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9.1  Introduction

Though the diagnosis of neurodegenerative dis-
eases is mainly based on clinical criteria, neuro-
imaging in nuclear medicine plays important 
supportive roles in diagnosis and differential 
diagnosis of neurodegenerative diseases and pre-

diction of disease progression [1, 2]. Different 
from magnetic resonance imaging (MRI) depen-
dent on morphological changes of cortical and 
subcortical structures, positron emission tomog-
raphy/computed tomography (PET/CT) provides 
quantitative evaluation of functional or molecular 
changes related to metabolism, proteinopathy, 
enzyme expression, transporter, or receptor. In 
addition to visual analysis, quantitative image 
analysis is essential to investigate clinical signifi-
cance of neuroimaging. Of them, voxel-based 
analysis and region-of-interest (ROI) or volume- 
of- interest (VOI) analysis are widely used for 
comparison between control (or normal) and 
patient groups. Statistical parametric mapping 
(SPM) is the most popular voxel-based approach, 
which demonstrates areas of the brain with a sig-
nificant difference between normal controls and 
patients [3, 4]. ROI or VOI-based image analysis 
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performs the calculation in the pixels of each ROI 
or VOI. Manual, semi-automatic, and automatic 
method can be used to draw a region or volume. 
Although accurate, manual drawing is time- 
consuming, operator dependent, and less repro-
ducible. On the contrary, accurate region 
segmentation by automatic drawing should be 
guaranteed in each patient for robustness and 
reliability of data analysis.

Different from traditional image analysis, 
machine learning as a subset of the artificial intel-
ligence finds patterns through big data. Based on 
the training data, it builds a mathematical model 
to make prediction. A learning method can be 
unsupervised, semi-supervised, or supervised. 
Supervised learning requires labeled data to find 
the pattern, whereas unsupervised learning uses 
unlabeled data and semi-supervised learning 
needs a small labeled data and a large unlabeled 
data. Machine learning is trained using a large 
number of input data with high reproducibility to 
extract the feature of clinical significance. After 
extraction, feature selection removes unneces-
sary features to reduce the training time and the 
possibility of overfitting, and avoid the dimen-
sionality issues. Then, a classifier algorithm such 
as support vector machine, random forest, or arti-
ficial neural network is performed to map the fea-
ture for the classification of disease.

As a part of the machine learning, deep learn-
ing is consisted of the artificial neural networks 
with multiple convolutional layers and nodes. 
Unlike traditional machine learning, deep learn-
ing performs the feature extraction and learning 
by itself. For the feature extraction and transfor-
mation, the techniques of deep learning are based 
on a cascade of multiple layers of nonlinear pro-
cessing units. High-quality data and labels are 
most important to train and test the deep learning 
models. Dataset is typically composed of train-
ing, validation, and test set. The training data are 
used to train a network that loss function calcu-
lates the loss values in the forward propagation 
and learnable parameters are updated via back-
propagation. The validation data are to fine-tune 
hyper-parameters and the test data to evaluate the 
performance of the model. This chapter will 
focus on artificial intelligence used for neuroim-

aging in nuclear medicine including classifica-
tion of diseases, segmentation of ROI or VOI, 
denoising, image reconstruction, and low-dose 
imaging.

9.2  Classification

9.2.1  Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative 
disease characterized by a decline in cognitive 
function. It mostly affects older people so that the 
prevalence of AD is increasing with the growth of 
the elderly population. Early diagnosis of AD 
before the symptoms become severe is of utmost 
clinical importance since it may provide opportu-
nities for effective treatment. 18F-FDG PET/CT is 
one of the most useful modalities to support the 
clinical diagnosis of dementia including AD.  It 
shows changes in glucose metabolism of the 
brain over various disease entities related to 
dementia with high sensitivity and specificity. In 
patients with AD, the reduction of glucose metab-
olism is expected stating from the mesial tempo-
ral to posterior cingulate cortex (PCC), lateral 
temporal, inferior parietal, and prefrontal regions 
to help diagnose [5].

Deep learning methods have been studied for 
the evaluation of patients with AD. Several auto- 
encoders with multi-layered neural network to 
combine multimodal features were applied for 
AD classification [6]. In a study with a stacked 
auto-encoder to extract high-level features of 
multimodal ROI and an SVM classifier, the pro-
posed method was 95.9%, 85.0%, and 75.8% 
accurate for AD, MCI, and MCI-converter diag-
nosis, respectively, using the ADNI dataset [7]. 
Recently, CNN methods with 2D or 3D volume 
data of PET/CT or MRI scans were applied for 
AD classification [8–11]. In 2D CNN models, the 
features from the specific slices of axial, coronal, 
and sagittal scans were concatenated and used for 
AD classification. Using MRI volume data, skull 
stripping and gray matter segmentation were per-
formed and the slices with gray matter informa-
tion were used as CNN model input. Compared 
to 2D CNN models, studies have used 3D volume 
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data with promising results. Using the 
Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) MRI dataset without skull-stripping pre-
processing, Hosseini-Asl et  al. built a deep 3D 
Convolutional Neural Network (3D-CNN) upon 
a convolutional auto-encoder, which was pre- 
trained to capture anatomical shape variations in 
structural brain MRI scans for source domain [8]. 
Then, fully connected upper layers of the 
3D-CNN were fine-tuned for each task-specific 
AD classification in target domain. The proposed 
3D deeply supervised adaptable CNN outper-
formed several proposed approaches, including 
3D-CNN model, other CNN-based methods, and 
conventional classifiers by accuracy and robust-
ness. Liu et al. used cascaded convolutional neu-
ral networks (CNNs) to learn the multi-level and 
multimodal features of MRI and PET brain 
images for AD classification [10]. In the method, 
multiple deep 3D-CNNs were applied on differ-
ent local image patches to transform the local 
brain image into more compact high-level fea-
tures. Then, an upper high-level 2D-CNN fol-
lowed by softmax layer was cascaded to ensemble 
the high-level features and generate the latent 
multimodal correlation features for classification 
task. Finally, a fully connected layer followed by 
softmax layer combined these learned features 
for AD classification. Without image segmenta-
tion and rigid registration, the method could 
automatically learn the generic multi-level and 
multimodal features from multiple imaging 
modalities for classification. With ADNI MRI 
and PET dataset from 397 subjects including 93 
AD patients, 204 mild cognitive impairment 
(MCI, 76 MCI converters +128 MCI non- 
converters) and 100 normal controls (NC), the 
proposed method demonstrated promising per-
formance of an accuracy of 93.26% for classifi-
cation of AD vs. NC and 82.95% for classification 
MCI converters vs. NC.

Although studies have shown that various 
deep learning methods were effective for AD 
classification, the model performance of exter-
nal validation compared to the training dataset 
is an issue to be resolved. In fact, the qualities 
and properties of medical images could be 

affected by the image-acquisition environment 
including the imaging acquisition system, 
acquisition protocol, reconstruction method, 
etc. Therefore, there is a need for a model with 
enhanced generalization performance to 
improve clinical utility of a proposed method. In 
a recent study using FDG PET/CT, instead of 
3D volume data, slice- selective learning using a 
BEGAN-based model was constructed to solve 
the above (Fig. 9.1) [9]. The model was trained 
with an ADNI dataset, then performed external 
validation with their own dataset. A range was 
set to cover the most important AD-related 
regions and searched for the most appropriate 
slices for classification. The model learned the 
generalized features of AD and NC for external 
validation when appropriate slices were 
selected. The slice range that covered the PCC 
using double slices showed the best perfor-
mance. The accuracy, sensitivity, and specificity 
was 94.33%, 91.78%, and 97.06% using their 
own dataset and 94.82%, 92.11%, and 97.45% 
using the ADNI dataset. The performance on the 
two independent datasets showed no statistical 
difference. The study showed the feasibility of 
the model with consistent performance when 
tested using datasets acquired from a variety of 
image-acquisition environments.

Despite remarkable diagnostic accuracy of 
deep learning, the correlation between the fea-
tures extracted by deep learning model and dis-
eases is hard to explain. Several studies proposed 
the methods for solving this problem by provid-
ing the feature map and input data responsible for 
the result of prediction. Class activation map 
(CAM) has been widely used to understand 
where the deep learning model evaluate for 
classes and to explain how deep learning models 
predict the outputs [12–14]. Choi et al. demon-
strated that brain regions where the CNN model 
evaluated for AD with decreased cognitive func-
tion using CAM method, which can generate the 
heat map with the probability of AD [15]. 
However, CAM-based interpretation should be 
cautious because deep learning models may clas-
sify diseases by the regions that cannot be 
explained by the known knowledge.

9 Artificial Intelligence/Machine Learning in Nuclear Medicine
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9.2.2  Parkinson’s Disease

Parkinson’s disease (PD) is the second most com-
mon of neurodegenerative diseases which is 
mainly a movement disorder, such as resting 
tremor, bradykinesia, and rigidity [16, 17]. 
Alpha-synuclein aggregates, the primary PD 
pathology, are known to promote the dopaminer-
gic loss [18]. Although non-invasive direct PET 
imaging of alpha-synuclein aggregates in the 
brain is limited, the quantification of presynaptic 
transporters of the nigrostriatal dopaminergic 
neurons can be performed with PET and SPECT 
using either 18F or 123I N-(3-Fluoropropyl)-2β- 
carbon ethoxy-3β-(4-iodophenyl) Nortropane 
(FP-CIT) [19, 20]. Dopamine transporter (DAT) 
in PET/CT has been widely used for the early 
diagnosis of PD and the discrimination between 
PD and other diseases showing parkinsonism.

Machine learning has been applied to diag-
nose PD using DAT-SPECT or PET scan [21–27]. 
The extracted feature from deep learning meth-
ods has outstanding diagnostic results. However, 
the clinical correlation between disease and deep 
learning methods needs further explanation and 
verification since low-level features extracted 
from deep learning methods may not reflect the 
neuropathological heterogeneity of PD.  Shiiba 
et al. used semi-quantitative indicators and shape 
feature acquired on DAT-SPECT to train the 
model of machine learning for classification 
between PD and normal controls (NC) [28]. 
Striatum binding ratio (SBR) as semi- quantitative 
indicators and circularity index of shape were 
combined as a feature for machine learning. The 
performance of classification was significantly 
improved by using both SBR and circularity than 
by the one of SBR or circularity index (AUC for 
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SBR and circularity: 0.995, AUC for circularity 
only: 0.990, and AUC for SBR: 0.973).

FDG PET/CT is also actively used for the 
evaluation of patients with parkinsonism, espe-
cially for the differentiation between idiopathic 
PD and atypical parkinsonism [29]. Wu et  al. 
used support vector machine to classify PD 
patients and NC using radiomics features on  
18F- FDG PET [21]. The proposed method showed 
that the accuracy of classification between PD 
and NC was 90.97 ± 4.66% and 88.08 ± 5.27% in 
Huashan and Wuxi test sets, respectively. In addi-
tion, several studies showed that the deep learn-
ing methods were also effective for classification 
between PD patients and NC [30, 31]. Zhao et al. 
developed a 3D deep residual CNN for auto-
mated differential diagnosis of idiopathic PD 
(IPD) and atypical parkinsonism (APD) [30]. 
With dataset from 920 patients including 502 
IPD patients, 239 multiple system atrophy (MSA) 
patients, and 179 progressive supranuclear palsy 
(PSP) patients, the proposed method demon-
strated the performance of 97.7% sensitivity, 
94.1% specificity, 95.5% PPV, and 97.0% NPV 
for the classification of IPD, versus 96.8%, 
99.5%, 98.7%, and 98.7% for the classification of 
MSA, and 83.3%, 98.3%, 90.0%, and 97.8% for 
the classification of PSP, respectively.

9.3  Segmentation

Despite the sensitivity of PET/CT is usually 
much higher than conventional structural images 
such as CT of MRI, it is considered difficult to 
extract anatomical information from PET/CT 
images because they are not well-distinguishable 
from low-resolution images of PET/CT [32]. So 
far, there are limited studies to segment anatomi-
cal structures on PET images using deep learning 
methods, especially in the diseases related to the 
brain. A 3D U-net shaped CNN has been used to 
segment cerebral gliomas on F-18 fluoroethylty-
rosine (18F-FET) PET [33]. Of the deep learning 
methods, generative adversarial network (GAN) 
model received great attention due to the ability 
to generate data without explicitly modeling 
probability density functions. It has been applied 

to many tasks with excellent performance such as 
image-to-image translation, semantic segmenta-
tion, and resolution translation from low to high 
[34]. In particular, GAN models have been prom-
ising in the field of segmentation. Of the PET/CT 
studies, there is only one study applied pix2pix 
framework of GAN to segment normal white 
matter (WM) on 18F-FDG PET/CT [35]. The 
DSC of segmenting WM from 18F-FDG PET/CT 
was 0.82 on average. Despite the low resolution 
of 18F-FDG PET/CT, the results showed similar 
results compared to MRI [36, 37]. The study 
showed a feasibility of using 18F-FDG PET/CT in 
segmenting WM volumes.

In the WM, there are foci or areas called as 
white matter hyper-intensities (WMH) since they 
show increased signal intensity on T2-weighted 
fluid attenuated inversion recovery (FLAIR) on 
MRI.  Despite seen in healthy elderly subjects, 
WMH are associated with greater hippocampal 
atrophy in non-demented elderly and cognitive 
decline in patients with CI [38–40]. Therefore, 
MRI has been invaluable in the assessment of 
WMH [41]. As mentioned, 18F-FDG PET/CT is 
useful in assessing the glucose metabolism in the 
cortex or subcortical neurons. However, the low 
spatial resolution and low glucose metabolism 
have limited the evaluation of the WM and WMH 
on 18F-FDG PET/CT. In our group, we applied a 
GAN framework to segment WMH on 18F-FDG 
PET/CT (In Fig. 9.2, unpublished data). A data-
set of mild, moderate, and severe groups of WMH 
according to the Fazekas scoring system was 
used to train and test a deep learning model. 
Using WMH on FLAIR MRI as gold standard, a 
GAN method was used to segment WMH on 
MRI. The dice similarity coefficient (DSC) val-
ues were closely dependent on WMH volumes on 
MRI. With more than 60 mL of volume, the DSC 
values were above 0.7 with a mean value of 
0.751 ± 0.048. With a volume of 60 mL or less, 
the mean value of DSC was only 0.362 ± 0.263. 
For WMH volume estimation, GAN showed 
excellent correlation with WMH volume on MRI 
(r  =  0.998  in severe group, 0.983  in moderate 
group, and 0.908  in mild group). Although it is 
limited to evaluate WMH on 18F-FDG PET/CT 
by visual analysis, they are important vascular 
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component contributing to dementia. Our GAN 
method showed a feasibility to automatically seg-
ment and estimate volumes of WMH on 18F-FDG 
PET/CT which will increase values of 18F-FDG 
PET/CT in evaluating patients with CI.

9.4  Image Generation 
and Processing

Artificial intelligence in nuclear medicine is also 
widely used in image processing technology, 
such as image reconstruction and attenuation cor-
rection. For PET/MRI, attenuation correction by 
making pseudo CT images from MRI has com-
pared to CT-based methods [42–46]. In a method 
using Dixon sequence, PET activity in bone 
structure is underestimated in attenuation map 
[43, 44]. Despite many approaches, MR-based 
attenuation correction methods are considered 
lower performance than CT-based method for 
PET/CT.  Recently, deep learning methods have 
been applied to the attenuation correction for 
PET/MRI.  Hwang et  al. [47] proposed a deep 
learning-based whole-body PET/MRI attenua-
tion correction, which is more accurate than 
Dixon-based 4-segment method. The proposed 
deep learning method used activity and attenua-
tion maps estimated using the maximum- 
likelihood reconstruction of activity and 
attenuation (MLAA) algorithm as inputs to a 
CNN to learn a CT-derived attenuation map. The 
attenuation map generated from CNN showed 
better bone identification than MLAA and aver-

age DSC for bone region was 0.77, which was 
significantly higher than MLAA-derived attenua-
tion map (0.36). Liu et al. also demonstrated that 
deep learning approach to generate pseudo CT 
from MR image reduced PET reconstruction 
error compared to CT-based method [48]. With 
the retrospective T1-weighted MR images from 
40 subjects, deep convolutional auto-encoder 
(CAE) network was trained with 30 datasets and 
then evaluated in 10 dataset by comparing the 
generated pseudo CT to a ground-truth of CT 
scan. The results of this study showed that the 
DSC for air region of 0.97, soft tissue of 0.94, 
and bone of 0.80.

A generation of MRI from CT or CT from MRI 
has been performed by a lot of researchers, but 
very few studies have been carried out for the gen-
eration of MR images from PET/CT. Choi et al. 
[49] built GAN model, based on image-to- image 
translation, to generate MR images from florbeta-
pir PET images. The generated MR images are 
used for quantification of florbetapir PET and 
measured value was highly correlated with real 
MR-based quantification method. Although there 
was a high structural similarity of 0.91  ±  0.04 
between real MR image and generated MR image, 
the differentiation between gray and white matter 
was difficult and there was blurring of the detailed 
structures in the generated MR. In our group, cycle 
GAN based deep learning method was applied for 
generating FLAIR images from 18F-FDG PET/
CT. As shown in Fig. 9.3 (unpublished data), the 
generated FLAIR images from our method had 
excellent visual quality.

a b dc

Fig. 9.2 Deep learning-based, GAN, FLAIR image synthesized using PET/CT. 18F-FDG PET/CT (a), T2-weighted 
FLAIR image (b), predicted WMH volume (c), and manually segmented WMH volume (d)
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9.5  Low-Dose Imaging

High-quality PET images need a large number of 
gamma events either from high-dose injection or 
long scan time. Long scan time can result in 
patient motion artifacts and inconvenience, while 
high-dose administration increases radiation 
exposure to patients. To overcome these issues, 
the development of technology has concentrated 
on increasing the PET scanner sensitivity to 
detect a large number of coincidence events. A 
newer PET system with an axial field-of-view 
covering the whole body in a single bed position 
has shown a 40-fold improvement in effective 
sensitivity [50, 51]. In addition, numerous image 
reconstruction and noise reduction algorithm 
have improved spatial resolution and signal-to- 
noise ratio (SNR) of PET image [52, 53]. Ordered 
subset expectation maximization (OSEM) with 
modeling of the point spread function has been 
used to reconstruct gamma event for high- 
resolution PET imaging.

With deep learning method, convolutional 
neural network (CNN) models have been used to 
learn the relationship between full-dose and low- 
dose PET images [54–56]. Xu et  al. [56] pro-
posed a deep learning method, an encoder-decoder 
structure with concatenate skip connection with 
residual learning framework, to reduce dose of 
radioactive tracer in 18F-FDG PET imaging. They 

achieved significantly better performance com-
pared with reconstructed by denoising algorithms 
(nonlocal means, block-matching 3D, and auto- 
context network) from 0.005 of the standard 
dose.

Chen et al. [57] proposed a method to recon-
struct full-dose amyloid PET/MR using 
18F-florbetaben (18F-FBB) image from low-dose 
image. Compared with low-dose image, the syn-
thesized images using CNN model showed 
marked improvement on all quality metrics, such 
as peak signal-to-noise ratio (PSNR), structural 
similarity, and room mean square error (RMSE). 
In a visual reading of amyloid burden of synthe-
sized FBB image using CNN model, accuracy for 
amyloid status was 89%. In addition, the CNN 
model showed the smallest mean and variance 
for standardized uptake value ratio (SUVR) dif-
ference to full-dose images. Ouyang et  al. [58] 
also reported a generative adversarial network 
(GAN) model to reconstruct the full-dose PET 
image from low-dose image, which significantly 
outperformed Chen et al.’s method with the same 
input by 1.87 dB in PSNR, 2.04% in SSIM, and 
24.75% in RMSE.

In our group, a CNN model with a residual 
learning framework was applied for predicting 
full-time 18F-FBB PET/CT images from short- 
time scan of 1 to 5  min with excellent image 
quality (Fig. 9.4, unpublished data). In amyloid 

a b c

Fig. 9.3 Representative images of 18F-FDG PET/CT as an input to deep learning model (a), real FLAIR (b), and the 
generated FLAIR image by deep learning model (c) (unpublished data)
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imaging, amyloid positivity can be measured by 
quantitative analysis of SUVR, which were 
 normalized to the mean value in the cerebellar 
cortex. The results of our ROC analyses showed 
that the cut-off values for amyloid positivity 
deduced from the images predicted from the 
CNN models using low-dose images from 1 to 
5  min remained unchanged as compared with 
those obtained from the ground-truth images.

Scan time reduction using low-dose imaging 
has been tried for 18F-FDG PET/CT imaging. 
Kim et  al. [59] proposed that deep learning 
method to synthesize the PET images with high 
SNR acquired for typical scan durations from 

short scan time PET images with low SNR using 
deep learning with a concatenated connection 
and residual learning framework (Fig. 9.5). The 
list-mode PET data were formatted into 10, 30, 
60, and 120  s to investigate the effect of scan 
time on the quality of synthesized PET images. 
The PSNRs and NRMSEs of the synthesized 
18F- FDG PET images were significantly supe-
rior to those of the short scan images for all scan 
times. As the scan time increased from 10 to 
120 s, the PSNRs and NRMSEs of the synthe-
sized 18F- FDG PET images were improved by 
an average of 21.6  ±  3.8% and 47.0  ±  5.5%, 
respectively.

a bFig. 9.4 18F-FBB PET/
CT images reconstructed 
with different scan time 
(left column) and the 
predicted 18F-FBB PET/
CT images by deep 
learning method from 
short scan time (right 
column). Amyloid status 
of negative (a) and 
positive case (b) were 
shown

S. Lee et al.
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As shown in Fig.  9.6, high quality of PET 
image generated using deep learning model with 
low count data and/or short scan time can have 
practical impact on reducing radiation exposure. 

It will provide new opportunities for PET/CT for 
those patients such as children, pregnant women, 
and patients prone to motion artifacts.
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Fig. 9.6 Representative 18F-FDG PET/CT images in 62-year-old female with normal control, with short-time scan 
(10 sec, left), predicted images by CNN with residual learning framework (middle), and full-time scan (15 min, right)
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