
the acceleration effect of the AQP system. In summary, we make the following
contributions in this paper:

– We design and implement an error prediction model based on deep learning,
which provides a prior error guarantee for an approximate query and improves
the usability of the AQP system.

– We integrate the above-mentioned error prediction model into the SparkSQL
framework to implement a distributed AQP system. The system can return
approximate query results that meet the user’s accuracy requirements with a
higher probability.

– We conduct extensive experiments on the TPC-H dataset. The experiment
results show that the AQP system proposed in this paper can outperform the
state-of-the-art online sampling-based AQP approach.

2 Approximate Query Optimization

By extending the standard SQL with an enhanced grammar “ERROR WITHIN
a% AT CONFIDENCE b%”, users can easily pose an AQP query by specifying
the expected error bounds. Within the query engine, a sampler is incorporated
into the query plan to support the AQP. As shown in Fig. 1, if there is an
aggregation operator in the query, we first insert a sampler below it. The logical
state of the sampler is maintained, including the sampling rate and the set of
columns that may require stratified sampling. To further optimize the AQP
query, we can push down the sampler through the filter operator, join operator,
and projection operator. Thus, a bunch of candidate query plans are generated
as shown in Fig. 1. Unfortunately, not all the candidate query plans can meet the
accuracy/error requirement specified by users because the sampler push-down
may violate the equivalence rules of the relational algebra.

Instead of the strong equivalence principle, we make a weak equivalence
rule for the AQP query optimization, especially for the probabilistic sampler
push-down, i.e., if the error of the approximate query result meets the user’s
specified accuracy requirements, we say this push-down can comply with the

98 W. Bi et al.

Aggregate

Project

Join

Project

Filter

Relation

Join

… …

Aggregate

Project

Join

Project

Filter

Relation

Join

… …

Sampler

Aggregate

Project

Join

Project

Filter

Relation

Join

… …

Sampler

Aggregate

Project

Join

Project

Filter

Relation

Join

… …

Sampler …

Case A Case B Case C

Original Query Plan Candidate Query Plans

Fig. 1. Incorporating sampler into the query plan and generating candidate plans

weak equivalence rule. In order to ensure that the query accuracy can meet
the needs of users, we propose an error prediction model to provide a priori
error prediction. The workflow of approximate query optimization with a learned
error estimator is shown in Fig. 2. The error estimator can be trained offline. In
the online phase, given a query q and an error threshold δ, the AQP engine
will generate a set of candidate query plans V by pushing down the sampler.
Then, the AQP engine uses the error prediction model m to predict errors of all
candidate plans in V and filter out the query plans that do not meet the error
requirements. Thus, the AQP engine selects a set of legitimate candidate query
plans V ′ with an error less than the given threshold δ. Finally, we choose the
least expensive plan from the remaining query plans to execute. In General, we
choose the query plan with the sampler pushed down the farthest.

Fig. 2. Approximate query optimization with a learned error estimator

3 Deep Learning-Based Error Prediction Model

In this paper, we design an error prediction model based on deep learning, which
is mainly composed of three parts: feature encoding, tree-structured representa-
tion extraction and error prediction.

The feature encoding part is responsible for encoding the features of each
node in the query plan into sparse feature vectors and compressing them to

Learning-Based Optimization for Online AQP 99

obtain a dense representation. We abstract each node in the query plan into
four features: the sampler features contained in the node, the filter features,
the features of the relation contained, and the topological features of the cur-
rent node. Among these four features, only the filter feature may not have a
fixed dimension because it contains a compound predicate. Therefore, we treat
the compound predicate as a sequence of atomic predicates and use LSTM [2]
to encode this sequence. Then, we use the final hidden state to represent the
encoding of the compound predicate with a fixed length. At present, we restrict
the predicates only to be connected with “AND” boolean logic. The encoding of
the other three features is a simple one-hot or bitmap type of encoding. After
a simple concatenating of the encoding of these four features, we use a fully
connected neural network to learn a more compact encoding representation.

Fig. 3. Tree-structured representation extraction and error prediction

In order to further utilize the recursive topological properties of the tree-
structured query plan, the representation extraction network will capture the
information contained in each sub-plan from the bottom to up. Therefore, the
features output by the topmost root node other than the aggregation operator in
the query plan can represent the characterization of the entire query plan. The
tree-structured representation extraction network is implemented using LSTM
[2]. At the same time, in order to further utilize the information of the sub-tree,
we need to design a mechanism that can save and use the output of the sub-
tree. Considering that the internal node representing the join operator has two
sub-trees, as shown in Fig. 3, we can use the Hidden State and Cell State of the
left and right sub-trees in the LSTM to initialize the corresponding state of the
current node.

As shown in Fig. 3, the error prediction network uses a fully connected neural
network. The input is the concatenating of the tree-structured query plan feature

100 W. Bi et al.

vector and the aggregation operator encoding, which is the concatenation of one-
hot vectors of the aggregate column and aggregate function. The output is the
absolute percentage error of the current approximate query plan.

As a regression problem, the error prediction model needs to predict the
absolute percentage error (APE) of the approximate query plan. This paper
chooses the mean absolute error (MAE) as the loss function of the model. The
loss function is formalized by Formula 1, where n is the batch size, Errortrue is
the actual APE label of a query plan, and Error′ is the APE predicted by the
error prediction model.

MAE =
1
n

n∑

i=1

∣∣Errortrue − Error′∣∣ (1)

4 Experiment

We have implemented the AQP system on Spark 2.4.5. All the following exper-
iments are performed on a 5-node cluster (each with Intel Xeon Silver 4208,
128 GB RAM) under Ubuntu Linux 18.04 LTS. We compared five methods:
SparkSQL, Quickr, AQP-push, AQP-notpush and AQP-model.

– SparkSQL1 is Spark’s native SQL query processing module and does not
support AQP. We compare other AQP methods with this method to evaluate
the acceleration benefits of approximate queries.

– Quickr [3] is an AQP system based on online sampling, which uses a rule-
based method to control the absolute percentage error within 10%.

– AQP-push (abbr. push) selects the query plan with the deepest sampler posi-
tion among the candidate query plans.

– AQP-notpush (abbr. notpush) only inserts the sampler below the aggregation
operator without any push-down.

– AQP-model (abbr. model) is the AQP system based on the error prediction
model proposed in this paper. This method selects a query plan that can
meet the user’s error requirements from all candidate query plans by using
the error prediction model and has the lowest sampler position at the same
time. If there is no query plan satisfied, it will fall back to a precise query
without online sampling.

We use the Mean Absolute Percentage Error (MAPE) of a certain approx-
imate processing method to evaluate the error control ability. The MAPE is
calculated by Formula 2, where n is the number of test queries, aggtrue is the
exact result of the query, and agg′ is the approximate result of the query.

MAPE =
1
n

n∑

i=1

∣∣∣∣
aggtrue − agg′

aggtrue

∣∣∣∣ × 100% (2)

1 https://spark.apache.org/sql/.

https://spark.apache.org/sql/

Learning-Based Optimization for Online AQP 101

In addition, we also use Mean Speedup (MS) to evaluate the acceleration
performance of these methods. The MS is calculated by Formula 3, where n
is the number of test queries, TSparkSQL is the query execution time without
approximate processing, TAQP is the execution time of a certain AQP method.

MS =
1
n

n∑

i=1

TSparkSQL

TAQP
(3)

In the following experiments, we use the TPC-H benchmark and generate a
10 GB TPC-H dataset. In order to train the error prediction model, the exper-
iment also generated the corresponding query workload. According to the join
graph of TPC-H data, for the two-table joined queries, at the number of predi-
cates specified as 1 to 3, 2000 queries are generated respectively. For three-table
joined queries, the number of predicates is also specified in the case of 1 to 3,
and 1000 queries are generated respectively. In order to further test the overall
performance of the approximate query processing system, we also randomly gen-
erated 100 SQL queries for testing. In the following experiments, the accuracy
requirement is specified as less than 10% by default.

(a) Query Error (b) Query Speedup

Fig. 4. Results of two-table joined queries

Figure 4(a) shows the MAPE of different methods under the two-table joined
query. As shown in Fig. 4(a), only the method based on the error prediction
model has a MAPE within 5%, and the MAPE of other methods is about 30%.
The performance of the Quickr method for the two-table joined queries shows
that the rule-based AQP query optimization method cannot effectively deal with
the queries that contain join operators. Figure 4(b) shows the mean speedup of
the two-table joined queries. We can find that the mean speedup of the notpush
method without sampler push-down is still around 1, while the other methods are
close to 2.5. This means that if the sampler is not pushed down, no acceleration
gains can be obtained, and the other methods of pushing down can speed up
the execution of the query. At the same time, we observe that the speedup of
the model method is less than the counterparts of push and Quickr. This is

102 W. Bi et al.

because the model method tends to choose a less aggressive sampler push-down
optimization in order to ensure that the error meets user requirements.

Figure 5(a) shows the error of different methods under three-table joined
queries. As shown in Fig. 5(a), the model method can control the MAPE around
2.5%, while other methods generally exceed 13%. It can be seen from Fig. 5(b)
that the mean speedup of the notpush method without sampler push-down is
still around 1, while other approximation methods can reach 11. Compared with
the experiment results of the two-table joined queries, we can observe that as the
query contains more join operators, the AQP method can obtain more speedup
benefits.

(a) Query Error (b) Query Speedup

Fig. 5. Results of three-table joined queries

In addition, the model prediction time is very short compared to the query
execution time. For the queries on the two or three joined tables, the ratio
of model prediction time to the query execution time is only 1.3% to 1.9%.
Therefore, the model prediction time is almost negligible for complex queries.

5 Related Work

The sampling-based AQP systems can be divided into two categories: offline
sampling-based and online sampling-based systems. There are many studies on
offline sampling-based systems in recent years [1,7], but these offline AQP sys-
tems need to depend on the prior workload knowledge. The AQP systems based
on online sampling [3,5,10] can boost unknown query workload. For example,
Quickr [3] system treats the sampling as a logical operator and incorporates it
into the query plan. It uses a heuristic rule-based sampler push-down strategy
to optimize AQP. However, such a heuristic optimization needs to depend on a
strong assumption, and it cannot work well if the assumption does not hold.

In recent years, the application of deep learning techniques to data-driven
problems has proven feasible. In the database field, there are also many attempts
to apply deep learning to query optimization [4,6,8,9]. To the best of our knowl-
edge, there is no existing work for error prediction of approximate queries by
using deep learning.

Learning-Based Optimization for Online AQP 103

6 Conclusion

In this paper, we propose a deep learning-based error prediction model, which
can provide a prior error guarantee for the AQP system. We also implemented
an online approximate query processing system based on SparkSQL and inte-
grated the above-mentioned error prediction model into the system. Compared
with the rule-based AQP optimization method, the learning-based method has
a more robust performance on query accuracy. Experimental results also prove
the superiority of the error prediction model and the AQP system proposed in
this paper.

Acknowledgement. This work is funded by the NSFC (No. 61732004 and No.
62072113), the National Key R&D Program of China (No. 2018YFB1004404) and the
Zhejiang Lab (No. 2021PE0AC01).

References

1. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB:
queries with bounded errors and bounded response times on very large data. In:
Eurosys (2013)

2. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

3. Kandula, S., et al.: Quickr: Lazily approximating complex AdHoc queries in bigdata
clusters. In: SIGMOD (2016)

4. Lakshmi, S., Zhou, S.: Selectivity estimation in extensible databases-a neural net-
work approach. In: VLDB, vol. 98, pp. 24–27 (1998)

5. Li, F., Wu, B., Yi, K., Zhao, Z.: Wander join: Online aggregation via random walks.
In: SIGMOD 2016. pp. 615–629. ACM (2016)

6. Marcus, R.C., Papaemmanouil, O.: Plan-structured deep neural network models
for query performance prediction. Proc. VLDB Endow. 12(11), 1733–1746 (2019)

7. Park, Y., Mozafari, B., Sorenson, J., Wang, J.: VerdictDB: universalizing approx-
imate query processing. In: SIGMOD (2018)

8. Sun, J., Li, G.: An end-to-end learning-based cost estimator. Proc. VLDB Endow.
13(3), 307–319 (2019)

9. Wang, W., Zhang, M., Chen, G., Jagadish, H., Ooi, B.C., Tan, K.L.: Database
meets deep learning: challenges and opportunities. ACM SIGMOD Rec. 45(2),
17–22 (2016)

10. Zhang, Y., Zhang, H., He, Z., Jing, Y., Zhang, K., Wang, X.S.: Parrot: a progressive
analysis system on large text collections. Data Sci. Eng. 6(1), 1–19 (2021)

Knowledge Bases

Triple-as-Node Knowledge Graph and Its
Embeddings

Xin Lv1,2, Jiaxin Shi1,2, Shulin Cao1,2, Lei Hou1,2(B), and Juanzi Li1,2

1 Department of Computer Science and Technology, BNRist, Beijing, China
2 KIRC, Institute for Artificial Intelligence, Tsinghua University, Beijing 100084, China

lv-x18@mails.tsinghua.edu.cn, houlei@tsinghua.edu.cn

Abstract. Knowledge Graphs (KGs) aim at semantically representing the
world’s knowledge in the form of machine-readable graphs composed of subject-
relation-object triples (facts). However, most previous KGs only consider the
relationship between individual entities, ignoring connections between facts and
entities, which are commonly used to depict useful information about the proper-
ties of facts. To this end, we formally introduce FactKG, a new KG form which
incorporates fact nodes and extends relations from entity-level to fact-level. This
new structure challenges some previous KG techniques. One of the key chal-
lenges to FactKG is how to learn compatible representation of entities and facts.
In this paper, we mainly focus on the embedding task of FactKG. We contribute
a benchmark WD16K with additional fact-relevant relations, and a framework
FactE, which can represent facts, entities and relations in the same space via
attention. Experiments demonstrate that FactE not only significantly outperforms
state-of-the-art models but also brings remarkable benefits for disambiguation of
1-N relations, revealing its potential usefulness.

Keywords: Knowledge graph · Representation learning · Fact embedding

1 Introduction

Knowledge Graphs (KGs) mostly represent the world’s knowledge in a structured way,
taking entities (e.g., Albert Einstein) as nodes and their relations (e.g., spouse) as edges.
Triples (facts), which consist of two entities and their relation, e.g., (Albert Einstein,
spouse, Elsa Einstein), are the core form to store knowledge. As a complementary
external resource to natural language text, KGs have proven to benefit lots of NLP
tasks, such as language modeling [28], language inference [5], machine reading com-
prehension [34], etc.

Most of existing KGs, which we call Entity KGs (EntKGs) in this paper, only
record the relationship between entities. However, in the real world, some relations
happen between facts and entities. For example, Albert Einstein married Mileva Marić
and Elsa Einstein in Switzerland and Germany, respectively. The place of marriage
describes an attribute of the marriage fact. Some EntKGs like Freebase [3] connect the
places directly to Albert Einstein, missing the correspondence between marriage facts
and marriage places. Wikidata [32], one of the largest collaboratively edited knowledge
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 107–121, 2022.
https://doi.org/10.1007/978-3-031-00123-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_8

108 X. Lv et al.

Fig. 1.An example of FactKG. Besides typical entity nodes, we also regard triples (facts) as nodes
and thus we can represent the relations of facts.

graphs, records some connections between facts and entities. But it has not been well
studied yet.

In this paper, we formally organize relations between facts and entities and intro-
duce a new KG form, named as FactKG, by extending EntKGs. In FactKG, we estab-
lish fact nodes for typical triples and incorporate qualifiers (e.g., (place of marriage,
Germany)) for every fact. Figure 1 gives an example depicting two marriage facts of
Albert Einstein and their corresponding places in this new KG form. With fact nodes,
we can not only incorporate more knowledge that is absent in previous KGs, but also
disambiguate the objects of 1-N relations (e.g., spouse) by specifying fact qualifiers,
which will benefit downstream tasks such as KG-based question answering [27].

Due to its novel structure, FactKG presents challenges to previous KG techniques,
and the key is how to learn the representation of facts, entities and relations jointly. In
this paper, we mainly focus on Knowledge Graph Embedding (KGE), a fundamental
task of KG area, which aims to encode entities and relations in terms of triple con-
straints. Although KGE has been widely studied in recent years and many representa-
tive models have been proposed [4,8], they are limited to EntKG form. It is of course
straightforward to apply these KGE methods to FactKG by simply allocating separate
embeddings for fact nodes, but this will lose rich information of interactions between a
fact and its internal components (i.e., subject, relation, and object) and the model also
suffers from more sparsity issue. Besides, FactKG embedding task is not supported by
existing KGE datasets (e.g., FB15K-237) as they lack triples with fact nodes.

To tackle these problems, we firstly establish a new KGE dataset, named WD16K,
as a benchmark of FactKG embedding task, and then propose a novel embedding frame-
work, named FactE, to jointly represent entities, relations, and facts.

For the dataset part, we extract our data from Wikidata as it provides high-quality
connections between facts and entities. By aligning entities of FB15K-237 to Wikidata,

Triple-as-Node Knowledge Graph and Its Embeddings 109

extracting and filtering relevant entity-to-entity (E-E) and fact-to-entity (F-E) triples1,
we obtain our WD16K dataset consisting of 15,874 entities, 176,748 E-E triples, and
28,202 F-E triples.

For the model part, we propose a novel framework named FactE to jointly represent
facts, entities and relations. Specifically, we use two strategies (i.e., ATT and FUSE) to
learn the fact embedding based on the representation of its internal components. After
that, we treat facts as special entities and use typical knowledge embedding methods
for training. Our framework consists of three learning tasks, i.e., E-E triple prediction,
F-E triple prediction and qualifier-restricted entity-to-entity (Q-E) prediction, the last of
which takes qualifiers as additional input of E-E to help disambiguation of 1-N relations.

In experiments, we evaluate our model on the task of link prediction for both E-E
and F-E triples. For a fair comparison with baselines, we convert our WD16K to EntKG
form to apply previous KGEmodels. It is demonstrated that the FactKG form and FactE
model bring significant improvements over baselines, especially for F-E predictions.
Besides, given one or more qualifiers, 1-N relations can be well disambiguated using
our form and model, indicating their superiority and potential usefulness.

2 Related Work

2.1 KGE Datasets

Most existing KGE datasets are subsets of real world knowledge bases, such as (1)
FB15K [4] and FB15K-237 [30] from Freebase [3]; (2) WN18 [4] and WN18RR [8]
from WordNet [22]; (3) YAGO3-10 [29] from YAGO3 [21]. However, these datasets
only consider relations between entities. Some other datasets incorporates temporal
information for facts, such as ICEWS [17] and GDELT [18]. However, these datasets
only focus on temporal information and neglect other useful fact attributes. In this paper,
we first propose the fact-level KG form FactKG and construct a dataset WD16K.

2.2 KGE Techniques

KGE techniques for typical KGs can be divided into three categories: (1) translation
based models [4,20,29], which aim to learn embeddings by representing relations as
translations from head to tail entities; (2) tensor-factorization based models [1,25,26],
which aim to decompose relational data into low-rank matrices for representation learn-
ing and (3) non-linear models [2,8,23,24], which typically take entities and/or relations
into deep neural networks and compute a semantic matching score. Besides, recently
some KGE models are proposed specifically for temporal KGs [7,11,14]. Despite
achieving good performance, these KGE models are limited to the typical KG form
and cannot handle fact nodes well.

1 Fact-to-fact triples representing the relations between two facts (e.g., cause and effect) are not
provided in Wikidata. We leave it for future work.

110 X. Lv et al.

2.3 Event KGs and Representations

Fact is similar to Event sometimes (e.g., (Albert Einstein, spouse, Elsa Einstein)
describes a marriage event). Some event-related KGs are built by considering event
entities (e.g., World War 2) [12] or actions (e.g., watching movies) [19] as nodes and
their temporal, spatial or causal relations as edges. In these KG, facts are treated as
nodes and do not have internal components, which are different from our triple-formed
fact nodes. Some work [9,10] extract triples from news as events and represent them for
event-related tasks (e.g., event similarity). Their event is triple-formed. However, simi-
lar to EntKGs, they do not consider connections between events and entities. Facts and
events can also be represented via n-ary [6,33], which lists the relevant knowledge as
key-value pairs. However, the n-ary form misses the triplet structure, which may break
the information transformation [13].

3 Problem Formulation

FactKG. FactKG consists of entities, relations, and triples, denoted by KG =
{E ,R, T }. The main difference to EntKG is that besides typical entity-to-entity triples,
dubbed as facts, FactKG contains a new type of triples, i.e., fact-to-entity triples, rep-
resenting relations between a fact and an entity. Formally, we have T = (TE-E, TF-E),
where TE-E = {(h, r, t)|h, t ∈ E , r ∈ R} and TF-E = {((h, r, t), rq, tq)|(h, r, t) ∈
TE-E, rq ∈ R, tq ∈ E}. (rq, tq) is denoted as the qualifier for a fact-to-entity triple
((h, r, t), rq, tq), where rq and tq are qualifier relation and qualifier entity respectively.

FactKG Embedding. Previous KGE task aims to learn a vector e ∈ R
k for each entity

e ∈ E and a vector r ∈ R
k for each relation r ∈ R, using all triples in TE-E as con-

straints. For FactKG embedding task, besides typical entity and relation embeddings,
we also learn a vector f ∈ R

k for each fact f ∈ TE-E. The aim is to jointly learn e, r, f
under the constraints of both TE-E and TF-E. In Table 1, we formally compare EntKGs
and FactKG.

Table 1. Comparison between EntKGs and FactKG.

EntKGs FactKG

Components E ,R, TE-E E ,R, TE-E, TF-E

Embeddings e, r e, r, f

Constraints TE-E TE-E, TF-E

4 Our Model

Our FactE model consists of three learning tasks: 1) Entity-to-entity (E-E) prediction,
which is commonly used in previous KGE methods. 2) Fact-to-entity (F-E) predic-
tion, predicting the qualifier entity of F-E triples. 3) Qualifier-restricted entity-to-entity
(Q-E) prediction, taking qualifiers as additional input of E-E to help disambiguation of

Triple-as-Node Knowledge Graph and Its Embeddings 111

Fig. 2. Examples of our three basic tasks.

1-N relations. Figure 2 shows examples of these three tasks. Formally, we denote them
as

E-E : (h, r, ?) → t,

F-E : ((h, r, t), rq, ?) → tq,

Q-E : (h, r, ?, (r1q , t
1
q), · · · , (rmq , tmq)) → t.

(1)

For the above three learning tasks, there are three corresponding loss functionsLE-E,
LF-E and LQ-E. They share the same knowledge graph embedding and parameters. The
overall objective is the combination them:

L = LE-E + LF-E + LQ-E. (2)

We will introduce LE-E, LF-E and LQ-E in Sects. 4.1, 4.2, 4.3 respectively.

4.1 E-E Prediction Learning

The E-E prediction has been well studied by previous work. Given a triple (h, r, t), they
compute the probability of t being matched with (h, r), denoted as p(t|(h, r)), using
different models in Sect. 2.2, and then learn embeddings and parameters by maximizing
the probability of the correct tail.

In this paper, without loss of generality, we choose ConvE [8] to demonstrate E-E
prediction. First, we encode the interaction between h and r via a multi-layer convolu-
tional network:

EncE-E(h, r) = g(vec(g([eh; rr] ∗ ω))W), (3)

where eh, rr ∈ R
k are embeddings for entity h and relation r, eh and rr denote a 2D

reshaping of eh and rr, ω is the convolution kernel, g is a ReLU function to provide
nonlinearity, vec(·) denotes the flattened vector of a tensor, and the matrix W projects
the vector into a k-dimensional space, i.e., EncE-E(h, r) ∈ R

k.
Next, we compute the probability of t being matched with (h, r) by

p(t|(h, r)) = Sigmoid(EncE-E(h, r) · et). (4)

112 X. Lv et al.

Finally, we optimize it with the following binary cross-entropy loss:

LE-E = − 1
N

N∑

i=1

(li log(pi) + (1 − li) log(1 − pi)), (5)

where li is a binary label indicating whether (h, r, ti) is valid, ti is a candidate tail entity
for (h, r), pi is short for p(ti|(h, r)), and N is the number of candidates. We regard all
entities in E as candidates, so we have N = |E|.

4.2 F-E Prediction Learning

Given an F-E triple ((h, r, t), rq, tq), similar to E-E prediction, we first encode inputs
into a vector EncF-E(h, r, t, rq) ∈ R

k, then compute the probability like Eq. 4, and
finally learn parameters with a binary cross-entropy loss like Eq. 5.

In the input encoding stage, we aim to capture the interactions among (h, r, t, rq),
where (h, r, t) forms a fact f whose embedding is f . By feeding the fact embedding
f and the qualifier relation embedding rrq into ConvE, we can get the F-E encoding
model:

EncF-E(h, r, t, rq) = g(vec(g([f ; rrq] ∗ ω))W). (6)

As the meaning of a fact is highly determined by its subject, relation, and object,
we model the fact embedding as a composition of its three components:

f = c(eh, rr, et). (7)

By doing so, we can easily get the embedding of any fact once its components are given.
Compared with allocating separate vectors for fact nodes like entity nodes, this strategy
can significantly reduce parameters and avoid sparsity. In this paper, we propose two
different strategies for the combination function c.

The first strategy is FUSE, in which we simply concatenate the embeddings of h, r,
and t, and then fuse them via a neural network:

f = MLP([eh; rr; et]), (8)

where [eh; rr; et] ∈ R
3k represents vector concatenation, and MLP is a stack of Linear

layers whose final output dimension is k.
The second strategy is ATT. As different qualifier relations may focus on different

fact components, we incorporate rq as a hint for fact embedding in our second strategy
Specifically, we take rrq as the query, take component embeddings as the values, and
use their weighted average as the fact embedding:

a = Softmax(MLP(rrq) · [eh, rr, et]),
f = [eh, rr, et] · a,

(9)

where [eh, rr, et] ∈ R
k×3 represents the stack of three vectors, MLP is a linear mapping

from k-dimension to k, and a ∈ R
3 denotes attention weights.

In the end, we can obtain p(tq|(h, r, t, rq)) by replacing EncE-E and et of Eq. 4 with
EncF-E and etq . Similar to Eq. 5, we can obtain the loss function of F-E prediction,
denoted as LF-E.

Triple-as-Node Knowledge Graph and Its Embeddings 113

Fig. 3. Two strategies for converting WD16K to EntKGs.

4.3 Q-E Prediction Learning

Given an E-E triple with m qualifiers ((h, r, t), (r1q , t
1
q), · · · , (rmq , tmq)), the Q-E pre-

diction aims to utilize qualifiers to enhance E-E prediction. Similar to E-E prediction, it
can be divided into input encoding, probability computation, and loss computation.

In the input encoding stage, we encode all qualifiers into two vectors qh and qr to
provide additional information for h and r respectively. By adding the original and addi-
tional vectors together and then feeding into ConvE, we get the Q-E encoding model:

EncQ-E(h, r, (r1q , t
1
q), · · · , (rmq , tmq)) =

g(vec(g([(eh + qh); (rr + qr)] ∗ ω))W).
(10)

qh and qr can be computed by summing up every qualifier attentively. Taking qh for
exmaple:

a = Softmax(MLP(eh) · [q1
h, · · · ,qm

h]),

qh = [q1
h, · · · ,qm

h] · a,
(11)

where MLP is a linear mapping from k-dimension to k, a ∈ R
m denotes attention

weights, and qi
h is the vector of the i-th qualifier. Similarly, qr can be computed using

rr as query. In this paper, we propose two strategies to compute qi
h and qi

r.
The first strategy is FUSE. Taking qi

h as an example, we fuse each (riq, t
i
q) pair via

a neural network:
qi
h = MLP([rriq ; etiq]), (12)

where MLP is implemented as a linear layer from 2k-dimension to k. qi
r is the same as

qi
h in this strategy.
The second strategy is ATT. Take qih for example, we encode each qualifier pair by

regarding eh as the attention key:

a = Softmax(MLP(eh) · [rriq , etiq]),
qi
h = [rriq , etiq] · a,

(13)

where MLP is a linear mapping from k-dimension to k, and a ∈ R
2 denotes attention

weights. Similarly, qi
r can be computed using rr as key.

114 X. Lv et al.

Table 2. Statistics of our dataset and FB15K-237. The four columns denote the number of entities,
relations, E-E triples and F-E triples respectively.

Dataset # Ent. # R. # Trip.(E-E) # Trip.(F-E)

WD16K 15,874 195 176,748 28,202

FB15K-237 14,541 237 310,116 –

After input encoding, we can compute the probability and loss in a similar way to
Eq. 4 and Eq. 5. The final Q-E loss is denoted as LQ-E. It is worth mentioning that given
a head entity and a 1-N relation, positive targets in Q-E prediction are less than those in
E-E due to the qualifier constraints.

5 Dataset

5.1 Dataset Construction

We construct our dataset by merging FB15K-237 [30] andWikidata [32]. FB15K-237 is
one of the most widely-used KGE datasets, providing 15K entities and their dense con-
nections, but lacking fact-level relations. Wikidata is one of the largest collaboratively
edited KGs, providing billions of entities, relations, and most importantly, fact-to-entity
connections. As lots of entities in Wikidata are annotated with Freebase IDs, we can
easily align entities of FB15K-237 to Wikidata, and then extract relevant entity-level
and fact-level triples to form our dataset. As a result, our dataset has a comparable scale
and shares most entities with FB15K-237. Following FB15K, we name it WD16K2.

The detailed steps for building WD16K are:

(1) We align entities in FB15K-237 to Wikidata3 using Freebase IDs. Almost all enti-
ties (98.7%) in FB15K-237 can be found in Wikidata and these 14,353 entities
make up our initial entity set E .

(2) For every fact-relevant triple ((h, r, t), rq, tq) in Wikidata whose h and t are in E ,
we collect qualifier entities that are not in E as an additional entity set E ′.

(3) We filter out low-frequency entities from E ′ and then add remainings to E . Specif-
ically, for e ∈ E ′, we let Se = {(e, r, t)|t ∈ E}

⋃
{(h, r, e)|h ∈ E}. We only keep

those |Se| ≥ 10, which give additional 1,521 entities into E .
(4) We extract (h, r, t) whose h, t ∈ E from Wikidata as our E-E triples TE-E, and

extract ((h, r, t), rq, tq) whose (h, r, t) ∈ TE-E, tq ∈ E as our F-E triples TF-E.

Final statistics of our dataset WD16K is listed in Table 2. We shuffle it and use
90%/5%/5% as our training/validation/test set.

2 Our codes and dataset can be available in http://github.com/davidlvxin/facte.
3 We use the 20190506 snapshot of Wikidata.

http://github.com/davidlvxin/facte

Triple-as-Node Knowledge Graph and Its Embeddings 115

5.2 Conversion Strategies

In order to verify the effectiveness of our model, we need to compare with some baseline
models. One intuitive way is to use a conversion strategy to convert WD16K to the
EntKG form and run some previous KGE models on it. In this section, we propose two
strategies virtual node and seperate link for conversion.

Virtual Node Strategy. For an F-E triple ((h, r, t), rq, tq), we create a new virtual
node h r t representing (h, r, t). Besides, we also add two new relations r head in
and r tail in, which connect h and t with the virtual node h r t respectively. Through
these two relations, h r t gets all information about the fact (h, r, t). Finally, the F-E
triple ((h, r, t), rq, tq) is converted to (h r t, rq, tq), allowing previous KGE models to
run on it. Figure 3(b) shows the conversion result of the F-E triplet in Fig. 3(a). However,
compared with WD16K, such a conversion introduces additional nodes and relations,
making the knowledge graph more sparse, which is not conducive to representation
learning.

Separate Link Strategy. For an F-E triple ((h, r, t), rq, tq), we remove rq and create
two new relations r rq head and r rq tail, which connect h and t with entity tq respec-
tively. Therefore, we have two new E-E triples (h, r rq head, tq) and (t, r rq tail, tq)
instead of the original F-E triple. Figure 3(c) shows the conversion result of the F-E
triplet in Fig. 3(a). It’s worth noting that, similar to this strategy, some EntKGs (e.g.,
Freebase) also directly connect qualifier entity tq to h or t. This strategy also has some
disadvantages, e.g., the conversion incorporates new fine-grained relations, most of
which are 1-N relations and will lose some information between facts and qualifier
entity.

6 Experiments

We evaluate our model with link prediction task on WD16K and compare with previous
KGE models on the two conversions.

6.1 Experimental Setup

Baselines: In our experiments, we select the following knowledge graph embedding
models for comparison: TransE [4], DistMult [35], ComplEx [31], SimplE [15], ConvE
[8], RotatE [29] and TuckER [1]. Since our model has two strategies in both F-E
and Q-E learning, there are four variants of our model, i.e., FactE(FUSE+FUSE),
FactE(ATT+FUSE), FactE(FUSE+ATT) and FactE (ATT+ATT), where words before
and after the plus sign represent strategies of F-E and Q-E learning respectively.

Evaluation Protocol: Unlike most previous link prediction experiments, which only
consider E-E prediction, we also perform experiments on F-E prediction and Q-E pre-
diction. Specifically, since Q-E prediction is different from previous KGE tasks, it is
mainly used for disambiguation of 1-N relation predictions. We put its experimental

116 X. Lv et al.

results in Sect. 6.3 for discussion. For every E-E triple (h, r, t) in the test set, take pre-
dicting tail entity t as an example, KGE models need to give a descending order of the
probability that every entity is the correct tail entity. It is worth noting that we only
predict the tail entity for F-E triples because it is not practical to predict a triple (fact)
based on the tail entity and relation. Besides, we use the “Filter” settings proposed by
TransE [4] in our experiments. We use two evaluation metrics: (1) the mean reciprocal
rank of all correct entities (MRR) and (2) the proportion of correct entities that rank no
larger than N (Hits@N). A good KGE model should achieve high MRR and Hits@N.

Implementation Details: Following ConvE [8], we use Adam [16] as the optimizer and
label smoothing to lessen overfitting. We select the best hyperparameters via grid search
according to Hits@10 on the validation dataset. The ranges of the hyperparameters for
the grid search are the same as ConvE [8]. For every E-E triple (h, r, t), we also add a
reverse triple (t, r reverse, h) for head entity prediction in E-E and Q-E learning.

For virtual node strategy, some virtual nodes may not appear in the training set and
have no embedding vectors. For every F-E triple ((h, r, t), rq, tq) in the test set, we
will add (h, r head in, h r t) and (t, r tail in, h r t) to a finetune set Tf . Baseline
models will also be trained on Tf before testing on F-E triples. As shown in Fig. 3(c),
for separate link strategy, we can use both (h, r rq head, ?) and (t, r rq tail, ?) for an
F-E triple prediction. In our experiments, we use the average of the above two prediction
scores for final prediction.

6.2 Link Prediction Results

Table 3 shows the link prediction results on WD16K. For E-E prediction, our model
FactE (ATT+ATT) outperforms previous state-of-the-art models on all metrics (except
for Hits@10 where TuckER does better). For F-E prediction, the advantages of our
model are more obvious. FactE(ATT+ATT) performs much better than all previous
models on every metric, especially on Hits@1 where our model gains significant
improvements compared with the best baseline TuckER (which is about 45.1% rela-
tive improvement). This indicates that both E-E and F-E triples can be represented well
in our model.

Effects of FactE Strategies: We study how the strategies in F-E and Q-E learning
affect the performance. As shown in Table 3, ATT strategy in F-E learning performs
much better than FUSE, which indicates that qualifier relations are helpful for fact rep-
resentation in F-E learning. Besides, ATT strategy in Q-E learning also achieves slight
improvement for F-E prediction.

Analyses of Conversion Strategies: From Table 3, we can learn that these two strate-
gies bring different results for baseline models. Specifically, models using virtual node
strategy perform better on F-E prediction, while models using separate link strategy
achieve a better performance on E-E prediction. We think such a difference is caused
by their inherent structures. For virtual node strategy, the newly created nodes can well
represent fact information, which brings good performance on F-E prediction. How-
ever, too many extra nodes also make models more difficult to learn, which limits the
performance on E-E prediction. For separate link strategy, it introduces a small number

Triple-as-Node Knowledge Graph and Its Embeddings 117

Table 3. Link prediction results on E-E and F-E triples. All metrics are multiplied by 100. The
best score is in bold. For E-E prediction, the results are the average scores of predicting the
head and tail entities. For F-E prediction, the results are scores of predicting tail entities. Virtual
Node and Separate Link denote results on datasets converted from WD16K using virtual node
and separate link strategy respectively. FactKG denotes results on WD16K.

Model E-E F-E

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

Virtual Node TransE 23.8 39.2 27.1 15.7 24.9 45.3 27.7 14.9

DistMult 12.3 22.3 13.0 7.2 13.4 24.5 14.2 7.9

ComplEx 16.7 30.7 18.3 9.8 23.0 45.7 24.6 12.5

SimplE 17.2 31.5 19.6 9.7 24.4 47.0 26.9 13.4

ConvE 37.7 51.9 41.8 29.9 53.0 81.0 65.5 36.5

RotatE 33.8 52.3 39.3 23.6 60.2 85.0 69.0 46.6

TuckER 37.8 54.5 42.2 28.6 66.1 85.3 73.1 55.7

Separate Link TransE 26.8 43.8 31.2 17.6 31.9 53.1 39.8 30.2

DistMult 12.3 24.9 13.5 6.0 11.7 29.8 14.2 8.2

ComplEx 17.0 31.8 19.7 9.5 19.4 40.6 24.6 16.1

SimplE 17.8 33.0 21.2 9.4 17.3 38.7 23.3 14.7

ConvE 39.1 54.1 42.9 30.9 37.0 57.7 42.3 25.5

RotatE 35.7 54.3 41.5 25.4 36.8 60.3 46.3 35.6

TuckER 39.8 56.2 43.9 31.0 36.9 58.0 43.9 31.0

FactKG FactE(FUSE+FUSE) 36.8 51.4 41.0 28.9 67.3 84.4 72.5 58.7

FactE(ATT+FUSE) 39.2 54.5 43.5 30.9 77.2 91.1 82.7 69.3

FactE(FUSE+ATT) 36.8 51.5 40.8 28.8 68.9 84.8 73.4 60.7

FactE(ATT+ATT) 40.5 55.0 44.6 32.6 78.1 91.2 82.9 70.8

of fine-grained relations and maintains the denseness of KGs, which is beneficial to E-E
prediction learning. However, most added relations are 1-N relations and cannot con-
tain all information about facts, which results in poor performance on F-E prediction.
In summary, the KGs converted using both virtual node and separate link strategy have
some problems, and FactKG is a better format.

6.3 Analysis

To further analyze the performance and strengths of our FactE, we carried out extensive
experiments to explore the following questions:

Q1: How does the Q-E learning affect the overall performance?

A1: As shown in Table 4, with Q-E learning, even though additional qualifiers are pro-
vided only during training, both E-E and F-E predictions gain consistent improvements.
We think the most important reason is that 1-N relations are handled better with the help
of Q-E learning, making the learned embeddings more discriminative.

Q2: For 1-N relations, can we predict the expected object given qualifier information?

A2: As mentioned before, disambiguating 1-N relations with qualifier hints is one
important application of FactKG. To demonstrate it, we pick up E-E triples that have a

118 X. Lv et al.

Table 4. Influence of Q-E learning.

Model MRR Hits@10 Hits@3 Hits@1

E-E w/o Q-E 38.3 53.2 42.5 30.3

FactE 40.5 55.0 44.6 32.6

F-E w/o Q-E 77.3 90.4 82.1 69.4

FactE 78.1 91.2 82.9 70.8

Table 5. Object disambiguation results of 1-N relations given a random qualifier (top section) or
all qualifiers (bottom section) as additional information.

Model MRR Hits@10 Hits@3 Hits@1

Random ConvE 45.2 60.3 49.1 37.1

FactE 68.1 81.6 72.2 61.2

All ConvE 39.8 59.7 45.5 29.2

FactE 80.9 92.2 85.9 74.3

1-N relation and at least one qualifier from the test set, extract all qualifiers for each of
them, and conduct Q-E prediction by providing a random or all qualifier hints.

As shown in Table 5, our FactE achieves significant improvements over previous
KGE models such as ConvE, which actually cannot utilize additional hints and thus
gives the prediction in the E-E way. When given more qualifier hints, our FactE can
attentively select the most informative ones from them and produce more accurate pre-
dictions. However, the performance of ConvE drops as the increase of qualifiers, more
qualifiers mean more additional restrictions, the harder it is for the ConvE to find the
correct answers.

Q3: What if we change the input encoder Enc of FactE from ConvE to other KGE
models?

A3: We try another SOTA model TuckER, as our input encoder Enc, and list results
in Table 6. We can see that the performance drops a lot using TuckER. We think it
is because the theoretical basis of TuckER, i.e., third-order tensor factorization, is not
suitable for our FactE well, since there exist extra restrictions in our embeddings (i.e.,
our fact embedding is computed using entity and relation embeddings). In fact, we have
compared with other KGE models including ConvE, RotatE and TuckER in experi-
ments, FactE can achieve the best results using ConvE as input encoder Enc.

6.4 Case Study

In Table 7, we present two object disambiguation examples mentioned in Q2 of Sect.
6.3. award received and nominated for are two typical 1-N relations in these two exam-
ples. Qualifiers are provided as additional information for every triple query. From Table
7, we can learn that FactE can make good use of qualifier information and predict accu-
rate entities. ConvE can also predict the correct entities for a triple query without qual-

Triple-as-Node Knowledge Graph and Its Embeddings 119

Table 6. Results of replacing ConvE part of our model by TuckER.

Model MRR Hits@10 Hits@3 Hits@1

E-E Ours(TuckER) 37.9 55.4 41.8 28.9

Ours(ConvE) 40.5 55.0 44.6 32.6

F-E Ours(TuckER) 63.2 83.1 70.0 52.3

Ours(ConvE) 78.1 91.2 82.9 70.8

Table 7. Case study of two object disambiguation examples of 1-N relations given qualifiers as
additional information. For every triple query, we display the predicted top 5 entities of FactE
(left section) and ConvE (right section). The correct entity of every query is in bold.

FactE ConvE

Triple query: (Jennifer Lawrence, award received, ?) Qualifier: (for work, The Hunger Games)

1 MTVMovie Award for Best Fight MTV Movie Award for Best Kiss

2 Saturn Award for Best Actress MTV Movie Award for Best On-Screen Duo

3 MTV Movie Award for Best Kiss Independent Spirit Award for Best Female Lead

4 MTV Movie Award for Best Jaw Dropping Moment MTVMovie Award for Best Fight

5 MTV Movie Award for Best Female Performance MTV Movie Award for Best Villain

Triple query: (Romeo and Juliet, nominated for, ?) Qualifier: (nominee, Danilo Donati)

1 Academy Award for Best Costume Design Academy Award for Best Cinematography

2 Italian Tony Award for Best Costume Design

3 Academy Award for Best Cinematography Quebec

4 costume designer Flash Gordon

5 Latin Academy Award for Best Costume Design

ifier constraints. Take the first triple query of Table 7 as an example, the first, third and
fourth entities predicted by ConvE are correct if we do not give qualifier constraints.
However, ConvE has no ability to disambiguate these entities if we provide qualifiers
as additional information.

7 Conclusion

In this paper, we formally organize relations between facts and entities and introduce
a new KG form named FactKG, by extending EntKGs. We also construct a dataset
named WD16K for FactKG embedding task, and then propose a novel model named
FactE for FactKG representation. Since most previous KGE models cannot be applied
to our dataset, we use two conversion strategies to convert WD16K to EntKGs and run
baseline models on them for comparison. Experimental results show that FactE out-
performs previous baseline models. Besides, our model can give more accurate results
for 1-N predictions by using qualifier relations and entities as context information. Our
future work might consider more complex KGs with events, i.e., incorporating event
nodes composed of more complex internal structure and event-level relations.

120 X. Lv et al.

Acknowledgments. This work is supported by the National Key Research and Development
Program of China (2020AAA0106501), the grants from the Institute for Guo Qiang, Tsinghua
University (2019GQB0003) and Beijing Academy of Artificial Intelligence, and the NSFC Youth
Project (62006136).

References

1. Balažević, I., Allen, C., Hospedales, T.M.: Tucker: Tensor factorization for knowledge graph
completion. In: EMNLP (2019)

2. Balažević, I., Allen, C., Hospedales, T.M.: Hypernetwork knowledge graph embeddings. In:
Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11731, pp.
553–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30493-5 52

3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively cre-
ated graph database for structuring human knowledge. In: SIGMOD (2008)

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embed-
dings for modeling multi-relational data. In: NIPS (2013)

5. Chen, Q., Zhu, X., Ling, Z.H., Inkpen, D., Wei, S.: Neural natural language inference models
enhanced with external knowledge. In: ACL (2018)

6. Codd, E.F.: A relational model of data for large shared data banks. In: Broy, M., Denert, E.
(eds.) Software Pioneers, pp. 263–294. Springer, Heidelberg (2002). https://doi.org/10.1007/
978-3-642-59412-0 16

7. Dasgupta, S.S., Ray, S.N., Talukdar, P.P.: Hyte: Hyperplane-based temporally aware knowl-
edge graph embedding. In: EMNLP (2018)

8. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph
embeddings. In: AAAI (2018)

9. Ding, X., Liao, K., Liu, T., Li, Z.Y., Duan, J.: Event representation learning enhanced with
external commonsense knowledge. In: EMNLP (2019)

10. Ding, X., Zhang, Y., Liu, T., Duan, J.: Knowledge-driven event embedding for stock predic-
tion. In: COLING (2016)

11. Garcı́a-Durán, A., Dumancic, S., Niepert, M.: Learning sequence encoders for temporal
knowledge graph completion. In: EMNLP (2018)

12. Gottschalk, S., Demidova, E.: Eventkg: A multilingual event-centric temporal knowledge
graph. In: ESWC (2018)

13. Guan, S., Jin, X., Wang, Y., Cheng, X.: Link prediction on n-ary relational data. In: WWW
(2019)

14. Jiang, T., Liu, T., Ge, T., Sha, L., Chang, B., Li, S., Sui, Z.: Towards time-aware knowledge
graph completion. In: COLING (2016)

15. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In:
NeurIPS (2018)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Lautenschlager, J., Shellman, S., Ward, M.: Icews event aggregations. Harvard Dataverse 3
(2015)

18. Leetaru, K., Schrodt, P.A.: Gdelt: Global data on events, location, and tone, 1979–2012. In:
ISA annual convention, vol. 2, pp. 1–49. Citeseer (2013)

19. Li, Z., Ding, X., Liu, T.: Constructing narrative event evolutionary graph for script event
prediction. In: IJCAI (2018)

20. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for
knowledge graph completion. In: AAAI (2015)

https://doi.org/10.1007/978-3-030-30493-5_52
https://doi.org/10.1007/978-3-642-59412-0_16
https://doi.org/10.1007/978-3-642-59412-0_16
http://arxiv.org/abs/1412.6980

Triple-as-Node Knowledge Graph and Its Embeddings 121

21. Mahdisoltani, F., Biega, J.A., Suchanek, F.M.: Yago3: A knowledge base from multilingual
wikipedias. In: CIDR (2014)

22. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
23. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for

knowledge base completion based on convolutional neural network. In: NAACL-HLT (2018)
24. Nguyen, D.Q., Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A capsule network-based

embedding model for knowledge graph completion and search personalization. In: NAACL
(2019)

25. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge graphs. In:
AAAI (2015)

26. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-
relational data. In: ICML (2011)

27. Saha, A., Ansari, G.A., Laddha, A., Sankaranarayanan, K., Chakrabarti, S.: Complex pro-
gram induction for querying knowledge bases in the absence of gold programs. Trans. ACL
7, 185–200 (2019)

28. Sun, Y., et al.: Ernie: Enhanced representation through knowledge integration. arXiv preprint
arXiv:1904.09223 (2019)

29. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph embedding by relational
rotation in complex space. In: ICLR (2019)

30. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text
for joint embedding of text and knowledge bases. In: EMNLP (2015)

31. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for
simple link prediction. In: ICML (2016)

32. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base (2014)
33. Wen, J., Li, J., Mao, Y., Chen, S., Zhang, R.: On the representation and embedding of knowl-

edge bases beyond binary relations. In: IJCAI (2016)
34. Yang, A., et al.: Enhancing pre-trained language representations with rich knowledge for

machine reading comprehension. In: ACL (2019)
35. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning

and inference in knowledge bases. In: ICLR (2015)

http://arxiv.org/abs/1904.09223

LeKAN: Extracting Long-tail Relations
via Layer-Enhanced Knowledge-

Aggregation Networks

Xiaokai Liu1,3, Feng Zhao1,2(B), Xiangyu Gui1,2, and Hai Jin1,2

1 National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,

Wuhan, China
2 School of Computer Science and Technology, Huazhong University of Science

and Technology, Wuhan, China
{zhaof,guixy,hjin}@hust.edu.cn

3 School of Cyber Science and Engineering, Huazhong University of Science
and Technology, Wuhan, China

liuxk@hust.edu.cn

Abstract. Long-tailed relation extraction is a crucial task in the infor-
mation extraction field for extracting the long-tailed, imbalanced rela-
tion between two annotated entities based on related context. Although
many works have been devoted to distinguishing valid instances from
noisy data and have achieved promising performance, such studies still
have critical defects: works based on nonhierarchical relations ignore the
correlations among the relations, and those based on hierarchical rela-
tions neglect the hierarchy of the relation structure, which is unbalanced
and causes difficulty in extracting data-poor classes. In this paper, a
novel layer-enhanced knowledge aggregation network, named LeKAN, is
presented to classify the relations between two annotated entities from
text, especially long-tailed relations, which are very common in various
corpora. Inspired by the election mechanism, we aggregate the ances-
tors of long-tailed relation classes into new relation representations to
prevent the long-tailed relations from being ignored. Specifically, we use
GraphSAGE to learn the relational knowledge from an existing knowl-
edge graph via class embedding. Moreover, we aggregate the acquired
relational knowledge into the LeKAN by layer-enhanced knowledge-
aggregating attention mechanism. Comprehensive experimental results
demonstrate that the new method yields considerable improvement over
other relation extraction methods on a large-scale benchmark dataset
with a long-tailed distribution.

Keywords: Natural language processing · Information extraction ·
Long-tailed relation extraction · Knowledge-aggregation network

1 Introduction

Relation extraction (RE) is an essential task in the NLP field for extracting
the relation between two annotated entities based on the context, especially
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 122–136, 2022.
https://doi.org/10.1007/978-3-031-00123-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_9&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_9

LeKAN: Extracting Long-tail Relations 123

long-tailed, imbalanced relations, which are very common in real-world settings.
Long-tailed relations cannot be ignored because they contain rich semantic infor-
mation. However, it is extremely difficult to extract long-tailed relation classes
at the tail of the class distribution because few data is available. There are only
a few works which have attempted to dig into the problem of long-tail RE,
such as the explanation-based approach [1] and the approach utilizing external
knowledge (logic rules) [2]. These works have conducted beneficial studies on the
extraction of long-tail relations.

As an emerging technology and an effective solution to help improve the abil-
ity of machines to understand the human world, knowledge graphs (KGs) can
provide higher-quality support for quantitative information retrieval, question
answering, recommender systems, search engines, and other natural language
processing applications [3,4]. However, the construction of a large-scale knowl-
edge graph system containing massive amounts of knowledge relies on large-scale
structured training data. RE, with the purpose of extracting the relation between
two named entities based on the given context, is a fundamental task in building
large-scale KGs. It is also a crucial technique in automatic KG construction.
Using RE, we can accumulatively extract new relation facts to expand the built
KG. However, RE model performances quickly degrade when extracting long-
tailed relations because many long-tailed relations suffer from data insufficiency.
These difficulties make the extraction of long-tailed relations a very difficult
problem.

Long-tail relations cannot be ignored because they contain rich semantic cor-
relations. Moreover, long-tailed, imbalanced data is very common in reality. In
this work, we followed previous work to employ a widely used corpus, the New
York Times (NYT-10) dataset1 [5], to verify the advantages of our method
in long tailed relation extraction. To have comprehensive understanding of the
long-tailed distribution in this dataset, we analyze the distribution of the rela-
tion classes in NYT-10, as shown in Fig. 1. In this figure, long-tailed relation
instances account for less than 4% of the total data, while short-headed instances
account for more than 96% of the data. Furthermore, the short-headed relation
classes account for less than 20% of the dataset, while the long-tailed relation
classes account for more than 80%. Therefore, research on long-tailed RE is sig-
nificant, and methods that can extract long-tailed relations with high accuracy
are urgently needed.

The task of extracting relations from long-tailed distribution context is very
difficult because few examples are available to train the models, leading to insuf-
ficient relation representation and poor classifier learning. Therefore, this situa-
tion motivates us to identify methods that can transfer knowledge between rela-
tions and alleviate the imbalance inherent in the hierarchical relational struc-
ture. To tackle these problems, a layer-enhanced knowledge aggregation net-
work, named LeKAN, is proposed. To transfer knowledge between relations,
the conventional method considers only the transfer of knowledge between rela-
tion instances in the same branch, e.g., /people/deceased person/place of death

1 http://iesl.cs.umass.edu/riedel/ecml/.

http://iesl.cs.umass.edu/riedel/ecml/

124 X. Liu et al.

Fig. 1. Proportions of instances and classes of short-headed and long-tailed relations
without NA labels in the NYT-10 dataset

and /people/deceased person/place of birth, while ignoring the fact that rela-
tion instances in different branches may also have similar semantics; e.g., both
/film/film festival/location and /broadcast/content/location share the base-
level relation class / ∗ / ∗ /location. LeKAN can aggregate the relational knowl-
edge between two relations regardless of whether they are in the same branch,
and the extraction of head relations provides evidence for the prediction of long-
tailed relations. To alleviate the imbalance of the hierarchical relation structure,
we propose a tree-based adjustment strategy to build the distributed relational
representation. By pruning the long branches and extending the short branches of
the network, all relation nodes are held in the same layer. Moreover, GraphSAGE
with embedded KG information can sample the relevant information of the 1-
step and 2-step neighbor nodes, which helps alleviate the imbalance problem of
the hierarchical relation structure. Various baselines experiments were conducted
on NYT-10, which demonstrate that the proposed LeKAN achieves best results
in extracting the long-tailed relation. Furthermore, by leveraging the aggregated
rational knowledge in different branches and levels, our proposed model can
transfer relational knowledge more efficiently than existing approaches.

The remainder of the paper is organized as follows. In sect. 2, we discuss
the latest progress on the long tail problem in various fields, such as relation
extraction, computer vision, that can inspire this work. In Sect. 3, we mainly
introduce the theory and interpretability of our proposed LeKAN method. Then,
our experimental results are reported in Sect. 4. Finally, we conclude the our
work and briefly introduce the work to be done in the future in Sect. 5.

2 Related Works

Relation extraction is the cornerstone of automatic construction of large-scale
KGs. Early relation extraction mainly depends on the supervision model. Quanti-
ties of labeled data is required for relation extraction via conventional supervised
models [6,7]. Such a process of tagging large-scale raw datasets is extremely time
consuming and difficult to perform. Hence, [8] proposed the use of distant supervi-
sion (DS) to automatically annotate data. However, DS unavoidably introduces
the incorrect labeling problem. To address such an issue caused by DS, [5,9]
proposed multi-instance learning mechanisms, [10] proposed a sentence-level

LeKAN: Extracting Long-tail Relations 125

framework via negative training and [11] achieved promising performance by
adopting DS to construct extensive datasets and alleviate the noisy label prob-
lem. Recently, [12] proposed a probabilistic approach to improve the DS relation
extraction. However, these works ignored the long-tailed problem or failed to
improve the effect of long-tailed RE.

The two intuitive solutions to solve the classification problem of long-tailed
distribution are resampling [13–15] and reweighing [16,17]. The essence of these
methods is to leverage the dataset with given distribution to violently hack the
unknown distribution during the process of model training, i.e., to make change
of the point weights, strengthen the tail category learning, and offset the long-
tailed effect. Moreover, multi-instance learning [18] and transfer learning [19]
can be employed to tackle the long-tail relevance problem. These methods have
achieved good results in various computer vision tasks.

Only a few works have attempted to solve the problem of long-tailed RE
[1,2,20,21]. The studies by [1,2] treated each class in isolation. Such a way of
dealing with different classes of relations naturally ignores the rich semantic cor-
relations between the classes, which are equally important. [20] proposed a hier-
archical attention scheme for RE and achieved better performance than nonhier-
archical schemes. [21] applied transfer knowledge between instances in the verti-
cal direction (same branches) and leveraged implicit and explicit class embedding
from Knowledge Graphs and Graph Convolutional Networks (GCNs) instead of
learning hyper-parameter spaces using the data-driven mechanism, where similar
classes may have different hyper parameters; thus, they impeded the generaliza-
tion of long-tailed relations. These works conducted beneficial explorations into
the long-tailed relation extraction.

Previous solutions to address the long-tail problem have mainly focused on
entity hierarchies and the transfer of relational knowledge between instances in
the vertical direction. Unlike them, our methods leverage GraphSAGE to learn
knowledge and transfer knowledge in both vertical and horizontal directions
using a relational aggregator. To alleviate the imbalance inherent in hierarchi-
cal relation structures, we also propose a method to build a layer-enhanced
hierarchical relational tree to ensure that all relational branches have identical
heights. Compared with the existing RE methods, our models can leverage rela-
tion correlations to better classify the given long-tailed instances by transferring
knowledge from their related layers.

3 Methodology

In this section, we introduce the methodology of the layer-enhanced knowledge
attention network for RE. First, we start with the relevant definitions of RE.

3.1 Framework

We follow the general definition and notations of the knowledge graph by defining
the KG as a set of G. Furthermore, G = {E ,R,F}. The F indicates triple
fact (h, r, t) ∈ F , the E indicates entities predefined in KG, and R indicates

126 X. Liu et al.

Fig. 2. The architecture of LeKAN

relations between such entities. The facts F indicate that the class of relation
r ∈ R between two given entities (h ∈ E and t ∈ E) is r. We adopt the multi-
instance learning settings and generate multiple entity-pair bags by splitting
the instances with identical entity pairs that mention hi and ti into the same
bags Sh1,t1 ,Sh2,t2,.... Each instance in entity-pair bags is represented as a word
sequence s = {w1, w2, ...}.

In Fig. 2, we demonstrate the overall architecture of the LeKAN. There are
mainly four parts in LeKAN as follows.

Instance Encoder: The instance encoder aims to encode the sentence semantics
into a continuous low-dimensional vector. Designated an instance s with the
tagged entity pair, we can use the models with neural network architecture to
encode it.

Relational Knowledge Learning: Considering the pretrained KG embeddings
(e.g., TransE [22]) as nonhierarchical relational knowledge, we use GraphSage
to learn hierarchical relational knowledge from the aggregated relational KG. In
addition, we combine the GraphSAGE with generic message-passing inference,
we can acquire the relational representation for the relation classes. We concate-
nate the outputs of the GraphSAGE sampling neighbors with different steps and
the embeddings learned from knowledge graph to construct the final distributed
relational embeddings.

LKATT: Given the hierarchical relation structure of a KG, the relational knowl-
edge aggregator automatically aggregates the parent relations of the long-tailed
relation into a new relation. For example, we can aggregate two long-tailed

LeKAN: Extracting Long-tail Relations 127

relations under different branches, e.g., /film/film festival/location and /broad-
cast/content/location, to a new relation: few instance location. Under the guid-
ance of layer-enhanced knowledge attention (LKATT), LeKAN aims to select the
instance with abundant information that exactly matches the relevant relation
but to ignore its branch.

3.2 Instance Encoder

Given an instance s = {w1, ..., wn} containing two entities, we leverage the
instance encoder to encode the sentence into a continuous low-dimensional vec-
tor. The instance encoder consists of two parts: the embedding layer, which maps
the words in the context into vectors, and the encoder layer, which encodes the
vectors.

Embedding Layer: To better identify the synaptic and semantic meanings of the
sentences. We leverage the neural networks in embedding layer to transform
discrete words in specific instance into vector space. Here, we use a pretrained
skip-gram model [23] to map each word wi in the instance to a continuous vector
space. Moreover, we adopt position embedding following [11]. Then, we embed
the relative distances of every word in the instance from marked entities into two
dp-dimensional continuous vectors. Finally, we gather all input embeddings in
the instance and concatenate all of them together. By doing so, we get a sequence
of instance embedding, which is ready to be fed into the encoding layer.

Encoding Layer: In encoding layer, we also employ neural networks to encode the
outputs of the embedding layer, whose input is a given instance. In this study,
we employ vanilla CNNs [11] and PCNNs [24] as the instance encoder.

3.3 Distributed Relational Representation via Transfer Learning

To get distributed relational representations, we need to have pretrained KG
embeddings obtained by instanced encoder and define a predefined class rela-
tion hierarchy according to the structure of KG. Then, we build the distributed
relational representation. First, we use the nonhierarchical relational knowledge
from the KGs. Second, we build a layer-enhanced hierarchical relational tree
to learn hierarchical relational knowledge. Third, we apply GraphSAGEs with
1-step and 2-step to learn the hierarchical relational knowledge from the layer-
enhanced hierarchical relational tree, and obtain a distributed relational repre-
sentation.

Building a Layer-Enhanced Hierarchical Relational Tree. Given KG G (e.g.,
NYT) consisting base-level relations, we extract the set R of it to generate the
corresponding layer-enhanced hierarchical relational tree set RH . The relations
in high-level sets (e.g., /location) have the same instances as their child rela-
tions (e.g., /people/deceased person), which indicates that high-level relations
are more general and common than low-level relations. The relation hierarchies

128 X. Liu et al.

are separated into tree-structured subgraphs of R0, which is the set of all rela-
tions. The generation of subgraphs can be recursively completed to obtain the
relation sets {R0, R1..., Ri, RL} and others. Then, we must adjust the hierarchy
relation tree to ensure that all leaf nodes have identical heights. We propose
two layer-enhanced methods to transform an imbalanced relational tree into a
balanced tree: pruning and completion. The pruning method can remove layers
from a relation branch, while the completion method can add layers to a relation
branch. For long relational branches, we can use the pruning method to reduce
their heights; for short relational branches, we can use the completion method
to increase their heights. This approach can also prevent overfitting and improve
the convergence speed of the network.

Learning Relational Knowledge via GraphSAGE. Because of the missing one-
multiple relations in KGs, GraphSAGEs are necessary that they sample 1-step
and 2-step neighbors from the hierarchical features. Given the pretrained relation
embedding vTransE

d ∈ KGs via TransE, we use the mean aggregator to form a
hierarchical representation of the i-th label:

hk
v = σ(W i · Mean(hk−1

v

⋃
hk−1
u ,∀u ∈ N (v))) (1)

where W i ∈ R
qi , i = 1, 2, h0

u = vd. The convolutional aggregator concatenates
the parent layer representation hk−1

v of the node with the aggregated neighbor-
hood representation hk

N(v). Finally, we concatenate the pretrained vTransE
i and

output vectors vGSN1
i , vGSN2

i of the GraphSAGEs to form the hierarchical class
embeddings:

qr = vTransE
i ||vGSN1

i ||vGSN2
i (2)

where qr ∈ R
d+q1+q2 .

3.4 LKATT

Conventional hierarchical RE models treat the top-level relation nodes as inde-
pendent nodes, which hinders the transfer of knowledge among the base-level
relational nodes of different branches and prevents the long-tailed nodes from
being selected. We design a relational aggregator to solve these problems. The
relational aggregator is guided by the following principles: 1) If two base-level
relational nodes are semantically similar, their top-level relational nodes are
aggregated. 2) Even if the basic relation nodes of two rare instances have dif-
ferent semantics, their top-level relations can be aggregated. Experiments show
that the aggregation of relation nodes can enhance the performance of classify-
ing long-tailed classes, and the decoupling of top-level relation nodes likely has
potential effects.

In general, the output layer of the neural network will learn parameters of
the specific label optimized by the given loss function. Because, the parameter
space of different classes is different, it naturally leads to the fact that long-tail
relations can be exposed to only a few training examples during training. Instead,

LeKAN: Extracting Long-tail Relations 129

our approach considers more correlations of the long-tailed relations by making
the ancestor nodes of semantically similar relation nodes share parameters and
concatenating the sentence to the corresponding class embeddings.

First, we acquire the instance embeddings {s1, s2, ..., sm} using the instance
encoder with the entity pair (h, t) and the corresponding bag of instances
Sh,t = {s1, s2, ..., sm}. Second, we split the class embeddings into different clus-
ters according to their types (i.e., according to their levels in the layer-enhanced
hierarchical relational tree), e.g., qir, i ∈ {0, 1, ..., L}. Third, we aggregate the
semantically similar relation nodes and adopt qir, i �= N (we assign an another
node N as root node in the tree) as a layer-enhanced attention query vector.
Finally, we use the LKATT mechanism to process the vector to get its rela-
tion representation rh,t. For each relation r, we can build the corresponding
hierarchical chain of latent relations (r0, ..., r(N−1)) using a layer-enhanced hier-
archical relational tree, where r(i−1) is the subrelation of ri. We can calculate
the attention weight for si ∈ Sh,t = {s1, s2, ..., sm} as follows:

eik = tanh(Ws[sk; qir]) + bs (3)

ai
k =

exp (eik)∑m
j=1 exp (ej)

(4)

where [x1;x2] denotes the vertical concatenation of x1 and x2, Ws is the weight
matrix, and bs is the bias. The converged nodes share parameters. Then, we can
compute the attention scores on each layer of the layer-enhanced hierarchical
relational tree to acquire the relational representations.

rih,t = ATT (qri , s1, s2, ..., sm) (5)

The global representation is defined as follows:

rh,r = Concat(r0h,t, ..., r
L−1
h,t) (6)

The conditional probability is computed by the global representation rh,t:
P(r|h, t,Sh,t):

P(r|h, t,Sh,t) =
exp(or)∑

r̂∈R exp (or̂)
(7)

where o contains the scores of all relations. And o is calculated via a linear layer:

o = Arh,t (8)

where A is the discriminative matrix.

4 Experiments

In this section, we evaluate all models using the proposed evaluation scheme. This
method evaluates the models by comparing the relational facts found in the con-
text with those in a large-scale KG, such as DBpedia, and adopts an approximate

130 X. Liu et al.

accuracy measure except the manual evaluation. To show the advantages of our
methods, we plot the precision-recall curves for all methods for the evaluation.
In order to validate whether the effect of our model for the long-tailed RE is
superior to other proposed methods, we follow the same evaluation criteria as
before [20,21] by reporting the Precision@N. We report the evaluation results
in Figure 3 and Figure 4. The dataset and baseline code are from GitHub2.

4.1 Experimental Setting

Datasets. We evaluate the performance of our method on the most commonly
used long-tail RE dataset in recent long-tail RE work: the NYT-10 dataset [21,
25–28]. There are 52 common classes and a NA class in it. The NA relation
denotes that the relation between the given instances is not labeled. The dataset
contains rich semantic information, which has been split into a training set with
522611 sentences and a testing set with 17448 sentences. There are 281270 entity
pairs and 18252 relational facts in the training set and 96678 entity pairs and
1950 relational facts in the testing set. We follow the convention of truncating
sentences that contain more than 120 words into 120 words for the dataset.

Fig. 3. P-R curves for various models

Comparison Models. For the baseline model comparison, we utilize both
neural network models and feature-based models. We report the evaluation
results of the neural networks with methods based on various attention schemes:
+LKATT is our layer-enhanced knowledge-aggregating attention method;
+ONE is a typical multi instance learning based neural model [24]. The soft
label is the model with attention schemes using the soft-labeling method to alle-
viate the effects of the noise problem [27]. In addition, we compare our model
2 https://github.com/thunlp/OpenNRE

https://github.com/thunlp/OpenNRE

LeKAN: Extracting Long-tail Relations 131

Fig. 4. P-R curves for various models with attention mechanism

with various feature-based models, including MIML, MultiR [9], and Mintz
[8] [29]. To effectively evaluate the effect of our method on the long-tailed RE
task, we also compare it with HATT [20] and KATT [21].

Hyperparameter Settings and Reproducibility. In order to prove that our
model is superior to other baseline models and fairly compare its performance
with that of baseline methods, we keep almost all experimental parameters iden-
tical to the previous work and pretrain the sentence encoder of the neural net-
works [25]. During the training process, a dropout layer is adopted before the
output layer to prevent overfitting.

4.2 Overview of the Evaluation Results

As shown in Figs. 3 and 4, our method using a novel denoising scheme and
additional auxiliary information achieved the best performance. The results also
demonstrate that LeKAN can leverage the rich correlation between relations to
improve its RE performance. We anticipate to enhance the performance of our
model by integrating some novel mechanisms such as meta-learning.

To prove the advantages and performance improvement of the proposed
methods for long-tail relation RE, we follow the convention to extract subsets
of the test dataset, where the training instances of all relations are less than 100
and 200. We use the Hits@K metric to evaluate the long-tail RE. Then, the RE
models will recommend the relations in the first K candidate classes for each
entity pair. Since extracting long-tail relations is extremely difficult in existing
models, we choose K from the set {10, 15, 20}. We report the macroaverage
accuracy of Hits@K for all subsets. The results shown in Table 1 demonstrate
that our new method is outperforms the attention mechanism based methods,
even the most sophisticated HATT and KATT. Although our LKATT method
achieves better results than the ordinary ATT, HATT, and KATT methods on

132 X. Liu et al.

long-tail relations, the results show that the current achievements in long-tail RE
remain unsatisfactory. Thus, the RE model may require additional information.
We will explore further in our future work.

Table 1. Accuracies (%) in terms of Hits@K on long-tail classes

Number of training instances <100 <200

Hits@K(Macro) 10 15 20 10 15 20

CNN +ATT <5.0 <5.0 18.5 <5.0 16.2 33.3

+HATT 5.6 31.5 57.4 22.7 43.9 65.1

+KATT 9.1 41.3 58.5 23.3 44.1 65.4

+LKATT 16.7 55.6 77.7 31.8 63.6 81.8

PCNN +ATT <5.0 7.4 40.7 17.2 24.2 51.5

+HATT 29.6 51.9 61.1 41.4 60.6 68.2

+KATT 35.3 62.4 65.1 43.2 61.3 69.2

+LKATT 29.6 61.1 77.8 42.4 68.2 81.8

4.3 Ablation Study

To have a comprehensive understanding of the contributions and impact of differ-
ent techniques in the proposed method, we design ablation tests. We demonstrate
the evaluation results of ablation study in Table 2. +LKATT is the proposed
method; w/o aggregation is the method where node aggregation is not imple-
mented; w/o KG is the method where the nodes are initialized with random
embeddings, so it is natural that there is no relational knowledge obtained from
KGs; and w/o GraphSage is the method without GraphSage, which denotes
no structured relational knowledge. By analyzing the results in Table 2, we can
draw the conclusion that the performance of our method to extract long-tailed
relations is slightly degraded without KG, and the performance is significantly
degraded after node aggregation or GraphSage is removed. This degradation is
reasonable because GraphSAGEs consider the distances between neighbors, and
node aggregation can prevent relation classes with few examples in the training
set from being ignored.

Table 2. Accuracies (%) in terms of Hits@K on relations with fewer than 100/200
training instances

Number of training instances <100 <200

Hits@K(Macro) 10 15 20 10 15 20

+LKATT 29.6 61.1 78.8 42.4 68.2 81.8

w/o/ hier 16.7 44.4 44.4 31.8 54.5 54.5

w/o Aggregation 5.6 44.4 50.0 22.7 54.5 59.1

w/o/ KG 24.1 33.3 72.2 37.9 45.6 77.3

w/o/ GraphSage 18.5 44.4 72.2 33.3 54.5 77.3

LeKAN: Extracting Long-tail Relations 133

4.4 Visualization of Class Embeddings

(a) + KATT (b) + GraphSAGE

(c) + KG & GraphSAGE (d) + LKATT

Fig. 5. Dimension reduction visualization of relation class embedding

Here, we demonstrate the rationality of our class embedding work through a visu-
alization tool t-SNE [30]. This visualization work on relation embedding deeply
shows how KG and GraphSAGE embeddings positively affect the extraction of
long tail relations. In Fig. 5, the square points represent the top-level relations
of the relation clusters. Figure 5(a) demonstrates that the GCN combines rela-
tions that are under the same branch and ignores semantically similar relations
on different branches; Fig. 5(b) and Fig. 5(c) show that GraphSAGE can help
with knowledge transfer between semantically similar long-tailed relations by
aggregating the corresponding knowledge. However, if there is no KG, outliers
will occur; Fig. 5(d) shows that the long-tailed relation can be emphasized by
aggregating the ancestral relation nodes with few instances to a new relation,
which helps to aggregate the ancestral nodes with fewer instances to prevent the
corresponding base-level relation from being ignored. However, when we embed
the features of ancestral relation nodes into a high-dimensional continuous vector
space, the classification of long-tailed relations relies more on the representations
of the base-level relations, which is a problem. In the near future, we will tackle
this issue by integrating more information, for instance, relation information, or
by decoupling the relations with fewer semantic correlations than other relations
from their branches.

134 X. Liu et al.

5 Conclusion

We propose a novel KG- and GraphSAGE-based layer-enhanced knowledge
aggregation network to identify the classes of relations between two given enti-
ties from a corpus with imbalanced class distribution. This method leverages the
relational knowledge from relations at the head of their distribution and uses
semantically similar relational instances in different branches to boost the per-
formance of the low-resource RE. Compared to previous works, the new method
achieves significant improvements according to evaluations on a large-scale RE
dataset. Although we have made a breakthrough in long tail relation extraction,
there are still many problems waiting to be solved in the field of construction
of the knowledge graph and information extraction. Be aware of these facts, we
decided to conduct exploration in the following areas of long-tailed information
extraction.: (1) We will evaluate the effect of GraphSAGE on RE tasks across
knowledge graphs. (2) We will explore the effect of a more complex short-headed
relation decoupling and long-tailed relation aggregation scheme on RE tasks.

Acknowledgment. This work was supported in part by National Key R&D Program
of China under Grants No. 2018YFB1404302, National Natural Science Foundation of
China under Grants No.62072203.

References

1. Gui, Y., Liu, Q., Zhu, M., Gao, Z.: Exploring long tail data in distantly supervised
relation extraction. In: Proceedings of 2016 Natural Language Understanding and
Intelligent Applications, pp. 514–522 (2016)

2. Lei, K., Chen, D., et al.: Cooperative denoising for distantly supervised relation
extraction. In: Proceedings of the 27th International Conference on Computational
Linguistics, pp. 426–436 (2018)

3. Huang, Y., Zhao, F., Gui, X., Jin, H.: Path-enhanced explainable recommendation
with knowledge graphs. World Wide Web 24(5), 1769–1789 (2021). https://doi.
org/10.1007/s11280-021-00912-4

4. Song, S., Huang, Y., Lu, H.: Rumor detection on social media with out-in-degree
graph convolutional networks. In: Proceedings of the 2021 IEEE Conference on
Systems, Man, and Cybernetics, pp. 2395–2400 (2021)

5. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without
labeled text. In: Proceedings of the 2010 European conference on Machine learning
and knowledge discovery in databases: Part III, pp. 148–163 (2010)

6. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. J.
Mach. Learn. Res. 3(Feb), 1083–1106 (2003)

7. Zhou, G., Su, J., Zhang, J., Zhang, M.: Exploring various knowledge in relation
extraction. In: Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics, pp. 427–434 (2005)

8. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extrac-
tion without labeled data. In: Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP, pp. 1003–1011 (2009)

https://doi.org/10.1007/s11280-021-00912-4
https://doi.org/10.1007/s11280-021-00912-4

LeKAN: Extracting Long-tail Relations 135

9. Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., Weld, D.S.: Knowledge-based
weak supervision for information extraction of overlapping relations. In: Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pp. 541–550 (2011)

10. Ma, R., Gui, T., Li, L., Zhang, Q., Zhou, Y., Huang, X.: Sent: sentence-level distant
relation extraction via negative training. arXiv preprint arXiv:2106.11566 (2021)

11. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolu-
tional deep neural network. In: Proceedings of the 25th International Conference
on Computational Linguistics: Technical Papers, pp. 2335–2344 (2014)

12. Christopoulou, F., Miwa, M., Ananiadou, S.: Distantly supervised relation extrac-
tion with sentence reconstruction and knowledge base priors. arXiv preprint
arXiv:2104.08225 (2021)

13. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition.
arXiv preprint arXiv:1910.09217 (2019)

14. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: Bilateral-branch network with
cumulative learning for long-tailed visual recognition. In: Proceedings of the 2020
IEEE Conference on Computer Vision and Pattern Recognition, pp. 9719–9728
(2020)

15. Wang, Y., Gan, W., Yang, J., Wu, W., Yan, J.: Dynamic curriculum learning
for imbalanced data classification. In: Proceedings of the 2019 IEEE International
Conference on Computer Vision, pp. 5017–5026 (2019)

16. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on
effective number of samples. In: Proceedings of the 2019 IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 9268–9277 (2019)

17. Jamal, M.A., Brown, M., Yang, M.H., Wang, L., Gong, B.: Rethinking class-
balanced methods for long-tailed visual recognition from a domain adaptation
perspective. In: Proceedings of the 2020 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 7610–7619 (2020)

18. Jiang, X., Wang, Q., Li, P., Wang, B.: Relation extraction with multi-instance
multi-label convolutional neural networks. In: Proceedings of the 26th International
Conference on Computational Linguistics: Technical Papers, pp. 1471–1480 (2016)

19. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.: A
comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2020)

20. Han, X., Yu, P., Liu, Z., Sun, M., Li, P.: Hierarchical relation extraction with
coarse-to-fine grained attention. In: Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pp. 2236–2245 (2018)

21. Zhang, N., et al.: Long-tail relation extraction via knowledge graph embeddings
and graph convolution networks. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, vol. 1, pp. 3016–3025 (2019)

22. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translat-
ing embeddings for modeling multi-relational data. In: Proceedings of the 26th
International Conference on Neural Information Processing Systems, Vol. 2, pp.
2787–2795 (2013)

23. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

24. Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction via
piecewise convolutional neural networks. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pp. 1753–1762 (2015)

http://arxiv.org/abs/2106.11566
http://arxiv.org/abs/2104.08225
http://arxiv.org/abs/1910.09217
http://arxiv.org/abs/1301.3781

136 X. Liu et al.

25. Lin, Y., Shen, S., Liu, Z., Luan, H., Sun, M.: Neural relation extraction with
selective attention over instances. In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, (Volume 1: Long Papers), pp.
2124–2133 (2016)

26. Han, X., Liu, Z., Sun, M.: Neural knowledge acquisition via mutual attention
between knowledge graph and text. In: Proceedings of the 2018 AAAI Conference
on Artificial Intelligence. vol. 32(1), pp. 4832–4839 (2018)

27. Liu, T., Wang, K., Chang, B., Sui, Z.: A soft-label method for noise-tolerant dis-
tantly supervised relation extraction. In: Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pp. 1790–1795 (2017)

28. Feng, J., Huang, M., Zhao, L., Yang, Y., Zhu, X.: Reinforcement learning for rela-
tion classification from noisy data. In: Proceedings of the 2018 AAAI Conference
on Artificial Intelligence, vol. 32, no. 1, pp. 5779–5786 (2018)

29. Surdeanu, M., Tibshirani, J., Nallapati, R., Manning, C.D.: Multi-instance multi-
label learning for relation extraction. In: Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pp. 455–465 (2012)

30. Laurens, V.D.M., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res.
9(2605), 2579–2605 (2008)

TRHyTE: Temporal Knowledge Graph
Embedding Based on

Temporal-Relational Hyperplanes

Lin Yuan1, Zhixu Li2, Jianfeng Qu1(B), Tingyi Zhang1, An Liu1, Lei Zhao1,
and Zhigang Chen3,4

1 School of Computer Science and Technology, Soochow University, Suzhou, China
{lyuan,tyzhang1}@stu.suda.edu.cn, {jfqu,anliu,zhaol}@suda.edu.cn

2 Shanghai Key Lab of Data Science, School of Computer Science, Fudan University,
Shanghai, China

zhixuli@fudan.edu.cn
3 State Key Laboratory of Cognitive Intelligence, iFLYTEK, Hefei, China

zgchen@iflytek.com
4 iFLYTEK Research, Suzhou, China

Abstract. Temporal Knowledge Graph Embedding (TKGE) aims at
encoding evolving facts with high-dimensional vectorial representations.
Although a representative hyperplane-based TKGE approach, namely
HyTE, has achieved remarkable performance, it still suffers from several
problems including (i) ignorance of latent temporal properties and diver-
sity of relations; (ii) neglect of temporal dependency between adjacent
hyperplanes; (iii) inefficient static random negative sampling method;
(iv) incomplete testing on partial time information. To address these
issues, we propose TRHyTE, a novel Temporal-Relational Hyperplane
based TKGE model, which defines three typical properties, including
interval, open-interval, and instantaneousness temporal, for relations and
correspondingly constructs three relational sub-KGs, supporting distin-
guishing learning for facts. Within each sub-KG, TRHyTE transforms
entities into relation space first, and then explicitly projects transformed
entities and relations into temporal-relational hyperplanes to learn time-
relation-aware embeddings. Moreover, Gate Recurrent Unit is lever-
aged to simulate TKG evolution so as to capture temporal dependency
between adjacent hyperplanes. Additionally, we develop a dynamic nega-
tive samples mechanism for robust training. In testing phase, an expand-
and-best-merge strategy is crafted to realize a complete testing on all
valid time intervals. Extensive experiments on two well-known bench-
marks verify the effectiveness of our proposals.

Keywords: Temporal knowledge graph · Knowledge Graph
Embedding · Temporal property · Hyperplane projection

L. Yuan and Z. Li—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 137–152, 2022.
https://doi.org/10.1007/978-3-031-00123-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_10&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_10

138 L. Yuan et al.

1 Introduction

Knowledge graphs (KGs) are to record real-world knowledge in the form of large-
scale and multi-relational directed graph structures. Traditional KGs only store
static factual knowledge using triplet (h, r, t), where h and t are head entity
and tail entity respectively, and r denotes the relation between h and t, which
however ignores the valid timeliness of facts. Recent years have witnessed the
emergence of temporal knowledge graphs (TKGs), which store factual knowl-
edge in the form of quadruple (h, r, t, T), where T denotes the temporal scope
with the fact knowledge (h, r, t). The temporal scope could be either a specific
time (e.g. (Obama, <wasBornIn>, America, 1961-08-04)), or a time interval
(e.g., (Obama, <presidentOf>, USA, 2008-2017)), as given in the upper part of
Fig. 1(a). These temporal scopes are increasingly available on several large KGs
such as YAGO3 [15] and Wikidata [4].

KG embedding on static KG has been studied extensively, which learns
high-dimensional vectorial representations for entities and relations in KGs [1,
4,19,21]. With the rise of TKGs, the research on TKG embedding has also
aroused a lot of attention in recent years [18,26]. Conceivably, considering tem-
poral scopes during representation learning might yields better KG embeddings.
Recent attempts such as [6,14,26] encode temporal information directly; [8,10]
leverage temporal order and regular repeats of relations as constraint terms to
guide model learning; [7,11,27] consider that TKGs keeps evolving all the time
and apply sequence model to capture long-term dependency or keep entity and
relation embeddings changing through time; [5,13] represent facts by tensors and
apply tensor decomposition operations. Despite some progress achieved, many
existing works do not explicitly incorporate time in the learned embeddings to
make them temporally aware, and some approaches lack of interpretability espe-
cially for tensor decomposition-based models.

To address the above problems, another class of TKG embedding models,
HyTE [3] as a typical representative, propose to encode time as hyperplanes and
learn time aware embeddings by performing projected translation for facts on
time valid hyperplanes explicitly. However, it still has four main restrictions: (1)
overlooking latent temporal properties of relations (e.g. relation <wasBornIn>
indicates knowledge occurs instantaneously while <playsFor> describes knowl-
edge lasts for a period of time). Obviously, it is necessary to take full advantage
of these properties and discriminatively treat relations with different properties,
instead of equal treatments, so as to implement more fine-grained embedding
learning. Additionally, the diversity of relations is also ignored. Different relations
express different semantic meanings of entities, but it oversimplistically builds
entity and relation embedding in the same semantic space; (2) encoding time
as hyperplanes to segregate temporal space into different time zones and facts
valid at different time zones are learned separately, which ignores the temporal
dependency between adjacent hyperplanes and is contrary to the evolutionary
nature of TKGs; (3) randomly replacing head or tail entity in a golden quadruple
(h, r, t, [ts, te]) to construct negative samples for training, which may generate
easily distinguishable negative samples, thus prevents the model from obtaining

TKGE Based on Temporal-Relational Hyperplanes 139

a stronger ability to identify between positive and negative quadruples. More
seriously, as existing TKGs are far from completed, random sampling may even
introduce many false negative samples; (4) projecting a quadruple (h, r, t, [ts, te]),
where [ts, te] valid at multiple hyperplanes only onto single hyperplane associ-
ated with ts when testing in experiments, which only considers testing on partial
temporal information and is insufficient to reflect the complete test effect on the
test quadruple.

To resolve these drawbacks, we propose a novel hyperplane-based TKG
embedding model, namely TRHyTE, which projects facts into so-called
temporal-relational hyperplanes to learn time-relation aware embeddings. More
specifically, for the first challenge, considering that relations usually carry latent
temporal information of triples, we summarize three main temporal properties
for them: interval, open-interval, and instantaneousness properties. We attach
relations and their corresponding quadruples with these temporal properties
and cluster quadruples into three relational sub-KGs, which allow our model
to learn distinct embeddings and make precise predictions during testing with
the help of extra relation-level information. Beyond that, multiple relations also
take on tasks of describing different aspects of semantic meaning for entities.
Moreover, the head and tail entity within a triple mostly contain different types
and attributes. Thus for every sub-KG, following TransD [9], we first trans-
form entity embeddings into entity-relation pair specific relation vector space
before projecting triples into valid hyperplanes. For the second deficiency, we
utilize Gate Recurrent Unit (GRU) [2] to maintain dependency between adja-
cent hyperplanes so as to capture the evolution of TKGs. For the third drawback,
instead of static negative sampling, we dynamically generate confusing negative
samples with high score values and meanwhile avoid false negative samples dur-
ing training for a more robust model learning. For the fourth problem regarding
partial testing manner of HyTE, we present an expand-and-best-merge strategy
to project a quadruple (h, r, t, [ts, te]) into all valid hyperplanes firstly, and then
merges multiple results into one in testing phase for a more comprehensive and
fair evaluation.

We summarize our main contributions as follows:
– We propose a novel hyperplane-based TKG embedding model, where three

temporal properties for relations are defined to construct temporal-relational
hyperplanes.

– We take evolving nature of TKGs into account and adopt GRU to deal with
dependency between adjacent hyperplanes.

– We develop a dynamic negative sampling mechanism to generate variational
deceptive negative samples dynamically and meanwhile reduce the genera-
tion of false negative samples during training iterations. To the best of our
knowledge, this is the first work to incorporate dynamic negative sampling
into TKGE models.

– We propose expand-and-best-merge strategy to address the shortcut of the
incompleteness testing manner of HyTE.

– Extensive experiments on two well-established TKG benchmarks for link pre-
diction tasks verify the effectiveness of our approach.

140 L. Yuan et al.

Fig. 1. An illustration of TRHyTE. Panel(a) shows the formation of three relational
sub-KGs based on temporal property of relations; Panel(b) takes a quadruple from
sub-KG1 as an example: (head, relation, tail, [τs, τe]), where [τs, τe] valid at w1,τ and
w1,τ+1, it demonstrates relational space transformation, hyperplane projection, and
evolving modeling; Panel(c) describes our dynamic negative sampling mechanism.

2 Notations

Temporal knowledge graphs can be defined as G = (E ,R, Ω), where E is entity
set, R is relation set and Ω is a set of quadruples in the form of (h, r, t, [ts, te]),
where h, t ∈ E and r ∈ R, [ts, te] represents time annotation and ts, te denote
start time and end time, respectively. Time annotations of quadruples can mainly
represent three types of facts: (1) facts with interval time, where ts < te; (2)
facts with open interval time, where te = ∞ (since) or ts = ∞ (until); and (3)
facts with instantaneous time, where ts = te. A TKG can also be represented
as a sequence of static KG snapshots as G = {G1, G2, · · · , Gτ , · · · , GT }, where
Gτ = (E ,R, Ωτ), it comprises quadruples valid at time step τ . Given a quadruple
(h, r, t, [ts, te]), it is embraced in Gτ if ts ≤ τ ≤ te.

3 Our Model

In this section, we present a detailed description of TRHyTE. Figure 1 demon-
strates the overview of TRHyTE. In the rest of this section, we start with
temporal-relational hyperplane projection, followed by evolving modeling, and
then we introduce the dynamic negative sampling mechanism, finally, we demon-
strate our expand-and-best-merge strategy.

3.1 Temporal-Relational Hyperplane Projection

Temporal Property. We classify time annotations into three types in Sect. 2,
further we observe that the type of time annotation is generally fixed regard-
ing a particular relation within a quadruple. Relations like <wasBornIn> and

TKGE Based on Temporal-Relational Hyperplanes 141

<playsFor> mostly associate with instantaneous and interval time annotations,
respectively. Some relations exist in quadruples with multiple types of time anno-
tations, such as <owns> and <created>, which correlate with both open interval
and interval time annotations, but the former takes a larger percentage. Accord-
ingly, we define three temporal properties for relations: Interval property p1 like
<playsFor>, describing a relation lasts for a period of time; Open-interval prop-
erty p2 like <hasWonPrize>, representing a relation stays true since sometime
or until sometime; Instantaneousness property p3 like <wasBornIn>, indicating
an instantaneous relation that happens at a specific time point.

Relational Sub-KG. We attach all relations and their corresponding quadru-
ples with temporal properties in order, which depends on the distribution of time
annotation types of the quadruples they exist in. In conjunction with the exam-
ples in the last subsection, we attach instantaneousness and interval property
for relation <wasBornIn> and <playsFor>, respectively, and we attach open-
interval and interval properties in order for relation <owns> and <created>.
Next, we aggregate quadruples with interval, open-interval, and instantaneous-
ness properties to form three relational sub-KGs, respectively, thus the whole
TKG G = GR1 ∪ GR2 ∪ GR3 , where GRi

denotes sub-KGi and i ∈ {1, 2, 3}.

Hyperplane Projection. We represent time as hyperplanes. Within every
sub-KG GRi

= {Gi1, Gi2, · · · , Giτ , · · · , GiT }, we construct T temporal-relational
hyperplanes for T time steps to segregate temporal space into T different time
zones, which are represented by normal vectors wi,1,wi,2, · · · ,wi,T ∈ R

d. Thus
we construct 3 × T temporal-relational hyperplanes in total for the whole TKG.

Considering the descriptive role of relations for entities and the diversity of
both them in TKGs, for a triple (h, r, t), we apply the transformation method in
TransD [9]. Each entity and relation have two representations: semantic represen-
tations h, t, r ∈ R

d and projection representations hp, tp, rp ∈ R
d, respectively.

Two mapping matrices Mrh = rph�
p + Id×d and Mrt = rpt�

p + Id×d are con-
structed by projection representation hp and tp for specific entity-relation pairs
(h, r) and (t, r), respectively. Then we use Mrh and Mrt to transform entity
embeddings h and t from entity space into specific relation vector space, thus
we can get projected vectors h⊥ = Mrhh and t⊥ = Mrtt, respectively.

To incorporate temporal-relational information, triples valid at time step j
and attached with temporal property pi are projected onto hyperplane wi,j ,
where i ∈ {1, 2, 3}, j ∈ {1, 2, · · · , T}. We represent wi,j as wτ for simplicity,
where τ ∈ [3 × T]. We project triple (h⊥, r, t⊥) onto hyperplane wτ as:

hτ = h⊥ − (
w�

τ h⊥
)
wτ , tτ = t⊥ − (

w�
τ t⊥

)
wτ , rτ = r − (

w�
τ r

)
wτ (1)

where wτ ∈ R
d denotes the embedding of wτ , we restrict ‖wτ‖2 = 1, ‖h⊥‖2 ≤

1, ‖t⊥‖2 ≤ 1, ‖h‖2 ≤ 1, ‖t‖2 ≤ 1, and ‖r‖2 ≤ 1. Following the expectation of
translation-based models, we have hτ + rτ ≈ tτ on hyperplane wτ , therefore
we employ the scoring function as fτ (h, r, t) = ‖hτ + rτ − tτ‖l1/l2. Temporal-
relational hyperplanes, along with entity and relation embeddings are learned

142 L. Yuan et al.

during training by minimizing the following margin-based ranking loss:

Lemb =
∑

τ∈3×[T]

∑

(h,r,t)∈D+
τ

∑

(h̄,r,t̄)∈D−
τ

max
(
0, fτ ((h, r, t)) − fτ ((h̄, r, t̄)) + γ

)
(2)

where γ is the margin separating positive and negative triples, D+
τ is the quadru-

ple set valid at time step τ , and D−
τ is the corresponding negative sample set.

3.2 Evolving Modeling

According to Eq. 2, each KG snapshot is independent of the other, and triples
valid at every hyperplane are learned separately. However, facts occurring on
previous hyperplane usually have an effect on those on the subsequent hyper-
plane. Considering impressive performance of GRU on sequence modeling with
few parameters, inside each relational sub-KG, GRU is adopted to preserve evo-
lutionary dependence among hyperplanes. Taking GR1 as an example, we use
hyperplane w1,j , j ∈ {1, 2, · · · , T} as the input of j-th GRU unit of sub-KG GR1 :

z1,j = GRU (w1,j ,z1,j−1) (3)

where z1,j denotes the hidden state of j-th GRU unit, which carries evolving
information till time j. Then z1,j is used to guide the learning of next time
step’s hyperplane w1,j+1 by designing evolving loss, which transfers evolving
dependency between temporal hyperplanes, that is:

Levo1 =
T−1∑

τ=1

‖z1,τ − w1,τ+1‖2 (4)

Combined with the previous section, we sum up the embedding loss Lemb

that models KG structure, and three evolving loss
∑3

i=1 Levoi
which imple-

ment dynamic evolution of every relational sub-KG to compute the total loss
as L = Lemb +

∑3
i=1 Levoi

.

3.3 Dynamic Negative Sampling

Existing TKGE models replace entities randomly, which tends to generate easily
distinguishable and false negative samples. To overcome this deficiency, we pro-
pose a dynamic negative sampling mechanism to generate variational deceptive
negative samples, and minimize the production of false negative samples dur-
ing training. For entity and relation prediction task, we consider time-agnostic
negative sampling. As shown in Fig. 1(c), given a golden quadruple (h, r, t, τ)
where τ represents valid hyperplane of (h, r, t), we replace head entity h and
tail entity t by other all entities, but exclude the possible generated observed
triples to construct two negative sample sets Nh and Nt, respectively, i.e.,
Nh = {(h′, r, t, τ) | h′, t ∈ E , r ∈ R, (h′, r, t) /∈ D+},Nt = {(h, r, t′, τ) | h, t′ ∈
E , r ∈ R, (h, r, t′) /∈ D+}, where D+ denotes the time agnostic triples set. Then

TKGE Based on Temporal-Relational Hyperplanes 143

we compute scores of quadruples in Nh and Nt, and sort them in descending
order. We randomly pick up one from top-k quadruples to form a negative sam-
ple (h̄, r, t, τ) and (h, r, t̄, τ), respectively. The top-k quadruples with high scores
are usually confusing, which facilitate adequate model training. Meanwhile, com-
pared with selecting the top quadruple directly, randomly picking up one from
top-k quadruples can avoid false negative samples to some extent. Finally, we
follow the mapping property of relation-based Bernoulli distribution defined by
[22] to choose between (h̄, r, t, τ) and (h, r, t̄, τ). Note that we do not sample
negative relations since the number of relation is very small, replacing relations
produces easily distinguishable negative samples, causing the model to converge
quickly, which is insufficient for entity prediction. For temporal scope prediction,
we directly adopt time-dependent negative sampling (TDNS) in HyTE [3].

3.4 Expand-and-Best-Merge Strategy (Testing phase)

Note that some triples are valid across a considerable time interval, so they
may valid at multiple hyperplanes. Given a test quadruple (h, r, t, [τs, τe]), where
[τs, τe] valid at wτ , · · · , wτ+k, HyTE only projects the triple (h, r, t) onto a sin-
gle hyperplane associated with ts during testing, i.e., wτ , which only considers
testing on a small part of the full time, and is insufficient to reflect complete
test effect. For a more comprehensive test, we propose an expand-and-best-merge
strategy. Firstly we expand : we project a golden triple onto all valid hyperplanes
and compute ranks on each of them, which considers both temporal and rela-
tional information, e.g., given a quadruple (h, r, t, [ts, te]), where relation r pos-
sesses temporal property p1 and p2 and [τs, τe] valid at wτ , · · · , wτ+k. Hence it
can be projected into multiple hyperplanes w1,τ , · · · , w1,τ+k, w2,τ , · · · , w2,τ+k,
and we can get multiple golden ranks on corresponding multiple valid hyper-
planes. However, straightforwardly taking multi-ranks of one single test quadru-
ple into evaluation causes inflated results, one test quadruple can only have
one rank result. Therefore we then conduct best-merge: only keep the best rank
among multiple ranks as the unique result and filter the rest. This strategy helps
our model to realize a complete testing on all valid time intervals and maintain
impartiality simultaneously.

4 Experiments

4.1 Experimental Setup

Datasets. In this work, we use the preprocessed datasets Wikidata12k and
YAGO11k extracted by [3] for testing our model, where time annotations are
represented in various forms, i.e., time point like [2003-01-01,2003-01-01], open
time interval like [2003,##], and time interval like [2003, 2005]. We list the
statistics of datasets in Table 1.

144 L. Yuan et al.

Table 1. Details of datasets

Datasets |E| |R| Train/Valid/Test

Wikidata12k 12554 24 32.5k/ 4k/ 4k

YAGO11k 10623 10 16.4k/ 2k/ 2k

Evaluation Protocol and Baselines. We evaluate our model under three
temporal link prediction tasks: Entity Prediction: Predicting missing head or
tail entity like (?, r, t, T) or (h, r, ?, T); Relation Prediction: Predicting missing
relation like (h, ?, t, T); Temporal Scope Prediction: Predicting the most probable
valid hyperplane of a triple like (h, r, t, ?). For entity and relation prediction,
we replace entity and relation in a golden quadruple with all possible entities
and relations under filtered setting [1], respectively. Then we score and rank all
corrupted quadruples and the golden quadruple, and find the rank of the golden
quadruple. For temporal scope prediction, we project facts onto all hyperplanes
to get scores on each of them and record the rank of the golden one. A particular
triple may be valid at multiple hyperplanes, similarly, we select the lowest rank
among all golden hyperplanes as the result [3]. We report MR (Mean Rank),
MRR (Mean Reciprocal Rank), and Hits@{1,3,10} for all datasets.

We compare our model with several KGE and TKGE models. KGE models
include TransE [1], TransD [9] and TransH [22] since they are also translation-
based models, their results are taken from [3,23]. TKGE models include HyTE
[3], t-TransE [10], SEDE [32], ATiSE [27], TIMEPLEX [8], TeRo [26], ToKEi [14],
TeLM [25], RTFE [29], and RTGE [28]. RTFE is a framework for KGE models,
we choose RTFE-TransE (RTFE-E) and RTFE-TransD (RTFE-D) for fairness
due to relevance. For RTGE, we choose the best one with the same embedding
setting (RTGE (d=128)) as ours. ATiSE, TIMEPLEX, TeRo, and TeLM do not
distinguish head and tail predictions, follow the practice of ATiSE, we average
head and tail prediction results. Additionally, we run the origin HyTE model
(HyTE-e) for complete metrics. For a fair comparison under the expand-and-
best-merge strategy, we propose a variant of HyTE as a baseline, denoted as
HyTE-*, which applies expand-and-best-merge strategy into HyTE model.

Implementation Details. Our models are implemented with TensorFlow and
Pytorch. We only retain year granularity time annotation of quadruples in both
datasets in our work. Following the data preprocessing in [3], we merge adja-
cent years with a minimum threshold of 300 triples per time step to split time
annotations uniformly, resulting in 78 and 61 time steps in Wikidata12k and
YAGO11k, respectively. We set batch size b = 50k on both datasets for training.
For all experiments, hyper-parameters are set to the best configuration reported
by HyTE: embedding dimension d = 128, margin γ = 10, learning rate of SGD
lr = 0.0001. We use l1 norm in the scoring function and k = 50 for dynamic
negative sampling.

TKGE Based on Temporal-Relational Hyperplanes 145

Table 2. Entity prediction and relation prediction results on Wikidata12k. The best
results are boldfaced and the second best results are underlined.

Datasets Wikidata12k

Metric MR MRR H@1 H@3 H@10

Tail Head Rel Tail Head Tail Head Rel Tail Head Tail Head

TransE 520 740 1.35 – – – – 88.40 – – 11.00 6.00

TransD 346 562 1.29 – – – – 88.20 – – 25.70 14.10

TransH 423 648 1.40 – – – – 88.10 – – 23.70 11.80

t-TransE 283 413 1.97 – – – – 74.20 – – 24.50 14.50

SEDE 158 258 1.11 – – – – 97.40 – – 59.90 31.70

RTGE 127 183 1.09 – – – – 92.80 – – 44.60 29.90

RTFE-E – – 1.88 36.40 14.10 20.10 5.60 73.70 47.30 13.60 67.60 33.40

RTFE-D – – – 33.00 7.20 18.10 2.80 – 45.10 8.00 63.10 18.50

ToKEi 129 444 – 44.20 34.20 31.10 24.40 – 51.90 39.00 66.90 52.00

HyTE 179 237 1.13 – – – – 92.60 – – 41.60 25.00

HyTE-e 185 244 1.13 21.44 14.28 12.02 7.98 91.99 23.63 14.51 42.05 26.07

HyTE-* 186 244 1.13 21.43 14.26 12.05 8.01 91.97 23.63 14.41 41.73 26.14

Ours 140 254 1.03 48.41 43.92 41.78 38.04 98.40 50.83 45.28 62.47 55.83

Table 3. Entity prediction and relation prediction results on YAGO11k. The best
results are boldfaced and the second best results are underlined.

Datasets YAGO11k

Metric MR MRR H@1 H@3 H@10

Tail Head Rel Tail Head Tail Head Rel Tail Head Tail Head

TransE 504 2020 1.70 – – – – 78.40 – – 4.40 1.20

TransD 138 1208 1.19 – – – – 86.20 – – 35.40 13.20

TransH 354 1808 1.53 – – – – 76.10 – – 5.80 1.50

t-TransE 292 1692 1.66 – – – – 75.50 – – 6.20 1.30

SEDE 151 745 1.20 – – – – 89.00 – – 42.00 18.20

RTGE 110 799 1.15 – – – – 88.20 – – 40.90 20.10

RTFE-E – – 1.43 19.80 7.60 6.30 0.40 84.10 27.00 13.10 42.50 14.60

RTFE-D – – – 18.90 9.60 3.70 0.50 – 26.50 14.70 46.20 22.10

ToKEi 114 723 – 50.00 30.70 40.50 21.80 – 61.80 35.50 77.90 47.00

HyTE 107 1069 1.23 – – – – 81.20 – – 38.40 16.00

HyTE-e 110 1059 1.27 14.64 5.99 2.87 0.15 82.84 19.89 9.02 35.01 13.36

HyTE-* 110 1059 1.27 14.65 5.99 2.83 0.06 82.69 19.75 9.02 24.91 13.36

Ours 129 1532 1.08 23.42 11.53 11.17 3.32 93.76 30.81 16.38 42.66 23.35

Table 4. Entity prediction results on Wikidata12k and YAGO11k. The best results
are boldfaced and the second best results are underlined.

Datasets Wikidata12k YAGO11k

Metric MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

ATiSE – 0.2520 14.80 28.80 46.20 – 0.1850 12.60 18.90 30.10

TIMEPLEX – 0.3335 22.78 – 53.20 – 0.2364 16.92 – 36.71

TeRo – 0.2990 19.80 32.90 50.70 – 0.1870 12.10 19.70 31.90

TeLM – 0.3320 23.10 36.00 54.20 – 0.1910 12.90 19.40 32.10

HyTE 208 – – – 33.30 588 – – – 27.20

HyTE-e 214 0.1786 10.00 19.07 34.06 584 0.1032 1.51 14.46 24.19

HyTE-* 215 0.1785 10.03 19.02 33.94 584 0.1032 1.45 14.39 19.14

Ours 197 0.4617 39.91 48.06 58.65 830 0.1748 7.25 23.69 33.01

146 L. Yuan et al.

4.2 Results and Analysis

All baseline results (except HyTE-e and HyTE-*) are taken from the reported
results in respective papers. Horizontal lines indicate lacking results since there is
no literature reporting the results of corresponding metrics on specific datasets.

We report the performance on entity predictions in Table 2, Table 3 and
Table 4. As shown in Table 2, our method shows a large boost in performance
over baselines on Wikidata12k, and achieves the best in terms of almost all
metrics except Hits@{3,10} on tail prediction with a small gap. In Table 3, our
model exceeds most baselines and yields the second-best on almost all evalua-
tions on YAGO11k. For comparing with some other baselines, we average head
and tail prediction results in Table 4. TRHyTE outperforms all baselines by a
significant margin regarding all protocols on Wikidata12k and Hits@3 metric on
YAGO11k, with the improvement of 12.82% (MRR), 16.81% (Hits@1), 12.06%
(Hits@3), 4.45% (Hits@10) on Wikidata12k and 4.69% (Hits@3) on YAGO11k.
Overall, our method achieves prominent performance in Wikidata12k while defi-
cient results in YAGO11k. Since YAGO11k is much sparser than Wikidata12k
dataset, we believe denser training facts in Wikidata12k better highlight the
superiority of our model, whereas sparse data is inadequate for learning tem-
poral regularity of facts and temporal properties of relations. Additionally, it’s
worth noting that the MR results are not satisfactory on both datasets, we claim
that MR is not an appropriate metric for entity prediction where the number
of entities for ranking is very large, thus MR results can be badly affected by
extreme values from infrequent triples, MRR and Hits metrics better assess
model performance for entity prediction, which are mainly influenced by top
ranks. But for relation and temporal scope prediction where the ranking space
is much smaller, MR metric is still referrible.

Table 5. Temporal scope prediction results on Wikidata12k and YAGO11k. The best
results are boldfaced and the second best results are underlined.

Models Wikidata12k YAGO11k

Metric MR MR

HyTE 17.60 9.88

HyTE-e 17.96 14.38

Ours 12.43 10.06

We also verify the superiority of our model on relation prediction, as shown
in Table 2 and Table 3, TRHyTE outperforms all competitors on all metrics.
The promising performance of TRHyTE demonstrates the correctness of rela-
tional space transformation and temporal properties of relations. We also prove
the validity of incorporating temporal information since static methods perform
dramatically worse than temporal methods due to their inability of modeling
useful temporal information.

TKGE Based on Temporal-Relational Hyperplanes 147

We report MR for temporal scope prediction task, comparing with HyTE
in Table 5. We run the original model (HyTE-e), and get similar results on
Wikidata12k but 5 points higher MR on YAGO11k. Compared with HyTE-
e, our model achieves 5 points and 4 points lower MR on Wikidata12k and
YAGO11k, respectively, which demonstrates TRHyTE is capable of modeling
temporal information and making temporal scope predictions.

4.3 Ablation Study and Case Study

To help explore the contribution of different components of TRHyTE, we conduct
an ablation study on entity and relation prediction on Wikidata12k datasets. We
use different capital letters to represent different model components, and we cre-
ate variants of TRHyTE by singly adding these components from HyTE (i.e., the
projection model) for comparison. R refers to constructing relational sub-KGs
based on temporal property of relations; G refers to the use of GRU; T denotes
TransD transformation; E denotes expand-and-best-merge strategy; N represents
dynamic negative sampling. Co-occurrence of letters represents the combination
of different components (e.g., +RG means that we construct relational sub-KGs
and leverage GRU into the initial HyTE model), +RGTEN equals our com-
plete model. As shown in Table 6, the italicized result values under each variant
represent the difference in performance between the current and last variant,
with the expectation of decrease on MR (-) and increase on the other metrics
(+). The performance differentials present an overall pattern we expect, which
illustrates that each model component plays an active role. The intact model
is noticeably better than all variants. Constructing relational sub-KGs based
on temporal property of relations, dynamic negative sampling mechanism, and
TransD transformation contribute most to TRHyTE with prominent improve-
ment, they consider incorporating temporal information of relations and con-
structing finer-grained hyperplanes for projection. Moreover, ingenious dynamic
negative sampling leads to more sufficient model training. GRU also contributes
model performance but is more subtle, which demonstrates that KG evolution is
necessary to model, and expand-and-best-merge strategy guarantees a more com-
prehensive assessment. Overall the ablation study verifies the validity of every
model component.

We conduct a case study for relation and temporal scope prediction tasks,
comparing HyTE and our method of constructing relational sub-KGs (+R). For
relation prediction task in Table 7, as shown in the first test quadruple with inter-
val time[1943, 1956], HyTE wrongly gives relation <hasWonPrize> a higher rank
than the correct relation <worksAt>. In contrast, since our method knows that
relation <worksAt> has interval property while <hasWonPrize> has instanta-
neousness property, it correctly ranks <worksAt> ahead of <hasWonPrize>.
Similarly, for test quadruple valid at open-interval time (example 2) and instan-
taneous time (example 3), our model also gives better ranks for correct answers,
as it knows that relation <isMarriedTo>, <isAffiliatedTo> and <wasBornIn>
has interval, open-interval, and instantaneousness property, respectively.

148 L. Yuan et al.

Table 6. Ablation studies on Wikidata12k. The best results are boldfaced and the
second best results are underlined.

Datasets Wikidata12k

Metric MR MRR H@1 H@3 H@10

Rel Tail Head Tail Head Rel Tail Head Tail Head

HyTE-p 1.13 – – – – 92.60 – – 41.60 25.00

HyTE-e 1.13 21.44 14.28 12.02 7.98 91.99 23.63 14.51 42.05 26.07

+R 1.11 35.68 29.66 28.73 23.87 94.97 37.72 30.75 48.56 40.70

−0.02 +14.24 +15.38 +16.71 +15.89 +2.98 +14.09 +16.24 +6.51 +14.63

+RG 1.11 37.21 30.01 30.33 23.53 95.02 39.49 31.31 50.38 42.57

0.00 +1.53 +0.35 +1.60 −0.34 0.05 +1.77 +0.56 +1.82 +1.87

+RGT 1.05 41.88 35.24 34.24 28.95 97.68 44.25 36.19 56.81 47.77

−0.06 +4.67 +5.23 +3.91 +5.42 +2.66 +4.76 +4.88 +6.43 +5.20

+RGTE 1.05 42.09 35.27 34.24 28.73 97.71 44.74 36.61 57.08 48.09

0.00 +0.21 +0.03 0.00 −0.22 +0.03 +0.49 +0.42 +0.27 +0.32

+RGTEN 1.03 48.41 43.92 41.78 38.04 98.40 50.83 45.28 62.47 55.83

−0.02 +6.32 +8.65 +7.54 +9.31 +0.69 +6.09 +8.67 +5.39 +7.74

Table 7. Case study on relation prediction. The order of prediction is in descending
order. Correct one is in bold.

test quadruples HyTE +R

Doris Reynolds, ?, University

of Edinburgh, [1943, 1956]

hasWonPrize, worksAt worksAt, hasWonPrize

William Henry Young, ?,

De Morgan Medal, [1917, ##]

isMarriedTo, hasWonPrize hasWonPrize, isMarriedTo

Reg Turnbull, ?, China,

[1908-02-21, 1908-02-21]

isAffiliatedTo, wasBornIn wasBornIn, isAffiliatedTo

Table 8. Golden hyperplane rank on temporal scope prediction. Best rank is in bold.

Test quadruples HyTE +R(sub-KG1/2/3)

Lewis Price, playsFor, Brentford F.C., ? 21 1, 2, 27

Takaaki Kajita, hasWonPrize, Nobel Prize in Physics, ? 37 2, 1, 15

Elizabeth F. Neufeld, wasBornIn, Paris, ? 41 30, 26, 1

As for temporal scope prediction task in Table 8, we compare the rank of
golden hyperplanes. Especially, since we construct three relational sub-KGs, we
project triples into all hyperplanes inside these sub-KGs, and we compute the
plausibility of the test triple on each of them. Thus we get three results for one
test quadruple, representing the rank of golden hyperplanes inside every rela-
tional sub-KG, respectively. As shown in the first test quadruple with interval
relation <playsFor> from sub-KG1, we get rank 1, 2 and 27 for golden hyper-
planes inside three sub-KGs, respectively. We get the best rank from sub-KG1,
which meets our expectations. A similar good phenomenon also appears in sub-
KG2 and sub-KG3. The above cases prove that after clustering quadruples into
three relational sub-KGs, our model can learn embeddings separately at a finer
granularity, and leads to more accurate predictions.

TKGE Based on Temporal-Relational Hyperplanes 149

5 Related Work

5.1 Static Knowledge Graph Embedding

Extensive researches have been done on static knowledge graph embedding.
Translation-based models are the most heuristic works like TransE [1], which
considers relation r as a translation from head entity h to tail entity t in the
continuous vector space, i.e., h + r ≈ t, where h, r, t ∈ R

d are the embeddings
of h, r, and t, respectively. TransE has many variants such as TransH [22] and
TransD [9], etc. All of them aim at minimizing the distance between two entities
translated by relation. RESCAL [17], DistMult [30], ComplEx [21], HolE [16]
and SimplE [12] are matrix factorization-based or tensor decomposition-based
models, which are more complicated and mathematical. There are also some
exquisitely designed models which embed entities and relations into complex
space, such as RotatE [19], which takes relation as a rotation from head entity
to tail entity in the complex space, and QuatE [31], which extends the complex-
valued space into hypercomplex by a quaternion. Though static KGE models
perform satisfactorily on static KGs, they expose insufficiency on TKGs due to
ignorance of useful time information.

5.2 Temporal Knowledge Graph Embedding

Recent researches have attempted to incorporate time into KGE models and
have proved the effectiveness of additional time information. Series of models
have emerged and differed in time modeling, which can be categorized into four
branches. Time encoding-based models embed time explicitly. TA-TransE [6]
and ToKEi [14] encode time directly in well-designed coding methods. Inspired
by static KGE model RotatE [19], TeRo [26] regards time as a rotation from
start time to current time in complex space. ChronoR [18] is another rotation-
based work. HyTE [3] treats time as hyperplanes and projects facts into time-
valid hyperplanes to incorporate time. Time-aware relation-based methods like
t-TransE [10] and TIMEPLEX [8] treat time as a regularizer to restrain temporal
sequence, regular reappearance, and time difference, etc. Since TKGs keep evolv-
ing and the current state is probably influenced by history. Evolution modeling-
based approaches like RE-NET [11] and TeMP [24] leverage RNNs to capture
long-term dependency of facts in TKGs. Know-Evolve [20] models the occur-
rence of facts as temporal point processes. CyGNet [33] learns and copies from
history to generate predictions. DE-SimplE [7] and ATiSE [27] consider entity
representations keep changing over time and fit changes with suitably-designed
functions. Tensor decomposition-based models such as ConT [5] and TComplEx
[13] consider encoding facts as tensors and apply tensor factorization operations.
There are some other methods that work as a framework for turning static KGE
models into temporal ones like RTFE [29], which updates parameters recursively
as time progresses.

150 L. Yuan et al.

6 Conclusion

In this work, we propose TRHyTE, a temporal-relational hyperplane projection-
based TKGE model. To implement a fine-grained learning, three temporal prop-
erties of relations are proposed to construct three relational sub-KGs. In each
sub-KG, our model transforms entity embeddings into relation space first, and
then projects entities and relations into valid hyperplanes explicitly. Considering
the temporal dependency in adjacent hyperplanes, GRUs are applied to model
TKG evolution. Besides, TRHyTE dynamically generates negative samples for
effective training and designs an expand-and-best-merge strategy to realize a com-
plete test. Through abundant experiments on real-world fact-based datasets, we
demonstrate the effectiveness of TRHyTE.

Acknowledgments. This research is supported by the National Key R&D Pro-
gram of China (No. 2018AAA0101900), the National Natural Science Foundation of
China (Grant No. 62072323, 62102276), the Natural Science Foundation of Jiangsu
Province (No. BK20191420, BK20210705, BK20211307), the Major Program of Natu-
ral Science Foundation of Educational Commission of Jiangsu Province, China (Grant
No.19KJA610002, 21KJD520005), the Priority Academic Program Development of
Jiangsu Higher Education Institutions, and the Collaborative Innovation Center of
Novel Software Technology and Industrialization.

References

1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems 26 (2013)

2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP (2014)

3. Dasgupta, S.S., Ray, S.N., Talukdar, P.: HyTE: hyperplane-based temporally aware
knowledge graph embedding. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2001–2011 (2018)

4. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing
Wikidata to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,
vol. 8796, pp. 50–65. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11964-9 4

5. Esteban, C., Tresp, V., Yang, Y., Baier, S., Krompaß, D.: Predicting the co-
evolution of event and knowledge graphs. In: 2016 19th International Conference
on Information Fusion (FUSION), pp. 98–105. IEEE (2016)

6. Garćıa-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for tem-
poral knowledge graph completion. arXiv preprint arXiv:1809.03202 (2018)

7. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for
temporal knowledge graph completion. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, pp. 3988–3995 (2020)

8. Jain, P., Rathi, S., Chakrabarti, S., et al.: Temporal knowledge base completion:
new algorithms and evaluation protocols. arXiv preprint arXiv:2005.05035 (2020)

https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1007/978-3-319-11964-9_4
http://arxiv.org/abs/1809.03202
http://arxiv.org/abs/2005.05035

TKGE Based on Temporal-Relational Hyperplanes 151

9. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 687–696 (2015)

10. Jiang, T., Liu, T., Ge, T., Sha, L., Li, S., Chang, B., Sui, Z.: Encoding temporal
information for time-aware link prediction. In: Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pp. 2350–2354 (2016)

11. Jin, W., et al.: Recurrent event network: Global structure inference over temporal
knowledge graph (2019)

12. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge
graphs. arXiv preprint arXiv:1802.04868 (2018)

13. Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowl-
edge base completion. arXiv preprint arXiv:2004.04926 (2020)

14. Leblay, J., Chekol, M.W., Liu, X.: Towards temporal knowledge graph embeddings
with arbitrary time precision. In: Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management, pp. 685–694 (2020)

15. Mahdisoltani, F., Biega, J., Suchanek, F.M.: A knowledge base from multilingual
wikipedias-yago3. Technical report, Telecom ParisTech (2014). http://suchanek.
name/work/publications

16. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

17. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: ICML (2011)

18. Sadeghian, A., Armandpour, M., Colas, A., Wang, D.Z.: ChronoR: rotation based
temporal knowledge graph embedding. arXiv preprint arXiv:2103.10379 (2021)

19. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by
relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

20. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: deep temporal reasoning
for dynamic knowledge graphs. In: International Conference on Machine Learning,
pp. 3462–3471. PMLR (2017)

21. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: International Conference on Machine Learning,
pp. 2071–2080. PMLR (2016)

22. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 28 (2014)

23. Wang, Z., Li, X.: Hybrid-TE: hybrid translation-based temporal knowledge graph
embedding. In: 2019 IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 1446–1451. IEEE (2019)

24. Wu, J., Cao, M., Cheung, J.C.K., Hamilton, W.L.: TeMP: temporal message pass-
ing for temporal knowledge graph completion. arXiv preprint arXiv:2010.03526
(2020)

25. Xu, C., Chen, Y.Y., Nayyeri, M., Lehmann, J.: Temporal knowledge graph comple-
tion using a linear temporal regularizer and multivector embeddings. In: Proceed-
ings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 2569–2578 (2021)

26. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: TeRo: a
time-aware knowledge graph embedding via temporal rotation. arXiv preprint
arXiv:2010.01029 (2020)

http://arxiv.org/abs/1802.04868
http://arxiv.org/abs/2004.04926
http://suchanek.name/work/publications
http://suchanek.name/work/publications
http://arxiv.org/abs/2103.10379
http://arxiv.org/abs/1902.10197
http://arxiv.org/abs/2010.03526
http://arxiv.org/abs/2010.01029

152 L. Yuan et al.

27. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H., Lehmann, J.: Temporal knowledge
graph completion based on time series Gaussian embedding. In: Pan, J.Z., et al.
(eds.) ISWC 2020. LNCS, vol. 12506, pp. 654–671. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-62419-4 37

28. Xu, Y., et al.: Time-aware graph embedding: a temporal smoothness and task-
oriented approach. arXiv preprint arXiv:2007.11164 (2020)

29. Xu, Y., Song, M., Lv, X., et al.: RTFE: a recursive temporal fact embedding frame-
work for temporal knowledge graph completion. arXiv preprint arXiv:2009.14653
(2020)

30. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

31. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings.
arXiv preprint arXiv:1904.10281 (2019)

32. Zhou, Y., Peng, J., Wang, L., Zha, D., Mu, N.: SEDE: semantic evolution-based
dynamic knowledge graph embedding. Aust. J. Intell. Inf. Process. Syst. 16(4),
64–73 (2019)

33. Zhu, C., Chen, M., Fan, C., Cheng, G., Zhan, Y.: Learning from history: model-
ing temporal knowledge graphs with sequential copy-generation networks. arXiv
preprint arXiv:2012.08492 (2020)

https://doi.org/10.1007/978-3-030-62419-4_37
https://doi.org/10.1007/978-3-030-62419-4_37
http://arxiv.org/abs/2007.11164
http://arxiv.org/abs/2009.14653
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1904.10281
http://arxiv.org/abs/2012.08492

ExKGR: Explainable Multi-hop
Reasoning for Evolving Knowledge Graph

Cheng Yan1,2, Feng Zhao1,2(B), and Hai Jin1,2

1 National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,

Wuhan, China
2 School of Computer Science and Technology, Huazhong University of Science

and Technology, Wuhan, China
{yancheng,zhaof,hjin}@hust.edu.cn

Abstract. Knowledge graph reasoning is a popular approach to predict
new facts in knowledge graphs (KGs) suffering from inherent incomplete-
ness. Compared with the popular embedding-based approach, multi-hop
reasoning approach is more interpretable. Multi-hop reasoning can be
modeled as reinforcement learning (RL) in which the RL agent navi-
gates in the KG. Despite high interpretability, the knowledge in real
world evolves by the minute, previous approaches are based on static
KG. To address the above challenges, we propose an explainable multi-
hop reasoning approach (ExKGR) for practical scenario, aiming to reason
the emerging entity in evolving KGs and provide evidentiary reasoning
paths. Specifically, ExKGR can represent emerging entities by inductive
learning of neighbors and the query. Furthermore, we restrict the RL
action space of supernodes. Also, we use a dynamic reward instead of
a binary reward in prior approaches. The experimental results on four
benchmark datasets demonstrate that our approach significantly outper-
forms prior approaches.

Keywords: Knowledge reasoning · Reinforcement learning · Graph
neural network

1 Introduction

Currently, an exceedingly growing number of technology companies have capi-
talized on the KG concept and integrated KGs into their products. For example,
Google integrates knowledge graphs into its search engine, and knowledge graph
technology is the foundation of Apple’s Siri. Unfortunately, in most KGs, a num-
ber of facts are typically missing, making them incomplete. Therefore, we need
to infer new facts from the initial KG and provide more knowledge for such
products. Knowledge graph reasoning (KGR) is a popular approach to predict
new facts from the existing facts in KGs.

Currently, embedding-based methods [3] are at the frontier of research in
KGR, this method maps the KG to a corresponding multi-dimensional vector
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 153–161, 2022.
https://doi.org/10.1007/978-3-031-00123-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_11&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_11

154 C. Yan et al.

space. However, owing to their simplicity, these approaches tend to ignore the
reasoning process. Some recent approaches have combined RL with multi-hop
reasoning. Multi-hop reasoning based on RL not only achieves competitive per-
formance but also offers substantial explainability.

Although multi-hop approach has advantages in some respects, there are
still some challenges when dealing with evolving KGs. (1) First, real-world KGs
evolve by the minute, and some newly added entities emerge in real-world KGs
[7]. Previously proposed multi-hop reasoning approaches have only considered
static KGs. (2) Furthermore, we identify the phenomenon of supernodes in real-
world KGs, implying that some entities have a considerable number of neighbors.
The oversized action space makes the RL policy network difficult to make deci-
sions, and takes up a lot of memory. (3) The reward in RL-based reasoning is
generally set to binary, which leads to underfitting and slow convergence.

To address the above challenges, we propose a multi-hop knowledge graph
reasoning method for evolving KGs, aiming to reason new facts of the emerging
entity in evolving KGs. Specifically, first we propose an encoder based on the
attention mechanism to represent the emerging entity through its neighbors and
the corresponding query. Furthermore, our approach is based on policy gradient
RL, to avoid the action space being too large, we limit the size of the action
space, which also alleviates exploration-exploitation problem in RL. Last but
not least, we propose a dynamic reward to solve the reward sparsity in RL. Our
main contributions are as follows:

– We tackle a realistic problem of multi-hop reasoning in a practical scenario,
aiming at reasoning for the emerging entity in the evolving KG and providing
explainable reasoning paths.

– To address the emerging entity which is unseen to the observed KG, we pro-
pose an encoder to represent the emerging entity by only a small number of
associated triples with observed KG. We also restrict the action space and
propose a dynamic reward to accelerate the convergence of the model.

– We conduct extensive experiments on four benchmark datasets. The results
show our approach achieves competitive performance and provide explainable
reasoning evidence.

2 Related Works

Embedding-based methods are intended to map an entity or relation to a certain
vector in a high-dimensional vector space. The translation-based model is come
up with for the first time by TransE [1]. ConvE [3] uses 2D convolution on the
embedding to predict lost facts in the knowledge graph. Although embedding-
based method is quite simple through some vector operations, it is highly efficient
and accurate. However, due to its simplicity, it ignores some reasoning processes,
which can result in poor performance on tasks involving complex reasoning.

Different from knowledge graph embedding, multi-hop reasoning provides
more explainability. The path-ranking algorithm (PRA) [4] is based on random

ExKGR 155

Fig. 1. Overview of ExKGR

walks for rule mining, each path is used as a rule to predict whether corre-
sponding rules exist between entities. However, due to PRA paths generated
from enumeration, searching the entire graph is costly. Recently the solution of
integrating RL into multi-hop reasoning is gradually emerging.

Recently, due to advancements in RL, some scholars have applied RL to
knowledge reasoning. DeepPath [9] was the first method to apply reinforcement
learning to knowledge reasoning. DeepPath has a novel reward function that
causes it to learn more and it trains an agent to reason on a KG. MINERVA [2]
accomplishes query tasks based on DeepPath, it does not need pretraining and
use a LSTM to encode the path. Multi-Hop [5] proposed a soft reward mechanism
coupled with action dropout to reduce the impact of false negatives.

3 Methodology

3.1 Framework of ExKGR

The multi-hop reasoning problem in KGs and our proposed reinforcement learn-
ing framework is shown in Fig. 1.

Reinforcement Learning-based Multi-hop Reasoning. Formally we represent KG
as G = (E ,R), where E denotes the entity set and R denotes the relation set. The
triples in the KG are represented as T = {(eh, r, et)} ⊆ E ×R×E . The multi-hop
reasoning problem can be formalized as follows: given a query (es, rq, ?), KGR
aims to find some paths from es to object entity eo based on es and rq, the
reasoning path can be denoted as {(es, r1, e1), (e1, r2, e2), . . . , (en−1, rn, eo)}.

Reinforcement learning reasoning consists of the following parts: (1) State.
The agent makes decisions based on the current state. Each state is formally
represented as st = (rq, et, ht) ∈ S. (2) Action. When in state st = (rq, et, ht),
the actions the agent can take are expressed by the set of outgoing edges of the
current entity et in G. This action set can be formulated as At = {(r, e)|(et, r, e) ∈
T }. (3) Reward. If the agent successfully finds the objective entity in the KG
(i.e., eT = eo), the reward is 1. If not, the reward is set to 0.

156 C. Yan et al.

Policy Network. The aim of the policy network is to guide the agent. The
current state including the query relation, current entity, and historical path
is the input to the policy network, and the output is the action distribution.
The action can be vectorized as at = [rt+1; et+1]. The historical search path
ht = (es, r1, e1, . . . , rt, et) containing the reasoning process until the t-th step
will be encoded by a LSTM, represented by ht = LSTM(ht−1,at−1). At t-th
step, state st can be encoded as st = [rq; et;ht]. The policy network can be
denoted as πθ(at|st) = σ(At × W1ReLU(W2st)), πθ(at|st) denotes the prob-
ability distribution of actions in state st. The policy network πθ is expected to
train an optimal parameter and maximize the reward for each query:

J (θ) = E(es,r,eo)∈G [Ea1,··· ,aT ∼πθ [R(sT |es, rq)]] (1)

The parameter θ is updated by the stochastic gradient:

∇θJ(θ) ≈ ∇θJ(θ)
∑T

t=1 R(sT |es, r) log πθ(at|st) (2)

3.2 Emerging Entities Encoder

Figure 2 illustrates the framework of emerging entities encoder, the encoder
is based on the attention mechanism, which uses the Q (Query), K (Key), V
(Value) approach to calculate the attention coefficients and the weighted sum.
First, we linearly transform the action (at = (ej , r)) associated with the emerg-
ing entity ei to form the message mijr = W1[r||Wrej], where Wr ∈ R

d×d is
a transformation matrix of relation r mapping the entity to the relation vector
space, ej ∈ Ni denotes the neighboring entity of ei, ej denotes the embed-
dings of ej . W1 ∈ R

d×2d is a linear transformation matrix and [·||·] denotes the
concatenation operator of two vectors. mijr will be used as Value in attention
mechanism.

To construct the Query (Q) and Key (K) in attention mechanism, prior
approaches tend to set Q to the neighboring entities characteristics, K and V
are set to the information of the current entity. Our approach considers the
knowledge graph reasoning setting, we utilize two matrix WQ and WK and
perform linear transformation of the query relation rq and neighboring relations
r ∈ Rij , thus we can calculate the attention coefficient between ei and ej :

αijr =
exp((WQrq)

T(WKr))
∑

ej∈Ni

∑

r∈Rij

exp((WQrq)T(WKr))
(3)

After obtaining the attention coefficient between the emerging entity and
its neighbors, we can aggregate the neighboring messages mijr by the attention
weights. To stabilize the learning process and encapsulate more hidden semantics
about neighboring actions, N independent attention heads calculate correspond-
ing aggregated messages which are concatenated, obtaining the representation
of the emerging entity, Wn

V represents the n-th linear transformation matrix of
attention mechanism:

ei = ||Nn=1(
∑

ej∈Ni

∑

r∈Rij

αn
ijrW

n
V mijr) (4)

ExKGR 157

Fig. 2. Emerging entities encoder Fig. 3. Dynamic reward

3.3 Dynamic Reward

The previous works suffer from reward sparsity in RL because they rely on
a simple binary reward scheme. When projecting a KG in a two-dimensional
coordinate system, the reasoning problem can be modeled as a process that the
agent moves from the source to the target by the relation vectors as shown in
Fig. 3. The green dotted line represents the query relation and the solid red
line represents the reward. The reward is the projection from the red dotted
line to the green dotted line. We can formalize the reasoning process as follows:
∑T

i=0 �ri represents the vector of the actual reasoning path, �eo − �es represents the
difference vector between the inferred entity and the objective entity, and d =
(�eo− �es)·

∑T
i=0 �ri

‖ �eo− �es‖ denotes the projection from the reasoning path to the difference
vector. Therefore, the reward function R in our approach is defined as follows:

R =

⎧
⎨

⎩

σ(d) d ∈ (−∞, ‖�rq‖) \ {0}
1 d = 0

σ(‖�rq‖ − d) d ∈ (‖�rq‖, +∞)
(5)

3.4 Action Pruning

According to the analysis of real-world knowledge graphs, supernodes having a
huge number of neighbors do exist in the KG. Some entities having too many
neighbors lead to oversized action space. The oversized action space makes the
policy network difficult to train and only outputs almost random action distri-
butions. Therefore, we restrict the size of supernode action space. First, we rank
the entities by the number of neighbors of each entity, then select some large
entities as supernodes according to the degree of the entity. We set a threshold η
to restrict the action space of the supernode and calculate its top-η neighboring
entities with PageRank scores. Then, the action space will be randomly dropout
to further reduce the size of the action space. The dropout technique randomly
masks some actions and forces the RL agent to explore diverse reasoning paths,
appropriately alleviating exploration and exploitation in RL.

158 C. Yan et al.

Table 1. Statistics of datasets

Datasets #Entity #Relation #Triple #Degree

Mean Median Min Max Var

UMLS 135 46 5,216 38.6 28 1 133 1057.6

Kinship 104 25 8,544 82.1 82 74 92 12.2

FB15K-237 14,505 237 272,115 19.7 14 1 1325 905.9

NELL-995 75,492 200 154,213 1.5 1 1 109 3.4

Table 2. Link prediction results (%): The Results of All Models

Model UMLS Kinship FB15K-237 NELL-995

MRR @1 @10 MRR @1 @10 MRR @1 @10 MRR @1 @10

TransE .201 .178 .292 .102 .075 .141 .049 .030 .068 .055 .045 .067

DisMult .152 .124 .231 .081 .056 .123 .043 .025 .066 .057 .048 .072

RotatE .171 .157 .269 .089 .067 .135 .045 .026 .069 .048 .037 .062

ConvE .709 .651 .851 .581 .532 .657 .256 .197 .378 .423 .324 .593

R-GCN .721 .671 .812 .455 .412 .509 .191 .115 .343 .584 .509 .716

MINERVA .812 .751 .859 .734 .615 .865 .274 .192 .461 .725 .642 .821

MultiHopKG .891 .871 .941 .812 .714 .913 .376 .292 .577 .727 .644 .822

ExKGR .909 .882 .989 .834 .749 .968 .409 .329 .576 .732 .654 .831

4 Experiments

4.1 Setup

Dataset. Experiments are carried out on four benchmark datasets. Table 1
shows statistical characteristics (the number of entities, relations, and triples) of
four datasets and the number of entity neighbors (#Degree).

Baselines and Evaluation Metrics. We compare our method with the follow-
ing baselines: (1) Embedding-based methods: TransE [1], DistMult [10], RotatE
[8], and ConvE [3]. (2) Graph neural network: R-GCN [6]. (3) Multi-hop reason-
ing: MINERVA [2] and MultiHopKG [5]. The experimental task is the link pre-
diction for the emerging entity. The mean reciprocal rank (MRR) and n (Hits@n)
are used to evaluate the above models.

Hyperparameters. The embedding dimension d is set to 200. A three-layer
LSTM is used to encode the search path. Its hidden dimension is set to 200. Top
10% large entities are selected as supernode entities. The threshold η restricting
the action space is set to 256 or 512. For emerging entities encoder, we deploy 4
attention heads. The maximum number of reasoning steps is set to 3.

ExKGR 159

(a) Kinship (b) UMLS (c) FB15K-237 (d) NELL-995

Fig. 4. Illustration of convergence rate

Table 3. Query and reasoning path cases

Query 1 (Elon Musk, lead sorganization, ?) Answer 1 Tesla

Path 1 Elon Musk
ceo of−−−−→ automobilemaker tesla

Query 2 (Oklahoma, adjoins, ?) Answer 2 Texas

Path 2 Oklahoma
country−−−−−→ USA

country−1

−−−−−−−→ Texas

Query 3 (Bill Clinton, endorsed by, ?) Answer 3 Joe Biden

Path 3 Clinton
represents−−−−−−−→ USA

represents−1

−−−−−−−−−→ Obama
collaborates−1−−−−−−−−−−→ Biden

4.2 Link Prediction Results

The link prediction results are shown in Table 2. The result shows that
the embedding-based method achieves poor performances on the datasets.
Embedding-based methods cannot solve emerging entities. GNN-based method
R-GCN outperforms all embedding-based methods, it proves that GNN can
aggregate the neighboring information. Multi-hop methods obviously achieve the
greatest performance, it indicates that multi-hop reasoning may be independent
of the representation of entities. Compared to multi-hop reasoning methods, the
improvement of our model proves that our model is more suitable for dynamic
scenarios.

4.3 Ablation Study and Analysis

To verify the effectiveness of each component, we ablate three components of our
models respectively. Figure 4 shows the convergence rate of ablated models dur-
ing training. W/O Reward performs worst, which indicates that binary reward
restricts the RL agent to learn from the failed reasoning paths. Action pruning
also has a large enhancement to the model, especially on large-scale datasets.
The existence of supernodes has a negative influence on the reasoning process.
Action pruning is beneficial for making meaningful decisions and speeds up the
convergence rate. Emerging entities encoder has also contributed to our model.

4.4 Qualitative Analysis

To demonstrate the explainability of our model, we present some queries and
corresponding reasoning paths found by our model. Table 3 shows examples

160 C. Yan et al.

(1-hop, 2-hop, 3-hop). For example, query 1 means that “Which organization
does Elon Musk lead?”, we may associate Elon Musk as the CEO of Tesla,
and then we can get the answer “Tesla”, proving that reasoning paths are very
meaningful for knowledge graph reasoning.

5 Conclusion

In this paper, we propose a multi-hop knowledge graph reasoning approach aim-
ing to reason the new triples of emerging entities in evolving KGs. We designed
an encoder based on the attention mechanism to represent the emerging entity.
The phenomenon of supernodes makes the action space in RL too large, so we
propose action pruning to limit the size of the action space. To allow the model
to accelerate the convergence, we propose a dynamic reward.

Acknowledgment. This work was supported in part by National Key R&D Program
of China under Grants No. 2018YFB1404302, National Natural Science Foundation of
China under Grants No.62072203.

References

1. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems 26, pp. 2787–2795 (2013)

2. Das, R., et al.: Go for a walk and arrive at the answer: reasoning over paths in
knowledge bases using reinforcement learning. In: Proceedings of 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings (2018)

3. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowl-
edge graph embeddings. In: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, pp. 1811–1818 (2018)

4. Lao, N., Mitchell, T.M., Cohen, W.W.: Random walk inference and learning in a
large scale knowledge base. In: Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pp. 529–539 (2011)

5. Lin, X.V., Socher, R., Xiong, C.: Multi-hop knowledge graph reasoning with reward
shaping. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 3243–3253 (2018)

6. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

7. Shi, B., Weninger, T.: Open-world knowledge graph completion. In: Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 1957–1964
(2018)

8. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: knowledge graph embedding by rela-
tional rotation in complex space. In: Proceedings of 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019,
Conference Track Proceedings (2019)

https://doi.org/10.1007/978-3-319-93417-4_38

ExKGR 161

9. Xiong, W., Hoang, T., Wang, W.Y.: Deeppath: a reinforcement learning method for
knowledge graph reasoning. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 564–573 (2017)

10. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations
for learning and inference in knowledge bases. In: Proceedings of 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7–9, 2015, Conference Track Proceedings (2015)

Improving Core Path Reasoning for the Weakly
Supervised Knowledge Base Question

Answering

Nan Hu, Sheng Bi, Guilin Qi(B), Meng Wang, Yuncheng Hua, and Shirong Shen

School of Computer Science and Engineering, Southeast University, Nanjing, China
{nanhu,bisheng,gqi,meng.wang,devinhua,ssr}@seu.edu.cn

Abstract. Core Path Reasoning (CPR) is an essential part of the knowledge base
question answering (KBQA), which determines whether the answer can be found
correctly and indicates the reasonableness of the path. The lack of effective super-
vision of the core path in weakly supervised KBQA faces great challenges in find-
ing the correct answer through long core paths. Furthermore, even if the correct
answer is found, its path might be spurious that is not semantically relevant to the
question. In this paper, we focus on solving the CPR problem in weakly super-
vised KBQA. We introduce a CPR model that aligns questions and paths in a
step-by-step reasoning manner from explicit text semantic matching and implicit
knowledge bases structure matching. Additionally, we propose a two-stage learn-
ing strategy to alleviate the spurious path problem efficiently. We first find rela-
tively correct paths and then use hard Expectation-Maximization to learn the best
matching path iteratively. Extensive experiments on two popular KBQA datasets
demonstrate the strong competitiveness of our model compared to previous state-
of-the-art methods, especially in solving long path and spurious path problem.

Keywords: Core path reasoning · Spurious path · Knowledge base question
answering · Weakly supervised

1 Introduction

Knowledge base question answering (KBQA) is an important natural language pro-
cessing task, which aims to find answers to natural language questions from the knowl-
edge base (KB). Recently, weakly supervised KBQA [1,2] has attracted more and more
attention due to the high cost of annotating logical queries like SPARQL. It only needs
to give question-answer pairs, which is easier than constructing complex logical queries.

Core path reasoning (CPR) is an essential part of KBQA. There are two challenges
in CPR for weakly supervised KBQA: (1) Long Path Problem. Most weakly super-
vised KBQA works have shown excellent performance when the core path is short
[3,4] or the KB scale is small. Several works [1,7,10] try to improve the performance
of long-path KBQA. However, when the core path is long and the KB is large, neural
network models are hard to converge. (2) Spurious Path Problem. There are many
paths between topic entities of questions and answer entities. Except for the path that

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 162–170, 2022.
https://doi.org/10.1007/978-3-031-00123-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_12

Improving CPR for the Weakly Supervised KBQA 163

exactly matches the semantics of question, the rest are spurious paths that are unrelated
to the semantics of question. In that the spurious paths would not convey the meaning
of the question correctly, such spurious paths will mislead the model when training.
Furthermore, the model lacks interpretability even if the answer happens to be found
through a spurious path. The work [4] uses a crude method like setting F1 score thresh-
olds for pre-screening with little success. The work [6] uses prior domain knowledge to
filter spurious paths in advance, which is difficult to adapt to different settings. Recent
work [1] proposes a bi-directional supervision mechanism to provide the intermediate
supervision signal. However, the spurious path problem is still not well solved because
it does not consider the semantic relationship between the question and the core path.

To overcome the aforesaid challenges, we propose a novel multi-perspective and
multi-stage CPR model. The model aligns questions and paths from an explicit per-
spective of text semantics and an implicit perspective of KB structure by step-by-step
reasoning, which is beneficial for reasoning about long path questions. It is difficult
to align questions and paths without training labels because the expression of natu-
ral language questions is different from the expression of KB relations. The explicit
information from the textual perspective can distinguish coarse-grained semantic dif-
ferences like “person education” and “places lived”. The implicit information from the
KB structure perspective can distinguish fine-grained semantic differences like “coun-
try first level divisions” and “country contains”. In addition, considering that there is
no golden logic queries to train the model to choose the correct path, we adopt the Hard-
EM algorithm [9] to rely on our model itself to find the correct path during the iterative
process. Based on this idea, we design two training stages with different learning goals
to make the model gradually learn to filter out errors and spurious paths through itera-
tions. In the first stage, the model filters out error paths, selecting semantically similar
paths to the question. In the second stage, the model filters out spurious paths, selecting
the correct path that exactly matches the question. These two training stages gradually
improve the path selection ability of the model. Furthermore, we conduct experiments
on two popular KBQA datasets to demonstrate the strength of our model, especially in
solving long path and spurious path problems.

2 Related Work

The weakly supervised KBQA has attracted great attention because of the expensive
cost of manual annotation. Previous works [3,4] used a semantic parsing method to gen-
erate logical query graphs and then scored them. However, the core path of the question
they solve is short. Liang et al. [2] used reinforcement learning to generate neural pro-
grams to construct logical forms. Lan et al. [7] improved the stage query graph method
to solve the long path problem by generating stage query graphs in a flexible manner.
These works ignore the negative impact caused by spurious paths. Other works [1,6]
tried to solve the spurious path problem, but they all had limitations. He et al. [1] pro-
posed a bi-directional reasoning mechanism to provide intermediate supervised signals.
Bhutani et al. [6] used prior domain knowledge to filter spurious paths in advance.

164 N. Hu et al.

3 Methodology

Preliminary Our KBQA pipeline system includes three stages: Node Linking, Core
Path Reasoning, and Constraint Attachment. Our work focuses on improving the CPR
of the system. (1) Node Linking. We extract four types nodes from the question: Topic
entity, which links the question mention to a grounded entity. Type node, which usually
specifies the type of answer entity. Time node, extracted from the question using time
regular expressions. Aggregate node, which is matched using a predefined superlative
word list and then mapped into two functions (argmax and argmin). (2) Core Path
Reasoning. The model will find the path from topic entities to answer entities, which
exactly matches the question semantics. (3) Constraint Attachment. Various constraint
nodes will be used to filter answers, this idea is the same as [5].

Fig. 1. The framework of our CPR model.

As shown in Fig.1, our CPR model reasoning about the path in a stepwise manner.
Only the red relation in the relation set rij is correct. We will get two matching scores
St

φ and St
m at each step by using a Reasoner. These two scores indicate the matching

degree between questions and paths in terms of explicit text semantics and implicit KB
structure. The Reasoner consists of three modules: question encoding, path encoding,
and alignment module. They will be described in detail in the following sections.

3.1 Question Encoding and Path Encoding Module

The question encoding module aims to identify the specific intent of the question at each
step. To accurately represent the intent of the question at each step (as shown in Fig.1),
we introduce a gate mechanism that allows the model to incorporate historical informa-
tion to encode specific parts of the question at each step. Specifically, the inputs of the
question encoding module are historical information unit Ct−1 and question sequence
Q. The module output Ct refers to the semantic information of question focused at

Improving CPR for the Weakly Supervised KBQA 165

step t. The question encoding vector V t
q ∈ R

d for Q is obtained by an encoder BERT
[13]. An updating gate u and a forgetting gate f are used to select the information that
should be kept and updated. The module output Ct ∈ R

d at the t-th step is:

ut = sigmoid(Wu[V
t

q ;C
t−1]), (1)

C̃t = tanh(WC̃ [ut � V t
q ;V

t
q]), (2)

f t = sigmoid(WqV
t

q + WCCt−1), (3)

Ct = f t � C̃t + (1 − f t) � Ct−1, (4)

where Wu, WC̃ , W ∈ R
d, are learnable weight matrices. C0 is randomly initialized.

The path encoding module encodes each one-hop path explicitly and implicitly from
the perspective of text and KB structure, respectively. Explicit textual semantic informa-
tion can effectively distinguish KB relations with large semantic differences. However,
it is difficult to distinguish close KB relations such as “country first level divisions”
and “country contains” only by textual information. Such relations can be distinguished
using the global structure information of KB. Therefore, we use the knowledge repre-
sentation learning (KRL) algorithm to learn the structural information of KB to solve
this problem implicitly. As shown in Fig. 1, the inputs of this module are the question-
specific semantics Ct and the KB subgraph G

t. The outputs are the textual semantic
vector V t

rij and the KB vector Eei and Eej . Gt = {ei, rij , ej} is the one-hop neigh-
bor subgraph of the head entity ei ∈ ξt−1. ξt is the head entity set at step t, and ξ0 is
the topic entity set. rij is the KB relation between head entity ei and tail entity ej . In
the same way as the question encoding process, we encode the token sequence rij with
BERT and obtain the vector V t

rij . In addition, the KRL algorithm TransE [14] is applied
to pre-train on our KB to obtain the triple vector 〈Eei

, Erij
, Eej

〉.

3.2 Alignment Module with Two-Stage Learning Strategy

The question vector and the path vector of the two perspectives are aligned in this
module. Specifically, the question-specific semantics Ct and the relation vector V t

rij
are

used to compute the textual match score St
m = Ct · V t

rij
in each step. The KB structure

matching score is calculated from the TransE algorithm: St
φ = φ(Et

ei
, Et

r, E
t
ej
), where

Eei
, Eej

∈ R
dk are the head entity and tail entity vectors derived from the pre-trained

TransE. Et
r ∈ R

dk is the vector of Ct in the KB vector space. It is obtained by using a
transformation matrix Mc ∈ R

d×dk to transform Ct: Et
r = McC

t.
Ideally, our model can distinguish between correct and spurious paths and assign

a lower score to spurious paths. For this reason, we train the model by modeling the
path matching rather than the entity distribution, which is beneficial to distinguish these
paths. Then the training goal of our model is to make the correct path encoding closer
to the question encoding. Inspired by the idea of Hard-EM, we utilize the model itself
to find the correct path during the iterative training process, and then use the path to
train the model. Due to the difficulty of finding the correct path directly, we propose a
two-stage learning strategy that first lets the model find the relatively correct paths and
then selects the most appropriate path. Before training, we use the depth-first search

166 N. Hu et al.

algorithm to get all paths from the topic entity to the answer entity. We keep only the
paths within t-hop, and remove those paths whose F1 value of the answers to the gold
answers is lower than the threshold f . The set of preserved paths is PV .

The First Stage Learning. At this stage, the training goal is to maximize the model
probability of those paths that are similar to the semantics of the question. The intuitive
idea is to consider the paths with model score top-k in the path set PV as semantically
similar to the question, and the rest as semantically irrelevant paths. However, this sam-
pling method is easy to introduce noise or exclude the correct path. We adopt a more
flexible sampling approach, that is nucleus sampling [8]. We sample top-p paths, which
refers to the path set Ptop−p with the sum of probability densities greater than p. This
sampling method can more flexibly and accurately select the path similar to the ques-
tion semantics for training. Specifically, we construct a minimum number of path sets
Pt whose probability sum greater than p:

Pt = argmin
Ptop−p

|Ptop−p| , where
∑

t∈Ptop−p

ρ(t) > p, Ptop−p ⊂ PV , (5)

where Ptop−p represents all the paths set with probability sum is greater than p. |Ptop−p|
denotes the number of paths in Ptop−p. ρ(t) is the probability of the path obtained from
the model. Then the training objective of our model is to maximize the probability sum
of the path set Pt, and we use negative log-likelihood to calculate the loss:

losss1 = −log
∑

pi∈Pt

ρ(pi), (6)

ρ(p) =
(ρm(p | q,G; θ) + ρφ(p | q,G; θ))

2
, (7)

where ρ(p | q,G; θ) represents the probability of the path, q is a question, G is the sub-
graph obtained by querying from KB with the topic entity E0 and θ represents our CPR
model. The specific calculation is:

ρm(p | q, ,G; θ) =
exp(

∑|pi|
t=0 St

m)
∑

j exp(
∑|pj |

t=0 St
m)

, (8)

ρφ(p | q, ;G; θ) =
exp(

∑|pi|
t=0 St

φ)
∑

j exp(
∑|pj |

t=0 St
φ)

, (9)

where |pj | represents the number of hops of the path pj , and pj denotes the path in G.

The Second Stage Learning. At this stage, the model aims to find the correct path
in Pt that exactly matches the question, rather than spurious paths. We adopt Hard-EM
with Uniform Prior algorithm [9] to train the model for this purpose. Specifically, this is
an iterative process that uses our model to find the most probable path and then optimize
it. We use the model to calculate the path pk with the highest probability:

pk = argmax
pi∈Pt

ρm(pi|q,G; θ) (10)

Improving CPR for the Weakly Supervised KBQA 167

Then we use pk to obtain the best path set pbest. For each pb ∈ pbest, the name of
pb is the same as pk. We still use negative log-likelihood to calculate the loss. Then, the
loss function is: losss2 = − log

∑
pb∈Pbest

ρ(pb).

4 Experiment

4.1 Experimental Setup

Datasets and Comparison Methods. WebQuestionsSP [3] (WebQSP) and Com-
plexWebQuestons [12] (CWQ) are two popular KBQA datasets with maximum 2-hop
and 4-hop path questions, respectively. In our experimental setting, we only know the
question-answer pairs but not the SPARQL queries. We compare our model with seven
methods: STAGG [3], NSM [2], GrafNet [11], PullNet [10], TextRay [6], QGG [7],
NSMh [1].

Implementation Details. For the CWQ dataset, the maximum step of the model and
t-hop are both 4, top-p is set to 0.8. For the WebQSP dataset, maximum step and t-
hop are both 2, top-p is set to 0.7. We also set a maximum sampling number of 20
for nuclear sampling. If the sampling number reaches the upper limit, sampling will
be stopped even if the probability and top-p are not reached. The threshold f is set to
0.1. In addition, We added a special node and relation named <end>. They are used to
complement paths with less than the maximum step length during the training process.

4.2 Results and Analysis

Table 1. The KBQA results of various methods. Note that NSM∗
h is the result we reproduced with

the same linked entities as ours because of the golden topic entities used in the original work.

Models WebQuestionsSP ComplexWebQuestons

Hit@1 F1 Hit@1 F1

STAGG - 66.8 - -

NSM - 69.0 - -

GrafNet 66.4 - 32.8 -

PullNet 68.1 - 45.9 -

TextRay 72.2 60.3 40.8 33.9

QGG - 74.0 44.1 40.4

NSM∗
h 72.9 69.8 44.9 41.2

Our Model 74.7 73.0 46.7 43.5

-w/o constraints 73.7 72.1 45.3 42.5

168 N. Hu et al.

Overall Result. As shown in Table 1, our approach shows strong competitiveness on
both datasets. Compared to the SOTA method NSMh in multi-hop KBQA without con-
sidering constraints, our model (-w/o constraints) performs better in all results, espe-
cially in the F1 score. Compared to the SOTA method QGG in complex KBQA with
considering constraints, our model outperforms them in all results, except for the F1
score in WebQSP. It illustrates that our model is better at handling long path questions.
However, the query graph approach, represented by QGG on the short path dataset
WebQSP, would benefit from a correct selection of linked entities. Overall, the exper-
imental results show a significant improvement in the performance of KBQA by our
approach, especially in the long path complex KBQA.

Table 2. Component ablation experiment.

WebQSP CWQ

1 Our model 72.1 42.5

2 -w/o St
φ 71.6 42.1

3 -w/o St
m 70.5 40.3

4 -w LSTM 71.5 42.0

5 -w attention 71.9 41.8

Table 3. Learning strategy ablation experi-
ment.

WebQSP CWQ

1 Our model 72.1 42.5

2 -w FSL 71.2 41.9

3 -w SSL 70.8 41.0

4 -w/o top-p -w top-k 71.1 41.6

Ablation Study. We conducted ablation studies to explore the contribution of each
component of our model and the two-stage learning strategy. The results of the compo-
nent ablation experiments for the model are shown in Table 2. We can see that both text
matching (line 2) and KB structure matching (line 3) contribute to the selection of core
paths. The greater contribution of text matching indicates that most KB relations can be
distinguished from text semantics. Moreover, the results using LSTM instead of BERT
(line 4) demonstrate the promising gains from BERT. The result (line 5) demonstrates
the effectiveness of the gate mechanism by comparing a simple attention mechanism,
especially in CWQ. The impact of the two-stage learning strategy on KBQA perfor-
mance is shown in Table 3. Removing either the first-stage learning (FSL) strategy or
the second-stage learning (SSL) strategy reduces the performance of the model, indi-
cating a significant contribution of both. It is worth noting that using only FSL is better

Table 4. Long path and spurious path comparison experiments on two datasets. LP refers to long
path and the metric is F1 (%). SP refers to spurious path and the metric is Hit@1 (%).

WebQSP CWQ

LP SP LP SP

1-hop 2-hop Full data Sample data 2-hop 3-hop 4-hop Full data Sample data

NSMh 73.7 59.5 69.8 51.0 48.4 20.6 18.9 41.2 61.5

QGG 78.7 65.0 73.1 94.5 49.2 40.9 32.7 39.8 82.0

Ours 78.5 65.0 73.0 96.0 50.1 44.0 33.5 43.5 90.5

Improving CPR for the Weakly Supervised KBQA 169

than using only SSL, especially on the CWQ. Since the CWQ has more spurious paths,
models are difficult to converge with SSL. Besides, we experimented with using top-
k sampling instead of our nucleus sampling (line 4). Using top-k sampling will cause
apparent performance degradation of our model, which illustrates that top-k sampling
has the drawback of introducing more noise paths.

Long Path and Spurious Path Experiments. Since no such evaluation was avail-
able previously on these two datasets, we conducted experiments to verify whether our
model improves the long path and spurious path problems. We count the number of
annotated core paths with different hops for a long path experimental setup. The ques-
tion of missing annotations and multiple topic entities is discarded because multiple
topic entities would make the number of hops difficult to measure. We finally obtain
the number of 1-hop 2-hop paths as 1032, 584 on WebQSP and the number of 2-hop,
3-hop and 4-hop paths as 742, 532 and 272 on CWQ. For the spurious path experiment,
we randomly selected 200 questions with F1 value of 1 from the predictions for manual
evaluation. Because the core paths of a few questions are mismarked and it is reason-
able to answer some questions with multiple paths. We replicated NSMh and QGG for
comparison. Their F1 values on the full data (Table 4) were 69.8/73.1 onWebQSP and
41.2/39.8 on CWQ, respectively. The results in Table 4 show that our model is superior
to the other two methods in most evaluation metrics. The advantage of our model is
more obvious on CWQ because CWQ is more complex. The experimental results show
that our method effectively improves the long path and spurious path problems. It is
worth noting that NSMh performs poorly on long path data in CWQ but well on the
entire test set, implying that NSMh is better at solving multiple topic entity questions.

5 Conclusion

In this paper, we focus on improving the core path reasoning problem for weakly super-
vised KBQA. We proposed a CPR model combining explicit text matching and implicit
KB structure constraints, which can better align questions and paths. In addition, we
proposed a two-stage learning strategy to solve the spurious path problem via an itera-
tive optimization process. The experimental results showed that our model can reason
the path more accurately and thus solve the spurious path and long path problem, and
has a significant improvement on the performance of KBQA.

Acknowledgement. This work is supported by Natural Science Foundation of China grant (No.
U21A20488).

References

1. He, G., Lan, Y., Jiang, J., Zhao,W.X., Wen, J.: Improving multi-hop knowledge base question
answering by learning intermediate supervision signals. In: WSDM, pp. 553–561 (2021)

2. Liang, C., Berant, J., Le, Q.V., Forbus, K.D., Lao, N.: Neural symbolic machines: learning
semantic parsers on freebase with weak supervision. In: ACL, pp. 23–33 (2017)

170 N. Hu et al.

3. Yih, W., Richardson, M., Meek, C., Chang, M., Suh, J.: The value of semantic parse labeling
for knowledge base question answering. In: ACL (2016)

4. Luo, K., Lin, F., Luo, X., Zhu, K.Q.: Knowledge base question answering via encoding of
complex query graphs. In: EMNLP, pp. 2185–2194 (2018)

5. Yu, M., Yin, W., Hasan, K., Santos, C.D., Xiang, B., Zhou, B.: Improved neural relation
detection for knowledge base question answering. In: ACL, pp. 571–581 (2017)

6. Bhutani, N., Zheng, X., Jagadish, H.: Learning to answer complex questions over knowledge
bases with query composition. In: CIKM, pp. 739–748 (2019)

7. Lan, Y., Jiang, J.: Query graph generation for answering multi-hop complex questions from
knowledge bases. In: ACL, pp. 969–974 (2020)

8. Holtzman, A., Buys, J., Forbes, M., Choi, Y.: The curious case of neural text degeneration.
In: ICLR (2020)

9. Shen, T., Ott, M., Auli, M., Ranzato, M.: Mixture models for diverse machine translation:
tricks of the trade. In: ICML, pp. 5719–5728 (2019)

10. Zhang, L., Winn, J., Tomioka, R.: Gaussian attention model and its application to knowledge
base embedding and question answering. ArXiv: 1611.02266 (2016)

11. Zhang, Y., Dai, H., Kozareva, Z., Smola, A., Song, L.: Variational reasoning for question
answering with knowledge graph. In: AAAI, pp. 6069–6076 (2018)

12. Talmor, A., Berant, J.: The web as a knowledge-base for answering complex questions. In:
NAACL-HLT, pp. 641–651 (2018)

13. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional trans-
formers for language understanding. In: NAACL, pp. 4171–4186 (2019)

14. Bordes, A., Usunier, N., Garcı́a-Durán, A., Weston, J., Yakhnenko, O.: Translating embed-
dings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

http://arxiv.org/abs/1611.02266

Counterfactual-Guided and
Curiosity-Driven Multi-hop Reasoning

over Knowledge Graph

Dan Shi1,2 , Anchen Li1,2 , and Bo Yang1,2(B)

1 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry
of Education, Jilin University, Changchun, China

{shidan19,liac20}@mails.jlu.edu.cn, ybo@jlu.edu.cn
2 College of Computer Science and Technology, Jilin University, Changchun, China

Abstract. Recently, multi-hop reasoning over incomplete Knowledge
Graphs (KGs) to predict missing facts has attracted widespread attention
due to its desirable effectiveness and interpretability. It typically adopts
the Reinforcement Learning (RL) framework and traverses over the KG
to reach the target answer and find evidential paths. However, exist-
ing methods often give all reached paths equal hit rewards. Intuitively,
not all paths have the same contribution to the proof of the reasoning
process. Moreover, the severely sparse rewards obtained after a multi-
step traversal are usually insufficient to encourage a sophisticated RL-
based model to work well. In order to tackle the above two problems, we
propose a novel Counterfactual-guided and Curiosity-driven Knowledge
Graph multi-hop Reasoning model (CoCuKGR). CoCuKGR constructs
counterfactual relation reasoning tasks to estimate the semantic contri-
bution to the query relation of each path and give each arrival path a
different soft reward that can distinguish its validity. In addition, our
method leverages the curiosity mechanism to generate curiosity-driven
intrinsic rewards, which can not only alleviate the reward sparsity issue
but also drive the agent to explore the environment more thoroughly to
find more abundant paths. Experimental results show that our proposed
model outperforms existing multi-hop reasoning methods significantly.

Keywords: Knowledge graph multi-hop reasoning · Counterfactuals ·
Curiosity mechanism

1 Introduction

Knowledge graphs (KGs), e.g., Yago, NELL and Freebase, represent numerous
world knowledge structurally and have been widely adopted in many downstream

Supported by the National Key R&D Program of China under Grant Nos.
2021ZD0112501 and 2021ZD0112502; the National Natural Science Foundation of
China under Grant Nos. 62172185 and 61876069; Jilin Province Key Scientific and
Technological Research and Development Project under Grant Nos. 20180201067GX
and 20180201044GX; and Jilin Province Natural Science Foundation under Grant No.
20200201036JC.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 171–179, 2022.
https://doi.org/10.1007/978-3-031-00123-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_13&domain=pdf
http://orcid.org/0000-0003-2625-9478
http://orcid.org/0000-0001-9828-6964
http://orcid.org/0000-0003-1927-8419
https://doi.org/10.1007/978-3-031-00123-9_13

172 D. Shi et al.

tasks, such as information retrieval, question answering (QA) and recommender
systems. However, many knowledge graphs still suffer from serious missing, which
becomes a bottleneck hindering their application capabilities.

Recently, extensive knowledge graph embedding (KGE) methods have
become prevalent for reasoning on KGs. They map the entities and relations
to low-dimensional dense vector space and perform link prediction to complete
KGs. These methods can achieve good performance but fail to make inter-
pretations. To solve this problem, some approaches train an agent to search
over the KG to perform multi-hop reasoning using the REINFORCE algorithm.
They provide not only predicted results but also paths to explain the reasoning
process.

Despite the effectiveness of existing multi-hop reasoning models, there are
still two problems in terms of the reward: first, most methods give hard hit
reward signals to the agent, i.e., 1 for all the paths that reach the target entity
and 0 for that do not reach, such as MINERVA [2], RLH [9], and so on. However,
intuitively, not all paths have the same validity. For instance, suppose that for the
query (Biden, IsPresidentOf, ?), the following two reasoning paths are found:

Biden
WorkAt→ TheWhiteHouse

LocatedIn→ Washington
IsCityOf→ USA (path 1),

Biden
BornIn→ Pennsylvania

IsStateOf→ USA (path 2).

Both paths reach the correct tail entity USA, but not all people born in Pennsyl-
vania are the president of USA. Clearly, the semantic of path 1 better justifies
the reasoning result (Biden, IsPresidentOf, USA) of the query. Second, the
agent gains reward only when it successfully reaches the target entity after a
multi-step exploration over the incomplete KGs. The rewards are so sparse for
the agent that it lacks an effective mechanism to strengthen its policy.

Several approaches have been proposed to give soft rewards. For example,
DeepPath [10] employs three criteria to give rewards, including accuracy, effi-
ciency and diversity. However, the criteria require special manual design and
there is no guarantee that the paths that meet the criteria are of truly high
quality. DIVINE [3] gives the same real-valued reward to all the arrival paths
of each query. Therefore, giving soft rewards to arrival paths for distinguishing
their validity is still a momentous but unsolved problem.

In this paper, we propose a model named CoCuKGR to enrich the reward
reshaping project and further improve the reasoning performance. On the one
hand, we first train a relation reasoning component that predicts the relation
links based on the set of paths between entity pairs. Then, we adopt the well-
trained relation reasoner for performing counterfactual reasoning to measure
the semantics of different paths found by the agent and give corresponding soft
rewards. On the other hand, we design intrinsic reward signals based on the
prediction errors of the agent to compensate for the defect of reward sparsity.

CoCuKGR 173

2 Problem Formulation

A Knowledge Graph (KG) can be represented as G = {(es, r, eo)} ⊆ E × R × E ,
where E and R denote entity set and relation set respectively. Given a KG
and a query (es, r, ?) , Multi-Hop Reasoning over Knowledge Graph aims to
predict the tail entity eo for the query after traversing over the KG. At the same
time, an evidence path es

r1→e2
r2→ · · · ek

rk→ eo is provided to prove the reasoning
result (es, r, eo). This corresponds to the Horn rule r(es, eo) ← r1(es, e2) ∧ · · · ∧
rk(ek, eo). Note that ri(ei, ej) is equivalent to the fact triple (ei, ri, ej).

3 Methodology

The framework of CoCuKGR is illustrated in Fig. 1. We formulate multi-hop
reasoning process over KGs as a Markov Decision Process (MDP) following [2]:
for a given query (es, r, ?), the agent starts from the source entity es and samples
an outgoing edge as action according to the policy πθ at each step. After a
traversal with a pre-defined number of steps T , it finally stops at eT and receives
a hit reward if it reaches the ground-truth tail entity eo:

RH(sT) = I {eT = eo} . (1)

We design more fine-grained rewards to guide agents to perform multi-hop
reasoning by two modeling advances. First, we introduce the Intrinsic Curiosity
Model to generate intrinsic reward rcu

t at each step t. Second, we pack all the
generated paths after T steps and construct a counterfactual reasoning task
with a trained relation reasoner by removing each path from the path package
to obtain the path semantic reward RCO.

3.1 Path Semantic-Aware Relation Reasoner

As mentioned above, the evidence path es
r1→e2

r2→ · · · ek
rk→ eo proving the rea-

soning result (es, r, eo) corresponds to the Horn rule r(es, eo) ← r1(es, e2)∧ · · ·∧
rk(ek, eo). And if we only consider the sequential relations that have semantic
information, we conclude that the path r1→ r2→ · · · rk→ proving the query relation
r corresponds to the Horn rule r ← r1 ∧ · · · ∧ rk. The causal correlation between
the rule body r1 ∧· · ·∧ rk and the rule head r means there is also a causal corre-
lation between the arrival paths and the query relation. We construct a relation
reasoner to model such causal correlation.

For each entity pair, we perform N traversals to obtain the paths between
them. After that, we pack the paths and encode them with a semantic feature
extractor, following [3]. The path representation p is obtained by summing all
T relations that constitute it:

p =
∑

rk∈p

rk, (2)

174 D. Shi et al.

where each relation rk is mapped to an embedding vector rk ∈ R
d pre-trained by

TransE [1]. We encode the path package μ by concatenating all the embeddings
of the paths in it. Next, the path package encoding μ ∈ R

nd is fed into a convo-
lutional layer and two fully-connected layers to extract its semantic features:

c = W2ReLU (W1ReLU (Conv (μ,ω))) . (3)

We train the relation reasoner with a positive instance set Γ+ and a negative
instance set Γ−. If an entity pair and the relation r constitute an observed fact
in KG, we regard the entity pair as a positive entity pair of r. A γ = (μ, r) ∈ Γ+

indicates a positive instance composed of a path package μ between a positive
entity pair and the relation r. On the contrary, for a negative instance, the path
package μ is between a negative entity pair. For each instance, we use the dot
product of the path package representation c and the relation representation r
to extract the correlation, and then adopt sigmoid to obtain the score tμ:

tμ = sigmoid (c · r) . (4)

The objective function for a single instance is given by the cross-entropy loss:

Lγ = yγΔlog tμ + (1 − yγ) Δ log (1 − tμ) + ρ| |Θ| |2, (5)

where ρ controls the regularization strength to prevent overfitting, yγ is 1 if
γ ∈ Γ+, otherwise is 0.

During training, we aim to minimize the total loss given by:

L =
1

|Γ+| + |Γ−|
∑

γ∈(Γ+∪Γ−)

Lγ . (6)

3.2 Construct Counterfactuals to Give Soft Rewards

Counterfactuals describe potential consequents caused by the actions or circum-
stances that counter the facts and capture their causal effects. To quantify the
semantic contribution of each path, we propose a counterfactual question: “What
is the impact on the relation reasoning task if a particular path is not available?”

Specifically, for a certain query (es, r, ?), we feed all the paths in the path set
μ searched in KG by the policy-based agent to the relation reasoner to get its
score tμ. Then each path p is removed from the path set in turn and the changed
path set is fed into the relation reasoner to get another score tμ−p, and the soft
reward of the path p is calculated based on the score difference as follows:

RCO = tμ − tμ−p. (7)

If the path p is important to the query relation, the removing of p will lead
to a degraded reasoning performance. So the result of Eq. (7) will be positive.
Conversely, if p is not important or even noisy, the result will be negative.

CoCuKGR 175

3.3 Intrinsic Curiosity Reward

Inspired by [6], we introduce intrinsic curiosity reward signals that drive the
agent to explore its environment (i.e., KGs) more thoroughly to gain more knowl-
edge. Unlike previous work that applied curiosity on a game task where the state
of the MDP is image, the state in our task is the position where the agent stays
on the KG at a certain step. The state prediction occurs on the vector space
rather than on the pixel space. To suit our task, we remove the inverse dynamics
model in the Intrinsic Curiosity Module (ICM). We train a feedforward neural
network that predicts the next state ŝt+1 based on the current state st and the
action at, which is optimized by minimizing the loss function LCU :

LCU =
1
2

‖ŝt+1 − st+1‖22 . (8)

Fig. 1. The overall architecture of CoCuKGR.

The intrinsic curiosity reward signal of a single step rcu
t is computed as:

rcu
t =

η

2
‖ŝt+1 − st+1‖22 , (9)

where η > 0 is a scaling factor.

3.4 Optimization and Training

The overall reward obtained for each traversal is a composition of Eqs. (1), (7)
and (9) that can be written as:

R = RH + αRCO +
T∑

t=1

rcu
t , (10)

where α > 0 is a scalar controlling the proportion of the counterfactual reward.

176 D. Shi et al.

We employ REINFORCE algorithm to train the policy network of the agent
by maximizing the expected cumulative reward. The overall optimization prob-
lem is composed of the policy gradient loss and the ICM loss:

arg min
θ,θCU

[
− E(es,r,eo)∈KGEp1,p2,··· ,pN ∼πθ

[N∑

n=1

Rn|(es, r)
]

+ βLCU

]
, (11)

where β > 0 is a scalar that weighs the importance of training the agent against
learning the Intrinsic Curiosity Module.

4 Experiments

Datasets and Baselines. We evaluate the effectiveness of our proposed model
on three widely used datasets: (1) WN18RR, (2) FB15K-237, and (3) NELL-995.
Two categories of approaches are used for comparison in our experiments: (1)
Embedding-based models, including TransE [1], DistMult [11] and ComplEX [8].
(2) Multi-hop reasoning models, including MINERVA [2], MultiHopKG [4], M-
walk [7], AnyBURL [5] and DIVINE [3].

Hyper-parameter Settings. In our implementation, we set the relation and
entity embedding dimensions to 100. The path number N is set to 20 for each
path package and the maximum path length T is set to 3. For the relation
reasoner, the path embedding dimension d is also set to 100. In addition, the
intrinsic curiosity module is constructed from a sequence of a fully connected
hidden layer with dimension 512 and an output layer with dimension 3 ∗ d, i.e.,
300. For the reward scale factor α and η, we choose them from {1, 5, 10, 15, 20}
and {1, 2, 3, 5} respectively. For the loss scale factor β, we choose them from
{0.1, 0.2, 0.5, 1}. We choose the best hyperparameters by grid search based on
Hits@10 on validation sets. We use Adam optimization to train the agent and
the other two modules.

Table 1. The overall performance comparison results of entity prediction.

Models/Datasets WN18RR FB15K-237 NELL-995

@1 @10 MRR @1 @10 MRR @1 @10 MRR

TransE 28.9 56.0 35.9 24.8 45.0 36.1 51.4 75.1 45.6

DistMult 35.7 38.4 36.7 32.4 60.0 41.7 55.2 78.3 64.1

ComplEx 41.5 46.9 43.4 33.7 62.4 43.2 63.9 84.8 72.1

MINERVA 41.3 51.3 44.8 21.7 45.6 29.3 66.3 83.1 72.5

MultiHop (ConvE) 41.4 51.7 44.8 32.7 56.4 40.7 65.6 84.4 72.7

MultiHop (ComplEx) 42.5 52.6 46.1 32.9 54.4 39.3 64.4 81.6 71.2

M-walk 41.4 – 43.7 16.5 – 23.2 68.4 – 75.4

AnyBURL 43.0 52.7 46.9 23.3 48.6 �31.0 44.0 57.0 –

DIVINE – – – 22.3 – 29.6 66.8 – 73.1

CoCuKGR 44.2 53.8 46.9 34.3 58.0 43.4 66.7 85.4 74.0

CoCuKGR 177

Table 2. Ablation studies
results on WN18RR.

Models Hit@1 MRR

CoCuKGR 44.2 46.9

-CU 43.4 46.0

-CO 42.0 45.4

Table 3. Performance analysis of different hyperpa-
rameter α (MAP scores).

Tasks/α 1 5 10 15 20

AthletePlaysForTeam 82.3 83.4 83.8 83.5 83.2

WorksFor 82.3 82.8 83.5 83.7 82.9

Entity Prediction Results. Table 1 shows the evaluation results on the tail
entity prediction tasks. It can be seen that our framework outperforms other
multi-hop reasoning baselines on WN18RR and FB15K-237 and meanwhile
achieves competitive results on NELL-995. In particular, there is a significant
performance improvement of our model on FB15K-237. Upon further analysis,
there can be two main possible reasons. First, FB15K-237 is closer to real-world
scenarios, thus there are more cases where the semantics of the paths and the
reasoning relations do not match very well. We identify this difference and use
it to further guide the agent, which can strengthen the pathfinding decision of
the agent. Moreover, in FB15K-237, the action space is much larger. It’s difficult
for the baselines to search the huge action space thoroughly. Nevertheless, our
curiosity module can tackle this problem to some extent.

Ablation Studies. To investigate the contribution of each proposed component
to the model performance, we separately remove the intrinsic curiosity reward
module (-CU) or the counterfactual relation reasoning reward module (-CO). As
shown in Table 2, removing each component results in a performance drop.

Analysis of Different α. We also adjust α that weights the scale of the coun-
terfactual soft reward on two relation prediction tasks and report in Table 3.

Case Study. In addition, to analyze the utility of the counterfactual relation
reasoning, we present the paths between the entity pairs of a query relation
found by CoCuKGR and their counterfactual rewards. From Table 4, we observe
that the rewards are indeed higher for the paths that are more semantically
relevant to the query relation in accordance with human perceptions. Using the
soft rewards as confidence, we can further interpret the reasoning process in a
concrete way.

178 D. Shi et al.

Table 4. Two query cases where the counterfactual soft rewards of paths are given.

Path ID Query relation 1: AthletePlaysForTeam Reword

1 AthleteLeadSportsTeam →
TeamPlaysAgainstTeam−1

0.0352

→ TeamPlaysAgainstTeam

2 AthleteHomeStadium → StadiumLocatedInCity 0.0084

→ TeamPlaysInCity−1

Path ID Query relation 1: WorksFor Reword

1 PersonLeadsOrganization → LOOP → LOOP 0.0440

2 PersonBelongsToOrganization →
AgentCollaboratesWithAgent

0.0214

→ AgentBelongsToOrganization

3 AgentBelongsToOrganization →
AgentActsInLocation

−0.0267

→ AgentCompetesWithAgent

5 Conclusion

In this paper, we proposed a novel model called CoCuKGR to solve the prob-
lems of not distinguishing the contributions of the reasoning paths and the
sparse signal of hit reward during multi-hop knowledge graph reasoning. We
construct a counterfactual relation reasoning task to give different soft rewards
to all the paths. Moreover, we introduce the curiosity mechanism to generate
intrinsic rewards to alleviate the reward sparsity problem. Experimental results
demonstrate that our approach improved the performance of the state-of-the-art
multi-hop reasoning models on three benchmark KGs. In future work, we plan
to employ curiosity rewards to prune the action search space of the agent.

References

1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, vol. 26 (2013)

2. Das, R., et al.: Go for a walk and arrive at the answer: Reasoning over paths
in knowledge bases using reinforcement learning. arXiv preprint arXiv:1711.05851
(2017)

3. Li, R., Cheng, X.: Divine: a generative adversarial imitation learning framework for
knowledge graph reasoning. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 2642–2651 (2019)

4. Lin, X.V., Socher, R., Xiong, C.: Multi-hop knowledge graph reasoning with reward
shaping. arXiv preprint arXiv:1808.10568 (2018)

5. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up
rule learning for knowledge graph completion. In: IJCAI, pp. 3137–3143 (2019)

http://arxiv.org/abs/1711.05851
http://arxiv.org/abs/1808.10568

CoCuKGR 179

6. Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven exploration
by self-supervised prediction. In: International Conference on Machine Learning.
PMLR, pp. 2778–2787 (2017)

7. Shen, Y., Chen, J., Huang, P.-S., Guo, Y., Gao, J.: M-walk: learning to walk over
graphs using monte carlo tree search. arXiv preprint arXiv:1802.04394 (2018)

8. Trouillon, T.P., Bouchard, G.M.: Complex embeddings for simple link prediction,
November 23 2017. US Patent App. 15/156,849

9. Wan, G., Pan, S., Gong, C., Zhou, C., Haffari, G.: Reasoning like human: hierarchi-
cal reinforcement learning for knowledge graph reasoning. In: IJCAI, pp. 1926–1932
(2020)

10. Xiong, W., Hoang, T., Wang, W.Y.: Deeppath: a reinforcement learning method
for knowledge graph reasoning. arXiv preprint arXiv:1707.06690 (2017)

11. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

http://arxiv.org/abs/1802.04394
http://arxiv.org/abs/1707.06690
http://arxiv.org/abs/1412.6575

Visualizable or Non-visualizable?
Exploring the Visualizability of Concepts

in Multi-modal Knowledge Graph

Xueyao Jiang1, Ailisi Li1, Jiaqing Liang1, Bang Liu2, Rui Xie3, Wei Wu3,
Zhixu Li1(B), and Yanghua Xiao1,4(B)

1 Shanghai Key Laboratory of Data Science, School of Computer Science,
Fudan University, Shanghai, China

{xueyaojiang19,alsli19,zhixuli,shawyh}@fudan.edu.cn
2 Mila and DIRO, Université de Montréal, Montréal, Québec, Canada

bang.liu@umontreal.ca
3 Meituan, Shanghai, China

rui.xie@meituan.com
4 Fudan-Aishu Cognitive Intelligence Joint Research Center, Shanghai, China

Abstract. An important task in image-based Multi-modal Knowledge
Graph construction is grounding concepts to their corresponding images.
However, existing research omits the intrinsic properties of different con-
cepts. Specifically, there are some concepts that can not be characterized
visually, such as mind, texture, session cookie and so on. In this work,
we define concepts like these as non-visualizable concepts (NVC) and
the others like dog that have clear and specific visual representations
as visualizable concepts (VC). And, we propose a new task of distin-
guishing VCs from NVCs, which has rarely been tackled by the existing
efforts. To address this problem, we propose a multi-modal classification
model combining concept-related features from both texts and images.
Due to the lack of enough training samples especially for NVC, we select
concepts in ImageNet as the instances for VC, and also propose a webly-
supervised method to get a small set of instances for NVC. Based on the
small training set, we modify the basic two-step positive-unlabeled learn-
ing strategy to train the model. Extensive evaluations demonstrate that
our model significantly outperforms a variety of baseline approaches.

Keywords: Visualizable concept · Multi-modal knowledge graph

1 Introduction

Nowadays, multi-modal data (mainly images) is introduced into Knowledge
Graph to enrich the representation of concepts, and increasing efforts are focused
on grounding entities or concepts with their corresponding images to construct
image-based Multi-modal Knowledge Graph (MMKG) [6–10]. However, not all
concepts in Knowledge Graphs can be characterized accurately using images,
such as mind. Although we may associate it with images of brain, as shown in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 180–187, 2022.
https://doi.org/10.1007/978-3-031-00123-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_14&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_14

Visualizability Concepts Recognition 181

dog

Non-visualizable ConceptVisualizable Concept

chair

dragon

mind

texture

session
cookie

Fig. 1. Examples of visualizable concepts and non-visualizable concepts.

Fig. 1, what these images depicted are not exactly mind itself but something
relevant with it.

Thus, we propose to classify concepts by whether they can be characterized
visually. We name concepts that do not have a clear visual representation and
can not be characterized visually as Non-visualizable Concepts (NVCs).
Oppositely, concepts that have clear and specific visual representations are called
as Visualizable Concepts (VCs), such as dog.

Most previous MMKG construction efforts focused on grounding entities
or concepts with their corresponding images without carefully differentiating
between VCs and NVCs. For example, TinyImage [13] (which is a MMKG built
on WordNet [4]) simply eliminated all abstract concepts in the hierarchical tax-
onomy of WordNet while it is rough and inaccurate according to our experiments
in Sect. 3. [14] analyzed the problem of non-visualizable concepts in the person
subtree of ImageNet, but they rely on crowdsourcing to annotate the image-
ability of synsets which requires a lot of manpower and material resources and
is difficult to apply to large-scale MMKG. Several previous research has also
addressed this problem implicitly in a learning-based way. [3] proposed to filter
out non-visualizable concepts based on the visually salient score of concepts.
However, they merely use webly searched images to evaluate the visually salient
score, which easily suffers from the noise or bias of web data.

In this paper, we explore the visualizability of concepts by classifying VCs
versus NVCs. Particularly, we design a visualizable concept classifier with multi-
modal information as features, namely text and images. The classifier takes the
concept description and online images of the concept (collect from the image
search engine) as input and then output whether the concept is a VC or NVC.
Besides, our classifier still faces the following challenges:

1) Lack of labeled data. We propose to automatically construct a partially
annotated dataset by contrasting a symbolic knowledge base (i.e. WordNet)
and an annotated image dataset organized according to this knowledge base
(i.e. ImageNet [1]).

2) Learning under PU setting. The partially annotated dataset contains a
small set of positive data and a large set of unlabeled data. Due to the severe
imbalance between the number of positive data and the number of unlabeled
data, we adopt the two-step PU Learning technique to tackle this problem.

182 X. Jiang et al.

Fig. 2. Overview architecture of visualizable concept classifier.

2 Methodology

In this paper, we model this problem as a binary classification problem and pro-
pose a multi-modal visualizable concept classification model to solve it, and the
Two-step PU Learning strategy is leveraged to tackle the PU setting challenge
in the dataset.

2.1 Multi-modal Visualizable Concept Classifier

As shown in Fig. 2, we leverage two separate streams to get the text representa-
tion and visual representation, respectively. The representations of two modal-
ities are further concatenated together to get the fusion of two features, which
are fed into a binary classification network to classify VC and NVC.

– Text embedding. We use BERT to get the text embedding. The concept
definition di is first processed into the input format of BERT as: “[CLS] di
[SEP]” and then fed into BERT. The embedding of mark “[CLS]” is then
further encoded into a 256-dim vector ti ∈ R

256.
– Image embedding. Several pretrained image classification models are lever-

aged to get the image representations. We input M images into the pre-
trained image classification model respectively, and get M feature vectors
vji ∈ R

dCNN (1 ≤ j ≤ M) which is the output of the final pooling layer. dCNN

denotes the dimension of CNN model’s average pooling layer and differs by
the CNN models. These M vectors are concatenated together and fed into a
fully-connected layer to get the final visual feature vector vi ∈ R

256.
– Classifier. The embeddings of text and image are then concatenated into a

512-dim vector and then fed into a binary classifier (contains a 64-dim hidden
layer and an output layer) to generate the probability that the concept is a
VC or not.

2.2 Training Under PU Setting

Due to the small amount of positive data and lack of negative data, we leverage
Two-step PU Learning strategy to train the Visualizable Concept Classifier. As

Visualizability Concepts Recognition 183

Fig. 3. Overview of the framework.

shown in Fig. 3, to complement the training dataset for binary classification, we
design a Webly-supervised Initialization step that screens out a reliable negative
set with the same size as that of the positive set from unlabeled data and then
train the Multi-modal classifier iteratively with the self-training strategy.

2.2.1 Webly-Supervised Initialization
We propose a webly-supervised automatic method to construct a high quality
negative set without manual labeling. It includes two steps: 1) Preliminary Clas-
sifier; 2) False Negative Filter.

1) Preliminary Classifier. Some unlabeled data is randomly sampled out
as pseudo negatives. Together with the labeled positive data, they are used
to train a preliminary classifier of VC and NVC. And then the preliminary
classifier is used to predict the unlabeled data and output the confidence score
of a concept c to be NVC (denoted by p(c)).
2) False Negative Filter. This filter is designed based on the following
assumption: Concepts with diverse online images are more likely to be non-
visualizable. We measure the image diversity of concept c by calculating
the standard deviation of corresponding images’ feature vectors (denoted by
D(c)), then we recalculate the confidence score of a concept c to be NVC as
Conf(c) = softmax(1 − p(c)) + softmax(D(c)).

2.2.2 Self-training
After getting the reliable negative data, we iteratively train our multi-modal
classifier. In each iteration, we train the classifier and then use it to predict

184 X. Jiang et al.

unlabeled data. Predicted data with high confidence score will be added to the
training set to serve next iteration’s training.

However, noise is unavoidable by adopting automated approach to sample
negative data in the first step of PU Learning. Self training under such setting
will face the challenge of label drift. We design two small tricks to avoid it:

– randomly sample. Taking sampling negative data as example, instead of
using top k candidates as the pseudo labeled data, we randomly sample k
candidates according to their confidence scores. For example, the concept c’s
confident score is 0.8, then its probability of being selected is 0.8.

– extra visual information. We reuse the priori knowledge that non-
visualizable concepts’ online images have higher diversity which can be mea-
sured by their standard deviation. The diversity score is added to predicted
confidence score.

3 Experiment

3.1 Datasets and Settings

Dataset. We conduct our experiments on WordNet noun set. And we use
ILSVRC dataset1 to label positive concepts and remain the reset in WordNet
unlabeled. For each concept, we collect two modalities of data. One is definition
text in WordNet, the other is online images which are retrieved from Google
search engine. The search query is in the form of “c d”. c is the name of a
concept and d is the definition from WordNet to disambiguate concepts with
the same name. We manually labeled 600 concepts randomly extracted from
WordNet as test set including 322 positive samples and 278 negative samples.

Experimental Settings. We apply BERT [2] to gain the text features. We
conduct experiments to extract image features with three different CNN models
including InceptionV3 [12], Resnet50 [5] and VGG16 [11]. During training, batch
size is set to 64 and the learning rate adjustment schedule is set as [2] in each
iteration while the initial learning rate of each iteration is set to 1e−3, 1e−4,
1e−6, 1e−8.

3.2 Main Results

We are the first to explicitly propose to distinguish visualizable concepts and non-
visualizable concepts automatically, so there are few work that we can compare
to. We compare our method with 3 baselines:

Full Set. As most previous work of the MMKG construction ignore to distin-
guish VC and NVC, we design a baseline approach that regards all concepts as
VC.

1 http://image-net.org/challenges/LSVRC/2012/browse-synsets.

http://image-net.org/challenges/LSVRC/2012/browse-synsets

Visualizability Concepts Recognition 185

Table 1. Comparison result

Model acc recV C precV C recNV C precNV C

Full set 0.537 1.0 0.537 0 –

TinyImage 0.605 0.491 0.684 0.737 0.556

LEVAN 0.542 0.991 0.538 0.007 0.250

Ours 0.828 0.84 0.830 0.810 0.820

TinyImage. [13] TinyImage is a MMKG that is constructed based on WordNet
hierachy. It simply regards all abstract concepts as NVCs and the others as VCs.

LEVAN. [3] LEVAN proposed to filter out NVC based on the visual salience
score of concepts. Specifically, they train a binary image classifier for each con-
cept on a dataset in which online images of the concept are labeled positive and
background images are labeled negative. They regard a concept as visual salient
if the well trained classifier can reach a threshold of accuracy on the validation
set that has the same setting with the training set.

We compare our method with 3 baselines mentioned above. As shown in
Table 1, our framework outperforms the other 3 methods in acc, precV C , recNV C

and precNV C . The reason of Full set method has the highest recall of VC is that
it regards all concepts as VC. Besides, it predicts no NVC, so the precision of
NVC is not calculable. We finally use the optimal model to predict the whole
unlabeled set and get 35,481 NVCs and 37,702 VCs.

3.3 Ablation Study

In this section, we provide ablation studies on Webly-supervised Initialization,
multi-modal classification model and PU Learning.

Webly-Supervised Initialization. We conduct ablation experiments for both
two submodules in the Webly-supervised Initialization step (step 1) by remov-
ing one of these two submodules. Besides, as for Preliminary Classifier, we test
two classification models: text based model (TM) and multi-modal model
(MM). The MM is same as depicted in Sect. 2.1. TM refers to the model that
removes the image embedding structure (depicted in the dotted box in Fig. 2)
from MM. In conclusion, we design five experiments: (1) only FF; (2) MM w/o
FF; (3) MM with FF; (4) TM w/o FF; (5) TM with FF.

To measure the quality of the datasets that outputed by above 5 combina-
tions, we train the classifier on them and evaluate the accuracy on validation
set. The experiment results are given in Table 2 (step 1). The combination of
text based model (TM) and Flase Negative Filter results in a best negative set
on which the multi-modal classifier is trained to achieve a highest accuracy of
0.78. As shown, False Negative Filter brings around 7% absolute improvement.

Multi-modal Classification. For Self-training step (step 2), we also conduct
experiments on TM and MM. As is shown in Table 2 (step 2), the training of

186 X. Jiang et al.

Table 2. Ablation experiments of Webly-supervised initialization

Test step Model False negative filter Val accuracy

Step 1 –
√

0.65

MM × 0.67

MM
√

0.65

TM × 0.71

TM
√

0.78

Step 2 + TM
√

0.77

+ MM(InceptionV3)
√

0.80

+ MM(ResNet50)
√

0.80

+ MM(Vgg16)
√

0.83

classifier benefits a lot from multi-modal information. The removal of multi-
modal information in self-training leads to a drop of around 12% in accuracy
after 4 iterations. As for influence of different CNN models, the accuracy of
these three models are respectively 0.797(Inception V3), 0.804(ResNet50) and
0.828(VGG16), in which VGG16-based model achieves the best result.

Two-Step PU Learning. We compare the performance of our framework with
classifiers directly trained on dataset constituting of randomly sampled negative
data and labeled positive data. We trained the classifier 5 times and the average
accuracy of these classifiers is 0.683, while our framework can reach an accuracy
of 0.828, which is approximately 7% higher.

4 Related Work

The visualization of concepts is not a new topic in computer vision. LEVAN [3]
proposed to recognize “visual salient” words during constructing image dataset.
In this work, the authors believed that images of a visual salient ngrams can be
easily distinguished from background images and have small inter-class variances.
A classifier based on SVM is trained to distinguish online images of a ngram and
background images. The classifier’s accuracy of VC should exceed a threshold.
TinyImage [13] is a MMKG constructed based on WordNet and contains 75k
noun concepts with 1,052 images per concept in average. The authors regarded
all the abstract concepts as not proper to be matched with images and removed
them by dropping all the hyponyms of the word “abstraction”, while according
to our experiments, such strategy is rough and inaccurate.

5 Conclusion

In this work, we propose a new task: distinguishing visualizable concepts from
non-visualizable concepts and model this problem as a binary classification prob-
lem. We automatically generate a partially labeled dataset and propose a novel

Visualizability Concepts Recognition 187

two-step PU learning framework to train the classifier on such dataset. Besides,
multi-modal information of concepts is used to enhance the performance of the
visualizable concept classifier. Extensive experimental results show that our solu-
tion achieves the state-of-the-art results compared to several baselines.

Acknowledgement. This work is supported by National Key Research and Devel-
opment Project (No. 2020AAA0109302), Shanghai Science and Technology Innovation
Action Plan (No. 19511120400), Shanghai Municipal Science and Technology Major
Project (No. 2021SHZDZX0103) and National Natural Science Foundation of China
(Grant No. 62072323).

References

1. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

3. Divvala, S.K., Farhadi, A., Guestrin, C.: Learning everything about anything:
Webly-supervised visual concept learning. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3270–3277 (2014)

4. Fellbaum, C.: Wordnet. The encyclopedia of applied linguistics (2012)
5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

6. Krishna, R., et al.: Visual genome: connecting language and vision using crowd-
sourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

7. Li, M., et al.: Gaia: a fine-grained multimedia knowledge extraction system. In:
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pp. 77–86 (2020)

8. Mitchell, T., Fredkin, E.: Never ending language learning. In: 2014 IEEE Interna-
tional Conference on Big Data (Big Data), p. 1 (2014)

9. Perona, P.: Vision of a visipedia. Proc. IEEE 98, 1526–1534 (2010)
10. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database

and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173
(2008)

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

12. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

13. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set
for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 30(11), 1958–1970 (2008)

14. Yang, K., Qinami, K., Fei-Fei, L., Deng, J., Russakovsky, O.: Towards fairer
datasets: filtering and balancing the distribution of the people subtree in the ima-
genet hierarchy. In: Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency, pp. 547–558 (2020)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1409.1556

Spatio-Temporal Data

JS-STDGN: A Spatial-Temporal Dynamic
Graph Network Using JS-Graph for

Traffic Prediction

Pengfei Li, Junhua Fang(B), Pingfu Chao, Pengpeng Zhao, An Liu,
and Lei Zhao

Department of Computer Science and Technology,
Soochow University, Suzhou, China
20205227067@stu.suda.edu.cn,

{jhfang,pfchao,ppzhao,anliu,zhaol}@suda.edu.cn

Abstract. Traffic prediction is a fundamental operation in real-time
traffic analysis. A precise prediction of traffic condition can benefit both
road users and traffic management agencies. However, since road traf-
fic is decided by multiple static and dynamic factors, traffic prediction
is still a challenging task. As the core indicator of traffic condition,
many works focus on traffic speed prediction using time-series forecast-
ing approaches. Although current methods take into account the static
road topology while modelling, they fail to consider (1) the seman-
tic closeness between road components and (2) congestion caused by
upstream/downstream traffic propagation. In this paper, we introduce a
Spatial-Temporal Dynamic Graph Network using JS-Graph, which con-
siders both static road features and dynamic traffic flows when fore-
casting. Specifically, we first propose a data-driven ‘JS-Graph’ method
that describes the semantic similarity between road nodes. It models the
complex spatial correlations that cannot be captured by the traditional
spatial adjacency graph. Secondly, we design a dynamic graph attention
network that considers the traffic dynamics that happened in previous
time slices when predicting the current one to capture the congestion
propagation phenomena. Extensive experiments conducted on real-world
datasets show that our proposed method is significantly better than base-
lines.

Keywords: Graph neural network · Spatial-temporal data analysis ·
Time series forecast

1 Introduction

In recent years, many cities have been building Intelligent Traffic Systems (ITS)
to meet the increasing demand for the fast-paced lifestyle. As the foundation
of ITS, an accurate monitoring/prediction of traffic condition is necessary and
beneficial to most transportation applications. However, traffic prediction is still

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 191–206, 2022.
https://doi.org/10.1007/978-3-031-00123-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_15&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_15

192 P. Li et al.

a challenging task due to its complex spatial-temporal correlation. On the one
hand, the transportation network is complicated. The relationship between nodes
in the traffic network includes not only simple geographical factors, but also
social factors such as road grade, regional function and user driving behaviour.
On the other hand, the traffic condition is also susceptible to various real-time
events. For example, sudden weather changes or accidents can cause local traffic
jam immediately, and the congestion may quickly propagate to nearby areas
along the network. Therefore, modelling these spatial-temporal correlations is
the key to the traffic prediction.

Recently, the success of Graph Convolutional Networks (GCN) [8] has
inspired researchers to model the spatial-temporal correlation in traffic network
as a graph, whose nodes represent road intersections or traffic sensors while
their spatial connectivity are denoted as edges. Besides, by combining GCN
with RNN [1,10,18], CNN [5,14,16], or Attention [15,19], existing works greatly
improve the accuracy of traffic speed prediction over traditional statistical meth-
ods, thank to the graph model.

Residential BusinessSchool

B

C

A

Fig. 1. Correlations between areas
with similar functions in the traffic net-
work

05:00 14:00 18:3009:30 14:00 18:30 23:00

Fig. 2. Nodes that are not adjacent
have similar traffic pattern.

However, current use of the spatial adjacency graph in GCN still has some
shortcomings. The first disadvantage is that the graph only describes the topol-
ogy of a road network from a geographical point of view. In fact, each road node
is semantically abundant, and nodes with similar functions usually have identical
traffic patterns. As shown in Figs. 1 and 2, although node B is geographically
closer to node A compared with node C, since it is in a commercial area whereas
nodes A and C are both in residential districts, the speed profiles of A and C
are more similar than B, especially in the early morning and afternoon. Such
semantic adjacency is not captured by any of existing spatial adjacency graph.
Some work has improved the adjacency graph using adaptive matrices, which
are learnable, but it loses interpretability and is easy to get over-fitting when
the data is noisy.

JS-STDGN 193

The second disadvantage is that the current modelling of the dynamic char-
acteristics of traffic topology is inadequate. The predefined spatial adjacency
matrix and the adaptive adjacency matrix are static and not sufficient to reflect
the dynamic changes on road network. Most of the existing dynamic graph mod-
elling only considers the spatial correlation at the current moment. However, the
real-world traffic conditions are propagated along the network progressively. As
is shown in Fig. 3, P and Q are two sensors in a traffic network. At 9:00AM,
there is a traffic jam at node P (P1). However, Q will not get stuck until 9:10AM
when the congestion finally propagates to Q3. Previous dynamic modelling can
not deal with the direct relationship between P1 and Q3 well, and it inspires us
to consider the traffic lag when modelling dynamic spatial correlation.

P

Q

Traffic Sensor

(a)

9:00AM

P2

Q2

Q3

P3

Time

Spatial Correlations
across time

P
Q

Q1

P1

9:05AM

9:10AM Congested

Normal
Medium

Spatial Correlations
in a time

(b)

Fig. 3. Example of spatial correlations among different time. (a) Sensors in a road net-
work. (b) Different spatial correlations. Previous work capture dynamic spatial features
at every timestamp. Cross-time dynamic spatial correlation which take all nodes at all
previous timestamps into account can learn the changing inter-relationship between
different nodes more comprehensively.

To solve the aforementioned weaknesses, we propose a new model named
Spatial-Temporal Dynamic Graph Network using JS-Graph (JS-STDGN). In our
model, we first present a data-driven graph construction method which captures
the JS-divergence of node data distribution. Instead of using node semantic prop-
erties, like POI or road condition information, our new JS-graph is built based
on node traffic history, which can better identify similar nodes with respect to
their speed profiles. Secondly, we designed a dynamic graph attention network.
As is shown in Fig. 3(b), our method takes the spatial network state from his-
torical time slices into consideration to capture the cross-time dynamic spatial
correlation. In addition, we follow the prediction architecture in GMAN [19] to
complete the traffic speed prediction. Overall, the contributions of our work can
be summarised as follows:

• We propose a new model named JS-STDGN to predict traffic speed. The
model encodes both the static and dynamic traffic feature into the graph
structure for better prediction accuracy.

194 P. Li et al.

• We propose a new graph construction method, which leverages the pairwise
JS-divergence of nodes speed profiles to generate spatial adjacency graph.
Compared with the traditional graph structure, it can better reflect the node
association both geographically and semantically.

• We propose a new dynamic graph attention module which consider the traffic
characteristics from previous time slices to better model the traffic lag.

• We conduct extensive experiments on real-world datasets and compare with
multiple state-of-the-art models. Results shows that our proposed method
outperforms other baselines significantly.

2 Related Work

Traffic forecasting is an essential part of building intelligent transportation and
research on traffic forecasting has been conducted for many years. Early traffic
forecasting was mainly addressed using statistical models, such as auto-regressive
integrated moving average (ARIMA) [11], vector auto regressive model (VAR) [2]
and support vector regression (SVR) [12] which reduced forecasting to individual
time series forecasts. These methods were built upon stationary assumptions and
cannot handle the complex variability of traffic data.

With the rapid development of deep learning area, LSTM [3] is applied to
traffic prediction to extract temporal dependencies, without considering their
spatial features. Subsequently, researchers introduce CNNs to model spatial
dependencies. ST-ResNet [17] proposes a residual network structure to model
spatial dependencies in cities, but CNNs are limited to handling regular grid
structures rather than non-Euclidean graph structures dominated by unspec-
ified road networks. To address this problem, researchers use graph convolu-
tion for modelling. Spatial correlation is captured using graph convolution in
STGCN [16], while temporal correlation is captured using one-dimensional con-
volution on the time axis. DCRNN [10] models the dynamics of traffic flow as
a diffusion process, and the network replaces the fully connected layer in the
gated recursive unit (GRU) with a diffusion convolution operator. T-GCN [18]
uses graph convolution to capture spatial correlation and GRU to capture tem-
poral correlation. ASTGCN [5] introduces an attention mechanism added to
GCN for prediction.

The key to graph convolutional networks is the adjacency matrix, which repre-
sents the association between nodes. Most work uses the spatial distance between
sensors to construct the adjacency matrix, but graph constructed in this way
ignores the complex relationships between nodes. To address this problem, Graph
WaveNet [14] adds adaptive learning of the spatial adjacency matrix and extends
the perceptual field along the temporal axis, which enables the original GCN to
discover more hidden spatial dependencies. AGCRN [1] uses the adaptive item on
DCRNN and achieves good results. MTGNN [13] adds external node features to
generate an adaptive matrix through a graph learning layer. However, these meth-
ods assume a hidden relationship between any two points, which can lead to over-
fitting, and are not interpretable in the way they are constructed.

Besides, a major problem of graph convolutional networks is that the adja-
cency matrix is usually static, making it difficult to describe dynamic traffic

JS-STDGN 195

conditions. Therefore, GMAN [19] uses a self-attention mechanism to capture
spatial correlations dynamically. ASTGNN [6] proposes an improved graph con-
volution by multiplying a dynamic mask matrix in front of the static graph to
make it dynamic, and DGCRN [9] proposes a super-network that combines the
current moment velocity and the hidden state of the previous layer to obtain a
dynamic graph. However, these methods only generate different adjacency matri-
ces at each moment separately and do not consider the spatial states from past
moments.

3 Preliminaries

In this section, we will introduce the definition and the problem statement.

Definition 1: Traffic Network. A traffic network is represented as a directed
graph G = (V,E,A), where V = {V1, V2, ..., VN} represents the set of sensors
collecting traffic data, N = |V | represents the number of sensors, and E refers
to the set of edges, A ∈ R

N×N is the spatial adjacency matrix representing the
proximity or distance between nodes from V .

Definition 2: Traffic Speed Matrix. We denote the value of the speed col-
lected by the entire traffic network G at time t as Xt = {xt,V1 , xt,V2 , ..., xt,VN

} ∈
R

N×C ,where xt,Vi
∈ R

C represents the speed of traffic collected by node Vi at
time t, C is the number of traffic features (e.g., volume, speed).

Problem Statement: Traffic Speed Prediction. Given a series of historical
traffic speed matrices X1:P = (X1, ...,XP) ∈ R

N×P×C over the last P time
slices, the traffic network graph G and an integer Q, the traffic speed pre-
diction aims to generate another series of traffic speed matrices XP+1:P+Q =
(XP+1, ...,XP+Q) ∈ R

N×Q×C representing the traffic speed in the next Q time
slices.

Here, in our solution, as we need to construct a JS-Graph before the fore-
casting to achieve better prediction performance, we require additional historical
speed profiles as an auxiliary input for model training. The generated graph is
denoted as GJS .

4 Methodology

In this section, we first present the framework of our proposed approach and
introduce each component in detail.

4.1 Architecture Overview

The general architecture of our proposed model is shown in Fig. 4. We design the
JS-STDGN (Spatial-Temporal Dynamic Graph Network using JS-Graph) based
on the Encoder-Decoder architecture, including an encoder and a decoder. The
encoder and decoder consist of the same structure. Between the encoder and

196 P. Li et al.

Fig. 4. Framework of JS-STDGN. JS-GCN: JS-Graph Convolution; DGAN: Dynamic
Graph Attention; SGF: Spatial Gated Fusion; STE: Spatial-Temporal Embedding

decoder, we add the Encoder-Decoder Attention block to convert the encoded
traffic features. In the encoder and decoder, we design the spatial module includ-
ing JS-Graph convolution (JS-GCN) and dynamic graph attention (DGAN) to
capture the road network’s deep static features and dynamic spatial character-
istics, respectively. Then the results of both are aggregated by SGF (Spatial
Gated Fusion) as the representation of the spatial module. Finally, temporal
module, including temporal convolution (TCN) and temporal attention, is used
to extract temporal features. In addition, we use a fully-connected layer on the
input for converting input X ∈ R

N×P×C dimensions to X ∈ R
N×P×D, where D

is the dimension of hidden state. Finally, we use a fully-connected layer on the
output for prediction.

4.2 JS-Graph Convolution Network

In order to describe deeper static relationships in the spatial dimension, we fur-
ther design a JS-GCN on top of the GCN. Most recent studies use the graph
convolution network to model spatial dependence. GCN learns node representa-
tions by exchanging information between nodes to capture unstructured patterns
hidden in the graph. Given T as P or Q, the graph convolution operation in l-th
layer is defined as follows:

GCN
(
X(l)

)
= σ

(
AX(l−1)W l

)
(1)

JS-STDGN 197

where X(l) ∈ R
N×T×D, W (l) ∈ R

D×D, σ represent node representation,
weight matrix and activation function, respectively. A ∈ R

N×N usually repre-
sents the interactions between nodes and is defined as follows:

A = D̃− 1
2 ÃD̃− 1

2 (2)

where Ã is the graph adjacency matrix, and D̃ij =
∑

j Ãij , i, j are nodes in
the graph.

The purpose of the JS-graph is to obtain node dependencies that are more
representative than ordinary spatial adjacency graphs. The spatial correlation
between nodes is complex. In addition to distance proximity, nodes usually have
various static and invariable features, such as regional function and road grade.
A regular node distance graph cannot carry such semantic properties, thus we
need a new graph design to preserve these relationships.

Through the analysis of real-world traffic data, we observe that the velocity
distributions of nodes with similar functions or roads of the same grade are
similar. In contrast, the velocity distributions of nodes of different types differ
a lot even though they are geographically close. Many metrics can be used to
describe the velocity difference between different nodes, such as cosine similarity
and Manhattan distance. However, when the sequence length T is set small,
these methods are easily disturbed by noise, and when T is set too long, the
calculated similarity value will be very close, making it indistinguishable.

So Jensen-Shannon divergence (JSD or JS divergence) is introduced to mea-
sure the similarity of nodes from a macro perspective. Compared with the above
methods, JSD can better reflect the node properties and is robust to random
noise. Let P1 and P2 represent speed distributions of two nodes. JSD can be
formulated as follows:

JSD (P1‖P2) =
1
2
KL

(
P1‖P1 + P2

2

)
+

1
2
KL

(
P2‖P1 + P2

2

)
(3)

where KL (P‖Q) can be expressed as:

KL(P‖Q) = −
∑
x∈X

P (x) log
1

P (x)
+

∑
x∈X

P (x) log
1

Q(x)
(4)

Therefore, based on JSD, we construct the similarity relation Graph GJS

between nodes, also known as JS-graph, whose matrix is AJS . Algorithm 1 shows
our algorithm of JS-graph construction. The general process is as follows: In line
1 and line 2, we first initialise the weight W of A to 0, and evenly divide the
speed range of all nodes into n sub-intervals. Then, from line 3–7, we calculate
the velocity distribution of node V1 and V2 denoted by P1 and P2, respectively. In
line 6, as a smaller JSD value corresponds to a greater distribution similarity, and
the range of JSD is [0, 1], we use 1−JSD(Pi, Pj) instead to represent the weight
Wi,j . From line 8–14, we keep the top-k largest weights and set the rest to 0 to
eliminate noise because the JSD is always non-zero regardless of how different
two distributions are. In addition, we replace Wi,m with Wi,m − Wi,JK+1 for the

198 P. Li et al.

Algorithm 1. JS-Graph Construction
Input: Traffic speed data of all N nodes in the training setX = {XV1 , XV2 , ...XVN }
Output: Weighted Matrix of W JS-Graph AJS

1: Let W ∈ R
N×N = O

2: Divide the speed distribution interval into n sub-intervals
3: for i = 1, 2, ..., N do
4: for j = 1, 2, ..., N do
5: Calculate the probability distribution Pi, Pj of XVi , XVj in each sub-interval
6: Wi,j = 1 − JSD(Pi, Pj)
7: end for
8: Sort and select Top-K element and their index J = {J1, J2, ..., JK , JK+1, ..., JN}
9: Let Sum = 0

10: for m = 1, 2, ...,K do
11: Wi,m = Wi,m − Wi,JK+1

12: Sum+ = Wi,m

13: end for
14: Let Wi,JK+1 ,Wi,JK+2 , ...,Wi,JN = 0
15: for m = 1, 2, ...,K do
16: Wi,m = Wi,m/Sum
17: end for
18: end for
19: return the weight W of JS-Graph AJS

reason that the initial JS value is too close to show the difference in similarity,
and in line 15–17, we normalise the weight of each row.

Finally, we use AJS as the input graph in JS-GCN. Then, JS-GCN can be
computed as follows:

X(l) = JS-GCN
(
X(l−1)

)
= σ

(
AJSX(l−1)W l

)
(5)

4.3 Dynamic Graph Attention Network

As the spatial correlation between roads is dynamic, designing a dynamic graph
learning module is necessary. Previously, the dynamic graph leverages the spatial
attention mechanism. It assigns weights to each time slice to obtain a different
spatial representation for each time slice. However, such a model does not con-
sider the state correlation between adjacent time slices.

Therefore, we propose a DGAN to solve the above problem. As shown in
Fig. 5, DGAN dynamically learns the relationship between nodes at the current
time, as well as taking into account past states of all nodes, to obtain more
comprehensive node information. First, given T as P or Q, we split the input
tensor X ∈ R

N×T×D into T timestamps. Then, to every timestamp, given the
node representations Xt at time slice t, we refer to scaled dot-product attention
to compute the spatial attention of node embeddings of this time slice as well
as all node embeddings of previous time slices. The spatial correlation weight

JS-STDGN 199

Fig. 5. DGAN structure

between node i and node j at time t is:

αt
ij =

exp
(〈

fα,1 ([Xt]i) , fα,2

(
fβ ([X1:t])j

)〉)
/
√

D
∑

v∈V exp (〈fα,1 ([Xt]i) , fα,2 (fβ ([X1:t])v)〉) /
√

D
(6)

where fα,1(x),fα,2(x) are different nonlinear projections. 〈·, ·〉 represents the dot-
product operation.

Specially, we need to use a nonlinear function fβ(x) = RELU (xW3 + B3)
and W3 ∈ R

T×1, B3 ∈ R
1 to adaptively represent the state of the past moments.

There are two reasons for this: firstly, it is not appropriate to directly compute
the spatial correlation between the current and all historical time slices due to
its extremely high complexity O(TN2); secondly, it is not necessary to bring
representations of all past moments into the computation, instead, we only sub-
stitute a representation fβ(X1:t) of the historical state into the computation.
Before that, we mask the data after moment t to 0, and fill it into T time slices,
so the complexity of computing each time slice can be reduced to O(N2).

Once the spatial attention score matrix αt is calculated, given the input data
Xl−1 ∈ R

N×T×D, DGAN in l-th layer can be computed as:

X
(l)
t = DGAN(X(l−1)

t) = σ(αt(fβ(X(l−1)
1:t))W (l)) (7)

Finally, we concatenate all the T slices, and the result is entered as a repre-
sentation into the next layer.

X(l) = Concat(X(l)
1 ,X

(l)
2 , ...,X

(l)
T) (8)

4.4 Spatial Gated Fusion

The static and dynamic graph networks reflect the correlation between sections
from different perspectives. To provide a broader range of horizons for the traffic
network model, we combine the results of the static graph module with those
of the dynamic graph module to improve the performance of traffic prediction.

200 P. Li et al.

Specifically, we use a spatial gated fusion from adaptive fusion JS-GCN and
DGAN extraction of information. HG ∈ R

N×T×D and HD ∈ R
N×T×D represent

the output of JS-GCN and DGAN, which are fused in the following way:

HF = z � HG + (1 − z) � HD

z = σ (HGWz1 + HDWz2 + bz)
(9)

where HF is the output of SGF, z is a gate that adaptively controls the informa-
tion flow extracted by JS-GCN and DGAN. � is element-wise product. σ is the
activation function. Wz1,Wz2 ∈ R

N×N and bz ∈ R
D are learnable parameters.

4.5 Temporal Module

The traffic conditions are related to its previous observations, and this module
processes the data in the temporal dimension to capture the temporal dynamics
of traffic. Specifically, we use temporal gated convolution and temporal attention
mechanisms to learn the local temporal feature and global temporal relation of
the traffic data, respectively.

Temporal Gated Convolution. TGC proposes a method to extract hierar-
chical local time features in parallel by using gated convolution on the time
axis. Compared with RNN, the diffusion convolution layer is more efficient in
processing long time sequences.

Temporal Attention Mechanism. In order to extract the global time cor-
relation at a deeper level, we use temporal attention to capture the large-scale
time correlation of traffic data.

4.6 Other Components

Spatial-Temporal Embedding. To obtain node information better, Spatial-
Temporal embedding is added to JS-STDGN as auxiliary input. Spatial embed-
ding matrix SE ∈ R

N×DSE is generated by node2vec [4] and temporal embed-
ding matrix TE ∈ R

(P+Q)×DTE is generated by one-hot encoding. Then they
are represented as SE ∈ R

N×D and TE ∈ R
(P+Q)×D after two fully-connected

layers. At last, we fused the spatial embedding and temporal embedding as
STE ∈ R

(P+Q)×N×D.

Encoder-Decoder Attention. To alleviate the error accumulation caused by
long sequence prediction, Encoder-Decoder Attention is used to extract the fea-
tures of coded vectors from Encoder, and transform feathers of coded vectors to
generate future representation by STE of the past time and the future time.

Loss Function. In this paper, we use Mean Absolute Error (MAE) of real value
and predicted value as the loss function, which can be expressed as follows:

loss = MAE(Output, T ruth) =
1
Q

t=P+Q∑
t=P+1

∣∣∣Yt − Ŷt

∣∣∣ (10)

JS-STDGN 201

5 Experiments

To evaluate the performance of our proposed model, we conducted extensive
experiments on two real-world datasets. The following is a detailed introduction.

Table 1. Dataset statistics.

Datasets Nodes Samples Sample Rate

METR-LA 207 34272 5min

PEMS-BAY 325 52116 5min

5.1 Datasets

We present our results on two real-world large-scale datasets: METR-LA and
PEMS-BAY, published by DCRNN. There are 207 sensors located in METR-
LA and 325 in PEMS-BAY. The specification of the datasets is shown in Table 1.
In the preprocessing step, we replace the missing values with 0, and apply z-score
and min-max normalisation. We use 70% of the data for training, 10% for val-
idation, and the rest for testing. According to the data distribution shown in
Fig. 6, the traffic speed of BAY is mostly distributed between 60 and 70 mile/h,
whereas the distribution in METR-LA is more complex and better reflects the
dynamic traffic condition in urban area. Therefore, although we conduct exten-
sive experiments on both datasets, here we mainly conduct analysis experiments
on METR-LA.

Fig. 6. Distributions of speed.

5.2 Baselines

We compare JS-STDGN with the state-of-the-art prediction models, including:

• ARIMA [11]: Auto-regressive integrated moving average model, which is a
classical parametric analysis model.

202 P. Li et al.

• STGCN [16]: Spatial-temporal graph convolution network, which integrates
graph convolution and 1D convolution.

• DCRNN [10]: Diffusion convolutional recurrent neural network, which com-
bines GRU with two-way diffusion graph convolution.

• Graph WaveNet [14]: Graph Wavenet uses learnable adjacency matrix and
uses TCN instead of 1D convolution to capture complex time correlation.

• AGCRN [1]: Adaptive graph convolution recurrent network, which adopts
adaptive graph and combines GRU with adaptive graph convolution.

• GMAN [19]: Graph multi-attention network, whose spatial attention dynam-
ically assigns weights to nodes of each time slice.

For all baselines, we experiment with their default settings. Three metrics
are adopted to evaluate performance: Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and Mean Absolute Percentage Error (MAPE).

5.3 Experimental Setup

Following the previous work (DCRNN, GMAN), we use P = 12 historical time
steps (1 h) to predict the speed of the next Q = 12 steps (1 h). We use Adam
Optimizer [7] as the optimizer, and the initial learning rate was 0.001. The
number of encoder and decoder blocks L is 4, the dimension D in main blocks
is 64. In terms of top-k candidate number k in JS-Graph, we conduct a series of
experiments to find the best k but end up finding that the influence of k value
is minor, so we chose a reasonable value as k = 10 because the number of each
node’s neighbours usually ranges from 5 to 12. In DGAN, we use multi-head
attention and the number of heads H is 8.

5.4 Experimental Results

Table 2 shows the performance of the baselines and our model. In our experiment,
the task is to predict the traffic speed in 0–15 min, 15–30 min and 30–60 min
from present time. We also report average scores of all the forecasting horizons
on the dataset. We can observe that JS-STDGN achieves the best prediction
performance on both datasets, and the advantage is more evident under the
complex traffic conditions of METR-LA.

The performance of ARIMA is poor compared with the deep learning models.
Traffic conditions have non-linear characteristics that are difficult to be captured
by traditional time series forecasting models. For deep learning models based on
graph convolution, STGCN and DCRNN belong to the first class of methods
using static adjacency matrices. Due to incomplete or even biased knowledge in
spatial adjacency matrices, model prediction is still inaccurate. Graph-WaveNet
and AGCRN are adaptive methods for learning adjacency matrices. These meth-
ods are superior to the previous ones. However, because adjacency matrices are
self-learned, it lacks interpretability and is easy to produce over-fitting phe-
nomenon. GMAN makes full use of the self-attention mechanism to simulate
dynamic spatial representation. However, this method only allocates different

JS-STDGN 203

spatial graphs in different time slices and ignores the continuous spatial features,
so it has poor performance in short-term prediction. In contrast, our JS-STDGN
uses the data distribution characteristics to construct a new static graph, which
is better than the node adjacency graph. In addition, we simulate the dynamic
spatial correlation characteristics so that JS-STDGN achieves the most advanced
results on all tasks.

Table 2. Prediction accuracy comparison

Data Method 15 min 30 min 1 h Average

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

M
E
T
R
-L

A

ARIMA 3.92 8.15 9.40% 5.02 10.23 12.49% 6.53 12.96 16.52% 5.16 10.45 12.80%

STGCN 3.48 6.67 9.88% 3.84 7.45 11.20% 4.38 8.57 13.30% 4.02 7.81 11.91%

DCRNN 2.72 5.24 7.01% 3.16 6.42 8.72% 3.70 7.72 10.91% 3.19 6.46 8.88%

Graph WaveNet 2.64 4.89 6.71% 3.17 6.25 8.61% 3.62 7.22 10.20% 3.25 6.40 8.91%

AGCRN 2.65 4.94 6.96% 3.23 6.57 9.09% 3.47 7.19 9.96% 3.18 6.47 8.91%

GMAN 2.79 5.40 7.64% 3.17 6.44 9.04% 3.54 7.27 10.4% 3.26 6.60 9.36%

JS-STDGN 2.56 4.80 6.60% 2.99 6.01 8.28% 3.35 7.00 9.81% 3.06 6.20 8.63%

P
E
M

S
-B

A
Y

ARIMA 1.81 3.56 3.92% 2.42 4.86 5.55% 3.39 6.53 8.48% 2.54 4.98 5.98%

STGCN 2.25 4.43 5.10% 2.51 4.95 5.72% 2.85 5.68 6.67% 2.62 5.19 6.04%

DCRNN 1.38 2.95 2.90% 1.69 3.77 3.90% 2.04 4.58 4.71% 1.70 3.76 3.83%

Graph WaveNet 1.14 2.25 2.30% 1.61 3.53 3.54% 1.93 4.32 4.49% 1.65 3.60 3.70%

AGCRN 1.17 2.33 2.45% 1.60 3.58 3.60% 1.88 4.31 4.39% 1.64 3.73 3.70%

GMAN 1.23 2.57 2.60% 1.62 3.66 3.59% 1.89 4.24 4.36% 1.66 3.66 3.73%

JS-STDGN 1.17 2.31 2.34% 1.59 3.50 3.44% 1.86 4.18 4.28% 1.62 3.54 3.59%

5.5 Study on JS-Graph

To prove the effectiveness of our proposed JS-Graph, we select a set of nodes in
METR-LA for case study. Figure 7 illustrates the distribution of different matri-
ces of adjacency graph and JS-Graph. The rows and columns represent different

(A,A)

(A,B)

(a) Adjacency Graph

(A,A)

(A,C)

(b) JS-Graph

Fig. 7. Different graph matrices for the chosen 50 vertexes

204 P. Li et al.

nodes, and the colour scale bar on the right represents the correlation between
nodes. Figure 7(a) shows that, node B is adjacent to node A spatially, but (b)
shows that C is a node adjacent to node A in JS-graph after JSD calculation.

Figure 8 shows the velocity curves of the three nodes in a day. We can clearly
see that in the same day, although A and B are spatially adjacent to each other,
their traffic patterns are not related at all. Conversely, A and C are spatially
disjoint, but their traffic patterns are very similar. What is shown in Fig. 9 is the
distribution of velocity. We can also come to a conclusion that traffic conditions
of A and B differ a lot at low speeds while A and C have high similarity in
each speed interval. This demonstrates that our JS-Graph can better capture
the deeper correlations between nodes.

00:00 08:00 16:00 24:00

Fig. 8. Speed change in a day Fig. 9. Distributions of velocity

We experiment with both graphs separately on the METR-LA dataset, and
as is shown in Table 3, JS-Graph can obviously improve the performance.

Table 3. Performance comparison between JS-graph and adjacency graph

Method 15min 30min 1 h Average

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

G-STDGN 2.63 4.91 6.87% 3.04 6.08 8.41% 3.38 7.05 9.86% 3.13 6.29 8.72%

JS-STDGN 2.56 4.8 6.60% 2.99 6.01 8.28% 3.35 7.00 9.81% 3.06 6.20 8.63%

5.6 Effectiveness of Each Component

The two key designs of our proposed model are the JS-GCN module for the
deep inherent properties in the traffic network and the DGAN for constantly
changing spatial dependencies between nodes. To investigate the effectiveness of
our proposed components, we design two variants: W/O JS-GCN, W/O DGAN.

• W/O JS-GCN: In this variant, we remove the JS-GCN module.
• W/O DGAN: In this variant, we remove the DGAN module.

JS-STDGN 205

Except for the differences mentioned above, all other parts are identical to
JS-STDGN. Figure 10 shows MAE for each prediction step of JS-STDGN and its
variants. We observe that JS-STDGN is always superior to its variant, indicating
the effectiveness of JS-GCN module and DGAN module in modelling complex
spatial features. The introduction of the JS-GCN module can better capture
the deep static characteristics of nodes. The DGAN module enables the model
to obtain dynamic information to describe the dynamic topology of the road
network better.

5.7 Case Study

We plot the actual and predicted values on METR-LA in Fig. 11. We can observe
that: (1) JS-STDGN captures the trend of morning rush more accurately than
baselines, implying that our proposed model can fit the complex traffic predic-
tion tasks. (2) JS-STDGN is able to deal with road dynamics well and make
reasonable predictions despite that the curve of ground truth changes greatly.
These can be attributed to the following two reasons. First, our JS-graph is
able to show the deep characteristics of nodes. Second, our DGAN module can
capture dynamic spatial correlations well.

Fig. 10. MAE of each step. Fig. 11. Visualization of predictions.

6 Conclusions

In this paper, we proposed an effective deep neural network named JS-STDGN
for traffic speed prediction. In JS-STDGN, we captured traffic’s in-depth fea-
tures and changing features respectively from static and dynamic perspectives.
Specifically, we proposed a new way to construct a traffic graph that uses the
JS-divergence value between nodes to capture the non-geographical connection.
In addition, we designed a new dynamic graph attention mechanism, which can
dynamically change the weight between nodes without missing the information
of the past time slices. Experiments on two real-world datasets showed that
JS-STDGN achieved the most advanced results over state-of-the-art candidate
solutions.

206 P. Li et al.

Acknowledgment. This work was supported by National Natural Science Founda-
tion of China (No. 61802273, No. 62102277), Postdoctoral Science Foundation of China
(No. 2020M681529), Science and Technology Plan Project of Suzhou (No. SYG202139),
Natural Science Foundation of Jiangsu Province (No. BK20210703).

References

1. Bai, L., Yao, L., Li, C., Wang, X., Wang, C.: Adaptive graph convolutional recur-
rent network for traffic forecasting. In: NeurIPS (2020)

2. Eric Zivot, J.W.: Vector Autoregressive Models for Multivariate Time Series, pp.
385–429 (2006)

3. Fu, R., Zhang, Z., Li, L.: Using LSTM and GRU neural network methods for traffic
flow prediction. In: Youth Academic Annual Conference of Chinese Association of
Automation (YAC), pp. 324–328 (2016)

4. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In:
SIGKDD, pp. 855–864 (2016)

5. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal
graph convolutional networks for traffic flow forecasting. In: AAAI, pp. 922–929
(2019)

6. Guo, S., Lin, Y., Wan, H., Li, X., Cong, G.: Learning dynamics and heterogeneity
of spatial-temporal graph data for traffic forecasting. IEEE Trans. Knowl. Data
Eng. (2021)

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. In: ICLR (2017)
9. Li, F., Feng, J., Yan, H., Jin, G., Jin, D., Li, Y.: Dynamic graph convolutional recur-

rent network for traffic prediction: benchmark and solution. CoRR abs/2104.14917
(2021)

10. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In: ICLR (2018)

11. Lippi, M., Bertini, M., Frasconi, P.: Short-term traffic flow forecasting: an exper-
imental comparison of time-series analysis and supervised learning. IEEE Trans.
Intell. Transp. Syst. 14(2), 871–882 (2013)

12. Wu, C., Ho, J., Lee, D.: Travel-time prediction with support vector regression.
IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004)

13. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots:
multivariate time series forecasting with graph neural networks. In: KDD. pp. 753–
763 (2020)

14. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-
temporal graph modeling. In: IJCAI, pp. 1907–1913 (2019)

15. Xu, M., et al.: Spatial-temporal transformer networks for traffic flow forecasting.
CoRR abs/2001.02908 (2020)

16. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. In: IJCAI, pp. 3634–3640 (2018)

17. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide
crowd flows prediction. In: AAAI, pp. 1655–1661 (2017)

18. Zhao, L., et al.: T-GCN: a temporal graph convolutional network for traffic pre-
diction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2020)

19. Zheng, C., Fan, X., Wang, C., Qi, J.: GMAN: a graph multi-attention network for
traffic prediction. In: AAAI. pp. 1234–1241 (2020)

When Multitask Learning Make
a Difference: Spatio-Temporal Joint
Prediction for Cellular Trajectories

Yuan Xu, Jiajie Xu(B), Junhua Fang, An Liu, and Lei Zhao

School of Computer Science and Technology, Soochow University, Suzhou, China
20204227016@stu.suda.edu.cn, {xujj,jhfang,anliu,zhaol}@suda.edu.cn

Abstract. Spatio-temporal joint prediction aims to simultaneously pre-
dict the next location and the corresponding switch time for a cellular
trajectory. It requires to consider not only the mutual influence of spatio-
temporal predicting tasks, but also the signals related to the intentions of
the travel. Although multitask learning can support the joint prediction
by considering both spatio-temporal signals, existing approaches neglect
the effects of travel intentions and fail to model the long-term dependen-
cies in trajectory, resulting in sub-optimal results accordingly. To solve
these issues, we propose an intention-aware multitask learning method
for spatio-temporal joint prediction, such that predicting travel inten-
tion is learned as an auxiliary task. Specifically, due to the implicity of
travel intention, we design an effective loss function to learn meaningful
intention representation, which can capture trajectory’s future moving
goal, so as to provide long-term information for spatio-temporal joint
prediction. Furthermore, we carefully design a gating mechanism to fuse
sequential and intentional information with different weights to reflect
their importance in capturing current movement status. Besides, self-
attention network is adopted to model the long-term dependencies of far
sampling points in a dense trajectory. Finally, extensive experiments on
two trajectory datasets demonstrate the superiority of our method.

Keywords: Spatio-temporal joint prediction · Multitask learning ·
Cellular trajectory

1 Introduction

With mobile phones becoming ubiquitous, a large number of cellular trajectories
are accumulated [3,11]. Spatio-temporal joint prediction aims to simultaneously
predict the next location and the corresponding switch time for a cellular tra-
jectory, which is a multitask joint prediction process. The joint prediction is
essential to decide when user data will be scheduled to which base station. It
not only helps to provide high-quality communication services, but also ensures
efficient resources allocation and management in mobile communications [13].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 207–223, 2022.
https://doi.org/10.1007/978-3-031-00123-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_16&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_16

208 Y. Xu et al.

Fig. 1. The blue points denote the current trajectory. The yellow and green parts
represent two possible future movement paths. Depending on different future goals,
the trajectory may move to different next locations (red points). (Color figure online)

It is generally known that trajectories always carry rich spatial and temporal
information. Existing trajectory prediction methods are mainly for these two
tasks, i.e., location prediction and time prediction. Location prediction meth-
ods [5,8,10] model trajectory’s spatial distribution by sequential models (e.g.,
HMM and RNNs) to predict the next location. Time prediction methods [23,24]
mainly use temporal point process [1] to capture continuous time information
of sequences to predict the next switch time. However, these single-task based
methods cannot be directly used for another task or even predict these two
tasks at the same time. Moreover, trajectory next location and time predic-
tion tasks have strong correlation and mutual influence. Temporal information
reflects trajectory’s mobility patterns (e.g., underlying path and transportation
mode), affecting the next location, and vice versa. Hence, spatio-temporal sig-
nals should be jointly utilized for collaborative trajectory modeling to obtain
more accurate trajectory representation, so as to improve each task’s accuracy.

As a technique aiming to learn meaningful information contained in mul-
tiple related tasks to improve the performance of all tasks, multitask learning
(MTL) [25] is an effective method for spatio-temporal joint prediction. Although
a few multitask learning methods [4,9] have considered both spatial-temporal
signals and support the joint prediction, they are designed for next POI recom-
mendation, and fail to capture dependencies in the future sequence. However,
different from check-in data in POI recommendation, trajectory data has con-
sistent travel intention, and accordingly, the state of a trajectory point is also
influenced by the states of follow-up points. Considering the example in Fig. 1, it
is hard to predict the next location (l5 or l9) for the trajectory T = {l1, l2, l3, l4},
unless we know the travel intention that can be learned from T as well. Once
knowing the user is heading for the airport at l8 as destination, we can say he is
likely to follow the green path and visit l5 next. Therefore, location switch in a
cellular trajectory is subject to the travel intention, and in turn, travel intention
is fulfilled by a sequence of location switches. Unfortunately, existing multitask

IAMT 209

methods cannot capture travel intention and then utilize it for improving the
spatio-temporal joint prediction.

An intention-aware multitask learning method for spatio-temporal joint pre-
diction still faces three main challenges. First, although user always has intention
when traveling, the intention is implicit and modeling it from trajectory data is
not straightforward. It thus calls for effective modeling of travel intention, which
relies on suitable loss function to evaluate the correlations between the captured
and real intentions reasonably, such that long-term information (e.g. moving direc-
tion) of each cellular trajectory can be captured. Second, the influence on next
movement prediction from travel intention and sequential information is nontriv-
ial to balance. The model should incorporate these two information into a more
comprehensive representation and tune their weights to effectively capture mean-
ingful information. Last but not least, since cellular trajectory tends to be long
and dense sequence, it is supposed to capture the complex dependencies among
far samplings for joint modeling of travel intention. However, this can be hardly
supported by the RNN-based methods adopted in [4,9]. Therefore, an enhanced
trajectory modeling method is required to capture both short-term and long-term
dependencies.

To address the above issues, we propose a novel intention-aware multitask
learning method called IAMT for spatio-temporal joint prediction. In the mul-
titask framework, we take spatio-temporal joint prediction as main tasks and
travel intention prediction as an auxiliary task to assist main tasks. Specifi-
cally, to obtain a meaningful intention representation, we adopt an effective
distribution-aware loss function to evaluate the captured travel intention, which
ensures the long-term information of the trajectory can be contained in the rep-
resentation. In addition, considering that next movement status is greatly influ-
enced by not only sequential information but also intentional information, we
elaborately design a gating mechanism to effectively aggregate these two aspects
of information with different weights to reflect their importance in better cap-
turing current movement status. Finally, to ensure the long-term dependencies
among far sampling points in a long and dense trajectory to be effectively mod-
eled, we adopt a self-attention network to model the spatio-temporal trajectories.
The main contributions are summarized as follows:

– We propose an intention-aware multitask learning method for spatio-temporal
joint prediction, which introduces travel intention prediction as an auxiliary
task to provide intentional information and improve the spatio-temporal joint
prediction.

– We adopt a distribution-aware loss function to derive a meaningful intention
representation, which can provide trajectory long-term information for joint
prediction. Furthermore, a carefully designed gating mechanism is adopted
to effectively fuse intention and sequence information with different weights
to better capture meaningful knowledge for current movement status.

– We adopt self-attention to model spatio-temporal sequences to learn both
short-term and long-term dependencies of dense trajectories.

210 Y. Xu et al.

– We conduct extensive experiments on two real-world datasets. The results
demonstrate that our proposed method achieves better performance com-
pared with the existing approaches.

2 Related Work

2.1 Trajectory Prediction

Existing trajectory prediction methods are mainly for two tasks: location predic-
tion [16,19,22] and time prediction [20,23]. Recently, most methods study the
prediction of the next location based on historical data. These methods model
sequential information by some learning techniques like Markov Chains [14] and
RNNs [8,10]. In order to add spatial and temporal contextual information, ST-
RNN [10] extends RNN to model time intervals and geographical distances by
time transition matrix and distance transition matrix. HST-LSTM [8] intro-
duces spatial-temporal interval information into multiple existing gates of LSTM.
Flashback [22] considers historical records with similar context by doing flash-
backs on past hidden states in RNN. DeepMove [5] combines GRU with an
attention mechanism to capture multi-level periodicity in historical data.

On the other hand, only a few studies [23,24] aim to predict the next arrival
time. RCR [24] models the historical check-in of visitors and potential visitors
to extract features and incorporates them with censored regression to make time
predictions. Afterward, they further introduce a recurrent spatio-temporal point
process model [23] to achieve better performance. Nevertheless, these methods
assume that the location of the next check-in is pre-designated and cannot sup-
port the time prediction of trajectories without knowing the next location.

To sum up, all of the above methods neglect that trajectory prediction in most
real scenarios is indeed a multitask joint prediction process, involving both the spa-
tial and temporal prediction. These single-task methods cannot be directly used
for another task or even support the spatio-temporal joint prediction.

2.2 Multitask Learning

Multitask learning (MTL) [25], as a learning paradigm in machine learning, aims
to learn meaningful information contained in multiple related tasks to improve
their performance. It is classified into soft or hard parameter sharing techniques
according to whether hidden layers are shared among all tasks.

Recently, MTL has been successfully applied in a variety of fields, such as nat-
ural language processing [12]. Inspired by the success, a few studies adopt MTL for
spatio-temporal joint prediction of next events or POIs [4,9,18]. RMTPP [4] uses
RNN to model the intensity function of temporal point process to simultaneously
predict the event timings and the markers. ARNPP-GAT [9] further combines an
attention-based recurrent neural point process with graph attention networks to
model user’s short and long term preference. IRNN [18] uses two unshared RNNs
to respectively model time and event sequence. However, these multitask methods

IAMT 211

ignore the effect of travel intentions contained in trajectories and cannot model
trajectory’s long-term dependencies. Hence, we introduce travel intention predic-
tion as an auxiliary task to provide trajectory long-term intention information for
spatio-temporal joint prediction.

Fig. 2. (a) the framework of IAMT. The model consists of embedding layer, self-
attention layer, gating layer, prediction layer, and loss layer. (b) the SAN block.

3 Problem Definition

Let L = {l1, l2, · · · , ln1} denote a set of locations. A spatio-temporal point p
is a tuple (l, t), where the location identification l ∈ L can refer to a base
station and the positive real number t ∈ R+ presents the timestamp switching
to the location l. A trajectory T is a time-ordered spatio-temporal point sequence
T = {p1, p2, · · · , pm}. Besides, we represent the time interval of two consecutive
spatio-temporal points as τ , i.e., τk = tk − tk−1.

Problem Formalization. Given a set of trajectories T = {T 1, T 2, · · · , T |T|},
whereT i = {pi

1, p
i
2, · · · , pi

m} is the i-th trajectory, spatio-temporal joint prediction
aims to predict the next spatio-temporal point pi

m+1 of the trajectory T i, including
the location identification lim+1 and the corresponding timestamp tim+1 derived
from the time interval τ i

m+1.

4 Our Model

4.1 Overview of IAMT

In Fig. 2(a), we propose an intention-aware multitask learning model called IAMT
for spatio-temporal joint prediction. It is composed of five parts, i.e., embedding
layer, self-attention layer, gating layer, prediction layer, and loss layer.

212 Y. Xu et al.

In the multitask framework, we take spatio-temporal joint prediction as main
tasks and travel intention prediction as an auxiliary task. Specifically, embedding
layer is used to embed spatial and temporal factors of the trajectory into dense
vector representations. Then, we adopt self-attention layer to model both short-
term and long-term dependencies to obtain sequence representation for each
task. Considering the joint influence of sequence and intention information on
trajectory movement, the carefully designed gating layer is used to fuse intention
into trajectory representation to aggregate long-term information. Prediction
layer outputs prediction results for each task. Finally, loss layer combines all the
losses of three tasks to effectively train the entire network. Particularly, we design
a distribution-aware loss function to learn a meaningful intention representation
to provide more accurate long-term information.

4.2 Embedding Layer

Trajectory always carries rich spatial and temporal information, which is critical
for the trajectory modeling. Moreover, meaningful mobility patterns of the tra-
jectory may exist in different spatial granularity. Hence, it requires not only
the embedding of spatio-temporal multi-sequence, but also the modeling of
spatial multi-granularity. Based on the trajectory T , we can directly obtain a
sequence of base stations Tl = {l1, l2, · · · , lm} and a sequence of related times-
tamps Tt = {t1, t2, · · · , tm}. For multi-granularity modeling in spatial domain,
we divide the geographical space into ω × ω grids to derive coarse-grained
grid-based sequence Tg = {g1, g2, · · · , gm} from Tl [21,26]. Besides, since time
interval can reflect peoples’ preferences on the location, we further consider
the sequence of time interval between continuous spatiotemporal points, i.e.,
Tτ = {τ1, τ2, · · · , τm}.

Since the length of all trajectories are unequal, we first transform each
sequence into a fixed-length sequence, e.g., Tl = {l1, l2, · · · , ln}, where n is the
predefined maximum length and adopt zero-padding at the end of the sequence
if it does not have enough points. To represent base stations into dense vectors,
we construct a randomly initialized base station embedding matrix Ml ∈ Rn1∗d,
where n1 is the number of all base stations and d is the embedding dimen-
sion. Then we can retrieve the sequence’s embedding matrix Al ∈ Rn∗d, where
Al,i = Ml,Tl,i

, that is, selecting the embedding vector of the specified row from
Ml according to the identification of each base station. Similarly, we obtain the
embedding matrices of time interval sequence Aτ ∈ Rn∗d and grid sequence
Ag ∈ Rn∗d. However, unlike RNNs, self-attention ignores positional information
of the sequence. Inspired by [6], we add Aτ into other two sequences’ embedding
matrices to solve the problem.

El =

⎡
⎢⎢⎣

Al,1 + Aτ,1

Al,2 + Aτ,2

· · ·
Al,n + Aτ,n

⎤
⎥⎥⎦ Eg =

⎡
⎢⎢⎣

Ag,1 + Aτ,1

Ag,2 + Aτ,2

· · ·
Ag,n + Aτ,n

⎤
⎥⎥⎦ (1)

IAMT 213

Besides, the final time interval input matrix is the time interval embedding
matrix, i.e., Eτ = Aτ .

4.3 Self-attention Layer

After obtaining final input embeddings, we need to model sequences to capture
short-term and long-term dependencies. Since cellular trajectory has dense sam-
pling points and strong sequentiality, we adopt self-attention network to capture
global dependencies of the whole sequence regardless of the distance of sampling
points. Figure 2(b) illustrates the framework of self-attention network.

Multi-Head Self-Attention Network. To capture the influence between
every pair of spatio-temporal points, self-attention is adopted to model
sequences. We separately calculate the attention values for each input matrix
with the scaled dot-product attention as follows:

Attention(Qtask,Ktask, Vtask) = softmax(
QtaskKT

task√
d

)Vtask (2)

where d is the embedding dimension and the scaling factor 1√
d

is to prevent the
influence of large inner dot-product values; task ∈ {l, t, τ}. Besides, Qtask, Ktask

and Vtask respectively represent query matrix, key matrix, and value matrix,
which are generated from the input matrix Etask by:

Qtask = EtaskWQ,Ktask = EtaskWK , Vtask = EtaskWV (3)

where WQ,WK ,WV ∈ Rd×d denote three learnable projection matrices.
Since multi-head self-attention allows model to jointly focus on information

from different representation subspaces at different locations of the squence [17],
we further use multiple heads to calculate the final attention values, which can
run in parallel. The process is formulated as follows:

Htask = MultiHead(Qtask,Ktask, Vtask) = Concat(head1, · · · , headh)WO

headi = Attention(QtaskWQ
i ,KtaskWK

i , VtaskWV
i)

(4)

where the projections are learnable parameter matrices WQ
i ,WK

i ,WV
i ∈ Rd×dh

and WO ∈ Rd×d; h is the number of heads and dh = d/h. Finally, we can obtain
three sequence representation matrices Hl, Hτ and Hg.

Residual Connection and Layer Norm. Although multi-layer neural net-
works have been proved to better capture features, the degradation problem
leads to unsatisfactory results. Residual network [7] is proposed to solve the
dilemma, which spreads the low-level information to high layers through resid-
ual connections. Hence, we utilize residual connection to avoid the problem.

Rtask = LayerNorm(Htask + Etask) (5)

where LayerNorm denotes the Layer Normalization [2], which is used to nor-
malize the inputs and make the training fast and stable.

214 Y. Xu et al.

Point-Wise Feed-Forward Network. Although self-attention can adaptively
assign weights to all points in the sequence to integrate their embeddings, it is
still a linear model. To learn the high-level representations of each sequence and
consider the features of different latent dimensions, we adopt a point-wise feed-
forward network, which is composed of two fully-connected feed-forward layers
and a ReLU activation function.

Ftask = ReLU(RtaskW 1
task + b1task)W 2

task + b2task (6)

where W 1
task, b1task, W 2

task, and b2task are learnable network parameters. Please
note that, in order to better capture meaningful knowledge for each task, the
point-wise feed-forward network does not share between three tasks, which are
task-specific layers. Besides, we perform residual connection and layer normal-
ization again to obtain the output of SAN.

Stask = LayerNorm(Ftask + Rtask) (7)

Then, the last point’s representation of the trajectory is used as the task-specific
representation, that is, Sl,m, Sτ,m are the location and time sequential repre-
sentations respectively. Since intention mainly provides trajectory’s long-term
information (e.g., future moving direction), it can be obtained from the coarse-
grained grid of future goal, and thus Sg,m is the intentional representation.

4.4 Gating Layer

Considering that the next movement status is greatly affected by not only
sequential information but also intentional information, we design a gating mech-
anism to effectively fuse these two aspects of information to improve the predic-
tion accuracy. By this way, the fusion representation can remain both knowledge
with different proportions and our gating mechanism tends to pay more atten-
tion to the more informative features for current movement status. The gating
mechanism is designed as follows,

Gtask,1 = sigmoid(Wtask,1Stask,m + Wtask,g,1Sg,m + btask,1)
Gtask,2 = sigmoid(Wtask,2Stask,m + Wtask,g,2Sg,m + btask,2)

Gtask = Gtask,1 � Stask,m + Gtask,2 � Sg,m

(8)

where Wtask,1,Wtask,g,1, btask,1,Wtask,2,Wtask,g,2, btask,2 are learnable parame-
ters, and task ∈ {l, τ}. Gtask,1 and Gtask,2 control the way and proportion to
combine sequential information with intentional information. As we expect it
to integrate useful sequential and intentional information for current prediction,
the gating mechanism outperforms other simple combination strategies and we
further compare these strategies in experiments.

IAMT 215

4.5 Prediction Layer

Next Location Predictor. It aims to predict the next location lm+1 that
the user will visit. Given the final representation Gl, the probability of lm+1 is
calculated as follows:

Pl = softmax(GlWl + bl) (9)

where Wl and bl are learnable parameters.

Intention Predictor. It aims to predict the intention I of the trajectory. Sim-
ilar to next location prediction layer, the probability of intention I is calculated
based on the intentional representation Sg,m.

Pg = softmax(Sg,mWg + bg) (10)

Switch Time Predictor. It aims to predict the switch time when the user
will visit the next base station. Different from the above tasks, switch time
prediction is a regression problem, which requires to predict in continuous time
space. Temporal point process (TPP) [1] is an effective mathematical tool to
model temporal sequential data by using the conditional intensity function λ∗(t),
which specifies the probability that next location switch occurs within a small
time window [t, t + dt] given the sequence T .

λ∗(t) =
f∗(t)

1 − F ∗(t)
(11)

where f∗(t) calculates the probability that next location switch occurs at time
t given the sequence T , and F ∗ (t) =

∫ t

0
f∗(τ)dτ is the cumulative probability

distribution function of f∗(t). The density function f∗(t) can be calculated as:

f∗(t) = λ∗(t) exp(−
∫ t

tm

λ∗(τ)dτ) (12)

Inspired by previous work [4], we calculate the condition intensity function
dependent on the output of deep neural network as follows:

λ∗(t) = exp(WT
t Gτ + Wτ (t − tm) + λ0) (13)

where Wt,Wτ , λ0 are trainable parameters. The first term WT
t Gτ calculates the

accumulative influence among the past spatio-temporal points, the second term
Wτ (t − tm) represents the evolution of the intensity function over time, and the
last term λ0 is the base intensity. Besides, the exponential operation ensures the
intensity function is a positive value. Based on the condition intensity function,
we can obtain the density function f∗(t).

f∗(t) = exp{WT
t Gτ + Wτ (t − tm) + λ0 +

1
Wτ

exp(WT
t Gτ + λ0)

− 1
Wτ

exp(WT
t Gτ + Wτ (t − tm) + λ0)}

(14)

216 Y. Xu et al.

Then we can compute the next switch time as tm+1 =
∫ ∞

tm
tf∗(t), which can be

calculated with numerical integration technique [15].

4.6 Loss Layer

Location Loss. For next location prediction task, we apply cross entropy as
our loss function, which is a multi-class logarithmic loss function frequently used
corresponding to the softmax classifier. It is the negative log-likelihood of the
true next location l̂m+1:

Ll = −l̂m+1 log Pl (15)

where l̂m+1 is the one-hot represented ground truth and Pl is the predicted
probability distribution with respect to each base station.

Time Loss. According to the definition of TPP, the loss function for the next
switch time prediction task is denoted as:

Lτ = − log f∗(tm+1) (16)

where f∗(tm+1) is the density function, which is calculated by Eq. 14.

Distribution-Aware Intention Loss. Although travel intention can be
reflected by trajectory’s future goal, long-term intentional information cannot be
well captured if we view travel intention prediction as a simply multi-class task,
because its traditional loss function treats multiple category labels as indepen-
dent individuals without any correlation. However, different grids have various
spatial associations, such as distance and direction consistency. It is well known
that close locations can indicate a similar direction of future movement, thereby
providing similar intention information. Therefore, we design a distribution-
aware loss function to evaluate the correlation between captured travel intention
and real intention.

Lg =

∑
i∈topk grid Dgj ,i · Pg,i∑

i∈topk grid Pg,i
(17)

where topk grid denotes the grids at the top k of predicted result Pg; Dgj ,i

denotes the distance between the ground truth gj and gi; j = m + m ∗ 0.5,
m is current trajectory’s length and we take its half length as the future goal,
because long trajectory’s destination may be unable to provide useful knowledge
for current prediction; Pg,i is the predicted probability of future goal at the ith
grid. The distribution-aware loss function makes the predicted result as close to
the real grid as possible in space, so as to provide similar intention.

Multi-task Loss. In this paper, we integrate all the tasks of location prediction,
time prediction, and intention prediction into a multitask learning framework.
The entire network is trained end-to-end by minimizing a multi-task objective,
which is the weighted sum of each task’s loss.

IAMT 217

L(Θ) = βτLτ + βgLg + (1 − βτ − βg)Ll (18)

where Θ are all learnable parameters in IAMT; βτ and βg are hyper-parameters
for tuning relative influence of Lτ and Lg.

5 Experiments

5.1 Datasets

The experiments are carried out on two real-world datasets which contain cellular
trajectories in Hangzhou and Xiamen. We view a base station as a location,
which can provide signal to its surrounding area. If a user enters the area, the
switch time and the base station identification will be recorded. A trajectory is a
time-ordered spatio-temporal point sequence of a taxi within a travel order. We
filter out the trajectories with less than 5 points and take each trajectory’s half
length as its input length. The statistics of two datasets are shown in Table 1.

Table 1. Statistics of two datasets

Datasets # Users # Base stations # Records # Trajectories

Hangzhou 10825 13902 403867 10825

Xiamen 763 7255 683972 33583

5.2 Baselines

We respectively evaluate the effectiveness of our model for two main tasks. For
next location prediction, we compare our model with state-of-the-art methods,
including single-task methods (STRNN, DeepMove, HST-LSTM, and Flashback)
and multi-task methods (RMTPP, IRNN, ARNPP-GAT). For switch time pre-
diction, we also compare with single-task methods (Avg, THP) and multi-task
methods. Since RSTPP [23] assumes next location is prespecified, we do not
compare with it because next location is unknown in advance in our tasks.

– STRNN [10]. It aims to predict the next location, which extends RNN by
introducing distance-specific and time-specific transition matrices.

– DeepMove [5]. It adds a historical attention mechanism to GRU to predict
the next location over lengthy and sparse trajectories.

– HST-LSTM [8]. It extends LSTM to consider spatial distance and time
interval into the three existing gates to predict the next location.

– Flashback [22]. It considers historical points with similar context by doing
flashbacks on past hidden states of RNN to predict the next location.

– Avg. It returns the average time interval of historical spatio-temporal points
as the next time interval to derive the predicted next switch time.

– THP [6]. It couples transformer with Hawkes process to fit event sequence
to predict time and use temporal encoding similar to positional encoding.

218 Y. Xu et al.

Table 2. Performance comparison results for next location prediction

Datasets Hangzhou Xiamen

Method ACC MRR Recall macro-F1 ACC MRR Recall macro-F1

STRNN 0.0471 0.0833 0.0254 0.0118 0.3143 0.4665 0.1836 0.1479

DeepMove 0.0480 0.0970 0.0222 0.0138 0.3375 0.4914 0.1708 0.1434

HST-LSTM 0.0476 0.0886 0.0220 0.0115 0.3156 0.4686 0.1818 0.1482

Flashback 0.0513 0.0956 0.0261 0.0203 0.3411 0.4883 0.2062 0.1737

RMTPP 0.0483 0.0961 0.0228 0.0150 0.3213 0.4784 0.1770 0.1498

IRNN 0.0559 0.0986 0.0253 0.0146 0.3422 0.4901 0.2069 0.1731

ARNPP-GAT 0.0619 0.1077 0.0339 0.0215 0.3497 0.5186 0.2103 0.1745

IAMT-TI 0.0605 0.1071 0.0328 0.0211 0.3467 0.5191 0.2097 0.1739

IAMT-I 0.0647 0.1158 0.0378 0.0227 0.3647 0.5314 0.2222 0.1865

IAMT-G 0.0684 0.1189 0.0378 0.0243 0.3707 0.5348 0.2280 0.1957

IAMT-L 0.0708 0.1253 0.0409 0.0261 0.3736 0.5409 0.2302 0.1973

IAMT 0.0721 0.1302 0.0424 0.0279 0.3783 0.5458 0.2321 0.1988

– RMTPP [4]. It adopts a recurrent point process to model the event sequence
data and utilizes current hidden state of RNN to construct intensity function,
which is used for the spatio-temporal joint prediction of event sequences.

– IRNN [18]. It is similar to RMTPP, but the network layers are not shared
among the two tasks and adds peephole connection on LSTM.

– ARNPP-GAT [9]. It combines attention-based recurrent point process with
GAN to learn user’s short and long term preferences for next check-in infer-
ence. We remove GAN due to our datasets without user social graph.

5.3 Parameter Setup and Metrics

We implement our IAMT framework with Pytorch and use the Adam optimizer
for training. We randomly split all trajectories into 70% for training, 10% for
validation and 20% for testing. We set the vector dimension d as 128, batch size
as 200, learning rate as 0.001, max sequence length n as 200, the number of
attention head h as 8, and k as 3. βτ and βg are set as 0.05. ω is set as 100 and
50 in Hangzhou and Xiamen according to Fig. 4. Hyper-parameters are tuned
using grid search. In detail, h ∈ {1, 2, 4, 8, 16}, βτ , βg ∈ {0.01, 0.05, 0.1, 0.15, 0.2}.
For location prediction, we use four widely metrics to evaluate the performance:
Accuracy (ACC), Mean Reciprocal Rank (MRR), Recall, and macro-F1. For time
prediction, we measure the performance of different methods by Mean Absolute
Error (MAE) and Root Mean-Squared Error (RMSE). For fair comparison, we
run three times of each method and take the average value as the final result.

5.4 Comparisons of Performance

Next Location Prediction Results. From Table 2, we can see that our model
performs better than baselines on both datasets. In detail, IAMT is superior to all

IAMT 219

Table 3. Performance comparison results for next switch time prediction

Datasets Hangzhou Xiamen

Method MAE RMSE MAE RMSE

Avg 2.45 3.88 2.76 4.97

THP 2.36 3.22 2.51 3.51

RMTPP 2.25 3.24 2.38 3.27

IRNN 2.22 3.15 2.32 3.21

ARNPP-GAT 2.17 3.12 2.29 3.16

IAMT-LI 2.33 3.12 2.40 3.25

IAMT-I 2.11 3.10 2.25 3.09

IAMT-G 2.09 3.05 2.24 3.06

IAMT-L 2.09 3.06 2.23 3.06

IAMT 2.08 3.04 2.21 3.03

single-task methods (STRNN, DeepMove, HST-LSTM, and Flashback), because
they neglect the mutual influence of spatio-temporal signals and the importance
of long-term dependencies in a dense trajectory. Besides, our method performs
better than multi-task methods (RMTPP, IRNN, and ARNPP-GAT), which is
due to the fact that they ignore intention signal, proving the effects of intentions
on spatio-temporal joint prediction. We also notice the results in Xiamen are
better than those in Hangzhou. The main reason is that Hangzhou is sparser
than Xiamen, which has more locations and fewer records than Xiamen. Such
sparsity makes it hard for training a sequential model to learn mobility patterns.

Next Switch Time Prediction Results. As shown in Table 3, our model
IAMT achieves the best performance on next switch time prediction task. Besides,
Avg performs the worst since it neglects sequence and location information. Com-
pared with the single-task method THP, our method improves the performance,
because it simultaneously considers spatial information and intentional informa-
tion. In addition, existing multi-task methods (RMTPP, IRNN, and ARNPP-
GAT) can consider both spatio-temporal signals to support the joint prediction,
but they ignore travel intention that also affects the trajectory’s future movement
and cannot model the long-term dependencies of sampling points in a dense tra-
jectory, thus showing worse results than our model IAMT.

Comparison with Variants. To evaluate the effectiveness of each component
in IAMT, we compare it with several variants, including:

– IAMT-TI (IAMT-LI) only predicts single task, and removes time (loca-
tion) and intention prediction tasks.

– IAMT-I makes the spatio-temporal joint prediction, but removes the travel
intention prediction task. Please note that it does not use gating mechanism.

220 Y. Xu et al.

– IAMT-G removes the gating layer, equivalent to jointly predict three tasks.
– IAMT-L does not use the distribution-aware loss function, but uses the cross

entropy loss function similar to next location prediction task.

As Table 2 and Table 3 shown, IAMT-TI and IAMT-LI perform better than all
single-task methods, which confirms long-term dependencies modeled by SAN
are important in dense trajectories. However, IAMT-TI performs worse than
IAMT-I, which ignores the mutual influence of spatio-temporal signals. For time
prediction, IAMT-G and IAMT-L perform slightly better than IAMT-I, because
intention mainly provides spatial information and has a little effect on time pre-
diction. For location prediction, IAMT-I is worse than IAMT-G, indicating that
intention can provide meaningful long-term spatial information. The compari-
son of IAMT-G and IAMT proves that the gating mechanism can effectively
fuse intention into trajectory representation. The result of IAMT-L verifies that
the distribution-aware intention loss function can learn a meaningful intention
representation to provide more accurate long-term information.

ACC MRR Recall macro-F1
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

pe
rfo

rm
an

ce

IAMT-sum
IAMT-concat
IAMT-gating
IAMT-no

(a) Performance on Hangzhou
ACC MRR Recall macro-F1

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

pe
rfo

rm
an

ce

IAMT-sum
IAMT-concat
IAMT-gating
IAMT-no

(b) Performance on Xiamen

Fig. 3. Effects of different aggregation strategies

Effect of Different Intention Aggregation Strategies. In order to further
evaluate the performance of our designed gating mechanism, we compare it with
the following strategies: (1) IAMT-sum sums up the two representations, i.e.,
Gtask = Stask,m + Sg,m; (2) IAMT-concat concatenates two representations in
the feature dimension, i.e., Gtask = Stask,m ⊕ Sg,m; (3) IAMT-no does not use
the intentional representation, i.e., Gtask = Stask,m.

The results are shown in Fig. 3. Since intention has a little effect on time
prediction, we only show the effects on location prediction. IAMT-gating per-
forms better than IAMT-no due to the aggregation of intentional information.
IAMT-sum and IAMT-concat perform worse than IAMT-gating, because not
all information is helpful for current prediction, while these methods utilize all
knowledge of intention and sequence. The gating mechanism ensures that the
model can capture useful information to improve the prediction accuracy.

IAMT 221

50 100 150 200 2500.00

0.03

0.06

0.09

0.12

0.15

0.18

pe
rfo

rm
an

ce
ACC MRR
Recall macro-F1

(a) Performance on Hangzhou

50 100 150 200 2500.1

0.2

0.3

0.4

0.5

0.6

0.7

pe
rfo

rm
an

ce

ACC MRR
Recall macro-F1

(b) Performance on Xiamen

Fig. 4. Effects of different grid granularity

Effect of Different Grid Granularity. In Fig. 4, we investigate the effects of
grid granularity ω from {50, 100, 150, 200, 250} on next location prediction task.
When grid is divided by a proper coarse granularity, future grid can provide
rough direction and long-term information. However, if ω is too small, the range
of the direction reflected by future grid is too large to provide useful information;
if ω is too large, it is hard for the model to accurately predict the future grid, and
the provided direction may deviate from the next movement direction. According
to the results, we finally set ω = 100 on Hangzhou and ω = 50 on Xiamen.

6 Conclusion

In this paper, we propose an intention-aware multitask learning method called
IAMT for spatio-temporal joint prediction. As existing multitask methods
neglect the effects of travel intentions and fail to model the long-term depen-
dencies in trajectory, we introduce travel intention prediction as an auxiliary
task to improve performance of spatio-temporal prediction tasks. Moreover, to
obtain a meaningful representation of intention, we adopt a distribution-aware
loss function to evaluate the captured intention. Furthermore, we carefully design
a gating mechanism to incorporate intentional information into trajectory rep-
resentation to utilize its useful knowledge and adopt self-attention to model
the long-term dependencies of far sampling points in dense trajectories. Finally,
extensive experimental results on two datasets demonstrate the effectiveness of
our model.

Acknowledgement. This work was supported by National Natural Science Founda-
tion of China projects under grant numbers (No.61872258, No.61772356, No.62072125),
the major project of natural science research in universities of Jiangsu province under
grant number 20KJA520005, the priority academic program development of Jiangsu
higher education institutions, young scholar program of Cyrus Tang Foundation.

222 Y. Xu et al.

References

1. Aalen, O., Borgan, O., Gjessing, H.: Survival and Event History Analysis: A Pro-
cess Point of View. Springer, New York (2008). https://doi.org/10.1007/978-0-387-
68560-1

2. Ba, L.J., Kiros, J.R., Hinton, G.E.: Layer normalization. CoRR abs/1607.06450
(2016)

3. Blondel, V.D., Decuyper, A., Krings, G.: A survey of results on mobile phone
datasets analysis. EPJ Data Sci. 4(1), 1–55 (2015). https://doi.org/10.1140/epjds/
s13688-015-0046-0

4. Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., Song, L.: Recur-
rent marked temporal point processes: embedding event history to vector. In:
SIGKDD, pp. 1555–1564 (2016)

5. Feng, J., et al.: Deepmove: predicting human mobility with attentional recurrent
networks. In: WWW, pp. 1459–1468 (2018)

6. Gu, Y.: Attentive neural point processes for event forecasting. In: AAAI, pp. 7592–
7600 (2021)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, pp. 770–778 (2016)

8. Kong, D., Wu, F.: HST-LSTM: a hierarchical spatial-temporal long-short term
memory network for location prediction. In: IJCAI, pp. 2341–2347 (2018)

9. Liang, W., Zhang, W.: Learning social relations and spatiotemporal trajectories
for next check-in inference. TNNLS (2020)

10. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model
with spatial and temporal contexts. In: AAAI, pp. 194–200 (2016)

11. Luca, M., Barlacchi, G., Lepri, B., Pappalardo, L.: Deep learning for human mobil-
ity: a survey on data and models. CoRR abs/2012.02825 (2020)

12. Luong, M., Le, Q.V., Sutskever, I., Vinyals, O., Kaiser, L.: Multi-task sequence to
sequence learning. In: ICLR (2016)

13. Lv, Z., Xu, J., Zhao, P., Liu, G., Zhao, L., Zhou, X.: Outlier trajectory detection:
a trajectory analytics based approach. In: Candan, S., Chen, L., Pedersen, T.B.,
Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10177, pp. 231–246. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55753-3 15

14. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
Markov chains for next-basket recommendation. In: WWW, pp. 811–820 (2010)

15. Seiler, M.C., Seiler, F.A., et al.: Numerical recipes in c: the art of scientific com-
puting. Risk Anal. 9(3), 415–416 (1989)

16. Sun, H., Xu, J., Zheng, K., Zhao, P., Chao, P., Zhou, X.: MFNP: a meta-optimized
model for few-shot next POI recommendation. In: IJCAI, pp. 3017–3023 (2021)

17. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
18. Xiao, S., Yan, J., Yang, X., Zha, H., Chu, S.M.: Modeling the intensity function of

point process via recurrent neural networks. In: AAAI, pp. 1597–1603 (2017)
19. Xu, J., Zhao, J., Zhou, R., Liu, C., Zhao, P., Zhao, L.: Predicting destinations by

a deep learning based approach. TKDE 33(2), 651–666 (2021)
20. Xu, S., Zhang, R., Cheng, W., Xu, J.: MTLM: a multi-task learning model for

travel time estimation. GeoInformatica (1) (2020)
21. Xue, A.Y., Zhang, R., Zheng, Y., Xie, X., Huang, J., Xu, Z.: Destination prediction

by sub-trajectory synthesis and privacy protection against such prediction. In:
ICDE, pp. 254–265 (2013)

https://doi.org/10.1007/978-0-387-68560-1
https://doi.org/10.1007/978-0-387-68560-1
https://doi.org/10.1140/epjds/s13688-015-0046-0
https://doi.org/10.1140/epjds/s13688-015-0046-0
https://doi.org/10.1007/978-3-319-55753-3_15

IAMT 223

22. Yang, D., Fankhauser, B., Rosso, P., Cudré-Mauroux, P.: Location prediction over
sparse user mobility traces using RNNs: flashback in hidden states! In: IJCAI, pp.
2184–2190 (2020)

23. Yang, G., Cai, Y., Reddy, C.K.: Recurrent spatio-temporal point process for check-
in time prediction. In: CIKM, pp. 2203–2211 (2018)

24. Yang, G., Cai, Y., Reddy, C.K.: Spatio-temporal check-in time prediction with
recurrent neural network based survival analysis. In: IJCAI, pp. 2976–2983 (2018)

25. Zhang, Y., Yang, Q.: A survey on multi-task learning. CoRR abs/1707.08114 (2017)
26. Zhao, J., Xu, J., Zhou, R., Zhao, P., Liu, C., Zhu, F.: On prediction of user destina-

tion by sub-trajectory understanding: A deep learning based approach. In: CIKM,
pp. 1413–1422. ACM (2018)

Efficient Retrieval of Top-k Weighted
Spatial Triangles

Ryosuke Taniguchi, Daichi Amagata(B), and Takahiro Hara

Osaka University, Osaka, Japan
{taniguchi.ryosuke,amagata.daichi,hara}@ist.osaka-u.ac.jp

Abstract. Due to the proliferation of location-based services and IoT
devices, a lot of spatial points are being generated. Spatial data anal-
ysis is well known to be an important task. As spatial data analysis
tools, graphs consisting of spatial points, where each point has edges to
its nearby points and the weight of each edge is the distance between
the corresponding points, have been receiving much attention. We focus
on triangles (one of the simplest sub-graph patterns) in such graphs
and address the problem of retrieving the top-k weighted spatial trian-
gles. This problem has important real-life applications, e.g., group search,
urban planning, and co-location pattern mining. However, this problem is
computationally challenging, because the number of triangles in a graph
is generally huge and enumerating all of them is not feasible. To solve
this challenge, we propose an efficient algorithm that returns the exact
result. Our experimental results on real datasets show the efficiency of
our algorithm.

Keywords: Spatial points · Weighted graph · Top-k retrieval

1 Introduction

Due to the proliferation of location-based services and IoT devices, a lot of spatial
(or geo-location) points are being generated nowadays. Analyzing such spatial
points yields useful observations. Many spatial point processing techniques [1–4,
9] and systems [10,13,15] have therefore been devised. Recently, as spatial point
analysis tools, graph-based approaches have been receiving attention [6,14,16].

Given a set P of spatial points and a distance threshold r, a spatial neighbor
graph of P consists of a set of vertices that correspond to points in P and a set of
edges where an edge is created between two points iff the distance between them
is not larger than r and the weight of this edge is the distance. Graph-based
structures provide intuitive relationships between spatial points, so techniques
that mine some patterns (i.e., sub-graphs) from spatial neighbor graphs are
often required. Triangles are particularly considered in graph contexts, because
triangle is one of the simplest yet important primitive sub-graph patterns (e.g.,
clique) having many applications [8,11]. For example, spatial triangles can be
utilized in group search [7], co-location pattern mining [16], and urban planning
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 224–231, 2022.
https://doi.org/10.1007/978-3-031-00123-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_17&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_17

Efficient Retrieval of Top-k Weighted Spatial Triangles 225

[6]. Note that the number of triangles in a spatial neighbor graph is generally
huge. Enumerating all of them is therefore not feasible, and the output size
should be controllable (by a user-specified parameter k) [8]. In spatial databases,
given a subset of points in P (e.g., that form triangles), the cohesiveness of the
subset is a factor in measuring its importance [16].

Motivated by the above applications and observations, this paper addresses
the problem of retrieving the top-k weighted spatial triangles. The weight of the
triangle formed by points px, py, and pz is defined as dist(px, py)+dist(py, pz)+
dist(px, pzy), where dist(·, ·) measures the Euclidean distance between two
points, which takes into account the cohesiveness. Then, given P and the out-
put size k, this problem retrieves k spatial triangles with the minimum weight
among all triangles in the spatial neighbor graph of P . This problem is computa-
tionally challenging, as seen below. A straightforward solution for this problem
is to enumerate all triangles and then output k triangles with the minimum
weight. The number of triangles in the spatial neighbor graph is O(

(
n
2

)
), where

n = |P |, so this solution is not feasible. To alleviate this computational cost, we
can use DHL [8], which is a heuristic algorithm and was proposed originally for
graph databases. DHL assumes that edges are sorted by weights, and it greedily
accesses the edges in this order, so as to avoid enumerating triangles with large
weights. However, to employ DHL, we face substantial time incurred by building
a spatial neighbor graph of P and sorting a large amount of edges.

To solve the above issues, we propose an efficient algorithm that returns
the exact answer. We find an observation that a subset of the spatial neighbor
graph, which usually contains the top-k weighted triangles, can be built offline.
Besides, from this partial graph, for each point p ∈ P , we can enumerate a
triangle having p with a small weight in O(1) time offline. These n triangles
provide a tight threshold for the top-k result, which helps filter unnecessary
points and triangles, resulting in improvement of online computation. Thanks
to these observations, our algorithm does not need to correctly build the spatial
graph and sort all edges. To summarize, our main contributions are as follows:

– We address the problem of retrieving the top-k weighted spatial triangles. To
our knowledge, we are the first to tackle this problem in spatial databases.

– We propose a simple, efficient, and exact solution for this problem.
– We conduct experiments on real datasets, and the results show that our solu-

tion for static data is up to three orders of magnitude faster than a baseline
algorithm.

2 Preliminary

Let P be a set of spatial (or geo-location) points in a Euclidean space. A spatial
point p ∈ P has 2-dimensional coordinates ∈ R

2. We use dist(p, p′) to denote
the Euclidean distance between p and p′. We assume that P is memory resident.

Given a distance threshold r, where r is a tolerable distance between points to
regard them as being located close to each other, we can build a spatial neighbor
graph of P defined below:

226 R. Taniguchi et al.

Definition 1 (Spatial neighbor graph). Given a set P of points and a dis-
tance threshold r, the spatial neighbor graph of P is an undirected graph consist-
ing of a set of vertices that correspond to the points in P and a set of edges where
an edge is created between pi and pj iff dist(pi, pj) ≤ r. The edge between pi and
pj is represented as ei,j and has a weight w(ei,j) where w(ei,j) = dist(pi, pj).

In the spatial neighbor graph, there are triangles consisting of three points fully
connected to each other. We define their weight:

Definition 2 (Weight of a triangle). Given a triangle �x,y,z consisting of
three points px, py, and pz, the weight of this triangle, w(�x,y,z), is:

w(�x,y,z) = dist(px, py) + dist(py, pz) + dist(px, pz). (1)

Then, our problem in Sect. 3 is defined as follows:

Definition 3 (Top-k weighted triangle retrieval problem). Given a
set P of points, an output size k, and a distance threshold r, this problem is to
retrieve at most k triangles in the spatial neighbor graph of P with the minimum
weight1.

3 Our Solution

Main Idea. To efficiently retrieve k triangles with the minimum weight, it is
desirable to prune points that do not contribute to the top-k result. Assume
that triangle �x,y,z is included in the top-k result. From Eq. (1) and Definition
3, it is intuitively seen that, for px, edges ex,y and ex,z would be (two of) the
t nearest neighbors (t-NNs) of px, where t is a small constant. This suggests
that the top-k triangles can be retrieved from the t-NN graph and that correct
building of the spatial neighbor graph of P is not necessary.

This idea brings an important advantage: the spatial neighbor graph of P
needs to be built online (since it depends on r), whereas the t-NN graph of P
can be built offline (for t = O(1)). Furthermore, if we have the t-NN graph of P ,
for each p ∈ P , we can enumerate a promising triangle having p, i.e., the triangle
formed by p and its 2 nearest neighbors, in the same offline step. Even if these
triangles are not included in the top-k result, they usually have small weights,
yielding a tight threshold for online computation in practice. This threshold
helps prune unnecessary points (and thus triangles), so the above ideas improve
the efficiency of online computation.

Our algorithm is designed based on the above ideas and consists of a one-time
offline computation and online computation. In the next subsections, we present
how to prepare these triangles and how to compute the exact top-k result in detail.

1 When r is too small, the spatial neighbor graph of P can be very sparse and there
may be less than k triangles in the graph. In this case, this problem is easily solved,
thus we assume that r is reasonably specified and there are many triangles in the
graph.

Efficient Retrieval of Top-k Weighted Spatial Triangles 227

Offline Processing. The objectives of this offline processing are to (i) build a
B-NN graph of P , where B ≥ 3 is a batch size, and (ii) enumerate triangles with
small weights. The batch size B is tuned empirically. We use p.E to denote the
set of edges held by a point p ∈ P .

Given P and B, for each px ∈ P , we compute the B-NNs of px in P\{px} by
using a kd-tree [5]. The B-NNs are maintained in p.E and sorted in ascending
order of weight (i.e., distance). Moreover, for each px ∈ P , we compute the
triangle �x,y,z, where py and pz are respectively the NN and 2-NN of px. This
triangle is maintained in T , so T has at most n triangles (we remove duplicated
triangles). Last, we sort the triangles in T in ascending order of weight.

Remark. The kd-tree of P is built in O(n log n) time. For a fixed B (i.e., B =
O(1)), the B-NNs of px ∈ P are retrieved in O(Bn1−1/d) = O(

√
n) time [12].

We can therefore build the B-NN graph in O(n1.5) time. Last, sorting triangles
in T needs O(n log n) time. Our offline algorithm hence needs O(n1.5) time.

Building the spatial neighbor graph of P incurs O(n(
√

n+savg)) time, where
savg is the average number of edges held by each point. Compared with this,
our offline algorithm is cheaper, and it is general to any k and r. We exploit
the B-NN graph of P and the set T of triangles to efficiently retrieve the top-k
weighted spatial triangles.

Online Processing. To efficiently retrieve the top-k weighted spatial triangles,
we consider edge access order. Let τ be an intermediate threshold of the top-k
result (i.e., the weight of the intermediate top k-th triangle). From τ and triangle
inequality, for any edges, we can obtain a weight θ that has to be satisfied to form
the top-k weighted spatial triangles. That is, any triangles that have edges with
weights larger than θ do not have to be enumerated. We exploit this observation
along with the triangles in T and the B-NN graph obtained offline.

Let Pcand be the set of points that may form top-k triangles, and Pcand = P
at initialization. Our online algorithm has the following steps:

1. We first initialize the top-k result R and the threshold τ from the n trian-
gles obtained offline in Determine-Threshold(Pcand, r). Then, from τ , we
compute a threshold θ for edges. As seen later, any edges with weights larger
than θ cannot form top-k triangles.

2. (If necessary, we update the B-NN graph by increasing B.) In Reduce-

Candidates(Pcand, i, θ), we remove points with no edges satisfying θ any
more from Pcand.

3. For each point in Pcand, we additionally enumerate triangles that could be in
the top-k result and update R if necessary.

4. We repeat steps 2 and 3 until we have Pcand = ∅, and then R is returned.

Below, we detail steps 1, 2, and 3.

• Step 1. Recall that T is a sorted set of triangles obtained offline. Each tri-
angle in T is formed by a point p, its NN, and 2-NN. (We remove all tri-
angles in T that have edges with weights larger than r.) In Determine-

Threshold(Pcand, r), we initialize R by the first k triangles in T , and τ is

228 R. Taniguchi et al.

the weight of the k-th triangle. Let �x,y,z be the k-th triangle. We set the
threshold θ for edges as follows:

θ = τ − max{dist(px, py), dist(py, pz), dist(px, pz)}. (2)

This is used in the next step.
• Step 2. We next filter unnecessary points in Pcand by using θ. Let pxj

be the j-
th NN of px. Consider the i-th iteration of Reduce-Candidates(Pcand, i, θ).
For px ∈ Pcand, if w(ex,xi+2) > θ, triangles including ex,xi+2 can be ignored.
(Recall that NN and 2-NN were considered in the offline processing.)

Proposition 1. For a point px ∈ Pcand, if w(ex,xi+2) > θ, any triangles that
have ex,xi+2 cannot be the top-k weighted spatial triangles.

Proof. Consider a triangle �x,xi+2,y. We have w(ex,xi+2) ≤ w(ex,y) + w(exi,y)
from triangle inequality. Equation (2) shows that θ is the sum of the weights of
two edges of the (intermediate) top k-th triangle. Therefore, if w(ex,xi+2) > θ,
the weights of any triangles that have ex,xi+2 are larger than τ . ��

From this observation, we see that, if w(ex,xi+2) > θ, all unseen triangles
having px do not have to be enumerated and px can be safely removed from
Pcand. Reduce-Candidates(Pcand, i, θ) does this point removal. (For a point
px ∈ Pcand, if we do not have ex,xi+2 , we update the B-NN graph by increasing
B before Reduce-Candidates(Pcand, i, θ).)

The triangles enumerated offline practically have small weights, as they are
based on NN and 2-NN. Therefore, τ and θ are tight even when i is small, and
we can effectively reduce the size of Pcand in early iterations.

• Step 3. After filtering unnecessary points in the above step, we enu-
merate triangles that may become the top-k result in Enumerate-

Triangles(Pcand, r, i). Consider the i-th iteration of this step. For each
px ∈ Pcand, we enumerate triangles formed by px, pxi+2 , and pxj

, where
j ∈ [1, ..., i + 1], while updating the top-k result R, τ , and θ.

W.r.t. pxj
, we access it in order of px1 , ..., pxi+1 . Then, it is important to notice

that w(ex,xj
) + w(ex,xi+2) monotonically increases. When we have w(ex,xj

) +
w(ex,xi+2) ≥ τ , we see that triangles with these edges cannot be the top-k result,
thus we can stop enumerating triangles without losing correctness.

Analysis. We analyze the theoretical performance of our online algorithm. Step
1 needs O(1) time, since T is sorted offline. Consider the i-th iteration of step 2,
and let ni be the size of Pcand in this iteration. (Notice that ni is affected by k.)
In step 2, for each px ∈ Pcand, we check ex,xi+2 . It hence needs O(ni) time2. Next,
consider the i-th iteration of step 3. Let n′

i be the size of Pcand in this iteration.
Notice that n′

i ≤ ni, since step 2 reduces the size of Pcand. In step 3, for each
px ∈ Pcand, we enumerate triangles formed by px, pxi+2 , and pxj

. Although we

2 When we need to update the B-NN graph, we need O(ni
√
n) additional time.

Efficient Retrieval of Top-k Weighted Spatial Triangles 229

can early terminate this enumeration, its worst number is i+1. That is, we need
O(i) time for px, thus step 3 requires O(i · n′

i) time. Consequently, our online
algorithm needs O(

∑I
i=1(ni + i · n′

i)) time, where I is the number of iterations
of step 3.

4 Experiment

This section introduces our experimental results. All experiments were conducted
on a machine with 3.6 GHz Intel Core i9-9900K CPU and 128 GB RAM. In
addition, all algorithms tested were single threaded and compiled by g++ 9.3.0
with -O3 flag.

We compared it with DHL [8], which can compute the exact answer from the
spatial neighbor graph of P . For DHL, we used the original implementation3.

Dataset. We used two real datasets, CaStreet4 and Places5. CaStreet consists
of the minimum bounding rectangles of road segments in the U.S.A. We used
bottom-left and upper-right points, and its cardinality is 4,499,454. Places con-
sists of the geo-locations of public places in the U.S.A, and its cardinality is
9,356,750.

Parameter. We set n = 1, 000, 000 (via random sampling) and k = 100 by
default. In all experiments, r = 0.01 (and it did not affect the performance of
our algorithm). We set B = 10.

Impact of k. Next, we investigate the impact of the result size k, and Fig. 1
shows our experimental result. Our algorithm is significantly faster than DHL.
For example, when k = 100, our algorithm is 2021 and 1465 times faster than
DHL on CaStreet and Places, respectively. DHL suffers from the overhead cost
incurred by dealing with the spatial neighbor graph (while we do not have this
drawback.)

It can be also observed that the tendency of our algorithm is different between
CaStreet and Places. We found that Places is denser than CaStreet. Due to this
feature, compared with CaStreet case, our algorithm needed to enumerate more
triangles and update the top-k result more frequently on Places. However, it still
returns the result in 1.13 [sec] even when k = 1000. Recall that it needed 0.16
[sec] when k = 100. We therefore see that our algorithm scales linearly to k.

Impact of n. Figure 2 studies the scalability of our algorithm to the cardinality
of dataset n. Our algorithm has a linear scalability to n, while DHL is superlinear
w.r.t. n. This clarifies the advantage of our algorithm. When we used all points
of CaStreet and Places, our algorithm is 2807 and 6193 times faster than DHL
on CaStreet and Places, respectively.

3 https://github.com/raunakkmr/Retrieving-top-weighted-triangles-in-graphs.
4 http://chorochronos.datastories.org/?q=node/59.
5 https://archive.org/details/2011-08-SimpleGeo-CC0-Public-Spaces.

https://github.com/raunakkmr/Retrieving-top-weighted-triangles-in-graphs
http://chorochronos.datastories.org/?q=node/59
https://archive.org/details/2011-08-SimpleGeo-CC0-Public-Spaces

230 R. Taniguchi et al.

0 250 500 750 1000
10−2

10−1

100

101

102

103

k (CaStreet)

C
om

pu
ta

tio
n

tim
e

[s
ec

]
Ours DHL

(a) CaStreet

0 250 500 750 1000
10−2

10−1

100

101

102

103

k (Places)
C

om
pu

ta
tio

n
tim

e
[s

ec
]

Ours DHL

(b) Places

Fig. 1. Impact of k

1 2 3 4 5
10−2

10−1

100

101

102

103

104

Cardinality [x106] (CaStreet)

C
om

pu
ta

tio
n

tim
e

[s
ec

]

Ours DHL

(a) CaStreet

1 2 3 4 5 6 7 8 9 10
10−2

10−1

100

101

102

103

104

Cardinality [x106] (Places)

C
om

pu
ta

tio
n

tim
e

[s
ec

]

Ours DHL

(b) Places

Fig. 2. Impact of cardinality of dataset

5 Conclusion

The number of location-based services is increasing, and a lot of spatial points
are being generated nowadays. This fact strengths the importance of analyzing
spatial points, and much efforts have been made to devise techniques for spatial
point analysis.

As a spatial point analysis tool, we proposed the problem of retrieving the
top-k weighted spatial triangles. Because the number of triangles in a set of

Efficient Retrieval of Top-k Weighted Spatial Triangles 231

spatial points can be huge, simply enumerating triangles is time-consuming.
To avoid this issue, we proposed an efficient algorithm that returns the exact
answer. We conducted experiments on real datasets, and the results demonstrate
the efficiencies of our solution.

Acknowledgements. This research is partially supported by JSPS Grant-in-Aid
for Scientific Research (A) Grant Number 18H04095, JST CREST Grant Number
J181401085, and JST PRESTO Grant Number JPMJCR21F2.

References

1. Amagata, D., Hara, T.: Monitoring maxrs in spatial data streams. In: EDBT, pp.
317–328 (2016)

2. Amagata, D., Hara, T.: A general framework for maxrs and maxcrs monitoring
in spatial data streams. ACM Trans. Spatial Algorithms Syst. (TSAS) 3(1), 1–34
(2017)

3. Amagata, D., Hara, T.: Identifying the most interactive object in spatial databases.
In: ICDE, pp. 1286–1297 (2019)

4. Amagata, D., Tsuruoka, S., Arai, Y., Hara, T.: Feat-sksj: fast and exact algorithm
for top-k spatial-keyword similarity join. In: SIGSPATIAL, pp. 15–24 (2021)

5. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

6. Fang, Y., Li, Y., Cheng, R., Mamoulis, N., Cong, G.: Evaluating pattern matching
queries for spatial databases. VLDB J. 28(5), 649–673 (2019). https://doi.org/10.
1007/s00778-019-00550-3

7. Fang, Y., et al.: On spatial-aware community search. IEEE Trans. Knowl. Data
Eng. 31(4), 783–798 (2018)

8. Kumar, R., Liu, P., Charikar, M., Benson, A.R.: Retrieving top weighted triangles
in graphs. In: WSDM, pp. 295–303 (2020)

9. Nishio, S., Amagata, D., Hara, T.: Lamps: location-aware moving top-k pub/sub.
IEEE Trans. Knowl. Data Eng. 34(1), 352–364 (2022)

10. Pandey, V., Kipf, A., Neumann, T., Kemper, A.: How good are modern spatial
analytics systems? PVLDB 11(11), 1661–1673 (2018)

11. Park, H.M., Myaeng, S.H., Kang, U.: PTE: enumerating trillion triangles on dis-
tributed systems. In: KDD, pp. 1115–1124 (2016)

12. Toth, C.D., O’Rourke, J., Goodman, J.E.: Handbook of Discrete and Computa-
tional Geometry. CRC Press, Boca Raton (2017)

13. Tsuruoka, S., Amagata, D., Nishio, S., Hara, T.: Distributed spatial-keyword KNN
monitoring for location-aware pub/sub. In: SIGSPATIAL, pp. 111–114 (2020)

14. Wang, Y., Yu, S., Dhulipala, L., Gu, Y., Shun, J.: Geograph: a framework for graph
processing on geometric data. ACM SIGOPS Oper. Syst. Rev. 55(1), 38–46 (2021)

15. Yu, J., Sarwat, M.: Geosparkviz: a cluster computing system for visualizing
massive-scale geospatial data. VLDB J. 30(2), 237–258 (2021)

16. Zhang, C., Zhang, Y., Zhang, W., Qin, L., Yang, J.: Efficient maximal spatial clique
enumeration. In: ICDE, pp. 878–889 (2019)

https://doi.org/10.1007/s00778-019-00550-3
https://doi.org/10.1007/s00778-019-00550-3

DIOT: Detecting Implicit Obstacles
from Trajectories

Yifan Lei1,2, Qiang Huang1(B), Mohan Kankanhalli1, and Anthony Tung1

1 School of Computing, National University of Singapore, Singapore, Singapore
{leiyifan,huangq,mohan,atung}@comp.nus.edu.sg

2 Tencent Inc., Shenzhen, China

Abstract. In this paper, we study a new data mining problem of obsta-
cle detection. Intuitively, given two kinds of trajectories, i.e., reference
and query trajectories, the obstacle is a region such that most query tra-
jectories bypass this region, whereas the reference trajectories go through
as usual. We introduce a density-based definition for the obstacle within
a new normalized Dynamic Time Warping distance and the density func-
tions tailored for the sub-trajectories to estimate the density variations.
With this definition, we introduce a novel framework DIOT to detect
implicit obstacles. Experimental results show that DIOT can capture the
nature of obstacles yet detect the obstacles efficiently and effectively.

Keywords: Obstacle detection · Trajectory · Dynamic Time
Warping · Kernel density estimation · Nearest Neighbor Search

1 Introduction

With the prevalence of location devices, many trajectory data have been used for
data analytics. A trajectory is often represented as a sequence of geo-locations of
moving objects such as cars, vessels, and anonymous persons. In this paper, we
study a new data mining problem of obstacle detection based on trajectory data.
Given two kinds of trajectories, i.e., reference and query trajectories, the obstacle
is a region such that most query trajectories bypass this region; in contrast, the
reference trajectories go through as usual. For ease of illustration, we use T to
denote the reference trajectories and Q to indicate the query trajectories.

Example 1. Obstacles are ubiquitous. Figure 1 shows a real-life example of the
obstacle. We plot the vessel trajectories in May 2017 and August 2017 in
Figs. 1(a) and (b), respectively. According to the official document of Singa-
porean Notices to Mariners in June 2017,1 there is a temporary exclusion zone
for operations on a sunken vessel Thorco Cloud from March to June 2017, and a
red polygon shows its geo-location. From Fig. 1, most trajectories in May 2017
bypass the red polygon, whereas the trajectories in August 2017 can go through
this zone as usual. Thus, this zone can be regarded as an obstacle.
1 https://www.mpa.gov.sg/web/wcm/connect/www/b10f0a7b-09fe-4642-bc30-0282ff

8b48f4/notmarijun17.pdf?MOD=AJPERES.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 232–240, 2022.
https://doi.org/10.1007/978-3-031-00123-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_18&domain=pdf
https://www.mpa.gov.sg/web/wcm/connect/www/b10f0a7b-09fe-4642-bc30-0282ff8b48f4/notmarijun17.pdf?MOD=AJPERES
https://www.mpa.gov.sg/web/wcm/connect/www/b10f0a7b-09fe-4642-bc30-0282ff8b48f4/notmarijun17.pdf?MOD=AJPERES
https://doi.org/10.1007/978-3-031-00123-9_18

DIOT: Detecting Implicit Obstacles from Trajectories 233

(a) Vessel trajectories in May 2017 (b) Vessel trajectories in August 2017

Fig. 1. An example of obstacle

Obstacle detection arises naturally in many real-life scenarios, such as urban
planning and transportation analysis.

Scenario 1: Urban Planning. The government can leverage the trajectories
from different kinds of anonymous people to detect obstacles for urban plan-
ning. For example, suppose there are two kinds of trajectories (e.g., youngsters’
trajectories T and elderlies’ trajectories Q) passing through a housing estate.
The government can detect implicit obstacles (e.g., steep slope with stairs) for
elderlies based on the density variations of Q compared with T and redesign the
housing estates to make elderly easier to move through.

Scenario 2: Transportation Analysis. Suppose there is a highway road with
two lanes. T denotes a set of car trajectories from suburb to downtown; Q is a
set of car trajectories vice versa. In the morning, the lane of Q is an obstacle
because most people live in the suburbs, and they need to drive to downtown to
work. Thus, the lane of T has much higher density than that of Q. Similarly, the
lane of T is an obstacle in the afternoon. Based on such inferences, the traffic
management department can change this road as a tidal road.

One might wonder why we do not consider 2D histograms or road networks.
The 2D histograms satisfy Scenario 1, but they cannot carry directional infor-
mation, which does not satisfy Scenario 2. The road networks are suitable for
Scenario 2. Nonetheless, they cannot model the randomly moving data, which
is not suitable for Scenario 1. Moreover, Compared to the long trajectories with
variable sizes, obstacles are often small regions. Thus, we partition trajectories
into fixed-size sub-trajectories and use them as the primary data representation.

In this paper, we first formalize the definition of the obstacle based on the
density variation of sub-trajectories. To accurately characterize the obstacles, we
design a new normalized Dynamic Time Warping (nDTW) distance and develop
the density functions to estimate the density variation of sub-trajectories and
their succeeds. Then, we propose a novel framework DIOT to Detect Implicit
Obstacles from Trajectories. Given a collection of reference sub-trajectories, for
a set of query sub-trajectories, the insight of DIOT is to recursively identify
the reference sub-trajectory whose density variation in query sub-trajectories is
significantly larger than that in reference sub-trajectories. Extensive experiments
on two real-life data sets demonstrate the superior performance of DIOT.

234 Y. Lei et al.

2 Problem Formulation

Since the problem of obstacle detection is based on trajectories, we first describe
some basic concepts about trajectory and sub-trajectory.

2.1 Basic Definitions

A trajectory T is a sequence of points (t(1), · · · , t(l)), where each point t(i) is a
d-dimensional vector and l is the length of T . A sub-trajectory is defined as a
consecutive sub-sequence of a trajectory, i.e., t = T [i : j] where 1 ≤ i < j ≤ l. In
this paper, we assume each point t(i) represents as a 2-dimensional geo-location
(latitude, longitude). DIOT can be easily extended to support obstacle detection
for d-dimensional points for any d ≥ 3.

Given a sliding window w and a step s (s < w), we partition a trajectory T
into a set of sub-trajectories, i.e., P (T) = {t1, t2, t3, · · · }, where t1 = T [1 : w],
t2 = T [1+s : w+s], t3 = T [1+2s : w+2s], etc. Furthermore, given a set of sub-
trajectories {t1, t2, t3, · · · } which are partitioned by sequential order from the
same T , t2 is the succeed of t1 and t3 is the succeed of t2, i.e., t2 = succ(t1) and
t3 = succ(t2). Hereafter, we use P (T) = {P (T) | T ∈ T } to be the reference sub-
trajectories and P (Q) = {P (Q) | Q ∈ Q} to represent the query sub-trajectories.

2.2 Distance Function

Fig. 2. An example of
sub-trajectories for DTW

As is well known, Dynamic Time Warping (DTW) [6]
is one of the most robust and widely used distance
functions for the trajectory and time-series data [3].
Given any two sub-trajectories t and q of the same
length w, we can compute DTW (t, q) in O(w2) time
via dynamic programming. However, it might not be
sufficient to use DTW as the distance function of sub-
trajectories for obstacle detection. For example, the
sub-trajectory pair (t1, t2) in Fig. 2 shows the same
pattern as (t3, t4). They should have the same density.
Nevertheless, DTW (t1, t2) < DTW (t3, t4). Thus, we
propose a normalized DTW (nDTW) as the distance
function of sub-trajectories for density estimation. Compared with DTW, we use
the length of sub-trajectories for normalization.

Definition 1 (nDTW). Given any two sub-trajectories t = (t(1), · · · , t(w))
and q = (q(1), · · · , q(w)), the nDTW (t, q) is computed as follows:

nDTW (t, q) =
DTW (t, q)√∑w−1

i=1 ‖t(i) − t(i+1)‖
√∑w−1

j=1 ‖q(j) − q(j+1)‖
.

According to Definition 1, nDTW (t1, t2) = nDTW (t3, t4). Thus, by utilizing
nDTW (t, q) as the distance function, the pairs of sub-trajectories with the same
pattern have the same density for obstacle detection.

DIOT: Detecting Implicit Obstacles from Trajectories 235

2.3 Density Function

Density of Sub-Trajectories. Given a set of sub-trajectories P (T), for any
sub-trajectory t, one often adopts the popular Gaussian KDE [8] to estimate its
density, i.e., f̂P (T)(t) = 1

|P (T)|
∑

ti∈P (T) exp(−nDTW (t,ti)
2

2σ2), where σ determines
the bandwidth of the Gaussian kernel. Note that for those ti ∈ P (T) that are far
from t, their contributions to f̂P (T)(t) can be neglected. Thus, we only consider
k Nearest Neighbors (kNNs) of t, i.e., NT (t). Moreover, if some sub-trajectories
t∗i ∈ NT (t) are from the same trajectory, f̂P (T)(t) might be high but the actual
density is low. To remedy this issue, we add an extra condition to NT (t) such that
they come from distinct trajectories. Let ÑT (t) be the k nearest sub-trajectories
of t from k distinct trajectories of T . We use ÑT (t) instead of P (T) to estimate
the density of t, i.e., f̂ÑT

(t) = 1
|T |

∑
t∗
i ∈ÑT (t) exp(−nDTW (t,t∗

i)
2

2σ2).

Density of Succeed Sub-trajectories. To evaluate the density variation
of t, we need to estimate succ(t)’s density, i.e., f̂ÑT ,succ(t) = 1

|T |
∑

t∗
i ∈ÑT (t)

exp(− Δ2
i

2σ2), where Δi = max{nDTW (t, t∗i), nDTW (succ(t), succ(t∗i))}. Com-
pared to f̂ÑT

(t), we only use the succeeds from the same ÑT (t) to estimate
f̂ÑT ,succ(t) because we aim to evaluate the density variation of t, so we only
consider the density of succ(t) from the same direction of t. Moreover, to eval-
uate f̂ÑT ,succ(t) precisely, we use Δi to add penalty if any succ(t∗i) is no longer
close to succ(t).

2.4 Obstacle Detection

Finally, we follow the Association Rule [1] and DBSCAN [4] and adopt the
standard z-test of hypothesis testing to define the obstacle.

Definition 2 (Obstacle). Given two thresholds τ (τ > 0) and δ (δ > 0),
obstacles are detected from two kinds of sub-trajectories P (T) and P (Q) (Rela-
tivity). An obstacle is a set of last points from a subset of P (T) such that for a
subset of close query sub-trajectories q ∈ P (Q), each t ∈ NT (q) should satisfy:

– (Significance) The density variation score of t is significant, i.e.,

score(t) = p̂1−p̂2√
p̂(1−p̂)(

1
f̂ÑT

(t)
− 1

f̂ÑQ
(t)

)

> τ, (1)

where p̂1 =
f̂ÑT ,succ(t)

f̂ÑT
(t)

, p̂2 =
f̂ÑQ,succ(t)

f̂ÑQ
(t)

, and p̂ =
f̂ÑT

(t)·p̂1+f̂ÑQ
(t)·p̂2

f̂ÑT
(t)+f̂ÑQ

(t)
.

– (Support) ÑT (t) and ÑQ(t) are close to t, i.e.,

f̂ÑT
(t) > δ and f̂ÑQ

(t) > δ. (2)

236 Y. Lei et al.

In Definition 2, inspired by Association Rule, we use the ratio p̂1 and p̂2
to denote the density variation of t in P (T) and P (Q), respectively. We then
adopt the one-sided z-test to compute the significance of the density variation
(Inequality 1). We use Inequality 2 to keep the closeness between t and its nearest
sub-trajectories. Additionally, we follow the definition of DBSCAN such that:
(1) the query sub-trajectories are close to each other; otherwise, the obstacle
can be divided into multiple regions; (2) we use the last points of the selected
t ∈ P (T) to construct an obstacle so that it can be of arbitrary shape.

According to Definition 2, the obstacles are usually different depending on
P (Q). Thus, we formalize the obstacle detection as an online query problem:

Definition 3 (Obstacle Detection). Given a set of reference sub-trajectories
P (T) and two thresholds τ (τ > 0) and δ (δ > 0), the problem of obstacle
detection is to construct a data structure which, for a collection of query sub-
trajectories P (Q), finds all implicit obstacles as defined in Definition 2.

3 DIOT

3.1 The Basic Framework

The basic DIOT framework consists of two phases: pre-processing phase and
query phase, which are described as follows.

In the pre-processing phase, we first partition the reference trajectories T
into P (T). Then, we build an HNSW graph GT for P (T). We choose HNSW
[5] because (1) it is very efficient for Nearest Neighbor Search (NNS) [2]; (2) GT
directly stores NT (t) for each t ∈ P (T). To determine ÑT (t), we only need to
check whether the new candidate comes from distinct trajectories.

In the query phase, given a set of query trajectories Q, we first partition
Q into P (Q) and build an HNSW graph GQ for P (Q). After indexing Q, we
initialize an empty set S to store obstacles and use a bitmap to flag each q ∈ P (Q)
checked or not. Then, we find the candidate sub-trajectories C using the Depth
First Search (DFS) method for each q ∈ P (Q). We construct an obstacle O by
the last points of C and add O to S if |C| > 0. We return S as the answer.

We then illustrate the DFS method to find the candidate sub-trajectories
C. For each q ∈ P (Q), we first find its NT (q) from GT . For each t ∈ NT (q),
we compute f̂ÑT

(t), f̂ÑT ,succ(t), f̂ÑQ
(t), f̂ÑQ,succ(t) and validate whether both

Inequalities 1 and 2 are satisfied or not. We add t to C if both satisfied. After
checking all t ∈ NT (q), if C is not empty, i.e., |C| > 0, which means there may
exist an obstacle, we continue to find the candidate sub-trajectories from the
close query sub-trajectories of q, i.e., NQ(q), until no further new candidate can
be found or all NQ(q)’s have been checked.

3.2 Optimizations

The basic obstacle detection framework can perform well on many data sets. We
now develop four insightful strategies for further optimization.

DIOT: Detecting Implicit Obstacles from Trajectories 237

Pre-compute ÑT (t). For each t ∈ NT (q), we need to conduct distinct k-NNS
twice to find ÑT (t) from GT and ÑQ(t) from GQ, respectively. Notice that the
operation to find ÑT (t) is independent of Q. Thus, we determine all ÑT (t)’s
in the pre-processing phase. Although the complexity remains the same, this
strategy can speedup the query phase as it is a very frequent operation.

Build a Bitmap of P (T). During the query phase, some t ∈ P (T) may be
checked multiple times. For example, suppose q1, q2 ∈ P (Q) and they are close
to each other. If t ∈ NT (q1), it is very likely that t ∈ NT (q2). As such, we need
to check t twice. To avoid redundant computations, we also build a bitmap of
P (T) to flag each t ∈ P (T) checked or not.

Skip the Close qi ∈ NQ(q). As we call the DFS method recursively, we do
not need to consider all qi ∈ NQ(q) as many t ∈ NT (qi)’s have been checked in
previous recursions. Let ε be a small distance threshold. Before the recursion of
qi, we first check its closeness to q. If nDTW (qi, q) < ε, as NT (qi) are almost
identical to NT (q), we set flag[qi] = true and skip this recursion.

Skip the Close t ∈ NT (q). Similar to the motivation of skipping the close qi ∈
NQ(q), we do not need to check all t ∈ NT (q). Specifically, for each t ∈ NT (q),
if there exists a ti ∈ NT (t) that has been checked and nDTW (t, ti) < ε, we
directly follow the same operation of ti to t to avoid duplicated computations.

4 Experiments

We study the performance of DIOT for obstacle detection. We use two real-life
data sets Vessel and Taxi for validation, which are described as follows.

Vessel is a collection of GPS records of the vessels near Singapore Strait
during May to September 2017. We find three sunken vessels, i.e., Harita Berlian,
Thorco Cloud, and Cai Jun 3, with available operating geo-location area. Thus,
we select the trajectories in non-operating time as references and the trajectories
around the operating region in the operating time as queries.

Taxi [7] is a set of trajectories of 14,579 taxis in Singapore. We study the
effect of Electronic Road Pricing (ERP) gantries, which is an electronic system
of road pricing in Singapore. We select the taxi trajectories with free state as
references and those in morning peak hour and afternoon peak hour when the
ERP is working as queries. We suppose taxi drivers do not pass through the
ERP gantries when the taxi is free. Thus, we use the location of working ERP
gantries as the ground truths.

We use interpolation to align the trajectories. Due to the different nature of
Vessel and Taxi, we use 600 and 30 s as the interval of interpolation, respectively.
We set w = 6 and s = 1 for partitioning and use k = 8 for kNNs.

4.1 Quantitative Analysis

We first conduct the quantitative analysis of DIOT. We report the highest F1-
scores of DIOT from a set of δ ∈ {0.5, 1.0, · · · , 4.0} and τ ∈ {1.282, 1.645, 1.960,
2.326, 2.576} using grid search. The results are depicted in Table 1.

238 Y. Lei et al.

Table 1. The results of quantitative analysis, where Time refers to the query time.

Query set DIOT without optimization DIOT with optimization

Precision Recall F1-score Time Precision Recall F1-score Time

Harita Berlian 100.0 100.0 100.0 209.16 100.0 100.0 100.0 109.87

Thorco Cloud 50.0 100.0 66.7 18.46 100.0 100.0 100.0 12.31

Cai Jun 3 25.0 100.0 40.0 15.06 20.0 100.0 33.3 7.23

Morning ERP 51.3 88.2 64.9 18.14 50.0 82.4 62.2 4.67

Afternoon ERP 41.7 68.0 51.7 25.47 47.6 52.0 49.7 7.32

For Vessel, since each query has only one ground truth obstacle, DIOT can
detect all of them with 100% recall. As the obstacle pattern of Harita Berlian
is obvious, its F1-score is uniformly higher than that of Thorco Cloud and Cai
Jun 3. DIOT has a slightly lower F1-score for Cai Jun 3 because its operating
area is not at the centre of the vessel route. For Taxi, more than 50% and
40% detected obstacles fit the ERP gantries for Morning and Afternoon ERP
queries, respectively. These results validate our assumption that taxi drivers tend
to avoid ERP gantries when their taxis are free. Table 1 also shows that DIOT
with optimization is 2∼4 times faster than that without optimization under the
similar accuracy, which confirms the effect of the optimization strategies.

4.2 Case Studies

To validate the actual performance of DIOT, we conduct case studies for some
typical obstacles found from Vessel and Taxi.

Vessel: Thorco Cloud. Figure 3(a) shows the obstacle discussed in Sect. 1.
The orange polygon represents the operating area (actual obstacle). One can
regard the convex hull formed by the red circles as the returned obstacle. During
the operating time, the vessels (blue curves) have clear pattern to avoid the
operating area, while during the non-operating time, the vessels (green curves)
move freely. This discrepancy is successfully captured by DIOT, and the location
of the detected obstacle region (red circles) fits the operating area.

Taxi: Morning ERP. Figure 3(b) depicts the typical obstacles caused by ERP
gantries. The orange stars are the location of ERP gantries. One can find explicit
correlations between the returned obstacles and the ERP gantries. For example,
as shown in Rectangle A, the star represents the ERP gantry in the Bt Timah
Expressway street whose operating time is 7:30–9:00 am weekdays. The query
trajectories (blue curves) have significantly less tendency to go towards the ERP
gantry. Moreover, some obstacles that are not directly associated to the ERP
gantries might be caused by the ERP as well. For instance, the detected obstacle
in Rectangle B is directly towards to the Central Express Street in Singapore

DIOT: Detecting Implicit Obstacles from Trajectories 239

that ends with some ERP gantries. Thus, their correlation might be even higher
than the precision and recall values shown in Table 1.

(a) Case study of Thorco Cloud (b) Case study of Morning ERP

Fig. 3. Case study (Color figure online)

5 Conclusions

In this paper, we study a new data mining problem of obstacle detection that
has applications in many scenarios. We focus on the trajectory data and intro-
duce a density-based definition for the obstacle. Moreover, we introduce a novel
framework DIOT for obstacle detection and develop four insightful strategies for
optimization. Experimental results on two real-life data sets demonstrate that
DIOT enjoys superior performance yet captures the essence of obstacles.

Acknowledgements. This research is supported by the National Research Founda-
tion, Singapore under its Strategic Capability Research Centres Funding Initiative. Any
opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of National Research Foundation,
Singapore.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: SIGMOD, pp. 207–216 (1993)

2. Aumüller, M., Bernhardsson, E., Faithfull, A.: Ann-benchmarks: a benchmarking
tool for approximate nearest neighbor algorithms. Inf. Syst. 87, 101374 (2020)

3. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and distance
measures. PVLDB 1(2), 1542–1552 (2008)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.
226–231 (1996)

5. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. TPAMI (2018)

240 Y. Lei et al.

6. Myers, C.S., Rabiner, L.R.: A comparative study of several dynamic time-warping
algorithms for connected-word recognition. Bell Syst. Tech. J. 60(7), 1389–1409
(1981)

7. Wu, W., Ng, W.S., Krishnaswamy, S., Sinha, A.: To taxi or not to taxi?-Enabling
personalised and real-time transportation decisions for mobile users. In: 2012 IEEE
13th International Conference on Mobile Data Management, pp. 320–323 (2012)

8. Zheng, Y., Jestes, J., Phillips, J.M., Li, F.: Quality and efficiency for kernel density
estimates in large data. In: SIGMOD, pp. 433–444 (2013)

Exploring Sub-skeleton Trajectories
for Interpretable Recognition

of Sign Language

Joachim Gudmundsson, Martin P. Seybold, and John Pfeifer(B)

University of Sydney, Sydney, Australia
johnapfeifer@yahoo.com

Abstract. Recent advances in tracking sensors and pose estimation
software enable smart systems to use trajectories of skeleton joint loca-
tions for supervised learning. We study the problem of accurately recog-
nizing sign language words, which is key to narrowing the communication
gap between hard and non-hard of hearing people.

Our method explores a geometric feature space that we call ‘sub-
skeleton’ aspects of movement. We assess similarity of feature space tra-
jectories using natural, speed invariant distance measures, which enables
clear and insightful nearest neighbor classification. The simplicity and
scalability of our basic method allows for immediate application in dif-
ferent data domains with little to no parameter tuning.

We demonstrate the effectiveness of our basic method, and a boosted
variation, with experiments on data from different application domains
and tracking technologies. Surprisingly, our simple methods improve sign
recognition over recent, state-of-the-art approaches.

1 Introduction

The problem of automatically and accurately identifying the meaning of human
body movement has gained research interest due to advances in motion capture
systems, artificial intelligence algorithms, and powerful hardware. Motion cap-
ture systems such as Microsoft’s Kinect or the Leap Motion controller have been
used to capture motion of human actors for recently released benchmark data
sets (e.g. KinTrans [8], LM [5], NTU RGB+D [13]).

This work studies the problem of recognizing patterns in human sign lan-
guage. Human sign languages are systems of communication that use manual
movement patterns of arms and hands as well as non-manual elements, such
as head, cheek and mouth posture, to convey meaning. We focus on data sets
that consist of extracted, single word labeled inputs along with the sequences

See https://arxiv.org/abs/2202.01390 for the full version of this paper.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-00123-9 19.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 241–249, 2022.
https://doi.org/10.1007/978-3-031-00123-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_19&domain=pdf
https://arxiv.org/abs/2202.01390
https://doi.org/10.1007/978-3-031-00123-9_19
https://doi.org/10.1007/978-3-031-00123-9_19

242 J. Gudmundsson et al.

3-closest Training Signs (distances)

R-Hand, L-Hand, R-Shoulder

L-Wrist, L-Shoulder, Torso
joints relative to R-Hand

Query Trajectory Sign (weight)Sub-skeleton Features

to(3.3) deposit(4.1) deposit(6.7)

to(4.5) deposit(6.8) deposit(9.4)True Label:
deposit

deposit(1.29)

Predicted Label:
deposit

deposit(1.14)

to(1.00)

to(1.00)

absolute joints

Fig. 1. Example of the proposed kNN-m classification (k = 3) of a query trajectory
based on speed-invariant distances of one absolute (top) and one relative (bottom)
sub-skeleton movement pattern.

of skeletal joint locations of the actors. Our goals are to attain high classifica-
tion accuracy with acceptable learning and query latency on diverse and evolving
data sources, requiring little to no parameter tuning. In contrast to deep learning
models that assume static environments, we are particularly interested in sim-
ple, interpretable methods that, in turn, provide insight for curation of evolving,
publicly available catalogs of sign language.

Contribution and Paper Structure. The main idea of our method is to map
human body skeletal movement into a feature space that captures absolute and
relative movement of sets of joints (see Fig. 1). Based on the high-dimensional
feature trajectories, we apply simple classifiers that use geometric similarity
measures (see Sect. 2). The main technical difficulty is determining the most
discriminative way to transform spatial joint locations into high-dimensional
trajectories. Motivated by sign language, we effectively navigate the vast space
of absolute and relative movement patterns that subsets of joints describe, which
we call ‘sub-skeleton’ features.

We propose a general, novel method that automatically mines a set of max-
imal discriminating sub-skeleton features, irrespective of the present skeleton
formats (see Sect. 3). Our main contributions are as follows:

– Our mining method discovers sub-skeleton aspects in the data sets that are
highly discriminating. Since all feature trajectories directly relate to the input
data, the merits of each classification result can be interpreted and visualized
naturally in terms of a geometric similarity measure (e.g. Fig. 2).

– Simple Nearest Neighbor and Ensemble Boosted Classification achieve
improved accuracy on sign-language benchmarks of diverse tracking tech-
nologies. Competitive accuracy on Human Action benchmarks show that our
method generalizes to other recognition problems. Particularly noteworthy
are our high accuracy results on very small training sets (see Sect. 4).

Exploring Sub-skeletons for Interpretable Recognition of Sign Language 243

– To the best of our knowledge, we are the first to assess sub-skeleton fea-
tures with trajectory similarity measures (e.g. the Fréchet distance) for sign
language and human action classification problems.

Furthermore, our publicly available1 implementation achieves average query
latency below 100 ms on standard, non-GPU, desktop hardware.

2 Setup and Problem Definition

A skeleton G is an undirected connected graph where each vertex represents a
joint. In our setting G models a part of a human body skeleton where vertices
are adjacent if their joints have a rigid connection (e.g. a bone). As input for a
word signed by an actor, we are given a sequence S of n frames 〈G1, . . . , Gn〉,
and each Gi holds the 3D location of the joints at time step i. Frame frequency
is typically constant but depends heavily on the capture technology. Sequences
have varying duration, for example, between 0.2 and 30 s (cf. Table 1). Every
sequence is labeled with one class and the actor’s body movement is performed
once, or a small number of times, per sign class.

The input data D is a set of sequences {S1, . . . , S�} and is partitioned into
two sets: the training set Dr and the testing set Dt. Our aim is to classify each
sequence in the test set, using only sequences from the training set, as accurately
and efficiently as possible.

3 Mining Sub-skeleton Features

Sign language conveys meaning based on the movement patterns of skeletal
joints. Our goal is to mine joint movement and determine which combination of
joints best discriminates classes. We first describe three feature mining concepts
that are important in our setting, and then present our mining algorithm.

Absolute and Relative Joints. The movement of a joint can be viewed in an
absolute space or relative space. We say that a joint is absolute if its position is
described in a fixed coordinate system. For example, the left index fingertip joint
moving through space is an absolute joint. A joint whose movement is described
in terms of its position relative to another joint whose spatial location serves as
the center of a moving coordinate system is called a relative joint, e.g., the joints
of the right arm relative to the neck joint.

Feature Space. Consider an underlying feature space F that contains all possible
absolute and relative joint subset combinations derived from skeleton G. Note
that F contains |G|2 singletons, i.e., |G| absolute and |G|2 − |G| relative joints.
Any feature f ∈ F can be derived as the union of |f | singletons, regardless of f
being an absolute or relative sub-skeleton. Thus, the size of F is exponential in
the number of joints |G| of the skeleton.
1 https://github.com/japfeifer/frechet-queries.

https://github.com/japfeifer/frechet-queries

244 J. Gudmundsson et al.

Feature Trajectory. Any given feature f ∈ F maps input skeletal movement to
feature trajectories, i.e. f maps 〈G1, . . . , Gn〉 to 〈p1, . . . , pn〉 and each point pi

has dimensionality 3|f |, where |f | denotes the number of joints in the set.

Fig. 2. Automated mining from sub-skeleton features produces a highly discriminative
feature template. A feature set C of canonical sub-skeletons is determined from skeletal
joints from G. Then, a greedy algorithm constructs a feature template T by testing
and adding the next best feature ci ∈ C, until the accuracy no longer improves.

Greedy Feature Template Mining Algorithm. Since the feature space is
huge, we desire an algorithm that quickly chooses a small number of features from
F , and achieves high accuracy on a classifier that is simple and interpretable.
Thus, we now describe our mining algorithm that greedily selects a small number
of discriminating features {f1, . . . , fl} from F .

The set of canonical sub-skeletons C ⊆ F form the basis of our greedy explo-
ration. In the case where |G| is not too large, C contains all singletons. In the
case where |G| is very large, we derive a smaller set C by merging similar single-
tons together into a single set (e.g., four singleton joints of the index finger are
merged into a single ‘index finger’ set). The singleton groups are computed by
identifying all chains of degree 2 vertices in G (e.g., right leg, left arm), and for
the case of deriving relative canonical sub-skeletons we use central joints (e.g.,
neck or torso) as reference joints. Figure 2 shows an example of merging similar
hand singletons together to reduce the size of C.

The mining algorithm computes a discriminating feature template T ⊆ F .
There are up to 1+ |G| features in T : one feature that contains the union of one
or more absolute singletons, and |G| relative features, each of which contain the
union of one or more singletons that have the same reference joint. We denote
with l(T) the number of features from F that are defined by T , so l(T) ≤ 1+ |G|.

The algorithm constructs T by iteratively performing adapted union opera-
tions, denoted ∪̃. In this context, a given relative joint c ∈ C is added to the
feature f ∈ T that has the same reference joint, and a given absolute joint c ∈ C
is added to the feature f ∈ T that contains the absolute joints. For example, say
T contains two features f1 and f2, where f1 ∈ T is relative to the right elbow
and f2 ∈ T contains absolute joints. If a joint c is relative to the right elbow,
then it will be added to f1. If a joint c is an absolute joint, then it will be added
to f2. If a joint c is relative to the neck, then it will be added to an initially
empty feature f3.

Exploring Sub-skeletons for Interpretable Recognition of Sign Language 245

We use standard classifiers to determine which elements of C to add to the
feature template. The simplest is a Nearest Neighbor method that finds the
closest label in Dr based on a trajectory distance measure. To employ underlying
classifiers during our greedy exploration, we initially partition the training set
Dr randomly with a 1:2-split into D

′
r and D

′
t and proceed as follows:

1. Start with the empty set T = ∅.
2. Compute ∀ c ∈ C \ T the classification accuracy of T ∪̃ c on D

′
r and D

′
t.

3. If one such best c improves over the last iteration,
then add c to T and GOTO 2.

4. Return T .

The resulting set T , which contains a subset of canonical sub-skeletons,
describes a small number of absolute and relative features by means of the
aforementioned adapted union operation. Hence we have an equal number of
generated feature trajectories for each input sequence. Clearly, the algorithm
can be executed for different classifiers and trajectory similarity measures to
select the best feature set found.

Since this deterministic greedy exploration is based on very simple classifiers,
with very few or no parameters, the ‘overfitting’ problem of complex models is
avoided. Nevertheless, the obtained classification accuracy is already compara-
tively high (see Sect. 4).

Note that the construction of the feature template from D
′
r and D

′
t is only to

accommodate a fair comparison of the final accuracy against other recognition
methods. For the purpose of pure pattern discovery, one may well use the whole
data set D in the selection process.

4 Experimental Setup and Results

We implemented our methods and ran experiments on five skeleton-based data
sets of actors that perform American Sign Language and Human Actions, each
captured with different tracking technologies. Through experiments, we investi-
gate if (i) sub-skeleton feature mining discovers highly discriminative movement
patterns, (ii) classification accuracy improves on state-of-the art methods for
the benchmarks and on small training sets, and (iii) classification queries are
answered quickly. Experiments ran on a standard desktop computer (3.6GHz
Core i7-7700 CPU, non-GPU) with MATLAB R2020a software on Windows 10,
except for those using competitor ST-GCN [15], which ran on a high-performance
computing environment with an NVIDIA V100 GPU and up to 32 CPUs.

246 J. Gudmundsson et al.

Table 1. Test data sets, showing type (Sign Language or Human Action), number
of skeletal joints, sequences, classes and subjects; Mean±SD of frames per sequence,
frames per second in Hz, and mean sequences per class.

Benchmark Type Jts. Seq Class Sub Frames/Seq F./s Seq/Cl.

KinTrans SL-Body 10 5,166 73 n/a 40 ± 13 30 71

LM SL-Hands 54 17,312 60 25 71 ± 21 30 289

NTU60 HA-Body 25 44,887 60 40 78 ± 34 30 748

UCF HA-Body 15 1,280 16 16 66 ± 34 30 80

MHAD HA-Body 15 660 11 12 3,602 ± 2,510 480 60

Table 2. Classification accuracy results comparing our methods against others. For
sign language data sets, we achieve the best results by a large margin on low training
information, our simple kNN-m classifier is often better than others (which use complex
neural-networks), and our DM-m method performs best in all tests. Although our
focus is sign language recognition, our human action data set results show that our
methods generalize well and achieve high accuracies. Accuracies in italics were reported
in previous work.

Benchmark Paper Method Acc.

KinTrans
2 T/C

[15] ST-GCN 57.6

Ours

2NN-m (DTW) 79.4

DM-m (CF) 75.0

DM-m (DTW) 80.1

KinTrans
3 T/C

[15] ST-GCN 76.7

Ours

2NN-m (DTW) 84.5

DM-m (CF) 84.9

DM-m (DTW) 90.2

KinTrans
10% T/C

[15] ST-GCN 96.7

Ours

2NN-m (DTW) 96.4

DM-m (CF) 96.2

DM-m (DTW) 98.4

KinTrans
20% T/C

[15] ST-GCN 99.2

Ours

2NN-m (DTW) 99.3

DM-m (CF) 96.7

DM-m (DTW) 99.5

LM
5-fold XSub

[5] Kine.-LSTM 91.1

Ours

1NN-s (CF) 80.6

3NN-m (CF) 71.3

DM-m (DTW) 94.3

(a) Sign language data sets.

Benchmark Paper Method Acc.

NTU60
XSub

[15] ST-GCN 78.7

Ours DM-m (DTW) 70.8

NTU60

XView

[15] ST-GCN 86.8

Ours DM-m (DTW) 82.8

UCF
4-fold

[3] Log. Reg. 95.9

[11] SVM 97.1

[12] dHMM 97.7

[14] SVM 97.9

[16] kNN+Vote 98.5

[7] SVM 98.8

[2] DP+kNN 99.2

[15] ST-GCN 99.7

Ours
1NN-s (DTW) 96.9

DM-m (DTW) 99.5

MHAD
XSub

[9] k-SVM 80.0

[15] ST-GCN 89.8

[10] SVM 95.4

[6] CNN 98.4

[1] MKL-SCM 100

Ours
1NN-s (CF) 94.9

DM-m (DTW) 100

(b) Human Action data sets.

Exploring Sub-skeletons for Interpretable Recognition of Sign Language 247

Feature Template Mining. The KinTrans feature mining took 47 min for a
specific normalization combination, which we consider reasonable on a standard
desktop computer. As a guide, the respective ST-GCN training in Table 2a took
more than 11 h on the high-performance GPU computing environment.

Classification Accuracy. We compare the accuracy of our simple classifiers
against various state-of-the-art skeleton-based recognition approaches using five
diverse data sets from Table 1. To investigate the effectiveness of our method on
sign language data sets, we compare our accuracy results against: (i) publicly
available code of the recent ST-GCN [15] method (that exclusively supports
body skeletons) for our KinTrans data set, and (ii) LM data set accuracy results
of [5] (see Table 2a).

2 3 5% 10%20%
10

100

103

Trainers per class

T
im

e
[m

s]

1NN-s CF 1NN-s DTW DM-s DTW DM-m DTW

2 3 5% 10%20%
70
75
80
85
90
95

100

Trainers per class

A
cc
ur
ac
y
[%

]

2 3 5% 10%20%
0
1

10
100
103
104

Trainers per class

D
is
t.

co
m
p.

[1
]

Fig. 3. Query latency of our classifiers for various training sets sizes using the KinTrans
data set. Shown are avg. time per query (left), overall classification acc. (middle), and
avg. num. of trajectory distance computations per query (right). (Color figure online)

In the lowest training information experiment (2 trainers per class) we have
almost 40% accuracy improvement over ST-GCN. As more training informa-
tion is introduced, we still outperform ST-GCN, even with our simple kNN-s
classifier.

The experiments show that the accuracy performance of our simple methods
generalizes well over different data domains (sign language/human action), train-
ing set sizes (small/large), and skeleton capture formats (coarse body/detailed
hands).

Query Time. To investigate the query latency of our distance based classifiers,
we run experiments on training sets of different sizes from the KinTrans data
set with each of our methods. The testing sets always contain the remainder of
the whole data set and the DM methods compute the full number of distance
columns. For the metric distance measure CF, we use the k Nearest-Neighbor
search structure from [4]. The results in Fig. 3 show average wall-clock time per
query, overall classification accuracy, and average number of necessary distance
computations per query for our 1NN-s (blue) and DM methods (black). All
1NN-s and DM-s classifiers show an average query time under 200 ms.

248 J. Gudmundsson et al.

5 Conclusion

Our work on skeleton-based sign language recognition introduced the sub-
skeleton feature space and studied it using speed-invariant similarity measures.
Our method automatically discovers absolute and relative movement patterns,
which enables highly accurate Nearest Neighbor classification, with acceptable
latency, on training data of varying domains, skeleton formats, and sizes. Our dis-
tance based classifiers are interpretable and train on basic computing hardware,
which make them particularly interesting for data sets that change frequently.

Acknowledgements. The authors acknowledge the technical assistance provided by
the Sydney Informatics Hub, a Core Research Facility of the University of Sydney.
This work was supported under the Australian Research Council Discovery Projects
funding scheme (project number DP180102870).

References

1. Chaudhry, R., Ofli, F., Kurillo, G., Bajcsy, R., Vidal, R.: Bio-inspired dynamic 3D
discriminative skeletal features for human action recognition. In: Proceedings of
IEEE CVPR Workshops, pp. 471–478 (2013)

2. Devanne, M., Wannous, H., Berretti, S., Pala, P., Daoudi, M., Del Bimbo, A.: 3-D
human action recognition by shape analysis of motion trajectories on Riemannian
manifold. IEEE Trans. Cybern. 45(7), 1340–1352 (2014)

3. Ellis, C., Masood, S., Tappen, M., LaViola, J., Sukthankar, R.: Exploring the
trade-off between accuracy and observational latency in action recognition. Int. J.
Comput. Vis. 101(3), 420–436 (2013)

4. Gudmundsson, J., Horton, M., Pfeifer, J., Seybold, M.P.: A practical index struc-
ture supporting Fréchet proximity queries among trajectories. ACM Trans. Spat.
Alg. Syst. 7(3), 1–33 (2021). https://doi.org/10.1145/3460121

5. Hernandez, V., Suzuki, T., Venture, G.: Convolutional and recurrent neural net-
work for human activity recognition: application on American sign language. PLoS
ONE 15(2), 1–12 (2020)

6. Ijjina, E.P., Mohan, C.K.: Human action recognition based on mocap informa-
tion using convolution neural networks. In: 2014 13th International Conference on
Machine Learning and Applications, pp. 159–164. IEEE (2014)

7. Kerola, T., Inoue, N., Shinoda, K.: Spectral graph skeletons for 3D action recogni-
tion. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS,
vol. 9006, pp. 417–432. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
16817-3 27

8. linedanceAI: The KinTrans Project (2020). https://www.kintrans.com
9. Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., Bajcsy, R.: Berkeley MHAD: a com-

prehensive multimodal human action database. In: 2013 IEEE Workshop on Appli-
cations of Computer Vision, pp. 53–60. IEEE (2013)

10. Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., Bajcsy, R.: Sequence of the most
informative joints (SMIJ): a new representation for human skeletal action recog-
nition. JVCIR 25(1), 24–38 (2014)

11. Ohn-Bar, E., Trivedi, M.: Joint angles similarities and HOG2 for action recognition.
In: Proceedings of IEEE CVPR Workshops, pp. 465–470 (2013)

https://doi.org/10.1145/3460121
https://doi.org/10.1007/978-3-319-16817-3_27
https://doi.org/10.1007/978-3-319-16817-3_27
https://www.kintrans.com

Exploring Sub-skeletons for Interpretable Recognition of Sign Language 249

12. Presti, L.L., La Cascia, M., Sclaroff, S., Camps, O.: Hankelet-based dynamical
systems modeling for 3D action recognition. IVCJ 44, 29–43 (2015)

13. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset
for 3D human activity analysis. In: Proceedings of IEEE CVPR, pp. 1010–1019
(2016)

14. Slama, R., Wannous, H., Daoudi, M., Srivastava, A.: Accurate 3D action recogni-
tion using learning on the Grassmann manifold. Pattern Recogn. 48(2), 556–567
(2015)

15. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for
skeleton-based action recognition. In: Proceedings of 32nd AAAI, pp. 7444–7452
(2018)

16. Zanfir, M., Leordeanu, M., Sminchisescu, C.: The moving pose: an efficient 3D kine-
matics descriptor for low-latency action recognition and detection. In: Proceedings
of IEEE ICCV, pp. 2752–2759 (2013)

Significant Engagement Community
Search on Temporal Networks

Yifei Zhang, Longlong Lin, Pingpeng Yuan(B), and Hai Jin

National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,

School of Computer Science and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China

{yfzhangsz,longlonglin,ppyuan,hjin}@hust.edu.cn

Abstract. Community search, retrieving the cohesive subgraph which
contains the user-specified query vertex, has been widely touched over
the past decades. The existing studies on community search mainly focus
on static networks. However, real-world networks, such as scientific coop-
eration networks and communication networks, usually are temporal net-
works whose each edge is associated with timestamps. Therefore, the pre-
vious methods do not work when handling temporal networks. Inspired
by this, we study the problem of identifying the significant engagement
community to which the user-specified query belongs. Specifically, given
an integer k and a query vertex u, then we search for the subgraph H
which satisfies (i) u ∈ H; (ii) the de-temporal graph of H is a connected
k-core; (iii) In H that u has the maximum engagement level. To address
our problem, we first develop a top-down greedy peeling algorithm named
TDGP, which iteratively removes the vertices with the maximum tem-
poral degree. To further boost the efficiency, we then design a bottom-
up local search algorithm named BULS with several powerful pruning
strategies. Lastly, we empirically show the superiority of our proposed
solutions on six real-world temporal graphs.

Keywords: Temporal networks · Community search · k-core

1 Introduction

There are numerous community structures presented in real-world networks.
Therefore, mining communities is an important tool for analyzing network struc-
ture and organization. Generally, there are two main research directions on
community mining: (1) community detection identifies all communities by some
predefined criteria [2,5,16]. However, it has intractable computational bottle-
neck and is not customized for user-specified query vertices. (2) community
search aims to identify the community containing the user-specified query ver-
tices [4,19], which is more efficient and personalized. Besides, community search

Y. Zhang and L. Lin—Contribute equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 250–258, 2022.
https://doi.org/10.1007/978-3-031-00123-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_20&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_20

Significant Engagement Community Search on Temporal Networks 251

can also be applied to numerous high-impact applications, including friend rec-
ommendation, link-spam detection, and drug discovery.

The relationships of real-world networks vary over time. For instance, a
researcher collaborates with others on a project or a paper at some time. Per-
sons call their friends from time to time. Such time-related connections among
entities can be naturally modeled as temporal graphs [11,18], in which each edge
is attached a timestamp to indicate when the connections occur. In such net-
works, an entity actively engages in a community via frequent connections with
other entities at different periods while others may incur occasional relationships.
Moreover, the entity has different engagement levels in different communities.
It is more useful and challenging to study the engagement level of the entity in
a community and identify the target community with the highest engagement
level from all communities. Motivated by this, we introduce a new problem of
identifying the significant engagement community to which a specified vertex
belongs. In a nutshell, our contributions are reported as follows:

i) We propose a novel community search model named SECS, which compre-
hensively considers the structural cohesiveness of the community and the
engagement level of the query vertex.

ii) To solve our problem, we propose a top-down greedy peeling algorithm
TDGP and a more efficient bottom-up local search algorithms BULS.

iii) We conduct extensive experiments on six real-world temporal graphs, which
reveal that our solutions perform well in efficiency and effectiveness.

2 Related Work

Community is a general concept appears in physics, computational biology, and
computer science, and so on. Notable methods include modularity optimization
[16], spectral analysis [5] and cohesive subgraph discovering [2]. Community
search has recently been proposed for semi-supervised learning task that can
recover the community in which the query vertex is located [7]. Namely, they aim
at identifying the specified communities containing the given query vertices [14,
19]. There are more complete researches, such as community search on keyword-
based graphs [15], location-based social networks [6], multi-valued graphs [10],
and heterogeneous information networks [8]. However, they ignore the temporal
properties of networks that frequently appear in applications.

Temporal networks can model the complex networks in a fine-grained man-
ner, in which each interaction between vertices occurs at a specific time. Many
models on temporal networks have been investigated [18]. Until recently, some
work have been done on community mining over massive temporal networks
[9,11,12,17]. For example, Lin et al. [13] introduced the diversified lasting cohe-
sive subgraphs on temporal graphs. Li et al. [11] studied the problem of identi-
fying maximum persistent communities from temporal networks. Unfortunately,
they cannot tell the differences how the vertices participate in those subgraphs.

252 Y. Zhang et al.

(a) Temporal graph G (b) Cumulative graph C3
0 (c) Cumulative graph C4

2

Fig. 1. Example of temporal graph G and its cumulative graphs

3 Significant Engagement Community Search

Here, we consider an undirected temporal graph G(V, E , T), in which V is the
set of vertices inside the G, E = {(u, v, t)|u, v ∈ V} is the set of temporal edges
and T = {t|(u, v, t) ∈ E} is the timestamps set of G. Additionally, we define H =
(VH, EH, TH) as the temporal subgraph of G when VH ⊆ V, EH ⊆ E , and TH ⊆ T .
G’s de-temporal graph is G(V,E), which meets the conditions that: V = V and
E = {(u, v)|∃(u, v, t) ∈ E}. Namely, the de-temporal graph G is a static graph
that ignores the temporal information carried on the edges. Similarly, we denote
H(VH , EH) as a subgraph of G when there it satisfies VH ⊆ V and EH ⊆ E. To
help formalize our problem, we put out several definitions as follows.

Definition 1 (Edge Occurrences). Edge occurrence is a measure to demon-
strate how many times the connections between two vertices occur within an
interval of time. We first define the following function to indicate whether an
edge exists:

π(u, v, t) =
{

0 (u, v, t) /∈ E
1 (u, v, t) ∈ E (1)

So, the edge occurrences of (u, v) over time interval [ts, te] is defined as:

o(u,v)(ts, te) =
te∑

i=ts

π(u, v, i) (2)

Definition 2 (Cumulative Graph). The cumulative graph of temporal graph
G for time interval [ts, te] is a weighted graph Cte

ts (Vte
ts ,E

te
ts , w

te
ts), in which the

V
te
ts = {u|(u, v, t) ∈ E , t ∈ [ts, te]}, Ete

ts = {(u, v)|(u, v, t) ∈ E , t ∈ [ts, te]}, and
wte

ts (u, v) = o(u,v)(ts, te). Let CH be the cumulative graph of H when the time
interval is [min(TH),max(TH)]. Besides, we have Nu,CH = {v|(u, v, t) ∈ EH} and
Du,CH = |{(u, v)|(u, v, t) ∈ EH}|.

Definition 3 (Temporal Degree). The temporal degree of the vertex u w.r.t.
[ts, te] and temporal graph G is defined as following:

du,G(ts, te) =
te∑

i=ts

π(u, v, i) =
∑
v∈G

wte
ts (u, v) (3)

So, temporal degree of u in G is du,G = du,G(min(TG),max(TG)).

Significant Engagement Community Search on Temporal Networks 253

Definition 4 (Engagement Level). For the temporal subgraph H, engage-
ment level of vertex u in H is the impact on H which u achieves. It is defined
as:

Engu(H) =
du,H∑

v∈H dv,H
(4)

Definition 5 (k-core [1]). For a de-temporal graph G, H is a subgraph of G.
We say H is a k-core in G if |{v|(u, v) ∈ H}| ≥ k for any vertex u ∈ H holds.

Example 1. Figure 1(a) shows a temporal graph G in which there are 7 vertices
with 27 temporal edges, Fig. 1(b) and (c) are the cumulative graphs of G with
time interval [0, 3] and [2, 4] respectively. There is a temporal subgraph H that
VH = {V0, V1, V2}, TH = TG , and EH = {(u, v, t)|(u, v, t) ∈ EG , u, v ∈ VH, t ∈
TH}, we have EngV0(H) = 6

18 = 1
3 . Meanwhile, we can observe that H is a

2-core;

Our Problem (Significant Engagement Community Search: SECS).
Given a temporal graph G, a query vertex u, and a parameter k, our goal is to
find a temporal subgraph H which meets: i) u ∈ VH; ii) the de-temporal graph
of H is a connected k-core; iii) Engu(H) ≥ Engu(H′) for all temporal subgraph
H′. For simplicity, we call H is a significant engagement community (SEC for
short) of u.

4 The Top-Down Greedy Peeling Algorithm

In this section, we introduce our proposed top-down greedy peeling algorithm
(TDGP), which is shown in Algorithm 1. The first thing we need to do is gen-
erating the cumulative graphs from the temporal graph G (Line 1). Since there
are |T | timestamps, we can get in total (1 + |T |)|T |/2 time intervals. Each time
interval corresponds to a cumulative graph. It should be noticed that we only
consider the time intervals of which u has edges occur on its two ends. Though
we cannot make sure that with this pruning strategy whether some k-core struc-
tures are ruined, however in this way we can pay attention to the time interval
that u has action instead of the whole time interval of the temporal graph G.
Considering the cohesive constraint for SEC, for each cumulative graph CH, we
need to maintain the de-temporal graph H as a k-core and check whether it
contains the query vertex u (Line 3). While CH meeting all these requirements,
we try to reduce its extent to maximize Engu(H). For this part, since there is
no direct correlation between du,H and Engu(H), we delete the vertices with
the maximum temporal degree greedily in order to maximize Engu(H), until it
can not satisfy the conditions for SEC mentioned above. After all of these, we
can finally get the community SEC in which u has the maximum engagement
level. In this algorithm, we need to deal with in total (1 + |T |)|T |/2 amount of
cumulative graphs. Here we take m to represent |T | and n to represent the scale
of the graph, the time complexity for the algorithm is O(nm2). We use a mitosis
and BFS way to consider the time interval, there are at most 1 + T amount of
cumulative graphs exists at one time, the whole space complexity is O(mn).

254 Y. Zhang et al.

Algorithm 1. Top-Down Greedy Peeling Algorithm
Input: temporal graph G, query vertex u, integer k
Output: significant engagement community SEC
1: C ←compute all the cumulative subgraphs of G
2: for each CH ∈ C contains u do
3: while CH is a k-core contains u do
4: select a vertex v (v �= u) with the maximum temporal degree
5: CH ← CH − v
6: SEC ← argmaxCHEngu(H)
7: return SEC

Algorithm 2. Framework of Candidate Generation Algorithm
Input: cumulative graph CH, query vertex u, integer k
Output: alternative subgraph AS
1: AS ← ∅;Q ← ∅
2: Q.push(u); AS.push(u)
3: while Q �= ∅ do
4: s ← Q.pop()
5: for each v ∈ Ns,CH do
6: if v meets the requirements for candidates then
7: Q.push(v); AS.push(v)
8: return AS

5 The Bottom-Up Local Search Algorithm

In this section, we develop a bottom-up local search algorithm (BULS). The
core concept of this local search method is to generate an alternative subgraph
AS from the query vertex u, then we can use the greedy peeling algorithm on
AS instead of the whole cumulative graph CH to receive our results. The frame-
work of candidate generation algorithm is shown in Algorithm2. For the naive
candidate generation algorithm, the expanding strategy to make judgement in
Line 6 is choosing the vertices with degrees no less than k to be included into our
AS. Besides, we develop the advanced candidate generation algorithm addition-
ally using the relationships among the temporal degrees and vertex engagement.
Specifically, we let the query vertex u and its neighbors with degree no less than
k in CH to form a private community N . For vertex v ∈ N , if its degree in
N :Dv,N ≥ k, we do not need to further extend from it. Meanwhile, for vertex v
that v ∈ N and Dv,N < k, we choose it to start to expand from, we put it into
a queue K. Then at each time we pop a vertex x from K and use a queue Q to
separately handle its neighbors, here we apply two different expanding strategies.

Non-reference Strategy. Assume we start to expand the alternative graph
from x, and we get a vertex m from Q. When we consider a vertex n from the
neighbor set of m, we regard the vertices in a line from x to n as a whole. The
increment for du,AS is wCH(u, x) and increment for

∑
v∈AS dv,AS is at least the

Significant Engagement Community Search on Temporal Networks 255

sum of edge weights one way to connect from u to n, here we take ac(m) to
represent the sum from u to m. We do not want to let the Engu(AS) decrease
in each step, we have: if n /∈ AS, Dn,AS ≥ k, and du,AS+wCH (u,x)

∑
v∈AS dv,AS+wCH (m,n)+ac(m) >

du,AS∑
v∈AS dv,AS

, we execute Q.push(n) and AS.push(n). Since this is a greedy
expanding strategy, to simplify the analysis and operation we set AS to be a
fixed one (which exists before dealing the vertices in K) in practical calculations.

Reference Strategy. Considering that we use a top-down way to deal with
various cumulative graphs for H, there are some non-terminal results for SEC
in this progress. Let bestresult represent the engagement level for u in current
SEC. bestresult can be used as the threshold to judge whether to include more
vertices. Specifically, we only consider the increment for a single vertex at each
time, here is the strategy: if n /∈ AS, du,AS∑

v∈AS dv,AS+wCH (m,n) > bestresult, we
execute Q.push(n) and AS.push(n). It should be noticed that the AS here is
not a fixed one, and we take all the vertices in N into the AS before expanding.

Here we formally introduce our local search algorithm BULS. When dealing
with the first cumulative graph CH, we use the naive candidate generation algo-
rithm to generate the alternative graph. Besides, for the cumulative graphs in
following steps, we use the advanced candidate generation algorithm with refer-
ence strategy to expand, the rest of process is the same with TDGP. We also
develop another local search algorithm BULS+. The main difference is that we
use the advanced candidate generation algorithm with non-reference strategy to
deal with the first cumulative graph CH. With it we can get the AS with smaller
size. Additionally, since this algorithm might miss the results in some cases, we
will turn to use the naive candidate generation algorithm when we find there is
no such k-core containing u after the expanding for the alternative subgraph.
The time complexity of the algorithm is still O(nm2). The space complexity is
unchanged as O(mn).

6 Experimental Evaluation

We evaluate our solutions on real-world temporal networks1 with different types
and sizes (Table 1), including social (Facebook, Twitter, Wiki), email (Enron,
Lkml), and scientific collaboration (DBLP) networks. Besides the TDGP, BULS,
and BULS+ for our SECS. We choose TopkDBSOL [3] and CST [4] as competi-
tors. TopKDBSOL is the online algorithm to find the top-k density bursting
subgraphs. CST refers to the algorithm to handle the problem of community
search with threshold constraint. We use engagement level (EL) and temporal
density (TD) [3] to evaluate the quality of the results. Temporal density is the
metric that measures the denseness of the community. To be more reliable, we
randomly select 100 vertices as query vertices and report the average running
time and quality.

1 http://snap.stanford.edu/, http://konect.cc/, http://www.sociopatterns.org/.

http://snap.stanford.edu/
http://konect.cc/
http://www.sociopatterns.org/

256 Y. Zhang et al.

Table 1. Datasets statistics. TS is the time scale of the timestamp.

Dataset n = |V | m = |E| m̄ = |E| |T | TS

Facebook 45,813 461,179 183,412 223 Week

Twitter 304,198 464,653 452,202 7 Day

Wiki 1,094,018 3,224,054 2,787,967 77 Month

Enron 86,978 697,956 297,456 177 Week

Lkml 26,885 328,092 159,996 98 Month

DBLP 1,729,816 12,007,380 8,546,306 72 Year

Table 2. Running time of different algorithms with k = 2 (second)

DBLP Lkml Enron Facebook Twitter Wiki

CST 109.04 1.07 2.22 1.55 3.74 30.71

TopkDBSOL 1,707 2,178 1,920 39 26,872 20,217

TDGP 279.38 25.49 71.77 70.60 5.45 30.35

BULS 111.90 5.36 12.98 18.42 6.28 25.55

BULS+ 36.27 5.04 8.55 10.49 4.36 16.48

(a) Running time (b) EL (c) TD

Fig. 2. Comparison of different algorithms with various k in Lkml

Table 2 shows the running time of different algorithms with k = 2. For our
problem, the BULS+ has the least running time. To test how the parameter
k affects the results, we vary k from 2 to 6 (Fig. 2). We can observe that the
BULS+ still has the best performance, it costs much less running time than
TDGP while getting the results with the best quality. The values of EL and TD
are reducing when k grows bigger, for that the communities have more vertices.
Due to the similar reason, the bestresult is smaller and the AS has a larger size,
so the running time of BULS and BULS+ has an upward trend at the beginning.

Significant Engagement Community Search on Temporal Networks 257

7 Conclusion

In this paper, we first introduce the definition of engagement level, and then raise
a novel problem called significant engagement community search. To tackle this
problem, we develop a global algorithm called TDGP. To further improve the
efficiency, we then devise a local search algorithm called BULS and its enhanced
version BULS+. Finally, we evaluate our solutions on six real-world temporal
graphs and the results show the superiority of our solutions.

Acknowledgements. The research is supported by the National Key Research and
Development Program of China (No. 2018YFB1402802), NSFC (Nos. 62072205 and
61932004).

References

1. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of net-
works. CoRR cs.DS/0310049 (2003)

2. Chang, L., Qin, L.: Cohesive subgraph computation over large sparse graphs. In:
Proceedings of ICDE, pp. 2068–2071. IEEE (2019)

3. Chu, L., Zhang, Y., Yang, Y., Wang, L., Pei, J.: Online density bursting subgraph
detection from temporal graphs. PVLDB 12(13), 2353–2365 (2019)

4. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large
graphs. In: Proceedings of SIGMOD, pp. 991–1002. ACM (2014)

5. Donetti, L., Munoz, M.A.: Detecting network communities: a new systematic and
efficient algorithm. J. Stat. Mech. Theory Exp. 2004(10), P10012 (2004)

6. Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community search over large
spatial graphs. Proc. VLDB Endow. 10(6), 709–720 (2017)

7. Fang, Y., et al.: A survey of community search over big graphs. VLDB J. 29(1),
353–392 (2020)

8. Fang, Y., Yang, Y., Zhang, W., Lin, X., Cao, X.: Effective and efficient community
search over large heterogeneous information networks. Proc. VLDB Endow. 13(6),
854–867 (2020)

9. Galimberti, E., Barrat, A., Bonchi, F., Cattuto, C., Gullo, F.: Mining (maximal)
span-cores from temporal networks. In: Proceedings of CIKM, pp. 107–116. ACM
(2018)

10. Li, R., et al.: Skyline community search in multi-valued networks. In: Proceedings
of SIGMOD (2018)

11. Li, R., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent community search in temporal
networks. In: Proceedings of ICDE, pp. 797–808. IEEE Computer Society (2018)

12. Lin, L., Yuan, P., Li, R.H., Wang, J., Liu, L., Jin, H.: Mining stable quasi-cliques
on temporal networks. IEEE Trans. Syst. Man Cybern. Syst. 1–15 (2021)

13. Lin, L., Yuan, P., Li, R., Jin, H.: Mining diversified top-r lasting cohesive subgraphs
on temporal networks. IEEE Trans. Big Data 1 (2021)

14. Liu, Q., Zhao, M., Huang, X., Xu, J., Gao, Y.: Truss-based community search over
large directed graphs. In: Proceedings of SIGMOD, pp. 2183–2197 (2020)

15. Liu, Q., Zhu, Y., Zhao, M., Huang, X., Xu, J., Gao, Y.: VAC: vertex-centric
attributed community search. In: Proceedings of ICDE, pp. 937–948 (2020)

16. Newman, M.E.: Fast algorithm for detecting community structure in networks.
Phys. Rev. E 69(6), 066133 (2004)

258 Y. Zhang et al.

17. Qin, H., Li, R., Yuan, Y., Wang, G., Yang, W., Qin, L.: Periodic communities
mining in temporal networks: Concepts and algorithms. IEEE Trans. Knowl. Data
Eng. 1 (2020)

18. Rozenshtein, P., Gionis, A.: Mining temporal networks. In: Proceedings of KDD,
pp. 3225–3226 (2019)

19. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful
cocktail party. In: Proceedings of KDD, pp. 939–948 (2010)

Influence Computation for Indoor
Spatial Objects

Yue Li1, Guojie Ma1(B), Shiyu Yang2, Liping Wang1, and Jiujing Zhang2

1 East China Normal University, Shanghai, China
51194501052@stu.ecnu.edu.cn, gjma@fem.ecnu.edu.cn,

lipingwang@sei.ecnu.edu.cn
2 Guangzhou University, Guangzhou, China

syyang@gzhu.edu.cn, jiujingzhang@e.gzhu.edu.cn

Abstract. Studies have shown that people spend more than 85% of their
time in indoor spaces. Providing varies location-based services (LBS) for
indoor space is of great demand and has drew attentions from both indus-
try and academic. The influence computation for spatial objects is one of
the important applications in LBS and has broad applications in indoor
facility location and indoor marketing. The influence query has been stud-
ied extensively in outdoor spaces. However, due to the fundamental differ-
ence between indoor and outdoor space, the outdoor techniques can not
be applied for indoor space. In this paper, we propose the first indoor influ-
ence computation algorithm IRV to efficiently process indoor influence
query. The proposed algorithm is based on the state-of-art indoor index
structure VIP-Tree and several pruning rules are also presented to reduce
the computation cost. The experiment results on both real and synthetic
data sets show our proposed method outperforms the baseline algorithm.

Keywords: Indoor space · Reverse k nearest neighbor · Influence
computation

1 Introduction

Studies have shown that people spend more than 85% of their time in indoor
spaces [6], such as supermarkets, hospitals, apartments, office buildings and
etc. Providing varies location-based services (LBS) for indoor space is of great
demand and has drew attentions from both industry and academic. The influ-
ence computation for spatial objects is one of the important applications in LBS.
According to the definition in [12], a facility f is said to influence a user u if f
is one of the k closest facilities of the user u. This is because the users usually
prefer to visit/use near by facilities. The influence set of a facility f is the set of
users influenced by f . The influence set, also called reverse k nearest neighbors
(RkNN), which has been extensively studied in the past. In this paper, we use
influence query and RkNN query to refer the same problem.

The influence computation has broad applications in LBS, especially for the
indoor space. Considering the example show in Fig. 1, there are 7 users and 7
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 259–267, 2022.
https://doi.org/10.1007/978-3-031-00123-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_21&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_21

260 Y. Li et al.

advertising boards in a shopping mall. Suppose users are usually drawn to close
advertising boards, the users in the influence set are the potential customers and
may be influenced by the advertising board.

Fig. 1. RkNN example

Although, the influence computation has been well studied for outdoor space,
the existing solutions for outdoor space can not be applied to indoor space. First,
the indoor space is characterized by entities such as doors, rooms, and corridors.
These entities greatly restrict the movement of objects in the indoor space.
Therefore, outdoor spatial distance metrics such as Euclidean distance and road
network distances can not be used to measure indoor distances. Second, the
topology of indoor space is usually complicated. For an office building, there are
multiple floors connected by lifts or stairs. The complicated topology of indoor
space provide challenges of data modelling and query processing.

In this paper, we formally define the influence query (also called RkNN query)
for indoor space, and propose efficient query processing algorithm namely IRV
based on the VIPTree index. We also present effective pruning rules to reduce
the computation cost. The experiment results on real and synthetic data sets
shows the performance of our proposed method.

2 Related Work

2.1 Outdoor Techniques

RkNN queries have been extensively studied in outdoor space [5,9–11,13–15].
The existing outdoor techniques use a pruning and verification framework. The
two most notable pruning method are half-space pruning (TPL [10], Finch [11],
InfZone [5]) and regions-based pruning (Six-regions [9], SLICE [14,15]).

2.2 Indoor Techniques

Indoor Data Modelling. Many model are proposed for indoor space, such
as CityGML [1], AB graph [7], Distance matrix [7], and IP-Tree [8]. The state-
of-art indoor index IP-Tree is an indexing structure based on a D2D graph.

Influence Computation for Indoor Spatial Objects 261

The basic idea of IP-Tree is to combine adjacent indoor partitions (e.g., rooms,
hallways, stairs) to form leaf nodes and then iteratively combine adjacent leaf
nodes until all nodes are combined into a single root node. Due to its excellent
index structure, many spatial queries in IP-Tree are efficient, such as shortest
distance query and kNN query. Our algorithm is also based on IP-Tree.

3 Preliminaries

3.1 Problem Definition

In indoor space, object motion would be greatly restricted by entities such as
doors, rooms and hallways. Therefore the traditional spatial network distance
and Euclidean distance cannot be used to measure the distance in indoor space
and we define Indoor Distance. We use dist(p, q) to represent the Euclidean
distance between point p and point q in this paper.

Definition 1. Indoor Distance. Given two points p and q in indoor space,
the Indoor Distance between p and q is the length of the shortest path(not
directly across obstacles such as walls) between p and q. We record the Indoor
Distance of p and q as distID(p, q) in this paper.

Definition 2. Indoor RkNN Query. Consider a set of facilities F and a set
of users U in indoor space. Given a query point q ∈ F and k, Indoor RkNN
Query returns every user u ∈ U for which q is one of its k-closest facilities using
Indoor Distance rather than Euclidean distance when calculating distance.

Definition 3. Prune State. We define the result of pruning a region by a
facility f as Prune State. If all points in an area (node or room) are closer to
facility f than the query point q, then the Prune State of this area is Pruned
for f . If all points in an area (node or room) are closer to the query point q than
facility f , then the Prune State of this area is Result for f . If the Prune
State is neither Pruned nor Result, then the Prune State is Candidate.

3.2 Observation

The easiest way of solving RkNN query is to calculate kNN for all user points
but it costs a lot. We observe some conclusions based on geometric properties
that help reduce the query time of RkNN.

Observation 1. If the facility point f and the query point q are not in the
node N , and for any access door di in node N meets that distID(f, di) <
distID(q, di). Then facility f meets that distID(f, p) < distID(q, p) for any
point p in node N and the Prune State of node N is Pruned for facility f .

Proof. Suppose there is a point p in node N that satisfies distID(f, p) >=
distID(q, p). Because q is not in node N , the shortest path from q to
p must pass through one access door di of of N . So distID(q, p) =

262 Y. Li et al.

distID(q, di) + distID(di, p) <= distID(f, p) <= distID(f, di) + distID(di, p)
and distID(q, di) <= distID(f, di) which contradicts the assumption. There-
fore, distID(f, p) < distID(q, p) for any point p in node N. The proofs of the
latter two observations are similar and we will no longer give proofs.

Observation 2. If the facility point f and the query point q are not in the
node N , and for any access door di in node N meets that distID(f, di) >
distID(q, di). Then facility f meets that distID(f, p) > distID(q, p) for any
point p in N and the Prune State of node N is Result for facility f .

Observation 3. If the facility point f is in the node N and the query point
q is not in the node N , and for any access door di in node N meets that
distID(f, di) < distID(q, di). Then for any point p in node N , facility f meets
that distID(f, p) < distID(q, p) and the Prune State of node N is Pruned for
facility f .

4 IRV Algorithm

4.1 Solution Overview

Our algorithm uses a pruning and verification framework based on IP-Tree which
supports shortest distance/path query in indoor space. In the pruning phase,
the algorithm prunes nodes first and then prunes rooms in candidate nodes
using facilities. We can divide the whole indoor space into three parts: Pruned
area, Result area, Candidate area. In the verification phase, users that lie in the
Candidate area are identified and they are then verified as RkNN if its kNN
contains the query point q. While users that lie in the Result area must be
RkNN of the query point. Baseline Algorithm performs the verification phase
on all user points to determine whether the query point is their kNN.

4.2 Pruning Algorithm

Our pruning algorithm contains two parts: pruning nodes and pruning rooms. In
the pruning nodes phase, we traverse the IP-tree from top to bottom and prune
nodes. In the pruning rooms phase, we pruned rooms of the candidate nodes
obtained in the pruning nodes phase.

Influence Computation for Indoor Spatial Objects 263

Algorithm 1. Prune(O, q, f)
Input: Object O(node N or room R), k, facility point f
Output: Prune State:Pruned, Result, or Candidate
1: if for each access door ad of node N meets that distID(q, ad) > distID(f, ad) &&

q is not in O then
2: return Pruned;
3: else if for each access door ad of node N meets that distID(q, ad) < distID(f, ad)

&& f is not in O then
4: return Result;
5: else
6: return Candidate;

Prune Algorithm. According to the observations put forward above, we can
apply them to the Prune Algorithm to prune nodes and rooms. We use the
position relationship between points and object and the distance between points
and access doors to get Prune State. Prune Algorithm returns Prune State:
Pruned, Result, Candidate. Prune State is Pruned, indicating that object O is
pruned by facility f. Prune State is Result, indicating that all points in object
O is farther to facility f. When Prune State is Candidate, we need to further
pruning the node or verifying user points located in object O.

PruneNodes Algorithm. In the pruning nodes phase, we divide nodes into
Candidate node, Result node and Pruned node. Candidate nodes are nodes where
we don’t know whether the point located in it is RkNN of the query point. Result
node is the node that all points are RkNN of the query point in which. Pruned
node is the node that all points are not RkNN of the query point in which. We
traverse the IP-tree from top to bottom and prune nodes. Each time we traverse
to a node, we use Prune Algorithm to get Prune state of all facilities. If the
number of facilities whose Prune state is Pruned is greater than or equal to k,
node N currently traversed is a Prune node. If the number of facilities whose
Prune state is Result is greater than or equal to the number of facilities minus k,
node N currently traversed is a Result node. If node N is neither a Pruned node
nor a Result node, it is a Candidate node and we use PruneRooms Algorithm to
further pruning rooms located in it.

264 Y. Li et al.

Algorithm 2. PruneNodes
Input: IPTree, int k, users, facilities, query point q
Output: candidate nodes, result nodes
1: Heap h ← {root id}
2: while !h.empty() do
3: de-heap node N from h
4: for facility f in facilities do
5: PruneState = Prune(N, q, f);
6: if PruneState == Pruned && pruneCount >= k then
7: break; // this node is pruned

8: if PruneState == Result && resultCount >= facility num − k then
9: result nodes.push(N); break; // this node is a result node

10: if node N is neither a pruned node nor a result node then
11: if N is a leaf node then
12: candidate nodes.push(N); PruneRooms(N);
13: else
14: push all children of N into h;

PruneRooms Algorithm. For the candidate nodes obtained in the pruning
nodes step, we prune the rooms located in these nodes. Similar to the PruneNodes
Algorithm, we divide rooms in the pruning nodes into Candidate room, Result
room and Pruned room. If the number of facilities whose Prune state is Pruned
is greater than or equal to k, room r is a Pruned room. If the number of facilities
whose Prune state is Result is greater than or equal to the number of facilities
minus k, room r currently traversed is a Result room. If room r is neither a
Pruned room nor a Result room, it is a Candidate room. Due to limited space,
we omit the corresponding pseudocode.

4.3 Verification Algorithm

In the verification phase, for Result node and Result room, we only need add
users located in they to the result set. For users located in Candidate room, we
use IsRkNN algorithm to determine whether they are the RkNN of the query
point. Compared to computing RkNN, IsRkNN algorithm employs a simple
optimization. Due to limited space, we will not introduce it here.

5 Experimental

5.1 Experimental Settings

We compare our algorithm IRV with Baseline which does not perform pruning
and uses IsRkNN for all user points. The two algorithms are implemented in
C++. The experiments are run on a 64-bit PC with Intel Xeon 2.40 GHz dual
CPU and 128 GB memory running Redhat Linux.

Influence Computation for Indoor Spatial Objects 265

Table 1 shows the detailed settings, and the default values are shown in bold.
User points and facility points are generated randomly. We use one synthetic
dataset (denoted as Syn) which consists of 338 rooms spread over 10 levels and
three real datasets: Melbourne Central [2] (denoted as MC), Menzies building [3]
(denoted as Men) and Clayton Campus [4] (denoted as CL). Melbourne Central
is a major shopping centre in Melbourne which consists of 297 rooms spread over
7 levels. Menzies building is the tallest building at Clayton campus of Monash
University consisting of 14 levels and 1306 rooms. The Clayton dataset corre-
sponds to 71 buildings in Clayton campus of Monash University.

Table 1. Experimental settings.

Parameter Range

Number of facilities 50, 100, 200, 500, 1000

Number of users 200, 500, 1000, 2000, 5000, 10000, 20000

The value of k 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

5.2 Experiment Results

Effect of Number of Users. In Fig. 2, we study the effect of the number of
users in different datasets for IRV and Baseline, respectively. As we expected,
IRV is up to two orders of magnitude more efficient than Baseline. And from
Fig. 2 we can see that query time of IRV and Baseline increases as the number
of users increases. This is because that the number of users is more, the number
of candidate users is more, and the number of calls of IsRkNN algorithm is more.

(a) Syn (b) MC (c) CL (d) Men

Fig. 2. Query time varies with the number of users.

Effect of Number of Facilities. In Fig. 3, we study the effect of the number
of facilities. From Fig. 3 we can see that query time of Baseline decrease. This is
because that the execution times of IsRkNN algorithm decrease as the number
of facilities increases. And we can see that query time of IRV increases. This is
because that the number of calls of Prune Algorithm increases as the number of
facilities increases in the pruning phase.

266 Y. Li et al.

(a) Syn (b) MC (c) CL (d) Men

Fig. 3. Query time varies with the number of facilities.

Effect of k. In Fig. 4, we study the effect of the value of k. From Fig. 4 we can
see that the query time of Baseline increases as the value of k increases. And we
can see that IRV performs much better than Baseline no matter how k changes.

(a) Syn (b) MC (c) CL (d) Men

Fig. 4. Query time varies with k value.

6 Conclusion

In this paper, we propose an new indoor spatial query namely influence query
or indoor reverse k nearest neighbour query. The indoor influence query can
identify the potential users of indoor locations and has applications in facility
location and advertisement. In order to process the influence query efficiently, we
propose algorithms based on VIPTree and some pruning rules. The experiment
results show the performance of our proposed method.

Acknowledgements. We sincerely thank the anonymous reviewers for their feed-
back which helped improve our work. The research of Shiyu Yang is supported
by NSFC61802127 and GuangDong Basic and Applied Basic Research Foundation
2019B1515120048.

References

1. http://www.citygml.org/
2. http://www.melbournecentral.com.au/
3. http://lostoncampus.com.au/15641
4. https://www.monash.edu/pubs/maps/3-Claytoncolour.pdf

http://www.citygml.org/
http://www.melbournecentral.com.au/
http://lostoncampus.com.au/15641
https://www.monash.edu/pubs/maps/3-Claytoncolour.pdf

Influence Computation for Indoor Spatial Objects 267

5. Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: Influence zone: efficiently processing
reverse k nearest neighbors queries. In: 2011 IEEE 27th International Conference
on Data Engineering, pp. 577–588. IEEE (2011)

6. Jenkins, P.L., Phillips, T.J., Mulberg, E.J., Hui, S.P.: Activity patterns of Califor-
nians: use of and proximity to indoor pollutant sources. Atmos. Environ. Part A.
Gen. Top. 26(12), 2141–2148 (1992)

7. Lu, H., Cao, X., Jensen, C.S.: A foundation for efficient indoor distance-aware query
processing. In: 2012 IEEE 28th International Conference on Data Engineering, pp.
438–449. IEEE (2012)

8. Shao, Z., Cheema, M.A., Taniar, D., Lu, H.: VIP-tree: an effective index for indoor
spatial queries. Proc. VLDB Endow. 10(4), 325–336 (2016)

9. Stanoi, I., Agrawal, D., El Abbadi, A.: Reverse nearest neighbor queries for
dynamic databases. In: ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, vol. 20. Citeseer (2000)

10. Tao, Y., Papadias, D., Lian, X.: Reverse KNN search in arbitrary dimensionality.
In: Proceedings of the Very Large Data Bases Conference (VLDB), Toronto (2004)

11. Wu, W., Yang, F., Chan, C.Y., Tan, K.L.: Finch: evaluating reverse k-nearest-
neighbor queries on location data. Proc. VLDB Endow. 1(1), 1056–1067 (2008)

12. Yang, S., Cheema, M.A., Lin, X.: Impact set: computing influence using query logs.
Comput. J. 58(11), 2928–2943 (2015)

13. Yang, S., Cheema, M.A., Lin, X., Wang, W.: Reverse k nearest neighbors query
processing: experiments and analysis. Proc. VLDB Endow. 8(5), 605–616 (2015)

14. Yang, S., Cheema, M.A., Lin, X., Zhang, Y.: Slice: reviving regions-based pruning
for reverse k nearest neighbors queries. In: 2014 IEEE 30th International Confer-
ence on Data Engineering, pp. 760–771. IEEE (2014)

15. Yang, S., Cheema, M.A., Lin, X., Zhang, Y., Zhang, W.: Reverse k nearest neigh-
bors queries and spatial reverse top-k queries. VLDB J. 26(2), 151–176 (2017)

A Localization System for GPS-free
Navigation Scenarios

Jiazhi Ni1, Xin Zhang1, Beihong Jin2,3(B), Fusang Zhang2,3, Xin Li1,
Qiang Huang1, Pengsen Wang1, Xiang Li1, Ning Xiao1, Youchen Wang1,

and Chang Liu1

1 Localization Technology Department, Tencent Inc, Beijing, China
2 State Key Laboratory of Computer Sciences, Institute of Software,

Chinese Academy of Sciences, Beijing, China
Beihong@iscas.ac.cn

3 University of Chinese Academy of Sciences, Beijing, China

Abstract. Localization is crucial to mobile navigation, which mainly
depends on satellite navigation systems such as GPS. Unfortunately,
sometimes GPS localization might be missing due to hardware failure
or the urban canyon effect. Network localization is a promising way to
improve localization experience for users under these conditions. How-
ever, there has not been any report on the large-scale applications of net-
work localization methods to GPS-free outdoor scenarios. In this paper,
we describe the challenges and build a novel navigation fingerprint based
localization system, which fuses road network information and Wi-Fi sig-
nals scanned outdoors. With large amount of navigation trajectories as
supervised information, we train a ranking model to obtain a reasonable
metric for localization. The localization system has been deployed in Ten-
cent Map, improving navigation accuracy in GPS-free outdoor scenarios
for 1.6 million users.

Keywords: Mobile navigation · Network localization · Road network

1 Introduction

In recent years, due to the popularity of mobile phones and the development of
navigation technology, mobile navigation plays a more important role in people’s
daily life, including driving, walking, cycling and other navigation scenarios.
Modern navigation technology can form the road network information of the
entire city by means of various surveying and mapping methods. With the help
of mobile navigation, anyone can go anywhere at anytime. It calculates shortest
distances to destinations and reduces travel costs.

In general, Global Positioning System (GPS) is widely used as the preferable
localization method during mobile navigation. However, according to the statis-
tics from Tencent Map, nearly 67% of negative user feedback are related to weak
or no GPS signals. This hinders the user experience of Map apps a lot. Table 1
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 268–273, 2022.
https://doi.org/10.1007/978-3-031-00123-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_22&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_22

A Localization System for GPS-free Navigation Scenarios 269

Table 1. Statistics of user feedback on navigation problems from Tencent Map

Feedback category Count Ratio

Weak or no GPS signal 1976 69.7%

Low GPS accuracy 624 22%

Cannot locate 27 0.9%

Locate too slow 25 0.9%

Wrong direction 103 3.6%

Inaccurate speed 79 2.8%

shows an example. We collect 2834 user feedback in a month from Tencent Map
which are related to navigation problems. As shown in Table 1, these feedback
are classified into six categories, and 1976 of the feedback are related to GPS-
free navigation scenarios which we attribute to the failure of GPS module or the
urban canyon effect. GPS hardware failure is more likely to happen in low-end
mobile phones which cost less than 400 dollars and account for 70% of Tencent
Map users in 2019. Additionally, the urban canyon will cause GPS signal loss
for all mobile phones.

In recent years, network localization using various signal data have attracted
intensive research interests, proposing different methods such as Wi-Fi based
methods [1,2], Bluetooth based methods [3–5], UWB based methods [6–8], etc.
Among these techniques, Wi-Fi based localization methods have been inten-
sively studied and applied to indoor localization because of low cost and wide
deployment of Wi-Fi devices. Unfortunately, few studies exist on the Wi-Fi based
localization methods in GPS-free outdoor scenarios. We note that in GPS-free
scenarios, there are two reasons why the traditional Wi-Fi based methods can-
not work: 1) road network information is not fully exploited in the process of
fingerprint construction. 2) the traditional fingerprint matching model cannot
effectively identify the differences of Wi-Fi signals in indoor and outdoor navi-
gation scenarios.

In the paper, we build a novel navigation fingerprint based localization system,
providing single-point localization for outdoor users using Tencent Map. The sys-
tem takes the road network information into consideration and designs an effective
fingerprint matching model to get localization results with high accuracy.

To the best of our knowledge, we are the first to mine Wi-Fi signals to provide
the outdoor localization for urban GPS-free scenarios. Although this is only a
preliminary work, it offers a practical way to fuse road network information and
Wi-Fi signals scanned outdoors, and provides high-accuracy localization results
for navigation applications.

2 System Overview

From the perspective of Tencent Map users, the closer the distance between
localization point given by system and the user’s real location is, the higher the

270 J. Ni et al.

corresponding rating of the localization system’s accuracy is. Thus, the localiza-
tion system first extracts the GPS information from historical trajectories and
then calculates the distance between the fingerprint and GPS location at every
timestamp, which are used to measure the localization system’s accuracy at that
time, the distances are finally transforms into localization ratings, denoted as Y ,
as shown in Eq. (1).

Y =

⎡
⎢⎣
ylng1,lat1 · · · ylng1,latk

...
. . .

...
ylngk,lat1 · · · ylngk,latk

⎤
⎥⎦
klng×klat

(1)

where klng is the number of fingerprints divided along the longitude direction,
similarly, klat along the latitude direction. (lngi, latj) represents the geograph-
ical coordinates of the lower right corner of fingerprint grid FP(i,j). ylngi,latj
represents the ratings of localization in fingerprint grid FP(i,j).

In addition, we introduce the road network information [9,10], including link
length, link type, link level, link connectivity, etc., to construct the road topology
matrix R with dimension m×nR, where m represents the number of samples and
nR represents the number of road topology features. We also collect the Wi-Fi
signals scanned outdoors [11,12], mainly utilize these Wi-Fi signals’ statistics
(such as min/max/std, etc.) of Received Signal Strength Indicator(RSSI) and
occurrence frequency to construct the signal energy matrix S with dimension
m× nS , where nS represents the number of signal energy features.

In essence, fingerprint localization is a ranking task, which sorts all candidate
fingerprints. Thus, our goal is to select the optimal matching fingerprint as the
final localization result based on road topology matrix R and signal energy
matrix S and using localization ratings matrix Y as supervised information,
illuminated in Eq. (2).

FPoptimal = arg min
idx

Loss(Y,Rank(FPidx, [R|S])) (2)

where Rank(.) is the function to compute the sorted list of candidate fingerprints
FPidx according to feature matrix [R|S], and Loss(.) is the loss function to
measure the error between ground truth Y and the sorted candidate fingerprint
list.

We propose a localization method based on Wi-Fi fingerprints for GPS-free
navigation scenarios, which is a variant of fingerprint localization [13–15] and
build a navigation fingerprint based localization system. Our localization system
consists of four modules, which are shown in Fig. 1.

• Data Preprocessing Module: This module first preprocesses the road net-
work data, Wi-Fi signal records scanned outdoors and historical trajectories
records, where the GPS signals in trajectories are used as the supervised
information to generate the localization rating matrix Y .

• Model Construction Module: This module devises the specialized aggregation
network as well as an integrated loss functions to achieve the fingerprint

A Localization System for GPS-free Navigation Scenarios 271

Fig. 1. System architecture

matching. After being offline trained using road topology matrix R, signal
energy matrix S as input, the module outputs the trained ranking model.

• Localization Module: This module utilizes the trained model to predict the
rating for recalled fingerprints and provides the final localization point of
the outdoor user. Specifically, there are two stages, i.e., the recall stage and
the ranking stage. At the recall stage, we employ the customized rules (e.g.
directly select relevant fingerprints according to the scanned Wi-Fi list or
draw a range based on the localization result from cells of base stations as
reference) to recall the candidate set of fingerprints. At the ranking stage,
we employ the trained ranking model to predict the ratings of fingerprints in
candidate set and select the optimal matching fingerprint as the final result.

• Feedback Module: This module periodically collects the wrong localization
cases during navigation, and incrementally fine-tunes the model after the
manual evaluation. Specifically, we first obtain the ground truth of the wrong
cases by manual evaluation and get their ratings through preprocessing mod-
ule, and then employ online learning to update the parameters in our model,
and finally use the updated model to provide localizaition services.

3 System Deployment

Our navigation fingerprint based localization system has already provided ser-
vices via Tencent Map application (see in Fig. 2) for millions of users.

In GPS-free navigation scenarios, the Wi-Fi signals scanned outdoors are
sent to servers of Tencent Map which call the proposed system to match the
most likely road link. Our system can provide single-point localization before
or during driving for users using the app on mobile phones. Specifically, the
localization process of Tencent Map can seamlessly switch between our system
and GPS positioning if the latter is appropriate.

For model evolution, we regularly update the fingerprint database with the
latest Wi-Fi signal data, road network data and historical trajectories, and feed
data into the model. Furthermore, we also improve user experience through

272 J. Ni et al.

(a) Navigation Localiza-
tion during Driving

(b) Navigation Localiza-
tion before Driving

(c) Navigation Localiza-
tion Feedback

Fig. 2. GUIs of navigation localization in Tencent Map app

online training model based on the feedback. The fingerprint database and mod-
els are stored in servers and users can get the efficient services without updating
local application.

References

1. Roy, P., Chowdhury, C.: A survey of machine learning techniques for indoor local-
ization and navigation systems. J. Intell. Robot. Syst. 101(3), 1–34 (2021)

2. Mendoza-Silva, G., et al.: Environment-aware regression for indoor localization
based on WiFi fingerprinting. IEEE Sensors J. (2021)

3. Chen, J., et al.: A data-driven inertial navigation/Bluetooth fusion algorithm for
indoor localization. IEEE Sensors J. (2021)

4. HajiAkhondi-Meybodi, Z., et al.: Bluetooth low energy and CNN-based angle of
arrival localization in presence of Rayleigh fading. In: ICASSP 2021–2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE (2021)

5. Xu, S., et al.: Bluetooth, floor-plan, and MEMS assisted wide-area audio indoor
localization system: apply to smartphones. IEEE Trans. Ind. Electron. (2021)

6. Djosic, S., et al.: Fingerprinting-assisted UWB-based localization technique for
complex indoor environments. Expert Syst. Appl. 167, 114188 (2021)

7. Zhao, M., et al.: ULoc: low-power, scalable and cm-accurate UWB-tag localization
and tracking for indoor applications. Proc. ACM Inter. Mob. Wearable Ubiquitous
Technol. 5(3), 1–31 (2021)

8. Wang, C., et al.: A high-accuracy indoor localization system and applications based
on tightly coupled UWB/INS/Floor map integration. IEEE Sensors J. 21(16),
18166–18177 (2021)

9. Win, M.Z., Shen, Y., Dai, W.: A theoretical foundation of network localization and
navigation. Proc. IEEE, 106(7), 1136–1165 (2018)

A Localization System for GPS-free Navigation Scenarios 273

10. Li, D., Lei, Y., Li, X., Zhang, H.: Deep learning for fingerprint localization in indoor
and outdoor environments. ISPRS Int. J. Geo-Inf. 9(4), 267 (2020)

11. Singh, N., Choe, S., Punmiya, R.: Machine learning based indoor localization using
Wi-Fi RSSI fingerprints: an overview. IEEE Access (2021)

12. Wu, C.-Y., et al.: Effects of road network structure on the performance of urban
traffic systems. Phys. A: Stat. Mech. Appl. 563, 125361 (2021)

13. Morelli, A.B., Cunha, A.L.: Measuring urban road network vulnerability to extreme
events: an application for urban floods. Trans. Res. Part D Transp. Environ. 93,
102770 (2021)

14. Niu, K., et al.: Understanding WiFi signal frequency features for position-
independent gesture sensing. IEEE Trans. Mob. Comput. (2021)

15. Olivares, E., et al.: Applications of information channels to physics-informed neu-
ral networks for WiFi signal propagation simulation at the edge of the industrial
internet of things. Neurocomputing 454, 405–416 (2021)

Systems

HEM: A Hardware-Aware Event
Matching Algorithm for Content-Based

Pub/Sub Systems

Wanghua Shi and Shiyou Qian(B)

Shanghai Jiao Tong University, Shanghai, China
{s-whua,qshiyou}@sjtu.edu.cn

Abstract. Content-based publish/subscribe (CPS) systems are widely
used in many fields to achieve selective data distribution. Event matching
is a key component in the CPS system. Many efficient algorithms have
been proposed to improve matching performance. However, most of the
existing work seldom considers the hardware characteristics, resulting
in performance degradation due to a large number of repetitive opera-
tions, such as comparison, addition and assignment. In this paper, we
propose a Hardware-aware Event Matching algorithm called HEM. The
basic idea behind HEM is that we perform as many bit OR operations as
possible during the matching process, which is most efficient for the hard-
ware. In addition, we build a performance analysis model that quantifies
the trade-off between memory consumption and performance improve-
ment. We conducted extensive experiments to evaluate the performance
of HEM. On average, HEM reduces matching time by up to 86.8% com-
pared with the counterparts.

Keywords: Event matching · Hardware-aware · Bitset OR operation

1 Introduction

As a flexible communication paradigm, content-based publish/subscribe (CPS)
systems are widely applied in manifold applications, such as stock trading sys-
tem [1,16], recommendation system [7], social message dissemination system
[2] and monitoring system [10]. There are three basic roles in CPS systems
to achieve fine-grained data distribution: subscriber, publisher and broker. Sub-
scribers commit subscriptions to brokers according to their interests and focuses.
Publishers produce events and send them to brokers. For each incoming event,
brokers execute event matching algorithms to search for matching subscriptions
and forward the event to the subscribers to which those matches belong.

Apparently, matching algorithms play an irreplaceable role in CPS systems.
With the growth of event arrival rate, subscription number and the size of event
and subscription, it is inevitable for event matching algorithm to be a perfor-
mance bottleneck of the entire CPS system. The urge to decrease the end-to-end

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 277–292, 2022.
https://doi.org/10.1007/978-3-031-00123-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_23&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_23

278 W. Shi and S. Qian

data distribution latency and improve the throughput in CPS systems in the
past decades has driven algorithm design in event matching.

Diverse algorithms have been proposed to boost event matching. According
to the first search targets (matching or unmatching subscriptions), there are
forward algorithms (such as TAMA [20] and OpIndex [19]) and backward algo-
rithms (such as REIN [13] and GEM [6]). Each matching algorithm has its own
design idea. For example, TAMA [20] designs an index table to locate all the
predicates matching a given event value and maintains a counter for each sub-
scription. REIN [13] locates two unmatching cell lists for each event value and
traverses the cells to mark unmatching subscriptions. From the hardware per-
spective, TAMA and OpIndex do numerous addition operations one by one while
REIN and GEM perform arduous traversal and marking operations bit by bit,
thereby consuming much time to do repetitive operations. In effect, it is more
efficient for computers to do in-flash bitwise operations because the overhead of
data movement between caches and memory is mitigated [8]. In addition, as the
memory price is falling and large capacity of memory becomes more common
nowadays, cache mechanism becomes a potential method to trade space for time.

Motivated by the above discussion, we propose a novel hardware-aware event
matching algorithm (HEM) based on bitset OR operations. HEM adopts a back-
ward method to obtain matching results, similar to REIN [13] and GEM [6]. The
basic idea is to fully utilize the hardware characteristic of doing a set of bitwise
OR operations in the parallel way. Specifically, HEM uses a subscription pre-
mark cache (SPC) mechanism to replace repeated traversal and marking opera-
tions with efficient bitwise OR operations in the matching process, following the
concept of trading space for time. We build a theoretical model to quantify the
trade-off between performance improvement and memory consumption.

Extensive experiments are conducted to evaluate the performance of HEM
based on synthetic and real-world stock dataset. First of all, verification experi-
ments validate the conclusion of the theoretical analysis: doubling the cache size
halves the marking time. Secondly, compared with four counterparts, namely
REIN [13], Ada-REIN [15], OpIndex [19] and TAMA [20], metric experiments
show that HEM reduces matching time by 86.8%, 86.3%, 82.1% and 45.3% on
average. The main contributions of our work are as follows:

– We propose a hardware-aware event matching algorithm called HEM which
aims to reduce the time of repeated operations in the matching process.

– We propose a subscription pre-mark cache method to optimize the matching
efficiency of HEM by trading space for time.

– We build a theoretical performance analysis model that quantifies the trade-
off between memory consumption and performance improvement.

– We evaluate the performance of HEM through extensive experiments based
on synthetic and real-world dataset.

2 Related Work

In the past few decades, improving matching performance has been one of the hot
topics in the CPS system. Copious efficient event matching algorithms have been

HEM: A Hardware-Aware Event Matching Algorithm 279

proposed, such as REIN [13], Ada-REIN [15], Comat [5], TAMA [20], OpIndex
[19], H-Tree [14], MO-Tree [4], GEM [6], GSEC [18], PS-Tree [9].

Classification of Matching Algorithms. Matching algorithms can be classified
from different perspectives. For instance, the work [11] classifies event matching
algorithms according to whether the underlying data structure is subscription-
grouping (such as H-Tree [14] and MO-Tree [4]) or predicate-grouping (such as
REIN [13] and TAMA [20]). The work [21] reviews matching algorithms from
three aspects: single-thread algorithms (such as Ada-REIN [15] and OpIndex
[19]), parallel algorithms (such as PhSIH [11] and CCM [17]), and algorithms for
elasticity (such as GSEC [18] and CAPS [12]).

Moreover, the work [6] divides matching mechanisms into single dimensional
based and all dimensional based. The work [13] evaluates algorithms by whether
it is forward matching or backward matching. Based on the search strategies, the
work [3] regards the algorithms as filtering-based matching and counting-based
matching. The work [4] provides a new perspective of whether the matching
algorithm supports event matching and subscription matching.

Furthermore, event matching algorithms can also be distinguished from exact
matching (such as REIN [13] and PS-Tree [9]) or approximate matching (such as
Ada-REIN [15] and TAMA [20]), multi-algorithm composition matching (such
as Comat [5]) or single algorithm matching.

Analysis of Operations in Matching Algorithms. In this paper, we assess a match-
ing algorithm by whether it has a bottleneck on repeated operations. For exam-
ple, REIN [13] is a backward matching algorithm indexing predicates. In the
matching process, REIN mainly performs cell traversal and excessive repeated
bit-marking operations. Each unmatching subscription is marked ψ′

S times for
each event where ψ′

S is the number of unsatisfied predicates. REIN performs well
with high matching probability of subscriptions because the workload of mark-
ing unmatches is small. GEM [6] is an analogous backward algorithm and has
a similar problem. It designs a cache method to boost the removal operations,
which is consistent with the idea of alleviating repeated operations.

TAMA [20] is a forward and counting-based matching algorithm. The core
idea is to obtain the satisfied predicates rapidly and increase the counters of
the corresponding subscriptions. TAMA performs well with low matching prob-
ability because the workload of counting satisfied predicates is small. However,
all the satisfied predicates of both matching and unmatching subscriptions are
counted. As a result, counting operations is a performance bottleneck. Differ-
ently, OpIndex [19] starts from the pivot attribute to search, which filters abun-
dant unmatching subscriptions if the event does not contain the pivot attribute.
If subscriptions including a set of certain interval predicates defined on different
attributes are indexed together, we can replace multiple plus one operations with
one direct addition operation. GSEC [18] constructs data structure in this way.

Distinct from the above algorithms suffering from repeatedly executing oper-
ations (such as assignment operations in REIN and addition operations in

280 W. Shi and S. Qian

TAMA) one by one, HEM stores subscription states in caches and mainly per-
forms efficient bitwise OR operations during the matching process.

3 Problem Definition

For brevity, in model design and analysis, we regard the value domain of each
attribute as [0, 1]. Let d be the number of attributes in the content space.

Definition 1. An event E(e1, e2, ..., eψE
) consists of ψE attribute-value pairs,

which is a data point in the space. ei(aj , v) means the ith value v of E is defined
on attribute aj. Event size ψE is the number of nonempty attributes in E. Gen-
erally, ψE is much smaller than d in a high-dimensional space.

Definition 2. A predicate p(aj , [l, h]) is an interval defined on attribute aj,
which includes a low value l and a high value h in the closed form. The width
w of p(aj , [l, h]) is h − l. p(aj , [l, h]) matches an event value e(ai, v) only if
aj = ai ∧ l ≤ v ≤ h.

Definition 3. A subscription S(p1, p2, ..., pψS
) is composed by ψS predicates

defined on distinct attributes. Usually ψS is much smaller than ψE. S matches
E if each predicate of S matches the value of E on the same attribute.

Definition 4. Given an event and a set of subscriptions, event matching algo-
rithm searches all the matches of the event from the set.

4 Design

4.1 Overview

It is challenging to design matching algorithm to adapt to a wide range of appli-
cation requirements. First, the number and size of subscriptions may vary widely.
This change should not cause large fluctuations in the matching time. Second,
the dimension of the content space may be between tens to tens of thousands.
Both low-dimensional and high-dimensional situations should be adopted. Third,
multiple event types should be supported and the size of the event should not
seriously affect the matching performance. Fourth, the insertion and deletion
of subscriptions should bring little overhead. Fifth, the skewed distribution of
attributes, event values and predicate values should not cause the major perfor-
mance loss. Sixth, the width of the predicates in subscriptions should not have
much impact on the matching time. The first three points are regarded as hard
parameters and the last two ones are soft parameters.

When the number of subscriptions is large, for most algorithms, matching an
event requires lots of repeated operations, such as comparison, addition or bit
marking. From a hardware point of view, bit OR operations are more efficient
than the operations performed repeatedly by most existing matching algorithms.
Therefore, replacing other types of operations with bit OR operations is a feasible
solution to improve matching performance. Taking this idea into consideration,
we design a hardware-aware data structure to index subscriptions.

HEM: A Hardware-Aware Event Matching Algorithm 281

Fig. 1. The matching time distribution of REIN

4.2 Data Structure of HEM

The data structure of HEM consists of a three-level index layer and a collection
of bitsets for each attribute. The first level of indexing is based on attributes. The
second level is indexed by the low value end (LVE) and high value end (HVE)
of the predicate. The third level is constructed by dividing the value domain
of the attribute into c cells. Each cell maps to a bucket that stores the low or
high value of the predicate and the corresponding subscription ID. Each LVE or
HVE is associated with a collection of bitsets that are used to pre-mark certain
subscriptions as mismatches. When inserting subscription S into the structure of
HEM, the low/high value of each predicate in S is mapped to the cell responsible
for the value at the LVE/HVE of the attribute respectively. The predicate value
(low or high) and the subscription ID are stored as a pair in the cell. An example
of the structure is shown in Fig. 2.

Similar to GEM [6] and REIN [13], HEM uses a backward matching method,
first searching for unmatching subscriptions to obtain matches indirectly. Given
the partitioned cells with an attribute, if an event value v falls into the cell cj ,
all predicates with low values larger than v will definitely not match the event
at LVE. Specifically, unsatisfied predicates are stored in the cells from cj+1 to
the last cell. Similarly, at HVE, all predicates with high values less than v stored
in the cells from c1 to cj−1 should also be marked as unmatching. At LVE and
HVE, the event should compare with the pairs in cell cj one by one to determine
unmatching subscriptions.

When matching event, REIN [13] iterates through each cell that con-
tains unmatching subscriptions, and marks each mismatch in the bitset. These
repeated marking operations account for most of the matching time, as shown in
Fig. 1. HEM avoids marking mismatches as much as possible by a caching mech-
anism. Multiple cells are allocated to one group and each group has a bitset to
record whether each subscription is in the group. HEM pre-marks the subscrip-
tions in each group as mismatches in the corresponding bitset. This optimization
is called the subscription pre-mark cache (SPC) method. In this way, HEM avoids
costly traversal and marking operations, and instead uses bitwise OR operations
that are more efficient for hardware.

Subscription Pre-mark Cache (SPC) Method. Let g be the number of
groups and c be the number of cells at LVE or HVE. In particular, each group
gi contains a list of continuous i ∗ c

g cells. Since the number of bitsets at LVE or
HVE is equal to the number of groups, it is reasonable to let bitset Bi record the
subscriptions in group gi that contains the first/last i ∗ c

g cells for HVE/LVE. In
this way, the coverage lengths of the bitsets constitute an arithmetic sequence
with a common difference of c

g cells.

282 W. Shi and S. Qian

Fig. 2. HEM data structure

Table 1. Sample subscriptions

ID a1 a2 ID a1 a2 ID a1 a2

S1 [0.9, 0.95] [0.8, 0.9] S2 [0.0, 0.3] [0.5, 0.7] S3 [0.63, 0.69] [0.1, 0.2]

S4 [0.38, 0.76] – S5 – [0.4, 0.57] –

Figure 2 shows an example structure of HEM which builds indexes on two
attributes a1 and a2. The value domain of each attribute is divided into sixteen
cells assigned to four groups. Specifically, at the LVE of each attribute, group g1
includes cells from c13 to c16, g2 from c9 to c16 and so on. In contrast, the way
of grouping cells at the HVE starts from c1. The length of the bitset associated
with each group is equal to the number of subscriptions n. Each bitset is used to
mark the subscriptions stored in the cells belonging to the corresponding group.

Insertion Algorithm. Inserting a subscription S into HEM has two steps.
Firstly, for each predicate in S, according to the attribute and low/high value, the
predicate value and the subscription ID are stored as a pair in the cell that covers
the value. Secondly, according to the cell grouping scheme, the subscription is
marked in one or more bitsets. Algorithm 1 shows the pseudo code of insertion.

Figure 2 also shows the state of the data structure indexing the five sample
subscriptions listed in Table 1. For example, when inserting S1, for its first pred-

HEM: A Hardware-Aware Event Matching Algorithm 283

Algorithm 1: Insertion Algorithm
Input: Subscription S

1 for each predicate p(ai, [l, h]) in S do
2 Insert a pair (l, S.ID) into the cell covering l and mark S in the

corresponding bitsets of the groups that cover the cell at LVE;
3 Insert a pair (h, S.ID) into the cell covering h and mark S in the

corresponding bitsets of the groups that cover the cell at HVE;

icate, �0.9 ∗ 16 + 1� = 15 and �0.95 ∗ 16 + 1� = 16, so S1 is mapped to cell c15
and c16 at the LVE and HVE of a1 respectively. Predicate values are omitted for
brevity. Notice that c15 is in all the four groups at the LVE, so S1 is marked in
the four bitsets. At the HVE, c16 is only contained by group g4, so S1 is marked
in the corresponding bitset B4. The second predicate of S1 is processed similarly.

4.3 Matching Procedure of HEM

HEM uses a bitset B to record the matching results. Each unmarked bit rep-
resents a matching subscription. Algorithm 2 gives the matching procedure of
HEM, which can be divided into six steps. The first four steps are to process
each attribute-value pair of the event. Step 1 performs comparisons in the cell
into which the event value falls at LVE and HVE respectively and marks the
unmatching subscriptions in B (lines 3–4). Step 2 selects the largest-size group
that does not contain the cell into which the event value falls. Note that at
LVE/HVE, when the cell ID is larger or equal than c(g−1)

g /smaller or equal than
c
g , no such group is available (line 5). Step 3 performs bit OR operations between
B and the bitset of the selected group if available at LVE and HVE respectively
for each nonempty attribute in the event (line 6). Step 4 marks the unmatching
subscriptions in B that are stored in the cells not covered by the selected group
(line 7). Step 5 does a series of bit OR operations between B and the bitset of the
largest-size group for each null attribute of the event (line 8). When an event
does not contain an attribute, all predicates defined on the attribute are not
satisfied. Step 6 checks the unmarked bits in B to obtain the matching results
(line 9).

Let event E = {(e1(a1, 0.64), e2(a2, 0.32)}) as an example. Based on the data
structure shown in Fig. 2, the first attribute-value pair e1 of E falls into the cell
�0.64 ∗ 16 + 1� = 11 on a1. The low/high values of the predicates stored in cell
c11 need to be compared with e1 one by one at LVE/HVE respectively. Since
the low value 0.63 of S3 in c11 is smaller than the event value 0.64, it is not
marked as unmatching in B. Next, B1(10000) and B2(01000) are selected to do
bit OR operations with B since g1 and g2 are the largest-size group that does
not cover c11 at the LVE and HVE of a1 respectively. As a result, B = (11000).
Subsequently, cell c12 at LVE and cells c9 and c10 at HVE should be traversed
since they store unmatching subscriptions and are not covered by the selected
groups. In this case, there are no subscriptions to be marked as unmatching in

284 W. Shi and S. Qian

Algorithm 2: Matching Algorithm
Input: Event E
Output: Matching results B

1 Initialize a zero bitset B whose length is the number of subscriptions;
2 for each attribute-value pair (aj , v) in Event E do
3 Find the cell cl at LVE and ch at HVE that the attribute value falls into;
4 Compare v with the predicate values in cl and ch, and marks the IDs of

subscriptions as unmatching in B;
5 Select the largest-size group gl and gh not covering cl and gh at LVE and

HVE respectively;
6 Do bit OR operations between B and the bitsets of gl and gh to obtain all

unmatching subscriptions of the groups if the group is not null;
7 Mark the IDs of subscriptions as unmatching for the rest unmatching cells

not covered by gl and gh in B at LVE and HVE respectively;

8 Do (d − ψE) times of bit OR operations between B and the bitset of the
largest-size group to obtain the mismatches defined on null attributes of E;

9 Check the unmarked bits in B to output matching results.

B. In REIN [13], cells from c12 to c16 at LVE and from c1 to c10 at HVE need
to be traversed one by one, but in HEM only three cells need to be traversed.
The second attribute-value pair e2 in E is processed similarly. At the comparing
step, S5 stored in cell c7 at the LVE of a2 is marked as unmatching in B(11001).
B2(11000) and B1(00100) at the LVE and HVE respectively of a2 do bit OR
operations with B. At the final checking step, B(11101) has one unmarked bit,
meaning that S4 is the match of E.

HEM reduces the traversal and marking operations in the matching process
by setting up a set of caches that pre-mark certain subscriptions as unmatching.
Therefore, HEM mainly does bit OR operations when matching events. Gen-
erally, compared to marking each unmatching subscription by traversing each
cell, it is more efficient to perform a bit OR operation to collectively mark the
unmatching subscriptions stored in multiple cells. When the selected largest-size
group covers all the cells that need to be traversed, the marking time of HEM
can be optimized to be close to zero. For each attribute, the total number of
cells to be traversed at LVE and HVE is a constant, namely c

g − 1.

5 Theoretical Analysis

5.1 Complexity Analysis

Time Complexity of Insertion Algorithm. For a subscription S with size ψS , it
needs to insert 2ψS pairs into the corresponding cells, which takes O(ψS). In
addition, marking the subscription in one or more bitsets has a cost at most
O(gψS). Therefore, the time complexity of insertion is O(gψS).

HEM: A Hardware-Aware Event Matching Algorithm 285

Time Complexity of Matching Algorithm. The matching procedure of HEM can
be divided into six steps to analyze. The comparison step (Lines 3–4) checks
pairs in two cells with average cost O(nψS

dc). The cost of two bit OR operations
(Lines 5–6) is O(n). The marking step (Line 7) traverses c

g − 1 cells for both
value ends, so the cost is O(nψS

dc ∗ (c
g − 1)) = O(nψS

dg). Given the event size ψE ,
these three steps have a cost O(ψEn(1 + ψS

dg)) since g ≤ c. The time to process
null attributes (Line 8) is O((d−ψE)n). The final check step (Line 9) takes O(n).
Therefore, the time complexity of the matching algorithm is O(dn + nψEψS

dg).

Space Complexity. Given the dimensionality d of the content space and the
number of cells c divided on each attribute, the total number of cells is dc. The
total number of bitsets is 2dg. For n subscriptions with size ψS , the total number
of predicates is nψS . Thus, the space complexity of HEM is O(dc + dng + nψS).

5.2 Performance Analysis

In this section, we build a analysis model for HEM to quantify the relationship
between performance improvement and memory consumption. To explore the
improvement on marking time, we take the HVE of one attribute as a break-
through since the LVE and HVE of each attribute have similar characteristics.

Lemma 1. Given the number of subscriptions n with size ψS, the marking time
of HEM is proportional to 0.5nψS without the SPC method.

Proof. The marking time of HEM is proportional to the times of marking sub-
scriptions one by one, which is computed as:

nψS

∫ 1

0

(x − 0)dx = 0.5nψS (1)

where dx can be seen as a probability and x is the possible value of an event.
The interval range to be traversed is [0, x]. ��
Lemma 2. Given n, ψS and g, the marking time of HEM is halved by doubling
g with the SPC method.

Proof. The adoption of the SPC method limits the number of traversing cells
to c

g − 1. Hence, with the SPC method, the number of marked subscriptions is
computed as:

nψS

g−1∑
i=0

∫ i+1
g

i
g

(x − i

g
)dx

= nψS

∫ 1

0

xdx − n

g
ψS

g−1∑
i=0

i

∫ i+1
g

i
g

1dx

= 0.5nψS − (g − 1)nψS

2g
=

nψS

2g

(2)

286 W. Shi and S. Qian

Table 2. Parameter settings in the experiments

Name Description Experimental values

R The value domain of attribute [1, 1M]

α Parameter of Zipf 0, 1–5

d Number of attributes 20, 30, 100, 300–900

n Number of subscriptions 0.3M, 1M, 3M–9M

ψE Event size 20, 30–80

ψS Subscription size 5, 10, 15–30

w Predicate width 0.1, 0.2, 0.3–0.9

where x− i
g is the length of interval to be marked one by one for any event value

x ∈ [i
g , i+1

g], i ∈ [0, g − 1]. Since the marking time is proportional to the times of
marking subscriptions one by one, doubling g halves the marking time. ��
Theorem 1. Given n, ψE , ψS , d and g, when ψE = d, g > 1 and the predicate
values are uniformly distributed in the value domain [0, 1], the improvement ratio
of the marking time of HEM is 1 − 1

g with the SPC method.

Proof. Based on Lemma 1 and 2, the improvement ratio of the marking tasks of
HEM is 1 − nψS

2g∗0.5nψS
= 1 − 1

g . ��

Theorem 1 means that 50% or 96.875% of marking operations are avoided
when g is set to 2 or 32 respectively, presenting an inverse proportional relation-
ship. The ratio does not hold when g = 1 because it assumes that the unique
bitset on LVE or HVE covers all cells. Nevertheless, we can configure that the
unique bitset on LVE or HVE covers only half of the cells when g = 1. Thus,
the improvement of g = 1 is equivalent to that of g = 2 when ψE = d.

6 Experiments

6.1 Setup

Workloads. The event data comes from a real-world stock dataset with 50
attributes after being cleaned up. The dataset was collected from the Chinese
stock market on June 8, 2018. The subscription data is generated based on the
stock dataset. For high-dimensional testing, we synthesize event data. Table 2
lists the parameter settings where the default values are marked in bold.

Baselines. We compare HEM with four event matching algorithms reviewed
in Sect. 2, namely REIN [13], Ada-REIN [15], TAMA [20] and OpIndex [19].
Based on REIN, Ada-REIN ignores some marking tasks on attributes to reduce
matching time, resulting in some false positive matches. REIN and Ada-REIN

HEM: A Hardware-Aware Event Matching Algorithm 287

originally only support single-type event matching (ψE = d). We re-implemented
them to match events with multiple types, namely ψE
 d. Besides, they are
set with the same c as HEM (1,000 by default). The false positive rate of Ada-
REIN is set to 0.05. TAMA counts the matching predicates for each subscription
which exist only in ψE attributes. The discretization level of TAMA is set to
13. We re-implemented TAMA to achieve exact matching with negligible over-
head. OpIndex classifies subscriptions by their pivot attributes and only pivot
attributes of events are processed.

Testbed. All the algorithms are implemented in C++ language and compiled
by g++ 9.3.0 with -O3 optimization enabled on Ubuntu 20.04 system. All the
experiments are conducted on an AMD 3.7 GHz machine with 64 GB RAM.

Metrics. We evaluate the performance of the five algorithms in terms of three
metrics: matching time, insertion time and memory consumption. The matching
time is measured from the beginning of matching an event to the end of obtaining
the whole matching result. 500 events are processed to calculate the average
matching time in each experiment. Insertion time refers to the time of inserting
a subscription into the data structure. Memory consumption refers to the total
memory used by the underlying data structure of the matching algorithm after
inserting a subscription dataset.

6.2 Verification Experiments

We design a benchmark experiment to verify the performance analysis model
in Sect. 5.2 and investigate the trade-off between matching time and memory
usage. In this experiment, the parameters are set to the default values.

Figure 3 presents the marking time of HEM with different number of groups
g from 1 to 512. Starting from g = 2, the marking time of HEM halves for each
time g is doubled. For example, the marking time is 0.60 ms and 0.31 ms for
g = 16 and g = 32 respectively. In this experiment, we set ψE = d, so the group
covering all the cells is not used. Consequently, the marking time for g = 1 is
approximately equal to that for g = 2. The average marking time without the
SPC method is 6.79 ms, smaller than twice of the marking time when g = 2.
This is because the groups are statically divided and the predicates are not
absolutely evenly distributed. When g = 32, the performance improvement ratio
of HEM is 1 − 0.31

6.79 ≈ 95.4%, which is close to the theoretical value 96.875%
based on Theorem 1. Overall, the ratio of marking time in the total matching
time decreases from 93.7% to 2.5% when g increases from 1 to 512, indicating
that the bottleneck operation (Fig. 1) has been alleviated. In summary, the SPC
optimization method is effective and Theorem 1 is validated.

Figure 4 depicts the matching time and memory usage of HEM varying g from
1 to 512. The matching time dwindles exponentially and the memory usage grows
exponentially with the exponential increase of g. When the SPC optimization
method is not enabled, the matching time of HEM is 7.56 ms and the memory

288 W. Shi and S. Qian

Fig. 3. Marking time of HEM with dif-
ferent g

Fig. 4. Matching time and memory
usage of HEM with different g

Fig. 5. Effect of n Fig. 6. Effect of ψS

consumption is 152 MB. We finally set g = 32 to do the metric experiments
since the matching time of HEM drops by 89.7% and the memory usage is
nearly doubled, which makes a good trade-off.

6.3 Metric Experiments

The performance of the event matching algorithm is affected by many parame-
ters. We change their settings to observe their effects in the experiments.

Number of Subscriptions n. The number of subscriptions is a core parameter
to measure the workload, which has a vital impact on the matching time. As
shown in Fig. 5, all algorithms have higher matching time as n increases. HEM
performs best in all situations. Compared with REIN, TAMA, Ada-REIN and
OpIndex, HEM reduces the matching time by 90.1%, 83.5%, 90.0% and 95.9%
respectively on average. When n grows from 3M to 7M, the predicates become
more densely distributed in the cells and the optimization space becomes larger.
Hence, the matching time of HEM increases slower than before. When n is 9M,
the matching time of HEM grows more quickly because the bit OR operations
cost a lot. The matching time of TAMA increases faster than REIN and Ada-
REIN because the workload of counting satisfied predicates is time-consuming.

HEM: A Hardware-Aware Event Matching Algorithm 289

OpIndex performs worst because predicates are evenly distributed in attributes
and all the attributes are elected as pivot attributes.

Subscription Size ψS . To measure the effect of ψS , we set d = ψE = 30, w =
0.7 and vary ψS from 5 to 30. From Fig. 6 we can see that the matching time of
the five algorithms increases linearly with ψS . Therefore, ψS is more related to
the real workload compared to n. The performance of Ada-REIN is almost the
same as REIN. This is attributable to the low false positive rate, low matching
probability and the uniform distribution of predicates. Compared with REIN,
TAMA, Ada-REIN and OpIndex, HEM reduces the matching time by 83.7%,
82.6%, 83.1% and 95.2% respectively average.

Event Size ψE . In the event size experiment, we set d = 80 and vary ψE

from 30 to 80. Generally, the event size is proportional to the matching time of
the forward matching algorithms (TAMA and OpIndex) and inversely propor-
tional to the matching time of the backward matching algorithms (REIN and
Ada-REIN), as shown in Fig. 7. Nevertheless, HEM, as a backward matching
algorithm, has a slowly increasing matching time with ψE . This is because both
comparing and marking operations are avoided and only one bit OR operation
is needed to process each null attribute. On average, the matching time of HEM
is reduced by 88.5%, 86.5%, 86.3% and 50.3% compared with OpIndex, REIN,
Ada-REIN and TAMA, respectively.

Fig. 7. Effect of ψE Fig. 8. Effect of w

Predicate Width w . The matching probability of subscriptions is relevant
to ψS and w. Figure 8 presents how w affects the matching time by varying w
from 0.1 to 0.9. ψS is set to 5 to ensure a nonzero matching probability in the
experiment. This setting makes the predicates sparsely distributed in cells. As
a forward algorithm, TAMA takes a longer time with the increasing of w. The
performance of OpIndex is not affected by w. As backward algorithms, REIN
and Ada-REIN run faster with w. However, when w = 0.9, the predicates are
dense and the comparing time of REIN and Ada-REIN becomes unnegligible so

290 W. Shi and S. Qian

Fig. 9. Effect of d Fig. 10. Effect of α

their matching time increase a little. HEM is nearly immune to w and exhibits a
steady performance because the number of cells to be marked is limited to c

g −1
for each nonempty attribute. On average, in comparison with REIN, TAMA,
Ada-REIN and OpIndex, HEM reduces the matching time by 88.0%, 85.0%,
87.3% and 95.9% respectively.

Number of Attributes d. To simulate sparse workloads, we set w = 0.5 and
vary d from 30 to 900. Figure 9 indicates that all algorithms behave monotoni-
cally. TAMA performs best after d is up to 300. The two forward matching algo-
rithms show a similar trend with d because they process each event value rather
than each attribute and the workload decreases with the increase of d. However,
the three backward matching algorithms have to mark all the unmatching sub-
scriptions in each attribute. HEM replaces the marking task in a null attribute
of an event with one bit OR operation. Unfortunately, that still costs a lot under
high dimension and the memory consumption becomes large. As a result, d is a
hard parameter for backward matching algorithms.

Attribute Distribution. There are two categories of the skewed distribution
of algorithm input. One is the value distribution and the other is attribute dis-
tribution. Considering that the matching time basically keeps invariant with an
uneven value distribution of subscriptions and events, we only give the experi-
ment results under skewed attribute distribution of both subscriptions and events
in Fig. 10, where d = 50, ψS = 5 and w = 0.5. In Zipf distribution, a larger α
means a more serious skewed distribution and a more heavy workload. HEM and
TAMA overcomes the skewed problem well while the other three counterparts
fluctuate greatly with α. Ada-REIN skips from 1 attribute and about 26 k pred-
icates to 40 attributes and about 5M predicates when α varies from 1 to 5. Thus
its matching time is smaller than that of REIN.

6.4 Maintainability

Two experiments are conducted to test the maintenance cost of HEM. Figure 11
reveals that the average insertion time of HEM increases by about 42.6%

HEM: A Hardware-Aware Event Matching Algorithm 291

Fig. 11. Insertion time ψS Fig. 12. Memory usage(MB) by n

compared to REIN because HEM needs to pre-mark a new subscription in one or
more bitsets for each attribute on which the predicate is defined. TAMA inserts
the subscription ID into a set of cells for each predicate, thereby resulting in
the highest insertion time. The deleting time of HEM is very close to that of
REIN because the time to find the deleted pairs in cells accounts a lot. The
experiment results are omitted. Figure 12 shows the memory usage of the five
algorithms with different n. All the curves rise logarithmically. The memory
usage of HEM is about twice of REIN’s and 64.3% of TAMA’s.

7 Conclusion

When processing a large number of subscriptions, most matching algorithms
need to repeatedly perform a lot of operations, which becomes a performance
bottleneck. In this paper, we propose a hardware-aware event matching algo-
rithm termed HEM, aiming to execute efficient operations in the matching pro-
cess. The experiment results reveal the superiority of HEM to its counterparts.
HEM shows excellent performance in terms of matching time and stability under
various conditions. In the future, we plan to design a state reduction method
to optimize the bit OR operations of HEM under high dimension, and extend
HEM to multi levels to accommodate input with multiple hotspots.

Acknowledgments. This work was supported by the National Key Research and
Development Program of China (2019YFB1704400), the National Natural Science
Foundation of China (61772334, 61702151), and the Special Fund for Scientific Instru-
ments of the National Natural Science Foundation of China (61827810).

References

1. Barazzutti, R., Heinze, T., et al.: Elastic scaling of a high-throughput content-based
publish/subscribe engine. In: ICDCS, pp. 567–576. IEEE (2014)

2. Chen, L., Shang, S.: Top-k term publish/subscribe for geo-textual data streams.
VLDB J. 29(5), 1101–1128 (2020)

292 W. Shi and S. Qian

3. Ding, T., Qian, S.: SCSL: optimizing matching algorithms to improve real-time for
content-based pub/sub systems. In: IPDPS, pp. 148–157. IEEE (2020)

4. Ding, T., et al.: MO-Tree: an efficient forwarding engine for spatiotemporal-aware
pub/sub systems. IEEE Trans. Parallel Distrib. Syst. 32(4), 855–866 (2021)

5. Ding, T., Qian, S., Zhu, W., et al.: Comat: an effective composite matching frame-
work for content-based pub/sub systems. In: ISPA, pp. 236–243. IEEE (2020)

6. Fan, W., Liu, Y., Tang, B.: GEM: an analytic geometrical approach to fast event
matching for multi-dimensional content-based publish/subscribe services. In: IEEE
INFOCOM, pp. 1–9 (2016)

7. Fontoura, M., Sadanandan, S., Shanmugasundaram, J., et al.: Efficiently evaluating
complex Boolean expressions. In: ACM SIGMOD, pp. 3–14 (2010)

8. Gao, C., Xin, X., et al.: ParaBit: processing parallel bitwise operations in NAND
flash memory based SSDs. In: IEEE/ACM MICRO-54, pp. 59–70 (2021)

9. Ji, S.: Ps-tree-based efficient Boolean expression matching for high-dimensional
and dense workloads. Proc. VLDB Endow. 12(3), 251–264 (2018)

10. Ji, S., Jacobsen, H.A.: A-tree: a dynamic data structure for efficiently indexing
arbitrary boolean expressions. In: ACM SIGMOD, pp. 817–829 (2021)

11. Liao, Z., Qian, S., Cao, J., et al.: PhSIH: a lightweight parallelization of event
matching in content-based pub/sub systems. In: ICPP, pp. 1–10 (2019)

12. Ma, X., Wang, Y., Pei, X., Xu, F.: A cloud-assisted publish/subscribe service for
time-critical dissemination of bulk content. Concurr. Comput. Pract. Exp. 29(8),
e4047 (2017)

13. Qian, S., Cao, J., Zhu, Y., Li, M.: REIN: a fast event matching approach for
content-based publish/subscribe systems. In: IEEE INFOCOM, pp. 2058–2066
(2014)

14. Qian, S., Cao, J., Zhu, Y., Li, M., Wang, J.: H-tree: an efficient index structure for
event matching in content-based publish/subscribe systems. IEEE Trans. Parallel
Distrib. Syst. 26(6), 1622–1632 (2015)

15. Qian, S., Mao, W., Cao, J., Mouël, F.L., Li, M.: Adjusting matching algorithm
to adapt to workload fluctuations in content-based publish/subscribe systems. In:
IEEE INFOCOM, pp. 1936–1944 (2019)

16. Sadoghi, M., Labrecque, M., Singh, H., Shum, W., Jacobsen, H.A.: Efficient event
processing through reconfigurable hardware for algorithmic trading. Proc. VLDB
Endow. 3(1–2), 1525–1528 (2010)

17. Shah, M.A., Kulkarni, D.: Multi-GPU approach for development of parallel and
scalable pub-sub system. In: Iyer, B., Nalbalwar, S.L., Pathak, N.P. (eds.) Comput-
ing, Communication and Signal Processing. AISC, vol. 810, pp. 471–478. Springer,
Singapore (2019). https://doi.org/10.1007/978-981-13-1513-8 49

18. Wang, Y.: A general scalable and elastic content-based publish/subscribe service.
IEEE Trans. Parallel Distrib. Syst. 26(8), 2100–2113 (2014)

19. Zhang, D., Chan, C.Y., Tan, K.L.: An efficient publish/subscribe index for e-
commerce databases. Proc. VLDB Endow. 7(8), 613–624 (2014)

20. Zhao, Y., Wu, J.: Towards approximate event processing in a large-scale content-
based network. In: IEEE ICDCS, pp. 790–799 (2011)

21. Zhu, W., et al.: Lap: a latency-aware parallelism framework for content-based pub-
lish/subscribe systems. Concurr. Comput. Pract. Exp. e6640 (2021)

https://doi.org/10.1007/978-981-13-1513-8_49

RotorcRaft: Scalable Follower-Driven
Raft on RDMA

Xuecheng Qi, Huiqi Hu(B), Xing Wei, and Aoying Zhou

School of Data Science and Engineering, East China Normal University,
Shanghai, China

{xcqi,simba wei}@stu.ecnu.edu.cn, {hqhu,ayzhou}@dase.ecnu.edu.cn

Abstract. State machine replication plays a fundamental role in meet-
ing both the scalability and the fault-tolerance requirement in cloud ser-
vices. However, the single-point leader is easy to become a bottleneck
of scalability because it needs to handle all read and write requests and
independently replicate logs in order for all followers. Moreover, machine
resources are shared through cloud services where the scale-up of the
leader is very expensive. In this paper, we propose a variant of Raft
protocol using RDMA named RotorcRaft to significantly offload bur-
den from the leader to followers to relieve the single-point bottleneck.
First, RotorcRaft assigns a follower-driven log replication mechanism
that exploits hybrid RDMA primitives to relieve part of the burden of
leader to followers in log replication. Then, RotorcRaft proposes a quo-
rum follower read that enables followers to handle read requests without
the involvement of the leader. Experimental results demonstrate that
RotorcRaft has excellent scalability and up to 1.4x higher throughput
with 84% latency compared against the state-of-the-art work.

Keywords: Follower-driven · RDMA · Raft

1 Introduction

In cloud services, State Machine Replication (SMR) is a key infrastructure that
ensures both the scalability and the fault-tolerance requirement. SMR enables
the reliability of services by ensuring logs are recorded in the same order by the
majority of servers before they are applied to the state machine. Specifically,
Raft is a leader-based state machine consensus protocol that is widely used
in commercial systems like etcd [1], TiDB [2] and PolarFS [3], because of its
simplicity of implementation and strong consistent replication.

However, the single-point of leader can easily become a bottleneck of system
scalability. Figure 1 shows the leader node bottlenecks for a classic Raft: (1) the
leader needs to independently replicate logs to all followers and ensure the order
of records. (2) the leader takes on heavy workloads that needs to process all the
read and write requests from clients. Adding node in the consensus protocol can
increase the fault tolerance of the system, but accordingly hurts the performance.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 293–308, 2022.
https://doi.org/10.1007/978-3-031-00123-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_24&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_24

294 X. Qi et al.

Fig. 1. Architecture of Raft

Some work [3,4] has exploited high-speed network cards that support Remote
Direct Memory Access (RDMA) to boost the performance of consensus proto-
cols. However, they do not address the underlying problems of leader-based pro-
tocols: the consumption of the leader’s CPU and network is too heavy, while
the resources of followers are left idle. Not only does the leader need to repli-
cate the logs to all nodes, but the leader also plays a key role in follower read.
The follower needs to get the latest commit index (ReadIndex) from the leader.
And, before sending the commit index to the follower, the leader requires a quo-
rum confirmation of leadership by communicating with majority nodes, which
requires significant CPU and network overhead.

In this paper, we propose a variant of Raft protocol named RotorcRaft, a
scalable follower-driven Raft on RDMA that significantly offloads burden from
the leader to followers to relieve the single-point leader bottleneck. We are aimed
to answer two main questions: (1) Can we partially offload the overhead of the
leader to followers in log replication? (2) Can we fully offload the overhead of
the leader to followers without the involvement of the leader in follower read?
Main contributions are summarized ad follows:

– To answer the first question, RotorcRaft designs a follower-driven log repli-
cation mechanism that exploits hybrid RDMA primitives to offload tasks on
the critical path in log replication from the leader to followers, effectively
reducing the CPU and network overhead of the leader.

– To answer the second question, RotorcRaft proposes a quorum follower read
scheme that enables followers to directly handle read requests by leveraging
majority vote among followers and remote direct ReadIndex read in a follower-
driven manner without the involvement of the leader.

– We implement RotorcRaft with 100 Gpb/s RMDA InfiniBand NICs and use
Intel Optane DCPMM device to store logs. Experimental results demonstrate
that RotorcRaft has excellent scalability and up to 1.4x higher throughput
with 84% latency compared against the state-of-the-art work.

The remainder of the paper is organized as follows: Sect. 2 describes the
preliminary of RDMA network and Intel Optane DCPMM, then reviews the
related works. Section 3 describes the overview design of RotorcRaft. Section 4
demonstrates the follower-driven log replication mechanism. Section 5 introduces

RotorcRaft: Scalable Follower-Driven Raft on RDMA 295

the quorum follower read scheme. Section 6 discusses communication complexity
between Raft and RotorcRaft. In Sect. 7, we present the results of our perfor-
mance evaluation. Section 8 concludes the paper.

2 Preliminary

2.1 RDMA Network

RDMA network provides high bandwidth and low round-trip latency accessing
to the memory of the remote machine. This is achieved by using zero-copy net-
working bypassing the OS kernel and remote CPU. RDMA supports Memory
verbs, Message verbs and RDMA multicast:

Memory verbs, also known as one-sided verbs (i.e., read and write), require
no involvement of the remote CPU, namely, these verbs entirely bypass the
remote CPU. Client can write or read directly to the memory of server that the
server is unaware of client’s operations.

Message verbs, also called as two-sided verbs (i.e., send and receive), pro-
vide user-level two-sided message passing that involves remote machine’s CPU,
before a send operation, a pre-posted receive operation should be specified by
the remote machine.

RDMA multicast [5], supports one-to-multiple RDMA communication in one
multicast group. It is only supported in Unreliable Datagram (UD) transport
type, but corrupted or out-of-sequence packets are silently dropped [6].

2.2 Intel Optane DCPMM

Intel Optane DCPMM is the first commercial Non-Volatile Memory (NVM)
hardware module that promises byte-addressability, persistence and high density.
It can be configured in two modes, Memory mode and AppDirect mode:

Memory mode, simply uses Optane DCPMM to extend the capacity of DRAM
without persistence. The conventional DRAM that is transparent to memory
controller serves as a “L4 cache” between CPU cache and Optane DCPMM.
CPU and operating system directly consider it as main memory with larger
capacity, usage of Optane DCPMM is the same as DRAM.

AppDirect mode, uses Optane DCPMM as an individual persistent memory
device that provides persistence and DRAM is not used as a cache. Softwares
can access Optane DCPMM with load and store instructions. Because of CPU
reordering, extra flush instruction (e.g., clushopt or clwb) and fence instruction
(e.g., sfence or mfence) are needed to persist data from CPU cache to the per-
sistent memory after store instructions. Alternatively, non-temporal instruction
(i.e., ntstore) can bypass CPU cache and directly write to memory.

296 X. Qi et al.

2.3 Related Works

RDMA and NVM Backend Systems. AsymNVM [7] proposes a generic
framework for asymmetric disaggregated persistent memories using RDMA net-
works. It implements the fundamental primitives for building recoverable persis-
tent data structures and NVM space can be shared by multiple servers. Clover [8]
is a disaggregated key-value store to separate the location of data and metadata
to improve scalability. It proposes a hybrid disaggregation model (MS+DN) that
locates metadata at metadata server using two-sided RDMA verbs, stores data
remotely in data node using one-sided RDMA verbs. FileMR [9] proposes an
abstraction combining NVM regions and files that allows direct remote access
to an NVM-backed file through RDMA. These works take full advantages of the
characteristics of RDMA and NVM, but none of them introduces the RDMA
multicast to build a scalable, high-available system.

Primary-Backup Replication. Some works [10–13] exploit RDMA and NVM
for primary-backup replication. FaRM [10] is a distributed computing platform
that uses RDMA write to transfer logs to the NVM of the backups. Query Fresh
[11] employs an append redo-only storage with parallel log replay to avoid con-
ventional dual-copy design and utilizes RDMA write with imm for log shipping.
Erfan et al. [12] design a replication protocol to minimize the CPU processing
by respectively sending log records and data items into NVM of backups using
one-sided RDMA write. Mojim [13] is a replication framework that uses two-
sided RDMA verbs to replicate all data to the NVM of backups. Primary-backup
replication usually maintains backup nodes with weakly consistent copies of data
while quorum-based replication guarantees strong consistency. Due to the differ-
ence, these works that optimize log replication for primary-backup replication
cannot be directly applied to the quorum-based replication.

State Machine Replication on High-speed Network. DARE [4] redesigns
and speeds up Raft protocol by leveraging the advantage the RDMA verbs.
PolarFS [3] proposes ParallelRaft built on RDMA network that enables out-of-
order concurrent log replication by recording the write block address modified
by the previous N log entries in look behind buffer. HovercRaft [14] enhances
the scalability of Raft in log replicaiton by offloading leader duties to the pro-
grammable switch and adopting load balancing replies. However, DARE [4] and
ParallelRaft [3] have exploited RDMA primitives to speed up Raft but do not
focusing on solving the single-point leader bottleneck. HovercRaft [14] requires
specialized programmable switch hardware that is not practical at present.
RotorcRaft assigns the follower-driven log replication and quorum follower read
mechanism that significantly offloads the burden of leader to followers so that
relieves the single-point bottleneck.

Implementations of Follower Read. The original implementation for fol-
lower read [15] is that followers forward read requests sent by the client to the
leader to process. Alternatively, etcd [1] implemented the ReadIndex mechanism
proposed in [15] that the leader only sends the last commit index to the follower
after the confirmation heartbeat of leadership. TiDB [2] further introduces a

RotorcRaft: Scalable Follower-Driven Raft on RDMA 297

Fig. 2. Architecture of RotorcRaft

LeaseRead scheme that allows follower read in a lease interval but under the
ideal assumption that CPU clocks of most servers are accurate. Although the
ReadIndex and LeaseRead methods effectively improve the ability of follower
read, both of them require the participation of the leader. To solve the bot-
tleneck of single-point leader, RotorcRaft proposes the quorum follower read
mechanism that significantly offloads duties of the leader to followers.

3 RotorcRaft Overview

Figure 2 illustrates the architecture of a 3-node RotorcRaft cluster, connected
by an RDMA switch. RotorcRaft maintains a mList which stores metadata of
log records at the leader-side. mList is implemented by a lock-free circular array
with fixed size N, which is shown in Fig. 2. The space of mList is pre-allocated
and can be reused to avoid the overhead of garbage collection. More specific
details are in Sect. 4.1. RotorcRaft is a follower-driven Raft that log replication
is issued by followers and supports quorum follower read. We have summarized
the two main modules as follows:

Follower-Driven Log Replication: In RotorcRaft, log replication has been
divided into three phases: request phase, pull phase, response phase. We take full
advantage of the hybrid RDMA primitives in different phases and significantly
reduce the overhead on the leader. Considering that there will be slow followers
in Raft, mList is well-tuned for slow followers to chase after the latest log records.
In RotorcRaft, log chase is initiated by the slow follower node as well, rather
than the leader patching the logs directly.

Quorum Follower Read: Without the involvement of the leader, we design a
mechanism of quorum follower read that can be done entirely among followers.
We use RDMA read to complete the process of confirming the leadership and
ReadIndex acquisition to fully utilize the CPU and network resource of followers.
In RotorcRaft, the quorum follower read mechanism significantly offloads the
burden from the leader to followers to serve follower read requests.

298 X. Qi et al.

Fig. 3. The structure of mList

4 Follower-Driven Log Replication

4.1 The Structure of mList

The mList plays a key role in the follower-driven log replication. Because Rotor-
cRaft separates replication from ordering logs of the leader, mList is maintained
on the leader-side to decide the order of log records. Figure 3 illustrates the struc-
ture of mList, mList is implemented by a lock-free circular array with fixed size
N. The space of mList is pre-allocated and can be reused to avoid the overhead
of garbage collection. In mList, entries have four kinds of status, empty, active,
committed, and expired. empty means the entry is unoccupied and available;
active means a log is being processed and the entry is not available; committed
means the log has been confirmed by the majority and has been committed, but
the entry is not available now. expired means that the committed log is expired
and the entry is available.

The log metadata in Raft is fixed size and the size of entry in mList is the same
as it. Among them are current term, prev log idx, prev log term, leader commit,
entry size and an entry pointer to point the log entry in the NVM. Upon receiv-
ing the request, the leader immediately generates metadata of the request and
adds it to its mList at the position of (commit index % N), then changes the
entry status as active. Because Raft does not tolerate log holes so logs cannot be
committed out of order. If the leader finds that the status of entry in the ((com-
mit index - 1) % N) position is active, i.e., the last log has not been committed,
the leader will wait for the last log to be committed before processing the current
log. Meanwhile, followers directly read the remote ((commit index - 1) % N)th
entry in mList using RDMA read. To check whether the read metadata is com-
plete, we use the same method as Cell [16], which redundantly adds the cur term
field at the end of the metadata and validate it after read. After the majority
of nodes commit the log, the status of the entry will be set to committed. When
there is no more free entries, the committed entry is set to expired status and
can be reused. We do not adopt the strategy of immediate recycling committed
entries for the consideration of slow followers in the cluster. The design of mList
not only serves log replication effectively but is also friendly for slow follower
nodes to chase logs, detailed in Sect. 4.3.

RotorcRaft: Scalable Follower-Driven Raft on RDMA 299

Fig. 4. Mechanism of follower-driven log replication

4.2 Mechanism of Follower-Driven Log Replication

In the native Raft protocol [15], it depends on a strong leader in charge of order-
ing and replicating client requests across all followers, while actively processing
all the write/read requests, which incurs a major impediment to the scalability
of the system. It’s challenging to offload the burden from the leader to follow-
ers that utilize the CPU and network resources of followers in log replication.
Fortunately, emerging RDMA-capable NIC is promising to achieve this goal.

To solve the issue, we propose a follower-driven log replication mechanism
that relieves the burden of the leader. The key point of the follower-driven mech-
anism is to separate replication from ordering in leader and enable a follower-
driven manner that the log replication is completed by followers. As Fig. 4 shows,
we have decomposed the entire log replication into three phases (1) Request
Phase. (2) Pull Phase. (3) Response Phase. Each phase adopts different RDMA
primitives as the best consideration.

Request Phase: We adopt RDMA multicast to convert leader-to-multipoint
interactions into point-to-point interactions. Rather than targeting a specific
server, clients directly send requests in a multicast group containing the leader
and the followers. Without the leader individually replicating to each of the
follower nodes, all nodes in the group receive client requests that contain the
record entries that need to be modified via RDMA multicast. Obviously, RDMA
multicast does not guarantee log order. In RotorcRaft, the leader decides the
order of client requests. Upon receiving the request, the leader immediately gen-
erates metadata of the request and adds it to its mList while followers insert the
request into a set of unordered requests. The mList is a lock-free circular array
with fixed size N to buffer metadata of log records for followers to read in Pull
Phase. In RDMA networks, multicast only supports Unreliable Datagram (UD)
transport type. But even with unreliable transports (UD), packets are never lost
due to buffer overflow [17]. Therefore, in the common case, with no packet loss
occurs, the leader is only in charge of ordering requests but not data replication.

300 X. Qi et al.

Pull Phase: Upon receiving the request, followers insert the request into a set of
unordered requests and immediately read the metadata from mList using RDMA
read. We adopt an instant strategy that followers immediately read metadata
remotely instead of waiting for a time interval. Then, followers pull the ((last
commit index + 1) % N)th metadata entry in mList using RMDA read. To avoid
accessing incomplete metadata, we use the same method as Cell [16], which
redundantly adds the cur term field at the end of the metadata and validate
whether the read metadata is complete. After validating the metadata, followers
persist the log and respond to the leader. The last read location of followers is
not needed to be stored and persisted, because even if the follower is crashed
and restarted, the last commit index can be easily restored from the logs. Due
to the design of mList, RotorcRaft can tolerate up to N-1 behind logs from slow
followers.

Response Phase: After completing log persistence in pull phase, followers will
send responses to the leader via RDMA write. When receiving responses from
the majority, the leader commits the log and sets the corresponding entry of
mList to committed status. After that, the leader responds to the client. After
the log is committed, the leader updates the pointer of the corresponding entry
in mList to point to the address of the log record in NVM.

4.3 Log Chase

Although RDMA network is stable in common cases, it is inevitable that appears
sporadic follower is slower than the leader. In Raft, the leader should always
require multiple rounds of network communication to determine which logs are
missing and explicitly send missing logs to the slow follower. In RotorcRaft, we
support the log chase in a follower-driven manner with the assistance of mList
as well. RotorcRaft can tolerate up to N-1 logs behind. To achieve this goal,
mList adopts a lazy garbage collection policy. When the log is committed by
the majority of replicas, the metadata is obsolete but mList will not reclaim the
space of the entry at once.

When the latest log position in mList is ((commit index leader - 1) % N), the
slow node still goes to read the ((commit index slow node - 1) % N) position of
mList. If this gap is less than N - 1, the slow node is able to read the metadata of
missing logs on its own and fill the logs. If it even loses the requests sent by the
client, it can read the log records via RDMA read according to the corresponding
address stored in the entry of mList. Users can determine the level of tolerating
slow nodes by setting the size of N. If the gap is greater than N - 1, we recommend
using snapshot for log chase.

4.4 Log Replication RPC

The native Raft has a major bottleneck of scalability because of the single-point
leader. To solve the bottleneck, we take advantage of hybrid RDMA primitives
and have crafted follower-driven RPCs for log replication and follower read to

RotorcRaft: Scalable Follower-Driven Raft on RDMA 301

Algorithm 1: LogReplicationRPC
1 Function f join multicast():
2 qp ← initialize a Queue Pair;
3 channel ← initialize a Completion Channel;
4 //Join in the multicast group
5 rdma join multicast(qp, channel);
6 //Verify if successfully joined the multicast group
7 ret ← get cm event(channel, RDMA CM EVENT MULTICAST JOIN);
8 if ret == ERROR then
9 //Leave the multicast group

10 rdma leave multicast(channel);

11 Function f multi send():
12 qp ← acquire a Queue Pair;
13 ah ←create an Address Handle for UD QP;
14 //send requests in multicast group
15 ibv post send(ah,qp);

16 Function f meta read():
17 qp ← acquire a Queue Pair;
18 last buf id ← The last buffer id in mList;
19 latest buf id = (latest buf id + 1)) mod N
20 //Read the metadata of latest log record in mList on leader-side
21 ibv post read(qp, REMOTE ADDR + latest buf id * BUF SIZE);

realize the design of RotorcRaft. We explain the implementation of RPCs of
RotorcRaft in detail. Here are two main RPCs: LogReplicationRPC for log repli-
cation and FollowerReadRPC (detail in Sect. 5.2) for follower read.

In LogReplicationRPC, there has f join multicast(), f multi send(),
f meta read() functions. As algorithm 1 shows, the node (leader/follower/client)
first initializes a queue pair “qp” for communication and a completion channel
“channel” which is used for monitoring events (line 2–3). Then, the node regis-
ters the qp into the same multicast group (line 3–5). Next, verify if the node is
successfully joined the multicast group, if not, leave the node from the multicast
group (line 6–10). In f multi send() function, the client creates an address han-
dle for UD QP and calls ibv post send() to send requests in multicast group (line
12–15). In the f meta read() function, the follower first gets the latest buffer id
of the mList, that is, the last buf id (stored locally) +1 and then mod the size
of mList (line 17–19). After that, the follower directly reads the metadata of the
latest log record in mList on the leader side (line 20–21). Finally, the follower
persists the log record and replies to the leader.

302 X. Qi et al.

Fig. 5. Quorum follower read

5 Quorum Follower Read

5.1 Mechanism of Quorum Follower Read

We propose a mechanism of quorum follower read, which means that follower
read is conducted by majority vote among followers without the involvement of
the leader. The mechanism can effectively enhance the scalability of the system
and improve the performance of the follower reads. In the original Raft, follower
read needs to be forwarded for the leader to process: (1) The leader first needs
to confirm whether it has the current leadership, so it sends a heartbeat packet
that contains the latest commit index to all followers. After receiving the positive
responses of the majority nodes, the leader confirms its leadership. (2) Then the
leader sends the confirmed commit index to the follower. After that, the follower
records the commit index as ReadIndex and waits until the state machine applies
to the ReadIndex, and then processes the client’s read request.

Obviously, the above method needs to consume the CPU and network
resources of the leader and is not a “real” follower read. With the advantage
of RDMA read, we craft a mechanism of quorum follower read that almost
needs no involvement of the leader. The key to this design is the majority vote
among followers and the ingenious use of RDMA read. As Fig. 5 illustrates, the
processes of quorum follower read are shown as follows:

(1) Preparation. Before processing a quorum follower read, some preparatory
work needs to be done in advance. On the follower-side, the LeaderID field
in DRAM stores the ID of the current leader node. Each node should put the
64-bit field in the first 64-bit address of the RDMA registered memory region
that can be read via RDMA read directly. On the leader-side, in addition
to the LeaderID field, the Commit Index filed is placed in a fixed memory
address as well. Both fields are modified using CAS atomic operations so
that the 8B data can never be partially written.

(2) Majority vote. We have adopted a follower-driven process to determine the
current leadership. Frist, the follower which processes read requests reads the
leaderID field of all followers directly via RDMA read, and puts them in a
list (including its own). Then, the follower confirms the current leadership
by quorum. In the right case, the leadership should just be owned by its
current leader. Otherwise, the follower will abort the follower read requests
and establish connection with the new leader.

RotorcRaft: Scalable Follower-Driven Raft on RDMA 303

Algorithm 2: FollowerReadRPC
1 Function f quorum leadership():
2 qp[n − 1] ← acquire Queue Pair array;
3 leader[n − 1] ← acquire Leader ID array;
4 for i = 0 to FOLLOWER NUM do
5 qp[i] ← get the ith QP;
6 leader[i] ← ibv post read(qp[i], FOLLOWERi LEADER ADDR);

7 //Quorum confirmation of the leadership among followers
8 leader id ← = quorum leader(∗leader);
9 Function f get readindex():

10 qp ← acquire a Queue Pair;
11 //Directly read read index from the leader
12 read index ← ibv post read(qp, LEADER READINDEX ADDR);

(3) Read ReadIndex. In the common case, after the successful confirmation of
leadership, the follower then gets the latest Commit Index from the leader.
It exploits RDMA read to read the remote Commit Index on the leader-side
and saves it locally as ReadIndex. Finally, the follower waits until its state
machine applies to the ReadIndex, and processes the client’s read request.

5.2 Follower Read RPC

FollowerReadRPC has f quorum leadership() and f get readindex() functions. As
Algorithm 2 shows, to serve the read requests from the client, the follower first
acquires the queue pair array for communicating with all other followers and
the leader id array to store leader id read from majority followers (including
itself) (line 2–3). Then, the follower directly reads the leader id using RDMA
read from all other followers and store them in the leader id array (line 4–
6). Next, the follower uses quorum confirmation of leadership among followers
to determine the current leader (line 7–8). After that, the confirmation of the
leadership is completed. In f get readindex() function, after the leader has been
confirmed, the follower directly reads the latest commit index from the remote
leader node via RDMA read and stores it locally as read index (line 10–12).
Finally, the follower waits until the state machine applies to the read index and
then processes read requests from the client.

6 Communication Complexity

Table 1 summarizes the communication complexity at the leader and followers
in log replication and follower read for a cluster with N nodes (1 leader and N-1
followers). In the case of Raft, the leader replicates the log record to N-1 fol-
lowers and replies to the client, while followers send N-1 responses to the leader

304 X. Qi et al.

Table 1. Comparison of network complexity in Raft and RotorcRaft

Request/System Raft RotorcRaft

Leader Followers Leader Followers

LogReplication (N-1)+1 N-1 1 2*(N-1)

FollowerRead (N-1)+1 2 0 N-2+1+1

in log replication. In follower read, the leader needs to send heartbeat for lead-
ership confirmation to N-1 followers, and send the latest commit index to the
follower while the follower sends a ReadIndex request to the leader and replies
to the client. In the case of RotorcRaft, N-1 number of followers directly read
the metadata in leader and send N-1 replies to the leader in replication while
the leader just needs to reply to the client. In follower read, the follower directly
reads the LeaderID index among N-1 followers (excluding itself) and ReadIIn-
dex from the leader, and replies to the client while the leader does nothing. In
summary, RotorcRaft successfully offloads burden from the leader to followers in
log replication and follower read that significantly improves system scalability.

7 Evaluation

7.1 Experimental Setup

In this section, we analyze the overall performances of RotorcRaft, and the
benefits from each optimization. Experimental setup and the benchmark used
in this evaluation are given below.

Hardware Platform: Our experiments run on a cluster of 9 machines, one for
the leader and the other 8 for followers. Each machine is equipped with a 2-socket
Intel(R) Xeon(R) Gold 6240M CPU @ 2.60GHz processor (36 cores in total), 192
GB of DRAM memory and 1.5TB (6 × 256 GB) Intel DCPMM NVM device of
installed with CentOS 7.5. All nodes and connected with Mellanox ConnectX-4
EDR 100Gb/sec Infiniband cards.

Comparison Target: We use DARE [4] which is the implementation of Raft
on RDMA to denote the Raft-R. We further compare RotorcRaft with Paral-
lelRaft [3], the state-of-art design of Raft on RDMA that supports out-of-order
concurrent log commit. We have implemented these three works on RDMA and
NVM, and all three implementations execute requests in batches. The default
number of replicas is 5.

Workloads: We adopt YCSB [18] workloads to evaluate three methods. The
default datasize is 10 GB. The distrbution of our workloads are uniform, the
keys are chosen uniformly at random. The size of each record is about 64B.

RotorcRaft: Scalable Follower-Driven Raft on RDMA 305

Write-only Mixed Read-heavy Read-only
0

500
1000
1500
2000
2500
3000
3500

Workload

Th
ro

ug
hp

ut
 (k

TP
S)

Raft-R ParallelRaft RotorcRaft

Fig. 6. Overview throughput under different workloads

1 2 4 8 16 32
0

500

1000

1500

2000

Number of clients

Th
ro

ug
hp

ut
 (k

TP
S)

Raft-R ParallelRaft RotorcRaft

(a) Throughput

1 2 4 8 16 320

10

20

30

40

50

60

70

La
te

nc
y(

us
)

Number of clients

Raft-R ParallelRaft RotorcRaft

(b) Latency

Fig. 7. Throughput and latency unnder the write-only workload

7.2 Overview Performance

We first measure the throughput under varying workloads: write-only (100%
write), mixed (50% read, 50% write), read-heavy (95% read, 5%write) and read-
only (100% read) workloads. All methods have five replicas with 16 clients.

The overview throughput is shown in Fig. 6. We can observe that the through-
put of RotorcRaft outperforms ParallelRaft and Raft-R under varying workloads.
In general, the throughput of RotorcRaft is 1.28x than ParallelRaft and 1.40x
than Raft-R under write-only workload, 1.45x than ParallelRaft and 1.3x than
Raft-R under the read-only workload. This result demonstrates that RotorcRaft
successfully offloads the burden from the leader to followers that improves par-
allelism in log replication and supports follower read without the involvement of
the leader.

7.3 Log Replication Performance

Figure 7 illustrates the system throughput and latency over the increasing num-
ber of clients under the write-only workload. The throughput of all three imple-
mentations rises sharply as the number of clients increases from 0 to 16, and

306 X. Qi et al.

1 2 4 8 16 32
0

500
1000
1500
2000
2500
3000
3500

Number of clients

Th
ro

ug
hp

ut
 (k

TP
S)

Raft-R ParallelRaft RotorcRaft

(a) Throughput

1 2 4 8 16 320

10

20

30

40

La
te

nc
y(

us
)

Number of clients

Raft-R ParallelRaft RotorcRaft

(b) Latency

Fig. 8. Throughput and latency of the read-only workload

1 3 5 7 9
0

500

1000

1500

2000 Raft-R ParallelRaft RotorcRaft

Number of nodes

Th
ro

ug
hp

ut
 (k

TP
S)

Fig. 9. Throughput under varying num-
ber of nodes

1 3 5 7 9
0

20

40

60

80
La

te
nc

y(
us

)

Number of nodes

Raft-R ParallelRaft RotorcRaft

Fig. 10. Latency under varying number
of nodes

remains stable after the number of clients exceeds 16. Because Raft observes
strict serialization and the leader needs to independently replicate logs to all fol-
lower machines and ensure the order of records, Raft-R has the worst throughput
and highest latency. Although ParallelRaft can replicate in parallel so it has bet-
ter performance than Raft-R, but suffers high overhead in commit checking and
status maintenance. RotorcRaft not only utilizes the resources of the followers
to achieve maximum parallelism in log replication but also enables followers to
replicate only the metadata of logs from the leader that effectively reduces net-
work traffic. As a result, RotorcRaft has the best performance and the lowest
latency in replication, 1.4x than ParallelRaft with only 84% of its latency.

7.4 Follow Read Performance

Figure 8 shows the system throughput and latency over the increasing number of
clients under the read-only workload. The trend of the results is similar to that
in Fig. 7. Due to the overhead of consensus for read index from the single-point
leader, the throughput of Raft is limited and less than RotorcRaft. It is worth
noting that ParallelRaft is the worst over the three implementations in follow

RotorcRaft: Scalable Follower-Driven Raft on RDMA 307

1 3 5 7 90
500

1000
1500
2000
2500
3000
3500
4000

Th
ro

ug
hp

ut
 (k

TP
S)

Number of nodes

Raft-R ParallelRaft RotorcRaft

Fig. 11. Throughput under varying number of nodes

read performance because it needs to wait for the log hole to be filled before
serving the requests. We observe that RotorcRaft outperforms the other two
implementations, since the quorum follower read effectively relives the bottleneck
of the single point of the leader.

7.5 Scalability

We further investigate the scalability of the three implementations. We measure
the throughput and latency with varying numbers of replicas with 16 clients
under the write-only and read-heavy workload. The result in Fig. 9 shows that
the performance of Raft-R and ParallelRaft decreases significantly when the
number of replicas changes from 3 to 5. For the reason that the single-point
leader needs to independently replicate logs to all followers, so the latency is
obviously increased as Fig. 10 shows. Furthermore, we can observe that the per-
formance of RotorcRaft remains stable with a little decline with the increasing
number of replicas. Figure 11 shows the throughput with varying numbers of
replicas under the read-heavy workload. We use the leader to handle only write
requests and random followers serve read requests. The throughput of Raft-R and
ParallelRaft decreases sharply when the number of replicas increases. Because
they both require the help of the leader to process the ReadIndex requests, which
requires significant network overhead. The performance of RotorcRaft remains
stable with a little decline with the increasing number of replicas as well. There-
fore, RotorcRaft performs excellent good scalability both in log replication and
follower read.

8 Conclusion

In this paper, we propose RotorcRaft to significantly offload the burden from the
leader to followers to relieve the single-point bottleneck. We solve the issue by two
effective mechanisms, i.e., follower-driven log replication and quorum follower
read. Follower-driven log replication significantly relieves part of the burden of
leader in log replication by exploiting hybrid RDMA primitives. Quorum follower

308 X. Qi et al.

read enables followers to handle read requests without the involvement of the
leader. Evaluations demonstrate that RotorcRaft has excellent scalability and
outperforms state-of-the-art work.

Acknowledgements. This work was supported by the National Science Foundation
of China under grant number 61977025.

References

1. ECTD. https://etcd.io/
2. Tidb. https://pingcap.com/
3. Cao, W., Liu, Z., Wang, P.: PolarFS: an ultra-low latency and failure resilient

distributed file system for shared storage cloud database. PVLDB 11(12), 1849–
1862 (2018)

4. Poke, M., Hoefler, T.: DARE: high-performance state machine replication on
RDMA networks. In: HPDC, pp. 107–118 (2015)

5. Mellanox docs. https://www.mellanox.com/related-docs/prod software/RDMA
Aware Programming user manual.pdf

6. Kalia, A., Kaminsky, M., Andersen, D.G.: Design guidelines for high performance
RDMA systems. In: ATC, pp. 437–450 (2016)

7. Ma, T., Zhang, M., Chen, K.: Asymnvm: an efficient framework for implementing
persistent data structures on asymmetric NVM architecture. In: ASPLOS, pp.
757–773 (2020)

8. Tsai, S.-Y., Shan, Y., Zhang, Y.: Disaggregating persistent memory and controlling
them remotely: an exploration of passive disaggregated key-value stores. In: ATC,
pp. 33–48 (2020)

9. Yang, J., Izraelevitz, J., Swanson, S.: Filemr: rethinking RDMA networking for
scalable persistent memory. In: NSDI, pp. 111–125 (2020)

10. Dragojević, A., Narayanan, D., Castro, M., Hodson, O.: Farm: fast remote memory.
In: NSDI, pp. 401–414 (2014)

11. Wang, T., Johnson, R., Pandis, I.: Query fresh: log shipping on steroids. PVLDB
11(4), 406–419 (2017)

12. Zamanian, E., Xiangyao, Yu., Stonebraker, M.: Rethinking database high avail-
ability with RDMA networks. PVLDB 12(11), 1637–1650 (2019)

13. Zhang, Y., Yang, J., Memaripour, A.: Mojim: a reliable and highly-available non-
volatile memory system. In: ASPLOS, pp. 3–18 (2015)

14. Kogias, M., Bugnion, E.: Hovercraft: achieving scalability and fault-tolerance for
microsecond-scale datacenter services. In: EuroSys, pp. 25:1–25:17 (2020)

15. Ongaro, D., Ousterhout, J.K.: In search of an understandable consensus algorithm.
In: ATC, pp. 305–319 (2014)

16. Mitchell, C., Montgomery, K., Nelson, L.: Balancing CPU and network in the cell
distributed b-tree store. In: ATC, pp. 451–464 (2016)

17. Kalia, A., Kaminsky, M., Andersen, D.G.: Using RDMA efficiently for key-value
services. In: SIGCOMM, vol. 44, pp. 295–306. ACM (2014)

18. Cooper, B.F., Silberstein, A.: Benchmarking cloud serving systems with YCSB.
In: SOCC, pp. 143–154. ACM (2010)

https://etcd.io/
https://pingcap.com/
https://www.mellanox.com/related-docs/prod_software/ RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/ RDMA_Aware_Programming_user_manual.pdf

Efficient Matrix Computation for
SGD-Based Algorithms on Apache Spark

Baokun Han1,2, Zihao Chen1,2, Chen Xu1,2(B), and Aoying Zhou1,2

1 East China Normal University, Shanghai, China
{bkhan,zhchen}@stu.ecnu.edu.cn

2 Shanghai Engineering Research Center of Big Data Management, Shanghai, China
{cxu,ayzhou}@dase.ecnu.edu.cn

Abstract. With the increasing of matrix size in large-scale data anal-
ysis, a series of Spark-based distributed matrix computation systems
have emerged. Typically, these systems split a matrix into matrix blocks
and save these matrix blocks into a RDD. To implement matrix opera-
tions, these systems manipulate the matrices by applying coarse-grained
RDD operations. That is, these systems load the entire RDD to get
a part of matrix blocks. Hence, it may cause the redundant IO when
running SGD-based algorithms, since SGD only samples a min-batch
data. Moreover, these systems typically employ a hash scheme to parti-
tion matrix blocks, which is oblivious to the sampling semantics. In this
work, we propose a sampling-aware data loading which uses fine-grained
RDD operation to reduce the partitions without sampled data, so as to
decrease the redundant IO. Moreover, we exploit a semantic-based par-
tition scheme, which gathers sampled blocks into the same partitions, to
further reduce the number of accessed partitions. We modify SystemDS
to implement Emacs, efficient matrix computation for SGD-based algo-
rithms on Apache Spark. Our experimental results show that Emacs
outperforms existing Spark-based matrix computation systems by 37%.

Keywords: Matrix computation · Redundancy IO reduction ·
Distributed system

1 Introduction

Matrix computation are widely employed in various application areas including
machine learning, data mining, and statistical science. In those areas, a typical
application is to solve optimization problems, which involves using stochastic
gradient descent (SGD). SGD performs in an iterative way till convergence. In
each iteration, it samples a group of data items from the input dataset to form
batch data items, and calculate the gradient on the batch data items. Then, this
gradient is adopted to update the objective function.

In big data era, a single machine is not able to provide sufficient compu-
tation and storage resources to process large-scale matrices. There are varying

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 309–324, 2022.
https://doi.org/10.1007/978-3-031-00123-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_25&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_25

310 B. Han et al.

types of systems, e.g., SystemDS [2], MLlib [8], ScaLAPACK [10], SciDB [4] and
MADlib [7], supporting distributed matrix computation. Based on a compara-
tive evaluation [11], SystemDS offers perhaps the best balance between physical
data independence and performance at scale among the aforementioned systems.
In particular, SystemDS encapsulates the interfaces for distributed matrix com-
putation based on Spark [15]. To exploit Spark, matrix computation systems
(MCS) split the matrices into small blocks and store these blocks into RDDs,
and implement matrix operation via RDD operations.

Nonetheless, existing Spark-based MCSs do not fully explore the property
of sampling in SGD. In general, SystemDS and MLlib implement matrix opera-
tion by coarse-grained RDD operations [15]. These operations blindly access all
elements in RDDs. If an RDD is not entirely in memory, accessing the whole
RDD would incur a high disk IO. However, in each iteration, SGD only needs to
access the sampled batch data rather than the entire dataset. Consequently, the
implementation via coarse-grained RDD operations may lead to redundant IO.
Moreover, the semantics of SGD specifies sampling data in either a row-based
or column-based way. Yet, Spark-based MCSs typically employ a hash scheme
to partition matrix blocks, which is oblivious to the sampling semantics. In par-
ticular, the hash partition scheme scatters the blocks of the same row or column
into different partitions, so that the sampling still accesses numbers of parti-
tions, and results in redundant IO. Although DMac [13] and MatFast [14] utilize
row-oriented and column-oriented partitions to accelerate matrix computation,
they still rely on coarse-grained RDD operations, alleviating the benefits.

In this paper, we exploit the property of sampling in SGD to perform efficient
matrix computation for SGD-based algorithms on Spark. To reduce redundant
IO, we load data in a sampling-aware manner. That is, instead of coarse-grained
RDD operations, we generate the runtime code using fine-grained RDD opera-
tions which depends on the partition indexes of sampled data to access parti-
tions. In this way, the fine-grained loading reduces the redundant IO. Further-
more, according to the sampling semantics, we explore a semantic-based partition
scheme that gathers sampled blocks into the same partitions, to reduce the num-
ber of accessed partitions. We implement a prototype system Emacs on top of
SystemDS. Our experimental results show Emacs outperforms SystemDS and
MatFast by 37% and 25%, respectively.

In the rest of our paper, we highlight the motivation in Sect. 2. Our paper
makes the following contributions.

– We propose to generate the runtime code via fine-grained loading operations
in Sect. 3, in order to avoid the redundant IO to load the partitions without
any sampled data.

– We exploit a semantic-based partition scheme in Sect. 4 to gather sampled
data, and consequently reduce IO.

– We discuss the implementation of Emacs in Sect. 5, and our experimental
results in Sect. 6 demonstrate it outperforms state-of-the-art solutions.

In addition, we introduce related work in Sect. 7, and summarize our work
in Sect. 8.

Efficient Matrix Computation for SGD-Based Algorithms on Apache Spark 311

2 Motivation

In this section, we first illustrate the redundant IO in SGD algorithm to moti-
vate the sampling-aware data loading. Then, we discuss the impact of partition
scheme on the amount of IO to motivate the sampling-aware partition scheme.

2.1 Motivation for Sampling-Aware Data Loading

Coarse-Grained Loading. The existing Spark-based MCSs implement matrix
operations with coarse-grained operations, leading to coarse-grained loading
when memory is insufficient. In specific, existing Spark-based MCSs typically
split a matrix into small matrix blocks with fixed size, and store the blocks as an
RDD persisted in memory or on disk. Also, Spark-based MCSs use RDD opera-
tions (e.g., map, join, combineByKey) to implement matrix operations (e.g., matrix
multiplication, element-wise addition, sampling). Nonetheless, those operations
are coarse-grained, since they require to access all RDD partitions.

1 X = read("...")

2 while (loop_condition) {

3 S = sample(X) # sample multiple rows

4

5 }

Listing 1.1. User program of SGD in SystemDS

1 val X = sc.hadoopFile("...")

2 .persist(DISK_AND_MEMORY)

3 while (loop_condition) {

4 val rowIds = random_row_indexes ()

5 val S = X.mapToPair(block => select_rows(block , rowIds))

6 .combineByKey(mergeBlocks)

7 ...

8 }

Listing 1.2. Runtime execution code of SGD in SystemDS

Example 1. To demonstrate the procedure of data loading with coarse-grained
operations, we take an example of the SGD algorithm running on SystemDS.
As shown in Listing 1.1, in each iteration, the SGD algorithm randomly samples
multiple rows from the input matrix X to form a matrix S, i.e., a batch of data,
and calculates gradient on S. Subsequently, the gradient is adopted to update
the weights of objective function. According to this program, SystemDS will
generate the runtime execution code, as shown in Listing 1.2. First, SystemDS
employs a mapToPair operation to take the sampled rows from the original matrix.
Then, SystemDS uses a combineByKey operation to merge the sampled rows to
a small matrix. Both the mapToPair and combineByKey are coarse-grained RDD
operations, i.e., accessing all partitions.

312 B. Han et al.

(a) Blocks of matrix X

disk

c

d

b

memory

a

matrix block partition

IO

(b) Matrix blocks in RDD and disk IO

Fig. 1. The distributed matrix representation and disk IO

Redundant IO. Given that the coarse-grained RDD operations access all par-
titions, they are not suitable for sampling operations. Especially when memory
is insufficient, the coarse-grained operations have to load the RDD partitions
persisted on disk into memory. However, in each iteration, a sampling operation
only samples a part of matrix rows. This leads to redundant IO of loading data
from disk to memory.

Example 2. Following Example 1, we illustrate the redundant IO incurred by
coarse-grained operations. As shown in Fig. 1(a), we suppose the input matrix
X is split into sixteen matrix blocks of four rows and four columns, stored as an
RDD. The RDD has four partitions. Partition a is in memory, and partitions b,
c, and d are spilled to disk. Via coarse-grained operations, SystemDS loads all
partitions into memory to get the sampled rows, including partition d. However,
the SGD algorithm only needs the second row to calculate gradient, while par-
tition d does not contain the blocks of the second row. Hence, it is redundant to
load partition d from disk.

The SGD algorithm only needs a part of matrix in each iteration, yet
the coarse-grained operations access all RDD elements. This conflict leads to
redundant IO when lacking memory. The observation motivates us to propose
sampling-aware data loading to reduce the redundant IO, which only loads the
partitions of sampled blocks (e.g., partitions a, b, and c in Example 2).

2.2 Motivation for Sampling-Aware Data Partition

Partition Hitting. Our sampling-aware data loading strategy is to load the
partitions that contain sampled blocks, so the number of loaded partitions has
a key impact on the amount of IO. To simplified presentation, we refer to the
partition contains the matrix blocks sampled by the sampling operation as a hit
partition. If a hit partition is stored on disk, then we have to load this partition
to get this matrix block. Hence, more hit partitions means higher disk IO costs.

The hash partition scheme is widely used in Spark-based MCS in default,
since it achieves good load balance [2]. However, the hash scheme is not suitable

Efficient Matrix Computation for SGD-Based Algorithms on Apache Spark 313

for SGD algorithm. In specific, the SGD algorithm samples a number of rows in
each iteration, while the hash scheme scatters the blocks belonging to the same
row into different partitions. As a result, the number of hit partitions may be
close to the number of all partitions. Overall, the hash scheme weakens the effect
of our sampling-aware data loading strategy on reducing redundant IO.

Example 3. Following Example 2, we take an example to explain the redundant
IO caused by hash scheme. Since the hit partitions b and c are on disk, there is
inevitably disk IO when loading sampled blocks. However, there are not sampled
blocks in partitions b and c, which are redundant to load as well.

The shortage of the hash scheme is, the matrix blocks of the sampled rows
are scattered into numbers of partitions, preventing our sampling-aware data
loading strategy to effectively reduce redundant IO. This motivates us to propose
the sampling-aware data partition scheme which decreases the number of hit
partitions to reduce redundant IO further.

3 Sampling-Aware Data Loading

In this section, we propose the sampling-aware data loading strategy which
exploits fine-grained operations to reduce redundant IO.

3.1 Amount of Redundant IO

In this section, we quantify the amount of redundant IO. In the process of iter-
ative calculation, since the coarse-grained execution plan loads all partitions on
disk, the amount of IO of the coarse-grained execution plan is: IOall = D − M,
where M is the storage memory, and D is the size of dataset. However, Spark
provides some partition-wise RDD operations that are able to load data at parti-
tion granularity (e.g., mapPartition, mapPartitionWithIndex). Hence, ideally, we
only load the hit partitions to obtain sampled blocks. To simplified presentation,
we define partition hit rate, as follows.

Definition 1. Partition hit rate is the ratio of the hit partition number on disk
to the total partition number on disk.

Hence, the ideal amount of IO is: IOideal = P (D−M), where P is the partition
hit rate, as defined in Definition 1. Therefore, the amount of redundant IO is:

IOredundant = (1 − P)(D − M). (1)

We illustrate the runtime execution plan of Example 2 in Fig. 2(a). In this
execution plan, the mapToPair and combineByKey operations are coarse-grained,
so all partitions on disk are loaded into memory (e.g., partitions b, c, and d).
In this example, we have D = 4, M = 1, and thus IOall = 3. However, since
partition d is not hit, P = 2

3 . Hence, we have IOideal = 2 and IOredundant = 1.

314 B. Han et al.

combineByKeymapToPair

a

b

c

d

memory

disk IO

c

d

b

(a) Coarse-grained data loading

combine
ByKey

mapToPair

memory

mapPartition
WithIndex

a

b

c

disk IO

c

d

b

(b) Fine-grained data loading

Fig. 2. Execution plans of sampling the second row

3.2 Fine-Grained Data Loading

In order to reduce redundant IO, we exploits fine-grained operations on data
loading. In specific, we employ the partition-wise RDD operations in Spark to
load hit partitions only.

As described in Listing 1.3, the fine-grained data loading consists two steps.
First, we calculate the indexes of all hit partitions based on the row column
numbers of sampled data. Second, we exploit partition-wise RDD operation
mapPartitionWithIndex to remove the partitions that do not need to be loaded.
Consequently, the filtered RDD is smaller than the original RDD. We use the fil-
tered RDD to proceed the upcoming operations and do not modify the upcoming
operations, i.e., the mapToPair operation and combineByKey operation.

To demonstrate the redundant IO reduced by fine-grained data loading,
we illustrate the execution plan and the running status of the second step
of fine-grained data loading in Fig. 2(b). In the first step, we get that the
indexes of hit partitions are a, b, and c. Therefore, in the second step, the
mapPartitionWithIndex operation keeps partitions a, b, and c, but removes par-
tition d. After the processing of mapPartitionWithIndex, the partitions a, b and c
are kept, and the following operations (i.e., mapToPair and combineByKey) continue
to perform the sampling operation, so the computation result are not changed.

Efficient Matrix Computation for SGD-Based Algorithms on Apache Spark 315

The partition d is removed and does not participate in the remaining calculation,
so it is not loaded into memory. Hence, the fine-grained data loading reduces the
redundant IO of loading partition d. As shown in Fig. 2(b), by using the fine-
grained operations on data loading, we only load 2 partitions. In comparison to
the coarse-grained data loading in Fig. 2(a), we reduce the redundant IO.

1 val X = sc.hadoopFile("...")

2 .persist(DISK_AND_MEMORY)

3 while (loop_condition) {

4 val rowIds = random_row_indexes ()

5 val pIds = get_partitions(rowIds)

6 val S = X.mapPartitionWithIndex ((pId ,blocks) ->{

7 if (pIds.contains(pId)) {

8 return blocks

9 } else {

10 return nothing

11 }

12 }).mapToPair(block => select_rows(block , rowIds))

13 .combineByKey(mergeBlocks)

14 ...

15 }

Listing 1.3. Runtime execution code by fine-grained data loading

4 Sampling-Aware Data Partition

According to Eq. (1), the effectiveness of fine-grained data loading is strongly
influenced by the partition hit rate. The partition hit rate varies by partition
scheme, so we discuss the partition scheme in this section. In particular, we first
discuss why the fine-grained data loading fails when using hash scheme, and then
introduce the semantic-based scheme which is more suitable for SGD algorithm.

4.1 Hash Partition

The hash partition scheme is widely adopted in MCSs, e.g., SystemDS [2] and
ScaLaPack [10]. The reason is that, by using the hash partition scheme, MCSs
achieve good load balance, and avoid skew issue. However, for SGD, the hash
scheme leads to high partition hit rate, and leads to a failure of the fine-grained
data loading. As shown in Fig. 2(b), via the hash partition scheme, only one
partition (i.e., partition d) is not hit. That means we can only reduce redundant
IO of at most one partition. As for other partitions in disk (i.e., partitions b and
c), there are also redundant IO in them, but the fine-grained data loading can
not reduce it.

Next, we evaluate the partition hit rate of the hash scheme. We suppose that
Spark-based MCS splits one matrix into m rows and n columns of blocks, and
stores them in p partitions. If we sample k rows to calculate the gradient, then
there are kn sampled blocks randomly distributed in p partitions. If we randomly
sample one block, then the probability for one partition not contain the sampled

316 B. Han et al.

memory

a

b

disk IO

c

d

b

combine
ByKey

mapToPairmapPartition
WithIndex

Fig. 3. Execution plans using the semantic-based partition scheme

block is 1 − 1
p . If we randomly sample kn block, then the probability for one

partition not contain the sampled block is (1 − 1
p)kn. Hence, the partition hit

rate is:
Phash = 1 − (1 − 1

p
)kn. (2)

According to Eq. 2, Phash increases with kn. Typically, Phash is close to 1. For
example, if p = 1000, m = 1000, n = 100, and k = 100, then Phash = 0.999. That
is, even though we sampled only 10% rows, almost all partitions are hit. So the
fine-grained data loading have to load almost all partitions and can not reduce
redundant IO to accelerate the execution. In order to make the fine-grained data
loading work, we should switch to another partition scheme to get the partition
hit rate close to 0.

4.2 Semantic-Based Partition

To reduce the partition hit rate, we propose the semantic-based partition scheme.
It is suitable for the sampling operation because it distributes the sampled blocks
into smallest number of partitions. The semantic-based partition scheme dis-
tributes the matrix blocks according to the semantic of sampling operation and
the organization of input data. If the sampling operation samples rows as data
items, the semantic-based partition scheme tries its best to distribute matrix
blocks of one row into one partition. If the sampling operation samples columns
as data items, the semantic-based partition scheme tries its best to distribute
matrix blocks of one column into one partition.

Figure 3 illustrates an example of semantic-based partition scheme with the
fine-grained data loading. We suppose the input data in organized by row, so
the semantic-based partition scheme tries it best to distribute the matrix blocks
of each row into one partition. Since the SGD algorithm samples the second row
to calculate gradient, only partition b contains the sampled matrix blocks, so
only partition b is loaded. Hence, using semantic-based partition scheme and
fine-grained data loading, the redundant IO of partition c and d are reduced.
Compared to hash partition scheme in Fig. 2(b), the semantic-based partition
scheme reduces more redundant IO.

Efficient Matrix Computation for SGD-Based Algorithms on Apache Spark 317

Fig. 4. System architecture of Emacs

Similar to hash scheme, the partition hit rate of semantic-based partition
scheme is:

Psemantic = 1 − (1 − 1
p
)k. (3)

Clearly, k ≤ kn, so Psemantic ≤ Phash. Using the same example values of hash
scheme, i.e., p = 1000 and k = 100, then Psemantic = 0.095. This means only
9.5% partitions are hit, so the fine-grained data loading can reduce 90.5% redun-
dant IO to accelerate the execution. The partition hit rate of semantic-based
partition scheme is less than the one of hash scheme. Hence, semantic-based
partition scheme achieves better performance for SGD-based algorithms using
fine-grained data loading.

5 System Implementation

Recently, a variety of Spark-based matrix computations systems have been pro-
posed, e.g., SystemDS [2], MLlib [8]. To use MLlib, users must manually tune
partitioning, caching behavior, and select from a set of matrix data structures
supporting inconsistent operators [11]. Nonetheless, SystemDS automatically
compiles ML algorithms into efficient execution plans on top of Spark. It is
convenient to write and debug ML algorithms using the declarative DSL of Sys-
temDS. SystemDS automatically generates the optimal execution plan based on
memory estimates, data, and cluster characteristics. Therefore, we implemented
the sampling-aware data loading strategy and semantic-based partition scheme
on top of SystemDS, due to its high performance and high availability.

As shown in Fig. 4, the system architecture of Emacs consists of a detector
and a sampling-aware code generator. First, given a DAG compiled from a user

318 B. Han et al.

Table 1. Statistics of datasets.

Dataset # of Rows # of Columns # of non-zero values Footprint

criteo1 19584198 121083 753527640 11.3 G

criteo2 97920991 121083 3762193624 56.6 G

criteo3 156673586 121083 6018213853 90.5 G

criteo4 195841983 121083 7637804468 113.2 G

program involving SGD, we use the detector to recursively traverse the entire
DAG to find sampling operations. The detector delivers the sampling operation
to our sampling-aware code generator, and delivers other non-sampling opera-
tions to non-sampling code generator of SystemDS. Then, for a sampling oper-
ation, the sampling-aware code generator employs a data loader to implement
the sampling-aware data loading strategy, and employs a partitioner to imple-
ment the semantic-based partition scheme. Finally, the sampling-aware execution
plans are submitted to Spark cluster.

6 Experimental Studies

In this section we discuss the experimental studies on the efficiency of Emacs,
and compare its performance against the state-of-the-art solutions.

6.1 Experimental Setting

Cluster Setup. We conduct experiments on a cluster of 4 nodes. Each node
has one 24-core Intel Xeon CPU, 32 GB memory, one 2 TB HDD and 1 Gbps
Ethernet. We deploy Spark 2.4.5 on the cluster, with one node as the Spark
master and the other three nodes as Spark workers.

Workloads. We choose linear regression and logistic regression based on SGD
algorithm for our experiments, since they are common in enterprise analytics,
as well as social and physical sciences [11].

Datasets. We evaluate the algorithms above on the real-word dataset criteo1.
We generated four sampled datasets of different sizes from the first day of the
criteo dataset, named as criteo1, criteo2, criteo3 and criteo4 from smallest to
largest. Table 1 provides the numbers of rows, columns, and non-zero values,
and the memory footprint of datasets. Since the storage memory is 45 G, only
criteo1 can be held in memory, whereas the other datasets are spilled to disk.

6.2 Efficiency of Fine-Grained Data Loading

In this section, we evaluate the performance of the sampling-aware data loading
strategy, and demonstrate the effect of partition hit rate on execution time.
1 https://labs.criteo.com/2013/12/download-terabyte-click-logs-2/.

https://labs.criteo.com/2013/12/download-terabyte-click-logs-2/

Efficient Matrix Computation for SGD-Based Algorithms on Apache Spark 319

Fig. 5. Efficiency of sampling-aware data loading strategy and semantic-based partition
scheme of datasets of different sizes

Execution Time. To evaluate the impact of data loading strategies on the
performance, we ran SystemDS [2] and SystemDS* on datasets of different
sizes. Here, SystemDS uses the coarse-grained data loading. We replace the
coarse-grained data loading in SystemDS with fine-grained data loading which is
denoted as SystemDS*. Figure 5 illustrates the overall execution time on datasets
criteo1, criteo2, criteo3, and criteo4. Here, the batch size is 50. As shown in Fig. 5,
when dataset size is less than the cluster memory (e.g., criteo1), the overall exe-
cution time of SystemDS and SystemDS* are same, because all data is stored
in memory and no disk IO could be reduced. However, when the dataset size is
larger than the storage memory (e.g., criteo2, criteo3, and criteo4), the redun-
dant IO occurs. Via the fine-grained data loading, SystemDS* mitigates this
issue, so as to reduce the execution time by 16.8% on average compared to Sys-
temDS. Specifically, SystemDS* reduces the execution time of linear regression
by 18.3% compared to SystemDS on criteo3, as shown in Fig. 5(a). SystemDS*
reduces the execution time of logistic regression by 19.8% compared to SystemDS
on criteo4, as shown in Fig. 5(b).

Partition Hit Rate. To evaluate the affect of partition hit rate on IO, we
conducted the performance analysis of the coarse-grained and fine-grained data
loading with different partition hit rates. Here, we adjust partition hit rates by
changing the batch size. In specific, the partition hit rate increases with the
batch size. Figures 6(a) and 6(b) illustrate the overall execution time of coarse-
grained and fine-grained data loading on different datasets and batch sizes. On
criteo1 dataset, there is no redundant IO, so the execution time of two kinds
of data loading are the same. On other datasets except criteo1, as the batch
size decreases, the effect of fine-grained loading becomes more significant. As
shown in Fig. 6(a), when batch size is 10, fine-grained data loading achieves a
speedup of 38.9% over coarse-grained data loading on criteo4 of linear regression.
However, when the batch size is 200, fine-grained data loading degenerates into
coarse-grained data loading. As shown in Fig. 6(b), when the batch size is 200,

320 B. Han et al.

Fig. 6. Effectiveness of data loading strategies

fine-grained data loading is 0.7% slower than coarse-grained data loading on
criteo4 of logistic regression.

To further study the poor performance on large batch size, we evaluate the
partition hit rates of coarse-grained and fine-grained data loading with different
batch sizes on criteo2 and criteo4, as depicted in Figs. 6(c) and 6(d). For any
batch size, since coarse-grained data loading always loads all partitions, its par-
tition hit rate is 1.0. Therefore the execution time of coarse-grained data loading
are similar on any batch size. As shown in Figs. 6(c), on criteo2, when batch size
is 10, the partition hit rate of fine-grained data loading is 0.257. Fine-grained
data loading loads less partitions than coarse-grained data loading, therefore its
execution time is shorter than coarse-grained data loading. However, the parti-
tion hit rate of fine-grained data loading is 0.998 when batch size is 200, which is
close to 1.0 of coarse-grained data loading. Figures 6(d) shows the similar result
on criteo4. With the batch size growing from 10 to 200, the partition hit rate
of fine-grained data loading on criteo4 grows from 0.135 to 0.945. Certainly, the
hash scheme leads to a high partition hit rate and therefore causes a failure of
the sampling-aware data loading strategy.

Efficient Matrix Computation for SGD-Based Algorithms on Apache Spark 321

Fig. 7. Effectiveness of partition schemes

In general, by using the sampling-aware data loading strategy, fine-grained
data loading improves the performance of SGD algorithm when batch size is low.
However, when batch size is high, the hash scheme leads to a high partition hit
rate close to 1, and thus prevent the sampling-aware data loading strategy from
reducing redundant IO. Hence, we propose the semantic-based partition scheme
to reduce the partition hit rate.

6.3 Efficiency of Semantic-Bases Partition Scheme

In this section, we evaluate the performance of semantic-based partition scheme.
In addition, to show the insights of the performance, we demonstrate the effect
of partition scheme on partition hit rate and execution time.

Execution Time. To demonstrate the impact of partition schemes on IO, we
further conducted the performance analysis of Emacs, which uses the sampling-
aware data loading strategy and semantic-based partition scheme. Figure 5 illus-
trates the execution time of Emacs. Specifically, as shown in Fig. 5(a), on criteo4,
Emacs reduces the execution time of linear regression by 30.8% compared to Sys-
temDS*, and eventually Emacs reduces the execution time by 45.2% compared

322 B. Han et al.

to SystemDS. The execution time of logistic regression in Fig. 5(b) shows the sim-
ilar trends. On criteo3, Emacs reduces the execution time by 26.8% compared
to SystemDS*, and eventually Emacs reduces the execution time by 41.6% com-
pared to SystemDS. This is because, the semantic-based partition scheme leads
to lower partition hit rate than the hash partition scheme, so as to reduces more
redundant IO.

In addition, despite redundant IO, the partition scheme itself affects per-
formance as well. To evaluate the benefits of reducing redundant IO solely, we
provide the performance of MatFast [14]. Here, MatFast is a Spark-based MCS,
that uses the coarse-grained data loading and row partition scheme. According
to the semantic of our user program and the organization of our datasets, the
semantic-based partition scheme of Emacs tries its best to distribute matrix
blocks of one row into one partition, which is same as the row partition scheme
of MatFast. As depicted in Fig. 5, Emacs reduces the execution time by 27.3%
on average compared to MatFast, since Emacs exploits the fine-grained data
loading to reduce redundant IO.

Partition Hit Rate. To provide insights on the impact of semantic-based par-
tition schemes, we evaluate partition hit rates on criteo4 dataset with different
batch sizes. Here, we conduct experiments with the sampling-aware data loading
strategy of two partition schemes: the hash partition scheme and the semantic-
based partition scheme. The hash partition scheme distributes one row into 122
partitions. Since the sampling operation in our user program samples rows as
data items, the semantic-based partition scheme tries its best to distribute one
row into one partition. Figure 7(a) illustrates the execution time of linear regres-
sion. As the batch size grows from 10 to 200, the execution time on criteo4
of the hash scheme and the semantic-based partition scheme grows 64.1% and
12.3%, respectively. Especially, when batch size is 200, the semantic-based par-
tition scheme achieves a speedup of 37.6% over the hash partition scheme on
criteo4. Figure 7(b) shows the similar trends of logistic regression. When batch
size is 200, the semantic-based partition scheme achieves a speedup of 40.9%
over the hash partition scheme on criteo4 of logisitc regression. Overall, the exe-
cution time of the hash partition scheme grows significantly along with batch
size, while that of the semantic-based partition scheme does not.

To demonstrate why the semantic-based partition scheme outperforms the
hash partition scheme, especially when batch size is 200, we illustrate their parti-
tion hit rates of different batch sizes on criteo2 and criteo4 in Figs. 7(c) and 7(d).
As the batch size grows, the partition hit rate of the semantic-based partition
scheme grows slower than the rate of the hash scheme. Specifically, as shown
in Figs. 7(c), when batch size is 200, on criteo2, the partition hit rates of the
hash partition scheme and the semantic-based partition scheme are 0.998 and
0.046, respectively. As shown in Figs. 7(c), on criteo4, the partition hit rates of
the hash partition scheme and the semantic-based partition scheme are 0.945
and 0.023, respectively. If one row is in fewer partition, the partition hit rate is
certainly lower. The semantic-based partition scheme distributes one row into

Efficient Matrix Computation for SGD-Based Algorithms on Apache Spark 323

fewer partitions than the hash partition scheme, so its partition hit rate is lower
than that of the hash partition scheme.

7 Related Work

This section discusses the existing work related to the matrix computation sys-
tems in two aspects: redundant IO reduction and partition scheme optimization.

Redundant IO Reduction. The reduction of redundant IO has been widely
studied in matrix computation systems. For optimization at the operator imple-
mentation level, the replication based matrix multiplication method repli-
cates the input matrices several times, therefore leads to redundant IO. Sys-
temDS [2] proposes the cross product based matrix multiplication method and
the broadcast based matrix multiplication method, and DistMe [6] proposes the
CuboidMM method, to reduce the redundant IO. For optimization at the execu-
tion plan level, SPORES [12], SPOOF [1] and MatFast [14] use fused operators
to eliminate unnecessary materialization of intermediates, or unnecessary scans,
and to exploit sparsity across entire chains of operations, so as to reduce redun-
dant IO. SystemML [3] exploits the common subexpression elimination method
to eliminate the redundancy of computing common subexpression several times.
However, when lacking memory, their execution plan for SGD-based algorithms
formed by coarse-grained RDD operations leads to redundant disk IO. Unlike
them, we propose the sampling-aware data loading strategy to reduce redundant
IO by using fine-grained RDD operations.

Partition Scheme Optimization. There are works focusing on the optimiza-
tion of partition scheme. DMac [13] and MatFast [14] exploit the matrix depen-
dencies and cost model to generate efficient execution plans, so as to reduce com-
munication overhead. However, they do not consider the relationship between
the semantic of sampling operations and partition scheme, whereas we exploit
the semantic-based partition scheme to reduce redundant IO in SGD-based algo-
rithms. In the area of graph processing, in order to obtain batter performance,
some graph partitioning strategies exploit the structure of graph instead of naive
random hash partitioner to partition the graph. WASP [5] dynamically adjust
partitions regarding to the frequency of active edges of the existing query work-
load. Makoto Onizuka et.al. [9] proposed a clustering-based algorithm to parti-
tion the graph. However, the characteristics of matrix computations are differ-
ent from graph computations. Our semantic-based partition scheme exploits the
characteristics of the SGD algorithm in matrix computations.

8 Conclusion

In this paper, we propose a new system called Emacs, an efficient matrix com-
putation system for SGD-based algorithms on Apache Spark. In Emacs, first,
we exploit the sampling-aware data loading strategy and semantic-based parti-
tion scheme to reduce redundant IO when memory is insufficient, so as to reduce

324 B. Han et al.

the overall execution time. The sampling-aware data loading strategy reduces the
redundant IO by using the fine-grained operation to remove unwanted partitions.
Second, we exploit the semantic-based partition scheme to enhance the effec-
tiveness of the sampling-aware data loading strategy. Our experiments illustrate
that the sampling-aware data loading strategy with the semantic-based parti-
tion scheme method significantly outperforms the existing methods, in terms of
performance. We have implemented Emacs on top of SystemDS. However, the
sampling-aware data loading strategy and the semantic-based partition scheme
are also fit for other Spark-based distributed matrix computation systems.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (No. 61902128), Shanghai Sailing Program (No. 19YF1414200).

References

1. Boehm, M., et al.: On optimizing operator fusion plans for large-scale machine
learning in systemml. In: PVLDB, pp. 1755–1768 (2018)

2. Boehm, M., et al.: Systemds: a declarative machine learning system for the end-
to-end data science lifecycle. In: CIDR (2020)

3. Böhm, M., et al.: Systemml’s optimizer: plan generation for large-scale machine
learning programs. IEEE Data Eng. Bull. 37(3), 52–62 (2014)

4. Brown, P.G.: Overview of SciDB: large scale array storage, processing and analysis.
In: SIGMOD, pp. 963–968 (2010)

5. Davoudian, A., et al.: A workload-adaptive streaming partitioner for distributed
graph stores. Data Sci. Eng. 6(2), 163–179 (2021)

6. Han, D., et al.: Distme: a fast and elastic distributed matrix computation engine
using gpus. In: SIGMOD, pp. 759–774 (2019)

7. Hellerstein, J.M., et al.: The madlib analytics library or MAD skills, the SQL. In:
PVLDB, pp. 1700–1711 (2012)

8. Meng, X., et al.: Mllib: machine learning in apache spark. JMLR, 34:1–34:7 (2016)
9. Onizuka, M., et al.: Graph partitioning for distributed graph processing. Data Sci.

Eng. 2(1), 94–105 (2017)
10. ScaLAPACK: http://www.netlib.org/scalapack/
11. Thomas, A., Kumar, A.: A comparative evaluation of systems for scalable linear

algebra-based analytics. Proc. VLDB Endowment 11(13), 2168–2182 (2018)
12. Wang, Y.R., et al.: SPORES: sum-product optimization via relational equality

saturation for large scale linear algebra. PVLDB, 1919–1932 (2020)
13. Yu, L., et al.: Exploiting matrix dependency for efficient distributed matrix com-

putation. In: SIGMOD, pp. 93–105 (2015)
14. Yu, Y., et al.: In-memory distributed matrix computation processing and optimiza-

tion. In: ICDE, pp. 1047–1058 (2017)
15. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for

in-memory cluster computing. In: NSDI, pp. 15–28 (2012)

http://www.netlib.org/scalapack/

Parallel Pivoted Subgraph Filtering
with Partial Coding Trees on GPU

Yang Wang , Yu Gu, and Chuanwen Li(B)

School of Computer Science and Engineering, Northeastern University,
Shenyang, China

lichuanwen@mail.neu.edu.cn

Abstract. The pivoted subgraph isomorphism problem is a special sub-
graph isomorphism problem that focuses on the pivoted nodes rather
than the entire subgraphs. The key challenge in adapting existing tech-
niques to the pivoted problem is eliminating their redundant intermedi-
ate results. In this paper, we propose a GPU-based pivoted subgraph iso-
morphism filtering technique, where information of each node is encoded
into a series of codes. When performing a pivot subgraph search, the
candidate nodes satisfying the coding requirements are collected paral-
lelly on GPU while others are filtered away. Then the final result can
be effectively retrieved by a verification process on the filtered nodes.
As demonstrated by the experimental results, our method dramatically
reduces the processing time of the pivoted subgraph isomorphism prob-
lem. Compared to the state-of-the-art GPU-friendly subgraph match-
ing method GpSM which also focuses on filtering effect, the algorithm’s
execution time is halved, confirming that our approach can effectively
process pivoted subgraph isomorphism queries.

Keywords: Pivoted subgraph isomorphism · Subgraph isomorphism ·
Parallel acceleration · Coding tree · GPU

1 Introduction

With the growing importance of graphs, the management of graph data has
become a focus of research. Pivoted subgraph isomorphism [1] is commonly used
in a variety of real-world applications, such as protein network function predic-
tion [3], frequent subgraph mining [4,5], etc. [9]. For a given query graph and a
node in the query graph as the pivot, the pivoted subgraph isomorphism locates
the nodes in the data graph that correspond to the pivot, and each of these nodes
must satisfy the requirement that there is at least one subgraph that matches
the query graph and contains this node. An example is illustrated in Fig. 1. The
figure contains a query graph Q with the pivot u1 and a data graph G with
the candidate pivots v1, v5. In the data graph, only v1 is a valid match for the
pivot u1.

In this paper, the pivot query processing takes into account both the structure
and label feature of each node. A parallel adjacency matrix processing method
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 325–332, 2022.
https://doi.org/10.1007/978-3-031-00123-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_26&domain=pdf
http://orcid.org/0000-0002-0582-4223
http://orcid.org/0000-0002-2227-1296
https://doi.org/10.1007/978-3-031-00123-9_26

326 Y. Wang et al.

A
u1

B
u2

C
u3

D
u4

E
u5

(a) Query graph Q

A
v1

B
v2

C
v3

D
v4

A
v5

E
v6

(b) Data graph G

Fig. 1. (a) A query graph of pivoted subgraph isomorphism, u1 is the pivot of the
query graph; (b) A data graph of pivoted subgraph isomorphism.

is developed to improve coding performance. We construct an adjacency matrix
for each node in the data graph and utilize it to generate a series of smaller
matrices to illustrate each incomplete coding tree. All algorithms are designed
to run in parallel on a GPU.

2 Partial Coding Tree

This paper proposes a GPU-based pivoted subgraph isomorphism algorithm.
By transforming the neighbor structure of graph nodes into a tree structure,
the eigenvalues of the adjacency matrix of the tree structure are obtained, and
then the node coding is performed. Then we connect the candidate nodes after
encoding and filtering [6], and finally get the solution of the pivoted subgraph
isomorphism.

Definition 1. (Pivoted Subgraph isomorphism) Given a query graph Q =
{VQ, EQ, LQ} with an pivot up ∈ VQ and a data graph G = {VG, EG, LG},
the pivot vp ∈ VG, there exists an injective function f : VQ → VG, and the
pivoted subgraph isomorphism needs to meet the following three conditions: (1)
∀u, v ∈ VQ, f(u), f(v) ∈ VG and LQ(u) = LG(f(u)), LQ(v) = LG(f(v)), (2)
∀(u, v) ∈ EQ, (f(u), f(v)) ∈ EG, (3) vp = f(up).

Definition 2. (Partial Label Tree) Each label is classified into a label bucket by
a certain form(hashing, dividing .etc.), all the label buckets with the i-th bit of
1 in the binary form of the label bucket serial number are classified into the i-th
group, and there are �logn2 � groups in total. The neighbor nodes of the label type
in the same label bucket group will form a tree together with the root node, which
is called a partial label tree (PLT).

Theorem 1. Given a tree T with n vertices and a tree P with m vertices, their
adjacency matrices are denoted as A and B respectively. For a matrix A, the

Parallel Pivoted Subgraph Filtering with Partial Coding Trees on GPU 327

eigenvalues are λ1 ≥ λ2 ≥ · · · ≥ λn. For a matrix B, the eigenvalues are
β1 ≥ β2 ≥ · · · ≥ βm. If P is an induced subtree of T , then λn−m+i ≤ βi ≤
λi, (i = 1, · · ·,m) [10].

Theorem 2. Given two trees P and T , we can generate multiple PLT to obtain
the PLT sequence according to Definition 2, denoted as {p1, p2 · ··, pn}, {t1, t2, · ·
·, tn}. If all pi in the sequence are induced subtrees of ti, then P must be an
induced subtree of T .

Proof. Due to the addition of label, if all pi are induced subtrees of ti in the
sequence, then all pi are still induced subtrees of ti when the labels are removed.
Thus P is a induced subtree of T .

Taking query graph node u1 and data graph node v1 as examples, we first
generate a three-layer tree (without considering labels), as shown in Fig. 2. For
the 5 kinds of labels included in Fig. 1, we can divide them into [ACE],[BC][DE]
according to whether the binary numbers of the labels are 1 or not, thereby divid-
ing one unlabeled tree into three PLTs of 1PLT , 1 PLT ,1 PLT , as shown in
Fig. 3.

u1
A

u2
B

u3
C

u4
D

u3
C

u2
B

u5
E

u5
E

u4
D

(a)Tree of u1

Label Bit

A 0 0 1
B 0 1 0
C 0 1 1
D 1 0 0
E 1 0 1

D
E

B
C

A
C
E

1PLT1 PLT1 PLT

v1
A

v2
B

v3
C

v3
C

v4
D

v2
B

v5
A

v6
E

v5
A

v6
E

v5
A

v4
D

v4
D

(b)Tree of v1

Fig. 2. 3-layer trees generated by query graph node u1 and data graph node v1.

u1
A

C C

E E

v1
A

C A C

A E A E

(a)(u1, v1) 1PLT

u1
A

B C

C B

v1
A

B C

C B

(b)(u1, v1) 1 PLT

u1
A

D E D E

v1
A

E D D D E

(c)(u1, v1)1 PLT

Fig. 3. Three labeled trees generated by nodes u1 in graph Q and v1 in graph G.

328 Y. Wang et al.

3 Partial Adjacency Matrix

Although combining the neighbor label features of the node can significantly
improve the filtering effect, we need to split a tree into multiple PLTs, and
the cost of generating multiple PLTs is too expensive. But the final eigenvalues
required are all calculated through the adjacency matrix, so we consider directly
dividing the original adjacency matrix into several small adjacency matrices.

Definition 3. Given a tree with m nodes, the upper triangular matrix of the
m × m adjacency matrix can be used to indicate the connection relationship
between the nodes, and the continuous bottom rows with all zeros are deleted,
which is recorded as a partial upper triangular matrix (PUTM).

When we cut off a node in the tree, its parent node should be connected to
its child node to form a tree structure. First, we can pre-process the original
adjacency matrix so that the nodes that may be connected are pre-connected.
Then we will choose to keep or delete according to the situation. Figure 4 shows
the PUTM after preprocessing.

u1
A

u2
B

u3
C

u4
D

u3
C

u2
B

u5
E

u5
E

u4
D

u1
A

u2
B

u3
C

u4
D

u3
C

u2
B

N N

N N

N N

N

N

⇒

u1
A

u2
B

u3
C

u4
D

u3
C

u2
B

u5
E

u5
E

u4
D

u1
A

u2
B

u3
C

u4
D

u3
C

u2
B

N N

N N

N N

N

N

B B C C B|CC|B
C

B

Fig. 4. The adjacency matrix preprocessing of the node u1 in query graph Q

After preprocessing the original PUTM, we also need to know the position
of the label nodes that meet the conditions in the original adjacency matrix
in different label trees. We judge whether all nodes meet the conditions of the
corresponding label bucket in parallel, and store them in the array as 0 or 1. By
calculating the prefix sum, the nodes that meet the corresponding label bucket
are stored in the corresponding subscript mapping array. Figure 5 shows the
generation process of the subscript mapping arrays of node u1 in query graph Q.

Theorem 3. In PUTM, given that the value of the element in (m,n) is 0,
(1) assuming that the column with the value of N in row m is k...km, where
1 ≤ k...km ≤ m, then there is only one position in (k..km, n) having a value of
N; (2) assuming the column whose value is not N and not 0 in row m is k...km,
then there is only one position in (k..km, n) having a value of N .

Parallel Pivoted Subgraph Filtering with Partial Coding Trees on GPU 329

u1
A

u2
B

u3
C

u4
D

u3
C

u2
B

u5
E

u5
E

u4
D

u1
A

u2
B

u3
C

u4
D

u3
C

u2
B

N N

N N

N N

N

N

1

1

1

Count Script
5 0 2 4 6 7

5 0 1 2 4 5

5 0 3 6 7 8

Fig. 5. The three label subscript mapping arrays generated by nodes u1 in graph Q.

Proof. Since N indicates a connection between nodes, the upper triangular
matrix we discussed only retains the top-down connection of the tree. If the
above (1) and (2) exist, two-parent nodes are connected to a child node. There
is a contradiction with the definition of a tree, so the above two situations do
not exist.

Finally we constructs multiple PUTMs by mapping arrays and original
PUTM. We calculate all the combinations of the elements in the subscript map-
ping array, and allocate the corresponding number of threads for parallel pro-
cessing. When its value in PUMT is 0 or meets the label bucket conditions, it is
stored in 0. Otherwise, it is stored in 1. Figure 6 shows that the original PUTM
of node u1 is divided into three PUTMs by the subscript mapping arrays.

u1
A

u2
B

u3
C

u4
D

u3
C

u2
B

u5
E

u5
E

u4
D

u1
A

u2
B

u3
C

u4
D

u3
C

u2
B

N N

N N

N N

N

N

B B C C B|CC|B
C

B

⇒

u1
A

u3
C

u3
C

u5
E

u5
E

u1
A

u3
C

u3
C

1 1

1

1

u1
A

u2
B

u3
C

u3
C

u2
B

u1
A

u2
B

u3
C

1 1

1

1

u1
A

u4
D

u5
E

u5
E

u4
D

u1
A1 1 1 1

1

1

1

5 0 2 4 6 7

5 0 1 2 4 5

5 0 3 6 7 8

Fig. 6. Three labeled adjacency matrices generated by nodes u1 in graph Q.

For the multi-label tree of each node in the query graph, we can encode vertex
as MCT = {label, degree, seq = {a1, a2, b1, b2, ...}}. When the vertex code of the
node in the data graph and the vertex code of the query graph meet the following

330 Y. Wang et al.

conditions, it can be stored in the candidate set of the query graph node: (1) the
node label must be the same; (2) the degree of the query graph node must be
less than or equal to the degree of the data graph node; (3) The feature value
corresponding to each label tree generated by the query graph node must be less
than or equal to the feature value corresponding to each label tree generated by
the data graph node.

4 Experimental Results

This section analyzes the performance of the method proposed in this paper
through experiments. In the experiment, the GPU-based subgraph isomorphism
algorithm GpSM is compared with the algorithm in this paper.

All codes are implemented in C++ with CUDA Toolkit 10.6 and run on an
NVIDIA RTX4000 GPU.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Q4 Q8 Q12 Q16 Q20

Ca
nd

id
at

e
Si

ze

(a)Vary V(q) on Human

1-tree
2-tree
3-tree
4-tree
5-tree
6-tree

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Q4 Q8 Q12 Q16 Q20

Ca
nd

id
at

e
Si

ze

(b)Vary V(q) on WordNet

1-tree
2-tree
3-tree

 0

 2000

 4000

 6000

 8000

 10000

 12000

2w 4w 6w 8w

Ca
nd

id
at

e
Si

ze

(c)Vary V(g) on WordNet

1-tree
2-tree
3-tree

Fig. 7. Filtering ability of candidate nodes of different trees under different datasets.

4.1 Effect of K

Figures 7 show the filtering ability of different trees in the Human dataset and
the WordNet. The results show that when the value of k is the maximum number
of digits in the binary number that the node label can represent, the performance
is optimal.

4.2 Comparison with GpSM

This paper compares the performance of the pivoted subgraph isomorphism algo-
rithm and the GpSM algorithm through experiments. The experimental results
for different query graph sizes and data graph sizes are given.

Filtering Time vs. Query Vertices and Data Vertices. Figure 8 shows that
the filtering time of this algorithm is less than GpSM and is relatively stable,
whether it is the change of query graph nodes or the change of data graph nodes.

Parallel Pivoted Subgraph Filtering with Partial Coding Trees on GPU 331

 0

 0.5

 1

 1.5

 2

 2.5

Q4 Q8 Q12 Q16 Q20

Fi
lte

rin
g

Ti
m

e(
se

co
nd

s)

(a)Vary V(q) on Human

MCT-1
MCT-3

MCT-6
GpSM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Q4 Q16 Q24 Q32

Fi
lte

rin
g

Ti
m

e(
se

co
nd

s)
(b)Vary V(q) on HPRD

MCT-1
MCT-3

MCT-6
GpSM

 0

 0.5

 1

 1.5

 2

 2.5

1k 2k 3k 4k 5k

Fi
lte

rin
g

Ti
m

e(
se

co
nd

s)

(c)Vary V(g) on Human

MCT-1
MCT-3

MCT-6
GpSM

 0

 0.5

 1

 1.5

 2

2k 4k 6k 8k 10k

Fi
lte

rin
g

Ti
m

e(
se

co
nd

s)

(d)Vary V(g) on HPRD

MCT-1
MCT-3

MCT-6
GpSM

Fig. 8. Algorithm filtering time under different datasets.

Execution Time vs. Query Vertices and Data Vertices. Figure 9 shows
that the execution time of the GpSM algorithm increases linearly. In contrast,
the execution time of the pivoted subgraph isomorphism algorithm is relatively
stable first and then tends to increase linearly. Still, the overall time is less than
that of the GpSM algorithm.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Q4 Q8 Q12 Q16 Q20

To
ta

l T
im

e(
se

co
nd

s)

(a)Vary V(q) on Human

MCT-1
MCT-3

MCT-6
GpSM

 0

 5

 10

 15

 20

 25

Q4 Q16 Q24 Q32

To
ta

l T
im

e(
se

co
nd

s)

(b)Vary V(q) on HPRD

MCT-1
MCT-3

MCT-6
GpSM

 0

 2

 4

 6

 8

 10

 12

1k 2k 3k 4k 5k

To
ta

l T
im

e(
se

co
nd

s)

(c)Vary V(g) on Human

MCT-1
MCT-3

MCT-6
GpSM

 0

 5

 10

 15

 20

 25

2k 4k 6k 8k 10k

To
ta

l T
im

e(
se

co
nd

s)

(d)Vary V(g) on HPRD

MCT-1
MCT-3

MCT-6
GpSM

Fig. 9. Algorithm total time under different datasets.

5 Related Work

In recent years, with the rapid development of GPU, more researchers try to
convert serial computation on CPU into parallel computation [8] on GPU. For
example, the GRASS [2] proposed by Vincenzo Bonnici et al. also uses GPUs
to parallel filter out candidate nodes of the current query node that are not
satisfied. GpSM [7] is proposed by Ha-Nguyen Tran et al., which is based on
the filtering and joining framework. It filters candidate nodes of query nodes in
parallel by generating spanning trees.

6 Conclusion

This paper proposes a novel multi-coding tree-based filtering method, which
converts the neighbor structure and neighbor node labels into a series of codes for

332 Y. Wang et al.

each node. In the processing of the codes, we devise several GPU-based parallel
algorithms to enhance the coding efficiency. The final results can be retrieved
by verifying the filtered candidates. Experimental results show that our method
outperforms the state-of-the-art GPU-based algorithm GpSM in filtering and
overall running time.

Acknowledgement. This work is supported by the National Natural Science Foun-
dation of China under Grant 61872071, Fundamental Research Funds for the Central
Universities of China under Grant N2116010 and the CCF-Huawei Innovation Research
Plan.

References

1. Abdelhamid, E., Abdelaziz, I., Khayyat, Z., Kalnis, P.: Pivoted subgraph isomor-
phism: The optimist, the pessimist and the realist. In: EDBT, pp. 361–372 (2019)

2. Bonnici, V., Giugno, R., Bombieri, N.: An efficient implementation of a subgraph
isomorphism algorithm for GPUs. In: 2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), pp. 2674–2681. IEEE (2018)

3. Cho, Y.R., Zhang, A.: Predicting protein function by frequent functional associ-
ation pattern mining in protein interaction networks. IEEE Trans. Inf. Technol.
Biomed. 14(1), 30–36 (2009)

4. Elseidy, M., Abdelhamid, E., Skiadopoulos, S., Kalnis, P.: Grami: frequent sub-
graph and pattern mining in a single large graph. Proc. VLDB Endowment 7(7),
517–528 (2014)

5. Han, J., Wen, J.R.: Mining frequent neighborhood patterns in a large labeled
graph. In: Proceedings of the 22nd ACM International Conference on Information
& Knowledge Management, pp. 259–268 (2013)

6. Moorman, J.D., Chen, Q., Tu, T.K., Boyd, Z.M., Bertozzi, A.L.: Filtering meth-
ods for subgraph matching on multiplex networks. In: 2018 IEEE International
Conference on Big Data (Big Data), pp. 3980–3985. IEEE (2018)

7. Tran, H.-N., Kim, J., He, B.: Fast subgraph matching on large graphs using graph-
ics processors. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA
2015. LNCS, vol. 9049, pp. 299–315. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18120-2 18

8. Wang, X., et al.: Efficient subgraph matching on large RDF graphs using mapre-
duce. Data Sci. Eng. 4(1), 24–43 (2019)

9. Wu, Y., Zhao, J., Sun, R., Chen, C., Wang, X.: Efficient personalized influential
community search in large networks. Data Sci. Eng. 6(3), 310–322 (2021)

10. Zou, L., Chen, L., Yu, J.X., Lu, Y.: A novel spectral coding in a large graph
database. In: Proceedings of the 11th International Conference on Extending
Database Technology: Advances in Database Technology, pp. 181–192 (2008)

https://doi.org/10.1007/978-3-319-18120-2_18
https://doi.org/10.1007/978-3-319-18120-2_18

TxChain: Scaling Sharded Decentralized
Ledger via Chained Transaction

Sequences

Zheng Xu1,2, Rui Jiang1,2, Peng Zhang1,2, Tun Lu1,2(B), and Ning Gu1,2

1 School of Computer Science, Fudan University, Shanghai, China
{zxu17,jiangr20,zhangpeng ,lutun,ninggu}@fudan.edu.cn

2 Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China

Abstract. The blockchain has become the most prevalent distributed
ledger (DL). Sharding has emerged as a major solution to the scalabil-
ity bottleneck of DLs. From the underlying data structure of existing
sharding schemes, although the Directed Acyclic Graph (DAG)-based
topology improves the scalability of DLs compared to chained blocks,
the security and reliability of consensus mechanisms in DAG-based DLs
have not been verified. Moreover, these schemes suffer from high commu-
nication overhead when scaling out. To address these issues, we propose a
sharded DL named TxChain, which adopts a novel data structure manip-
ulated by the unit of transaction and constituted by chained transaction
sequences of each account. TxChain optimistically processes concurrent
transactions and ensures the consistency of all shards via transaction
sequence conversion (TSC)-based consensus mechanism. Shards main-
tain the full replica of TxChain and execute transactions by trustwor-
thy validators, which reduce the frequency of communication with other
shards. We theoretically prove the consistency of shards maintained by
TSC and demonstrate TxChain’s throughput scales with low latency
through extensive experiments.

1 Introduction

Blockchain makes the distributed ledgers (DLs) evolve into a irreversible and
decentralized data maintenance technology. Each node in the DL serially pro-
cesses generated transactions, however, the performance of a single node has
become the throughput bottleneck of the DL. Sharding has become a feasible
and proven horizontal scaling approach which assigns nodes to multiple shards
to handle a portion of transactions and enables parallelization of the compu-
tation and storage in DLs for high throughput. Maintainers of shards process
transactions in their local shard and update the state of the entire system.

The underlying data of existing sharded DLs is in the structure of chained
blocks or the Directed Acyclic Graph (DAG). Although DAG-based data struc-
ture can improve the scalability of DLs, it is difficult and unstable to achieve the
final consistency. Moreover, mainstream sharded DLs such as RapidChain [8],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 333–340, 2022.
https://doi.org/10.1007/978-3-031-00123-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_27&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_27

334 Z. Xu et al.

OmniLedger [4] and Elastico [5] use the unspent transaction outputs (UTXO)-
based transaction model which has weak programmability, high computational
complexity and large storage redundancy. The Byzantine fault-tolerant (BFT)
consensus mechanism in these DLs may cause high communication costs when
the system scales up. These above problems indicate that existing sharded DLs
still have a lot of room for improvement in terms of the data structure and
parallel processing performance.

Based on the above problems and challenges, we propose a novel DL named
TxChain. To achieve high scalability, TxChain processes each transaction unit
parallelly by selected validators based on sharding technology. Validators exe-
cute intra-shard transactions instantly in the local shard and broadcast them
to remote shards. All shards store a full replica of TxChain and collaboratively
maintain their states by synchronizing transactions in accounts’ TxSEQs. To
ensure the consistency of all shards, three kinds of transaction dependencies and
a transaction sequence conversion (TSC)-based consensus mechanism are pro-
posed to determine the ordinal relationship between transactions. Based on this
consensus mechanism, TxSEQs can have the same transaction order among dif-
ferent shards in accordance with the original dependency. Moreover, to optimize
the latency of processing transactions, honest and trustworthy validators are
selected according to their stake ratio and are protected by the trusted execu-
tion environment (TEE), which reduce the communication overhead of TxChain
compared to BFT-based DLs. Besides, the modification of each shard can be
completely and consistently recorded in each replica, thus a transaction can be
confirmed in a low time delay without querying the state of other shards repeat-
edly. We summarize our main contributions as follows:

• We propose a novel sharded DL named TxChain which is parallelly manip-
ulated by the unit of transaction and constituted by accounts’ transaction
sequences.

• We propose a consensus mechanism based on the transaction sequence con-
version (TSC) to maintain transaction dependencies and consistency among
shards. TxChain’s high scalability with low confirmation latency has been
demonstrated via extensive experiments.

2 System Overview and Problem Definition

2.1 System Model

Nodes are assigned to different shards S = {S1, S2, · · · , Sn}. Validators are
selected according to their stake ratio in the local shard (the validator in shard
S1 is represented by V1). Nodes with higher stakes are more likely to be selected.
The selected validator verifies transactions, consents on the order of them, broad-
casts them to remote shards and maintains the consistency of TxChain on behalf
of nodes in the shard. All validator are protected by the TEE, and have no inten-
tion to be evil because of the stake-based selection. Then combining with the

TxChain: Scaling Sharded DL via Chained Transaction Sequences 335

settings and assumptions in prior sharding-based blockchains [1,8], all valida-
tors can be regard as honest and trustworthy. TxChain adopts the structure
of Merkle Patricia tree (MPT), but its leaf node is one account composed of
chained transaction sequences. Figure 1 shows the data structure of TxChain.
Intra-shard transactions are executed instantly in the local replica, and then are
broadcast to remote shards to synchronize the account status. When transac-
tions are received by a remote shard, the validator first verifies the signature
of each transaction to ensure its validity, and then orders and executes each
transaction.

Fig. 1. Data structure of TxChain.

2.2 Transaction Model

TxChain adopts a state-based account whose state is cumulative results of
related transactions. The transaction is defined as 〈from, to, value, s, p, ts, fee〉σ

where from is the sender of the transaction T , to is the recipient of T , value
is the transaction amount, s is the number of the shard generating T , p is the
position of T in the TxSEQ of the generating account, ts is the timestamp, fee
is the transaction fee, and σ is the signature of T .

In addition to executing local transactions, the validator V also needs to
execute the received remote transaction T by inserting them into the TxSEQ of
the specified account. Before executing T , the validator V needs to determine
its relative position in the TxSEQ. V has to determine the ordinal relationship
between transactions, which is determined by their dependencies. It is worth
noting that only transactions in the same account constitute a dependency. All
shards cannot have the exact same time in the decentralized environment, which
means that it is impossible to directly determine the orders of transactions from
different shards. Therefore, in order to determine the position of T in the TxSEQ
and maintain consistency of its order in all shards, this paper proposes trans-
action dependencies. Ta and Tb are from shards Si and Sj respectively and are
executed on the same account, and their dependencies are defined as follows:

Definition 1. Dependencies. Ta and Tb satisfy the causality relationship “�”
iff (1) Ta.ts < Tb.ts when Si = Sj, or (2) Ta has executed in Sj before Tb

generates when Si �= Sj; Ta and Tb satisfy the concurrency relationship “‖” iff
neither Ta � Tb nor Tb � Ta; Ta and Tb satisfy the conflict relationship “⊗” iff
Ta ‖ Tb and Ta.p = Tb.p.

336 Z. Xu et al.

2.3 Problem Definition

Transactions are executed instantly in the local shard and then are broadcast
to remote shards for synchronization. After the remote shard receives the trans-
action T , the shard’s state may change and it cannot execute T directly in the
current view according to the position specified by T.p. As shown in Fig. 2, V1

attempts to append T to T2 in the TxSEQ of account “0x3889fa”, i.e., T.p = 3.
V1 then sends T after S2. However, V2 has concurrently executed the transaction
T

′
2 at the position 2 of account “0x3889fa” because T1 � T

′
2 � T2, which changes

T2.p from 2 to 3. Thus, T should be ordered at position 4 which is after T2.p in
S2. If T is executed directly in S2 based on T.p = 3, the transaction dependencies
are violated and TxSEQs maintained among shards will be inconsistent.

Fig. 2. Inconsistency example in TxChain.

TxChain supports the parallel execution of transactions in all shards. How-
ever, shards’ state may change after transactions reach remote shards, resulting
in violations of transaction dependencies and inconsistent shard states. There-
fore, how to design a consensus mechanism which executes transactions in obedi-
ence to their dependencies and maintains the consistency of all shards becomes
the key problem faced by TxChain.

3 Consensus Mechanism in TxChain

3.1 Prerequisites of Transaction Execution

The consensus in TxChain is to order and execute transactions based on trans-
action dependencies and ensures the consistency of these orders among shards.
In order to maintain the transaction dependencies, TxChain adopts the vector-
based timestamp [2] to determine the execution order of transactions. Each shard
in TxChain has a collection of accounts L = {L1, L2, · · · , Lm} , Lj ∈ L. In addi-
tion to the local state of the accounts, each shard needs to record the state of
other shards. Each shard’s state is composed of all the account states in it. We
use the execution vector EV

Lj

Si
to denote the state of Lj in Si. Each element of

EV represents the state of the same account in different shards and starts with
0, i.e., EV

Lj

Si
[Si] = 0, Si ∈ S. After the shard Sj executes a transaction from Si,

Lj ’s execution vector EV
Lj

Sj
[Si] = EV

Lj

Sj
[Si]+1. The timestamp of a transaction

TxChain: Scaling Sharded DL via Chained Transaction Sequences 337

T is T.ts which represents the EV when it is generated. When remote shards
receive T , they maintain the dependencies and execution order of transactions
according to T.ts. Therefore, based on the timestamp of transactions, we present
how to determine whether a transaction can be instantly executed. Meanwhile,
The consistency constraints of TxChain should make transactions match their
causality relationship and let transactions with higher transaction fee be ordered
in the front.

Definition 2. Transaction Execution. A transaction T can be executed
instantly in the shard iff (1) T is from this local shard, or (2) T is from the
remote shard and transactions which is causally before T have been executed.

3.2 Transaction Sequence Conversion Algorithm

To solve the problem in Sect. 2.3, according to the consistency constraints of
TxChain, we design the consensus mechanism based on the transaction sequence
conversion (TSC) algorithm. Ta and Tb are two concurrent transactions for the
same account L in Si and Sj respectively, and are executed instantly in their
local shards. When Tb arrives at Si, the execution vector of L in Si is EV L

Si
. The

ordering position of Tb in Si shifts because the execution of Ta, so Tb cannot be
executed directly at the Tb.p in Si. Therefore, TSC refers to the idea of address
space transformation (AST) [3,7] to convert the account’s TxSEQ to a specific
state, and then execute transactions according to Definition 2.

Fig. 3. Transaction sequence conversion.

We still use the example in Sect. 2.3 for illustrating the process of TSC, which
has been presented in Fig. 3. Before V1 attempts to execute T in the account
L = “0x3889fa”, the execution vector of L is EV L

S1
= [0, 3]. When T arrives at

S2, EV L
S2

= [0, 4]. TSC traces S2 back to the state when T is generated, i.e.,
EV L

S2
= T.ts = [0, 3]. In other words, TSC sets the impact of T

′
2 to be invisible.

After T is executed in S2, the EV L
S2

is updated to [1, 4]. Finally, TSC restores
the impact of T

′
2. Similarly, S1 follows the above steps to synchronize T

′
2.

Based on the above content, TSC is presented as Algorithm 1. The trans-
action T is generated from account L of the remote shard Sj and it will be
executed in L of Si whose execution vector is EV L

Si
. The first step of TSC is

to verify the signature of T for its integrity. Next, TSC traces the TxSEQ of
L back to the state when T is generated, i.e., adjusts EV L

Si
to equal T.ts. The

process of backtrack determines which transactions have been executed when
EV L

Si
= T.ts. For one transaction T ′ in the TxSEQ of L maintained by Si, if

338 Z. Xu et al.

Algorithm 1. The Transaction Sequence Conversion Algorithm
Input: Transaction sequence TxSEQ, transaction T ;

1: if Verify (T) then
2: Backtrack (TxSEQ, T.ts)
3: Execute T in TxSEQ
4: EV L

Si
[Sj] = EV L

Si
[Sj] + 1

5: Backtrack
(

TxSEQ, EV L
Si

)

6: else
7: Abort T
8: end if

Algorithm 2. The Sequencing Algorithm
Input: Sequencing interval (px, py), transaction T
Output: Ordering position Site

1: Site ← null
2: for T ′.p between (px, py) do
3: if T ‖ T ′ then
4: if TOrder (T) < TOrder

(
T ′) && Site = null then

5: Site ← T ′.p
6: end if
7: else if T � T ′ then
8: Site ← T ′.p
9: break
10: end if
11: T ′ ← T ′.next
12: end for
13: if Site = null then
14: return T ′.p
15: else
16: return Site
17: end if

T.ts ≥ T ′.ts, the impact of T ′ is set as visible, otherwise the impact of T ′ is set
as invisible. The comparison of timestamp complies with the following rules. If
T ′.ts = T.ts, each corresponding element in T ′.ts and T.ts is exactly the same.
If T ′.ts < T.ts, each corresponding element in T ′.ts is not greater than T.ts, and
the sum of the elements in T ′.ts is less than T.ts. If T ′.ts > T.ts, T ′.ts contains
at least one corresponding element greater than T.ts.

After TSC has traced the shard to the state when T is executed, the ordering
position of T in the TxSEQ has been determined, which is the interval between
two positions. However, due to the backtrack process, there may be several
invisible transactions in that interval. Therefore, it is also necessary to compare
the relationship between T and these invisible transactions to finally confirm
the ordering position of T . In order to compare the relationship between T and
these invisible transactions, we can also use TOrder [6] in addition to transaction
dependencies defined in Sect. 2.2.

Definition 3. TOrder. Given two transactions Ta and Tb, TOrder (Ta) <
TOrder (Tb) iff (1) SUM (Ta.ts) < SUM (Tb.ts), or (2) Ta.fee > Tb.fee when
SUM (Ta.ts) = SUM (Tb.ts), or (3) i < j, when SUM (Ta.ts) = SUM (Tb.ts) and
Ta.fee = Tb.fee. Meanwhile, SUM (T.ts) =

∑n
i=1 T.ts [Si].

TxChain: Scaling Sharded DL via Chained Transaction Sequences 339

We have known T will be inserted between two positions px and py. Then
we traverse each transaction T ′ in the sequencing interval (px, py). If T ′ and
T are concurrent and TOrder (T) < TOrder (T ′), T ′.p becomes the ordering
position of T . If T causally precedes T ′, T ′.p is the ordering position of T and
the traversal process ends. The process of ordering transactions in (px, py) can
be described as Algorithm 2. Then T will be executed according to its ordering
position.

4 Performance Evaluation

4.1 Experimental Setup

The prototype of TxChain is implemented in Golang, and its nodes spread across
16 machines. Every machine is equipped with the Intel Xeon E5128 CPU, 32 GB
of RAM, 10 Gbps network link and Ubuntu 16.04 LTS operating system. In order
to emulate the realistic network environment, we limit the bandwidth between
nodes to 20Mbps and artificially insert a delay of 100 ms to communication links.

4.2 Throughput Scalability and Transaction Latency of TxChain

We evaluate the throughput scalability and transaction latency of TxChain in
terms of the number of shards in TxChain |S|.

As shown in Fig. 4(a), the throughput of TxChain is improved when |S|
increases. When we double |S|, the throughput of TxChain can be increased by
1.59 to 1.89 times. Compared to RapidChain [8] which achieves 1.57 to 1.70 times
when doubling its network size, TxChain can achieve higher scalability. TxChain
have better scalability especially when |S| is small because each shard maintains
the full replica of TxChain and TSC has greater computational overhead when
the amount data in TxChain expands.

Fig. 4. Performance of TxChain.

Figure 4(b) plots the latency of processing a transaction which can be exe-
cuted instantly or not respectively for different |S|. Transactions which cannot

340 Z. Xu et al.

be executed instantly is pending for a ordering position by TSC. We take the
execution of a pending transaction as the example and find that the latency
increases slightly from 482.26 milliseconds (ms) to 525.31 ms when |S| varies
from 2 to 16. With the same |S|, a pending transaction has roughly 10% more
latency than the transaction can be executed instantly. These results show that
the time delay is mainly due to TxSEQs conversion in TSC.

5 Conclusion

In this paper, we propose TxChain which is a novel DL based on sharding and
constituted by accounts’ transaction sequences. TxChain enable shards to update
the global state via the unit of transaction in parallel, which greatly scales its
throughput. The transaction sequence conversion (TSC)-based consensus mech-
anism traces accounts’ transaction sequences to the state when transactions
can be ordered correctly for maintaining the shards’ consistency. We implement
TxChain and demonstrate its high scalability and low transaction latency.

Acknowledgements. This work was supported by the Science and Technology Com-
mission of Shanghai Municipality under Grant No. 21511101501 and the National Nat-
ural Science Foundation of China (NSFC) under Grant No. 61932007.

References

1. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards
scaling blockchain systems via sharding. In: Proceedings of the 2019 International
Conference on Management of Data, pp. 123–140 (2019)

2. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. In: Proceedings
of the 1989 ACM SIGMOD International Conference on Management of Data, pp.
399–407 (1989)

3. Gu, N., Yang, J., Zhang, Q.: Consistency maintenance based on the mark & retrace
technique in groupware systems. In: Proceedings of the 2005 International ACM
SIGGROUP Conference on Supporting Group Work, pp. 264–273 (2005)

4. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:
Omniledger: a secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE
Symposium on Security and Privacy (SP), pp. 583–598. IEEE (2018)

5. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 17–30 (2016)

6. Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems.
ACM Trans. Comput.-Hum. Inter. (TOCHI) 5(1), 63–108 (1998)

7. Yang, J., Wang, H., Gu, N., Liu, Y., Wang, C., Zhang, Q.: Lock-free consistency
control for web 2.0 applications. In: Proceedings of the 17th international conference
on World Wide Web, pp. 725–734 (2008)

8. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: scaling blockchain via full
sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 931–948 (2018)

Zebra: An Efficient, RDMA-Enabled
Distributed Persistent Memory

File System

Jingyu Wang1, Shengan Zheng2(B), Ziyi Lin3, Yuting Chen1,
and Linpeng Huang1(B)

1 Shanghai Jiao Tong University, Shanghai, China
{wjy114,chenyt,lphuang}@sjtu.edu.cn

2 MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong
University, Shanghai, China

shengan@sjtu.edu.cn
3 Alibaba Group, Hangzhou, China
cengfeng.lzy@alibaba-inc.com

Abstract. Distributed file systems (DFSs) play important roles in dat-
acenters. Recent advances in persistent memory (PM) and remote direct
memory access (RDMA) technologies provide opportunities in enhanc-
ing distributed file systems. However, state-of-the-art distributed PM
file systems (DPMFSs) still suffer from a duplication problem and a fixed
transmission problem, leading to high network latency and low transmis-
sion throughput. To tackle these two problems, we propose Zebra, an
efficient RDMA-enabled distributed PM file system—Zebra uses a repli-
cation group design for alleviating the heavy replication overhead, and
leverages a novel transmission protocol for adaptively transmitting file
replications among nodes, eliminating the fixed transmission problem.
We implement Zebra and evaluate its performance against state-of-the-
art distributed file systems on an Intel Optane DC PM platform. The
evaluation results show that Zebra outperforms CephFS, GlusterFS, and
NFS by 4.38×, 5.61×, and 2.71× on average in throughput, respectively.

Keywords: RDMA · Adaptive transmission · Persistent memory ·
Distributed file system

1 Introduction

Nowadays, distributed file system plays an increasingly important role in data-
centers. A distributed file system is a client/server-based application that allows
clients to access and process remote files as they do with the local ones. Many
efforts have been spent on leveraging persistent memory (PM) and Remote
Direct Memory Access (RDMA) technologies to enhance the distributed file sys-
tems. Persistent memories are of large capacities and near-DRAM performance,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 341–349, 2022.
https://doi.org/10.1007/978-3-031-00123-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_28&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_28

342 J. Wang et al.

Fig. 1. A comparison of a typical DPMFS and Zebra.

while RDMA supports direct accesses of PMs. PM and RDMA supplement each
other, enabling efficient access to remote files.

Several RDMA-enabled distributed PM file systems (DPMFS), such as Octo-
pus [5], Orion [12] and Assise [2] achieve high performance through coupling PM
and RDMA features. A DPMFS, as Fig. 1(a) shows, is composed of a manage-
ment node and many storage nodes. The management node is responsible for
receiving clients’ requests and/or managing file replications. The storage nodes
are organized into a chain structure or a star topology, on which file replications
are stored. Persistent memories are deployed on the central and storage nodes,
as they are of large capacities and near-DRAM accessing speeds, and RDMA is
employed, allowing users to directly access PMs and efficiently synchronize file
replications [6]. Conventional distributed file systems adopt RDMA by substi-
tuting their communication modules with RDMA libraries.

The problem of file replication can be cast into a problem of file transmission:
file replications are transmitted from the management node to the storage nodes,
or vice versa, such that clients can access files close to them. Meanwhile, the
performance of existing DPMFSs suffers from two transmission problems.

Problem 1: Duplication Problem. File replications need to be intensively trans-
mitted. In a chain-structured DPMFS [4,9], the management node is followed by

Zebra 343

a chain of storage nodes—a file is transmitted along the chain and much effort
needs to be spent on synchronizing file replications so as to avoid inconsistency.
Comparatively, in a DPMFS with a star topology, file replications are only trans-
mitted between the central node and the storage nodes [4,8,11], whilst the loads
are not balanced, as the central node suffers from heavy replication overhead.

Problem 2: Fixed Transmission Problem. A DPMFS, or even a traditional DFS,
usually adopts a fixed transmission strategy. Such a DPMFS does not adapt to
different granularity, and thus suffers from a mismatch between the file replica-
tions and the transmission block sizes. A DPMFS needs to adopt a much more
flexible transmission strategy in small/large file transmission scenarios (in which
files of small/large sizes are transmitted), binding files to different transmission
modes.

To tackle the duplication and the fixed transmission problems, we present
Zebra, an efficient, RDMA-enabled distributed PM file system. The key idea is to
(1) use a replication group design for alleviating the heavy replication overhead,
and (2) design an adaptive RDMA-based transmission protocol that adaptively
transmits file replications among nodes, solving the fixed transmission problem.
In addition, to support multithreaded data transmission, Zebra leverages a lock-
free work request (WR) pool and a conflict resolution mechanism to accelerate
transmission. This paper makes the following contributions:

– Design: Zebra uses a replication group design that alleviates the heavy repli-
cation overhead between the central node and storage nodes.

– Protocol: Zebra provides an adaptive RDMA transmission protocol for dis-
tributed PM file systems, significantly improving the transmission through-
put.

– Implementation and evaluation: We implement Zebra and evaluate its per-
formance against state-of-the-art distributed file systems on an Intel Optane
DC PM platform. The evaluation results clearly show the efficiency of Zebra
in small/large file transmission scenarios.

2 The Zebra System

2.1 Design

Zebra is an efficient DPMFS that uses an adaptive transmission mode to speed
up accesses to PMs. As Fig. 1(b) shows, Zebra consists of a management layer
containing management nodes (M-nodes) which are responsible for coordinating
resources, and a server layer containing a set of storage nodes (D-nodes):

Group of D-nodes. Zebra provides a replication group (RG) mechanism that
divides D-nodes into groups. The D-nodes in a group work as backups for each
other. Each RG contains a master D-node that coordinates the D-nodes, guar-
antees their orderliness, and feedback to the M-node.

M-nodes. Zebra decouples its metadata and data to improve the scalability
and performance. File I/O requests are received, processed, and broadcasted by
the M-node.

344 J. Wang et al.

Zebra also pre-allocates memories for work requests (WR) during the regis-
tration phase, reducing the overhead of memory allocation during RDMA trans-
missions. As Fig. 2 shows, Zebra uses a lock-free WR pool for storing WRs, which
is produced for each transfer.

Fig. 2. Workflow in a lock-free work request pool.

2.2 An Adaptive Replication Transmission Protocol

All of the nodes in Zebra system are connected through an RDMA network.
During file transmission, Zebra first establishes a critical transmission process
that transmits data and transmission control information from the M-node to
one or more D-nodes; Zebra then asynchronously transmits data among D-nodes,
exchanging file replications.

Let {d1, d2, . . . } be a set of data packets to be transmitted. Let g(Di) be
the D-node Di in a replication group g. Zebra flexibly chooses the transmission
modes on the basis of file transmission scenarios, adapting to I/O sizes:

1) When transmitting a small number of files and/or files of small sizes, Zebra
uses a sequential transmission mode due to the sufficiency of the transmission
bandwidth. The file replications can be transmitted directly to the D-nodes using
a chain replication style, where (1) the M-node M picks up a D-node, say Di,
as a master D-node and writes the data to it; (2) Di receives the transmission
control information and writes data to the other n nodes in the RG g. Di−2 (the
D-node next to last) sends an ACK message to the M-node for completing the
writing activity.

2) Zebra uses a novel, split/interleaved transmission mode in large I/O sce-
narios (when a large number of files and/or files of large sizes are transmitted).
This mode reduces the transmission overhead from the M-node to the D-nodes.
First, Zebra takes a split transmission process, M → g(D1) = {d1, d2, ..., dk},
M → g(D2) = {dk+1, dk+2, ..., dj}, . . . in which the data is split and transmitted
from the M-node M to the D-nodes. The successive interleaved transmission are
g(D1) ↔ g(D2) ↔ · · · ↔ g(Dn), indicating that the file replications are inter-
leaved between the D-nodes in the replication group, rather than between the
M-node and the replication group.

For example, the upper bound of the RDMA throughput (TR) is approxi-
mately 12GB/s in Mellanox ConnectX-5, whereas the bandwidth of PM (TPM) is
approximately 35GB/s in read and 20GB/s in write. In the case, even though the

Zebra 345

maximal bandwidth of RDMA is reached, the bandwidth of PM is not fully lever-
aged. The split/interleaved mode expands the transmission bandwidth, reducing
the latency to Ls =

Sd/m
TR

, where Sd is the total size of data in transmission and
the data is split into m parts. Here we let the number of splits be m = TPM

TR
,

where TPM is the maximal bandwidth of PM. The latency of transmitting unsplit
data/files is m times of that of taking the split/interleaved transmission mode,
i.e., Lus = Sd

TR
. The latency increases exponentially after the bandwidth reaches

a bottleneck.

Load Balance. The M-node manages all space allocations in Zebra. It balances
the storage usage and the throughput by sampling the realtime load across the
RGs: the M-node gathers the operations; a load-balance controller records the
total capacity and realtime usage of each RG, and computes the throughput of
each node according to the number of ongoing RDMA operations.

Let g be a replication group and Cg be the percentage of its available capacity.
Let Task be the set of unfinished tasks and Taskg be the set of unfinished tasks
w.r.t. g. Let availability of g be availabilityg = α × Cg + β × |Task|

|Taskg| × 100%,

where α and β are two real values defined by human engineers. The RG with a
smaller availability (i.e., with less running tasks) is assigned a higher possibility
for storing file replications. An RG with the largest C is chosen when several
RGs are of the same availability values. To avoid frequent calculations, Zebra
selects RG candidates with the highest availability values and updates them
periodically. This reduces the load-balancing overhead.

2.3 Multithreaded RDMA Transmission

Multithreaded transmission are frequent in DFSs. Traditionally, lock operations
need to be performed in resource pools to guarantee the availability of resources,
while it incurs excessive lock contention among multiple threads. Zebra takes a
lock-free mechanism that uses kernel atomic verbs to manage WR resources in
the WR pools. When Zebra performs a transmission, a daemon thread calls
atomic_dec_and_test to search for an available WR entry.

In order to avoid conflicts caused by linear detection among multi-threading,
we adopt a decentralized query strategy to speed up usable WR acquisition
process. Threads process work requests scattered within the WR pool. Every
time a thread obtains an available WR, it linearly searches and points to the
next available WR in advance. When a thread detects that the current WR has
been occupied, it searches for the next available WR. If a thread detects that the
previously available WR is now occupied, and then performs a location hash.
This ensures a high level of parallelism.

3 Evaluation

We evaluated the performance of Zebra against other state-of-the-art distributed
file systems using a set of benchmarks. The evaluation is designed to answer the
following research questions (Fig. 3):

346 J. Wang et al.

– RQ1. How effective is Zebra in transmitting files of different sizes?
– RQ2. How effective is Zebra in processing multithreaded workloads, compared

to the other distributed file systems?
– RQ3. Is Zebra scalable for real-world applications?

Fig. 3. Systems’ throughput w.r.t. filebench with different workloads.

3.1 Setup

We conduct the evaluation on an Intel Optane DC PM platform. Each node
is equipped with six 256GB Intel Optane DCPMMs that are configured in the
App-Direct interleaved mode. The nodes communicate with each other through
a Mellanox ConnectX-5 RNIC with the Infiniband mode. The workload threads
are pinned to local NUMA nodes. Zebra is deployed on a cluster, on which every
two D-nodes are organized into a replication group.

We compare Zebra against four file systems: CephFS [11], GlusterFS [7], and
NFS [3]. We use Filebench [10], to evaluate the adaptive transmission design in
large/small file transmission scenarios. We use fileserver, a workload in Filebench,
to emulate the multithreaded scenario. Furthermore, we evaluate the overall
performance of Zebra using four Filebench workloads. In addition, we evaluate
Zebra’s scalability with Redis [1], which is a popular persistent key-value store.

3.2 Sensitivity to I/O Size

We use four filebench workloads (fileserver, varmail, webproxy, and webserver)
to evaluate Zebra. For small I/O sizes (Fig. 4(a)(c) where the I/O size is smaller
than 64KB), Zebra adopts a sequential transmission mode. This reduces the
overhead of one-to-many transmission, increasing the throughput. Figure 4(b)(d)
corresponds to the scenario in which the I/O sizes are larger than 256MB. The
threshold of switching the transmission modes depends on the I/O size, which is
also determined by the peak throughput of the other systems. This ensures that
the use of efficient split/interleaved transmission can alleviate the performance
degradation caused by throughput bottlenecks. In the case of large data trans-
mission scenarios (i.e., 1 or 2GB), the performance of CephFS, GlusterFS, and
NFS decreases by 21%, 27% and 58% on average, respectively. The performance
of Zebra decreases by only 2.3%.

Zebra 347

Fig. 4. Performance for various I/O sizes and threads. It is normalized w.r.t. the
throughput of GlusterFS.

Fig. 5. Concurrency performance. Fig. 6. Performance of running Redis.

In a small I/O size scenario, Zebra outperforms CephFS, GlusterFS, and NFS
transmission protocols by 3.7×, 3.4×, and 2.9×, respectively. In a large I/O size
scenario, Zebra outperforms CephFS, GlusterFS, and NFS by 4.7×, 6.2×, and
2.3×, respectively.

3.3 Concurrency

Figure 5 shows the performance of the systems running with multi threads. We
set the I/O size to 64B and 4MB and run fileserver with the thread numbers
ranging from 1 to 32. Zebra adopts a two-tier concurrency mechanism, including
a lock-free WR pool and an adaptive transmission strategy that improves its
scalability.

In CephFS, each replica applies the update locally and subsequently sends an
acknowledgment to the primary node. This results in heavy network transmission
on the critical path. GlusterFS performs the worst because of its heavy data
management overhead. When NFS reaches the maximal number of threads, any
subsequent requests need to wait, resulting in timeouts. As NFS is a TCP-
based network file system, a large number of threads with unbalanced loads
can lead to give up of file transmission. Zebra allows data to be transmitted
in a multithreaded manner and achieves the highest performance among the file
systems in the multithreaded transmission scenario. Zebra outperforms CephFS,
GlusterFS, and NFS on average by 2.1×, 2.3×, and 1.8×, respectively.

348 J. Wang et al.

3.4 Scalability

We use Redis [1], a popular persistent key-value store, to further evaluate the
performance of Zebra in real world applications. We choose AOF mechanism in
Redis to achieve data persistence, which synchronizes data after every modifica-
tion. As shown in Fig. 6, Zebra achieved the optimum performance on the basis
of optimization in small data transmission. The underlying storage consistency
protocol of CephFS, makes it vulnerable to small data accesses. The perfor-
mance of CephFS drops 98.2% from 64B to 4096B. Zebra and GlusterFS use
block storage, which stores a set of data in chunks. Block storage provides high
throughput against small data I/O and also guarantees preferable performance.
Compared to the GlusterFS, Zebra gains a 17–21× throughput improvement.

4 Conclusion

This paper presents Zebra, an efficient RDMA-enabled DPMFS. The key idea
of Zebra is to improve the efficiency of file replication by improving the effi-
ciency of data transmission. Zebra leverages PMs for speeding up file accesses,
uses an adaptive RDMA protocol for reducing network latency and improving
transmission throughput. It uses the method of dividing large data into blocks
and complete data reliability backup. The evaluation results show that Zebra
outperforms other state-of-the-art systems, such as CephFS, GlusterFS, NFS,
and Octopus in transmitting data streams and synchronizing file replications.

Acknowledgements. This research is supported by National Natural Science Foun-
dation of China (Grant No. 62032004), Shanghai Municipal Science and Technology
Major Project (No. 2021SHZDZX0102) and Natural Science Foundation of Shanghai
(No. 21ZR1433600).

References

1. Redis (2018). https://redis.io/
2. Anderson, T.E., Canini, M., Kim, J., et al.: Assise: performance and availability

via NVM colocation in a distributed file system. CoRR (2020)
3. Callaghan, B., Lingutla-Raj, T., Chiu, A., et al.: NFS over rdma. In: Network-I/O

Convergence: Experience, Lessons, Implications (2003)
4. Davies, A., Orsaria, A.: Scale out with glusterfs. Linux J. (2013)
5. Lu, Y., Shu, J., Chen, Y., et al.: Octopus: an RDMA-enabled distributed persistent

memory file system. In: ATC (2017)
6. Nielsen, L.H., Schlie, B., Lucani, D.E.: Towards an optimized cloud replication

protocol. In: SmartCloud (2018)
7. Noronha, R., Panda, D.K.: IMCA: a high performance caching front-end for glus-

terfs on infiniband. In: ICPP (2008)
8. Shan, Y., Tsai, S.Y., Zhang, Y.: Distributed shared persistent memory. In: SOCC

(2017)
9. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file

system. In: MSST (2010)

https://redis.io/

Zebra 349

10. Tarasov, V., Zadok, E., Shepler, S.: Filebench: a flexible framework for file system
benchmarking. Usenix Mag. (2016)

11. Weil, S.A., Brandt, S.A., et al.: Ceph: a scalable, high-performance distributed file
system. In: OSDI (2006)

12. Yang, J., Izraelevitz, J., Swanson, S.: Orion: a distributed file system for non-
volatile main memory and RDMA-capable networks. In: FAST (2019)

Data Security

ADAPT: Adversarial Domain Adaptation
with Purifier Training for Cross-Domain

Credit Risk Forecasting

Guanxiong Zeng1, Jianfeng Chi1, Rui Ma1, Jinghua Feng1(B),
Xiang Ao2,3,4(B), and Hao Yang1

1 Alibaba Group, Hangzhou, China
{moshi.zgx,bianfu.cjf,qingyi.mr,jinghua.fengjh,

youhiroshi.yangh}@alibaba-inc.com
2 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences

(CAS), Institute of Computing Technology, CAS, Beijing 100190, China
aoxiang@ict.ac.cn

3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Institute of Intelligent Computing Technology, Suzhou, CAS, Suzhou, China

Abstract. Recent research on transfer learning reveals that adversarial
domain adaptation effectively narrows the difference between the source
and the target domain distributions, and realizes better transfer of the
source domain knowledge. However, how to overcome the intra/inter-
domain imbalance problems in domain adaptation, e.g. observed in cross-
domain credit risk forecasting, is under-explored. The intra-domain
imbalance problem results from the extremely limited throngs, e.g.,
defaulters, in both source and target domain. Meanwhile, the dispar-
ity in sample size across different domains leads to suboptimal transfer-
ability, which is known as the inter-domain imbalance problem. In this
paper, we propose an unsupervised purifier training based transfer learn-
ing approach named ADAPT (Adversarial Domain Adaptation with
Purifier Training) to resolve the intra/inter-domain imbalance problems
in domain adaptation. We also extend our ADAPT method to the multi-
source domain adaptation via weighted source integration. We investi-
gate the effectiveness of our method on a real-world industrial dataset on
cross-domain credit risk forecasting containing 1.33 million users. Exper-
imental results exhibit that the proposed method significantly outper-
forms the state-of-the-art methods. Visualization of the results further
witnesses the interpretability of our method.

Keywords: Multi-source domain adaptation · Class-imbalance ·
Purifier training · Credit risk forecasting

1 Introduction

The outbreak of COVID-19 has almost devastated the global economy, and
it was reported that large number of businesses have problems with financial

G. Zeng, J. Chi—Contributed equally.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 353–369, 2022.
https://doi.org/10.1007/978-3-031-00123-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_29&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_29

354 G. Zeng et al.

difficulties1. This recession, on the other hand, burgeons on the online finan-
cial services, which aims to provide inclusive financial services to businesses to
help them tide over the difficulties. For example, Alibaba Group, a Chinese e-
commerce corporation, has offered multiple financial services to its registered
users (businesses) in 1688.com and alibaba.com, etc.

Based on the previous experience on online financial service, overdue and
fraud are inevitable, and they are in general the culprits of asset loss of a plat-
form [2,8–11]. It is conceivable that the financial services provided on new plat-
forms will also confront the same risks. Even worse, few available data and
ground truth in new platforms make its financial risk management more chal-
lenged on perceiving the high-risk customers in advance and reducing the risk
exposure of the platform.

Domain Adaptation (DA) aims to transfer the representation of a source
domain with wealth data and information to a target domain with few or no
labeled data. Recent years have witnessed successive successful applications of
domain adaptation in large-scale datasets and various research tasks, e.g., image
recognition [21,23] and fraud detection [26]. It thus seems to be a plausible
solution that applying DA techniques to adapt useful knowledge from mature
financial service platforms to a brand-new or barely performing financial service
platform. However, some special challenges raised by the class-imbalance prob-
lem of credit risk forecasting render conventional DA techniques ineffective in
this scenario, and we summarize the challenges as follows.

Intra-domain Class Imbalance. Although the risk of defaulters is very high,
the number of defaulters is much smaller than that of benign users. The average
number of benign users (negative) is about more than a hundred times than
that of defaulters (positive) per month [2,8]. Therefore, it suffers from a severe
class-imbalance problem [5] in both source and target domain.

Inter-domain Sample Imbalance. Recall that an ideal adaptation is to trans-
fer more knowledge about the defaulters of the source domain to unearth the
defaulters in the target domain. That is, we attempt to mainly transfer the
knowledge of the minor samples that might be easily ignored by the model.
Hence, how to identify valid samples of the source domain and alleviate subop-
timal even negative transfer [15,22,23] caused by the sample imbalance across
the domains is the second challenge.

To remedy these special challenges in cross-domain credit risk forecasting,
we propose a novel approach coined ADAPT (Adversarial Domain Adaptation
with Purifier Training) in this paper. ADAPT is an unsupervised purifier train-
ing based transfer learning approach resolve the intra/inter-domain imbalance
problems in domain adaptation simultaneously. First, a self-adaptive re-weighted
approach is devised to overcome the intra-domain class-imbalance problem by
estimating the uncertainty of the source samples. Second, we cherry-pick the
source samples based on the target domain classification through the puri-
fier training to remedy the issues brought by inter-domain sample imbalance.

1 https://www.pwc.com/us/en/library/covid-19.html.

http://www.1688.com
http://www.alibaba.com
https://www.pwc.com/us/en/library/covid-19.html

ADAPT 355

Finally, we extend the ADAPT method to the multi-source domain adaptation
via weighted source integration. This can make up for the problem of insuffi-
cient or even no labels in the target domain and is conducive to the cold start
of financial service on a new platform.

The main contributions of this paper are summarized as follows:

– To the best of our knowledge, we are the very first attempt to simultaneously
overcome the intra/inter-domain imbalance problem in domain adaptation,
which is observed in cross-domain financial credit risk forecasting and is ubiq-
uitous in many other scenarios.

– We propose ADAPT, an unsupervised transfer learning approach, which
adopts self-adaptive re-weighted loss to resolve the class-imbalance problem
within domains and a purifier training that cherry-picks the samples to per-
form better inter-domain knowledge transfer. We also extend ADAPT to a
multi-source domain adaptation version to facilitate the generalization of our
model.

– Experiments on four real-world datasets demonstrate the effectiveness of pro-
posed ADAPT, which can outperform other recent DA learning methods.
Furthermore, our model provides good interpretability.

The remainder of this paper is organized as follows. Section 2 surveys the
related researches in the literature. Section 3 introduces problem statement in our
paper. Section 4 details the proposed ADAPT method. Section 5 demonstrates
the experiment settings and main results. Section 6 concludes the paper.

2 Related Work

2.1 Domain Adaptation

Domain Adaptation (DA) is a frequently used technique once applied in many
research fields to improve the performance of models. From the perspective of
the method, it is mainly divided into two categories. One is to use a loss function
to minimize the differences between the source domain and the target domain,
such as L1, L2 or cosine similarity, KL or JS divergence, Maximum Mean Dis-
crepancy (MMD) [3]. The role of these loss functions is to narrow the distance
between the source domain and the target domain in the latent space. Adver-
sarial training is another popular method of transferring domain information.
For example, Adversarial Discriminative Domain Adaptation (ADDA) [17] com-
bines discriminative modeling, multi-head feature extraction, and the GAN loss.
Adversarial Domain Adaptation with Domain Mixup (DM-ADA) [21] guaran-
tees domain invariance in a more continuous latent space and guides the domain
discriminator to determine samples’ difference relative to the source and target
domains.

Considering the number of source domains, DA can be divided into single-
source domain adaptation and multi-source domain adaptation. Most single-
source domain adaptation methods can be extended to multi-source domain

356 G. Zeng et al.

adaptation. MDDA [23] separately pre-trains feature extractor and classifier for
each domain and matches the features between source and target by Wasserstein
distance. Then it combines the different predictions from each source classifier by
a weighting strategy based on the discrepancy between each source and target.

2.2 Credit Risk Forecasting

Credit risk forecasting (CRF) is the core of financial services management, and
relevant research has been made as early as 1968 [1]. However, at that time,
researchers mainly employ some linear models and artificial strategies to do
simple population risk stratification. Financial institutions will prevent some
potential high-risk customers from opening relevant financial services through
the stratification of the population. Later, random forest methods are proposed
to assess the potential risk and obtain better performance than traditional finan-
cial institutions [14].

A lot of recent works have introduced deep neural networks to identify specific
risk groups, e.g., heterogeneous information network based defaulter detection
[25], meta-learning based potential defaulters mining [2,19], cross-domain fraud
detection via domain adaptation [26], and multi-task based credit risk forecast-
ing [8]. In fact, all the above methods suffer from serious class imbalance, because
the number of high risk users is far less than that of benign users. Some meth-
ods alleviate these problems through simple undersampling [8,25], while others
introduce relatively complex loss functions [26].

2.3 Class-Imbalance

Main methods to solve the class-imbalance problem can be divided into two cate-
gories: data-based method and algorithm-based method. The data-based method
is to undersample the majority classes or oversample the minority classes. For
example, CGAN [18] uses generative adversarial networks to augment the train-
ing dataset. For class-imbalance financial risk prediction, [13] propose an adver-
sarial data augmentation method to generate high-risk samples to improve the
effect. A typical undersampling method is the random majority undersampling
(RUS), which may lose some important information. Recently, [12] propose an
imbalanced learning approach named PC-GNN to overcome the problem in the
GNN based methods, which uses label-balanced sampler to pick nodes and edges
and neighborhood sampler to choose neighbors with a learnable distance func-
tion. In this way, they can oversample the minority classes and undersample the
majority classes.

One of the typical algorithm-based methods is the cost-sensitive learning
method by assigning relatively high costs to minority classes, thus overcoming
the class-imbalance problem. And cost-sensitive learning methods don’t change
the distribution of training data, and it’s easier to apply. For example, [24]
propose a cost-sensitive hierarchical classification for imbalance classes, which
constructs a cost-sensitive factor to balance the majority and minority classes
based on the probability of each hierarchical subtask.

ADAPT 357

3 Business Setting and Problem Statement

3.1 Business Setting

Fig. 1. Timeline of y in a billing cycle in the online credit loan services.

In this work, our business settings are based on online credit loan services pro-
vided to the users by the Alibaba Group. According to the general definition
in online finance service platforms, we assign a label y ∈ {0, 1} on each user to
indicate whether he/she is a defaulter or not. Hence, the cross-domain credit risk
forecasting task is to predict the default probability of the user. For instance, a
billing cycle is shown in Fig. 1 [2,8]. If a user borrows money from a financial
platform by credit, there will be a due date according to the lending service
agreement. If the user fails to repay the loan one month after the due date,
she/he would be regarded as a one-month delinquent defaulter (c.f. y in the
figure). Because more than half of the above-mentioned users may be overdue
for a longer period of time, ultimately causing economic losses. Considering the
brand new platform, we also hope it have its credit rating based on the exist-
ing data of the platform, which can help existing users enjoy the new service
of consumer loans and improve capital turnover rate, and better overcome the
fund difficulties. However, there is no financial performance, except the profile
information and business behavior for the users in the new platform. The lack
of financial performance challenges the performance of traditional models.

3.2 Problem Statement

Why Domain Adaptation. We want to use these data which produce on
existing platforms with rich information to better predict the probability for
a user to be a defaulter in the new platform. And, we also need to find the
correlation between the platforms, allowing us to have more prior knowledge in
the operation of financial products on the new platform.

However, the characteristics of most platforms are not completely different
and users in different platforms also have their own uniqueness. Fortunately, the
nature of the features are similar, such as member level, purchasing behavior, etc.
So, we adopt popular adversarial training method to transfer domain informa-
tion [17]. The Unsupervised Domain Adaptation (UDA) scenario is considered
here because that the target domain is a brand new platform and it has almost
no labels. To summarise, in this work, the goal is to predict the probability of

358 G. Zeng et al.

the user to be a defaulter through Unsupervised Domain Adaptation or other
traditional methods.

Data Composition. There are k labeled source domains D1
S , . . . ,Dk

S and one
target domain DT without financial performance. For the ith source domain, Di

S

is the observed users with corresponding labels in our ith financial platforms.
For simplicity, we set X i

S ∈ R
n as feature space in the ith source domain Di

S

and Yi
S = {0, 1} as label space, respectively. Let y = 0 indicates benign user

and y = 1 indicates the defaulter. Then, samples in source domain are labeled 0
or 1, which form source dataset Di

S = {X i
S ,Y i

S}. Similarly, the samples X T in
target domain form the target dataset DT = {X T } which is unlabeled due to
the lack of corresponding financial performance. In practice, we use the labeled
samples Dv

T = {X v
T ,Yv

T } as the validation set to evaluate the effect of different
methods. The samples in validation set are also labeled 0 or 1. These very few
positive samples (assigning as 1) are those users who have been penalized for
such as business violation/fraud.

Definition of Cross-domain Credit Risk Forecasting. Given the source
dataset DS , DT as the training set and the labeled samples Dv

T as the validation
set. Our purpose is to build a model F : {X S ,X T } → ŷ through different
methods, where ŷ is the default probability of the users in the target domain.
The transfer task aims to improve the model performance on the unlabeled DT

with the help of DS .

4 The Proposed Model

4.1 The Model

In this section, we present the proposed ADAPT (Adversarial Domain Adap-
tation with Purifier Training), its overall architecture is shown as Fig. 2.
Figure 2(a) is the core model architecture of the ADAPT, which is mainly
divided into two network structures. The left is an embedding layer, and the right
is a Re-weighted Adversarial Discriminative Domain Adaptation (Re-weighted
ADDA) Layer. We extend the ADAPT method to a multi-source scenario in
Fig. 2(b). The input is the data of all domains, including 1 ∼ k source domain
and one target domain, and the output is the inference of the target domain
data integrated by all ADAPT modules.

We use the subscript (·)S or (·)T to distinguish the source and target respec-
tively and the superscript (·)i, i ∈ {1, ..., k} to distinguish different source
domains.

Embedding Layer
In our scenario, almost all data are tabular statistical features. We collect users’
data under the premise of complying with security and privacy policies. We
utilize feature extraction F pre to deal with these original inputs. The encoded

ADAPT 359

Fig. 2. (a) Model architecture of the ADAPT module. (b) Extending ADAPT method
to MSDA.

representations are denoted as follows with the same dimensions in all source
and target domains:

EV i
S = (F pre

S)i(X i
S) (i ∈ {1, ..., k})

EVT = F pre
T (X T)

(1)

All feature extraction layers of the target and source domains are independent.
The non-shared feature extractor network can obtain the discriminant feature
representation and accurate classifier of each source domain. When aggregating
information from multiple source domains downstream of the network, the final
target prediction will be better improved [23]. In the ith source domain, the
classification loss function is defined as:

Lpre
cls = − E

xi
S∼Pi

S

1
C#

C#∑

c=1

(yi
s log((Cpre

S)i(EV i
S))) (2)

where C# is the number of the class, yi
s is the ground truth of the correspond-

ing pre-training task, (Cpre
S)i is the corresponding classifier. It is worth noting

that the target domain is unlabeled. We use the user level classification of the
corresponding platform as the domain pre-training task.

Re-weighted ADDA Layer
The Re-weighted ADDA Layer can be divided into five parts: the encoder F ,
the gaussian normalization layer N , the classifier C, the generator G, and the
discriminator D. The core of the Re-weighted ADDA Layer is Adversarial Dis-
criminative Domain Adaptation (ADDA) [17]. Details are described in the fol-
lowing.

1) The first part is the common encoder F i for each pair (EV i
S ,EVT). The

embedding after the encoder is (F i(EV i
S),F i(EVT)).

2) The embedding pair (F i(EV i
S),F i(EVT)) are mapped to (μi

S , σi
S) and

(μi
T , σi

T) respectively. And they are regularized by a standard gaussian priori
over the latent distribution as conventional VAE in the gaussian normalization

360 G. Zeng et al.

layer N [7,21], the aim of which is to narrow the Kullback-Leibler divergence
between a posterior and a priori.

LKL = DKL(N (μ, σ)||N (0, I)) (3)

where μ and σ are the encoded mean and standard deviation of the source
and target samples. In this way, the output of gaussian normalization layer N i

follows the standard Gaussian distribution N (0, I), which is conducive to the
matching of the tabular characteristics in the latent space.

3) The classifier Ci is optimized with classification loss defined on the ith
source domain. The input of the classifier Ci is [μi

S , σi
S] for each sample, where [·]

denotes concatenation. In this paper, the distribution of the sample in the source
domain is extremely imbalanced. We add a self-adaptive re-weighted method to
the classification loss. We use the weighted entropy to measure the uncertainty
of samples. Sample (user) with low entropy can be regarded as a well-classified
sample. Otherwise, it is a poorly classified sample [20]. Thus, we could increase
the weight for samples that are poorly classified sample. We add the self-adaptive
weight Hp into the classification loss to better overcome the intra-domain imbal-
ance problem.

Hp = − 1
C#

C#∑

c=1

pc · log(pc) · αc (4)

where pc is the probability of predicting a sample to class c, and αc is the hard
weight to corresponding class c. It would pay more attention to the class with
higher hard weight αc during training. We adopt the conditional entropy as the
indicator to weight the classification loss and the classification loss is extended
as:

Lw
cls = − E

xi
S∼Pi

S

1
C#

C#∑

c=1

((1 + Hp)yi
s log(Ci(F i(EV i

S)))) (5)

The form of the Lcls is the same as that of Eq. 2. It is worth noting that there
is no classification error for the target domain here. We only do inference on
the samples of the target domain to get the performance on labeled samples
Dv

T . These labels are very few, we only use them for evaluation and do not put
them directly into our model in this paper. And the loss is also used to train the
encoder F i.

4) In order to strengthen the diversity of generator G, we add Gaussian
noise to its input. We also add the one-hot object class label licls into the input
to the generation of the auxiliary samples [21]. In the source domain, the licls is
the one-hot code corresponding to the sample label. As for the target domain,
the default one-hot is [0, 1]. After that, generator Gi generates the auxiliary
generated sample (representations) EV G as below:

EV Gi
S = Gi([μi

S , σi
S , z, licls])

EV Gi
T = Gi([μT , σT , z, [0, 1]])

(6)

where z is the noise vector randomly sampled from standard Gaussian distribu-
tion.

ADAPT 361

5) The Discriminator Di is mainly used to distinguish the auxiliary generated
sample EV Gi

S ,EV Gi
T produced by Gi from the original sample EV i

S ,EVT .
We restrict not only the domain invariability to the source domain and the target
domain but also the generation of the different classes of samples. The min-max
optimization objective on different domains are defined as follows [21]:

min
F i,Gi

max
D i

((Ladv)S + (Ladv)T) (7)

(Ladv)S = E
xi
S∼Pi

S

log(Di(EV i
S)) + log(1 − Di(EV Gi

S)) (8)

(Ladv)T = E
xT ∼PT

log(1 − Di(EV Gi
T)) (9)

To ensure that features of the different classes in the source domains are highly
differentiated in the latent space, we have added a classification loss as the Eq. 5,
in which the self-adaptive weight Hp is to learn the hard samples between differ-
ent domains for better overcoming the inter-domain imbalance problem. We also
add a Euclidean Distance in the discriminator, which takes the class information
into account and measures the class discrepancy in the source domains.

Lw
DC = − E

xi
S∼Pi

S

1
C#

C#∑

c=1

((1 + Hp)yi
s log(DCi(EV Gi

S))) (10)

Led =
d(EV Gi

S ,EV Gi
T)

d(EV Gi
S |c = 1,EV Gi

S |c = 0)
(11)

L = Lw
DC + λ((Ladv)S + (Ladv)T + Led) (12)

where DCi represents the classifier in discriminator Di, d(·) represents the
average Euclidean distance between two different embeddings, λ is a trade-off
parameter.

4.2 Multi-source Adversarial Domain Adaptation

In this section, we extend ADAPT method to the multi-source domain adap-
tation via weighted source integration. The overall framework of multi-source
adversarial domain adaptation is shown in Fig. 2(b). The input is the all domains
data, including source domain X 1

S , ...,X k
S and the only target domain X T . In the

testing phase, the output is the inference of the target domain data integrated
by all classifiers. So, the final prediction of the target domain is:

ŷT =
k∑

i=1

wiC
i(N i(F i(EVT)) (13)

The discriminator Di can distinguish whether the sample is generated by Gi, and
can also distinguish which domain the sample comes from. So, we can obtain

362 G. Zeng et al.

the probability that the sample xT comes from the ith source domain: pi
S =

Di(F i(EVT)). Then we can get the weight wi:

wi =
exp(pi

S)
∑k

i=1 exp(pi
S)

(14)

4.3 The Training Method

Fig. 3. The flow chart of the ADAPT method.

This section presents the details of the ADAPT method in the training and test-
ing phase. As shown in Fig. 3, the first step is pre-training the feature extractor
from both the labeled source domain DS with the CRF task and the unlabeled
target domain DT with additional labeled task, and its goal is to achieve the
optimal performance of the classifier on the evaluation task. Then, we can get
dataset V0 the initial source domain and fixed dataset U for the target domain.
And the self-training in the block diagram is a parallel internal iterative loop
process. Then, we can get the domain loss and the classification loss. The above
loss would be fed back to guide the purifier w∗, which aims to select the samples
in the source domain which are more similar to the samples in the target domain.

The details of building purifier module w∗ for dataset DS are as follows. In
the tth step, we can cherry-pick dataset Vt+1 for the source domain based on the
dataset Vt and the discriminator Di which can distinguish whether the sample
comes from the source domain or the target domain. In the self-training phase,
we will select the top η% samples from DS based on the distance between the
sample in the source domain and all the target domain.

ADAPT 363

dis(xi
S ,X T) = ||Di(F i(EV i

S)) − E
xT ∼PT

(Di(F i(EV Gi
T)))||2 (15)

w∗(X i
S) = {xi

S |xi
S ∈ X i

S ∧ (dis(xi
S ,X T) − dis(xi

S ,X T)η%) < 0} (16)

where dis(xi
S ,X T)η% is the distance from η% after all distances are sorted in

ascending order within the ith source domain. To speed up the process of param-
eter search, multiple thresholds η with different models are trained at the same
time. We would cherry-pick the best dataset defined as Vt+1 and the corre-
sponding ADAPT module. Finally, the model with the best evaluation results
on classification loss and domain loss will be retained.

5 Experiments

5.1 Dataset

We collect a real-world dataset from an online E-Commerce consumer lending
service provided by the Alibaba Group which services both personal and enter-
prise users. Specifically, in this paper, there are four platforms, SP1–3 denotes
three different source domains consisting of domestic and foreign trade, respec-
tively, and the TP denotes the brand new platform (target domain) that contains
few financial service yet. Our finally task is to make use of the information of
the SP1–3 as much as possible to predict credit risks of users in the TP.

Table 1. The statistics of feature sets used in the CRF task.

Description Example Dimension

Complaint rate 0.0, 0.1, 0.2 1

Refund rate 0.0, 0.1, 0.2 1

Registration time 1 m, 3 m, 4 m 1

Log.sales 1, 2, 3 1

Member type 0 A, 1 A, 2 A 6

...

The features we used in the experiments are all tabular expert characteristics
collecting from different platforms, and their sketched descriptions are detailed
in Table 1. It is worth noting that the interval between the training set and
the test set should not be less than one month because the data of the next
month is required when defining the labels of the CRF task. The sample in both
source and target domain for the training is from 2019/07 to 2019/12 and for
testing that is from 2020/02 to 2020/03, chronologically. The data distribution
of different domains is described in Table 2.

364 G. Zeng et al.

Table 2. The statistical information of dataset in different domains.

Domain #Total #Pos Pos rate Dimension Transaction cycle

SP1 725,000 890 0.12% 389 9

SP2 513,000 1,109 0.22% 177 5

SP3 389,000 550 0.14% 113 45

TP 115,000 81 0.07% 215 30

5.2 Baselines and Compared Methods

The following describes the tree-based methods that are representative in the
industry and the latest state-of-the-art methods.

(1) Target-only based method.

– FDIF: Feedback Isolation Forest (FDIF) is a tree-based semi-supervised
anomaly detection approach [16]. It reduces the effort of the model by incor-
porating feedback on whether they are interested in investigating anomalies.

– RUS: It is the random majority undersampling (RUS) method, which is
widely used in general class-imbalance problem [4,8]. In this spaper, we use
GBDT as the base classifier in the RUS method, which is a competitive super-
vised gradient boosting approach that has been widely used in industry [8].

– TRUST: Trainable undersampling with self training (TRUST) is a semi-
supervised meta-learning based approach which can effectively use the unla-
beled data by self-training to overcome the class-imbalance problem [2].

(2) Multi-source based method.

– HEN: Hierarchical Explainable Network (HEN) can model users’ behavior
sequences and improve the performance of fraud detection [26]. The method
of feature extraction and pre-training is the same as in this paper. All source
domains are mixed together for domain adaptation.

– MDDAHp
: Multi-source distilling domain adaptation (MDDA) investigates

the different similarities of the source samples to the target ones and the
distance between multiple sources and the target [23]. This method cannot
be directly reused in our experiments due to the lack of consideration for class-
imbalance. So, we strengthen the MDDA by adding self-adaptive weight Hp

and get MDDAHp
.

– ADAPT\Hp
, ADAPT\PT : Two submodels of ADAPT by removing self-

adaptive weight Hp and purifier training, respectively.
– ADAPT: Our proposed full method. We investigate some problems in cross-

domain credit risk forecasting and propose an unsupervised transfer learning
and purifier training based approach.

5.3 Implementation Details

To demonstrate the superiority of our method, the AUC is adopted to measure
the performance of different experiments in this paper, which is widely used

ADAPT 365

in the class-imbalance problem. AUC metric is a common evaluation index to
measure the quality of binary classification models. The higher AUC indicates
the better performance of the method.

We implement the methods on the Pytorch platform and choose Adam [6]
as the optimizer. We set the batch size to 256, the learning rate to 0.005, and
the trade-off parameter λ = 0.3, the thresholds η = 50 by grid-searching. The
number of trees in FDIF and GBDT is 300.

5.4 Main Results in the CRF Task

We compared performances with different target-only based methods and recent
state-of-the-art domain adaptation-based methods to demonstrate the effective-
ness of our method. Table 3 demonstrates the performances of all compared
methods. The main findings are summarized as follows.

Table 3. Comparisons of different methods in various tasks.

Task FDIF RUS TRUST HEN MDDAHp ADAPT

Target-only 0.700 0.710 0.793 – – –

Single-source best – – – 0.853 0.873 0.883

Double-sources best – – – 0.867 0.885 0.910

All sources – – – 0.879 0.894 0.915

We first consider a series of target-only based methods. As can be seen from
the first line in Table 3, the AUC of the ADAPT (0.915) improves 30.71% com-
pared with the tree-based methods FDIF. The improvements are 28.87% and
15.38% compared with the undersamping based methods RUS and TRUST
respectively. The improvement is shrinking step by step, which shows that it
is very important to deal with the class imbalance problem in this paper. The
last column shows that the performance of the ADAPT method increases as
the number of source domains increases. The final result improves about 3.62%.
Comparing the results of HEN and ADAPT, it is found that mixing all domains
directly with training is not conducive to the combination of information in
multiple source domains. The improvement shows that the ADAPT can bet-
ter integrate information from different source domains and select appropriate
source domain samples. The AUC can continue improve by 2.01% via adding the
purifier training instead of distilling samples only in MDDAHp. This shows that
purifier training can better cherry-pick the samples in the source domain that are
more similar to the target domain. In general, the results of the ADAPT are opti-
mal regardless of the average performance or overcoming the class-imbalanced
domain adaptation problem under different situations.

366 G. Zeng et al.

5.5 Ablation Test

As shown in Table 4, when removing any component of the ADAPT, all metrics
deteriorate to some extent. Specifically, self-adaptive weight Hp is more con-
ducive, since the AUC of ADAPT\Hp

is reduced by 10.11%. Furthermore, the
AUC of ADAPT\PT which removing the purifier training reduces by 2.01%. It
exhibits that the purifier training can better cherry-pick the useful knowledge in
the source domain.

Table 4. Ablation study of the ADAPT methods in combination of different source
domains in the TP.

Method SP1 SP2 SP3 SP1&2 SP1&3 SP2&3 SP1&2&3

ADAPT\Hp 0.809 0.743 0.716 0.813 0.821 0.771 0.831

ADAPT\PT 0.866 0.800 0.750 0.873 0.890 0.828 0.897

ADAPT 0.883 0.830 0.769 0.890 0.910 0.844 0.915

Considering different data sources, the SP1 has the best effect on the TP
domain. The results in the source domain combination of the SP1 and SP2 are
not much better than that from the SP1 alone. We speculate that the SP1 and
SP2 may have a lot of information that is redundant as they are domestic trade.
On the contrary, the same analysis can show that the combination of the SP1 and
SP3 can provide better information supplement because the AUC is increased by
3.06% and 18.33% respectively compared with the SP1 and SP3 alone. The same
results can also be obtained from the combination of SP2 or SP3. The result of
the combination of all source domains is the best, with a maximum increase of
27.79% over the single source domain. Besides, we can draw a conclusion that
self-adaptive weight Hp plays a more important role than purifier training in our
tasks. The above experimental results also show that the selected source domains
should not have too much redundant information. Single domain with poor effect
might provide important additional information when combining multi-source
domains.

5.6 Result Visualization

In order to verify the effectiveness of the purifier training, we analyze the distri-
bution of the samples in the SP1. To make the visualization more intuitive, we
adopt the t-SNE method on the high-level features. In Fig. 4(a), the black lower
triangles represent the samples in the SP1 which are more similar to the target
domain TP. The location of the black lower triangle is where the source domain
and target domain are highly similar. And in Fig. 4(b), the black lower triangles
represent the positive samples. From Fig. 4(a) and Fig. 4(b), we can conclude
that the few positive samples play a more important role during the domain
adaption and the behaviors of the potential defaulters are relatively similar in

ADAPT 367

Fig. 4. (a) The t-SNE visualization of the samples in the SP1 and TP domains after
the ADAPT method. (b) The t-SNE visualization of the samples in the SP1 domain
after the ADAPT method.

different platforms. It also shows that our method can accomplish knowledge
transfer focus on these limited but important positive samples.

6 Conclusion

In this paper, we investigated main challenges in the cross-domain credit risk
forecasting task, namely intra-domain class-imbalance and inter-domain sample
imbalance problems. We proposed a novel method named ADAPT to solve
these special challenges. Furthermore, our model provided a general framework,
in which unsupervised multi-source adversarial domain adaptation methods can
be integrated. Various experiments on real-world industrial datasets were per-
formed to evaluate the performance of our method. Experimental results in all of
the experimental datasets demonstrate the superiority of the proposed method
under different settings. Meanwhile, the effectiveness of the ADAPT method is
demonstrated by series of visualizations.

Acknowledgment. The research work supported by Alibaba Group through Alibaba
Innovative Research Program and the National Natural Science Foundation of China
under Grant (No.61976204, 92046003, U1811461). Xiang Ao is also supported by
the Project of Youth Innovation Promotion Association CAS, Beijing Nova Program
Z201100006820062.

References

1. Altman, E.I.: Financial ratios, discriminant analysis and the prediction of corporate
bankruptcy. J. Financ. 23(4), 589–609 (1968)

2. Chi, J., et al.: Learning to undersampling for class imbalanced credit risk forecast-
ing. In: ICDM, pp. 72–81 (2020)

368 G. Zeng et al.

3. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel
two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

4. Hu, B., Zhang, Z., Shi, C., Zhou, J., Li, X., Qi, Y.: Cash-out user detection based on
attributed heterogeneous information network with a hierarchical attention mech-
anism. In: AAAI, vol. 33, no. 01, pp. 946–953 (2019)

5. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance.
J. Big Data 6(1), 1–54 (2019). https://doi.org/10.1186/s40537-019-0192-5

6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
7. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2013)
8. Liang, T., et al.: Credit risk and limits forecasting in e-commerce consumer lend-

ing service via multi-view-aware mixture-of-experts nets. In: WSDM, pp. 229–237
(2021)

9. Lin, W., et al.: Online credit payment fraud detection via structure-aware hierar-
chical recurrent neural network. In: IJCAI (2021)

10. Liu, C., Sun, L., Ao, X., Feng, J., He, Q., Yang, H.: Intention-aware heterogeneous
graph attention networks for fraud transactions detection. In: KDD, pp. 3280–3288
(2021)

11. Liu, C., et al.: Fraud transactions detection via behavior tree with local intention
calibration. In: KDD, pp. 3035–3043 (2020)

12. Liu, Y., et al.: Pick and choose: a GNN-based imbalanced learning approach for
fraud detection. In: WWW, pp. 3168–3177 (2021)

13. Liu, Y., Ao, X., Zhong, Q., Feng, J., Tang, J., He, Q.: Alike and unlike: resolving
class imbalance problem in financial credit risk assessment. In: CIKM, pp. 2125–
2128 (2020)

14. Malekipirbazari, M., Aksakalli, V.: Risk assessment in social lending via random
forests. Expert Syst. Appl. 42(10), 4621–4631 (2015)

15. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation
learning for domain adaptation. In: AAAI (2018)

16. Siddiqui, M.A., Fern, A., Dietterich, T.G., Wright, R., Theriault, A., Archer, D.W.:
Feedback-guided anomaly discovery via online optimization. In: KDD, pp. 2200–
2209 (2018)

17. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: CVPR, pp. 7167–7176 (2017)

18. Wang, C., Yu, Z., Zheng, H., Wang, N., Zheng, B.: CGAN-plankton: towards large-
scale imbalanced class generation and fine-grained classification. In: ICIP, pp. 855–
859 (2017)

19. Wang, D., et al.: A semi-supervised graph attentive network for financial fraud
detection. In: ICDM, pp. 598–607 (2019)

20. Wang, S., Zhang, L.: Self-adaptive re-weighted adversarial domain adaptation. In:
IJCAI (2020)

21. Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: AAAI, vol.
34, no. 4, pp. 6502–6509 (2020)

22. Zhao, H., Zhang, S., Wu, G., Moura, J.M., Costeira, J.P., Gordon, G.J.: Adversarial
multiple source domain adaptation. In: NeurIPS (2018)

23. Zhao, S., et al.: Multi-source distilling domain adaptation. In: AAAI, vol. 34, no.
7, pp. 12975–12983 (2020)

24. Zheng, W., Zhao, H.: Cost-sensitive hierarchical classification for imbalance
classes. Appl. Intell. 50(8), 2328–2338 (2020). https://doi.org/10.1007/s10489-019-
01624-z

https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1007/s10489-019-01624-z
https://doi.org/10.1007/s10489-019-01624-z

ADAPT 369

25. Zhong, Q., et al.: Financial defaulter detection on online credit payment via multi-
view attributed heterogeneous information network. In: WWW, pp. 785–795 (2020)

26. Zhu, Y., et al.: Modeling users’ behavior sequences with hierarchical explainable
network for cross-domain fraud detection. In: WWW, pp. 928–938 (2020)

Poisoning Attacks on Fair Machine
Learning

Minh-Hao Van1 , Wei Du1 , Xintao Wu1(B) , and Aidong Lu2

1 University of Arkansas, Fayetteville, AR 72701, USA
{haovan,wd005,xintaowu}@uark.edu

2 University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Aidong.Lu@uncc.edu

Abstract. Both fair machine learning and adversarial learning have
been extensively studied. However, attacking fair machine learning mod-
els has received less attention. In this paper, we present a framework that
seeks to effectively generate poisoning samples to attack both model
accuracy and algorithmic fairness. Our attacking framework can tar-
get fair machine learning models trained with a variety of group based
fairness notions such as demographic parity and equalized odds. We
develop three online attacks, adversarial sampling, adversarial labeling,
and adversarial feature modification. All three attacks effectively and
efficiently produce poisoning samples via sampling, labeling, or modi-
fying a fraction of training data in order to reduce the test accuracy.
Our framework enables attackers to flexibly adjust the attack’s focus on
prediction accuracy or fairness and accurately quantify the impact of
each candidate point to both accuracy loss and fairness violation, thus
producing effective poisoning samples. Experiments on two real datasets
demonstrate the effectiveness and efficiency of our framework.

Keywords: Poisoning attacks · Algorithmic fairness · Adversarial
machine learning.

1 Introduction

Both fair machine learning and adversarial machine learning have received
increasing attention in past years. Fair machine learning (FML) aims to learn a
function for a target variable using input features, while ensuring the predicted
value be fair with respect to some sensitive attributes based on given fairness
criterion. FML models can be categorized into pre-processing, in-processing, and
post-processing (see a survey [13]). Adversarial machine learning focuses on vul-
nerabilities in machine learning models and has been extensively studied from
perspectives of attack settings and defense strategies (see surveys [4,21]).

There have been a few works on attacking FML models very recently. Solans
et al. [18] developed a gradient-based poisoning attack to increase demographic
disparities among different groups. Mehrabi et al. [14] also focused on demo-
graphic disparity and presented anchoring attack and influence attack. Chang
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 370–386, 2022.
https://doi.org/10.1007/978-3-031-00123-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_30&domain=pdf
http://orcid.org/0000-0001-7342-6801
http://orcid.org/0000-0002-3371-8305
http://orcid.org/0000-0002-2823-3063
http://orcid.org/0000-0002-7684-4512
https://doi.org/10.1007/978-3-031-00123-9_30

Poisoning Attacks on Fair Machine Learning 371

et al. [5] focused on attacking FML models with equalized odds. To tackle the
challenge of intractable constrained optimization, they developed approximate
algorithms for generating poisoning samples. However, how to effectively gen-
erate poisoning samples to attack algorithmic fairness still remains challenging
due to its difficulty of quantifying impact of each poisoning sample to accuracy
loss or fairness violation in the trained FML model.

In this paper, we present a poisoning sample based framework (PFML) for
attacking fair machine learning models. The framework enables attackers to
adjust their attack’s focus on either decreasing prediction accuracy or increasing
fairness violation in the trained FML model. Our framework supports a vari-
ety of group based fairness notions such as demographic parity and equalized
odds. We present three training-time attacks, adversarial sampling, adversar-
ial labeling, and adversarial feature modification. All of these attacks leave the
test data unchanged and instead perturb the training data to affect the learned
FML model. In adversarial sampling, the attacker is restricted to select a sub-
set of samples from a candidate attack dataset that has the same underlying
distribution of the clean data. Adversarial labeling and adversarial feature mod-
ification can further flip the labels or modify features of selected samples. All
three developed attacking methods are online attacks, which are more efficient
than those offline poisoning attacks. Our framework enables attackers to flexi-
bly adjust the attack’s focus on prediction accuracy or fairness and accurately
quantify the impact of each candidate point to both accuracy loss and fairness
violation, thus producing effective poisoning samples. Experiments on two real
datasets demonstrate the effectiveness and efficiency of our framework.

2 Background

2.1 Fair Machine Learning

Consider a binary classification task fθ : X → Y from an input x ∈ X to an
output y ∈ Y. Let l : Θ × X × Y → R+ be a loss function, D be the training
set and each (x, y) ∈ D be a data point. The classification model minimizes,
L(θ,D) =

∑
(x,y)∈D l(θ;x, y), the cumulative loss of the model over the training

data set D, to obtain the optimal parameters. Without loss of generality, we
assume X contains one binary sensitive feature S ∈ {0, 1}. FML aims to train
a model such that its predictions are fair with respect to S based on a given
fairness notion, e.g., disparate impact, equal opportunity and equalized odds.

Definition 1. A binary classifier fθ is δ-fair under a fairness notion Δ if
Δ(θ,D) ≤ δ, where Δ(θ,D) is referred as the empirical fairness gap of the model
and δ is a user-specified threshold. The model satisfies exact fairness when δ = 0.

Definition 2. We denote demographic parity and equalized odds as ΔDP and
ΔEO, respectively. They are defined as:

ΔDP (θ,D) := |Pr(fθ(X) = 1S = 1) − Pr(fθ(X) = 1S = 0)| (1)

ΔEO(θ, D) := max
y∈{0,1}

|Pr[fθ(X) �= y|S = 0, Y = y] − Pr[fθ(X) �= y|S = 1, Y = y]| (2)

372 M.-H. Van et al.

Algorithm 1. Online Learning for Generating Poisoning Data
Require: Dc, n = |Dc|, feasible poisoning set F(Dk), number of poisoning data εn,

learning rate η.
Ensure: Poisoning dataset Dp.
1: Initialize θ0 ∈ Θ, Dp ← Null
2: for t = 1 : εn
3: (xt, yt) ← argmax(x,y)∈F(Dk)[l(θ

t−1; x, y)
4: Dp ← Dp ∪ {(

xt, yt
)}

, F(Dk) ← F(Dk) − {(x, y)}
5: θt ← θt−1 − η

∇L(θt−1;Dc∪Dp)
n+t

6: end for

Demographic parity requires that the predicted labels are independent of
the protected attribute. Equalized odds [9] requires the protected feature S
and predicted outcome Ŷ are conditionally independent given the true label
Y . Equalized opportunity is a weaker notion of equalized odds and requires non-
discrimination only within the advantaged outcome group. Our framework nat-
urally covers equalized opportunity. The FML model achieves δ-fairness empiri-
cally by minimizing the model’s empirical accuracy loss under the fairness con-
straint:

θ̂ = arg min
θ∈Θ

1
|D|L(θ;D) s.t. C(θ,D) = Δ (θ,D) − δ ≤ 0 (3)

2.2 Data Poisoning Attack

Data poisoning attacks [2,3,15] seek to increase the misclassification rate for
test data by perturbing the training data to affect the learned model. The per-
turbation can generally include inserting, modifying or deleting points from the
training data so that the trained classification model can change its decision
boundaries and thus yields an adversarial output. The modification can be done
by either directly modifying the labels of the training data or manipulating
the input features depending on the adversary’s capabilities. In this study, we
assume that an attacker can access to the training data during the data prepa-
ration process and have the knowledge of the structure and fairness constraint
of the classification model. We focus on three data poisoning attacks, adversar-
ial sampling, adversarial labeling, and adversarial feature modification, against
group-based FML models. In all three attacks, the adversary can select the fea-
ture vector of the poisoning data from an attack dataset Dk, which is sampled
from the same underlying distribution of the clean dataset Dc, and can control
sampling, labeling, or modifying for a fraction of training data in order to reduce
the test accuracy.

Algorithm 1 shows the general online gradient descent algorithm for gener-
ating poisoning samples. The input parameter n denotes the size of the clean set
Dc, ε is the fraction of the size of generated poisoning data over the clean data
in the training data set, F(Dk) is feasible poisoning set. Specifically, F(Dk) is
the same as Dk for adversarial sampling. A fraction of data points (x, y) ∈ Dk

Poisoning Attacks on Fair Machine Learning 373

are changed to (x, 1 − y) for adversarial labeling, and to (x̃, y) for adversarial
feature modification where x̃ is a modified version of feature vector x. In line
1, it first initializes the model with θ0 ∈ Θ. Using the feasible set of poisoning
points, the algorithm generates εn poisoning data points iteratively. In line 3, it
selects a data point with the highest impact on the loss function with respect
to θt−1. In line 4, it adds the generated data point to Dp. In line 5, the model
parameters θ are updated to minimize the loss function based on the selected
data point (xt, yt).

3 Data Poisoning Attack on FML

3.1 Problem Formulation

The attacker’s goal is to find a poisoning dataset that maximizes the linear
combination of the accuracy loss and the model’s violation from the fairness
constraint. The fairness constraint is defined as C(θ,D) = Δ (θ,D) − δ ≤ 0.
We formulate the data poisoning attack on algorithmic fairness as a bi-level
optimization problem:

max
Dp

E(x,y)[α · l(θ̂;x, y) + (1 − α) · γ · lf (θ̂;x, y)]

where θ̂ = arg min
θ∈Θ

L(θ;Dc ∪ Dp)
|Dc ∪ Dp|

s.t. C(θ,Dc ∪ Dp) = Δ (θ,Dc ∪ Dp) − δ ≤ 0

(4)

where α ∈ [0, 1] is a hyperparameter that controls the balance of the attack’s
focus on accuracy and fairness, l(θ̂;x, y) is the prediction accuracy loss of the
sample (x, y), lf (θ̂;x, y) is the fairness loss, and γ is a hyperparameter to have
lc and lf at the same scale.

We can solve Eq. 4 by optimizing user and attacker’s objectives separately.
Intuitively, the user (inner optimization) minimizes the classification loss subject
to fairness constraint. The attacker (outer optimization) tries to maximize the
joint loss E(x,y)[α · l(θ̂;x, y)+(1−α) ·γ · lf (θ̂;x, y)] by creating a poisoning set Dp

based on θ̂ obtained by the user to degrade the performance of classifier either
from accuracy or fairness aspect. For example, if the value of α approaches to 1,
then the attacker tends to degrade more on the accuracy of the model. Note that
the loss expectation is taken over the underlying distribution of the clean data.
Inspired by [5], we also approximate the loss function in the outer optimization
via the loss on the clean training data and the poisoning data and have

max
Dp

[α · L(θ̂;Dc ∪ Dp) + (1 − α) · γ · Δ(θ̂;Dc ∪ Dp)] (5)

The accuracy loss L and fairness loss Δ may be at different scales due to the
use of different loss functions and data distribution. Figure 1 shows the curves of
accuracy loss and fairness loss of equalized odds when we increase the generated

374 M.-H. Van et al.

Fig. 1. Accuracy and fairness loss (in terms of equalized odds) with different iterations
of PFML-AS (α = 0.8) on COMPAS.

poisoning samples from 1 to 211 on COMPAS dataset (see experiment section
for the detailed experimental setting). This shows the importance of introducing
hyperparameter γ to have accuracy loss and fairness loss at the same scale.

The user tries to achieve optimal and fair θ̂ under the poisoning set Dp.
As the constrained optimization is intractable, we further transform the inner
optimization to its dual form as the following:

θ̂ = min
θ∈Θ

(
1

n + t
L(θ;Dc ∪ Dp) + λΔ(θ,Dc ∪ Dp)

)

(6)

where λ is the Lagrange multiplier and t is the current size of poisoning samples
Dp. By Eq. 5 and Eq. 6, we effectively capture the contribution of each poisoning
point (x, y) to both accuracy loss and fairness gap.

3.2 Convex Relaxation of Fairness Constraint

The dual optimization problem in Eq. 6 involves the calculation of Δ(θ,Dc ∪Dp)
over the current Dc ∪ Dp. However, fairness notions such as demographic parity
and equalized odds are non-convex. We adopt simplifications proposed by [22]
for demographic parity and [7] for equalized odds to reach convex relaxations of
fairness constraints. Demographic parity can be approximated by the decision
boundary fairness. The decision boundary fairness over Dc ∪ Dp is defined as
the covariance between the sensitive attribute and the signed distance from the
non-sensitive attribute vector to the decision boundary. It can be written as:

C(θ,Dc ∪ Dp) =
1

n + t

n+t∑

i=1

(si − s̄)dθ(xi) (7)

where t is the size of the current poisoning samples Dp, si is the value of the
sensitive attribute of the sample xi, dθ(xi) = θT xi is the distance to the decision

Poisoning Attacks on Fair Machine Learning 375

boundary of the classifier fθ, s̄ is the mean value of the sensitive attribute over
Dc ∪ Dp. We require that |C(θ,Dc ∪ Dp)| ≤ τ to achieve fairness.

We adopt the fairness definition for equalized odds by balancing the risk
among two sensitive groups. Let the linear loss be Ll (e.g., Ll = 0.5(1 − fθ(x))
for SVM model) and denote D = Dc ∪ Dp. We can write down the convex
relaxation for the fairness gap of equalized odds as the following:

C(θ,D) =
1
2

∑

y=0,1

|Ry,s=0(θ,D) − Ry,s=1(θ,D)| (8)

where Ry,s(θ,D) =
1

ny,s

∑
(x,y)∈Dy,s

Ll(x, y; θ). Dy,s is the dataset of points with
group s and label y and ny,s is the size of Dy,s. Similar to the approximation of
equalized odds, we can use C(θ,D) = |Ry=1,s=0(θ,D) − Ry=1,s=1(θ,D)| for the
convex relaxation of equalized opportunity.

Algorithm 2. Poisoning Attack on Fair Machine Learning (PFML)
Require: Dc, n = |Dc|, feasible poisoning set F(Dk), number of poisoning data εn,

penalty parameter (Lagranger multiplier) λ, learning rate η, scaling factor γ, bal-
ance ratio α, fairness notion Δ.

Ensure: Poisoning dataset Dp.
1: Initialize θ0 ∈ Θ
2: for i = 1 : I

3: θi ← θi−1 − η

(
∇L(θi−1;Dc)

n
+ ∇ [

λΔ
(
θi−1, Dc

)])

4: end for
5: θ0 ← θI , Dp ← Null
6: for t = 1 : εn
7: (xt, yt) ← argmax(x,y)∈F(Dk)[α · l(θt−1; x, y)+
8: (1 − α) · γ · Δ

(
θt−1, Dc ∪ Dp ∪ {(x, y)})

]

9: Dp ← Dp ∪ {(
xt, yt

)}
, F(Dk) ← F(Dk) − {(x, y)}

10: θt ← θt−1 − η

(
∇L(θt−1;Dc∪Dp)

n+t
+ ∇ [

λΔ
(
θt−1, Dc ∪ Dp

)]
)

11: end for

3.3 Attack Algorithm

Algorithm 2 shows pseudo code of our poisoning attack framework on fair
machine learning (PFML). Our three algorithms are denoted as PFML-AS for
adversarial sampling, PFML-AF for adversarial flipping, and PFML-AM for
adversarial feature modification. In each algorithm, we can adjust the attack’s
focus on prediction accuracy or fairness by choosing different α values. For exam-
ple, when 1 (0), the attack’s focus is purely on accuracy (fairness) and when 0.5,
the focus is on the combination of fairness and accuracy. In line 2–4, we first
train FML model on the clean data Dc and use the fitted parameter θI to start

376 M.-H. Van et al.

Table 1. Test accuracy and fairness gap of fair reduction [1] and post-processing [9]
with equalized odds under PFML and baselines (COMPAS).

Accuracy Fairness

Method Fair reduction (δ) Post (δ) Fair reduction (δ) Post (δ)

0.12 0.1 0.07 0.05 0 0.12 0.1 0.07 0.05 0

Benign 0.950 0.949 0.949 0.948 0.877 0.108 0.103 0.086 0.082 0.095

RS 0.936 0.930 0.919 0.912 0.839 0.101 0.105 0.104 0.103 0.081

LF 0.935 0.931 0.919 0.911 0.839 0.062 0.066 0.072 0.080 0.109

HE 0.915 0.908 0.899 0.891 0.829 0.076 0.082 0.100 0.109 0.131

INFL 0.850 0.848 0.845 0.841 0.653 0.089 0.081 0.078 0.081 0.054

KKT 0.890 0.891 0.891 0.886 0.701 0.136 0.137 0.137 0.142 0.096

min-max 0.891 0.887 0.878 0.874 0.678 0.096 0.125 0.089 0.075 0.082

AS 0.830 0.824 0.816 0.810 0.740 0.051 0.069 0.111 0.143 0.156

AF 0.823 0.817 0.808 0.803 0.740 0.046 0.059 0.100 0.130 0.136

PFML-, α

AS, 0 0.853 0.847 0.833 0.802 0.753 0.126 0.148 0.164 0.185 0.190

AS, 0.2 0.843 0.837 0.820 0.792 0.728 0.112 0.124 0.138 0.127 0.188

AS, 0.5 0.824 0.820 0.814 0.809 0.705 0.110 0.118 0.130 0.142 0.143

AS, 0.8 0.820 0.816 0.809 0.800 0.715 0.101 0.105 0.116 0.120 0.099

AS, 1.0 0.811 0.807 0.800 0.796 0.724 0.083 0.071 0.061 0.061 0.074

AF, 0 0.847 0.841 0.832 0.805 0.752 0.120 0.144 0.172 0.184 0.193

AF, 0.2 0.843 0.838 0.817 0.792 0.728 0.107 0.117 0.125 0.126 0.186

AF, 0.5 0.818 0.814 0.808 0.804 0.711 0.101 0.110 0.126 0.139 0.136

AF, 0.8 0.804 0.797 0.791 0.786 0.714 0.093 0.090 0.097 0.107 0.090

AF, 1.0 0.803 0.797 0.794 0.788 0.722 0.088 0.068 0.043 0.039 0.097

AM, 0 0.908 0.906 0.904 0.897 0.764 0.195 0.200 0.215 0.207 0.198

AM, 0.2 0.811 0.805 0.798 0.794 0.731 0.102 0.086 0.076 0.076 0.153

AM, 0.5 0.793 0.788 0.780 0.775 0.688 0.079 0.059 0.071 0.080 0.124

AM, 0.8 0.791 0.789 0.782 0.773 0.696 0.082 0.055 0.053 0.077 0.096

AM, 1.0 0.828 0.823 0.817 0.813 0.696 0.063 0.045 0.055 0.073 0.076

generating poisoning samples. We then execute the loop of line 6–9 to iteratively
generate εn poisoning samples. In line 7, when generating the data point (xt, yt)
with highest impact on a weighted sum of the accuracy loss and the fairness vio-
lation with respect to θt−1, we add both the previously generated data points in
Dp and the data point (xt, yt) to Dc. As a result, we can measure the incremental
contribution of that data point to the fairness gap Δ

(
θt−1,Dc ∪ Dp ∪ {(x, y)})

.
Note that in this step, the accuracy loss can be simply calculated over each
point (x, y) ∈ F(Dk) as the accuracy loss of existing data points from Dc ∪Dp is
unchanged. In line 8, we add the chosen poisoning point (xt, yt) to Dp and also
remove it from the feasible poisoning set. In line 9, when updating the model
parameters θ, we minimize the penalized loss function over Dc and Dp. We see
the execution time is mostly spent on line 6–11. In fact, line 9 and line 10 only
involve one time operation. The time complexity of line 8 is O(m), where m is

Poisoning Attacks on Fair Machine Learning 377

Table 2. Test accuracy and fairness gap of fair reduction and post-processing with
demographic parity (COMPAS).

Accuracy Fairness

Method Fair reduction (δ) Post (δ) Fair reduction (δ) Post (δ)

0.12 0.1 0.07 0.05 0 0.12 0.1 0.07 0.05 0

Benign 0.887 0.867 0.803 0.768 0.859 0.175 0.169 0.107 0.095 0.046

RS 0.882 0.839 0.813 0.767 0.867 0.187 0.155 0.130 0.076 0.023

LF 0.890 0.852 0.814 0.775 0.868 0.194 0.166 0.138 0.099 0.021

HE 0.901 0.859 0.808 0.766 0.840 0.205 0.181 0.135 0.098 0.036

INFL 0.879 0.855 0.774 0.748 0.784 0.200 0.186 0.097 0.108 0.015

KKT 0.884 0.875 0.788 0.768 0.817 0.221 0.214 0.127 0.136 0.016

min-max 0.870 0.870 0.843 0.818 0.810 0.201 0.204 0.182 0.167 0.036

PFML-, α

AS, 0 0.853 0.829 0.771 0.750 0.824 0.195 0.168 0.109 0.099 0.041

AS, 0.2 0.847 0.819 0.766 0.736 0.798 0.189 0.171 0.106 0.100 0.039

AS, 0.5 0.844 0.812 0.763 0.731 0.795 0.182 0.167 0.101 0.092 0.038

AS, 0.8 0.845 0.811 0.758 0.731 0.791 0.175 0.166 0.096 0.094 0.036

AS, 1.0 0.829 0.816 0.757 0.722 0.790 0.171 0.151 0.083 0.075 0.032

AF, 0 0.848 0.822 0.786 0.761 0.822 0.192 0.185 0.098 0.080 0.057

AF, 0.2 0.841 0.805 0.766 0.742 0.806 0.188 0.163 0.095 0.086 0.056

AF, 0.5 0.842 0.809 0.762 0.733 0.801 0.174 0.136 0.087 0.086 0.036

AF, 0.8 0.838 0.803 0.755 0.729 0.798 0.167 0.134 0.086 0.079 0.027

AF, 1.0 0.831 0.808 0.752 0.721 0.793 0.160 0.132 0.082 0.069 0.032

AM, 0 0.883 0.853 0.816 0.791 0.833 0.246 0.219 0.183 0.159 0.031

AM, 0.2 0.840 0.820 0.762 0.730 0.814 0.218 0.208 0.138 0.128 0.038

AM, 0.5 0.838 0.802 0.757 0.733 0.793 0.212 0.170 0.120 0.114 0.030

AM, 0.8 0.826 0.800 0.758 0.720 0.787 0.193 0.147 0.115 0.065 0.031

AM, 1.0 0.853 0.805 0.767 0.726 0.815 0.184 0.138 0.105 0.060 0.029

the size of feasible poisoning set F(Dk). Therefore, the time complexity of the
loop from line 6–11 is O(εnm). In practice, the size of F(Dk) is fixed, and we
can simplify time complexity as O(εn).

Remarks. Chang et al. [5] presented an online gradient descent algorithm that
generates poisoning data points for fair machine learning model with equal-
ized odds. As the fairness gap is not an additive function of the training data
points, they used Dc ∪ {(xt, yt)εn} (denoted as Dt) to measure the contribu-
tion of that data point to the fairness gap where Dt is equivalent to adding εn
copies of (xt, yt) to Dc. The weighted loss function used for selecting poison-
ing samples is shown as

[
ε · l

(
θt−1;x, y

)
+ λ · Δ

(
θt−1,Dt

)]
. The algorithm then

updates the model parameters θ via the gradient descent, i.e., θt ← θt−1 −
η(

∇L(θt−1;Dc)
n + ∇ [

ε · l
(
θt−1;xt, yt

)
+ λ · Δ

(
θt−1,Dt

)]
). However, both the use

of Dc ∪ {(x, y)εn} to quantify the (xt, yt)’s contribution to the fairness gap
and the use of parameters (ε and λ) to define the weighted loss are heuris-
tic, thus hard to produce effective poisoning samples on algorithmic fairness.

378 M.-H. Van et al.

Moreover, different from [5] that covers only a single fairness notion (i.e., equal-
ized odds) and two attacks (adversarial sampling and adversarial label flipping),
our paper presents a general framework with algorithms for three group based fair-
ness notions and a new important adversarial feature modification attack. In our
evaluation, we compare our methods with [5] and three new state-of-the-art base-
lines (influence attack, KKT, and min-max attack) from [10].

4 Experiments

Datasets. We conduct our experiments on COMPAS [11] and Adult [8] which
are two benchmark datasets for FML community. COMPAS is a collection of
personal information such as criminal history, demographics, jail and prison
time. Adult is also a collection of individual’s information including gender, race,
martial status, and so forth. The task for COMPAS is a binary classification to
predict whether the individual will be re-offended based on personal information,
while the task for Adult dataset is to predict if an individual’s annual income will
be over $50k based on his personal information. We use race (only black/white)
as the sensitive attribute for COMPAS and gender as sensitive attribute for
Adult. After preprocessing, COMPAS has 5278 data points and 11 features,
while Adult has 48842 data points and 14 features. For each dataset, we first
train a SVM model on the entire dataset. For the 60% data with the smallest loss,
we randomly split them into clean dataset Dc, attack candidate dataset Dk, and
test dataset Dtest with ratio 4:1:1. The rest 40% data is treated as hard examples
and added into Dk. For COMPAS, Dc contains 2111 samples and Dtest has 528
samples. Dk has 2639 samples including 2112 hard examples. For adversarial
label flipping, we randomly flip the label of 15% data from Dk to build the
feasible poisoning candidate set F(Dk). For adversarial feature modification, we
randomly flip one binary feature of each data point from Dk and include them
to F(Dk). Following the similar pre-processing strategy, Dc, Dtest, and Dk of
Adult contain 15385 samples, 6594 samples, and 26863 samples, respectively.
Due to space limit, we report detailed results of COMPAS in the majority of
this experiment section and only show the summarized results of Adult in Fig. 2
at the end of this experiment section.

Baselines. We consider the following baselines: (a) Random Sampling (RS):
attacker randomly selects data samples from Dk; (b) Label Flipping (LF):
attacker randomly selects data samples from Dk and flips their labels; (c) Hard
Examples (HE): attacker randomly selects data samples from hard examples set;
(d) influence attack (INFL), (e) KKT attack, (f) min-max attack, (g) adversarial
sampling (AS), and (h) adversarial flipping (AF). Attacks (d)–(f) are stronger
data poisoning attacks breaking data sanitization defenses and all control both
the label y and input features x of the poisoned points [10]. Attacks (g) and (h)
are designed for attacking FML from [5]. As attacks (g) and (h) are only designed
for equalized odds, we exclude them from baselines when reporting comparisons
based on demographic parity.

Poisoning Attacks on Fair Machine Learning 379

Fair Classification Models. We use SVM as the classification model and
choose fair reduction [1] and post-processing [9] as FML under attack. Post-
processing adjusts an unconstrained trained model to remove discrimination
based on fairness notions such as demographic parity and equalized odds. After
adjustment, the unconstrained model behaves like a randomized classifier that
assigns each data point a probability conditional on its protected attribute and
predicted label. These probabilities are calculated by a linear program to min-
imize the expected loss. Fair reduction is an advanced in-processing approach
that reduces fair classification to a sequence of cost-sensitive classification and
achieves better accuracy-fairness tradeoff than previous FML models. Hence, we
do not report results from other in-processing FML models.

Hyperparameters. In our default setting, we choose the number of pretrain
steps with Dc as 2000, learning rate lr as 0.001, penalty parameter λ as 5, and ε
as 0.1. The scaling factor γ is calculated as the ratio of accuracy loss and fairness
loss over Dc. Metrics. We run our attacks, PFML-AS, PFML-AF and PFML-
AM, each with five α values, and baseline attacks to generate the poisoning data
Dp and then train fair reduction (with four δ values as fairness threshold) and
post-processing models with Dc ∪ Dp. Finally we run the trained FML models
on the test data Dtest and report the test accuracy and fairness gap. For each
experiment, we report the average value of five runs. Due to space limit, we skip
reporting their standard deviation and instead we summarize comparisons based
on t-test.

Reproducibility. All datasets, source code and setting details are released in
GitHub with https://github.com/minhhao97vn/PFML for reproducibility.

4.1 Evaluation of PFML with Equalized Odds

Table 1 shows the comparison of our PFML attacks under different α with other
baseline models in terms of both accuracy and fairness on two FML models
(fair reduction and post-processing) trained with equalized odds under different
fairness threshold values of δ. In each cell of Table 1, we report the average value
of five runs. Due to space limit, we skip reporting their standard deviation and
instead we summarize comparisons based on t-test at the end of this subsection.

First, the accuracy of FML model under all three PFML attacks (PFML-AS,
PFML-AF and PFML-AM) is significantly lower than the benign case. For each
fixed δ, both the accuracy value and fairness gap of FML under PFML attacks
decrease when we increase α. Recall that larger α indicates that PFML attacks
more on accuracy and smaller α indicates more attack’s focus on fairness. Note
that larger fairness gap caused by smaller α indicates higher model unfairness.
Taking PFML-AS as an example, the accuracy of fair reduction with δ = 0.12
is 0.853 and the fairness gap is 0.126 when α = 0; the accuracy is 0.811 and the
fairness gap is 0.083 when α = 1. This result demonstrates that controlling α
is flexible and effective for attackers to tune attack target on either prediction
accuracy or fairness. Second, PFML-AF and PFML-AM outperform PFML-AS
in terms of attacking performance from both accuracy and fairness perspectives,

https://github.com/minhhao97vn/PFML

380 M.-H. Van et al.

which shows modifying input features or flipping labels is more powerful than
adversarial sampling. Third, compared to RS, LF and HE, our PFML attacks
can reduce more accuracy or incur more unfairness with the same δ for both fair
reduction and post-processing. Taking PFML-AS with δ = 0.12 and α = 0 as an
example, the accuracy is 0.811, which is 0.125, 0.124, and 0.104 lower than that
of RS, LF and HE, respectively. Compared to previous FML attacks (AS, AF) [5]
and sanitization attacks (INFL, KKT, min-max) [10], our PFML attacks achieve
better attack performance in terms of accuracy (fairness) with large (small) α
values, which is consistent with our expectation. In particular, the accuracy of
PFML-AS with α = 1 and δ = 0.12 is 0.811, which is 0.020 lower than AS. If we
choose smaller α, the attack performance of PFML on accuracy under performs
[5], which is consistent with our expectation.

We also notice, for each fixed α, the accuracy of fair reduction under our
PFML attacks decreases when we decrease δ. The fairness gap of fair reduction
under PFML-AS (PFML-AF) attack increases when we decrease δ, which indi-
cates the fair reduction model is less robust or more vulnerable when stricter
fairness constraint is enforced. However, the fairness gap of fair reduction under
PFML-AM attack instead decreases along the decrease of δ. Theoretical analysis
is needed to understand the robustness of fair reduction approach with equalized
odds under different poisoning attacks.

4.2 Evaluation of PFML with Demographic Parity

Table 2 shows the comparison results of adversarial fair machine learning with
demographic parity. Note that we do not compare with online FML attacks (AS,
AF) as they do not support demographic parity. Generally we see similar pat-
terns as equalized odds shown in Table 2. For each fixed δ, both the accuracy
and fairness gap of FML models under all three PFML attacks decrease when
we increase α. This is because smaller α means more attack’s focus on fair-
ness. Compared to RS, LF and HE, our PFML attacks can reduce more model
accuracy of FML with the same δ for both fair reduction and post-processing.
Compared to INFL, KKT and min-max attacks, PFML attacks achieve better
attack performance in terms of accuracy drop (fairness gap) of FML models
when we set large (small) α values.

For each fixed α, the accuracy of fair reduction under PFML attacks decreases
when we decrease δ. This pattern is similar as equalized odds. However, the
fairness gap of fair reduction has a clear decreasing trend when δ decreases,
which is different from equalized odds. This result actually indicates the fair
reduction model with stricter fairness requirement (small δ) is less vulnerable
under poisoning attacks.

4.3 Sensitivity Analysis of Hyperparameters

In this section, we evaluate the sensitivity of PFML attacks under different
hyperparameters. Table 3 shows the accuracy, fairness gap and execution time
for COMPAS with equalized odds when we change the size of poisoning samples

Poisoning Attacks on Fair Machine Learning 381

ε against fair reduction. In all experiments, we fix δ = 0.07 and α = 0.8. In
general, with increasing ε, the accuracy of fair reduction drops while its fairness
gap increases when fair reduction is under each of our PMFL attacks. Note that
larger ε corresponds to injecting more poisoning data points into the training
data, thus causing more accuracy drop and unfairness of the trained FML model.

Table 3. Effects of ratio ε for fairness reduction with equalized odds (COMPAS).

Dataset ε = 0.025 ε = 0.05 ε = 0.1 ε = 0.15

Accuracy INFL 0.891 0.857 0.845 0.820

KKT 0.912 0.899 0.891 0.884

min-max 0.918 0.902 0.878 0.850

PFML-AS 0.882 0.821 0.809 0.799

PFML-AF 0.867 0.824 0.791 0.794

PFML-AM 0.891 0.839 0.782 0.777

Fairness Gap INFL 0.068 0.054 0.078 0.063

KKT 0.086 0.102 0.137 0.158

min-max 0.083 0.108 0.089 0.215

PFML-AS 0.086 0.082 0.116 0.134

PFML-AF 0.089 0.081 0.097 0.142

PFML-AM 0.089 0.092 0.077 0.107

Exec. Time (s) INFL 497.1 915.7 1569.1 2009.5

KKT 1633.6 2903.3 5503.3 8400.0

min-max 337.9 597.1 1137.6 1714.6

PFML-AS 4.8 6.1 8.8 12.1

PFML-AF 5.1 6.7 9.9 13.9

PFML-AM 6.5 10.9 16.5 22.5

We also compare with baseline attack models (INFL, KKT, and min-max).
We can see with the same ε our PFML attacks can degrade the model accuracy
more than the baselines, and cause similar or higher level of model unfairness
than the baselines in most scenarios. We also report the execution time in Table 3
and we can see the execution time of our PFML attacks increases linearly with
increasing ε, which is consistent with our time complexity analysis in Algorithm
2. Compared to the baseline models, our PFML attacks takes two or three orders
of magnitude less time to generate poisoning samples than baselines.

382 M.-H. Van et al.

Table 4. Effects of penalty parameter λ on PFML-AS for post-processing with equal-
ized odds (COMPAS).

λ = 1 λ = 5 λ = 10 λ = 15 λ = 50 λ = 150

Accuracy 0.709 0.715 0.718 0.720 0.726 0.723

Fairness Gap 0.094 0.099 0.122 0.118 0.125 0.156

Table 4 shows the accuracy and fairness gap with equalized odds when we use
PFML-AS (α = 0.8) to attack post-processing FML [9] under different λ values.
The post-processing approach has strict fairness constraint δ = 0. We can see
with larger λ, the PFML attack focuses more on attacking fairness, which leads
to larger fairness gap and smaller accuracy drop of the FML model.

4.4 Significance Testing

For each experiment, we have run our methods and other baseline models five
times as shown in all our tables. We apply independent two-sample t-test to
compare each of three PFML models (with a given fairness notion and α) with
each of baseline models in terms of accuracy reduction and fairness respectively.
The t-test results show our PFML attacks significantly outperform baselines
from both accuracy and fairness perspectives. Due to space limit, we only report
our summarized results here. All p-values except three are less than 0.01 and
the left three are still less than 0.1, which demonstrates statistical significance
of our PFML methods over baselines.

4.5 Summarized Results of Adult Dataset

0.00 0.03 0.06 0.09 0.12 0.15

0.86

0.88

0.90

0.92

0.94

 PFML-AS
 PFML-AF
 PFML-AM

Ac
cu

ra
cy

ε

(a) Accuracy

0.00 0.03 0.06 0.09 0.12 0.15
0.00

0.04

0.08

0.12

0.16
 PFML-AS
 PFML-AF
 PFML-AM

Fa
irn

es
s

G
ap

ε

(b) Fairness gap

Fig. 2. Effects of ratio ε for fairness reduction with equalized odds (Adult).

Poisoning Attacks on Fair Machine Learning 383

We also report our summarized results on Adult with the setting of δ = 0.1,
α = 0.8, and varied ε values1. Figures 2a and 2b plot the curves of accuracy
and fairness gap for each of three PFML attacks with the increasing ε. The
accuracy of fair reduction under PFML-AS, PFML-AF and PFML-AM attacks
decreases when we increase ε. This pattern is consistent with our observation
on COMPAS. As we analyzed previously, larger ε indicates stronger attack as
more poisoning data are injected during the model training thus cause more
performance degradation. Similarly, the fairness gap under PFML-AS, PFML-
AF and PFML-AM generally increases with increasing ε. In terms of execution
time, our PFML methods take from 187.4 s to 1399.2 s with increasing ε, which
is significantly less than the baseline models (e.g., two orders of magnitude faster
than min-max attack).

5 Related Work

The bulk of recent research on adversarial machine learning has focused on
test-time attacks where the attacker perturbs the test data to obtain a desired
classification. Train-time attacks leave the test data unchanged, and instead
perturb the training data to affect the learned model. Data poisoning attacks
are among the most common train-time attack methods in adversarial learning.

Barreno et al. [2] first proposed poisoning attacks which modify the training
dataset to potentially change the decision boundaries of the targeted model. The
modification can be done by either direct modifying the labels of the training
data or manipulating the input features depending on the adversary’s capabili-
ties. Biggio et al. [3] developed an approach of crafting poisoning samples using
gradient ascent. Shortly speaking, the method identifies the inputs correspond-
ing to local maxima in the test error of the classification model. Mei et al. [15]
developed a method that finds an optimal change to the training data when the
targeted learning model is trained using a convex optimization loss and its input
domain is continuous. Recent approaches include optimization-based methods
[10] (e.g., influence, KKT, and min-max), poisoning Generative Adversarial Net
(pGAN) model [16], and class-oriented poisoning attacks against neural network
models [23]. The influence attack is a gradient-based attack that iteratively mod-
ifies each attack sample to increase the test loss, the KKT attack selects poisoned
samples to achieve pre-defined decoy parameters, and the min-max attack effi-
ciently solves for the poisoned samples that maximize train loss as a proxy for
test loss. All three attacks control both the label and input features of the poi-
soned points. The structure of pGAN includes a generator, a discriminator, and
an additional target classifier. The pGAN model generates poisoning data points
to fool the model and degrade the prediction accuracy. Defense methods [10,19]
typically require additional information, e.g., a labeled set of outliers or a clean
set, and apply supervised classification to separate outliers from normal samples.

1 We conduct experiments on Adult in other settings as COMPAS and observe similar
patterns. We skip them due to space limit.

384 M.-H. Van et al.

There have been a few works on attacking fair machine learning models very
recently [5,14,17,18]. Solans et al. [18] introduced an optimization framework for
poisoning attacks against algorithmic fairness and developed a gradient-based
poisoning attack to increase classification disparities among different groups.
Mehrabi et al. [14] also focused on attacking FML models trained with fairness
constraint of demographic disparity. They developed anchoring attack and influ-
ence attack and focused on demographic disparity. Chang et al. [5] formulated
the adversarial FML as a bi-level optimization and focused on attacking FML
models trained with equalized odds. To tackle the challenges of the non-convex
loss functions and the non-additive function of equalized odds, they further devel-
oped two approximate algorithms. Roh et al. [17] developed a GAN-based model
that tries to achieve accuracy, fairness and robustness against adversary attacks.

6 Conclusions and Future Work

In this paper, we present a poisoning sample based framework that can attack
model accuracy and algorithmic fairness. Our attacking framework can target
fair machine learning models trained with a variety of group based fairness
notions such as demographic parity and equalized odds. Our framework enables
attackers to flexibly adjust the attack’s focus on prediction accuracy or fairness
and accurately quantify the impact of each candidate point to both accuracy loss
and fairness violation, thus producing effective poisoning samples. We developed
three online attacks, adversarial sampling, adversarial labeling, and adversarial
feature modification. All three attacks effectively and efficiently produce poison-
ing samples via sampling, labeling, or modifying a fraction of training data in
order to reduce the test accuracy. The three attacks studied in this paper are
special cases of gradient-based attacks and belong to indiscriminate attacks. In
our future work, we will extend our approach to other attacks, e.g., the tar-
geted attacks that seek to cause errors on specific test examples. We will also
investigate robust defense approaches against attacks on fair machine learning
models, e.g., by applying multi-gradient algorithms for multi-objective optimiza-
tion [6,12] and robust learning [20].

Acknowledgement. This work was supported in part by NSF grants 1564250,
1937010 and 1946391.

References

1. Agarwal, A., Beygelzimer, A., Dud́ık, M., Langford, J., Wallach, H.: A reductions
approach to fair classification. In: International Conference on Machine Learning.
pp. 60–69. PMLR (2018)

2. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning
be secure? In: Proceedings of the 2006 ACM Symposium on Information, computer
and communications security. pp. 16–25 (2006)

Poisoning Attacks on Fair Machine Learning 385

3. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector
machines. In: Proceedings of the 29th International Conference on Machine Learn-
ing, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc / Omni-
press (2012)

4. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.:
Adversarial attacks and defences: A survey. arXiv preprint arXiv:1810.00069 (2018)

5. Chang, H., Nguyen, T.D., Murakonda, S.K., Kazemi, E., Shokri, R.: On adversarial
bias and the robustness of fair machine learning. arXiv preprint arXiv:2006.08669
(2020)

6. Désidéri, J.A.: Multiple-gradient descent algorithm (mgda) for multiobjective opti-
mization. Comptes Rendus Mathematique 350(5–6), 313–318 (2012)

7. Donini, M., Oneto, L., Ben-David, S., Shawe-Taylor, J., Pontil, M.: Empiri-
cal risk minimization under fairness constraints. In: Bengio, S., Wallach, H.M.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3–8, 2018, Montréal,
Canada. pp. 2796–2806 (2018), https://proceedings.neurips.cc/paper/2018/hash/
83cdcec08fbf90370fcf53bdd56604ff-Abstract.html

8. Dua, D., Graf, C.: Adult dataset. https://archive.ics.uci.edu/ml/datasets/adult
(1994)

9. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.
In: Advances in neural information processing systems. pp. 3315–3323 (2016)

10. Koh, P.W., Steinhardt, J., Liang, P.: Stronger data poisoning attacks break data
sanitization defenses. arXiv preprint arXiv:1811.00741 (2018)

11. Larson, J., Mattu, S., Kirchner, L., Angwin, J.: Compas dataset. https://github.
com/propublica/compas-analysis (2017)

12. Liu, S., Vicente, L.N.: The stochastic multi-gradient algorithm for multi-objective
optimization and its application to supervised machine learning. arXiv preprint
arXiv:1907.04472 (2019)

13. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning. arXiv preprint arXiv:1908.09635 (2019)

14. Mehrabi, N., Naveed, M., Morstatter, F., Galstyan, A.: Exacerbating algorithmic
bias through fairness attacks. CoRR abs/2012.08723 (2020), https://arxiv.org/
abs/2012.08723

15. Mei, S., Zhu, X.: Using machine teaching to identify optimal training-set attacks on
machine learners. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 29 (2015)

16. Muñoz-González, L., Pfitzner, B., Russo, M., Carnerero-Cano, J., Lupu, E.C.: Poi-
soning attacks with generative adversarial nets. arXiv preprint arXiv:1906.07773
(2019)

17. Roh, Y., Lee, K., Whang, S., Suh, C.: Fr-train: A mutual information-based app-
roach to fair and robust training. In: International Conference on Machine Learn-
ing. pp. 8147–8157. PMLR (2020)

18. Solans, D., Biggio, B., Castillo, C.: Poisoning attacks on algorithmic fairness. arXiv
preprint arXiv:2004.07401 (2020)

19. Steinhardt, J., Koh, P.W., Liang, P.: Certified defenses for data poisoning attacks.
arXiv preprint arXiv:1706.03691 (2017)

20. Taskesen, B., Nguyen, V.A., Kuhn, D., Blanchet, J.: A distributionally robust
approach to fair classification. arXiv preprint arXiv:2007.09530 (2020)

http://arxiv.org/abs/1810.00069
http://arxiv.org/abs/2006.08669
https://proceedings.neurips.cc/paper/2018/hash/83cdcec08fbf90370fcf53bdd56604ff-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/83cdcec08fbf90370fcf53bdd56604ff-Abstract.html
https://archive.ics.uci.edu/ml/datasets/adult
http://arxiv.org/abs/1811.00741
https://github.com/ propublica/compas-analysis
https://github.com/ propublica/compas-analysis
http://arxiv.org/abs/1907.04472
http://arxiv.org/abs/1908.09635
https://arxiv.org/abs/2012.08723
https://arxiv.org/abs/2012.08723
http://arxiv.org/abs/1906.07773
http://arxiv.org/abs/2004.07401
http://arxiv.org/abs/1706.03691
http://arxiv.org/abs/2007.09530

386 M.-H. Van et al.

21. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: Attacks and defenses for
deep learning. IEEE transactions on neural networks and learning systems 30(9),
2805–2824 (2019)

22. Zafar, M.B., Valera, I., Rogriguez, M.G., Gummadi, K.P.: Fairness constraints:
Mechanisms for fair classification. In: AISTATS (2017)

23. Zhao, B., Lao, Y.: Class-oriented poisoning attack. arXiv preprint arXiv:2008.00047
(2020)

http://arxiv.org/abs/2008.00047

Bi-Level Selection via Meta Gradient
for Graph-Based Fraud Detection

Linfeng Dong1,2, Yang Liu1,2, Xiang Ao1,2,3(B), Jianfeng Chi4, Jinghua Feng4,
Hao Yang4, and Qing He1,2,5

1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology CAS, Beijing 100190, China

{donglf19s,liuyang17z,aoxiang,heqing}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

3 Institute of Intelligent Computing Technology, Suzhou, CAS, Suzhou, China
4 Alibaba Group, Hangzhou, China

{bianfu.cjf,jinghua.fengjh,youhiroshi.yangh}@alibaba-inc.com
5 Henan Institutes of Advanced Technology, Zhengzhou University,

Zhengzhou 450052, China

Abstract. Graph Neural Networks (GNNs) have achieved remarkable
successes by utilizing rich interactions in network data. When applied
to fraud detection tasks, the scarcity and concealment of fraudsters
bring two challenges: class imbalance and label noise. In addition to
overfitting problem, they will compromise model performance through
the message-passing mechanism of GNNs. For a fraudster in a neigh-
borhood dominated by benign users, its learned representation will be
distorted in the aggregation process. Noises will propagate through
the topology structure as well. In this paper, we propose a Bi-Level
Selection (BLS) algorithm to enhance GNNs under imbalanced and noisy
scenarios observed from fraud detection. BLS learns to select instance-
level and neighborhood-level valuable nodes via meta gradient of the loss
on an unbiased clean validation set. By emphasizing BLS-selected nodes
in the model training process, bias towards majority class (benign) and
label noises will be suppressed. BLS can be applied on most GNNs with
slight modifications. Experimental results on two real-world datasets
demonstrate that BLS can significantly improve GNNs performance on
graph-based fraud detection.

Keywords: Graph Neural Network · Fraud detection · Imbalanced
learning

1 Introduction

Recently, Graph Neural Networks (GNNs) are widely used in fraud detection
tasks [2,6]. These approaches build an end-to-end learning paradigm. First, each
node is encoded into a representation by aggregating and transforming the infor-
mation of its neighbors, namely the representation learning phase. Then, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 387–394, 2022.
https://doi.org/10.1007/978-3-031-00123-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_31&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_31

388 L. Dong et al.

learned representation is passed to a classifier to identify the fraudsters from the
benign users, namely the classification phase.

Despite the remarkable success existing GNN-based methods achieved, the
severe class imbalance and noisy label are still vital problems in fraud detection.
Due to the contingency of fraudulent activities, the number of positive (fraud)
samples is far less than the number of negative (benign) samples in fraud detec-
tion tasks. Meanwhile, the concealment of fraudulent activity leads to noisy label
problem. Real-world users labeled as benign could either be benign or potentially
fraudulent. As a result, the negative instances in the training set may consist of
noisy labels.

Based on these observations, we emphasize two key challenges of GNN-based
fraud detection as follows:

Neighborhood-Level Imbalance and Noise: In the representation learning
phase, due to the propagation mechanism on topology, excess benign neighbors
will dominate the network structure and dilute the feature of fraudsters, resulting
in inaccurate embeddings of fraudulent nodes.

Instance-Level Imbalance and Noise: In the classification phase, the major-
ity class will dominate the training loss during the gradient descent step, leading
to a biased decision boundary. Undiscovered fraudsters (noise) will contribute
wrong gradient direction, thus polluting the learned classification boundary.

To tackle the bi-level imbalanced and noisy problems, we propose Bi-Level
Selection (BLS), a lightweight algorithm for GNN-based fraud detection that
learns to select valuable nodes on instance level and neighborhood level through
a meta-learning paradigm (Fig. 1). BLS first forms an small unbiased and clean
meta validation set by picking nodes from training set with high assortativity
(the ratio of 1-hop neighbors that share the same label as itself). Then BLS uses
the meta set to guide the training process. It selects valuable nodes according
to their potential impact on the meta gradient of validation loss. It follows such
assumptions: a better selection of valuable training nodes will improve the model
performance and reduce the validation loss.

We integrate BLS with three GNN frameworks: GCN, GAT, and Graph-
SAGE. Experiments on two real-world fraud detection datasets demonstrate that
our algorithm can effectively improve the performance of GNN under imbalanced
and noisy settings. BLS enhanced GNNs also outperform state-of-the-art.

Our contributions can be summarized as follows:

– We propose BLS, a meta gradient based algorithm to address the imbalanced
and noisy label problem in graph-based fraud detection. In both represen-
tation learning and classification phase, BLS adopts a unified meta-learning
paradigm to select instance-level and neighborhood-level valuable nodes.

– Compared to existing methods, BLS is the first work that considers the
impact of class imbalance and noisy label on the message-passing mechanism
of GNNs.

– The proposed BLS algorithm has high portability that can be applied on
any GNN framework. By applying BLS on widely-used GNNs, we achieved

Bi-Level Selection via Meta Gradient for Graph-Based Fraud Detection 389

Fig. 1. Illustration of the BLS’s workflow.

significant improvement compared to base models and state-of-the-art on two
real-world datasets.

2 Methodology

In this section, we propose Bi-Level Selection (BLS), a lightweight meta-
gradient-based method that can fit into general GNN structures. BLS addresses
the class imbalance and noisy label problems in fraud detection with the follow-
ing two key strategies: (1) select instance-level valuable nodes in classification
phase by assigning weights θi, detailed in Sect. 2.1; (2) select neighborhood-level
valuable nodes in representation learning phase by a filtered neighborhood N ′

i ,
detailed in Sect. 2.2.

2.1 Instance-level Node Selection

To select valuable nodes on instance level, we learn a weight θi for each node vi

in the training set by a meta-learning mechanism as soft selection. We denote
the training set as {vi, yi}N

i=1, the unbiased meta validation set as {vj , yj}M
j=1,

where M � N . The prediction of GNN is denoted as F (h(L)
i ,Wf), where Wf is

the parameters of GNN classifier. The cross-entropy loss function is denoted as
l(·, ·). Searching for optimal GNN parameters W ∗

f and optimal weights θ∗ is a
nested loops of optimization. To reduce computation cost, following the analysis
of [9], we compute θ by one-step gradient approximation. At each iteration step
t, the optimizer updates Wf from current parameter W

(t)
f with step size α and

uniform weights θi = 1
n according to training loss on a mini-batch {vi, yi}n

i=1:

Ŵf
(t)

(θ) = W
(t)
f − α ·

n∑

i=1

θi · ∂

∂Wf
l(yi, F (h(L)

i ,W
(t)
f)) (1)

390 L. Dong et al.

Then we slightly perturb the weights θ to evaluate the impact of each training
node on the model performance on the meta validation set. We search for the
optimal weight θ∗ to minimize the meta loss by taking a single gradient step on
the meta-validation set:

θi ∝ −β · 1
M

M∑

j=1

(
∂ lj(Ŵf)

∂ Ŵf

∣∣∣∣
Ŵf=Ŵf

(t)

)� (
∂ li(Wf)

∂ Wf

∣∣∣∣
Wf=W

(t)
f

)
(2)

where li(Wf) is l(yi, F (h(L)
i ,Wf)), and lj(Ŵf) is l(yj , F (h(L)

j , Ŵf)). We take θi =
max(θi,

θth

n) and then batch-normalize θi, where θth ∈ [0, 1] is a hyperparameter
representing the minimal weight threshold. Then we can compute the weighted
cross-entropy (CE) loss LGNN :

LGNN = −
N∑

i=1

θi · (yi log pi + (1 − yi) log(1 − pi)) (3)

2.2 Neighborhood-level Node Selection

To select valuable nodes on neighborhood-level, BLS forms a subset N ′
i ⊆ Ni for

each center node, where Ni is the original neighborhood. We append a pseudo
classifier before the aggregation each GNN layer to inference pseudo labels. Then
we filter the neighborhood according to the pseudo label affinity scores. The �-
th layer pseudo classifier G(�) parameterized by W

(�)
g takes the representation

h
(�−1)
i of node vi from the previous layer as input and generates a pseudo label.

Then, the pseudo label affinity score between center node vi and its neighbor
vj ∈ Ni is computed by the L-1 distance function:

p̂
(�)
i = G(�)(h(�−1)

i ,W (�)
g) (4)

S
(�)
ij = 1 − ‖p̂

(�)
i − p̂

(�)
j ‖1 (5)

We sort the neighbors by S
(�)
ij in descending order and select top-k neighbors to

form the filtered neighborhood N (�)
i , k = �ρ · |Ni|�. With the filtered neighbor-

hood N ′(�)
i of center node vi, we apply neighbor aggregation on vi:

h
(�)
i = σ(W (�)(h(�−1)

i ⊕ AGG({h
(�−1)
j |vj ∈ N ′

i }))) (6)

The quality of filtered neighborhood highly depends on the accuracy of predicted
pseudo labels. Therefore, we adopt a layer-wise direct supervised weighted loss
L(�)
PSE similar to Eq. (3). The overall loss function can be formulated as the

combination of layer-wise pseudo classifier loss and GNN loss:

L = LGNN +
L−1∑

�=1

L(�)
PSE (7)

Bi-Level Selection via Meta Gradient for Graph-Based Fraud Detection 391

3 Experiments

In this section, we evaluate BLS-enhanced GNNs on two graph-based fraud
detection datasets. Specifically, we aim to answer the following research ques-
tions: (RQ1.) How much improvement does BLS bring to the base models under
imbalanced and noisy circumstances? (RQ2.) Does BLS outperform other imbal-
anced learning methods on fraud detection tasks? (RQ3.) How do the key com-
ponents of BLS contribute to the overall fraud detection performance?

3.1 Experimental Setup

Datasets. We adopt two real-world graph-based fraud detection datasets
YelpChi [8] and Amazon [7], collected from online platforms Yelp.com and Ama-
zon.com. Reviews (node) with less than 20% helpful vote are considered as fraud-
ulent nodes. The statistics of the two datasets are shown in Table 1, where |N |,
|E|, |R| stand for number of nodes, edges and edge types. PR is the ratio of
positive nodes (fraudsters).

Table 1. Statistics of two graph-based fraud detection datasets.

Dataset |N | |E| |R| PR

YelpChi 45,954 3,846,979 3 14.5%

Amazon 11,944 4,398,392 3 6.9%

Baselines and Evaluation Metrics. BLS is a lightweight method that can be
applied to various existing GNN architectures. We select three widely-used GNNs
(GCN, GraphSAGE and GAT) and their multi-relational extensions (GCNM ,
GATM and GraphSAGEM) as base models. We also compare BLS-enhanced
GNNs with the state-of-the-art graph-based fraud detection methods: Graph-
Consis [6], CARE-GNN [2] and PC-GNN [5]. We adopt two widely used metrics
AUC score and G-Mean [5] for evaluation.

Experimental Settings. We set node embedding dimension d and hidden layer
dimension as 64, L as 2, learning rate of Adam optimizer lr as 0.01, training
epochs as 1000, batch size as 1024 for YelpChi dataset and 256 for Amazon
dataset. For BLS, we set the preserving proportion ρ to 0.5, the minimal weight
threshold ωth to 0.01. The train/valid/test ratio are 40%, 20%, 40%. We use
266 (5%) nodes in the YelpChi training set and 107 (9%) nodes in the Amazon
training set as meta validation. We conduct 10 runs on two datasets with all the
compared models and report the average value with standard deviation of the
performance metrics.

392 L. Dong et al.

3.2 Overall Evaluation (RQ1)

We evaluate the performance of all compared methods on the graph-based fraud
detection task with two datasets. According to the main results shown in Table 2,
we have the following observations: (1) By incorporating BLS, all three base mod-
els gain significant improvements in terms of AUC and G-Mean. (2) Compared
to the baselines, BLS-enhanced GATM achieves the best performance on both
datasets. By selection under meta guidance, BLS can generate more credible
layer-wise pseudo label affinity scores. Thus, the filtering process based on affin-
ity scores is able to reduce the noise in the neighborhood of fraudulent nodes.
Then we evaluate the performance of BLS-enhanced GNNs on against noisy-label
circumstances. We randomly choose 0% to 50% fraudulent nodes and flip their
labels. By label flipping, we simulate unidentified fraudsters which are labeled
as benign. Figure 2 shows the change on AUC scores respecting noisy label ratio.
We can observe that BLS-enhanced GNNs always achieve a higher AUC score
than the corresponding base models, proving the robustness of BLS toward label
noises.

Table 2. Performance comparison on two graph-based fraud detection datasets.

Dataset YelpChi Amazon

Methods AUC G-Mean AUC G-Mean

GCN 59.02±1.08 55.61±2.96 79.83±1.38 73.38±4.29

GraphSAGE 58.46±3.03 46.90±5.82 81.13±2.93 75.17±5.28

GAT 64.18±1.84 59.53±4.37 88.48±1.36 85.69±4.72

GraphConsis 69.83±3.42 58.57±3.85 87.41±3.34 76.77±4.86

CARE-GNN 78.44±0.69 70.13±2.17 93.14±0.74 85.63±0.71

PC-GNN 79.87±0.14 71.60±1.30 95.86±0.14 90.30±0.44

GCNM 74.62±1.38 68.72±1.92 92.93±2.04 83.22±3.85

GraphSAGEM 77.12±2.56 69.15±3.96 93.63±3.17 85.92±4.20

GATM 81.73±1.48 75.33±3.52 93.71±1.06 85.82±3.65

BLS+GCNM 83.28±0.86 76.31±2.74 94.42±1.55 87.41±0.78

BLS+GraphSAGEM 86.50±0.78 80.02±2.93 94.71±1.33 87.44±2.02

BLS+GATM 89.26±1.04 81.82±3.02 95.93±0.73 90.72±1.64

Fig. 2. Performance of BLS-enhanced GNNs w.r.t noisy label.

Bi-Level Selection via Meta Gradient for Graph-Based Fraud Detection 393

3.3 Comparison with Imbalanced Learning Methods (RQ2)

To further observe the effectiveness of meta selection strategy of BLS, we use
two imbalanced learning methods Focal Loss [4] and CB Loss [1] to replace the
node-level selection on GAT. We can observe that BLS achieves highest scores
on both datasets, demonstrating that BLS is able to filter unidentified fraudsters
with meta knowledge and prevent over-fitting on the majority class (Table 3).

Table 3. Performance comparison of BLS with other imbalanced learning methods

Dataset YelpChi Amazon

Strategy AUC G-Mean AUC G-Mean

Focal Loss 84.21 77.62 93.84 87.79

CB Loss 86.28 79.09 93.96 88.15

BLS 89.26 81.82 95.93 90.72

3.4 Ablation Study (RQ3)

In this subsection, we explore how the two key components in BLS, i.e., instance-
level selection and neighborhood-level selection, improve GNN models. We
take BLS-enhanced GAT for demonstration, BLS\N removes neighborhood-level
selection, BLS\I removes instance-level selection, BLS\NI removes both strate-
gies. As Fig. 3 illustrated, the complete model achieves the best performance on
all metrics, removing each component will cause performance dropping except
G-mean on Amazon, proving that both components are effective for graph-based
fraud detection tasks.

Fig. 3. Ablation study of two key components of BLS on YelpChi and Amazon.

4 Related Work

Graph-based fraud detection focus on analyzing the interactions and connectivity
patterns to identify fraudulent activities. GraphConsis [6] and CARE-GNN [2]

394 L. Dong et al.

are GNN-based anti-spam model, tackle the inconsistency problems and cam-
ouflages in fraud detection. PC-GNN [5] is designed for imbalanced supervised
learning on graphs. It incorporates a two-step resampling method to reconstruct
label-balanced sub-graphs. Meta-GDN [3] uses deviation loss and cross-network
meta-learning algorithm for network anomaly detection tasks. Unlike our prob-
lem setting, Meta-GDN treats negative nodes as unlabeled nodes and requires
extra auxiliary networks.

5 Conclusion

In this work, we propose a lightweight algorithm named Bi-Level Selection (BLS)
that can be incorporated into general GNN architectures to handle the class
imbalance and noisy label problems usually appeared in graph-based fraud detec-
tion tasks. BLS selects valuable nodes on two levels guided by meta gradient
of validation loss. Experiments on two benchmark graph-based fraud detection
datasets demonstrate the effectiveness of our algorithm.

Acknowledgement. The research work is supported by the National Natural Science
Foundation of China under Grant (No.61976204, 92046003, U1811461). Xiang Ao is
also supported by the Project of Youth Innovation Promotion Association CAS, Beijing
Nova Program Z201100006820062.

References

1. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on
effective number of samples. In: CVPR, pp. 9268–9277 (2019)

2. Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., Yu, P.S.: Enhancing graph neural
network-based fraud detectors against camouflaged fraudsters. In: CIKM, pp. 315–
324 (2020)

3. Kaize, D., Qinghai, Z., Hanghang, T., Huan, L.: Few-shot network anomaly detec-
tion via cross-network meta-learning. In: WWW, pp. 2448–2456 (2021)

4. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV, pp. 2980–2988 (2017)

5. Liu, Y., Ao, X., Qin, Z., Chi, J., Feng, J., Yang, H., He, Q.: Pick and choose: a GNN-
based imbalanced learning approach for fraud detection. In: WWW, pp. 3168–3177
(2021)

6. Liu, Z., Dou, Y., Yu, P.S., Deng, Y., Peng, H.: Alleviating the inconsistency problem
of applying graph neural network to fraud detection. In: SIGIR, pp. 1569–1572
(2020)

7. McAuley, J.J., Leskovec, J.: From amateurs to connoisseurs: modeling the evolution
of user expertise through online reviews. In: WWW, pp. 897–908 (2013)

8. Rayana, S., Akoglu, L.: Collective opinion spam detection: bridging review networks
and metadata. In: KDD, pp. 985–994 (2015)

9. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust
deep learning. In: ICML, pp. 4334–4343 (2018)

Contrastive Learning for Insider Threat
Detection

M. S. Vinay1 , Shuhan Yuan2 , and Xintao Wu1(B)

1 University of Arkansas, Fayetteville, AR 72701, USA
{vmadanbh,xintaowu}@uark.edu

2 Utah State University, Logan, UT 84322, USA
Shuhan.Yuan@usu.edu

Abstract. Insider threat detection techniques typically employ super-
vised learning models for detecting malicious insiders by using insider
activity audit data. In many situations, the number of detected malicious
insiders is extremely limited. To address this issue, we present a con-
trastive learning-based insider threat detection framework, CLDet, and
empirically evaluate its efficacy in detecting malicious sessions that con-
tain malicious activities from insiders. We evaluate our framework along
with state-of-the-art baselines on two unbalanced benchmark datasets.
Our framework exhibits relatively superior performance on these unbal-
anced datasets in effectively detecting malicious sessions.

Keywords: Insider threat detection · Contrastive learning ·
Cyber-security

1 Introduction

Insider threat refers to the threat arising form the organizational insiders who
can be employees, contractors or business partners etc. These insiders usually
have an authorization to access organizational resources such as systems, data
and network etc. A popular approach to detect malicious insiders is by analyzing
the insider activities recorded in the audit data [14] and applying supervised
learning models. Usually, the insider audit data is unbalanced because only a
few malicious insiders are detected. Hence, applying supervised learning models
on such unbalanced datasets can result in poor detection accuracy. To address
this limitation, we present a framework, CLDet, to detect malicious sessions
(containing malicious activities from insiders) by using contrastive learning.

Our CLDet framework has two components: self-supervised pre-training and
supervised fine tuning. Specifically, the self-supervised pre-training component
generates encodings for user activity sessions by utilizing contrastive learning
whereas the supervised fine tuning component classifies a session as malicious
or normal by using these encodings. Contrastive learning requires data augmen-
tations for generating augmented versions of an original data point and ensures

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 395–403, 2022.
https://doi.org/10.1007/978-3-031-00123-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_32&domain=pdf
http://orcid.org/0000-0002-2595-2759
http://orcid.org/0000-0001-6816-419X
http://orcid.org/0000-0002-2823-3063
https://doi.org/10.1007/978-3-031-00123-9_32

396 M. S. Vinay et al.

that these augmented versions have close proximity with each other when com-
pared to the augmented versions of the other data points. Since each user activity
session can be modelled as a sentence and each activity as a word of this sentence
[14], we adapt sentence based data augmentations from the Natural Language
Processing (NLP) domain [10] in our framework. We conduct an empirical eval-
uation study of our framework and evaluation results demonstrate noticeable
performance improvement over state-of-the-art baselines.

2 Related Work

Insider Threat Detection. Traditional insider threat detection models employ
handcrafted features extracted from user activity log data to detect insider
threats. Yuan et al. [11] argued that utilizing hand crafted features for detect-
ing insider threats can be tedious and time consuming and hence proposed
to utilize deep learning model to automatically learn the features. Specifically
they employed a LSTM model to extract encoded features from user activities
and then detected malicious insiders through a Convolutional Neural Network
(CNN). Similarly, Lin et al. [5] used unsupervised Deep Belief Network to extract
features from user activity data and applied one-class Support Vector Machine
(SVM) to detect the malicious insiders. Lu et al. [6] modeled the user activ-
ity log information as a sequence and extract user specific features through a
trained LSTM model. Yuan et al. [13] combined a RNN with temporal point pro-
cess to utilize both intra- and inter-session time information. The closely related
work is [14] where the authors proposed a few-shot learning based framework to
specifically addresses the data imbalance issue in insider threat detection. The
developed framework applies the word-to-vector model for generating encoded
features from user activity data and then uses a trained BERT language model
to refine the encoded features. We refer readers to a survey [12] for other related
works.

Contrastive Learning. Contrastive learning has been extensively studied in
the literature for image and NLP domains. Jaiswal et al. [3] presented a com-
prehensive survey on contrastive learning techniques for both image and NLP
domains. Marrakchi et al. [7] effectively utilized contrastive learning on unbal-
anced medical image datasets to detect skin diseases and diabetic retinopathy.
The developed algorithm utilizes a supervised pre-training component, which is
designed by employing a Residual Network, and generates image representations.
These generated image representations are further fed as input to a fine tuning
component which is designed by using a single linear layer. In our framework,
we utilize some of data augmentation concepts presented in [10] and [9]. Wu
et al. [10] presented a contrastive learning based framework for analyzing text
similarity. Their framework employs sentence based augmentation techniques
for self-supervised pre-training. Wang et al. [9] presented a new contrastive loss
function for the image domain.

Contrastive Learning for Insider Threat Detection 397

3 Framework

User activities are modeled through activity sessions. Specifically, each session
consists of multiple user activities. Let Sk denote the kth activity session of a
user. Here, Sk = {ek1 , ek2 ,. . . , ekT

}, where eki
(1 ≤ i ≤ T) is the ith user activity.

Let D = {Si, yi}mi=1 denote the insider threat dataset where m denotes the
number of sessions, yi is the label of Si. Here, yi = 1 and yi = 0 denote that Si

is malicious and normal session respectively. The two main components of our
CLDet framework are self-supervised pre-training and supervised fine tuning.
The pre-training component is responsible for generating session encodings and
the fine tuning component, using these session encodings as input classifies a
given input session as a malicious or normal session.

3.1 Self-supervised Pre-training Component

3.1.1 Encoder and Projection Head
Each activity in the session is represented through trained word-to-vector model.
Let xki

∈ R
d denote the word-to-vector model representation of activity eki

,
where d denotes the number of representation dimensions. Each activity of an
input session is converted to its corresponding word-to-vector representation and
it is fed as an input to a specially designed Encoder. We choose Recurrent Neural
Network (RNN) to design our encoder. The encoder is responsible for generating
the session encoding xk ∈ R

d of session Sk. Finally, a projection head will project
xk to a new space representation zk ∈ R

d. The projection head is only used in
the training of the self-supervised component. After this training, the projection
head will be discarded and only the encoded session representation will be used
as an input to the supervised fine tuning component.

The encoder consists of a RNN and a linear layer. The RNN consists of two
hidden layers denoted as H(1) and H(2) respectively. The first hidden layer H(1)

is represented as h(1)
kt

= tanh(W 1
1 xkt

+b1
1+W 1

2h
(1)
kt−1

+b1
2) where 1 ≤ t ≤ T , W 1

1

and W 1
2 are (d × d) weight matrices, b1

1 ∈ R
d and b1

2 ∈ R
d are the bias vectors,

and h(1)
kt

denotes the encoded output of H(1) for the input xkt
. The second hidden

layer H(2) is similarly represented as h(2)
kt

= tanh(W 2
1h

(1)
kt

+b2
1 +W 2

2h
(2)
kt−1

+b2
2)

where W 2
1 and W 2

2 are (d × d) weight matrices, b2
1 ∈ R

d and b2
2 ∈ R

d are the
bias vectors, and h(2)

kt
denotes the encoded output of H(2) for the input h(1)

kt
.

Finally {h(2)
ki

}Ti=1 is flattened to denote the output of RNN as vk ∈ R
Td, which

is then fed to the linear layer L(1) to obtain the session encoding xk. This linear
layer is represented as xk = A1vk + b1 where A1 is a (d × Td) weight matrix
and b1 ∈ R

d is a bias vector. The projection head is denoted as L(2) and is
represented as zk = A2xk +b2 where A2 is a (d× d) weight matrix and b2 ∈ R

d

is a bias vector.

398 M. S. Vinay et al.

3.1.2 Contrastive Loss
A contrastive learning loss function is used for a contrastive prediction task,
i.e., predicting positive augmentation pairs. We adapt the SimCLR contrastive
loss function [10] in our framework and augment each batch of sessions. Let
Bs = {S1, S2, ..., SN} denote a batch of sessions. Each Sk ∈ Bs is subjected
to data augmentation and two augmented sessions denoted as S1

k and S2
k are

generated. Let Ba
s = {S1

1 , S2
1 , S1

2 , S2
2 , ..., S1

N , S2
N} denote a batch of augmented

sessions. The augmented sessions (S1
k, S2

k) form a positive sample pair and all
the remaining sessions in Ba

s are considered as the negative samples. Let z1k and
z2k denote the projection head representations of the augmented sessions S1

k and
S2
k respectively. The loss function for the positive pair (z1k, z

2
k) is represented as

l(z1k, z
2
k) = −log

exp(cos(z1k, z
2
k)/α)

exp(cos(z1k, z
2
k)/α) +

∑N
i=1 1[i�=k]

∑2
j=1 exp(cos(z1k, z

j
i)/α)

(1)

Here, cos() denotes the cosine similarity function, 1[i�=k] denotes an indicator
variable, and α denotes the tunable temperature parameter. This pair loss func-
tion is not symmetric, because l(z1k, z

2
k) �= l(z2k, z

1
k). For the batch of augmented

sessions Ba
s , we can easily see there are N positive pairs. The contrastive loss

function for Ba
s , which is defined as the sum of all positive pairs’ loss in the

batch, is represented as CL(Ba
s) =

∑N
i=1 l(z1i , z

2
i) + l(z2i , z

1
i).

For session Sk, we adapt three basic NLP based sentence augmentation tech-
niques [10]: 1) Activity Replacement (Rpl), we generate the augmented session
S1
k (S2

k) by randomly replacing g1 (g2) number of activities with a set of token
activities; 2) Activity Reordering (Rod), we generate the augmented session S1

k

(S2
k) by randomly selecting a sub-sequence with length g1 (g2) and shuffling all

activities in the chosen sub-sequence while keeping all other activities unchanged;
3) Activity Deletion (Del), g1 and g2 number of activities in Sk are deleted to
generate the augmented sessions S1

k and S2
k respectively. We will investigate the

effectiveness of other complex data augmentation techniques in our future work.

3.2 Supervised Fine Tuning Component

The supervised fine tuning component has two layers denoted as L(3) and L(4).
The first layer L(3) is represented as mk = A3xk+b3. Here, A3 is a (d×d) weight
matrix, b3 ∈ R

d is a bias vector, and mk ∈ R
d denotes the output encoding of

L(3). The output layer L(4) is represented as ok = Softmax(A4mk + b4). Here,
A4 is (2 × d) weight matrix, b4 ∈ R

2 is a bias vector, and ok denotes the output
of the supervised fine-tuning component. We use the Softmax activation function
in the output layer. The supervised fine tuning component is trained by using
the cross entropy loss function.

Contrastive Learning for Insider Threat Detection 399

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets
The empirical evaluation study of our proposed framework is conducted on two
datasets: CERT Insider Threat [2] and UMD-Wikipedia [4]. In CERT, each user
activities are chronologically recorded over 516 days. To perform our empiri-
cal analysis, we split the dataset into training and test sets using chronological
ordering. Specifically, the user activities recorded until the first 460 days and
between 461 to 516 days are used in the training and test sets respectively.
Additionally, we further split the training set for training the pre-training and
fine tuning components, wherein, the user activities recorded until the first 400
days and between 401 to 460 days are used for training the pre-training and
fine tuning components respectively. For the supervised fine-tuning component,
four scenarios are utilized in the training phase. Each scenario involves different
number of malicious sessions. Specifically, 5, 8, 10 and 15 malicious sessions are
utilized in the training phase. The UMD-Wikipedia dataset is relatively more
balanced than CERT dataset. Since our framework is specifically designed to
effectively operate on unbalanced datasets, we only use a limited number of
malicious sessions for training the supervised fine tuning component. The train-
ing set is split between pre-training and fine tuning components, wherein, 4436
and 50 normal sessions are used for training the pre-training and fine tuning
components respectively and similarly, 3577 and 50 malicious sessions are used
for training the pre-training and fine tuning components respectively. Again, we
use four scenarios in the training phase of the supervised fine-tuning component.
Specifically, 5, 15, 30 and 50 malicious sessions are utilized in the training phase.
We show the detailed settings in Table 1.

Table 1. Training and test sets

Dataset Partition # of Malicious Sessions # of Normal Sessions

CERT Training set Pre-Train 23 1,217,608

Fine Tune 15 50

Test set 10 1000

UMD-Wikipedia Training set Pre-Train 3577 4436

Fine Tune 50 50

Test set 1000 1000

400 M. S. Vinay et al.

4.1.2 Training Details
The activity features are extracted through a trained word-to-vector model.
Specifically, the word-to-vector model is trained through the skip-gram approach
with the minimum word frequency parameter as 1. The hyper-parameters g1
and g2 employed in our data augmentation techniques control the amount of
distortion caused by augmenting the original session. For activity replacement
and deletion-based data augmentation techniques we set g1 = 1 and g2 = 1, and
for activity reordering based data augmentation technique we set g1 = 3 and
g2 = 3. We set the number of dimensions of activity and session encodings d as
5 and the temperature parameter α in the contrastive loss function as 1. Four
metrics are utilized to quantify the performance of our framework: Precision,
Recall, F1 and FPR.

4.1.3 Baselines
We compare our CLDet framework with three baselines: Few-Shot [14], Deep-
Log [1] and BEM [8]. Few-Shot has a similar design as our framework, wherein,
it has both self-supervised pre-training and supervised fine tuning components.
Specifically, the self-supervised pre-training component is used for generating
session encodings and these encodings are utilized to detect malicious sessions
through the supervised fine tuning component. The session encodings are gener-
ated through the BERT language model. The self-supervised pre-training com-
ponent is trained by using the Mask Language Modeling (MLM) loss function.
We train both self-supervised pre-training and supervised fine tuning compo-
nents by using the same settings shown in Table 1. BEM employs LSTM to
model user activity sessions. Specifically, it considers the past user activities and
predicts the probabilities of future activities through LSTM. If the predicted
probability of an activity in the session is low, then that session is flagged as
a malicious session. The LSTM model employs a single hidden layer and the
model training is performed by using cross entropy loss. We train this baseline
by using the same training set which we have used for training the fine-tuning
component of our framework. Deep-Log differs from BEM in two ways: (1) It
employs two hidden layers in its LSTM model. (2) It predicts the probabilities
of the top-K future activities, if some activity in the session is not in the list
of predicted top-K activities, then that session is flagged as a malicious session.
Deep-Log training is performed by using cross entropy loss. We use the same
training settings which was used for BEM to train this baseline.

Contrastive Learning for Insider Threat Detection 401

Table 2. Performance of our framework and baselines under different scenarios. The
higher the better for Precision, Recall, and F1. The lower the better for FPR. The cells
with—indicate the extreme scenario where all sessions are predicted as normal. Best
values are bold highlighted. M denotes the number of malicious sessions.

Models Scenario CERT UMD-Wikipedia

M Precision Recall F1 FPR M Precision Recall F1 FPR

Deep-Log 1 5 — — — — 5 — — — —

2 8 — — — — 15 — — — —

3 10 0.7600 0.8125 0.7294 0.4500 30 — — — —

4 15 1.0000 0.5875 0.7394 0.0000 50 0.6765 0.9200 0.7797 0.4400

BEM 1 5 — — — — 5 — — — —

2 8 0.5000 0.3125 0.3846 0.0000 15 — — — —

3 10 0.6724 0.5165 0.4971 0.4500 30 0.5000 0.1500 0.2307 0.0000

4 15 0.7500 0.8100 0.7179 0.5000 50 0.6282 0.9800 0.7656 0.5800

Few-Shot 1 5 — — — — 5 — — — —

2 8 0.3666 0.1125 0.1709 0.1861 15 — — — —

3 10 0.5833 0.1875 0.2832 0.1361 30 0.4286 0.1200 0.1875 0.1600

4 15 0.4000 0.4125 0.3709 0.5111 50 0.4894 0.9200 0.6389 0.9600

CLDet(Rpl) 1 5 0.9444 0.5875 0.6195 0.0000 5 0.6234 0.9600 0.7559 0.5800

2 8 0.9158 0.9026 0.9070 0.0812 15 0.8718 0.6800 0.7640 0.1000

3 10 0.9111 0.9210 0.9117 0.0812 30 0.8750 0.7000 0.7778 0.1000

4 15 0.9236 0.9333 0.9243 0.0715 50 0.8039 0.8200 0.8119 0.2000

CLDet(Del) 1 5 — — — — 5 0.6935 0.8600 0.7679 0.3800

2 8 0.9444 0.6500 0.7013 0.0000 15 0.7551 0.7400 0.7475 0.2400

3 10 1.0000 0.7250 0.7806 0.0000 30 0.7636 0.8400 0.8000 0.2600

4 15 1.0000 0.9000 0.9150 0.0000 50 0.8222 0.7400 0.7789 0.1600

CLDet(Rod) 1 5 0.9206 1.0000 0.9584 0.0800 5 0.6667 0.9600 0.7860 0.4800

2 8 0.9444 1.0000 0.9706 0.0000 15 0.7826 0.7200 0.7500 0.2000

3 10 1.0000 1.0000 1.0000 0.0000 30 0.7778 0.8400 0.8077 0.2400

4 15 1.0000 1.0000 1.0000 0.0000 50 0.8039 0.8200 0.8119 0.2000

4.2 Experimental Results

We consider the three versions of our CLDet framework based on the specific
data augmentation technique employed for pre-training. The performance of the
three versions of our framework and the baselines w.r.t four different scenarios
is shown in Table 2. Our CLDet framework consistently shows better overall
performance than the baselines in all the considered scenarios and datasets.
The main reason for this performance is that the self-supervised pre-training
component by utilizing contrastive learning generates favorable encoding for each
session and by using these favorable encodings as inputs, the supervised fine-
tuning component can effectively separate the malicious and normal sessions.
We would point out that we purposely introduce the first scenario where the
number of malicious sessions used in the training is only 5 for both CERT and
UMD-Wikipedia datasets. Under this extreme setting, all baselines completely
fail (all sessions in the test data are predicted as normal). On the contrary, our
framework can still achieve reasonable performance except the version of using
the activity deletion on CERT. There is a no clear winner among the three
data augmentation techniques used in our framework when all the scenarios and

402 M. S. Vinay et al.

datasets are considered. However, all the three data augmentation techniques
can be considered as quite effective in achieving the main goal of our framework.

Table 3. Ablation analysis results. M denotes the number of malicious sessions.

Dataset Scenario M Precision Recall F1 FPR

CERT 1 5 — — — —

2 8 0.2531 0.5000 0.3361 0.5000

3 10 0.4423 0.3026 0.3594 0.0384

4 15 0.4706 1.0000 0.6400 1.0000

UMD-Wikipedia 1 5 — — — —

2 15 — — — —

3 30 0.9294 0.4210 0.5795 0.0320

4 50 0.6487 0.9750 0.7791 0.5280

Ablation Analysis. We conduct one ablation study by removing the self super-
vised pre-training component from our framework and only utilizing the super-
vised fine-tuning component. The supervised fine-tuning component consists of
only linear layers and cannot model sequence data. To resolve this limitation
for our ablation study, we suitably format the input data and layer L(3) of
the fine tuning component. Consider the word-to-vector representations of the
activities belonging to the session Sk = {ek1 , ek2 , ..., ekT

} which are denoted as
{xk1 ,xk2 , ...,xkT

}. We flatten this sequence {xkt
}Tt=1 into a vector and feed this

flattened vector as an input to layer L(3) of the fine-tuning component. Table 3
shows the results of this ablation study. For both datasets, the supervised fine
tuning component when used in isolation for detecting malicious sessions, under-
performs against our framework in all the four scenarios. Clearly, this ablation
study demonstrates that self-supervised pre-training component is crucial for
our framework to achieve good performance.

5 Conclusion

We presented a contrastive learning-based framework to detect malicious insid-
ers. Our framework is specifically designed to operate on unbalanced datasets.
Our framework has self-supervised pre-training and supervised fine tuning com-
ponents. The former is responsible for generating user session encodings. These
session encodings are generated through the aid of contrastive learning and are
then used by the supervised fine tuning component to detect malicious sessions.
We presented an empirical study and results demonstrated our framework’s bet-
ter effectiveness than the baselines.

Acknowledgement. This work was supported in part by NSF grants 1564250,
1937010 and 2103829.

Contrastive Learning for Insider Threat Detection 403

References

1. Du, M., Li, F., Zheng, G., Srikumar, V.: Deeplog: anomaly detection and diagnosis
from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017. pp. 1285–1298. ACM (2017)

2. Glasser, J., Lindauer, B.: Bridging the gap: a pragmatic approach to generating
insider threat data. In: 2013 IEEE Symposium on Security and Privacy Workshops,
San Francisco, CA, USA, May 23–24, 2013. pp. 98–104. IEEE Computer Society
(2013)

3. Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F.: A survey on
contrastive self-supervised learning. CoRR arXiv:2011.00362 (2020)

4. Kumar, S., Spezzano, F., Subrahmanian, V.: Vews: a wikipedia vandal early warn-
ing system. In: Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, p. 607–616. KDD 2015 (2015)

5. Lin, L., Zhong, S., Jia, C., Chen, K.: Insider threat detection based on deep belief
network feature representation. In: 2017 International Conference on Green Infor-
matics (ICGI), pp. 54–59 (2017)

6. Lu, J., Wong, R.K.: Insider threat detection with long short-term memory. In:
Proceedings of the Australasian Computer Science Week Multi-conference. New
York, NY, USA (2019)

7. Marrakchi, Y., Makansi, O., Brox, T.: Fighting class imbalance with contrastive
learning. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng,
Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 466–476. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-87199-4 44

8. Tuor, A., Baerwolf, R., Knowles, N., Hutchinson, B., Nichols, N., Jasper, R.:
Recurrent neural network language models for open vocabulary event-level cyber
anomaly detection. CoRR arXiv:1712.00557 (2017)

9. Wang, X., Qi, G.: Contrastive learning with stronger augmentations. CoRR
arXiv:2104.07713 (2021)

10. Wu, Z., Wang, S., Gu, J., Khabsa, M., Sun, F., Ma, H.: CLEAR: contrastive
learning for sentence representation. CoRR arXiv:2012.15466 (2020)

11. Yuan, F., Cao, Y., Shang, Y., Liu, Y., Tan, J., Fang, B.: Insider threat detection
with deep neural network. In: Shi, Y., Fu, H., Tian, Y., Krzhizhanovskaya, V.V.,
Lees, M.H., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2018. LNCS, vol. 10860, pp.
43–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93698-7 4

12. Yuan, S., Wu, X.: Deep learning for insider threat detection: Review, challenges
and opportunities. Comput. Secur. 104, 102221 (2021). https://doi.org/10.1016/
j.cose.2021.102221

13. Yuan, S., Zheng, P., Wu, X., Li, Q.: Insider threat detection via hierarchical neural
temporal point processes. In: 2019 IEEE International Conference on Big Data
(Big Data), pp. 1343–1350 (2019)

14. Yuan, S., Zheng, P., Wu, X., Tong, H.: Few-shot insider threat detection. In: CIKM
2020: The 29th ACM International Conference on Information and Knowledge
Management, Virtual Event, Ireland, October 19–23, 2020. pp. 2289–2292. ACM
(2020)

http://arxiv.org/abs/2011.00362
https://doi.org/10.1007/978-3-030-87199-4_44
http://arxiv.org/abs/1712.00557
http://arxiv.org/abs/2104.07713
http://arxiv.org/abs/2012.15466
https://doi.org/10.1007/978-3-319-93698-7_4
https://doi.org/10.1016/j.cose.2021.102221
https://doi.org/10.1016/j.cose.2021.102221

Metadata Privacy Preservation for
Blockchain-Based Healthcare Systems

Lixin Liu1,2, Xinyu Li3, Man Ho Au3, Zhuoya Fan1, and Xiaofeng Meng1(B)

1 School of Information, Renmin University of China, Beijing, China
{lixinliu,fanzhuoya,xfmeng}@ruc.edu.cn

2 School of Information Engineering, Inner Mongolia University of Science and
Technology, Baotou, China

3 Department of Computer Science, The University of Hong Kong, Hong Kong, China
allenau@cs.hku.hk

Abstract. Blockchain-based healthcare systems provide a patient-
centric and accountable way to manage and share electronic health
records. Thanks to its unique features, the blockchain is employed to
record the metadata and to carry out access control. Nevertheless, the
transparent nature of blockchain also poses a new challenge to these
systems. We identify that the metadata stored on the blockchain leaks
the relationship between doctors and patients. Based on this relation-
ship, the adversary can launch linkage attacks to infer patients’ infor-
mation. Hence, it is necessary to protect metadata privacy. However,
strong privacy protection may reduce accountability. Striking a balance
between accountability and privacy preservation is a major challenge
for the blockchain and its applications. In this paper, we first elabo-
rate on the reasons why the metadata could leak the privacy of patients
in blockchain-based healthcare systems. After that, we propose privacy-
preserving and accountable protocols to deal with this problem for two
different healthcare scenarios: the single doctor case and the group con-
sultation case. Finally, the theoretical analysis demonstrates the practi-
cality of our protocols.

Keywords: Privacy preservation · Accountability · Healthcare system

1 Introduction

Blockchain-based Healthcare systems have shown great benefits in the man-
agement and sharing of the Electronic Health Records (EHRs) for patients
and medical institutions. They provide a technical opportunity to establish a
patient-centric and accountable EHRs management and sharing framework [1,5–
7,9]. Typically, they employ the blockchain to record the metadata and define
auditable access policies in the smart contract, and only store encrypted EHRs in

Supported by organization x.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 404–412, 2022.
https://doi.org/10.1007/978-3-031-00123-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_33&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_33

Metadata Privacy Preservation for Blockchain-Based Healthcare Systems 405

an off-chain storage (e.g. cloud server) [2,6,9]. In this way, the patients can uti-
lize the metadata for accountability and define the access policies by themselves
after the EHRs are uploaded and the metadata is recorded. However, less atten-
tion has been paid to security and privacy issues of the phase when the EHRs are
uploaded and the metadata is recorded. The previous work proposes a protocol
to solve the security issues when the EHRs are uploaded to the cloud server [5].
However, it can not protect the privacy derived from the metadata (i.e. meta-
data privacy). More specifically, adversaries may get the relationship between
doctors and patients from the metadata. Based on this relationship, adversaries
can make linkage attacks to infer patients’ private information by linking the
metadata with other databases. For example, if adversaries know that the doc-
tor is a specialist in a sensitive disease (such as HIV), they can infer that the
patient may suffer from that disease.

The root cause of the problem is privacy issues of the blockchain [7]. First,
the metadata stored on the blockchain may be utilized to make linkage
attacks because of the transaction privacy issues. The metadata on the
blockchain usually includes the unique identifier of the patient and the unique
identifier of the doctor in plaintext form [6,9]. Hence, the relationship between
them is exposed to all participants, including adversaries. Second, the meta-
data stored on the blockchain may also be employed to make linkage
attacks because of the identity privacy issues. The doctor is usually del-
egated to upload EHRs and to record the metadata [5]. That is, the doctor
sends the transaction to the blockchain as the sender. The transaction address
of the sender is pseudonymity. Therefore, the adversary still can get the relation-
ship between the doctor and the patient. However, existing preserving-privacy
protocols of the blockchain cannot directly solve these problems [9].

In this paper, we mainly focus on the metadata privacy preservation in
Ethereum-based healthcare systems, because Ethereum is popularly used in
healthcare system [4,5,8]. We propose different protocols for two application
cases. More specifically, our contributions are summarized as follows.

– We introduce the metadata privacy breach in the blockchain-based healthcare
systems, and illustrate why it may cause linkage attacks. To the best of our
knowledge, we are the first ones that point out the privacy breach issue of
the metadata in the blockchain-based healthcare systems.

– We propose privacy-preserving and accountable protocols for different med-
ical scenarios. First, we propose a succinct protocol for the popular single
doctor case. Then, we design an efficient protocol for the complicated group
consultation case. Specially, our solutions are compatible with the Ethereum-
based healthcare systems and can be directly applied to those systems.

– Security and privacy analysis illustrate that our scheme is secure in the ratio-
nal adversary model.

The remainders of the paper are organized as follows. In Sect. 2, we present
the formulation of the problem, adversaries’ models and security requirements.
In Sect. 3, we elaborate the details of the system and the analysis of the protocols.
Finally, we conclude our work in Sect. 4.

406 L. Liu et al.

2 Problem Formulation

The system architecture is shown in Fig. 1, which consists of six different entities:
a hospital administrator, patients, doctors, a cloud server, an auditor and a
blockchain system. When a patient visits a doctor for a diagnosis, the process
can be divided into five phases.

– The initialization phase: the hospital administrator initiates the system.
– The appointment phase: the patient first needs to provide necessary informa-

tion and registers with the hospital administrator, and then consults with the
hospital administrator to set up a diagnosis key for encrypting the EHRs.

– The delegation phase: the patient should delegate the doctor to outsource
EHRs, because the data generator (i.e. the doctor) and the data owner (i.e.
the patient) are different.

– The storage phase: the doctor diagnoses for the patient and generates corre-
sponding EHRs. Then, the doctor outsources the EHRs to the cloud server
and records the metadata to the blockchain. Finally, the cloud server performs
the authentication of the doctor according to the delegation information and
the metadata.

– The audit phase: the auditor can perform the audit.

Fig. 1. System architecture

In practical medical applications, there are also cases where multiple doctors
diagnose one patient together (known as the group consultation case). Every
doctor of the group gives the corresponding diagnosis result and generates the
EHRs based on the previous doctors’ EHRs successively. In this situation, the
patient needs to delegate the doctors to generate EHRs, and every doctor should
be responsible for the EHRs that she or he generates.

We consider the adversary model from the external adversaries and internal
adversaries.

Metadata Privacy Preservation for Blockchain-Based Healthcare Systems 407

– The external adversaries are the external entities and the nodes in the
blockchain system. The external adversaries mainly target two types of
attacks. First, external attackers may analyze blockchain transactions to get
the identity privacy and the transaction privacy. Second, an external attack-
ers may perform guessing attacks to get the diagnosis key in order to learn
the EHRs.

– The internal adversaries include semi-honest doctors and the rational cloud
server [3]. Specially, the rational model means the cloud server may deviate
from the agreed principles to get more benefit. The internal adversaries mainly
carry out four aspects of attacks. First, the delegated doctors may try to
cover up the target EHRs by themselves in the medical malpractice. Second,
the delegated doctors may incentivize the cloud server to collude with them
to cover up the targeted EHRs. Third, the cloud server may deviate from
the prescribed scheme to modify or even delete the EHRs to save the costs.
Finally, the undelegated doctor may pretend to be the delegated doctor to
forge EHRs in order to frame the delegated doctor.

According to the adversaries and the adversary model, the healthcare system
should satisfy the following security and privacy requirements.

– Data confidentiality. The EHRs cannot be learned by other entities except
the delegated doctor(s) and the patient.

– Resistance to linkage attacks. The relationship between the delegated doctor
and the patient cannot be used to link with other databases by any adversary.

– Resistance to modification or forgery attacks. Only the delegated doctors can
generate and outsource the EHRs. And any modification or forgery can be
detected after the EHRs are outsourced.

– Resistance to collusion attacks. The delegated doctors cannot collude with
the cloud server to cover up the EHRs.

– Accountability. When abnormal issues occur, the auditor can perform trace
to find the adversary.

3 The Proposed Scheme

In this section, we first present the overview of our protocols, and then describe
the design details together with the security and privacy analysis.

3.1 Overview

Considering that the transaction address of sender is derived from the public
key in Ethereum, we adopt the public key as the identifier of the doctor in
the metadata. Hence, the transaction address of doctor and the identifier of
the doctor can be protected simultaneously. Based on this, we propose different
protocols for the single doctor case and the group consultation case. In the single
doctor case, we design a secure protocol to generate a blinded key pair for the
doctor to resist the linkage attacks. Meanwhile, the corresponding private key

408 L. Liu et al.

can only be obtained by the delegated doctor for accountability. In the group
consultation case, we combine the group signature and the same key pair instead.
The group signature is used for accountability, while the same key pair is used
for anonymity. Besides, secure key exchange protocol is employed to get the key
for encryption, and the short signature is employed for secure delegation.

3.2 Construction of Our Scheme

We introduce our protocols in details for the single doctor case and the group
consultation case, respectively. The notations used are listed in Table 1.

Table 1. Notations

Notations Descriptions Notations Descriptions

HA Hospital administrator (PKha, SKha) Key pair of HA: PKha = g
SKha
2

Pi Patient i (PKpi, SKpi) Key pair of Pi: PKpi = g2
SKpi

Di Doctor i (PKdi, SKdi) Key pair of Di: PKdi = g2
PKdi

Mi EHRs generate by Di KEYpi Diagnosis key of Pi

CS Cloud server Au Auditor

E() Symmetric encryption algorithm AddrCS Ethereum address of CS

Parapub Public parameters Addrdi Ethereum address of Di

Construction for the Single Doctor Case. Pi consults Di for diagnosis.
Di diagnoses and generates EHRs Mi for Pi. We illustrate the communication
diagram demonstrating the phases of the protocols for the single doctor case in
Fig. 2.

Fig. 2. Communication diagram for the single doctor case

Metadata Privacy Preservation for Blockchain-Based Healthcare Systems 409

We propose a protocol for generation of blinded key pair. Then we combine
it with key exchange protocol, BLS short signature to archive our security and
privacy goals. In order to resist linkage attacks, HA randomly chooses r ∈ Zp to
generate the blinded public key for Di: PK′

di = PKdi
r. Then, HA transfers r to

Di and makes sure that only Di can compute the corresponding blinded private
key SK ′

di. Based on this, the Au and HA can simply release the random r to
trace the real-world identity of the delegated doctor Di in audit phase. Besides,
in order to securely get the diagnosis key KEYpi, HA and Pi perform the key
exchange protocol to get KEYpi, and HA securely transfers KEYpi to Di in the
appointment phase. In addition, in order to securely generate the warrant, Pi

performs short signature for the delegation to the blinded public key of Di.

Construction for the Group Consultation Case. When Pi attends a group
consultation, HA designates a group of doctors denoted as {D1,D2, ...,Dn} for
Pi. Every Dj (j ∈ 1, 2, ...n) has public key and private key PKdi = g2

SKdi .
The doctors generate the EHRs for Pi together, and every doctor generates the
different parts of the EHRs one by one (denoted as {M1,M2, ...,Mn}, respec-
tively. We illustrate the communication diagram demonstrating the phases of
the protocols for the group consultation case in Fig. 3.

Fig. 3. Communication diagram for the group consultation case

Different from the single doctor case, we mainly adopt group signature to
archive our security and privacy goals besides key exchange protocol and BLS
short signature. HA acts as the group manager and sets up the group signature.
The doctors act as the group members. Then, HA designates the group of doc-
tors for Pi. At the same time, HA generates and distributes the same key pair
(PKgt, SKgt) to the group members. Hence, Pi only needs to delegate for the
group by performing the short signature, instead of delegating the doctors one

410 L. Liu et al.

by one in the delegation phase. Correspondingly, Every Dj (j ∈ 1, 2, ...n) per-
forms signature algorithm of the group signature, and records group signature
as the metadata to the blockchain. Therefore, Au asks HA to open the group
signature to identify the malicious doctor in the audit phase.

3.3 Security and Privacy Analysis

We analyze how protocols are resilient to the following security and privacy
attacks.

The Confidentiality of the Patients’ EHRs Can Be Ensured in the
Proposed Scheme. The EHRs is encrypted by the diagnosis key. The diagnosis
key is generated by the key exchange protocol and transmitted by the public key
encryption. The key exchange protocol is secure under the CDH assumption. The
public key encryption makes only the delegated doctor can get the diagnosis key.
Hence, the EHRs cannot be learned by any adversary.

The Proposed Scheme Can Resist Linkage Attacks. We adopt the blinded
key pair to protect the identities of the doctors in the single doctor case, which is
secure under the DDH assumption1. While in the group consultation case, each
doctor signs the transaction by using the same private key, and the metadata
only includes the group information instead of the doctor identifies. Hence, the
linkage attacks are resisted both in single doctor case and group consultation
case.

The Proposed Scheme Can Resist Modification Attacks, Forgery
Attacks and Collusion Attacks. When there are no collusion attacks, the
doctors cannot perform modification and forgery attacks. On the one hand, the
semi-trusted doctor outsources new EHRs to the cloud server, as well as records
the metadata to the blockchain. Then, the cloud server covers up the target
EHRs or stores the EHRs as a new one, and records metadata to the trans-
action. The transaction guarantees the timeliness of the EHRs, so the auditor
can still trace the adversary when the dispute occurs. On the other hand, the
doctor may not record the metadata or record the incorrect metadata to the
transaction. In this case, the cloud server can discover the misbehaving doctor
and do not store the EHRs. If the rational cloud server colludes with the doctor
to replace the existing EHRs, the cloud server and the doctor have to fork the
blockchain to record the new metadata.

1 Specifically, we require DDH holds in group G2 equipped with a bilinear map.
Sometimes this assumption is referred to as the symmetric external Diffie-Hellman
assumption.

Metadata Privacy Preservation for Blockchain-Based Healthcare Systems 411

The Goal of Accountability Can Be Achieved in the Proposed Scheme.
The auditor can trace the real-world identity of a malicious attacker with the help
of the hospital administrator when disputes occur. The hospital administrator
charges for the generation the blinded key pair in the single doctor case, and also
manages the group signature in the group consultation case. Hence, the auditor
can trace the adversary with the help of the hospital administrator.

4 Conclusion and Future Works

In this paper, we first introduced the metadata privacy and linkage attacks in the
blockchain-based healthcare systems. Further, we elaborated on why the meta-
data privacy and linkage attacks might breach the patients’ privacy. However,
this issue received relatively few attention in previous works. With this obser-
vation in mind, we proposed different metadata privacy preservation protocols
for different medical scenarios. Specially, the proposed scheme is compatible
with the existing Ethereum-based healthcare systems, and facilitates the use of
blockchain for healthcare system without compromising privacy. In the future,
we plan to evaluate the performance of the protocols with experiments, including
communication costs, computation costs and gas price of a transaction. We also
plan to optimise the protocols.

Acknowledgements. This work was supported in part by the NSFC grants
(61941121, 62172423, and 91846204). And part of this work was done when the first
author was visiting the Hong Kong Polytechnic University.

References

1. Aguiar, E.J.D., Faiçal, B.S., Krishnamachari, B., Ueyama, J.: A survey of
blockchain-based strategies for healthcare. ACM Comput. Surv. 53(2), 1–27 (2020)

2. Amofa, S., et al.: A blockchain-based architecture framework for secure sharing of
personal health data. In: 20th IEEE International Conference on e-Health Network-
ing, Applications and Services, Healthcom 2018, Ostrava, Czech Republic, Septem-
ber, pp. 1–6 (2018)

3. Armknecht, F., Bohli, J., Karame, G.O., Liu, Z., Reuter, C.A.: Outsourced proofs of
retrievability. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, Scottsdale, AZ, USA, 3–7 November 2014, pp. 831–
843 (2014)

4. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for
medical data access and permission management. In: International Conference on
Open & Big Data (2016)

5. Cao, S., Zhang, G., Liu, P., Zhang, X., Neri, F.: Cloud-assisted secure ehealth sys-
tems for tamper-proofing EHR via blockchain. Inf. Sci. 485, 427–440 (2019)

6. Dubovitskaya, A., Xu, Z., Ryu, S., Schumacher, M., Wang, F.: Secure and trustable
electronic medical records sharing using blockchain. In: AMIA 2017, American Medi-
cal Informatics Association Annual Symposium, Washington, DC, USA, 4–8 Novem-
ber 2017 (2017)

412 L. Liu et al.

7. Huang, H., Zhu, P., Xiao, F., Sun, X., Huang, Q.: A blockchain-based scheme for
privacy-preserving and secure sharing of medical data. Comput. Secur. 99, 102010
(2020)

8. Kuo, T., Rojas, H.Z., Ohno-Machado, L.: Comparison of blockchain platforms: a
systematic review and healthcare examples. J. Am. Med. Inform. Assoc. 26(5),
462–478 (2019)

9. Shi, S., He, D., Li, L., Kumar, N., Khan, M.K., Choo, K.R.: Applications of
blockchain in ensuring the security and privacy of electronic health record systems:
a survey. Comput. Secur. 97, 1–6 (2020)

Blockchain-Based Encrypted Image
Storage and Search in Cloud Computing

Yingying Li1, Jianfeng Ma1(B), Yinbin Miao1, Ximeng Liu2, and Qi Jiang1

1 School of Cyber Engineering, Xidian University, Xi’an, China
lyylyingying@163.com, jfma@mail.xidian.edu.cn,

{ybmiao,jiangqixdu}@xidian.edu.cn
2 College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China

snbnix@gmail.com

Abstract. In the traditional cloud computing system, existing ranked
image search mechanisms will leak the similarity of search results, even
cannot prevent malicious cloud servers from tampering with or forging
results. Therefore, with the help of blockchain technology, we propose
an encrypted image storage and search system. A threshold encryption
method based on the matrix similarity transformation theory is designed
to protect the similarity of search results. Besides, a hybrid storage struc-
ture based on blockchain and cloud server is designed to ensure the
correctness and completeness of search results. Finally, we implement
the prototype in Python and Solidity, and conduct performance evalua-
tions on local Ethereum client. The theoretical analysis and performance
evaluations using the real-world dataset demonstrate that our proposed
system is secure and feasible.

Keywords: Images storage and search · Blockchain · Smart contract ·
Cloud computing · Verifiable

1 Introduction

Although the cloud computing paradigm allows resource-limited data owners to
enjoy flexible and convenient image storage and search services, the security and
privacy concerns still impede its widely deployments in practice due to semi-
honest cloud servers. Encryption is an alternative solution to guarantee data
security, but it makes the search over encrypted images impossible. Moreover,
the ranked similarity image search [6–8,11] based on the secure k-Nearest Neigh-
bor (kNN) algorithm [10] may leak the similarity of search results as the cloud
server can obtain the search results by ranking the calculated inner products. If
the cloud server infers the content of queried image through some background
knowledge, it can further infer the content of search result with the highest sim-
ilarity, thereby knowing the content of outsourced image. The consequences of
data leakage would be too ghastly to contemplate. Therefore, we need to design
a similarity search method that does not reveal the similarity of search results.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 413–421, 2022.
https://doi.org/10.1007/978-3-031-00123-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_34&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_34

414 Y. Li et al.

In addition, traditional schemes [3,6,7,11] store the encrypted images and
indexes in the cloud server, and enable the cloud server to return relevant results.
However, the cloud server may be malicious, which executes a fraction of search
operations and returns some tampered or forged results. To this end, scheme [8]
employs the Merkle hash tree to verify the correctness of search results. With the
transparency and immutability of blockchain, there are also some schemes [1,4,5]
using blockchain and smart contract technologies, in which the hash values of
encrypted images are stored in the blockchain and the smart contract or data
user checks the correctness of search results. However, these schemes still cannot
guarantee the completeness of search results.

In this paper, with the help of blockchain, smart contract and cloud com-
puting technologies, we design an encrypted images storage and search system,
where the data owner stores encrypted images in the cloud server and encrypted
indexes in the blockchain. When the data user issues a query, the smart contract
searches indexes and the cloud server searches images. Specifically, the main
contributions of our work are as follows:

– First, we build a hybrid storage structure based on cloud server and
blockchain, where the cloud server stores encrypted images and the blockchain
stores hash values and encrypted indexes by designing a STORAGE contract.

– Second, we design a threshold encryption method of encrypting image indexes
and queries, which not only realizes similarity search but also protects the
privacy of search results.

– Third, we guarantee the correctness and completeness of search results by
designing a SEARCH contract. Meanwhile, we allow the data owner to update
(i.e., add, delete, modify) images by designing an UPDATE contract.

2 Related Work

Data Storage and Search with Blockchain. The transparency and
immutability of blockchain attract attention in the field of searchable encryp-
tion. Hu et al. [5] constructed a decentralized privacy-preserving search scheme
by replacing the central server with a smart contract, in which data owner can
receive correct search results. Cai et al. [1] utilized the smart contract and fair
protocol to avoid service peers returning partial or incorrect results and clients
slandering the service peers. Guo et al. [4] proposed a verifiable and dynamic
searchable encryption scheme with forward security based on blockchain. How-
ever, these schemes realize the encrypted text search rather than image search.

Secure Encrypted Image Search. There are many schemes aimed at
achieving high accuracy, efficiency and security. Li et al. [8] employed the pre-
trained Convolutional Neural Network (CNN) model to obtain the high search
accuracy. In addition, scheme [3] using Homomorphic Encryption (HE) algorithm
and scheme [9] using secure multi-party computing to encrypt feature vectors
achieved the same accuracy as plaintext search. However, they incurred high
computational costs. To end this, schemes et al. [6,11] built an efficient cluster-
ing index tree encrypted with the secure kNN algorithm. Moreover, scheme [7]

Blockchain-Based Encrypted Image Storage and Search in Cloud Computing 415

encrypted feature vectors with the secure kNN based on Learning with Errors
(LWE-kNN) method, which further improved the data security.

3 Proposed System

Problem Formulation. Suppose a certain Data Owner (DO, e.g.,
Alice) extracts n feature vectors {�f1, �f2, · · · , �fn} from n images M =
{m1,m2, · · · ,mn}, where �fID = (fID,1, fID,2, · · · , fID,d) is a d-dimension vec-
tor, ID ∈ [1, n]. Then, Alice encrypts each �fID as IID and each mID as cID.
Finally, Alice outsources all encrypted vectors I = {I1, I2, · · · , In} to blockchain
and encrypted images C = {c1, c2, · · · , cn} to Cloud Server (CS). Now, con-
sider an authorized Data User (DU, e.g., Bob) with query image mq, Bob
extracts the feature vector �q = (q1, q2, · · · , qd) from mq, then encrypts �q as Tq

and sends Tq to blockchain. During querying process, Tq, I and C should not be
revealed. We denote search results by R. Then, the problem we research can be
defined: Search(Tq, I, C) → R. We emphasize that the correctness, completeness
and privacy of R should be ensured and protected.

System Constructions. Our system consists of four phases: initialization,
storage, retrieval and update.

Phase 1: Initialization. First, DO (or DU) generates the image encryption
key km and the search key SK = {M1,M2,M

−1
1 ,M−1

2 , π} when he/she joins
the system. Here, M1,M2 ∈ R

(d+5)×(d+5) are two random matrices, M−1
1 ,M−1

2

are corresponding inverse matrices, π : Rd+5 → R
d+5 is a random permutation,

d is the dimension of extracted feature vector. Then, DO deploys the STORAGE,
SEARCH and UPDATE contracts.

Phase 2: Storage. First, DO encrypts M with the symmetric encryption algo-
rithm (i.e., AES) and uploads the ciphertexts C = {〈1, c1〉 , 〈2, c2〉 , · · · , 〈n, cn〉}
to CS. Then, for the feature vector �fID = (fID,1, fID,2, · · · , fID,d) of image
mID, DO generates the encrypted index IID by using Algorithm 1. All indexes
are set as the index set I = {I1, I2, · · · , In}. Finally, DO calls STORAGE contract

Algorithm 1: GenIndex (for the image mID)

Input: �fID = (fID,1, fID,2, · · · , fID,d), SK, cID.
Output: IID.

1 Select two random numbers α and rf ;

2 Extend �fID to �f ′
ID = (α �fID, α, −α

∑d
i=1 f2

ID,i, α, 0, rf);

3 Compute �f ′′
ID = π(�f ′

ID);

4 Transform �f ′′
ID to a diagonal matrix FID with diag(FID) = �f ′′

ID;
5 Generate a random (d + 5) × (d + 5) lower triangular matrix Sf,ID with the

diagonal entries fixed as 1;
6 Compute CID = M1 · Sf,ID · FID · M2;
7 Compute hID = h(ID||cID);
8 Set 〈ID, hID, CID〉 as the index IID of mID.

416 Y. Li et al.

functions (see to Algorithm 2) to store all indexes on the blockchain. Since a
matrix cannot be sent to the smart contract through a transaction, DO first
sends the ID and hID, and then sends the CID row by row. The indexes of n
images are uploaded one by one.

Algorithm 2: Contracts

// STORAGE contract

1 Mapping ID to structure Index;
// Function StIDhash(ID, hID):

1 Index[ID].ID = ID;
2 Index[ID].hID = hID;

// Function StCID(ID, i, CID[i]):
1 for each row i do
2 Index[ID].CID[i] = CID[i];

end

// SEARCH contract

// Function UploadT (Tq):
3 for each row i do
4 Store Tq[i];

end
// Function Compute():

1 for each IID do
2 Compute SID,q = Tr(CID · Tq);
3 if SID,q ≥ 0 then
4 Add 〈ID, hID〉 to the proof list

PL;
5 return PL;

end

end

// UPDATE contract

// Function

InsertIDhash(ID′, h′
ID):

1 STORAGE.StIDhash(ID′, h′
ID);

// Function

InsertCID(ID′, i, C′
ID[i]):

1 STORAGE.StCID(ID′, i, C′
ID[i]);

// Function

ModifyIDhash(ID, h′′
ID):

1 STORAGE.StIDhash(ID, h′′
ID);

// Function

ModifyCID(ID, i, C′′
ID[i]):

1 STORAGE.StCID(ID, i, C′′
ID[i]);

// Function DeleteIDhash(ID):
1 delete Index[ID].ID;
2 delete Index[ID].hID;

// Function DeleteCID(ID, i):
1 delete Index[ID].CID[i];

Algorithm 3: GenQuery
Input: �q = (q1, q2, · · · , qd), SK.
Output: Tq.

1 Select two random numbers β and rq, and define a threshold θ;
2 Extend �q to �q′ = (2β�q,−β

∑d
i=1 q2i , β, βθ2, rq, 0);

3 Permute �q′ with the random permutation π to obtain �q′′ = π(�q′);
4 Transform �q′′ to a diagonal matrix Q with diag(Q) = �q′′;
5 Generate a random (d + 5) × (d + 5) lower triangular matrix Sq with the

diagonal entries fixed as 1;
6 Compute Tq = M−1

2 · Q · Sq · M−1
1 ;

7 Set Tq as the query of mq.

Phase 3: Retrieval. First, the authorized DU extracts the feature vector �q =
(q1, q2, · · · , qd) from the queried image mq. Then, DU generates a query Tq with
Algorithm 3. Next, DU calls the SEARCH contract function UploadT (Tq[i]) to
upload Tq and calls Compute() to retrieve I (see to Algorithm 2). The proof
list PL including ID and hID will be returned. To obtain the corresponding

Blockchain-Based Encrypted Image Storage and Search in Cloud Computing 417

search result R, DU submits IDs to CS. Finally, DU calculates the hash value
of encrypted image in R one by one and verifies whether it is equal to the
returned hID. If they are equal, DU accepts and decrypts R with symmetric
encryption algorithm (i.e., AES), otherwise rejects.

Phase 4: Update. 1) Insert m′
ID. DO first encrypts m′

ID to c′
ID and sends

c′
ID to CS. Then, DO submits a transaction to insert ID′ and h′

ID by calling
the UPDATE contract function InsertIDhash(ID′, h′

ID) (see to Algorithm 2).
Finally, DO inserts C ′

ID by calling InsertCID(ID′, i, C ′
ID[i]). 2) Modify mID

to m′′
ID. DO first encrypts m′′

ID to c′′
ID and sends c′′

ID to CS. Then, DO sub-
mits a transaction to modify hID to h′′

ID by calling the UPDATE contract func-
tion ModifyIDhash(ID, h′′

ID). Finally, DO modifies CID to C ′′
ID by calling

ModifyCID(ID, i, C ′′
ID[i]). 3) Delete mID. DO first sends ID to CS. Then,

DO submits a transaction to delete ID and hID by calling the UPDATE contract
function DeleteIDhash(ID), where delete in Algorithm 2 is the library function
of Solidity. Finally, DO deletes CID by calling DeleteCID(ID, i).

4 Theoretical Analysis

Privacy Preservation. Under the known-plaintext attack model, the adversary
A (i.e., CS) has some queries and corresponding ciphertexts. To prove that our
system is secure against known-plaintext attack, we first define the experiment
ExpA: A selects two query vectors �q0 and �q1 to the challenger B. Then, B chooses
a uniform bit b ∈ {0, 1}, computes the ciphertext T of �qb and returns T to A.
After that, B sends some query vectors and the corresponding ciphertexts to A.
Finally, A outputs a bit b′. The output of experiment ExpA is 1 if b = b′, and 0
otherwise. We say that the privacy of index and query is secure against known-
plaintext attack if for any polynomial-time adversary A, there is a negligible
function negl such that the probability |Pr(ExpA = 1) − 1

2 | ≤ negl.

Theorem 1. Our system can ensure the confidentiality of index and query
under the known-plaintext attack.

Proof. The main idea of the proof of this theorem is as follows1. For �q0 and �q1,
according to Algorithm 3, �q0 is encrypted as T0 = M−1

2 · Q0 · S0 · M−1
1 , where

S0 is a random matrix. According to ExpA and Algorithm 1, we know that
M−1

2 and M−1
1 are fixed, β, θ, r0 and S0 are one-time random numbers. Thus,

the entries in T0 look random to A. This means that, for any query vector �q
and its corresponding ciphertext, A cannot distinguish which vector is actually
encrypted. Thus, A can only output b′ by randomly guessing. As a result, we
have |Pr(ExpA = 1) − 1

2 | ≤ negl. For index vectors, the proof is almost the
same as the one for query vector and is omitted.

Correctness. We prove the correctness of threshold encryption. For a square
matrix X, the trace Tr(X) denotes the sum of diagonal elements of X. Multi-
plying X by the same size of matrix A and its inverse matrix A−1 is called
1 The readers can refer to the reference [12].

418 Y. Li et al.

similarity transformation of X. According to linear algebra, the trace of a
square matrix remains unchanged under similarity transformation. Thus, we
have Tr(X) = Tr(AXA−1). Furthermore, we have the following theorem.

Theorem 2. SID,q ≥ 0 if and only if || �fID − �q||2 ≤ θ2.

Proof. Since SID,q = Tr(CID ·Tq), according to the law of matrix multiplication,
the diagonal of CID ·Tq is the same as that of FID ·Q. Thus we have Tr(CID ·Tq) =
�f ′
ID · �q′�. Since the square of Euclidean distance || �fID − �q||2 =

∑d
i=1 f2

ID,i +
∑d

i=1 q2i −2 �fID·�q�, we have �f ′
ID·�q′� = αβ(2 �fID·�q�+θ2−

∑d
i=1 f2

ID,i−
∑d

i=1 q2i) =
αβ(θ2 − || �fID − �q||2). Since α and β are positive random numbers, SID,q ≥ 0
if and only if || �fID − �q||2 ≤ θ2. As a result, the search results can be found by
judging whether SID,q ≥ 0.

Completeness. In traditional schemes, the correctness and completeness of
search results depend on whether CS performs the search operation honestly.
However, the malicious CS may tamper with or forge results, resulting in DU
cannot enjoy the reliable services. In our system, the SEARCH contract processes
the query request and returns the similar results to DU. The consensus prop-
erty of blockchain ensures that the deployed smart contracts can be executed
correctly. Therefore, the search results obtained by DU are correct and complete.

5 Performance Evaluations

We evaluate the performance on the real-world dataset Caltech256 [2]. For
threshold encryption (denoted by TE), we compare its costs of the encryp-
tion and search operations with the secure kNN encryption (denoted by kNN)2

and the homomorphic encryption (denoted by HE)3 technologies. We implement
them using Python and construct the Ethereum smart contracts using Solidity
0.4.21. The experimental environment is deployed on a PC with Ubuntu 18.04
LTS operating system. The smart contracts are compiled using Remix and tested
with the Ethereum blockchain using a local simulated network Geth. The con-
sensus protocol used in Geth is POA (Proof of Authority).

Threshold Encryption. We give the costs of encrypting and searching
data in Table 1. Although TE has more search cost than kNN, its security is
higher. HE has higher security, but its cost is so expensive that it is impractical.
Therefore, TE is a better choice than kNN and HE in terms of security and
efficiency.

Smart Contracts. The gas costs of deploying STORAGE, SEARCH and UPDATE
contracts are 284711, 534050 and 338372, respectively. When DO stores indexes
on blockchain, the time and gas costs are displayed in Table 2. In order to avoid

2 Splitting index and query vectors with a random Boolean vector, and then encrypting
them with two random matrices and their inverse matrices.

3 Using Paillier homomorphic algorithm to encrypt index and query vectors.

Blockchain-Based Encrypted Image Storage and Search in Cloud Computing 419

Table 1. The time costs of encrypting and searching data

Operations Methods d 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Encrypt

index

kNN(s) 32 0.255 0.357 0.501 0.621 0.743 0.803 0.91 1.038 1.157 1.726

64 0.271 0.438 0.673 0.777 0.883 0.935 1.021 1.453 1.57 1.788

128 0.326 0.476 0.688 0.831 0.98 1.127 1.331 1.71 1.841 2.044

HE(h) 32 1.031 2.009 2.953 3.925 5.026 5.923 7.076 7.883 8.795 8.895

64 1.955 3.960 5.811 8.109 9.794 11.991 13.692 16.302 18.618 20.785

128 4.118 8.046 12.346 16.167 21.401 25.389 29.237 33.673 39.459 44.889

TE(s) 32 0.361 0.504 0.749 1.042 1.321 1.455 1.877 2.39 2.796 2.92

64 0.407 0.841 1.049 1.128 1.57 1.856 2.087 2.436 3.349 4.755

128 0.326 0.476 0.688 0.831 0.98 1.127 1.331 1.71 1.841 2.044

Search kNN(s) 32 0.009 0.014 0.017 0.022 0.028 0.033 0.04 0.045 0.048 0.053

64 0.017 0.02 0.033 0.032 0.039 0.047 0.054 0.063 0.066 0.071

128 0.019 0.034 0.051 0.057 0.071 0.091 0.097 0.121 0.149 0.18

HE(min) 32 2.023 3.961 5.882 8.174 10.529 12.063 14.214 15.789 17.676 19.944

64 3.407 7.049 10.597 14.186 18.002 21.292 27.424 29.088 34.593 38.055

128 6.843 13.520 20.257 27.182 36.317 42.030 49.097 57.020 69.193 79.226

TE(s) 32 0.014 0.028 0.044 0.096 0.146 0.149 0.151 0.199 0.16 0.247

64 0.024 0.049 0.071 0.095 0.147 0.176 0.178 0.241 0.272 0.41

128 0.096 0.118 0.214 0.279 0.98 0.323 0.383 0.42 0.494 0.554

Table 2. The time and gas costs of storage and search

Operations d 100 200 300 400 500 600 700 800 900 1000

Index storage

time (h)

32 0.03 0.07 0.11 0.15 0.21 0.23 0.28 0.32 0.37 0.43

64 0.07 0.17 0.28 0.39 0.52 0.67 0.79 0.91 1.08 1.26

128 0.27 0.64 1 1.65 2.09 2.36 2.66 3.20 5.35 7.75

Index storage

gas (×109)

32 2.22 4.44 6.66 8.88 11.11 13.33 15.54 17.76 19.98 22.21

64 7.80 16.10 24.14 32.19 40.24 48.30 56.33 64.39 72.45 80.45

128 30.58 61.12 91.67 122.21 152.79 183.31 213.84 244.42 275.02 305.53

Search time

(s)

32 3.31 7.09 8.67 7.89 10.06 14.73 20.54 25.4 22.95 25.46

64 9.53 17.79 33.09 39.55 59.11 65.43 87.15 103.91 109.9 142.45

128 24.52 56.04 78.02 110.03 126.96 116.64 192.33 226.73 239.31 255.56

(a) Time cost (b) Gas cost

Fig. 1. The time and gas costs of uploading a query and update.

420 Y. Li et al.

exceeding the gas limit of block, uploading a row vector maybe require two or
more transactions. When the number of transactions increases, the time and gas
costs also increase. As for uploading a query, see to Fig. 1, when the d increases
from 32 to 128, the time and gas costs increase by 4 times because the size of
Tq increases by 4 times. In the search phase, compared with the search time in
Table 1, the search time in Table 2 is longer because the Solidity takes longer
to calculate the matrix multiplication than Python. When DO update indexes,
as shown in Fig. 1, the cost of insertion is close to that of modification, as the
insertion and modification functions in Algorithm 2 both invoke the STORAGE
contract functions.

6 Conclusion

In this paper, we propose a threshold encryption method, which returns all simi-
lar images within a given threshold. Further, we propose a dynamic and verifiable
encrypted image storage and search system based on blockchain and cloud com-
puting, which not only verifies the correctness and completeness of search results
but also allows the image owner to update the images and indexes. The final
theoretical analysis and experimental analysis demonstrate the feasibility of our
proposed system. Although the security has been improved in this paper, search
efficiency still needs to be improved. In future, we will continue to study vector
encryption methods that improve security without sacrificing efficiency.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (No. 62072361), the Fundamental Research Funds for the Central
Universities (No. JB211505), Henan Key Laboratory of Network Cryptography Tech-
nology, State Key Laboratory of Mathematical Engineering and Advanced Computing
(No. LNCT2020-A06).

References

1. Cai, C., Weng, J., Yuan, X., Wang, C.: Enabling reliable keyword search in
encrypted decentralized storage with fairness. IEEE Trans. Dependable Secure
Comput., 1 (2018). https://doi.org/10.1109/TDSC.2018.2877332

2. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)
3. Guo, C., Su, S., Choo, K.R., Tang, X.: A fast nearest neighbor search scheme over

outsourced encrypted medical images. IEEE Trans. Industr. Inf. 17(1), 514–523
(2021)

4. Guo, Y., Zhang, C., Jia, X.: Verifiable and forward-secure encrypted search using
blockchain techniques. In: ICC 2020–2020 IEEE International Conference on Com-
munications, pp. 1–7 (2020)

5. Hu, S., Cai, C., Wang, Q., Wang, C., Luo, X., Ren, K.: Searching an encrypted
cloud meets blockchain: a decentralized, reliable and fair realization. In: IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications, pp. 792–800
(2018)

https://doi.org/10.1109/TDSC.2018.2877332

Blockchain-Based Encrypted Image Storage and Search in Cloud Computing 421

6. Li, X., Xue, Q., Chuah, M.: Casheirs: cloud assisted scalable hierarchical encrypted
based image retrieval system. In: Proceedings of the IEEE Conference on Computer
Communications, pp. 1–9. IEEE (2017)

7. Li, Y., Ma, J., Miao, Y., Wang, Y., Liu, X., Choo, K.R.: Similarity search for
encrypted images in secure cloud computing. IEEE Trans. Cloud Comput., (2020).
https://doi.org/10.1109/TCC.2020.2989923

8. Li, Y., Ma, J., Miao, Y., Liu, L., Liu, X., Choo, K.K.R.: Secure and verifiable
multikey image search in cloud-assisted edge computing. IEEE Trans. Industr. Inf.
17(8), 5348–5359 (2020)

9. Shen, M., Cheng, G., Zhu, L., Du, X., Hu, J.: Content-based multi-source encrypted
image retrieval in clouds with privacy preservation. Futur. Gener. Comput. Syst.
109, 621–632 (2020)

10. Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure KNN computation
on encrypted databases. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, pp. 139–152 (2009)

11. Yuan, J., Yu, S., Guo, L.: Seisa: secure and efficient encrypted image search with
access control. In: 2015 IEEE Conference on Computer Communications (INFO-
COM), pp. 2083–2091. IEEE (2015)

12. Zhou, K., Ren, J.: Passbio: privacy-preserving user-centric biometric authentica-
tion. IEEE Trans. Inf. Forensics Secur. 13(12), 3050–3063 (2018)

https://doi.org/10.1109/TCC.2020.2989923

Applications of Algorithms

Improving Information Cascade Modeling
by Social Topology and Dual Role User

Dependency

Baichuan Liu , Deqing Yang(B) , Yuchen Shi, and Yueyi Wang

School of Data Science, Fudan University, Shanghai 200433, China
{bcliu20,yangdeqing}@fudan.edu.cn

{ycshi21,yueyiwang21}@m.fudan.edu.cn

Abstract. In the last decade, information diffusion (also known as infor-
mation cascade) on social networks has been massively investigated due
to its application values in many fields. In recent years, many sequential
models including those models based on recurrent neural networks have
been broadly employed to predict information cascade. However, the
user dependencies in a cascade sequence captured by sequential mod-
els are generally unidirectional and inconsistent with diffusion trees.
For example, the true trigger of a successor may be a non-immediate
predecessor rather than the immediate predecessor in the sequence. To
capture user dependencies more sufficiently which are crucial to pre-
cise cascade modeling, we propose a non-sequential information cascade
model named as TAN-DRUD (Topology-aware Attention Networks
with Dual Role User Dependency). TAN-DRUD obtains satisfactory
performance on information cascade modeling through capturing the
dual role user dependencies of information sender and receiver, which
is inspired by the classic communication theory. Furthermore, TAN-
DRUD incorporates social topology into two-level attention networks for
enhanced information diffusion prediction. Our extensive experiments on
three cascade datasets demonstrate that our model is not only superior
to the state-of-the-art cascade models, but also capable of exploiting
topology information and inferring diffusion trees.

Keywords: Information cascade · Information diffusion · User
dependency · Social networks · Diffusion tree

1 Introduction

With the development of online social networks, various information spreads
more quickly and broadly on web. The diffusion of a piece of information gener-
ally forms a cascade among different users in the network, which is often observed
as a sequence of activated users who have disseminated the information. The

This work was supported by Shanghai Science and Technology Innovation Action Plan
No. 21511100401.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 425–440, 2022.
https://doi.org/10.1007/978-3-031-00123-9_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_35&domain=pdf
http://orcid.org/0000-0002-6216-3011
http://orcid.org/0000-0002-1390-3861
https://doi.org/10.1007/978-3-031-00123-9_35

426 B. Liu et al.

precise prediction of information diffusion (a.k.a. information cascade) has been
proven crucial to some valuable applications, including market forecast [17],
community detection [1], etc.

Inspired by the success of deep neural networks in computer vision, rec-
ommender systems, etc., more and more researchers also employed DNNs to
model information cascade. In recent years, some deep models based on recur-
rent neural networks (RNNs) [9,25], including the RNNs coupled with attention
mechanism [21], have been proposed to predict information diffusion, since an
information cascade is often modeled as a sequence.

Fig. 1. An example of an information cascade sequence, diffusion tree and social graph.

Despite the effects of these RNN-based models, their sequential assumption
may model the user dependencies inconsistent with the diffusion tree. We take
the example shown in Fig. 1 to elaborate it. Given the following information
cascade c =

{
(A, tA), (B, tB), (C, tC), (D, tD), (E, tE)

}
where user A ∼ E are

sorted according to their activation (disseminating information) time. User A
is the cascade source while user E is last one who disseminates this piece of
information. There is a real diffusion tree behind this cascade sequence which
does not strictly follow the sequential assumption. Suppose a set of chronological
diffusion behaviors is denoted as {(A,B, tB), (A,C, tC), (B,D, tD), (C,E, tE)}
where a triplet (A,B, tB) means A spreads information to B at time tB. Based on
this diffusion behavior set, a real diffusion tree can be reconstructed as shown in
the yellow rectangle of Fig. 1(a). The diffusion tree indicates that D is influenced
by B rather than C to be activated. The RNN-based models fed only with c
would model D to be influenced by C more than B, since they assume one
object in a sequence depends on an immediate predecessor rather than a non-
immediate predecessors. Such modeled user dependency is inconsistent with the
diffusion tree, but could be alleviated if the underlying social graph of these
five users (as depicted in Fig. 1(b)) is provided to guide information cascade
modeling. It shows that the social topology plays an important role in precise
cascade modeling.

Cascade Modeling by Topology and User Dependency 427

Although some sequential models [3,13,14,20,22,26] have taken social topol-
ogy into account when modeling cascade process, they are still not satisfactory
due to their inherent sequential assumption. More recently, a non-sequential
model with hierarchical attention networks [24] has demonstrated good per-
formance through capturing non-sequential dependencies among the users in a
cascade, but this model still neglects the underlying social graph.

In addition, the user dependencies captured by most of previous diffusion
models [21,24,26] are only unidirectional. They suppose a successor is only influ-
enced by a predecessor during information diffusion, whereas the opposite depen-
dency is rarely considered. According to Laswell’s ‘5W’ Communication Model
[10]: Who (sender) says What in Which channel to Whom (receiver) with What
effect, we believe that a user’s role in the process of an information cascade is
not just a single role of sender or receiver, but a dual role of both sender and
receiver. In other words, information diffusion depends not only on how each user
in a cascade behaves as a sender of his/her successors, but also on how each user
behaves as a receiver of his/her predecessors. For example, a Twitter user is easy
to be influenced by his/her followees who often disseminate appealing informa-
tion to him/her. Meanwhile, a users may also be influenced by his/her followers
when he/she decides to disseminate information, i.e., he/she would consider what
kind of information the followers are more likely to receive. Accordingly, cap-
turing such dual role user dependencies instead of single role (unidirectional)
user dependencies is helpful to precise cascade prediction. Unfortunately, such
intuition was overlooked by previous cascade models.

Inspired by above intuitions, in this paper we propose a non-sequential
deep model of information cascade, named as TAN-DRUD (Topology-aware
Attention Networks with Dual Role User Dependency). TAN-DRUD is built
with two-level attention networks to learn optimal cascade representations, which
are crucial to predict information diffusion precisely. At first, the user-level atten-
tion network is used to learn the dependency-aware representation of a user that
serves as the basis of a cascade’s representation. Specifically, each user is first
represented by two separate embeddings corresponding to his/her dual role of
information sender and receiver, respectively. In order to exploit the social topol-
ogy’s indicative effects on information cascade modeling, we employ Node2Vec
[6] to learn topological embeddings upon the social graph, which are used to
adjust the attention values. Through our empirical studies, we have verified that
Node2Vec is more effective than GNN-based graph embedding model [29] in
our model framework. With the topology-adjusted attentions, the user depen-
dencies among a cascade are encoded into dependency-aware user representa-
tions dynamically and sufficiently. Then, the cascade-level attention network is
fed with the combination of dependency-aware user representations, topological
embeddings and time decay information, to learn the cascade’s representation.
Since the cascade-level attentions can be regarded as a historical activated user’s
probability of activating the next user, the diffusion trees can be inferred based
on our model. Our contributions in this paper are summarized as follows:

428 B. Liu et al.

1. We propose a non-sequential cascade model TAN-DRUD with two-level atten-
tion networks, which demonstrates satisfactory performance through captur-
ing dual role user dependencies in information cascades. What’s more, TAN-
DRUD’s performance is enhanced with the aid of social topology.

2. In the user-level attention network of TAN-DRUD, we particularly design a
sender attention module and a receiver attention module to learn two sepa-
rate embeddings for a user in a cascade, which encode dual role user depen-
dencies sufficiently. Such manipulation’s rationale is inspired by the classic
communication model, and has been proven more effective than modeling
user dependencies in terms of single role.

3. We conducted extensive experiments on three real cascade datasets, which not
only justify our model’s advantage over the state-of-the-art diffusion models,
but also demonstrate our model’s capability of inferring diffusion tree.

The rest of this paper is organized as below. In Sect. 2, we introduce some
research works related to information cascade modeling. Next, we formalize the
problem addressed in this paper and introduce our proposed model in detail in
Sect. 3. In Sect. 4, we display our experiment results based on which we provide
further analysis. At last, we conclude our work in Sect. 5.

2 Related Work

Information cascade models in deep learning domain can be divided into two
types: diffusion path based models and topological-based diffusion models.

2.1 Diffusion Path Based Methods

DeepCas [13] is the first end-to-end deep learning model for information diffusion
prediction. It uses the same way as DeepWalk [15] to sample node sequences from
cascade graphs, then bidirectional gated recurrent units (GRU) [4] and attention
mechanism are used to process node sequences and get cascade representations
for prediction. DCGT [12] is an extended model of DeepCas which incorporates
the content of information to predict cascades. [2] is an RNN-based model fed
with diffusion sub-paths, in which a non-parametric time attenuation factor is
applied on the last hidden state of all sub-paths, to represent the self-excitation
mechanism [30] in information diffusion. DeepDiffuse [9] utilizes timestamps and
cascade information to focus on specific nodes for prediction. [25] employs self-
attention and CNNs to alleviate RNN’s disadvantage of long-term dependency.
Unlike above sequential models, HiDAN [24] is a non-RNN hierarchical atten-
tion model which captures dependency-aware user representations in a cascade,
resulting in precise prediction.

2.2 Topological-Based Diffusion Model

TopoLSTM [20] utilizes directed acyclic (social) graph to augment node embed-
ding learning in a cascade. [27] studies the influence of interactions between

Cascade Modeling by Topology and User Dependency 429

users’ social roles during information diffusion. A role-aware information diffu-
sion model is proposed to combine social role information and diffusion sequences
information. [3] builds a shared presentation layer to discover the complementary
information of sequence representations and topology representations, which can
be applied to micro and macro tasks. FOREST [26] employs reinforcement learn-
ing on social graph modeling to solve multi-scale tasks for information diffusion
prediction. [14] uses multi self-attention and social graph information to discov-
ery the long-term dependency, which is crucial for diffusion prediction. Inf-vae
[16] learns topological embeddings through a VAE framework as encoders and
decoders, then an co-attentive fusion network is used to capture complex correla-
tions between topological and temporal embeddings to model their joint effects.
[23] discovers relations between information diffusion and social network through
an identity-specific latent embeddings. DyHGCN [28] implements a dynamic het-
erogeneous graph convolutional network to capture users’ dynamic preferences
between global social graph and temporal cascade graph.

3 Methodology

3.1 Problem Definition

Suppose an observed cascade sequence consists of i users along with their times-
tamps of information dissemination. This sequence is denoted as

ci = {(u1, t1), (u2, t2), . . . , (ui, ti)}
where uj(1 ≤ j ≤ i) is a user and tj is uj ’s timestamp. All users are sorted
chronologically, i.e., t1 < t2 < ... < ti. Moreover, an underlying social graph
G = (V, E) including all users may be obtained, where each user corresponds to
a node in set V and |V| = N . Then, the prediction task of our model is formalized
as: given ci, the model should predict the next user to be activated, denoted as
ui+1, through computing the conditional probability p(ui+1|ci).

3.2 Model Framework

The framework of our model is depicted in Fig. 2. In the user-level attention net-
work, each user is first represented by a sender embedding and a receiver embed-
ding corresponding to his/her dual role. Then, a user’s receiver-role representa-
tion is learned as the attentive sum of his/her predecessors’ sender embeddings.
Likewise, a user’s sender-role representation is learned as the attentive sum of
his/her successors’ receiver embeddings. Furthermore, we utilize the social topo-
logical embeddings learned by Node2Vec to adjust the attention values. Next, a
forget gate mechanism is used to aggregate a user’s dual role representation into
the user’s dependency-aware representation. In cascade-level attention network,
dependency-aware user representations, social topological embedding, and time
information are combined to generate a cascade’s representation for diffusion
prediction.

430 B. Liu et al.

Fig. 2. The framework of our proposed TAN-DRUD consisting of two-level attention
networks. In the user-level attention network, each user in a cascade is first represented
by a sender embedding and a receiver embedding. With these two embeddings and
the topological embeddings, the user’s dependency-aware representation is learned. In
the cascade-level attention network, a cascade’s representation is generated based on
dependency-aware user representations, topological embeddings and time decay, with
which the next activated user is predicted.

3.3 Embedding Preparation

Sender and Receiver Embeddings. Two separate embeddings are first ini-
tialized to represent a given user. We use Xs,Xr ∈ R

N×d to represent sender
embedding matrix and receiver embedding matrix respectively. Each row of the
two matrices represents a user. N is the total number of users, and d is embed-
ding dimension (size). All embeddings in Xs,Xr are initialized in random.

Social Topological Embeddings. Since G is a homogeneous network, the
models towards heterogeneous networks such as Metapath2Vec [5] are not suit-
able for our scenario. In addition, we do not prefer the semi-supervised graph
neural networks (GNNs), e.g., GCN, because such graph embedding models were
primarily designed to aggregate node features which are subject to specific down-
stream tasks. Through our empirical study, we finally adopted Node2Vec to learn
topological embeddings.

Cascade Modeling by Topology and User Dependency 431

3.4 Two-Level Attention Networks

User-Level Attention Network. Given uj in a cascade {(u1, t1), . . . , (ui, ti)},
we first design a sender attention module to learn uj ’s receiver-role representation
dr
j which is computed based on the sender embeddings of {u1, . . . , uj−1}. We

symmetrically learn uj ’s sender-role representation ds
j , which is computed based

on the receiver embeddings of {uj+1, . . . , ui} in receiver attention module .
Formally, suppose uk(1 ≤ k ≤ j − 1) is a predecessor of uj , uk’s sender

attention to uj is αs
kj and computed as

α′s
kj =

exp
(〈

Wo
sx

s
k,W

c
rx

r
j

〉)

∑j−1
l=1 exp

(〈
Wo

sxs
l ,Wc

rxr
j

〉) , (1)

E =
GcG�

c

||Gc|| × ||G�
c || , (2)

αs
kj =

exp (α′s
kjekj)

∑j−1
l=1 exp (α′s

ljelj)
. (3)

In Eq. 1, xs
k is uk’s sender embedding obtained from Xs and xr

j is uj ’s receiver
embedding obtained from Xr. Wo

s ,W
c
r ∈ R

d×d are transformation matrices
and <,> is inner product. According to Eq. 1, the attention α′s

kj captures uj ’s
dependency on uk in terms of the information receiver of uk. In Eq. 2, Gc ∈ R

i×dg

is the matrix consisting of the topological embeddings of {u1, . . . , ui−1, ui}. Thus,
E quantifies the social similarities between u1 ∼ ui. Two social similar users
are more likely to influence each other during information diffusion. Hence we
utilize E’s element ekj , elj to adjust α′s

kj into αs
kj as Eq. 3. Then uj ’s receiver-role

representation dr
j is computed as follows,

d′r
j =

j−1∑

k=1

αs
kjx

s
k, dr

j = d′r
j + xr

j . (4)

Similarly, uj ’s sender-role representation ds
j is computed as

α′r
kj =

exp
(〈

Wo
rx

r
k,W

c
sx

s
j

〉)

∑i
l=j+1 exp

(〈
Wo

rxr
l ,Wc

sxs
j

〉) , (5)

αr
kj =

exp (α′r
kjekj)

∑i
l=j+1 exp (α′r

ljelj)
, (6)

d′s
j =

i∑

k=j+1

αr
kjx

r
k, ds

j = d′s
j + xs

j . (7)

Next, we need to aggregate uj ’s sender-role representation and receiver-role
representation into one dependency-aware representation uj . We use a forget
gating mechanism [20] to implement this operation as follows, since it can wisely

432 B. Liu et al.

decide how much input information should be reserved or forgotten to compose
the output.

m = σ(Ws
mds

j + Wr
mdr

j + bm), (8)
n = σ(Ws

nd
s
j + Wr

nd
r
j + bn), (9)

uj = (1 − m) � ds
j + (1 − n) � dr

j (10)

where σ is Sigmoid function and � is element-wise product. 1 ∈ R
d is a unit

vector. Wm/n ∈ R
d×d and bm/n ∈ R

d in above equations are trainable parame-
ters. ds

j and dr
j generated by the user level attention mechanism are input into

this gated model to obtain the user-level representation of the user. Specifically,
vector m,n ∈ R

d are used to control how much information we should forget for
each type of inputs.

Cascade-Level Attention Network. Three kinds of information are used
in this step: dependency-aware user representation, topological information and
time decay. We first map all topological embeddings in Gc into the embeddings
of d dimensions as follows:

Gnew = tanh (WgGc + bg) (11)

where Gnew ∈ R
i×d is transformed topological embedding matrix. Wg ∈ R

d×dg

and bg ∈ R
d are trainable parameters.

To consider time decay, we first set a unit of time interval as Δt = Tmax/T ,
where Tmax is the max time interval observed from all cascades, and T is the
number of time intervals. Then, given uj ’s time decay interval Δtj = ti − tj ,
we get its time decay vector tj ∈ R

T (one-hot vector), in which only the n-th
element is 1 when n = int(Δtj/Δ

t). int(·) is rounding up operation. We also
map tj into an embedding with the same size as user representations by:

λj = σ(Wttj + bt) (12)

where Wt ∈ R
d×T and bt ∈ R

d are trainable parameters.
Then, uj ’s final representations is computed as

fj = λj � (gj + uj) (13)

where gj is uj ’s topological embedding obtained from Gnew in Eq. 11.
Next, uj ’s time-aware influence to the next activated user can be quantified

by the following attention:

βj =
exp (〈w, fj〉)

∑i
k=1 exp (〈w, fk〉)

(14)

where w ∈ R
d is a trainable embedding.

At last, for a cascade observed until time ti, i.e., ci, its representation ci is
computed based on the adjusted representations of the users in ci. Thus we get

ci =
i∑

j=1

βjfj . (15)

Cascade Modeling by Topology and User Dependency 433

3.5 Prediction and Optimization

Given ci, the activation probability distribution of all users at time ti+1 is
denoted as pi ∈ R

N , and computed as:

pi = softmax(Wcci + bc) (16)

where Wc ∈ Nd×T and bc ∈ R
N are trainable parameters.

Given the training set containing M cascade sequences in which the m-th
cascade is denoted as cm and its length is nm, TAN-DRUD’s learning objective
is to minimize the following log-likelihood loss:

L = − 1
M

M∑

m=1

nm−1∑

i=1

log p̂(ui+1 | cmi) + λL2 (17)

where ui+1 is the truly activated user at time ti+1 given cm, and p̂(ui+1 | cmi) is
fetched from the pi computed according to Eq. 16. λ is the controlling parameter
of L2 regularization. We use stochastic gradient descent and Adam algorithm
for optimization.

4 Experiments

In this section, we try to answer the following research questions through our
empirical studies.

RQ1: Is our TAN-DRUD more effective and efficient than the state-of-the-art
diffusion models?

RQ2: Are the two separate embeddings corresponding to a user’s dual role
helpful for enhanced prediction performance?

RQ3: Is the incorporated social topology helpful for prediction performance?
RQ4: Is the graph embedding model sensitive to TAN-DRUD’s final perfor-

mance?
RQ5: Can the diffusion trees be recovered approximately by our model?

4.1 Datasets and Baselines

We conducted experiments upon the following three datasets often used in infor-
mation diffusion prediction to evaluate our model.

Twitter [7]: As the most prevalent social media, tweet spreading among
Twitter users is a representative kind of information diffusion in social networks.
This dataset contains the tweets with URLs posted in Oct, 2010. The tweets with
the same URL are regarded as an information cascade, thus their publishers are
the activated users in this cascade.

Douban [31]: It is a review sharing website for various resources including
book, movie, music, etc., where users seek their favorite resources based on oth-
ers’ reviews. In this dataset, each book is regarded as a piece of information. A
user is regarded as being activated and joining the cascade of a book if he/she

434 B. Liu et al.

has read this book. Similar to Twitter, each user in Douban can also follow
others.

MemeTracker [11]: It collects massive news stories and blogs from online
websites and tracks popular quotes and phrases as memes. We treat each meme
as a piece of information and each website URL as an activated user. Thus,
social topology does not exist in this dataset, which is used to evaluate the
models without topological information.

The detailed statistics of the datasets are shown in Table 1. We divided all
cascades in each datasets into training set, validation set and test set, according
to the ratio of 8:1:1. TAN-DRUD’s source codes and our experiment samples on
https://github.com/JUNJIN0126/TAN-DRUD.

Table 1. Statistics of the three used datasets.

Dataset Twitter Douban Meme

User number 12,627 23,123 4,709

Cascade number 3,442 10,602 12,661

Average cascade length 32.60 27.14 16.24

Social link number 309,631 348,280 –

We compared TAN-DRUD with the following cascade models, including
sequential models and non-sequential models to verify our TAN-DRUD’s advan-
tages.

DeepDiffuse [9]: It employs embedding technique on timestamps and incor-
porates cascade information to focus on specific nodes for prediction.

Bi-LSTM [8]: The dual role user dependencies can also be regarded as bi-
directional user dependencies in a sequence. So Bi-LSTM consisting of forward
LSTM and backward LSTM can be used to model cascade sequences, and then
predict the next activated user.

TopoLSTM [20]: It is an LSTM-based model incorporated with diffusion
topology, i.e., directed acyclic graph for diffusion prediction.

SNIDSA [22]: It uses attention networks to extract user dependencies from
social graph, then adopts a gate mechanism to combine user information and
sequential information.

FOREST [26]: It employs reinforcement learning framework fed with social
graphs to solve multi-scale tasks for information diffusion.

HiDAN [24]: It is a non-sequential model built with hierarchical atten-
tion networks. Compared with TAN-DRUD, it does not establish two separate
embeddings for users, and omits social graphs.

In addition, we propose a variant AN-DRUD of TAN-DRUD for ablation
study, in which social topological embeddings are absent.

4.2 Experiment Settings

We introduce some important settings of our experiments as follows.

https://github.com/JUNJIN0126/TAN-DRUD

Cascade Modeling by Topology and User Dependency 435

Evaluation Metrics. The next infected user prediction can be regarded as a
ranking problem based on users’ potential probabilities of spreading the informa-
tion. Thus, we adopted Precision on top-K ranking (P@K) and Reciprocal Rank
(RR) as our evaluation metrics, since they are popular to evaluate sequential
ranking [21,24]. Specifically, given a test sample, its P@K = 100% if the true
next activated user ui+1 is in its top-K list ranked according to p̂, otherwise
P@K = 0.

General Settings. We ran the experiments on a workstation with GPU of
GeForce GTX 1080 Ti. For the baseline diffusion models and graph embed-
ding models, we directly used their public source codes, and tuned their hyper-
parameters in terms of optimal prediction performance. The topological embed-
ding size (dg) was set to 128.

TAN-DRUD’s Settings. TAN-DRUD’s hyper parameters includes learning
rate, topological embedding size, user dual role embedding size, time interval
number and so on. We set learning rate to 0.001, λ = 1e−5, and also used
Dropout with the keep probability of 0.8 to enhance our model’s generalization
capability. Due to space limitation, we only display the results of tuning user
dual role embedding dimension d and time interval number T .

In general, the embedding dimension (size) in deep learning models is set
empirically. User information in cascades will not be captured sufficiently if user
dual-role embedding size is too small, while overfitting and high training time
consumption may happen if it is too large. Therefore, we set d to different val-
ues to investigate its influence on our model’s performance. According to the
results in Table 2, we set d = 64 for our model in the subsequent comparison
experiments.

Table 2. TAN-DRUD’s prediction performance (score %) with dual role embedding
sizes (d).

d RR P@10 P@50 P@100

16 14.31 24.33 43.56 53.50

32 15.53 26.30 45.12 54.58

64 16.62 28.13 45.61 55.43

128 15.82 27.53 45.17 54.62

The time interval number T is used to generate the time decay vector in
Eq. 12. Small T results in coarse-grained representations of time decay between
different users in a cascade. Thus the temporal features can not contribute to
precise cascade modeling. By contrast, large T leads to the time decay vector of
large size, resulting in high training time consumption. According to the results
in in Table 3, we set T = 50 for our model in the subsequent comparison exper-
iments.

436 B. Liu et al.

Table 3. TAN-DRUD’s prediction performance (score %) with different time interval
numbers (T).

T RR P@10 P@50 P@100

1 15.95 27.12 45.53 55.91

10 15.84 27.26 45.06 55.04

50 16.62 28.13 45.61 55.43

100 16.32 27.52 46.04 55.36

Table 4. Prediction performance (score %) of all compared models for the three
datasets. The best performance scores among all compared models are indicated in
bold. The performance scores of leading baseline are underlined.

Model Dataset

Twitter Douban Meme

RR P@10 P50 P100 RR P@10 P@50 P@100 RR P@10 P@50 P@100

DeepDiffuse 2.21 4.45 14.35 21.61 3.23 9.02 14.93 19.13 6.48 13.45 30.10 41.31

Bi-LSTM 7.12 13.41 26.71 36.06 7.95 15.97 29.89 37.41 12.32 24.73 46.27 56.33

Topo-LSTM 4.56 10.17 21.37 29.29 3.87 8.24 16.61 23.09 – – – –

SNIDSA – 23.37 35.46 43.39 – 11.81 21.91 28.37 – – – –

FOREST 17.49 24.63 37.73 46.20 8.19 13.58 23.47 29.69 16.76 28.49 45.85 55.19

HiDAN 12.99 22.45 35.51 43.01 8.78 17.40 32.37 40.49 15.31 29.03 50.01 60.07

AN-DRUD 13.54 23.28 36.90 45.28 8.91 17.72 32.73 41.01 16.32 29.48 51.09 61.33

TAN-DRUD 16.62 28.13 45.61 55.43 9.41 18.21 34.26 42.02 – – – –

Improv. rate% −4.97 14.21 20.89 19.98 7.18 4.66 5.84 3.78 −2.63 1.56 2.16 2.10

4.3 Results and Analysis

In this subsection, we display the results of our comparison experiments, based
on which we further provide some insights.

Efficacy Performance Comparison. To answer RQ1, we first exhibit all
models’ mean performance scores (averaged over 5 runnings for each model) in
Table 41, where Topo-LSTM, SNIDASA and TAN-DRUD’s scores in Meme are
absent since they need social topology. The best performance scores among all
compared models are indicated in bold. The performance scores of leading base-
line are underlined, which has the best performance among all baseline models.
We also provide the improvement rate of our model (TAN-DRUD in Twitter and
Douban, AN-DRUD in Meme) w.r.t. the leading baseline in the table’s bottom
row.

Based on the results, we propose the following analysis.

1. TAN-DRUD outperforms all baselines remarkably in Douban, especially in
P@K. In Meme where social graphs are missing, AN-DRUD also has the best

1 For SNIDSA, we directly cited the results in its original paper where RR is missing.

Cascade Modeling by Topology and User Dependency 437

performance except for RR compared with FOREST. Please note that FOR-
EST predicts the number of potential users in the cascade at first, and then
explores the subsequent users. With a special module of cascade simulation
for macroscopic prediction, FOREST is more capable of capturing some true
next activated users on first place. As a result, FOREST has the highest RR
in Twitter and Meme. However, FOREST’s lower P@k implies that the rest
true next activated users in it have lower ranks than that of our model.

2. AN-DRUD’s superiority over HiDAN shows that, using two separate embed-
dings to capture dual role user dependencies is more effective than capturing
single role (unidirectional) user dependencies (to answer RQ2). AN-DRUD
also outperforms Bi-LSTM, justifying that our designed mechanism is bet-
ter than Bi-LSTM to capture bi-directional user dependencies in a cascade
sequence. This conclusion is confirmed by the comparison results of both
RNN-based models and non-sequential models, justifying that a user joins a
cascade as a dual role of information sender and receiver rather than a single
role.

3. TAN-DRUD’s superiority over AN-DRUD justifies social topology’s positive
effects on diffusion prediction (to answer RQ3). Moreover, TAN-DRUD’s
superiority in Twitter is more prominent than Douban. It is because that
Twitter is a more typical social platform where most information spreads
along social links. Hence, Twitter’s social topology plays a more important
role in information diffusion.

Efficiency Performance Comparisons. Then, we only compared TAN-
DRUD’s efficiency with the baselines which are also fed with social topology,
since topology computation is generally the most time-consuming step of these
models. For average time consumption of one epoch (including training and test),
Topo-LSTM takes 4,915s, FOREST takes 1,800s while TAN-DRUD takes 23.7s.
Even added with the time consumption of Node2Vec (695.2s), TAN-DRUD’s
time cost is much lower than Topo-LSTM and FOREST. The reason of our
model’s higher efficiency is two-fold: 1. TAN-DRUD is a non-sequential model in
which matrix computation can be parallelized. 2. We used Node2Vec to generate
topological embeddings as pre-training, which avoids topology computation in
every epoch.

Influence of Graph Embedding Model. To answer RQ4, we further tested
different graph embedding models’ influence to TAN-DRUD’s performance. In
our experiments, we selected five graph embedding models suitable for homo-
geneous graphs, i.e., SDNE [19], LINE [18], DeepWalk [15], Node2Vec [6] and
SCE [29] to learn the topological embeddings fed into TAN-DRUD. The corre-
sponding performance scores upon Twitter are shown in Table 5.

On various social networks, many users may interact with or are influenced
by remote users rather than their direct neighbors. Thus, the models which
can capture high-order connections would be more competent to our scenario.
Unlike SDNE and LINE that only model first and second order connections,

438 B. Liu et al.

DeepWalk and Node2Vec can capture high-order connections, resulting in better
performance. Moreover, Node2Vec can sample more high-order neighbors than
DeepWalk with breadth-first and depth-first sampling, thus it has the best per-
formance. SCE is a new unsupervised graph embedding model based on GNN,
which uses a contrastive objective based on sparsest cut problem. It may be not
suitable for this relatively sparse Twitter’s social graph, thus showing unsatis-
factory performance compared with other graph embedding models.

Table 5. TAN-DRUD’s prediction performance (score %) upon Twitter with different
graph embedding models.

Model RR P@10 P@50 P@100

SDNE 16.27 26.68 41.96 51.58

LINE 15.50 26.71 43.66 53.12

DeepWalk 16.55 27.84 46.06 55.25

Node2Vec 16.62 28.13 45.60 55.43

SCE 13.59 24.20 40.54 50.75

Fig. 3. Case study of diffusion tree inference.

Diffusion Tree Inference. In fact, the cascade-level attentions of TAN-DRUD
and HiDAN quantify the probabilities of different historical activated users trig-
gering the next user. Specifically, given a user ui+1 activated at time ti+1, we
assume that the user in ci who has the highest attention value (βj in Eq. 14)
triggers ui+1, i.e., is ui+1’s parent node in the diffusion tree. Accordingly, the
diffusion tree of an observed cascade can be inferred. We illustrate two case stud-
ies to answer RQ5. The first case was extracted from the dataset RD-Exp [21]

Cascade Modeling by Topology and User Dependency 439

including social networks. This cascade sample’s real diffusion tree was pro-
vided by [24]. So we can compare the diffusion trees inferred by TAN-DRUD
and HiDAN with the ground truth, as shown in Fig. 3(a). It shows that, TAN-
DRUD’s inferred diffusion tree is more approximate to the upper real diffusion
tree than HiDAN’s tree. In addition, Fig. 3(b) only displays the real social graph
of a cascade’s users in Twitter, since real diffusion trees do not exist in Twitter
dataset. It also shows that TAN-DRUD’s diffusion tree is more approximate to
the real social graph, implying that TAN-DRUD’s attentions are more precise
than HiDAN’s attentions.

5 Conclusion

In this paper, we propose a non-sequential information cascade model TAN-
DRUD built with two-level attention networks. TAN-DRUD obtain satisfac-
tory performance through capturing dual role user dependencies in a cascade
sequence, and incorporating social topology into cascade modeling. Our exten-
sive experiments on three real datasets demonstrate TAN-DRUD’s higher effi-
cacy and efficiency over the state-of-the-art diffusion models, and also prove that
diffusion tree can be inferred approximately by our model.

References

1. Barbieri, N., Bonchi, F., Manco, G.: Cascade-based community detection. In: Pro-
ceedings of WSDM, pp. 33–42 (2013)

2. Cao, Q., Shen, H., Cen, K., Ouyang, W., Cheng, X.: Deephawkes: bridging the gap
between prediction and understanding of information cascades. In: Proceedings of
CIKM, pp. 1149–1158 (2017)

3. Chen, X., Zhang, K., Zhou, F., Trajcevski, G., Zhong, T., Zhang, F.: Information
cascades modeling via deep multi-task learning. In: Proceedings of SIGIR, pp.
885–888 (2019)

4. Cho, K., Van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: encoder-decoder approaches. Computer Science (2014)

5. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning
for heterogeneous networks. In: Proceedings of KDD (2017)

6. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of KDD, pp. 855–864 (2016)

7. Hodas, N.O., Lerman, K.: The simple rules of social contagion. Sci. Rep. 4, 4343
(2014)

8. Huang, Z., Xu, W., Yu, K.: Bidirectional lstm-crf models for sequence tagging.
arXiv preprint arXiv:1508.01991 (2015)

9. Islam, M.R., Muthiah, S., Adhikari, B., Prakash, B.A., Ramakrishnan, N.: Deep-
diffuse: predicting the ‘who’ and ‘when’ in cascades. In: Proceedings of ICDM, pp.
1055–1060. IEEE (2018)

10. Lasswell, H.D.: The structure and function of communication in society. Commun.
Ideas 37(1), 136–139 (1948)

11. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the
news cycle. In: Proceedings of KDD, pp. 497–506 (2009)

http://arxiv.org/abs/1508.01991

440 B. Liu et al.

12. Li, C., Guo, X., Mei, Q.: Joint modeling of text and networks for cascade prediction.
In: Proceedings of the International AAAI Conference on Web and Social Media,
vol. 12 (2018)

13. Li, C., Ma, J., Guo, X., Mei, Q.: Deepcas: an end-to-end predictor of information
cascades. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 577–586 (2017)

14. Liu, C., Wang, W., Jiao, P., Chen, X., Sun, Y.: Cascade modeling with multihead
self-attention. In: Proceedings of IJCNN, pp. 1–8. IEEE (2020)

15. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of KDD, pp. 701–710 (2014)

16. Sankar, A., Zhang, X., Krishnan, A., Han, J.: Inf-vae: a variational autoencoder
framework to integrate homophily and influence in diffusion prediction. In: Pro-
ceedings of the 13th International Conference on Web Search and Data Mining,
pp. 510–518 (2020)

17. Shen, H.W., Wang, D., Song, C., Barabási, A.L.: Modeling and predicting popu-
larity dynamics via reinforced poisson processes. arXiv preprint arXiv:1401.0778
(2014)

18. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale infor-
mation network embedding. In: Proceedings of WSDM, pp. 1067–1077 (2015)

19. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of KDD, pp. 1225–1234 (2016)

20. Wang, J., Zheng, V.W., Liu, Z., Chang, K.C.C.: Topological recurrent neural net-
work for diffusion prediction. In: Proceedings of ICDM, pp. 475–484. IEEE (2017)

21. Wang, Y., Shen, H., Liu, S., Gao, J., Cheng, X.: Cascade dynamics modeling with
attention-based recurrent neural network. In: Proceedings of IJCAI, pp. 2985–2991
(2017)

22. Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with
structure attention. In: Proceedings of CIKM, pp. 1795–1798 (2018)

23. Wang, Z., Chen, C., Li, W.: Joint learning of user representation with diffusion
sequence and network structure. IEEE Trans. Knowl. Data Eng. (2020)

24. Wang, Z., Li, W.: Hierarchical diffusion attention network. In: Proceedings of
IJCAI, pp. 3828–3834 (2019)

25. Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., Luan, H.: Neural diffusion model for
microscopic cascade prediction. arXiv preprint arXiv:1812.08933 (2018)

26. Yang, C., Tang, J., Sun, M., Cui, G., Liu, Z.: Multi-scale information diffusion
prediction with reinforced recurrent networks. In: Proceedings of IJCAI, pp. 4033–
4039 (2019)

27. Yang, Y., et al.: Rain: social role-aware information diffusion. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

28. Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S.: Dyhgcn: a dynamic het-
erogeneous graph convolutional network to learn users’ dynamic preferences for
information diffusion prediction. arXiv preprint arXiv:2006.05169 (2020)

29. Zhang, S., Huang, Z., Zhou, H., Zhou, Z.: Sce: scalable network embedding from
sparsest cut. In: Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining pp. 257–265 (2020)

30. Zhao, Q., Erdogdu, M.A., He, H.Y., Rajaraman, A., Leskovec, J.: Seismic: a self-
exciting point process model for predicting tweet popularity. In: Proceedings of
KDD, pp. 1513–1522 (2015)

31. Zhong, E., Fan, W., Wang, J., Xiao, L., Li, Y.: Comsoc: adaptive transfer of user
behaviors over composite social network. In: Proceedings of KDD, pp. 696–704
(2012)

http://arxiv.org/abs/1401.0778
http://arxiv.org/abs/1812.08933
http://arxiv.org/abs/2006.05169

Discovering Bursting Patterns over
Streaming Graphs

Qianzhen Zhang, Deke Guo(B), and Xiang Zhao(B)

Science and Technology on Information Systems Engineering Laboratory,
National University of Defense Technology, Changsha, China

{dekeguo,xiangzhao}@nudt.edu.cn

Abstract. A streaming graph is a constantly growing sequence of
directed edges, which provides a promising way to detect valuable infor-
mation in real time. A bursting pattern in a streaming graph represents
some interaction behavior which is characterized by a sudden increase
in terms of arrival rate followed by a sudden decrease. Mining bursting
pattern is essential to early warning of abnormal or notable event. While
Bursting pattern discovery enjoys many interesting real-life applications,
existing research on frequent pattern mining fails to consider the bursting
features in graphs, and hence, may not suffice to provide a satisfactory
solution. In this paper, we are the first to address the continuous burst-
ing pattern discovering problem over the streaming graph. We present an
auxiliary data structure called BPD for detecting the burst patterns in
real time with a limited memory usage. BPD first converts each subgraph
into a sequence, and then map it into corresponding tracks based on hash
functions to count its frequency in a fixed time window for finding the
bursting pattern. Extensive experiments also confirm that our approach
generate high-quality results compared to baseline method.

1 Introduction

A streaming graph G is an unbounded sequence of items that arrive at a high
speed, and each item indicates an edge between two nodes. Together these items
form a large dynamic graph. Typical examples of streaming graphs include social
media streams and computer network traffic data. Streaming graph analysis is
gaining importance in various fields due to the natural dynamicity in many real
graph applications. Various types of queries over streaming graphs have been
investigated, such as subgraph match [4,9,10], frequent pattern mining [2,11],
and triangle counting [6]. However, discovering bursting patterns in real-world
streaming graphs remains an unsolved problem.

A Burst pattern is a subgraph that is characterized by a sudden increase
in terms of arrival rate followed by a sudden decrease. The arrival rate of a
subgraph refers to the number of matching results via isomorphism [7] in a
fixed time window. Bursting pattern often indicates the happening of abnormal
or notable events. We next use an example of monitoring the happening of
abnormal business shifting to illustrate its basic idea.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 441–458, 2022.
https://doi.org/10.1007/978-3-031-00123-9_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_36&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_36

442 Q. Zhang et al.

Fig. 1. Business shifting pattern and its burstiness

Example 1. Consider trading networks, e.g., Panama1, which is a real-word net-
work, where each vertex is an offshore entity (e.g., company, country, jurisdic-
tion) and each edge represents corresponding relationship (e.g., establish, close)
between two entities. In such a streaming graph, a bursting pattern is helpful to
unveiling the burst of some financial activities among companies. Figure 1 shows
a business shifting pattern P that we have mined from Panama (see Fig. 1(1)) and
its corresponding matching results during different time intervals (see Fig. 1(2)).
It states that the statuses of lots of companies become active with jurisdic-
tion areas of those companies changed from “BVI” (British Virgin Islands) to
“Panama” during [4, 7]. Interestingly, P corresponds to a fact that when BVI
cracks down the bearer shares, many companies moved bearer share clients to
Panama during time interval [4, 7]. Based on P , it is easy to find the companies
that are breaking the law of BVI through subgraph matching calculations.

Specifically, given a streaming graph G and an integer k, continuous bursting
pattern discovering problem is to find the k-edge subgraph patterns that consist
of a sudden increase and a sudden decrease in terms of arrival rate in the graph.

Challenges. In practice, the large scale and high dynamicity of streaming graph
make it both memory and time consuming to discovering bursting patterns accu-
rately. It is a natural choice to resort to efficiently compute approximations with
limited memory. In the literature, there are solutions to solve another related
problem: frequent subgraph pattern mining problem in a streaming graph [2,11].
The main idea is to maintain a uniform sample of subgraphs via reservoir sam-
pling [16], which in turn allows to ensure the uniformity of the sample when an
edge insertion occurs and then estimate the frequency of different patterns.

This process can be extended to support continuous bursting pattern dis-
covering: estimate the frequency of each k-edge pattern P at each time window
based on the sampling and then verify whether the frequency of P is char-
acterized by a sudden increase in terms of arrival rate followed by a sudden
decrease. Since the estimation accuracy depends on the sample size, the algo-
rithm needs to maintain a large number of k-edge subgraphs for mining the
bursting patterns accurately, which is memory consuming. What’s more, the
algorithm needs to conduct expensive subgraph matching calculations for these
sampled subgraphs to estimate the frequency of each subgraph pattern after
1 https://offshoreleaks.icij.org/pages/database.

https://offshoreleaks.icij.org/pages/database

Bursting Patterns Mining 443

all updates have occurred at current timestamp, which is time consuming. In
this light, advanced techniques are desiderated to discovery bursting patterns
efficiently.

Our Solution. Based on the above discussion, existing frequent subgraph pat-
tern mining approach over the streaming graph is not suitable for mining burst-
ing patterns. Our paper aims for a new way to solve the problem. Our main
idea is as follows: instead of using the sampling techniques to maintain the k-
edge subgraphs, we propose to design an auxiliary data structure called BPD
to accurately detect bursting patterns in real time. We use d buckets, each k-
edge subgraph will be mapped into one cell of the buckets by hash functions
h1(·), · · · , hd(·) to count the frequency directly. In this way, we can avoid storing
any k-edge subgraph in the mining process.

Contributions. In this paper, we make the following contributions: 1) We are
the first to propose the problem of continuous discovering the bursting patterns
over real streaming graph. 2) We propose the BPD for counting the frequency
of each k-edge subgraph pattern with accuracy and efficiency guarantee under
limited memory. 3) We design a new graph invariant that map each subgraph
to its sequence space representation in the BPD for deriving high efficiency. 4)
We propose an edge sampling strategy to speed up the subgraph pattern mining
process. 5) Extensive experiments confirm that our method outperforms the
baseline solution in terms of efficiency, memory size and estimation accuracy.

2 Preliminaries

A streaming graph G is a constantly time evolving sequence of items
{e1, e2, e3, · · · , en}, where each item ei = (vi1 , vi2 , t(ei)) indicates a directed
edge from vertices vi1 to vi2 arriving at time t(ei) and the subscripts of the ver-
tices are vertex IDs. This sequence continuously arrives from data sources like
routers or monitors with high speed. It should be noted that the throughput
of the streaming graph keeps varying. There may be multiple (or none) edges
arriving at each time point. For simplicity of presentation, we only consider ver-
tex labelled graphs and ignore edge labels, although handling the more general
case is not more complicated. A streaming graph G is given in Fig. 2.

Fig. 2. Streaming graph

444 Q. Zhang et al.

Definition 1 (Snapshot graph). A snapshot graph at timestamp t, denoted
as Gt, is a graph induced by all the edges in G that have been observed up to and
including time t.

A subgraph Sk = (VS , ES) is referred to as a k-edge subgraph if it is induced
by k edges in Gt. For any t ≥ 0, at time t + 1 we receive an edge insertion e and
add it into Gt to obtain Gt+1. For each newly inserted edge e in Gt+1, we use
the notation Ek(e) to denote the set of k-edge subgraphs that contain e in Gt+1.

Definition 2 (Subgraph isomorphism). Two subgraphs S′
k and S′′

k are iso-
morphic if there exists a bijection f : V ′

S → V ′′
S such that 1) ∀v ∈ V ′

S, L(v) =
L(f(v)), and 2) ∀(vi, vj) ∈ E′

S, (f(vi), f(vj)) ∈ E′′
S.

Let C be a set of k-edge subgraphs that have isomorphism relation. We call
the generic graph P = (VP , EP , L) that is isomorphic to all the members of C
the k-edge pattern of C, where VP is a set of vertices in P , EP is a set of directed
edges with size k, L is a function that assigns a label for each vertex in VP . Note
that, P can be obtained by deleting the IDs (resp. timestamps) of the vertices
(resp. edges) of any k-edge subgraph in C.

Given a newly inserted edge e in Gt and a k-edge subgraph pattern P , we use
η(e, P) to denote the number of k-edge subgraphs in Ek(e) that are isomorphic
to P . In this way, the frequency of P at timestamp t, denoted by fre(t, P), can
be represented as the sum of η(e, P) for each edge e with t(e) = t in Gt.

Table 1. Notations

Notations Description

G/Gt The temporal graph/The snapshot graph of G at time t

Sk/P A k-edge subgraph/A k-edge subgraph pattern

Ek(e) The k-edge subgraphs that contain each newly inserted edge e

fre(t/W, P) The frequency of P at time t/in window W

W/σ/B/L Window size/Burst ration/Burst threshold/Burst width

FT(P) The frequencies set of P at recent (L + 2) · W timestamps

S/M The set of sampled subgraphs/The size of S

Burst Detection. Burst, is a particular pattern of the changing behavior in
terms of the arrival rate of a k-edge subgraph pattern in a streaming graph, and
the pattern consists of a sudden increase and a sudden decrease. Given a k-edge
pattern P , to obtain the arrival rate of P , we need to calculate the frequency
of P in a fixed window. In specific, we divide the streaming graph into time-
based fixed-width windows, i.e., W1, · · · ,Wn, from current timestamp t, each of
which has size W. The frequency of P in window Wm, denoted by fre(Wm, P),

Bursting Patterns Mining 445

is the sum of fre(tl, P) for each timestamp tl ∈ Wm. A sudden increase means
in two adjacent windows, the frequency of P in the second window is no less
than σ times of that in the first window. Similarly, a sudden decrease is that
the frequency of P in the second window is no more than 1

σ of that in the first
window. We do not consider infrequent bursting patterns as bursts, for they
are not useful in most applications, so the frequency of a burst pattern should
exceed a burst threshold B. In practice, a burst occurs over a short period of
time. Therefore, we set a limitation L for the width of a burst, namely, the
number of windows that the burst lasts.

Definition 3 (Burst pattern). Given a snapshot graph Gt and a k-edge sub-
graph pattern P . P is a bursting pattern if there exists four windows Wi, Wi+1,
Wj, Wj+1 from t such that 1) fre(Wi+1, P) ≥ σ · fre(Wi, P) ∧ fre(Wj+1, P) ≤
1
σ · fre(Wj , P) ∧ j > i; 2) fre(Wm, P) ≥ B, ∀m ∈ {i + 1, · · · , j} ∧ j − i ≤ L.
Problem Statement. Given a streaming graph G, and parameters W, B and
L, bursting patterns discovery computes the set of k-edge subgraph patterns
that consists of a sudden increase and a sudden decrease in terms of arrival rate.

Frequently used variables are summarized in Table 1.

3 The Baseline Solution

In the literature, the state-of-the-art algorithm proposed in [2] resorts to the
sampling framework, aiming to estimate the frequency of a k-edge pattern by
maintaining a uniform sample when an edge update occurs. To obtain a reason-
able baseline, in this section, we extend the algorithm proposed in [2], and design
an sample-and-verify algorithm to compute the bursting patterns by estimating
the frequency of a k-edge pattern P in each window from current timestamp
t. According to Definition 3, we need at most L + 2 windows from t to verify
whether P is a bursting pattern. As a result, we need to maintain fre(tl, P)
where tl ∈ (t − (L + 2) · W, t] to estimate the frequency of P in each window.

The Sample-and-Verify Algorithm. We briefly introduce the sample-and-
verify algorithm (Algorithm 1). We use a set PatternSet to store the generated
k-edge patterns and their frequencies at recent (L+2) ·W timestamps from time
t. Each item in the PatternSet is a triple (P, ̂fre(t, P),FT(P)), where P is a
k-edge pattern, ̂fre(t, P) is an estimation of fre(t, P) and FT(P) is a queue with
limited size (L + 2) · W that is used to store the frequencies set of P . Initially,
it calls initializeFre to initialize the PatternSet (Line 1). That is, initializeFre

sets ̂fre(t, P) ← 0 for each pattern P in the PatternSet. Then, it updates the
PatternSet by calling estFrequency (Line 2). After that, if t − (L + 2) · W ≥ 0,
for each pattern P in the PatternSet, it estimates the frequency of P at each
time window based on FT(Pi) to verify whether P satisfies the bursting feature
(Line 3–5). Finally, it returns all bursting patterns at timestamp t (Line 6).

446 Q. Zhang et al.

Algorithm 1: findBP
Input : Gt is the snapshot graph at time t; Et is the set of edge insertions at time t;

k, W, B, L, σ, M, are the parameters.
Output : The set of bursting patterns.

1 PatternSet ← initializeFre(PatternSet);
2 BurstSet ← ∅, PatternSet ← estFrequency(Et, Gt, M, PatternSet);
3 if t − (L + 2) · W ≥ 0 then
4 foreach (P, FT(P)) in the PatternSet do
5 if BurstCheck(FT(P)) = true then BurstSet ← BurstSet ∪ {P};
6 return BurstSet;

Function estFrequency(Et, Gt, M)
1 Nt ← 0, b ← 0, S ← ∅;
2 foreach edge insertion e in Et do
3 Ek(e) ← findSubgraph(e, Gt);
4 foreach subgraph Sk in Ek(e) do
5 Nt ← Nt + 1;
6 ReservoirSampling(S, M, Nt, Sk);

7 calculate the k-edge patterns from S;
8 if t − (L + 2) · W < 0 then b ← t;
9 else b ← (L + 2) · W;

10 foreach k-edge pattern Pi do

11 if P is in the PatternSet then ̂fre(t, P) ← freS (t,P)
M · Nt ;

12 if P is not in the PatternSet then add b − 1 zeros to FT(P), insert

(P, ̂fre(t, P), FT(P)) into the PatternSet ;

13 foreach k-edge pattern P in the PatternSet do

14 add ̂fre(t, Pi) to FT(P);

15 return PatternSet;

Function estFrequency. estFrequency maintains a uniform sample S of fixed size
M of k-edge subgraphs based on the standard reservoir sampling. Let Nt be the
number of k-edge subgraphs at time t that is initialized as 0 (Line 1). Whenever
an edge insertion e occurs at timestamp t, estFrequency first calls findSubgraph
(Omitted) to calculates Ek(e) (Line 3). In detail, findSubgraph explores a candi-
date subgraph space in a tree shape in Gt, each node representing a candidate
subgraph, where a child node is grown with one-edge extension from its parent
node. The intention is to find all possible subgraphs with size k grown from e.
To avoid duplicate enumeration of a subgraph, findSubgraph checks whether two
subgraphs are composed of the same edges at each level in the tree space.

Then, for each k-edge subgraph Sk in Ek(e), estFrequency sets Nt ← Nt + 1
and checks whether |S| < M ; if so, estFrequency adds Sk into the sample S
directly. Otherwise, if |S| = M , estFrequency removes a randomly selected sub-
graph in S and inserts the new one Sk with probability M/Nt (Lines 2–6). After
dealing with all edge insertions, estFrequency partitions the set of subgraphs
in S into Tk equivalence classes based on subgraph isomorphism, denoted by
C1, · · · , CTk

, and calculate the k-edge subgraph pattern P of each equivalence
class Ci (i ∈ [1, Tk]) (Line 7). The frequency of P in S at timestamp t, denoted
by freS(t, P), is the number of subgraphs in corresponding equivalence class. As
proofed in [2], | freS(t,P)

|S| − fre(t,P)
Nt

| ≤ ε
2 holds with probability at least 1−δ if we

set M = log(1/δ) · (4 + ε)/ε2 where 0 < ε, δ < 1 are user defined constants. We

Bursting Patterns Mining 447

denote ̂fre(t, P) = freS(t,P)
M · Nt as an (ε, δ)-approximation to fre(t, P). After

that, estFrequency updates the PatternSet. Let b be the number of elements in
each FT(·) at timestamp t (Lines 8–9). There are two possible cases: (1) if P is
in the PatternSet, estFrequency sets ̂fre(t, P) ← freS(t,P)

M · Nt (Line 11); (2) if
P is not in the PatternSet, estFrequency adds b − 1 zeros to FT(P) and inserts
(P, ̂fre(t, P),FT(P)) into the PatternSet (Line 12). Finally, estFrequency adds
̂fre(t, P) to FT(P) for each pattern P in the PatternSet (Lines 13–14).

Complexity Analysis. There are four main steps in algorithm findBP. (1)
In the k-edge subgraphs enumeration process, given an edge insertion e in Gt,
let n be the number of vertices of the subgraph extended from e with radius
k. findSubgraph takes O(2n2

) to find the k-edge subgraphs that contain e. (2)
For each k-edge subgraph, estFrequency takes O(1) to add each new produced
subgraph into the reservoir. (3) Let ε and be the average unit time to verify
whether two k-edge subgraphs are isomorphic. estFrequency takes O((M3−M)·ε)
to partition the subgraphs in S into Tk equivalence classes. (4) Let D be the
number of patterns in the PatternSet. estFrequency takes O(Tk ·D · ε) to update
the Patternset and takes O(1) to verify whether a pattern is a bursting pattern.

4 A New Approach

In this section, we first analyze the drawbacks of the baseline solution, and then
introduce our proposed approximate data structure called BPD to significantly
reduce the memory and computational cost in quest of bursting patterns.

4.1 Problem Analysis

Why Costly? Algorithm findBP is not scalable enough to handle large stream-
ing graphs with high speed due to the following three drawbacks:

• Drawback 1: Large Memory Cost. Recall that findBP needs to maintain
log(1/δ) · (4 + ε)/ε2 k-edge subgraphs if the throughput of the streaming
graph is huge at time t. As a result, if we use the parameters setting in [2],
i.e., δ = 0.1, ε = 0.01, there are more than 104 k-edge subgraphs to store at
time t, which consumes a large amount of memory.

• Drawback 2: Repeated Subgraph Matching. To update the PatternSet at each
timestamp, estFrequency first partitions the set of subgraphs in sample S
and calculates the k-edge subgraph patterns based on subgraph isomorphism.
Then, estFrequency needs to re-execute subgraph isomorphism calculation for
each pattern to check whether it exists in the PatternSet, which can be
detrimental.

Our Idea. We devise a new algorithm for bursting pattern discovery, which can
overcome the drawbacks introduced above. In the new algorithm, we propose
an auxiliary data structure called BPD to calculate the frequency of a pattern

448 Q. Zhang et al.

Fig. 3. Data structure of BPD

at each timestamp. Specially, for each new produced k-edge subgraph, we use a
hash function to map it into a fixed position in the BPD. In this way, we can
count the frequency of the pattern directly without storing any subgraphs, and
thus avoiding the repeated subgraph isomorphism calculation in the sample.

BPD Structure (Fig. 3). BPD consists of d buckets, each of which consists of l
cells. Let Hi[j] be the jth cell in the i bucket. Each cell has three fields: a pattern
Pi, fre(t, Pi) and the frequencies set FT(Pi) (See Algorithm 1). The d buckets are
associated with d pairwise independent hash functions h1(·), · · · , hd(·), respec-
tively. Each k-edge subgraph Sk will be mapped to the fixed cell in a bucket
based on the hash functions. That is, for each hash function hi (i ∈ [1, d]), we
map Sk into Hi[·] based on hi; if Sk is not isomorphic to the pattern in Hi[·], we
map Sk into Hi+1[·] based on hi+1. It is worth noting that the number of buck-
ets determines the maximal number of hash collisions for storing a new pattern.
Therefore, we recommend using enough buckets to achieve higher accuracy.

4.2 The Progressive Algorithm Framework

The new algorithm findBP+ is shown in Algorithm 2, which follows the same
framework of Algorithm 1 with different frequency estimation process. It first
calls initializeFre to initialize the auxiliary data structure BPD (Line 1). Then it
calls the new procedure updateBPD to estimate the frequnencies set FT(P) for
each pattern P in the BPD, which is described as follows (Line 2).

Function updateBPD. Initially, updateBPD calculates the constant b and the
subgraphs set Ek(e) for each edge insertion e ∈ Et (Lines 1–5). Recall that b is
the number of the elements in each FT(·) at timestamp t. Then, for each new
produced k-edge subgraph Sk, updateBPD hashes Sk into d mapping buckets
according to two cases:

Case 1 : Sk is isomorphic to the pattern P in Hi[hi(Sk)]. updateBPD just
increments the frequency of P at time t by 1 (Lines 7–8).

Bursting Patterns Mining 449

Algorithm 2: findBP+

Input : Gt is the snapshot graph at time t; Et is the set of edge insertions at time t;
k, W, B, L, σ are the parameters.

Output : The set of bursting patterns.
1 BurstSet ← ∅, BPD ← initializeFre(BPD);
2 BPD ← updateBPD(Et, Gt,BPD);
3 if t − (L + 2) · W ≥ 0 then
4 foreach cell Hi[j] in the BPD do
5 if Hi[j] �= ∅ and BurstCheck(FT(P)) = true then BurstSet ← BurstSet ∪ {P};
6 return BurstSet;

Function updateBPD(Et, Gt,BPD)
1 b ← 0;
2 if t − (L + 2) · W < 0 then b ← t;
3 else b ← (L + 2) · W;
4 foreach edge insertion e in Et do
5 Ek(e) ← findSubgraph(e, Gt);
6 foreach subgraph Sk in Ek(e) do
7 foreach i ∈ [1, d] do
8 if Sk is isomorphic to Hi[hi(Sk)] then fre(t, P) ← fre(t, P) + 1, break;
9 if Sk is not isomorphic to Hi[hi(Sk)] and Hi+1[hi+1(Sk)] is empty then

10 calculate the pattern P of Sk, add b − 1 zeros to FT(P);
11 insert (P, 1, FT(P)) into Hi+1[hi+1(Sk)];

12 foreach cell Hi[hi(Sk)] in BPD do
13 if Hi[hi(Sk)] is not empty then add fre(t, P) into FT(P);

14 return BPD;

Case 2 : Sk is not isomorphic to the pattern P in Hi[hi(Sk)] and the cell
Hi+1[hi+1(Sk)] is empty. updateBPD first calculates the pattern of Sk by deleting
its vertex IDs and edge timestamps, and adds b−1 zeros to FT(P) (Lines 9–10).
Then updateBPD inserts (P, 1,FT(P)) into Hi+1[hi+1(Sk)] (Line 11).

updateBPD next adds fre(t, P) into FT(P) for each nonempty bucket in the
BPD and returns the updated BPD (Lines 12–14).

Example 2. Figure 3 shows an running example of the hash process. In this
example, subgraph S1

k is hashed into cell H1(h1(S1
k)) directly since S1

k is iso-
morphic to P1. When considering subgraph S2

k, we first hash it into H1(h1(S2
k)).

Since S2
k is not isomorphic to P2, we then hash it into H2(h2(S2

k)). Note that,
we cannot detect the pattern of subgraph S3

k, since S3
k is not isomorphic to the

pattern in any cell, and none of the cell is empty.

Algorithm Analysis. Compared to Algorithm 1, Algorithm 2 needs not to
store the sampled k-edge subgraphs since it uses the hash functions to map each
k-edge subgraph into the fixed cell in the BPD. This significantly reduces the
memory consumption and avoids the repeated subgraph matching calculations.
Note that, users can tune the parameter d to make a trade off between accuracy
and speed depending on the application requirements. As shown in our experi-
ments, the recall rate increases as d becomes larger. However, a larger value of
d will slow down its efficiency because we have to check d − 1 more buckets for
each new produced k-edge subgraph. In other words, increasing d means higher
accuracy but will lower speed.

450 Q. Zhang et al.

Fig. 4. Sequence representation of a 4-edge subgraph

4.3 Mapping Subgraphs to Sequences

To realize the algorithm framework findBP+ in Algorithm 2, we still need to solve
the following issue: how to map a k-edge subgraph to sequence in the hashing
process.

Let m: Sk → Seqk be a function to map graph Sk to its sequence space rep-
resentation Seqk. The goal in this conversion procedure is to map the subgraph
into a string representation such that: if k-edge subgraph S′

k is isomorphic to
subgraph S′′

k , then m(S′
k) = m(S′′

k). This condition can be satisfies by using
graph invariants.

Definition 4 (Graph invariant). A graph invariant is a function m, such
that m(S′

k) = m(S′′
k), whenever S′

k and S′′
k are isomorphic graphs.

There are several possible graph invariants [8,17], but most of them impose
a lexicographic order among the subgraphs, which is clearly as complex as graph
isomorphism, and thus expensive to compute. In this paper, we generate a degree
sequence as our graph invariant that can achieve a higher efficiency. Specially,
we map a subgraph Sk to a sequence in the following manner. First, we push the
degree and lable of a vertex into together as its new label. Let l(v) denote the new
label of vertex v. Extending the same procedure, for each edge e = (vi, vj , t(e)),
we label l(e) = (l(vi), l(vj)). Now, we consider the edge order of a subgraph. We
assign each single-edge pattern a weight in the streaming graph, which is equal to
the order of the occurrence of the pattern. Then, each edge can also be assigned
a weight according to corresponding single-edge pattern. Let w(e) denote the
weight of edge e. Specifically, if w(ei) < w(ej), then ei < ej . Else, if w(ei) =
w(ej), ei < ej if l(ei) < l(ej), i.e., the vertex degrees of ei is lexicographically
smaller (ties are broken arbitrarily). Finally, the mapping m(Sk) of a subgraph
Sk containing edges {e1, · · · , en} where ei < ei+1, is “l(e1)l(e2) · · · l(en).′′

Example 3. Figure 4 shows the sequence representation of a 4-edge subgraph.
We can see that the lable of vertex v1 is changed from A to 2A since we add the
degree of v1 into its label. What’s more, we can also find that edge (v1, v2, t1) <
(v1, v3, t2) since (2A, 2B) is lexicographically smaller than (2A, 3B).

4.4 Optimization: Edge Sampling

In Algorithm 2, we still need to call expensive procedure findSubgraph to find
all k-edge subgraphs for each newly inserted edge e to calculate the frequency

Bursting Patterns Mining 451

of each pattern, which is too time consuming. Therefore, we propose a sam-
pling algorithm: For each edge isertion e, we randomly sample it and compute
match(e, P) with fixed probability p. Here, match(e, P) denotes the number of
subgraphs in Ek(e) that match the pattern P in the BPD. Then, we require
an unbiased estimator ˜fre(t, P) of fre(t, P) by adding up match(e, P) for each
sampled edge e, i.e., ˜fre(t, P) = 1

p

∑

e∈̂Et
match(e, P), where ̂Et is the set of

sampled edges. Next, we analyze the estimate ˜fre(t, P) theoretically.

Theorem 1. ˜fre(t, P) is an unbiased estimator for fre(t, P) at time t, i.e., the
expected value E[˜fre(t, P)] of ˜fre(t, P) is fre(t, P).

Proof. We consider the edge insertions in Et are indexed by [1,m] and use an
indicator I(i) to denote whether the i-th edge ei is sampled. Here, I(i) = 1 if
ei ∈ ̂Et and 0 otherwise. Then, we have

˜fre(t, P) =
1
p

∑

e∈̂Et

match(e, P) =
1
p

m
∑

i=1

I(i) × match(ei, P). (1)

Next, based on Eq. (3) and the fact that E[I(i)] = p, we have

E[˜fre(t, P)] =
1
p

m
∑

i=1

E[I(i)] × match(ei, P) = fre(t, P). (2)

and conclude the proof.

Theorem 2. The variance V al[˜fre(t, P)] of ˜fre(t, P) returned by the sampling
method is at most 1−p

p × fre2(t, P).

Proof. According to Eq. (1) we have

V al[˜fre(t, P)] =
m

∑

i,j=1

match(ei, P)
p

× match(ej , P)
p

× Cov(I(i), I(j)). (3)

Since the indicators I(i) and I(j) are independent if i 	= j, we have
Cov(I(i), I(j)) = 0 for any i 	= j. In addition, Cov(I(i), I(i)) =Val[I(i)] = p−p2.
Based on the above results, we have

V al[˜fre(t, P)] =
m

∑

i=1

match2(ei, P)
p2

× (p − p2) =
1 − p

p

m
∑

i=1

match2(ei, P)

≤ 1 − p

p
× (

m
∑

i=1

match(ei, P))2 =
1 − p

p
× fre2(t, P),

(4)

and conclude the proof.

Theorem 3. Pr[|˜fre(t, P)− fre(t, P)| < α× fre(t, P)] > 1−β for parameters
0 < α, β < 1.

452 Q. Zhang et al.

Proof. By applying the two-sided Chernoff bounds, we have Pr[|˜fre(t, P)−
fre(t, P)| ≥ α × fre(t, P)] ≤ V al[˜fre(t,P)]

α2×fre2(t,P) . By substituting V al[˜fre(t, P)] with
1−p
p2 ×fre2(t, P), then we have Pr[|˜fre(t, P)−fre(t, P)| < α×fre(t, P)] > 1−β,

when p = 1
1+βα2 .

Algorithm Analysis. Using the edge sampling can efficiently improve the speed
of Algorithm 2 since we need not calculate the k-edge subgraphs for each edge
insertion. However, edge sampling strategy will lower accuracy of Algorithm 2
since we only get an unbiased estimator for fre(t, P). Therefore, users can tune
the edge sampling probability p to make a trade off between accuracy and speed.
In our experiments, we find that findBP+-S is much faster than findBP+ and still
has a higher accuracy than findBP for p = 0.1 with limited memory.

5 Experiments

In this section, we report and analyze experimental results. All the algorithms
were implemented in C++, run on a PC with an Intel i7 3.50GHz CPU and
32GB memory. In all experiments, we use BOB Hash2 to implement the hash
functions. Every quantitative test was repeated for 5 times, and the average is
reported.

Datasets. We use three real-life datasets:

• Enron3 is an email communication network of 86K entities (e.g., ranks of
employees), 297 K edges (e.g., email), with timestamps corresponding to com-
munication data.

• Citation4 is a citation network of 4.3 M entities (e.g., papers, authors, publi-
cation venues), 21.7 M edges (e.g., citation, published at), and 273 labels (e.g.,
key-words, research domain), with timestamps corresponding to publication
date.

• Panama (See footnote 1) contains in total 839K offshore entities (e.g., com-
panies, countries, jurisdiction), 3.6 M relationships (e.g., establish, close) and
433 labels covering offshore entities and financial activities including 12 K
active days.

Algorithms. We implement and compare three algorithms:

• findBP: Our baseline method for mining bursting patterns;
• findBP+: Our advanced algorithm that uses the auxiliary data structure BPD;
• findBP+-S: findBP+ equipped with the proposed edge sampling optimization.

Metrics. We use the following four metrics:

2 http://burtleburtle.net/bob/hash/evahash.html.
3 http://konect.uni-koblenz.de/networks/.
4 https://aminer.org/citation.

http://burtleburtle.net/bob/hash/evahash.html
http://konect.uni-koblenz.de/networks/
https://aminer.org/citation

Bursting Patterns Mining 453

• Recall Rate (RR): The ratio of the number of correctly reported to the number
of true instances.

• Precision Rate (PR): The ratio of the number of correctly reported to the
number of reported instances.

• F1 Score: 2×RR×PR
RR+PR . It is calculated from the precision and recall of the test,

and it is also a measure of a test’s accuracy.
• Throughput: Kilo insertions handled per second (KIPS).

Parameter Settings. We measure the effects of some key parameters, namely,
the number of hash functions d, the number of cells in a bucket l, the burst
threshold B, and the ratio between two adjoin windows for sudden increase or
sudden decrease detection σ.

In specific, we vary d from 2 to 8 with a default 6 and very l from 4 to 32 with
a default 16. B could be set by domain scientists based on domain knowledge
and is selected from 20 to 160 with a default 80. σ is selected from 2 to 8 with a
default 4. In addition, we fix the subgraph size k = 4 and fix the edge sampling
probability p = 0.1 (refer to the Optimization). Without otherwise specified,
when varying a certain parameter, the values of the other parameters are set to
their default values.

5.1 Experiments on Different Datasets

In this section, we evaluate findBP+’s performance with F1 score and KIPS
on three real-life datasets using bounded-size memory. To construct the ground
truth dataset, we identify the total bursting patterns using algorithm findBP
by replacing the subgraphs reservoir with all k-edge subgraphs at each time t.
Note that, we need to store the entire streaming graph to work. Therefore, we
reserve space for storing all edges in each dataset. Each edge has 2 vertex IDs, 2
vertex labels and one timestamp, each of which occupies 8 bytes. As the edges
are organized as a linked list, an additional pointer is needed by each edge.
Therefore 48 bytes are needed for each edge in the streaming graph. To this end,
we fix the total memory size of Enron, Panama and Citation to 40 MB, 220 MB
and 1 GB, respectively.

Figure 5(1)–(2) show the F1 score and KIPS of findBP+ and its competitors
on three datastes with default parameters. Similar results can also be observed
under the other parameter settings. From Fig. 5(1), we can see that the F1
score of findBP+ is much higher than all other competitors and the F1 score
of findBP+-S is also higher than findBP. For example, on Enron, the F1 score
achieves 100% for findBP+, and is smaller than 90% for the baseline findBP.
From Fig. 5(2), we find that the insertion throughput of findBP+-S is always
higher than that of other algorithms and the throughput of findBP+ is also
higher than findBP. In specific, findBP+-S outperforms findBP+ by up to 5 times
on Citation and findBP+ outperforms findBP by up to 3 times on Panama. The
performance of findBP+ in three datasets are only slightly different, and the
trends are very similar. The results show the robustness of findBP+, so in the
following experiments, we only use Panama dataset.

454 Q. Zhang et al.

Analysis. The experiment results show that findBP+ and its optimized version
greatly outperform the baseline solution. The main reason is that findBP needs to
store enough subgraphs to guarantee the accuracy, which will cause low perfor-
mance when the memory is limited and also cause redundant subgraph matching
calculations. In contrast, first, findBP+ does not store any subgraph, which is
less affected by the memory. Second, findBP+ uses the proposed auxiliary data
structure BPD to count the frequency of each pattern in the BPD exactly, which
can avoid redundant calculations. What’s more, findBP+-S can further improve
the efficiency since it needs not call expensive procedure findSubgraph for each
edge insertion and can also achieve an unbiased estimator for fre(t, P).

Fig. 5. Experimental results - I

5.2 Experiments on Varying Memory

In this section, we evaluate the accuracy and speed of findBP+ and it competitors
with varying memory size on Panama. We vary the memory size from 180MB
to 300MB. The curves of F1 score and KIPS for all the algorithms are shown
in Fig. 5(3)–(4), respectively. From Fig. 5(3), we can see the increase of memory
size can increase the F1 score of findBP and has little effect on that of findBP+

and findBP+-S. We also find that findBP begins to have F1 score larger than 90%
only when the memory is larger than 260MB. On the other hand, findBP+ and
findBP+-S get same accuracy with only 180MB. In other words, our algorithms
achieve competitive performance with much less space. From Fig. 5(4), we can
see that the increase of memory size can decrease the throughput of findBP and
has little effect on that of findBP+ and findBP+-S. What’s more, findBP+-S is
much faster than other algorithms.

Analysis. When the memory size is small, findBP achieves lower accuracy since
it has no enough space to store the sampled subgraphs for estimating the fre-
quency of each pattern exactly. However, the throughput of findBP is higher
because we need less time to partition the set of subgraphs in S into Tk equiva-
lence classes. For findBP+ and findBP+-S, they use the auxiliary data structure
BPD without storing any sampled k-edge subgraph. Since the BPD only stores
the k-edge patterns and their frequency sets, we can store it into memory directly.
As a result, findBP+ and findBP+-S is less affected by the memory size, which
indicates that our algorithms works well with very limited memory.

Bursting Patterns Mining 455

5.3 Experiments on Varying Parameters

In this section, we evaluate the RR, PR and KIPS of findBP+ and findBP+-S
with varying parameters on Panama using bounded-size memory, i.e., 220 MB.
Note that, when varying a parameter, we keep other parameters as default. The
results on the other datasets are consistent.

Fig. 6. Experimental results - II

Effect of d (Fig. 6 (1)–(3)). In this experiment, we vary d from 2 to 8.
Especially, we observe that the increase of d can increase the recall rate and
decrease the of throughput of findBP+ and findBP+-S. The reason could be that
for a larger d, potential bursting patterns has more opportunities to be stored
into the BPD and the recall rate of findBP+ and findBP+-S will be increase.
However, the throughput of findBP+ and findBP+-S will be decrease since they
have to check d − 1 more buckets for each edge insertion. Therefore, users can
adjust d to strike a good trade off between accuracy and speed. Furthermore,
the precision rate of findBP+ is 100% since it can count the frequency of each
pattern in the BPD exactly.

Effect of l (Fig. 6 (4)–(6)). The experimental results show that the increase
of l can increase the recall rate and decrease the of throughput of findBP+

and findBP+-S. This is because when l increases, there are more tracks in the
BPD and we can detect more patterns simultaneously. However, resulting in

456 Q. Zhang et al.

more subgraph matching calculations since we need to count the frequency of
the pattern in each track of the BPD at each timestamp. The precision rate of
findBP+ and findBP+-S is insensitive to l since l does not affect the frequency of
the k-edge patterns in the BPD.

Effect of B (Fig. 6 (7)–(9)). Our experimental results show that the increase
of B can increase the recall rate of findBP+ and findBP+-S. This is because for
a smaller B, the ground truth could be very large and we can only detect fixed
number of patterns in the BPD. Therefore, resulting in a lower recall rate. We
also find that the increase of B can increase the precision rate of findBP+-S
since more false positives can be filtered safely due to burstness constraint. The
throughput of findBP+ and findBP+-S is insensitive to B since B does not affect
the number of the k-edge patterns in the BPD.

Effect of σ (Fig. 6 (10)–(12)). Our experimental results show that our
algorithms perform well even when the ratio is very high. As the ratio σ varies,
the RR, PR and KIPS of findBP+ and findBP+-S are stable, which indicates
that the performances of findBP+ and findBP+-S are insensitive to σ.

6 Related Work

Frequent Subgraph Pattern Mining in Dynamic Graphs. Our work is
related to the studies on frequent subgraph pattern mining. Aslay et al. [2] stud-
ied the frequent pattern mining problem in a streaming scenario and proposed
a sampling-based method to find the latest frequent pattern when edge updates
occur on the graph. Ray et al. [13] considered the frequent pattern mining prob-
lem in a single graph with continuous updates. Their approach, however, is a
heuristic applicable only to incremental streams and comes without any provable
guarantee. Abdelhamid et al. [1] proposed an exact algorithm for frequent pat-
tern mining which borrows from the literature on incremental pattern mining.
The algorithm keeps track of “fringe” subgraph patterns, which have frequency
close to the frequency threshold. Borgwardt et al. [3] looked at the problem of
finding dynamic patterns in graphs, i.e., patters over a graph time series, where
persistence in time is the key property that makes the pattern interesting.

Bursting Subgraph Mining in Temporal Networks. There is a number of
studies for mining dense bursting subgraphs in temporal networks [5,12,15]. Qin
et al. [12] defined a bursting subgraph as a dense subgraph such that each vertex
in the subgraph satisfies the degree constraint in a period of time. Chu et al. [5]
defined a bursting subgraph as a dense subgraph that accumulates its density
at the fastest speed during a time interval. Rozenshtein et al. [14] studied the
problem of mining dense subgraphs at different time intervals and they define
the subgraph that is densest in multiple time interval as bursting subgraph [15].
Compared to them, our work adopts a different definition of burstiness and
considers a subgraph pattern that is characterized by a sudden increase in terms
of arrival rate followed by a sudden decrease.

Bursting Patterns Mining 457

7 Conclusion

Real-time burst detection is important in many applications. In this work, we
tackle the novel problem of discovering bursting patterns continuously in a
streaming graph. We propose an auxiliary data structure called BPD for counting
the frequency of a pattern without storing any sampled subgraph, which is fast,
memory efficient, and accurate. We further design a new graph invariant that
map each subgraph to its sequence space and explore an optimization strategies
by using edge sampling to speed up the pattern mining process. Experimental
results show that our algorithms can achieve high accuracy and efficiency with
limited memory usage in real-time bursting pattern detection.

Acknowledgement. This work is partially supported by National key research and
development program under Grant Nos. 2018YFB1800203, National Natural Science
Foundation of China under Grant No. U19B2024, National Natural Science Foundation
of China under Grant No.61872446 and Natural Science Foundation of Hunan Province
under Grant No. 2019JJ20024.

References

1. Abdelhamid, E., Canim, M., Sadoghi, M., Bhattacharjee, B., Chang, Y., Kalnis,
P.: Incremental frequent subgraph mining on large evolving graphs. IEEE Trans.
Knowl. Data Eng. 29(12), 2710–2723 (2017)

2. Aslay, Ç., Nasir, M.A.U., Morales, G.D.F., Gionis, A.: Mining frequent patterns
in evolving graphs. In: Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, CIKM 2018, Torino, Italy, 22–26
October, 2018. pp. 923–932 (2018)

3. Borgwardt, K.M., Kriegel, H., Wackersreuther, P.: Pattern mining in frequent
dynamic subgraphs. In: Proceedings of the 6th IEEE International Conference
on Data Mining, 18–22 December 2006, Hong Kong, China, pp. 818–822 (2006)

4. Choudhury, S., Holder, L.B., Jr., G.C., Agarwal, K., Feo, J.: A selectivity based
approach to continuous pattern detection in streaming graphs. In: Proceedings
of the 18th International Conference on Extending Database Technology, EDBT
2015, Brussels, Belgium, 23–27 March, 2015

5. Chu, L., Zhang, Y., Yang, Y., Wang, L., Pei, J.: Online density bursting subgraph
detection from temporal graphs. Proc. VLDB Endow. 12(13), 2353–2365 (2019)

6. Gou, X., Zou, L.: Sliding window-based approximate triangle counting over stream-
ing graphs with duplicate edges. In: SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20–25, 2021, pp. 645–657 (2021)

7. Kim, J., Shin, H., Han, W., Hong, S., Chafi, H.: Taming subgraph isomorphism
for RDF query processing. Proc. VLDB Endow. 8(11), 1238–1249 (2015)

8. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proceedings of the
2001 IEEE International Conference on Data Mining, 29 November - 2 December
2001, San Jose, California, USA, pp. 313–320 (2001)

9. Li, Y., Zou, L., Özsu, M.T., Zhao, D.: Time constrained continuous subgraph
search over streaming graphs. In: 35th IEEE International Conference on Data
Engineering, ICDE 2019, Macao, China, 8–11 April, 2019, pp. 1082–1093 (2019)

458 Q. Zhang et al.

10. Min, S., Park, S.G., Park, K., Giammarresi, D., Italiano, G.F., Han, W.: Symmetric
continuous subgraph matching with bidirectional dynamic programming. Proc.
VLDB Endow. 14(8), 1298–1310 (2021)

11. Nasir, M.A.U., Aslay, Ç., Morales, G.D.F., Riondato, M.: Tiptap: approximate
mining of frequent k-subgraph patterns in evolving graphs. ACM Trans. Knowl.
Discov. Data 15(3), 48:1–48:35 (2021)

12. Qin, H., Li, R., Wang, G., Qin, L., Yuan, Y., Zhang, Z.: Mining bursting commu-
nities in temporal graphs. CoRR (2019)

13. Ray, A., Holder, L., Choudhury, S.: Frequent subgraph discovery in large attributed
streaming graphs. In: Proceedings of the 3rd International Workshop on Big Data,
Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming
Models and Applications, BigMine 2014, New York City, USA, 24 August, 2014,
vol. 36, pp. 166–181

14. Rozenshtein, P., Bonchi, F., Gionis, A., Sozio, M., Tatti, N.: Finding events in
temporal networks: segmentation meets densest subgraph discovery. Knowl. Inf.
Syst. 62(4), 1611–1639 (2019). https://doi.org/10.1007/s10115-019-01403-9

15. Rozenshtein, P., Tatti, N., Gionis, A.: Finding dynamic dense subgraphs. ACM
Trans. Knowl. Discov. Data 11(3), 27:1–27:30 (2017)

16. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1),
37–57 (1985)

17. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proceedings
of the 2002 IEEE International Conference on Data Mining, 9–12 December 2002,
Maebashi City, Japan, pp. 721–724 (2002)

https://doi.org/10.1007/s10115-019-01403-9

Mining Negative Sequential Rules from
Negative Sequential Patterns

Chuanhou Sun1, Xiaoqi Jiang1, Xiangjun Dong1(B), Tiantian Xu1,
Long Zhao1, Zhao Li1, and Yuhai Zhao2

1 Department of Computer Science and Technology, Qilu University of Technology
(Shandong Academy of Sciences), Jinan, China

d-xj@163.com, zhaolong@qlu.edu.cn, liz@sdas.org
2 Northeastern University, Shenyang, China

zhaoyuhai@mail.neu.edu.cn

Abstract. As an important tool for behavior informatics, negative
sequential rules (NSRs, e.g., <ab> ⇒ ¬<cd>) are sometimes much more
informative than positive sequential rules (PSRs, e.g., <ab> ⇒ <cd>),
as they can provide valuable decision-making information from both neg-
ative and positive sides. Very limited NSR mining algorithms are avail-
able now and most of them discover NSRs only from positive sequential
patterns (PSPs, e.g., <abcd>) rather than from negative sequential pat-
terns (NSPs, e.g., <a¬bc¬d>), which may result in a loss of important
information. However, discovering NSRs (e.g., <a¬b> ⇒ <c¬d>) from
NSPs is much more difficult than mining NSRs from PSPs because NSPs
do not satisfy the downward closure property. In addition, it is very diffi-
cult to find which kind of NSRs should be generated. This paper proposes
a novel algorithm named nspRule to address all these difficulties. The
experiment results on real-life and synthetic datasets show that nspRule
can mine NSRs correctly and efficiently w.r.t. several aspects including
rule number, runtime, memory usage and scalability.

Keywords: Negative sequential rule · Negative sequential pattern ·
Positive sequential rule · Positive sequential pattern

1 Introduction

Behavior permeates all aspects of our lives and how to understand a behavior is
a crucial issue in providing a competitive advantage to support decision-making.
Sequential pattern mining (SPM), which discovers frequent sub-sequences as
patterns in a sequential database, is an important tool for behavior informatics
with broad applications, such as the analysis of students’ learning behaviors,

Partly supported by the National Natural Science Foundation of China (62076143,
61806105, 61906104) and the Natural Science Foundation of the Shandong Province
(ZR2019BF018).
C. Sun and X. Jiang—Contributed equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 459–475, 2022.
https://doi.org/10.1007/978-3-031-00123-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_37&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_37

460 C. Sun et al.

customer purchase behaviours, continuous natural disasters, ordered outlying
patterns, a series of disease treatments, and so on. Many SPM algorithms, such
as GSP, SPAM, SPADE, FreeSpan and PrefixSpan have been proposed. However,
these algorithms only consider the support (frequency) of sub-sequences, which
is not sufficient to make predictions and recommendations [6]. For example,
given a pattern <Mon-breakfast, Tue-breakfast, Wed-breakfast, Thu-breakfast,
good>(sup = 7%), where ‘Mon-breakfast ’,...,‘Thu-breakfast ’ means the student
has breakfast from Monday to Thursday and ‘good’ means the student’s aca-
demic grade is good. Only using the support of this pattern is not sufficient
to predict that students’ breakfast behaviour affects their grades, as we don’t
know the probability of students attaining a ‘good’ grade under the condition of
having breakfast regularly.

To solve this problem, sequential rule mining (SRM) has been proposed.
Sequential rules are often expressed in the form X ⇒ Y , i.e., if X (the
antecedent) occurs in a sequential pattern then Y (the consequent) also occurs in
that sequential pattern following X by satisfying two thresholds: support (sup)
and confidence (conf). In the above example, a sequential rule <Mon-breakfast,
Tue-breakfast, Wed-breakfast, Thu-breakfast> ⇒ <good>(sup = 7%, conf =
67%) means that the probability of this rule accounts for 7% in a sequential
database, and the probability of the student attaining a ‘good’ grade under the
condition of having breakfast regularly accounts for 67%. According to this rule,
we can predict that students who have breakfast regularly attain better academic
grades.

To date, SRM mining has been applied in many domains such as behavior
analysis, drought management, stock market analysis, house allocation e-learning
and e-commerce, and many algorithms have been proposed [2,6,7,12,13]. How-
ever, these algorithms only focus on occurring (positive) behaviors (OBs), with-
out taking non-occurring (negative) behaviors (NOBs) into consideration. For
example, two items are rarely purchased in the same basket, or one item is rarely
bought after another. In order to explore the negative relations between bas-
ket items, negative sequential rules (NSRs) have been proposed[15–17]. NSRs
can reflect the negative relationships between patterns, which can thus pro-
vide more comprehensive information than the previous sequential rules which
only consider positive relationships (also called positive sequential rules (PSRs))
in many applications. For example, PSR mining algorithms can only mine
rules like <ab> ⇒ <cd>, while NSR mining algorithms can mine rules like
<ab> ⇒ ¬<cd> or ¬<ab> ⇒ <cd>.

Only a few NSR mining algorithms are available and most of them dis-
cover NSRs only from positive sequential patterns (PSPs, e.g., <abcd>)) [16,17],
rather than from negative sequential patterns (NSPs, e.g., <a¬bc ¬d>) [15],
which may result in a lot of important information being missing. The reason
is that NSPs consider positive and negative relationships between items (item-
sets) [1,8,11] and mining NSRs from such NSPs can provide more comprehen-
sive information than mining NSRs from PSPs only. For example, mining NSRs
from a PSP <abcd> can generate NSRs like <ab> ⇒ <cd>, <ab> ⇒ ¬<cd>,

Mining Negative Sequential Rules from Negative Sequential Patterns 461

¬<ab> ⇒ <cd> and ¬<ab> ⇒ ¬<cd>. While based on <abcd>, we may
obtain the corresponding NSPs like <a¬bcd>, <ab¬cd>, <abc¬d>, <¬ab¬cd>,
<¬abc¬d> and <a¬bc¬d>, and from these NSPs we may obtain NSRs like
<a¬b> ⇒ <cd>, <ab> ⇒ <¬cd>, <ab> ⇒ <c¬d>, <¬ab> ⇒ <¬cd>,
<¬ab> ⇒ <c¬d>, <a¬b> ⇒ <c¬d>, etc. Clearly, these NSRs obtained from
NSPs can provide more comprehensive information for decision-making.

Unfortunately, very few methods are available to discover NSRs from NSPs.
The only one we can find is e-HUNSR [15], which uses the utility-confidence
framework and doesn’t involve the problems this paper discusses. In fact, NSP
mining and NSR mining are still at an early stage and many problems need to
be solved [1]. Although a few NSR mining algorithms can discover NSRs from
PSPs [16,17], they cannot be used to discover NSRs from NSPs. This is because
mining NSRs from NSPs is much more difficult than from PSPs, particularly
due to the following three intrinsic challenges.

Challenge 1) Because NSPs do not satisfy the downward closure property [1],
the sub-sequences (e.g., <a¬b> or <c¬d>) of a frequent NSP (e.g., <a¬bc¬d>)
may not be frequent and their support may not be included in the frequent NSP
set, which would make it difficult to calculate the support and the confidence of
the corresponding rule (e.g., <a¬b> ⇒ <c¬d>).

Challenge 2) For the same reason as Challenge (1), the support of an NSP
(e.g., <a¬bc¬d>) may be greater than the support of its sub-sequence (e.g.,
<a¬bc>). This may result in the confidence of an NSR being greater than one,
which is not concordant with the traditional support-confidence framework. This
may cause a lot of confusion to users in selecting an appropriate minimum con-
fidence.

Challenge 3) How do we know which kind of rules should be mined? In
existing NSR mining algorithms, at least four kinds of rules <ab> ⇒ <cd>,
<ab> ⇒ ¬<cd>, ¬<ab> ⇒ <cd> and¬<ab> ⇒ ¬<cd> have been gen-
erated from PSP <abcd>. For NSR mining from NSPs, can we still follow
the same procedure? For NSP <a¬bc¬d>, should we also generate rules in
the form of <a¬b> ⇒ <c¬d>, <a¬b> ⇒ ¬<c¬d>, ¬<a¬b> ⇒ <c¬d> or
¬<a¬b> ⇒ ¬<c¬d>, etc.? As we can see, there are many negative antecedents
or consequents of rules including negative items. Clearly, these kinds of rules
are very confusing to explain and should not be mined. So, which kind of rules
should be mined?

To address the afore mentioned problem and its challenges, a novel algorithm
named nspRule is proposed to mine NSRs from NSPs correctly and efficiently.
The contributions of this paper are as follows.

1) We address the problem of how to calculate the support and confidence of
NSRs when the sub-sequences of a frequent NSP are not frequent.

2) We address the problem that the confidence of NSRs may be greater than
one by normalizing the confidence and letting the value of the confidence
meet the traditional support-confident framework.

3) We analyse which kind of rules should be generated by applying a correlation
measure to mining suitable rules.

462 C. Sun et al.

4) Finally, we propose a new algorithm nspRule to mine NSRs. The experi-
ment results on real-life and synthetic datasets show that nspRule can mine
NSRs correctly and efficiently w.r.t. various aspects including rule number,
runtime, memory usage and scalability.

The rest of this paper is organized as follows. The related work is discussed
in Sect. 2. Section 3 introduces the preliminaries. Section 4 details the nspRule
algorithm. Section 5 discusses the experimental results. Section 6 presents the
conclusions and future work.

2 Related Work

In this section, some related research on NSP mining, SRM and NSR mining is
briefly reviewed.

2.1 NSP Mining

Several algorithms have been proposed to mine NSPs. Early algorithms such as
NegGSP [19], PNSP [10], GA-based algorithm [18] have lower time efficiency
because they calculate the support of negative sequential candidates (NSCs)
by re-scanning the database. Later algorithms such as e-NSP [1], e-RNSP [4],
F-NSP+ [3], NegI-NSP [11], VM-NSP [14], Topk-NSP [5], NegPSpan [9], sc-
NSP [8] have better time efficiency because they calculate the support of NSCs
by fast methods, without re-scanning the database. By converting the problem
of negative containment to positive containment, e-NSP algorithm can quickly
calculate the support of NSCs only using the corresponding PSPs’ information.
Based on e-NSP, e-RNSP can capture more comprehensive NSPs with repetition
properties in a sequence. F-NSP+ uses a novel data structure bitmap to store the
PSP information and then obtain the support of NSC only by bitwise operations,
which is much faster than e-NSP. NegI-NSP and VM-NSP loosen the constraints
in e-NSP and can obtain more valuable NSPs. Topk-NSP can mine the top-k
useful NSPs, without setting minimum support. NegPSpan restrains the maxgap
of two adjacent elements and extracts NSPs by a PrefixSpan depth-first method,
which is more time-efficient than e-NSP for mining long sequences. sc-NSP is
more efficient in dense datasets than NegPSpan because it utilizes an improved
PrefixSpan algorithm of a bitmap storage structure and a bitwise-based support
calculation method to detect NSPs.

2.2 Sequential Rule Mining

SRM has wide applications in several domains to make predictions and many
algorithms have been proposed [2,6,7,12,13]. The work in [13] uses a dynamic bit
vector data structure and adopts a prefix tree in the mining process to mine non-
redundant sequential rules. The TWINCLE algorithm adds time, cost, consis-
tency, and length constraints to address low-cost mining problem [2]. Viger et al.

Mining Negative Sequential Rules from Negative Sequential Patterns 463

proposed the CMRules algorithm to discover rules common to many sequences
[6]. In this algorithm, the antecedents and consequents of the rule are both
unordered, which are called partially-ordered sequential rules. The RuleGrowth
algorithm uses a pattern growth method to find partially-ordered sequential rules
with high efficiency [7]. Furthermore, to fit with their research, Setiawan et al.
introduced time lapse concept to partially-ordered sequential rule algorithm for
solving the practicability and reliability issue [12].

2.3 NSR Mining

To date, only a few algorithms are available for mining NSR [15–17]. Zhao et
al. presented a method to find event-oriented negative sequential rules, where
the right side of the rule is a single event. This method only generates the four
forms of rules [16], namely ¬X ⇒ ¬Y, X ⇒ ¬Y, ¬X ⇒ Y and X ⇒ Y. They
also presented a new notion of impact-oriented NSR, where the left side of the
rule is PSPs or NSPs and the right side of the rule is a positive or negative
target outcome and they proposed an SpamNeg algorithm based on the SPAM
algorithm to mine such rules [17]. Both these algorithms only mine NSRs from
PSPs and only generate four forms of rules, such as ¬X ⇒ ¬Y, X ⇒ ¬Y, ¬X ⇒ Y
and X ⇒ Y. However, they cannot generate rules like <ab> ⇒ <¬cd>, <ab> ⇒
<c¬d>, <a¬b> ⇒ <cd>, <¬ab> ⇒ <cd> and so on, which may result in
important information being missing. Zhang et al. proposes a method [15] which
can mine high utility negative sequential rules with the aforementioned formats.
The method generates HUNSRCs from HUNSPs, then uses the utility-confidence
framework to evaluate the usefulness of rules rather than the traditional support-
confidence framework, and finally, acquires HUNSRs from HUNSPs.

3 Preliminaries

In this section, some important concepts of PSPs and NSPs are introduced.

3.1 Positive Sequential Patterns

Let I = {x1, x2, ..., xn} be a set of items. An itemset is a subset of I. A sequence
is an ordered list of itemsets. A sequence s is denoted by <s1s2...sl>, where
sj ⊆ I(1 ≤ j ≤ l). sj is also called an element of the sequence and is denoted
as (x1x2...xm), where xk is an item, xk ∈ I(1 ≤ k ≤ m). For simplicity, the
brackets are omitted if an element only has one item, i.e. element (x) can be
expressed as x.

Definition 1. Length of sequence. The length of sequence s is the total number
of items in all elements in s, expressed as length(s). If length(s)=m, this means
that s is a m-length sequence.

For example, a sequence s = <(ab)cd> is a 4-length sequence, i.e., length(s) = 4.

464 C. Sun et al.

Definition 2. Size of sequence. The size of sequence s is the total number of
elements in s, expressed as size(s). If size(s)=m, it means that s is a m-size
sequence.

For example, a sequence s = <(ab)cd> is a 3-size sequence, i.e., size(s) = 3.

Definition 3. Sub-sequence. There are two sequences sα = <α1α2...αi> and
sβ = <β1β2...βk>, if there exists 1 ≤ j1 < j2 < ... < ji ≤ k such that α1 ⊆
βj1, α2 ⊆ βj2, ..., αi ⊆ βji, we call sequence sα = <α1α2...αi> a sub-sequence
of sequence sβ = <β1β2...βk>, expressed as sα ⊆ sβ and sβ is called a super-
sequence of sα.

For example, s1 = <(ab)cd> is a super-sequence of s2 = <(ab)>.

Definition 4. Support of sequence. The number of tuples in sequential database
D is expressed as |D|, where the tuples are <sid (sequence − ID), ds (data
sequence)>. The set of tuples containing sequence s is expressed as <s>. The
support of s is the number of tuples that are contained in <s>, expressed as
sup(s), i.e., sup(s) = |{<s>}| = |{<sid, ds>, <sid, ds> ∈ D ∧ (s ⊆ ds)}|.
min sup is a minimum support threshold which is predefined by users. If sup(s) ≥
min sup, sequence s is called a frequent sequential pattern. By contrast, if
sup(s)<min sup, s is called infrequent.

3.2 Negative Sequential Patterns

In real applications, the number of NSCs and NSPs may be very huge if no
constraints are added, and many of them are meaningless. So many existing NSP
mining methods introduce some constraints similar to e-NSP. This paper also
uses the same constraints as e-NSP, so we introduce them and some important
definitions in e-NSP as follows.

A negative item/element is a non-occurring item/element and positive item/
element is an occurring item/element. A negative sequence includes at least one
negative item/element. For instance, a sequence s1 = <abcF> is a positive
sequence; s2 = <ab¬cF> is a negative sequence because it contains a negative
item ¬c.

Definition 5. Positive part. The positive part of a negative element (¬ab) is
(ab), expressed as p((¬ab)). That is, p((¬ab)) = (ab), while the positive part of
positive element (ab) is (ab) itself, i.e., p((ab)) = (ab).

Constraint 1: Frequency constraint. For simplicity, this paper only focuses on
the negative sequences ns whose positive partners are frequent, i.e., sup(p(ns)) ≥
min sup.
Constraint 2: Format constraint. Continuous negative elements in an NSC are
not allowed. For example, <¬(ab)¬cd> is not allowed.
Constraint 3: Negative element constraint. The smallest negative unit in an
NSC is an element. If an element consists of more than one item, either all or
none of the items is allowed to be negative. For example, <(a¬b)cd> is not
allowed, because in element (a¬b), only one item is negative while another one
is positive.

Mining Negative Sequential Rules from Negative Sequential Patterns 465

Definition 6. Maximum positive sub-sequence. A negative sequence ns =
<a¬bb¬a(ijF)>, <ab(ijF)> is the sub-sequence which includes all positive ele-
ments <a¬bb¬a(ijF)>. We denote <ab(ijF)> as a maximum positive sub-
sequence, expressed as MPS(ns).

Definition 7. 1-neg-length maximum sub-sequences. For a negative sequence
ns, its sub-sequence that includes MPS(ns) and one negative element e are
called a 1-neg-length maximum sub-sequence, expressed as 1 − negMSns. The
sub-sequence set of 1 − negMSns is called 1 − negMSSns.

Definition 8. Negative containment. Given a data sequence ds and a negative
sequence ns, ds contains ns if and only if two conditions hold: (1)MPS(ns) ⊆
ds; and (2) ∀1 − negMS ∈ 1 − negMSSns, p(1 − negMS) /∈ ds.

For example, given ds = <a(bc)d(cde)>, 1) if ns = <a¬dd¬d>, 1 −
negMSSns = {<a¬dd>,<ad¬d>}, then ds does not contain ns because
p(<a¬dd>)= <add> ⊆ ds; 2) if ns′ = <a¬bb¬a(cde)>, 1 − negMSS′

ns

= {<a¬bb(cde)>,<ab¬a(cde)>}, then ds contains ns′ because MPS(ns′)
=<ab(cde)> ⊆ ds ∧ p(<a¬bb(cde)> /∈ ds ∧ p(<ab¬a(cde)>) /∈ ds.

This definition is consistent with set theory [1]. Through this set theory, the
negative containment can be converted to a positive containment, so e-NSP can
calculate the support of NSCs directly by matching the corresponding PSPs
without re-scanning the database.

Definition 9. Negative Sequential Patterns. A negative sequence ns is a nega-
tive sequential pattern (NSP) if sup(ns) ≥ min sup.

4 The nspRule Algorithm

In this section, we first briefly introduce the steps in the e-NSP algorithm because
nspRule is built on e-NSP. Then the steps and the corresponding pseudocode of
the nspRule are given.

4.1 Review of e-NSP Algorithm

The e-NSP algorithm can efficiently mine positive and negative sequential pat-
terns (PNSPs). Each step of this algorithm is as follows:

Step 1. All PSPs are discovered from the sequential database using a PSP
mining algorithm. In this paper, we use the Spam algorithm to mine PSPs.
Step 2. An NSC − generation method based on the three constraints is used
to generate NSCs from the above PSPs.

The NSC − generation method is as follows: For a k -size PSP, its NSCs
are generated by changing any m non-contiguous elements to their negative
elements, m = 1, 2, ..., [k/2], where [k/2] is a minimum integer that is not less
than k/2. For example, when m = 1, the NSCs of a PSP <ab(cd)> is <¬ab(cd)>,
<a¬b(cd)> and <ab¬(cd)>; when m = 2, the NSC is only <¬ab¬(cd)>.

466 C. Sun et al.

Step 3. Convert the NSCs into PSPs according to the Definition 8.
Step 4. Calculate the support of NSCs using the following equations.

Given a k -size and j -neg-size negative sequence ns, for ∀1 − negMSi ∈ 1 −
negMSSns(1 ≤ i ≤ j), the support of ns in sequential database D is:

sup(ns) = sup(MPS(ns))− | ∪j
i=1{p(1 − negMSi)} | (1)

Specially, if there is only one negative element in sequential database |D|, the
support of <¬a> can be calculated by Eq. (2):

sup(<¬a>) = |D| − sup(<a>) (2)

Step 5. Output PNSPs.

4.2 The Steps of the nspRule Algorithm

The main steps of this algorithm are as follows:

Step 1. Get all PNSPs and record their support using the e-NSP algorithm.
Step 2. Generate the sequential rule candidate (SRC).

A sequential rule candidate (SRC)-generation method is proposed to generate
SRCs, i.e., X ⇒ Y , from the above PNSPs.

The SRC-generation method is as follows: For a PNSP =<e1e2e3...ek>(k ≥
2), its SRCs are generated by dividing PNSP into two parts, i.e., ∀i ∈ {2...k},
the antecedent X = <e1e2...ei−1> and the consequent Y = <ei...ek>, where
X, Y
= ∅ and X �� Y =PNSP. For example, <a¬bc> is an NSP, and it can
generate SRCs <a> ⇒ <¬bc> and <a¬b> ⇒ <c>.
Step 3. Calculate the support of SRCs.

As mentioned in challenge 1 in Sect. 1, the antecedents and consequents of
NSRs may be not frequent and their support may not be included in the frequent
NSP set, which means the support and confidence of the corresponding NSR
cannot be calculated. To address this problem, we eliminate the SRCs in which
the antecedents and consequents of the rule is not frequent before calculating
the support of SRCs.

Definition 10. Support of rule. For a given sequential database D and a given
sequential rule X ⇒ Y , the number of tuples in sequential database D is
expressed as |D|, where tuples is <sid (sequence − ID), ds (data sequence)>.
The number of tuples containing X �� Y in D is expressed as sup(X �� Y). The
support of rule X �� Y in D, denoted as sup(X ⇒ Y). The formula to calculate
sup(X ⇒ Y) is as follows:

sup(X ⇒ Y) = sup(X �� Y)/|D| (3)

We only consider SRCs in which the antecedents and consequents are both fre-
quent and calculate the support of SRCs using Eq. (3).
Step 4. Choose which kind of rules should be generated.

Mining Negative Sequential Rules from Negative Sequential Patterns 467

As discussed in challenge 3 in Sect. 1, one of the issues to be considered is
to identify which kind of rules should be generated in mining NSRs from NSPs.
For example, for an NSP <a¬bc¬d>, should we generate rules in the form of
<a¬b> ⇒ <c¬d>, <a¬b> ⇒ ¬<c¬d>, ¬<a¬b> ⇒ <c¬d> or ¬<a¬b> ⇒
¬<c¬d>, etc.? Could all of these be used to make decisions? For NSR <a¬b> ⇒
¬<c¬d>, the negative consequent (¬<c¬d>) also includes negative items (¬d).
It is very confusing to explain the meaning of this kind of rule. So, this kind of
rule should not be generated. In order to avoid generating them, we take into
consideration the rule’s correlation which is widely used in association rules.

Definition 11. Correlation of rule. The correlation of a positive and negative
sequential rule X ⇒ Y is used to determine whether the two events are related,
denoted as corr(X ⇒ Y). If corr(X ⇒ Y) > 1, this means that the two events
are positively related; if corr(X ⇒ Y) < 1, this means that the two events are
negatively related; if corr(X ⇒ Y) = 1, this means that the two events are
independent. The formula to calculate corr(X ⇒ Y) is as follows:

corr(X ⇒ Y) = sup(X �� Y)/(sup(X)sup(Y)) (4)

We calculate the correlation of SRCs and only choose the positively related
SRCs, i.e., the corr(X ⇒ Y) is greater than 1.
Step 5. Calculate the confidence of SRCs.

Definition 12. confidence of rule. A sequential rule X ⇒ Y has a measure
of its strength called confidence (denoted as conf(X ⇒ Y)). The formula to
calculate conf(X ⇒ Y) is as follows:

conf(X ⇒ Y) = sup(X �� Y)/sup(X) (5)

We calculate the confidence of SRCs using Eq. (5) and put those SRCs which
satisfy the min conf (minimum confidence given by users) threshold into the
SRC set.

Step 6. Normalize the confidence of SRC.
As discussed in challenge 2 in Sect. 1, the confidence of NSRs may be greater

than one, which is not concordant with the traditional support-confidence frame-
work so this may cause a lot of confusion for users when selecting the appropriate
minimum confidence. To address this problem, we propose a method to normal-
ize the value of confidence to fall into [0,1] and we propose a new measure named
normal confidence to express the new confidence rule.

Definition 13. normal confidence of rule. normal confidence is the normal-
ization of the confidence rule, denoted as nor conf(X ⇒ Y). The values of
nor conf(X ⇒ Y) is fall in [0,1]. Suppose the maximum confidence of the rule
in the rule set is max confidence. The formula to calculate nor conf(X ⇒ Y) is
as follows:

nor conf(X ⇒ Y) = conf(X ⇒ Y)/max confidence (6)

468 C. Sun et al.

We calculate the normal confidence of SRCs and eliminate the SRCs which
do not satisfy the min nor conf (minimum normal confidence given by users)
threshold from the SRC set.
Step 7. Output the rule from the SRC set as positive and negative sequential
rules (PNSRs).

Definition 14. Positive and negative sequential rule. A sequential rule X ⇒
Y is a positive and negative sequential rule if sup(X ⇒ Y) ≥ min sup,
nor conf(X ⇒ Y) ≥ min nor conf and corr(X ⇒ Y) > 1.

4.3 Algorithm Pseudocode

The pseudocode of the nspRule algorithm is shown in Algorithm1. This algo-
rithm first mines all PSPs and records their support using the Spam algorithm
(line 1). Then it mines NSPs and records their support using the e-NSP algo-
rithm (line 2) and puts all PNSPs into PNSPset (line 3). If the size of pnsp is
greater than 1, it generates SRCs using the CSR-generation method (line 7–8).
Then, it judges whether X and Y are both frequent. If X and Y are frequent,
it calculates the sup(X ⇒ Y) using Eq. (3). If sup(X ⇒ Y) ≥ min sup, it cal-
culates the corr(X ⇒ Y) using Eq. (4). If corr(X ⇒ Y) > 1, it calculates the
conf(X ⇒ Y) using Eq. (5) (line 9–15). Then, it finds the maximum confidence
of SRCs and gives it to a new parameter max confidence which is defined in
line 4 (line 16–18). If conf(X ⇒ Y) ≥ min conf , it adds SRC X ⇒ Y to SRC-
set (line 19–21). Then, it calculates the nor conf(X ⇒ Y) using Eq. (6) and
eliminates the SRC which does not satisfy the min nor conf from SRCset (line
26–31). Finally, it returns the SRCset as PNSRs (line 32).

4.4 Analysis of the Time Complexity

We provide a brief analysis of the time complexity of nspRule. First, the time
complexity of converting a sequence database into a transaction database is
linear with respect to the number of sequences and their sizes. The time com-
plexity of the e-NSP algorithm is more difficult to establish. It depends on which
sequential pattern mining algorithm is used. In this paper, we used the Spam
algorithm to mine PSPs. The search strategy of the Spam algorithm combines a
vertical bitmap representation of the database with efficient support counting, so
this algorithm is especially efficient. The e-NSP algorithm is run in two phases:
mining PSPs and converting PSPs into NSPs through set theory. Therefore, the
first phase of e-NSP is the most costly, so it is acceptable to ignore the second
phase when estimating the time complexity. So, the time complexity of e-NSP
can be expressed by the Spam algorithm. The Spam algorithm uses a depth-
first search strategy that integrates a depth-first traversal of the search space,
so the complexity of this algorithm is O(d2n) where d is the number of different
items and n is the number of transactions in the database. After obtaining all
PNSPs by using the e-NSP algorithm, nspRule splits each PNSP into SRCs,
then it checks if each SRC satisfies the minimum threshold. In the best case

Mining Negative Sequential Rules from Negative Sequential Patterns 469

Algorithm 1. nspRule
Input: Sequential database D, min sup, min conf , min nor conf ;
Output: PNSRs;
1: mine all PSPs and their support(sup) by Spam algorithm;
2: mine all NSPs and their sup by e-NSP algorithm;
3: PNSPset ← (pnsp, sup);
4: SRCset ← ∅;
5: max confidence ← 0;
6: for each pnsp in PNSPset do
7: if size(pnsp)>1 then
8: use CSR-generation method to generate SRCs(X ⇒ Y);
9: if X and Y are both frequent then

10: calculate the sup(X ⇒ Y) by Equation (3);
11: if sup(X ⇒ Y) ≥ min sup then
12: calculate the corr(X ⇒ Y) by Equation (4);
13: if corr(X ⇒ Y) > 1 then
14: calculate the conf(X ⇒ Y) by Equation (5);
15: end if
16: if conf(X ⇒ Y) > max confience then
17: max confience=conf(X ⇒ Y);
18: end if
19: if conf(X ⇒ Y) ≥ min conf then
20: SRCset ← SRCset ∪ {X ⇒ Y };
21: end if
22: end if
23: end if
24: end if
25: end for
26: for each SRC X ⇒ Y in SRCset do
27: calculate the nor conf(X ⇒ Y) by Equation (6);
28: if nor conf(X ⇒ Y) < min nor conf then
29: eliminate X ⇒ Y from SRCset;
30: end if
31: end for
32: return SRCset;

and worst case, there are respectively PNSP(size>1).count × |S| SRCs will be
generated, where PNSP(size>1).count means the total number of PNSPs whose
size is greater than 1 and |S| means the size of each PNSP. These generation
and pruning steps are done in linear time. Thus, the time complexity of the last
step is linear with respect to the number of PNSPs and their size.

5 Experiment with the nspRule Algorithm

We conduct experiments on one real-life (Dataset 1) and three synthetic datasets
(Datasets 2–4) to assess the influence of min sup and min nor conf on the per-
formance of the nspRule algorithm. We also assess the scalability of the nspRule

470 C. Sun et al.

algorithm using a different number of sequences contained in the sequential
database.

Our proposed algorithm is the first study to mine NSRs form NSPs so there
are no baseline algorithms with which to compared. E-HUNSR is not suitable to
compare with nspRule because it uses the utility-confidence framework, which
is very different with the support-confidence framework used in nspRule. The
nearest algorithm that can be compared is the SpamNeg algorithm [16], which
mines both PSRs and NARs from PSPs. It mines PSRs from frequent PSPs
and mines NSRs from infrequent PSPs. In order to make a fair comparison,
we unify the input of the two algorithms, i.e., we change SpamNeg to mine
NSRs also from frequent patterns. In our experiments, we compare our proposed
algorithm with the SpamNeg algorithm with respect to candidates, the final
derived rules, runtime and memory usage. The algorithms are implemented in
Eclipse, running on Windows 7 PC with 8 GB memory, Intel (R) Core (TM)
i7-6700 CPU 3.40 GHz. All the programs are written in Java.

Dataset 1 (DS1): BMSWebView1 (Gazelle) (KDD CUP 2000).
Dataset 2 (DS2): C5 T6 S6 I4 DB3k N100.
Dataset 3 (DS3): C10 T8 S12 I10 DB2k N100.
Dataset 4 (DS4): C6 T4 S4 I4 DB10k N100.

5.1 Experiment to Assess the Influence of min sup

In the first experiment, different min sup values and a fixed min nor conf value
are used to assess the influence of min sup on datasets DS1 to DS4.

We compare our proposed algorithm with an NSR mining algorithm, named
SpamNeg [16], with respect to candidates, final derived rules, runtime and
memory usage. In the SpamNeg algorithm, there is no min nor conf mea-
sure, so we use min conf while mining NSRs. On DS1-DS4, the min conf and
min nor conf are set to 0.1. For acquiring sufficient rules to observe the dif-
ference of two algorithms, there are different ranges of min sup with different
datasets because of their inherent attributes. Figure 1 (a) shows the different
number of candidates and the final derived rules generated by nspRule and the
SpamNeg algorithm respectively with different min sup values and (b)(c) shows
the comparison of nspRule and the SpamNeg algorithm in terms of runtime and
memory. From Fig. 1(a), we can observe that when the min sup increases to a
certain value, the number of NSRs mined by the two algorithms is close, and
with the decrease of min sup, the number increases gradually. We can also see
that the number of PNSRs mined by the nspRule algorithm is greater than that
of the SpamNeg algorithm. The reason is that our algorithm mines PNSRs from
both PSPs and NSPs, while SpamNeg only mines PNSRs from PSPs. The num-
ber of NSPs is much larger than that of PSPs. From Fig. 1(b), we can see that
the runtime of nspRule and the SpamNeg algorithm is close. We can also see
that with a decrease of the min sup, the runtime of the nspRule and SpamNeg
algorithm increases. Also, with the decrease of the min sup, the memory usage
of nspRule and SpamNeg algorithm increases, as shown in Fig. 1(c). Figure 1(b)

Mining Negative Sequential Rules from Negative Sequential Patterns 471

min__sup
0.007 0.006 0.005 0.004 0.003

nu
m

be
r

0

200

400

600

800

1000
Number on DS1

nspRule-candidates
nspRule-rules
SpamNeg-candidates
SpamNeg-rule

min_sup
0.007 0.006 0.005 0.004 0.003

R
un

tim
e(

m
s)

2000

3000

4000

5000

6000
Runtime on DS1

nspRule
SpamNeg

min_sup
0.007 0.006 0.005 0.004 0.003

M
em

or
y(

b)

108

1

2

3

4

5

6
Memory on DS1

nspRule
SpamNeg

Fig. 1. Influence of min sup on DS1

min__sup
0.01 0.009 0.008 0.007 0.006

nu
m

be
r

0

1000

2000

3000

4000
Number on DS2

nspRule-candidates
nspRule-rules
SpamNeg-candidates
SpamNeg-rule

min_sup
0.01 0.009 0.008 0.007 0.006

R
un

tim
e(

m
s)

2500

2600

2700

2800

2900

3000

3100
Runtime on DS2

nspRule
SpamNeg

min_sup
0.01 0.009 0.008 0.007 0.006

M
em

or
y(

b)

108

1

2

3

4

5
Memory on DS2

nspRule
SpamNeg

Fig. 2. Influence of min sup on DS2

and (c) show that our algorithm costs more time and memory than the Spam-
Neg algorithm. The reason for this is that our algorithm first mines NSPs from
PSPs, then it mines PNSRs from these PSPs and NSPs, while SpamNeg mines
PNSRs directly from these mined PSPs. From Figs. 2, 3 and 4, we can see that a
similar trend occurs for both synthetic and real-life datasets from DS1 to DS4.

5.2 Experiment to Assess the Influence of min nor conf

In the second experiment, our proposed algorithm compares the SpamNeg algo-
rithm with different min nor conf (min conf) values and a fixed min sup value
to assess the influence of min nor conf (min conf) on DS1 to DS4.

On DS1, the nspRule algorithm and SpamNeg algorithm are run with a fixed
min sup = 0.004 and min nor conf (min conf) = 0.1,0.12,...,0.18. On DS2, the
two algorithms run with a fixed min sup = 0.007 and min nor conf (min conf)
= 0.1,0.12,...,0.18. On DS3, the two algorithms run with a fixed min sup = 0.06
and min nor conf (min conf) = 0.1, 0.2,...,0.5. On DS4, the two algorithms
run with a fixed min sup = 0.006 and min nor conf (min conf). The reason
why we set a different min nor conf (min conf) on DS3 is that the data in
DS3 is concentrated and is not sensitive to min nor conf (min conf). If we set
min nor conf (min conf) from 0.12 to 0.18, the number of PNSRs will change a
little. Figure 5(a) shows that with an increase of the min nor conf (min conf),
the number of NSRs in both algorithms decreases gradually. The rules in which
the confidence is less than min nor conf (min conf) are pruned, so with an

(a) Number on DS1 (b) Runtime on DS1 (c) Memory on DS1

(a) Number on DS2 (b) Runtime on DS2 (c) Memory on DS2

472 C. Sun et al.

min__sup
0.09 0.08 0.07 0.06 0.05

nu
m

be
r

0

200

400

600

800

1000

1200
Number on DS3

nspRule-candidates
nspRule-rules
SpamNeg-candidates
SpamNeg-rule

min_sup
0.09 0.08 0.07 0.06 0.05

R
un

tim
e(

m
s)

1000

1500

2000

2500

3000
Runtime on DS3

nspRule
SpamNeg

min_sup
0.09 0.08 0.07 0.06 0.05

M
em

or
y(

b)

108

0

1

2

3

4

5
Memory on DS3

nspRule
SpamNeg

Fig. 3. Influence of min sup on DS3

min__sup
0.01 0.009 0.008 0.007 0.006

nu
m

be
r

0

200

400

600

800
Number on DS4

nspRule-candidates
nspRule-rules
SpamNeg-candidates
SpamNeg-rule

min_sup
0.01 0.009 0.008 0.007 0.006

R
un

tim
e(

m
s)

104

1.05

1.1

1.15

1.2

1.25

1.3

1.35
Runtime on DS4

nspRule
SpamNeg

min_sup
0.01 0.009 0.008 0.007 0.006

M
em

or
y(

b)

108

0

1

2

3

4

5
Memory on DS4

nspRule
SpamNeg

Fig. 4. Influence of min sup on DS4

min__nor__conf
0.1 0.12 0.14 0.16 0.18

nu
m

be
r

80

100

120

140

160
Number on DS1

nspRule
SpamNeg

(a) Number on DS1
min__nor__conf

0.1 0.12 0.14 0.16 0.18

nu
m

be
r

0

200

400

600

800
Number on DS2

nspRule
SpamNeg

(b) Number on DS2
min__nor__conf

0.1 0.2 0.3 0.4 0.5

nu
m

be
r

100

150

200

250

300
Number on DS3

nspRule
SpamNeg

(c) Number on DS3
min__nor__conf

0.1 0.12 0.14 0.16 0.18

nu
m

be
r

50

100

150

200

250

300

350
Number on DS4

nspRule
SpamNeg

(d) Number on DS4

Fig. 5. Influence of min nor conf on DS1–DS4

increase of the min nor conf (min conf) threshold, more rules will be elimi-
nated. We can see that a similar trend occurs for DS2, DS3 and DS4, as shown
in Fig. 5 (b)(c)(d). The mining results in Fig. 5 clearly show that the number
of PNSRs mined by nspRule algorithm is greater than that of the SpamNeg
algorithm.

5.3 Experiment to Assess the Influence of |S|
A third experiment is performed to assess the scalability of the nspRule algo-
rithm with respect to a different scale of sequence databases. In this experiment,
memory and runtime are analyzed to assess the performance of the nspRule
algorithm on both the real-life and synthetic databases.

(a) Number on DS3 (b) Runtime on DS3 (c) Memory on DS3

(a) Number on DS4 (b) Runtime on DS4 (c) Memory on DS4

Mining Negative Sequential Rules from Negative Sequential Patterns 473

In the first experiment, the nspRule algorithm runs with min sup = 0.006
and min nor conf = 0.2 on different data sizes: from 5 to 20 times of DS1. The
scale of DS1*5-DS1*20 is varied from 21.3M to 85.4M. In the second experiment,
the nspRule algorithm runs with min sup = 0.06 and min nor conf = 0.2 on
different data sizes: from 5 to 20 times of DS3. The scale of DS3*5-DS3*20 is
varied from 13.7M to 54.6M. As shown in Fig. 6(a)(b), we can see that nspRule’s
running time and maximum memory usage grows linearly with the size of |S|.

|S|
X1 X5 X10 X15 X20

R
un

tim
e(

m
s)

0

20

40

60

80

100
Runtime on different |S|

DS1
DS3

|S|
X1 X5 X10 X15 X20

M
em

or
y(

b)

107

0

2

4

6

8

10
Memory on different |S|

DS1
DS3

Fig. 6. The scalability experiment on DS1.1–DS1.4 and DS3.1–DS3.4

6 Conclusion

Very few algorithms have been proposed to mine NSR and all only mine NSR
from PSPs rather than from NSPs, which may result in important information
being missing. NSPs can provide more comprehensive information from both
positive and negative aspects, which cannot be replicated by only analysing
PSPs. In this paper, we proposed a novel algorithm named nspRule to mine
NSRs based on NSPs. We conducted experiments on four datasets to evaluate
the nspRule algorithm’s performance. The experiment results show that under
the condition of small memory usage and runtime, many PNSRs can be efficiently
mined by the nspRule algorithm.

There is no denying that some of rules are in conflict (e.g., <ab> ⇒ ¬<cd>
and <ab> ⇒ <c¬d>) and cannot be used to make decisions simultaneously,
i.e., the decision made by <ab> ⇒ ¬<cd> may not be correct. So, we see
various opportunities to further work on NSRs. One important issue is to discover
actionable NSRs which can enable action-taking for decision-making. Our further
work is to find actionable NSRs because many NSRs obtained from NSPs are
in conflict (e.g., <a¬b> ⇒ <cd> and <a¬b> ⇒ <¬cd>, <a¬b> ⇒ <cd> and
<a¬b> ⇒ <c¬d>, etc.).

(a) Runtime on different |S| (b) Memory on different |S|

474 C. Sun et al.

References

1. Cao, L., Dong, X., Zheng, Z.: e-NSP: efficient negative sequential pattern mining.
Artif. Intell. 235, 156–182 (2016)

2. Dalmas, B., Fournier-Viger, P., Norre, S.: TWINCLE: a constrained sequential rule
mining algorithm for event logs. Procedia Comput. Sci. 112, 205–214 (2017)

3. Dong, X., Gong, Y., Cao, L.: F-NSP+: a fast negative sequential patterns mining
method with self-adaptive data storage. Pattern Recogn. 84, S0031320318302310
(2018)

4. Dong, X., Gong, Y., Cao, L.: e-RNSP: an efficient method for mining repetition
negative sequential patterns. IEEE Trans. Cybern. (2018)

5. Dong, X., Qiu, P., Lü, J., Cao, L., Xu, T.: Mining top-k useful negative sequential
patterns via learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2764–2778
(2019)

6. Fournier-Viger, P., Faghihi, U., Nkambou, R., Nguifo, E.M.: CMRules: mining
sequential rules common to several sequences. Knowl. Based Syst. 25(1), 63–76
(2012)

7. Fournier-Viger, P., Nkambou, R., Tseng, V.S.M.: RuleGrowth: mining sequential
rules common to several sequences by pattern-growth. In: Proceedings of the 2011
ACM Symposium on Applied Computing, pp. 956–961 (2011)

8. Gao, X., Gong, Y., Xu, T., Lü, J., Zhao, Y., Dong, X.: Toward to better structure
and constraint to mine negative sequential patterns. IEEE Trans. Neural Netw.
Learn. Syst. (2020)

9. Guyet, T., Quiniou, R.: NegPSpan: efficient extraction of negative sequential pat-
terns with embedding constraints. Data Min. Knowl. Disc. 34(2), 563–609 (2020)

10. Hsueh, S.C., Lin, M.Y., Chen, C.L.: Mining negative sequential patterns for e-
commerce recommendations. In: IEEE Asia-Pacific Services Computing Conference
(2008)

11. Qiu, P., Gong, Y., Zhao, Y., Cao, L., Zhang, C., Dong, X.: An efficient method
for modeling nonoccurring behaviors by negative sequential patterns with loose
constraints. IEEE Trans. Neural Netw. Learn. Syst. (2021)

12. Setiawan, F., Yahya, B.N.: Improved behavior model based on sequential rule min-
ing. Appl. Soft Comput. S1568494618300413 (2018)

13. Tran, M.-T., Le, B., Vo, B., Hong, T.-P.: Mining non-redundant sequential rules
with dynamic bit vectors and pruning techniques. Appl. Intell. 45(2), 333–342
(2016). https://doi.org/10.1007/s10489-016-0765-3

14. Wang, W., Cao, L.: VM-NSP: vertical negative sequential pattern mining with
loose negative element constraints. ACM Trans. Inf. Syst. (TOIS) 39(2), 1–27
(2021)

15. Zhang, M., Xu, T., Li, Z., Han, X., Dong, X.: e-HUNSR: an efficient algorithm for
mining high utility negative sequential rules. Symmetry 12(8), 1211 (2020)

16. Zhao, Y., Zhang, H., Cao, L., Zhang, C., Bohlscheid, H.: Efficient mining of event-
oriented negative sequential rules. In: 2008 IEEE/WIC/ACM International Confer-
ence on Web Intelligence, WI 2008, 9–12 December 2008, Sydney, NSW, Australia,
Main Conference Proceedings (2008)

17. Zhao, Y., Zhang, H., Cao, L., Zhang, C., Bohlscheid, H.: Mining both positive
and negative impact-oriented sequential rules from transactional data. In: Theer-
amunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS
(LNAI), vol. 5476, pp. 656–663. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-01307-2 65

https://doi.org/10.1007/s10489-016-0765-3
https://doi.org/10.1007/978-3-642-01307-2_65
https://doi.org/10.1007/978-3-642-01307-2_65

Mining Negative Sequential Rules from Negative Sequential Patterns 475

18. Zheng, Z., Zhao, Y., Zuo, Z., Cao, L.: An efficient GA-based algorithm for mining
negative sequential patterns. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V.
(eds.) PAKDD 2010. LNCS (LNAI), vol. 6118, pp. 262–273. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13657-3 30

19. Zheng, Z., Zhao, Y., Zuo, Z., Cao, L.: Negative-GSP: an efficient method for min-
ing negative sequential patterns. In: Proceedings of the Eighth Australasian Data
Mining Conference, vol. 101. pp. 63–67 (2009)

https://doi.org/10.1007/978-3-642-13657-3_30

CrossIndex: Memory-Friendly and
Session-Aware Index for Supporting

Crossfilter in Interactive Data
Exploration

Tianyu Xia1,2, Hanbing Zhang1,2, Yinan Jing1,2(B), Zhenying He1,2,
Kai Zhang1,2, and X. Sean Wang1,2,3

1 School of Computer Science, Fudan University, Shanghai, China
{tyxia19,hbzhang17,jingyn,zhenying,zhangk,xywangCS}@fudan.edu.cn

2 Shanghai Key Laboratory of Data Science, Shanghai, China
3 Shanghai Institute of Intelligent Electronics and Systems, Shanghai, China

Abstract. Crossfilter, a typical application for interactive data explo-
ration (IDE), is widely used in data analysis, BI, and other fields. How-
ever, with the scale-up of the dataset, the real-time response of crossfil-
ter can be hardly fulfilled. In this paper, we propose a memory-friendly
and session-aware index called CrossIndex, which can support crossfilter-
style queries with low latency. We first analyze a large number of query
workloads generated by previous work and find that queries in the data
exploration workload are inter-dependent, which means these queries
have overlapped predicates. Based on this observation, this paper defines
the inter-dependent queries as a session and builds a hierarchical index
that can be used to accelerate crossfilter-style query processing by utiliz-
ing the overlapped property of the session to reduce unnecessary search
space. Extensive experiments show that CrossIndex outperforms almost
all other approaches and meanwhile keeps a low building cost.

Keywords: Crossfilter · Index · Data analysis

1 Introduction

Interactive data exploration (IDE) [3,4,9] is widely used in both scientific
research and daily business activities. As the most representative application of
IDE, crossfilter is a user interface containing several two-dimensional or three-
dimensional charts that reveal the aggregation results of the raw dataset, allow-
ing users to perform interactive operations such as brushing and linking on
these charts. It not only lowers the threshold of data analysis, enabling users
with varying degrees of skills in the field of data science to manipulate, explore,
and analyze data but also shows the results in the form of visualization, helping
analysts find insights faster and then draw a conclusion [20].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 476–492, 2022.
https://doi.org/10.1007/978-3-031-00123-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_38&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_38

CrossIndex: Session-Aware Index for Supporting Crossfilter in IDE 477

Fig. 1. Queries of Square Crossfilter (https://square.github.io/crossfilter/) in an explo-
ration process.

For example, Fig. 1 shows the process when an airline analyst is exploring
part of the flights1 dataset. He first selects the date from February 1st to Febru-
ary 22, and then drags the brush on the time dimension to find how does air-
line pattern change between mornings and nights. Through linking and brush-
ing [9,20], a great number of queries will be generated [3]. In order to keep a
good interactive experience, crossfilter needs to respond to these queries caused
by user interactions in real-time [18]. To deal with the challenge, A variety of
methods have been proposed including approximate query processing [1,6,7,25],
prefetching [8,10,26], progressive aggregation [11,13,27], data cube [17], and
index [12]. However, these approaches more or less suffer as the scale of avail-
able data increases, and they ignore the valuable relation hidden in workloads
which was recognized as ad-hoc [4] previously. It can be found that there is a
relation between the queries during this exploration process. As shown in Fig. 1,
the second and third query share the same date predicate with the first query.

To utilize such a characteristic of crossfilter workloads, we first analyze the
user interaction logs of exploration on three real-world datasets, and find that
periodically a series of queries have overlapped predicates. Such phenomenon
occurs when the user discovers something interesting, adds more brushes to
views, and performs further detailed queries. We define these queries as a session,
and according to data provenance [21], this relation means that the results of
these queries are from the same data rows. In the example of Fig. 1, the results of
the second and third query come from data rows whose date is between February

1 https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009.

https://square.github.io/crossfilter/
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009

478 T. Xia et al.

1st and February 22, which is exactly the result of the first query. We will discuss
how to define a session in detail in the following sections.

Based on the observation above, subsequent queries in the same session can
directly use the data rows of the previous query result, avoiding searching repeat-
edly. Therefore, we propose a hierarchical index called CrossIndex to capture
session and utilize it to prune unnecessary search space. The nodes in the index
can represent a range of data records. When it is found that there are overlapped
predicates between the new query and the previous query, the search space of
the new query can start from the deepest node shared with the previous query
rather than the root node. We believe this optimization will greatly improve
query performance for workloads where session shows up repeatedly.

Data rows that have the same value on a certain dimension are logically
continuous because they should be aggregated in the same group during aggre-
gation. When constructing our index offline, we sort the raw dataset in a specified
order of dimensions. For each dimension, the data rows are sorted according to
the dimension value and divided into different nodes. Then we continue to sort
the next dimension in the range of data rows represented by these nodes, and
so on until the last dimension. After the construction, data rows will be physi-
cally continuous, enabling efficient sequential scan access compared to random
access [16]. Besides, because queries in a session often scan the same data rows,
the nodes in CrossIndex use an array to store the nodes of the next layer so that
the CPU cache can be utilized to speed up index search.

In summary, this paper contributes mainly in three aspects:

– We analyze and summarize the characteristics of workloads in the user study
conducted by Battle et al. [3], and introduce the concept of the session.

– We propose CrossIndex, a hierarchical index that enables sequential memory
access and utilizes sessions for pruning unnecessary search space to speed up
crossfilter-style query processing.

– Extensive experiments on the crossfitler benchmark [3] demonstrate that
CrossIndex achieves better results than all other approaches, doubling
response rate compared to GPU database methods while keeping the same
query latency.

The rest of this paper is organized as follows. We summarize the charac-
teristics of workloads and define the problem in Sect. 2. We elaborate on the
construction of the proposed CrossIndex and query processing on it in Sect. 3.
Section 4 shows the experiments and discussion of results. We review related work
in Sect. 5 before discussing how to update the index in Sect. 6 and concluding
with Sect. 7.

2 Preliminaries

2.1 Characterizing Workloads

Compared with the traditional OLTP and OLAP context, the query in the cross-
filter application has two main characteristics. First, a drag interaction will gen-
erate many queries [4], which requires high real-time performance. Second, user

CrossIndex: Session-Aware Index for Supporting Crossfilter in IDE 479

Fig. 2. The number of queries, sessions, and queries per session in the workloads of
crossfilter. Generally, the complexity increases from quantitative task to exploratory
and more complex task involves more queries.

exploration is unpredictable. Based on the above two points, existing database
benchmarks such as TPC-H2, TPC-DS3, and SSB4 are not suitable for IDE sce-
narios represented by crossfilter because the workloads they represent cannot
reflect the real ones generated by user interaction.

However, if we start from the user’s point of view, we will realize they are
exploring with certain goals. When they explore, the speed of the brush shows
a pattern from fast to slow. At the beginning of the process, it always comes
with many trials and errors. After determining a certain area of interest, they
adjust the range of the brush more carefully. If the range meets the goals, they
will continue to explore, otherwise restart the process above. Battle et al.’s anal-
ysis [3] on user study designed for 4 types of tasks on 3 different datasets also
prove that.

We carefully analyze the user interaction logs and find that the user always
continuously adjusts brush range to get an area of interest, and then switches to
another view to repeat. Falcon [20] also mentions that users always focus on one
view at a time which is called active view, while other views are called passive
views. The current query generated by brush on the active view is often based
on the previous query results with further filter conditions added.

We call these queries a session. Before explaining how to define a session, we
first introduce an operator ∈ as follows:

2 http://www.tpc.org/tpch/.
3 http://www.tpc.org/tpcds/.
4 https://www.cs.umb.edu/∼poneil/StarSchemaB.PDF.

http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/
https://www.cs.umb.edu/~poneil/StarSchemaB.PDF

480 T. Xia et al.

Definition 1 (Belonging operator ∈). Given two interval sets A =
{[va

s1, v
a
e1], [va

s2, v
a
e2], · · · , [va

sn, va
en]} and B = {[vb

s1, v
b
e1], [v

b
s2, v

b
e2], · · · , [vb

sn, vb
en]}.

If [va
si, v

a
ei] ∈ [vb

si, v
b
ei] for every i ∈ [1, n], interval set A ∈ B.

Since the predicate brought by the brush is an interval, we will use an interval
list to represent all the predicates of a query. Take the last query in Fig. 1 as an
example, its predicates can be represented as {[02–02, 02–22], [18, 22]}. With
the definition of the belonging operator, we can define the session as follows:

Definition 2 (Session). Given a crossfilter scenario, a workload comprises a
series of queries q1, q2, · · · , qn in order, and their predicates can be represented
as interval sets p1, p2, · · · , p3. If several adjacent queries qi, qi+1, · · · , qj satisfy
pk ∈ pi(i < k ≤ j), these queries are said to become a session.

We summarize the frequency of sessions in the user study [4] conducted by
Battle et al., and the results are shown in Fig. 2. Tasks are organized into 4
main classes: quantitative tasks, qualitative task(easy), qualitative task(hard),
and exploratory task. Generally, each session contains at least about 10 queries,
which means if the overlapped query results are utilized, the performance of a
large part of workloads would improve.

2.2 Problem Statement

Based on the characteristics of crossfilter workloads, the crossfilter problem in
IDE can be defined as follows:

Problem Statement. Given a crossfilter scenario, a user explores a cer-
tain dataset R by crossfilter and generates a series of queries. The order of
these queries can be expressed as q1, q2, · · · , qn. A session contains at least
one query, so the original query sequence can be divided into multiple ses-
sions s1, s2, · · · , sm(m ≤ n). The corresponding response time of the query is
t1, t2, · · · , tn. For a response time threshold θ which represents the maximum
latency the user can accept, it is guaranteed that the average response time of all
queries is less than θ, which can be expressed as the following formula:

1
n

n∑

t=1

ti ≤ θ(1 ≤ i ≤ n)

We will explain how to build and use CrossIndex to solve this problem in the
following sections, and θ will be set to 100ms by default which is a reasonable
latency for crossfilter [3].

3 Accelerating Crossfilter by CrossIndex

3.1 CrossIndex Construction

The construction of CrossIndex requires the metadata of the raw dataset, includ-
ing the type of dimension that users are interested in and the bin width of the
visualization. These metadata can uniquely determine a CrossIndex.

CrossIndex: Session-Aware Index for Supporting Crossfilter in IDE 481

Fig. 3. The construction process of CrossIndex on an example dataset. Triples in the
rectangle show the details of CrossIndex nodes. After the end of the construction
process, the original dataset will be sorted into the order represented by CrossIndex

Dimension Representation. Suppose the raw dataset is R, and dimensions
of interest is D = {d1, . . . , dn}, and the distinct value contained in the ith
dimension is Vi = {v1

i , ..., v
m
i }. CrossIndex uses each dimension as a layer to

build a hierarchical structure, and each node represents data rows whose current
dimension has the same value. In the same node, the meaning of data rows are
identical, so the interval [start, end] (indicates the start and end id of rows) can
be used to represent their range. Therefore a node can be represented by a triple
(di, V

j
i , [start, end]). Starting from the first dimension, datasets are sorted in the

order of V1, resulting in an array of nodes. For the following dimensions, tree
nodes are recursively constructed under the range represented by intervals of
previous layer nodes. The root node is represented as (root, null, [0, len(R)−1]).
The nodes of each layer need to be sorted, so if the row number of dataset is N,
the time complexity of the construction is O(N ∗ log2 N ∗ |D|).

Partitioning raw data into hierarchical representations can rapidly skip unde-
sired search spaces during querying. Since each tree node is constructed based on
previous layers, the data row will not exceed the range of the previous node. As
shown in Fig. 3, the first dimension is the carrier, and the dimension distance
is built based on carrier nodes. The node with value B ensures that distance
nodes under it are in the range of interval [4, 6]. After the construction process
is completed, because the original dataset has been sorted, its logically contin-
uous data rows become physically continuous. The search result of CrossIndex
is a collection of intervals, and each interval represents data rows stored sequen-
tially in memory, which means data access will be faster than previously random
access [16].

482 T. Xia et al.

Binned Aggregation. When data scales up, real-time performance should be
ensured by choosing a appropriate resolution of visualized data [19]. Binned
aggregation can convey both global and local features, and the bin size can also
be flexibly adjusted according to needs. On the other hand, visualizations in
Crossfilter are basically binned plots, so CrossIndex uses the distinct value of
binned dimension di as Vi.

CrossIndex has different binning methods for different types of dimensions,
mainly for discrete and continuous types. For discrete types such as categorical
dimensions, we can simply treat each value as a bin. For continuous types such as
numerical and temporal dimensions, if each value is simply used as a bin, it is easy
to cause the bin size to be too large, thereby increasing the construction cost of
CrossIndex. Therefore, it is necessary to specify the bin width of the continuous
type before construction, so that the continuous type can be converted as the
discrete type to process. Some binning algorithms [23] can be used to calculate
the bin width so that the bin count is moderate, and the visualization fits well
on screen.

Construction Order. The order in which the dimensions of CrossIndex are
constructed will affect the efficiency of the query to a certain extent. For example,
if a query only has a predicate in the last dimension, it needs to cross the first few
layers and will not be filtered until the last layer. When the interval is finally
aggregated, it may be time-consuming and can easily become a performance
bottleneck. Experiments show that a heuristic way is to construct CrossIndex
in order of cardinality from small to large, which leads to skipping more search
spaces when the first a few dimensions are filtered. Section 4.4 will compare the
performance of CrossIndex built in different orders in detail.

3.2 Crossfilter-Style Query Processing

The query generated by the user’s interaction on the crossfilter generally con-
tains a series of predicates caused by brush and a specified dimension (current
visualization), which corresponds to the WHERE and GROUP BY clauses of
the SQL statement. For such a query, CrossIndex will first sort its predicates in
the construction order of dimension. Then we scan and filter the index nodes
along the hierarchy until reaching the last dimension with a predicate. At this
time, the nodes that meet the conditions are the result of the query, and their
intervals are the data row position. Finally, the result intervals need to be aggre-
gated by GROUP BY dimension. If the level of GROUP BY dimension is smaller
than the level of result node dimension, intervals should trace back to GROUP
BY dimension. If the level of GROUP BY dimension is exactly the level of
the result, intervals only need to be aggregated by the current dimension. If
the level of GROUP BY dimension is greater than the result node dimension,
further traversing will be performed until hitting GROUP BY dimension. As
shown in Fig. 4, the GROUP BY dimension is carrier, so the final result should
be aggregated by carrier.

CrossIndex: Session-Aware Index for Supporting Crossfilter in IDE 483

Fig. 4. Example for single query processing in CrossIndex. The red path shows how
a query is processed in CrossIndex. The result of this example is {B : {[5, 5], [6, 6]}},
which means data rows that satisfy the query predicate are in the fifth and sixth row.
(Color figure online)

The final result of the CrossIndex query is a set of keys and values. The key
represents the grouping value of the GROUP BY dimension, and the value is the
interval array. According to the interval array, the actual data row can be found
and the corresponding aggregation function calculation is performed. Histograms
representing the number of rows of data falling within a certain bin are the most
common visualization in crossfilter, which can be calculated simply with O(1)
time complexity through interval by end − start + 1. Other aggregate functions
need to be handed over to the underlying database system for execution.

3.3 Optimization for Crossfilter Workloads

Under crossfilter workloads, searching from the root node every time will bring
unnecessary search overhead. Psallidas et al. [21,22] point out that IDE appli-
cations can use data provenance. The session defined above can represent the
lineage of queries. They are all from the same subset of the raw data, which
means they belong to the same subtree in CrossIndex. Because the current query
(except for the first one) in one session is based on the previous query, the cur-
rent query result can be obtained by returning a subset of the previous query
result through backward query [22]. The actual search starts from the result
nodes of the previous query and finds the result faster than searching from the
root node. To implement this optimization, we use an array cache to store result
nodes of the previous query in every layer of CrossIndex. For example, the user
first filters data with carrier between B and C, distance between 4 and 6, and
delay between 16 and 20 on the visualizations. The generated query starts from
the CrossIndex root node to find the result. Next, the user adjusts the brush
range of delay as between 5 and 15, and the query generated at this time can be
searched from the previous results node. Figure 5 above shows how two different
queries are processed in CrossIndex.

484 T. Xia et al.

Fig. 5. Example for a backward query. The blue path shows how the first query search
in CrossIndex, while the red path shows how the second query search. (Color figure
online)

In order to maximize the effect of optimization, it is necessary to find the
deepest overlapping node in the CrossIndex hierarchy between the current query
and the previous query. If the current query is set as q, and the previous query
is set as qbak, the algorithm of backward query is described as follows. First, sort
the predicate order of q and qbak query according to the order of CrossIndex
construction. Looping from the first dimension, compare two predicates on each
dimension and record the current shared deepest layer h. If

– Case 1: the predicates of q and qbak are different, determine whether the
predicate of qbak contains the predicate of q. Since the predicate generated by
user interaction is in the form of an interval, it is only necessary to compare
whether the upper and lower bounds of qbak are greater or smaller than the
upper and lower bounds of q. If it contains, update h to the current layer
height and exit the loop, otherwise exit the loop directly.

– Case 2: the predicates of q and qbak are the same, update h and continue to
the next round.

– Case 3: neither q nor qbak has a predicate, skip and continue to the next
round.

– Case 4: either q or qbak has a predicate, exit the loop.

Under the workloads of crossfilter, the backward query can greatly reduce
the search time of subsequent queries in a session in CrossIndex. Subsequent
experimental in Sect. 4 can also prove the effect of optimization.

4 Experiments

4.1 Setup

Environment. The default experimental environment is a single Ubuntu18.04
LTS system server, with 64G memory, 40 cores (Intel(R) Xeon(R) Gold 5215
CPU @ 2.50 GHz), and more than 3 TB of disk space. The distributed server

CrossIndex: Session-Aware Index for Supporting Crossfilter in IDE 485

environment is one Master and four Slaves, all of which are Ubuntu 18.04 LTS
operating system. The Master has 128G memory, 16 cores (Intel(R) Xeon(R)
Bronze 3106 CPU @ 1.70 GHz), and more than 50 TB of disk space. The Slave
has 128G memory, 32 cores (Intel(R) Xeon(R) Silver 4208 CPU @ 2.10 GHz),
and more than 7 TB of disk space. The bandwidth of distributed environment
is 2000 Mbits/s. The distributed environment is only used for the construction
and testing of Kylin data cube5. This is because we cannot afford the huge time
Kylin is consuming on data cube construction in a single server, and meanwhile
Kylin performs better in the distributed environment than in the stand-alone
one. Other experiments basically run on a single node server without special
specifications.

Datasets and Workloads. We use three real-world datasets [3]: Flights,
Movies, and Weather, which are divided into three sizes: 1M rows, 10M rows, and
100M rows. 100M version of three datasets are synthetic, generated by data gen-
eration tool provided by IDEBench [9], which uses a statistical model to ensure
that the distribution of the synthetic dataset is similar to the actual dataset. The
query workloads come from User Study conducted by Battle et al. [3]. There are
128 workflows in total(44 for Flights, 36 for Movies, and 48 for Weather), and
each workflow contains all the interactive operations performed by the user in
a certain task. We use IDEBench for crossfilter [3] to translate workflows into
query workloads tested in experiments.

Metrics. Response rate indicates the proportion of queries that are successfully
answered. Queries that are cancelled, discarded, and exceed the time threshold θ
are all unsuccessful answered queries. Response rate can be expressed as follows:

Response Rate =
|Qa|
|Qi| , (1)

where Qa represents queries that are successfully answered and Qi represents
queries that are issued. We set θ to the same 100 ms as [3].

Mean query duration represents the mean response time of the answered
queries, which means that dropped queries are not included. It is calculated as
Formula 2.

Mean Query Duration =

∑
q∈Qa

t(q)
|Qa| (2)

The two metrics above can directly show how is the throughput of the system
and whether the interactive system meets the latency requirement. In addition,
we use expansion rate, the ratio of the size of the index to the size of the original
dataset, to evaluate the storage cost of CrossIndex offline construction. It is
shown as follows:

ExpansionRate(Data Index) =
|Data Index|

|R| (3)

5 http://kylin.apache.org/.

http://kylin.apache.org/

486 T. Xia et al.

Fig. 6. Response rates of six systems, faceted by dataset and dataset size.

Compared Approaches. We compare our optimized CrossIndex called CI-
backward and unoptimized version called CI-direct with the popular relational
database MySQL, the in-memory columnar database MonetDB [5], the GPU
database Omnisci6, and the data cube engine Kylin.

4.2 Query Performance

Response Rate. Figure 6 shows the response rate results for all workflows.
Overall, as the dataset scales up, basically the performance of each method
will be worse, which is the same as our expectations. Larger data leads to
more queries failing to reach the response time threshold, so the response rate
decreases. MySQL has never been able to return results within 100ms. This is
because MySQL is designed mainly for transactional workloads, which leads to
poor performance in analytical scenarios such as IDE. Kylin has only slightly
improved performance compared to MySQL, but the response rate has never
exceeded 10%. MonetDB’s response rate decrease rapidly with scale-up, from
50%–67% to 4%–9%. Omnisci’s response rate does not exceed 30%, this may
be because data needs to be transferred between GPU and CPU. However, its
performance is the most stable, enough to prove the role of GPU computing
power in queries.

CI-direct can maintain a response rate above 50% in the 1M scenario, but
once the amount of data increases, the size of CrossIndex will also increase,
and searching from the root node every time will bring huge overhead. So the
performance drops rapidly, and the response rate is only 2% to 10% in the case
of 100M. CI-backward utilizes the session and outperforms all other methods in
all datasets of all sizes. Even in the case of 100M, it can maintain more than a
20% response rate.

6 https://www.omnisci.com/.

https://www.omnisci.com/

CrossIndex: Session-Aware Index for Supporting Crossfilter in IDE 487

Fig. 7. Mean query duration results of six systems, faceted by dataset and dataset size

Mean Query Duration. Figure 7 shows the mean duration of all answered
queries, and the standard deviation is represented by error bars. As the dataset
scales up, the mean duration of almost all methods will increase. Kylin has
the largest standard deviation due to various orders of predicates in the query
workloads. If the order of these predicates conforms to the construction order
of the data cube, the response time will be shorter, otherwise the time will
be longer. This is also the reason for the large variance of CI-direct. Omnisci
has the smallest change in standard deviation and the mean query duration is
from 16 ms to 37 ms. MonetDB performs better than CI-direct, with the mean
query duration from 6 ms to 71 ms. CI-direct still uses row storage, so even
sequential access to rows is not better than column storage. The mean duration
of CI-backward has never exceeded 40 ms. However, the standard deviation of
CI-backward is larger than that of MonetDB and Omnisci. This is because when
the session is switched, it is necessary to search from the CrossIndex root node
again, during which the search time may exceed 100 ms. In general, CrossIndex
can meet the 100 ms threshold while maintaining a fairly good response rate.

4.3 Offline Cost

The offline construction cost of CrossIndex mainly comes from the grouping and
sorting operation. Table 1 shows the construction time and expansion rate in
different configurations and sizes. According to the results shown in the table,
it is easy to find that the build time increases as the dataset scales up. The
number and bin count of the dimensions will also affect the construction time.
Compared with the other two datasets, the Flights dataset has fewer dimensions,

488 T. Xia et al.

Table 1. Offline time cost and expansion rate of three datasets under 1M, 10M,
and 100M size. ‘Dimensions’ column shows the order of dimensions used to construct
CrossIndex, and the number in brackets represents the corresponding bin count

Dataset Size Dimensions Time Expansion rate

Flights 1M ARR DELAY(20),DEP DELAY(20), 25 s 68.5%

10M DISTANCE(23),AIR TIME(25), 126 s 26.2%

100M ARR TIME(25),DEP TIME(25) 1046 s 7.7%

Movies 1M Running Time min(9),US Gross(12), 39 s 93.3%

10M IMDB Rating(15),Production Budget(15), 260 s 55.3%

100M US DVD Sales(17),Rotten Tomatoes

Rating(20),Worldwide Gross(37),Release Date(50)

2087 s 51.2%

Weather 1M TMEP MIN(11),TEMP MAX(13), 46 s 169.8%

10M SNOW(14),ELEVATION(17), 292 s 105.9%

100M LONGITUDE(23),PRECIPIATION(24),

WIND(24),RECORD DATE(48)

2088 s 57.7%

so the construction time is correspondingly smaller. Although the movies and
weather data sets have the same number of dimensions, the bin count of weather
is relatively larger, which leads to a longer construction time. More dimensions
and bins will also cause the size of CrossIndex to become larger, so the expansion
rate of Movies and Weather is relatively higher, while that of Flights is lower.

Grouping depends on the cardinalities of each dimension involved. The more
groups these dimensions have, the larger the CrossIndex would be. Suppose the
group numbers of each dimensions are G = {g1, . . . , gn}, the space complexity
of construction is O(

∏n
i=1 g)

4.4 Effect of Construction Order

We evaluate the effect of construction order for the performance of CrossIndex
on the 10M datasets. We use three different construction orders: based on the
cardinality of dimension from low to high (ASC), from high to low (DESC), and
random(RANDOM). In order to avoid queries in individual workflows that are
conducive to certain build order, we experiment on all workflows and focus on
the mean query duration. Figure 8 shows that the ASC order is more efficient
than random and DESC. The lower the cardinality of dimension(the higher the
selectivity), the more data can be filtered through this dimension. The former
such dimension is in the order of CrossIndex, the more it can use the session to
reduce unnecessary search space, so ASC performs better. DESC is sometimes
good or bad, because high cardinality dimensions filter out less data than lower
cardinality dimensions, leaving more search space in the subsequent search pro-
cess of CrossIndex. Query latency on Weather is better than the other datasets
because query workloads of Weather contain more sessions, therefore CrossIndex
optimization can be fully utilized.

CrossIndex: Session-Aware Index for Supporting Crossfilter in IDE 489

Fig. 8. Mean query duration under different construction orders for 10M dataset size.

5 Related Work

The database and visualization communities have proposed many approaches for
crossfilter, and we categorize these approaches as data cube and indexing, column
stores, approximation, and prefetching. For the approximation and prefetching
approaches, their results are not 100% accurate and are not suitable for crossfilter
scenarios [3], so we have not compared our CrossIndex with them.

Data Cube and Indexing. Data cube and index calculate the aggregation
results of the original dataset offline, and directly use these aggregation results
when querying. Nanocubes [17] builds an index that can fit in memory for spa-
tiotemporal datasets. Liu et al.’s imMens [19] utilizes dense data structure to
overcome the exponential increase in cost due to the number of dimensions. Fal-
con by Moritz et al. [20] focuses on the index on the active view and calculates
the index under the new condition online when switching the active view.

Column Stores. For OLAP workloads, compared with row-stores databases,
column-stores always achieve better performance, which have been adopted in
MonetDB [5], SeeDB [24], and Profiler [15].

Approximation. In order to fill the gap between data volume and interac-
tivity, many works [1,6,7,25] utilize approximate query processing (AQP) to
speed up data processing. Others support progressive data visualization such as
incremental sampling-based works [11], and range-based binning works [19,20].

Prefetching. Prefetching can be divided into two categories, namely based
on currently explored visualizations and historical data. Approaches based on
currently explored visualizations are exemplified by imMens [19] and SW [14].
For the latter, examples are XmdvTool [8], ForeCache [2] and iExplore [26].

490 T. Xia et al.

6 Discussion

Generally speaking, the dataset used for OLAP rarely changes. In fact, changes
may happen. If Crossindex is rebuilt every time it changes, a certain cost will
be incurred. Here we would discuss how to update CrossIndex to avoid the
cost of reconstruction. When a new piece of data is added to the dataset, the
value corresponding to the constructed dimension of this piece of data is used
as the predicate of a query, and then the result node of the query is searched
in CrossIndex to find where exactly new data row will be inserted. If the result
node cannot be found, it means that it cannot be matched in a certain layer.
The value of the corresponding dimension of the new data in this layer has not
appeared before. At this time, one node needs to be split from the upper layer
of the unmatched layer, and continue to create new nodes along the way until
the last layer of CrossIndex; if a node in the last layer is found, the right interval
value of the node needs to be modified to the original value plus one. Finally, in
both cases, it is necessary to modify all the original nodes on the right part of the
search path including the nodes on the search path in CrossIndex, and increase
their right interval value by one, otherwise the row number of the CrossIndex
index will be inaccurate. Deleting or modifying a certain piece of data in the
dataset is a similar strategy. Let the number of CrossIndex nodes is n, the time
complexity of the update strategy is O(n).

7 Conclusion

In this paper, we propose an index-based method called CrossIndex for crossfilter
in data exploration. We first analyze the characteristics of queries of typical IDE
applications crossfilter and define the concept of the session. Then, a memory-
friendly hierarchical index structure is proposed to handle crossfilter queries.
In order to support better real-time performance, we design an algorithm to
make CrossIndex aware of sessions and use sessions to prune the search space.
The experiments performed on crossfilter IDEBench show that CrossIndex can
satisfy a 100ms query latency threshold while maintaining a response rate of
more than 20%, which outperforms almost all other approaches.

Acknowledgement. This work is supported by the NSFC (No. 61732004, No.
U1836207 and No. 62072113), the National Key R&D Program of China (No.
2018YFB1004404) and the Zhejiang Lab (No. 2021PE0AC01).

References

1. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB:
queries with bounded errors and bounded response times on very large data. In:
EuroSys, pp. 29–42 (2013)

2. Battle, L., Chang, R., Stonebraker, M.: Dynamic prefetching of data tiles for inter-
active visualization. In: SIGMOD, pp. 1363–1375 (2016)

CrossIndex: Session-Aware Index for Supporting Crossfilter in IDE 491

3. Battle, L., et al.: Database benchmarking for supporting real-time interactive
querying of large data. In: SIGMOD, pp. 1571–1587 (2020)

4. Battle, L., Heer, J.: Characterizing exploratory visual analysis: a literature review
and evaluation of analytic provenance in tableau. In: CGF, vol. 38, pp. 145–159
(2019)

5. Boncz, P.A., Zukowski, M., Nes, N.: Monetdb/x100: hyper-pipelining query exe-
cution. In: CIDR, vol. 5, pp. 225–237 (2005)

6. Chaudhuri, S., Ding, B., Kandula, S.: Approximate query processing: no silver
bullet. In: SIGMOD, pp. 511–519 (2017)

7. Ding, B., Huang, S., Chaudhuri, S., Chakrabarti, K., Wang, C.: Sample+ seek:
approximating aggregates with distribution precision guarantee. In: SIGMOD, pp.
679–694 (2016)

8. Doshi, P.R., Rundensteiner, E.A., Ward, M.O.: Prefetching for visual data explo-
ration. In: DASFAA, pp. 195–202 (2003)

9. Eichmann, P., Zgraggen, E., Binnig, C., Kraska, T.: IDEBench: a benchmark for
interactive data exploration. In: SIGMOD, pp. 1555–1569 (2020)

10. Fekete, J., Fisher, D., Nandi, A., Sedlmair, M.: Progressive data analysis and visu-
alization (Dagstuhl seminar 18411). Dagstuhl Rep. 8(10), 1–40 (2018)

11. Fisher, D., Popov, I., Drucker, S., Schraefel, M.: Trust me, I’m partially right:
incremental visualization lets analysts explore large datasets faster. In: SIGCHI,
pp. 1673–1682 (2012)

12. Gray, J., et al.: Data cube: a relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. DMKD 1(1), 29–53 (1997)

13. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: SIGMOD, pp.
171–182 (1997)

14. Kalinin, A., Cetintemel, U., Zdonik, S.: Interactive data exploration using semantic
windows. In: SIGMOD, pp. 505–516 (2014)

15. Kandel, S., Parikh, R., Paepcke, A., Hellerstein, J.M., Heer, J.: Profiler: integrated
statistical analysis and visualization for data quality assessment. In: AVI, pp. 547–
554 (2012)

16. Li, L., et al.: BinDex: a two-layered index for fast and robust scans. In: SIGMOD,
pp. 909–923 (2020)

17. Lins, L., Klosowski, J.T., Scheidegger, C.: NanoCubes for real-time exploration of
spatiotemporal datasets. TVCG 19(12), 2456–2465 (2013)

18. Liu, Z., Heer, J.: The effects of interactive latency on exploratory visual analysis.
TVCG 20(12), 2122–2131 (2014)

19. Liu, Z., Jiang, B., Heer, J.: imMens: real-time visual querying of big data. In: CGF,
vol. 32, pp. 421–430 (2013)

20. Moritz, D., Howe, B., Heer, J.: Falcon: balancing interactive latency and resolution
sensitivity for scalable linked visualizations. In: SIGCHI, pp. 1–11 (2019)

21. Psallidas, F., Wu, E.: Provenance for interactive visualizations. In: HILDA, pp.
1–8 (2018)

22. Psallidas, F., Wu, E.: Smoke: fine-grained lineage at interactive speed. Proc. VLDB
Endow. (2018)

23. Satyanarayan, A., Russell, R., Hoffswell, J., Heer, J.: Reactive vega: a streaming
dataflow architecture for declarative interactive visualization. TVCG 22(1), 659–
668 (2015)

24. Vartak, M., Rahman, S., Madden, S., Parameswaran, A., Polyzotis, N.: SeeDB:
efficient data-driven visualization recommendations to support visual analytics.
Proc. VLDB Endow. 8(13), 2182–2193 (2015)

492 T. Xia et al.

25. Wu, Z., Jing, Y., He, Z., Guo, C., Wang, X.S.: POLYTOPE: a flexible sampling
system for answering exploratory queries. World Wide Web 23(1), 1–22 (2019).
https://doi.org/10.1007/s11280-019-00685-x

26. Yang, Z., et al.: iExplore: accelerating exploratory data analysis by predicting user
intention. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018.
LNCS, vol. 10828, pp. 149–165. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-91458-9 9

27. Zhang, Y., Zhang, H., He, Z., Jing, Y., Zhang, K., Wang, X.S.: Parrot: a progressive
analysis system on large text collections. Data Sci. Eng. 6(1), 1–19 (2021)

https://doi.org/10.1007/s11280-019-00685-x
https://doi.org/10.1007/978-3-319-91458-9_9
https://doi.org/10.1007/978-3-319-91458-9_9

GHStore: A High Performance Global
Hash Based Key-Value Store

Jiaoyang Li1,2, Yinliang Yue1,2(B), and Weiping Wang1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{lijiaoyang,yueyinliang,wangweiping}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. Log-Structured Merge tree (LSM-tree) has become the main-
stream data structure of persistent key-value (KV) stores, but it suffers
from serious write and read amplification. In update intensive workloads,
repeated and useless compaction of outdated data makes the problem
more serious. So we design an efficient global segmented hashmap to
record the level of the latest KV pairs, and we present GHStore based on
it, which is a key-value store that improves overall performance in write,
read and range query simultaneously for update intensive workloads.
A read operation of GHStore does not need to search from top to bot-
tom, and a write-induced compaction operation ignores outdated records.
The experiments show that for update intensive workloads, compared to
widely-used key-value stores (e.g. RocksDB, Wisckey and PebblesDB),
GHStore decreases read latency by 10%–50%, range query latency by
15%–60%, while increases write throughput by 4%–55%.

Keywords: Key-value store · LSM-tree · Compaction · Global
segmented hashmap

1 Introduction

Persistent key-value stores have become an important part of storage infras-
tructure in data centers. They are widely deployed in large-scale production
environments to serve search engine including e-commerce [9], graph database
[1,16], distributed storage [15,17,22], data cache [12], cloud database [18], stream
processing [4] and so on.

Log-Structured Merge tree (LSM-tree) [23] has become the main stream data
structure of persistent key-value (KV) stores. Various distributed and local stores
built on LSM-trees are widely used, such as LevelDB [13], RocksDB [11], Cas-
sandra [19], MongoDB [22] and HBase [14]. The main advantage of LSM-tree
over other indexing structures (such as B-trees [6]) is that it maintains sequential
access patterns for writes, which is efficient on both solid-state storage devices
and hard-disk drives.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 493–508, 2022.
https://doi.org/10.1007/978-3-031-00123-9_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_39&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_39

494 J. Li et al.

However, LSM-tree remains two challenging problems: write amplification
and read amplification. High write amplification caused by the compaction pro-
cess increases the I/O on storage devices, which reduces write performance. Read
amplification is also serious due to multiple levels of search to lookup a KV pair,
and it limited the read performance. The existing works make some efforts to
solve one of them [10]. For example, some of them focus on improving write per-
formance [2,5,20,21,24,26], or improving read performance [8,28,29]. But few
of them improve write, read and range query performance at the same time.

We found that in update intensive workloads, there are multiple versions
for a key, but only the latest one is valid. The outdated data causes repeated
and useless compaction because they are not to be deleted timely, which makes
the write amplification more serious. To address this challenge, we complement
the LSM-tree with an additional structure global segmented hashmap (GHmap),
and design GHStore based on it. GHMap in GHStore records the level of the
latest KV pairs, so that a read operation does not need to search from top to
bottom, and a write-induced compaction operation ignores outdated records. We
evaluate GHStore using YCSB [7] and show that for update intensive workloads,
compared to widely-used key-value stores(e.g. RocksDB, Wisckey, PebblesDB),
GHStore decreases read latency by 10%–50%, range query latency by 15%–60%,
while increases write throughput by 4%–55%. Meanwhile, GHStore reduces read
amplification by 3x, write amplification by 1.5x and space amplification by 1.5x.

In summary, the paper makes the following contributions:

– We design an efficient global segmented hashmap to play the role of “God-
view”, called GHmap. GHmap records the level of the latest KV pairs, to
remove outdated KV pairs timely and avoid searching data level by level.

– We design a key-value store based on GHmap called GHStore. In update
intensive workloads, GHStore improves overall performance in write, read
and range query simultaneously.

– Experiments show that GHStore performs better than several widely used
key-value stores (e.g.RocksDB, Wisckey and PebblesDB).

2 Background and Motivation

2.1 Log-Structured Merge Tree

Log-Structured Merge tree (LSM-tree) [23] is a disk-oriented, hierarchical data
structure, which defers and batch write requests in memory to exploit the high
sequential write bandwidth of storage devices.

RocksDB is a typically key-value store implemented using LSM-tree. It con-
tains multiple levels: two levels in memory, organized data by Memtable and
several levels on disk, organized data by SSTable. A Memtable is a skip-list,
which could keep the KV pairs in order. An SSTable is a file, divided into data
blocks, filter blocks and index blocks, and uses compaction to ensure the ordering
of KV pairs.

GHStore: A High Performance Global Hash Based Key-Value Store 495

Fig. 1. In the last step of compaction, not all data written to disk is valid.

When Li triggers compaction [30], RocksDB read some KV pairs from Li

and L(i + 1), and then write to L(i + 1) after merge and sort. Thus, some KV
pairs are read and written many times when they are eventually migrated from
L0 to L6 through a series of compactions, leading to high write amplification.

To lookup a KV pair, RocksDB needs to check multiple levels, each level may
have candidate SSTables. To find a KV pair within an SSTable file, RocksDB
needs to read multiple metadata blocks within the file(index block, filter blocks
[3], data block). So the reading process requires multiple disk accesses, resulting
in the read amplification. Prior studies [21] show that the write amplification
could reach up 50x, which read amplification could reach up 300x.

2.2 Motivation

Although Compaction is the fundamental cause of write amplification, it is hard
for LSM-tree to avoid it. So it is particularly important to optimize compaction.
In the last step of compaction [30], some KV pairs will be written to the disk.
However, in the update intensive workloads, not all data written to disk is valid.
For example, the latest version of K3 at Memtable and the latest version of K1 at
L0. As shown in Fig. 1, after L1 compaction, not only the valid data K2V20, but
also the outdated data K3V31 and K1V11, are rewritten to the disk. The outdated

Fig. 2. SSTable access frequence and hit probability of KV pairs at different levels.

496 J. Li et al.

data is deleted until the latest one is down to the adjacent level. Before they are
deleted, they participate in compaction many times and write to the disk again
and again. So it is necessary to delete outdated data timely.

On the other hand, key-value stores suffer from severe read amplification.
We run experiments on 70 GB RocksDB with 1 million get requests. The Fig. 2
shows that most of KV pairs are located at higher levels, while the SSTables
at the lower levels are accessed more frequently. This is because when lookup
a KV pair, key-value store needs to check multiple SSTables from the lowest
level to the highest level until the key is found or all levels have been checked.
This process increases disk access, due to the read amplification. So avoiding
searching data level by level is necessary.

3 GHStore Design

Figure 3 shows the architecture of GHStore. It consists of two structures: GHmap
and LSM-tree. GHmap is the key of GHStore, which plays the role of “God-
view”. It records the level of the latest KV pairs, to help GHStore to remove
outdated data timely and avoid searching level by level from a global perspective.
The LSM-tree is divided into R-layer and NR-layer. GHStore only records the
level of the latest KV pairs in R-layer into GHmap, to reduce memory cost. In
update intensive workloads, with the help of the GHmap, GHStore improves
overall performance in write, read and range query simultaneously.

3.1 Global Segmented Hashmap(GHmap)

GHmap records level instead of SSTable, because the memory consumption is
more controllable. The number of SSTables increases with the raise of KV pairs,
while the number of levels is seven at most in LSM-tree, so only one byte is
needed to represent it.

Design: As shown in Fig. 3, GHmap is a hash table that internally is made of
an array of N hash tables, which are called submaps. Every submap holds a
mutex, costs 8 bytes [25]. Inserting or looking up a record consists of two steps:
(1) Calculate the index of the target submap by the key. (2) Decide the index
of the target bucket by both the segmentID and the key.

The design has higher performance and higher concurrency. On the one hand,
the level of the latest KV pairs is always variable. GHmap needs to participate
in all processes of the PUT operation (including insert to Memtable, flush to
disk, compaction, etc.), so it would be put, got, updated frequently. Therefore,
GHmap should provide very high read and write efficiency to reduce the impact
on storage, hashmap is a good choice. On the other hand, flush threads and
compaction threads are running in the background. So there may be multiple
threads accessing GHmap at the same time. In order to improve the parallelism
of it, we split a hashmap into several segments, GHmap internally protects each
segment access with its associated mutex.

GHStore: A High Performance Global Hash Based Key-Value Store 497

Fig. 3. GHStore architecture

Benifit: GHmap has two benifits: (1) Help to detect the outdated KV pairs and
deletes them timely. When the storage updates a KV pair, such as K1V10, there
is a new KV pair put into Memtable. GHmap updates the record to present
the level of the K1’s latest version is level0(Memtable), and KV pairs in other
levels are out of date. If an outdated KV pair participate in compaction, it
would be deleted so that it has no chance to write again. Therefore, the write
amplification also will be reduced. (2) Help to locate the level of KV pairs.
Compared to search level by level, the storage locates the target level quickly,
which is good for reducing read amplification and improving read performance.

3.2 GHStore Optimization

As the global structure, GHStore updates and searches GHmap frequently. So the
GHmap is put into memory during GHStore open. Considering that recording
all the data of LSM-tree will cost too much memory, we divide the LSM-tree into
two parts: the first N-2 levels are R-layer and the last two levels are NR-layer.
GHmap only records the latest KV pairs in the R-layer, rather than records in
both R-layer and NR-layer.

The capacity of LSM-tree increases level by level. The lower level is 10 times
larger than the upper level. The R-layer only accounts for 1% of the total, so it
greatly reduces the memory consumption.

498 J. Li et al.

Fig. 4. Comparation of two and three level in NR-layer.

Why does the NR-layer include two levels rather than more? As shown in
Fig. 4 (a), the latest data K1V10 at leveln−1 and the outdated data K1V11 at
leveln. Although there are no records of K1 in GHmap, GHStore could delete
K1V11 by the merge operation during compaction. In contrast, if the NR-layer
includes more, such as three levels, some outdated data would not be deleted
timely. Figure 4 (b) shows an example. The latest data K2V20 at leveln−2, and
compaction is running between leveln−1 and leveln. In the last step of com-
paction, K2V21 is written to the disk even if it is outdated data. So it is better
to put the last two levels into NR-layer.

3.3 Efficient GHStore Operations

This section briefly describes how various operations are implemented in
GHStore, including four operations: Compaction, Put, Get and Range Query.
The Range query operation in GHStore is handled similarly to RocksDB.

Put: The put() operation inserts or updates the mapping from key to value in the
GHStore. If the key already exists in the system, its associated value is updated.
Firstly, the put() operation writes KV pairs to an in-memory skip-list called the
Memtable, and insert or update the corresponding record in GHmap. When the
Memtable reaches a certain size, it becomes immutable. Then GHStore deletes
outdated KV pairs and flushes the latest KV pairs to storage as an SSTable
file at level2 (we called memtable as level0 and immutable memtable as level1).
Meanwhile, GHmap is updated due to the level of the latest data change. When
each level reaches a certain size, it is compacted into the higher level. During
the compaction process, GHStore removes outdated KV pairs, only rewrites the
latest data to the next level.

Compaction: Compaction is triggered when the actual size of a level exceeds its
target size. The compaction of leveli includes three steps: (1) GHStore selects an
SSTable randomly, calculates the data boundary (minkey, maxkey) of it. Then
it selects the SSTables that overlap with (minkey, maxkey) from the leveli+1,
reads them to the memory too. (2) After that, it merges the duplicate key,
deletes outdated KV pairs with GHmap, and sorts the rest of the data. (3)
Finally, GHStore puts them into SSTables to leveli+1, and updates GHmap.

GHStore: A High Performance Global Hash Based Key-Value Store 499

Fig. 5. Compaction

In the second step, GHStore detects outdated data by comparing the datas
level with the GHmaps record. If the data come from R-layer, the record must
exist in GHmap. As shown in Fig. 5, GHmap tells the storage that the latest KV
pair of Ka locates in level0 and the latest KV pair of Kb locates in level3. So
Ka at level3 is out of date, while Kb is valid. The output of compaction between
level3 and level4 only contains Kb. If the data come from NR-layer, such as Km

and Kd in Fig. 5, the data is outdated if there is a record in GHmap. So the
current KV pair of Kd is outdated. For the Km, there is no record in GHmap,
so it is not sure if the current KV pair is the latest one. But the older one is
deleted by merging, so the left KV pair must be the latest one and should be
rewritten to disk.

In the third step, GHStore updates GHmap after the latest KV pairs are
written to the higher level. As shown in Fig. 5, if the KV pair output to R-layer,
such as Kb, GHmap would be updated. Otherwise, such as Kc, GHStore deletes
the record of it.

Get: The get() operation returns the latest value of the key. The get() operation
locates the level of the data by GHmap, and searches the target SSTable within
the level. If there is no record in GHmap, the system searches SSTable file in the
NR-layer.

Specifically, since there are multiple candidate SSTables in level2, we use
bloom filter to avoid reading unnecessary SSTables off storage.

3.4 Crash Consistency

The data in-memory (Memtables, metadata, GHmap) may be lost when the sys-
tem crashed. For the KV pairs in Memtables, metadata (manifest files), GHStore
adopts Write-ahead Logging (WAL) for crash recovery, which is also used in
RocksDB. For the records in GHmap, GHStore tends to recover them during

500 J. Li et al.

the compaction process. On the one hand, the GHmap is updated frequently,
and thus logging them as soon as the record changes is not a good idea. On
the other hand, the recovery of the lost records by scanning the whole storage
consumes too much time.

Therefore, the recovery process includes the following steps: (i) Initialize the
GHmap with the latest checkpoint when the GHStore reopens. (ii) Recover the
data in Memtable, immutable Memtable and metadata by WAL. (iii) Flush the
Memtable and immutable Memtable as SSTables to the disk, and record the
information in GHmap. (iv) Update GHmap in the compaction process. During
the recovery of GHmap, it can also help the GHStore to deleted some outdated
data. For example, there is a record Ka, level4 in GHmap. When the leveli
triggers compaction, if leveli is lower than level4, GHmap should be updated
because the current KV pair is newer. If leveli is higher than level4, the KV pair
is outdated and should be deleted.

4 Evaluation

In this section, we run extensive experiments to demonstrate the key accom-
plishments of GHStore: (1) GHStore performance in various workloads (Sect.
4.2 and Sect. 4.3). (2) The strengths of GHmap (Sect. 4.5). (3) The memory
consumption of GHStore (Sect. 4.6).

4.1 Experimental Setup

Our experiments are run on a machine with a 24-core Intel(R) Xeon(R) Platinum
8260M CPU @ 2.40 GHz processor, 64 GB RAM and running CentOS 8.3 LTS
with the Linux 4.18.0 kernel and the ext4 file system. The machine has one 1TB
HDD and one 128 GB SSD.

We compare GHStore with widely-used key-value stores, such as RocksDB,
Wisckey and PebblesDB. We use their default parameters: 64 MB Memta-
bles/SSTables, 256 MB level2 size, AF of 10 and compression algorithm is
Snappy. We also allow the compared key-value stores to use all available capacity
in our disk space, so that their major overheads come from the read and write
amplification in the LSM-tree management.

We use db bench and YCSB [7] to provide a more complete view of GHStore’s
behavior.

4.2 Performance Comparison

This section evaluates GHStore performance using different micro-benchmarks
in update intensive workloads. We evaluate GHStore performance in different
dimensions, such as write throughput in different update ratios, read latency
in a different dataset, range query latency in different query lengths. We also
analyze write and read amplification.

GHStore: A High Performance Global Hash Based Key-Value Store 501

Fig. 6. Micro-benchmarks performance

Range Query Performance. We evaluate the range query performance of
GHStore and other key-value stores in update intensive workloads. We first load
100 GB of KV pairs into each key-value store. A KV pair consists of a 24B key,
and a 1 KB value. We then repeatedly issue updates over the existing 100 GB of
KV pairs three times. As shown in Fig. 6(a), in most cases, GHStore does well.
The latency of GHStore is 18%–25% lower than RocksDB, 24%—62% lower than
Wisckey, and 15%–29% lower than PebblesDB.

For an LSM-based key-value store (without key-value separate), the range
query is comprised of seek() operation followed by several next() operations.
Range query performance depends mainly on two factors: the number of levels
and the number of next() operations. Compared with others, GHStore does fewer

502 J. Li et al.

next() operations due to a higher density of valid data. We should thank GHmap
for its efforts in reducing outdated data.

Read Performance. We do experiments to measure the read performance of
GHStore and other key-value stores. We use the same key size and value size
as the range query experiment, but the data volume is different. We issue one
million get requests and calculate the average latency.

Figure 6(b) shows that GHStore is always doing well compared with RocksDB
and Wisckey. The latency is 25%–50% lower than RocksDB and 10%–47% lower
than Wisckey. However, the performance of GHStore is similar to PebblesDB on
small datasets, like 10 GB. But with the data volume increases, GHStore has a
growing advantage. For example, GHStore is 37% higher than PebblesDB when
we issue get requests to a 100 GB storage.

Write Performance. We study the impact of update numbers on the write per-
formance of GHStore and other key-value stores. We first load 50 GB of data into
each key-value store, which consists of the 24 B key, and 1 KB value, and then
repeatedly update them several times. Updates in each time follow a heavy-tailed
Zipf distribution with a Zipfian constant of 0.99. Figure 6(c) shows that GHStore
performs better than other key-value stores, and the improvement increase as the
number of updates rises. Generally, write throughput of GHStore is 30%–48%,
64%–93% and 4%–55% over RocksDB, Wisckey and PebblesDB respectively.

We do another experiment to evaluate the write performance of GHStore
in different update ratios. We insert 10 million unique keys and update part of
them. As shown in Fig. 6(d), in the load phase, the write throughput of GHStore
is lower than PebblesDB and Wisckey. That is because there are fewer duplicate
keys in the storage and the strength of GHStore is not obvious. But in the update
phases, GHStore performs well. For example, when we update 75% of KV pairs,
the write throughput of GHStore is 54% higher than RocksDB, 14% higher than
PebblesDB, and 23% higher than Wisckey.

Write Amplification. We measure the write amplification (WA) of four systems
on the same experiment of randomly writing 40 GB dataset. Figure 6(e) shows
the results measured by the ratio of the amount of data written to SSDs and
the amount of data coming from users. The WA of GHStore is 1.26x lower than
RocksDB. GHStore has the lower WA since it deletes more outdated KV pairs
during compaction, which is beneficial to reduce WA. Unfortunately, The WA
of GHStore is higher than PebblesDB and Wisckey. Because we only guarantee
that outdated KV pairs are not rewritten to disk, the latest KV pairs are still
rewritten many times.

Read Amplification. We measure the read amplification (RA) of four systems
for workloads that randomly read 3 million KV pairs from 40 GB storage. We
analyze the AR by calculating the ratio of the amount of SSTables read from
the disk and the amount of SSTables that contains target data. As the result
present in Fig. 6(e), GHStore has the smallest RA because it avoids searching
data level by level.

GHStore: A High Performance Global Hash Based Key-Value Store 503

Space Amplification. In the beginning, we load 100 GB unique KV pairs into
each key-value store. The space size of GHStore is near RocksDB, Wisckey, and
PebblesDB. However, as shown in Fig. 6(f), after we updated part of the keys
several times, GHStore consumes 10%–20% smaller space size than other stores.
For instance, after we repeatedly update the existing 100 GB of KV pairs three
times (update 100% * 3 workload), the space overhead of PebblesDB is 1.5x that
of GHStore.

Small KV Pairs. We insert 50 GB KV pairs into storage (the key is 16bytes
and the value is 128 bytes), and update 50% of the existing data five times.
As shown in Fig. 6(g), the result is similar to results with large keys. GHStore
obtains higher read, write and range query performance.

4.3 YCSB Workloads

Table 1. YCSB core workloads description

Workloads Description

Load 100% writes

YCSB A 50% reads and 50% updates

YCSB B 95% reads and 5% updates

YCSB C 100% reads

YCSB D 95% reads(latest writes) and 5% updates

YCSB E 95% range queries and 5% updates

YCSB F 50% reads and 50% reads-modify-writes

The industry standard in evaluating key-value stores is the Yahoo Cloud Serving
Benchmark [7], a widely used micro-benchmark suite delivered by Yahoo!. The
suite has six core workloads (described in Table 1), each representing a different
real-world scenario.

We run the YCSB benchmark with Zipfian key distribution. We set the
Memtable size as 128 MB, SSTable size as 64 MB, and allow at most 4 threads
to run the compaction process. In the beginning, we load a 100 GB dataset
with 1 KB KV pairs. Then we evaluate workload A-F with one million KV pairs
respectively. Figure 7 presents the results: GHStore outperforms RocksDB, Wis-
ckey and PebblesDB on most workloads except Load.

On write-dominated workloads like Load, since there is only one version of
keys, the strength of GHStore is not obvious.

For the read-dominated workloads, such as workloadB,workloadC and work-
loadD, GHStore achieves better throughput than other systems. For example,
in workloadB, GHStore obtains 1.35x, 1.2x and 1.11x better than RocksDB,
Wiscey and PebblesDB respectively.

504 J. Li et al.

Fig. 7. YCSB Performance

For the range-query-only workloadE, GHStore surprisingly achieves 2.31x
better throughput than Wisckey, and 1.64x better throughput than PebblesDB.
The reason for that is GHStore has a higher density of valid data in SSTables,
so the number of next() operations in the range query process is decreased.

The difference between workloadA and workloadF is workloadF does a get()
operation before a put() operation. Although GHStore wins by a nose com-
pared to PebblesDB, GHStore performs much better than RocksDB and Wis-
ckey. GHStore obtains 1.88X and 1.28x better throughput than Wisckey and
RocksDB respectively.

4.4 Performance on SSD

To examine the impact of different devices, we conduct experiments with SSD.
Similarly, we first load 50 GB of data to each key-value store, each KV pair
consists of the 24 B key, and 1 KB value. And then repeatedly update the existing
KV pairs five times. We evaluate GHStore performance in write, read and range
query dimensions. As the result shown in Fig. 8, in most cases, GHStore does
well compared with other key-value stores. Therefore, our system can be adapted
to a variety of storage devices.

4.5 GHmap Strengths

We study the impact of submap on the insert latency of GHmap. We vary the
number of submap from 20 to 26. Figure 9 shows that the segmented hashmap has
lower insert latency than the normal hashmap, and the number of submaps make
some effect on latency. But more submaps do not always better. If we increase
the number of submaps, we expect to see more parallelism, but diminishing
returns. Because every submap resize will quickly block the other threads until
the resize is completed. So in this paper, we choose N = 16 as the number of
submaps.

GHStore: A High Performance Global Hash Based Key-Value Store 505

Fig. 8. GHStore performance on SSD

Fig. 9. Submaps influence on GHmap.

4.6 Memory Consumption

As described in Sect. 3.2, to reduce the memory consumption, GHmap only
records the level of the latest KV pairs in R-layer, rather than both R-layer and
NR-layer. As shown in Fig. 10(a), the optimization can greatly reduce memory
consumption.

Then we compare the memory consumption of GHStore and RocksDB. We
fix the size of each KV pair, which consists of the 22B key and 1 KB value.
As shown in Fig. 10(b), GHStore has similar memory consumption to RocksDB.
Specifically, we load 100 million (about 220 GB) of KV pairs, GHStore only has
0.05% higher consumption than RocksDB. RocksDB searches a KV pair from
top level to bottom level, and each level has candidate SSTables. To reduce
SSTable access, RocksDB adds bloom filter to each SSTable, and caches them
to memory. GHStore uses GHmap to index the target level, so we don’t need
bloom filter except for level2 (only the level2 have multiple candidate SSTables).
Therefore, GHStore memory cost is acceptable.

506 J. Li et al.

Fig. 10. The memory cost of GHStore

5 Related Works

Starting from the structure and internal mechanism of LSM-tree, GHStore opti-
mizes LSM-tree based key-value store, while some studies have also optimized
the performance of the storage from the perspective of optimizing the structure
of LSM-tree. Wisckey [21] stored the keys and values separately to reduce the
depth of LSM-tree, thus improving the write performance. However, this mech-
anism of key-value separation does not support efficient read and range query.
PebblesDB [26] mitigates WA by using guards to maintain partially sorted lev-
els. However, the data inside each guard are out of order and duplicated. So the
read and range query performance are not good. UniKV [28] grouped the disk
data into several boxes and divided intra-box data into two parts: UnsortedStore
and SortedStore. UniKV placed the hot data in UnsortedStore and used hash
index to speed up the read performance, while other data are stored in Sort-
edStore and the write performance is accelerated by the KV separation, thus
UniKV can improve write performance while maintaining read performance as
much as possible. By contrast, we have improved both the read performance and
the range query performance without losing too much write performance, and
thus the overall performance is better.

GHStore timely filters the stale data in the system, which is helpful to com-
press the system size. Some related work also optimized the performance of the
storage system from the perspective of compressing the system size. By chang-
ing the storage mode of the index in SSTables, SlimDB [27] relieved the space
requirement from data and index, thus reducing the size of the system. However,
this kind of optimization method has not removed the outdated KV pairs in the
system, so there is still a lot of outdated data in the system.

GHStore: A High Performance Global Hash Based Key-Value Store 507

6 Conclusion

This paper presents GHStore, a key-value store that improves overall perfor-
mance in write, read and range query simultaneously for update intensive work-
loads. GHStore consists of two structures: GHmap and LSM-tree. GHmap is the
key of GHStore, implemented by a global segmented hashmap. It records the
level of the latest KV pairs, to help GHStore to remove outdated data timely
and avoid searching level by level from a global perspective. The LSM-tree is
divided into R-layer and NR-layer. GHStore only records the level of the latest
KV pairs in R-layer into GHmap to reduce memory cost. GHStore outperforms
widely-used stores such as RocksDB, Wisckey, and PebblesDB on many work-
loads. In the future, we will apply GHStore to various production environments.

Acknowledgements. We would like to thank the reviewers for their comments. This
work was partially supported by BMKY2020B10.

References

1. Baidu: Hugegraph. https://github.com/hugegraph/hugegraph (2019)
2. Balmau, O., et al.: Triad: Creating synergies between memory, disk and log in log

structured key-value stores. In: Proceedings of the 2017 USENIX Conference on
Usenix Annual Technical Conference, pp. 363–375. USENIX ATC 2017, USENIX
Association, USA (2017)

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

4. Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., Tzoumas, K.: State man-
agement in apache flink R©: consistent stateful distributed stream processing. Proc.
VLDB Endowment 10(12), 1718–1729 (2017)

5. Chan, H.H., et al.: Hashkv: Enabling efficient updates in {KV} storage via hash-
ing. In: 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18), pp.
1007–1019 (2018)

6. Comer, D.: Ubiquitous b-tree. ACM Comput. Surv. (CSUR) 11(2), 121–137 (1979)
7. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking

cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154 (2010)

8. Dayan, N., Athanassoulis, M., Idreos, S.: Monkey: optimal navigable key-value
store. In: Proceedings of the 2017 ACM International Conference on Management
of Data, pp. 79–94 (2017)

9. DeCandia, G., et al.: Dynamo: amazon’s highly available key-value store. ACM
SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)

10. Dong, S., Kryczka, A., Jin, Y., Stumm, M.: Rocksdb: evolution of development
priorities in a key-value store serving large-scale applications. ACM Trans. Stor.
(TOS) 17(4), 1–32 (2021)

11. Facebook: Rocksdb. http://RocksDB.org (2017)
12. Gade, A.N., Larsen, T.S., Nissen, S.B., Jensen, R.L.: Redis: a value-based decision

support tool for renovation of building portfolios. Build. Environ. 142, 107–118
(2018)

13. Ghemawat, S., Dean, J.: Leveldb. https://github.com/google/LevelDB (2011)

https://github.com/hugegraph/hugegraph
http://RocksDB.org
https://github.com/google/LevelDB

508 J. Li et al.

14. Harter, T., et al.: Analysis of {HDFS} under hbase: a facebook messages case
study. In: 12th {USENIX} Conference on File and Storage Technologies ({FAST}
14), pp. 199–212 (2014)

15. Huang, D., et al.: TIDB: a raft-based HTAP database. Proc. VLDB Endowment
13(12), 3072–3084 (2020)

16. Jain, M.: Dgraph: synchronously replicated, transactional and distributed graph
database. Birth (2005)

17. cockroach Labs: Cockroachdb. https://github.com/cockroachdb/cockroach (2017)
18. Lai, C., Jiang, S., Yang, L., Lin, S., Cong, J.: Atlas: Baidu’s key-value storage

system for cloud data. In: Symposium on Mass Storage Systems & Technologies,
pp. 1–14 (2015)

19. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

20. Lin, Z., Kai, L., Cheng, Z., Wan, J.: Rangekv: An efficient key-value store based on
hybrid dram-nvm-SSD storage structure. IEEE Access 8, 154518–154529 (2020)

21. Lu, L., Pillai, T.S., Gopalakrishnan, H., Arpaci-Dusseau, A.C., Arpaci-Dusseau,
R.H.: Wisckey: separating keys from values in SSD-conscious storage. ACM Trans.
Storage (TOS) 13(1), 1–28 (2017)

22. MongoDB: Mongodb. https://github.com/mongodb/mongo (2017)
23. O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E.: The log-structured merge-tree (lsm-

tree). Acta Inform. 33(4), 351–385 (1996)
24. Pan, F., Yue, Y., Xiong, J.: dcompaction: Delayed compaction for the lsm-tree.

Int. J. Parallel Program. 45(6), 1310–1325 (2017)
25. Popovitch, G.: parallel-hashmap. https://github.com/greg7mdp/parallel-hashmap

(2020)
26. Raju, P., Kadekodi, R., Chidambaram, V., Abraham, I.: Pebblesdb: building key-

value stores using fragmented log-structured merge trees. In: Proceedings of the
26th Symposium on Operating Systems Principles, pp. 497–514 (2017)

27. Ren, K., Zheng, Q., Arulraj, J., Gibson, G.: Slimdb: a space-efficient key-value
storage engine for semi-sorted data. Proc. VLDB Endowment 10(13), 2037–2048
(2017)

28. Zhang, Q., Li, Y., Lee, P.P., Xu, Y., Cui, Q., Tang, L.: Unikv: toward high-
performance and scalable kv storage in mixed workloads via unified indexing.
In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp.
313–324. IEEE (2020)

29. Zhang, W., Xu, Y., Li, Y., Zhang, Y., Li, D.: Flamedb: a key-value store with
grouped level structure and heterogeneous bloom filter. IEEE Access 6, 24962–
24972 (2018)

30. Zhang, Z., et al.: Pipelined compaction for the LSM-tree. In: 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, pp. 777–786. IEEE
(2014)

https://github.com/cockroachdb/cockroach
https://github.com/mongodb/mongo
https://github.com/greg7mdp/parallel-hashmap

Hierarchical Bitmap Indexing for Range
Queries on Multidimensional Arrays

Luboš Krčál1(B) , Shen-Shyang Ho2 , and Jan Holub1

1 Department of Computer Science, Czech Technical University in Prague,
Prague, Czech Republic

{lubos.krcal,jan.holub}@fit.cvut.cz
2 Department of Computer Science, Rowan University, Glassboro, NJ, USA

hos@rowan.edu

Abstract. Bitmap indices are widely used in commercial databases for
processing complex queries, due to their efficient use of bit-wise oper-
ations. Bitmap indices apply natively to relational and linear datasets,
with distinct separation of the columns or attributes, but do not perform
well on multidimensional array scientific data.

We propose a new method for multidimensional array indexing that
considers the spatial component of multidimensional arrays. The hier-
archical indexing method is based on sparse n-dimensional trees for
dimension partitioning, and bitmap indexing with adaptive binning for
attribute partitioning. This indexing performs well on range queries
involving both dimension and attribute constraints, as it prunes the
search space early. Moreover, the indexing is easily extensible to mem-
bership queries.

The indexing method was implemented on top of a state of the art
bitmap indexing library Fastbit, using tables partitioned along any sub-
set of the data dimensions. We show that the hierarchical bitmap index
outperforms conventional bitmap indexing, where an auxiliary attribute
is required for each dimension. Furthermore, the adaptive binning signif-
icantly reduces the amount of bins and therefore memory requirements.

1 Introduction

Research in many areas produces large scientific datasets, which are stored in
multidimensional arrays of arbitrary size, dimensionality and cardinality, such
as QuikSCAT [10] or RapidScat [13] satellite data.

Majority of the current systems rely on linearization of the array data,
enabling many one-dimensional access methods to be used. Others, such as array
databases [2,16], work natively with multidimensional arrays.

Very efficient method of indexing arbitrary data is bitmap indexing. Bitmap
indices leverage hardware support for fast bit-wise operations and are space-
efficient. For higher-cardinality attributes, this efficiency is achieved by sophisti-
cated multi-level and multi-component indices. Bitmap indices are used in major-
ity of commercial relational databases [6,7,14].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 509–525, 2022.
https://doi.org/10.1007/978-3-031-00123-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_40&domain=pdf
http://orcid.org/0000-0002-4824-8537
http://orcid.org/0000-0002-0353-7159
http://orcid.org/0000-0003-3022-2694
https://doi.org/10.1007/978-3-031-00123-9_40

510 L. Krčál et al.

Major disadvantage of bitmap indices for multidimensional array data index-
ing is their linear nature. Even with index compression such as WAH [21] (vari-
ation of run-length compression), this only partially suppresses the issue.

Our major contribution is a new method of bitmap indexing designed natively
for multidimensional array data that overcomes the dimensionality-induced inef-
ficiencies. The method is based on n-dimensional sparse trees for dimension par-
titioning, and on attribute partitioning using adaptively binned indices.

We demonstrate the performance on range queries involving both dimension
and attribute constraints on large partitioned datasets.

Our algorithm fundamentally differs from standard spatial indexing methods,
such as cSHB [11] or grid-based bitmap index from [12]. We focus on multidi-
mensional arrays, with data points directly addressable with a set of integral
coordinates, and each coordinate maps to exactly one data point.

2 Related Work

Traditional indexing methods like B-trees and hashing are not effectively appli-
cable to index multiple attributes in a single index, being replaced by multi-
dimensional indexing methods, such as R-trees [8], R*-trees [3], KD-trees, n-
dimensional trees (quadtrees, octrees, etc.).

The drawbacks of traditional indexing algorithms led to bitmap indices [4]
and their applications for scientific data [15]. Bitmap indices are naturally based
on linear data, ideal for relational databases. Space filling curves, such as Z-order
curve and Hilbert curves were used for linearization and subsequent querying of
multidimensional data. Hilbert curves were used in [9], while Z-order curves were
used in [11], which is a system for querying spatial data (not arrays).

The boom of multidimensional, scientific array data gave birth to open-source
multidimensional array-based data management and analytics systems, namely
RasDaMan [2] and SciDB [16]. These databases work natively with multidimen-
sional arrays, but lack some of the effective query processing methods imple-
mented in other databases.

3 Preliminaries

3.1 Array Data Model

An array A consists of cells with dimensions indexed by d1, . . . , dn. Each
cell is a tuple of several attributes a1, . . . , am. We assume the structure of
the attributes is the same for all cells in the array. The array is denoted as
A〈a1, . . . , am〉[d1, . . . , dn].

We form a query on arrays based on constraints on dimensions and
attributed. Figure 1 shows a query on array A〈a1, . . . , am〉[d1, . . . , dn] that has a
constraint on an attribute a and a constraint on dimension d2.

Hierarchical Bitmap Indexing for Range Queries 511

Fig. 1. An example of a range query on a two-dimensional array. The result is on the
right, with the selected values highlighted.

3.2 Distributed Arrays

Due to the large size of scientific data, it is often necessary to split the data into
subarrays called chunks, or partitions in conventional databases.

There are two commonly used strategies. Regularly gridded chunking, where
all chunks are of equal shape and do not overlap. This array data model is
known in SciDB as MAC (Multidimensional Array Clustering) [16]. The second
strategy is irregularly gridded chunking, which is one of the chunking option in
RasDaMan [2].

3.3 Bitmap Indexing

Bitmap indices, originally introduced in [4], were shown to be very efficient for
read-only or append-only data, and are used in many relational databases and
for scientific data management.

The structure of bitmaps is determined by a binning strategy. For high car-
dinality attributes, binning is the essential minimum to keep the size of the
index reasonable [22]. Binning effectively reduces the overall number of bitmaps
required to index the data, but increases the number of cells that have to be later
verified. This is called a candidate check. Two most common binning strategies
are equi-width binning and equi-depth binning.

Another aspect of bitmap indexing is encoding [4]. Range encoding uses B−1
bitmaps, each bitmap Ri encodes a range of bins [B1, Bi]. Interval encoding [5]
uses |B|

2 bitmaps, each bitmap Ii is based on two range encoded bitmaps.
Binary run-length compression algorithms are usually applied on bitmap

indices to reduce the overall size. There are two representative compression algo-
rithms, namely Byte-aligned Bitmap Code – BCC [1] and Word-Aligned Hybrid
(WAH) compression [21].

4 Hierarchical Bitmap Array Index

We now briefly discuss a common way of indexing multidimensional arrays using
additional bitmap indexes for each dimension. Then we describe the structure
of our hierarchical bitmap array index.

512 L. Krčál et al.

Attributes of an array A〈a1, . . . , am〉[d1, . . . , dn] are usually stored in a lin-
earized representation, most commonly C-style row-major ordering. With all
attributes having the same shape, these binary indices can be used to execute
selection queries using bitwise AND across all attributes.

Based on the expected queries, we may choose a combination of binning,
encoding and compression. This approach is used in [19] with equi-depth binning
or in [18] with v-optimized binning based on v-optimal histograms and C-style
row-major linearization in [17].

Another option is to use either Z-order or Hilbert space filling curves to
further increase locality of the dimensions. We chose to use the concepts of n-
dimensional space partitioning to structure our bitmaps and avoid the need to
explicitly enumerate bitmaps for the array dimensions.

4.1 Partitioning of Arrays

We partition the array A〈a1, . . . , am〉[d1, . . . , dn] into a set of regularly grid-
ded chunks C in the Multidimensional Array Clustering fashion described in
Sect. 3.2, such that each chunk C is defined on a hyperrectangle with the two
opposite corners defined by the points (o1, . . . on) and (e1, . . . , en):

CA[o1, . . . on, e1, . . . , en] = A〈a1, . . . , am〉[o1 ≤ d1 < e1, . . . , on ≤ dn < en]

All chunks in our data model are of the same shape, i.e., for all chunks C,C ′

from array A, it holds that CA[ek]−CA[ok] = C ′
A[ek]−C ′

A[ok] for all dimensions
k. Chunks are not overlapping and completely cover the array A. By chunking
the array, we limit the domain of both attributes and dimensions per partition.

We choose to use bitmap indexing on attributes and auxiliary bitmap index-
ing for dimensions of the chunk. Note that the dimension indices are the same
for all chunks of the same shape in the array, since for each chunk, we can sim-
ply subtract its offset from the dimensions query constraints. Therefore these
auxiliary dimension indices are only stored in memory for the lifetime of the
index.

We propose a unified solution that solves both the problem with dimension
attributes and with synopsis of array chunks. Our solution is in a form of hierar-
chical bitmap index on top of a n-dimensional tree with variable binning for each
node in the tree. This allows our index to discard invalid or completely matches
nodes. The hierarchical index also allows for a smooth transition between index
levels and the leaf indices, due to the current matching state being passed further
down the tree during query execution.

4.2 Structure of the Array Chunk Index

Each chunk C[o1, . . . , on] of array A is associated with exactly one leaf
N�(o1, o2, . . . , on). Independently, each leaf uses an equi-depth binning index
with a total of at most BINS bins, where bin boundaries bins(N�) of the index

Hierarchical Bitmap Indexing for Range Queries 513

are based on the distribution of exact chunk values. The leaf’s dimension bound-
aries correspond to its associated chunk’s boundaries.

Accounting for empty values is done using a special bitmask, known as empty
bitmask. For each chunk, we thus have a total of BINS + 1 indices.

Except for very narrow dimension range queries, a dimension query will either
cover the whole span of a leaf node, or result in a one-sided dimension range query
once the query processing reaches a single chunk. Thus, the ideal encodings for
chunks are range and interval encodings. We have chosen interval encoding as
our default encoding since it uses half the memory range encoding does.

4.3 Construction of the Hierarchical Bitmap Array Index

To deal with the higher level index, we create a special composite index on tree
similar to n-dimensional tree. Each internal node of the index has at most F
children, where F is called a fanout. Our bitmap indices are based on the fanout
and we want to utilize binary operations as much as possible. For this reason,
the fanout F should be a multiple of the processor word size W , or as close to
it as possible.

The index tree construction works in a bottom-up fashion, where the leaf
nodes are indexed at first. This allows both data appending and modification.
Each internal node is constructed from at most F direct children and with at
most BINS attribute bins, with one additional index for empty bitmask.

Let B = (min(N1),max(N1)), . . . , (min(NF),max(NF)) be the set of all
intervals ranging from the minimum to the maximum value of the indexed
attribute α among all the child nodes Ni. The set B is the set of bins – the
individual interval boundaries are delimiters, where the attribute’s value spans
a different subset of child nodes. Meaning anytime we cross any bin thresh-
old from B, at least one child either becomes a new partial or full match or
is no longer a partial or full match. Formally, nodesin(a) ⊂ Ni is a function
of the attribute value a ∈ α, which returns a subset of child nodes, such that
Ni ∈ nodesin(a) ⇐⇒ min(Ni) ≤ a ≤ max(Ni).

4.4 Bin Boundaries Merging in Parent Nodes

The number of bins B from all F child nodes is higher than BINS for majority
of the internal nodes N , therefore it is necessary to reduce the size of the set
of bins B. There are several strategies to choose the parent bins R such that
|R| = BINS. An example of such binning reduction is in Fig. 2.

The first strategy is to use an equi-width distribution of the bins. This is the
ideal choice assuming the attribute part of the query is uniformly distributed or
when there is no prior knowledge about the attribute query.

514 L. Krčál et al.

Fig. 2. Example of merging |B| = 8 bin boundaries to |R| = 4 bin boundaries for
4 child nodes N1, . . . , N4. False positive ranges are marked in red. Two sided range
encoded bitmaps are generated for R. (Color figure online)

The second strategy is to use equi-depth binning. This is ideal if the attribute
distribution of the child nodes is skewed. It is possible to maintain the weights of
the bins for leaf nodes. However, internal nodes can only make estimates about
the weight of merged bins. In each internal node and leaf, we store the weight
estimate w(b), where b ∈ B. The weighted square error wse(b) of a bin b and
weighted sum square error wsse(B) are:

wse(b) =
∣
∣
∣
∣
w(b) − w(B)

BINS

∣
∣
∣
∣

2

wsse(B) =
∑

b∈B

wse(b)

To estimate the weight of merged bin r ∈ R ⊂ B, we assume uniform distri-
bution of values over the intervals of bins b ∈ B. Estimated weight of r is:

w(r) =
∑

b∈B

w(b) · |b ∩ r|

We cannot use the trivial algorithm for equi-depth binning, because we can
only iterate by bins of variable weight, instead of iterating by single data points.
This is why we need to approximate the equi-depth using a simple iterative
algorithm. Details on selecting R ⊂ B approximately equi-depth bins are shown
in Algorithm 1. We first start with equi-width binning (line 1). Then, we generate
sets of all possible bin splits and merges (lines 2–3), setup two priority queues
and evaluate all possible splits and merges in terms of weighted sum square error
(lines 4–11). After that, we perform one valid split and one merge on the binning
as long as this leads to an improvement of the overall binning (lines 14–18).

Hierarchical Bitmap Indexing for Range Queries 515

Input: set of bins B, set of weights w(b), b ∈ B, number of output bins BINS

Result: approx equi-depth bins R ⊂ B, |R| =BINS

1 E ← eq-width bins from B, |B| =BINS ;
2 S ← all possible split bins of E;
3 M ← all possible merged bins of E;
4 QS ← priority queue();
5 QM ← priority queue();
6 for s ∈ S do // bins to split

7 add (s, Δwse(s)) to QSPLIT ;
8 for (m, m′) ∈ M do // bins to merge

9 add ((m, m′), Δwse((m, m′)) to QMERGE ;
// split that decreases wsse the most

10 (s, Δwse(s) ← min(QS);
// merge that increases wsse the least

11 ((m, m′), Δwse((m, m′))) ← min(QM);
12 while Δwse((m, m′)) > Δwse(b) do
13 split b;
14 merge (b, b′);
15 update R, S, M, QM , QS ;

Algorithm 1: Iterative equi-depth binning approximation of parent bins.

4.5 Double Range Encoding of Bitmap Indices in Internal Nodes

Unlike in bitmap indexing in leaves where one encodes positions of individual
values, we encode sets of child nodes nodesin(a) for attribute values a in the
internal nodes.

We will now describe an effective bitmap encoding of nodesin(a), for a ∈
r ∈ R. Let’s have two adjacent intervals r ∈ R and r′ ∈ R, such that rh = r′

�

Note that since R ⊂ B, we have nodesin(r)
= nodesin(r′). If nodesin(r′) ⊃
nodesin(r), then r′ corresponds to a bin, where nodes are added, and we add
r′ to a set R+. Else, if nodesin(r′) ⊂ nodesin(r), then nodes are removed in
set nodesin(r′), and we add r′ to set R−. Otherwise, some nodes are added and
some are removed and we add r′ to both R+ and R−. In our example in Fig. 2,
R+ = {[1, 3), [3, 6)} and R− = {(3, 6], (6, 8]}.

There is no guarantee that |R+| = |R−|. If we wanted, we could run Algo-
rithm1 separately on boundaries B+ and B− (likewise defined) and with BINS

2
bins, but then we’d lose the equi-width approximation.

Now, we encode |R+| + 1 bitmaps using range encoding, so that the index
for each bin r+ ∈ R+ corresponds to children, whose attribute range minimum
min(Ni) is less or equal to the upper boundary of the interval r+. In our example,
bitmap corresponding to r = [1, 3) ∈ R+ is 0101, indicating that N1 and N3 have
started in or before this interval. Similarly, we encode |R−|+1 bitmaps for values
r− using inverse range encoding, i.e., children, whose attribute range maximum
max(Ni) is greater than r− are encoded by 0 in the bitmap, representing children
that have already ended before or in the interval r−.

516 L. Krčál et al.

Any two bitmaps then allow evaluation of partial and complete matches (see
Sect. 5.1) using only two bitmap reads and one logical operation for both partial
and complete query.

4.6 Locality of the Hierarchical Index

In order to preserve locality of the data during queries, we store the whole index
in a locality preserving linearization of an n-dimensional tree. The index data
consist of bin boundaries, weight estimates and bitmap indices.

We use the Hilbert space-filling curve to linearize the node’s children index.
Hilbert curve has perfect locality, but it does not preserve dimensions ordering.
This means we precompute bitmaps for dimension constraints for each block of
Hilbert curve separately.

5 Querying Dimensions and Attributes

In this work, we focus on selection queries over both dimensions and sin-
gle attribute of an array. Such query consists of a set of dimension con-
straints and attribute constraints. Let’s specify a query Q over an array
A〈a1, . . . , am〉[d1, . . . , dn] as a set of ranges over attributes QA and dimensions
QD.

Q = QA ∪ QD = {(a, a�, ah), . . .} ∪ {(d, d�, dh), . . .}
where (a, a�, ah) is a triple specifying attribute’s lower bound and its (exclusive)
upper bound; same goes for dimensions. It is possible for a query to not specify
constraints for some dimensions, in which case we fill all remaining dimensions
to get a complete query.

The core of the query algorithm is a breadth-first descent through the index
tree. At each level, the search space is pruned according to both dimension and
attribute values. Let N be the currently searched node, Ni be its child nodes,
where 0 ≤ i < F . Throughout the query processing, we maintain a queue of
partially matched nodes P and a set of completely matched nodes C. We start
at a root node Nr, setting P = {Nr}

Let p, pD, pA and c, cD, cA be zero bitmaps of size F ; the bitmaps p indicates
partial attribute matches among the children of node N , pD indicated partial
dimensions matches, pA indicates partial matches, similarly the vectors c, cD,
cA indicate complete matches. We will now set these vectors according to the
query Q for the first node in the queue P . The partial and complete matches
bitmap computation is also described in Algorithm 2 and in Fig. 3.

Hierarchical Bitmap Indexing for Range Queries 517

Input: query Q = {(a, a�, ah), (d, d�, dh), . . .}; current node N ; node’s children
N1, . . . , NF ; dimension boundaries N [d]�, N [d]h for N and all Ni;

Result: partial matches p; complete matches c;

1 PA, CA ← load attribute index for node N ;
2 PD, CD ← precomputed dimension index;

3 pD ← {0}F , pA ← {0}F , p;

4 cD ← {1}F , cA ← {1}F , c;
5 if ah < min(N) or a� > max(N) then
6 return p ← {0}F , c ← {0}F ; // no matches

7 cA = cA & CA(a�, ah) ; // complete attribute match

8 pA = pA | PA(a�, ah) & ∼c ; // partial attribute match

9 for (d, d�, dh) in QD do
10 if dh < N [d]� or d� > N [d]h then
11 return P ← {0}F , C ← {0}F ; // no matches

12 if d� > N [d]� then
13 pD = pD | PD(d�) ; // partial dimension match

14 if dh < N [d]h then
15 pD = pD | PD(dh) ; // partial dimension match

16 cD = cD & CD(d�, dh) ; // complete dimension match

17 pD ← pD & cD;
18 cD ← cD & ∼pD;
19 c ← cA & cD;
20 p ← (pA | cA) & (pD | cD) & ∼c;
21 return p, c

Algorithm 2: Evaluation of partial and complete match bitmaps for a node.

5.1 Attribute Based Matches

In this subsection, we explain how attribute bitmask is set. This subsection
further describes lines 5–8 in Algorithm 2.

If ah < min(N), or a� > max(N), there are neither partial nor complete
attribute matches and we terminate processing of the current node.

Let PA(a�, ah) be a partial attribute match interval-encoded bitmask specific
to node N for an array, with bits set to one corresponding to children Ni so that
the intersection [a�, ah) ∩ [min(Ni),max(Ni))
= ∅.

PB|A(a)[i] = 1 ⇐⇒ min(Ni) ≤ a

PE|A(a)[i] = 1 ⇐⇒ max(Ni) ≥ a

PA(a�, ah)[i] = 1 ⇐⇒ PB|A(ah)[i] ∧ ¬PE|A(a�)[i]

The first expression describes bitmap set to 1 for children that have started
before or at value a, the second expression describes children that have ended
at or after a. The third expression then combines both.

To evaluate partial matches using PA(a�, ah), we first use binary search on
the set of attribute boundaries from R+ (corresponding to starting bitmaps) and
set of attribute boundaries from R− (corresponding to ending bitmaps). To find

518 L. Krčál et al.

two bins L ∈ R+ and H ∈ R− such that a� ∈ L and ah ∈ H. These bins L and
H mark the attribute boundary bins. Then, PB|A(ah) is identical to R+[H] and
¬PE|A(a) is identical to R−[L]. The bitmap indices R+ and R−, each queried for
a single bin, are described in Sect. 4.3. Then we combine PA(a�, ah) to p using
bitwise OR.

Now, we process complete candidates in a similar fashion. Let CA(a�, ah) be
a complete attribute match bitmask specific to node N for array of shape S, so
that the intersection [a�, ah] ∩ [min(Ni),max(Ni)] = [a�, ah].

CA(a�, ah)[i] = 1 ⇐⇒ PB|A(a�)[i] ∧ ¬PE|A(ah)[i]

This expression is very similar to PA(a�, ah), describing children that have
started at or before a� and have not ended at or before ah. To evaluate CA(a�, ah),
we query R+[L] and R−[H]. Then, we add the result to c using bitwise OR and
remove those from p, i.e., p = p ∧ ¬c.

5.2 Dimension Based Matches

Next, we explain how the dimension masks are set. This subsection further
describes lines 9–17 in Algorithm 2.

If for a dimension d we have dh < N [d]� or d� > N [d]h, there are neither
partial nor complete dimension matches and we terminate processing the current
node.

Unlike attribute query, the evaluation of dimension query is the same for all
nodes N , so all the bitmaps for processing dimensions queries are precomputed.

Let Pd(d�, dh) be a partial dimension match, where d is a dimension in the
query constraint (d, d�, dh). The partial dimension match indicates child nodes
Ni such that the intersection [Ni[d]�, Ni[d]h) ∩ [d�, dh)
= ∅.

Let’s fix a dimension d for which we evaluate partial matches Pd(d�, dh):

Pd(d�)[i] = 1 ⇐⇒ d� ∈ Ni[d] ∧ d�
= Ni[d]�
Pd(dh)[i] = 1 ⇐⇒ dh ∈ Ni[d] ∧ dh
= Ni[d]h

Pd(d�, dh)[i] = 1 ⇐⇒ Pd(d�)[i] ∨ Pd(dh)[i]

CD(d�, dh)[i] =
⋂

1≤d≤DIMS

Pd[i]

The first expression describes which children Ni have dimension d range such
that the query limit d� falls inside the range, but it is not equal to the lower
limit of that range. The second expression is similar, but for dh. Third expression
combines the partial matches over the previous query limits. And the fourth
expression combines all dimensions.

Partial dimension matches are evaluated using one precomputed bitmap
index corresponding to

Pd(b)[i] = 1 ⇐⇒ b = Ni[d]

Hierarchical Bitmap Indexing for Range Queries 519

where b is a bucket corresponding to the chunking of the array A. There are a
total of Fd such buckets along dimension d, resulting in a total of Fd · d bitmaps
of size F . We query these bitmaps for all dimensions and combine them using
bitwise OR.

There is a special case of false negative dimension result. If d� or dh is equal
to the d’th dimension range border of a child node Ni, and at the same time
the other end of d� or dh causes the dimension to be fully covered in Ni, i.e.
d� = Ni[d]� and dh ≥ Ni[d]h or dh = Ni[d]h and d� ≤ Ni[d]�, the query is
evaluated as partial match for Ni and dimension d, while in fact dimension d
contributes to complete matches. A check for this scenario requires comparing
the dimension ranges of child nodes to the query range, and was ignored on
purpose, as it complicates and slows down the query process.

For complete candidates, we will slightly modify the definition of CA used for
attributes. Let Cd(d�, dh) be a complete dimension match. The complete dimen-
sion match indicates which child nodes Ni are partially or fully covered by inter-
val [d�, dh]. Despite the semantics indicating partially matches should not be
included, we later trim the complete dimension match bitmap accordingly.

Cd(d�, dh)[i] = 1 ⇐⇒ [d�, dh] ∩ Ni[n]
= ∅
CD(d�, dh)[i] =

⋂

1≤d≤DIMS

Cd[i]

Complete dimension matches are evaluated using two precomputed bitmap
indices corresponding to

CB|d(b)[i] = 1 ⇐⇒ b ≤ Ni[d]
CE|d(b)[i] = 1 ⇐⇒ b ≥ Ni[d]

similarly to bitmaps used for partial matches. There is a total of 2 ·Fd ·d bitmaps
of size F for complete matches. We query these bitmaps for all dimensions and
combine them using AND.

We now combine the partial dimension matches bitmap CD(d�, dh) with
CD(d�, dh), such that PD(d�, dh) = PD(d�, dh) ∧ ¬CD(d�, dh). During the evalu-
ation of dimension matches, we used a total of 3 · d index queries. An example
of dimension query is displayed in the top row in Fig. 3.

5.3 Partial and Complete Matches

Now that we have both attribute and dimension, and both partial and com-
plete candidates, we may proceed to merging the candidates and generating a
bitmap representing the set of complete node children matches C and a bitmap
representing the set of partial node children matches P that will be recursively
explored. This subsection further describes lines 20–22 in Algorithm 2.

The C bitmap is easier to obtain, as it is the intersection of both complete
bitmaps without partial candidates bitmaps.

C = CA ∧ CD

520 L. Krčál et al.

We obtain the set of partial candidates P by joining the dimension-based
partial candidates with the attribute-based candidates and clipping both by
complete candidates

P = (PA ∨ CA) ∧ (PD ∨ CD) ∧ ¬C

We then iterate through the results, adding child nodes from C to the result
set and the partial candidates P into the queue to be processed subsequently.
This process is done on top of Hilbert curve indices, as it is trivial to generate
Hilbert curve indices corresponding to nodes in the lower levels. The Hilbert
curve ordering of the inner nodes and breadth-first traversal also ensures single
traversal through the index.

5.4 Implementation and Fastbit Integration

Fastbit [20] is an open source library that implements several state of the art algo-
rithms for bitmap indexing. It’s not a complete database management system,
rather a data processing tool, as its main purpose is to facilitate selection queries
and estimates. Fastbit’s key technological features are WAH bitmap compres-
sion, multi-component, and multi-level indices with many different combinations
of encoding and binning schemes.

The implementation of our ArrayBit algorithm is built directly on top of
Fastbit library. We use Fastbit’s partitions to setup the lowest level of our indices
(leaves), and base our binning indices on Fastbit’s single-level binning index. This
allows our hierarchical bitmap index to smoothly transition into the leaf nodes
by using existing bitmask before executing range queries on the leaves.

Fig. 3. Processing of a query in a single node of the hierarchical index. Top row repre-
sents dimension constraints, bottom row represents attribute constraints. Blue nodes
represent partial matches and green represent complete matches. (Color figure online)

Hierarchical Bitmap Indexing for Range Queries 521

This approach requires preprocessing of the data into evenly shaped parti-
tions, generating empty bitmasks and shape metadata. The same shape meta-
data is also used for mesh queries in Fastbit. During partition indexing, we inject
more metadata into the partition to be able to rebuild ArrayBit index only at
any stage, without affecting any backward compatibility with Fastbit’s query
execution. The table is then indexed as described in Sect. 4.

During query execution, only ArrayBit hierarchical index and the leaf indices
are resident in memory. Selection queries require disk access to load raw data
for all partially matched leaf nodes.

6 Experimental Evaluation

We have tested our implementation on large multidimensional arrays, running
queries with both dimension and attribute constraints. Since our solution is
based on bitmap indexing, we compared our implementation with state of the
art bitmap indexing implementations from Fastbit library.

We measured the time efficiency for each individual query, i.e. the index
construction time and query execution time, and space requirements for the
index. Timing was measured as an average of 100 runs with preconstructed and
preloaded index in the main memory.

We use the same library from Fastbit for CPU and wall time measuring. We
tried to not include non-essential steps in the time measurements, such as query
string parsing, by using the low level API of Fastbit. Space requirements were
measured based on the disk space required to store the bitmap index together
with all relevant metadata.

The experiments were run on a single machine – AMD Ryzen Threadrip-
per 1920X @ 3.50 GHz, 4 × 16 GB RAM, NVMe Samsung SSD 970 EVO Plus
1TB (for data only, different from system drive); running Ubuntu 18.04 (4.20.3
kernel).

6.1 Datasets

This section describes the synthetic and real world datasets in detail. A summary
of the dataset properties is available in Table 1.

DGauss. We use a synthetic dataset generated from a sum of multidimensional
gaussian distribution DGauss. Its only attribute a1 of double type is a sum of
32 randomly initialized Gaussian distributions in D dimensions.

For our experiments, we use a 2D version of the dataset partitioned into 1024
evenly distributed partitions of shape (1024, 1024). Each partition is decorated
with metadata indicating its shape and position in within the global array.

522 L. Krčál et al.

RapidScat. As a representative of a large real world dataset, we use a complete
Level 2B Ocean Wind Vectors data from the RapidScat instrument mounted on
the International Space Station from 2014 to 2016.

The data has 3 native dimensions: along track, cross track, and ambiguities
(only used for some attributes) and one auxiliary dimension: orbit. We use the
dimensions along track, cross track, and orbit to model 3 dimensional data array.

The total compressed RapisScat data is over 100 GB, uncompressed raw
NetCDS is almost 500 GB, but after extracting the only attribute (and keep-
ing all dimensional data) and transforming in Fastbit’s binary format, we got to
total size of 119 GB including a bitmap index of size 2.6 GB.

Table 1. Overview of datasets used for experimental evaluation.

Dataset Size Index size Dimensions Attributes Partitions

DGauss 26GB (1 attribute) 796MB 2 (x, y) 1 (a1) 1024

RapidScat 119GB (1 attribute) 2.6GB 3 (orbit, along, cross) 22, 1 used

(retrieved wind speed)

6930

6.2 Bitmap Indexing Methods

We compare ArrayBit with state of the art bitmap indexing library Fastbit,
including their implementation of spatial queries.

FastBit represents a naive algorithm, where the dimensions in the datasets
are indexed using bitmap indices the same way the attributes are. The index
is using 32 equi-depth binned indices, interval encoding and WAH compression.
The queries for all dimensions and attributes are executed via logical AND.

FastBit::MeshQuery uses an extension of the Fastbit library designed for
executing spatial queries on designated attributes. When mesh tags are specified
in the dataset, and the query contains only constraints from those dimensions,
a mesh query will be executed. Mesh query is able to handle regular meshes,
treating cells of meshes as connected regions in space. The configuration is the
same as in the naive Fastbit: using 32 binned indices, range encoding and WAH
compression on all attributes. For mesh queries, Fastbit generates larger index.

ArrayBit represents our hierarchical multidimensional index. We use 16 equi-
depth binned indices, range encoding and WAH compression to index the par-
titions. For the hierarchical index, we use 16 approximately equi-depth binned
indices (described in Sect. 4.4) with two sided range encoding and no compres-
sion. We only use half of the bins for the bitmaps, this compensates the required
space for the hierarchical index.

Hierarchical Bitmap Indexing for Range Queries 523

6.3 Range Queries

In our work, we focus on mixed attribute and dimension queries. Regardless of
the dataset, we describe the queries based on selectivity, i.e. the overall ratio of
the query result to the size of the entire array size.

Fig. 4. Comparison of FastBit, FastBit::MeshQuery, and ArrayBit on a set of queries
with fixed dimension ranges and varying attribute range.

Figure 4 shows the execution time dependency based on the selectivity of the
queried attribute range. We can see that on both datasets, both FastBit and
FastBit::MeshQuery have a constant execution time. This is due to the inability
to effectively filter out partitions outside of the queried attribute range. ArrayBit
effectively discards all partitions which cannot yield an attribute match. The
number of such partitions increases with higher attribute range, hence the down-
ward trend in the plot.

Fig. 5. Comparison of FastBit, FastBit::MeshQuery, and ArrayBit on a set of queries
with fixed attribute range and varying dimension range.

Figure 5 shows the dependency of execution time based on the selectivity
of the dimension query constraints. The attribute range in the queries is set

524 L. Krčál et al.

such that vast majority of the partitions qualifies as having potential results.
From both subplots, we can see that with increased dimension range, the query
execution time increases almost linearly. This correlates with the number of
partitions that have to be loaded and have queries executed within them.

In the last query from the RapidScat dataset, where ArrayBit is still a bit
faster than the reference FastBit algorithm. This is due to some partitions
marked as complete matches when processing their parent notes in the hier-
archical index, because their corresponding attribute range is completely within
the queried attribute range.

7 Conclusions and Future Work

We have proposed a bitmap indexing method that is designed for multidimen-
sional arrays. Our approach effectively prunes the search space, uses adaptive
and approximate equi-depth binning. Furthermore, the index is built on top of
popular library Fastbit, and supports partitioned array data.

Our experimental results show that the proposed bitmap indexing method
outperforms standard bitmap approaches for mixed attribute and dimension
range query processing. We have tested our algorithm on large synthetic and
real world datasets, with queries of varying dimension and attribute selectivity.

Future work includes several interesting topics. It is possible to adapt the
tree structure dynamically based on dimensions, such as adaptive mesh refine-
ment widely used in physical simulations. We may want to explore the possibility
of using index structures other than n-dimensional trees for mapping out and
combining the bitmap index and different binning strategies. A robust templated
implementation of these parameters would yield a good ground for further index-
ing experiments. Implementation-wise, a step forward would be to integrate out
algorithm as part of the core Fastbit library.

References

1. Antoshenkov, G.: Byte-aligned bitmap compression. In: Proceedings of the Data
Compression Conference. DCC 1995, p. 476. IEEE (1995)

2. Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., Widmann, N.: The multidi-
mensional database system RasDaMan. In: ACM SIGMOD Record, vol. 27, pp.
575–577. ACM (1998)

3. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles, vol. 19. ACM (1990)

4. Chan, C.Y., Ioannidis, Y.E.: Bitmap index design and evaluation. In: ACM SIG-
MOD Record, vol. 27, pp. 355–366. ACM (1998)

5. Chan, C., Ioannidis, Y.: An efficient bitmap encoding scheme for selection queries.
ACM SIGMOD Record (1999). http://dl.acm.org/citation.cfm?id=304201

6. Chou, J., et al.: Parallel index and query for large scale data analysis. In: Proceed-
ings of 2011 International Conference for High Performance Computing, Network-
ing, Storage and Analysis, p. 30. ACM (2011)

http://dl.acm.org/citation.cfm?id=304201

Hierarchical Bitmap Indexing for Range Queries 525

7. Gosink, L., Shalf, J., Stockinger, K., Wu, K., Bethel, W.: HDF5-FastQuery: acceler-
ating complex queries on HDF datasets using fast bitmap indices. In: 18th Interna-
tional Conference on Scientific and Statistical Database Management, pp. 149–158.
IEEE (2006)

8. Guttman, A.: R-trees: a dynamic index structure for spatial searching, vol. 14.
ACM (1984)

9. Lawder, J.K., King, P.J.H.: Querying multi-dimensional data indexed using the
Hilbert space-filling curve. ACM SIGMOD Rec. 30(1), 19–24 (2001)

10. Lungu, T., Callahan, P.S.: QuikSCAT science data product user’s manual: overview
and geophysical data products. D-18053-Rev A, version 3, p. 91 (2006)

11. Nagarkar, P., Candan, K.S., Bhat, A.: Compressed spatial hierarchical bitmap
(cSHB) indexes for efficiently processing spatial range query workloads. Proc.
VLDB Endow. 8(12), 1382–1393 (2015)

12. Park, K.: A hierarchical binary quadtree index for spatial queries. Wirel. Netw.
25(4), 1913–1929 (2018). https://doi.org/10.1007/s11276-018-1661-z

13. SeaPAC: Rapidscat level 2b ocean wind vectors in 12.5km slice composites version
1.1. In: NASA Physical Oceanography DAAC (2015). https://doi.org/10.5067/
RSX12-L2B11

14. Sinha, R.R., Winslett, M.: Multi-resolution bitmap indexes for scientific data. ACM
Trans. Database Syst. (TODS) 32(3), 16 (2007)

15. Stockinger, K.: Bitmap indices for speeding up high-dimensional data analysis. In:
Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol.
2453, pp. 881–890. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
46146-9 87

16. Stonebraker, M., Brown, P., Zhang, D., Becla, J.: SciDB: a database management
system for applications with complex analytics. Computing in Science and Engi-
neering 15(3), 54–62 (2013). https://doi.org/10.1109/MCSE.2013.19

17. Su, Y., Wang, Y., Agrawal, G.: In-situ bitmaps generation and efficient data anal-
ysis based on bitmaps. In: Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, pp. 61–72. ACM (2015)

18. Wang, Y., Su, Y., Agrawal, G.: A novel approach for approximate aggregations
over arrays. In: Proceedings of the 27th International Conference on Scientific and
Statistical Database Management, p. 4. ACM (2015)

19. Wang, Y., Su, Y., Agrawal, G., Liu, T.: SciSD: novel subgroup discovery over sci-
entific datasets using bitmap indices. In: Proceedings of Ohio State CSE Technical
report (2015)

20. Wu, K., et al.: FastBit: interactively searching massive data. J. Phys. Conf. Seri.
180, 012053 (2009). IOP Publishing

21. Wu, K., Otoo, E.J., Shoshani, A.: Optimizing bitmap indices with efficient com-
pression. ACM Trans. Database Syst. (TODS) 31(1), 1–38 (2006)

22. Wu, K.L., Yu, P.S.: Range-based bitmap indexing for high cardinality attributes
with skew. In: Proceedings of the Twenty-Second Annual International COMPSAC
1998, pp. 61–66. IEEE (1998)

https://doi.org/10.1007/s11276-018-1661-z
https://doi.org/10.5067/RSX12-L2B11
https://doi.org/10.5067/RSX12-L2B11
https://doi.org/10.1007/3-540-46146-9_87
https://doi.org/10.1007/3-540-46146-9_87
https://doi.org/10.1109/MCSE.2013.19

Membership Algorithm
for Single-Occurrence Regular

Expressions with Shuffle and Counting

Xiaofan Wang(B)

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

wangxf@ios.ac.cn

Abstract. Since shuffle introduced into regular expressions makes the
membership problem NP-hard, and an efficient membership algorithm
facilitates processing many membership-based applications, it is an
essential work to devise an efficient membership algorithm for regular
expressions which can support shuffle. In this paper, we focus on the
membership problem for single-occurrence regular expressions with shuf-
fle and counting (SOREFCs). First, we define single-occurrence finite
automata with shuffles and counters (SFA(&,#)s), which can recog-
nize the languages defined by SOREFCs. We prove that the member-
ship problem for SFA(&,#)s is decidable in polynomial time. Then, we
devise a membership algorithm for SOREFCs by constructing equiva-
lent SFA(&,#)s. Experimental results demonstrate that our algorithm is
efficient in membership checking.

1 Introduction

Shuffle (&) [18] applied to any two strings returns the set of all possible inter-
leavings of the symbols in the two strings. For example, the shuffle of ab and cd
is ab&cd={abcd, acbd, acdb, cdab, cadb, cabd}. Shuffle has been applied in differ-
ent fields, such as modeling and verification of concurrent systems [14], modeling
workflow [22,24], modeling XSD schemata and Relax NGs [12,16,26,31] in XML
database systems. Counting [20,31] is used to express repeated patterns, such as
a[m,n], which represents m to n consecutive repetitions of a. Counting introduced
into regular expressions mainly models XSD schemata [31] in XML database sys-
tems, and regular expressions with shuffle and counting also models the crucial
aspects of other schema languages [19,23].

However, shuffle introduced into regular expressions makes the membership
problem NP-hard [27], and the membership problem for regular expressions with
shuffle and counting is PSPACE-complete [16]. Since the tractable member-
ship problem for automata facilitates diverse applications based on membership
queries, such as synthesizing models [1,28], learning automata [3,8,25], detecting
bugs and then designing possible fixes [2,30], etc., it is an essential work to devise
efficient membership algorithm for regular expressions which can support shuf-
fle. Furthermore, for 431,885 regular expressions extracted from XSD files, which
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 526–542, 2022.
https://doi.org/10.1007/978-3-031-00123-9_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_41&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_41

Membership Algorithm for SOREFCs 527

were collected from Open Geospatial Consortium (OGC) XML Schema repos-
itory1, and 761,278 regular expressions extracted from Relax NG files, which
were searched from Maven2 and GitHub3. Table 1 shows that the proportions
of single-occurrence regular expressions (SOREs) and single-occurrence regular
expressions with shuffle and counting (SOREFCs), and indicates that SORE-
FCs have significant practicability. Thus, in this paper, we focus on membership
algorithm for SOREFCs.

Table 1. Proportions of SOREs and SOREFCs.

Subclasses SOREFCs SOREs

% of XSDs 96.72 62.42

% of Relax NGs 98.34 60.23

For restricted regular expressions with shuffle and counting, Ghelli et al.
[13,17] proposed the corresponding linear time membership algorithms. How-
ever, Kleene star is only applied to symbol disjunctions, no alphabet symbol
appears twice and counting is only applied to single alphabet symbol. These
restrictions imply that the above membership algorithms are difficult to apply
to SOREFCs. Although there are some classic automata which can recognize the
languages defined by the regular expressions supporting shuffle [4,5,9,16,21,29],
the membership problem4 for each of them is either NP-complete [4,5,9,21,29]
or PSPACE-complete [16]. The above finite automata supporting shuffle are
as follows: parallel finite automaton (PFA) [29], shuffle automaton (SA) [21],
non-deterministic finite automaton supporting shuffle (NFA(&)) [16], concurrent
finite-state automaton (CFSA) [4,5] and partial derivative automaton (PDA)
[9]. For PFAs, SAs and NFA(&)s, they have many ε-transitions, which can lead
to unnecessarily non-deterministic recognitions. A PDA is a plain deterministic
finite automaton (DFA), which can result in an exponential blow up of the size of
DFA [9]. Additionally, for the non-deterministic finite automata supporting shuf-
fle and counting (NFA(&,#)s) [16], which can recognize the languages defined by
regular expressions with shuffle and counting, the membership problem is also
PSPACE-complete [16]. Recently, finite automata with shuffle (FA(&)s) [32] are
proposed to model XML schemata or workflows, although the membership prob-
lem for FA(&)s can be decidable in polynomial time [32], FA(&)s do not support
counting, and there are many shuffle markers in an FA(&).

Therefore, for solving above problems, it is an essential work to devise an
efficient membership algorithm for SOREFCs. Different from existing works,
we propose more succinct and polynomial decidable (for membership problem)
finite automata: single-occurrence finite automata with shuffles and counters

1 http://schemas.opengis.net/.
2 https://mvnrepository.com/.
3 https://github.com/topics/.
4 In this paper, the mentioned membership problem is the uniform version that both

the string and a representation of the language are given as inputs.

http://schemas.opengis.net/
https://mvnrepository.com/
https://github.com/topics/

528 X. Wang

(SFA(&,#)s), which recognize the languages defined by SOREFCs. We devise
a membership algorithm for SOREFCs by constructing equivalent SFA(&,#)s.
We can ensure that our algorithm is efficient in membership checking. The main
contributions of this paper are as follows.

– We introduce a new type of automata with shuffles and counters: SFA(&,#)s,
for which the membership problem is decidable in polynomial time. An
SFA(&,#) recognizes the language defined by a SOREFC.

– We devise a membership algorithm for SOREFCs by constructing equivalent
SFA(&,#)s. We prove that the membership problem for SOREFCs is also
decidable in polynomial time.

– We provide evaluations on our algorithm in terms of the time performance for
membership checking. Experimental results demonstrate that our algorithm
is efficient in membership checking.

The rest of this paper is organized as follows. Section 2 gives the basic def-
initions. Section 3 describes the SFA(&,#) and provides an example of such
an automaton. Section 4 presents the membership algorithm for SOREFCs by
constructing equivalent SFA(&,#)s. Section 5 presents experiments. Section 6
concludes the paper.

2 Preliminaries

Let Σ be a finite alphabet of symbols. A standard regular expression over Σ is
inductively defined as follows: ε and a∈Σ are regular expressions, for any regular
expressions r1, r2 and r3, the disjunction (r1|r2), the concatenation (r1·r2), and
the Kleene-star r∗

1 are also regular expressions. Usually, we omit writing the
concatenation operator in examples. The regular expressions with shuffle and
counting are extended from standard regular expressions by adding the shuffle
operator: r1&r2, and the counting r

[m,n]
1 where m∈N, n∈N/1, N={1, 2, 3, · · · },

N/1 = {2, 3, 4, ...}∪{+∞}, and m ≤ n. Note that, r+, r∗ and r? are used as
abbreviations of r[1,+∞], r[1,+∞]|ε and r|ε, respectively.

The language L(r) is defined in the following inductive way: L(ε) = {ε};
L(a) = {a}; L(r1|r2) = L(r1) ∪ L(r2); L(r1r2) = L(r1)L(r2); L(r∗

1) = L(r1)∗;
L(r[m,n]

1) = {w1 · · · wi|w1, · · · , wi ∈ L(r1),m ≤ i ≤ n}; L(r1&r2) = L(r1)&L(r2) =⋃
s1∈L(r1),s2∈L(r2)

s1&s2. The shuffle operation & is defined inductively as follows:
u&ε = ε&u = {u}, for u ∈ Σ∗; and au&bv = {az|z ∈ u&bv} ∪ {bz|z ∈ au&v}, for
u, v ∈ Σ∗ and a, b ∈ Σ. & also obeys the associative law, that is L(r1&(r2&r3)) =
L((r1&r2)&r3). We specify that all expressions of form (r1&r2)&r3 or r1&(r2&r3)
are rewritten as r1&r2&r3, and let L(r1&r2&r3) = L((r1&r2)&r3). For a regular
expression r, |r| denotes the length of r, which is the number of symbols and oper-
ators occurring in r plus the size of the binary representations of the integers [15].
For any two strings u, v ∈ Σ+, if a string s ∈ Σ+ and s ∈ u&v, then s is a shuffled
string. For a directed graph (digraph) G(V,E), G.�(v) (v∈G.V) denotes the set
of all direct successors of v in G. G.≺(v) denotes the set of all direct predecessors of
v in G. For space consideration, all omitted proofs can be found at https://github.
com/GraceXFun/MemSFA.

https://github.com/GraceXFun/MemSFA
https://github.com/GraceXFun/MemSFA

Membership Algorithm for SOREFCs 529

2.1 SOREs, SOREFCs, MDS and MDC

SORE is defined as follows.

Definition 1 (SORE [6,7]). Let Σ be a finite alphabet. A single-occurrence
regular expression (SORE) is a standard regular expression over Σ in which
every alphabet symbol occurs at most once.

Since L(r∗)=L((r+)?), a SORE does not use the Kleene-star operation (∗).
SOREFC extending SORE with shuffle and counting is defined as follows.

Definition 2. [SOREFC] Let Σ be a finite alphabet. A single occurrence regular
expression with shuffle and counting (SOREFC) is a regular expression with
shuffle and counting over Σ in which every alphabet symbol occurs at most once.

A SOREFC also does not use Kleene-star (∗) operators, and an iteration oper-
ator (+) in an SOREFC is written as the counting operator ([1,+∞]). SOREFCs
are deterministic regular expressions [11]. SOREs is a subclass of SOREFCs. In
this paper, a SOREFC forbids immediately nested counters, and expressions of
the forms (r?)? and (r?)[m,n] for regular expression r.

Example 1. a&b, (c[1,2]|d)[3,4], a?b(c[1,2]&d?)(e[1,+∞])?, and (a?b)&(c|d&e)[3,4]f
are SOREFCs, while a(b|c)+a is not a SORE, therefore not a SOREFC. However,
the expressions ((a&b)[3,4])[1,2], ((a[3,4])?)[1,2], and ((a[3,4])?)? are forbidden.

Maximum nesting depth of shuffle (MDS) and maximum nesting depth of count-
ing (MDC) are defined as follows.

Definition 3 (MDS). For regular expressions r1, · · · , rk (k≥2),
MDS(ε) =MDS(a) = 0 (a ∈ Σ), MDS(r[m,n]

1) =MDS(r1), MDS(r1r2) =MDS
(r1|r2)
= max(MDS(r1), MDS(r2)), and MDS(r1&r2& · · · &rk) = max(MDS(r1),
MDS(r2), · · · , MDS(rk))+1.

Definition 4 (MDC). For regular expressions r1 and r2, MDC(ε) =MDC
(a) = 0 (a ∈ Σ), MDC(r1r2) =MDC(r1|r2) =MDC(r1&r2) = max(MDC(r1),
MDC(r2)), and MDC(r[m,n]

1) =MDC(r1)+1.

Note that, r+1 can be rewritten as r
[1,+∞]
1 .

Example 2. Let regular expressions r1 = a&(b&d)e&c and r2 = (a&(b&d[1,2])e)+

&c+, then MDS(r1)=2, MDC(r1)=0, MDS(r2)=3 and MDC(r2)=2.

3 Single-Occurrence Finite Automata with Shuffles and
Counters

3.1 Shuffle Markers, Counters and Update Instructions

For recognizing the language defined by a SOREFC r, and for the ith subex-
pression of the form ri =ri1&ri2& · · · &rik

(i, k∈N, k≥2) in r, there is a shuffle

530 X. Wang

mark &i in an SFA(&,#) for starting to recognize the strings derived by ri.
For each subexpression rij

(1 ≤ j ≤ k), there is a concurrent marker ||ij in an
SFA(&,#) for starting to recognize the symbols or strings derived by rij

. Since
& is associative, there are at most 	 |Σ|−1

2
 shuffle markers and at most |Σ| con-
current markers in an SFA(&,#) (see Theorem 1). Let DΣ ={1, 2, · · · , 	 |Σ|−1

2
}
and PΣ ={1, 2, · · · , |Σ|}.

An SFA(&,#) runs on a given finite sample, first, there are counters which
count the numbers of the strings or substrings that are repeatedly matched by
the SFA(&,#) each time. Then, update instructions are used to compute the
minimum and maximum of the values obtained by the counters.

Counter variables are presented as follows. Let H(V,E) denote the node
transition graph of an SFA(&,#). A loop marker +k (k ∈ N) is a node in H
marking a strongly connected component (excluding singleton) in H. There are
at most 2|Σ|−1 loop markers (see Theorem 1). Let BΣ ={1, 2, · · · , 2|Σ|−1}. There
are corresponding counter variables for the nodes with self-loop, the marker
&i (i ∈ DΣ) and the marker +k (k ∈ BΣ). Let Vc(H) = {v|v ∈ H. � (v), v ∈
H.V } ∪ {&i|i ∈DΣ} ∪ {+k|k ∈ BΣ}. Let C denote the set of counter variables,
and let c(v) ∈ C (v ∈ Vc(H)) denote a counter variable. The mapping θ: C �→ N

is the function assigning a value to each counter variable in C. θ1 denotes that
c(v)=1 for each v∈Vc(H).

Update instructions are introduced as follows. Let partial mapping β: C �→
{res, inc} (res for reset, inc for increment) represent an update instruction for
each counter variable. β also defines mapping gβ between mappings θ. For each
v∈Vc(H), if β(c(v))=res, then gβ(θ)=1; if β(c(v))= inc, then gβ(θ)=θ(c(v))+1.
Let l(v) and u(v) denote lower bound and upper bound variables for counter vari-
able c(v) (v ∈ Vc(H)), respectively. Let T = {(l(v), u(v))|v ∈ Vc(H)}. We define
mapping γ: T �→N×N as a function assigning values to lower bound and upper
bound variables: l(v) and u(v). Let Min : Vc(H) �→ N and Max : Vc(H) �→ N.
(Min,Max) |= γ holds if and only if Min(v) ≤ lv ≤ Max(v) or Min(v) ≤
uv ≤ Max(v) for any (lv, uv) = γ(l(v), u(v)) (v ∈ Vc(H)). γ∞ denotes all upper
bound variables that are initialized to −∞ and all lower bound variables that
are initialized to +∞. Let partial mapping α: T �→ (min({T.l(v)|v ∈ Vc(H)} ×
C),max({T.u(v)|v∈Vc(H)}×C)) be an update instruction for (l(v), u(v)). α(l(v),
u(v)) = (min(l(v), c(v)),max(u(v), c(v))). α also defines the partial mapping
fα: γ × θ �→ γ such that fα(γ, θ)((l(v), u(v)), c(v)) = (min(π2

1(γ(l(v), u(v))),
θ(c(v))),max(π2

2(γ(l(v), u(v))), θ(c(v)))). Both α = ∅ and β = ∅ denote empty
instructions. g∅(θ)=θ and f∅(γ, θ)=γ.

3.2 Single-Occurrence Finite Automata with Shuffles and Counters

Definition 5 (SFA(&,#)). A single-occurrence finite automaton with shuffles
and counters (SFA(&,#)) is a tuple (V,Q,Σ, q0, qf ,H,Min,Max, Φ), where the
members are described as follows:

– Σ is a finite and non-empty set of alphabet symbols.
– q0 and qf : q0 is the unique initial state, qf is the unique final state.

Membership Algorithm for SOREFCs 531

– V =Σ ∪ V1, where V1⊆ {+i,&j , ||jk}i∈BΣ ,j∈DΣ ,k∈PΣ
.

– Q={q0, qf}∪V2, where V2⊆2V. A state q∈Q\{q0, qf} is a set of nodes in V .
– H(Vh, E,R, C, T) is a node transition graph.

• H.Vh = V ∪ {q0, qf}.
• H.R : {+i,&j}i∈BΣ ,j∈DΣ

�→ 2Σ.
• H.C is a set of counter variables. H.C ={c(v)|v∈Vc(H)}. For recognizing

a string by an SFA(&,#), c(v) (v∈Σ) is used to count the number of the
symbol v repeatedly matched by SFA(&,#) each time. c(+i) (resp. c(&j))
is used to count the number of the strings where the first letters are in
H.R(+i) (resp. the first letters are in H.R(&j)) repeatedly matched by
SFA(&,#) each time.

• H.T ={(l(v), u(v))|v∈Vc(H)}. l(v) and u(v) are respectively lower bound
variable and upper bound variable for the counter variable c(v).

– Min : Vc(H) �→ N and Max : Vc(H) �→ N. For v ∈ Vc(H) and c(v) ∈ H.C,
Min(v) (resp. Max(v)) denotes the lower bound (resp. the upper bound) of
counter variable c(v).

– Φ(H,X, z) where X ⊆ Vc(H) and z ∈ H.Vh is a function returning the tuple
consisting of the partial mapping of α and the partial mapping of β (α and
β are update instructions) for each node in X transiting to the node z in H.
Φ(H,X, z)=(A,B), where

• A = {∅} ∪ {H.T �→ (min(H.T.l(x),H.C.c(x)),
max(H.T.u(x),H.C.c(x)))|(x ∈ H. � (x) ∧ z �= x) ∨ (∃x′ ∈ H. � (x) : x′ ∈
{+i,&j}i∈BΣ ,j∈DΣ

∧ z �∈H.R(x′)), x∈Vc(H) ∧ x∈X},
• B = {∅} ∪ {c(x) �→ res|(x ∈ H. � (x) ∧ z �= x) ∨ (∃x′ ∈ H. � (x) : x′ ∈

{+i,&j}i∈BΣ ,j∈DΣ
∧ z �∈H.R(x′)), x∈Vc(H) ∧ x∈X} ∪ {c(x) �→ inc|(x∈

H. � (x) ∧ z = x) ∨ (∃x′ ∈ H. � (x) : x′ ∈ {+i,&j}i∈BΣ ,j∈DΣ
∧ z ∈

H.R(x′)), x∈Vc(H) ∧ x∈X}}.
Essentially, SFA(&,#)s are finite automata supporting counting and shuffle

(FACF) [33] that every symbol labels at most one node in the node transition
graph. The configuration of an SFA(&,#) is defined as follows.

Definition 6 (Configuration of an SFA(&,#)). A configuration of an
SFA(&, #) is a 3-tuple (q, γ, θ), where q ∈ Q is the current state, γ: A.H.T �→
N×N and θ: A.H.C �→ N. The initial configuration is (q0, γ∞, θ1), and a config-
uration is final if and only if q = qf .

For an SFA(&,#) A, we specify that A.H.R(+i) (i∈BΣ) is a set of alphabet
symbols, where an alphabet symbol is the first letter of the string that can
be repeatedly matched by SFA(&,#) A from the state including the node +i.
A.H.R(&j) (j ∈DΣ) is also a set of alphabet symbols, where an alphabet symbol
is the first letter of the shuffled string that can be recognized by SFA(&,#)
A from the state including the node &j . Then, the transition function of an
SFA(&,#) is defined as follows.

Definition 7 (Transition Function of an SFA(&,#)). The transition func-
tion δ of an SFA(&,#) (V,Q,Σ, q0, qf ,H,Min,Max, Φ) is defined for any con-
figuration (q, γ, θ) and the symbol y ∈ Σ ∪ {�}, where � denotes the end symbol
of a string.

532 X. Wang

1. q = q0 or q is a set, where q={v} or {+i} (v∈Σ, i∈BΣ):
– y ∈ Σ: δ((q, γ, θ), y) = {({z}, γ′, gβ(θ))|z ∈ H. � (x) ∧ (z = y ∨ y ∈

H.R(z)), x∈{q0, v,+i}, z∈{y}∪{+j}j∈BΣ
, γ′ =fα(γ, θ) ∧ (Min,Max) |=

γ′, (α, β)=Φ(H, {x}, z)}.
– y =�: δ((q, γ, θ), y) = {(p, γ′, gβ(θ))|p ∈ H. � (x) ∧ p = qf , x ∈ {q0, v}, γ′ =

fα(γ, θ) ∧ (Min,Max) |= γ′, (α, β)=Φ(H, {x}, p)}.
2. q is a set and q ={&i} (i∈DΣ): δ((q, γ, θ), y)={(p, fα(γ, θ), gβ(θ))|p=H.�

(&i), y∈H.R(&i), (α, β)=(∅, ∅)}.
3. q is a set and |q| ≥ 2:

– y∈Σ: δ((q, γ, θ), y)=
⋃

1≤t≤3 δt((q, γ, θ), y).
• δ1((q, γ, θ), y)= {((q\{x}) ∪ {z}, γ′, gβ(θ)) |z ∈H.� (x), z = y ∨ (∃i∈

DΣ : z = &i ∧ y ∈ H.R(z)), x ∈ q, γ′ = fα(γ, θ) ∧ (Min,Max) |=
γ′, (α, β)=Φ(H, {x}, z)}.

• δ2((q, γ, θ), y)= {((q \ {&i}) ∪ H.� (&i), fα(γ, θ), gβ(θ))|&i ∈ q ∧ y ∈
H.R(&i), (α, β)=(∅, ∅), i∈DΣ}.

• δ3((q, γ, θ), y)= {((q\W) ∪ {z}, γ′, gβ(θ))|∃i∈DΣ ∀x∈W : {z,&i}⊆
H. � (x) ∧ x ∈ H. ≺ (&i) ∧ ((z = y ∧ y �∈ R(&i)) ∨ (z = &i ∧ y ∈
R(&i))) ∧ |W | = |H. � (&i)|,W ⊆ q, γ′ = fα(γ, θ) ∧ (Min,Max) |=
γ′, (α, β)=Φ(H,W, y)}.

– y=�: δ((q, γ, θ), y)={(qf , γ′, gβ(θ))|∃i∈DΣ∀x∈W : x∈H.≺(&i)∧|W |=
|H.�(&i)|,W ⊆q, γ′ =fα(γ, θ) ∧ (Min,Max) |= γ′, (α, β)=Φ(H, q, qf)}.

Definition 8 (Deterministic SFA(&,#)). An SFA(&,#) is deterministic if
and only if |δ((q, γ, θ), y)| ≤ 1 for any configuration (q, γ, θ) and the symbol
y ∈ Σ ∪ {�}.

Example 3. Let Σ = {a, b, c, d, e} and V = Σ ∪ {&1, ||11, ||12,&2, ||21, ||22,+1}.
Let Q = {q0, qf , {&1}, {||11, ||12}, {||11,&2}, {||11, e}, {+1, ||12}, {a, ||12}, {b, ||12},
{b,&2}, {b, e}, {+1, e}, {a, e}, {||11, ||21, ||22}, {||11, c, ||22},{||11, ||21, d},{||11, c, d},
{b, ||21, ||22}, {b, c, ||22}, {b, ||21, d}, {b, c, d}, {a, c, ||22}, {a, c, d}, {a, d, ||11}, {b, d,
||11}}. Figure 1 shows SFA(&,#) A = (V,Q,Σ, q0, qf ,H,Min,Max, Φ) recogniz-
ing regular language L((((ab)+)?&(c&d)+e)+). The node transition graph A.H is
the directed graph illustrated in Fig. 1. A.H.R(+1)={a}, A.H.R(&1)={a, c, d},
and A.H.R(&2) = {c, d}. For each v ∈ {+1,&1,&2}, (Min(v), Max(v)) lists
as follows. (Min(+1), Max(+1)) = (1, 2), (Min(&2), Max(&2)) = (1, 2) and
(Min(&1), Max(&1)) = (1,+∞). The update instructions specified by Φ are also
presented in Fig. 1. A is a deterministic SFA(&,#) (see Definition 8).

Theorem 1. For a SOREFC r, if there exists an SFA(&,#) A such that L(A)=
L(r), then the SFA(&,#) A has at most 	 |Σ|−1

2
 shuffle markers, at most |Σ|
concurrent markers and at most 2|Σ|−1 loop markers.

Theorem 2. SFA(&,#)s recognize the languages defined by SOREFCs. For any
given string s ∈ Σ∗, and an SFA(&,#) A, it can be decided in O(|s||Σ|3) time
whether s∈L(A).

Theorem 1 and Theorem 2 follow Theorem 5.4 and Theorem 6.3 in [33],
respectively.

Membership Algorithm for SOREFCs 533

Fig. 1. The SFA(&,#) A for regular language L((((ab)[1,2])?&(c&d)[1,2]e)[1,+∞]). The
label of the transition edge is (y; Ai; Bj) (i, j ∈ N), where y ∈ Σ ∪ {�} is the current
symbol and Ai (resp. Bj) is the set of the update instructions from α (resp. β). αm ∈Ai

(m∈{1, 2, 3}) is an update instruction for the lower bound and upper bound variables
of the counting operator, and βn ∈Bj (n∈{1, 2, 3, 4, 5, 6}) is an update instruction for
the counter variable.

4 Membership Algorithm for SOREFC

We devise membership algorithm for SOREFCs by constructing equivalent SFA-
(&,#)s. For any given SOREFC r, and a string s ∈ Σ∗, first, we construct an
equivalent SFA(&,#) A for r. Then, the SFA(&,#) A recognizes the string s
to check whether s∈L(A). Algorithm 1 presents the membership algorithm for
SOREFCs.

Constructing an Equivalent SFA(&,#) for an SOREFC. We present how
to construct an SFA(&,#) for a given SOREFC. Since an SFA(&,#) has shuffle
marks &i, loop marks +k and concurrent marks ||ij (i, j, k ∈ N), we can con-
struct an SFA(&,#) A by introducing the above marks into a given SOREFC
r. First, we introduce shuffle marks, loop marks and concurrent marks into the
given SOREFC r, a new expression r′ is obtained. Then, we construct Glushkov
automaton G for r′, and G is converted to the node transition graph H of an
SFA(&,#) A. Finally, we present the detailed descriptions of the SFA(&,#) A.
Algorithm 2 shows how to construct an SFA(&,#) A for a given SOREFC r.
Theorem 3 shows that the constructed SFA(&,#) A is equivalent to r (i.e.,
L(A)=L(r)).

In Algorithm 2, initially, i=1 (line 3), j =1 (line 9). For a regular expression
r, first(r) denotes the set of the first letters of the strings derived by r. The
Glushkov automaton G is constructed for r′ by using the method proposed by

534 X. Wang

Brüggemann-Klein [10]. The finally obtained G can be respected as the node
transition graph of an SFA(&,#). Then, we present the detailed descriptions of
the SFA(&,#) A obtained in line 15.

A=(V,Q,Σ,G.q0, G.qf ,H,Min,Max, Φ), where V =G.V \{q0, qf}, H.Vh =
G.V and H.E =G.E. Let V ′

c ={v|(v∈Σ∧v ∈ H.�(v))∨(v∈{+i,&j}i∈BΣ ,j∈DΣ
∧

v ∈ G.V)}, then H.C = {c(v)|v ∈ V ′
c } and H.T = {(l(v), u(v))|v ∈ V ′

c }. Q =
Q′ ∪{G.q0, G.qf} and Q′ =

⋃
q

⋃
y δ((q, γ, θ), y) (q∈{G.q0}∪Q′ and y∈Σ ∪{�}).

The initial configuration is (G.q0, γ∞, θ1). Φ and δ can be derived from the
node transition graph H, which is a parameter implied in them. Note that, R:
{+i,&j}i∈BΣ ,j∈DΣ

�→ ℘(Σ) (see line 6 and line 10). Thus, H.R=R.

Algorithm 1. Membership#&
Input: An SOREFC r and a string s;
Output: true if s∈L(r) or false otherwise;
1: Let SFA(&, #) A=ConsEquSFA#

&(r);
2: if Recognize(A, s) then return true;
3: return false;

Algorithm 2. ConsEquSFA#
&

Input: An SOREFC r;
Output: An SFA(&, #) A: L(A)=L(r);
1: For each subexpression rb in r:
2: if there exists subexpressions r1, r2, · · · , rk (k ≥ 2) in r: rb = r1&r2& · · · &rk

then
3: Let rb =&i(||i1r1| ||i2r2| · · · | ||ikrk); (Min(&i),Max(&i))=(1, 1);

4: if r
[m,n]
b (m∈N, n∈N/1) is a subexpression of r then

5: Let r
[m,n]
b =r+b ; (Min(&i),Max(&i))=(m, n);

6: R(&i)=first(r1) ∪ first(r2) ∪ · · · ∪ first(rk); i= i + 1;

7: if there exists subexpression r1 in r: rb =r
[m,n]
1 (m∈N, n∈N/1) then

8: if r1 �= a ∈ Σ and there does not exist subexpressions e1, e2, · · · , ek (k ≥ 2) in
r1: r1 = e1&e2& · · · &ek then

9: Let rb =(+jr1)
+; (Min(+j),Max(+j))=(m, n);

10: R(+j)=first(r1); j =j + 1;
11: if r1 =a∈Σ then Let rb =r+1 ; (Min(a),Max(a))=(m, n);
12: r′ =r; Construct Glushkov automaton G for r′;
13: Add a node qf in G; add edges {(v, qf)|v is final state of G} in G;
14: Let qf denote the final state of G;
15: SFA(&, #) A=(V, Q, Σ, G.q0, G.qf , H,Min,Max, Φ);
16: return A;

Example 4. For a SOREFC r = (((ab)[1,2])?&(c&d)[1,2]e)[1,+∞], we introduce
shuffle marks, loop markers and concurrent markers into r, a new expression
r′ = (&1(||11((+1ab)+)?| ||12(&2(||21c| ||22d))+e))+ is obtained. The constructed
Glushkov automaton is showed in Fig. 2(a). The node transition graph H of
an SFA(&,#) constructed for r′ is illustrated in Fig. 2(b). The finally obtained
SFA(&,#) is presented in Fig. 1.

Membership Algorithm for SOREFCs 535

Theorem 3. For a given SOREFC r, ConsEquSFA#
& can construct an equiva-

lent SFA(&,#) A in O(814 |Σ||r|) time.

Recognizing. The above constructed SFA(&,#) A recognizes the string s to
check whether s ∈ L(A). Let Recognize denote the process of SFA(&,#) A
recognizing the string s. For SFA(&,#) A and the string s as input, Recognize
outputs true or false. If SFA(&,#) A can recognize each symbol in the string s,
and the state A.qf can be reached when the symbol � is read, then Recognize
returns true, s can be accepted by A; Otherwise, Recognize returns false, s
cannot be accepted by A. The rules for SFA(&,#) A identifying each symbol
in s are specified by the transition function A.δ, and the initial configuration is
(q0, γ∞, θ1).

Theorem 4. For any given SOREFC r and a string s∈Σ∗ as inputs, algorithm
Membership#& takes O(814 |Σ||r| + |s||Σ|3) time to chech whether s∈L(r).

According to Theorem 2 and Theorem 3, we can prove Theorem 4.

Fig. 2. (a) is the Glushkov automaton G for r′ =(&1(||11((+1ab)+)?| ||12(&2(||21c| ||22
d))+e))+. (b) is the node transition graph H of the SFA(&,#) A (see Fig. 1).

536 X. Wang

5 Experiments

In this section, we evaluate our algorithm on XML data (including positive data
and negative data) in time performance of membership checking.

We searched Relax NG files from above repositories, and then extracted 1000
diverse SOREFCs with average MDS =2 and average MDC =2 from Relax NG
files for each alphabet size in {10, 20, · · · , 100}. Let Q1 denote the set of the
above 1000 SOREFCs with alphabet size 20. Let Q2 (Q2 ⊃ Q1) denote the set
of the above 10000 SOREFCs with the alphabet size ranging from 10 to 100.
Additionally, we extracted 1000 diverse SOREFCs with alphabet size 20 and
average MDC = 2 from Relax NG files for each MDS ∈ {1, 2, · · · , 10}. Let Q3

denote the set of 10000 SOREFCs with MDS ranging from 1 to 10. We also
extracted 1000 diverse SOREFCs with alphabet size 20 and average MDS = 2
from Relax NG files for each MDC ∈ {1, 2, · · · , 10}. Let Q4 denote the set of
10000 SOREFCs with MDC ranging from 1 to 10. For each target expression in
Qi (i ∈ {1, 2, 3, 4}), the random sample in experiments, which is a finite set of
strings, is extracted from the corresponding XML data, which is either positive
data or negative data. Negative data is generated by using ToXgene5. The size
of sample is the number of the strings in sample.

Our algorithm is evaluated by using the above data sets (Q1, Q2, Q3 and Q4)
including the corresponding XML data. Our algorithm is mainly compared with
the membership algorithm FlatStab [13] and brics automaton utilities6 (BAU).
FlatStab is a linear membership algorithm for restricted SOREFCs [13], and
BAU can be extremely fast to deal with shuffle currently. We provide the statis-
tics about running time in different length of strings, different size of alphabets,
different MDS and different MDC for membership checking. For automata, we
also present the statistics about running time in different length of strings and
different size of alphabets for membership checking. Since FA(&)s are more effi-
cient in membership checking than other automata supporting shuffle (including
BUA) [32], our automaton model SFA(&,#) is mainly compared with NFA(&,#)
and FA(&) in membership checking.

Positive Data. For each membership algorithm or utilities, which inputs a
target expression e with its derived string s (s∈L(e) is extracted from positive
data), we record the corresponding running time. For each one of 1000 target
expressions in Q1, we extracted the corresponding 1000 strings (forming a set
S1) with fixed length, which ranges from 103 to 104. In Fig. 3(a), the running
time for a given length of string is the average of the corresponding recorded
106 (1000 ∗ 1000) running times. For each alphabet size in {10, 20, · · · , 100},
and for each one of 1000 target expressions with that alphabet size in Q2, we
also extracted the 1000 strings (forming a set S2) with fixed lengths of 5000.
In Fig. 3(b), the running time for a given alphabet size is the average of the
corresponding recorded 106 running times.

5 http://www.cs.toronto.edu/tox/toxgene/.
6 https://www.brics.dk/automaton/.

http://www.cs.toronto.edu/tox/toxgene/
https://www.brics.dk/automaton/

Membership Algorithm for SOREFCs 537

For each MDS∈ {1, 2, · · · , 10}, and for each one of 1000 target expressions
with that MDS in Q3, we also extracted the 1000 strings with fixed lengths
of 5000. In Fig. 3(c), the running time for a given MDS is the average of the
corresponding recorded 106 running times. For each MDC∈ {1, 2, · · · , 10}, and
for each one of 1000 target expressions with that MDC in Q4, we also extracted
the 1000 strings with fixed lengths of 5000. In Fig. 3(d), the running time for a
given MDC is the average of the corresponding recorded 106 running times.

Figure 3(a)–Figure 3(d) show that the running times for membership#& are
lower than that for BAU and FlatStab. Figure 3(a) presents that the running
time for membership#& is less than 0.17 s, when the length of string is not over
104. Figure 3(b) illustrates that the running time for membership#& is less than
0.365 s, when the alphabet size is not over 100. Especially, Fig. 3(c) demonstrates
that the running time for membership#& is less than 0.5 s, when MDS is not over
10. Figure 3(d) demonstrates that the running time for membership#& is less than
0.3 s, when MDC is not over 10. Thus, for positive data, the time performance
of membership#& shows that membership#& is efficient in membership checking.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104

0

100

170
200

300

400

500

Length of String

ti
m
e
(m

s)

BAU
FlatStab

Membership#&

(a)

10 20 30 40 50 60 70 80 90 100
0

365
500

1,000

1,500

2,000

Alphabet Size

ti
m
e
(m

s)

BAU
FlatStab

Membership#&

(b)

1 2 3 4 5 6 7 8 9 10
0

500

1,000

1,500

2,000

MDS

ti
m
e
(m

s)

BAU
FlatStab

Membership#&

(c)

1 2 3 4 5 6 7 8 9 10
100

200

300

400

500

600

MDC

ti
m
e
(m

s)

BAU
FlatStab

Membership#&

(d)

Fig. 3. (a), (b), (c) and (d) are running times for each algorithm or utilities on positive
data as the functions of length of string, alphabet size, MDS and MDC, respectively.

For each automaton recognizing each string, we record the corresponding run-
ning time. For each one of 1000 target expressions in Q1, we extracted the cor-
responding 1000 strings in S1. In Fig. 4(a), the running time for a given length

538 X. Wang

of string is the average of the corresponding recorded 106 (1000 ∗ 1000) running
times. For each alphabet size in {10, 20, · · · , 100}, and for each one of 1000 tar-
get expressions with that alphabet size in Q2, we also extracted the corresponding
1000 strings in S2. In Fig. 4(b), the running time for a given alphabet size is the
average of the corresponding recorded 106 running times. Note that, for each target
expression r∈Q1 or r∈Q2, each automaton is equivalently transformed from r.

Figure 4(a) and Fig. 4(b) present that the running times for SFA(&,#) are
more lower than that for NFA(&,#), but are closer to that for FA(&). Although
the running time for SFA(&,#) is higher than that for FA(&), FA(&) does not
support counting, the running time for SFA(&,#) is less than 0.2 s, when the
length of string is not over 104. The running time for SFA(&,#) is less than
0.4 s, when the alphabet size is not over 100. For positive data, SFA(&,#) is also
efficient in membership checking.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104

0

100

200

300

400

500

600

700

800

900

1,000

Length of String

ti
m
e
(m

s)

NFA(&,#)
FA(&)

SFA(&,#)

(a)

10 20 30 40 50 60 70 80 90 100
0

400
500

1,000

1,500

2,000

2,500

Alphabet Size

ti
m
e
(m

s)

NFA(&,#)
FA(&)

SFA(&,#)

(b)

Fig. 4. (a) and (b) are running times in seconds for each automaton on positive data
as the functions of length of string and alphabet size, respectively.

Negative Data. Our algorithm is still evaluated by using the data sets Q1,
Q2, Q3 and Q4, but the corresponding samples are negative data. I.e., for each
membership algorithm or utilities, which inputs a target expression e with a
string s that s �∈ L(r) (the string s is extracted from negative data), we record
the corresponding running time.

Figure 5(a)–Figure 5(d) show that the running times for membership#& are
more lower than that for BAU, but are closer to that for FlatStab. Even for
any given MDS, Fig. 5(c) presents that the running time for membership#& is
lower than that for FlatStab. Furthermore, Fig. 5(a) presents that the running
time for membership#& is less than 0.06 s, when the length of string is not over
104. Figure 5(b) illustrates that the running time for membership#& is less than
0.85 s, when the alphabet size is not over 100. Especially, Fig. 5(c) demonstrates
that the running time for membership#& is less than 0.1 s, when MDS is not
over 10. Figure 5(d) demonstrates that the running time for membership#& is less
than 0.126 s, when MDC is not over 10. Thus, for given negative data, the time
performance of membership#& still demonstrates that membership#& is efficient in
membership checking.

Membership Algorithm for SOREFCs 539

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104

0
20
40
60
80

100

200

300

Length of String

ti
m
e
(m

s)

BAU
FlatStab

Membership#&

(a)

10 20 30 40 50 60 70 80 90 100
0

85
100

200

300

400

Alphabet Size

ti
m
e
(m

s)

BAU
FlatStab

Membership#&

(b)

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

MDS

ti
m
e
(m

s)

BAU
FlatStab

Membership#&

(c)

1 2 3 4 5 6 7 8 9 10
0

100

126

200

300

MDC

ti
m
e
(m

s)

BAU
FlatStab

Membership#&

(d)

Fig. 5. (a), (b), (c) and (d) are running times for each algorithm or utilities on negative
data as the functions of length of string, alphabet size, MDS and MDC, respectively.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104

0

100
160
200

300

400

500

600

700

800

900

Length of String

ti
m
e
(m

s)

NFA(&,#)
FA(&)

SFA(&,#)

(a)

10 20 30 40 50 60 70 80 90 100
0

105
200
267

400

600

800

1,000

1,200

1,400

Alphabet Size

ti
m
e
(m

s)

NFA(&,#)
FA(&)

SFA(&,#)

(b)

Fig. 6. (a) and (b) are running times in seconds for each automaton on negative data
as the functions of length of string and alphabet size, respectively.

For each automaton and each string from negative data, we also provide the
statistics about running time in different length of strings and different size of
alphabets for membership checking. We still evaluate each automaton by using
regular expressions from Q1 and Q2.

Both Fig. 6(a) and Fig. 6(b) present that the running times for SFA(&,#) are
more lower than that for NFA(&,#). In Fig. 6(a), the running time for SFA(&,#)
is closer to that for FA(&). The running time for SFA(&,#) is less than 0.16 s,
when the length of string is not over 104. In Fig. 6(b), although the running time

540 X. Wang

for SFA(&,#) is higher than that for FA(&), FA(&) does not support counting,
and the running time for SFA(&,#) is less than 0.267 s, when the alphabet size
is not over 100. For negative data, SFA(&,#) is also efficient in membership
checking.

6 Conclusion

This paper proposed a membership algorithm for SOREFCs. First, we proposed
automata model: SFA (&,#)s, which can recognize the languages defined by
SOREFCs. We prove that the membership problem for SFA (&,#)s is decid-
able in polynomial time. Then, we devise membership algorithm for SOREFCs
by constructing equivalent SFA (&,#)s. We prove that the membership prob-
lem for SOREFCs is also decidable in polynomial time. Experimental results
demonstrate that our algorithm is efficient in membership checking. For future
work, we can further study an efficient membership algorithm for regular expres-
sions supporting shuffle and counting (RE (&,#)s), the membership algorithm
needs more delicate technologies for processing non-deterministic RE (&,#)s.
Furthermore, we can also focus on the applications of our proposed membership
algorithm. Such as learning automata or regular expressions (by membership
queries) from semi-structure data for modeling schemata, and modeling work-
flows from streaming data for managing streaming database.

Acknowledgements. Thanks for professor George Barmpalias supporting this work,
which was also supported by National Nature Science Foundation of China (No.
11971501).

References

1. Ade-Ibijola, A.: Synthesis of regular expression problems and solutions. Int. J.
Comput. Appl. 42(8), 748–764 (2020)

2. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:
Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits.
LNCS, vol. 11026, pp. 74–100. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96562-8 3

3. Becerra-Bonache, L., Dediu, A.H., T̂ırnăucă, C.: Learning DFA from correction
and equivalence queries. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T.,
Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 281–292. Springer,
Heidelberg (2006). https://doi.org/10.1007/11872436 23

4. Berglund, M., Björklund, H., Björklund, J.: Shuffled languages representation and
recognition. Theoret. Comput. Sci. 489, 1–20 (2013)

5. Berglund, M., Björklund, H., Högberg, J.: Recognizing shuffled languages. In:
Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp.
142–154. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21254-
3 10

https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/11872436_23
https://doi.org/10.1007/978-3-642-21254-3_10
https://doi.org/10.1007/978-3-642-21254-3_10

Membership Algorithm for SOREFCs 541

6. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from
XML data. In: International Conference on Very Large Data Bases, Seoul, Korea,
September, pp. 115–126 (2006)

7. Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of concise regular
expressions and DTDs. ACM Trans. Database Syst. 35(2), 1–47 (2010)

8. Björklund, J., Fernau, H., Kasprzik, A.: Polynomial inference of universal automata
from membership and equivalence queries. Inf. Comput. 246, 3–19 (2016)

9. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Automata for regular expressions
with shuffle. Inf. Comput. 259, 162–173 (2018)

10. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoret. Com-
put. Sci. 120(2), 197–213 (1993)

11. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Com-
put. 142(2), 182–206 (1998)

12. Clark, J., Makoto, M.: Relax NG Tutorial. OASIS Committee Specification (2001).
http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html

13. Colazzo, D., Ghelli, G., Sartiani, C.: Linear time membership in a class of regular
expressions with counting, interleaving, and unordered concatenation. ACM Trans.
Database Syst. (TODS) 42(4), 24 (2017)

14. Garg, V.K., Ragunath, M.: Concurrent regular expressions and their relationship
to petri nets. Theoret. Comput. Sci. 96(2), 285–304 (1992)

15. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: weak
versus strong determinism. SIAM J. Comput. 41(1), 160–190 (2012)

16. Gelade, W., Martens, W., Neven, F.: Optimizing schema languages for XML:
numerical constraints and interleaving. SIAM J. Comput. 38(5), 2021–2043 (2009)

17. Ghelli, G., Colazzo, D., Sartiani, C.: Linear time membership in a class of regular
expressions with interleaving and counting. In: Proceedings of the 17th ACM Con-
ference on Information and Knowledge Management, pp. 389–398. ACM (2008)

18. Ginsburg, S., Spanier, E.H.: Mappings of languages by two-tape devices. J. ACM
(JACM) 12(3), 423–434 (1965)

19. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation
21(10), 778 (2013)

20. Hume, A.: A tale of two greps. Softw. Pract. Exp. 18(11), 1063–1072 (1988)
21. Jedrzejowicz, J., Szepietowski, A.: Shuffle languages are in P. Theoret. Comput.

Sci. 250(1–2), 31–53 (2001)
22. Kougka, G., Gounaris, A., Simitsis, A.: The many faces of data-centric workflow

optimization: a survey. Int. J. Data Sci. Anal. 6(2), 81–107 (2018). https://doi.
org/10.1007/s41060-018-0107-0

23. Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. J. ACM (JACM)
63(2), 14 (2016)

24. Lou, J.G., Fu, Q., Yang, S., Li, J., Wu, B.: Mining program workflow from inter-
leaved traces. In: Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 613–622 (2010)

25. Maler, O., Mens, I.-E.: A generic algorithm for learning symbolic automata from
membership queries. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A.,
Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp.
146–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 8

26. Martens, W., Neven, F., Niewerth, M., Schwentick, T.: BonXai: combining the
simplicity of DTD with the expressiveness of XML Schema. ACM Trans. Database
Syst. (TODS) 42(3), 15 (2017)

27. Mayer, A.J., Stockmeyer, L.J.: The complexity of word problems-this time with
interleaving. Inf. Comput. 115(2), 293–311 (1994)

http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html
https://doi.org/10.1007/s41060-018-0107-0
https://doi.org/10.1007/s41060-018-0107-0
https://doi.org/10.1007/978-3-319-63121-9_8

542 X. Wang

28. Garćıa Soto, M., Henzinger, T.A., Schilling, C., Zeleznik, L.: Membership-based
synthesis of linear hybrid automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019.
LNCS, vol. 11561, pp. 297–314. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25540-4 16

29. Stotts, P.D., Pugh, W.: Parallel finite automata for modeling concurrent software
systems. J. Syst. Softw. 27(1), 27–43 (1994)

30. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pp. 276–287. IEEE (2017)

31. Thompson, H., Beech, D., Maloney, M., Mendelsohn, N.: W3C XML Schema Def-
inition Language (XSD) 1.1 Part 1: Structures (2012)

32. Wang, X.: Learning finite automata with shuffle. In: Karlapalem, K., et al. (eds.)
PAKDD 2021. LNCS (LNAI), vol. 12713, pp. 308–320. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-75765-6 25

33. Wang, X.: Research on learning algorithms for extended regular expressions and
their automata. Ph.D. thesis, University of Chinese Academy of Sciences (2021).
(in Chinese)

https://doi.org/10.1007/978-3-030-25540-4_16
https://doi.org/10.1007/978-3-030-25540-4_16
https://doi.org/10.1007/978-3-030-75765-6_25

(p, n)-core: Core Decomposition in Signed
Networks

Junghoon Kim1 and Sungsu Lim2(B)

1 Nanyang Technological University, Singapore 639798, Singapore
junghoon001@e.ntu.edu.sg

2 Chungnam National University, Daejeon 34134, South Korea

sungsu@cnu.ac.kr

Abstract. Finding cohesive subgraphs is a key and fundamental prob-
lem in network science. k-core is a widely used cohesive subgraph model
having many applications. In this paper, we study core decomposition in
the signed networks named (p, n)-core that combines k-core and signed
edges. (p, n)-core preserves internal sufficient positive edges and deficient
negative edges simultaneously to get high-quality cohesive subgraphs. We
prove that finding exact (p, n)-core is NP-hard. Therefore, we propose
two algorithms with pruning techniques. Finally, we demonstrate the
superiority of our proposed algorithms using seven real-world networks.

Keywords: Signed network analysis · Core decomposition

1 Introduction

With proliferation of development of the mobile and communication technology,
nowadays, many people use social networking services anytime and anywhere.
Since analyzing social networks helps us understand human activity and rela-
tionship, there are many research studies to capture the characteristics of the
social networks [3,5,7,10]. These days, many social network services consist of
a social network and meta-data information named attributes such as a user or
link information. One of the representative attributed social networks is a signed
network [2,5]. The signed network contains a set of nodes, and a set of positive
and negative edges. Note that edge sign presents the relationship between two
users. Signed network mining has many applications including friend recommen-
dation and finding marketing targets.

In this paper, we study a core decomposition problem [10] in the signed
networks. Specifically, we extend the classic k-core decomposition on signed net-
works by considering signed edges. Note that we do not extend other models such
as k-truss and k-ecc owing to the simple and intuitive structure of the k-core.
There are many variations of the k-core [7] including attributed k-core, distance-
generalized k-core, radius-bounded k-core, etc. Recently, Giatsidis et al. [2] pro-
pose directed signed core decomposition. However, the problem [2] does not
consider internal negative edges of the resultant subgraphs since it focuses on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 543–551, 2022.
https://doi.org/10.1007/978-3-031-00123-9_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_42&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_42

544 J. Kim and S. Lim

external negative edges. It implies that a resultant subgraph cannot be directly
utilized for the applications such as group recommendation as each subgraph
may contain many negative edges.

To handle the abovementioned issue, we formulate (p, n)-core by considering
two key components: (1) Considering positive and negative edge constraints : we
consider both positive and negative edge constraints to guarantee the sufficient
internal positive edges and deficient internal negative edges; and (2) Maximality :
we aim to maximize the size of nodes.

2 Related Work

Giatsidis et al. [2] study the signed (lt, ks)-core problem in signed directed net-
works. Specifically, given a signed directed network G, and two parameters k and
l, it aims to find (lt, ks)-core which is a maximal subgraph H of G of which each
node v ∈ H has degsin(v,H) ≥ k and degtout(v,H) ≥ l. Note that s, t ∈ {+,−}.
As we have discussed before, it does not consider the internal negative edges, and
thus the resultant (lt, ks)-core may contain many negative internal edges which
lead to a meaningless result. Li et al. [6] study the (α, k)-clique problem. Specif-
ically, given α, k, and r, it aims to enumerate all maximal (α, k)-cliques and
find top r maximal cliques where (α, k)-clique is a clique satisfying negative and
positive constraints. Wu et al. [11] study the signed (k, r)-truss problem. They
present balanced and unbalanced triangles to model a (k, r)-truss. Specifically,
given a signed network G and two positive integers k and r, a signed (k, r)-truss
is a subgraph S of G which satisfies (1) sup+(e, S) ≥ k; (2) sup−(e, S) ≤ r; and
(3) maximality constraint. Support sup+(e, S) (or sup−(e, S)) indicates that
the number of balanced (or unbalanced) triangles contains the edge e in S. The
author defines that a triangle is balanced if it contains odd number of positive
edges, otherwise, the triangle is unbalanced.

Compared with both (k, r)-truss [11] and (α, k)-clique [6] problems, our pro-
posed (p, n)-core has less cohesiveness level [1]. However, our model is much
simpler to understand and intuitive. In addition, selecting a parameter is rela-
tively not challengeable compared with a (k, r)-truss and a (α, k)-clique to end
users. In the (k, r)-truss, an end-user may be required to understand the details
of the problem for selecting proper k and r. Similarly, the end-user may be over-
whelmed to select proper parameters α, k, and r in the (α, k)-clique problem.

3 Problem Statement

A signed network is modeled as a graph G = (V,E+, E−) with a set of nodes V ,
a set of positive edges E+, and a set of negative edges E−. We denote a positive
graph (or a negative graph) G+ (or G−) to represent the induced subgraph
consisting of positive(or negative) edges, and we denote V +(or V −) to represent
a set of nodes in the positive or negative graph. In this paper, we consider that
G is undirected. Given a set of nodes C ⊆ V , we denote G[C] as the induced
subgraph of G which takes C as its node set and E[C] = {(u, v) ∈ E|u, v ∈ C}

(p, n)-core: Core Decomposition in Signed Networks 545

as its edge set. Note that we allow that any pair of nodes can have positive
and negative edges together since a positive edge represents public relationship,
while a negative edge may present private-banned relationship. In many social
networks, we can hide or block friends due to personal issue. To introduce our
problem, we present some basic definitions and k-core problem.

Definition 1. (Positive edge constraint). Given a signed network G =
(V,E+, E−) and positive integer p, a subgraph H of G satisfies the positive edge
constraint if any nodes in H have at least p positive edges in H, i.e., δ(H) ≥ p.

Definition 2. (Negative edge constraint). Given a signed network G =
(V,E+, E−) and positive integer n, a subgraph H of G satisfies the negative
edge constraint if any nodes in H have negative edges less than n in H, i.e.,
γ(H) < n.

Problem 1. (k-core [10]). Given a graph G and positive integer k, k-core, denoted
as H, is a maximal subgraph where each node has at least k neighbors in H.

We denote a subgraph H is a p-core graph if H = G[D] where D is p-core.

Problem 2. ((p, n)-core). Given a signed network G, positive integer p, and n,
(p, n)-core, denoted as C, is a maximal subgraph of which every node satisfies
the positive and negative edge constraints in C.

Theorem 1. Finding a solution of (p, n)-core is NP-hard.

Proof. To show the hardness, we utilize the k-clique problem which is a classic
problem and NP-hard. First, suppose that we have an instance of k-clique :
IKC = (G = (V,E), k). We then show a reduction from IKC to an instance
of our problem. We first construct a signed network S = (V,E+, E−) where
E+ = E, and we generate |V |(|V | − 1) negative edges in E−, and then we set
n = k + 1 and p = k − 1. It implies that the size of the solution must be larger
than or equal to k, and less than k +1, i.e., the size is k and its minimum degree
is k − 1. It indicates that finding a solution of Ipncore = (S, k − 1, k + 1) is to
find a k-clique in IKC . From the abovementioned, we show a reduction from an
instance IKC to the instance Ipncore. Therefore, (p, n)-core is also NP-hard.

In this paper, we consider a signed network as a two-layer graph: G+ =
(V +, E+) and G− = (V −, E−) for making better understanding.

4 Algorithms

4.1 Follower-Based Algorithm (FA)

As we aim to identify a maximal subgraph, we are required to remove a set of
nodes to satisfy the constraints. When removing a node, we notice that a set of
nodes can be removed together in a cascading manner due to the positive edge
constraint. Thus, we first define a concept named follower.

546 J. Kim and S. Lim

Definition 3. (Followers). Given a positive graph H and node v ∈ H, F (v)
consists of (1) node v (2) the nodes that are deleted cascadingly owing to the
positive edge constraint when node v removed.

Property 1. Suppose that we have a signed graph H with δ(H) ≥ p. When we
remove a node u ∈ H+ with |F (u)| = 1, the only node u in H− is removed,
that is, there are no additional nodes to be removed from H−. However, when
we remove a node u from H−, a set of nodes which contains the node u can be
removed together owing to the positive edge constraint.

Owing to the Property 1, we notice that removing the multiple nodes is deter-
mined by the positive graph. Thus, we design our FA algorithm.

Strategy 1. Suppose that we have a signed graph H with δ(H) ≥ p. First, we find
a set of nodes in H− of which each has at least n negative edges. We call them
key nodes. Next, we find candidate nodes which are a union of the key nodes
and neighbors of the key nodes. For every candidate, we compute all followers
and find a node which has the minimum followers. We then remove the node
and its followers. This procedure is repeated until the remaining graph satisfies
both edge constraints.

Complexity. The time complexity of FA is O(|V |2(|V |+ |E+|)) where |V |(|V |+
|E+|) is to compute all followers and the maximum number of iterations is |V |.

4.2 Disgruntled Follower-Based Algorithm (DFA)

In FA, we observe that it suffers from efficiency and effectiveness issues as it only
focuses on the size of followers to find proper nodes to be removed.

To consider the negative edge constraint, we introduce a definition named
disgruntlement which is an indicator that describes how helpful it is to satisfy
the negative edge constraint when we remove a node. Note that a node having
the large disgruntlement is preferred to be removed since it helps to satisfy the
negative edge constraint. The definition of disgruntlement can be checked in
Definition 4. Note that we prefer the large disgruntlement and the small number
of followers, that is, we aim to maximize the following function: O∗(.) = D(.)

|F (.)|
where D(.) is a disgruntlement value and F (.) is a set of nodes in followers. Thus,
we design an algorithm by iteratively removing a node which has the maximum
O∗(.). However, a major concern is “how to compute |F (.)| efficiently”. To answer
the question, we propose a pruning strategy to improve efficiency.

Definition 4. (Disgruntlement). Given a negative graph H = (V,E), node u ∈
V , and negative edge threshold n, the disgruntlement of node u is as follows.

D(u) = Dself (u) + Dneib(u)

Dself (u) =

{
0, if u is not a key node,

|N(u,H)| − n + 1, if u is a key node

Dneib(u) =
∑

w∈N(u,H)

1,∀N(w,H) ≥ n

(1)

(p, n)-core: Core Decomposition in Signed Networks 547

Computing a Lower-Bound. In a positive graph, we discuss the lower-bound
of the size of followers. First, we define VD-node (verge of death).

Definition 5. (VD-node). Given an integer p, graph H = (V,E) with δ(H) ≥ p,
a node v ∈ V is VD-node if its |N(v,H)| and coreness1 are p.

The VD-node implies that the node will be deleted after we remove any neighbor
nodes of the VD-node since the degree of the VD-nodes is exactly p.

Definition 6. (VD-cc). Given a graph H, and a set of VD-nodes V ′, we denote
a set of connected components of V ′ as VD-ccs.

Strategy 2. When any node in a VD-cc is removed, all nodes in the VD-cc are
removed together. Thus, given a node v, if any neighbor node w ∈ N(v,G) is
VD-node, we find a VD-cc of node w. After combining all VD-ccs of N(v,G),
we compute the lower bound node v by summarizing all sizes of the VD-ccs.

Computing an Upper-Bound. In this Section, we present an approach to find
an upper-bound by incorporating the hierarchical structure of the k-core [3,10].

Definition 7. (CCNode). Given a positive graph H and integer k, we define a
set of connected subgraphs of induced subgraphs by the k-core as a set of CCN-
odes, i.e., each connected subgraph of k-core is a CCNode.

We can consider that any pair of CCNodes is not connected and the number
of maximal CCNode is |V +|

(k+1) . By utilizing the CCNode, we define CCTree.

Definition 8. (CCTree). CCTree is a tree consisting of a dummy root node and
a set of CCNodes. CCNodes in the same tree level imply that they belong to the
same x-core, and a pair of a parent and a children of the CCNodes which are
connected in CCTree implies that the parent CCNode (in x′-core) contains the
children CCNode (in (x′ + 1)-core).

Strategy 3. Initially, we find p-core graph H. Then, We construct a CCTree by
making a dummy node and add it to the CCTree as a root node r. We next
find all the connected components in H. The connected subgraphs can be the
CCNodes and they can be the children of r with level 1 of the CCTree. Then,
for each CCNode Ci, we check whether Ci contains a p′-core with p′ = p + l
where l is the level of the Ci. If the p′-core exists, we add a new CCNode Cj by
computing the connected components of the p′-core then make Ci be the parent
of Cj if Cj ⊆ Ci. This process is repeated. After constructing the CCTree, we are
ready to compute UB(.). We first find a starting CCNode of node v by finding a
CCNode cur which contains node v while the tree-level of the cur is smaller than
other CCNodes containing node v. We then add two upper-bounds CI(.) and
RI(.). We find a size of the node sets which are not deleted after removing node
v since they are already sufficiently connected or are in the different connected
component. Each upper-bound can be computed as follows:
1 Coreness of node v is q if node v belongs to the q-core but not to (q + 1)-core.

548 J. Kim and S. Lim

– Children immutable size CI(.): The sum of the size of the children’s of cur is
the CI(.). Since the children of cur do not contain node v, and their coreness
value is larger than cur;

– Root immutable size RI(.): We traverse the CCTree from the cur to the root
by iteratively traversing the parent. After visiting a parent, we add children’s
size of the connected components of each parent except for the children which
is visited previously. The sum of the size of children is RI(.).

By summarizing the CI(.) and RI(.), we can find the upper-bound of a node.
More specifically, UB(u) = |V | − (CI(u) + RI(u)).

Algorithmic Procedure. Here we combine the lower-bound, upper-bound,
and disgruntlement to design DFA.

Strategy 4. Instead of computing all nodes’ followers, we aim to compute a few
followers for efficiency. We firstly compute following three values : (1) disgruntle-
ment score D(.); (2) lower-bound LB(.); and (3) upper-bound UB(.). Next, we
can get the following result.

LB(.) ≤ |F (.)| ≤UB(.) ⇒ D(.)

LB(.)
≥ D(.)

|F (.)| ≥ D(.)

UB(.)
⇒ UB∗(.) ≥ O∗(.) ≥ LB∗(.)

In our DFA algorithm, we utilize the above inequality. Given two nodes u and
v, if LB∗(v) > UB∗(u), intuitively we do not need to compute the followers of
node u. Hence, we firstly compute the node having the largest LB∗(.) and then
find a set of candidate nodes to compute the followers. To update coreness in
every iteration, we adopt a Purecore algorithm [9].

Complexity. The time complexity of DFA is O(|V |(|V |(|V | + |E+|) + |E−|))
since it may be required to compute all nodes’ followers O(|V |(|V | + |E+|)) and
computing disgruntlement takes O(|E−|) in the maximum iterations |V |.

5 Experiments

Dataset. Table 1 reports the statistics of the real-world networks. As we do not
consider the weighted temporal networks, we ignore the edge weights and keep
the most recent edges with signs for OTC and Alpha datasets [4].

Algorithms. To the best of our knowledge, there is no direct competitor in the
previous literature. Since (k, r)-truss and (α, k)-clique are different problem, we
do not include them for fair comparison. Thus, we only report our algorithms.
Note that we report the results if the algorithms are terminated within 24 h.

(p, n)-core: Core Decomposition in Signed Networks 549

Table 1. Real-world network datasets

Dataset |V | + – Max. coreness # of triangles

Alpha [4] 3,783 12,759 1,365 18 16,838

OTC [4] 5,881 18,250 3,242 19 23,019

Epinions (EP) [5] 132K 590,466 120,744 120 3,960,165

Slashdot090211 (SD0211) [5] 82,140 382,167 118,314 54 418,832

Slashdot090216 (SD0216) [5] 81,867 380,078 117,594 54 414,903

Slashdot811106 (SD1106) [5] 77,350 354,073 114,481 53 395,289

Wiki-interaction (WI) [8] 138,587 629,523 86,360 53 2,599,698

FA DFA

Si
ze

Alpha OTC EP SD0211

5 6 7 8 5 6 7 8 5 10 15 20 5 10 15 20
15K
17K
19K

17K
18K

600
800
1K

400
500
600
700

15K
16K
17K
18K

SD0216 SD1106 WI

5 10 15 20 5 10 15 20 5 10 15 20
26K
27K
28K
29K

14K
15K
16K
17K

(a) Varying n while fixing p = 5

Si
ze

5 6 7 8 5 6 7 8 5 10 15 20 5 10 15 20
4K
8K

12K

5K
10K
15K

200

600
1K

200
400
600

5 10 15 20 5 10 15 20
5K

15K
25K

5K
10K

4K
8K

12K

5 10 15 20

(b) Varying p while fixing n = 5

Fig. 1. Experimental results on real-world networks

Experiments on Real-World Networks. Figure 1 reports the size of resultant
(p, n)-core of our algorithms. In Fig. 1a, we fix p = 5 then vary the negative edge
threshold n from 5 to 20 (for Alpha and OTC, we vary the values from 5 to
8 as the sizes of both graphs are small). When the parameter n increases, we
observe that the (p, n)-core returns larger solution as the large n implies that
we allow more negative edges. We observe that for all cases, DFA returns the
best result. Unfortunately, the proposed FA returns small-sized (p, n)-core as it
does not consider the disgruntlement when it removes the nodes. In Fig. 1b, we
fix n = 5 then vary the positive edge threshold p. We identify that when the p
value increases, proposed algorithms consistently return small-sized (p, n)-core
as the larger p implies that the resultant subgraphs become more cohesive.

Case Study: Community Search. One of the famous community search mod-
els is to maximize the minimum degree [1]. By setting the query node, we iden-
tified a community by fixing n = 5 in OTC and Alpha datasets by utilizing our
proposed DFA. In Fig. 2, positive edges are grey-coloured, and the negative edges
are red-coloured. We notice that the query nodes are densely connected to the
other nodes in the community and there are a few negative edges.

550 J. Kim and S. Lim

1 13

35

33

304
353

540

1317

592

1555

1802

1201

2176

135

20451565

28352296

4559

4291
1396

3452

3878

3988

1052
4

7
361

1018

41202

1386

1566

1899

1810

2067

57

537

546

1585

1832

2125

2642
1334

3465

3719

4532

1953

2942

3828

3429

3649

3837

1731

43654197

2625

4172

3451

215
3804

3735

550

52271316

2110

3598

4515

2397

4611

4649

3714

3345

2063

3897

4499

4304

1693

2404

4833

2934

1366

481

3903

5612

2600

4694

2198

OTC (query node id = 35)

95

37 20

118

11

2
10

17

58

142

123

9

75

22

4

154

174

67

30

29

42

90

1

62

159

66

97

51

40

31

47

8

24
19

7

73

85

133

173

43

5

93

145

166

25

83

70

65

21

92

103

6

26

34

32 105

36

13

88

136

49

125

12

203

27

33

3

16

5342

14

41

Alpha(query node id = 7)

Fig. 2. Identifying a community

6 Conclusion

In this paper, we study core decomposition in signed networks by considering
sufficient positive edges and deficient negative edges. We prove that finding an
exact solution of (p, n)-core is NP-hard. Hence, we propose two algorithms: FA
and DFA by designing a pruning strategy to improve effectiveness and efficiency.
Finally, we demonstrate the superiority of the proposed algorithms using real-
world networks.

Acknowledgements. This work was supported by Institute of Information & com-
munications Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2020-0-01441, Artificial Intelligence Convergence Research
Center (Chungnam National University)) and supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2019R1F1A1063231).

References

1. Fang, Y., et al.: A survey of community search over big graphs. VLDBJ 29(1),
353–392 (2020)

2. Giatsidis, C., Cautis, B., Maniu, S., Thilikos, D.M., Vazirgiannis, M.: Quantifying
trust dynamics in signed graphs, the s-cores approach. In: SDM, pp. 668–676 (2014)

3. Kim, J., Guo, T., Feng, K., Cong, G., Khan, A., Choudhury, F.M.: Densely con-
nected user community and location cluster search in location-based social net-
works. In: SIGMOD, pp. 2199–2209 (2020)

4. Kumar, S., Spezzano, F., Subrahmanian, V., Faloutsos, C.: Edge weight prediction
in weighted signed networks. In: ICDM, pp. 221–230. IEEE (2016)

5. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In:
SIGCHI, pp. 1361–1370 (2010)

6. Li, R.H., et al.: Efficient signed clique search in signed networks. In: ICDE, pp.
245–256. IEEE (2018)

7. Malliaros, F.D., Giatsidis, C., Papadopoulos, A.N., Vazirgiannis, M.: The core
decomposition of networks: theory, algorithms and applications. VLDBJ 29(1),
61–92 (2020)

8. Maniu, S., Abdessalem, T., Cautis, B.: Casting a web of trust over Wikipedia: an
interaction-based approach. In: WWW, pp. 87–88 (2011)

(p, n)-core: Core Decomposition in Signed Networks 551

9. Sariyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.L., Çatalyürek, Ü.V.: Stream-
ing algorithms for k-core decomposition. VLDB 6(6), 433–444 (2013)

10. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287
(1983)

11. Wu, Y., Sun, R., Chen, C., Wang, X., Zhu, Q.: Maximum signed (k, r)-truss iden-
tification in signed networks. In: CIKM, pp. 3337–3340 (2020)

TROP: Task Ranking Optimization
Problem on Crowdsourcing Service

Platform

Jiale Zhang1, Haozhen Lu1, Xiaofeng Gao1(B), Ailun Song2, and Guihai Chen1

1 MoE Key Lab of Artificial Intelligence, Department of Computer Science
and Engineering, Shanghai Jiao Tong University, Shanghai, China
{zhangjiale100,haozhen.lu,gaoxiaofeng,chen-gh}@sjtu.edu.cn

2 Tencent Inc., Shenzhen, China
ailunsong@tencent.com

Abstract. Crowdsourcing has the potential to solve complex problems,
especially tasks that are easy for humans but difficult for computers.
Service providers of emerging crowdsourcing platforms hope that crowd-
sourcing tasks on their service platforms can be executed as much as
possible in available time. We consider from the perspective of the crowd-
sourcing service platform and study how to rank tasks to minimize the
maximum timeout of tasks. We first formalize the Task Ranking Opti-
mization Problem (TROP) and study its offline version. In the case
of online scenario, we propose an Iterative Hungarian Algorithm for
Task Ranking Optimization Problem, considering task deadline and click
transfer rate with ranking amplification. Experiments on a real crowd-
sourcing service platform and the simulations based on real datasets
demonstrate the superiority of proposed algorithm.

Keywords: Ranking optimization · Scheduling · Crowdsourcing
platforms · Hungarian algorithm · Online algorithm

1 Introduction

Crowdsourcing [5] is getting more and more attention since it has the potential to
solve complex problems. Crowdsourcing means outsourcing to the crowd, whose
applications include crowdsourcing database [2], data anotation for machine
learning [6] and so on. Task recommendation (or allocation) is a basic problem in
the research field of crowdsourcing. A typical crowdsourcing system works in the
following way: Task requesters design their tasks and release them on a crowd-
sourcing platform. Workers look for tasks on the platform, fulfill some and get

This work was supported by the National Key R&D Program of China
[2019YFB2102200]; the National Natural Science Foundation of China [61872238,
61972254] and Shanghai Municipal Science and Technology Major Project
[2021SHZDZX0102].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 552–559, 2022.
https://doi.org/10.1007/978-3-031-00123-9_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_43&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_43

TROP: Task Ranking Optimization Problem on Crowdsourcing 553

the corresponding rewards. In this process, the crowdsourcing platform needs to
recommend or allocate tasks to workers, check the quality of their jobs and give
out rewards. Task allocation or recommendation is proposed to select workers
for a task or recommend a list of tasks to workers. It aims to match workers with
suitable tasks to make the crowdsourcing tasks finished quickly and properly.

Task recommendation is more promising and practical than task allocation.
Traditional task allocation scheme has the implicit hypothesis that all the work-
ers would finish the allocated jobs without loss of quality. It simplifies the interac-
tion too much. Interaction phases of session between worker and crowdsourcing
platform include exploration, receiving, submission and reward: The platform
display the tasks to workers on the interface; Workers choose what they want
to do according to their willingness; Workers finish their packages and submit
the result; The platform assesses worker’s answers and delivers them rewards.
Task recommendation is a non-mandatory form of allocation that respects the
worker’s liberty.

Task ranking optimization is essential in task recommendation since the dis-
play ranking of tasks can greatly affect how much time it takes for a certain task
to be finished [4,7]. From June to July 2019, we tracked and recorded the display
rankings and total submissions of each crowdsourced task on a crowdsourcing
platform every second. In addition, we requested the crowdsourcing platform
to perform topping operations on specific tasks every 3 to 5 days to observe
the impact of different task display rankings on task submission speed. Figure 1
shows a representative record of 8 tasks issued almost in the same period. The
x-axis is the timeline with unit of 1 s. The y-axis is the number of answers sub-
mitted. Different colored lines represent different tasks. Among them, task1 to
task4 are released at time 0, and task5 to task8 are released at time 100,000. The
blue vertical line represents the topping operation, which fixes task5 to task8
and task1 to task4 in the top 1 to 8 of the display list respectively.

The curves in Fig. 1 illustrate that display rankings of tasks have a significant
impact on the speed of task submissions. Submission speed of a task would slow
down gradually after the task is published. The reason is that a new-coming task
would occupy the premier position on the interface by default and the old ones
would not get enough exposure. After the topping operation, the total submis-
sions of the 8 tasks increases quickly. Additionally, the order of task finishing
time is almost in accordance with the position order of the 8 tasks (which is the
same with the order in legend). By displaying the tasks at the premier position
on the interface, one task can be soon finished. Therefore, exposure is all we
need (Fig. 2).

Our main contribution includes:

1. We clarify the difference between traditional crowdsourcing platforms and
emerging crowdsourcing platforms. Based on our practical observations, we
propose the Task Ranking Optimization Problem (TROP), which considers
task deadline and click transfer rate with ranking amplification.

2. We design an online task-ranking algorithm based on Hungarian bipartite
matching algorithm. We propose an iterative method for the case of different
ranking for different groups.

554 J. Zhang et al.

Fig. 1. Trends of answer submissions Fig. 2. Task display list

3. We compare our scheme with existing ranking schemes and verify the effec-
tiveness of our scheme.

2 Problem Statement

In this section, we formulate the Task Ranking Optimization Problem (TROP).
The crowdsourcing platform has a worker set W of m workers and a task set T
of n tasks. The characteristics for each task Ti include ranking r(Ti), quantity of
questions qi , beginning time bi, consumption time c(i, ri), and deadline di. Note
that c(i, ri) is a function of task i and its ranking ri. We need to give out a display
ranking scheme r = (r1, r2, · · · , rn) to minimize the maximal overdue time. r is
an n-tuples to represent the display of of n tasks so that {r1, r2, · · · , rn} =
{1, 2, · · · , n}. For instance, if there are n = 3 tasks and we give a scheme r =
(2, 3, 1). It means we put task T2 first, task T3 second and task T1 last. It is
obvious that there are n! possible rankings in total.

The minimization of maximal overdue time problem TROP is formulated as
the following:

Definition 1 (Task Ranking Optimization Problem).

min
r

max
i

max (0, bi + c(i, ri) − di), (1)

max (0, bi + c(i, ri) − di) is the overdue time of task Ti. We want to design a rank-
ing scheme r to minimize the maximal overdue time of task Ti(i = 1, 2, · · · , n).
It is not practical to calculate Eq. 2 by enumerating of r since the complexity
would be O(n · n!) in that case.

3 Offline Task Ranking Optimization

We further formulate the offline version of TROP as an integer programming.
In the offline version of TROP, the input includes n tasks Ti and their quantity

TROP: Task Ranking Optimization Problem on Crowdsourcing 555

of questions qi, beginning time bi, deadline di, and the relation between ranking
and the working speed pijt (It can be used to calculate the consumption time
function c(i, ri).) We propose an integer programming of offline task ranking to
minimize the maximal overdue time, which is denoted as δ here.

Definition 2 (Offline Task Ranking Optimization Problem).

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min δ∑

j∈R,t∈[0,T]

xijtpijt ≥ qi, Ti ∈ T,

∑

Ti∈T

xijt = 1, j ∈ R, t ∈ [0,D],

xijt = 0, ∀i, t ≤ bi, t ≥ di + δ,
xijt ∈ {0, 1}, Ti ∈ T, j ∈ R, t ∈ [0,D],

where the indicator xijt represents whether the task i would be allocated to the
ranking j at round t while pijt represents the number of submitted answers by
allocated task Ti to ranking j at round t. The first constraint promises that there
are enough submitted answers for each task. The second one promises that each
ranking would have only one task in each round. Also, task allocation should
be occurred during its beginning time and ending time. The objective δ is the
maximal overdue time.

Problem 2 is NP-hard but we need to get the exact solution as a lower bound
for the online version of the problem. Programming solvers can tackle small-scale
instances while we can use heuristic search such as Genetic Algorithm (GA) [1]
to get approximation for large-scale instances.

4 Online Task Ranking Optimization

In this section, we propose an online scheme to optimize the task ranking without
the information of the number of submitted answers pijt.

Definition 3 (Online Task Ranking Optimization Problem).

min
r

max
i

max (0, bi + c(i, ri) − di), (2)

The deadline di is not known until round t = bi and the ranking and the working
speed relation pijt is not given as input.

Online version of Task Ranking Optimization is a practical problem to model
the real application but unfortunately the methods to solve the offline TROP
are not effective here. First, we cannot get full information of begin time and
deadlines of all task so that the integer programming before is not a proper for-
mulation of the online problem. Second, we cannot calculate the consumption
time c(i, ri) because the working speed pijt is not given. We tackle the second
problem first by estimating c(i, ri) with a more detailed model and then design
online ranking method based on bipartite graph matching and Hungarian Algo-
rithm.

556 J. Zhang et al.

We estimate the consumption time c(i, ri) as follow. Denote the raw click
transfer rate (CTR) vector as A, where A(i) represents the CTR of workers on
the task Ti. The click transfer rate can be predicted by user’s historical data
and the similarity of word embedding of task description by using the technique
like DeepFM [3]. The ranking of tasks on the interface, r, would also affect the
CTR. Here, we suppose that the amplification function of ranking, f(r(Ti)), is
non-increasing. The CTR of workers on the task Ti after amplification is

Ar(Ti) = A(Ti) × f(r(Ti)) (3)

So for the task Ti with remaining quantity q′
i, the consumption time c(i, ri)

is estimated as

c(i, ri) =
q′
i

mAr(Ti)
(4)

We construct a bipartite graph where the tasks T with remaining quan-
tity q′, beginning time of the current status b′ and deadline d are on the
left; the rankings r are on the right. The weight of edge (Ti, rj) is defined as
max (0, bi + c(i, ri) − di). Hungarian Algorithm is utilized to find a minimum
weighted matching of bipartite graph which optimizes our objective, the sum of
edges.

The ranking should be updated when changes have been made under the
following situations.

1. Sticky Operation (Active): Choose a task and move it to the top, i.e. swap it
with the first task on the ranking list. The rest of tasks should be rearranged.

2. New Task Coming (Passive): New tasks would be appended to the tail of
ranking list. The initial position is not important since we would rearrange
the ranking.

3. Old Task Finishing (Passive): When the task whose ranking is j is finished,
every task after it would advance one rank in the ranking which brings them
the augmentation of CTR.

Fig. 3. Illustration of process flow Fig. 4. Algorithm for online ranking

TROP: Task Ranking Optimization Problem on Crowdsourcing 557

With no capacity requirements, microtask can be done by any worker. It is
the case that we discussed previously. In the case of macrotask, like translating
French to Chinese, the platform would offer entrance only for the qualified work-
ers. To manage the users and the tasks, label system is proposed. Users can get a
capacity label when they pass the corresponding examination. Then, some tasks
would be available for the workers with the specific label. The whole process is
illustrated in Fig. 3. Greedy Algorithm (O(log n)-approximated) is used for the
set cover problem to get the label representatives. Specially, the tasks with no
requirement are already covered by the blank label. With these labels, workers
can be partitioned into groups. To realize the personalization, we can set each
individual worker as a single group (Fig. 4).

Given the same pool of tasks T and different groups Gk ∈ G of workers, the
model is slightly changed as workers are split into several groups with different
transfer rate matrix. The estimated consumption time c(i, ri) would modified as

c(i, ri) =
q′
i

∑

G

m(Gk)A
(Gk)
r (Ti)

. (5)

where, m(Gk) represents the number of workers in Gk, and A
(Gk)
r (Ti) represents

the CTR of workers in Gk on the task Ti after amplification.
To satisfy the objective of Eq. (2), we first run the Hungarian Algorithm for

each group individually. We note the rankings are r1, . . . , rk. Then, rj is recal-
culated in a round-robin way by Eq. (5). The convergence represents that a local
minimal is achieved. The algorithm is given as Algorithm4, where P is a large
constant to promise the domination of the maximal max (0, bi + c(Ti, rj) − di)
in the sum of weights.

5 Experiments

In this section, we report experiments on a crowdsourcing platform and simula-
tions with datasets from Tencent crowdsourcing platform to offer insights into
the effectiveness of the proposed model. As the workers’ personal information is
classified information, we cannot obtain workers’ profile. Among worker-related
information, we can only use workers’ submission records for different tasks,
including: worker id, task id, question id, whether the answer is correct, the
time to receive the question, and the time to submit the answer.

5.1 The Effectiveness of CTR Vector Prediction

To observe the prediction accuracy of the CTR β of existing workers on the
platform, we treat each task in datasets as a new task, and other tasks as existing
tasks. β̂ is the predicted click rate of this new task, and the actual β is divided
by the predicted β̂ for comparison. In Fig. 5, the histogram of ratio of real value
and prediction value is indicated. Most cases falls in the range [0.9, 1.3]. The
result indicates that we can basically predict β.

558 J. Zhang et al.

Fig. 5. Histogram of ratio β/β̂ Fig. 6. Comparison of total overdue
time

5.2 Performance Comparison

In this subsection, the effectiveness of our online scheme is verified by simulations
on datasets from the crowdsourcing platform. We compare the overdue time of
the following ranking strategies:

– CH: Just let the task display on the interface chronologically;
– PR: The task ranking for each user is arranged according to his/her preference

for each task in descending order. The calculation of workers’ preferences for
different tasks is based on workers’ historical records and the similarity matrix
of tasks.

– SRTF: Shortest Remaining Time First strategy is utilized while the remaining
time is also estimated by c(i, ri).

– TROP: Result calculated by our online algorithm. It can be categorized into
several cases according to the group division, including
1. TROP1: All the workers are in the same group;
2. TROPN : One individual worker is treated as a group.

We simulate 100 times and the average overdue time of each algorithm is
shown in Fig. 6. In each simulation, available new task information is randomly
generated, including the number of new tasks, as well as the word embedding
vector, number of questions, and deadline for each new task. At the same time,
the click transfer rate vector A is also randomly generated. In addition, in each
simulation, 200 workers who submitted more than 50 of the existing tasks will be
randomly selected from datasets. We set f(r(Ti)) = 1

r(Ti)
in simulations. Such

a simplification is equivalent to considering the decelerating effect of the lower
task ranking on the task submission speed.

Figure 6 shows the results, it is indicated that TROP1 performs the best in
macroscopic allocation scheme. TROPN is better than recommendation only
considering users’ preference. Numeric result shows that TROPN decreases
about 80% of consumption time for the original scheme CH. TROPN decreases
about 50% of consumption time for the PR scheme. This result also reflects that
display rankings have a significant acceleration effect on task submissions. The

TROP: Task Ranking Optimization Problem on Crowdsourcing 559

PR scheme only considers the preferences of workers, and ignores the impact
of task display rankings. Therefore, although the effect of the PR scheme is
improved over the original scheme, it is not the best solution. In addition,
TRPO1 is equivalent to only considering the impact of task display rankings,
while ignoring the preferences of workers. However, TROPN not only considers
the preferences of workers, but also considers the impact of task display rankings,
so TROPN has the best result.

6 Conclusion

Considering that display rankings of tasks will affect the submission speed of
tasks, we optimize the task display ranking to minimize the maximum overdue
time of tasks. We propose the Task Ranking Optimization Problem, and use
genetic algorithm to find the lower bound of the maximum overdue time of
tasks in offline task allocation. Then, to realize online task ranking optimization,
Iterative Hungarian Algorithm is proposed to find the local minimal for ranking
optimization. Experiments on the real crowdsourcing platform verify that the
task display ranking has a significant impact on the task submission speed.
Simulation results verify the effectiveness of our proposed algorithm.

References

1. Balin, S.: Non-identical parallel machine scheduling using genetic algorithm. Expert
Syst. Appl. 38(6), 6814–6821 (2011)

2. Chai, C., Fan, J., Li, G., Wang, J., Zheng, Y.: Crowdsourcing database systems:
overview and challenges. In: IEEE International Conference on Data Engineering
(ICDE), pp. 2052–2055 (2019)

3. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. In: International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1725–1731 (2017)

4. Haas, D., Wang, J., Wu, E., Franklin, M.J.: Clamshell: speeding up crowds for
low-latency data labeling. Proc. VLDB Endow. 9(4), 372–383 (2015)

5. Howe, J.: The rise of crowdsourcing. Wired Mag. 14(6), 1–4 (2006)
6. Huang, K., Yao, J., Zhang, J., Feng, Z.: Human-as-a-service: growth in human ser-

vice ecosystem. In: IEEE International Conference on Services Computing (SCC),
pp. 90–97 (2016)

7. Zeng, Y., Tong, Y., Chen, L., Zhou, Z.: Latency-oriented task completion via spatial
crowdsourcing. In: IEEE International Conference on Data Engineering (ICDE), pp.
317–328

HATree: A Hotness-Aware Tree Index
with In-Node Hotspot Cache for

NVM/DRAM-Based Hybrid Memory
Architecture

Gaocong Liu1, Yongping Luo1, and Peiquan Jin1,2(B)

1 University of Science and Technology of China, Hefei, China
jpq@ustc.edu.cn

2 Key Laboratory of Electromagnetic Space Information, CAS, Hefei, China

Abstract. The emerging of Non-Volatile Memory (NVM) has changed
the traditional DRAM-only memory system. Compared to DRAM, NVM
has the advantages of non-volatility and large capacity. However, as the
read/write speed of NVM is still lower than that of DRAM, building
DRAM/NVM-based hybrid memory systems is a feasible way of adding
NVM into the current computer architecture. This paper aims to opti-
mize the well-known B+-tree for hybrid memory. We present a new index
called HATree (Hotness-Aware Tree) that can identify and maintain hot
keys with an in-node hotspot cache. The novel idea of HATree is using
the unused space of the parent of leaf nodes (PLNs) as the hotspot data
cache. Thus, no extra space is needed, but the in-node hotspot cache can
efficiently improve query performance. We present the new node struc-
tures and operations of HATree and conduct experiments on synthetic
workloads using real Intel Optane DC Persistent Memory. The compara-
tive results with three existing state-of-the-art indices, including FPTree,
LBTree, and BaseTree, suggest the efficiency of HATree.

Keywords: Hybrid memory · B+-tree · Hotspot · In-node cache

1 Introduction

In recent years, Non-Volatile Memory (NVM) has emerged as an alternative to
the next-generation main memories [3,9]. Although NVM has the advantages of
non-volatility, byte addressability, the current NVM is much slower than DRAM.
Thus, a better choice is to use both DRAM and NVM in the memory architec-
ture, forming a hybrid memory architecture.

This paper aims to develop a new index structure toward the hybrid memory
architecture involving DRAM and NVM. Previous indices for hybrid memory,
such as FPTree [7] and LBTree [4], have proposed using unsorted leaf nodes on
NVM. However, the unsorted leaf nodes are not friendly to search operations
because we have to traverse an unsorted leaf node to find the matched records.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 560–568, 2022.
https://doi.org/10.1007/978-3-031-00123-9_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_44&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_44

HATree: A Hotness-Aware Tree Index with In-Node Hotspot Cache 561

Thus, we propose to develop a new index for the hybrid memory that can
offer high search performance but keep similar updating performance as FPTree
and LBTree. The new index proposed is named HATree (Hotness-Aware Tree).
HATree employs the similar write-optimized techniques of FP-tree and LBTree
but proposes a novel idea of using the unused space of the parent of leaf nodes as
the hotspot data cache. Thus, no extra space is needed, but the in-node hotspot
cache can efficiently improve query performance. Briefly, we make the following
contributions in this study:

(1) We notice that the parent of leaf nodes (denoted as PLNs) in the B+-tree
contain about 30% unused space. Following this observation, we propose to
use the unused space of the PLNs to cache hotspot entries and improve the
search performance of the tree index without extra DRAM caches.

(2) Motivated by the in-node hotspot caching idea, we propose HATree, a
Hotness-Aware B+-tree for the DRAM/NVM-based hybrid memory archi-
tecture. We detail the new node structures of HATree and present the oper-
ations on HATree (Sect. 3).

(3) We conduct experiments on real Intel Optane DC Persistent Memory with
synthetic trace and compare HATree with three hybrid-memory-oriented
tree indices, including FPTree [7], LBTree [4], and BaseTree (the log-
less FPTree). The results show that HATree outperforms all competitors
(Sect. 4) .

2 Related Work

The B+-tree has been widely used in modern DBMSs. So far, most indexes for
hybrid memory are based on the B+-tree, such as FPTree [7] and LBTree [4].
There are also studies on tree indices toward NVM-only memory architecture [5,
6], which are orthogonal to this study.

To take full advantage of DRAM and NVM, most NVM-aware indices adopt
the selective persistence model [7,10], i.e., leaf nodes are stored on NVM, and
inner nodes are stored on DRAM. In addition, current NVM-based indices usu-
ally adopt the idea of unsorted leaf nodes [4,5,7], meaning that the entries are
not ordered within a leaf node. However, when updating an entry inside a leaf
node, the index has to append the new entry at the end of all the entries and
mark the old entry invalid.

The existing FPTree and LBTree indices adopt the same searching strategy as
the conventional B+-tree. When searching a key, they start at the root node and
traverse a path of inner nodes till a leaf node residing in NVM is reached. To this
end, at least one NVM access and multiple DRAM accesses will be caused during
a searching operation. One recent work called TLBtree [5] proposed to use a
read-optimized structure for inner nodes and write-optimized sub-indices for leaf
nodes. However, TLBtree is presented for the NVM-only memory architecture
and does not utilize any DRAM in its implementation.

On the other hand, many database accesses are skewed, indicating that most
requests will focus on a small portion of data. Therefore, it could be helpful

562 G. Liu et al.

Fig. 1. The high-level index architecture of HATree.

for improving the searching performance if the frequently accessed hot data can
be cached on DRAM. One possible way to cache hot data is to use an extra
DRAM space to store hotspot entries [8]. However, this approach consumes a
large amount of additional DRAM space, which is not space efficient.

3 Hotness-Aware B+-tree

HATree is a Hotness-Aware B+-tree without using an extra DRAM cache.
Inspired by a previous study discussing the space utilization of the 2–3 tree [11],
we notice that the inner nodes in the B+-tree are not fully filled, meaning that
there is unused space in the parent nodes of leaf nodes, i.e., PLNs. Thus, we
propose to utilize the unused space of PLNs as the in-node hotspot cache. With
such a mechanism, HATree can answer queries with the in-node hotspot cache
but does not consume additional DRAM space.

3.1 Index Structure of HATree

The high-level index structure of HATree is shown in Fig. 1. HATree also adopts
the common idea of current tree indices on hybrid memory, i.e., putting all leaf
nodes on NVM to make the index persistent and recoverable and maintaining all
inner nodes on DRAM to accelerate search performance. Such an index structure
has also been used in previous work, including FPTree [7] and NV-tree [10].

Figure 2 shows the leaf-node structure of HATree. The metadata field con-
tains the same information as FPTree, such as bitmap and fingerprints. The two
shadow siblings are used to implement log-less splitting [4,5]. The size of the
leaf nodes is preferably a multiple of 256B (the row size of the Intel Optane DC
Persistent Memory) to reduce read/write amplification [5,9].

As HATree focuses on the in-node cache in the PLN nodes, it proposes a
new inner-node structure, as shown in Fig. 3. The major difference between the
HATree’s inner-node structure and the previous one is summarized as follows:
(1) HATree uses the unused space of the PLN node as the in-node hotspot cache.
(2) HATree adds some new metadata in the metadata field. However, we ensure
that the size of the added new metadata, together with the old metadata, will
not exceed one cacheline size (64 B). Therefore, the new metadata will not cause
extra cacheline reads.

HATree: A Hotness-Aware Tree Index with In-Node Hotspot Cache 563

Fig. 2. The leaf-node structure of HATree.

Fig. 3. The inner-node structure of HATree in comparison with the previous design.

Note that although the PLN nodes in the B+-tree have about 30% unused
space, we remain the 25% space of a PLN node as the in-node hotspot cache.
As shown in Fig. 3, let m be the total number of entries, the last m

4 entries are
remained as the in-node hotspot cache.

The new metadata includes three fields. turn records the starting position
of the next scan of the cache replacement algorithm (we adopt a second-chance
replacement algorithm in the implementation). fingerprints maintain a one-byte
hash value for each cached entry, which is used to accelerate searching in the
in-node hotspot cache, i.e., we can scan the fingerprints to know whether a key
is within the hotspot cache quickly. bitmap contains two bits for each cached
entry: one status bit is used to indicate whether the entry is used or not and the
other access bit is used as the access bit of the entry. Note that the data entries
maintained in the in-node hotspot cache are not ordered because the sorting of
entries will introduce additional DRAM writes. As the number of the cached
entries is determined, we use the status bit in the bitmap to reflect the current
status (used or not used) of each cached entry. The access bit in the bitmap is
used by the second-chance cache replacement algorithm. As a consequence, the
bitmap in the new metadata can be any of the following four values: 00, 01, 10,
and 11. When operating on the hotspot cache, we will check the bitmap value
to tell the status of cached entries.

3.2 Hotspot Identification

A simple approach to identifying hotspot data is maintaining historical access
information. However, maintaining statistics has to consume extra space.

564 G. Liu et al.

Moreover, each read operation will incur additional writes to NVM, which is
not friendly to NVM and may cause performance degradation.

In this paper, to avoid the maintaining cost of historical access information,
we adopt a heuristic algorithm that regards the data involved in the recent k
queries as the current hotspot data. When the workload is skewed, most data
accesses will concentrate on a small portion of the dataset. Thus, a large portion
of the data accessed by the recent k queries will be hotspot data. The advantage
of such a heuristic strategy is that no additional space is required and each read
operation only needs to amortize 1

k write operations. Its disadvantage is that the
accuracy rate may be lower than statistics-based strategies, especially when the
recent queries involve many cold data. To avoid the long existence of cold data
in the in-node hotspot cache, we need to design an effective replacement policy
to move the cold data out of the cache.

3.3 Operations of HATree

This section details the operations of HATree with the support of the in-node
hotspot cache. We first describe the read and update operations and then discuss
the PLN node splitting and merging.

Read. To answer a read request on HATree, we first look up the key in the
hotspot cache. If it is not found, we check the leaf node. Before searching in the
cache, we first perform a prefetching operation on the PLN node. We assume
that the keys to be queried for every K read operations are hot keys, and they
need to be cached in the PLN cache. Since normal entries can also be stored in
the node, we need to find the real starting position of the cache. We check the
status bit in the bitmap to determine whether the entry is used and look up the
fingerprints to see whether the searched key is in the cache. If the key is found
in the cache, we update the corresponding access bit in the bitmap to indicate
that the entry has been accessed recently.

Insert. Because the hotspot cache is a read cache, the insert operation is almost
unaffected. Only when the leaf node splits so that the PLN node needs to insert
a new entry and this entry occupies the cache space, we need to change the
corresponding state bits of the entry to 00. We first check whether the PLN
node is full, and return if it is full. Otherwise, if the hotspot cache in the PLN
node is full, we perform the second-chance cache replacement. If the cache is not
full, we find a free entry to insert the entry.

Update and Delete. In order to ensure consistency, in addition to updating the
leaf nodes, the corresponding hotspot cache must also be updated. Note that we
can prefetch the PLN node before updating the hotspot cache in the PLN node.
The delete operation is similar to the update operation. When performing the
delete operation in the cache, we need to update the bitmap or the fingerprints
to indicate that the entry has been deleted.

HATree: A Hotness-Aware Tree Index with In-Node Hotspot Cache 565

Merging and Splitting of PLN Nodes. When a PLN node splits, its bitmap
must be 0; thus we need not perform additional operations. When PLN nodes are
merged, we only keep the cache of the merged node, and no additional operations
are required.

4 Performance Evaluation

All experiments were run on a server equipped with two 36-core Intel Xeon Gold
CPUs. The server contains 256 GB DRAM and 512 GB Optane DC Persistent
Memory distributed upon two sockets. To avoid the NUMA effect on the exper-
imental results, we run all experiments using the CPU and the Optane within
the same socket. The operating system on the server is Ubuntu with the 5.4.0
kernel. We configure all the Optane into the App-Direct mode and utilize PMDK
1.8 to manage the files on the Optane [2].

We compare HATree with three tree-like indices that were all proposed
for DRAM/NVM-based hybrid memory architecture, including FPTree [7],
LBTree [4], and BaseTree (the logless FPTree). All the indexes have the same
node size. The default node sizes of a leaf node and an inner node are 256 B and
512 B, respectively.

In all experiments, We use an 8-byte key and an 8-byte value as the entry,
which is compatible with the configuration in LBTree. For each workload, we
first perform 32M random insert operations and then run the workload.

4.1 Search Performance

We first generate nine read-only workloads with different skewnesses to evaluate
the search performance of four indexes, each with 32M operations. The results
are shown in Fig. 4(a). HATree outperforms the other three indices when the
skewness of the workload is greater than 0.5. In particular, when the skewness
is 0.9, HATree improves the search performance by 27.9%, 20.6%, and 13.4%,
compared to LBTree, FPTree, and BaseTree, respectively. When the workload is
less skewed, the search performance of HATree drops at most 2.3%, compared to
the best performing BaseTree. This is because the benefits of the hotspot cache
are decreasing when the requests become less skewed.

To compare the performance of HATree under random-access and highly-
skewed workloads, we further generate three read-only workloads, denoted as
Random, Hotspot5, and Hotspot9. The Random workload consists of randomly
distributed requests. The Hotspot5 and Hotspot9 workloads simulate the highly-
skewed workload [1]. In Hotspot5, 50% of accesses concentrate on 1% of the data
entries, and in Hotspot9, 90% of accesses only touch 1% of the data. Figure 4(b)
shows the search performance of all indexes under the three workloads. For
the Random workload, all indexes show similar performance. For the Hotspot5

566 G. Liu et al.

Fig. 4. Comparison of search performance.

workload, HATree improves the search performance by 40.1%, 32.8%, and 25.2%,
compared to LBTree, FPTree, and BaseTree, respectively. And for the Hotspot9
workload, HATree improves the search performance by 76.2%, 60.9%, and 48.8%,
compared to LBTree, FPTree, and BaseTree, respectively. As a result, we can
see that HATree performs best on highly-skewed workloads.

4.2 Updating Performance

Next, we measure the updating performance of HATree. Many search-optimized
indices are not write-optimized [5]. As HATree adopts a similar method as
FPTree and LBTree to deal with data updating, we expect that HATree can
achieve comparable updating performance with other indices.

In this experiment, we generate four workloads consisting insert and delete
operations with skewness of 0.8. We vary the number of operations and evaluate
the execution time of all indices. Note that the inserted key does not exist in
the index and the deleted key must be in the tree. Before evaluating HATree,
we perform 32M search operations to fill up the in-node hotspot cache. Figure 5
summarizes the insert and delete performance of the four indexes. The inser-
tion performance of HATree is basically the same as that of BaseTree, which
is 16.1%–17.1% lower than the insertion performance of LBTree and 121.3%–
122.6% better than that of FPTree. The delete performance of HATree is 1.2%–
2.2% lower than that of BaseTree. To sum up, HATree exhibits similar updating
performance with BaseTree and LBTree. This result is understandable because
the in-node hotspot cache proposed in HATree only benefits search operations.
There is no new optimization used in HATree, and we remain the improving of
the updating performance of HATree as one of our future work.

HATree: A Hotness-Aware Tree Index with In-Node Hotspot Cache 567

Fig. 5. Comparison of updating performance.

5 Conclusions and Future Work

In this paper, we presented a new index called HATree for DRAM/NVM-based
hybrid memory. The novel idea of HATree is using the unused space of the leaf
nodes’ parents as the in-node hotspot cache, which maintains the hot entries
within the parent nodes. Such an approach does not need extra memory space
but can efficiently accelerate query performance. We develop detailed node struc-
tures and operations for HATree and conducted experiments on synthetic work-
loads using real Intel Optane DC Persistent Memory. The comparison with three
state-of-the-art indices showed that HATree has the best search performance and
comparable updating performance on both workloads.

In the future, we will consider to propose a learned secondary index with in-
node caches [13]. Also, we will investigate the feasibility of using in-node caches
to optimize other index structures like the Radix Tree [12].

Acknowledgments. This paper is supported by the National Science Foundation of
China (grant no. 62072419).

References

1. Chen, J., et al.: HotRing: a hotspot-aware in-memory key-value store. In: FAST,
pp. 239–252 (2020)

2. Intel: Intel optane DC persistent memory. https://www.intel.com/content/www/
us/en/architecture-and-technology/optane-dc-persistent-memory.html

3. Kim, D., Choi, W.G., Sung, H., et al.: A scalable and persistent key-value store
using non-volatile memory. In: SAC, pp. 464–467 (2019)

4. Liu, J., Chen, S., Wang, L.: LB+-Trees: optimizing persistent index performance
on 3DXPoint memory. Proc. VLDB Endow. 13(7), 1078–1090 (2020)

5. Luo, Y., Jin, P., Zhang, Q., Cheng, B.: TLBtree: a read/write-optimized tree index
for non-volatile memory. In: ICDE, pp. 1889–1894 (2021)

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

568 G. Liu et al.

6. Luo, Y., Jin, P., Zhang, Z., Zhang, J., Cheng, B., Zhang, Q.: Two birds with one
stone: boosting both search and write performance for tree indices on persistent
memory. ACM Trans. Embed. Comput. Syst. 20(5s), 1–25 (2021)

7. Oukid, I., Lasperas, J., Nica, A., Willhalm, T., Lehner, W.: FPTree: a hybrid SCM-
DRAM persistent and concurrent B-tree for storage class memory. In: SIGMOD,
pp. 371–386 (2016)

8. Wang, Q., Lu, Y., Li, J., Shu, J.: Nap: a black-box approach to NUMA-aware
persistent memory indexes. In: OSDI, pp. 93–111 (2021)

9. Yang, J., Kim, J., Hoseinzadeh, M., Izraelevitz, J., Swanson, S.: An empirical guide
to the behavior and use of scalable persistent memory. In: FAST, pp. 169–182
(2020)

10. Yang, J., Wei, Q., Chen, C., Wang, C., Yong, K.L., He, B.: NV-tree: reducing
consistency cost for NVM-based single level systems. In: FAST, pp. 167–181 (2015)

11. Yao, A.C.C.: On random 2–3 trees. Acta Informatica 9(2), 159–170 (1978)
12. Zhang, J., Luo, Y., Jin, P., Wan, S.: Optimizing adaptive radix trees for NVM-

based hybrid memory architecture. In: BigData, pp. 5867–5869 (2020)
13. Zhang, Z., Jin, P., Wang, X., Lv, Y., Wan, S., Xie, X.: COLIN: a cache-conscious

dynamic learned index with high read/write performance. J. Comput. Sci. Technol.
36(4), 721–740 (2021)

A Novel Null-Invariant Temporal
Measure to Discover Partial Periodic
Patterns in Non-uniform Temporal

Databases

R. Uday Kiran1(B) , Vipul Chhabra2 , Saideep Chennupati2 ,
P. Krishna Reddy2 , Minh-Son Dao3 , and Koji Zettsu3

1 The University of Aizu, Aizuwakamatsu, Fukushima, Japan
udayrage@u-aizu.ac.jp

2 IIIT-Hyderabad, Hyderabad, Telangana, India
{vipul.chhabra,saideep.c}@research.iiit.ac.in, pkreddy@iiit.ac.in

3 NICT, Koganei, Tokyo, Japan
{dao,zettsu}@nict.go.jp

Abstract. “Rare item problem” is a fundamental problem in pattern
mining. It represents the inability of a pattern mining model to discover
the knowledge about frequent and rare items in a database. In the lit-
erature, researchers advocated the usage of null-invariant measures as
they disclose genuine correlations without being influenced by the object
co-absence in the database. Since the existing null-invariant measures
consider only an item’s frequency and disregard its temporal occur-
rence information, they are inadequate to address the rare item problem
faced by the partial periodic pattern model. This paper proposes a novel
null-invariant measure, called relative periodic-support, to find the pat-
terns containing both frequent and rare items in non-uniform temporal
databases. We also introduce an efficient pattern-growth algorithm to
find all desired patterns in a database. Experimental results demonstrate
that our algorithm is efficient.

Keywords: Pattern mining · Rare item problem · Null-invariant
measure

1 Introduction

Partial periodic patterns [5] are an important class of regularities that exist in a
temporal database. The basic model of partial periodic pattern involves discov-
ering all patterns in a temporal database that satisfy the user-specified minimum
period-support (minPS) constraint. MinPS controls the minimum number of
periodic recurrences of a pattern in a database. Since only one minPS is used
for the entire database, this model also implicitly assumes that all items in the
database have similar occurrence behavior, and thus, suffers from the dilemma
known as the rare item problem [6,7,13]. That is, we either miss the partial

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 569–577, 2022.
https://doi.org/10.1007/978-3-031-00123-9_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_45&domain=pdf
http://orcid.org/0000-0002-5417-0289
http://orcid.org/0000-0002-6985-3517
http://orcid.org/0000-0002-3126-5330
http://orcid.org/0000-0003-1238-5174
http://orcid.org/0000-0003-3044-8175
http://orcid.org/0000-0003-4062-2376
https://doi.org/10.1007/978-3-031-00123-9_45

570 R. U. Kiran et al.

periodic patterns containing rare items at high minPS or produce too many
patterns at low minPS. This paper makes an effort to address this problem.

The contributions of this paper are as follows. First, we propose a generic
model of a partial periodic pattern by introducing a new measure known as
relative periodic-support (RPS). This measure determines the periodic interest-
ingness of a pattern by taking into account the frequencies of its items. The
proposed measure allows the user to specify a high periodic-support threshold
value for a pattern containing only frequent items and a low periodic-support
threshold value for a pattern containing rare items. Consequently, enabling the
user to find partial periodic patterns containing frequent and rare items with-
out producing too many patterns. Second, we show that our measure satis-
fies both null-invariant [3] and convertible anti-monotonic [10] properties. The
null-invariant property facilitates our model to address the rare item problem
by disclosing genuine correlations without influencing the items co-absence in
the database. It is the first null-invariant temporal measure to the best of our
knowledge. The convertible anti-monotonic property facilitates our model to be
practicable on massive real-world databases. Third, we introduce the concept of
irregularity pruning and present an efficient pattern-growth algorithm to find
all desired patterns in a database. Experimental results demonstrate that our
algorithm is not only memory and runtime efficient but also highly scalable.
Finally, we present two case studies where our model was applied to discover
helpful information in air pollution and traffic congestion databases.

The organization of the paper is as follows. Section 2 describes the related
work on frequent pattern mining, rare item problem, and periodic pattern min-
ing. Section 3 presents the proposed model of partial periodic pattern. Section 4
describes the mining algorithm. Section 5 reports the experimental results.
Section 6 concludes the paper with future research directions.

2 Related Work

Several alternative measures of support, such as χ2 [2], all-confidence [8] and
Kulczynski [3], have been described in the literature to address the problem.
Each measure has a selection bias that justifies the significance of one pattern
over another. As a result, there exists no universally acceptable best measure to
judge the interestingness of a pattern for any given database or application. Tan
et al. [10] introduced the null-invariance property and several other properties to
aid the user in selecting a measure. Since then, several studies [3,8] recommended
the usage of measures that satisfy the null-invariance property. It is because this
property discloses genuine correlation without being influenced by the object co-
absence in a database. Unfortunately, existing null-invariant frequency-based are
inadequate to address the rare item problem in partial periodic pattern mining.
Thus, this paper explores a new null-invariant temporal measure to address the
rare item problem in partial periodic pattern model.

Most previous studies [4,9,11,12] extended the frequent pattern model to
discover periodic-frequent patterns in a database. As a result, these studies

A Novel Null-Invariant Temporal Measure 571

required too many input parameters and discovered only full (or perfect) peri-
odically occurring frequent patterns. Uday et al. [5] tackled these two problems
by proposing the model of partial periodic pattern that may exist in a temporal
database. Unfortunately, this model suffers from the rare item problem. This
paper addresses this problem using a null-invariant temporal measure.

3 Proposed Model

Let I = {i1, i2, · · · , in}, n ≥ 1, be a set of items. Let X ⊆ I be a pattern
(or an itemset). A pattern containing k number of items is called a k-pattern. A
transaction ttid = (tid, ts, Y), where tid ≥ 1 represents the transaction identifier,
ts ∈ R+ represents the timestamp and Y ⊆ I is a pattern. An (irregular)
temporal database TDB is a collection of transactions. That is, TDB =
{t1, t2, · · · , tm}, 1 ≤ m ≤ |TDB|, where |TDB| represents the size of database.
If a pattern X ⊆ Y , it is said that X occurs in transaction ttid. The timestamp
of this transaction is denoted as tsXtid. Let TSX = {tsXa , tsXb , · · · , tsXc }, a, b, c ∈
(1, |TDB|), denote the set of all timestamps in which the pattern X has appeared
in the database. The support of X in TDB, denoted as sup(X), represents the
number of transactions containing X in TDB. That is, sup(X) = |TSX |.
Example 1. Let I = {abcdefg} be the set of items. The temporal database of
the items in I is shown in Table 1. The set of items a and c, i.e., {a, c} (or ac, in
short) is a pattern. It is a 2-pattern because it contains two items. The pattern
ac appears in the transactions whose timestamps are 1, 3, 4, 12, 13, 15 and 16.
Therefore, tsac1 = 1, tsac2 = 3, tsac3 = 4, tsac11 = 12, tsac12 = 13, tsac13 = 15 and
tsac14 = 16. The complete set of timestamps at which ac has occurred in Table 1,
i.e., TSac = {1, 3, 4, 12, 13, 15, 16}. The support of ac, i.e., sup(ab) = |TSac| = 7.

Table 1. Temporal database

tid ts items tid ts items tid ts items tid ts items tid ts litems

1 1 acd 4 5 def 7 8 adf 10 11 ae 13 15 abcg

2 3 abce 5 6 deg 8 9 bcd 11 12 abcf 14 16 abcd

3 4 abcd 6 7 adg 9 10 adf 12 13 abcd

Definition 1. (Periodic appearance of itemset X.) Let tsXj , tsXk ∈ TSX ,
1 ≤ j < k ≤ m, denote any two consecutive timestamps in TSX . The time
difference between tsXk and tsXj is referred as an inter-arrival time of X, and
denoted as iatX . That is, iatX = tsXk −tsXj . Let IATX = {iatX1 , iatX2 , · · · , iatXk },
k = sup(X) − 1, be the set of all inter-arrival times of X in TDB. An inter-
arrival time of X is said to be periodic if it is no more than the user-specified
maximum inter-arrival time (maxIAT). That is, a iatXi ∈ IATX is said to be
periodic if iatXi ≤ maxIAT .

572 R. U. Kiran et al.

Example 2. The pattern ac has consecutively appeared in the transactions whose
timestamps are 1 and 3. The difference between these two timestamps gives an
inter-arrival time of ac. That is, iatac1 = 3 − 1 = 2. Similarly, other inter-arrival
times of ac are: iatac2 = 4 − 3 = 1, iatac3 = 12 − 4 = 8, iatac4 = 13 − 12 = 1,
iatac5 = 15 − 13 = 2 and iatac6 = 16 − 15 = 1. Therefore, the set of all inter-
arrival times of ac in Table 1, i.e., IAT ac = {2, 1, 8, 1, 2, 1}. If the user-specified
maxIAT = 2, then iatac1 , iatac2 , iatac4 , iatab5 and iatac6 are considered as the
periodic occurrences of ac in the data. On the contrary, iatac3 is considered as an
irregular occurrence of ac because iatac3 �≤ maxIAT .

Definition 2. (Period-support of pattern X [5].) Let ̂IATX ⊆ IATX be
the set of all inter-arrival times that have value no more than maxIAT . That
is, ̂IATX ⊆ IATX such that if ∃iatXk ∈ IATX : iatXk ≤ maxIAT , then

iatXk ∈ ̂IATX . The period-support of X, denoted as PS(X) = | ̂IATX |
|TDB|−1 , where

|TDB| − 1 denote the maximum number of inter-arrival times a pattern may
have in TDB.

Example 3. Continuing with the previous example, ̂IAT ac = {2, 1, 1, 2, 1}.

Therefore, the period-support of ‘ac,’ i.e., PS(ac) = | ̂IATac|
|TDB|−1 = |{2,1,1,2,1}|

13 =
0.38.

Definition 3. (Relative period-support of pattern X.) The relative period-

support of pattern X, denoted as RPS(X) = | ̂IATX |
min(sup(ij)|∀ij∈X)−1 , where

min(sup(ij)|∀ij ∈ X)−1 represents the minimum number of inter-arrival times
of a least frequent item in X.

Example 4. Continuing with the previous example, the relative period-support
of ac, i.e., RPS(ac) = | ̂IATac|

min(sup(a),sup(c))−1 = |{2,1,1,2,1}|
min(11,8)−1 = 5

7 = 0.714 (= 71.4%).
It can be observed that though the pattern ac has low period-support in the
entire data, it has a high relative period-support. Thus, this measure facilitates
us to find patterns containing both frequent and rare items.

We now define the partial periodic pattern using the proposed measure.

Definition 4. (Partial periodic pattern X.) A pattern X is said to be a partial
periodic pattern if PS(X) ≥ minPS and RPS(X) ≥ minRPS, where minPS and
minRPS represent the user-specified minimum period-support and minimum rel-
ative period-support, respectively. Our model employs minPS constraint to prune
the patterns that have very less number of periodic occurrences in the database.

Example 5. If the user-specified minPS = 28% and minRPS = 60%, then ac is
a partial periodic pattern because PS(ac) ≥ minPS and RPS(ac) ≥ minRPS.

Definition 5. (Problem definition.) Given a temporal database (TDB) and
the user-specified maximum inter-arrival time (maxIAT) minimum period-
support (minPS), and minimum relative period-support (minRPS), the prob-
lem of partial periodic pattern mining is to find all patterns in TDB that sat-
isfy the minPS and minRPS constraints. The generated patterns satisfy the

A Novel Null-Invariant Temporal Measure 573

null-invariant (see Property 1) and convertible anti-monotonic (see Property 2)
properties.

Property 1. (Null-invariance property [10].) A binary measure of association
is null-invariant if O(M + C) = O(M), where M is a 2 × 2 contingency matrix,
C = [0 0; 0 k] and k is a positive constant.

Property 2. (The convertible anti-monotonic property.) Let Y = {i1.i2,-
· · · , ik}, k ≥ 1 be an ordered pattern such that sup(i1) ≤ sup(i2) ≤ · · · ≤
sup(ik). If Y is a partial periodic pattern, then ∀X ⊂ Y , X �= ∅ and i1 ∈ X, X
is also a partial periodic pattern.

4 Generalized Partial Periodic Pattern-Growth
(G3P-Growth)

The G3P-growth algorithm involves the following two steps: (i) compress the
database into Generalized Partial Periodic Pattern-tree (G3P-tree) and (ii)
recursively mine the tree to discover the complete set of partial periodic patters.
Algorithm 1 describes the procedure to find PPIs using G3P-list. Algorithms 2
describes the procedure for constructing the prefix-tree. Algorithm 3 describes
the procedure for finding partial periodic patterns from the G3P-tree.

Algorithm 1. G3P-List (TDB: temporal database, I: set of items, per: period,
minPS: minimum period-support and minRPS: minimum relative period-
support)
1: Let idl be a temporary array that records the timestamp of the last appearance

of each item in S. Let tscur denote the current timestamp of a transaction. Let
[tsa, tsb] denote the last time interval recorded in p-list.

2: for each transaction t ∈ TDB do
3: for each item i ∈ t do
4: if i exists in G3P-list then
5: ++s(i).
6: if tscur − idl(i) ≤ per then
7: ++ps(i)
8: Set the last list of p-list(i) as [tsa, tscur].
9: else

10: if tsa == tsb then
11: Replace the previous tsa value in the last list of p-list(i) with

[tscur, tscur].
12: else
13: Add another list entry into the p-list(i) with [tscur, tscur].
14: else
15: Add i to the G3P-list with S(i) = 1, ps(i) = 0 and idl(i) = tscur.
16: Add an entry, [tscur, tscur], into the p-list(i).
17: Prune all uninteresting items from the list with period-support less than minPS.

574 R. U. Kiran et al.

5 Experimental Evaluation

Since there exists no algorithm to find partial periodic patterns that may exist in
a spatiotemporal database, we only evaluate the proposed G3P-growth algorithm
to show that it is not only memory and runtime efficient, but also highly scalable
as well. We also demonstrate the usefulness of our model with two case studies.

Algorithm 2. G3P-Tree (TDB, G3P-list)
1: Create the root node in G3P-tree, Tree, and label it “null”.
2: for each transaction t ∈ TDB do
3: Select the PNIs in t and sort them in L order. Let the sorted list be [e|E], where

e is the first item and E is the remaining list. Call insert tree([e|E], tscur, T ree)
[5].

4: call G3P-growth (Tree, null);

0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.4

0.6

0.8

1

1.2
·104

minRPS

nu
m
be

r
of

P
N
P
s

minPS = 100
minPS = 75

(a) T10I4D100K

0.7 0.75 0.8 0.85 0.9 0.95

0

1

2

3

4

·104

minRPS

nu
m
be

r
of

P
N
P
s

minPS = 360
minPS = 350

(b) Pollution

0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

·105

minRPS

nu
m
be

r
of

P
N
P
s

minPS = 300
minPS = 250

(c) Congestion

Fig. 1. Number of patterns generated at different minPS and minRPS values

0.3 0.4 0.5 0.6 0.7 0.8

16

18

20

22

minRPS

E
xe

cu
ti
on

T
im

e(
se
c)

minPS = 100
minPS = 75

(a) T10I4D100K

0.7 0.75 0.8 0.85 0.9 0.95

20

30

40

50

minRPS

E
xe

cu
ti
on

T
im

e(
se
c)

minPS = 360
minPS = 350

(b) Pollution

0.4 0.5 0.6 0.7 0.8 0.9

2

4

6

8

10

minRPS)

E
xe

cu
ti
on

T
im

e(
se
c)

minPS = 300
minPS = 250

(c) Congestion

Fig. 2. Runtime requirements of G3P-growth

A Novel Null-Invariant Temporal Measure 575

0.3 0.4 0.5 0.6 0.7 0.8

3.56

3.57

3.57

3.57

3.57

3.57

·105

minRPS

M
em

or
y(
K
B
)

minPS = 100
minPS = 75

(a) T10I4D100K

0.7 0.75 0.8 0.85 0.9 0.95
6.6

6.8

7

7.2

7.4

·104

minRPS

M
em

or
y(
K
B
)

minPS = 360
minPS = 350

(b) Pollution

0.4 0.5 0.6 0.7 0.8 0.9
1.9

2

2.1

2.2

2.3

2.4

·104

minRPS)

M
em

or
y(
K
B
)

minPS = 300
minPS = 250

(c) Congestion

Fig. 3. Memory used for the G3P-tree construction

Algorithm 3. G3P-growth (Tree, α)
1: while items in the header of Tree do
2: Generate pattern β = i ∪ α. Traverse Tree using the node-links of β, and con-

struct an array, TSβ , which represents the list of timestamps in which β has
appeared periodically in TDB. Construct β’s conditional pattern base and β’s
conditional G3P-tree Treeβ if period-support is greater than or equal to minPS,
relative period-support is greater than or equal to minRPS and the distance
between all of its is no more than the user-specified maxDist.

3: if Treeβ �= ∅ then
4: call PP-growth (Treeβ , β);
5: Remove i from the Tree and push the i’s ts-list to its parent nodes.

The G3P-growth algorithm was written in Python 3 and executed on a
machine with 2.5 GHz processor and 8 GB RAM. The experiments have been
conducted on synthetic (T10I4D100K) and real-world (Pollution and Con-
gestion) databases. The T10I4D100K [1] is a widely used synthetic database
for evaluating frequent pattern mining algorithms. This transactional database
is converted into a temporal database by considering tids as timestamps. This
database contains 870 items and 100,000 transactions. The Pollution database
contains 1600 items and 720 items. The minimum, average and maximum trans-
actions lengths are 11, 460 and 971, respectively. The Congestion database
contains 1782 items and 1440 transactions. The minimum, average and maxi-
mum transactions lengths are 11, 66.25 and 267, respectively.

Figure 1a, b and c respectively show the number of partial periodic pat-
terns generated in T10I4D100K, Congestion and Pollution databases at different
minRPS and maxPS values. The maxIAT value in T10I4D100K, Congestion
and Pollution databases is set to 5000, 5 min and 5 min, respectively. It can be
observed that increase in minRPS and/or minPS have negative effect on the
generation of patterns. It is because many patterns fail to satisfy the increased
minPS and minRPS values.

Figure 2a, b and c respectively show the runtime requirements of G3P-growth
in T10I4D100K, Congestion and Pollution databases at different minPS and
minRPS values. The maxIAT value in T10I4D100K, Congestion and Pollution

576 R. U. Kiran et al.

databases has been set to 5000, 5 min and 5 min, respectively. The following
observations can be drawn from these figures: (i) Increase in minPS and/or
minRPS values may decrease the runtime requirements of G3P-growth. It is
because G3P-growth has to find fewer patterns. (ii) As per as the database size
and reasonably low minPS and low minRPS values are concerned, it can be
observed that mining patterns from the corresponding G3P-tree is rather time
efficient (or practicable) for both synthetic and real-world databases.

Figure 3a, b and c respectively show the memory used for the construction
of G3P-tree in T10I4D100K, Pollution and Congestion databases at different
minPS and minRPS values. The following two observations can be drawn from
these figures: (i) increase in minPS may decrease the memory requirements
of G3P-tree construction. It is because many items fail to be periodic items.
(ii) increase in minRPS has very little effect on the memory requirements of
G3P-tree. It is because G3P-tree constructed by periodic items.

6 Conclusions and Future Work

Rare item problem is a major problem encountered by the partial periodic pat-
tern model. This paper tackled this challenging problem of great importance
by proposing a novel null-invariant temporal measure known as relative period-
support. We have also shown that finding the patterns using our measure is
practicable on big data as the generated patterns satisfy the convertible anti-
monotonic property. Furthermore, this paper proposed an efficient algorithm to
discover the desired patterns. By conducting experiments, we have shown the
efficiency of our algorithm. As a part of future work, we like to investigate the
models to find patterns in dynamic graphs and data streams.

References

1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. VLDB.
1215, 487–499 (1994)

2. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing associ-
ation rules to correlations. SIGMOD Rec. 26(2), 265–276 (1997)

3. Kim, S., Barsky, M., Han, J.: Efficient mining of top correlated patterns based on
null-invariant measures. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgian-
nis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 177–192. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6 12

4. Uday Kiran, R., Krishna Reddy, P.: Towards efficient mining of periodic-frequent
patterns in transactional databases. In: Bringas, P.G., Hameurlain, A., Quirch-
mayr, G. (eds.) DEXA 2010. LNCS, vol. 6262, pp. 194–208. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15251-1 16

5. Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering partial periodic
itemsets in temporal databases. In: SSDBM, pp. 30:1–30:6 (2017)

6. Kiran, R.U., Venkatesh, J.N., Fournier-Viger, P., Toyoda, M., Reddy, P.K., Kit-
suregawa, M.: Discovering periodic patterns in non-uniform temporal databases.
In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD
2017. LNCS (LNAI), vol. 10235, pp. 604–617. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-57529-2 47

https://doi.org/10.1007/978-3-642-23783-6_12
https://doi.org/10.1007/978-3-642-15251-1_16
https://doi.org/10.1007/978-3-319-57529-2_47
https://doi.org/10.1007/978-3-319-57529-2_47

A Novel Null-Invariant Temporal Measure 577

7. Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum sup-
ports. In: Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 337–341. ACM (1999)

8. Omiecinski, E.R.: Alternative interest measures for mining associations in
databases. IEEE TKDE 15(1), 57–69 (2003)

9. Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic association rules. In: Interna-
tional Conference on Data Engineering, pp. 412–421 (1998)

10. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure
for association patterns. In: SIGKDD, pp. 32–41 (2002)

11. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-
frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul,
B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 242–
253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2 24

12. Venkatesh, J.N., Uday Kiran, R., Krishna Reddy, P., Kitsuregawa, M.: Discovering
periodic-correlated patterns in temporal databases. In: Hameurlain, A., Wagner,
R., Hartmann, S., Ma, H. (eds.) Transactions on Large-Scale Data- and Knowledge-
Centered Systems XXXVIII. LNCS, vol. 11250, pp. 146–172. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-662-58384-5 6

13. Weiss, G.M.: Mining with rarity: a unifying framework. SIGKDD Explor. Newsl.
6(1), 7–19 (2004)

https://doi.org/10.1007/978-3-642-01307-2_24
https://doi.org/10.1007/978-3-662-58384-5_6

Utilizing Expert Knowledge
and Contextual Information

for Sample-Limited Causal Graph
Construction

Xuwu Wang1, Xueyao Jiang1, Sihang Jiang1, Zhixu Li1,
and Yanghua Xiao1,2(B)

1 Shanghai Key Lab. of Data Science, School of Computer Science, Fudan University,
Shanghai, China

{xwwang18,xueyaojiang19,zhixuli,shawyh}@fudan.edu.cn
2 Fudan-Aishu Cognitive Intelligence Joint Research Center, Shanghai, China

Abstract. This paper focuses on causal discovery, which aims at inferring
the underlying causal relationships from observational samples. Exist-
ing methods of causal discovery rely on a large number of samples. So
when the number of samples is limited, they often fail to produce cor-
rect causal graphs. To address this problem, we propose a novel frame-
work: Firstly, given an expert-specified causal subgraph, we leverage con-
textual and statistical information of the variables to expand the subgraph
with positive-unlabeled learning. Secondly, to ensure the faithfulness of
the causal graph, with the expanded subgraph as the constraint, we resort
to a structural equation model to discover the entire causal graph. Exper-
imental results show that our method achieves significant improvement
over the baselines, especially when only limited samples are given.

Keywords: Causal graph · Causal discovery · Knowledge graph

1 Introduction

Causal graph can be treated as a special kind of knowledge graph that only
consists of causal relations [3]. The edge from node vi to node vj represents
that the occurrence of the cause variable vi triggers the occurrence of the effect
variable vj .

Causal discovery [5] is one of the most effective methods to construct a
directed acyclic graph (DAG) as the causal graph. Pearl et al. [8] propose detailed
definitions of the causal graph and corresponding causal model, which makes
it applicable to downstream tasks that require high interpretability. Existing
causal discovery methods mainly rely on statistical analysis to infer the causal
graph from observed samples (see Fig. 1(a) for example), which could be roughly
divided into two lines: The first line of works is constraint-based method [13–
15,17], which utilizes conditional independence tests over the samples to find the
graph skeleton first and then decides the direction of edges. The second is the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 578–586, 2022.
https://doi.org/10.1007/978-3-031-00123-9_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_46&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_46

Sample-Limited Causal Graph Construction 579

Fig. 1. Comparison of the information sources of different methods. The example causal
graph is a consensus protein signaling causal graph. The samples are expression levels
of the proteins and phospholipid components.

score-based method [14,17], which assigns a score to each graph in terms of the
samples and then searches for the graph with the highest score. Overall, these
methods have produced appealing results from large-scale samples. However,
collecting large-scale samples is time-consuming and labor intensive in practice.
For example, collecting samples may need manual measurement of the variables
in the field of biology [11] or long-term follow-up visiting in pathophysiology
relevant research [12]. As a result, it is a usual case to collect only a limited
number of samples.

To make up for the lack of samples, we propose to resort to other sources of
information that commonly exist and are easily accessible in practice. The new
sources of information include 1) expert knowledge: some already known causal
relations provided by human experts, which can be treated as a causal subgraph;
and 2) contextual information: the textual description of each variable obtained
from either domain documentations, knowledge graphs or even the Internet.
As the example shown in Fig. 1(b), while the expert knowledge can be used to
provide weak supervision, the contextual information provides plentiful contexts
about the variables as the supplement to the samples.

In this paper, we propose a novel causal graph construction framework with
two key phases. The expert-specified causal subgraph is usually small since it is
difficult for human experts to identify many causal relations based on their expe-
rience and knowledge. So in Phase 1, to expand the expert-specified subgraph,
we train a classifier that can predict new causal relations based on the anno-
tations of the subgraph. The realization of this classifier mainly benefits from
two aspects: 1) The contextual information of the variables and the samples;
2) Positive-Unlabeled (PU) learning [9]. These newly-predicted relations form a
so-called predicted subgraph. However, this expanded subgraph may break the
faithfulness condition [7] that is the crucial basis of causal discovery. To tackle
this problem, in Phase 2, we use a structural equation model to search for the
DAG that is the most likely to generate the observed samples. The predicted
subgraph is utilized as the constraint to guide the search.

580 X. Wang et al.

2 Preliminaries and Task Definition

Variable. A variable vi represents an object to be explored for causality. The
set of all the variables is denoted as V = {vi}d

i=1.

Causal Graph. A causal graph G recording the causal relationships among d
variables is a directed acyclic graph (DAG) with d nodes. G is defined by the
adjacency matrix A. Following previous works [16], instead of operating on the
discrete space A ∈ {0, 1}d×d, we operate on the continuous space A ∈ R

d×d:
Aij �= 0 indicates vi is the cause of vj .

Observational Samples. X ∈ R
n×d is a matrix of n i.i.d. observational samples

from the joint distribution of the d variables. Xij is the jth variable’s value in
the ith sample. We abbreviate observational samples as samples.

Expert-Specified Causal Subgraph. The expert-specified causal subgraph
Ĝ is a spanning subgraph of the entire causal subgraph G. That is to say, Ĝ
includes all nodes of G and a subset of edges of G. The subgraph with α% of
the edges in G is denoted as Ĝα%. In the following text, when α is not explicitly
stated, we represent it with Ĝ. In real applications, experts often only specify
whether there is a causal relationship between variables, but can rarely provide
the detailed strength of the causal relationship. So the adjacency matrix of Ĝ is
simply defined as: Â ∈ {0, 1}d×d, where Âij = 1 represents vi is the cause of vj .

Task Definition. Suppose there are d variables to be explored for causality.
Given the samples X ∈ R

n×d, we need to infer the causal graph G that is
faithful to the joint distribution behind the observed samples X. Specially, we
focus on how to infer the G when limited samples of X are given, i.e., n is small.
And contextual information and an expert-specified subgraph are provided to
tackle this problem.

3 Methodology

Our method of constructing a causal graph consists of two key phases.

3.1 Phase 1: PU Causal Classifier

In the first phase, with the expert-specified subgraph Ĝ as the labelling crite-
rion, we train a binary classifier φ : (vi, vj) → {0, 1}, vi, vj ∈ V , which predicts
whether the variable vi is the cause of vj . The framework of the PU causal
classifier is presented in Fig. 2(a) and elaborated below.

Preprocess. Before training, the dataset used to train the classifier is built as
follows. Given Ĝ with the adjacency matrix of Â, for every instance (vi, vj) ∈
V × V , if Âij = 1, vi is the cause of vj , and (vi, vj) is labeled as 1; otherwise
(vi, vj) is unlabeled. This positive-unlabeled setting is solved in the optimization
procedure later.

Sample-Limited Causal Graph Construction 581

Design of the Classifier φ. We use two kinds of features to enhance the clas-
sifier φ. The first kind of features is the textual contexts of the variables, which
provide the semantic information for causality. Specifically, for each variable
vi, we retrieve its context from the database or the Web: si. Then the semantic
feature vector of vi is obtained through a BERT [2] encoder: se(vi) = BERT(si).

The second kind of features is the observational samples, which provides the
statistical information for causality. Considering only limited samples are pro-
vided, we propose to enhance a variable’s sample information by aggregating its
correlated variables’ sample information. To achieve it, we first transform sam-
ples in matrix form into a fully connected sample graph O with the adjacency
matrix B. The nodes of O are variables and the edge weight reflects the correla-
tion between variables. Assuming that the distributions of correlated variables
over the samples are similar, the edge weight Bij is defined as the reciprocal
of the Wasserstein distance [6] between X·i and X·j : Bij = 1

W (X·i,X·j)
1. Here

X·i represents variable vi’s distribution over the samples. Then the graph con-
volutional network (GCN) [4] is used to pass information between correlated
variables over the sample graph O. The sample feature for every variable is thus
generated as: sa(vi) = GCN (B)

Then we concatenate the semantic and statistical features of vi and vj :

vij = se(vi) ⊕ sa(vi) ⊕ se(vj) ⊕ sa(vj) (1)

and feed vij to a multilayer perceptron (MLP) and a softmax layer. The
probability that vi is the cause of vj is finally calculated as: f(vi, vj) =
softmax (MLP(vij)).

Optimization Objective. As mentioned earlier, the training data consists of
a set of positive (P) instances and a set of unlabeled (U) instances. To predict
new causality from the unlabeled instances, we resort to PU learning. Following
[9], the optimization objective of our PU classfier is defined as a bounded non-
negative PU loss:

L =
πp

np

np∑

k=1

l (f (xp
k) , 1)

︸ ︷︷ ︸
(♣)

+ max

⎛

⎜⎜⎜⎜⎝
0,

1
nu

nu∑

k=1

l (f (xu
k) , 0)

︸ ︷︷ ︸
(♠)

− πp

nu

np∑

k=1

l (f (xp
k) , 0)

︸ ︷︷ ︸
(♥)

⎞

⎟⎟⎟⎟⎠

(2)
where xp and xu represent positive instance and unlabeled instance respectively.
l(logit, label) is the CrossEntropy loss function. np and nu represent the num-
ber of positive and unlabeled instances respectively. πp is a hyper-parameter
indicating the estimated percentage of the positive instances. By weakening the
penalty for labeling unlabeled instances as negative instances (i.e. (♠)−(♥)), the
classifier is able to identify some positive instances from the unlabeled instances.

1 Other metric functions such as JS divergence, co-occurrence frequency can also be
utilized to generate Bij .

582 X. Wang et al.

Postprocess. Once φ is trained, its prediction can be transformed into a pre-
dicted causal subgraph Ḡ with the adjacency matrix Ā. Specifically, we use the
logit of f(vi, vj) as the adjacency matrix’s entry when the logit is higher than
0.5. Otherwise, the entry is set as 0.

3.2 Phase 2: SEM with Subgraphs

In the second phase, based on Ḡ, we use SEM to search for the G with the highest
likelihood to generate X. Three requirements are achieved as illustrated below.

Fig. 2. Overview of the proposed method. Phase (a) corresponds to the PU causal
classifier. Phase (b) corresponds to the SEM with the constraint of the subgraph.

R1) G is Faithful to the Joint Distribution Behind X. To search for such
a G, we model it as a continuous optimization problem to find the adjacency
matrix A∗ by minimizing the negative log likelihood of obtaining X:

A∗ = arg min
A

− 1
n

n∑

k=1

log p
(
Xk

)
(3)

To model this generative procedure, based on the Markov condition and
causal sufficiency assumption, X is generated by the linear structural equation
model (SEM): X = A�X + Z → X =

(
I − A�)−1

Z. Here Z ∈ R
n×d is the

noise matrix. I is an identity matrix.
To instantiate the above SEM model with neural networks, we adopt the

variational autoencoder (VAE) model proposed in [14]: as shown in Fig. 2(b),
the encoder of the VAE takes the samples X as input, and outputs the hidden
variable Z:

g(Z) =
(
I − AT

)
MLP (X) . (4)

where A is learnable together with other parameters. g(Z) represents the vari-
ance and bias of Z. Then the decoder takes g(Z) as the input to recover X:

X′ = MLP
((
I − AT

)
(g(Z))

)
(5)

Sample-Limited Causal Graph Construction 583

With this VAE model, the log likelihood of X can be transformed into

1
n

n∑

k=1

log p
(
Xk

)
=

1
n

n∑

k=1

log
∫

p(Xk|Z)p(Z)dZ (6)

R2) G is a DAG. As analyzed in [14], the requirement that A ∈ DAGs can
be quantified as tr [(I + δA ◦ A)m] − m = 0. Here tr(·) represents the trace of
a matrix. δ is a hyper-parameter. After adding this DAG constraint with the
augmented Lagrangian, the optimization objective is transformed into:

A∗ = arg min
A

− 1
n

n∑

k=1

log p
(
Xk

)
+ λ1l (A) +

c

2
|l (A) |2 (7)

where l (A) = tr [(I + δA ◦ A)m] − m. λ1 is the Lagrange multiplier. c is the
penalty term.

R3) G is Similar with Ḡ. We extend the above model by adding minimizing
the difference between A and Ā as another optimization objective:

A∗ = arg min
A

− 1
n

n∑

k=1

log p
(
Xk

)
+ λ1l (A) +

c

2
|l (A) |2 + λ2h

(
A, Ā

)
(8)

h
(
A, Ā

)
is defined as the element-wise difference between A and Ā:

h
(
A, Ā

)
=

d∑

i=1

d∑

j=1

(||Aij | − |Āij || × 1(Āij)
)

(9)

Here 1(Ā) is an indicator function which returns 1 when Āij �= 0 and returns
0 when Āij = 0. We apply | · | to the matrix entry for we only care about the
existence of a causal relationship instead of its polarity (positive or negative),
which is the same in [14].

4 Experiment

4.1 Experimental Setups

Datasets. We perform experiments on 2 real datasets: ALARM, SACHS [1,11].
The ALARM is used to infer the causal relationships between device alarms,
where the problem of limited samples is prominent. It has 61 samples, 41 vari-
ables and 1307 edges in the causal graph. Specially, due to the characteristics of
this application, the ground-truth graph does not satisfy the DAG constraint. So
we remove the DAG constraint from all the methods. The SACHS is a dataset
used to analyze the protein signal network with 853 observational samples, 11
variables and 17 edges in the causal graph, which is also used in [17].

584 X. Wang et al.

Table 1. Comparison with the baselines. The bold numbers indicate the best results.
‘-’ indicates that some datasets do not support the experimental setting, or the model
failed to make predictions. Since SACHS only contains 17 causal relations, we set
β ∈ {5, 10, 20, 40} instead.

Dataset Method Experimental settings

β 0.5 1 2 –

Metric TPR SHD TPR SHD TPR SHD TPR SHD

ALARM PC 0 785 1.53 765 1.53 765 – –

CAM 0 785 0 785 8.72 671 – –

NOTEARS 1.45 769 1.76 767 1.07 772 – –

DAGGNN 10.94 757 22.26 593 27.09 523 – –

CDRL 2.21 757 19.36 580 33.28 465 – –

ours (Ĝ10%) 81.41 302 80.95 307 83.09 293 – –

ours (Ĝ20%) 82.63 226 83.63 523 85.23 291 – –

β 5 10 20 40

Metric TPR SHD TPR SHD TPR SHD TPR SHD

SACHS PC – – – – – – – –

CAM 11.76 18 17.65 15 19.61 16 21.57 15

NOTEARS 47.06 19 35.29 16 23.53 17 29.41 16

DAGGNN 41.18 21 41.18 20 21.76 16 35.29 19

CDRL 11.76 16 27.45 14 23.53 14 37.25 14

ours (Ĝ10%) 47.06 18 52.94 16 35.29 17 47.06 16

ours (Ĝ20%) 47.06 14 52.94 14 47.06 10 52.94 15

Limited Samples Settings. To study the model performance of different sam-
ple sizes, we randomly select samples of different sizes from the original dataset.
We use β = n

d to quantify the sample size. A smaller β indicates fewer samples,
especially when β < 1.

Baselines. We compare with various effective baselines including PC [13], CAM
[10], NOTEARS [16], DAGGNN [14], CDRL [17].

Implementation. We randomly sample α% gold causal relations as the expert-
specified subgraph. For the first phase, an Adam optimizer with the learning
rate of 1e−4 is used to optimize the classifier for 200 epochs. For datasets that
cannot retrieve the corresponding contextual information, we use a one-hot vec-
tor instead. For the second phase, the batch size is set as 100 at each iteration.
We pick 64 as the hidden dimension of the encoder and the decoder. Other
hyper-parameters are set the same as [14].

Evaluation Metrics. We report the performance of two metrics: true positive
rate (TPR) and structural hamming distance (SHD) [14]. A higher TPR and a
lower SHD indicate that the generated causal graph is better.

Sample-Limited Causal Graph Construction 585

4.2 Experimental Results

We present the comparison between our method with Ĝ10%/Ĝ20% and the base-
lines in Table 1. Since there are not many causal relationships in the causal graph,
Ĝ10% and Ĝ20% are very small, which provide only weak supervision. Besides, to
test the model performance with limited samples, we set β ∈ {0.5, 1, 2, 4}. This
is different from the experimental settings of existing methods, that usually
requires β to be larger than 50. All the results are the mean of 3 runs performed
on the same device. We can see that our method achieves significant improve-
ment compared with all the baselines under most settings. This phenomenon is
even more pronounced for TPR. This result shows that our method has a huge
advantage in recalling more causal relationships.

5 Conclusion

In this paper, towards the real problem of few samples in causal discovery, we
propose a framework that infers causal relationships with the supervision of an
expert-specified subgraph. To expand the small given subgraph, a PU classi-
fier is first used to predict new causality. Second, we use a structural equation
model with the given and predicted subgraphs as initialization or constraints to
search for the entire causal graph. Experimental results on two real datasets and
two synthetic datasets show that our method achieves both effectiveness and
efficiency.

Acknowledgement. This research was supported by the National Key Research and
Development Project (No. 2020AAA0109302), National Natural Science Foundation
of China (No. 62072323), Shanghai Science and Technology Innovation Action Plan
(No. 19511120400) and Shanghai Municipal Science an Technology Major Project (No.
2021SHZDZX0103).

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

2. Devlin, J., Chang, M.W., et al.: BERT: pre-training of deep bidirectional trans-
formers for language understanding. In: NAACL, pp. 4171–4186, June 2019

3. Heindorf, S., Scholten, Y., et al.: Causenet: towards a causality graph extracted
from the web. In: Proceedings of CIKM, pp. 3023–3030 (2020)

4. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: Proceedings of the 5th International Conference on Learning Repre-
sentations, ICLR 2017 (2017)

5. Lu, N., Zhang, K., et al.: Improving causal discovery by optimal bayesian network
learning. In: AAAI (2021)

6. Olkin, I., Pukelsheim, F.: The distance between two random vectors with given
dispersion matrices. Linear Algebra Appl. 48, 257–263 (1982)

7. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Elsevier (2014)

586 X. Wang et al.

8. Pearl, J., Mackenzie, D.: The book of why: the new science of cause and effect.
Basic books (2018)

9. Peng, M., Xing, X., et al.: Distantly supervised named entity recognition using
positive-unlabeled learning. In: Proceedings of ACL, pp. 2409–2419 (2019)

10. Ramsey, J., Glymour, M., Sanchez-Romero, R., Glymour, C.: A million vari-
ables and more: the fast greedy equivalence search algorithm for learning high-
dimensional graphical causal models, with an application to functional magnetic
resonance images. Int. J. Data Sci. Anal. 3(2), 121–129 (2017)

11. Sachs, K., Perez, O., et al.: Causal protein-signaling networks derived from multi-
parameter single-cell data. Science 308, 523–529 (2005)

12. Shen, X., Ma, S., et al.: challenges and opportunities with causal discovery algo-
rithms: application to Alzheimer’s pathophysiology. Sci. Rep. 10, 1–12 (2020)

13. Spirtes, P., Glymour, C.N., Scheines, R., Heckerman, D.: Causation, prediction,
and search. MIT press (2000)

14. Yue Yu, J.C., et al.: Dag-gnn: dag structure learning with graph neural networks.
In: Proceedings of the 36th International Conference on Machine Learning (2019)

15. Zhang, K., Peters, J., et al.: Kernel-based conditional independence test and appli-
cation in causal discovery. arXiv preprint arXiv:1202.3775 (2012)

16. Zheng, X., Aragam, B., et al.: Dags with no tears: Continuous optimization for
structure learning. N (2018)

17. Zhu, S., Ng, I., Chen, Z.: Causal discovery with reinforcement learning. In: Inter-
national Conference on Learning Representations (2020)

http://arxiv.org/abs/1202.3775

A Two-Phase Approach for Recognizing
Tables with Complex Structures

Huichao Li1, Lingze Zeng1, Weiyu Zhang1, Jianing Zhang1, Ju Fan2,
and Meihui Zhang1(B)

1 Beijing Institute of Technology, Beijing, China
{3120191013,3220201116,meihui zhang}@bit.edu.cn

2 Renmin University of China, Beijing, China
fanj@ruc.edu.cn

Abstract. Tables contain rich multi-dimensional information which can
be an important source for many data analytics applications. However,
table structure information is often unavailable in digitized documents
such as PDF or image files, making it hard to perform automatic anal-
ysis over high-quality table data. Table structure recognition from digi-
tized files is a non-trivial task, as table layouts often vary greatly in dif-
ferent files. Moreover, the existence of spanning cells further complicates
the table structure and brings big challenges in table structure recogni-
tion. In this paper, we model the problem as a cell relation extraction task
and propose T2, a novel two-phase approach that effectively recognizes
table structures from digitized documents. T2 introduces a general con-
cept termed prime relation, which captures the direct relations of cells with
high confidence. It further constructs an alignment graph and employs
message passing network to discover complex table structures. We validate
our approach via extensive experiments over three benchmark datasets.
The results demonstrate T2 is highly robust for recognizing complex table
structures.

Keywords: Data mining · Table structure recognition · Message
passing networks

1 Introduction

Table, as a widely used format for data organization in documents, often contains
rich structured information, which is an important source to build knowledge
repositories or perform data analytics tasks in many important applications.
However the table structure information is often unavailable in documents such
as PDF or image files. To analyze the tabular data residing in the documents, it
is crucial to conduct a preprocessing step recognizing the structure of the tables.

Nevertheless, table structure recognition is a non-trivial task on account
of the following difficulties. Tables are not organized with unified layout. For
instance, some tables contain full border lines while others are only partially
segmented by lines. Furthermore, many tables have complex header structure,
where spanning cells occupy multiple columns or rows.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 587–595, 2022.
https://doi.org/10.1007/978-3-031-00123-9_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_47&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_47

588 H. Li et al.

Early works [4,7,10] recognize table structures mainly by extracting hand-
crafted features and employing heuristics based algorithms, which highly rely
on layout hints and thus are not able to generalize well in practice. Recent
works [1,5,9] model the problem as a cell relation prediction task, and propose
graph-based models to capture the relations (i.e., vertical/horizontal alignment
or no relation) between cells. Some work [9] detects all pair-wise cell relations,
while others [1,5] detect relations only between a cell and its k nearest neighbors.
We argue that on the one hand it is unnecessary to perform sophisticated graph-
based computation for all cell pairs, yielding a high computational complexity.
On the other hand, it is inadequate to compute only local relations between k
nearest neighbors, which is insufficient to reconstruct the table structure.

We observe that in most cases cells that belong to the same column/row
tend to have overlap in the vertical/horizontal direction, except for the cases
where spanning cells are present. Based on the observation, we propose T2, a
two-phase table structure recognition approach, where we introduce a general
concept termed prime relation based on cell overlap, which captures the strong
evidence of cells belonging to the same column/row. Then we develop an effective
method to generate prime rows and columns with prime relation. To discover
the complex table structure with spanning cells, we design a novel graph-based
alignment model, where we model the prime column/row as a prime node with
carefully designed features and learn the alignment relationship between prime
columns/rows and spanning cells through message passing network. Comparing
to prior works, our proposed approach is pure data oriented without relying on
any external information. Further, it is able to completely recognize complex
table structure and save a lot computation cost with the help of prime notion.

2 The T2 Framework

T2 takes a table as input, and employs some tools, e.g., Tabby [10] and Cas-
cadeTabNet [8], to detect cell locations of the table. The obtained cell locations
are further fed into the following two-phase method to discover the relations
between cells and finally output columns and rows of the table. In phase one,
T2 detects the prime relations and generates prime columns and rows. In phase
two, T2 takes as input the generated prime columns and rows, and builds an
alignment graph and learns the column/row alignment relation through message
passing network. For ease of presentation, we only present the process of column
relation discovery. We omit ‘column/row’ when the context is clear.

2.1 Phase One: Prime Relation Generation

A cell is denoted as a vector ci = (xi1, xi2, yi1, yi2), where xi1, xi2, yi1, yi2 ∈ R,
represent the coordinates of the cell bounding box. Specifically, (xi1, yi1) and
(xi2, yi2) are the coordinates of the lower-left corner and upper-right corner
respectively. We observe that in most cases the cells that have column/row rela-
tion tend to overlap in vertical/horizontal direction with each other except for

A Two-Phase Approach for Recognizing Tables with Complex Structures 589

the cases where complex structure presents (i.e., spanning cells). Based on this
observation, we define prime relation, to capture the strong evidence of cells that
ought to be aligned. Formally, two cells are defined to have prime column/row
relation if and only if the two cells overlap in vertical/horizontal direction. Sub-
sequently, prime column/row is defined as a set of cells, such that there exists
at least one cell (called pivot cell) that has prime column/row relation with all
other cells in the set.

Next, we introduce how prime columns are generated. We take the identified
cell locations as input and compute the width of each cell. We start with the cell
that has the minimum width to act as the pivot cell. When multiple cells have
the same minimum width, we break the ties randomly. We then detect the prime
relation between the pivot cell and all other cells based on the cell overlap, and
group all cells that have prime column relation w.r.t. the pivot cell to generate a
prime column. Next, we select the pivot (i.e. cell with the minimum width) from
all the cells that are not yet associated with any prime column and generate the
prime column. The process is repeated until the generated prime columns cover
all cells in the table.

Note that each time we choose the cell with minimum width to be the pivot.
This is because tables may contain wide spanning cells that overlap with multiple
columns. If we choose such cell to be the pivot, we will end up generating a giant
prime column with mixed data from multiple columns. Ideally, we expect the
prime column to have high purity in the sense that it only contains the cells from
a single column.

2.2 Phase Two: Graph-Based Alignment Model

In this phase, we aim to discover relations that are not detected in phase one,
mainly due to the existence of spanning cells. Detailed steps are as follows:

Alignment Graph Construction. Based on the prime columns PC and prime
rows PR detected previously, we construct an alignment graph, which is defined
as an undirected graph G = (C ∪PC,Ecp ∪Ecc) with a set C of cell nodes and a
set PC of prime-column nodes. There are two kinds of edges between the nodes:
(i) Ecp contains a set of c2p edges that connect all cell nodes in C and all
prime-column nodes in PC; (ii) Ecc contains a set of c2c edges, where each
edge ecc = (ci, cj) indicates that cells ci and cj are adjacent horizontally in the
same prime row. We consider a c2p edge ecp = (ci, pcj) is pre-determined if cell
ci is already in prime column pcj ; otherwise, the edge ecp is called undetermined.
Figure 1(b) shows an example alignment graph for the table in Fig. 1(a).

Alignment Graph Representation. Given the alignment graph G, our task
is to perform a classification on each c2p edge (ci, pcj) to predict whether ci has
column relation with all cells in pcj . To support the classification task, we first
present our design for node/edge features in the alignment graph G.

(1) Features of Prime-Column Nodes: Intuitively, we would like to include the
horizontal location information of cells and prime columns as their features. The

590 H. Li et al.

(a) Cells in the same prime column are marked
with the same color.

(b) Part of the constructed align-
ment graph for the example table.

Fig. 1. Generated prime columns and rows as well as the constructed alignment graph
of the example table.

idea is that, a cell ci that is very close to a prime column pcj in the horizontal
direction is more likely to have relation with pcj , comparing to a prime column
pck that is far from ci. A straightforward way is to define the closeness on
absolute coordinates. However, this may not be effective as tables may have
various layouts and sizes. Instead, we use relative orderings of prime columns
to represent their location features. Specifically, we use pcj .x1 and pcj .x2 to
denote the x-coordinates of prime column pcj , which are computed by averaging
x-coordinates of cells in pcj . Then, we sort the prime columns in ascending order
of pcj .x1 (pcj .x2) and use rj1 (rj2) to denote the rank of pcj in the obtained
ordering, and present feature vector �pcj for prime column pcj as

�pcj = (rj1, rj2) (1)

(2) Features of Cell Nodes: We also utilize horizontal location information as
features to represent cell nodes. We use “range” of cells’ prime columns’ ranks
(because of the existence of spanning cells that may belong to multiple prime
columns) to represent the horizontal location. Formally, we use PCci to represent
the prime columns that cell ci belongs to, and represent feature vector �ci of ci
as

�ci = (min
pck∈PCci

{rk1}, max
pck∈PCci

{rk2}) (2)

For example, as cell c2 in Fig. 1(a) belongs to 4 prime columns with min and
max rank 1, 4. Thus, we obtain its feature vector �c2 = (1, 4).

(3) Initial c2p Edge Features: We denote the initial features of c2p edge eij as a

d-dimensional vector �e
(0)
ij . We consider the type of edge eij , i.e., pre-determined

or undetermined, which is denoted as eij .type. Based on the type, we obtain the
initial feature vector �e

(0)
ij as,

�e
(0)
ij = M1(eij .type) (3)

where M1 is a learnable embedding function that maps from the edge type code
to a d-dimensional vector.

A Two-Phase Approach for Recognizing Tables with Complex Structures 591

Message Passing Framework. We utilize a message passing framework to
iteratively update c2p edge features, so as to incorporate more information of
neighbors. In the t-th iteration, we use the current edge feature vector �e

(t)
ij to

compute �e
(t+1)
ij by considering the following three components.

(1) Intrinsic Features of Edge: The first component considers intrinsic features
of edge eij , i.e., whether locations of its corresponding cell node ci and prime-
column node pcj are close. Intuitively, the smaller the difference of the corre-
sponding ranks between ci and pcj is, the more likely ci has relation with pcj .

However, the above intuition may not be true for spanning cells. For instance,
cell c2 has relation with pc5, although their feature vectors have significant dif-
ferences, i.e., (1, 4) vs. (1, 1). To alleviate this issue, we further consider the
number of cells in the corresponding prime row. Let |PC| denote the number of
prime columns in the table, and |prci | be the number of cells in the prime row
prci that cell ci belongs to. We take the difference between |PC| and |prci | as a
“compensation”. The idea is that, when this difference is significant, it implies
|prci | is small, which indicates spanning cells may be present. As such, large rank
differences may be acceptable. To formalize the above ideas, we introduce the
intrinsic feature of a c2p edge eij = (ci, pcj) as

fI
ij = F1{(M2(�ci.ri1) − M2(�pcj .rj1)) ⊕ (M2(�ci.ri2) − M2(�pcj .rj2))

⊕ (M3(|PC|) − M3(|prci |)}
(4)

where M2 and M3 are embedding functions like M1 but with different learnable
parameters, ⊕ is the concatenation operation, and F1 is a fully connected feed
forward network (FFN) consisting of two linear layers followed by ReLU [6] as
activation function. The output dimension of F1 is d, i.e., the same as �e

(t)
ij .

(2) Neighboring Features of Edge: Given edge eij = (ci, pcj), the second com-
ponent considers whether neighboring cells of ci is close to prime-column pcj .
Note that “neighboring cells” of ci are the cells having c2c edges with ci, e.g., c1
and c9 are neighbors of c6. The intuition is that, given pcj is close to ci and its
neighbors, if neighbors of ci have less evidence to have relation with pcj , then
ci would be more likely to have relation with pcj . Formally, we first define an
aggregated function for eij as

φij = M4(abs(�ci.ri1 − �pcj .rj1)) ⊕ M4(abs(�ci.ri2 − �pcj .rj2)) ⊕ �e
(t)
ij (5)

where M4 is an embedding functions and abs is the absolute value function.
Based on the aggregated function, we consider the neighbor set Ni of cell ci and
compute the neighboring edge features as

fN
ij =

∑

u∈Ni

F2(φij ⊕ φuj) (6)

where F2 is another FFN that has the same structure with F1.

(3) Row Features of Cell: We also find the difference of cell numbers across prime
rows is an important indicator of the column structure of the table. Suppose a

592 H. Li et al.

table has 4 prime rows, and the number of cells in each row is {2,4,4,4}. It is very
likely that the first prime row contains column-spanning cells that occupy mul-
tiple columns. Based on this, we design the third component to capture row fea-
tures of cell ci. More specifically, we consider all prime rows in the generated PR
and arrange the cell numbers in these prime rows, i.e., {|pr1|, |pr2|, . . . , |pr|PR||},
as a sequence. Then, we use the sequence to train a Bi-directional GRU [2] to
capture the differences among cell numbers across prime rows. Finally, we obtain
row feature of cell ci as fR

ij = hprc i
, where hprc i

is the hidden state of our GRU
model corresponding to the prime row that ci belongs to.

Overall, by considering all the three components mentioned above, we intro-
duce the message passing equation as below.

�e
(t+1)
ij = �e

(t)
ij + f I

ij + fN
ij + fR

ij (7)

Relation Determination via Classification. Based on our message passing
framework, we obtain �e

(T)
ij after T iterations over the alignment graph G. Then,

we feed �e
(T)
ij to a Multilayer Perceptron (MLP) to obtain a probability distri-

bution over 2 classes. According to the final prediction result of each c2p edge
eij = (ci, pcj), we determine the column relations as follows. If the predicted
result is 1, we determine that ci has column relations with all cells in prime col-
umn pcj . Otherwise, we remove the column relations between ci and pcj . Based
on these, we reconstruct the columns of the table.

3 Experiments

3.1 Experimental Setup

Datasets. We use three datasets. ICDAR-2013 [3] contains 156 tables with
manual annotations. SciTSR [1] is constructed automatically. We filter out some
erroneous samples and finally it contains 10961 and 275 tables for training and
testing. SciTSR-COMP is a subset of SciTSR and only contains tables with
spanning cells. It has 635 tables for testing after the filtering process.

Baselines. We compare with three state-of-the-art approaches. GraphTSR [1]
utilizes graph attention network to predict relations between cells and their k
nearest neighbors. GFTE [5] utilizes GCN to retrieve relations between cells
and their k nearest neighbors. Apart from cell position features, it also takes
extra features such as image feature and textual feature. DGCNN∗ [9] combines
position feature extracted by DGCNN [11] and image feature to classify relations
between all cell pairs. For fair comparison, we only use cell position as input
feature in GFTE and DGCNN∗.

3.2 Evaluation

The graph-based alignment model is trained on SciTSR training set, and tested
on SciTSR testing set, SciTSR-COMP and ICDAR-2013. In the rest of this

A Two-Phase Approach for Recognizing Tables with Complex Structures 593

section, we focus on the results of column relation alignment. This is because
(1) Most of the spanning cells are column-spanning cells; (2) We find there are
many mislabeled row relations in the dataset, largely because many cells with
muti-line text are wrongly split into several vertically adjacent cells.

Table 1. Overall comparison results

Method SciTSR-test SciTSR-COMP ICDAR-2013

Precision Recall F1 Precision Recall F1 Precision Recall F1

GraphTSR 0.994 0.982 0.988 0.989 0.949 0.969 0.910 0.779 0.839

DGCNN∗ 0.455 0.909 0.606 0.405 0.863 0.552 0.420 0.641 0.507

GFTE 0.723 0.778 0.750 0.710 0.397 0.509 0.791 0.826 0.808

Ours 0.993 0.990 0.992 0.976 0.961 0.969 0.952 0.970 0.961

We compare the overall results of our framework to the state-of-the-art
approaches. Since GraphTSR and GFTE only detect the relations between cells
and their k nearest neighbours, we adopt the same strategy used in [3]. Specifi-
cally, we only consider the relations between cells and their adjacent neighbors
and evaluate the approaches in terms of precision, recall and F1 only for these
adjacent relations.

The results is shown in Table 1. We can see that we achieve the best F1 score
over all datasets. Although the precision score of our method is slightly lower
than that of GraphTSR on the SciTSR and SciTSR-COMP datasets, we achieve
higher recall on all the datasets. Notice that our method greatly outperforms all
other methods on ICDAR-2013 dataset. This is partly because our alignment
model takes cells’ ranks rather than the bounding box coordinates as input.
Thus, our approach is more robust to the absolute locations of cells and achieve
better generalization ability.

3.3 Ablation Study

We perform ablation study to investigate the effectiveness of the proposed three
components in message passing framework. We believe the first component f I

which considers the location difference between cells and prime columns is an
essential part, for model to correctly recognize the relations, and thus we take
f I as the base model. We subsequently incorporate the second component fN

and the third component fR, and evaluate their effectiveness.
Experiments are conducted on SciTSR-COMP dataset, which is the most

challenging dataset containing many tables with complex structure. As discussed
previously, due to the spanning cells, phase one may miss many relations. In
particular, according to the statistics, there are 54326 relations that are not
found in phase one. When comparing different models, we evaluate how many
missing relations are predicted correctly and wrongly. The results are reported

594 H. Li et al.

in Table 2. For ease of comparison, we also present the recall (i.e., the proportion
of the correct relations w.r.t. all the missing relations) and the error rate (i.e.,
the proportion of the wrong relations w.r.t. all found relations).

Table 2. Additional relations found in phase two.

Model #correct #wrong Recall (%) Error (%)

fI(a) 26900 4322 49.52 13.84

+fN (b) 31956 6012 58.82 15.83

+fN +fR(c) 32216 5258 59.30 14.03

From the results, it can be observed that: (1) With phase two, we can cor-
rectly retrieve many more additional relations. Even the base model achieves
recall 49.52%. (2) Comparing (a) and (b), we can conclude that propagating
information between neighboring cells is very helpful in discovering more indi-
rect relations. With fN , we manage to increase the recall to 58.82% with slightly
higher error rate. (3) When combining all three components, we find more cor-
rect relations with the best recall 59.30%. Meanwhile, with the help of the GRU
model, we reduce the number of wrong relations and the error rate.

4 Conclusion

In this work, we propose a novel two-phase approach to tackle table structure
recognition problem. We introduce a notion called prime relation and propose a
graph-based alignment model to efficiently detect the complex table structure.
Our approach is proved to be effective and robust on real-world datasets.

Acknowledgement. This work is supported by NSF of China (62072461).

References

1. Chi, Z., Huang, H., Xu, H.D., Yu, H., Yin, W., Mao, X.L.: Complicated table
structure recognition. arXiv preprint arXiv:1908.04729 (2019)

2. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

3. Göbel, M., Hassan, T., Oro, E., Orsi, G.: ICDAR 2013 table competition. In:
ICDAR, pp. 1449–1453 (2013)

4. Kieninger, T., Dengel, A.: The T-Recs table recognition and analysis system. In:
DAS, pp. 255–270 (1998)

5. Li, Y., Huang, Z., Yan, J., Zhou, Y., Ye, F., Liu, X.: GFTE: graph-based financial
table extraction. In: ICPR Workshops, pp. 644–658 (2020)

6. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: ICML, pp. 807–814 (2010)

http://arxiv.org/abs/1908.04729
http://arxiv.org/abs/1412.3555

A Two-Phase Approach for Recognizing Tables with Complex Structures 595

7. Oro, E., Ruffolo, M.: PDF-TREX: an approach for recognizing and extracting
tables from PDF documents. In: ICDAR, pp. 906–910 (2009)

8. Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: CascadeTabNet:
an approach for end to end table detection and structure recognition from image-
based documents. In: CVPR Workshops, pp. 572–573 (2020)

9. Qasim, S.R., Mahmood, H., Shafait, F.: Rethinking table recognition using graph
neural networks. In: ICDAR, pp. 142–147 (2019)

10. Shigarov, A., Mikhailov, A., Altaev, A.: Configurable table structure recognition
in untagged pdf documents. In: DocEng, pp. 119–122 (2016)

11. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph CNN for learning on point clouds. ACM TOG 38(5), 146:1–146:12 (2019)

Towards Unification of Statistical
Reasoning, OLAP and Association Rule

Mining: Semantics and Pragmatics

Rahul Sharma1(B) , Minakshi Kaushik1 , Sijo Arakkal Peious1 ,
Mahtab Shahin1 , Amrendra Singh Yadav2 , and Dirk Draheim1

1 Information Systems Group, Tallinn University of Technology, Tallinn, Estonia
{rahul.sharma,minakshi.kaushik,sijo.arakkal,mahtab.shahin,

dirk.draheim}@taltech.ee
2 Vellore Institute of Technology - VIT Bhopal, Bhopal, India

Abstract. Over the last decades, various decision support technologies
have gained massive ground in practice and theory. Out of these tech-
nologies, statistical reasoning was used widely to elucidate insights from
data. Later, we have seen the emergence of online analytical process-
ing (OLAP) and association rule mining, which both come with specific
rationales and objectives. Unfortunately, both OLAP and association
rule mining have been introduced with their own specific formalizations
and terminologies. This made and makes it always hard to reuse results
from one domain in another. In particular, it is not always easy to see the
potential of statistical results in OLAP and association rule mining appli-
cation scenarios. This paper aims to bridge the artificial gaps between
the three decision support techniques, i.e., statistical reasoning, OLAP,
and association rule mining and contribute by elaborating the seman-
tic correspondences between their foundations, i.e., probability theory,
relational algebra, and the itemset apparatus. Based on the semantic
correspondences, we provide that the unification of these techniques can
serve as a foundation for designing next-generation multi-paradigm data
mining tools.

Keywords: Data mining · Association rule mining · Online analytical
processing · Statistical reasoning

1 Introduction

Nowadays, decision-makers and organizations are using a variety of modern and
old decision support techniques (DSTs) with their specific features and limited
scope of work. However, in the era of big data and data science, the huge volume
and variety of data generated by billions of internet devices demand advanced

This work has been partially conducted in the project “ICT programme” which was
supported by the European Union through the European Social Fund.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 596–603, 2022.
https://doi.org/10.1007/978-3-031-00123-9_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_48&domain=pdf
http://orcid.org/0000-0002-9024-8768
http://orcid.org/0000-0002-6658-1712
http://orcid.org/0000-0002-7858-9463
http://orcid.org/0000-0002-5784-6301
http://orcid.org/0000-0003-0241-3661
http://orcid.org/0000-0003-3376-7489
https://doi.org/10.1007/978-3-031-00123-9_48

Towards Unification of SR, OLAP and ARM 597

DSTs that can handle a variety of decision support tasks. Currently, no single
DST can fulfill this demand. Therefore, to provide advanced decision support
capabilities, this paper contributes by elaborating the semantic correspondences
between the three popular DSTs, i.e., statistical reasoning (SR) [13], online ana-
lytical processing (OLAP) [3] and association rule mining (ARM) [1,11]. These
correspondences between SR, ARM and OLAP, and vice versa, appear to be
easy, but none of these have been implemented in practice, nor they have been
discussed in the state of the art. However, substantial research has been done over
the years to enhance OLAP, data warehousing, and data mining approaches [7].
In particular, in data mining, Kamber et al. [8], Surjeet et al. [2] have presented
different ways to integrate OLAP and ARM together. Later, Han et al. [5] have
proposed DBMiner for interactive mining. In the state of the art, the adoption
of concepts in between OLAP and ARM (and vice versa) are referred to as auto-
matic OLAP [14] and multi-dimensional ARM [8]. We appraise all approaches
for the integration of the OLAP and ARM. However, the concept of semantic
correspondences between DSTs is yet to be elaborated in the state-of-the-art.
To establish semantic correspondences between the three DSTs, we use proba-
bility theory and conditional expected values (CEVs) at the center of our con-
siderations. CEVs correspond to sliced average aggregates in OLAP and would
correspond to potential ratio-scale confidences in a generalized ARM [4]. Elab-
orating these concepts between DSTs will enable decision-makers to work with
cross-platform decision support tools [6,10] and check their results from different
viewpoints.

The paper is structured as follows: In Sect. 2, we elaborate semantic mapping
between the SR and ARM, i.e., between probability theory and itemset appa-
ratus. In Sect. 3, we discuss the semantic mapping between the SR and OLAP,
i.e., between probability theory and relational algebra. Conclusion is given in
Sect. 4.

2 Semantic Mapping Between SR and ARM

We stick to the original ARM concepts and notation provided by Agrawal et
al. [1]. However, ARM is also presented for numerical data items as quantitative
ARM [12], numerical ARM [9].

In classical ARM, first, there is a whole itemset I = {I1, I2, . . . , In} consisting
of a total number n of items I1, I2, . . . , In. A subset X ⊆ I of the whole itemset
is called an itemset. We then introduce the concept of a set of transactions T
(that fits the itemset I) as a relation as follows:

T ⊆ TID × {0, 1} × · · · × {0, 1}
︸ ︷︷ ︸

n−times

(1)

Here, TID is a finite set of transaction identifiers. For the sake of simplicity,
we assume that it has the form TID = {1, . . . , N}. In fact, we must impose

598 R. Sharma et al.

a uniqueness constraint on TID, i.e., we require that T is right-unique, i.e., a
function given as,

T ∈ TID −→ {0, 1} × · · · × {0, 1}
︸ ︷︷ ︸

n−times

(2)

Given (2), we have that N in TID = {1, . . . , N} equals the size of T , i.e.,
N = |T |. Henceforth, we refer to T interchangeably both as a relation and as
a function, according to (1) resp. (2). For example, we use t = 〈i, i1, . . . in〉 to
denote an arbitrary transaction t ∈ T ; similarly, we use T (i) to denote the i-th
transaction of T more explicitly etc. Given this formalization of the transaction
set T , it is correct to say that T is a binary relation between TID and the whole
itemset. In that, I1, I2, . . . , In need to be thought of as column labels, i.e., there
is exactly one bitmap column for each of the n items in I, compare with (1)
and (2). Similarly, Agrawal et al. have called the single transaction a bit vector
and introduced the notation t[k] for selecting the value of the transaction t in
the k-th column of the bitmap table (in counting the columns of the bitmap
table, the TID column is omitted, as it merely serves the purpose of providing
transaction identities), i.e., given a transaction 〈tid, i1, . . . in〉 ∈ T , we define
〈tid, i1, . . . in〉[k] = ik. Less explicit, with the help of the usual tuple projection
notation πj , we can define t[k] = πk+1(t). Let us call a pair 〈I, T 〉 of a whole
itemset I and a set of transaction T that fits I as described above an ARM
frame. Henceforth, we assume an ARM frame 〈I, T 〉 as given.

A transaction, as previously stated, is a bit vector. For the sake of simplicity,
Let’s start with some notation that makes it possible to treat a transaction as
an itemset. Given a transaction t ∈ T we denote the set of all items that occur
in t as {t} and we define it as follows:

{t} = {Ik ∈ I | t[k] = 1} (3)

The {t} notation provided by (3) will prove helpful later because it allows us
to express transaction properties without having to use bit-vector notation, i.e.,
without having to keep track of item numbers k of items Ik.

Given an Ij ∈ I and a transaction t ∈ T , Agrawal says [1] that Ij is bought
by t if and only if t[j] = 1. Similarly, we can say that t contains Ij in such case.
Next, given an itemset X ⊆ I and a transaction t ∈ T , Agrawal says that t
satisfies X if and only if t[j] = 1 for all Ij ∈ X. Similarly, we can say that t
contains all of the items of X in such case. Next, we can see that t satisfies X
if and only if X ⊆ {t}. Henceforth, we use X ⊆ {t} to denote that t satisfies X.

Given an itemset X ⊆ I, the relative number of all transactions that satisfy
X is called the support of X and is denoted as Supp(X), i.e., we define:

Supp(X) =
|{t ∈ T | X ⊆ {t}}|

|T | (4)

It’s perfectly reasonable to discuss an itemset’s support once more. X as the
relative number of all transactions that each contain all of the items of X.

An ordered pair of itemsets X ⊆ I and Y ⊆ I is called an association rule,
and is denoted by X ⇒ Y . Now, the relative number of all transactions that

Towards Unification of SR, OLAP and ARM 599

satisfy Y among all of those transactions that satisfy X is called the confidence
of X ⇒ Y , and is denoted as Conf(X ⇒ Y), i.e., we define:

Conf(X ⇒ Y) =
|{ t ∈ T | Y ⊆{t} ∧ X ⊆{t} }|

|{t ∈ T | X ⊆ {t}}| (5)

Usually, the confidence of an association rule is introduced via supports of
itemsets as follows:

Conf(X ⇒ Y) =
Supp(X ∪ Y)

Supp(X)
(6)

It can easily be checked that (5) and (6) are equivalent.

2.1 Semantic Mapping Between Association Rule Mining and SR
(Probability Theory)

Here, we compare probability theory to the concepts defined in ARM. Given an
ARM frame F = 〈I, T 〉. next we map the concepts defined in ARM to probability
space (ΩF , ΣF ,PF). First, we define the set of outcomes ΩF to be the set of
transactions T . Next, we define ΣF to be the power set of ΩF . Finally, given
an event X ∈ ΣF , we define the probability of X as the relative size of X, as
follows:

ΩF = T (7)
ΣF = P(T) (8)

PF (X) =
|X|
|T | (9)

In the sequel, we drop the indices from ΩF , ΣF , and PF , i.e., we simply use
Ω, Σ, and P to denote them, but always keep in mind that we actually provide a
mapping from ARM frames F to corresponding probability spaces (ΩF , ΣF ,PF).
The idea is simple. Each transaction is modeled as an outcome and, as usual,
also a basic event. Furthermore, each set of transactions is an event.

We step forward with item and itemsets. For each item I ∈ I we introduce
the event that item I is contained in a transaction, and we denote that event as
[[I]]. Next, for each itemset X ⊆ I, we introduce the event that all of the items in
X are contained in a transaction and we denote that event as [[X]]. We define:

[[I]] = { t | I ∈ {t} } (10)
[[X]] = ∩

I∈X
[[I]] (11)

As usual, we identify an event [[I]] with the characteristic random variable
[[I]] : Ω −→ {0, 1} and use P([[I]]) and P([[I]]=1) as interchangeable.

600 R. Sharma et al.

2.2 Formal Mapping of ARM Support and Confidence to
Probability Theory

Based on the mapping provided by (7) through (11), we can see how ARM
Support and Confidence translate into probability theory.

Lemma 1 (Mapping ARM Support to Probability Theory) Given an
itemset X ⊆ I, we have that:

Supp(X) = P([[X]]) (12)

Proof. According to (11), we have that P([[X]]) equals

P(∩
I∈X

[[I]]) (13)

Due to (10), we have that (13) equals

P
(

∩
I∈X

{ t ∈ T | I ∈ {t} }
)

(14)

We have that (14) equals

P({ t ∈ T | ∧
I∈X

I ∈ {t} }) (15)

We have that (15) equals

P({t ∈ T | X ⊆ {t}}) (16)

According to (9), we have that (16) equals

|{t ∈ T | X ⊆ {t}}|
|T | (17)

According to (4), we have that (17) equals Supp(X) ��

Lemma 2 (Mapping ARM Confidence to Probability Theory) Given
an itemset X ⊆ I, we have that:

Conf(X ⇒Y) = P
(

[[Y]]
∣

∣ [[X]]
)

(18)

Proof. Omitted.

With these mappings, we provide that a set of items in ARM I =
{I1, I2, . . . , Im} are equivalent to the set of events I = {I1 ⊆ Ω, . . . , Im ⊆ Ω} in
probability theory. Transactions T in ARM are equivalent to the set of outcomes
Ω in probability space (Ω,Σ,P). Support of an itemset X in ARM is equivalent
to the relative probability of the itemset X. Confidence of an association rule
X ⇒Y is equivalent to the conditional probability of Y in the presence of X.

Towards Unification of SR, OLAP and ARM 601

3 Semantic Mapping Between SR and OLAP

As per our findings, conditional operations on bitmap (Binary) columns corre-
spond to conditional probabilities, whereas conditional operations on numerical
columns correspond to conditional expected values, e.g., we model a sample
OLAP Table 1 in probability theory. We consider that Table 1 is equivalent to
the set of outcomes Ω in probability space (Ω,Σ,P), a row r is an element of
Ω, i.e. r ∈ Ω and each column c is equivalent to a random variable R. We con-
sider numerical columns as finite real-valued random variables (For Example:
Salary ∈ Ω ⊆ R) and bitmap columns are considered as events (For Example:
Freelancer ⊆ Ω). The following is a probabilistic interpretation of the OLAP
Table 1.

Table 1. A sample OLAP table.

City Profession Education Age group Freelancer Salary

New York Lawyer Master 25–30 0 3.800

Seattle IT Bachelor 18–25 1 4.200

Boston Lawyer PhD 40–50 1 12.700

L.A Chef High School 30–40 0 3.700

.

3.1 Semantic Mapping Between OLAP Averages and SR

Generally, decision-makers use SQL queries to interact with OLAP [3]. Therefore,
we use OLAP queries to be mapped with SR, i.e., probability theory. We have
a simple OLAP average query; (SELECT AVG(Salary) FROM Table 1). If the
number of rows of Table 1 is represented by |Ω| and the number of rows that
contain a value i in column C are equivalent to #C(i) then AVG(Salary) FROM
Table 1 will compute the average of all the salaries, i.e., a fraction of the sum of
the column (Salary) and the total number of rows in the table. In probability
theory, the average of a random variable X is the Expected Value of X = E[X].
We compare the expected value of X, i.e., E(X) with the output of the AVG
query in OLAP. We have:

OLAP − Query (SELECT AV G (Salary) FROM Table 1) (19)

Expected Value: E(Salary) =
∑

i∈ISalary

i · P(Salary = i) (20)

=
∑

i∈ISalary

i · #Salary(i)
|Ω| =

∑

r∈Ω
Salary(r)

|Ω| (21)

602 R. Sharma et al.

As per Eq. 20 and Eq. 21, the average of a random variable X in proba-
bility theory and simple averages of an OLAP query provides the same out-
come. Hence, we say that an average query in OLAP corresponds to expected
values in probability theory. The conditional average queries in OLAP cal-
culate averages of a column with a WHERE clause. For example, we have
an average SQL query with some conditions where the target column is
numerical and conditional variables have arbitrary values. We have: SELECT
AVG(Salary) FROM Table 1 WHERE City = Seattle AND Profession=IT;.
In probability theory, we compute the conditional average of a random number
using its conditional expectation. Therefore, the conditional expectation of a
random number Y with condition X is given as:

E(Y |X) =
∞
∑

n=0

in · P(Y = in|X) (22)

f(i) = E(Y = in|X) (23)

Here, the value E(Y = in|X) is dependent on the value of i. Therefore, we
say that E(Y = in|X) is a function of i, which is given in Eq. 23. We compare the
conditional expected value of E(Y = in|X) with the output of the conditional
AVG query in OLAP. We have:

OLAP Query : SELECT AV G(Salary) FROM Table 1
WHERE City = Seattle AND Profession = IT ; (24)

Conditional Expected Value: E(Salary |City=Seattle ∩ Profession=IT) (25)

E(Y |X) =
∑

i∈IC

i · P(Y = i |X) (26)

As per Eq. 25 and Eq. 26, the average of a random variable Y with condition
X (Conditional Expected values) and the conditional average of an OLAP query
provides the same outcome. Hence, we can say that a conditional average query
in OLAP corresponds to the conditional expected values in probability theory.
Based on these mappings in OLAP, conditional averages on binary columns
correspond to conditional probability and they also correspond to confidence in
ARM.

4 Conclusion

In this paper, we elaborated semantic correspondences between the three DSTs,
i.e., SR, OLAP and ARM. We identify that SR, OLAP, and ARM operations
complement each other in data understanding, visualization, and making indi-
vidualized decisions. In the proposed mappings, it is identified that OLAP and
ARM have common statistical reasoning, exploratory data analysis methods and
offer similar solutions for decision support problems. Based on these findings, we
can review current obstacles in each of SR, OLAP and ARM. Furthermore, the
semantic correspondences between the three DSTs will be helpful in designing
certain next-generation hybrid decision support tools.

Towards Unification of SR, OLAP and ARM 603

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. ACM SIGMOD Rec. 22(2), 207–216 (1993). https://doi.
org/10.1145/170036.170072

2. Chaudhuri, S., Dayal, U.: Data warehousing and olap for decision support. In:
Proceedings of the 1997 ACM SIGMOD International Conference on Management
of Data, SIGMOD 1997, pp. 507–508. Association for Computing Machinery, New
York (1997). https://doi.org/10.1145/253260.253373

3. Codd, E.F.: Providing olap (on-line analytical processing) to user-analysts: An
it mandate. Available from Arbor Software’s web site-http://www.arborsoft.com/
papers/coddTOC.html (1993)

4. Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A.M., Khalil,
I. (eds.): DEXA 2019. LNCS, vol. 11706. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-27615-7

5. Han, J., Fu, Y., Wang, W., Chiang, J., Zäıane, O.R., Koperski, K.: DBMiner: inter-
active mining of multiple-level knowledge in relational databases. In: Proceedings
of SIGMOD’96 - the 1996 ACM SIGMOD International Conference on Manage-
ment of Data, p. 550. Association for Computing Machinery (1996). https://doi.
org/10.1145/233269.280356

6. Heinrichs, J.H., Lim, J.S.: Integrating web-based data mining tools with business
models for knowledge management. Decis. Support Syst. 35(1), 103–112 (2003).
https://doi.org/10.1016/S0167-9236(02)00098-2

7. Imieliński, T., Khachiyan, L., Abdulghani, A.: Cubegrades: generalizing association
rules. Data Min. Knowl. Disc. 6(3), 219–257 (2002)

8. Kamber, M., Han, J., Chiang, J.: Metarule-guided mining of multi-dimensional
association rules using data cubes. In: Proceedings of VLDB’1994 - the 20th Inter-
national Conference on Very Large Data Bases, KDD 1997, pp. 207–210. AAAI
Press (1997)

9. Kaushik, M., Sharma, R., Peious, S.A., Shahin, M., Yahia, S.B., Draheim, D.: A
systematic assessment of numerical association rule mining methods. SN Comput.
Sci. 2(5), 1–13 (2021)

10. Arakkal Peious, S., Sharma, R., Kaushik, M., Shah, S.A., Yahia, S.B.: Grand
reports: a tool for generalizing association rule mining to numeric target values. In:
Song, M., Song, I.-Y., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2020. LNCS,
vol. 12393, pp. 28–37. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59065-9 3

11. Sharma, R., Kaushik, M., Peious, S.A., Yahia, S.B., Draheim, D.: Expected vs.
unexpected: selecting right measures of interestingness. In: Song, M., Song, I.-Y.,
Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2020. LNCS, vol. 12393, pp. 38–47.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59065-9 4

12. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational
tables. SIGMOD Rec. 25(2), 1–12 (1996)

13. Stigler, S.M.: The History of Statistics: The Measurement of Uncertainty Before
1900. Harvard University Press (1986)

14. Zhu, H.: On-line analytical mining of association rules. In: Master’s thesis. Simon
Fraser University, Burnaby, Brithish Columbia, Canada (1998)

https://doi.org/10.1145/170036.170072
https://doi.org/10.1145/170036.170072
https://doi.org/10.1145/253260.253373
http://www.arborsoft.com/papers/coddTOC.html
http://www.arborsoft.com/papers/coddTOC.html
https://doi.org/10.1007/978-3-030-27615-7
https://doi.org/10.1007/978-3-030-27615-7
https://doi.org/10.1145/233269.280356
https://doi.org/10.1145/233269.280356
https://doi.org/10.1016/S0167-9236(02)00098-2
https://doi.org/10.1007/978-3-030-59065-9_3
https://doi.org/10.1007/978-3-030-59065-9_3
https://doi.org/10.1007/978-3-030-59065-9_4

A Dynamic Heterogeneous Graph
Perception Network with Time-Based
Mini-Batch for Information Diffusion

Prediction

Wei Fan, Meng Liu, and Yong Liu(B)

Heilongjiang University, Harbin, China
{2201792,2191438}@s.hlju.edu.cn, liuyong123456@hlju.edu.cn

Abstract. Information diffusion prediction is an important task to
understand how information spreads among users. Most previous stud-
ies either only focused on the use of diffusion sequences, or only used
social networks between users to make prediction, but such modeling is
not sufficient to model the diffusion process. In this paper, we propose
a novel Dynamic Heterogeneous Graph Perception Network with Time-
Based Mini-Batch (DHGPNTM) that can combine dynamic diffusion
graph and social graph for information diffusion prediction. First, we
propose a Graph Perception Network (GPN) to learn user embedding in
dynamic heterogeneous graphs, and combine temporal information with
user embedding to capture users’ dynamic preferences. Then we use a
multi-head attention to generate users’ context-dependence embedding,
and design a fusion gate to selectively integrate users’ dynamic prefer-
ences and context-dependence embedding. The extensive experiments on
real datasets demonstrate the effectiveness and efficiency of our model.

Keywords: Social network · Information diffusion prediction · Graph
Perception Network · Multi-head attention

1 Introduction

Analyzing information diffusion data to explore information diffusion mechanism
has gradually become a hot research topic, which receive great attention in data
mining. The information diffusion prediction task aims to study how information
is transmitted between users and predict who will be infected in the future,
which plays an important role in many applications, e.g., rumor detection [1],
epidemiology [2], viral marketing [3], media advertising [4] and the spread of
news and memes [5,6].

Traditional methods usually rely on explicit features, such as temporal infor-
mation [7], user characteristics [8], content [9] and interaction between users [10].
Although they have significantly improved the performance of diffusion predic-
tion, the feature engineering process requires much manual effort and extensive
domain knowledge. Recent work attempts to use deep learning to address this
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 604–612, 2022.
https://doi.org/10.1007/978-3-031-00123-9_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_49&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_49

Dynamic Heterogeneous Graph Perception Network 605

problem. Some researchers propose models based on diffusion sequences [11–
14]. There are also some researchers explore the interaction of users in social
networks [8,15,16]. They widely use graph neural networks to aggregate user
embedding in social network for predicting information diffusion [17–21].

However, there are several challenges with the recent work. On one hand,
the above works either only focus on the use of diffusion path, or only use social
network, but do not consider two important factors. On the other hand, although
graph neural networks have been used to model graph data, existing GNNs have
still the problem of over smoothing.

In order to overcome the above challenges, we propose a novel Dynamic
Heterogeneous Graph Perception Network with Time-Based Mini-Batch (DHG-
PNTM) for Information Diffusion Prediction. First, we construct heterogeneous
graphs composed of the social graph and dynamic diffusion graphs. Second, we
propose a graph neural network model called Graph Perception Network (GPN)
to capture user structural embedding. Then we embed the temporal information
into the user embedding through the self-attention mechanism to learn users’
dynamic preferences. Afterwards, a multi-head attention mechanism is used to
capture users’ context-dependence embedding. Finally, we design a fusion gate to
selectively integrate users’ dynamic preferences and context-dependence embed-
ding. To further enhance the training speed of model, we also propose a time-
based mini-batch method to construct mini-batch input for training model. The
experimental results show that DHGPNTM significantly outperformes several
baseline methods. The source code can be found at https://github.com/
DHGPNTM/DHGPNTM.

2 Related Work

2.1 Diffusion Path Based Methods

Diffusion path based methods interpret the interpersonal influence based on
observed diffusion sequences. In some work [11–13], deep learning is used to
automatically learn the embedding of the diffusion path. For example, Topo-
LSTM [11] constructs a dynamic directed acyclic graph (DAG) composed of
diffusion paths, and uses topology-aware node embedding to extend the LSTM
mechanism to learn the DAG structure. DeepDiffuse [13] uses the infection times-
tamp and attention mechanism to predict when and who will be infected based
on the previously observed diffusion paths.

2.2 Social Graph Based Methods

Social graph based methods utilizes social networks to explain the interper-
sonal influence on diffusion prediction and improve prediction accuracy in some
work [8,14–16]. For example, [14] uses the structural features between neigh-
bors in social network, and uses a framework based on RNN to model the diffu-
sion sequence. [16] proposes a multi-scale information diffusion prediction model.
They use a combination of RNN and reinforcement learning to predict the next
infected user and the total number of infected users.

https://github.com/DHGPNTM/DHGPNTM
https://github.com/DHGPNTM/DHGPNTM

606 W. Fan et al.

3 Problem Definition

A social graph can be defined as G = (V,E), where V and E represent the
user set and the edge set, respectively. If there is a link between u and v,
then eu,v = 1. In addition, the diffusion of message xi is recorded as xi =
{(vi,1, ti,1), (vi,2, ti,2), ..., (vi,Nc

, ti,Nc
)}, where the element (vi,j , ti,j) indicates

user vi,j was infected at time ti,j in the i-th cascade, and Nc indicates how many
people have spread this message. The information diffusion prediction task aims
to predict the next infected user vi,Nc+1. That is to say, we need a model to learn
the conditional probability P (vi,Nc+1|{(vi,1, ti,1), (vi,2, ti,2), ..., (vi,Nc

, ti,Nc
)}).

We use a diffusion cascade xi to construct a diffusion graph Gxi
= (Vxi

, Exi
),

where Vxi
⊂ V . If user u reposts or comments on message posted by user v, then

ev,u = 1. We use diffusion cascade set X = {x1, x2, ..., xM} to construct the
diffusion graph set GX = {Gx1 , Gx2 , ..., GxM

}, where M is the total number of
messages. Then we combine small diffusion graphs in GX to construct a large
diffusion graph GM . Finally, we divide the diffusion graph GM into n time inter-
vals. Thus the diffusion graph GM can be defined as GM = {G1

M , G2
M , ..., Gn

M},
where each Gi

M denotes the dynamic diffusion graph in the i-th time interval.
Please note that Gi

M also contains dynamic diffusion action before the i-th time
interval. Thus we have Gi−1

M ⊂ Gi
M .

Fig. 1. The architecture of dynamic heterogeneous graph perception network with
time-based mini-batch.

Dynamic Heterogeneous Graph Perception Network 607

4 Method

The overview architecture of our model is shown in Fig. 1. First, we construct
dynamic heterogeneous graphs based on a social graph and dynamic diffusion
graphs. Second, we design a graph perception network (GPN) that can learn user
embedding. Third, we construct a mini-batch input called time-based mini-batch
and design a time-aware attention to learn users’ dynamic preferences. Following
this, the multi-head attention with mask is used to learn context dependence,
and the fusion gate is used to fuse users’ dynamic preferences and dependence-
aware embedding to predict the user that will be infected.

4.1 Heterogeneous Graph Construction

We use a social graph G = (V,E) and the dynamic diffusion graph Gi
M =

(V i
M , Ei

M) in the i-th time interval to construct the dynamic heterogeneous graph
Gi

H = (V,Ei
H) in the i-th time interval, where Ei

H = E ∪ Ei
M . Finally, the

dynamic heterogeneous graph set is defined as GH = {G1
H , G2

H , ..., Gn
H}, where

each Gi
H is the heterogeneous graph in the i-th time interval.

4.2 Graph Perception Network (GPN)

Each GPNConv layer in GPN performs graph convolution operations and feature
aggregation of neighbors, the embedding hl

v of user v in the l-th layer is updated
through the following formula:

euv = ReLU((f l
MLP (hl−1

v))TW l
af

l
MLP (hl−1

u)), (1)

αuv = Softmax(euv) =
exp(euv)∑

k∈N(v)∪{v} exp(ekv)
, (2)

hl
v = ReLU(

∑

u∈N(v)∪{v}
αuv · f l

MLP (hl−1
u)), (3)

where f l
MLP is a two-layer perception network in the l-th layer, W l

a ∈ Rd×d is
a learnable matrix parameter where d is the dimension size, and N(v) is the
neighbors of node v. The final output embedding of GPN can be defined as
follows:

hv = ReLU(fP (h0
v) + fP (hL

v)), (4)

where fP is a single-layer perceptual network for residual connection.

4.3 User Dynamic Preferences Based on Mini-Batch

In order to speed up the training of our model, we propose a time-based mini-
batch method. In a batch, we divide the sequences of all messages into multiple
groups according to the length of step len. Then we use the latest timestamp in

608 W. Fan et al.

each group as the timestamp for all users in the same group. Through this Mini-
Batch process, we obtain the converted timestamp of all users. Each converted
timestamp will be assigned to one of n time intervals. Each time interval corre-
ponds to a temporal embedding. Finally, we can obtain the dynamic preferences
ṽij ∈ Rd of user j in message i through the following formula:

ṽij = Softmax(
hT
j t′√
d

) · hj , t′ = Lookup(tij), (5)

where tij is the converted timestamp of user j in message i, t′ ∈ Rd is a temporal
embedding corresponding to tij , Lookup() converts a time timestamp into a
temporal embedding, and hj ∈ Rd is an embedding of user j obtained by GPN.

4.4 Dependency-Aware User Embedding

We use the learned user preferences Ṽ = {ṽ11, ṽ12, ..., ṽMNc
} ∈ RM×Nc×d to

capture the context dependency between users through a multi-head attention
mechanism. This process can be defined as follows:

Attention(Q,K, S) = Softmax(
QKT

√
dk

+ C)S,

hi = Attention(Ṽ WQ
i , Ṽ WK

i , Ṽ WS
i),

Z = [h1 : h2 : ... : hHead]WO,

(6)

where WQ
i ,WK

i ,WS
i ∈ Rd×dk , WO ∈ Rd×d are learnable paremeters, and Head

is the number of heads of multi-head attention. dk = d/Head. Z ∈ RM×Nc×d

represents dependency-aware user embedding in all messages. The mask C ∈
RM×Nc×Nc is used to turn off the attention weight for future time.

4.5 Fusion Gate

In order to integrate dependency-aware user embedding with dynamic prefer-
ences, we design a fusion gate to produce final user embedding as follows:

F = sigmoid(Ṽ W 1
f + ZW 2

f + bf), A = F � Ṽ + (1 − F) � Z, (7)

where W 1
f ,W 2

f ∈ Rd×d and bf ∈ RM×Nc×d are learnable paremeters. After
we obtain the final user embedding A ∈ RM×Nc×d, we calculate the diffusion
probability Ŷ :

Ŷ = Softmax(W2(Relu(W1A
T + b1))T + b2), (8)

where W1 ∈ R|V |×d,W2 ∈ RM×M , b1 ∈ R|V |×Nc×M and b2 ∈ RM×Nc×|V | are the
learnable parameters. Finally, we use the minimized cross-entropy loss to train
model, which is formulated as follows:

L(θ) = −
M∑

i=1

Nc∑

j=2

|V |∑

k=1

yijk log(ŷijk), (9)

Dynamic Heterogeneous Graph Perception Network 609

where θ denotes all the parameters that will be learned, yijk is the groundtruth
label, and yijk = 1 means that the user k is the j-th user that forwards message
i, otherwise yijk = 0.

5 Experiments

5.1 Experimental Settings

Datasets. Like previous works [16,22], we conduct extensive experiments on
three datasets Memetracker [5], Twitter [23] and Douban [24] to validate the
proposed model.

Baselines. In order to evaluate the performance of DHGPNTM, we compare
our model with the following state-of-the-art baselines: TopoLSTM [11], Deep-
Diffuse [13], NDM [25], SNIDSA [14], FOREST [16] and DyHGCN [22].

Evaluation Metrics. We use two widely used ranking metrics for evaluation:
Mean Average Precision on top k (Map@k) and Hits score on top k (Hits@k).

Parameter Setups. Our model is implemented by PyTorch. The parameters
are updated by Adam optimizer. The batch size is set to 16. The dimension size
of user embedding and temporal embedding are both 64. We use GPN composed
of a layer of GPNConv to learn user embedding. The step len is set to 5. The
head number of multi-head attention is set to 8. The number of time intervals
n is set to 8.

5.2 Experimental Results

The experimental results on three datasets are shown in Table 1. Compared
with TopoLSTM, DeepDiffuse and NDM, DHGPNTM has a great improvement
in terms of hits@k and map@k. These baseline methods model the diffusion path
as a sequence, and they do not use social network. However, social network can
reflect the relationships between users, facilatating information flow between
users. The experimental results show that the social network has a positive
influence on information diffusion prediction.

Compared with SNIDSA and FOREST, DHGPNTM also has a great
improvement in terms of hits@k and map@k. Although SNIDSA and FOREST
use social network, they do not take diffusion structure into consideration. DHG-
PNTM not only uses social network, but also exploits diffusion graphs to model
diffusion behavior, which brings a significant performance improvement.

Compared with DyHGCN, DHGPNTM has a clear improvement as well.
Although DyHGCN uses both social network and diffusion graphs to model
diffusion behavior, it uses GCN to capture structural information. As shown in
literature [26], when multiple GCN layers are applied to learn node embedding,
all nodes will converge to the same semantics. Therefore, we design a novel GPN
network to replace GCN to alleviate over smoothness. Furthermore, We propose
a fusion gate to combine users’ dynamic preferences and context-dependence
embedding to further enhance the performance. Hence, DHGPNTM is superior
to DyHGCN in terms of hits@k and map@k.

610 W. Fan et al.

Table 1. Experimental results of all models on three datasets. Due to the lack of social
graph in Memetracker, we ignore the TopoLSTM and SNIDSA model in Memetracker.

Datasets Model hits@10 hits@50 hits@100 map@10 map@50 map@100

Twitter DeepDiffuse 4.57 8.80 13.39 3.62 3.79 3.85

TopoLSTM 6.51 15.48 23.68 4.31 4.67 4.79

NDM 21.52 32.23 38.31 14.30 14.80 14.89

SNIDSA 23.37 35.46 43.49 14.84 15.40 15.51

FOREST 26.18 40.95 50.39 17.21 17.88 18.02

DyHGCN 28.10 47.17 58.16 16.86 17.73 17.89

DHGPNTM 29.68 48.65 59.86 18.13 18.99 19.15

Douban DeepDiffuse 9.02 14.93 19.13 4.80 5.07 5.13

TopoLSTM 9.16 14.94 18.93 5.00 5.26 5.32

NDM 10.31 18.87 24.02 5.54 5.93 6.00

SNIDSA 11.81 21.91 28.37 6.36 6.81 6.91

FOREST 14.16 24.79 31.25 7.89 8.38 8.47

DyHGCN 15.92 28.53 36.05 8.56 9.12 9.23

DHGPNTM 17.86 31.32 38.87 10.37 10.98 11.09

Memetracker DeepDiffuse 13.93 26.50 34.77 8.14 8.69 8.80

NDM 25.44 42.19 51.14 13.57 14.33 14.46

FOREST 29.43 47.41 56.77 16.37 17.21 17.34

DyHGCN 29.74 48.45 58.39 16.48 17.33 17.48

DHGPNTM 30.70 50.48 60.63 18.01 18.92 19.06

6 Conclusion

In this paper, we investigate the problem of information diffusion prediction. We
propose a novel dynamic heterogeneous graph perception network with time-
based mini-batch, called DHGPNTM, to model the social graph and dynamic
diffusion graphs. In DHGPNTM, we design a graph perception network (GPN)
to learn user embedding, and design a fusion gate to selectively integrate
users’ dynamic preferences and context-dependence embedding. The experimen-
tal results show that our model is better than the state of the art baselines.

Acknowledgement. This work was supported by the Natural Science Foundation of
Heilongjiang Province in China (No. LH2020F043), the Innovation Talents Project
of Science and Technology Bureau of Harbin in China (No. 2017RAQXJ094), the
Foundation of Graduate Innovative Research of Heilongjiang University in China (No.
YJSCX2021-076HLJU).

Dynamic Heterogeneous Graph Perception Network 611

References

1. Takahashi, T., Igata, N.: Rumor detection on twitter. In: SCIS&ISIS, pp. 452–457.
IEEE (2012)

2. Wallinga, J., Teunis, P.: Different epidemic curves for severe acute respiratory
syndrome reveal similar impacts of control measures. Am. J. Epidemiol. 160(6),
509–516 (2004)

3. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing.
ACM Trans. Web (TWEB) 1(1), 5-es (2007)

4. Li, H., Ma, X., Wang, F., Liu, J., Xu, K.: On popularity prediction of videos shared
in online social networks. In: CIKM, pp. 169–178. ACM (2013)

5. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the
news cycle. In: SIGKDD, pp. 497–506. ACM (2009)

6. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science
359(6380), 1146–1151 (2018)

7. Cheng, J., Adamic, L.A., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades
be predicted? In: WWW, pp. 925–936 (2014)

8. Yang, Y., et al.: RAIN: social role-aware information diffusion. In: AAAI (2015)
9. Tsur, O., Rappoport, A.: What’s in a hashtag?: content based prediction of the

spread of ideas in microblogging communities. In: WSDM, pp. 643–652. ACM
(2012)

10. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social
networks. In: WSDM, pp. 241–250. ACM (2010)

11. Wang, J., Zheng, V.W., Liu, Z., Chang, K.C.C.: Topological recurrent neural net-
work for diffusion prediction. In: ICDM, pp. 475–484. IEEE (2017)

12. Wang, Y., Shen, H., Liu, S., Gao, J., Cheng, X.: Cascade dynamics modeling with
attention-based recurrent neural network. In: IJCAI, pp. 2985–2991 (2017)

13. Islam, M.R., MUTHIAHS, A.: DeepDiffuse: predicting the ‘Who’ and ‘When’ in
Cascades. In: ICDM, pp. 1055–1060. IEEE (2018)

14. Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with
structure attention. In: CIKM, pp. 1795–1798. ACM (2018)

15. Bourigault, S., Lamprier, S., Gallinari, P.: Representation learning for information
diffusion through social networks: an embedded cascade model. In: WSDM, pp.
573–582. ACM (2016)

16. Yang, C., Tang, J., Sun, M., Cui, G., Liu, Z.: Multi-scale information diffusion
prediction with reinforced recurrent networks. In: IJCAI, pp. 4033–4039 (2019)

17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

18. Wang, H., Li, J., Luo, T.: Graph semantics based neighboring attentional entity
alignment for knowledge graphs. In: ICIC, pp. 355–367 (2021)

19. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: AAAI (2018)

20. Zhang, X., Zhang, T., Zhao, W., Cui, Z., Yang, J.: Dual attention graph convolu-
tional networks. In: IJCNN, pp. 238–251 (2019)

21. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826 (2018)

22. Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S.: DyHGCN: a dynamic het-
erogeneous graph convolutional network to learn user’s dynamic preferences for
information diffusion prediction. In: PKDD, pp. 347–363 (2020)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.00826

612 W. Fan et al.

23. Hodas, N.O., Lerman, K.: The simple rules of social contagion. Sci. Rep. 4(1), 1–7
(2014)

24. Zhong, E., Fan, W., Wang, J., Xiao, L., Li, Y.: ComSoc: adaptive transfer of user
behaviors over composite social network. In: SIGKDD, pp. 696–704. ACM (2012)

25. Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., Luan, H.: Neural Diffusion Model for
Microscopic Cascade Prediction. arXiv preprint arXiv:1812.08933 (2018)

26. Huang, Z., Wang, Z., Zhang, R.: Cascade2vec: learning dynamic cascade represen-
tation by recurrent graph neural networks. IEEE Access 7, 144800–144812 (2019)

http://arxiv.org/abs/1812.08933

Graphs

Cascade-Enhanced Graph Convolutional
Network for Information Diffusion

Prediction

Ding Wang1,2, Lingwei Wei1,2, Chunyuan Yuan3, Yinan Bao1,2,
Wei Zhou1(B), Xian Zhu1,2, and Songlin Hu1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{wangding,weilingwei,baoyinan,zhouwei,zhuxian,husonglin}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 JD.com, Beijing, China

Abstract. Information diffusion prediction aims to estimate the prob-
ability of an inactive user to be activated next in an information dif-
fusion cascade. Existing works predict future user activation either by
capturing sequential dependencies within the cascade or leveraging rich
graph connections among users. However, most of them perform predic-
tion based on user correlations within the current cascade without fully
exploiting diffusion properties from other cascades, which may contain
beneficial collaborative patterns for the current cascade. In this paper,
we propose a novel Cascade-Enhanced Graph Convolutional Networks
(CE-GCN), effectively exploiting collaborative patterns over cascades to
enhance the prediction of future infections in the target cascade. Specif-
ically, we explicitly integrate cascades into diffusion process modeling
via a heterogeneous graph. Then, the collaborative patterns are explic-
itly injected into unified user embedding by message passing. Besides, we
design a cascade-specific aggregator to adaptively refine user embeddings
by modeling different effects of collaborative features from other cascades
with the guidance of user context and time context in the current cas-
cade. Extensive experiments on three public datasets demonstrate the
effectiveness of the proposed model.

Keywords: Information diffusion prediction · Graph neural network ·
Heterogeneous graph

1 Introduction

The progress of online media has made it convenient for people to post and
share information online, triggering large information diffusion cascades. As a

D. Wang and L. Wei—Both are first authors with equal contributions.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 615–631, 2022.
https://doi.org/10.1007/978-3-031-00123-9_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_50&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_50

616 D. Wang et al.

Fig. 1. A motivation example of exploiting collaborative patterns from other cascades.
Suppose there are three cascades available and the current cascade is Cascade #2.

huge number of cascades are tracked and recorded, researchers have been moti-
vated to investigate the pattern of information dissemination on the Internet via
the task of information diffusion prediction. This novel task plays an increasingly
significant role in many areas, such as modeling user behavior for recommenda-
tion [25] and influence prediction [14,27].

To address the task of diffusion prediction, researchers [1,21,23,26,27,29]
have proposed a plethora of approaches. Prior studies [9,21,22] try to understand
the diffusion pattern via sequential models. They regard the diffusion cascade as
a sequence and predict the future user activation by capturing linear correlations
within the current cascade. Although these models have achieved remarkable
results, they are incapable of capturing the complex user dependencies due to
over-simplified modeling for the diffusion process. Recently, with the observation
that most of the diffusion cascade is created in the online social network and
the promising result of graph representation in several areas, some works [16,18,
23,27,29] leverage rich connections among users to model the diffusion process,
demonstrating remarkable prediction performances.

However, previous works mainly focus on leveraging information within the
current cascade for prediction without fully exploiting collaborative diffusion
patterns provided by other cascades. As shown in Fig. 1, when predicting the
potential diffusion trend in Cascade #2 after timestamp t4, collaborative pat-
terns from the other cascades might provide helpful suggestions, e.g., new pair-
wise user C → F from Cascade #1 and user C → G from Cascade #3. Moreover,
it can be observed that distinguishing the effect of diffusion patterns from dif-
ferent cascades could enhance predicting accuracy for the current cascade. For
example, when predicting the next infected users after user C in Cascade #2 at
timestamp t6, the property from Cascade #3 may offer more helpful information
than that from Cascade #1. Cascade #3 not only shares more infected users with
the current Cascade #2 but also exhibits a similar temporal pattern between
user C and user G, indicating that user G is more likely to be infected next
in Cascade #2. Therefore, it is beneficial but challenging to effectively exploit
relevant collaborative patterns to promote the task of diffusion prediction.

In this paper, we propose a novel Cascade-Enhanced Graph Convolutional
Network (CE-GCN), which effectively exploits collaborative patterns over cas-

CE-GCN for Information Diffusion Prediction 617

cades to enhance the learning of user representation for the current cas-
cade. Specifically, we first assign nodes for all cascades and users, and exploit
multiple relations to construct the heterogeneous graph to comprehensively
model the diffusion process. Then, we design a novel message passing mecha-
nism on the constructed heterogeneous graph to fully explore rich collaborative
patterns among different cascades and generate representations for both users
and cascades. After that, we design a cascade-specific aggregator to distinguish
the impact of different collaborative patterns. The module automatically refines
the user representation by focusing on more relevant features within the cur-
rent cascade. Finally, the refined user representations are leveraged to predict
the diffusion process by retrieving potential users via a multi-head self-attention
module.

To evaluate the proposed model, we conduct experiments on three public
datasets. The experimental results demonstrate that CE-GCN consistently out-
performs several strong baselines, which shows the effectiveness of the proposed
model.

The contributions of this paper are three-fold:

– We propose a novel Cascade-Enhanced Graph Convolutional Network (CE-
GCN) to enhance the learning of user embeddings by exploiting collaborative
patterns over all cascades.

– We design a cascade-specific aggregator to adaptively refine user representa-
tions by distinguishing different effects of collaborative patterns from other
cascades based on user context and time context in the current cascade.

– We conduct extensive experiments on three public datasets. CE-GCN sig-
nificantly outperforms state-of-the-art models on the information diffusion
prediction task.

2 Related Work

In this section, we review related studies on information diffusion prediction and
graph neural networks.

2.1 Information Diffusion Prediction

Information diffusion prediction explores to forecast the diffusion trend based
on the historical infected users. Early researchers model the diffusion process by
assuming an underlying diffusion model, such as the independent cascade model
or linear threshold model [10], which requires extensive manual analysis for the
social network and diffusion cascades.

With the promising achievement of deep learning in sequence prediction,
researchers have adopted different models for the task. Prior researchers [7,9,15,
21,26] model the diffusion cascade as a sequence and explore to detect the dif-
fusion tendency by capturing linear dependencies within the cascade. For exam-
ple, Wang et al. [21] model the diffusion process as a directed acyclic graph

618 D. Wang et al.

and explore user dependencies in the cascade through an improved Long Short-
Term Memory (LSTM) module. Yang et al. [26] propose to capture long-term
dependency in the cascade via self-attention mechanism and convolution neural
networks (CNN). Islam et al. [9] employ the embedding technique and atten-
tion mechanism to incorporate the infected timestamp with user correlation for
prediction.

Recently, as works [4,6] have found that rich social connections among users
could show potential dependencies, some researchers [18,23,24,29] improved
user representations by leveraging rich graph connections. For example, Wang
et al. [23] fuse the target diffusion paths and social graph into Recurrent Neural
Network (RNN) to construct user embeddings for prediction. Yang et al. [27]
propose a comprehensive diffusion prediction model. They employ reinforcement
learning and social connections to jointly predict the next infected user and
estimate the total size of infected users, which enhances the performance on
both microscopic and macroscopic diffusion prediction tasks. Sankar et al. [16]
propose a fully generative model via a variational graph autoencoder to capture
complex correlations within users for prediction. Su et al. [18] model the diffusion
process as a heterogeneous graph and incorporate meta-path properties and text
information to predict social contagion adoption. Yuan et al. [29] utilize diffusion
and social relations to construct user representations based on a discrete-time
dynamic graph neural network.

However, most previous works learn user embeddings based on user depen-
dencies in the current cascade, failing to fully utilize the collaborative diffusion
pattern from other cascades. To tackle the challenge, this paper investigates col-
laborative patterns over all cascades to enhance the learning of user embeddings.

2.2 Graph Neural Networks

Recently, Graph Neural Network (GNN) has been widely applied to analyze
graph structures in many tasks [28] due to its convincing performance and high
interpretability. As the most commonly used model, graph convolutional net-
works (GCNs) [12] have been broadly applied to capture graph level dependency
via message passing mechanism between nodes. Unlike standard neural networks,
GCNs retain node states that can represent the node from its neighborhood
with arbitrary depth, which could build more expressive node representations
for downstream tasks. Moreover, variants of graph neural network [17,20] have
been designed for different tasks with a convincing performance.

For our model, with the graph embedding technique and our novel message
passing mechanism, users in the heterogeneous graph will leave traits related
to cascade-aware collaborative information and influential neighbors in their
representations, leading our model to discover potential diffusion trends in the
social network.

3 Problem Statement

Formally, we define the input of our problem as a set of cascades C =
{c1, c2, ..., c|C|} on a user set U = {u1, u2, ..., u|U|}. Each cascade c ∈ C is recorded

CE-GCN for Information Diffusion Prediction 619

Fig. 2. The architecture of the proposed CE-GCN. The corpus C contains all observed
cascades in the training set. The FC denotes the fully-connected neural network layer.

as a series of user behaviors, i.e., c = {(u1, t1), (u2, t2), ..., (u|c|, t|c|)}, where the
element (ui, ti) denotes that user ui is infected in this cascade at time ti. Here,
infection means this user takes part in the cascade process (e.g., resharing a
content in social media). The infected users are ordered by time, thus ti−1 < ti.

The task of information diffusion prediction aims to predict user ui+1,
who will be infected next, based on the given user behavior sequence. The
goal is to build a model to learn the function of the conditional probability
p(ui+1|{(u1, t1), (u2, t2), ..., (ui, ti)}).

4 The Proposed Model

In this section, we introduce our novel Cascade-Enhanced Graph Convolu-
tional Network (CE-GCN) for the task of information diffusion prediction. The
overview architecture of CE-GCN is shown in Fig. 2.

4.1 Cascade-Aware Embedding

To jointly model users and cascades, we first represent the diffusion process as a
heterogeneous graph. Then, we design a novel message passing mechanism on the
constructed heterogeneous graph to capture the collaborative diffusion patterns
among different cascades to enhance user and cascade representations.

Constructing Heterogeneous Graph. For the given cascade set C and the
user set U , we construct a heterogeneous graph to represent the diffusion process,
which is G = {V, E}, where V and E are node set and edge set, respectively.

Nodes. To capture collaborative diffusion patterns among cascades, we first
explicitly incorporate cascades into the heterogeneous graph by constructing
corresponding vertices. Therefore, the heterogeneous graph contains two types
of vertices, i.e., V = Vu ∪ Vc, where Vu = {vu|u ∈ U} denotes the user node set
and Vc = {vc|c ∈ C} denotes the cascade node set.

620 D. Wang et al.

Edges. To comprehensively model the diffusion process, we introduce three
types of edges in the heterogeneous graph. Intuitively, the diffusion behavior
between users is driven by their social connections and interests, which could be
reflected by their social relations and historical resharing behaviors. Thus, we
incorporate the social relation and the diffusion relation into the heterogeneous
graph and construct corresponding edges for each of them, which are social edges
es and diffusion edges ed.

Moreover, to exploit diffusion patterns among different cascades, we intro-
duce an enhancement edge between infected users and corresponding cascades.
We denote the enhancement edge as ee, which is a directed edge pointing from
an infected user node to the corresponding cascade node. Thus, the edge set in
the heterogeneous graph is represented as E = Ed ∪Es ∪Ee, where Ed, Es, and Ee

represent the social edge set, the diffusion edge set, and the enhancement edge
set, respectively.

Learning Unified Embedding. In this section, we introduce our layer-wise
message passing mechanism in our CE-GCN. We define different message-passing
mechanisms on the heterogeneous graph for each type of node to capture collab-
orative features to construct enhanced representations.

For user node vu at (l + 1)th CE-GCN layer, it shares connection with both
user nodes and cascade nodes. Thus, we divide the neighbors by their node types
and separately aggregate their contextual information, which is formulated as,

a
Nu

u (l+1)
u = f(

1
|N u

u |
∑

ui∈Nu
u

W u(l+1)
ui

h(l)
ui

),

a
Nu

c (l+1)
c = f(

1
|N u

c |
∑

ci∈Nu
c

W u(l+1)
ci h(l)

ci),
(1)

where N u
c and N u

u are neighbors that share edges with focal user node vu with
different node types. h(l)

ui
and h(l)

ci are corresponding neighbor node representa-
tions from the last layer. W u(l+1)

ui
and W u(l+1)

ci are learnable weight matrices to
aggregate contextual features from different neighbors. The function f(·) con-
tains normalize, dropout, and activate operations.

Then, we concatenate the above contextual information and apply an MLP
layer to filter useful information for the focal user node vu, which is formulated
as follows,

h(l+1)
u = MLP(

[
a

Nu
u (l+1)

u ;aNu
c (l+1)

u ;h(l)
u

]
), (2)

where h(l)
u and h(l+1)

u are the output embedding for user node vu in the lth

CE-GCN layer and (l + 1)th CE-GCN layer, respectively.
For cascade node vc at (l + 1)th CE-GCN layer, it only connects with users

that are infected in the corresponding cascade. Thus, the message passing for
the cascade node is to aggregate the contextual information from all infected
users. We describe the process as,

CE-GCN for Information Diffusion Prediction 621

a
N c

u(l+1)
c = f(

1
|N c

u |
∑

ui∈N c
u

W c(l+1)
ui

h(l)
ui

),

h(l+1)
c = MLP(

[
a

N c
u(l+1)

c ;h(l)
c

]
),

(3)

where N c
u is a set of users neighbors for the corresponding cascade node. W u(l+1)

ci
is a learnable weight matrix to aggregate contextual features from different users.

For the input of our first CE-GCN layer, we utilize a normal distribution [5]
to randomly initialize the user and cascade representations h(0)

u and h(0)
c . Then,

we stack the CE-GCN layer L times and collect the output user and cascade
representation hu and hc from the last CE-GCN layer as the output of our
Cascade-aware Embedding module.

4.2 Cascade-Specific Aggregator

To better perform prediction for the current cascade, we further design a cascade-
specific aggregator to refine the generated embeddings for users in the current
cascade with the consideration of user context and time context. The core idea of
this module is to differentiate the effect of collaborative patterns from different
cascades to enhance user representation and diffusion prediction.

Fusing User Context. We employ an adaptive attention mechanism to focus
on user context in the current cascade. The core idea is to capture the diffu-
sion dependencies among input cascade users. Specifically, the attention score
between user uj ∈ {u1, u2, ..., uj , ..., ui} and its context user uk ∈ {u1, ..., uj−1}
can be computed as,

βkj =
exp

(〈
tanh(W c

hhuk), tanh(W t
hhuj)

〉)

∑j−1
r=1 exp

(〈
tanh(W c

hhur), tanh(W t
hhuj)

〉) , (4)

where W c
h and W t

h are transformation matrices for the context user and the
target user respectively. These transformation matrices could differentiate the
collaborative features by the given user when predicting different cascades. 〈·, ·〉
represents the inner product operation.

Then, the cascade-specific user representation suj
of user uj is calculated as,

suj
=

j−1∑

k=1

βkjhuk
. (5)

Finally, we apply a residual connection to fuse the user embedding huj
and

the cascade-specific representation suj
to generate user vectors s̃uj

for each user
uj by a fully-connected layer. That is,

s̃uj
= σ([huj

; suj
]W s + bs), (6)

where W s and bs are trainable parameters.

622 D. Wang et al.

Fusing Time Context. Previous studies [2,3] have shown that temporal diffu-
sion pattern within the cascade is affected by historical user influences, especially
by the last infected user. Moreover, this type of user influence decays as time
passes. Inspired by them, we capture the temporal diffusion patterns within the
cascade via their context infected timestamps and employ a neural function to
represent the user influence.

Give the time sequence {tu1 , tu2 , ..., tui
} of the current cascade, we repre-

sent time context of user uj ∈ {u1, ..., ui} as Δtuj
= tuj+1 − tuj

to indi-
cate the changing influence from previous users. Then, we discretize it as a
one-hot vector, denoted as tuj

, where tnuj
= 1 if tn−1 < Δtuj

< tn. tn−1

and tn are defined by splitting the time range (0, Tmax] into T intervals, i.e.,
{(0, t1] , ..., (tn−1, tn] , ..., (tT−1, Tmax]}, where Tmax refers to the max observa-
tion time in the given cascade set C.

Then, we map tuj
to time vector µuj

to express the time-decay effect of the
previous influence of users via a fully connected layer:

µuj
= σ(W ttuj

+ bt), (7)

where W t and bt are learnable parameters.
After that, we make concatenation of the above two vectors to produce the

final user representation zuj
, i.e.,

zuj
= [s̃uj

;µuj
]. (8)

4.3 Diffusion Prediction

To predict future infections, we first reconstruct the current cascade representa-
tion based on the final user representations, denoted as Z = [zu1 ,zu2 , . . . ,zui

].
Then, we apply a masked multi-head self-attention module [19] to retrieve the
potential infections at each given timestamp. As it could parallelly attend to
each position in sequence modeling, the module is much faster and easier to cap-
ture the context information than RNNs when processing the cascade sequence.
Therefore, the infected user representation at each timestamp for current cascade
c is predicted as the following,

Attention(Q,K,V) = softmax

(
QKT

√
dk

+ M

)
V ,

od
i = Attention

(
ZWQ

i ,ZWK
i ,ZW V

i

)
,

C = [od
1; . . . ;o

d
H]WO,

(9)

where WQ
i ,WK

i ,W V
i ,WO are learnable parameters. H is the number of heads

in the multi-head self-attention module. dk is the scaling factor and M refers to
a mask matrix to mask the future information to avoid leaking labels, which is
calculated as:

M ij =

{
0 i ≤ j,

−∞ otherwise.
(10)

CE-GCN for Information Diffusion Prediction 623

Then, based on the sequence of predicted user representations C, we apply
a two-layer fully-connected neural network to decode infected probabilities for
all users at each time step, i.e.,

ŷ = W 2ReLU(W 1C
T + b1) + b2 , (11)

where W 1,W 2, b1, and b2 are learnable parameters.
Finally, we train the model with the cross-entropy loss. The loss function is

defined as,

L(θ) = −
L∑

i=2

|U |∑

j=1

yij log(ŷij), (12)

where yij = 1 denotes that the predicted user j is infected at position i, otherwise
yij = 0. θ denotes all parameters needed to be learned in CE-GCN.

5 Experimental Setups

In this section, we briefly describe experimental setups including datasets, com-
parison methods, evaluation metrics, and parameter settings.

5.1 Datasets

Following the previous works [27,29], we evaluate our model on three public real-
world datasets, i.e., Twitter, Douban, and Memetracker datasets. The detailed
statistics of the datasets are presented in Table 1.

1) Twitter dataset [8] records the tweets containing URLs during October
2010 on Twitter1. Each URL is viewed as a diffusion item spreading among
users. The social relations are pre-defined by the follow relation on Twitter. 2)
Douban dataset [30] is collected from a Chinese social website named douban2,
where people share their book reading statuses. Each book is considered as a
diffusion item, and a user is infected if he or she reads it. Social relations in
this dataset are pre-defined by co-occurrence relations. If two users take part
in the same discussion more than 20 times, they are considered as friends to
each other. 3) Memetracker3 dataset [13] tracks the most frequent quotes and
phrases, i.e. memes, to analyze the migration of information online. Each meme
is considered as a diffusion item and each URL is treated as a user. The dataset
has no underlying social network.

For all datasets, following previous works [23,27,29], we use 80% of cascades
for training, 10% for validation, and the rest for testing.

1 https://www.twitter.com.
2 https://www.douban.com.
3 http://memetracker.org/.

https://www.twitter.com
https://www.douban.com
http://memetracker.org/

624 D. Wang et al.

Table 1. Statistics of three datasets.

Datasets # Users # Links # Cascades Avg. Length

Twitter 12,627 309,631 3,442 32.60

Douban 23,123 348,280 10,602 27.14

Memetracker 4,709 – 12,661 16.24

5.2 Comparison Methods

We compare the proposed CE-GCN with the following methods:
TopoLSTM [21] views the diffusion cascade as a dynamic directed acyclic

graph and extends the standard LSTM module to improve the prediction per-
formance. This model relies on the pre-defined social graph to make predictions.

DeepDiffuse [9] employs the embedding technique and attention mecha-
nism to incorporate the infected time with user correlation. Given the previously
observed cascade, the model can predict when and who is going to be infected.

NDM [26] aims to capture the long-term dependency in the cascade sequence
by leveraging self-attention mechanism and convolution neural networks to con-
struct user representations.

SNIDSA [23] employs a recurrent network with a user embedding layer and
incorporates the social relation and diffusion paths by structure attention. The
model requires pre-defined social network for prediction.

FOREST [27] is a multi-scale diffusion prediction model based on reinforce-
ment learning, which both employed RNN and reinforcement learning to jointly
predict the next infected user in a microscopic view and estimate the total size
of infected users in a macroscopic view.

DyHGCN [29] utilizes the discrete-time dynamic graph neural network to
discover user dynamic preference and learn user representations. It achieves
state-of-the-art performance in the task of information diffusion prediction.

5.3 Evaluation Metrics

Following the previous works [27,29], we consider the information diffusion pre-
diction task as an information retrieval task by ranking all the uninfected users
according to their infected probabilities. We evaluate the performance of our
model with other baselines in terms of two metrics, i.e., Mean Average Precision
on top K (MAP@K) and HITS scores on top K (HITS@K). The higher Hits@k
and MAP@k indicate better performance.

5.4 Parameter Settings

The parameters are updated by Adam algorithm [11]. The parameters in Adam,
β1 and β2, are 0.90 and 0.98 respectively. The learning rate is set to 0.001.
The batch size of the samples in the training set is 16. The dimensionality of
user embedding is set to d = 64. The time interval T in Sect. 4.2 is selected

CE-GCN for Information Diffusion Prediction 625

from {50, 100, 500, 1000, 2500, 5000, 7500, 10000} and the best setting is 10000.
The dimension of time context embeddings dt is set to 8. We apply a two-
layer GCN with kernel size 128 to learn the underlying diffusion pattern. The
number of GCN layers is selected from {1, 2, 3, 4, 5}, and the best setting is
2. The number of heads H in a multi-head attention module is chosen from
{2, 4, 6, 8, 10, 12, 14, 16, 18, 20} and the best setting is 14. All optimal hyper-
parameters are selected by Grid Search algorithm according to performance on
the validation set. Then we report the performance on the test set.

6 Results and Analysis

In this section, we report experimental results and make further analysis.

6.1 Experimental Results

The experimental results are shown in Table 2 and Table 3. From the results, CE-
GCN consistently achieves the best performance on all datasets at all evaluation
metrics, which proves the effectiveness of the proposed model.

(1) TopoLSTM, DeepDiffuse, and NDM mainly focus on diffusion depen-
dencies in the current cascade for diffusion prediction. SNIDSA, FOR-
EST, DyHGCN, and CE-GCN incorporates social relations in the dif-
fusion cascade to obtain better performance. It reveals that both diffusion
relations and social relations play vital roles in the task of information dif-
fusion prediction.

(2) Both SNIDSA and FOREST model diffusion cascade sequences with
RNN-based methods. They achieve worse performance than graph-based
models like DyHGCN and our model CE-GCN which jointly encodes dif-
fusion cascades and social networks. The results show the powerful learning
abilities of graph neural networks to capture complex user dependencies in
multiple diffusion cascades.

(3) Compared with DyHGCN, our model CE-GCN consistently outperforms
on three datasets. These results demonstrate the superiority of considering
collaborative diffusion patterns from other cascades to enhance user embed-
ding construction for diffusion prediction.

6.2 Ablation Study

To study the relative importance of each module in the CE-GCN, we conduct
ablation studies over the different parts of the model as follows:

– w/o CA: We remove the cascade-specific aggregator and directly predict
diffusion cascades based on the unified user representations.

626 D. Wang et al.

Table 2. Results on Twitter and Douban datasets (%). Improvements of CE-GCN are
statistically significant with p < 0.01 on paired t-test.

Models Twitter Douban

HITS@K MAP@K HITS@K MAP@K

K =10 K =50 K =100 K = 10 K = 50 K = 100 K = 10 K = 50 K = 100 K = 10 K = 50 K = 100

DeepDiffuse 4.57 8.80 13.39 3.62 3.79 3.85 9.02 14.93 19.13 4.80 5.07 5.13

TopoLSTM 6.51 15.48 23.68 4.31 4.67 4.79 9.16 14.94 18.93 5.00 5.26 5.32

NDM 21.52 32.23 38.31 14.30 14.80 14.89 10.31 18.87 24.02 5.54 5.93 6.00

SNIDSA 23.37 35.46 43.39 14.84 15.40 15.51 11.81 21.91 28.37 6.36 6.81 6.91

FOREST 26.18 40.95 50.39 17.21 17.88 18.02 14.16 24.79 31.25 7.89 8.38 8.47

DyHGCN 28.98 47.89 58.85 17.46 18.30 18.45 16.34 28.91 36.13 9.10 9.67 9.78

CE-GCN 31.48 50.87 61.12 19.31 20.20 20.35 20.28 34.11 41.77 11.70 12.33 12.44

Improve (%) 8.63 6.22 3.45 10.60 11.86 10.30 24.11 17.82 14.59 28.57 27.51 27.20

Table 3. Results on Memetracker dataset (%). For fair comparison, TopoLSTM and
SNIDSA are excluded due to the absence of social graph in the Memetracker dataset.
Improvements of CE-GCN are statistically significant with p < 0.01 on paired t-test.

Models Memetracker

HITS@K MAP@K

K = 10 K = 50 K = 100 K = 10 K = 50 K = 100

DeepDiffuse 13.93 26.50 34.77 8.14 8.69 8.80

NDM 25.44 42.19 51.14 13.57 14.33 14.46

FOREST 29.43 47.41 56.77 16.37 17.21 17.34

DyHGCN 29.90 48.30 58.43 17.64 18.48 18.63

CE-GCN 37.01 56.04 65.09 21.54 22.43 22.56

Improve (%) 23.78 14.88 10.73 22.11 21.37 21.10

– w/o CE: We omit cascade nodes in the heterogeneous graph and learn user
embeddings in the graph where nodes only refer to users and edges are built
by social relations and diffusion relations.

– w/o CE & CA: We remove both the cascade-aware embedding and cascade-
specific aggregator. This ablated model predicts diffusion process by capturing
the time-decay patterns based on the diffusion cascade sequence.

The experimental results of ablation studies are presented in Table 4. Refer-
ring to the results, we have the following findings:

(1) When removing the cascade-specific aggregator (CE-GCN w/o CA), the
performance drops to some extent, which shows the effectiveness of the CA
module. With the guidance of related user context and time context in
the current cascade, CA can generate an enhanced user representation for
prediction.

(2) When removing explicit modeling of cascade nodes in the heterogeneous
graphs, CE-GCN w/o CE mainly learns explicit dependencies among
users. The worse performance implies that exploiting additional property
from other cascades is indeed beneficial for information diffusion prediction.

CE-GCN for Information Diffusion Prediction 627

Table 4. Ablation study on three datasets (%).

Models Twitter Douban Memetracker

HITS@K MAP@K HITS@K MAP@K HITS@K MAP@K

K = 50 K = 100 K = 50 K = 100 K = 50 K = 100 K = 50 K = 100 K = 50 K = 100 K = 50 K = 100

CE-GCN 50.87 61.12 20.20 20.35 34.11 41.79 12.33 12.44 56.04 65.09 22.43 22.56

- w/o CA 50.53 60.83 19.52 19.67 31.29 39.15 10.97 11.08 50.86 60.76 19.32 19.46

- w/o CE 49.93 59.75 20.12 20.26 31.90 39.49 11.67 11.77 54.11 63.20 21.40 21.53

- w/o CE & CA 20.13 27.43 5.93 6.04 19.13 24.56 7.38 7.46 31.22 40.84 11.16 11.29

Fig. 3. Parameter analysis on the Twitter dataset. (a) and (b) denotes the results
against the number of time intervals; (c) and (d) denotes the results against the number
of GCN layers.

(3) When we only predict diffusion based on the diffusion cascade sequence
by capturing the time-decay patterns (CE-GCN w/o CE & CA), the
performance drops significantly. It reflects the complexity of information
diffusion caused by user participation.

6.3 Parameter Analysis

In this part, we analyze the impact of two key parameters in CE-GCN, i.e., the
number of time intervals, and the number of GCN layers.

Figure 3(a) and (b) show the performance against the number of time inter-
vals T on the Twitter dataset. When T increases, the performance emerges an
overall upward trend. The trend implies that fusing time context into user repre-
sentations is helpful for information diffusion prediction in the current cascade.
Larger T indicates that the time range is split into more pieces, expressing more
fine-grained time-decay patterns from the infected time difference to assist dif-
fusion prediction.

Figure 3(c) and (d) show the performance against different numbers of GCN
layers. As the number of GCN layers increases, the performance increases first
and then decreases. When applying deeper GCNs, the performance drops signif-
icantly due to the over-fitting and over-smoothing problem. A two-layer GCN is
the most suitable for models to capture user dependencies.

6.4 Further Study

In this part, we conduct experiments on the Douban dataset to further analyze
how CE-GCN improves the performance of information diffusion prediction.

628 D. Wang et al.

Table 5. Results against different graphs on Douban dataset (%). S., D., and E. denotes
that we construct the heterogeneous graph by social, diffusion, and enhancement edge.

Models HITS@K MAP@K

K = 50 K = 100 K = 50 K = 100

S 31.88 39.48 11.36 11.41

D 31.70 39.13 11.66 11.76

E 32.24 40.06 11.42 11.53

S. + D 32.42 39.78 11.75 11.85

S. + E 33.93 41.24 11.97 12.08

D. + E 33.56 41.06 12.05 12.13

S. + D. + E 34.11 41.77 12.33 12.44

Table 6. Experimental results over different time encoding mechanisms(%).

Models HITS@K MAP@K

K = 50 K = 100 K = 50 K = 100

CE-GCN 34.11 41.79 12.33 12.44

CE-GCNSlice 33.36 41.16 11.43 11.54

CE-GCNRelative 33.15 40.93 11.39 11.50

CE-GCNNone 32.53 40.03 10.83 10.94

The Effect on User Context. We extend several variant models by leveraging
different graphs to encode user representations. The result is shown in Table 5,
where S., D., and E. indicate that we construct the heterogeneous graph based
on social, diffusion, and enhancement edges, respectively. Firstly, the best results
are obtained by combining the three edges, which denotes that considering rela-
tions across cascades provides both social and propagation patterns in the user
context. Moreover, combining the enhancement graph with other graphs could
effectively promote the model performance, which shows that the enhancement
graph could capture collaborative diffusion patterns among different cascades
and promote user representations.

The Effect on Time Context. We conduct experiments against different time
encoding mechanisms to analyze the effect on time context. The results are
shown in Table 6. CE-GCNSlice generates time context by splitting time range
into slices. CE-GCNRelative leverages relative position embedding as time con-
text. CE-GCNNone is a variant without any time context. When omitting the
time encoder or using the relative position embedding as time context, the infe-
rior performance reveals that the infected timestamp could bring beneficial infor-
mation for prediction. Moreover, compared with CE-GCNSlice, our model show
better performance. The fact demonstrates that time difference could reflect user
influence in the cascade more precisely, bringing more accurate prediction result.

CE-GCN for Information Diffusion Prediction 629

7 Conclusion

In this paper, we have proposed Cascade-Enhanced Graph Convolutional Net-
work (CE-GCN) to effectively exploit collaborative patterns over all cascades
and enhance the learning of user representation for the task of information dif-
fusion prediction. Specifically, CE-GCN models the diffusion process as a hetero-
geneous graph and explicitly injects the collaborative patterns into user embed-
dings via message passing. After that, we design a cascade-specific user encoder
to adaptively refine the user representation by distinguish different effects of
features from other cascades based on user context and time context. We con-
duct experiments on three public real-world datasets. The extensive results show
that CE-GCN obtains the state-of-the-art performance, which demonstrates the
effectiveness of our model.

References

1. Bourigault, S., Lamprier, S., Gallinari, P.: Representation learning for information
diffusion through social networks: an embedded cascade model. In: Proceedings
of the Ninth ACM International Conference on Web Search and Data Mining
(WSDM), pp. 573–582 (2016)

2. Cao, Q., Shen, H., Cen, K., Ouyang, W., Cheng, X.: DeepHawkes: bridging the gap
between prediction and understanding of information cascades. In: Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management, CIKM,
pp. 1149–1158 (2017)

3. Chen, X., Zhang, K., Zhou, F., Trajcevski, G., Zhong, T., Zhang, F.: Information
cascades modeling via deep multi-task learning. In: Proceedings of the 42nd Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pp. 885–888 (2019)

4. Cheng, J., Adamic, L.A., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades
be predicted? In: 23rd International World Wide Web Conference (WWW), pp.
925–936. ACM (2014)

5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2010, vol. 9, pp. 249–256 (2010)

6. Gomez-Rodriguez, M., Balduzzi, D., Schölkopf, B.: Uncovering the temporal
dynamics of diffusion networks. In: Proceedings of the 28th International Con-
ference on Machine Learning (ICML) pp. 561–568 (2011)

7. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and
influence. In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pp. 1019–1028 (2010)

8. Hodas, N., Lerman, K.: The simple rules of social contagion. Scientific reports 4
(2014)

9. Islam, M.R., Muthiah, S., Adhikari, B., Prakash, B.A., Ramakrishnan, N.: Deep-
diffuse: predicting the ‘who’ and ‘when’ in cascades. In: IEEE International Con-
ference on Data Mining, (ICDM), pp. 1055–1060 (2018)

10. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence
through a social network. In: Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pp. 137–146
(2003)

630 D. Wang et al.

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Inter-
national Conference on Learning Representations (ICLR) (2015)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations (ICLR)
(2017)

13. Leskovec, J., Backstrom, L., Kleinberg, J.M.: Meme-tracking and the dynamics of
the news cycle. In: Proceedings of the 15th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD), pp. 497–506 (2009)

14. Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: DeepInf: social influence
prediction with deep learning. In: Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining (KDD), pp. 2110–2119
(2018)

15. Saito, K., Ohara, K., Yamagishi, Y., Kimura, M., Motoda, H.: Learning diffusion
probability based on node attributes in social networks. In: Foundations of Intel-
ligent Systems - 19th International Symposium (ISMIS), pp. 153–162 (2011)

16. Sankar, A., Zhang, X., Krishnan, A., Han, J.: Inf-VAE: A variational autoencoder
framework to integrate homophily and influence in diffusion prediction. In: Caver-
lee, J., Hu, X.B., Lalmas, M., Wang, W. (eds.) The Thirteenth ACM International
Conference on Web Search and Data Mining (WSDM), pp. 510–518 (2020)

17. Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: The Semantic
Web - 15th International Conference (ESWC), pp. 593–607 (2018)

18. Su, Y., Zhang, X., Wang, S., Fang, B., Zhang, T., Yu, P.S.: Understanding informa-
tion diffusion via heterogeneous information network embeddings. In: Li, G., Yang,
J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11446, pp.
501–516. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18576-3 30

19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017 (NIPS), pp. 5998–6008 (2017)

20. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: 6th International Conference on Learning Representations
(ICLR) (2018)

21. Wang, J., Zheng, V.W., Liu, Z., Chang, K.C.: Topological recurrent neural network
for diffusion prediction. In: 2017 IEEE International Conference on Data Mining
(ICDM), pp. 475–484 (2017)

22. Wang, Z., Chen, C., Li, W.: Attention network for information diffusion prediction.
In: Companion of the Web Conference 2018 on the Web Conference 2018, WWW
2018, pp. 65–66 (2018)

23. Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with
structure attention. In: Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, (CIKM), pp. 1795–1798 (2018)

24. Wang, Z., Chen, C., Li, W.: Information diffusion prediction with network regu-
larized role-based user representation learning. ACM Trans. Knowl. Discov. Data
13(3), 29:1–29:23 (2019)

25. Xian, Y., Fu, Z., Muthukrishnan, S., de Melo, G., Zhang, Y.: Reinforcement knowl-
edge graph reasoning for explainable recommendation. In: Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR), pp. 285–294 (2019)

26. Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., Luan, H.: Neural diffusion model
for microscopic cascade study. IEEE Trans. Knowl. Data Eng. 33(3), 1128–1139
(2021)

https://doi.org/10.1007/978-3-030-18576-3_30

CE-GCN for Information Diffusion Prediction 631

27. Yang, C., Tang, J., Sun, M., Cui, G., Liu, Z.: Multi-scale information diffusion pre-
diction with reinforced recurrent networks. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence (IJCAI), pp. 4033–4039
(2019)

28. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In:
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), pp. 7370–
7377 (2019)

29. Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S.: DyHGCN: a dynamic het-
erogeneous graph convolutional network to learn users’ dynamic preferences for
information diffusion prediction, pp. 347–363 (2020)

30. Zhong, E., Fan, W., Wang, J., Xiao, L., Li, Y.: Comsoc: adaptive transfer of user
behaviors over composite social network. In: The 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pp. 696–704 (2012)

Diversify Search Results Through Graph
Attentive Document Interaction

Xianghong Xu1, Kai Ouyang1, Yin Zheng2, Yanxiong Lu2,
Hai-Tao Zheng1,3(B), and Hong-Gee Kim4

1 Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
{xxh20,oyk20}@mails.tsinghua.edu.cn

2 Department of Search and Application, Weixin Group, Tencent, Beijing, China
alanlu@tencent.com

3 Pengcheng Laboratory, Shenzhen 518055, China
zheng.haitao@sz.tsinghua.edu.cn

4 Seoul National University, Seoul, South Korea
hgkim@snu.ac.kr

Abstract. The goal of search result diversification is to retrieve diverse
documents to meet as many different information needs as possible.
Graph neural networks provide a feasible way to capture the sophis-
ticated relationship between candidate documents, while existing graph-
based diversification methods require an extra model to construct the
graph, which will bring about the problem of error accumulation. In this
paper, we propose a novel model to address this problem. Specifically, we
maintain a document interaction graph for the candidate documents of
each query to model the diverse information interactions between them.
To extract latent diversity features, we adopt graph attention networks
(GATs) to update the representation of each document by aggregating
its neighbors with learnable weights, which enables our model not depen-
dent on knowing the graph structure in advance. Finally, we simultane-
ously compute the ranking score of each candidate document with the
extracted latent diversity features and the traditional relevance features,
and the ranking can be acquired by sorting the scores. Experimental
results on TREC Web Track benchmark datasets show that the pro-
posed model outperforms existing state-of-the-art models.

Keywords: Search result diversification · Graph attention networks ·
Document interaction

1 Introduction

Research shows that most queries provided by users are short and could be
ambiguous [12,23,24]. Search result diversification aims to satisfy different infor-
mation needs of users under ambiguous and short queries. For example, a query

X. Xu and K. Ouyang—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 632–647, 2022.
https://doi.org/10.1007/978-3-031-00123-9_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_51&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_51

Diversify Search Results Through Graph Attentive Document Interaction 633

about “apple” may contain two different subtopics: one is about the famous
company or brand, the other is about the fruit. Search result diversification
methods need to retrieve a list of documents that covers different subtopics in
this scenario.

Most of the traditional search result diversification models used manually
craft functions with empirically tuned parameters [1,2,7,11,22]. In recent years,
many researchers have tried to use machine learning methods in order to learn
a ranking function automatically. Existing approaches to search result diversi-
fication can be mainly categorized into three classes [25]: explicit approaches
[6,7,11,13,22] model subtopic coverage (explicit features) of the ranking results,
implicit methods [2,25,30–32,34] model the novelty of documents (implicit fea-
tures), and ensemble models [17,20] use both explicit and implicit features. The
previous studies [7,11,13,20] have demonstrated that models which use subtopic
information always perform better than those that do not. However, subtopic
mining itself is a sophisticated challenge in search result diversification [28],
though there are some representative subtopic mining methods [8,18,21,33], a
more commonly used method in practice is collecting subtopics from search sug-
gestions (such as Google Suggestions) [11,13]. Some models [13,17] even need
subtopic information at the inference stage, it is not realistic in real scenarios for
most search engines. Therefore, implicit models have attracted much attention
[10], the most recent implicit model [25] leverages graph convolutional networks
[15] (GCNs) to model the greedy selection process, it even outperforms existing
explicit models. However, it requires an extra classifier to construct the graph,
which will lead to classification errors and cause error accumulation in the diver-
sification model [25]. Besides, though the ranking model is implicit, it requires
the subtopic information to train the classifier.

To tackle the issues above, we propose a novel graph-based implicit diversi-
fication model. Inspired by the characteristics of graph attention networks [27]
(GATs) that the representation of nodes can be updated with the information
from their neighbors in different weights, and without the need to construct
graph structure upfront, we adopt GAT to avoid training an extra model to
construct the graph in our model. Similar to the previous graph-based model
[25], we construct a graph for the candidate documents of each query, where
each node in the graph can have interaction with its neighbors. Specifically, in
order to capture latent diversity features, we elaborate graph attentive layers
to update the representation of each node, which empowers each node can dis-
criminatively exploit the information from its neighbors. Then the extracted
diversity features are used by a neural diversity scorer to calculate the diversity
scores. For simplicity, we calculate relevance scores with traditional relevance
features by a neural relevance scorer. Finally, a parameter λ is used to balance
the diversity and relevance of each document. In addition, the neural scorers
can take the entire candidate document set as input, and generate the diversity
score and relevance score of each document simultaneously. Besides, the graph
solely needs the document representation as input, it does not require subtopic
information. Since we adopt GAT to model document interaction for the search
result diversification task, our model is denoted as GAT-DIV.

634 X. Xu et al.

Overall, the main contributions of this paper are summarized as follows:

– We propose a novel graph-based model for search result diversification, which
has an end-to-end structure, rather than the two-stage pipeline structure that
the existing graph-based diversification model uses. It does not require addi-
tional models to construct the graphs, so it alleviates the error accumulation
problem.

– We maintain a candidate document interaction graph and adapt GAT to
extract the latent diversity features from the graph. The proposed method
does not require the subtopic information, which is easier to generalize in real
scenarios.

– Experimental results show that the proposed model outperforms the state-
of-the-art models on diversity test benchmark TREC Web Track datasets.

2 Related Work

2.1 Search Result Diversification

From the perspective of using implicit and explicit features, existing approaches
to search result diversification can be categorized into implicit, explicit, and
ensemble models.

Implicit Models. Most implicit models follow the framework of MMR [2]:

SMMR(q, d, C) = λSrel(d, q) − (1 − λ) max
dj∈C

Ssim(d, dj), (1)

where λ is the parameter to balance relevance and novelty, Srel is the relevance
score of d to the query q, Ssim is the similarity score of d to dj , and C is the
candidate document set. SVM-DIV [32] aimed to use structural SVM to model
the diversity of the documents. R-LTR [34] considered search result diversifica-
tion as a sequential selection process, and used likelihood loss to optimize the
learning process. The neural tensor network (NTN) [31] considered diversity as
the relationship of documents and can learn the relation function automatically.
PAMM [30] proposed to optimize evaluation metrics directly instead of a loosely
related loss function. Graph4DIV [25] used a document intent classifier based
on BERT [9] to judge whether two documents cover the same intent, in order to
construct a graph to model the document selection process.

Explicit Models. xQuAD [22] exploited query reformulation to discover dif-
ferent aspects of the query. PM2 [7] suggested retrieving documents by propor-
tionality corresponding to each subtopic of the query. These two models are
representative of traditional explicit methods, and researchers did further stud-
ies based on these models. TxQuAD and TPM2 [6] characterized user intents
by terms coverage. A hierarchical structure was introduced in HxQuAD and
HPM2 [11]. Supervised models can learn the parameters automatically instead

Diversify Search Results Through Graph Attentive Document Interaction 635

of manually empirical tuning. A representative supervised method is DSSA [13],
and many further studies are based on it. DSSA proposed a novel list-pairwise
diversity ranking framework. It utilized recurrent neural networks (RNNs) to
model the selected documents, and used the attention mechanism to capture
the subtopic coverage based on the selected list.

Ensemble Models. Recently, some researchers have suggested that leveraging
both explicit features and implicit features is helpful for getting diversity ranking.
DESA [20] used Transformer [26] encoder and self-attention to model subtopic
coverage and document novelty. DVGAN [17] generated training data by using
explicit and implicit features based on a generative adversarial network structure.

2.2 Graph in Search Result Diversification

Graph is a common data structure to represent nonlinear relationships, it is
widely used in IR. For example, PageRank [19] is a representative algorithm to
model the importance of web pages. In search result diversification, Graph4DIV
[25] is the first method that models the greedy selection process in search result
diversification by graph neural networks.

3 Proposed Model

3.1 Problem Definition

Given a query q, the candidate document set of q is D, and there are n candidate
documents in D. The search result diversification task aims to retrieve a new
ranked list R based on candidate documents set D, where the top-ranked doc-
uments can cover as many subtopics as possible. For the retrieved documents,
both the relevance to the query and the diversity between documents are crucial
for the task.

3.2 Architecture

For a query q and the associated candidate documents, the model can calculate
the diversity score and the relevance score for each document simultaneously.
The relevance features Ri of document di is generated by traditional methods,
and the latent diversity features H is extracted from the graph attentive layers.
In addition, the width of the edges in the graph represents the different atten-
tion coefficients, and there are K independent attention heads for each layer,
which will be described in detail in Sect. 3.3. Figure 1 shows the architecture
of GAT-DIV and the detailed process of calculating the ranking score of one
document, please note that the ranking score of each candidate document can
be calculated simultaneously. Then the final ranking list R can be generated by

636 X. Xu et al.

Fig. 1. Architecture of GAT-DIV, where rj is the element of Ri, Ri and Hi are the
relevance features and latent diversity features of the i-th document, respectively. Lines
of different thicknesses represent different weights.

ranking the scores of the candidate documents. In sum, the ranking scores SD
of the candidate documents in D can be calculated by:

SD = λSrel(q,D)
︸ ︷︷ ︸

relevance

+ (1 − λ)Sdiv(D)
︸ ︷︷ ︸

diversity

, (2)

where λ is the parameter to balance the relevance scores Srel(q,D) and the
diversity scores Sdiv(D). Equation (2) is the common format of search result
diversification methods that considering both the relevance and the diversity.

To calculate the relevance scores Srel(q,D), we use the same relevance fea-
tures R as the previous methods [13,17,20,25]. The simplified process of calcu-
lating the relevance score of a candidate document di can be described as:

Srel(q, di) = MLP(Ri), (3)

where MLP indicates a multi-layer perceptron layer, di is the i-th document in
the candidate set D, and Ri is the relevance features of di. For each document
di, Ri has 18 features that illustrated in detail in Table 1. We use traditional
relevance methods, rather than using pre-trained models to generate relevance
features.

To calculate the diversity scores Sdiv(D), we solely use the implicit features
of the candidate documents. The computation process can roughly divide into
two stages: first, extracting the latent diversity features H of the documents
through the document interaction graph. Then calculating the diversity scores
of the candidate set D with the latent features H, the representation of query and

Diversify Search Results Through Graph Attentive Document Interaction 637

Table 1. The relevance features of a document. Each of the first 3 features is applied
to 5 parts of the document: body, title, URL, anchor, and the whole document, respec-
tively.

Name Description #Features

TF-IDF TF-IDF model 5

BM25 BM25 with default parameters 5

LMIR LMIR with Dirichlet smoothing 5

PageRank PageRank score 1

#inlinks Number of inlinks 1

#outlinks Number of outlinks 1

the documents. The process of computing the diversity score of one document
is demonstrated as follows:

H(di) = F(E(di),GD), (4)

Sdiv(di) = MLP(q,E(0)(di),H(di)), (5)

where H(di) indicates the latent diversity features of document di, E(di) is
the total representation of di in the graph, E(0)(di) is the initial representation
of di, F is the function that describes how to extract latent diversity features
of document di, GD is the corresponding interaction graph for the candidate
document set D of the query q, MLP indicates another multi-layer perceptron
layer which is different from that used in calculating the relevance score.

The process of computing diversity scores Sdiv(D) is the focus of our model,
there are two key components of the computation process. (1) Graph construc-
tion and the node aggregation algorithms. Similar to the previous graph-based
method [25], we build an interaction graph for each query. Different from the pre-
vious method, we do not require an extra model to judge whether the nodes in the
graph are connected, it is a complete graph that each node connects with other
nodes. The node aggregation process will consider learnable weights of different
neighbors, and the latent diversity features can be extracted from the graph. (2)
Diversity scoring based on the features in the graph. The latent diversity rep-
resentation will be utilized in the scoring process. The initial representation of
the nodes is E(0) = [E(0)(d1), . . . ,E(0)(dn)], it will be updated on the l-th graph
attentive layer as E(l) = [E(l)(d1), . . . ,E(l)(dn)]. The latent diversity features H
can be computed with the total representation E = [E(0), . . . ,E(L)] through the
function F . Finally, input the initial representation, the latent features, and the
query into the MLP diversity scorer.

3.3 Diversity Scoring

To calculate the diversity score Sdiv(di) for the document di, latent diversity
features Hi are needed. In this section, we introduce the graph construction, node
aggregation, and latent diversity features generation algorithms for diversity
scoring.

638 X. Xu et al.

Graph Construction. Given the current query q and the corresponding can-
didate document set D, we construct a document interaction graph GD by con-
sidering each document in D as a node in GD, and the total number of nodes in
GD is n = |D|. Therefore, the adjacent matrix A for the interaction graph GD
can be defined as:

A[i, j] =
{

1, if di needs to interact with dj ;
0, else. , (6)

where A ∈ R
n×n, A[i, j] is the i-th row and j-th column element of A, which

indicates the information interaction need between di and dj . Based on the per-
spective that the information from all the documents in D is helpful to generate
the latent diversity features of one document, each element in A is 1, which
means that the document interaction graph is a complete graph.

Node Aggregation. First, we will briefly introduce the graph attentive layer
adapted in this paper. The initial representation of the nodes in GD denote as
E(0) = [E(0)(d1), . . . ,E(0)(dn)], and E(0)(di) ∈ R

F where F is the number of
initial features of each node. A graph attentive layer can generate a new feature
presentation for each node E(1) = [E(1)(d1), . . . ,E(1)(dn)] and E(1)(di) ∈ R

F ′
.

In order to get sufficient expressive power of the graph, we adapt a learnable
weight matrix W(0) ∈ R

F ′×F to transform the initial features to the high-level
features. Then attention mechanism is applied on the nodes:

e
(0)
ij = A

[

W(0)E(0)(di),W(0)E(0)(dj)
]

, (7)

e
(l)
ij = A

[

W(l)E(l)(di),W(l)E(l)(dj)
]

, (8)

where W(0) ∈ R
F ′×F , W(l) ∈ R

F ′×F ′
, l > 0, ·(l) indicates the element at layer l,

A : RF ′ ×R
F ′ → R is a shared function to compute the attention score for each

layer.
To make attention coefficients easily comparable across different nodes, we

can normalize them through:

α
(l)
ij =

exp(e(l)ij)
∑

k∈Ni
exp(e(l)ik)

, (9)

where Ni is the set of neighbors of node i.
The attention score in this paper can be calculated as follows:

A
[

v
(l)
i , v

(l)
j

]

= MLP(v(l)
i) + MLP(v(l)

j), (10)

where v
(l)
i and v

(l)
j is the transformed representation W(l)E(l)(di) and

W(l)E(l)(dj) at layer l for node i and node j, respectively.

Diversify Search Results Through Graph Attentive Document Interaction 639

Algorithm 1: Node Aggregation at layer l

Input: document representation E(l) at l-th layer, adjacent matrix A for GD.
Output: document representation E(l+1) at (l + 1)-th layer.

1 V (l) ← ∅
2 for k : 0 → K − 1 do
3 for i : 0 → n − 1 do

4 vi ← W
(l)
k E(l)(di)

5 for i : 0 → n − 1 do
6 for j : 0 → n − 1 do
7 eij ← A(vi, vj)

8 αk,ij ← softmaxj(eij)

9 Aggi ← ∑
j∈Ni

α
(l)
k,ijvj

10 V (l) ← [V (l)||Agg] //multi-head concatenation

11 V (l+1) ← O(l)V (l) + b(l)

12 return V (l+1)

In order to stabilize the attention mechanism learning process, we adapt
multi-head attention similar to [26,27]. Specifically, if K independent attention
mechanism is applied, the output of the l-th layer is:

h
(l)
i = O(l)

⎛

⎝

K

||
k=1

⎡

⎣

∑

j∈Ni

α
(l)
k,ijW

(l)
k E(l)(dj)

⎤

⎦

⎞

⎠ + b(l), (11)

where h
(l)
i is the output representation of i-th node in the l-th layer, O(l) ∈

R
F ′×KF ′

and b(l) ∈ R
F ′

are learnable linear transformation and bias in order to
compute the output of the concatenation of multi-head attention mechanism. ·k
indicates the k-th independent attention mechanism.

According to Eq. (10) and (11), the node aggregation algorithm for node i at
layer l can be briefly described as:

E(l+1)(di) = h
(l)
i , (12)

where E(l+1)(di) is the representation of di at (l + 1)-th layer, h
(l)
i is the output

of l-th layer.
Therefore, the representation of a document at layer l can interact with the

information from other documents and generate a new representation by Eq. (12).
The node aggregation algorithm at layer l is summarized as Algorithm 1.

Latent Diversity Features Generation. Empirically, stacking layers can
give the model more capacity to model the document representation with the
information from other documents, and the latent diversity features for the doc-
uments is the output of the last layer. The process of generating latent diversity
features H is summarized as Algorithm 2.

640 X. Xu et al.

Algorithm 2: Generating Latent Diversity Features
Input: inital document representation E(0).
Output: latent diversity features H.

1 H ← ∅
2 E ← E(0)

3 for l : 0 → L − 1 do
4 E ← NodeAggregation(E)

5 H ← E
6 return H

Computing the Diversity Score. According to Eq. (5), to calculate the
diversity score Sdiv of di, the representation of q, the initial representation of
the document, and the latent diversity features of the document are needed. The
key component have described in Algorithm 1 and 2.

3.4 Optimization and Ranking

Given a context sequence C and a pair of positive and negative documents di
and dj associated with a query, a training sample (C, di, dj) can transform into
two ranking sequences r1 = [C, di] and r2 = [C, dj]. Then constructing a docu-
ment interaction graph for each list to extract the latent diversity features, the
attention coefficients are reflected in the width of the edges in the figure. Finally,
calculating the ranking score and the metric for each ranking sequence based on
the latent features, and computing the loss to train the model.

The List-Pairwise Data Sampling. Because of the dataset limitation of
search result diversification task, we used the list-pairwise sampling method as
the previous models [13,17,20,25] did to generate enough training data.

The sampling process is demonstrated as follows: given a query and the
corresponding candidate documents, the context sequence C is the subsequence
that selected in random lengths from the optimal ranking or random ranking.
Then sample two documents di and dj in the ranking list apart from C to generate
two sequence r1 = [C, d1] and r2 = [C, d2]. And the metric of positive ranking
sequence M(r1) should be better than the negative sequence M(r2).

The Loss Function. Based on list-pairwise data sampling, the loss function is
defined as:

L =
∑

q∈Q

∑

s∈Sq

|ΔM | [ys log(P (r1, r2)) + (1 − ys) log(1 − P (r1, r2))] , (13)

where s is a training sample, Sq is all the training samples of q, ΔM = M(r1)−
M(r2) represents the weight of the sample, ys = 1 for the weight is positive,
otherwise ys = 0. P (r1, r2) = σ(sr1 −sr2) indicates the probability of the sample
being positive, where sri is the ranking score of ri calculated by the model.

Diversify Search Results Through Graph Attentive Document Interaction 641

The Ranking Process. Different from greedy selection models, our model
does not require maintaining a selected list to select the best document one by
one. The model will take the entire candidate document set as input, and jointly
return the ranking scores with the consideration of relevance and diversity of all
candidate documents. More details can be found in [20].

4 Experimental Settings

4.1 Data Collections

We conducted experiments on TREC Web Track dataset1 from 2009 to 2012,
which is the same as the previous works [13,17,20,25]. There are 200 queries
in the dataset in total, however 2 queries (#95 and #100) have no subtopic
judgment, so there are 198 queries in the experiment. Each of the queries has 3 to
8 subtopics, and the relevance judgment of corresponding candidate documents
are given in binary at the subtopic level by the TREC assessors. Explicit models
will use subtopic information, and implicit models will not. Our model does not
require subtopic information.

4.2 Evaluation Metrics

We use TREC official diversity evaluation metrics of α-nDCG [4] and ERR-
IA [3]. Besides, we also take NRBP [5] into consideration. The parameter α is
set to 0.5 as the default settings given by TREC evaluation program. Consistent
with previous search result diversification models [13,20,25,30,31,34] and TREC
Web Track, we adopt the top 50 results of Lemur2 for diversity re-ranking. These
metrics are computed by official evaluation program on the top 20 documents of
retrieved ranking lists.

4.3 Baseline Models

We compare our models with various models which can be categorized into 4
classes as follows:

Non-diversified Models. Lemur: For a fair comparison, we use the same
result as [13,25]. ListMLE [29] is a representative learning-to-rank method
without counting diversity.

1 https://boston.lti.cs.cmu.edu/Data/clueweb09/.
2 Lemur service: http://boston.lti.cs.cmu.edu/Services/clueweb09 batch.

https://boston.lti.cs.cmu.edu/Data/clueweb09/
http://boston.lti.cs.cmu.edu/Services/clueweb09_batch

642 X. Xu et al.

Explicit Models. xQuAD [22], PM2 [7], TxQuAD, TPM2 [6], HxQuAD,
HPM2 [11] and DSSA [13]. These models are some representative unsuper-
vised explicit baseline models for comparison. DSSA is a state-of-the-art super-
vised explicit method that model selected documents using RNNs and select
documents with greedy strategy from the candidate documents using subtopic
attention. All these 7 models use the parameter λ to balance the relevance and
diversity of candidate documents linearly. HxQuAD and HPM2 use an additional
parameter α to control the weights of subtopics in different hierarchical layers.

Implicit Models. R-LTR [34], PAMM [30], NTN [31] and Graph4DIV
[25]. These models are some representative supervised implicit baseline models
for comparison. For PAMM, α-nDCG@20 is used as the optimization metrics
and the number of positive rankings l+ and negative rankings l− is tuned for
each query. The neural tensor network (NTN) can be used on both R-LTR
and PAMM, so the two models are denoted as R-LTR-NTN and PAMM-NTN,
respectively. Graph4DIV is a state-of-the-art implicit method that uses graph
convolutional networks to model the relationship of documents and the query,
it selects the best candidate document greedily.

Ensemble Models. DESA [20] and DVGAN [17]. These two methods are
state-of-the-art models that associate both explicit features and implicit features
to get ranking results. DESA uses an encoder-decoder structure. DVGAN has a
generative adversarial network structure.

4.4 Implementation Details

We conduct 5-fold cross-validation experiments on the pre-processed version
dataset with the same data subset split as in [13,20,25]. We use doc2vec [16]
embeddings as the initial queries and documents with the dimension of 100,
which is the same as the previous state-of-the-art explicit model [13], implicit
model [25], and ensemble model [20]. We use the following optimizer and model
configuration settings: the optimizer is Adam [14] with learning rate η = 0.001.
The neural diversity scorer has 2 hidden layers with dimensions 256 and 64,
followed by a one-dimension full connection output layer. The neural relevance
scorer has 2 hidden layers with dimensions 18 and 8, followed by a one-dimension
full connection output layer. The parameter λ is fixed as 0.5, same as the previous
studies [13,20,25].

5 Experimental Results

5.1 Overall Results

Table 2 shows the overall results of all baseline models and our model. GAT-DIV
outperforms all the baseline methods in terms of α-nDCG, ERR-IA, and NRBP.

Diversify Search Results Through Graph Attentive Document Interaction 643

Table 2. Performance comparison of all models. The best result overall is in bold, the
underline is the best result of all baselines.

ERR-IA α-nDCG NRBP

Lemur .271 .369 .232

ListMLE .287 .387 .249

xQuAD .317 .413 .284

TxQuAD .308 .410 .272

HxQuAD .326 .421 .294

PM2 .306 .401 .267

TPM2 .291 .399 .250

HPM2 .317 .420 .279

R-LTR .303 .403 .267

PAMM .309 .411 .271

R-LTR-NTN .312 .415 .275

PAMM-NTN .311 .417 .272

DSSA (2017) .356 .456 .326

DESA (2020) .363 .464 .332

DVGAN (2020) .367 .465 .334

Graph4DIV (2021) .370 .468 .338

GAT-DIV (Ours) .380 .476 .351

Improv 2.9% 1.8% 3.8%

Compared with non-diversified and the conventional representative diversifi-
cation models, GAT-DIV consistently outperforms these models. Because non-
diversified solely consider the relevance between the query. Some conventional
models use handcrafted ranking functions, and others directly model the simi-
larity between documents as the diversity.

Compared with the state-of-the-art models, DSSA is the state-of-the-art
explicit model which leverages RNNs, attention mechanism, and greedy selection
strategy to generate the diversity ranking list. Graph4DIV is the state-of-the-art
implicit method that uses a document intent classifier based on BERT to judge
whether two documents covering the same subtopic, and applies GCN to model
the greedy selection process. As for the two state-of-the-art ensemble methods,
DESA has a global optimal diversity ranking framework and DVGAN uses gen-
erative adversarial network architecture. To sum up, our model can outperform
all the state-of-the-art explicit, implicit, and ensemble methods. Compared with
the best performing baseline model, our method achieves statistically significant
improvements on α-nDCG, ERR-IA, and NRBP by about 1.8%, 2.9%, and 3.8%,
respectively.

Graph4DIV is an impressive implicit graph-based model, because it out-
performs many models which use subtopic information and demonstrates that

644 X. Xu et al.

Table 3. Performance of GAT-DIV with different settings.

(L, K, F ′) ERR-IA α-nDCG NRBP

(1,3,256) .365 .464 .335

(1,4,256) .380 .476 .351

(1,5,256) .367 .465 .334

(2,3,256) .368 .467 .337

(2,4,256) .374 .472 .344

(2,5,256) .371 .469 .340

(3,4,256) .361 .461 .328

(1,4,512) .367 .466 .335

(1,4,128) .376 .471 .346

appropriate modeling structures can alleviate the lack of subtopic information.
Our graph-based model does not require additional models to construct the
graphs and enables each document discriminatively has interaction with other
documents.

5.2 Discussion and Ablation Study

Our model is implicit and concise, the effectiveness of GAT-DIV is the joint
efforts of the global ranking strategy and the latent diversity feature extraction
structure. We conducted further experiments to investigate the effects of differ-
ent GAT-DIV settings and the effects of different latent diversification feature
extraction structures.

Effects of GAT Settings. The number of graph attentive layers, the number
of independent attention heads of each layer, and the number of hidden features
F ′ are crucial in our model. We conduct a series of experiments to investigate
the effects of these parameters, and the experimental results of different settings
of the number of layers L, heads K, and hidden features F ′ are shown in Table 3.
Based on the results, we can discover that stacking graph attentive layers may
not improve the ability to capture the latent diversity features. One possible
reason is the graph in the proposed model is a complete graph, which empowers
each node in the graph can directly have interaction with all other documents.
Therefore, the number of layers, heads, and hidden features in this paper are set
as 1, 4, and 256, respectively.

Effects of Different Feature Extraction Structures. In order to explore the
performance of different feature extraction structures, we conduct experiments
on using GCNs of the different number of layers with the same adjacent matrix
as GAT-DIV to capture latent diversity features, denoted as n-layer GCN, where
n is the number of layers. For a comprehensive and fair comparison, we study

Diversify Search Results Through Graph Attentive Document Interaction 645

Table 4. Performance of different diversity feature extraction structures.

ERR-IA α-nDCG NRBP

Graph4DIV .370 .468 .338

1-layer GCN .367 .465 .337

2-layer GCN .372 .471 .342

3-layer GCN .375 .471 .344

4-layer GCN .374 .471 .344

GAT-DIV .380 .476 .351

n-layer GCN because Graph4DIV [25] uses GCN to generate diversified ranking
results either. Specifically, n is set from 1 to 4, the adjacent matrix and the
number of hidden features are the same as in GAT-DIV, and the experimental
results are shown in Table 4. On the one hand, GAT-DIV outperforms n-layer
GCN models, because the latter treat the importance of each node’s neighbors
equally, while the former discriminatively exploit the information from other
documents. It demonstrates the effectiveness of the elaborated feature extraction
structure. On the other hand, n-layer GCN models outperform Graph4DIV, the
latter uses a greedy selection strategy, and the former are non-greedy ranking
methods. Graph4DIV uses pre-trained language models to construct the graphs,
however, n-layer GCN models slightly outperform Graph4DIV. So it illustrates
that we do not require extra models to construct the graphs to some extent.
Furthermore, n-layer GCN models and GAT-DIV outperforms DESA, though
these graph-based methods use complete graphs, the empirical studies show that
they are more effective than DESA. It also demonstrates the effectiveness of our
feature extraction structures.

To sum up, the experimental results in Table 3 and 4 demonstrate that the
non-greedy ranking strategy and the elaborate latent diversity feature extraction
structure are both beneficial to the search result diversification task.

6 Conclusion

In this paper, we proposed a novel graph-based implicit method for the search
result diversification task. Our model first constructs a document interaction
graph for each query, then models the interaction between each document and
its neighbors by adopting the graph attention network. To extract latent diver-
sity features, we design node aggregation and latent diversity feature extraction
algorithms. The proposed model can take the whole candidate document set as
input, then respectively calculates the diversity and relevance score of each docu-
ment simultaneously by the extracted diversity features and traditional relevance
features, finally jointly returns the ranking score of each document. Experimental
results on TREC diversity test benchmark datasets demonstrate the superiority
of our model compared to existing state-of-the-art models. In the future, we plan

646 X. Xu et al.

to explore more effective diversity feature extraction structures, and apply our
diversity feature extraction structure to the explicit search result diversification
model.

Acknowledgement. This research is supported by National Natural Science
Foundation of China (Grant No. 6201101015), Beijing Academy of Artificial
Intelligence (BAAI), Natural Science Foundation of Guangdong Province (Grant
No. 2021A1515012640), the Basic Research Fund of Shenzhen City (Grand
No. JCYJ20210324120012033 and JCYJ20190813165003837), Overseas Cooperation
Research Fund of Tsinghua Shenzhen International Graduate School (Grant No.
HW2021008), and research fund of Tsinghua University - Tencent Joint Laboratory
for Internet Innovation Technology.

References

1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results.
In: WSDM, pp. 5–14 (2009)

2. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reorder-
ing documents and producing summaries. In: SIGIR, pp. 335–336 (1998)

3. Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for
graded relevance. In: CIKM, pp. 621–630 (2009)

4. Clarke, C.L., et al.: Novelty and diversity in information retrieval evaluation. In:
SIGIR, pp. 659–666 (2008)

5. Clarke, C.L.A., Kolla, M., Vechtomova, O.: An effectiveness measure for ambiguous
and underspecified queries. In: Azzopardi, L., et al. (eds.) ICTIR 2009. LNCS,
vol. 5766, pp. 188–199. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04417-5 17

6. Dang, V., Croft, B.W.: Term level search result diversification. In: SIGIR, pp.
603–612 (2013)

7. Dang, V., Croft, W.B.: Diversity by proportionality: an election-based approach
to search result diversification. In: SIGIR, pp. 65–74 (2012)

8. Dang, V., Xue, X., Croft, W.B.: Inferring query aspects from reformulations using
clustering. In: CIKM, pp. 2117–2120 (2011)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186
(2019)

10. Goswami, A., Zhai, C., Mohapatra, P.: Learning to diversify for e-commerce search
with multi-armed bandit. In: SIGIR Workshop (2019)

11. Hu, S., Dou, Z., Wang, X., Sakai, T., Wen, J.R.: Search result diversification based
on hierarchical intents. In: CIKM, pp. 63–72 (2015)

12. Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study
and analysis of user queries on the web. Inf. Process. Manag. 36(2), 207–227 (2000)

13. Jiang, Z., Wen, J.R., Dou, Z., Zhao, W.X., Nie, J.Y., Yue, M.: Learning to diversify
search results via subtopic attention. In: SIGIR, pp. 545–554 (2017)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015, Conference Track Proceedings (2015)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

https://doi.org/10.1007/978-3-642-04417-5_17
https://doi.org/10.1007/978-3-642-04417-5_17

Diversify Search Results Through Graph Attentive Document Interaction 647

16. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188–1196. PMLR (2014)

17. Liu, J., Dou, Z., Wang, X., Lu, S., Wen, J.R.: DVGAN: a minimax game for search
result diversification combining explicit and implicit features. In: SIGIR, pp. 479–
488 (2020)

18. Nguyen, T.N., Kanhabua, N.: Leveraging dynamic query subtopics for time-aware
search result diversification. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X.,
de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp.
222–234. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06028-6 19

19. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. Technical report, Stanford InfoLab (1999)

20. Qin, X., Dou, Z., Wen, J.R.: Diversifying search results using self-attention net-
work. In: CIKM, pp. 1265–1274 (2020)

21. Rafiei, D., Bharat, K., Shukla, A.: Diversifying web search results. In: WWW, pp.
781–790 (2010)

22. Santos, R.L., Macdonald, C., Ounis, I.: Exploiting query reformulations for web
search result diversification. In: WWW, pp. 881–890 (2010)

23. Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analysis of a very large web
search engine query log. In: ACM SIGIR Forum, vol. 33, pp. 6–12. ACM New York
(1999)

24. Song, R., Luo, Z., Wen, J.R., Yu, Y., Hon, H.W.: Identifying ambiguous queries in
web search. In: WWW, pp. 1169–1170 (2007)

25. Su, Z., Dou, Z., Zhu, Y., Qin, X., Wen, J.R.: Modeling intent graph for search
result diversification. In: SIGIR (2021)

26. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)
27. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph

attention networks. In: ICLR (2018)
28. Wang, C.J., Lin, Y.W., Tsai, M.F., Chen, H.H.: Mining subtopics from different

aspects for diversifying search results. Inf. Retrieval 16(4), 452–483 (2013)
29. Xia, F., Liu, T.Y., Wang, J., Zhang, W., Li, H.: Listwise approach to learning to

rank: theory and algorithm. In: ICML, pp. 1192–1199 (2008)
30. Xia, L., Xu, J., Lan, Y., Guo, J., Cheng, X.: Learning maximal marginal relevance

model via directly optimizing diversity evaluation measures. In: SIGIR, pp. 113–
122 (2015)

31. Xia, L., Xu, J., Lan, Y., Guo, J., Cheng, X.: Modeling document novelty with neural
tensor network for search result diversification. In: SIGIR, pp. 395–404 (2016)

32. Yue, Y., Joachims, T.: Predicting diverse subsets using structural SVMs. In: ICML,
pp. 1224–1231 (2008)

33. Zheng, W., Fang, H., Yao, C.: Exploiting concept hierarchy for result diversifica-
tion. In: CIKM, pp. 1844–1848 (2012)

34. Zhu, Y., Lan, Y., Guo, J., Cheng, X., Niu, S.: Learning for search result diversifi-
cation. In: SIGIR, pp. 293–302 (2014)

https://doi.org/10.1007/978-3-319-06028-6_19

On Glocal Explainability of Graph
Neural Networks

Ge Lv1(B) , Lei Chen1 , and Caleb Chen Cao2

1 The Hong Kong University of Science and Technology, Hong Kong, China
{glvab,leichen}@cse.ust.hk

2 Huawei Technologies, Hong Kong, China
caleb.cao@huawei.com

Abstract. Graph Neural Networks (GNNs) derive outstanding perfor-
mance in many graph-based tasks, as the model becomes more and
more popular, explanation techniques are desired to tackle its black-box
nature. While the mainstream of existing methods studies instance-level
explanations, we propose Glocal-Explainer to generate model-level expla-
nations, which consumes local information of substructures in the input
graph to pursue global explainability. Specifically, we investigate faith-
fulness and generality of each explanation candidate. In the literature,
fidelity and infidelity are widely considered to measure faithfulness, yet
the two metrics may not align with each other, and have not yet been
incorporated together in any explanation technique. On the contrary,
generality, which measures how many instances share the same expla-
nation structure, is not yet explored due to the computational cost in
frequent subgraph mining. We introduce adapted subgraph mining tech-
nique to measure generality as well as faithfulness during explanation
candidate generation. Furthermore, we formally define the glocal expla-
nation generation problem and map it to the classic weighted set cover
problem. A greedy algorithm is employed to find the solution. Experi-
ments on both synthetic and real-world datasets show that our method
produces meaningful and trustworthy explanations with decent quanti-
tative evaluation results.

Keywords: Graph neural network · Explainability · XAI

1 Introduction

Graph neural networks (GNNs) have received significant attention due to their
outstanding performance in various real-life applications, such as social networks
[12], citation graphs [6], knowledge graphs [33], recommendation systems [14]
and so on. GNNs generally adopt a message propagation strategy to recursively
aggregate neural information from neighboring nodes and links [10,23,26] to
capture both node features and graph topology. Owing to the broad usage of
graph data and promising effectiveness, GNNs become increasingly important
and popular. Nonetheless, the model shares the same black-box nature with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 648–664, 2022.
https://doi.org/10.1007/978-3-031-00123-9_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_52&domain=pdf
http://orcid.org/0000-0001-7620-1755
http://orcid.org/0000-0002-8257-5806
http://orcid.org/0000-0002-8050-2486
https://doi.org/10.1007/978-3-031-00123-9_52

On Glocal Explainability of Graph Neural Networks 649

other deep learning techniques, practitioners can hardly understand their deci-
sion mechanism, so they cannot fully trust the model. Hence human-intelligible
explanation on how GNNs make prediction is intensively desired so that the
models can be inspected and possibly amended by domain experts before being
deployed in crucial applications.

In recent years, extensive research efforts have been devoted to studying the
explainability of GNNs [16,18,24,29,30]. The task is nontrivial since, different
from images and texts, graphs do not follow certain grid-like or sequential struc-
ture, and encompass rich relational information, which blocks existing explaining
techniques for images and texts to be directly applied. Specifically, explaining a
pretrained GNN is to determine a substructure1 of an input graph that is critical
for the model to make a prediction [18,29]. The main stream of exiting methods
studies instance-level explainability, which generates input-specific explanations
[18,24,29]. While global (model-level) explanation is much less explored, which
outputs a set of input-independent explanations for a target class [16,30]. As
a matter of fact, both levels of explainability are important because instance-
level techniques are more precise locally and specific for a target instance, while
model-level methods can unveil high-level knowledge that the model learned
from the training set.

Fig. 1. An example from the MUTAG
dataset showing the two metrics fidelity
and infidelity may not align with each
other.

For both categories of works, the
fundamental challenge lies in how to
qualify explainability. In the litera-
ture, faithfulness has been constantly
focused on to measure explainabil-
ity, which examines if an explanation
faithfully explains the model’s behav-
ior [25,31]. A number of tools from var-
ious theories are borrowed to measure
faithfulness, including Mutual Infor-
mation [16,29], conditional probability
[24], Input Optimization [30], Shapley
Value [32] and so on. In general, these
metrics either measure fidelity [18,31],

which equals the model’s predicted confidence drop when removing a candi-
date substructure [32]; or infidelity [13,31], which equals the model’s confidence
change when solely keeping the substructure [16,24,29,30]. Though both metrics
are decent tools for validating faithfulness, they may not align with each other in
pursuing optimal explainability even though their way of perturbing the input
graph complement one another. To give an example, Fig. 1 shows an instance
from the MUTAG dataset2, which consists of molecular structures classified by

1 In this work, we explicitly focus on explanation for topology structure of the input
graph since feature explanation in GNNs is analogous to that in non-graph based
neural networks, which has been widely studied [25].

2 The MUTAG dataset [9] is widely used to study the explainability of GNN on graph
classification task in many existing works [7,29,30,32].

650 G. Lv et al.

Fig. 2. A set of selected examples from the MUTAG dataset with a set of explanation
candidates, whose explained instances are boxed in different colors. (Color figure online)

their mutagenic effect. The instance is predicted Mutagenic by a pretrained GNN
with a confidence of 0.999999. Three candidate substructures of the instance are
highlighted by bold edges in different colors (red, blue and yellow, respectively),
their fidelity and infidelity values are also shown. While Substructures 1 and
2 retain superiority in either fidelity or infidelity only, Substructure 3 achieves
the best of both worlds, which makes it the most promising candidate with the
highest faithfulness to the pretrained GNN. However, to the best of our knowl-
edge, none of the existing works consider both metrics simultaneously given the
difficulty that the two measurements from different perspectives cannot be sim-
ply added up to optimize. The rich literature has testified that both metrics
are vital to the qualifying an ideal explanation, thus to avoid falling short from
either perspective, a technique to construct an objective concerning both fidelity
and infidelity of explanations is in great need.

On the contrary of faithfulness being intensively studied, generality of expla-
nations has not yet been explored. An explanation is a subgraph of the input graph
by definition, an explanation for multiple instances is, hence, a common subgraph
of instances being explained by the light of nature. Intuitively, an explanation
shared by more instances should be considered with higher global explainability,
as it represents the general topological characteristics of the group; we term this
property “generality” of an explanation. Shown in Fig. 2 is a set of instances from
the MUTAG dataset with a number of explanation candidates that can poten-
tially “explain” them3, whose explained instances are boxed in corresponding col-
ors. Based on the number of instances a substructure can explain, Candidate 3 is
the best since it has the highest generality in addition to high fidelity and infidelity
scores. In contrast, though Candidate 2 has better measurement regarding faith-
fulness, it can convey local explainability on one single instance only. Similarly,
Candidate 1 and 4 are not optimal either. Higher generality implies a substructure
is truly the high-level knowledge learned by theGNN from the training set. As illus-

3 For the ease of demonstration, assume the set of instances one candidate can explain
is known for the moment.

On Glocal Explainability of Graph Neural Networks 651

trated in the example, generality connects the explanation of each single instance
to the discriminative characteristic of the class captured by the GNN. The main
issue that hinders the development in investigating the generality of explanations
is the computational cost of finding optimal common substructures for multiple
graphs [29]. Tackling the issue requires subgraph isomorphism checking, which is
NP-hard and embedding-based methods cannot ensure topological isomorphism.
Nonetheless, measuring generality reveals the true correlation between instance-
and model- level explanation, which is essential to finding global explanation.

To build a unified system that qualifies explanations based on both fidelity and
infidelity metrics as well as generality, we propose Glocal-Explainer, a novel frame-
work for finding model-level explanation. Glocal-Explainer is the first method
designed to interpret a GNN model globally using the local information given by
individual instances. The contribution of our work is summarized as below:

• We introduce subgraph mining technique adapted to the GNN explanation
task for measuring the generality of candidates, and define domination set
based on fidelity and infidelity as a metric to evaluate faithfulness of a can-
didate.

• We formally define the glocal explanation generation problem, and propose a
novel framework Glocal-Explainer to incorporate faithfulness and generality
so as to solve the problem with a theoretical guarantee of log(k) approxima-
tion to the optimal solution.

• We conduct experiments on both synthetic and real-world datasets and show
that our method outputs meaningful and trustworthy explanations with
decent quantitative evaluation results for pretrained GNN models.

2 Related Work

2.1 Local Explanation of GNNs

Local explanability refers to instance-level explanation techniques, which aim to
acquire explanations for a target instance by identifying parts of the data that
are critical to the model’s decision. Recently, instance-level technique has been
present main stream of GNN explanation. GNNExplainer [29] is the ground-
breaking work for GNN explanation, which uses a mask to screen out important
part of the input, then feed it into the trained GNN for evaluating and updat-
ing the mask. Many of the following works [16,21] employ the same technique
and even though different in mask and objective function design, they share
the same high-level idea. Other existing works can be categorized into surrogate
methods [24], gradients-based methods [18] and decomposition methods [22].
While instance-level methods are precise locally, it falls short in giving high-
level explanation of a GNN.

2.2 Global Explanation of GNNs

Global explanation methods are termed model-level methods, which output gen-
eral and input-independent explanations that interpret the overall behavior of

652 G. Lv et al.

Fig. 3. (a) Examples of dispensable and indispensable substructures. (b) An example
to show the difference between supporting set and functioning group of a substructure
s∗; functioning group of a candidate is always a subset of its supporting set. (Color
figure online)

the model. Such explanations not only provide high-level reasoning of the GNN’s
prediction, they also offer easy generalization to an inductive setting which is
the nature of many GNN applications [16]. To the best of our knowledge, the
only existing model-level method is XGNN [30]. It proposes to explain GNNs
via graph generation using reinforcement learning. However, the two problems
in its output are: first, none of the explanations exists in the original data, thus
they cannot truly “explain” any class; second, the structure violates chemical
rules, which will decrease the user’s trust in the model. Thus we aim to develop
a new and trustworthy model-level explanation method.

3 On the Perspective of Generality

GNN explanation serves human understanding, thus should be exploited in a
natural and intuitive fashion. In specific, the presence of some substructure in
an instance is regarded as an identification of membership to some class in the
eyes of a GNN. Based on the intuition, we proposed Glocal-Explainer to find
model-recognize genetic substructures for each interested class. For illustrative
convenience, we introduce the generality perspective first.

3.1 Counterfactual Qualification

Our goal is to bridge the gap between global and local explainability for mea-
suring the generality of a candidate. To start with, a candidate for explanations
needs to be defined locally. The idea of counterfactual [2,11,25] is frequently used
in explanation techniques for non-graph tasks and introduced to GNNs recently
[15,17,20,29], it helps users understand black-box models in human reasoning
fashion: a subtractive counterfactual investigates the situation “if it had not
been ... then the outcome would not have been...”, which performs better than
the additive one on subsequent logical reasoning tasks [2]. We follow this idea to
perturb the input by removing a substructure and check if prediction from the
GNN changes to determine if the substructure is critical for the model.

On Glocal Explainability of Graph Neural Networks 653

Definition 1. Given a pretrained GNN φ(·), a substructure s of a graph g is
said to be indispensable to g, denoted by s �φ g, if removing s from g results in
GNN changes its prediction on g.

Figure 3(a) shows an instance originally predicted as Mutagenic by the pre-
trained GNN. Three substructures are highlighted in separated copies. Removing
the first two substructures (in yellow) does not lead to change of GNN’s predic-
tion, hence they are not critical to the model making a decision on this instance.
Whereas, if the third substructure (in red) is removed, a new prediction (Non-
mutagenic) is given, hence the last substructure is indispensable to the instance.
Subsequently, substructures with such a property can be well considered as coun-
terfactual candidates of an explanation.

3.2 Candidate Generation

A few existing methods attempt to generate a model-level explanation by finding
a locally optimal one first then generalize it to the entire class [16,29]. However,
a better way to capture generality and pursue globally ideal explainability is to
generate explanation candidates while computing their generality along the way.
In this regard, frequent subgraph mining comes into play naturally and adapted
techniques for facilitating mining of GNN explanation candidates need to be
designed to encode GNN’s identifying candidates into the workflow. Luckily, in
the field of graph mining there is a rich research body offering many decent
tools for mining frequent subgraphs [4,8,27,28], which allow us to explore the
candidate space while determining the generality of a candidate at the same time.
Take the gSpan algorithm [27] as an example, its high-level idea of the mining
procedure is pattern growing: starting from size-one candidates and growing the
pattern one edge at a time, it performs a depth-first search on a tree-shaped
search space of subgraphs (the search space is also referred as an enumeration
tree). As shown in the center of Fig. 4, each node of the tree corresponds to a
subgraph with one edge extended compared to that in its parent node. In other
words, a subgraph contained in a node is always a supergraph of the one in its
parent node. Due to this anti-monotone property of subgraph isomorphism over
the search space, the size of supporting set of subgraphs decreases monotonously
along a path from the root to a leaf on the enumeration tree, as the supporting set
of a graph is always larger or equal to that of its supergraph. Owing to subgraph
mining techniques, we are now ready to introduce our candidate mining details.

3.3 Mining Strategy

The mining algorithms aim at all subgraphs with frequency higher than the min-
imum support parameter, yet it brings unnecessary computational cost. Instead
of searching exhaustively, a pruning strategy needs to be introduced. Based on
the definition of a counterfactual explanation candidate, we further define the
functioning group of a substructure in the eyes of a GNN as below:

654 G. Lv et al.

Definition 2. Given a pretrained GNN φ(·) and its corresponding training set
D, functioning group of a substructure s, denoted by Fφ(·)(s), is the set of
instances from the training set that share the same predicted label with s and
to which s is indispensable. Formally,

Fφ(·)(s) = {g | ŷ′
φ(g) = ŷφ(s) ∧ s �φ g,∀g ∈ D} (1)

Functioning group reflects one substructure’s scope of effectiveness; meanwhile,
it acts as a direct measurement of generality for a candidate. The reason why
supporting set of the candidate is not used is that the presence of some subgraph
may not be recognized by the GNN so that the underlying instance would be
predicted as a specific class. Shown in Fig. 3(b) is an example to illustrate the
difference between supporting set and functioning group of a substructure s∗. All
three graphs contain s∗, i.e., they are all in the supporting set of s∗. However, for
only the last one, s∗ is indispensable since removing it changes GNN’s prediction
while the other two do not share this property. Therefore, we believe that the
GNN recognizes some other pattern instead of s∗ for them. Thus, the first two
instances are not included in the functioning group of the substructure s∗. In
conclusion, the intrinsic relation between supporting set and functioning group
is that the latter is always a subset of the former, i.e., the size of the supporting
set of one subgraph is the upper bound of its functioning group.

As mentioned in Sect. 3.2, the size of supporting set of mined subgraphs will
decrease monotonously along a path from root to leaves on the searching tree. On
the contrary, size of functioning group might increase constantly. The rational is
that one substructure is indispensable to an instance proves that it contains crit-
ical information for the model to predict its class, hence its supergraph contains
the information as well, which will also be indispensable to the same instance.
Due to the black-box nature of GNN, this assumption can not be proved theo-
retically for the moment, yet it is observed in our experimental study. According
to this philosophy, we design the pruning strategy for mining candidates as the
following: the mining should stop, i.e., stop growing a mined pattern when its
functioning group equals its supporting set. The idea is straightforward, if the
mining were to continue, the size of functioning group might increase but the
size of supporting set will decrease. However, the latter is the upper bound of the
former, thus continually growing will not mine new candidates with a larger func-
tioning group, i.e., higher generality. As a smaller substructure is preferable to
a lager one [18,31], we stop exploring. In summary, when the functioning group
equals the supporting set, the mining will be stopped since no more promising
candidates with higher generality can be found.

4 On the Perspective of Faithfulness

Besides generality, faithfulness is the other goal of finding optimal explanations.
As introduced in Sect. 1, assume a candidate substructure is truly critical, fidelity
is to measure model’s confidence drop when being removed, where a higher
value indicates a better explanation result [32]. On the contrary, infidelity is for

On Glocal Explainability of Graph Neural Networks 655

measuring the confidence change keeping only the substructure, where a lower
value implies a better quality of explanation [16,29]. To incorporate the two, we
refer to the 2-D skyline operator problem [1]. The definition of Skyline is the set
of data points out of the database that are not dominated by any other point
[1]. Inspired by the idea of comparing “quality” of instances among data points
themselves, we borrow the concept of domination set and apply it using fidelity
and infidelity as the two dimensions. Formally, we define the two metrics for one
instance first. Assume a candidate substructure s is predicted as label c when
inputting it into the pretrained GNN, then we define:

Definition 3. Individual fidelity of s on an instance g is calculated as:

fidφ(·)(s, g) = φ(g)ŷ=c − φ(g/s)ŷ=c

where g/s refers to removing the substructure s from the instance g.

The higher the fidelity, the more significant s is to g.

Definition 4. Individual infidelity of s on an instance g is calculated as:

infφ(·)(s, g) = φ(g)ŷ=c − φ(s)ŷ=c

The lower the infidelity, the less informative the removed part is, hence s is of
better explainability.

Subsequently, the fidelity and infidelity of a candidate are measured among
its functioning group, the overall faithfulness of a candidate is defined as below:

Definition 5. Fidelity of a substructure s measures how much information s
takes away when it is removed, which is calculated as:

Fidφ(·)(s) =
1

‖Fφ(·)(s)‖
∑

∀g∈Fφ(·)(s)

fidφ(·)(s, g)

Definition 6. Infidelity of a substructure s evaluates how confident the GNN is
to make the same prediction as the original instance, which is computed as:

Infφ(·)(s) =
1

‖Fφ(·)(s)‖
∑

∀g∈Fφ(·)(s)

infφ(·)(s, g)

The two faithfulness metrics serve as the two dimensions for the set of can-
didates. We are interested in how many other candidates one can dominate, i.e.,
this candidate is certainly better than how many others considering both fidelity
and infidelity. Formally, the domination set of s is formally defined as:

Dφ(·)(s) = {s′|Fidφ(·)(s′) ≤ Fidφ(·)(s) ∧ Infφ(·)(s
′) ≥ Infφ(·)(s)}

An illustrating example of domination set is shown on the right in Fig. 4. Candi-
dates are plotted as data points with infidelity and 1-fidelity in two axes4. The
4 To cater to the plotting convention of skyline problem so that the domination set

locates in the upper right corner.

656 G. Lv et al.

Fig. 4. The workflow of Glocal-Explainer.

more others one candidate can dominate, the better its quality is. Such design
has two advantages: firstly, it consider two metrics equally and allow us to aim
for the best of both worlds; secondly, instead of comparing the absolute values,
qualifying candidates by contrast of one another scales the metrics value, thus
avoiding potential problems of handling skewed distribution in any metrics.

5 The Proposed Glocal-Explainer

We aim for mode-level explanation of GNN’s general behavior with both high
generality in the data and faithfulness to the model. Furthermore, we take the
total number of explanations into consideration. In practice, users prefer fewer
explanations to conclude knowledge learned by the GNN that is sufficient for
understanding. Hence, we propose to aim for a set of explanations, whose gener-
ality is large enough to cover all instances in the training set with the target label.
In this fashion, high-level knowledge is summarized by incorporating faithfulness
in instances, hence achieving the best regarding both metrics. This immediately
leads to the weighted set cover problem with direct mapping detailed in below.

Given a pretrained GNN φ(·) and its training set D, the set of instances from
D with predicted labels as the target class c∗ is considered the universe with
instances as elements to be covered, mathematically,

Uφ(·),c∗(D) = {g ∈ D | φ(g) = c∗} (2)

The reason why predicted label is used instead of the ground truth label is for
capturing the knowledge that the GNN learned but not fed in. During training,
GNN might not be able to achieve a training accuracy of 100%, the difference
between the universe defined by Eq. (2) and the set of all instances with true
label c∗ distinguishes between GNN’s recognized pattern and real characteristics
among instances within the target class. In summary, we are interested in what
GNNs see instead of what humans see. Each explanation candidate is a set

On Glocal Explainability of Graph Neural Networks 657

that can possibly be picked to form a set cover, furthermore, functioning group
defined by Eq. (1) serves as the coverage of a candidate. Finally, the weight of
each candidate is calculated by measuring its faithfulness via domination set:

ω(s) = 1 − ‖Dφ(·)(s)‖
‖C‖ , (3)

where C is the set of all candidates. Thus a candidate with the highest faithfulness
that can dominate all the others will have the weight 0, while a candidate that
can dominate fewer others will be assigned a larger weight. In this fashion,
faithfulness of candidates is evaluated internally. Now we are ready to define the
glocal explanation generation problem formally in the following:

Definition 7. Given a GNN φ(·) trained on a dataset D, a target class c∗ and
a group of candidates C mined from D, the glocal explanation generation problem
is to find a subset C′ of C s.t.:

argmin
C′

{
∑

s∈C′

ω(s) |
⋃

Fφ(·)(s) = Uφ(·),c∗(D)}

where Fφ(·), Uφ,c∗(D) and ω(s) are defined by Eqs. (1), (2) and (3) respectively.

As a result, the classic greedy algorithm to approximate the optimal weighted
set cover with a log(k) factor [3] can be used as the solution. Since all mappings
of settings between the two problems are clear and straightforward, we do not
go into details and include the algorithm in this paper.

The workflow of the proposed method is shown in Fig. 4. Locally, subgraph
mining technique is used to mine candidates from the instances while computing
the fidelity, infidelity and generality; the pruning strategy operates when the
functioning group size equals the supporting set of a candidate; faithfulness of
the candidates are calculated by investigating their domination set. Globally,
with generality and faithfulness serving as coverage and weight, the explainer
outputs final explanations as a set cover over the universe. Such a framework
consumes local information in the input graph to explain GNNs globally, hence
we give it the term “Glocal”.

6 Experimental Evaluation

We evaluate our explainer on using both synthetic and real-world data, i.e.,
isAcyclic dataset and MUTAG dataset in graph classification task. The design
of the experiments attempts to answer two questions: 1) how does our model
perform in an identical setting compared to the existing model-level explainer?
2) how does our model perform when measured by various metrics?

6.1 Datasets and Experimental Setup

Table 1 summarizes the properties of the two datasets in use; in the following we
describe them in detail.

658 G. Lv et al.

Synthetic Dataset. isAcyclic datasets is a synthetic dataset built by Hao
et al. [30] specifically for evaluating model-level explanations, where the ground
truth explanations are prepared. Each instance is labeled either Cyclic or Acyclic
according to if there exists any cycle in its graph structure. The former class
consists of graphs with grid-like, circle, wheel or circular ladder structures; while
the latter contains star-like, binary tree, path and full rary tree graphs.

MUTAG Dataset. The dataset consists of molecule structures of chemical
compounds with 7 chemical elements, where nodes represent atoms and edges
represent chemical bonds. Each instance is classified according to its mutagenic
effect on a bacterium [5]. The dataset is widely used in GNN explanation works,
since it has golden knowledge in the underlying domain: three or more fused
rings and nitrogen dioxide (-NO2 structure) are known to be mutagenic [5]. For
fair comparison with the existing technique [30], we also ignore edge label.

Table 1. Statistics of the datasets and the corresponding GNN accuracy.

Dataset Classes Avg. nodes Avg. edges Acc.a

isAcyclic 2 30.04 28.46 0.964

MUTAG 2 17.93 19.79 0.978
aFor fair comparison, we attempt to use the same pretrained GNNs
as the compared method [30]. However, official implementation of
the work is open to the public on MUTAG dataset only. Therefore
we build a GNN for isAcyclic dataset according to the structure
described in [30] and train it to achieve comparable accuracy. For
evaluation, we report the official results with GNN scores for XGNN
from the original paper and use scores from our own trained GNN
for the proposed method.

GNN Models to Explain. In this work, we focus on graph classification
task for the purpose of demonstration. Without loss of generality, node-level
and link-level tasks can be handled easily by using the target’s computational
graph as input. GCN models [10] are used as explained networks on the two
datasets, both models follow the design in the compared method [30] for the
sake of parallel testing. We describe the GNNs briefly here. For the synthetic
dataset isAcyclic, node degrees are used as the input node features. The network
consists of two GCN layers with output dimensions as 8 and 16 accordingly and
global mean pooling is performed to obtain the graph representations, followed
by a fully-connected layer as the final classifier. Sigmoid is utilized as the non-
linear activation function. For the real-world MUTAG dataset, one-hot feature
encoding is used as input node feature. The network structure consists of three
GCN layers with input dimension as 7 and hidden dimensions as {32, 48, 64},
respectively. Global mean pooling and fully-connected layer classifier are also
employed. ReLU is utilized as the non-linear activation function. We trained
the models to reasonable training accuracy (reported in Table 1) to ensure the
GNNs have captured the knowledge from the training set.

On Glocal Explainability of Graph Neural Networks 659

6.2 Compared Method

We compare our method with XGNN [30], which is, to the best of our knowl-
edge, the only existing work that generates global explanation. XGNN borrows
the idea of Input Optimization from explanation task in text and image field,
by which, GNN’s predicted confidence is the only optimization goal and evalua-
tion metric, while the generality of an explanation is not considered. It employs
reinforcement learning to find explanations by graph generation, thus the out-
put is independent of all instances in the dataset, and checking generality needs
extra effort to carry out subgraph isomorphism, which is NP-hard. Hence we
mainly compare predicted confidence between our proposed Glocal-Explainer
and XGNN. As a matter of fact, the experimental results show that, generality
is barely measurable for the output of XGNN. The training hyper-parameters
are all set to be the same as the optimized ones in the original paper. The rein-
forcement learning framework requires user-set maximum number of nodes in
the output explanations and initial node for the graph generation. We set the
maximum number of nodes to be the average number of nodes of all outputs
from our proposed Glocal-Explainer, and then test all possible initial nodes to
give a comprehensive comparison.

Fig. 5. Visualization of results on isAcyclic dataset, the first row represents Cyclic
class, the second and the third rows correspond to Acyclic class. The output of Glocal-
Explainer and XGNN are shown with blue and red nodes respectively, GNN predicted
scores (see Table footnote a) for explanations are reported below each structure. (Color
figure online)

6.3 Candidate Mining Algorithm

As discussed in Sect. 3.2, subgraph mining technique is employed in Glocal-
Explainer to generate candidates of explanations. Specifically in this paper, we
choose to use the gSpan algorithm [27], yet other mining techniques based on
Depth-First Searching on tree-structure searching space are also eligible to be
plugged in. Hence, superior graph mining algorithms developed later can be
adopted to improve the performance of Glocal-Explainer further.

660 G. Lv et al.

Fig. 6. Results of Mutagenic class in MUTAG dataset with corresponding GNN scores.
Shown in the green dashed box is the output of Glocal-Explainer and the other struc-
tures are the outputs of XGNN of the same size using different initial nodes. (Color
figure online)

There are three parameters to set for mining the candidates, the minimum
and maximum number of nodes in the subgraph mined and the support thresh-
old (the lowest frequency). Since one single edge is not informative enough to
deliver insights as an explanation and overlarge substructures are difficult for
humans to understand, we set the minimum number of nodes to be 3 and max-
imum to be 7, following [30]. It is worth noting that Glocal-Explainer actually
automatically decides how many nodes are optimal in the explanation according
to their generality (coverage) and faithfulness (weight) to the GNN.

Regarding the setting of the support parameter in subgraph mining, which
dominates the computational cost of the mining procedure, we follow [19] and
set the minimum support threshold to be 1 for the MUTAG dataset and 1% of
the mining space for the isAcyclic dataset. Since our pruning strategy signifi-
cantly reduces the computational cost and occupation of memory, low minimum
support thresholds allows us to explore a much larger searching space to find
candidates of lower frequency.

6.4 Result and Discussion

Explanations serve human understanding of the GNNs, hence we will firstly visu-
alize the experimental results to give straightforward evaluation and comparison
between methods. Secondly, quantitative analysis is also conducted to give a full
picture of how our explainer performs measured by various metrics.

Qualitative Analysis for isAcyclic Dataset. We report the results of our
explainer as well as XGNN in Fig. 5. For our method, blue nodes are used. Due
to official implementation of the compared method not being available to the
public (see Table footnote a), we present the official results from the original
paper. Explanations generated by Glocal-Explainer are all consistent with the
rules which builds up the synthetic dataset. Meanwhile, all explanations except
the second one for Acyclic class receive high GNN scores which is compara-
ble to XGNN’s, showing that the results are highly recognized by the model.
Though very few of the final explanations retain an unsatisfactory score, it may
be the result of considering both faithfulness and generality and find the model-
level explanations as an entirety, which do not guarantee individual optima. In
addition, all structures for Cyclic class found by XGNN other than the triangle

On Glocal Explainability of Graph Neural Networks 661

Fig. 7. Plots of fidelity, infidelity and GNN confidence of both the explanations and
the respective instances of Glocal-Explainer’s outputs; horizontal axis represents the
ratio of nodes that are included in the explanation out of the original graph.

do not exist in the dataset, the method suffers from serious out-of-distribution
(OOD) problem. For the Acyclic class, our explainer includes 4 out of 5 outputs
of XGNN while providing a richer repository for summarizing the knowledge
that GNN learned for this class. Yet unlike XGNN, our method does not require
any user-defined parameters such as explanation size to shape the output.

Qualitative Analysis for MUTAG Dataset. The outputs of Mutagenic
class in MUTAG dataset together with GNN corresponding scores are shown
in Fig. 6. We use the official implementation of XGNN to generate explanations
which have the same size as our final output and use all possible atoms as the
initial node. The output of Glocal-Explainer is shown in the left dashed box in
green with a predicted confidence 0.99998, which indicates that this structure
faithfully explains the model’s decision. It also verifies that the pretrained GNN
captures the domain knowledge. Recall that, as introduced in Sect. 6.1, chemistry
experts found that nitrogen dioxide (NO2 structure) attached to carbon rings
are mutagenic [5]. The explanation correctly captures the symbolic structure of
nitrogen dioxide.

From the perspective of generality, the algorithm outputs one single sub-
structure that covers the whole universe, which means it is indispensable to
all instances predicted as mutagenic. Such explanation is of highest generality,
thus represents common characteristics for the target class and top-level knowl-
edge that GNN learned from training. On the contrary, we have verified that the
explanations output by XGNN do not exist in any of the graphs from the dataset
in either class (see Fig. 2 for reference), which means they have zero generality.
XGNN outputs irrational structures that violate the fundamental rules in the
chemical area, such as the bound of chemical valence of the atoms is broken.

Quantitative Analysis of the Results . Although we aim to generate model-
level explanation, we are still interested in whether the explanations main-
tain outstanding faithfulness locally. Hence we measure fidelity and infidelity
of Glocal-Explainer’s output by averaging the scores among instances in the
respective functioning groups for quantitative study. Whereas for the compared

662 G. Lv et al.

method, we verify that the output for MUTAG dataset do not exist in the data,
hence there is no way to evaluate their faithfulness locally; regarding isAcyclic
dataset, without the official implementation and node features, we are not able
to carry out the evaluation.

Specifically, we use the ratio of nodes that are included in the explanation
out of the original graph to measure the size for normalizing the comparing
scale. Larger subgraphs usually carry more structural information, hence it can
affect the faithfulness metrics and smaller substructures tend to be less impor-
tant (low GNN score, low fidelity and high infidelity). We plot the curves of
fidelity, infidelity and GNN scores of both the explanations and the respective
instances for reference against size ratio in Fig. 7. Over the two datasets, Glocal-
explainer achieves high fidelity and low infidelity with a high GNN score for
the generated explanation. It is interesting that some infidelity score is negative,
which results from the extremely high conference score of the output substruc-
ture. Such phenomenon indicates that the GNN is even more confident about
the prediction, given the explanation substructure. In very rare cases, the output
is not very promising. Considering it may be the trade off between faithfulness
and generality, the method aims for model-level explanation, we believe that is
reasonable.

Overall, Glocal-Explainer can produce meaningful and trustworthy expla-
nation with outstanding algorithmic evaluation, thus it can help humans to
understand the model, increase their trust and improve the GNN.

7 Conclusion

Graph neural networks are widely employed owing to their outstanding perfor-
mance. Yet users cannot understand their decision making mechanism. In this
work, we propose Glocal-Explainer to generate model-level explanations. We
adapt subgraph mining technique to compute the generality of candidates, and
introduce domination set to measure their faithfulness. We further define the glo-
cal explanation generation problem and employ a greedy algorithm to find the
solution. Experimental results show that Glocal-Explainer outputs trustworthy
explanations with superior quantitative evaluation results.

Acknowledgment. This work is partially supported by National Key Research
and Development Program of China Grant No. 2018AAA0101100, the Hong Kong
RGC GRF Project 16209519, CRF Project C6030-18G, C1031-18G and C5026-
18G, AOE Project AoE/E-603/18, RIF Project R6020-19, Theme-based project TRS
T41-603/20R, China NSFC No. 61729201, Guangdong Basic and Applied Basic
Research Foundation 2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX
and ITS/470/18FX, Microsoft Research Asia Collaborative Research Grant, HKUST-
NAVER/LINE AI Lab, Didi-HKUST joint research lab, HKUST-Webank joint research
lab grants.

On Glocal Explainability of Graph Neural Networks 663

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp.
421–430. IEEE Computer Society (2001)

2. Byrne, R.M.: Counterfactuals in explainable artificial intelligence (XAI): evidence
from human reasoning. In: IJCAI, pp. 6276–6282. ijcai.org (2019)

3. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

4. Cohen, M., Gudes, E.: Diagonally subgraphs pattern mining. In: DMKD, pp. 51–
58. ACM (2004)

5. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Han-
sch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity.
J. Med. Chem. 34(2), 786–797 (1991)

6. Huan, Z., Quanming, Y., Weiwei, T.: Search to aggregate neighborhood for graph
neural network. In: ICDE, pp. 552–563. IEEE (2021)

7. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
In: ICLR. OpenReview.net (2017)

8. Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph mining algorithms.
Knowl. Eng. Rev. 28(1), 75–105 (2013)

9. Kersting, K., Kriege, N.M., Morris, C., Mutzel, P., Neumann, M.: Benchmark data
sets for graph kernels (2016). http://graphkernels.cs.tu-dortmund.de

10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR. OpenReview.net (2017)

11. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions.
In: ICML, vol. 70, pp. 1885–1894. PMLR (2017)

12. Li, Z., et al.: Hierarchical bipartite graph neural networks: towards large-scale
e-commerce applications. In: ICDE, pp. 1677–1688. IEEE (2020)

13. Liang, J., Bai, B., Cao, Y., Bai, K., Wang, F.: Adversarial infidelity learning for
model interpretation. In: SIGKDD, ACM (2020)

14. Liu, B., Zhao, P., Zhuang, F., Xian, X., Liu, Y., Sheng, V.S.: Knowledge-aware
hypergraph neural network for recommender systems. In: Jensen, C.S., et al. (eds.)
DASFAA 2021. LNCS, vol. 12683, pp. 132–147. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-73200-4 9

15. Lucic, A., ter Hoeve, M., Tolomei, G., de Rijke, M., Silvestri, F.: CF-
GNNExplainer: counterfactual explanations for graph neural networks. arXiv
preprint arXiv:2102.03322 (2021)

16. Luo, D., et al.: Parameterized explainer for graph neural network. In: NIPS (2020)
17. Numeroso, D., Bacciu, D.: Explaining deep graph networks with molecular coun-

terfactuals. CoRR abs/2011.05134 (2020)
18. Pope, P.E., Kolouri, S., Rostami, M., Martin, C.E., Hoffmann, H.: Explainability

methods for graph convolutional neural networks. In: CVPR. IEEE Computer
Society (2019)

19. Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.: gBoost: a mathematical
programming approach to graph classification and regression. Mach. Learn. 75(1),
69–89 (2009)

20. Sanchez-Lengeling, B., et al.: Evaluating attribution for graph neural networks. In:
NIPS (2020)

21. Schlichtkrull, M.S., Cao, N.D., Titov, I.: Interpreting graph neural networks for
NLP with differentiable edge masking. CoRR abs/2010.00577 (2020)

http://graphkernels.cs.tu-dortmund.de
https://doi.org/10.1007/978-3-030-73200-4_9
https://doi.org/10.1007/978-3-030-73200-4_9
http://arxiv.org/abs/2102.03322

664 G. Lv et al.

22. Schnake, T., et al.: Higher-order explanations of graph neural networks via relevant
walks. arXiv preprint arXiv:2006.03589 (2020)

23. Velickovic, P., et al.: Graph attention networks. In: ICLR. OpenReview.net (2018)
24. Vu, M.N., Thai, M.T.: PGM-explainer: probabilistic graphical model explanations

for graph neural networks. In: NIPS (2020)
25. Xiao-Hui, L., et al.: A survey of data-driven and knowledge-aware explainable AI.

TKDE (2020)
26. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?

In: ICLR. OpenReview.net (2019)
27. Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: ICDM, pp.

721–724. IEEE Computer Society (2002)
28. Yan, X., Han, J.: CloseGraph: mining closed frequent graph patterns. In: SIGKDD,

pp. 286–295. ACM (2003)
29. Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: generat-

ing explanations for graph neural networks. In: NIPS (2019)
30. Yuan, H., Tang, J., Hu, X., Ji, S.: XGNN: towards model-level explanations of

graph neural networks. In: SIGKDD, pp. 430–438. ACM (2020)
31. Yuan, H., Yu, H., Gui, S., Ji, S.: Explainability in graph neural networks: a taxo-

nomic survey. CoRR abs/2012.15445 (2020)
32. Yuan, H., Yu, H., Wang, J., Li, K., Ji, S.: On explainability of graph neural networks

via subgraph explorations. In: ICML. PMLR (2020)
33. Zhang, J., Liang, S., Deng, Z., Shao, J.: Spatial-temporal attention network for

temporal knowledge graph completion. In: Jensen, C.S., et al. (eds.) DASFAA
2021. LNCS, vol. 12681, pp. 207–223. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-73194-6 15

http://arxiv.org/abs/2006.03589
https://doi.org/10.1007/978-3-030-73194-6_15
https://doi.org/10.1007/978-3-030-73194-6_15

Temporal Network Embedding with
Motif Structural Features

Zhi Qiao , Wei Li(B) , and Yunchun Li

Beijing Key Lab of Network Technology,
School of Computer Science and Engineering, Beihang University, Beijing, China

{zhiqiao,liw,lych}@buaa.edu.cn

Abstract. Temporal network embedding aims to generate a low-
dimensional representation for the nodes in the temporal network. How-
ever, the existing works rarely pay attention to the effect of meso-
dynamics. Only a few works consider the structural identity of the motif,
while they do not consider the temporal relationship of the motif. In this
paper, we mainly focus on a particular temporal motif: the temporal
triad. We propose the Temporal Network Embedding with Motif Struc-
tural Features (MSTNE), a novel temporal network embedding method
that preserves structural features, including structural identity and tem-
poral relationship of the motif during the evolution of the network. The
MSTNE samples the neighbor node based on the temporal triads and
models the effects of different temporal triads using the Hawkes process.
To distinguish the importance of different structural and temporal triads,
we introduce the attention mechanism. We evaluate the performance of
MSTNE on four real-world data sets. The experimental results demon-
strate that MSTNE achieves the best performance compared to several
state-of-the-art approaches in different tasks, including node classifica-
tion, temporal link prediction, and temporal node recommendation.

Keywords: Temporal network embedding · Structural features ·
Motif · Attention · Hawkes process

1 Introduction

Network embedding aims to generate a low-dimensional representation for the
nodes in the network while preserving a similar relationship between all nodes
in the network [5]. It has recently attracted much attention from academia and
industry. The traditional works of network embedding were proposed in the
2000s, which aim to reduce the dimensionality of the data [1,17]. These methods
preserve the local geometry structure between nodes by constructing an affinity
matrix and generating a low-dimensional representation. However, these meth-
ods have higher computational costs and do not suitable for large-scale networks.
With the continuous development of deep learning, DeepWalk [14] was proposed.
DeepWalk designs a random walk strategy so that each node obtains its context
in the network and uses skip-gram to learn effective representations. Based on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 665–681, 2022.
https://doi.org/10.1007/978-3-031-00123-9_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_53&domain=pdf
http://orcid.org/0000-0001-6308-8968
http://orcid.org/0000-0002-0442-253X
http://orcid.org/0000-0003-0809-2619
https://doi.org/10.1007/978-3-031-00123-9_53

666 Z. Qiao et al.

Deepwalk, many other network embedding methods are proposed later, such as
LINE [18], Node2vec [6], Stru2vec [16]. However, the methods mentioned above
are only suitable for static networks. Nevertheless, in the real world, the net-
work structure is evolving. At present, most methods do not pay attention to
the Meso-dynamics during the evolution of the network.

Meso-dynamics is widely used in mining the network structure and evolu-
tion [7]. Meso-dynamics focus on the interaction between a group of nodes and
edges, thus preserving neighborhood similarity at the group level. Usually, meso-
dynamic performs in the formation process of the small subgraph pattern, small
subgraph pattern in the network is also called the network motif, which is cru-
cial for understanding the evolution network [5]. For example, the nodes that
constitute a specified motif usually have close relationships and are more likely
to belong to the same category or related. In this article, we mainly focus on a
particular temporal motif: the temporal triad [13]. The reason why we choose
triad is that the triad closure process is a fundamental mechanism in the for-
mation and evolution of temporal networks [3]. At present, few works focus on
the triad. For instance, DynamicTriad [20] considers the influence of subgraphs
evolving from open triad to closed triad. MTNE [8] considers the triad evolution
process and preserves motif-aware high-order proximities. However, they ignore
the influence of the temporal relationship between the edges of the triad.

To show the influence of temporal relationships in the triads, we take an
example of message delivery. Figure 1 shows the evolution of two triads G1 and
G2 when δ = 2 s, 6 s, 10 s, where δ denotes the timestamp. Suppose A gets a
new message when δ = 2 s, and wants to deliver the message to B and C. The
blue circle means this node has got the new message, and the green circle means
this node has not got the new message. Due to G1

A,B established earlier than
G1

B,C , when G1
A,B is established, B has got the new message, and since there will

occur a message delivery between B and C when δ = 6 s, A can let B delivery
the new message to C. However, when edge G2

B,C is established, B has not
got the message, so that B can not deliver the message to C. To deliver the
message to C, the established probability of G2

A,C is much higher than G1
A,C .

When δ = 6 s, the structure identities of the two temporal triads are the same,
but edge G1

A,B and edge G1
B,C has different temporal relationships. The method

that does not consider the temporal relationships (e.g. Deepwalk, Node2vec) will
generate similar representations for C because they have the same neighbor node
B. However, the evolution patterns of two triads are different, and different triads
will lead to different results when δ = 10 s which G2

A,C established but G1
A,C do

not. From Fig. 1 we observe that different temporal triads will affect the evolution
of the network. Thus, it is essential to consider the temporal relationship and
structural identities of the motif in the evolution of the network.

In addition, most of the methods focus on motifs exploring the whole network
[12,19], which have high computation costs in preprocessing, and storing a large
amount of motif also wastes much memory.

In this paper, to address the above challenges, we propose Temporal Net-
work Embedding with Motif Structural Features (MSTNE). MSTNE samples the

Temporal Network Embedding with Motif Structural Features 667

BC

δ=2s δ=6s

2s

A

2s

δ=10s

G1

G2
1
0
s

6s

1
0
s

A

2s

B

A

C

A

6s

A

A

2s
BC BC 2s

BC BC 6s
BC 6s

2s

Fig. 1. A toy example of the different temporal motif evolution, G1 and G2 are two
different motif, δ represents the timestamp.

neighbors and finds the neighbor nodes that form the temporal triad for selected
edges. Then measure the impact factor of temporal motif use the conditional
intensity function based on Hawkes process [9]. MSTNE considers structural
features that include both the structural identity and temporal relationship of
the triad to generate an ideal vector representation for the nodes in the network.
In summary, the contributions of our work are as follows:

– To find neighbor nodes without exploring the whole network while preserving
the temporal relationship and structural identities as much as possible. We
propose a novel neighbor node sampling method based on the temporal motif
called T-Motif Sampling, which finds neighbor nodes that can form a temporal
triad for selected edges. Through the T-Motif Sampling method, our MSTNE
model can preserve both the structural identity and temporal relationship of
the motif.

– To measure the impact factor of temporal motif sampled by T-Motif sam-
pling. We propose a novel conditional intensity function based on the Hawkes
process, which considers the influence of the open triad and closed triad. In
addition, to distinguish the importance of different temporal triads, we pro-
pose an attention mechanism for 24 kinds of triads with different structural
identities and temporal relationships.

– The experimental results on four real data sets demonstrate that the MSTNE
achieves the best performance over the existing approaches in the tasks of
node classification, temporal link prediction, and temporal recommendation.

2 Related Work

The approaches for temporal network embedding can be categorized into two
groups, the snapshot-based approach and the dynamic approach. The snapshot
is a subgraph sequence that divides the temporal network into different moments.

668 Z. Qiao et al.

One of the representative snapshot-based approaches is TNE [21]. They pro-
posed a temporal latent space model for link prediction in social networks. TNE
does not consider motifs in a single subgraph, and it is difficult to capture local
structural features in sequence subgraphs. Du et al. [4] assume that the tempo-
ral network is a sequence of temporal subgraphs and use random walk to select
neighbor nodes and do not consider structural features between neighbor nodes.
In addition, the snapshot-based approach ignores the evolution process between
different subgraphs and causes the miss of the evolution information.

The dynamic approaches consider the influence of different events. The influ-
ence changes gradually overtime to capture the evolution process of the network.
Zuo et al. [22] proposed HTNE, which uses the Hawkes process to measure the
probability of establishing an edge. HTNE mainly focuses on considering the
temporal relationship between neighbor nodes, ignoring the structural features
between neighbor nodes. Therefore, many works pay attention to the effect of
microscopic dynamics. Lu et al. [10] proposed MMDNE, and they consider both
micro-dynamics and macro-dynamics in the temporal network that are mutually
evolved and alternately affected. HNIP proposed by Qiu et al. [15] captures the
highly non-linear structure in the temporal network.

However, the above methods ignore the evolution of the meso-dynamics. Zhou
et al. [20] proposed DynamicTriad, which considered the influence of subgraphs
evolving from open triad to closed triad. Huang et al. [8] proposed MTNE.
Although they consider the meso-dynamics, they still did not consider the tem-
poral relationship of the motif, which will affect the evolution of the network,
and different temporal triads will affect the evolution of the network.

Therefore, we propose a temporal network embedding method MSTNE,
which includes a novel neighbor node sampling method: T-Motif Sampling based
on the temporal motif and a novel conditional intensity function based on Hawkes
process to measure the impact factor of the temporal motif.

3 Problem Formulation

Definition 1: Temporal Network. Temporal network is defined as G =
(V,E, T), where V represents the set of nodes, E represents the set of edges,
and T represents the set of timestamps. In the temporal network, et

vi,vj
(vi, vj ∈

V, t ∈ T) denotes edges, which means at time t, an edge is established between
the two nodes vi and vj . Note that the edges between nodes vi and vj may be
repeatedly established. There will be many temporal motifs with different num-
bers of nodes in the temporal network. We mainly focus on a particular temporal
motif composed of three nodes, which are called the temporal triad.

Definition 2: Temporal Triad. Given a set of three nodes Ψ = (vs, vh, vt).
vs, vh, vt is three nodes in the network. If there exist at least non-repeated
two edges between three nodes, we call it the temporal triad, for example
∃et1

vs,vh
, et2

vh,vt
∈ E. As shown in Fig. 2, assume that edge eA,C is the last to

be established, different type of the edge direction and temporal relationship

Temporal Network Embedding with Motif Structural Features 669

Fig. 2. Different types of temporal triad, M indicates the type of temporal triad.

between eB,C and eA,B will affect the establish probability of edge eA,C . Thus
there are 24 different temporal triads, which include 18 different closed triads
and 6 open triads. The numbers on edges indicate the temporal relationship
between the three edges, 1 is the earliest edge, and 3 is the last edge. The bi-
directional edge, such as the right edge of M3,3, represents a bi-directional edge
established between two points at the same time. A closed triad refers to a triad
that can form a closed loop, such as M2,1 − M4,6. The open triad refers to the
triad that does not form a closed loop, such as the M1,1 − M1,6.

Problem 1: Temporal Triad Sampling. The purpose of temporal triad sam-
pling is to find neighbor nodes without exploring the whole network while pre-
serving temporal relationship and structural identities as much as possible. First,
given an edge et

vi,vj
, which is last to be established in the sampled temporal triad,

temporal triad sampling aims to find a sequence of neighbor nodes.

ω = {(v1, tl1 , tr1 ,m1), (v2, tl2 , tr2 ,m2), . . . , (vh, tlh , trh
,mh)}

tlh , trh
< t,mh ∈ [1, 24], h ≤ H

(1)

where H represents the number of neighbor nodes need to be found, all vh can be
combined with vi, vj to form the temporal triad in Fig. 2. vh, vi and vj preserve
the structural identities between the three nodes, which indicates that the three
nodes can form the temporal triad. tlh , trh

are the timestamp of the other two
edges evi,vh

and evh,vj
, which preserve temporal relationship of neighbor nodes.

mh are the types of the triad. In the case of et
vi,vj

is a bi-directional edge, it is
sampled as two edges with different directions. When selecting neighbor nodes,
we preserve the structural identity and temporal relationship of neighbor nodes.

670 Z. Qiao et al.

Problem 2: Temporal Network Embedding with Motif Structural Fea-
tures. Gives a large-scale network G = (V,E, T), V represents the set of nodes,
E represents the set of edges, and T represents the set of timestamps. Tem-
poral network embedding with motif structural features aims to generate a d-
dimensional representation vector, by learning a mapping function: Φ : V ← Rd,
where d � |V |. The mapping function Φ preserves not only the structural iden-
tity but also the temporal relationship of the motif during the evolution of the
temporal network.

4 The Proposed MSTNE Framework

In this section, we introduce the architecture of MSTNE, a novel model that
can learn ideal embeddings for nodes in the temporal network while preserv-
ing the structural features, which include temporal relationships and structural
identities of the temporal motifs in the network. Specifically, for problem 1 we
propose a novel neighbor node sampling method based on the temporal motif
called T-Motif Sampling. For Problem2 we propose a novel conditional intensity
function based on the Hawkes process and an attention mechanism to measure
the impact factor of temporal motif sampled by T-Motif sampling. And then,
use maximum likelihood estimation and stochastic gradient descent to optimize
the impact factor and then generate the ideal representation.

4.1 Neighbor Node Sampling Method Based on the Temporal Motif

Most of the previous works, such as DeepWalk [14] and LINE [18], optimize the
sampling strategy of neighbor nodes based on random walk. However, they did
not consider the structural identity and temporal relationship between neighbor
nodes. In addition, methods focus on motifs exploring the whole network [12,19],
which will lead to colossal resource consumption, and the relationship between
the edges in motifs which has a large time interval is not close and can be ignored.
Thus, we propose a neighbor node sampling method called T-Motif Sampling.

T-Motif Sampling samples based on the edge, The input of Algorithm1 G =
(V,E, T) represents the list of all temporal edges. h = et

vi,vj
denotes the edge

that needs to find neighbor nodes. Too many nodes or edges in the network result
in higher complexity of the neighbor node sampling method, and the influence
of the edge, which has a large time interval with h is very small. So we specify
the size W of a history window. H refers to the number of neighbor nodes that
need to be selected.

In Algorithm 1, the findidx method (line 3) finds neighbours which means W
edges connected to the node vi and vj , that established before timestamp t. Then
randomly select an edge hγ from neighbours, and check whether another edge
hβ can form a temporal triad in neighbours except edge hγ . The ifclosedtriad
method (line 6) is used to determine whether the current three edges can form a
closed temporal triad as M2,1−M4,6 shown in Fig. 2, if not hγ and h is considered
to be an open temporal triad as M1,1 − M1,6 shown in Fig. 2. m is the type of

Temporal Network Embedding with Motif Structural Features 671

Algorithm 1. T-Motif Sampling(G,W,H, h)
Input: Temporal Network G = (V, E, T); Select edge: h = et

vi,vj
; Window size: W ;

Neighbor nodes size: H;
Output: sequence of neighbor nodes: ω
1: initialize: triad = {}, ω = {}
2: while Length of ω<H do
3: neighbours = findidx(G, W, h) � neighbours is W historical edges
4: Random Sample hγ from neighbours
5: for each hβ ∈ neighbours except hγ do
6: if ifclosedtriad(hγ , hβ , h) is True then
7: Add (hγ , hβ , m) to triad � m is type of closed triad (hγ , hβ , h)

8: Add (hγ , m) to triad � m is type of open triad (hγ , h)
9: Random Sample ht from triad � ht means (hγ , hβ , m) or (hγ , m)

10: if ht is closed triad then
11: tγ , tβ is the timestamp of edge hγ , hβ

12: Add (vh, tγ , tβ , m) to ω � vh is the intersection of edge hβ and hγ

13: if tγ<tβ then
14: h = hγ

15: else
16: h = hβ

17: else
18: Add (vh, tγ , 0, m) to ω � vh is the nodes of edge hγ expect node vi

19: h = hγ
return ω

triad. To line 8, the triad list contains all neighbor nodes that can form an open
and closed temporal triad with hγ . Then, randomly select ht from the list of triad
(line 9). If ht is a closed temporal triad, we will add (vh, tγ , tβ ,m) to ω (line 12).
In order to ensure temporal relationships between the neighbor nodes, we will
choose the edge with the smallest timestamp to continue the iteration. For the
open temporal triad, there is only one timestamp. To ensure that each tuple in
ω has the same dimension, mark the other timestamp to 0 as shown in line 18.
Then continue sampling based on this edge until the number of neighbor nodes
reaches H, as shown in lines 9 to 19 of Algorithm1. The time complexity of the
sampling algorithm is O(H ×W). The time complexity of the general technique,
which explores the whole network, has minimum time complexity O(D

2 × |E|)
[12], where |E| is the counts of edges D is the maximum degree of all nodes. Our
method performs best when H,W is 3,10 (see Sect. 5.5 for details), both degree
D and counts of edges |E| are much greater than 10. So the time complexity of
T-Motif sampling is much less than the general technique.

Figure 3 shows an example of T-Motif sampling. First, we find a neighbor
node B that can form a closed temporal triad and add it in the sequence ω.
11 is the timestamp of the edge eA,B , 10 is the timestamp of the edge eB,C ,
M2,5 is the type of the triad as shown in Fig. 3. Since the timestamp of eB,C

is smaller than that of eA,B , we select edge eB,C and continue the iteration.
The remaining two iterations were not found closed temporal triad, so we select

672 Z. Qiao et al.

B

C

11
s

A
12s

E

F

10s

D

9s

8s

G

2s

6s

ω=(B,11,10,M2,5) ω=(B,11,10,M2,5),(D,8,0,M1,2),(F,2,0,M1,1)
ω=(B,11,10,M2,5),(D,8,0,M1,2)

7
s

B

C

11
s

A
12s

E

F

10s

D

9s

8s

G

2s

6s

7
s

B

C

11
s

A
12s

E

F

10s

D

9s

8s

G

2s

6s

7
s

Fig. 3. An example of T-Motif sampling, the red arrows indicate the edges which need
to find the neighbor node, the blue arrows indicate the closed temporal triads or open
temporal triads found, the gray arrows indicate edges that have been sampled, and M
is the type of the temporal triads. (Color figure online)

neighbor nodes D and F , which can form an open temporal triad, and mark 0
to the second timestamp. M1,2 and M1,1 are the type of the two open temporal
triads. It can be seen from Fig. 3 that our sampling algorithm is continuously
expanding outward while preserving the structural identity of the high-order
neighbor nodes, which can form a triad. In addition, our sampling method is
based on the window before the selected edge and always selects the edge with
the smallest timestamp for iteration. So our sampling method fully preserves the
temporal relationship and the structural identity between neighbor nodes.

4.2 Impact Factor Measure of Temporal Triad

The Hawkes process is a point process with self-motivation influence. It considers
the influence of historical events that occurred in the past period on current
events. Here we use conditional intensity function to measure the impact factor
of temporal triads. In the impact factor measure, we think that both the open
triad and the closed triad will influence the evolution of the temporal network.
Thus, we propose a novel conditional intensity function is as follows:

˜λx,y (t) = μx,y +
∑

th<t

αγh
∗ mask +

∑

th<t

αθh
, λx,y (t) = exp(˜λx,y (t)) (2)

where ˜λx,y (t) represents the impact factor of ex,y at timestamp t, which indicates
the probability of establishing an edge between nodes x and y. γh is the neighbor
node set of ex,y, which can form the closed temporal triad. θh is the neighbor
nodes that can form the open temporal triad. We denote the impact factor of
them as αγh and αθh

. th denotes the occurrence time of historical events. μx,y

represents the base rate, which indicates the similarity between node x and y.
μx,y usually expressed as the negative squared Euclidean distance: − ||x − y||2.
Since the impact factor should be positive, we regard λx,y (t) as an impact factor
by an exponential function, and the value range of it is between 0 and 1. For
some special nodes, all of their neighbor nodes can only form an open temporal
triad. Here we use a mask to distinguish the types of neighbor nodes. If the
closed temporal triad can be formed, the neighbor node mask is 1. Otherwise,
the mask is 0.

Temporal Network Embedding with Motif Structural Features 673

Impact Factor of Closed Temporal Triad. The influence of the closed
temporal triad is produced during the process of forming the closed temporal
triad from the open temporal triad. As shown in Fig. 1, the two edges established
at δ = 6 s will influence the establish probability of last edge G1

A,C and G2
A,C at

δ = 10 s which is the influence of closed triad. Here we give a closed triad(x, h, y),
the impact factor of (x, h, y) is as follows:

αγh = αx,h + αh,y, αx,h =
∑

tx,h<t

μx,h ∗ e−δ(t−tx,h)
(3)

where h is the node that is adjacent to x and y and can form a closed temporal
triad. αx,h measures the impact factor of the edge ex,h on the ex,y , αh,y measures
the impact factor of the edge eh,y on ex,y. Where t is the timestamp of the edge
ex,y, tx,h is the timestamp of the edge ex,h. The influence should be decreasing
over time, e−δ(t−tx,h) represents the time decay effect, where δ is a variable
used to measure the decay of influence over time, which can be obtained during
training. αh,y can also be expressed as the αx,h.

Impact Factor of Open Temporal Triad. In addition to the influence of
the closed temporal triad, the open temporal triad also influences the formation
process. The influence of the open temporal triad is produced during the process
of forming the open temporal triad from the single edge. As shown in Fig. 1,
the edge established when δ = 2 s: G1

A,B and G2
B,C , will influence the establish

probability of edge G1
B,C and G2

A,B at δ = 6 s which is the influence of open triad.
The impact factor of the open temporal triad can be expressed in the following
exponential form:

αθh =
∑

tx,h, th,y<t

|μx,h − μy,h| ∗ e−δ(ty,h−tx,h) (4)

The impact factor between the open temporal triad can be obtained by sub-
tracting the base rate of the two edges and multiplying by the time difference
between the two edges.

4.3 Attention Mechanisms for Triad with Different Structural
Identity and Temporal Relationship

Different open temporal triads have different probabilities for turning into a
closed temporal triad, and different single edges have different probabilities turn-
ing into open temporal triads. To distinguish the impact factor of 18 closed tem-
poral triads and 6 open temporal triads, we add an attention mechanism. The
attention mechanism formula is shown as follows:

ωγh(cn) =
ecn

∑

c′
n

ec′
n
, ωθh(on) =

eon

∑

o′
n

eo′
n

(5)

where cn represents the type of the closed triads. ωγh
represents the weights of

different closed temporal triads. We take cn as input and then use a SoftMax

674 Z. Qiao et al.

function to compute the final attention weight. c′
n indicates the other closed

temporal triad types except cn. on represents the type of open triad, ωθh
repre-

sents the weights of different open temporal triads. o′
n indicates the other open

temporal triad types except on. Therefore, we can reformulate the conditional
intensity function as:

˜λx,y (t) = μx,y +
∑

th<t

ωγhαγh ∗ mask +
∑

th<t

ωθhαθh (6)

4.4 Loss Function

By considering candidate triads Hγ (t) selected according to the T-Motif Sam-
pling, the probability of edge ex,y establish at time t can calculate by the maxi-
mum likelihood estimation:

p (x, y|Hγ (t)) =
λx,y (t)

∑

y′ λy′|x (t)
, log L =

∑

(et
x,y)∈E

log p(x, y|Hγ(t)) (7)

where y′ denotes all the nodes in the network except vx. After taking a log
function, the likelihood of all edges in the network is log L.

Then we use SDG to calculate and update the gradient of the embedding.
But when we update the gradients, we need to compute the gradients of all
nodes in the network, resulting in a high computation cost. Therefore, we use
the negative sampling algorithm to reduce the amount of calculation. According
to the degree distribution of nodes: Pn (v) ∝ dv

3
4 , to sample negative samples,

the optimized the loss formula is as follows,

− log σ(˜λx,y (t)) −
K

∑

k=1

Evk∼Pn(v) log σ(−˜λx,k (t)) (8)

where K represents the number of negative samples according to the Pn (v)
distribution, σ represents the Sigmoid function: 1

1+e−x .

5 Experimental Results

5.1 Datasets

We compare the performance of the proposed MSTNE framework with seven
other state-of-the-art methods on four data sets of different sizes. We first briefly
introduce the four data sets.

– DBLP1 is a co-author network, where the authors come from ten different
fields.

1 https://dblp.uni-trier.de/.

https://dblp.uni-trier.de/

Temporal Network Embedding with Motif Structural Features 675

– WikiTalk2 is a temporal network, and each edge represents Wikipedia users
editing each other’s talk page.

– School3 is a temporal network between students in a high school. Each edge
represents the connection between two students. Students come from three
different classes.

– Eucore4 is an email data of a European research institution. Each edge
represents an email sent between members of the institution

The statistics of the 4 datasets are summarized in Table 1.

5.2 Comparison Approaches

Next, we describe the 7 network embedding approaches for comparison.

– DeepWalk [14] uses random walks and skip-gram to generate the ideal repre-
sentation of the nodes. DeepWalk does not consider the temporal relationships
between nodes in the network.

– Node2vec [6] is an extension method of DeepWalk. The transition proba-
bility during each walk is affected by the edge weight. Same as DeepWalk,
Node2vec also does not consider temporal relationships.

– HTNE [22] uses the Hawkes process to model the influence between events
in the temporal network, which does not capture the process of network evo-
lution.

– MMDNE [10] is an extension HTNE, which considers the influence of Micro-
and Macro-dynamics based on HTNE.

– MTNE [8] is also an extension of HTNE, which uses the Hawkes process to
model the influence of motif and generate the representation of the node. But
it does not consider the temporal relationships of the motif.

– Dynamictriad [20] considers the influence of triad in the process of network
evolution and captures the dynamic information in the network.

– HNIP [15] is a temporal random walk method, which captures the highly
non-linear structural identity in the temporal network.

5.3 Parameter Settings

We set the embedding length d to 64 in all methods. In our approach MSTNE,
the batch size is 500, the learning rate of SDG is 0.01, the number of positive
neighbor size H is 3, the number of negative neighbor size K is 3, and the window
size W is 10. For a fair comparison, we also use the optimal parameter settings
in the comparison approaches. For each group of experiments, we performed the
experiments 10 times and took the average value as the final results.

2 http://snap.stanford.edu/data/wiki-talk-temporal.html.
3 http://www.sociopatterns.org/datasets/high-school-dynamic-contact-networks.
4 http://snap.stanford.edu/data/email-Eu-core-temporal.html.

http://snap.stanford.edu/data/wiki-talk-temporal.html
http://www.sociopatterns.org/datasets/high-school-dynamic-contact-networks
http://snap.stanford.edu/data/email-Eu-core-temporal.html

676 Z. Qiao et al.

Table 1. Dataset description

Dataset Nodes Static edges Temporal edges Timesteps Labels

DBLP 28085 162451 236894 27 10

WikiTalk 1140149 7833140 3309592 2320 0

School 178 9846 18648 331 3

Eucore 986 24929 332334 526 0

5.4 Performance Evaluation

Evaluation of Node Classification. For node classification tasks, we use two
labeled datasets: the DBLP and the School. We use embedding as input to train
a logistic regression classifier. We adjust the ratio of the training set from 20%
to 80% and compare the Macro-F1 and Micro-F1 of different methods. As shown
in Table 2, the approaches that consider temporals, including HTNE, MMDNE,
HNIP, Dynamictriad, MTNE, and MSTNE, are significantly better than Deep-
Walk and Node2vec, in terms of Macro-F1 and Micro-F1. In all methods that
consider temporal, MSTNE achieves the best performance. We think this is due
to the fact that we consider the structural identity of different temporal triads,
the nodes that can form temporal triads are more likely to have the same label.
Compared with MTNE that only considers the structural identity of tempo-
ral triads, the proposed MSTNE achieves better effects, the highest increase in
Micro-F1 is 1.43%, Macro-F1 is 1.02%. We believe this is because we consider
the influence of triads with different temporal relationships.

Evaluation of Temporal Link Prediction. For the task of temporal link
prediction, we selected three data sets of different sizes: DBLP, Eucore, and
WikiTalk. We hope to judge whether there is an edge between two nodes at
time tk based on the data before time tk which tk in the middle position for
each dataset. For edge et

vi,vj
, we take |vi − vj | as input and train a logistic

regression classifier. All edges with a timestamp less than tk are the training set,
and those edges established at timestamp tk are the positive edges in the test
set, then add the unconnected edges with the same number of positive edges in
the test set to be the negative edges. When adding negative edges, too many
node pairs lead to too much computation cost. So we randomly sample about
1%, 1%, and 0.1% node pairs in three datasets for evaluation. Here use precision,
recall, and F1 score to evaluate the system performance. As shown in Table 3,
same as the node classification result, the methods considering the temporal are
better than DeepWalk and Node2vec. In addition, the performances of HTNE,
MTNE, MMDNE, and MSTNE are better than DynamicTriad and HNIP. We
think that this is due to the use of Hawkes process modeling because the Hawkes
process is modeled based on the established probability of the edge. Among these
approaches, our MSTNE achieves the best performance. Compared with MTNE,
the precision of MSTNE has increased by 1.20%, 0.64%, and 1.07%, respectively.

Temporal Network Embedding with Motif Structural Features 677

Table 2. Evaluation of node classification

Dataset Methods TrainRatio

20% 40% 60% 80%

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

DBLP DeepWalk 0.5716 0.5927 0.5779 0.5952 0.5836 0.5999 0.5818 0.5989

Node2vec 0.5898 0.5994 0.5998 0.6047 0.6033 0.607 0.6013 0.6065

HTNE 0.6536 0.6645 0.6475 0.6746 0.6507 0.6765 0.653 0.6786

MMDNE 0.6379 0.6496 0.6475 0.6551 0.6507 0.6574 0.653 0.6573

HNIP 0.6414 0.6631 0.6538 0.670 0.6610 0.6724 0.6702 0.6735

DynamicTriad 0.6017 0.6470 0.6230 0.6513 0.6483 0.6680 0.6642 0.6695

MTNE 0.6505 0.6723 0.6691 0.6749 0.6753 0.6811 0.6771 0.6816

MSTNE 0.6589 0.6767 0.6759 0.6826 0.6757 0.6840 0.6788 0.6959

School DeepWalk 0.7951 0.7973 0.8044 0.8086 0.9090 0.9090 0.9340 0.9380

Node2vec 0.8547 0.8627 0.8857 0.8869 0.9080 0.9090 0.9342 0.9401

HTNE 0.9265 0.9215 0.9036 0.9090 0.9085 0.9145 0.9486 0.9486

MMDNE 0.9200 0.9207 0.9201 0.9210 0.9476 0.9477 0.9483 0.9495

HNIP 0.9023 0.9043 0.9208 0.9217 0.9324 0.9412 0.9653 0.9732

DynamicTriad 0.9203 0.9280 0.9119 0.9201 0.9305 0.9399 0.9654 0.9579

MTNE 0.9260 0.9210 0.9190 0.9195 0.9428 0.9435 0.9640 0.9743

MSTNE 0.9273 0.9281 0.9211 0.9217 0.9479 0.9480 0.9742 0.9743

Table 3. Evaluation of temporal link prediction

Dataset Metric DeepWalk Node2vec HTNE MMDNE HNIP DynamicTriad MTNE MSTNE

DBLP Precision 0.7250 0.7545 0.8115 0.8370 0.7873 0.7760 0.8421 0.8541

Recall 0.7199 0.7401 0.8085 0.8280 0.7769 0.7451 0.8356 0.8484

F1 0.7123 0.7249 0.7945 0.8003 0.7420 0.7340 0.8150 0.8202

WikiTalk Precision 0.7738 0.7702 0.7890 0.7910 0.7814 0.7795 0.8089 0.8153

Recall 0.7642 0.7607 0.7815 0.7830 0.7783 0.7645 0.8001 0.8051

F1 0.7339 0.7432 0.7685 0.7689 0.7580 0.7485 0.7935 0.7994

Eucore Precision 0.7448 0.7577 0.8066 0.8157 0.8041 0.7665 0.8272 0.8379

Recall 0.7407 0.7480 0.7976 0.8128 0.8038 0.7620 0.8241 0.8354

F1 0.7226 0.7424 0.7950 0.8086 0.7900 0.7569 0.8166 0.8236

Table 4. Evaluation of temporal node recommendation

Dataset Metric DeepWalk Node2vec HTNE MMDNE HNIP DynamicTriad MTNE MSTNE

DBLP Pre.@10 0.0630 0.0524 0.0782 0.0821 0.0745 0.0619 0.0843 0.0927

Recall 0.1426 0.1245 0.1527 0.1691 0.1495 0.1332 0.1717 0.1734

School Pre.@10 0.0835 0.1003 0.1449 0.1529 0.1346 0.1246 0.1606 0.1766

Recall 0.1130 0.1254 0.1856 0.1892 0.1674 0.1537 0.1982 0.2002

It can be seen that considering the influence of triads with different structural
identities and temporal relationships improves the effect of link prediction.

Evaluation of Temporal Node Recommendation. The task of temporal
node recommendation uses the network before time tk for training. Then we gen-
erate the embedding of nodes. We sort them according to the similarity between
nodes to predict the top-k possible neighbors at time tk. Same as [2], for Deep-
walk and Node2vec, we use the inner product as the similarity because they

678 Z. Qiao et al.

(a) DeepWalk (b) HTNE (c) MSTNE

Fig. 4. 2d t-SNE visualization for DBLP Dataset. Each point represents a node, and
each color represents the label of the node. Green is Data mining, and dark blue is
Computer vision, light blue is Computer network. (Color figue online)

use the inner product as the optimization target during the training process.
The remaining methods used the negative Euclidean distance vector as the sim-
ilarity between nodes. Here we choose two datasets, the School and the DBLP
for evaluation. Since there are too many pairs of nodes in DBLP, we randomly
select 1% of them for evaluation. Same as temporal link prediction, we also set
tk in the middle position. Our experimental results are shown in Table 4. Table 4
shows two indicators, Pre.@10 and Recall, Pre.@10 represents the accuracy of
the recommended top-10 nodes with the highest similarity. It can be seen that
the methods considering temporal are still better than DeepWalk and Node2vec.
In the embedding methods considering temporal, our MSTNE achieves the best
performance, which is 1.6% higher of Pre.@10 than MTNE in the School data
set. We think the reason is that compared with MTNE we capture the temporal
relationship of the same structural identity triad.

Network Visualization. Figure 4 shows the visualization result of reducing
the dimensionality of the multi-dimensional embedding into two-dimensional
embedding using t-SNE [11]. As shown in Fig. 4(a), DeepWalk does not separate
the three categories of nodes. Figure 4(b) shows the embedding result of HTNE.
Although HTNE separates dark blue nodes from the other two categories of
nodes, light blue and green are not clearly separated. Figure 4(c) shows the
embedding result of MSTNE. Compared with HTNE and DeepWalk, MSTNE
effectively distinguishes the three types of nodes, which illustrates the necessity
of modeling the structural identity and temporal relationship of the motif.

5.5 Desigination of Parameters

There are three important parameters in MSTNE, the size of positive neighbors
H, the size of negative neighbors K, and the window size W for sampling. We
conduct experiments on the DBLP data set for the effects of different values
of these three parameters. Figure 5 shows the relationship between the size of
positive and negative neighbors and Micro-F1. In Fig. 5(a), we fixed the size of
negative neighbors to 5 to test the value of positive neighbors. When the size

Temporal Network Embedding with Motif Structural Features 679

Size of positive neighbors

(a)
Size of negative neighbors

(b) (c)

Fig. 5. Impacts of positive and negative neighbors in DBLP. The x-axis of (a) represents
the size of the positive neighbors, the x-axis of (b) represents the size of the negative
neighbors, the x-axis of (c) represents the size of the window. The y-axis of both (a),
(b), and (c) is the value of Micro-F1 in DBLP with the task of node classification.

of positive neighbors is less than 3, Micro-F1 gradually increases. It reaches the
peak at 3 while the Micro-F1 begins to drop after 3. In Fig. 5(b), we fixed the
size of positive neighbors to 3. When the number of negative neighbors is less
than 3, Micro-F1 gradually increases. When it is greater than 3, the increase is
not significant. We also compare the effects of different window sizes. Figure 5(c)
shows the relationship between the sampled window size W and the Micro-F1. It
can be seen that when the window size is 10, Micro-F1 reaches its peak and then
decreases gradually. We think that is because when the window size is large, the
sampled neighbor nodes will occur at a larger time interval, the influence will
be small, resulting in the decrease of Micro-F1. Considering both the efficiency
and the accuracy, we think that the size of positive neighbors, size of negative
neighbors, window size are 3, 3, 10, the method achieves the best performance,
so we set it as the default parameter settings.

6 Conclusion

In this paper, we proposed the MSTNE, a novel temporal network embedding
method. We use the neighbor node sampling method to capture both the struc-
tural identity and temporal relationship of the motif during the evolution of the
network and use the Hawks process to measure the impact factor of the temporal
motif. Compared with other temporal network embedding methods, we further
explored the influence of the temporal triad on the network evolution process.
Since the MSTNE considers both the structural identity and temporal relation-
ship of the motif, the experimental results show that the MSTNE achieves the
best performance on the four real-world data sets. In the future, we will expand
our model on other types of motifs and integrate the attributes of temporal edges
into our model.

Acknowledgment. This work is supported by the National Key Research and Devel-
opment Program of China (Grant No. 2016YFB1000304) and National Natural Science
Foundation of China (Grant No. 1636208).

680 Z. Qiao et al.

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: NIPS, pp. 585–591 (2001)

2. Chen, H., Yin, H., Wang, W., Wang, H., Nguyen, Q.V.H., Li, X.: PME: projected
metric embedding on heterogeneous networks for link prediction. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1177–1186 (2018)

3. Coleman, J.S.: Foundations of Social Theory. Harvard University Press, Cambridge
(1994)

4. Du, L., Wang, Y., Song, G., Lu, Z., Wang, J.: Dynamic network embedding: an
extended approach for skip-gram based network embedding. In: IJCAI, vol. 2018,
pp. 2086–2092 (2018)

5. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

6. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks, pp.
855–864 (2016)

7. Huang, H., Dong, Y., Tang, J., Yang, H., Chawla, N.V., Fu, X.: Will triadic closure
strengthen ties in social networks? ACM Trans. Knowl. Discov. Data (TKDD)
12(3), 1–25 (2018)

8. Huang, H., Fang, Z., Wang, X., Miao, Y., Jin, H.: Motif-preserving temporal net-
work embedding. In: Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI-2020, pp. 1237–1243 (2020)

9. Laub, P.J., Taimre, T., Pollett, P.K.: Hawkes processes. arXiv preprint
arXiv:1507.02822 (2015)

10. Lu, Y., Wang, X., Shi, C., Yu, P.S., Ye, Y.: Temporal network embedding with
micro-and macro-dynamics. In: Proceedings of the 28th ACM International Con-
ference on Information and Knowledge Management, pp. 469–478 (2019)

11. Van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. J. Mach. Learn.
Res. 9(11) (2008)

12. Meira, L.A., Máximo, V.R., Fazenda, Á.L., Da Conceiçao, A.F.: ACC-Motif: accel-
erated network motif detection. IEEE/ACM Trans. Comput. Biol. Bioinf. 11(5),
853–862 (2014)

13. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Pro-
ceedings of the Tenth ACM International Conference on Web Search and Data
Mining, pp. 601–610 (2017)

14. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations, pp. 701–710 (2014)

15. Qiu, Z., Hu, W., Wu, J., Liu, W., Du, B., Jia, X.: Temporal network embedding
with high-order nonlinear information, vol. 34, no. 04, pp. 5436–5443 (2020)

16. Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: Learning node represen-
tations from structural identity, pp. 385–394 (2017)

17. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear
embedding. Science 290(5500), 2323–2326 (2000)

18. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale infor-
mation network embedding, pp. 1067–1077 (2015)

19. Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioin-
formatics 22(9), 1152–1153 (2006)

20. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by
modeling triadic closure process, vol. 32, no. 1 (2018)

http://arxiv.org/abs/1507.02822

Temporal Network Embedding with Motif Structural Features 681

21. Zhu, L., Guo, D., Yin, J., Ver Steeg, G., Galstyan, A.: Scalable temporal latent
space inference for link prediction in dynamic social networks, vol. 28, pp. 2765–
2777. IEEE (2016)

22. Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., Wu, J.: Embedding temporal network via
neighborhood formation. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery Data Mining, pp. 2857–2866 (2018)

Learning Robust Representation Through
Graph Adversarial Contrastive Learning

Jiayan Guo1(B), Shangyang Li2(B), Yue Zhao3, and Yan Zhang1

1 School of Artificial Intelligence, Peking University, Beijing, China
{guojiayan,zhyzhy001}@pku.edu.cn

2 Peking-Tsinghua Center for Life Sciences, IDG/McGovern Institute for Brain
Research, Academy for Advanced Interdisciplinary Studies, Peking University,

Beijing, China
syli@pku.edu.cn

3 Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
zhaoyue@stu.pku.edu.cn

Abstract. Existing studies show that node representations generated
by graph neural networks (GNNs) are vulnerable to adversarial attacks,
such as unnoticeable perturbations of adjacent matrix and node features.
Thus, it is requisite to learn robust representations in graph neural net-
works. To improve the robustness of graph representation learning, we
propose a novel Graph Adversarial Contrastive Learning framework
(GraphACL) by introducing adversarial augmentations into graph self-
supervised learning. In this framework, we maximize the mutual infor-
mation between local and global representations of a perturbed graph
and its adversarial augmentations, where the adversarial graphs can be
generated in either supervised or unsupervised approaches. Based on the
Information Bottleneck Principle, we theoretically prove that our method
could obtain a much tighter bound, thus improving the robustness of
graph representation learning. Empirically, we evaluate several methods
on a range of node classification benchmarks and the results demonstrate
GraphACL could achieve comparable accuracy over previous supervised
methods.

Keywords: Graph neural network · Graph adversarial attack ·
Robust representation learning

1 Introduction

Graph neural networks (GNNs) have enabled significant advances on graph-
structured data [9,16] and are widely used in many applications like node clas-
sification, graph classification, and recommendation systems. However, existing
works show that they are vulnerable towards adversarial attacks [26–28] like

J. Guo, S. Li and Y. Zhao—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 682–697, 2022.
https://doi.org/10.1007/978-3-031-00123-9_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_54&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_54

Graph Adversarial Contrastive Learning 683

unnoticeable perturbations, which is still a critical challenge in employing GNNs
in safety-critical applications.

Albeit various studies have been proposed to ensure the robustness of the
graph neural networks against adversarial attacks [8,13,20,24], the significance
of adversarial augmentations has been ignored, especially under unsupervised
learning setting. Recently, self-supervised learning has achieved remarkable per-
formances on graph-structured data, like DGI [17], GraphCL [23], etc. These
works use pairs of augmentations on unlabeled graphs to define a classifica-
tion task for pretext learning of graph representations. Also, GraphCL [23] has
found that contrastive learning with randomly generated graph augmentations
can somehow increase the robustness; however, we argue that such randomly
generated samples are not the optimal choice to achieve the robustness of rep-
resentations and adversarial augmentations can perform provably much better.

Thereby, we present a novel adversarial self-supervised learning framework
to learn robust graph representations. We introduce adversarial samples into the
input. Primairly, both supervised and unsupervised approaches can be used to
generate adversarial samples. For example, Metattack [28], a supervised adver-
sarial attack method, can be directly applied. Besides, we further propose an
unsupervised method to generated adversarial graphs, which uses unsupervised
contrastive loss as the target of Metattack to generete adversarial samples. After
generating perturbed graphs, we maximize the similarity between representa-
tions of the clean graph and the adversarial attacked graph to suppress distor-
tions caused by adversarial perturbations. This will result in representations that
are robust against adversarial attacks.

We refer to this novel adversarial self-supervised graph representation learn-
ing method as Graph Adversarial Contrastive Learning (GraphACL). To the
best of our knowledge, this is the first attempt to use adversarial samples to
increase the robustness of graph representations based on contrastive learning.
We also build a theoretical framework to analyze the robustness of graph con-
trastive learning based on the Information Bottleneck Principle. To verify the
effectiveness of GraphACL, we conduct experiments on public academic dataset,
Cora, Citeseer, Pubmed under both targeted attack (i.e., Netattack) and global
attack (i.e., Metattack). Experimental results suggest that GraphACL outper-
forms DGI and other baselines significantly, thus proving our method can learn
robust representations under various graph adversarial attacks.

In summary, our contributions are as follows:

– We propose GraphACL, a general framework to use self-supervised graph
contrastive learning with adversarial samples to learn robust graph represen-
tations.

– We theoretically prove that our method could improve the robustness of graph
representation learning from the perspective of information theory.

– We present an unsupervised graph adversarial attack method that use meta-
gradient to poison the graph structure to maximize the contrastive loss
between clean and perturbed graphs.

684 J. Guo et al.

Fig. 1. Graph adversarial contrasive learning framework

– We conduct extensive experiments to demonstrate the effectiveness of our
proposed GraphACL under various types of adversarial attacks, which indi-
cates that GraphACL can significantly improve the performance of previous
methods both in evasive and poisoning settings.

2 Methodologies

2.1 Graph Adversarial Attack

In this subsection, we will formulate the classic optimization problem of graph
adversarial attack. Let G = (A,X) be an attribute graph with adjacency matrix
A ∈ {0, 1}N×N and attribute matrix X ∈ R

N×D, where N is the number of
nodes and D is the dimension of the node feature vector. Considering a semi-
supervised node classification task, where labels of the nodes VL ∈ V are given.
Each node is assigned as one class in C ∈ {c1, ..., ck}. The goal of adversarial
attack can be mathematically formulated as a bilevel optimization problem

max
Gattack∈Φ(G)

L(fθ∗(Gattack))

s.t. θ∗ = argmin
θ

L(fθ(G))
(1)

where Φ(G) is the space of perturbation on the input graph, L is the cross
entropy by default and fθ(·) is the surrogate model.

Based on whether to re-train the model on the attacked graph, the attack
type is categorized by poisoning attack and evasive attack. Poisoning attack
requires re-training while evasive attack does not.

Graph Adversarial Contrastive Learning 685

2.2 Graph Adversarial Contrastive Learning Framework

As illustrated in Fig. 1, we now present our framework to learn robust repre-
sentations via adversarial contrastive training. Firstly, we conduct adversarial
generation on the perturbed graph. Then, we use the input graph and an adver-
sarial augmented graph as different views of the same graph. A shared encoder
like GCN encodes multi-views of the graph and then outputs respective local
representations f1(G) and f2(Gadv), where G is the input graph and Gadv is
the adversarial augmentation. f1(·) and f2(·) are encoders that can be the same
or different with their unshared projection layers. Crossed local-global informa-
tion maximization is implemented by maximizing the information between local
representations of the input graph and global representations of the adversarial
graph, vice versa. The GraphACL framework is modified on DGI framework by
additionally introducing an adversarial augmented view of the input graph. The
other omitted settings are the same with DGI, and negative samples are also
used. Therefore, the improvement of GraphACL over DGI is of our concern.

Fig. 2. Generation of graph adversarial augmentations under supervised loss.

When several labels are known, adversarial augmentation Gadv could be
obtained by supervised generation method. The process is illustrated in Fig. 2
Then we use the contrastive learning objective to maximize the similarity between
input examples G and their instance-wise adversarial augmentation Gadv. Then we
can formulate our Graph Adversarial Contrastive Learning objective as follow:

Lsup
GACL = min

f1,f2
(Lself

cl (f1(G), f1(G)global)

+ αLadv
cl (f1(G), f2(Gadv)global)

+ βLadv
cl (f1(G)global, f2(Gadv))),

(2)

where Lcl is contrastive loss that is negative mutual information essentially and
α balances between contrastive loss Lself

cl and Ladv
cl . Similar to DGI [17], f(·)global

is the global representation of the whole graph.

686 J. Guo et al.

Fig. 3. Generation of graph adversarial augmentations under unsupervised loss.

If no label information is given, the unsupervised adversarial training strategy
of Graph Adversarial Contrastive Learning objective can be formulated as:

Lunsup
GACL = min

f1,f2
max

g
(Lself

cl (f1(G), f1(G)global)

+ αLadv
cl (f1(G), f2(g(G))global)

+ βLadv
cl (f1(G)global, f2(g(G)))),

(3)

where g(·) is adversarial samples generation function. The process is illustrated
in Fig. 3.

The detailed procedure is presented as Algorithm 1. Different ways of gener-
ating adversarial augmentations are formulated in the next section of theoretical
analysis.

Algorithm 1. The Procedure of One Iteration in GraphACL
Require: Input Graph G = (A, X);
Ensure: f1(·), f2(·): graph encoders;
1: if use supervised adversarial augmentation then
2: generate adversarial graph Ĝ based on Eq. (13);
3: else
4: generate adversarial graph Ĝ based on Eq. (17);
5: end if
6: Generate node representations of input graph f1(G);
7: Generate node representations of adversarial augmented graph f2(Gadv);
8: Generate global representation of input graph f1(G)g by mean pooling;
9: Generate global representation of adversarial augmented graph f2(Gadv)g by mean

pooling;
10: Compute contrastive loss by Eq. (2) or Eq. (3);
11: Back propagate gradients and update f1(·) and f2(·);
12: return f1(·) and f2(·);

Graph Adversarial Contrastive Learning 687

3 Theoretical Analysis on Graph Adversarial Contrastive
Learning

In this section, we first formulate the Information Bottleneck Principle in graph
self-supervised learning and achieve the related objective function. Then, we
illustrate the generation of adversarial augmentations in Figure ??. Finally, we
derive desirable lower bounds of the information bottleneck and formulate the
objective function according to supervised and unsupervised adversarial aug-
mentations.

3.1 Information Bottleneck Principle for Graph Self-supervised
Learning

The Information Bottleneck (IB) [14,15] provides an essential principle for rep-
resentation learning from the perspective of information theory, which is an
optimal representation need to contain minimal yet sufficient information for
downstream tasks. It encourages the representation to involve as much informa-
tion about the target as possible to obtain high prediction accuracy, and discard
redundant information that is irrelevant to the target. In graph representation
learning, each graph G(A,X) contains information of both the graph structure
A ∈ R

N×N and node features X ∈ R
N×d. Applying IB to graph self-supervised

learning, we desire to learn an optimal graph representation Z, which is informa-
tive about the original graph G ∈ G , but invariant to its augmentations ̂G ∈ ̂G.
This principle can be formulated as follows:

LIB � βI(Z, ̂G) − I (Z,G) , (4)

where I(·, ·) denotes mutual information between variables and β > 0 is a hyper-
parameter to control the trade-off between preserving information and being
invariant to distortions.

We use ̂G to represent different views of the corresponding graph G. For the
first term of LIB, we utilize an upper bound proved in [4] to derive a tractable
bound of the mutual information between Z and ̂G:

I(Z, ̂G) ≤
∑

z∈Z

∑

̂G∈ ̂G

p(̂G, z) log(p(z | ̂G))

−
∑

z∈Z

∑

̂G∈ ̂G

p(̂G)p(z) log(p(z | ̂G)),
(5)

Also, the mutual information between Z and G can be written as

I(Z,G) =
∑

z∈Z

∑

G∈G
p(z,G) log

p(z,G)
p(z)p(G)

=
∑

z∈Z

∑

G∈G
p(z,G) log p(G|z) + H(G).

(6)

688 J. Guo et al.

The entropy term H(G) could be dropped which results in

I(Z,G) ≥
∑

z∈Z

∑

G∈G
p(z,G) log p(G|z). (7)

By combining Eq. (4), Eq. (5) and Eq. (7), we can minimize the upper bound
of IB by:

L̂IB = β
1

NM

N
∑

i=1

M
∑

j=1

[log p(zi
j | ̂Gi

j)

− 1
M

M
∑

k=1

log p(zi
k | ̂Gi

j)]

− 1
NM

N
∑

i=1

M
∑

j=1

log p(Gi | zi
j),

(8)

where N is the number of original graphs, M is the number of augmentations
of each original input graph. In graph contrastive learning, p(zi

j | ̂Gi
j) can be

viewed as an encoder fθ: ̂G → Z.
We assume p(zi

k | zi
j ,

̂Gi
j) = p(zi

k | zi
j), which means the representation zi

k of
an augmented graph cannot depend directly on another augmented graph ̂Gi

j .
Also, since the function fθ is deterministic, we have

p(zi
k | ̂Gi

j) =
∑

p(zi
k | zi

j ,
̂Gi

j)p(zi
j | ̂Gi

j)

= p(zi
k | zi

j)p(zi
j | ̂Gi

j) = p(zi
k | zi

j)
(9)

Further, Eq. (8) can be written as:

L̂IB = β
1

NM

N
∑

i=1

M
∑

j=1

[− 1
M

M
∑

k=1

log p(zi
k | zi

j)]

− 1
NM

N
∑

i=1

M
∑

j=1

log p(Gi | zi
j),

(10)

where p(zi
k|zi

j) could be viewed as a similarity measurement between representa-
tions of different augmentations. Eventually, we formulate the problem with IB
and obtain a general objective function of graph self-supervised learning as Eq.
(10). Intuitively, the objective function motivates GNN to increase the averaged
similarity of representations between different augmentations, thus making the
learned representations invariant and robust to various different views.

3.2 Generation of Supervised Graph Adversarial Augmentations

The generation of supervised graph adversarial augmentation is schematically
shown in Fig. 2, which utilizes previous graph adversarial attack methods like

Graph Adversarial Contrastive Learning 689

Metattack [28]. Primarily, a surrogate model is applied to the perturbed graph
to generate predictions. Then the supervised loss is computed by cross entropy.
Finally, we use the gradient to modify the structure of the original graph to
generate adversarial samples.

Suppose G is the original graph and its node labels are Y , we consider a
softmax regression layer between Z and Y . The posterior class probabilities can
be written as:

PY |Z(y | z) =
ewT

y z

∑

k ewT
k z

=
ewT

y fθ(G)

∑

k ewT
k fθ(G)

(11)

where W = {wy}k
y=1 is the vector of classification parameters for class y and

θ is the parameter of the encoder fθ(·), which are learned by minimizing the
cross-entropy loss

Lce(G,Y ;W, θ) = − log
ewT

y fθ(G)

∑

k ewT
k fθ(G)

. (12)

Given the learned encoder and classifier, an optimal perturbation for G is
generated by maximizing the cross-entropy loss:

Gadv∗ = arg max
Gadv

Lce(Gadv, y;W, θ)

s.t. Gadv ∈ Φ (G) ,
(13)

where Φ (G) means the space of perturbation on the original graph. Then we
can further formulate a constrained optimization problem as following

Gadv ∈ Φ (X)
s.t. Q (G,Gadv) < ε

(14)

where Q(·) represents a distance measurement function, ε is a parameter for
imperceptible perturbation evaluation.

1
K

M
∑

k=1

log p[fθ(̂G) | fθ(G)]

=
1
K

M
∑

k=1

log
∑

p[fθ(̂G) | fθ(G), y)p(y | fθ(G)]

=
1
K

M
∑

k=1

log
∑

p[fθ(̂G) | y)p(y | fθ(G))]

> log[
∑

p(fθ(Gadv∗) | y)p(y | fθ(G))]

= log p[fθ(Gadv∗) | fθ(G)],

(15)

690 J. Guo et al.

Since similarity between clean graph representations and adversarial augmenta-
tion representations becomes a lower bound of the averaged similarity between
representations on the original graph and all augmentations.

3.3 Generation of Unsupervised Graph Adversarial Augmentations

The unsupervised graph adversarial augmentation generation is schematically
in Fig. 3. Graph i is mapped into an example pair (̂Gi

k, ̂Gi
j). Graph contrastive

learning is performed through maximizing the agreement between an positive
pair. Equation (10) tells us that if we want to get a more robust representation,
we need to increase 1

K

∑M
k=1 log p(zi

k|zi
j). Similar to supervised situation, there

is a lower bound 1
K

∑M
k=1 log p[fθ(̂Gi

k)|fθ(̂Gi
j)] > log p[fθ(Gi

adv∗)|fθ(̂Gi
j)].

The choice of Gadv∗ could be formulate as a two-stage alternative optimiza-
tion problem: one is self-supervised learning, the other is adversarial attack or
generation of adversarial augmentations. A generative function g(·) is introduced
to denote the generation of adversarial samples Gadv∗. For example, the gener-
ation function g(·) can be the same as it in Metattack. In the first stage, adver-
sarial samples can be generated by Gadv = g(G), which is further considered as
an augmentation or a different view of the perturbed G. Hence, self-supervised
learning is conducted to maximize the mutual information between different
views by optimizing corresponding encoders f1 and f2. Then, given the encoders,
we can optimize g(·) by using adversarial attacks to minimize self-supervised loss
and obtain a new adversarial graph. Still using Metattack as an example, g(·) is
optimized by attacking the gradient of the self-supervised loss.

Finally, we formulate the two-stage of unsupervised training strategy – adver-
sarial attack and self-supervised learning as an underlying min-max objective
function in the following:

min
g

max
f1,f2

I(f1(G), f2(g(G))) (16)

In practice, as shown in Fig. 3, the adversarial unsupervised training strategy
is modified on DGI framework:

min
g

max
f1,f2

{I[f1(G)global, f2(g(G))]

+ I[f1(G), f2(g(G))global]}.
(17)

4 Experiments

4.1 Experimental Settings

To evaluate the robustness of different models against adversarial attacks, we
conduct experiments on the following benchmarks with Netattack [1] and Metat-
tack [28], where adversarial augmentations are generated by supervised or unsu-
pervised contrastive loss, respectively. Netattack works based on boolean fea-
tures; therefore, the features in each dataset are preprocessed to be 0 or 1. We

Graph Adversarial Contrastive Learning 691

follow the experimental settings in Netattack [1,21,23] exactly: We test the clas-
sification accuracy of the 40 selected target nodes: 10 nodes with the highest
margin of classification, which is most likely to be classified correctly; 10 nodes
with the lowest margin of classification but still classified correctly, which may
be easily attacked; 20 other random nodes. Each perturbation denotes a filp on
a boolean feature or a modification on an edge related to the node. Robustness
experiments are evaluated on a clean graph and corrupted graphs with a num-
ber of perturbations from 1 to 4. For Metattack, we use the standard Metattack
setting with a perturbation rate of 0.05 and 0.2 on clean graphs to generate
modified graphs. Then we test the node classification accuracy on the modified
graph. In this experiment, the adversarial augmentations are generated by our
proposed unsupervised contrastive loss.

We evaluate two types of robustness tasks, including evasive and poisoning.
We include the baselines such as GCN, RGCN, GAT; the results are cited from
[21]. Previous work has not included the pre-trained models in attack exper-
iments, and DGI is now considered to be compared with since we desire to
evaluate the impact of adversarial augmentations. GIB [21] is one of the previ-
ous SOTA on these experiments; however, it is not related to our comparison
on whether to use adversarial augmentations nor unsupervised pretraining. To
verify the impact of introducing the adversarial augmentation, we focus on the
improvements of GraphACL over DGI and GCN. For Metattack, we only eval-
uate the model’s performance on the evasive task.

Datasets are summarized in the supplementary materials. The results in
Table 1 and 2 denote averaged classification accuracy and standard deviation
over 5 random seeds. GACL is short for GraphACL.

We denote DGI and GraphACL as pre-trained methods, which are unsu-
pervised pre-trained with only the graph and features and without any other
information in downstream tasks. No previous study includes pre-trained meth-
ods in robustness experiments; however, we find it effective to defend unknown
attacks with pretraining. Our main hypothesis is that the adversarial augmenta-
tions will help the model learn more robust representations, which is confirmed
by comparing DGI and GraphACL. Thereby, we highlight the best results in
DGI, GCL and GraphACL in bold, surpassing all other results except few spe-
cial cases.

4.2 Robustness Evaluation Under Netattack

Netattack. For experiments on Cora, GraphACL with pretraining and adver-
sarial augmentations, outperforms all previous methods like GCN remarkably.
In evasive experiments, GraphACL surpasses GCN by 16.0%, RGCN by 18.0%,
GAT by 19.5% and DGI by 5.5% on average on the task with one perturbation.
Also, GraphACL achieves 17.0% and 2.0% improvements over GCN and DGI
respectively, when being poisoned on one perturbation case. When the number
of perturbations gets larger, the averaged results of GraphACL are still a bit
higher.

692 J. Guo et al.

Table 1. Classification accuracy(%) under netattack over 5 random seeds

Model Clean Evasive Poisoning

1 2 3 4 1 2 3 4

Cora GCN 80.0 ± 7.87 51.5±4.87 38.0 ± 6.22 31.0 ± 2.24 26.0 ± 3.79 47.5 ± 7.07 39.5 ± 2.74 30.0 ± 5.00 26.5 ± 3.79

RGCN 80.0 ± 4.67 49.5 ± 6.47 36.0 ± 5.18 30.5 ± 3.25 25.5 ± 2.09 46.5 ± 5.75 35.5 ± 3.70 29.0 ± 3.79 25.5 ± 2.73

GAT 77.8 ± 3.97 48.0 ± 8.73 39.5 ± 5.70 36.5 ± 5.48 32.5 ± 5.30 50.5 ± 5.70 38.0 ± 5.97 33.5 ± 2.85 26.0 ± 3.79

DGI 82.5 ± 4.33 62.0 ± 4.81 46.0 ± 3.79 34.0 ± 5.18 27.5 ± 3.06 62.5 ± 3.54 43.5 ± 3.79 31.5 ± 6.75 26.5 ± 4.18

GCL 64.4 ± 4.27 53.8 ± 5.20 38.8 ± 8.54 25.6 ± 3.15 18.8 ± 3.23 41.9 ± 6.25 33.1 ± 8.00 28.8 ± 7.77 23.1 ± 5.54

GACL 82.0 ± 3.26 67.5 ± 5.00 46.0 ± 5.76 35.5 ± 4.81 29.0 ± 6.75 64.5 ± 5.70 44.0 ± 7.42 33.5 ± 6.02 27.5 ± 5.30

Citeseer GCN 71.8 ± 6.94 42.5 ± 7.07 27.5 ± 6.37 18.0 ± 3.26 15.0 ± 2.50 29.0 ± 7.20 20.5 ± 1.12 17.5 ± 1.77 13.0 ± 2.09

RGCN 73.5 ± 8.40 41.5 ± 7.42 24.5 ± 6.47 18.5 ± 6.52 13.0 ± 1.11 31.0 ± 5.48 19.5 ± 2.09 13.5 ± 2.85 5.00 ± 1.77

GAT 72.3 ± 8.38 49.0 ± 9.12 33.0 ± 5.97 22.0 ± 4.81 18.0 ± 3.26 38.0 ± 5.12 23.5 ± 4.87 16.5 ± 4.54 12.0 ± 2.09

DGI 78.5 ± 5.76 64.0 ± 4.18 49.5 ± 4.47 36.5 ± 5.18 30.5 ± 5.97 57.5 ± 4.68 40.0 ± 7.70 31.0 ± 2.24 25.5 ± 5.70

GCL 70.0 ± 7.36 59.4 ± 6.57 47.5±5.40 36.3 ± 6.29 32.5 ± 4.08 50.6±5.54 38.3 ± 6.77 38.1 ± 4.27 26.9 ± 8.00

GACL 77.5 ± 3.06 66.0 ± 3.79 53.0 ± 5.70 46.0 ± 4.87 37.0 ± 1.12 63.5 ± 4.18 41.0 ± 3.79 40.0 ± 9.19 30.5 ± 5.97

Pubmed GCN 82.6 ± 6.98 39.5 ± 4.81 32.0 ± 4.81 31.0 ± 5.76 31.0 ± 5.76 36.0 ± 4.18 32.5 ± 6.37 31.0 ± 5.76 28.5 ± 5.18

RGCN 79.0 ± 5.18 39.5 ± 5.70 33.0 ± 4.80 31.5 ± 4.18 30.0 ± 5.00 38.5 ± 4.18 31.5 ± 2.85 29.5 ± 3.70 27.0 ± 3.70

GAT 78.6±6.70 41.0±8.40 33.5 ± 4.18 30.5 ± 4.47 31.0 ± 4.18 39.5 ± 3.26 31.0 ± 4.18 30.0 ± 3.06 35.5 ± 5.97

DGI 79.0 ± 7.20 40.5 ± 5.86 31.0 ± 4.54 29.5 ± 3.71 28.0 ± 2.74 40.0 ± 4.81 31.0 ± 3.79 28.5 ± 4.18 28.0 ± 4.68

GCL 67.5 ± 7.07 45.3 ± 1.77 35.8 ± 6.29 28.3 ± 5.10 28.1 ± 4.26 40.25 ± 1.77 33.25 ± 6.61 30.3 ± 1.44 19.4 ± 3.75

GACL 83.0 ± 5.42 43.0 ± 5.42 34.0 ± 5.18 30.0 ± 3.06 28.5 ± 4.18 41.0 ± 3.79 34.0 ± 2.85 29.5 ± 3.71 28.5 ± 4.18

GraphACL also achieves significant improvements on both evasive and poi-
soning experiments on Citeseer. Note that many nodes in Citeseer have few
degrees, thus making the attack much harder to defend. When the number of
perturbations is 1, GraphACL surpasses DGI and GCN by 2.0% and 23.5% on
evasive tasks, 3.5% and 34.5% on poisoning tasks. Especially, when the num-
ber of perturbations is 3, GraphACL surpasses DGI by 9.5% on evasive tasks
and 9.0% on poisoning tasks. All results of GraphACL surpass DGI and GCN a
lot on both evasive and poisoning tasks. We attribute the success to the added
views of adversarial augmentations, which makes the model more defensive to
the unseen attacks on graphs like Citeseer.

Additionally, GraphACL achieves the best on the clean graph and obtains
similar results to GraphCL on Pubmed both in evasive setting and poisoning
setting. When the number of perturbations is 1, GraphACL improves the aver-
aged accuracy on GCN, RGCN, GAT, and DGI by 3.5%, 3.5%, 2.0%, and 2.5%,
respectively on evasive tasks.

4.3 Robustness Evaluation Under Metattack

Metattack. We also evaluate the performances of DGI and GraphACL on Cora
and Citeseer under Metattack in Table 2. We use our proposed unsupervised
attack method in Fig. 3 to generate graph adversarial samples for GraphACL.
On the second row, clean denotes evaluation on the clean graph after Metat-
tack, while 0.05 and 0.2 denotes the perturbed rate on the graph. The first
column denotes the the perturbed rate in GraphACL training, which is related
to adversarial generation. When this rate is 0.000, the method is indeed DGI.
While the rate increases, the perturbation gets stronger. As information bottle-
neck demonstrated, there would be a desired representation containing sufficient
information with less nuisance to get more robust performance. The results in
Table 2 prove the same idea. The performance gets higher first, achieves a peak,

Graph Adversarial Contrastive Learning 693

and then goes down when the perturbed rate increases. Surprisingly, we find
that the optimal results are all related to GraphACL with 0.030 rate of pertur-
bation. If the perturbation rate is much larger, the graph is corrupted too much
to maintain sufficient information, thus resulting in poor performance. The best
performances of GraphACL all outperform DGI. When the evalutaion graph is
more perturbed, which means the robust representation is much more needed,
the improvements get much higher. In Cora, the best GraphACL achieves 1.4%,
2.2% and 3.5% higher in performance than DGI on clean, 0.05-perturbed, 0.2-
perturbed graph respectively. In Citeseer, the best GraphACL achieves 2.0%,
5.4% and 3.2% higher in performance than DGI on clean, 0.05-perturbed, 0.2-
perturbed graph respectively.

Table 2. Classification Accuracy(%) under Metattack over 5 random seeds

Dataset Cora Citeseer

Rate\Task Clean 0.05 0.2 Clean 0.05 0.2

DGI 75.2± 2.71 73.8± 2.48 71.5± 2.77 67.5± 3.44 64.9± 4.18 65.9± 4.10

GraphACL-0.001 75.4± 2.71 74.7± 3.23 73.1± 3.56 69.1± 1.47 69.0± 1.56 68.9± 1.63

GraphACL-0.010 76.6± 2.21 75.7± 2.47 74.1± 2.55 70.2± 1.90 69.9± 2.01 68.8± 2.04

GraphACL-0.020 76.2± 2.22 74.8± 2.93 74.9± 3.84 68.6± 3.59 68.0± 3.83 66.4± 3.28

GraphACL-0.030 76.8± 0.82 76.0± 1.40 75.0± 1.70 70.5± 1.88 70.3± 1.87 69.1± 2.40

GraphACL-0.040 73.7± 3.95 73.3± 3.90 72.4± 3.96 69.2± 2.50 68.8± 2.54 67.3± 3.21

GraphACL-0.050 74.4± 4.11 73.8± 4.67 72.8± 5.55 69.8± 1.70 69.5± 1.88 68.2± 2.35

4.4 Perturbation Rate Sensitivity for Adversarial Samples

In Fig. 4, we evaluate GraphACL with different perturbation rates for adver-
sarial samples on Cora, Citeseer and Pubmed. Experiments are conducted over
5 random seeds. The solid line denotes GraphACL with zero perturbation rate
served as a baseline, which means no augmentation is included, i.e., DGI. The
dotted line denotes GraphACL with the least positive perturbation rate, which
usually performs the worst within GraphACL. The other three lines in dash-
dot style related to GraphACL with different suitable perturbation rates. Their
performances are similar, which means our method is not sensitive to the pertur-
bation rate in a reasonable range. The difference is mainly based on the dataset.
Within the range, there is a best perturbation rate for GraphACL to improve
the performance over baselines up to 8%.

694 J. Guo et al.

Fig. 4. Results on different perturbation rates for adversarial samples

5 Related Work

5.1 Adversarial Attack and Defense on Graph Data

The first graph adversarial attack is proposed by Zugner et al. to generate adver-
sarial graph data using an efficient greedy search method [26]. The generated
graph can be used to fool GNN or other traditional graph learning methods.
Then some methods are proposed to attack the topological structure by adding
or removing edges according to the gradient of a surrogate model. Xu et al.
proposed an optimization-based attack method based on the gradient of the
surrogate model [22]. Zugner et al. presented to use meta-gradient to guide
the perturbation of graph adjacency matrix [28]. Wu et al. argued that inte-
grated gradients can better reflect the effect of perturbing certain features or
edges [20]. Also, Bojchevski et al. took DeepWalk [11] as base method using
eigen-decomposition and genetic algorithm based strategy to attack the network
embedding [1].

To ensure the robustness under adversarial attack, many methods have been
proposed to defense GNN models [2,5,18,19,21,24]. Wang et al. thought the vul-
nerabilities of graph neural networks are related to the aggregation layer and the
perceptron layer [18]. To address these two disadvantages, they propose an adver-
sarial training framework with a modified GNN model to improve the robustness
of GNNs. Chen et al. proposed different defense strategies based on adversar-
ial training for target and global adversarial attack with smoothing distillation
and smoothing cross-entropy loss function [2]. Feng et al. proposed a method
of adversarial training for the attack on node features with a graph adversarial

Graph Adversarial Contrastive Learning 695

regularizer which encourages the model to generate similar predictions on the
perturbed target node and its connected nodes [5]. Wang et al. pointed out that
the values of perturbation could be continuous or even negative [19]. Zhu et al.
proposed to use Gaussian distribution to increase the robustness of Graph Con-
volutional Network [24]. Wu et al. applied the information bottleneck principle
on semi-supervised learning settings [21] to defense the targeted node attack [26].

5.2 Self-supervised Graph Representation Learning

Self-supervised contrastive learning [3,7] showed significant performance on
graph-structured data. The contrastive learning approach usually needs to gen-
erate augmented graph sample pairs of the original graph. Then the similarity
between the representation of augmented graph pairs is minimized to learn graph
representations. Veličković et al. proposed to maximize the information between
local and global graph representations to learn node representations [17]. Zhu
et al. proposed various augmentation strategies to generate augmented graph
samples [25]. Hassani et al. introduced multi-view contrastive learning [6] that
maximizes the information between graph and its diffusion versions [10]. Qiu
et al. used an anonymous random walk to generate augmented subgraphs from
a large graph and minimize the similarity between the paired subgraphs and
maximize the similarity between subgraphs and negative samples [12]. Although
various methods have been proposed to use self-supervised contrastive learning
to learn graph representations, few works considered the quality of augmentation
samples.

6 Conclusion and Discussion

To summarize, we introduce adversarial augmentations into graph self-
supervised representation learning and propose a novel Graph Adversarial Con-
trastive Learning (GraphACL) framework. Theoretically, we obtain an upper
bound of the Information Bottleneck loss function for graph contrastive learn-
ing. With adversarial augmentations, our method could result in a much tighter
bound and more robust representations. Based on the theoretical analysis, we
formulate the GraphACL framework and present relative objective functions
in both supervised and unsupervised settings. To verify the empirical perfor-
mance, we conduct experiments on classic benchmarks attacked by Netattack
or Metattack. GraphACL outperforms DGI and other baselines on both evasive
and poisoning tasks, thus proving itself a more robust way of graph represen-
tation learning. The analysis of different perturbation rates also indicates that
our method is not sensitive to the rate. Albeit our model is built on top of Deep
graph infomax (DGI), our theory can be easily extended to other models by
combining adversarial learning and graph self-supervised learning together.

696 J. Guo et al.

References

1. Bojchevski, A., Günnemann, S.: Adversarial attacks on node embeddings via graph
poisoning. In: Proceedings of the 36th International Conference on Machine Learn-
ing, pp. 695–704. PMLR, 09–15 June 2019

2. Chen, J., Wu, Y., Lin, X., Xuan, Q.: Can adversarial network attack be defended?
CoRR abs/1903.05994 (2019)

3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: Proceedings of the 37th International
Conference on Machine Learning, pp. 1597–1607 (2020)

4. Cheng, P., Hao, W., Dai, S., Liu, J., Gan, Z., Carin, L.: Club: a contrastive log-ratio
upper bound of mutual information. In: ICML 2020: 37th International Conference
on Machine Learning, vol. 1, pp. 1779–1788 (2020)

5. Feng, F., He, X., Tang, J., Chua, T.S.: Graph adversarial training: dynamically
regularizing based on graph structure. IEEE Trans. Knowl. Data Eng. 6, 2493–
2504 (2021)

6. Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on
graphs. In: Proceedings of the 37th International Conference on Machine Learning,
pp. 4116–4126. Proceedings of Machine Learning Research (2020)

7. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738 (CVPR), June 2020

8. Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., Tang, J.: Graph structure learning
for robust graph neural networks. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 66–74 (2020)

9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

10. Klicpera, J., Weiß enberger, S., Günnemann, S.: Diffusion improves graph learning.
Adv. Neural Inf. Process. Syst. 32 (2019)

11. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710. KDD 2014 (2014)

12. Qiu, J., et al.: GCC: Graph contrastive coding for graph neural network pre-
training. In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1150–1160 (2020)

13. Tang, X., Li, Y., Sun, Y., Yao, H., Mitra, P., Wang, S.: Transferring robustness
for graph neural network against poisoning attacks. In: Proceedings of the 13th
International Conference on Web Search and Data Mining, pp. 600–608 (2020)

14. Tishby, N., Pereira, F.C.N., Bialek, W.: The information bottleneck method. In:
Proceedings 37th Annual Allerton Conference on Communications, Control and
Computing, 1999, pp. 368–377 (2000)

15. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle.
In: 2015 IEEE Information Theory Workshop (ITW), pp. 1–5 (2015)

16. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

17. Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep
graph infomax. arXiv preprint arXiv:1809.10341 (2018)

18. Wang, S., et al.: Adversarial defense framework for graph neural network (2019)
19. Wang, X., Liu, X., Hsieh, C.: Graphdefense: Towards robust graph convolutional

networks. CoRR abs/1911.04429 (2019)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1809.10341

Graph Adversarial Contrastive Learning 697

20. Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K., Zhu, L.: Adversarial
examples for graph data: deep insights into attack and defense. In: Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-
19, pp. 4816–4823 (2019)

21. Wu, T., Ren, H., Li, P., Leskovec, J.: Graph information bottleneck. arXiv preprint
arXiv:2010.12811 (2020)

22. Xu, K., et al.: Topology attack and defense for graph neural networks: an opti-
mization perspective. In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pp. 3961–3967 (2019)

23. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learn-
ing with augmentations. Adv. Neural Inf. Process. Syst. 33, 5812–5823 (2020)

24. Zhu, D., Zhang, Z., Cui, P., Zhu, W.: Robust graph convolutional networks against
adversarial attacks. In: Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining. ACM (2019)

25. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive repre-
sentation learning. arXiv preprint arXiv:2006.04131 (2020)

26. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural net-
works for graph data. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2847–2856 (2018)

27. Zügner, D., Borchert, O., Akbarnejad, A., Günnemann, S.: Adversarial attacks
on graph neural networks: Perturbations and their patterns. ACM Trans. Knowl.
Discov, Data 14(5), 1–31 (2020)

28. Zügner, D., Günnemann, S.: Adversarial attacks on graph neural networks via
meta learning. In: International Conference on Learning Representations (ICLR)
(2019)

http://arxiv.org/abs/2010.12811
http://arxiv.org/abs/2006.04131

What Affects the Performance of Models?
Sensitivity Analysis of Knowledge Graph

Embedding

Han Yang1, Leilei Zhang1, Fenglong Su2, and Jinhui Pang3(B)

1 Peking University, Beijing, China
{hyang001,zhang leilei}@pku.edu.cn

2 National University of Defense Technology, Changsha, Hunan, China
sufenglong18@nudt.edu.cn

3 Beijing Institute of Technology, Beijing, China
pangjinhui@bit.edu.cn

Abstract. Knowledge graph (KG) embedding aims to embed entities and rela-
tions into a low-dimensional vector space, which has been an active research
topic for knowledge base completion (KGC). Recent researchers improve exist-
ing models in terms of knowledge representation space, scoring function, encod-
ing method, etc., have achieved progressive improvements. However, the theo-
retical mechanism behind them has always been ignored. There are few works
on sensitivity analysis of embedded models, which is extremely challenging.
The diversity of KGE models makes it difficult to consider them uniformly and
compare them fairly. In this paper, we first study the internal connections and
mutual transformation methods of different KGE models from the generic group
perspective, and further propose a unified KGE learning framework. Then, we
conduct an in-depth sensitivity analysis on the factors that affect the objective
of embedding learning. Specifically, in addition to the impact of the embedding
algorithm itself, this article also considers the structural features of the dataset
and the strategies of the training method. After a comprehensive experiment and
analysis, we can conclude that the Head-to-Tail rate of datasets, the definition
of model metric function, the number of negative samples and the selection of
regularization methods have a greater impact on the final performance.

Keywords: Knowledge graph embedding · Group theory · Sensitivity analysis

1 Introduction

Knowledge Graphs (KGs) have emerged as a core abstraction for incorporating human
knowledge into intelligent systems, which become increasingly popular in various
downstream tasks including semantic search [2,28], question answering [1,8], and rec-
ommendation system [26,31]. In general, a KG can be seen as a collection of triple facts

H. Yang and L. Zhang—Contributed equally to this research. This work was supported by the
National Key RD Program of China under Grant No. 2020AAA0108600.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 698–713, 2022.
https://doi.org/10.1007/978-3-031-00123-9_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_55&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_55

Sensitivity Analysis of Knowledge Graph Embedding 699

in the triple format, expressed as (head entity, relation, tail entity) also abbreviated as
(h, r, t), e.g., (Donald Trump, presidentOf, USA). Knowledge graph embedding aims to
compress both relation and entity into continuous low-dimensional embedding spaces
while preserving the intrinsic graph properties and its underlying semantic information.
These approaches provide a way to perform reasoning in KGs with simple numerical
computation in continuous spaces.

Recent years witnessed tremendous research efforts on the KGE models, which
can be roughly divided into translation-based models, bilinear models, and other neural
network models [25]. These models are dedicated to transferring to more complex rep-
resentation spaces, designing different scoring functions or loss functions, thus making
up for the shortcomings of previous works and improving the performance of embed-
ded learning. Although more and more tailored models have shown promising perfor-
mance on this task, the theoretical mechanism behind them has been much less well-
understood to date. There is still a lack of comprehensive study to explore the influenc-
ing factors that lead to the improvements of the results [7,14], which can be helpful to
enhance the interpretability of KGE models. In this paper, we focus on the sensitivity
analysis of KGE for the first time, which is quite challenging. For one thing, the het-
erogeneity between different models impedes the proposal of a unified KGE abstract
representation, making it difficult to compare existing models and discover which mod-
ules of the embedding algorithm lead to progress. Besides, the performance of KGE is
also affected by model training, such as regularization and negative sampling method,
etc. This makes the independent analysis of factors affecting model performance more
complicated, especially when results are reproduced from prior studies that used a dif-
ferent experimental setup. Moreover, the performance of the same KGE model on dif-
ferent datasets may be very different, which also attracts us to analyze how the structural
characteristics of the dataset influence the embedded learning objective.

To overcome the aforementioned challenges, we express the popular KGE models
into a unified form, that is, a metric space based on the Abelian group. Based on group
isomorphism, we further analyzed typical KGE models such as TorusE [6] , RotatE
[20], DisMult [29], ComplEx [23], and proposed that they can all be regarded as vari-
ants of TransE [3] in terms of metrics, and completely different types of KGE learning
algorithms can also be converted to each other. We choose circle group in Sect. 3.3 to
illustrate the relation between them in detail and intuitively.

Moreover, we conduct a systematical sensitivity analysis of KGE from three
aspects: dataset characteristics, model architecture, and model training. Through statis-
tics and analysis of the structural characteristics of the dataset, we innovatively pointed
out that the Head-to-Tail rate will have a significant impact on the effect of KGE mod-
els in the knowledge graph completion task. For the KGE model architecture itself, we
quantitatively proved the limitations of the commonly used Euclidean metric function,
and discussed the impact of model hyperparameters based on the unified KG represen-
tation learning framework. We also conduct a large number of experiments by changing
the training strategy in common experimental settings to quantify and summarize the
impact of different training methods on model performance. Surprisingly, we discov-
ered that the number of negative samples, whether to perform regularization and the
choice of the regularization method are important to the embedding effect, but the neg-
ative sampling method does not matter. The conclusion of KGE sensitivity analysis is
quite helpful to improve the existing KGE models.

700 H. Yang et al.

To sum up, the highlights of the paper can be summarized as:

(1) To the best of our knowledge, we are the first work focusing on the sensitivity
analysis of the knowledge graph embedding models, which is of great significance
for improving the interpretability of representation learning.

(2) We innovatively provide a unified framework for several popular KGE models,
and explored the theoretical and conversion methods between these models, which
helps to fairly analyze the influence of various factors of the embedded algorithm
from a new perspective.

(3) We define a variety of dataset structural features to better analyze how dataset fea-
tures affect the goal of embedding learning and pointed out the impact of different
training strategies on model performance.

2 Preliminaries: Knowledge Graph Embedding

Various KGE models have been proposed for the KG completion task in recent years.
For a more intuitive discussion, we only review the methods that are directly related to
our work, without considering the multi-modal embedding with external information.

2.1 General Architecture

Knowledge graph embedding models learn to encode a collection of factual triplets
from a knowledge graph G = {(h, r, t)} ⊆ E ×R×E into low dimensional, continuous
vectors (h, r, t), where h, t ∈ R

k and r ∈ R
d. Typical KGE approaches follow a clear

workflow that consist of four component:

(1) Random Initialization. Randomly initialize the entity and relation vectors, which
generally uses an embedding lookup table to convert the sparse discrete one-hot
vectors into dense distributed representations;

(2) Scoring Function. Define a scoring function to measure the plausibility of facts.
The scoring function s : E × R × E → R takes form s(h, r, t) = f(h, r, t) and
assigns scores to all potential triples (h, r, t) ∈ E × R × E , where f may be either
a fixed function or a parameterized function;

(3) Interaction Mechanism. Design the interaction mechanism to model the interac-
tions of entities and relations to compute the matching score of a triple. The most
popular interaction mechanisms include linear or bilinear models, factorization
models, and neural networks. This is the main component of a model;

(4) Training Strategy. Training the KGE model by maximizing the confidence of
triples, with training strategies such as negative sampling and regularization.

2.2 KGE Models

Based on the scoring function and adopted interaction mechanism, we roughly divide
previous work into translation-based models, bilinear models and other models.

Sensitivity Analysis of Knowledge Graph Embedding 701

Translation-BasedModel. These models are known for their simplicity and efficiency,
which measure the plausibility of a triple as the distance between the head entity and
the tail entity. The scoring functions of translation-based models usually adopt L1 or L2

distance as the distance metric. Taking TransE [3] as an example, the scoring function
is:

fr(h, t) = −‖h+ r − t‖p = −
(

D∑
d

|hd + rd − td|p
)1/p

, (1)

where h, r, t are the embeddings of h, r, t, respectively, p is the order of Minkowski
metric, such as taxicab distance is 1 and Euclidean distance is 2. D is the dimension
size of the embedding space, x = (x1, x2, ..., xD) is a point in D-dimensional space.

TransE is the seminal work for translation-based model, which interprets relation
as a translation vector r so that entities can be connected, formally as h + r ≈ t.
The follow-up variants of TransE are proposed to overcome the flaws of TransE in
dealing with 1-to-N, N-to-1, and N-to-N relations, such as TransH [12] and TransR
[12]. TransD [9] and TranSparse [10] simplify the projection matrices, while TorusE
[5] and ManifoldE [27] introduce other representation spaces. RotatE [20] defines each
relation as a rotation from the head entity to the tail entity in the complex vector.

Bilinear Models. These models, also known as semantic models, use the scoring func-
tion in the form of trilinear product between entities and relations to measure the seman-
tic similarity.

The most classical representative method is the RESCAL [18] model, which repre-
sents KG as a three-way tensor, then DistMult [29] simplifies RESCAL by restricting
relation matrices to be diagonal, HolE [17] further combines the expressive power of
RESCALwith the efficiency and simplicity of DistMult. ComplEx [23] entends HolE to
the complex space so as to better model asymmetric relations. The analogical embed-
ding framework [13] restricts the embedding dimension and scoring function, thus it
can recover or equivalently obtain several models.

Other Models. Traditional translation-based and bilinear models cannot meet the
requirements of KGE, there are some works proposed to obtain better and more effec-
tive entity and relation embeddings. QuatE [32] takes advantage of quaternion represen-
tations to enable rich interactions between entities and relations. ConvE [4] is the first
work to use the convolutional neural network (CNN) framework for KG completion. In
addition, we notice that some models are significantly better than other KGE models,
such as ConvKB [16], CapsE [24], KBAT [15], etc. Recent work [21] has pointed out
that their outstanding performances are caused by containing a large number of identi-
cal scores. Coper-ConvE [19] only conducted tail entity prediction experiments, which
are simpler than head entity prediction, thus it is unfair to them with other models. They
will not be discussed in this article.

702 H. Yang et al.

3 A Unified Knowledge Graph Embedding Framework

In this section, we present a detailed theoretical analysis of the popular and typical KG
representation learning models, such as TransE, TorusE, DisMult, ComplEx, RotatE,
which have achieved competitive results. We summarized the above five models into
the metric space based on the Abelian group, and further discussed the influence of
metric methods and group operations on the KGE model performance in Sect. 5.3.

3.1 Abelian Group and Metric Space

Abelian Group: An abelian group, also called a commutative group, is a set, G,
together with an operation ∗ that combines any two elements a and b of G to form
another element of G, denoted a ∗ b. For all a, b in an abelian group, the set and
operation,(G, ∗),

a ∗ b = b ∗ a. (2)

Metric Space:Ametric space is an ordered pair (G, d)whereG is a set and d is a metric
on G, i.e., a function d : G×G → R such that for any x, y, z ∈ G , the following holds:

1. d(x, y) ≥ 0
2. d(x, y) = 0 ⇐⇒ x = y
3. d(x, y) = d(y, x)
4. d(x, z) ≤ d(x, y) + d(y, z).

3.2 Group Representation of KGE Models

Following the definition of Abelian group and metric space, we transfer the process of
knowledge graph embedding models into a three-state workflow on the group space:

(1) The group operation of the head entity h and the relation r on the abelian group G,
aiming at generating a target characteristic t̃ in the group:

t̃ = h ∗ r, h, r ∈ G. (3)

(2) Calculate the distance between the generated target characteristic t̃ and the ground-
truth tail entity t on the metric space < G, ∗ >.

d(t̃, t), d : G × G → R. (4)

(3) Design the loss function F (d) and use it to train the whole KGE model.

We discuss the characteristics of the several selected typical models and further
summarize their group representations in Table 1. TransE interprets relation as a trans-
lation vector r, formally, it calculates the distance between the characteristics of entity t̃
and the tail entity t in the metric space < Rn, ∗, d >, where d is the Euclidean distance.
ComplEx and RotatE belong to the semantic model and the translation-based rotation
model respectively, but they are highly similar from the perspective of group represen-
tation, both of them act in the high-dimensional complex number field Cn and perform

Sensitivity Analysis of Knowledge Graph Embedding 703

Table 1. The transformations and metrics of several typical KGE models

Models Scoring function Group operation Metric Transformation function

TransE − ‖h + r − t‖ + Euclidean –

TorusE − min(x,y)∈([h]+[r])×[t] ‖x − y‖i +(Lie Group) Euclidean 0.5∗sin(2∗π∗(h+r−t)+1.5π)

+0.5 ∼ sin(h + r − t)

DisMult − ∑K
k=1 hkrktk * Dot product e(h+r−t)

ComplEx − Re
(∑K

k=1 rkhktk

)
* (Complex) Dot product cos(h + r − t)

RotatE − ||h ◦ r − t|| * (Complex) Euclidean 0.5 ∗ sin(0.5(h + r − t))

group operations such as complex multiplication. The difference between them is the
metric function in the metric space. ComplEx applies the inner product of two vectors,
while RotatE uses Euclidean distance. TorusE performs Lie group addition operation
in the multidimensional torus Tn, then computes the distance between the character-
istic entity and the real entity by Euclidean distance. DisMult performs the Hadamard
product of vectors in R

n, and then measures the characteristic entity and the tail entity
through the inner-product operation of vectors.

Fig. 1. The unification of KGE models.

3.3 Model Transformation and Unification

We have shown that there is a conditional isomorphism of models, i.e. a kind of map-
ping relation that maps models to a uniform representation space. In order to enhance
the interpretability of the model and facilitate the sensitivity analysis in the following
section, we choose the most commonly used circle group to summarize different KGE
models. As shown in Fig. 1, we compare different KGE models in the circle group more
vividly. The details of the transformation function are described in Table 1, and we give
the proof as follow,

Theorem 1. TransE can be represented as an angle with the size of θ, or as a arc
segment(the bleu arc in Fig. 1), then TorusE, ComplEx, RotatE and DistMult can all be
regarded as transformations of TransE based on trigonometric functions.

704 H. Yang et al.

Proof. (1) TorusE: By setting d = h+ r − t, we get d − �d ∈ [0, 1)n. Then,

f(h, r, t) =
1
4
‖(2 − 2 cos(2π(min(d − �d, 1 − d + �d)))‖

= 0.5‖ sin(2πd + 1.5π)‖
∼ ‖ sin(h+ r − t)‖.

(5)

(2) ComplEx: By further restricting |hi| = |ri| = |ti| = C, we can rewrite h, r, t by

h = Ceiθh = C cosθh + iC sinθh

r = Ceiθr = C cosθr + iC sinθr

t = Ceiθt = C cosθt + iC sinθt.

(6)

Then, we can get

f(h, r, t) = ‖RE(h ◦ r ◦ t)‖ = C
∥∥∥RE(

ei(θh+θr) ◦ e−iθt

)∥∥∥
= C

∥∥∥RE(
ei(θh+θr−θt)

)∥∥∥
= C ‖cos (θh + θr − θt)‖
∼ ‖cos (θh + θr − θt)‖ .

(7)

(3) RotatE: Since the transformation of the trigonometric function calculation for
RotatE [20] has been given in previous work, we directly use the conclusion in this
paper.

f(h, r, t) = ‖h ◦ r − t‖ ∼ ‖ sin(θh + θr − θt)‖. (8)

(4) DistMult: Prior work [30] proofed TransE ∼= DistMult /Z2. By further restricting
h, r, t > 0, and then we can rewrite

h = eθh

r = eθr

t = eθt

,

f(h, r, t) = ‖h · r · t‖ =
∥∥eθh+θr+θt

∥∥ (9)

Let θ′
t = −θt, then we can get

f(h, r, t) = ‖eθh+θr+θt‖ ∼ ‖eθh+θr−θ ′
t‖. (10)

��

4 Influencing Factors of Knowledge Graph Models

Sensitivity Analysis quantitatively studies the uncertainty in the output of a black-box
model or system, thus can greatly enhance the interpretability of neural networks, which
is still blank in the field of knowledge graph embedding. Since the performance of a
KGE model is not only determined by the embedding algorithm itself, but also affected
by the structural features of the experimental dataset, and various strategies adopted
in the training method. We will first review these influencing factors follow, and then
analyze and discuss them in detail in the next section.

Sensitivity Analysis of Knowledge Graph Embedding 705

4.1 Dataset Structural Features

Table 2. Definition of the structural features of KGE datasets

Definition Description

First-level absolute features

Number of entities The number of entities and their proportion to the total entities

Number of relations The number of relations and their proportion to the total entities

Entity category The entity is divided into four categories: 1−1, 1−n, n−1, n−n

Relation category The relation is divided into four categories: 1−1, 1−n, n−1, n−n

Secondary-level absolute features

Head-to-Tail Rate The ratio between the number of head entity category and the number of tail entity
category

Test-train relative features

Head-In Rate Given a relation r in the test dataset, the proportion of its head entities
appearing as head entities for the same relation r in the training dataset

Tail-In Rate Given a relation r in the test dataset, the proportion of its tail entities
appearing as tail entities for the same relation r in the training dataset

Avg-In Rate Given a relation r in the test dataset, the proportion of its head or tail
entities that occur with the same relation in the training dataset

The same KGE model performs quite differently on different datasets. It is difficult for
a model with better performance on the benchmark dataset to maintain its superiority in
the new dataset, which greatly limits the popularization and application of knowledge
graph representation learning model in downstream tasks. This paper pioneered a vari-
ety of characteristic indicators to describe the structure of the knowledge graph dataset
to further study how the dataset affects the performance of the KGE models. We intro-
duced and described the definition of the structural characteristics of KGE datasets in
Table 2. The dataset structural features include two types: the absolute structure char-
acteristics of the dataset itself and the relative characteristics describing the relation
between the test dataset and the training dataset. Among them, the absolute character-
istics include not only the first-level features that can be directly obtained by statistics,
such as the number of unique entities, relations, etc., but also the secondary-level fea-
tures calculated based on the first-level features, such as Head-to-Tail rate, that is the
rate of the number of types of head entities h to the number of types of tail entities t for
a given relation r.

As for the relative characteristics describing the relation between the training dataset
and the test dataset, we give three conceptual definitions: Head-In Rate, Tail-In Rate,
and Avg-In Rate. Given a specific triple (hi, ri, ti) which appears in the test dataset,
Head-In (Tail-In) Rate refers to the probability of the head entity hi (tail entity ti) and
relation ri appear in the triple that contains this relation in the training test set at the
same time. Avg-In Rate is the average of Head-In rate and Tail-In rate.

4.2 Embedding Algorithm

We have unified some typical embedding learning models into the form of transE with
trigonometric functions. Specifically, the KGE model can be expressed in the form of

706 H. Yang et al.

the trigonometric function A sin(ω ∗ (θ) + b). In this paper, we construct a new model
based on the unified framework Sin E as follows:

fsinE = A sin(ω ∗ (h + r − t) + b). (11)

Then, we analyze the effect of three elements of the trigonometric function includ-
ing amplitude, frequency, and phase on the entity linking task in Sect. 5.3.

4.3 Model Training

The most commonly used strategies for training the KE model are negative sampling
and regularization.

Negative Sampling Methods:We analyzed not only the method of negative sampling,
but also the influence of the number of negative sampling on the objective of embed-
ding learning. For the negative sampling method, we mainly study the impact of three
methods including uniform sampling, self-adversarial sampling, and NSCaching sam-
pling [33] on the performance of KGE models. Uniform sampling refers to randomly
selecting negative sample entities from all candidate entities. On the basis of uniform
sampling, self-adv increases the weight of samples with higher scores in the same batch.
NSCaching considers negative examples to be good or bad, and uses a caching mech-
anism to obtain high-quality negative examples. Moreover, we also analyze the impact
of the number of negative samples on the performance of the representation model.

Regularization Method: Regularization method constrains the parameters to be opti-
mized, which helps prevent over-fitting. Prior work [11] has studied the regularization
method of the embedded models, and proposed the N3 regularization method. This
paper further analyzes the effects of five common matrix norms on the KGE model, and
compares them with the pure model that does not use regularization.
1-Norm:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij | . (12)

∞-Norm:

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij | . (13)

2-Norm:

‖A‖2 =
√

λmax (ATA). (14)

Nuclear Norm(Nuc-Norm):

‖A‖∗ = tr
(√

ATA
)
= tr(Σ)

A = U
∑

V T.
(15)

Fro Regularization:

‖A‖F =
√

tr (ATA) =

√√√√ m∑
i=1

n∑
j=1

a2
ij . (16)

Sensitivity Analysis of Knowledge Graph Embedding 707

5 Sensitivity Analysis of the Influencing Factors in KGE Models

In this section, we perform experiments to revisit the contribution of the various influ-
encing factors in KGE learning models, and hope to answer the following questions
through an objective sensitivity analysis of the experimental results.

Q1: How does the dataset structure affect knowledge graph embedding learning?
Q2: How does the model architecture influence the objective of embedding learning?
Q3: What are the effects of different training strategies on the KGE models?

We first introduce the relevant datasets and evaluation tasks used in the sensitivity anal-
ysis experiment, and then discuss them in detail.

5.1 Experimental Settings

Table 3. Statistics of the datasets used in this paper.

Dataset Train Valid Test Ent Rel

FB15k 483,1442 50,000 59071 14951 1345

FB15k-237 272,115 17,535 20,466 14,541 237

WN18 141,442 5000 5000 40,943 18

WN18RR 86,835 3,3034 3,3134 40,943 11

Experimental Dataset: We conducted experiments on some common datasets includ-
ing FB15k, WN18 [3], FB15k-237 [22] and WN18RR [4]. FB15k is a subset of
Freebase, a large-scale knowledge graph containing general knowledge facts. WN18
is extracted from WordNet3, where words are interlinked by means of conceptual-
semantic and lexical relations. FB15k-237 and WN18RR are their corresponding
updated version, with inverse relations removed. Statistics of the datasets are provided
in Table 3.

Evaluation Protocol. We evaluate the performance of KGE models on the entity link-
ing task, which predicts the missing entity in the triple by minimizing the loss function,
that is, given (h, r, ?), predict the tail entity ?.

t = argmin
e

· f(h, r, e). (17)

We employ three popular metrics to evaluate the performance of link prediction,
including Mean Rank (MR), Mean Reciprocal Rank (MRR), and Hit ratio with cut-off
values n = 1, 3, 10. MR measures the average rank of all correct entities with a lower
value representing better performance. MRR is the average inverse rank for correct
entities. Hit@n measures the proportion of correct entities in the top n entities.

708 H. Yang et al.

5.2 Sensitivity Analysis of Dataset Structural Features

Table 4. The link prediction results of some relations

Relation HeadInRate tailInRate AvgInRate HeadToTailRate ErorrRate

dated money value/currency 0.00000 1.00000 0.03226 553.91670 0.00000

location of ceremony 1.00000 0.01888 0.03704 0.00197 0.88679

food/diet/followers 1.00000 0.00000 0.11764 0.02173 0.46667

athlete salary/team 0.25000 0.25000 0.25000 1.37500 0.25000

We perform sensitivity analysis of dataset structural characteristics on the FB15K
dataset, because it has the largest amount of training triplets and contains various types
of relations. As shown in Table 4, we list the characteristic statistical values and error
rate of missing triples corresponding to some specific relations in the FB15K dataset.
Here we use the hit@10 indicator to represent the error rate. Figure 2 shows the scatter
plots of Hit@10 error rate with Avg-In rate and Head-to-Tail rate, respectively. It shows
that Hit@10 error rate and Head-to-Tail rate are negatively correlated, while Avg-In
Rate has little effect on Hit@10 error rate.

Fig. 2. Error Rate to Avg-In Rate, Head-In Rate, respectively.

Table 5. Error Rate to Head-to-Tail Rate.

HeadTailRate Hit10 ErrorRate NumberOfTriples HeadTailRate Hit10 ErrorRate NumberOfTriples

0−0.5 0.171 568 3−3.5 0.058 44

0.5−1 0.142 218 3.5−4 0.089 29

1−1.5 0.161 273 4−4.5 0.035 37

1.5−2 0.099 66 4.5−5 0.025 42

2−2.5 0.098 97 ≥5 0.029 523

2.5−3 0.084 25

The Head-to-Tail Rate is not a uniform distribution, in order to analyze the relations
between the two more intuitively, we segment the Head-to-Tail Rate with a step size
of 0.5, and calculate the average error rate of all relations in the segment to make the
histogram. Table 5 and Fig. 3 further confirm the conclusion that the larger the Head-to-
Tail Rate, the lower the Hit@10 error rate.

Sensitivity Analysis of Knowledge Graph Embedding 709

Fig. 3. Error Rate to Head-to-Tail Rate.

5.3 Sensitivity Analysis of KGE Model Architecture

We analyzed the influence of period, margin, amplitude, and phase of SinE. The results
are shown in Fig. 4. Among the four factors, the period has the greatest impact. ω can
be regarded as the reciprocal of the cycle. With the increase of ω, the performance of
the KGE model greatly improves until it reaches the peak, then stabilizes or decreases
slowly. The margin has a similar impact, but it is not as obvious as the period. The
impact of amplitude on the dataset is relatively small. At first, a large range of amplitude
has minimal impact on model performance, and then as the amplitude increases, the
model performance gradually decreases. Phase is the parameter that has the least impact
on the performance of the model among the four factors.

5.4 Sensitivity Analysis of Model Training Strategies

Table 6. Sensitivity analysis of the number of NS, where NS represents the negative sampling.

Number of NS 1 3 5 10

MRR/Hit@1 0.633/0.510 0.696/0.581 0.721/0.611 0.752/0.654

Number of NS 50 150 200 256

MRR/Hit@1 0.788/0.723 0.795/0.741 0.791/0.738 0.791/0.739

710 H. Yang et al.

Fig. 4. Sensitivity Analysis of period, margin, amplitude, and phase of SinE.

In order to verify whether the number of negative samples has an impact on the objective
of embedding learning, we use RotatE as the basic model, and adopt uniform, self-
adversarial, and NSCaching negative sampling methods to train the KGE model on the
FB15k dataset. At the same time, we also set the number of negative samples is 1,
3, 5, 10, 50, 100, 150, 200, and 256 to observe the influence of the number of negative
samples. The experimental results are shown in Table 6. We can conclude that compared
to the negative sample sampling method, the number of samples has a greater impact
on downstream tasks.

In addition, We conduct experiments on the selection of negative sampling methods,
and the results are shown in Table 7. We can conclude that the impact of negative sam-
plingmethods onmodel performance depends on the dataset. For example, inWN18RR,
the uniform sampling performs better, but the performance of uniform sampling is worse
in the FB15k-237 dataset. NSCaching is the opposite, with the worst effect onWN18RR,
but it has the best performance on FB15k-237 among the three negative sampling meth-
ods. The performance of self-adversarial negative sampling is relatively stable on the
two datasets. Therefore, this article believes that the choice of negative sampling method
should be determined by the structural characteristics of the dataset. Different datasets
should be equipped with different negative sampling methods.

Sensitivity Analysis of Knowledge Graph Embedding 711

Table 7. Sensitivity analysis of NS methods, where NS represents negative sampling.

NS method WN18RR FB15K237

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

ComplEx + random 0.449 0.387 0.486 0.556 0.272 0.191 0.295 0.432

ComplEx + self-adversarial 0.470 0.429 0.484 0.555 0.322 0.229 0.352 0.511

ComplEx +NSCaching 0.302 – – 0.481 0.446 – – 0.509

Table 8. Sensitivity analysis of regularization methods on FB15K and WN18 datasets.

Model FB15K WN18

MRR H@1 H@3 Hit@10 MRR H@1 H@3 Hit@10

ComplEx-None 0.83 0.79 0.86 0.90 0.95 0.95 0.95 0.95

ComplEx-FRO 0.84 0.80 0.86 0.90 0.95 0.95 0.95 0.96

ComplEx-N3 0.84 0.79 0.86 0.91 0.95 0.95 0.95 0.96

ComplEx-1 0.83 0.80 0.86 0.90 0.95 0.94 0.95 0.95

ComplEx-2 0.83 0.80 0.86 0.90 0.95 0.94 0.95 0.95

ComplEx-∞ 0.83 0.80 0.86 0.90 0.95 0.94 0.95 0.95

ComplEx-nuc 0.83 0.79 0.86 0.90 0.95 0.94 0.95 0.95

Table 9. Sensitivity analysis of regularization methods on FB15k-237 and WN18RR datasets.

Model FB15k-237 WN18RR

MRR H@1 H@3 Hit@10 MRR H@1 H@3 Hit@10

ComplEx-None 0.34 0.25 0.37 0.51 0.46 0.43 0.47 0.52

ComplEx-FRO 0.33 0.24 0.36 0.52 0.45 0.42 0.46 0.51

ComplEx-N3 0.35 0.26 0.38 0.53 0.47 0.43 0.48 0.53

ComplEx-1 0.34 0.25 0.37 0.51 0.46 0.43 0.47 0.51

ComplEx-2 0.33 0.25 0.37 0.51 0.45 0.43 0.46 0.51

ComplEx-∞ 0.31 0.22 0.34 0.49 0.41 0.39 0.41 0.44

ComplEx-nuc 0.33 0.25 0.37 0.51 0.45 0.43 0.46 0.51

We also implement the six regularization methods mentioned in Sect. 4.3 to train
the ComplEx separately, and the experimental results are shown in Table 8 and 9. After
analysis, it can be found that (1). The choice of the regularization method is important
to the performance of the KGE models. The N3 regularization method has achieved
excellent performance on all datasets. Especially for the WN18RR dataset, except for
N3, the other regularization methods lead to reduces in the performance of ComplEx,
which shows that the regularization method cannot be used arbitrarily. (2). The struc-
tural features of KGE datasets also affect the influence of regularization methods. In
the denser FB15K and WN18 datasets, whether to use the regularization method has
less impact on the model. In the sparse FB237 and WN18 datasets, the opposite is true,

712 H. Yang et al.

which also proves that when the dataset is small, the use of regularization can prevent
overfitting.

6 Conclusion

This paper first conducts sensitivity analysis to improve the interpretability of the
KGE models. We give a unified representation of several typical KGE models based
on TransE + trigonometric functions, and further analyze the transformation methods
between them. On this basis, we concluded that the different parameters of the trigono-
metric function have a significant impact on the objective of embedding learning. More-
over, we discussed the effect of features of the data structure, different model implemen-
tation strategies on the KGE models. we found that the Head-to-Tail rate of datasets, the
definition of model metric function, the number of negative samples and the selection
of regularization methods have a greater impact on the final performance.

References

1. Abujabal, A., Yahya, M., Riedewald, M., Weikum, G.: Automated template generation for
question answering over knowledge graphs. In: Proceedings of the 26th International Con-
ference on World Wide Web (2017)

2. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid search: effec-
tively combining keywords and semantic searches. In: European Semantic Web Conference
(2008)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embed-
dings for modeling multi-relational data. In: (NIPS) (2013)

4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph
embeddings. In: AAAI (2018)

5. Ebisu, T., Ichise, R., Torus, E.: Knowledge graph embedding on a lie group. AAAI, Toruse
(2018)

6. Ebisu, T., Ichise, R.: TorusE: knowledge graph embedding on a lie group. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

7. Gesese, G.A., Biswas, R., Alam, M., Sack, H.: A survey on knowledge graph embeddings
with literals: which model links better literally? Semantic Web (2021)

8. Hu, S., Zou, L., Yu, J.X., Wang, H., Zhao, D.: Answering natural language questions by
subgraph matching over knowledge graphs. IEEE Trans. Knowl. Data Eng. 30, 824–837
(2017)

9. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping
matrix. In: ACL (2015)

10. Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse transfer
matrix. In: AAAI (2016)

11. Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base
completion. In: International Conference on Machine Learning (2018)

12. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for
knowledge graph completion. In: AAAI (2015)

13. Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. In: Interna-
tional conference on machine learning. PMLR (2017)

14. Mohamed, S.K., Novácek, V., Vandenbussche, P.Y., Muñoz, E.: Loss functions in knowledge
graph embedding models. In: DL4KG@ ESWC (2019)

Sensitivity Analysis of Knowledge Graph Embedding 713

15. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embeddings for
relation prediction in knowledge graphs. arXiv preprint arXiv:1906.01195 (2019)

16. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model
for knowledge base completion based on convolutional neural network. arXiv preprint
arXiv:1712.02121 (2017)

17. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In:
AAAI (2016)

18. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-
relational data. In: ICML (2011)

19. Stoica, G., Stretcu, O., Platanios, E.A., Mitchell, T., Póczos, B.: Contextual parameter gen-
eration for knowledge graph link prediction. In: AAAI (2020)

20. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph embedding by relational
rotation in complex space. In: International Conference on Learning Representations (2018)

21. Sun, Z., Vashishth, S., Sanyal, S., Talukdar, P., Yang, Y.: A re-evaluation of knowledge graph
completion methods. In: ACL (2020)

22. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text infer-
ence. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their
Compositionality (2015)

23. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for
simple link prediction. In: International Conference on Machine Learning. PMLR (2016)

24. Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D., et al.: A capsule network-based embedding
model for knowledge graph completion and search personalization. In: NAACL (2019)

25. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey of approaches
and applications. IEEE Trans. Knowl. Data Eng. 29, 2724–2743 (2017)

26. Wang, X., Wang, D., Xu, C., He, X., Cao, Y., Chua, T.S.: Explainable reasoning over knowl-
edge graphs for recommendation. In: AAAI (2019)

27. Xiao, H., Huang, M., Zhu, X.: From one point to a manifold: knowledge graph embedding
for precise link prediction. arXiv preprint arXiv:1512.04792 (2015)

28. Xiong, C., Power, R., Callan, J.: Explicit semantic ranking for academic search via knowl-
edge graph embedding. In: WWW (2017)

29. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning
and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

30. Yang, H., Liu, J.: Knowledge graph representation learning as groupoid: unifying TransE,
RotatE, QuatE, ComplEx. In: Proceedings of the 30th ACM International Conference on
Information & Knowledge Management (2021)

31. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding
for recommender systems. In: SIGKDD (2016)

32. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. Adv. Neural
Inf. Process. Syst. 32 (2019)

33. Zhang, Y., Yao, Q., Shao, Y., Chen, L.: NSCaching: simple and efficient negative sampling
for knowledge graph embedding. In: 2019 IEEE 35th International Conference on Data Engi-
neering (ICDE), pp. 614–625. IEEE (2019)

http://arxiv.org/abs/1906.01195
http://arxiv.org/abs/1712.02121
http://arxiv.org/abs/1512.04792
http://arxiv.org/abs/1412.6575

CollaborateCas: Popularity Prediction
of Information Cascades Based on

Collaborative Graph Attention Networks

Xianren Zhang1,3, Jiaxing Shang2,3(B), Xueqi Jia2,3, Dajiang Liu2,3, Fei Hao4,
and Zhiqing Zhang1

1 CQU-UC Joint Co-op Institute, Chongqing University, Chongqing, China
zhangxr2000@foxmail.com, zqzhang@cqu.edu.cn

2 College of Computer Science, Chongqing University, Chongqing, China
{shangjx,liudj}@cqu.edu.cn

3 Key Laboratory of Dependable Service Computing in Cyber Physical Society,
Ministry of Education, Chongqing University, Chongqing, China

4 School of Computer Science, Shaanxi Normal University, Xian, China
fhao@snnu.edu.cn

Abstract. In recent years, with the prosperity of online social media plat-
forms, cascade popularity prediction has attracted much attention from
both academia and industry. Due to the recent advance in graph repre-
sentation learning technologies, many state-of-the-art prediction meth-
ods utilize graph neural network to predict the cascade popularity. How-
ever, a significant disadvantage shared by these methods is that they treat
each cascade independently, while the collaborations among different cas-
cades are ignored. Therefore, in this paper we propose a novel deep learn-
ing model CollaborateCas which utilizes collaborations among different
cascades to learn node and cascade embeddings directly and simultane-
ously. To this end, we first construct a heterogeneous user-message bipar-
tite graph where different cascades are indirectly connected by common
participants. To further capture temporal interdependence among users
within each cascade, we construct homogeneous cascade graphs where
temporal information is modeled as edge features. Experimental results
on two real-world datasets show that our approach achieves significantly
higher prediction accuracy compared with state-of-the-art approaches.

Keywords: Information diffusion · Cascade popularity prediction ·
Graph neural network · Heterogeneous graph · Deep learning

1 Introduction

Recent years have witnessed the prosperity of various online social media plat-
forms which allow users to generate and share various online contents through
comments, likes, or retweets. Consequently, the investigation of information dif-
fusion over online social media has attracted much attention [18]. It finds appli-
cation in a lot of important scenarios such as viral marketing [9], rumor detection
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 714–721, 2022.
https://doi.org/10.1007/978-3-031-00123-9_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_56&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_56

CollaborateCas: Collaborative Cascade Popularity Prediction 715

[16], etc. Among many of the research topics related to information diffusion,
cascade popularity prediction [3], which aims to predict the future popularity of
online contents based on their early diffusion patterns, is a key issue.

To address the cascade popularity prediction problem, a lot of research efforts
have been devoted. Recently, deep learning techniques have shown their superior-
ity in automatically capturing valuable information from cascades and predicting
cascade popularity in an end-to-end manner [12]. Some approaches [2,12] rep-
resented cascades as multiple node sequences and then fed them into Recurrent
Neural Network (RNN) models [5,10]. To extract underlying diffusion patterns,
some researches applied Graph Neural Network (GNN) models [1,6] on cascade
graphs [4] or social networks [3,11,14].

Motivation. Although GNN-based approaches have shown high prediction accu-
racy, a significant disadvantage shared by them is that they treat each cascade
independently, while the collaborations among different cascades are ignored.
In fact, according to the research of Myers et al. [13], when there are multiple
messages spreading over the online social media, these messages will implicitly
interact with each other, including both competition and cooperation effects
among different cascades. On the one hand, messages with similar content and
topics would have a higher chance to be shared by users if they are exposed
multiple times to the same user. On the other hand, each user has limited atten-
tion with respect to tremendous online contents, thus different messages would
implicitly compete with each other [17]. Therefore, it is worthwhile to consider
the implicit interactions among different cascades.

Challenges. There are two key challenges in predicting the popularity of cascades
when considering the aforementioned factors. The first challenge is how to cap-
ture collaborations among different cascades. To this end, instead of treating each
cascade independently, multiple cascades should be considered comprehensively
and fine-grained user-message interactions should be included into the learn-
ing model to get informative cascade embeddings. The second challenge is how
to effectively merge temporal and structural information within each cascade.
Temporal information can describe the influence of message and predecessors on
users’ diffusion behavior. Most current methods model temporal information as
a chain and use RNN to capture the memory effects. However, modeling tem-
poral information as a chain cannot capture the inter-dependence in tree-like
cascade graphs.

To address the above challenges, we propose a novel deep learning model
named CollaborateCas, which utilizes collaborations among different cascades
to learn node and cascade embeddings directly. Specifically, for the first chal-
lenge, a heterogeneous user-message bipartite graph is built where users and
cascades are represented as two types of nodes and the interactions between
users and cascades are taken as edges. Then a type-ware Graph Attention Net-
work (GAT) [15] model is designed to learn representations for the two types
of nodes. To deal with the second challenge and based on the observation that
users would have different reaction time for different early adopters, we take the
difference of infection time as users’ edge features in the homogeneous cascade

716 X. Zhang et al.

graphs. The proposed approach is tested on two real world datasets and results
show that our model significantly outperforms state-of-the-art baselines in terms
of prediction accuracy.

In general, the main contributions of our work are as follows:

– For the cascade popularity prediction problem, we make the first attempt
to model user-message interactions as a heterogeneous bipartite graph and
design a type-aware GAT model to learn user and cascade embeddings simul-
taneously. Our model is able to capture collaborations among different cas-
cades by learning from the fine-grained user-message interactions.

– Time differences of early adopters and later users are taken as temporal infor-
mation and encoded into edge features in homogeneous cascade graphs. The
temporal and structural information within each cascade graph are used to
capture the inter-dependence and attractiveness among different users.

– The proposed approach is evaluated on two real-world datasets. Experimental
results indicate that CollaborateCas significantly outperforms state-of-the-art
baselines and the average prediction error is reduced by 9.01% and 5.68%
respectively on the two datasets.

2 Problem Formulation

We first introduce some preliminaries and basic definitions to formulate the
investigated problem.

Definition 1 (Cascade Set). The data can be represented as a cascade set
CT = {CT

c |c ∈ M} which contains cascades with respect to the set of messages
M within the observation time window T . Each cascade CT

c can be represented
as a set of tuples {(u, v, t)|t ≤ T}, where (u, v, t) indicates that user v retweeted
the message c from user u at time t within the observation time T .

The purpose of our model is to predict the incremental size of cascade based
on observations within a specific time window. Therefore, we define incremental
size as follows:

Definition 2 (Incremental Size). The incremental size of a cascade CT
c with

observation time T after a given time interval Δt is defined as ΔSc = |CT+Δt
c |−

|CT
c |, where |CT

c | indicates the total number of retweeting behaviors with respect
to this cascade by time T .

Based on the aforementioned definitions, we define the cascade popularity
prediction problem as follows:

Definition 3 (Cascade Prediction Problem). Give a cascade CT
c ∈ CT

within the observation time window T , the cascade popularity prediction problem
aims to learn a function f(·) that maps the homogeneous cascade graph Gc(V,E)
and heterogeneous bipartite graph G(V, E) to ΔSc = |CT+Δt

c | − |CT
c |.

CollaborateCas: Collaborative Cascade Popularity Prediction 717

3 Methodology

This section will give detailed illustration about our CollaborateCas model. The
overall architecture of our deep learning model is shown in Fig. 1.

Fig. 1. Overview of CollaborateCas: (a) Input: a cascades set CT within observation
time T ; (b) A heterogeneous bipartite graph is built based on observed cascades and
embeddings are learned with a type-aware attention mechanism; (c) User embeddings
learned in the previous step are fed into local cascade graph and temporal information
is taken as edge features; (d) Both embeddings are concatenated together and then fed
into MLP for final prediction.

3.1 Heterogeneous Bipartite Graph Learning

Based on observed cascades, we construct a global user-message graph to explic-
itly show relationships between messages and users. Since our model involves
two different types of nodes, we design a type-aware attention mechanism and
use different weights, i.e., Wum and Wmu to make a distinction between two
different information gathering directions. Let

θum
ij = �aT

um[Wum
�hci ||Wum

�huj
] (1)

θmu
ij = �aT

mu[Wmu
�hui

||Wmu
�hcj] (2)

Where �aum and Wum are weights from user to message. �amu and Wmu are
weights from message to user. Then, θum and θmu are used to generate attention
coefficients by softmax function.The embeddings are upadated as follows:

�hci = f(
∑

j∈Ni

αum
ij Wu

�huj
) (3)

�hui
= f(

∑

j∈Ni

αmu
ij Wm

�hcj) (4)

Where Ni is the set of neighbors in bipartite graph. �hci and �hui
are embed-

dings after updating.

718 X. Zhang et al.

3.2 Homogeneous Cascade Graph Learning

In our work,a modified attention mechanism is designed to incorporate temporal
information into the graph attention network model. Specifically, we have:

θij = fmlp(Δtij) · [W�hui
||W�huj

] (5)

αij =
exp(LeakyReLU(θij))∑

k∈Ni
exp(LeakyReLU(θik))

(6)

where Δtij is the time difference between user i and user j, c is the cor-
responding cascade, fmlp() is a MLP which is used to project time difference
scalar to higher dimensional embedding. Then the cascade embedding is obtained
through an attention-based pooling:

�h′
c =

∑

i∈c

αi
�hui

(7)

where αi is the output attention coefficient.

3.3 Cascade Prediction and Loss Function

After embeddings from both heterogeneous bipartite and homogeneous cascade
graphs are obtained, they are concatenated and fed into a MLP:

ŷi = MLP ([�hci ||�h′
ci]) (8)

To optimize parameters of this deep learning model, the loss function is
defined as the mean squared error:

L =
∑

i(yi − ŷi)2

n
(9)

Similar to [7], the label is defined as logarithm of incremental size, i.e., yi =
log(ΔSi + 1), where ΔSi is the incremental size.

4 Evaluation

In this section, we evaluate the performance of our proposed model Collabo-
rateCas by comparing it with several state-of-the-art approaches. Some variants
of CollaborateCas are also considered for experimental study.We evaluate our
model on two real-world datasets including Sina Weibo dataset [2] and HEP-PH
dataset [8].We adopt two commonly used metrics, i.e., MSE [4] (Mean Square
Error) and RMSPE [7] (Root Mean Square Percentage Error).

CollaborateCas: Collaborative Cascade Popularity Prediction 719

4.1 Baselines

To show the superiority of our approach, we select 5 state-of-the-art approaches
and 3 variants as baselines.

– Feature-linear & Feature-Deep: We feed some selected features into a
linear regression model (Feature-linear) and a MLP (Feature-deep).

– Node2Vec: Node2Vec [10] learns node embeddings from cascade graphs.
– DeepCas: DeepCas [12] applys GRU neural network to sequences generated

from cascade graph.
– CasCN: CasCN [4] combines graph convolutional network with LSTM.
– Deepcon str: Deepcon str [7] regards each cascade as a node and builds two

cascade-level graphs.
– CollaborateCas-bipartite: CollaborateCas-bipartite removes the part of

homogeneous cascade graphs.
– CollaborateCas-cascade: CollaborateCas-cascade removes bipartite graph.
– CollaborateCas-mean: The attention mechanism at the output of cascade

graph is replaced with mean operation.

Table 1. Overall performance between different approaches on the Sina Webo dataset.

T 1 h 2 h 3 h

Metric MSE RMSPE MSE RMSPE MSE RMSPE

Deeplinear 1.5100 0.3112 1.6455 0.3960 1.7128 0.4979

Deepfeature 1.3116 0.3428 1.5293 0.4485 1.4847 0.5659

Node2Vec 2.1966 0.2500 2.2902 0.4625 2.2107 0.4891

DeepCas 1.0759 0.2229 1.3887 0.3924 1.3003 0.3868

CasCN 1.3336 0.2147 1.4956 0.4131 1.2786 0.4527

Deepcon str 1.0709 0.2087 1.5049 0.3949 1.4794 0.3776

CollaborateCas 0.9149 0.2019 1.2603 0.3446 1.2374 0.3487

Table 2. Overall performance between different approaches on the HEP-PH dataset.

T 3 years 5 years 7 years

Metric MSE RMSPE MSE RMSPE MSE RMSPE

Deeplinear 2.3738 0.5465 2.6249 0.6064 2.9796 0.6908

Deepfeature 2.3973 0.6134 2.2252 0.7486 2.6035 0.7773

Node2Vec 3.4308 0.6675 3.7664 0.8605 3.4933 0.8380

DeepCas 3.0613 0.6102 3.3759 0.9842 3.4412 1.1956

CasCN 2.5551 0.6544 2.1644 0.7142 2.3033 0.7311

Deepcon str 2.7794 0.6993 2.5188 0.6890 2.7712 0.7880

CollaborateCas 2.3197 0.5351 2.1560 0.4953 1.9723 0.6849

720 X. Zhang et al.

4.2 Performance Comparison

The experimental results of our proposed model and various baselines are shown
in Table 1 and Table 2. CollaborateCas achieves significantly lower MSE and
RMSPE than all the baselines. For feature engineering-based methods, feature-
linear and feature-deep show similar predictability on this task. Node2Vec and
DeepCas have relative lower accuracy than other deep learning models.

CasCN performs worse than Deepcon str and our model because it treats
each cascade independently. Deepcon str has overall better performance than
other deep learning-based baselines. However, this method ignores detailed inter-
actions between users and cascades. CollaborateCas has achieved better results
than baselines in all three observation time windows, indicating that our unified
modeling of heterogeneous bipartite graph and homogeneous cascade graphs can
significantly improve the performance of cascade popularity prediction.

We also compare the performance of different variants of our model, as shown
in Table 3. In general, CollaborateCas still performs better than other variants.
The most competitive variant is CollaborateCas-bipartite, which means that the
heterogeneous bipartite graph is an essential part for cascade prediction.

Table 3. Overall performance between variants of CollaborateCas.

T 1 h 2 h 3 h

Metric MSE RMSPE MSE RMSPE MSE RMSPE

CollaborateCas-bipartite 0.9809 0.2083 1.2796 0.3851 1.2281 0.3601

CollaborateCas-cascade 1.7285 0.2634 2.2310 0.4485 2.2790 0.4649

CollaborateCas-mean 0.9982 0.1957 1.3773 0.3850 1.2532 0.3644

CollaborateCas 0.9149 0.2019 1.2603 0.3446 1.2374 0.3487

5 Conclusion

To address the cascade popularity problem, we proposed a novel deep learning
model called CollaborateCas, which can capture collaborations among different
cascades. To this end, we constructed a heterogeneous bipartite graph based on
fine-grained user-message interactions and homogeneous cascade graphs incorpo-
rating temporal information as edge features. Experiments results demonstrate
that CollaborateCas can achieve higher accuracy than state-of-the-art baselines.

Acknowledgements. This work was supported in part by: National Natural Science
Foundation of China (Nos. 61966008, U2033213, 61804017).

References

1. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

http://arxiv.org/abs/1312.6203

CollaborateCas: Collaborative Cascade Popularity Prediction 721

2. Cao, Q., Shen, H., Cen, K., Ouyang, W., Cheng, X.: Deephawkes: bridging the gap
between prediction and understanding of information cascades. In: Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management, pp.
1149–1158 (2017)

3. Cao, Q., Shen, H., Gao, J., Wei, B., Cheng, X.: Popularity prediction on social
platforms with coupled graph neural networks. In: Proceedings of the 13th Inter-
national Conference on Web Search and Data Mining, pp. 70–78 (2020)

4. Chen, X., Zhou, F., Zhang, K., Trajcevski, G., Zhong, T., Zhang, F.: Informa-
tion diffusion prediction via recurrent cascades convolution. In: 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pp. 770–781. IEEE (2019)

5. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst. 29,
3844–3852 (2016)

7. Feng, X., Zhao, Q., Liu, Z.: Prediction of information cascades via content and
structure proximity preserved graph level embedding. Inf. Sci. 560, 424–440 (2021)

8. Gehrke J, Ginsparg P, K.J.: Overview of the 2003 KDD cup. In: Acm Sigkdd
Explor. Newslett. 5(2), 149–151 (2003)

9. Gong, Q., et al.: Cross-site prediction on social influence for cold-start users in
online social networks. ACM Trans. Web (TWEB) 15(2), 1–23 (2021)

10. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864 (2016)

11. Jiang, B., Lu, Z., Li, N., Wu, J., Yi, F., Han, D.: Retweeting prediction using
matrix factorization with binomial distribution and contextual information. In: Li,
G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol.
11447, pp. 121–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
18579-4 8

12. Li, C., Ma, J., Guo, X., Mei, Q.: Deepcas: an end-to-end predictor of information
cascades. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 577–586 (2017)

13. Myers, S.A., Leskovec, J.: Clash of the contagions: cooperation and competition
in information diffusion. In: 2012 IEEE 12th International Conference on Data
Mining, pp. 539–548. IEEE (2012)

14. Su, Y., Zhang, X., Wang, S., Fang, B., Zhang, T., Yu, P.S.: Understanding informa-
tion diffusion via heterogeneous information network embeddings. In: Li, G., Yang,
J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11446, pp.
501–516. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18576-3 30

15. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018)

16. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science
359(6380), 1146–1151 (2018)

17. Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes
in a world with limited attention. Sci. Rep. 2(1), 1–9 (2012)

18. Zhou, F., Xu, X., Trajcevski, G., Zhang, K.: A survey of information cascade
analysis: models, predictions, and recent advances. ACM Comput. Surv. (CSUR)
54(2), 1–36 (2021)

http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/978-3-030-18579-4_8
https://doi.org/10.1007/978-3-030-18579-4_8
https://doi.org/10.1007/978-3-030-18576-3_30

Contrastive Disentangled Graph
Convolutional Network for

Weakly-Supervised Classification

Xiaokai Chu1,2, Jiashu Zhao3, Xinxin Fan1, Di Yao1, Zhihua Zhu1, Lixin Zou4,
Dawei Yin4, and Jingping Bi1(B)

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{chuxiaokai,fanxinxin,yaodi,zhuzhihua,bjp}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Wilfrid Laurier University, Waterloo, Canada
jzhao@wlu.ca

4 Baidu Inc., Beijing, China
yindawei@acm.org

Abstract. Node classification on graph-structured data plays an impor-
tant role in many machine learning applications. Recently, Graph Con-
volutional Networks (GCNs) have shown remarkable success in the node
classification task, due to the ability to aggregate neighborhood infor-
mation and propagate supervised signals over the graph. However, most
GCN-style models require relatively sufficient labeled data, which are
not available in many real-world applications. Therefore, we in this paper
study the problem of weakly-supervised node classification and propose a
Contrastive D isentangled Graph Convolutional N etwork (CDGCN) to
learn disentangled node representations based on the contrastive learn-
ing mechanism. Extensive experimental results show that CDGCN sig-
nificantly outperforms all baselines on different label sparsities. The code
is available at https://github.com/ChuXiaokai/CDGCN.

Keywords: Graph Convolutional Network · Disentangled
representation · Contrastive learning · Weakly-supervised node
classification

1 Introduction

In recent years, Graph Convolutional Networks (GCNs) [2,3,12] have witnessed
a great success on node classification tasks. Nevertheless, the gratifying perfor-
mance of GCNs and their variants rely greatly on plenty of labeled data [4],
which is not always met in reality. In many applications, due to the high cost
and potential difficulty in human annotation, we have to predict massive unla-
beled nodes (e.g., thousands of nodes) based on sparsely labeled data (e.g., one
or two samples per class), i.e., weakly-supervised node classification problem.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 722–730, 2022.
https://doi.org/10.1007/978-3-031-00123-9_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_57&domain=pdf
https://github.com/ChuXiaokai/CDGCN.
https://doi.org/10.1007/978-3-031-00123-9_57

Contrastive Disentangled Graph Convolutional Network 723

To date, a few of GCN-based approaches [4,11] try to address the weakly-
supervised node classification problem. Nevertheless, these models rely on empir-
ical information, which is infective in faced with complicated network data. More-
over, they treat the node’s neighborhood as a perceptual whole but ignore the
fine-grained differences of the connections between different node pairs, which
imply various reasons to build the connections.

Fig. 1. An toy example of a social network.

With a small number of labeled
data, we will need to explore more
extra information from the graph
in order to learn the relationships
between the nodes, and therefore
achieve better classification perfor-
mance. The edges in a graph often
imply certain factors, which reflect
the reasons that drive interactions
between nodes. For example, in a
social network, users are connected
due to various factors, such as
“colleague”, “collaboration”, “teacher-
student”, etc. Such latent factors often
show various properties and context
meanings to explain the construction
of an edge, which can benefit the clas-
sification performance. These factors are not explicitly available in the graph,
but can be adaptively extracted via the graph disentangled representation learn-
ing [6], which aims to learn a multi-channel representation for a node and each
channel describes an aspect of this node that is pertinent to a factor. In graph
disentangled representation learning, a neighborhood routing module [6] is per-
formed to analyze the latent factors based on the supervised signals, and assigns
nodes to different factor spaces according to the association of the neighborhood
regarding each factor.

However, it is hard to directly disentangle factors if the labels are insuffi-
cient. When a disentangled model extracts factors directly from a small amount
of labeled nodes, it tends to be distracted by some unimportant factors and
therefore does not perform well. Figure 1 shows an example of a social net-
work, which includes labeled and unlabeled nodes. Edge (A,B) connects a pair
of labeled users A and B, which have the same age value, 45. Thus, a model is
very likely to disentangle the factor “contemporary” from this connection based
on the supervised signals. However, in this career classification problem, com-
pared to other factors such as “collaboration” and “colleague”, “contemporary”
is a weaker factor that can influence the classifier, and should be identified and
eliminated.

To effectively extract the accurate latent factors in faced with insufficient
labeled data, we focus on refining two types of factors: weak factors and coarse-
grained factors. For weak factors, such as “contemporary” in the above example,

724 X. Chu et al.

Fig. 2. The framework of the proposed CDGCN.

we find that people like (D, G, H) do not build any connection even they are same
in age; in contrast, people who work in the same school are always connected,
which indicates that “colleague” is a stronger factor than “contemporary” to drive
connections in this case. Thus, this motivates us to identify the weak factors by
comparing the common attributes between the connected and unconnected node
pairs. For coarse-grained factors, in Fig. 1, the factor “colleague” describes both
the social connections of users (A,C) and (D,E), while it has different semantic
meanings. For users (A,C), the “colleague” factor is in the context of university
UCLA. In terms of (D,E), these two people have the “colleague” factor in the con-
text of university UCB. If we treat these two connections as having exactly the
same factor, people in UBC will be recognized to have the same relationship as
people in UCLA, while these two universities are two distinct communities. In
many classification applications, especially for weakly-supervised problems, the
more specific fine-grained context information can further distinguish the differ-
ences between nodes and benefit the classification results. Thus, we should distin-
guish the different contexts to enhance the coarse-grained factors.

Based on the above analysis, in this paper, we propose a novel Contrastive
Disentangled Graph Convolutional Networks (CDGCN) to handle the weakly-
supervised node classification problem. In CDGCN, two contrastive strategies
are designed to enhance the extraction of important factors: (1) Distillation
Enhancement aims to filter out the weak factors by comparing the attributes
between the connected and unconnected nodes; (2) Context Enhancement aims
to enhance the coarse-grained factor by analyzing the fine-grained differences
between different contexts related to this factor. By integrating contrastive learn-
ing [8] and neighborhood routing [6], CDGCN can effectively refine high-quality
disentangled representations and improve the performance on weakly-supervised
node classification significantly, e.g., we always gain 10∼20% improvement with
only one labeled samples per class available.

Contrastive Disentangled Graph Convolutional Network 725

2 The Proposed Model

Figure 2 presents the framework of CDGCN: taking an attributed graph as input,
which contains multiple latent factors, CDGCN aims to learn the disentangled
node representation via two major modules: neighborhood routing module and
factor enhancing module. We first introduce some definitions in this paper.

2.1 Preliminaries

Let G = (V, E ,X,Y) be an attributed graph, where V is the set of nodes, E
denotes the edges, and (u, v) ∈ E represents an edge between nodes u and v.
X ∈ R

n×din is the attribute matrix, and xi represents the attribute of node i.
Y ∈ R

|V|×C is the label matrix, where C denotes the number of labels. We use
VC to represent the set of labeled nodes.

We in this paper work on learning disentangled node representation, which
assumes that a node representation is composed of K components, each com-
ponent is corresponding to a factor. In detail, given a node u in an attributed
graph G, we aim to refine a K-channel representation zu = [zu,1,zu,2, ...,zu,K] ∈
R

KΔd, each zu,k ∈ R
Δd represents the kth disentangled representation of node

u, which describes the aspect that is pertinent to the kth latent factor.

2.2 Neighborhood Routing Module

To obtain the disentangled representation for a node u, we should study K latent
factors and assign the neighbors to the related latent factor space. Here we adopt
the neighborhood routing mechanism proposed in [6]. In detail, we first project
u and all its neighbors into K factor spaces as:

zo,k = σ(W�
k xo + bk), (1)

where o ∈ {u} ∪ {v : v ∈ Nu}, Nu denotes the neighbors of u, Wk and bk are
parameters to describe the kth latent factor. Then, we apply disentangling layers
to identify the latent factor for each neighbor v through iteratively searching for
the largest cluster in each factor space k as:

z
(l)
u,k =

z
(l)
u,k +

∑
v∈Nu

p
(l)
v,kz

(l)
v,k

‖z(l)
u,k +

∑
v∈Nu

p
(l)
v,kz

(l)
v,k‖2

; p
(l)
v,k =

exp(z(l)
v,k

�
z
(l)
u,k)

∑K
k=1 exp(z(l)

v,k

�
z
(l)
u,k)

. (2)

where l represents lth disentangling layer. Each p
(l)
v,k indicates the probability

to assign the neighbor v to kth factor space, by which a neighbor v will send
its information in corresponding factor space to node u to construct its output
representation z

(l)
u = [z(l)

u,1, · · · ,z
(l)
u,K]. Equation (2) will be performed for T

iterations.

726 X. Chu et al.

2.3 Factor Enhancing Module

We propose two types of contrastive strategies to ensure the representation qual-
ity, i.e., distillation enhancement and context enhancement, as well as a regu-
larization approach to enhance the factors’ independence.

Distillation Enhancement. The distillation enhancing strategy aims to iden-
tify the strong factors behind the graph while ignore the weak ones. To this
end, we introduce a contrastive learning approach by comparing the attributes
between the connected nodes and unconnected nodes. In detail, for each neigh-
bor vi of a node u, we sample a negative node v′

i /∈ Nu, which is not connected
with node u. Then in each factor space k, a discriminator is adopted to encour-
age node u to distinguish its true neighbors (which implies the positive factor)
from the negative sampled neighbors via the following objective:

�d(u, k) = − logσ

(

Dd

(
zu,k,R({zvi,k : vi ∈ Nu})

)
)

− logσ

(

1 − Dd

(
zu,k,R({zv′

i,k
: v′

i /∈ Nu})
)
)

,

(3)

where each vector z is the output of the last disentangling layer f (L)(·). The
function Dd(x,y) = x�Wdy+bd is a bilinear function, where Wd and bd are the
learnable parameters. R(·) is a readout function to summarize the information
from the neighbors, we here consider the following weighted sum to accumulate
the information of the positive/negative neighbors according to factor k:

R({zvi,k : vi ∈ Nu}) =
∑

vi∈Nu

pvi,kzvi,k, R({zv′
i,k

: v′
i /∈ Nu}) =

∑

v′
i /∈Nu

pvi,kzv′
i,k

,

(4)
where pvi,k is the mean of the probabilities of a neighbor vi being assigned to the
kth factor in each disentangling layer. Such design is based on an assumption that
the assignment probabilities of a neighbor vi should be consistent in each layer.
We use the probability of the neighbor vi as the probability of the negative
neighbor v′

i, because we will compare the positive neighbor with the negative
neighbor in the same factor space, where they should send the same weight of
information for fair comparison.

Context Enhancement. We have discussed that even driven by the same
factor, there still exist various reasons to build the connections. By capturing
such difference, we can refine more representative and semantically-rich factors.
Therefore, our second strategy is to enhance the semantics of a coarse-grained
factor by identifying its finer-grained context information. Specifically, given a
node u, we randomly select another node a, where u �= a, and consider their
respective neighbors {vi : vi ∈ Nu}, {bj : bj ∈ Na}. Our purpose is to guide the
model to identity and distinguish their context difference in each factor space.

Contrastive Disentangled Graph Convolutional Network 727

Thus, for each factor k, we propose the following loss function to capture these
two contexts:

�s(u, k) = − logσ

(

Ds

(
zu,k,R({zvi,k : vi ∈ Nu})

)
)

− logσ

(

1 − Ds

(
zu,k,R({zbj ,k : bj ∈ Na})

)
)

.

(5)

Different from Eq. (3), both the neighborhoods of nodes u and a are observed,
thus the readout function of the a’s neighbors should be defined as:

R({zbj ,k : bj ∈ Na}) =
∑

bj∈Na

pbj ,kzbj ,k. (6)

By minimizing the loss function (5), the two contexts will be distinct in the kth

factor space, leading to the extension of a factor’s semantics.

Independence Enhancement. The different components in a disentangled
representation should contain non-overlapped information, as it can reflect dif-
ferent views of a node. Thus, inspired by [5], we promote the independence among
different factors by performing the empirical version [1] of Hilbert-Schmidt Inde-
pendence Criterion (HSIC) for each two latent factors as:

HSIC(zu,i,zu,j) = (Δd − 1)−2tr(KiHKjH), (7)

where H = I−1/Δd is a matrix with zero mean, Ki and Kj are Gram matrices
with inner product as the kernel function, i.e., Ki = z�

u,izu,i.

2.4 Model Optimization

The final objective function of CDGCN contains four parts:

L = Lc + αLd + βLs + γLHSIC , (8)

where α, β and γ are the hyper-parameters that balance different terms. Lc is the
cross-entropy loss of node classification: Lc = −∑

u∈VC

∑C
c=1 yu,clog(ỹu,c). Fol-

lowing [6], the predicted vector ỹu is obtained via a fully-connected layer with
a softmax function on the Lth layer output z

(L)
u . Ld =

∑
u∈V

∑
k∈K �d(u, k)

denotes distillation enhancement to effectively distill the strong factors behind
the input graph, while Ls =

∑
u∈V

∑
k∈K �s(u, k) is the total loss of context

enhancement. LHSIC =
∑

u∈VC

∑
i�=j HSIC(zu,i,zu,j) is the HSIC regulariza-

tion for each labeled node to encourage the independence between different fac-
tors.

728 X. Chu et al.

3 Experiment Evaluation

We conduct experiments on the citation benchmark: Cora, Citeseer and
PubMed [10] wherein the nodes indicate the documents and edges denote the
citations. We compare with the state-of-the-art self-supervised graph neural net-
works models, e.g., Co-training, Self-training and their variants [4], M3S [11],
DGI [13] and GMI [9]. Furthermore, we also compare with several state-of-the-
art node classification approaches, e.g., GCN [3], GAT [12], graph disentangle
representation learning models: DisenGCN [6] and IPGDN [5].

Table 1. Node classification accuracy (%) with different labeled samples per class.

Cora Citeseer PubMed

#Samples/Class 1 2 3 1 2 3 1 2 3

GCN 46.8 50.8 57.0 38.5 43.3 52.5 46.0 51.2 57.2

GAT 49.5 53.0 58.2 41.1 47.3 59.5 53.5 58.4 64.3

DGI 38.0 45.5 59.0 37.5 42.9 53.1 46.4 49.4 52.4

GMI 61.0 63.5 66.7 39.9 45.3 55.7 49.8 51.7 53.2

Co-training 52.4 54.1 55.6 36.9 40.5 49.7 51.0 55.6 61.1

Self-training 55.1 57.0 59.1 47.8 50.2 55.3 50.9 56.4 63.0

Union 53.0 55.5 58.7 45.9 47.3 50.4 52.0 57.3 63.8

Intersection 45.9 50.8 59.2 45.0 50.2 59.7 52.6 55.1 57.4

M3S 58.7 61.7 66.4 52.3 55.1 60.8 55.7 59.3 63.5

DisenGCN 57.8 62.4 70.7 41.5 45.2 52.8 48.8 56.0 63.7

IPGDN 56.2 58.6 62.0 33.9 39.8 52.0 52.4 57.7 64.1

CDGCN 70.7 72.9 76.1 64.8 66.2 68.9 67.6 70.3 72.9

Inc. 15.9% 14.8% 7.6% 23.9% 20.2% 13.3% 21.4% 18.6% 13.4%

Fig. 3. Visualization of representations learned in Cora with two samples per class.

3.1 Performance Analysis

We examine the model performance with different sparse levels of labeled nodes:
from one sample per class to three samples per class for all graphs. We con-
duct the experiments ten times for each model, where the dataset is randomly
re-divided with the given setting for each run. The mean accuracy is reported
as the model’s performance. The results on different datasets are presented in

Contrastive Disentangled Graph Convolutional Network 729

Table 1. CDGCN has a great improvement on all datasets, especially when the
labels are merely few. For example, when there are only one label per class avail-
able for training, CDGCN gains 15.9%, 23.9% and 21.4% improvement than the
best performing baselines on each network. Also, when looking at the accu-
racy w.r.t. the number of labels, we can observe that CDGCN is less sensitive
to the different sparse levels of labels. The extraordinary improvement indicates
that CDGCN can effectively extracts disentangled node representations with the
support of distillation enhancement and context enhancement, especially with
limited labeled data.

To present a more intuitive comparison, we also show Cora as an example and
visualize the learned representations with t-SNE [7] where the model is trained
with two samples per class. The result is presented in Fig. 3, where each point
represents a node and different colors denote different classes. We observe that
with few labeled data, GCN can extract some basic characteristics of the same
class from the raw features, still, the different classes are entangled severely and
nearly indistinguishable. While DisenGCN performs much better than GCN,
the same class nodes tend to be clustered, but different classes are still mixed.
CDGCN gains the best performance to make each class tightly cluster together,
as well as identifies obvious boundaries between different clusters.

4 Conclusion

We have introduced a novel graph disentangled representation learning model-
CDGCN, to handle the weakness of current models on weakly-supervised node
classification problem, which incorporates contrastive learning to obtain disen-
tangled node representations for the first time. The multi-facet experimental
results exhibit that the proposed CDGCN always achieves the best results and
dramatically outperforms the baselines with low label rate settings.

Acknowledgements. This work has been supported by the National Natural Science
Foundation of China under Grant No.: 62077044, 61702470, 62002343.

References

1. Gretton, A., Bousquet, O., Smola, A.J., Schölkopf, B.: Measuring statistical depen-
dence with hilbert-schmidt norms. In: ALT (2005)

2. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS (2017)

3. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

4. Li, Q., Han, Z., Wu, X.: Deeper insights into graph convolutional networks for
semi-supervised learning. In: AAAI (2018)

5. Liu, Y., Wang, X., Wu, S., Xiao, Z.: Independence promoted graph disentangled
networks. In: AAAI (2020)

6. Ma, J., Cui, P., Kuang, K., Wang, X., Zhu, W.: Disentangled graph convolutional
networks. In: ICML (2019)

730 X. Chu et al.

7. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

8. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive
predictive coding. CoRR abs/1807.03748 (2018)

9. Peng, Z., et al.: Graph representation learning via graphical mutual information
maximization. In: WWW (2020)

10. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93–106 (2008)

11. Sun, K., Lin, Z., Zhu, Z.: Multi-stage self-supervised learning for graph convolu-
tional networks on graphs with few labeled nodes. In: AAAI (2020)

12. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

13. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep
graph infomax. In: ICLR (2019)

CSGNN: Improving Graph Neural
Networks with Contrastive
Semi-supervised Learning

Yumeng Song(B), Yu Gu, Xiaohua Li, Chuanwen Li, and Ge Yu

School of Computer Science and Engineering, Northeastern University, Shenyang,
Liaoning, China

ymsong94@163.com, {guyu,lixiaohua,lichuanwen,yuge}@mail.neu.edu.cn

Abstract. The Graph Neural Network (GNN) is a rising graph analysis
model family that encodes node features into low-dimensional representa-
tion vectors by aggregating local neighbor information. Nevertheless, the
performance of GNNs is limited since GNNs are trained only over predic-
tions of the labeled data. Hence, effectively incorporating a great num-
ber of unlabeled nodes into GNNs will upgrade the performance of GNNs.
To address this issue, we propose a Contrastive Semi-supervised learn-
ing based GNN (CSGNN) that improves the GNN from extra supervision
predicted by contrastive learning. Firstly, CSGNN utilizes multi-loss con-
trast to learn node representations via maximizing the agreement between
nodes, edges and labels of different views. Then, a semi-supervised fine-
tuner learns from few labeled examples while making the best use of
unlabeled nodes. Finally, we introduce the knowledge distillation based
on label reliability, which further distills the node labels predicted by
contrastive learning into the GNN. Experimentally, CSGNN effectively
improves the classification performance of GNNs and outperforms other
state-of-the-art methods in accuracy over a variety of real-world datasets.

Keywords: Contrastive learning · Semi-supervised learning · Graph
Neural Network

1 Introduction

Graph Neural Networks (GNNs) have aroused more and more attention on
account of the ability to handle the graph-structured data defined on irregular
or non-Euclidean domains. GNNs compute graph node representations through
a propagation process which iteratively aggregates local structural information.
GNNs are clearly superior to traditional graph-based algorithms in quite a few
tasks [6]. Unfortunately, GNNs, as data-driven inference models, are also not free
of the bottleneck when training data is inadequate. The reason is that GNNs are
trained only over predictions of labeled nodes by minimizing the supervised loss,
and predictions of unlabeled nodes do not contribute to the training. In order to
tackle the intrinsic hardness, various researches have emphasized incorporating

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 731–738, 2022.
https://doi.org/10.1007/978-3-031-00123-9_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_58&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_58

732 Y. Song et al.

unlabeled data into GNNs via combining them with self-supervised learning [8]
or augmenting topology and attributes of graphs in different ways [12].

Recently, Contrastive Learning (CL) achieves great success in graph repre-
sentation learning [15,16]. As a popular form of self-supervised learning, CL
seeks to maximize the mutual information between the input and its representa-
tions by contrasting positive pairs with negative-sampled counterparts. However,
CL learns embeddings in a task-agnostic way without using labeled data. This
leads us to explore a fusion mechanism of CL and GNNs for graph-based semi-
supervised learning. In the latest studies on graph-based CL, [11] proposes a
contrastive semi-supervised model CG, which minimizes the contrastive loss, the
graph generative loss and the classification loss between graph views together.
But CG does not bring out the full power of CL. One of the state-of-the-art
researches in computer vision also proposes a contrastive semi-supervised model
SIMCLRv2 [1]. SIMCLRv2 distills the generated embeddings of unlabeled data
into the downstream student model. Nevertheless, SIMCLRv2 cannot be directly
applied to graph-based data.

Based on the above discussion, we propose a Contrastive Semi-supervised
learning based GNN (CSGNN) which utilizes knowledge distillation to combine
CL with GNNs, with a CL model as the teacher model and a GNN as the
student model. To the best of our knowledge, CSGNN is the first research on
combining contrastive learning with GNNs through knowledge distillation. Our
contributions are summarized as follows:

– This paper provides a contrastive semi-supervised based GNN which could
comprehensively leverage the abundant structural and semantic information
of unlabeled nodes.

– In the teacher model, a multi-loss contrastive learning method is introduced to
learn representations by contrasting positive and negative examples between
nodes, edges and labels.

– We design a reliable knowledge distillation method via computing the label
reliability based on the Shannon entropy of teacher and student’s predictions.

– In experiments, we demonstrate that CSGNN can greatly improve the perfor-
mance of GNNs in node classification task compared with the state-of-the-art
methods on real-world datasets.

2 Related Works

For graph data, graph contrastive learning applies the idea of CL on GNNs.
These methods can be categorized based on how the positive and negative sam-
ples are constructed. One is to measure the loss of different parts of a graph
in latent space by contrasting nodes and the whole graph, nodes and nodes or
nodes and subgraphs [5]. The other one uses different data augmentation meth-
ods to generate contrastive pairs. GraphCL [13] develops contrastive learning
with node dropping, edge perturbation, subgraph sampling and feature mask-
ing. MVGRL [3] constructs multiple graph views by sampling subgraphs based

CSGNN 733

X

A

Ground Truth

G
N

N
 L

ay
er

G
N

N
 L

ay
er

Fi
ne

-T
un

in
g

Te
ac

he
r G

N
N

C
la

ss
ifi

ca
tio

n

Graph

G
N

N
 L

ay
er

G
N

N
 L

ay
er

St
ud

en
t G

N
N

Teacher Model

Student Model

Fig. 1. The overview of CSGNN

on random walks. GCA [16] leverages the network centrality to augment the
graph adaptively on both topology and attribute levels. CG [11] augments the
graph via localized graph convolution and hierarchical graph convolution and
designs a new semi-supervised contrastive loss. Most CL models cannot achieve
the best performance for specific tasks through unsupervised learning.

3 Overview

The overall framework of CSGNN is shown in Fig. 1. Given a graph G =
(V,A,X) with a node set V = {v1, v2, ..., vN}, a graph adjacent matrix A ∈
RN×N and a node attribute matrix X ∈ RN×F where F is the dimension of
node attributes, we firstly input A and X of into a trained teacher GNN to gen-
erate the node general representation. The teacher GNN is trained via multi-loss
contrastive learning, which can measure mutual information in multiple dimen-
sions and obtain the main features of nodes without focusing on the details.
The node embedding after fine tuning represents the category probability of
each node. For further improving predictive performance and obtaining a com-
pact model, we train the student GNN on the labeled data with ground truths
and the unlabeled data with predicted labels from the fine-tuned teacher GNN.
Finally, we can generate predictions directly from the student GNN, regardless
of the teacher model.

4 Teacher Model with Contrastive Learning

The training process of the teacher model involves the following stages: (1) the
adaptive graph augmentation stage, which transforms the original graph into
different views; (2) the encoding stage, which generates the node representations
via the teacher GNN; (3) the contrasting stage, which contrasts the latent vectors
between nodes, edges and labels.

734 Y. Song et al.

Graph Augmentation. We augment the graph by perturbing possibly unim-
portant links and features following the schemes proposed in GCA [16] which
tends to keep important structures and attributes unchanged. Augmentation is
divided into topology-level and attribute-level. On topology-level, we define edge
centrality seuv for edge euv to measure its influence based on PageRank central-
ity of two connected nodes. On attribute-level, we add noises to node attributes
via randomly masking a fraction of dimensions with zeros in node attributes.
We sample a random mask mi Bernoulli(P ai

perturbing) for each attribute i. To
evaluate the importance of attribute i, we assume that attributes frequently
appearing in influential nodes should be important.

Augmented Graphs Encoding. At each iteration, we generate two graph
views based on the augmentation scheme above, denoted as G1 and G2. Then
G1 and G2 are input into the teacher GNN with shared parameters. The node
embeddings are denoted as U = f(X1, A1) and V = f(X2, A2).

Contrastive Learning. After that, we employ the contrastive loss to train
the teacher GNN. We conduct joint contrastive losses between nodes, edges and
labels to make the embeddings more conducive to classification. For any node
i, its embedding is ui in view G1 and vi in view G2. The node contrastive loss
between a pair of positive examples ui and vi is given as follows:

�ui,vi
= − log

exp(sim(g(ui), g(vi))/τ)
∑

k �=i exp(sim(g(ui), g(vk))/τ) +
∑

k �=i exp(sim(g(ui), g(uk))/τ)
(1)

where sim(·, ·) is the cosine similarity, g(·) is a non-linear transformation
network,

∑
k �=i exp(sim(g(ui), g(vk))/τ) is the loss between inter-view negative

pairs and
∑

k �=i exp(sim(g(ui), g(uk))/τ) is the loss between intra-view negative
pairs. Since the symmetric among the views, our unsupervised node contrastive
loss Lnodes can be presented as:

Lnodes =
1

2N

N∑

i=1

(�ui,vi
+ �vi,ui

) (2)

The goal of the edge contrastive loss is to distinguish between existing edges
and non-existing edges within and between views. We reconstruct the adjacency
matrix A∗

1 and A∗
2 based on the node embedding of each view. We also reconstruct

the adjacency matrix A∗
1,2 between two views. We calculate the inner product of

node embeddings as the possibility that two nodes have edges for reconstructing
the adjacency matrix. Given edge ei,j in graph G, the corresponding edge in A∗

1,
A∗

2 and A∗
1,2 are positive examples, and non-existing edges are negative examples.

Here, the unsupervised edge contrastive loss can be computed as:

Ledges =
1

3|E| (�
edges
G1

+ �edgesG2
+ �edgesG1,G2

) (3)

�edgesG1
= − log

∑
e∈E exp(A∗

1e/τ)
∑

ê/∈E exp(A∗
1ê/τ)

(4)

CSGNN 735

where E is the edge set of graph G and A∗
1e is the value of edge e in A∗

1.
�edgesG2

and �edgesG1,G2
are similar to Eq. 4.

Our supervised contrastive learning loss will distinguish nodes of the same
category and nodes of different categories within and between views, which is
defined as:

Llabels =
1

2L|
∑

l∈L

(�labels,G1
l + �labels,G2

l) (5)

�labels,G1
l = − log

∑
k∈S(l) exp(sim(g(l), g(k))/τ)

∑
̂k∈Diff(l) exp(sim(g(l), g(k̂))/τ)

(6)

where L is the set of labeled nodes, S(·) is the set of nodes with the same
label, Diff(·) is the set of nodes with different labels. �labels,G2

l is similar to
Eq. 6.

By combining node, edge and label contrastive losses, we arrive at the fol-
lowing multi-loss contrastive learning:

L = Lnodes + λ1Ledges + λ2Llabels (7)

where λ1 and λ2 are hyperparameters that control the proportion of the
corresponding loss. After training, we input the node embeddings into an L2-
regularized logistic regression classifier to generate fine-tuned prediction results.

5 Student Model with Reliable Distillation

5.1 Label Reliability Based on Shannon Entropy

Since the correctness of unlabeled nodes’ label predictions is difficult to evaluate,
Shannon entropy is used to evaluate the probability of reliable label predictions.
However, there are also correct predictions for nodes with high entropy. There-
fore, we can compare the prediction results of the student model and the teacher
model to enhance the evaluation of label reliability. Formally, we define the label
reliability of a node i prediction as follows:

Ri =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if i ∈ L

1, if t(i) = s(i) and H(Ti) < Hmax

exp(−(H(Ti) + H(Si))) if t(i) = s(i) and H(Ti) > Hmax

0, if t(i) �= s(i)

(8)

where H(·) computes the Shannon entropy of the vector, t(·) is the label
of the teacher’s prediction, s(·) is the label of the student’s prediction, T is the
node prediction vector of the teacher model, S is the prediction vector of student
model and Hmax is the max reliable threshold of entropy.

736 Y. Song et al.

5.2 Model Training

We train the model based on labeled nodes with ground truths and unlabeled
nodes with reliable labels. For each iteration, we update the reliability of the
unlabeled nodes. With the improvement of the accuracy of the student model,
more and more reliability nodes can be chosen to teach the student GNN. The
training loss of the student GNN is defined as:

Lstudent =
1

|L|
∑

l∈L

CE(yl, ŷl) +
1

|U |
∑

u∈U

R(u)CE(ỹu, ŷu) (9)

where L is the set of labeled nodes, U is the set of unlabeled nodes, yl is
the label of labeled node l, ỹu is the label of unlabeled node u which is learned
from the teacher model, ŷ is the prediction of the student GNN and CE(·) is
the cross-entropy loss function.

6 Experiments

6.1 Experiment Setting

Five real-world graph datasets are used for the experiments including Cora, Cite-
seer, Pubmed, Amazon Computers and Amazon Photo [11]. As for baselines, we
opt a series of methods including the Label Propagation(LP) [14], Chebyshev [2],
GCN [4], GAT [9], DGI [10], GMI [7], MVGRL [3], GCA [16] and CG [11]. For
Cora, Citeseer and Pubmed datasets, we use 20 nodes per class as the training
set and 30 nodes per class as the validation set. For Amazon Computers and
Amazon Photo datasets, we use 30 labeled nodes per class as the training set,
30 nodes per class as the validation set. We report the mean accuracy and the
stand derivations of 20 runs. For the hyperparameters of different GNNs, we set
them as suggested by their authors. For CSGNN, we set a 2-layer GCN as the
teacher GNN and a 2-layer GAT as the student GNN. The hyperparameters of
CSGNN are the optimal parameters selected based on experimental results.

6.2 Semi-supervised Classification

The semi-supervised node classification results are reported in Table 1. The
results for five datasets exhibit similar trends: CSGNN yields predictions com-
parable or superior to those of the other contestants. For example, compared
to GCN, CSGNN reaches nearly 3.3%, 3.5%, 1.1%, 7.1%, 3.5% gain on five
datasets respectively. We also have the following observations: (1) Some unsu-
pervised contrastive learning methods present better performance than baseline
semi-supervised learning methods; (2) Two contrastive learning methods GCA
and CG are strong competitors for the best performance. They perform well on
some datasets, but also fail in some datasets, while CSGNN consistently per-
forms well on all datasets. Hence, we believe that CSGNN can steadily improve
GNNs’ performance, even better than the state-of-the-art methods.

CSGNN 737

Table 1. Results of semi-supervised node classification (%)

Cora Citeseer Pubmed Computers Photo

LP 68.0 45.3 63.0 70.8 ± 0.0 67.8 ± 0.0

Chebyshev 79.3 ± 1.3 67.4 ± 1.5 75.3 ± 0.5 62.6 ± 0.8 74. 3 ± 0.5

GCN 81.5 ± 0.6 70.7 ± 0.4 79.3 ± 0.2 76.3 ± 0.5 87.3 ± 1.0

GAT 83.1 ± 0.5 72.5 ± 0.7 79.5 ± 0.5 79.3 ± 1.1 86.2 ± 1.5

DGI 81.7 ± 0.6 71.5 ± 0.7 77.3 ± 0.6 75.9 ± 0.6 83.1 ± 0.5

GMI 82.7 ± 0.2 73.0 ± 0.3 80.1 ± 0.2 76.8 ± 0.1 85.1 ± 0.1

MVGRL 82.9 ± 0.7 72.6 ± 0.7 79.4 ± 0.3 79.0 ± 0.6 87.3 ± 0.3

GCA 80.9 ± 0.6 68.1 ± 2.0 80.3 ± 0.9 82.3 ± 0.3 90.4 ± 0.2

CG 83.4 ± 0.7 73.6 ± 0.8 80.2 ± 0.8 79.9 ± 0.6 89.4 ± 0.5

CSGNN 84.8 ± 1.0 74.2 ± 1.2 80.8 ± 0.4 83.4 ± 1.4 90.8 ± 0.1

6.3 Ablation Study

This section provides an ablation analysis to validate the contributions of differ-
ent components of CSGNN on three citation datasets. For the variants, we use
“T” as the teacher model, “S/R” as the student model without evaluating label
reliability, “S” as the student model, “w/o KD” as the GAT without knowledge
distillation, “CL-N” as CL with the node loss, “CL-N-E” as CL with node and
edge losses, and “CL-ALL” as CL with all losses. The results are summarized
in Table 2. It exhibits three interesting patterns: (1) The node, edge and label
losses benefit the contrastive learning; (2) Without label reliability, distillation
will reduce the performance of the student model, and the performance of “S/R”
variants are even lower than the model without distillation; (3) Among different
techniques, distillation improves performance more than contrastive learning.

Table 2. Ablation results of semi-supervised node classification(%)

Cora CiteSeer PubMed

T S/R S T S/R S T S/R S

w/o KD – – 83.1 – – 72.5 – – 79.5

CL-N 80.9 81.3 84.0 68.1 69.6 72.8 80.3 78.2 80.4

CL-N-E 81.1 83.4 84.2 69.3 71.0 74.2 80.4 77.3 80.7

CL-ALL 81.3 83.6 84.4 69.4 70.8 74.6 80.5 79.5 80.9

7 Conclusion

In this paper, we explore contrastive learning methods for graph-based data and
propose a contrastive semi-supervised learning based GNN by knowledge distilla-
tion, named CSGNN. CSGNN is able to learn from reliable unlabeled nodes when

738 Y. Song et al.

we distill the predictions of contrastive learning with multi-loss into the down-
streaming student model. Extensive experiments demonstrate that CSGNN can
consistently outperform the state-of-the-art models in node classification accu-
racy on real-world datasets.

Acknowledgements. This work is supported by the National Natural Science Fon-
dation of China (62072083 and 61872071).

References

1. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.: Big self-supervised
models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029 (2020)

2. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. NIPS 29, 3844–3852 (2016)

3. Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on
graphs. In: ICML, pp. 4116–4126 (2020)

4. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

5. Liu, Y., Pan, S., Jin, M., Zhou, C., Xia, F., Yu, P.S.: Graph self-supervised learning:
A survey. arXiv preprint arXiv:2103.00111 (2021)

6. Peng, Y., Choi, B., Xu, J.: Graph learning for combinatorial optimization: a survey
of state-of-the-art. Data Sci. Eng. 6(2), 119–141 (2021)

7. Peng, Z., et al.: Graph representation learning via graphical mutual information
maximization. In: WWW, pp. 259–270 (2020)

8. Sun, K., Lin, Z., Zhu, Z.: Multi-stage self-supervised learning for graph convolu-
tional networks on graphs with few labeled nodes. In: AAAI, vol. 34, pp. 5892–5899
(2020)

9. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

10. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep
graph infomax. ICLR 2(3), 4 (2019)

11. Wan, S., Pan, S., Yang, J., Gong, C.: Contrastive and generative graph convolu-
tional networks for graph-based semi-supervised learning. In: AAAI, vol. 35, pp.
10049–10057 (2021)

12. Wang, Y., Wang, W., Liang, Y., Cai, Y., Liu, J., Hooi, B.: Nodeaug: semi-
supervised node classification with data augmentation. In: KDD, pp. 207–217
(2020)

13. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learn-
ing with augmentations. NIPS 33, 5812–5823 (2020)

14. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian
fields and harmonic functions. In: ICML, pp. 912–919 (2003)

15. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive repre-
sentation learning. arXiv preprint arXiv:2006.04131 (2020)

16. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning
with adaptive augmentation. In: WWW, pp. 2069–2080 (2021)

http://arxiv.org/abs/2006.10029
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2103.00111
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2006.04131

IncreGNN: Incremental Graph Neural
Network Learning by Considering Node

and Parameter Importance

Di Wei, Yu Gu(B), Yumeng Song, Zhen Song, Fangfang Li, and Ge Yu

School of Computer Science and Engineering, Northeastern University,
Shenyang, Liaoning, China

{guyu,lifangfang,yuge}@mail.neu.edu.cn

Abstract. Graph Neural Network (GNN) has shown powerful learn-
ing and reasoning ability. However, graphs in the real world generally
exist dynamically, i.e., the topological structure of graphs is constantly
evolving over time. On the one hand, the learning ability of the net-
works declines since the existing GNNs cannot process the graph stream-
ing data. On the other hand, the cost of retraining GNNs from scratch
becomes prohibitively high with the increasing scale of graph streaming
data. Therefore, we propose an online incremental learning framework
IncreGNN based on GNN in this paper, which solves the problem of high
computational cost of retraining GNNs from scratch, and prevents catas-
trophic forgetting during incremental training. Specifically, we propose
a sampling strategy based on node importance to reduce the amount of
training data while preserving the historical knowledge. Then, we present
a regularization strategy to avoid over-fitting caused by insufficient sam-
pling. The experimental evaluations show the superiority of IncreGNN
compared to existing GNNs in link prediction task.

Keywords: Graph neural networks · Dynamic graph · Catastrophic
forgetting · Incremental learning

1 Introduction

Graphs are ubiquitous in the real world, which have been used for processing
deep learning and data mining tasks. Through various analysis of graphs, we
can have a deep understanding of complex social relationships and different
communication modes. Since graph data is often high-dimensional and difficult
to be processed by graph analysis tasks, Graph Embedding (GE) has been widely
used as an effective dimensionality reduction technique [6]. As a deep learning-
based GE method, GNN gradually shows its advantages in processing graph
analysis tasks. The embedding obtained by GNN can not only capture the local
neighborhood information, but also enables the embedding to characterize the
global neighborhood through multiple iterations.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 739–746, 2022.
https://doi.org/10.1007/978-3-031-00123-9_59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_59&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_59

740 D. Wei et al.

At present, most GNNs are designed for static graph data. However, most
real-world graphs exist dynamically, that is, as time goes by, new graph stream-
ing data will continue to arrive, which is called the dynamic graph. There are
some studies on dynamic graphs [5,10]. However, these dynamic graph embed-
ding methods cannot process the incoming graph data in real time. As a result,
such methods must retrain the model from scratch to obtain the embeddings of
new nodes. Incremental learning provides ideas for solving this problem, which
uses the latest data to update the current model and can prevent catastrophic
forgetting. This technology significantly improves the efficiency of the model
through reducing the number of nodes involved by retraining, and maintains
the similar performance. ContinualGNN [12] is the incremental learning method
based on GNN. However, it may reduce the expressive ability of the model and
is not suitable for link prediction tasks.

To solve the problems of the existing incremental learning methods, we pro-
pose an online incremental learning framework IncreGNN based on GNN, which
combines the experience replay-based and regularization-based methods. Moti-
vated by experience replay, we design a sampling strategy based on node impor-
tance to sample affected and unaffected nodes separately and learn knowledge of
new task on incremental data. Simultaneously, to prevent the historical knowl-
edge from being weaken and overcome the over-fitting problem, we propose a
regularization strategy by constraining the modification on the important model
parameters. The main contributions of this work are as follows:

• We propose a GNN-based online incremental learning framework IncreGNN,
which can efficiently generate node embedding representations in a dynamic
environment.

• We design a sampling strategy based on node importance to sample the
affected and unaffected nodes separately. At the same time, a regulariza-
tion strategy based on the importance of model parameters is designed to
constrain model parameters.

• We conduct comparative experiments on various datasets, and the results
show that IncreGNN can efficiently perform incremental calculations with
less accuracy loss.

2 Related Work

Incremental learning is also called continuous learning, or lifelong learning, which
is first introduced in Neural Networks to solve multi-task learning problems.
The current mainstream incremental learning methods can be divided into three
categories including experience replay-based methods [7], regularization-based
methods [1,3] and parameter isolation-based methods [4,9]. Due to the com-
plex structure of graphs, most of the current incremental learning methods are
applied to image processing and cannot directly process graph data. Continual-
GNN [12] is the method to apply incremental learning to graphs. ContinualGNN
proposes a novel approximate scoring algorithm to detect the emergence of new

IncreGNN 741

patterns. However, ContinualGNN performs sampling by calculating the prob-
ability, which will cause the loss of the local structure information of graphs.
There are also incremental learning studies [2,13] that focus on improving model
accuracy by retaining past knowledge rather than training efficiency, which is
different from our concerns.

3 Overview of IncreGNN

Figure 1 shows the architecture of IncreGNN. A new task is defined as training
a GNN on incremental data �Gt for the corresponding graph analysis tasks.
Historical tasks are defined as training GNNs on historical incremental data
{�G1,�G2, ...,�Gt} before time t to process graph analysis tasks at differ-
ent time. There is usually only one graph analysis task involved for a GNN
during model training. Therefore, we merge the historical incremental data
{�G1,�G2, ...,�Gt} into an intergrated graph Gt−1, so that we only need to
consider a single historical task when performing incremental learning.

Fig. 1. Overview of IncreGNN

Our goal is to incrementally learn a GNN parameterized by θ with an opti-
mization goal on graph Gt. Based on the above analysis, we explain IncreGNN
from the perspective of probability. From this point of view, optimizing the
parameters θ is tantamount to finding their most probable values given graph
Gt. Therefore, according to Bayes rule, we can obtain the conditional probability
by using the prior probability p(θ) of the parameter and the probability p(Gt|θ)
of graph Gt:

logp(θ|Gt) = logp(Gt|θ) + logp(θ) − logp(Gt) (1)

Theorem 1. Graph Gt at time t is composed of historical graph Gt−1 at time
t−1 and incremental data �Gt at time t. The conditional probability logp(θ|Gt)
can be calculated using historical graph Gt−1 and incremental data �Gt as
conditions:

logp(θ|Gt−1,�Gt) = logp(�Gt|θ) + logp(θ|Gt−1) − logp(�Gt) (2)

742 D. Wei et al.

where the first term logp(�Gt|θ) is obviously the log-likelihood value of incre-
mental data �Gt, that is, the loss function of the learning task at time t is
negative −L�Gt(θ), the second term logp(θ|Gt−1) is a posterior distribution of
all information learned on the data Gt−1 related to the task at time t − 1, and
the third term logp(�Gt) is a constant value.

Therefore, according to (2), the total loss function of the IncreGNN at time
t can be expressed as:

LIncreGNN = L� + Lpre = L� + Lolddata + Lparam = Ldata + Lparam (3)

where L� represents the loss function of the incremental change of the graph
at time t, and Lpre represents the review of the old knowledge learned on the
graph data before time t, so as to avoid catastrophic forgetting. The IncreGNN
combines two strategies of experience replay and regularization, where the expe-
rience replay strategy is a combination of new and old data. Therefore, Lpre can
be further decomposed into two parts: Lolddata, a review of knowledge learned
from a part of the old data, and Lparam, a constraint on the parameters of the
old model. Combining L� and Lolddata, Ldata represents the loss function of
using the experience replay strategy to process new and old data.

4 Experience Replay and Regularization Strategy

4.1 Experience Replay Strategy Based on Node Importance

In order to obtain more important historical nodes as much as possible, we intro-
duce the experience replay strategy based on node importance. We associate the
importance of a historical node with the degree of influence. Then, the experi-
ence replay strategy based on node importance is divided into the following two
steps:

Step 1: Sampling the important neighbor nodes of the affected nodes in order.
The set of incremental data is defined as base change group, where the incre-
mental data includes incremental nodes and edges. Then, the neighbor nodes of
the nodes in base change group are regarded as first-order change group, and
the neighbor nodes of the nodes in first-order change group are regarded as
second-order change group, and so on. It is not difficult to find that the lower
the order of the node, the greater the contribution to the incremental node, that
is, the greater the impact of the incremental node. So it is necessary to sample
as many nodes as possible in low-order change group. Here, we gradually reduce
the number of samples as the order increases, and assign the number of node

samples at the ratio of
1
i
/(1 +

1
2

+ ... +
1
K

) for each order, where K represents
a total of K-order change groups of samples, and i represents the i-th change
group currently sampled. Node importance of v is measured by the personalized
PageRank value between the node and its neighbors in Gt−1 and denoted as πT

v .

IncreGNN 743

By calculating node importance, we can get the nodes with high degree of cor-
relation with the incremental nodes according to the number of sampling nodes
in each order nk, which are more important for the knowledge of the old task:

I(Gt) =
K∪

k=1
{vi|πT

vi
> πT

vj
, i ∈ [1, nk], j /∈ [1, nk]} (4)

Step 2: Performing importance sampling on unaffected nodes. To prevent
over-fitting and catastrophic forgetting, it is also necessary to perform partial
sampling on unaffected nodes. Since random sampling may sample nodes of
the same category or the embeddings are too similar, the incremental learning
will be skewed and part of the old knowledge will be covered. Therefore, the
unaffected nodes are divided using K-means according to the label or the learned
embeddings for the unlabeled nodes in Gt−1, and K clusters are obtained. Within
each cluster, the degree of the node is used as the criterion to measure node
importance. The greater the degree of the node, the higher the node importance
within the cluster. Finally, we uniformly sample the same number of k height
nodes from each cluster by degree:

UI(Gt) =
K∪

k=1
{vi|degT

vi
> degT

vj
, i ∈ [1, nk], j /∈ [1, nk]} (5)

Through node importance sampling strategies, the total number of sampled
node sets is M, including the sum of the affected node set I(Gt) and the unaffected
node set UI(Gt) sampled in K clusters. These M nodes will be used as the
training data for incremental learning of GNN at time t. From the perspective of
experience replay, the optimization goal for both retaining historical knowledge
and learning new task knowledge is:

Ldata =
∑

vi∈I(Gt)∪UI(Gt)

l(θ; vi) (6)

4.2 Regularization Strategy Based on Parameter Importance

The purpose of the regularization strategy is to avoid updating the parameters
drastically related to the old knowledge. Specifically, a corresponding importance
coefficient δij is calculated for each parameter θij , and the update extent of the
parameter is restricted by this importance coefficient. For the parameter θij with
a large δij , the magnitude of its change should be minimized during the gradient
descent process, because a large importance coefficient δij can indicate that this
parameter θij is more important to the old knowledge of model learning. Thus
this parameter needs to be retained to avoid catastrophic forgetting.

Following Memory Aware Synapses (MAS) [1], for all nodes in the training
set, we accumulate the mean value of the gradient calculated on the feature
vectors of all nodes to obtain the importance weight δij of the parameter θij :

δij =
1
N

N∑

v=1

||gij(xv)|| (7)

744 D. Wei et al.

where gij(xv) = ∂(F ′(xv ;θ))
∂θij

is the partial derivative of the function F ′ to the
parameter θij , F ′ is an approximate function mapping to the real function F,
xv is the feature of each node v and N is the number of nodes in the training
set. However, calculating δ requires traversing the entire graph snapshot at the
previous time, which will incur a lot of cost to storage and calculation. Therefore,
we use the important nodes sampled by experience replay strategy to estimate
the importance weight.

Moreover, in order to consolidate more historical knowledge of important
parameters, it is necessary to accumulate the parameter importance weight δ
calculated by each task at all previous times. Finally, the importance parameter
δij corresponding to the parameter θij at time t is:

δij =
1

tN

t−1∑

T=0

N∑

v=1

||gij(xv)|| (8)

Through approximate calculation to obtain the estimated parameter impor-
tance weight, the optimization goal of consolidating historical knowledge from
the perspective of constrained model parameters can be obtained:

Lparam =
λ

2

∑

i,j

δij(θij − θt−1
ij)2 (9)

where λ is the degree of importance of historical knowledge to new graph.

5 Experiments

5.1 Experiment Setup

We conduct experiments on Enron1, UCI2, BC-Alpha3 and ML-10M4, which are
all divide into 13 graph snapshots following [8]. For link prediction task, 40%,
20% and 40% of the edges are taken as training set, validation set and test set,
respectively. We compare the proposed method with five baselines, including
EvolveGCN [5], Retrained GAT [11], Pretrained GAT [11], Online GAT [11]
and ContinualGNN [12]. Retrained GAT, Pretrained GAT and Online GAT are
GATs for retraining, pre-training and dynamic graph online training respectively.
The experiment uses all the data at t = 0 to train a general model, and then
incrementally learns the sampled data at t = 1...T. The regularization term λ is
(80, 800, 80, 320).

1 https://www.cs.cmu.edu/∼./enron/.
2 http://networkrepository.com/opsahl ucsocial.php.
3 http://www.btc-alpha.com.
4 http://networkrepository.com/ia-movielens-user2tags-10m.php.

https://www.cs.cmu.edu/~{}./enron/
http://networkrepository.com/opsahl_ucsocial.php
http://www.btc-alpha.com
http://networkrepository.com/ia-movielens-user2tags-10m.php

IncreGNN 745

Table 1. Performance of link prediction.

Method Enron UCI BC-Alpha ML-10M

AUC AP Time(s) AUC AP Time(s) AUC AP Time(s) AUC AP Time(s)

EvolveGCN 65.4 66.0 0.691 77.1 78.9 1.744 79.3 81.0 1.30 85.0 85.6 5.174

RetrainedGAT 68.9 71.5 0.057 87.5 87.8 0.677 91.7 91.9 0.422 93.1 93.9 3.329

PretrainedGAT 62.5 64.3 0.000 81.9 78.8 0.000 42.0 57.0 0.000 87.6 84.9 0.000

OnlineGAT 44.6 52.2 0.033 58.1 56.2 0.115 64.9 63.0 0.064 61.9 57.3 0.249

ContinualGNN 57.1 64.3 0.006 49.7 52.4 0.061 49.3 53.5 0.147 47.9 49.5 7.469

IncreGNN 67.3 71.2 0.019 82.6 84.7 0.143 90.6 90.8 0.045 89.9 91.4 0.070

5.2 Experimental Results

Table 1 shows the average AUC, AP values and training time of all methods.
Note that the training time does not include the time to calculate personalized
PageRank and K-means, which can be calculated offline before the next snap-
shot coming. The importance parameter δij is updated online. Experimental
results show that our proposed algorithm IncreGNN achieves the best perfor-
mance on both AUC and AP compared to other comparison methods in addition
to Retrained GAT. At the same time, IncreGNN can reach experimental results
that are similar to the theoretically most accurate Retrained GAT, which shows
that the method we propose has high superiority in incremental learning.

Figure 2 shows the performance results of each method across multiple time
steps. On the UCI, BCAlpha and ML-10M datasets, our method has reached
a very high level and are very stable, indicating that the method we proposed
can effectively preserve old knowledge and learn new knowledge. The results of
Online GAT on the 4 datasets are very poor and fluctuate greatly. The reason is
that Online GAT does not preserve old knowledge, which leads to catastrophic
forgetting.

IncreGNN also performs well on the node classification task, but the experi-
ments are omitted due to limited space.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13

Av
er

ag
e

 P
re

ci
sio

n

Time steps

EvolveGCN Retrained GAT Pretrained GAT

Online GAT IncreGNN Con�nualGNN

(a) Enron

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13

Av
er

ag
e

 p
re

ci
sio

n

Time steps

EvolveGCN Retrained GAT Pretrained GAT

Online GAT IncreGNN Con�nualGNN

(b) UCI

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13

Av
er

ag
e

 P
re

ci
sio

n

Time steps

EvolveGCN Retrained GAT Pretrained GAT

Online GAT IncreGNN Con�nualGNN

(c) BC-Alpha

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13

Av
er

ag
e

 p
re

ci
sio

n

Time steps

EvolveGCN Retrained GAT Pretrained GAT

Online GAT IncreGNN Con�nualGNN

(d) ML-10M

Fig. 2. Link prediction across multiple time steps

746 D. Wei et al.

6 Conclusion

In this work, we propose a GNN-based incremental learning framework to pro-
cess dynamic graphs. We design a sampling strategy based on node importance
to sample the affected and unaffected nodes. At the same time, we design a reg-
ularization strategy based on the importance of model parameters to constrain
the important parameters. Through these two strategies, the problem of catas-
trophic forgetting in incremental learning can be avoided, and the knowledge
of the new task can be learned while preserving the knowledge of the old task.
Experimental results verify the effectiveness and efficiency of IncreGNN.

Acknowledgements. This work is supported by the National Natural Science Fon-
dation of China (62072083 and U1811261).

References

1. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory
aware synapses: Learning what (not) to forget. In: ECCV, pp. 139–154 (2018)

2. Galke, L., Franke, B., Zielke, T., Scherp, A.: Lifelong learning of graph neural
networks for open-world node classification. In: IJCNN, pp. 1–8 (2021)

3. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Analysis and
Machine Intelligence 40(12), 2935–2947 (2017)

4. Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by
iterative pruning. In: CVPR, pp. 7765–7773 (2018)

5. Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic
graphs. In: AAAI, vol. 34, pp. 5363–5370 (2020)

6. Peng, Y., Choi, B., Xu, J.: Graph learning for combinatorial optimization: a survey
of state-of-the-art. Data Sci. Eng. 6(2), 119–141 (2021)

7. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental clas-
sifier and representation learning. In: CVPR, pp. 2001–2010 (2017)

8. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: DySAT: deep neural repre-
sentation learning on dynamic graphs via self-attention networks. In: WSDM, pp.
519–527 (2020)

9. Serra, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forget-
ting with hard attention to the task. In: International Conference on Machine
Learning, pp. 4548–4557. PMLR (2018)

10. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: DyRep: learning representations
over dynamic graphs. In: ICLR (2019)

11. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

12. Wang, J., Song, G., Wu, Y., Wang, L.: Streaming graph neural networks via con-
tinual learning. In: CIKM, pp. 1515–1524 (2020)

13. Xu, Y., Zhang, Y., Guo, W., Guo, H., Tang, R., Coates, M.: GraphSAIL: graph
structure aware incremental learning for recommender systems. In: CIKM, pp.
2861–2868 (2020)

http://arxiv.org/abs/1710.10903

Representation Learning
in Heterogeneous Information Networks

Based on Hyper Adjacency Matrix

Bin Yang and Yitong Wang(B)

School of Software, Fudan University, Shanghai, China
{yangb20,yitongw}@fudan.edu.cn

Abstract. Heterogeneous information networks(HINs), which usually
contain different kinds of nodes and interactions are very common in real
world. The richer semantic information and complex relationships have
posed great challenges to current representation learning in HINs. Most
existing approaches which use predefined meta-paths suffer from high
cost and low coverage. In addition, most of the existing methods cannot
capture and learn influential high-order neighbors precisely and effec-
tively. In this paper, we attempt to tackle the problem of meta-paths and
influential high-order neighbors by proposing an original method HIN-
HAM. HIN-HAM captures influential neighbors of target nodes precisely
and effectively by generating the hyper adjacency matrix of the HIN.
Then it uses convolutional neural networks with weighted multi-channel
mechanism to aggregate different types of neighbors under different rela-
tionships. We conduct extensive experiments and comparisons on three
real datasets and experimental results show the proposed HIN-HAM out-
performs the state-of-the-art methods.

Keywords: Heterogeneous information networks · Node embedding ·
Graph convolutional network

1 Introduction

Heterogeneous information networks(HINs) [10] are ubiquitous in human society
such as social networks [2], citation networks [7] and recommendation systems [1].
Different types of nodes and relationships in HINs which contain rich information
and complex interactions, has posed great challenges to current research in HINs,
in particular the representation learning in HINs.

In the past few years, there have been a series of studies on representa-
tion learning in HINs and have achieved quite good results. One of the clas-
sic paradigms is to design and use meta-paths, such as Metapath2vec [4] and
HIN2vec [5]. In particular, meta-paths are predefined sequence patterns of nodes

This work is supported by the National Key R&D Program of China (No.
2020YFC2008401).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 747–755, 2022.
https://doi.org/10.1007/978-3-031-00123-9_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_60&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_60

748 B. Yang and Y. Wang

with specific node and relationship types. Recently, some GNNs-based mod-
els [13] have been proposed for HINs representation learning, such as HAN [12],
HGCN [17] and GTN [14].

However, most existing methods suffer from some limitations: Firstly, meta-
paths are designed manually with high cost and low coverage. Secondly, high-
order neighbors have not been fully investigated. Finally, different types of
nodes/edges should be treated more precisely and effectively rather than cutting
connections among them. In view of these limitations, we attempt to tackle the
two key challenges by answering the following two questions: 1) how to deal with
different types of neighbor nodes/edges to capture influential neighbors (includ-
ing high-order neighbors) on the target node; 2) how to aggregate influential
neighbor nodes to update target node embedding.

We propose an original embedding method for representation learning in
Heterogeneous Information Networks based on Hyper Adjacency Matrix (HIN-
HAM) to solve the above challenges. Our main contributions are:

1) We introduce a ‘hyper adjacency matrix’ to precisely capture influential neigh-
bors with different distances from a given target node;

2) We propose a weighted multi-channel mechanism to effectively aggregate
information of influential neighbors into the target node;

3) We conduct extensive experiments on three benchmark datasets. Our exper-
imental results show the superiority of HIN-HAM, comparing with the state-
of-the-art methods.

2 Related Work

Over the past few years, representation learning [3] has made significant progress.
Metapath2vec [4] obtains a series of node sequences through a random walk
on a given meta-path. Metagraph2vec [16] extends Metapath2vec using meta-
structure-based random walk for sampling. HIN2vec [5] uses shallow neural net-
works to simultaneously learn the embedding of nodes and relationships in the
network. RGCN [9] designs multiple graph convolution layers according to dif-
ferent types of relationships. HAN [12] uses node-level attention to aggregate
neighbor information and semantic-level attention to aggregate predefined meta-
path information. HetGNN [15] uses restart random walk strategy to sample
strongly correlated neighbors and LSTM model to calculate node embeddings
of the target node and its neighbors respectively. HGCN [17] uses the GCN [7]
model based on HINs to solve collective classification. GTN [14] uses the GNN
to learn meta-paths in the graph by identifying multi-hop connections. HGT [6]
propose an information aggregation method based on meta-relational learning
and heterogeneous self-attention mechanism. While these methods work well in
experiments, they still suffer from some limitations: high cost and low coverage
of manually-designed meta-paths as well as insufficient to identify influential
neighbors.

Representation Learning in HINs Based on HAM 749

3 Preliminaries

Definition 1 (Heterogeneous Graph). A heterogeneous graph can be repre-
sented as G = (V, E ,A,R), consists of a node set V and a edge set E. And it also
includes a node type mapping function φ : V → A and an edge type mapping
function ψ : E → R , where A is a set of node types, R is a set of edge types
and |A| + |R| > 2. A heterogeneous graph can be modeled as a set of adjacency
matrices

{
Ak}Kk=1 , where Ak ∈ RN×N is a subgraph that contains only type-k

edges, K = |R| and N = |V|. For a heterogeneous graph, it also has a feature
matrix X ∈ RN×D where D is the feature dimension of each node.

Definition 2 (Meta-path). The meta-path is defined as a path P consisting
of node types on the heterogeneous information network mode TG = (A,R):
a1

r1−→ a2
r2−→ . . .

rl−1−→ al, where ai ∈ A, ri ∈ R. The meta-path represents the
compound relation R = r1 ◦ r2 . . . ◦ rl between node a1 and node al, where ◦
denotes the composition operator on relations.

Fig. 1. The overall framework of HIN-HAM. (a) Node-level adjacency matrix. (b)
Semantic-level adjacency matrix. (c) Weighted multi-channel graph convolutional net-
works. (d) The 1×1 convolution in (a). (e) The notations in the framework. The thick-
ness of the edges and arrows reflects their weights.

750 B. Yang and Y. Wang

4 Method

4.1 Overall Framework

Figure 1 shows the architecture of HIN-HAM. The model can be divided into
three steps: i) A 1×1 graph convolution layer is used to learn the weights of
different types of edges to obtain node-level adjacency matrix; ii) Semantic-level
meta-path adjacency matrix is obtained by matrix multiplication and superim-
posed to obtain hyper adjacency matrix; iii) The weighted multi-channel graph
convolutional networks are used to learn node embedding and optimize it.

4.2 Node-Level Adjacency Matrix

In order to express the importance of different types of neighbors under different
connections, we introduce node-level adjacency matrix to learn the importance
of each type of edge in the heterogeneous graph. We design a specific 1×1 con-
volution layer to learn the weight of different types of edge. The convolution
process can be expressed as follows:

∼
A =

K∑

k=1

(WkAk + bk), (1)

where
∼
A ∈ RN×N is the adjacency matrix that contains the weights of different

types of edges and bk is the bias vector. We use softmax function to normalize
the initialized weight to get Wk:

Wk = softmax (ak) =
ak

∑K
k=1 ak

. (2)

where ak ∈ R1×1 is the initialized weight of the kth subgraph. Note that the node-
level adjacency matrix will be asymmetric since the influences of two nodes on
one another in a heterogeneous graph tend to be different. Generally, the embed-
dings of nodes need to retain their own features to prevent complete assimilation
by neighbors. Therefore, we add the identity matrix to the heterogeneous graph

G, i.e., A0 = I, and
∼
A contains each node’s own weight.

4.3 Semantic-Level Adjacency Matrix

We propose a novel semantic-level adjacency matrix to learn the importances of
different meta-paths. Given the node-level adjacency matrices, we can calculate
the adjacency matrix of meta-paths in length l by matrix multiplication.

A(l) =
l∏

i=1

∼
Ai =

l∏

i=1

(
K∑

k=0

(WikAik + bik)

)

, (3)

Representation Learning in HINs Based on HAM 751

where A(l) ∈ RN×N is the meta-path adjacency matrix of the specified length l,
∼
Ai ∈ RN×N is the node-level adjacency matrix of ith layer, Aik ∈ RN×N is the
kth subgraph of the heterogeneous graph at ith layer and bik is the bias vector.
Wik is normalized for parameter stability:

Wik = softmax (aik) =
aik

∑K
k=0 aik

. (4)

where aik ∈ R1×1 is the initialized weight. The meta-path adjacency matrix
contains all meta-paths of specified length, and different meta-paths have differ-
ent weights. Given length L, we sum up the meta-path adjacency matrices with
length 1 to L as in Formula (5). The semantic-level adjacency matrix containing
all meta-paths no more than length L with different weights can be obtained.
We call it the hyper adjacency matrix:

G =
L∑

l=1

(
A(l)

)
. (5)

where G ∈ RN×N . The hyper adjacency matrix can learn all length of meta-
paths with length up to L, and assigns different weights to reflect their different
importances. So we can capture the influential neighbors with different length
more precisely.

4.4 Weighted Multi-channel Graph Convolutional Networks

We applied graph convolutional neural networks to the hyper adjacency matrix
and obtained node embedding vector:

H = σ
(
D−1GXW

)
, (6)

where D is the degree matrix of hyper adjacency matrix G, X ∈ RN×D is the
feature matrix and W ∈ RD×D is the learnable weight matrix. We try GCN
on hyper adjacency matrix G several times and set each output as a chan-
nel. Weighted multi-channel mechanism is proposed to aggregate the influential
neighbors more effectively and learnt weight coefficients for each channel. We
apply GCN to each channel and concatenated multiple node representations as:

Z = ||Ci=1 (WiHi) , (7)

where Hi is the node embedding vector in the ith channel, Wi is the weight
coefficient of channel i, and Z is the final node embedding for node classification.
Our loss function is focused on node classification and is defined as a standard
cross-entropy on the nodes that have ground truth labels:

L = −
∑

l∈YL

Y lln
(
Θ • Zl

)
. (8)

where Θ is the parameter of the classifier, YL is the set of node indices that have
labels, Y l and Zl are the labels and embeddings of labeled nodes.

752 B. Yang and Y. Wang

5 Experiment

5.1 Datasets

We conduct extensive experiments on three benchmark datasets: citation net-
works DBLP and ACM, and a movie dataset IMDB. The details of datasets are
described in Table 1.

Table 1. The statistics of the three datasets.

Dataset Nodes Edges Edge types Features Training Validation Test

DBLP 18405 67946 4 334 800 400 2857

ACM 8994 25922 4 1902 600 300 2125

IMDB 12772 37288 4 1256 300 300 2339

5.2 Baselines

We verify the effectiveness of the proposed HIN-HAM by comparing it with some
state-of-the-art baselines, including random walk-based methods and GNNs-
based methods. The random walk-based methods includes DeepWalk [8] and
Metapath2vec [4]. For the GNNs-based methods, we choose GCN [7] and
GAT [11] designed for homogeneous graphs and HAN [12] and GTN [14] designed
for heterogeneous graphs.

5.3 Node Classification

We train a shallow neural network as a classifier. Table 2 shows the performance
of HIN-HAM compared to other node classification baselines, and HIN-HAM
achieved the best performance on all three datasets. GAT performs better than
HAN on both DBLP and ACM datasets probably because HAN’s use of manu-
ally specified meta-paths. GTN performs only second to the proposed HIN-HAM,
which illustrates the advantage of learning new graph structures. However, GTN
simply use matrix multiplication to define the weights of neighbors of differ-
ent layers, so the importance of each meta-path cannot be accurately obtained.
The proposed HIN-HAM can independently learn the weights of different types
and lengths of meta-paths. The design of hyper adjacency matrix could relieve
the dependencies of high-order neighbors on lower-order neighbors and learn
more rational weights for different neighbors. At the same time, weighted multi-
channel mechanism can properly balance the results to improve the embedding.
Our experimental results prove the effectiveness of proposed HIN-HAM.

Representation Learning in HINs Based on HAM 753

5.4 Ablation Study

In this section, we evaluate three different variants of HIN-HAM:

Table 2. The comparison results for node classification on three datasets.

Datasets metrics (%) DBLP ACM IMDB

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Deep walk 85.89 86.50 70.92 77.69 50.35 54.33

Metapath2vec 90.98 93.01 69.10 75.10 45.15 48.81

GCN 91.29 91.87 79.32 79.15 51.81 54.61

GAT 93.75 94.35 92.23 92.33 52.99 56.89

HAN 92.88 92.99 91.55 91.64 56.77 58.51

GTN 93.68 94.15 92.65 92.52 57.39 58.70

Ours 94.56 95.17 93.13 93.05 59.28 60.75

– HIN-HAM−identity. It doesn’t add the identity matrix to the heterogeneous
graph G.

– HIN-HAM−hyper. It doesn’t use the hyper adjacency matrix G but only uses
a single meta-path adjacency matrix.

– HIN-HAM−weight. It doesn’t use the weighted multi-channel mechanism but
only uses multi-channel splicing.

Comparisons with three variants on DBLP datasets demonstrate that the
complete HIN-HAM works the best as shown in Table 3. It can also seen that
the techniques proposed in HIN-HAM: hyper adjacency matrix, use of identity
matrix, weighted multi-channel mechanism are all useful and contributed to the
improvement of HIN-HAM from different aspects. In particular, the performance
of HIN-HAM−hyper decreases the most, which further prove the effectiveness of
hyper adjacency matrix.

Table 3. Ablation study

Method Metrics(%)

Macro-F1 Micro-F1

HIN − HAM−identity 94.17 94.78

HIN − HAM−hyper 92.91 93.76

HIN − HAM−weight 94.14 94.85

HIN-HAM 94.56 95.17

754 B. Yang and Y. Wang

6 Conclusion

In this paper, we attempt to solve two basic problems of representation learning
in heterogeneous information networks and propose an original node embedding
method for representation learning in heterogeneous information networks based
on hyper adjacency matrix. The proposed model uses the hyper adjacency matrix
to capture the influential neighbors of the target node with different distances
and aggregates the neighbor effectively using the convolutional neural network
with weighted multi-channel mechanism. HIN-HAM demonstrate its effective-
ness by performing classification tasks on three real datasets and outperforming
all existing benchmarks. The proposed HIN-HAM is proved to be well inter-
pretable by ablation experiments.

References

1. Berg, R.V.D., Kipf, T.N., Welling, M.: Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263 (2017)

2. Chen, J., Ma, T., Xiao, C.: FastGCN: fast learning with graph convolutional net-
works via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

3. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans.
Knowl. Data Eng. 31(5), 833–852 (2018)

4. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning
for heterogeneous networks. In: The 23rd ACM SIGKDD International Conference
(2017)

5. Fu, T.Y., Lee, W.C., Lei, Z.: Hin2vec: explore meta-paths in heterogeneous infor-
mation networks for representation learning. In: The 2017 ACM (2017)

6. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: Pro-
ceedings of The Web Conference 2020, pp. 2704–2710 (2020)

7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

8. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

9. Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: European
Semantic Web Conference, pp. 593–607. Springer (2018). https://doi.org/10.1007/
978-3-319-93417-4 38

10. Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous infor-
mation network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2016)

11. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

12. Wang, X., et al.: Heterogeneous graph attention network. In: The World Wide Web
Conference, pp. 2022–2032 (2019)

13. Yang, C., Xiao, Y., Zhang, Y., Sun, Y., Han, J.: Heterogeneous network repre-
sentation learning: survey, benchmark, evaluation, and beyond. arXiv e-prints pp.
arXiv-2004 (2020)

14. Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer networks.
Adv. Neural. Inf. Process. Syst. 32, 11983–11993 (2019)

http://arxiv.org/abs/1706.02263
http://arxiv.org/abs/1801.10247
http://arxiv.org/abs/1609.02907
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
http://arxiv.org/abs/1710.10903

Representation Learning in HINs Based on HAM 755

15. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph
neural network. In: Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pp. 793–803 (2019)

16. Zhang, D., Yin, J., Zhu, X., Zhang, C.: MetaGraph2Vec: complex semantic path
augmented heterogeneous network embedding. In: Phung, D., Tseng, V.S., Webb,
G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol.
10938, pp. 196–208. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93037-4 16

17. Zhu, Z., Fan, X., Chu, X., Bi, J.: HGCN: a heterogeneous graph convolutional
network-based deep learning model toward collective classification. In: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1161–1171 (2020)

https://doi.org/10.1007/978-3-319-93037-4_16
https://doi.org/10.1007/978-3-319-93037-4_16

Author Index

Agrawal, Puneet III-413
Ai, Zhengyang II-306
Amagata, Daichi I-224
Ao, Xiang I-353, I-387, II-166
Appajigowda, Chinmayi III-527
Araújo, André III-500
Au, Man Ho I-404

Bai, Chaoyu III-272
Bai, Luyi II-391
Bai, Ting II-102, II-423
Ban, Qimin II-85
Bao, Qiaoben III-238
Bao, Xuguang III-514, III-518
Bao, Yinan I-615
Bao, Yuhao III-509
Bi, Jingping I-722
Bi, Sheng I-162
Bi, Wenyuan I-96
Bian, Shuqing I-38
Blackley, Suzanne V. II-673

Cai, Desheng II-574
Cai, Haoran III-430
Cai, Xunliang II-298
Cao, Caleb Chen I-648
Cao, Shulin I-107
Cao, Yiming II-407, III-117
Cao, Zhi II-489
Carvalho, Arthur III-500
Chang, Liang II-248, II-281, III-281,

III-514, III-518
Chao, Pingfu I-191
Chatterjee, Ankush III-413
Chelaramani, Sahil III-413
Chen, Cen III-306, III-455
Chen, Guihai I-552, II-3, II-615, II-706
Chen, Jiajun II-216
Chen, Jiangjie III-197
Chen, Lei I-648
Chen, Lu III-495
Chen, Qi III-331
Chen, Siyuan II-264
Chen, Tongbing II-590

Chen, Weitong II-289
Chen, Xiang II-556
Chen, Xin II-166, III-377, III-430
Chen, Xingshu III-133
Chen, Yan II-681
Chen, Yijiang II-375
Chen, Yueguo III-331
Chen, Yunwen III-36, III-197, III-238,

III-340
Chen, Yuting I-341
Chen, Yuxing I-21
Chen, Zhigang I-137, III-149
Chen, Zihao I-309
Chen, Zongyi III-230
Cheng, Bing II-298
Cheng, Dawei III-306, III-455
Cheng, Reynold III-443
Cheng, Yunlong II-706
Chennupati, Saideep I-569
Chhabra, Vipul I-569
Chi, Jianfeng I-353, I-387
Ching, Waiki III-443
Chu, Xiaokai I-722
Chu, Yuqi II-574
Couto, Henrique III-500
Cui, Chuan II-150
Cui, Hang III-52
Cui, Lizhen II-315, II-407, III-117

Damani, Sonam III-413
Dao, Minh-Son I-569
Das, Souripriya I-21
Deng, Sinuo III-222
Deng, Sucheng II-556
Ding, Tianyu III-401
Ding, Yihua II-590
Dong, Linfeng I-387
Dong, Qiwen II-689
Dong, Xiangjun I-459
Dou, Wenzhou III-52
Draheim, Dirk I-596
Drancé, Martin III-539
Du, Liang II-681
Du, Ming III-289

758 Author Index

Du, Wei I-370
Du, Yingpeng II-19
Duan, Jihang III-522
Duan, Lei II-681, III-165
Duan, Zhewen II-656
Duan, Zhijian III-389

Fan, Jiangke II-298
Fan, Ju I-587
Fan, Wei I-604
Fan, Xinxin I-722
Fan, Yu II-472
Fan, Zhenfeng II-332
Fan, Zhuoya I-404
Fang, Chuangxin III-505
Fang, Junhua I-191, I-207
Fang, Ruiyu II-199, III-351
Fang, Shineng III-197
Feng, Jinghua I-353, I-387
Feng, Luping II-118
Feng, Shi II-256, III-255
Folha, Rodrigo III-500
Fu, Bin II-697

Gao, Hanning II-150
Gao, Peng III-468
Gao, Shan II-298
Gao, Xiaofeng I-552, II-3, II-615, II-706
Gao, Yixu III-389
Gao, Yuanning II-615
Gao, Yunjun III-495
Gao, Zihao II-281
Goda, Kazuo I-88
Gong, Zheng III-213
Gong, Zhiguo II-556
Grubenmann, Tobias III-443
Gu, Hansu II-359
Gu, Ning I-333, II-359
Gu, Tianlong III-514, III-518
Gu, Yu I-325, I-731, I-739
Gudmundsson, Joachim I-241
Gui, Min III-297
Gui, Xiangyu I-122
Guo, Deke I-441
Guo, Jiayan I-682
Guo, Shu II-306
Guo, Tonglei III-364
Guo, Zhiqiang II-183
Gupta, Manish III-413, III-532

Han, Baokun I-309
Han, Ding II-523
Han, Donghong III-255
Han, Tianshuo III-401
Hao, Fei I-714
Hao, Jianye III-389
Hao, Zhifeng II-556
Hara, Takahiro I-224
He, Liang II-85, II-118
He, Ming III-377, III-401
He, Qing I-387, II-166
He, Xiaodong III-425
He, Yi II-323
He, Yihong II-455
He, Ying II-574
He, Zhenying I-72, I-96, I-476
Ho, Shen-Shyang I-509
Holub, Jan I-509
Hong, Yu III-340
Hou U, Leong III-68
Hou, Lei I-107
Hou, Yupeng I-38
Hu, Huiqi I-293
Hu, Jun II-574
Hu, Maodi II-199, III-351
Hu, Nan I-162
Hu, Songlin I-615, II-623
Hu, Wenjin III-222
Hu, Wenxin II-85
Hu, Xinlei III-377
Hu, Xuegang II-574
Hua, Yuncheng I-162
Huang, Chen III-238
Huang, Faliang II-343
Huang, Hao III-468
Huang, Junyang III-238
Huang, Linpeng I-341
Huang, Qiang I-232, I-268
Huang, Wei III-213
Huang, Weiming II-407
Huang, Xiuqi II-706
Huang, Yanlong II-102
Huang, Yanyong II-656

Ji, Yu II-118
Jia, Siyu II-306
Jia, Xueqi I-714
Jian, Yifei III-133
Jiang, Qi I-413
Jiang, Rui I-333

Author Index 759

Jiang, Sihang I-578
Jiang, Weipeng III-165
Jiang, Xiaoqi I-459
Jiang, Xueyao I-180, I-578
Jiang, Youjia III-505
Jiao, Pengfei III-322
Jin, Beihong I-268
Jin, Cheng III-314
Jin, Hai I-122, I-153, I-250
Jin, Peiquan I-560
Jin, Taiwei III-364
Jing, Yinan I-72, I-96, I-476
Johri, Lokesh III-527
Joshi, Meghana III-413

Kankanhalli, Mohan I-232
Kao, Ben III-443
Kapoor, Arnav III-532
Kaushik, Minakshi I-596
Khurana, Alka III-544
Kim, Hong-Gee I-632
Kim, Junghoon I-543
Kiran, R. Uday I-569
Kitsuregawa, Masaru I-88
Kou, Yue III-52
Krčál, Luboš I-509

Lakkaraju, Kausik III-527
Lan, Michael I-55
Lei, Yifan I-232
Li, Ailisi I-180, III-36
Li, Anchen I-171, II-134
Li, Aoran II-289
Li, Bohan II-289
Li, Changshu III-377
Li, Chuanwen I-325, I-731
Li, Dong III-389
Li, Dongsheng II-359, III-3
Li, Fangfang I-739
Li, Guohui II-183
Li, Haihong III-314
Li, Huichao I-587
Li, Huilin II-523
Li, Jianjun II-183
Li, Jiaoyang I-493
Li, Jingze II-590
Li, Juanzi I-107
Li, Kun II-623
Li, Mengxue III-364
Li, Peng II-656

Li, Pengfei I-191
Li, Renhao III-165
Li, Ruixuan II-623
Li, Shangyang I-682
Li, Shuai II-298
Li, Shuaimin III-263
Li, Tao II-199, III-351
Li, Wei I-665
Li, Xiang I-268
Li, Xiaohua I-731
Li, Xiaoyang II-689
Li, Xin I-268
Li, Xinyu I-404
Li, Xiongfei III-247
Li, Yexin II-656
Li, Yingying I-413
Li, Yongkang II-298
Li, You III-505
Li, Yue I-259
Li, Yunchun I-665
Li, Zhan III-481
Li, Zhao I-459
Li, Zhen III-117
Li, Zhi II-183
Li, Zhisong III-101
Li, Zhixin II-248, II-281
Li, Zhixu I-137, I-180, I-578, III-85, III-149,

III-297
Li, Zonghang II-455
Liang, Jiaqing I-180, III-36, III-238
Liang, Yile II-69
Liang, Yuqi III-306
Lim, Sungsu I-543
Lin, Hui II-85
Lin, Jianghua III-425
Lin, Junfa II-264
Lin, Leyu II-166
Lin, Longlong I-250
Lin, Meng II-623
Lin, Yuming III-505
Lin, Ziyi I-341
Liu, An I-137, I-191, I-207, III-85, III-149
Liu, Baichuan I-425
Liu, Bang I-180, III-238
Liu, Chang I-268
Liu, Chengfei II-472, III-181
Liu, Dajiang I-714
Liu, Gaocong I-560
Liu, Haobing II-53
Liu, Hongtao III-322

760 Author Index

Liu, Hongzhi II-19, II-697
Liu, Huaijun II-199
Liu, Jiayv III-522
Liu, Kuan II-53
Liu, Lixin I-404
Liu, Meng I-604
Liu, Ning II-407, III-117
Liu, Qi III-213
Liu, Qingmin II-3
Liu, Rongke II-391
Liu, Wei III-468
Liu, Xiaokai I-122
Liu, Ximeng I-413
Liu, Xing II-631
Liu, Xinyi III-181
Liu, Yang I-387
Liu, Yi II-289
Liu, Yong I-604, II-232, II-315
Liu, Yudong III-230
Liu, Zhen Hua I-21
Liu, Zhidan II-375
Liwen, Zheng III-230
Long, Lianjie II-343
Lu, Aidong I-370
Lu, Haozhen I-552
Lu, Jiaheng I-21
Lu, Jianyun II-639
Lu, Tun I-333, II-359
Lu, Xuantao III-238
Lu, Yanxiong I-632
Luo, Siqiang III-455
Luo, Wang III-468
Luo, Yifeng III-306, III-455
Luo, Yikai II-489
Luo, Yongping I-560
Lv, Fuyu III-364
Lv, Ge I-648
Lv, Junwei II-574
Lv, Xin I-107

Ma, Denghao III-331
Ma, Guojie I-259
Ma, Huifang II-248, II-281, III-281
Ma, Jianfeng I-413
Ma, Ling II-298
Ma, Rui I-353
Ma, Weihua II-289
Ma, Xinyu II-631
Ma, Xuan II-69
Ma, Yunpu III-101

Meng, Liu I-3
Meng, Xiaofeng I-404
Miao, Chunyan II-232
Miao, Hang II-134
Miao, Xiaoye III-495
Miao, Yinbin I-413

Narahari, Kedhar Nath III-413
Ng, Wilfred III-364
Ni, Jiazhi I-268
Nie, Tiezheng III-20, III-52
Ning, Bo III-181
Niyato, Dusit II-455

Obradovic, Zoran II-689
Ouyang, Kai I-632

Paladi, Sai Teja III-527
Palaiya, Vinamra III-527
Pan, Bing III-481
Pan, Xingyu I-38
Pang, Jinhui I-698
Pang, Yitong II-150
Pavlovski, Martin II-506, II-689
Pei, Hongbin III-331
Peious, Sijo Arakkal I-596
Peng, Qiyao III-322
Peng, Yuchen III-495
Pfeifer, John I-241

Qi, Dekang II-656
Qi, Guilin I-162
Qi, Xuecheng I-293
Qian, Shiyou I-277
Qian, Tieyun II-69
Qian, Weining II-506, II-689, III-306,

III-455
Qiao, Fan II-664
Qiao, Zhi I-665
Qin, Shijun III-430
Qin, Zhili II-639
Qu, Jianfeng I-137, III-85, III-149

Reddy, P. Krishna I-569
Ren, Ziyao II-606

Seybold, Martin P. I-241
Sha, Chaofeng II-36, III-289
Shahin, Mahtab I-596
Shang, Jiaxing I-714
Shang, Lin II-216
Shang, Mingsheng II-323

Author Index 761

Shao, Junming II-639
Shao, Kun III-389
Sharma, Rahul I-596
Shen, Derong III-20, III-52
Shen, Fang III-481
Shen, Qi II-150
Shen, Shirong I-162
Shen, Xinyao III-197
Shen, Zhiqi II-315
Shi, Bing II-489
Shi, Chuan II-199, III-351
Shi, Dan I-171
Shi, Ge III-222
Shi, Jiaxin I-107
Shi, Liye II-118
Shi, Shengmin II-590
Shi, Wanghua I-277
Shi, Xiangyu III-509
Shi, Yuchen I-425
Shi, Zhan III-522
Skoutas, Dimitrios I-55
Song, Ailun I-552
Song, Hui III-289
Song, Kaisong II-256
Song, Shuangyong III-425
Song, Weiping II-298
Song, Xintong III-509
Song, Xiuting II-391
Song, Yang I-38, II-697
Song, Yiping III-3
Song, Yumeng I-731, I-739
Song, Zhen I-739
Srivastava, Biplav III-527
Su, Fenglong I-698
Sun, Bo II-323
Sun, Chenchen III-20, III-52
Sun, Chuanhou I-459
Sun, Fei III-364
Sun, Ke II-69
Sun, Tao II-439
Sun, Weiwei II-590
Sun, Wenya III-443
Sun, Xigang II-272
Sun, Yueheng III-322

Takata, Mika I-88
Tang, Chunlei II-673
Tang, Daniel II-523
Tang, Haihong II-232
Tang, Jintao III-3

Tang, Moming III-306
Tang, Zhihao III-230
Taniguchi, Ryosuke I-224
Tao, Hanqing III-213
Teng, Yiping III-522
Theodoratos, Dimitri I-55
Tian, Junfeng III-297
Tian, Yu II-590
Tian, Zhiliang III-3
Times, Valéria III-500
Tong, Shiwei III-213
Tong, Yongxin II-606
Tung, Anthony I-232

Uotila, Valter I-21

Van, Minh-Hao I-370
Viana, Flaviano III-500
Vinay, M. S. I-395

Wang, Bin I-3, III-389
Wang, Binjie II-664
Wang, Can II-216
Wang, Changyu III-331
Wang, Chaoyang II-183
Wang, Chunnan III-509
Wang, Chunyang II-53
Wang, Daling II-256, III-255
Wang, Ding I-615
Wang, Dong II-199, III-351
Wang, Fangye II-359
Wang, Fei II-439
Wang, Guoxin II-232
Wang, Haizhou III-133
Wang, Hongya III-289
Wang, Hongzhi III-509
Wang, Jiaan III-85, III-149
Wang, Jiahai II-264
Wang, Jialong III-481
Wang, Jie II-272
Wang, Jingyu I-341
Wang, Jiwen III-377
Wang, Kai II-639
Wang, Ke II-53
Wang, Lei II-681
Wang, Liping I-259
Wang, Long III-514
Wang, Meng I-162, II-631
Wang, Peng II-540, II-664
Wang, Pengsen I-268

762 Author Index

Wang, Qi II-673
Wang, Qiang III-314
Wang, Sen II-631
Wang, Sheng II-298
Wang, Shi II-523
Wang, Shupeng II-306
Wang, Wei II-540, II-664, III-340
Wang, Weiping I-493
Wang, Wenjun III-322
Wang, Wentao III-281
Wang, X Sean I-72
Wang, X. Sean I-96, I-476
Wang, Xiaofan I-526
Wang, Xin III-481
Wang, Xinpeng III-101
Wang, Xuwu I-578, III-297
Wang, Yang I-325
Wang, Yansheng II-606
Wang, Yifan II-298
Wang, Yike II-248
Wang, Yitong I-747
Wang, Youchen I-268
Wang, Yu III-247
Wang, Yueyi I-425
Wangyang, Qiming II-639
Wei, Di I-739
Wei, Lingwei I-615
Wei, Xing I-293
Wei, Xingshen III-468
Wei, Yunhe II-248
Wei, Zhihua II-150
Wei, Zhongyu III-389
Wen, Ji-Rong I-38
Wen, Zhihua III-3
Wu, Bin II-102, II-423
Wu, Di II-323
Wu, Han III-213
Wu, Lifang III-222
Wu, Lin II-439
Wu, Longcan II-256
Wu, Siyuan III-68
Wu, Wei I-180
Wu, Wen II-85, II-118
Wu, Xiaoying I-55
Wu, Xintao I-370, I-395
Wu, Yangyang III-495
Wu, Yiqing II-166
Wu, Zhen II-272
Wu, Zhenghao III-3
Wu, Zhonghai II-19, II-697

Xia, Tianyu I-476
Xia, Xiufeng I-3
Xiang, Ye III-222
Xiao, Fu II-648
Xiao, Ning I-268
Xiao, Shan III-165
Xiao, Yanghua I-180, I-578, III-36, III-197,

III-238, III-297, III-340
Xiao, Yiyong II-590
Xie, Guicai III-165
Xie, Rui I-180
Xie, Ruobing II-166
Xie, Yi III-314
Xing, Lehao III-222
Xing, Zhen II-375
Xiong, Yun III-314
Xu, Bo III-289, III-509
Xu, Chen I-309
Xu, Feifei III-101
Xu, Haoran II-656
Xu, Hongyan III-322
Xu, Jiajie I-207, II-472
Xu, Jungang III-263
Xu, Ke II-606
Xu, Minyang II-375
Xu, Ruyao III-455
Xu, Siyong II-199
Xu, Tiantian I-459
Xu, Xianghong I-632
Xu, Yonghui II-315, II-407, III-117
Xu, Yongjun II-439
Xu, Yuan I-207
Xu, Zenglin II-455
Xu, Zheng I-333

Yadav, Amrendra Singh I-596
Yan, Cheng I-153
Yan, Ming III-297
Yang, Bin I-747
Yang, Bo I-171, II-134
Yang, Cheng II-199
Yang, Deqing I-425
Yang, Fanyi III-281
Yang, Geping II-556
Yang, Han I-698
Yang, Hao I-353, I-387
Yang, Qinli II-639
Yang, Shiyu I-259
Yang, Tianchi II-199, III-351
Yang, Weiyong III-468

Author Index 763

Yang, Xiaochun I-3
Yang, Xiaoyu III-230
Yang, Yifan II-631
Yang, Yiyang II-556
Yang, Yonghua II-315
Yao, Di I-722
Ye, Jiabo III-297
Yi, Xiuwen II-656
Yin, Dawei I-722
Yin, Hongzhi II-216
Yin, Jianwei III-495
Yin, Yunfei II-343
Yu, Changlong III-364
Yu, Fuqiang II-407, III-117
Yu, Ge I-731, I-739, II-256, III-52
Yu, Han II-455
Yu, Hongfang II-455
Yu, Philip S. III-314
Yu, Runlong III-213
Yu, Xiaoguang III-425
Yu, Yonghong II-216
Yuan, Chunyuan I-615
Yuan, Lin I-137, III-149
Yuan, Pingpeng I-250
Yuan, Shuhan I-395
Yue, Lin II-289
Yue, Yinliang I-493
Yun, Hang II-69

Zang, Tianzi II-53
Zang, Yalei II-289
Zeng, Guanxiong I-353
Zeng, Li III-430
Zeng, Lingze I-587
Zeng, Shenglai II-455
Zettsu, Koji I-569
Zhai, Yitao III-331
Zhang, Aoran II-216
Zhang, Bolei II-648
Zhang, Cong II-423
Zhang, Fusang I-268
Zhang, Han II-391
Zhang, Hanbing I-72, I-96, I-476
Zhang, Heng III-222
Zhang, Jiale I-552
Zhang, Jianing I-587
Zhang, Jiujing I-259
Zhang, Junbo II-656
Zhang, Kai I-72, I-96, I-476
Zhang, Lei III-117

Zhang, Leilei I-698
Zhang, Li II-216
Zhang, Lingzi II-232
Zhang, Luchen II-523
Zhang, Luhao II-199, III-351
Zhang, Meihui I-587
Zhang, Mengfan III-522
Zhang, Mi II-69
Zhang, Ming II-298
Zhang, Mingming II-540
Zhang, Nevin L. III-3
Zhang, Peng I-333, II-359
Zhang, Qianzhen I-441
Zhang, Ruisheng II-606
Zhang, Tao I-38, II-697
Zhang, Tingyi I-137, III-149
Zhang, Weiyu I-587
Zhang, Wenkai III-101
Zhang, Xi III-230
Zhang, Xianren I-714
Zhang, Xiaohui II-281
Zhang, Xiaoli III-247
Zhang, Xin I-268
Zhang, Xingyu II-36
Zhang, Xu II-166
Zhang, Yan I-682
Zhang, Yifei I-250, II-256, III-255
Zhang, Yiming II-150
Zhang, Yixin II-315
Zhang, Yuxiang III-518
Zhang, Zhao II-439
Zhang, Zhengqi III-289
Zhang, Zhiqing I-714
Zhang, Ziwei III-481
Zhao, Deji III-181
Zhao, Fanyou III-522
Zhao, Feng I-122, I-153
Zhao, Hang I-72
Zhao, Hui II-697
Zhao, Jiashu I-722
Zhao, Lei I-137, I-191, I-207, III-85, III-149
Zhao, Long I-459
Zhao, Mengchen III-389
Zhao, Pengpeng I-191, III-85
Zhao, Rongqian III-430
Zhao, Wayne Xin I-38
Zhao, Weibin II-216
Zhao, Wendy III-481
Zhao, Xiang I-441
Zhao, Yan III-281

764 Author Index

Zhao, Yue I-682
Zhao, Yuhai I-459
Zheng, Bo III-509
Zheng, Gang III-331
Zheng, Hai-Tao I-632
Zheng, Shengan I-341
Zheng, Wei II-85
Zheng, Yefeng II-631
Zheng, Yin I-632
Zheng, Yu II-656
Zhou, Aoying I-293, I-309
Zhou, Fang II-506, II-689
Zhou, Haolin II-3
Zhou, Jinhua III-430
Zhou, Jinya II-272
Zhou, Rui II-472
Zhou, Shanlin III-101
Zhou, Wei I-615
Zhou, Xiangdong II-375
Zhou, Xin II-232

Zhou, Zimu II-606
Zhu, Rui I-3, III-247
Zhu, Shishun III-468
Zhu, Shixuan II-150
Zhu, Wenwu III-481
Zhu, Xian I-615
Zhu, Yangyong III-314
Zhu, Yanmin II-53
Zhu, Yao II-697
Zhu, Ying III-255
Zhu, Yongchun II-166
Zhu, Zhihua I-722
Zhuang, Fuzhen II-166
Zong, Weixian II-506
Zong, Xiaoning II-315
Zou, Beiqi III-85
Zou, Bo III-425
Zou, Chengming II-332
Zou, Lixin I-722

	 General Chairs’ Preface
	 Program Chairs’ Preface
	 Organization
	 Contents – Part I
	 Contents – Part II
	 Contents – Part III
	Database Queries
	Approximate Continuous Top-K Queries over Memory Limitation-Based Streaming Data
	1 Introduction
	2 Preliminary
	2.1 Related Works
	2.2 Problem Definition
	2.3 The Algorithm S-Merge

	3 The Framework -TOPK
	3.1 The -MSET
	3.2 The Incremental Maintenance Algorithms
	3.3 The Optimization Incremental Maintenance Algorithms

	4 The Experiment
	4.1 Experiment Settings
	4.2 The Performance Evaluation

	5 Conclusion
	References

	Cross-Model Conjunctive Queries over Relation and Tree-Structured Data
	1 Introduction
	2 Preliminary
	3 Approach
	3.1 Tree and Relational Data Representation
	3.2 Challenges
	3.3 Cross-Model Join (CMJoin) Algorithm

	4 Evaluation
	4.1 Evaluation Setup

	5 Related Work
	6 Conclusion and Future Work
	References

	Leveraging Search History for Improving Person-Job Fit
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 The Proposed Approach
	4.1 Text Matching Component
	4.2 Intention Modeling Component
	4.3 Prediction and Optimization

	5 Experiments
	5.1 Experimental Setup
	5.2 The Overall Comparison
	5.3 Evaluation in Different Skill Groups
	5.4 Ablation Study
	5.5 Performance Tuning
	5.6 Qualitative Analysis

	6 Conclusion
	References

	Efficient In-Memory Evaluation of Reachability Graph Pattern Queries on Data Graphs
	1 Introduction
	2 Preliminaries and Problem Definition
	3 Query Reachability Graph
	4 A Graph Traversal Filtering Algorithm
	5 A Join-Based Query Occurrence Enumeration Algorithm
	6 Experimental Evaluation
	6.1 Setup
	6.2 Performance Results
	6.3 Comparison with Graph DB Systems

	7 Related Work
	8 Conclusion
	References

	Revisiting Approximate Query Processing and Bootstrap Error Estimation on GPU
	1 Introduction
	2 Preliminary
	2.1 AQP and Bootstrap
	2.2 Two Approximate Query Processing Models with GPU

	3 AQP and Bootstrap-Based Error Estimation on GPU
	3.1 Coprocessor Model
	3.2 Main Processor Model

	4 Advanced Optimization
	4.1 One-Step Calculation
	4.2 Count Sampling
	4.3 One-Time Hashtable Building

	5 Experiments
	5.1 Experiment Setup
	5.2 Performance Comparison
	5.3 Factor Analysis

	6 Related Work
	7 Conclusion
	References

	-join: Efficient Join with Versioned Dimension Tables
	1 Introduction
	2 Join with Multiple Versions of Dimension Tables
	3 The -join Operator
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Learning-Based Optimization for Online Approximate Query Processing
	1 Introduction
	2 Approximate Query Optimization
	3 Deep Learning-Based Error Prediction Model
	4 Experiment
	5 Related Work
	6 Conclusion
	References

	Knowledge Bases
	Triple-as-Node Knowledge Graph and Its Embeddings
	1 Introduction
	2 Related Work
	2.1 KGE Datasets
	2.2 KGE Techniques
	2.3 Event KGs and Representations

	3 Problem Formulation
	4 Our Model
	4.1 E-E Prediction Learning
	4.2 F-E Prediction Learning
	4.3 Q-E Prediction Learning

	5 Dataset
	5.1 Dataset Construction
	5.2 Conversion Strategies

	6 Experiments
	6.1 Experimental Setup
	6.2 Link Prediction Results
	6.3 Analysis
	6.4 Case Study

	7 Conclusion
	References

	LeKAN: Extracting Long-tail Relations via Layer-Enhanced Knowledge-Aggregation Networks
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Framework
	3.2 Instance Encoder
	3.3 Distributed Relational Representation via Transfer Learning
	3.4 LKATT

	4 Experiments
	4.1 Experimental Setting
	4.2 Overview of the Evaluation Results
	4.3 Ablation Study
	4.4 Visualization of Class Embeddings

	5 Conclusion
	References

	TRHyTE: Temporal Knowledge Graph Embedding Based on Temporal-Relational Hyperplanes
	1 Introduction
	2 Notations
	3 Our Model
	3.1 Temporal-Relational Hyperplane Projection
	3.2 Evolving Modeling
	3.3 Dynamic Negative Sampling
	3.4 Expand-and-Best-Merge Strategy (Testing phase)

	4 Experiments
	4.1 Experimental Setup
	4.2 Results and Analysis
	4.3 Ablation Study and Case Study

	5 Related Work
	5.1 Static Knowledge Graph Embedding
	5.2 Temporal Knowledge Graph Embedding

	6 Conclusion
	References

	ExKGR: Explainable Multi-hop Reasoning for Evolving Knowledge Graph
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Framework of ExKGR
	3.2 Emerging Entities Encoder
	3.3 Dynamic Reward
	3.4 Action Pruning

	4 Experiments
	4.1 Setup
	4.2 Link Prediction Results
	4.3 Ablation Study and Analysis
	4.4 Qualitative Analysis

	5 Conclusion
	References

	Improving Core Path Reasoning for the Weakly Supervised Knowledge Base Question Answering
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Question Encoding and Path Encoding Module
	3.2 Alignment Module with Two-Stage Learning Strategy

	4 Experiment
	4.1 Experimental Setup
	4.2 Results and Analysis

	5 Conclusion
	References

	Counterfactual-Guided and Curiosity-Driven Multi-hop Reasoning over Knowledge Graph
	1 Introduction
	2 Problem Formulation
	3 Methodology
	3.1 Path Semantic-Aware Relation Reasoner
	3.2 Construct Counterfactuals to Give Soft Rewards
	3.3 Intrinsic Curiosity Reward
	3.4 Optimization and Training

	4 Experiments
	5 Conclusion
	References

	Visualizable or Non-visualizable? Exploring the Visualizability of Concepts in Multi-modal Knowledge Graph
	1 Introduction
	2 Methodology
	2.1 Multi-modal Visualizable Concept Classifier
	2.2 Training Under PU Setting

	3 Experiment
	3.1 Datasets and Settings
	3.2 Main Results
	3.3 Ablation Study

	4 Related Work
	5 Conclusion
	References

	Spatio-Temporal Data
	JS-STDGN: A Spatial-Temporal Dynamic Graph Network Using JS-Graph for Traffic Prediction
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Architecture Overview
	4.2 JS-Graph Convolution Network
	4.3 Dynamic Graph Attention Network
	4.4 Spatial Gated Fusion
	4.5 Temporal Module
	4.6 Other Components

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Experimental Setup
	5.4 Experimental Results
	5.5 Study on JS-Graph
	5.6 Effectiveness of Each Component
	5.7 Case Study

	6 Conclusions
	References

	When Multitask Learning Make a Difference: Spatio-Temporal Joint Prediction for Cellular Trajectories
	1 Introduction
	2 Related Work
	2.1 Trajectory Prediction
	2.2 Multitask Learning

	3 Problem Definition
	4 Our Model
	4.1 Overview of IAMT
	4.2 Embedding Layer
	4.3 Self-attention Layer
	4.4 Gating Layer
	4.5 Prediction Layer
	4.6 Loss Layer

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Parameter Setup and Metrics
	5.4 Comparisons of Performance

	6 Conclusion
	References

	Efficient Retrieval of Top-k Weighted Spatial Triangles
	1 Introduction
	2 Preliminary
	3 Our Solution
	4 Experiment
	5 Conclusion
	References

	DIOT: Detecting Implicit Obstacles from Trajectories
	1 Introduction
	2 Problem Formulation
	2.1 Basic Definitions
	2.2 Distance Function
	2.3 Density Function
	2.4 Obstacle Detection

	3 DIOT
	3.1 The Basic Framework
	3.2 Optimizations

	4 Experiments
	4.1 Quantitative Analysis
	4.2 Case Studies

	5 Conclusions
	References

	Exploring Sub-skeleton Trajectories for Interpretable Recognition of Sign Language
	1 Introduction
	2 Setup and Problem Definition
	3 Mining Sub-skeleton Features
	4 Experimental Setup and Results
	5 Conclusion
	References

	Significant Engagement Community Search on Temporal Networks
	1 Introduction
	2 Related Work
	3 Significant Engagement Community Search
	4 The Top-Down Greedy Peeling Algorithm
	5 The Bottom-Up Local Search Algorithm
	6 Experimental Evaluation
	7 Conclusion
	References

	Influence Computation for Indoor Spatial Objects
	1 Introduction
	2 Related Work
	2.1 Outdoor Techniques
	2.2 Indoor Techniques

	3 Preliminaries
	3.1 Problem Definition
	3.2 Observation

	4 IRV Algorithm
	4.1 Solution Overview
	4.2 Pruning Algorithm
	4.3 Verification Algorithm

	5 Experimental
	5.1 Experimental Settings
	5.2 Experiment Results

	6 Conclusion
	References

	A Localization System for GPS-free Navigation Scenarios
	1 Introduction
	2 System Overview
	3 System Deployment
	References

	Systems
	HEM: A Hardware-Aware Event Matching Algorithm for Content-Based Pub/Sub Systems
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Design
	4.1 Overview
	4.2 Data Structure of HEM
	4.3 Matching Procedure of HEM

	5 Theoretical Analysis
	5.1 Complexity Analysis
	5.2 Performance Analysis

	6 Experiments
	6.1 Setup
	6.2 Verification Experiments
	6.3 Metric Experiments
	6.4 Maintainability

	7 Conclusion
	References

	RotorcRaft: Scalable Follower-Driven Raft on RDMA
	1 Introduction
	2 Preliminary
	2.1 RDMA Network
	2.2 Intel Optane DCPMM
	2.3 Related Works

	3 RotorcRaft Overview
	4 Follower-Driven Log Replication
	4.1 The Structure of mList
	4.2 Mechanism of Follower-Driven Log Replication
	4.3 Log Chase
	4.4 Log Replication RPC

	5 Quorum Follower Read
	5.1 Mechanism of Quorum Follower Read
	5.2 Follower Read RPC

	6 Communication Complexity
	7 Evaluation
	7.1 Experimental Setup
	7.2 Overview Performance
	7.3 Log Replication Performance
	7.4 Follow Read Performance
	7.5 Scalability

	8 Conclusion
	References

	Efficient Matrix Computation for SGD-Based Algorithms on Apache Spark
	1 Introduction
	2 Motivation
	2.1 Motivation for Sampling-Aware Data Loading
	2.2 Motivation for Sampling-Aware Data Partition

	3 Sampling-Aware Data Loading
	3.1 Amount of Redundant IO
	3.2 Fine-Grained Data Loading

	4 Sampling-Aware Data Partition
	4.1 Hash Partition
	4.2 Semantic-Based Partition

	5 System Implementation
	6 Experimental Studies
	6.1 Experimental Setting
	6.2 Efficiency of Fine-Grained Data Loading
	6.3 Efficiency of Semantic-Bases Partition Scheme

	7 Related Work
	8 Conclusion
	References

	Parallel Pivoted Subgraph Filtering with Partial Coding Trees on GPU
	1 Introduction
	2 Partial Coding Tree
	3 Partial Adjacency Matrix
	4 Experimental Results
	4.1 Effect of K
	4.2 Comparison with GpSM

	5 Related Work
	6 Conclusion
	References

	TxChain: Scaling Sharded Decentralized Ledger via Chained Transaction Sequences
	1 Introduction
	2 System Overview and Problem Definition
	2.1 System Model
	2.2 Transaction Model
	2.3 Problem Definition

	3 Consensus Mechanism in TxChain
	3.1 Prerequisites of Transaction Execution
	3.2 Transaction Sequence Conversion Algorithm

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Throughput Scalability and Transaction Latency of TxChain

	5 Conclusion
	References

	Zebra: An Efficient, RDMA-Enabled Distributed Persistent Memory File System
	1 Introduction
	2 The Zebra System
	2.1 Design
	2.2 An Adaptive Replication Transmission Protocol
	2.3 Multithreaded RDMA Transmission

	3 Evaluation
	3.1 Setup
	3.2 Sensitivity to I/O Size
	3.3 Concurrency
	3.4 Scalability

	4 Conclusion
	References

	Data Security
	ADAPT: Adversarial Domain Adaptation with Purifier Training for Cross-Domain Credit Risk Forecasting
	1 Introduction
	2 Related Work
	2.1 Domain Adaptation
	2.2 Credit Risk Forecasting
	2.3 Class-Imbalance

	3 Business Setting and Problem Statement
	3.1 Business Setting
	3.2 Problem Statement

	4 The Proposed Model
	4.1 The Model
	4.2 Multi-source Adversarial Domain Adaptation
	4.3 The Training Method

	5 Experiments
	5.1 Dataset
	5.2 Baselines and Compared Methods
	5.3 Implementation Details
	5.4 Main Results in the CRF Task
	5.5 Ablation Test
	5.6 Result Visualization

	6 Conclusion
	References

	Poisoning Attacks on Fair Machine Learning
	1 Introduction
	2 Background
	2.1 Fair Machine Learning
	2.2 Data Poisoning Attack

	3 Data Poisoning Attack on FML
	3.1 Problem Formulation
	3.2 Convex Relaxation of Fairness Constraint
	3.3 Attack Algorithm

	4 Experiments
	4.1 Evaluation of PFML with Equalized Odds
	4.2 Evaluation of PFML with Demographic Parity
	4.3 Sensitivity Analysis of Hyperparameters
	4.4 Significance Testing
	4.5 Summarized Results of Adult Dataset

	5 Related Work
	6 Conclusions and Future Work
	References

	Bi-Level Selection via Meta Gradient for Graph-Based Fraud Detection
	1 Introduction
	2 Methodology
	2.1 Instance-level Node Selection
	2.2 Neighborhood-level Node Selection

	3 Experiments
	3.1 Experimental Setup
	3.2 Overall Evaluation (RQ1)
	3.3 Comparison with Imbalanced Learning Methods (RQ2)
	3.4 Ablation Study (RQ3)

	4 Related Work
	5 Conclusion
	References

	Contrastive Learning for Insider Threat Detection
	1 Introduction
	2 Related Work
	3 Framework
	3.1 Self-supervised Pre-training Component
	3.2 Supervised Fine Tuning Component

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion
	References

	Metadata Privacy Preservation for Blockchain-Based Healthcare Systems
	1 Introduction
	2 Problem Formulation
	3 The Proposed Scheme
	3.1 Overview
	3.2 Construction of Our Scheme
	3.3 Security and Privacy Analysis

	4 Conclusion and Future Works
	References

	Blockchain-Based Encrypted Image Storage and Search in Cloud Computing
	1 Introduction
	2 Related Work
	3 Proposed System
	4 Theoretical Analysis
	5 Performance Evaluations
	6 Conclusion
	References

	Applications of Algorithms
	Improving Information Cascade Modeling by Social Topology and Dual Role User Dependency
	1 Introduction
	2 Related Work
	2.1 Diffusion Path Based Methods
	2.2 Topological-Based Diffusion Model

	3 Methodology
	3.1 Problem Definition
	3.2 Model Framework
	3.3 Embedding Preparation
	3.4 Two-Level Attention Networks
	3.5 Prediction and Optimization

	4 Experiments
	4.1 Datasets and Baselines
	4.2 Experiment Settings
	4.3 Results and Analysis

	5 Conclusion
	References

	Discovering Bursting Patterns over Streaming Graphs
	1 Introduction
	2 Preliminaries
	3 The Baseline Solution
	4 A New Approach
	4.1 Problem Analysis
	4.2 The Progressive Algorithm Framework
	4.3 Mapping Subgraphs to Sequences
	4.4 Optimization: Edge Sampling

	5 Experiments
	5.1 Experiments on Different Datasets
	5.2 Experiments on Varying Memory
	5.3 Experiments on Varying Parameters

	6 Related Work
	7 Conclusion
	References

	Mining Negative Sequential Rules from Negative Sequential Patterns
	1 Introduction
	2 Related Work
	2.1 NSP Mining
	2.2 Sequential Rule Mining
	2.3 NSR Mining

	3 Preliminaries
	3.1 Positive Sequential Patterns
	3.2 Negative Sequential Patterns

	4 The nspRule Algorithm
	4.1 Review of e-NSP Algorithm
	4.2 The Steps of the nspRule Algorithm
	4.3 Algorithm Pseudocode
	4.4 Analysis of the Time Complexity

	5 Experiment with the nspRule Algorithm
	5.1 Experiment to Assess the Influence of min_sup
	5.2 Experiment to Assess the Influence of min_nor_conf
	5.3 Experiment to Assess the Influence of |S|

	6 Conclusion
	References

	CrossIndex: Memory-Friendly and Session-Aware Index for Supporting Crossfilter in Interactive Data Exploration
	1 Introduction
	2 Preliminaries
	2.1 Characterizing Workloads
	2.2 Problem Statement

	3 Accelerating Crossfilter by CrossIndex
	3.1 CrossIndex Construction
	3.2 Crossfilter-Style Query Processing
	3.3 Optimization for Crossfilter Workloads

	4 Experiments
	4.1 Setup
	4.2 Query Performance
	4.3 Offline Cost
	4.4 Effect of Construction Order

	5 Related Work
	6 Discussion
	7 Conclusion
	References

	GHStore: A High Performance Global Hash Based Key-Value Store
	1 Introduction
	2 Background and Motivation
	2.1 Log-Structured Merge Tree
	2.2 Motivation

	3 GHStore Design
	3.1 Global Segmented Hashmap(GHmap)
	3.2 GHStore Optimization
	3.3 Efficient GHStore Operations
	3.4 Crash Consistency

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Comparison
	4.3 YCSB Workloads
	4.4 Performance on SSD
	4.5 GHmap Strengths
	4.6 Memory Consumption

	5 Related Works
	6 Conclusion
	References

	Hierarchical Bitmap Indexing for Range Queries on Multidimensional Arrays
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Array Data Model
	3.2 Distributed Arrays
	3.3 Bitmap Indexing

	4 Hierarchical Bitmap Array Index
	4.1 Partitioning of Arrays
	4.2 Structure of the Array Chunk Index
	4.3 Construction of the Hierarchical Bitmap Array Index
	4.4 Bin Boundaries Merging in Parent Nodes
	4.5 Double Range Encoding of Bitmap Indices in Internal Nodes
	4.6 Locality of the Hierarchical Index

	5 Querying Dimensions and Attributes
	5.1 Attribute Based Matches
	5.2 Dimension Based Matches
	5.3 Partial and Complete Matches
	5.4 Implementation and Fastbit Integration

	6 Experimental Evaluation
	6.1 Datasets
	6.2 Bitmap Indexing Methods
	6.3 Range Queries

	7 Conclusions and Future Work
	References

	Membership Algorithm for Single-Occurrence Regular Expressions with Shuffle and Counting
	1 Introduction
	2 Preliminaries
	2.1 SOREs, SOREFCs, MDS and MDC

	3 Single-Occurrence Finite Automata with Shuffles and Counters
	3.1 Shuffle Markers, Counters and Update Instructions
	3.2 Single-Occurrence Finite Automata with Shuffles and Counters

	4 Membership Algorithm for SOREFC
	5 Experiments
	6 Conclusion
	References

	(p, n)-core: Core Decomposition in Signed Networks
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Algorithms
	4.1 Follower-Based Algorithm (FA)
	4.2 Disgruntled Follower-Based Algorithm (DFA)

	5 Experiments
	6 Conclusion
	References

	TROP: Task Ranking Optimization Problem on Crowdsourcing Service Platform
	1 Introduction
	2 Problem Statement
	3 Offline Task Ranking Optimization
	4 Online Task Ranking Optimization
	5 Experiments
	5.1 The Effectiveness of CTR Vector Prediction
	5.2 Performance Comparison

	6 Conclusion
	References

	HATree: A Hotness-Aware Tree Index with In-Node Hotspot Cache for NVM/DRAM-Based Hybrid Memory Architecture
	1 Introduction
	2 Related Work
	3 Hotness-Aware B+-tree
	3.1 Index Structure of HATree
	3.2 Hotspot Identification
	3.3 Operations of HATree

	4 Performance Evaluation
	4.1 Search Performance
	4.2 Updating Performance

	5 Conclusions and Future Work
	References

	A Novel Null-Invariant Temporal Measure to Discover Partial Periodic Patterns in Non-uniform Temporal Databases
	1 Introduction
	2 Related Work
	3 Proposed Model
	4 Generalized Partial Periodic Pattern-Growth (G3P-Growth)
	5 Experimental Evaluation
	6 Conclusions and Future Work
	References

	Utilizing Expert Knowledge and Contextual Information for Sample-Limited Causal Graph Construction
	1 Introduction
	2 Preliminaries and Task Definition
	3 Methodology
	3.1 Phase 1: PU Causal Classifier
	3.2 Phase 2: SEM with Subgraphs

	4 Experiment
	4.1 Experimental Setups
	4.2 Experimental Results

	5 Conclusion
	References

	A Two-Phase Approach for Recognizing Tables with Complex Structures
	1 Introduction
	2 The T2 Framework
	2.1 Phase One: Prime Relation Generation
	2.2 Phase Two: Graph-Based Alignment Model

	3 Experiments
	3.1 Experimental Setup
	3.2 Evaluation
	3.3 Ablation Study

	4 Conclusion
	References

	Towards Unification of Statistical Reasoning, OLAP and Association Rule Mining: Semantics and Pragmatics
	1 Introduction
	2 Semantic Mapping Between SR and ARM
	2.1 Semantic Mapping Between Association Rule Mining and SR (Probability Theory)
	2.2 Formal Mapping of ARM Support and Confidence to Probability Theory

	3 Semantic Mapping Between SR and OLAP
	3.1 Semantic Mapping Between OLAP Averages and SR

	4 Conclusion
	References

	A Dynamic Heterogeneous Graph Perception Network with Time-Based Mini-Batch for Information Diffusion Prediction
	1 Introduction
	2 Related Work
	2.1 Diffusion Path Based Methods
	2.2 Social Graph Based Methods

	3 Problem Definition
	4 Method
	4.1 Heterogeneous Graph Construction
	4.2 Graph Perception Network (GPN)
	4.3 User Dynamic Preferences Based on Mini-Batch
	4.4 Dependency-Aware User Embedding
	4.5 Fusion Gate

	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Conclusion
	References

	Graphs
	Cascade-Enhanced Graph Convolutional Network for Information Diffusion Prediction
	1 Introduction
	2 Related Work
	2.1 Information Diffusion Prediction
	2.2 Graph Neural Networks

	3 Problem Statement
	4 The Proposed Model
	4.1 Cascade-Aware Embedding
	4.2 Cascade-Specific Aggregator
	4.3 Diffusion Prediction

	5 Experimental Setups
	5.1 Datasets
	5.2 Comparison Methods
	5.3 Evaluation Metrics
	5.4 Parameter Settings

	6 Results and Analysis
	6.1 Experimental Results
	6.2 Ablation Study
	6.3 Parameter Analysis
	6.4 Further Study

	7 Conclusion
	References

	Diversify Search Results Through Graph Attentive Document Interaction
	1 Introduction
	2 Related Work
	2.1 Search Result Diversification
	2.2 Graph in Search Result Diversification

	3 Proposed Model
	3.1 Problem Definition
	3.2 Architecture
	3.3 Diversity Scoring
	3.4 Optimization and Ranking

	4 Experimental Settings
	4.1 Data Collections
	4.2 Evaluation Metrics
	4.3 Baseline Models
	4.4 Implementation Details

	5 Experimental Results
	5.1 Overall Results
	5.2 Discussion and Ablation Study

	6 Conclusion
	References

	On Glocal Explainability of Graph Neural Networks
	1 Introduction
	2 Related Work
	2.1 Local Explanation of GNNs
	2.2 Global Explanation of GNNs

	3 On the Perspective of Generality
	3.1 Counterfactual Qualification
	3.2 Candidate Generation
	3.3 Mining Strategy

	4 On the Perspective of Faithfulness
	5 The Proposed Glocal-Explainer
	6 Experimental Evaluation
	6.1 Datasets and Experimental Setup
	6.2 Compared Method
	6.3 Candidate Mining Algorithm
	6.4 Result and Discussion

	7 Conclusion
	References

	Temporal Network Embedding with Motif Structural Features
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 The Proposed MSTNE Framework
	4.1 Neighbor Node Sampling Method Based on the Temporal Motif
	4.2 Impact Factor Measure of Temporal Triad
	4.3 Attention Mechanisms for Triad with Different Structural Identity and Temporal Relationship
	4.4 Loss Function

	5 Experimental Results
	5.1 Datasets
	5.2 Comparison Approaches
	5.3 Parameter Settings
	5.4 Performance Evaluation
	5.5 Desigination of Parameters

	6 Conclusion
	References

	Learning Robust Representation Through Graph Adversarial Contrastive Learning
	1 Introduction
	2 Methodologies
	2.1 Graph Adversarial Attack
	2.2 Graph Adversarial Contrastive Learning Framework

	3 Theoretical Analysis on Graph Adversarial Contrastive Learning
	3.1 Information Bottleneck Principle for Graph Self-supervised Learning
	3.2 Generation of Supervised Graph Adversarial Augmentations
	3.3 Generation of Unsupervised Graph Adversarial Augmentations

	4 Experiments
	4.1 Experimental Settings
	4.2 Robustness Evaluation Under Netattack
	4.3 Robustness Evaluation Under Metattack
	4.4 Perturbation Rate Sensitivity for Adversarial Samples

	5 Related Work
	5.1 Adversarial Attack and Defense on Graph Data
	5.2 Self-supervised Graph Representation Learning

	6 Conclusion and Discussion
	References

	What Affects the Performance of Models? Sensitivity Analysis of Knowledge Graph Embedding
	1 Introduction
	2 Preliminaries: Knowledge Graph Embedding
	2.1 General Architecture
	2.2 KGE Models

	3 A Unified Knowledge Graph Embedding Framework
	3.1 Abelian Group and Metric Space
	3.2 Group Representation of KGE Models
	3.3 Model Transformation and Unification

	4 Influencing Factors of Knowledge Graph Models
	4.1 Dataset Structural Features
	4.2 Embedding Algorithm
	4.3 Model Training

	5 Sensitivity Analysis of the Influencing Factors in KGE Models
	5.1 Experimental Settings
	5.2 Sensitivity Analysis of Dataset Structural Features
	5.3 Sensitivity Analysis of KGE Model Architecture
	5.4 Sensitivity Analysis of Model Training Strategies

	6 Conclusion
	References

	CollaborateCas: Popularity Prediction of Information Cascades Based on Collaborative Graph Attention Networks
	1 Introduction
	2 Problem Formulation
	3 Methodology
	3.1 Heterogeneous Bipartite Graph Learning
	3.2 Homogeneous Cascade Graph Learning
	3.3 Cascade Prediction and Loss Function

	4 Evaluation
	4.1 Baselines
	4.2 Performance Comparison

	5 Conclusion
	References

	Contrastive Disentangled Graph Convolutional Network for Weakly-Supervised Classification
	1 Introduction
	2 The Proposed Model
	2.1 Preliminaries
	2.2 Neighborhood Routing Module
	2.3 Factor Enhancing Module
	2.4 Model Optimization

	3 Experiment Evaluation
	3.1 Performance Analysis

	4 Conclusion
	References

	CSGNN: Improving Graph Neural Networks with Contrastive Semi-supervised Learning
	1 Introduction
	2 Related Works
	3 Overview
	4 Teacher Model with Contrastive Learning
	5 Student Model with Reliable Distillation
	5.1 Label Reliability Based on Shannon Entropy
	5.2 Model Training

	6 Experiments
	6.1 Experiment Setting
	6.2 Semi-supervised Classification
	6.3 Ablation Study

	7 Conclusion
	References

	IncreGNN: Incremental Graph Neural Network Learning by Considering Node and Parameter Importance
	1 Introduction
	2 Related Work
	3 Overview of IncreGNN
	4 Experience Replay and Regularization Strategy
	4.1 Experience Replay Strategy Based on Node Importance
	4.2 Regularization Strategy Based on Parameter Importance

	5 Experiments
	5.1 Experiment Setup
	5.2 Experimental Results

	6 Conclusion
	References

	Representation Learning in Heterogeneous Information Networks Based on Hyper Adjacency Matrix
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Method
	4.1 Overall Framework
	4.2 Node-Level Adjacency Matrix
	4.3 Semantic-Level Adjacency Matrix
	4.4 Weighted Multi-channel Graph Convolutional Networks

	5 Experiment
	5.1 Datasets
	5.2 Baselines
	5.3 Node Classification
	5.4 Ablation Study

	6 Conclusion
	References

	Author Index

