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6.1  Introduction

The famous quote from Lord Kelvin “When you 
can measure what you are speaking about, and 
express it in numbers, you know something about 
it, when you cannot express it in numbers, your 
knowledge is of a meager and unsatisfactory kind; 
it may be the beginning of knowledge, but you 
have scarely, in your thoughts advanced to the 
stage of science” is a really inspiring statement for 
the explanation of the imaging biomarker con-
cept. Imaging biomarkers can be defined as char-
acteristics extracted from the images of an 
individual that can be objectively measured and 
act as indicators of a normal biological process, a 
disease, or a response to a therapeutic interven-
tion. Biomarkers have been shown to be useful as 

a complement to the traditional radiological diag-
nosis to detect a specific disorder or lesion, quan-
tify its biological situation, evaluate its 
progression, stratify phenotypic abnormalities, 
and assess the treatment response [1–6].

Despite the evolution of image processing 
platforms and image quantification solutions to 
cover unmet clinical needs, their application in 
daily practice is still work in progress in many 
aspects. In the field of radiology, a wide variety 
of algorithms for neuroimaging to be applied to 
magnetic resonance imaging (MRI) have been 
developed as well as other solutions for comput-
erized tomography (CT), some of them based on 
artificial intelligence pipelines, such as lung nod-
ule detection and characterization. Although not 
being an absolute but a relative quantification, in 
molecular imaging, the concept of imaging bio-
marker has been present since the use of stan-
dardized uptake value (SUV). Furthermore, 
workstations and other solutions have been 
mainly addressed to provide quantitative analysis 
tools in a patient-specific basis, but not to store 
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quantitative data in databases for the posterior 
data mining and scientific research in imaging 
biomarkers. As an example, although the tech-
nology is already there [1], today pipelines, like 
automatically detect the lesions in lymphoma, 
extract their SUV values as well as their meta-
bolic tumor volume (MTV) and store in a struc-
tured report in the PACS are still not available.

In this chapter, we introduce the concept of 
imaging biomarker and explain the main charac-
teristics of the development process and valida-
tion to finally detail how the process can be 
applied in hybrid modalities where it is highly 
relevant to combine the spatial information with 
the functional one.

6.2  Imaging Biomarkers, 
Paradigm Shift in Medical 
Imaging

Imaging biomarkers allow to measure subtle tis-
sue changes, either at a structural or at a function 
level [7]. They are the main enabler of quantita-
tive imaging and the key for the paradigm shift in 
medical imaging. They can be classified in differ-
ent types depending on their main application 
across different clinical scenarios. Imaging bio-
markers can be used to extract patient pheno-
types, either independently or together with other 
clinical or genomic variables. The main applica-
tions of imaging biomarkers are:

• Detection imaging biomarkers: use as a tool to 
find high levels of a specific measure in a tis-
sue or organ that can indicate the presence of 
a disease.

• Diagnostic imaging biomarkers: use as a tool 
for the identification of the specific disease 
suffered by the patient.

• Staging imaging biomarkers: use as a tool for 
grading of the disease severity or extent.

• Predictive/prognostic imaging biomarkers: 
use as a tool to forecast the progression of the 
disease and its potential relapse.

• Follow-up imaging biomarkers: use as a tool 
for monitoring treatment response and disease 
progression in the patient.

The most supported process for the develop-
ment of imaging biomarkers, converting a clini-
cal idea or need into clinical value is described in 
[2] and also proposed in [4], which is divided into 
different steps (Fig. 6.1).

The first step is the proof of concept, which is 
usually a small test to solve an unmet clinical 
need of a specific pathology that can be evaluated 
with current image acquisition modalities and 
image processing techniques. The proof of mech-
anism establishes a link (in magnitude and direc-
tion) between the parameter under study and the 
existence, staging, and evolution of the disease. 
Thereafter, a design on the most appropriate 
image acquisition protocol to ensure appropriate 
image quality is performed; the images needed to 

Idea

Value

Proof of concept Proof of mechanism Image acquisition Image processing

Structured reportProof of efficacy &
effectiveness

Proof of principleMeasurements

Image analysis

Fig. 6.1 Stepwise development of imaging biomarkers to 
convert a clinical idea into value for clinical practice. The 
AI section refers to the components that can be improved 

with the use of convolutional neural networks (CNN), 
image processing, and image analysis steps
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extract the biomarker must be technically ade-
quate (signal-to-noise ratio, spatial resolution, 
contrast-to-noise ratio, uniformity, among oth-
ers). The following preprocessing step aims to 
improve the image quality before the analysis 
(with techniques such as filtering, interpolation, 
registration, movement correction, and segmen-
tation). Segmentation is one of the processes that 
has been significantly improved with the use of 
artificial intelligence approaches such as the 
application of convolutional neural networks 
(CNN). The development of network architec-
tures such as U-Net has permitted the segmenta-
tion of organs and structures clearly outperforming 
traditional computer vision algorithms [8]. The 
analysis and modeling of the signal is the process 
by which the quantitative or objective informa-
tion is extracted from the images. This informa-
tion can represent structural or functional 
properties of the tissue. Those imaging biomark-
ers that can be calculated voxel-wise allow for 
the representation of the spatial distribution in 
parametric maps, defined as derived images (sec-
ondary) in which the value of a specific parame-
ter is placed as the pixel value. In general, 
imaging biomarkers have specific measurement 
units; however, due to the nature of the calcula-
tion process, some parameters may be measured 
in arbitrary units (a.u.). This is the case of 
radiomics features or parameters such as the frac-
tal dimension. An additional layer of multi- 
variate post-processing applied to the imaging 
biomarkers allows for the combination of the 
most relevant features into indicators represent-
ing disease status that can be plotted in new para-
metric images called nosological maps. 
Measurements of imaging biomarkers in specific 
lesions or tissues must be optimized to the physi-
ological phenomena under study. A clear exam-
ple is the conventional approach in the 
measurements of SUV, consisting of the extrac-
tion of the maximum value (SUVmax) of the 
region (instead of average, median, or other his-
togram descriptors). Automation and AI can 
allow for the seamless extraction of a wide vari-
ety of measurements for a specific imaging bio-
marker beyond the conventional ones. An 
exploratory example in molecular imaging that is 

demonstrating an important evidence with the 
outcome in lymphoma patients consists of the 
extraction of metabolic heterogeneity from 
lesions, beyond the maximum values of SUV, 
that is, the current standard of care [9]. Finally, 
after the technical process for the extraction and 
measurement of the imaging biomarker is clear, a 
pilot test in the way of a Proof of Principle must 
be performed in a controlled cohort of subjects to 
evaluate potential biases related to sex, age, or 
others. This also serves as a preliminary valida-
tion of the method. Comprehensive proofs of effi-
cacy and effectiveness on external, larger, and 
well-characterized series of subjects will show 
the ability of a biomarker to really measure (even 
if it is in a surrogate manner) the clinical 
endpoint.

6.3  Imaging Biomarkers 
in Hybrid Molecular Imaging

The imaging biomarkers that can be extracted in 
molecular imaging are related to the imaging 
modalities used in the examination. Generally 
speaking, the imaging biomarkers that can be 
extracted from the molecular imaging compo-
nents of the modality (see Table 6.1, considering 
only those ones based on PET) are the standard-
ized uptake value (SUV), related to the metabolic 
activity, the metabolic tumor volume (MTV), 
which is related to the size of the metabolic 
region within the lesion, the total lesion glycoly-
sis (TLG), derived from the multiplication of the 
MTV by the average metabolic activity, the 
delta-, which calculates the difference in a given 
imaging biomarker between two specific time-
points in the longitudinal course of the disease. 
Finally, lesion heterogeneity can be characterized 
both in the anatomical-structural component of 
the modality, that is, the CT or the MR images, 
and in the PET component. For the structural or 
metabolic heterogeneity estimation of lesion, dif-
ferent textural (radiomics) features can be 
extracted by the use of standard first-order histo-
gram analysis or more advanced second-order 
techniques: gray level co-occurrence matrix 
(GLCLM), gray level run-length matrix 
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(GLRLM), gray level size zone matrix (GLSZM), 
gray level dependence matrix (GLDM), neigh-
boring gray tone difference matrix (NGTDM), 
among others. In total, thousands of descriptors 
can be obtained, expressing the heterogeneity of 
a single lesion. Furthermore, these features can 
be obtained from either a 2D or 3D analysis.
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Table 6.1 Most relevant imaging biomarkers in molecular imaging, objective of their quantification and specific units

Objective Modality Imaging biomarker Units
Metabolic activity PET/CT & PET/MR Standardized uptake value (SUV) a.u.
Tumoral burden PET/CT & PET/MR Metabolic tumor volume (MTV) mL
Tumoral burden + metabolic 
activity

PET/CT & PET/MR Total lesion glycolysis (TLG) g

Change in metabolic activity PET/CT & PET/MR Delta-SUV (ΔSUV), averaged or 
voxel-wise

a.u.

Lesion heterogeneity CT, MR, PET/CT, & PET/
MR

Textures—radiomics a.u.
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