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In the field of medical imaging, the application of 
computer vision to solve radiologic problems has 
been proposed since the mid-twentieth century 
[1]. As computers became more prevalent and 
imaging became digitized, the infrastructure was 
in place upon which to build sophisticated analy-
sis pipelines to be used in routine workflow—this 
workflow has included, and will certainly con-
tinue to include, different applications of artifi-
cial intelligence. Today, AI is fundamental in 
many facets of everyday life, from semantic 

searches on the internet to facial and voice recog-
nition in mobile devices, and it has made remark-
able progress in recent years. There are various 
potential applications of AI in medicine, and AI 
has already impacted radiology in some regards, 
introducing quantification into a space which was 
historically based purely on subjectivity [2, 3]. 
This however is just the beginning—it is widely 
recognized that medical imaging is one of the 
many fields in which advanced AI will cause a 
complete paradigm shift. Molecular imaging in 
particular is an especially likely candidate to ben-
efit, and it is in a position which would allow it to 
readily integrate this technology.

Molecular imaging technologies have contin-
ually improved year over year. MRI develop-
ments include higher field strength magnets, 
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improved RF coil arrays increasing acquisition 
SNR, and a growing catalog of pulse sequences 
for various applications. Single photon emission 
computed tomography (SPECT) systems rou-
tinely employ advanced correction techniques 
now producing quantitative images, and modern 
positron emission tomography (PET) scanners 
are using smaller crystals leading to better spatial 
resolution, with detection systems approaching 
timing resolution close to 200  ps. All of these 
modalities have realized concurrent progress in 
data processing as well, including sophisticated 
reconstruction and motion correction techniques. 
These advances have yielded extraordinary levels 
of image quality, but point is approaching where 
it is becoming less clear how these improvements 
are practically realized in terms of clinical out-
comes. For instance, producing images with 
superfine resolution for routine examinations 
might not significantly impact diagnostic reliabil-
ity, staging, or treatment planning. In fact, the 
additional time taken for the data acquisition and 
radiologist interpretation would potentially have 
adverse effects on the clinical workflow. 
Furthermore, in recent years, the amount of med-
ical imaging data has grown exponentially, and 
this has already increased the pressure on radiol-
ogists to maintain accuracy at higher throughput. 
While novel imaging innovations will continue to 
have impact on patient care and be welcomed by 
the medical community, it is likely that techno-
logical developments in the near future will focus 
on increasing efficiency, reliably standardizing 
care, and improving patient safety.

Artificial intelligence, by definition, is the 
branch of computer science, developing com-
puter algorithms to perform jobs normally requir-
ing human intelligence. Machine learning (ML) 
is a subgroup of AI connoting any algorithm 
which improves through experience. There are 
many different schemes, ranging in complexity 
from simple regression models and component 
analyses to more complex methods like random 
forests and support vector machines. However, 
most of the remarkable successes and resulting 
excitement of recent times belong to the class of 
ML known as deep learning (DL). State-of-the-
art results have been achieved in the fields of 

object detection, classification, image segmenta-
tion, speech recognition, and image generation—
in fact, DL models have matched and even 
surpassed human performance in certain tasks 
[4–6]. It is impossible to ignore that these tasks 
are ubiquitous components in many aspects of 
radiology, and novel applications for DL are 
immediately identified. Indeed, there are many 
areas of active research in medicine and remark-
able successes have been reported. Most reviews 
or general overviews of DL in medicine cite the 
growing number of related publications on 
PubMed, and at the time of this writing, the 
search phrase “deep learning” returned 5315 
results for 2019. This is up from 3004 in the pre-
vious year, and for 2020, there are already 3994 
results in the first 6 months. This trend is cer-
tainly a testament to the applicability and success 
of DL in medicine.

It is difficult to understand the evolution and 
future direction of AI without a basic understand-
ing of the recent advances in AI techniques. This 
section gives an abbreviated overview, detailing a 
few specific examples. It cannot possibly cover 
all aspects but will instead focus on DL, since it 
is, without question, the dominant trend and 
direction of recent AI research; it has demon-
strated promising improvements even over other 
traditional ML approaches. Almost all DL tech-
niques are based on artificial neural networks 
(ANNs) comprising layers of numerical weights 
and “activation” nodes. More specifically, each 
node within a layer generally consists of a linear 
operation involving the summed product of its 
weights and input (the outputs of the previous 
layer), followed by a nonlinear operation, e.g., 
sigmoid, hyperbolic tangent, rectified linear—
there may be thousands of nodes in a given layer. 
By stacking many of these layers, through 
densely interconnected nodes, one can effectively 
piecewise construct complex functions which are 
able to be shaped throughout many degrees of 
freedom. In this sense, a network can be shaped 
to “learn” mapping functions between different 
domains. Unlike most other ML approaches, DL 
does not require inputs which explicitly define 
the discriminating features of the population; 
through training, it inherently learns the features 
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which best represent the data for the current task. 
This data-driven approach allows DL applica-
tions to characterize more abstract features and 
makes these systems more generalizable, but it is 
predicated on the availability of large amounts of 
training data to enable accurate characterizations 
of the sample populations.

Convolutional neural networks (CNNs) are an 
extension of neural networks, designed to handle 
data with higher dimensionality, usually in 2D or 
3D, and so are well suited for image-based tasks. 
In conventional ANNs, the weights at each layer 
have a single, unique value for every combination 
of nodes of its layer and the nodes of the previous 
layer, and so the corresponding total number of 
weights at each layer is the product of these num-
bers. For CNNs, instead of a single value, there is 
a matrix of values, which can be thought of as a 
weighted filter; the size of the matrices is rela-
tively small. The filters are passed over the layer 
input data like a convolution kernel, resulting in 
output feature maps of the same dimensionality 
as the input. This approach exploits the spatial 
dependencies within the data and makes the net-
work invariant to input translations, while at the 
same time significantly reducing the total number 
of network parameters. For example, say we have 
a single 2D input image with pixel dimensions 
100 × 100, and this feeds a layer with 128 chan-
nels. A conventional ANN would handle each of 
the 10,000 input pixels independently, and so the 
total number of parameters would be 1,280,000 
for that single layer. For a CNN, this correspond-
ing layer would handle the whole image as a 
single, multidimensional input—with a filter size 
3 × 3, the total number of layer parameters would 
then only be 1152 (1 × 3 × 3 × 128). This scheme 
is not only more efficient but potentially allows 
the same network to handle inputs of arbitrary 
sizes. For these reasons, CNNs are currently the 
AI technique of choice for image analyses and 
computer vision tasks.

Various CNN architectures are currently 
used—a few are explicitly mentioned here, but 
many of the basic concepts are common with 
many other networks. The convolution layers 
typically have filters with sizes between 3 and 5 
pixels (for each dimension), and most networks 

also have multiple resolution downsampling (or 
encoding) layers. Many of the early uses for 
CNNs were focused on classification tasks and 
used a nonconvolutional, densely connected layer 
at the last layer to sort the output in scalar class 
probabilities [7]. Fully convolution networks 
(FCNs), however, do not contain any densely 
connected layers and preserve the input dimen-
sionality throughout the network—this architec-
ture is better suited to certain analysis tasks, i.e., 
when requiring a dense prediction map over all 
pixels [8]. The U-Net architecture has become 
widely used in image analyses [9] and uses a 
dedicated encoding and decoding path to produce 
outputs of the same size as the inputs. A major 
contribution of U-Net was the introduction of 
skip connections between the encoding and 
decoding paths at each resolution level in order to 
preserve spatial detail throughout the network—
this feature makes this architecture popular for 
medical image segmentation tasks. Another use-
ful architecture is ResNet, which is built on resid-
ual blocks containing multiple convolution 
layers, with the block input directly connected to 
its output [10]. This direct connection results in 
an alternate identity path, and so each convolu-
tional block needs only to learn the pixel residu-
als and is pre-conditioned to learn mappings 
which are close to identity; the ResNet architec-
ture has facilitated training stability in some of 
the deepest networks. The last relevant architec-
ture is called Inception [11]. It contains blocks of 
multiple streams, each with different numbers of 
convolutions, under the premise that explicit fil-
ter sizes need not be defined since the image is 
now analyzed at multiple scales at the same level, 
i.e., taking the network wider rather than deeper. 
There is also a powerful extension of this called 
Inception-ResNet, which as the name implies, 
uses Inception blocks, rather than blocks of 
single-convolution streams, to calculate the block 
residuals.

Alongside the evolution of network architec-
tures were concurrent advances in network train-
ing approaches. In the context of ML, training 
refers to the minimization of an objective loss 
metric corresponding to a certain task, i.e., some 
measure of distance between the network output 
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and target value. In more basic terms, this means 
the values of the network weight parameters are 
gradually modified so that the desired outputs are 
obtained. This is usually accomplished by back-
propagating the derivative of the loss through the 
network. Backpropagation is a computationally 
efficient method, combining simple mathemati-
cal operations, to generate a gradient of partial 
derivatives comprising the influences on the loss 
of every parameter in the network. After a com-
plete backpropagation cycle, each network 
parameter is updated according to a predefined 
schedule in the direction which minimizes the 
loss. This process is repeated for many, some-
times millions, of iterations until acceptable per-
formance is achieved.

In general, there are two fundamental 
approaches to training ML systems, supervised 
and unsupervised. Under supervised approaches, 
the input data have corresponding labels, and gra-
dient backpropagation begins with a loss calcula-
tion over every output element of the network. 
For example, a CNN designed for classification 
might predict the correct class for a given input 
image by finding the maximum of the discrete 
probabilities calculated over all possible 
classes—during training, it would compare this 
prediction to the correct label and backpropagate 
its error differentials. In a simple classification 
task, each possible class might be represented as 
a single node in the output layer. This concept is 
readily extended to FCNs, in which a classifica-
tion framework might be used for organ segmen-
tation, for example. In this situation, the loss 
would be calculated over each pixel, giving the 
likelihood that it belongs to a given tissue class. 
Supervised methods provide a direct objective 
but require manual data labeling or annotating, 
which is a laborious task and is often the main 
challenge given the large scale of data typically 
needed for training. Unsupervised methods, on 
the other hand, do not require labeled data and 
instead rely on the algorithm itself to extract the 
discriminating features within different sample 
populations to minimize the loss for the task at 
hand. There are several methods for unsupervised 
network training, but one approach stands out for 
its range of applicability and remarkable recent 

results, and it is designed for image-based tasks 
performed by CNNs. Generative adversarial net-
works (GANs), introduced in 2014, comprise a 
system of two networks [12]. The first is the pri-
mary network, the generator, which for simplic-
ity, can be regarded no differently than the 
networks discussed above—its job is to perform 
the desired task. However, instead of defining the 
training loss directly at its top layer with labels, 
the generator’s output is fed into the second net-
work, the discriminator, and the job of this net-
work is to distinguish the generator’s outputs 
from a corresponding set of real samples. During 
training, the discriminator learns the features that 
are common to the real and generated popula-
tions as a whole and uses this information to dis-
criminate between the two sample sets. However, 
this same information can also be backpropa-
gated to the generator and used to improve its 
own output. In this way, the two networks are 
adversaries in that they are each constantly trying 
to outperform the other, but at the same time, 
both the networks can simultaneously improve 
together. Deep learning systems built on the 
GAN framework have been tailored for specific 
applications in a wide range of fields and have 
demonstrated state-of-the-art performance, espe-
cially for image generation, translation, and 
transformation tasks.

Artificial intelligence has already established 
applications in the medical field. Novel investiga-
tions however, particularly those based on DL, 
are yielding especially impressive results, and 
these provide a glimpse of the direction of AI and 
hint at its potential future role in molecular imag-
ing. The following sections provide an abbrevi-
ated outline of its historical and current uses and 
also highlight some areas of emerging research.

4.1	 �Disease Characterization

Characterization is a general term implying the 
segmentation, diagnosis, and staging of disease. 
These tasks are achieved by identifying and mea-
suring the imaged properties of a pathologic 
abnormality. A radiologist performing these anal-
yses is therefore required to process large 
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amounts of data for each examination, and he or 
she must then distill it down into a manageable, 
and much smaller, number of qualitative features, 
e.g., size, shape, heterogeneity, to serve as the 
basis for the final interpretation. Inevitably, some 
radiological information is lost throughout this 
process. Furthermore, every physician is differ-
ent, and there will be unavoidable variability 
among human observers. Artificial intelligence 
can help to automate this procedure. It has the 
capacity to consider large numbers of quantita-
tive features, potentially orders of magnitude 
greater than a human, and it could perform the 
task in a fraction of the time in a reproducible 
way. For example, benign and malignant pulmo-
nary nodules have similar appearances, and 
hence, the status of malignancy in the lungs is 
difficult to assess. AI can account for many fea-
tures simultaneously and automatically deter-
mine those which are most relevant to the current 
case. The relevant features could be treated as 
imaging biomarkers to be used in the malignancy 
prediction, along with other clinical endpoints 
like risk assessment and prognosis [13].

The idea to use AI for disease characterization 
and diagnosis dates back to the mid-twentieth 
century [14–17]. Many of these studies focused 
on the improved interpretation of electrocardio-
grams by computers [18–21] since these data are 
particularly suitable for computer analyses. Other 
related work included the differential diagnosis 
of hematological diseases [22], automatic bio-
chemical analysis of bodily substances [23], and 
sclerosis prediction in the coronary arteries [24]. 
These efforts mostly comprised smaller pilot 
studies and reported some success. Although 
larger-scale, definitive experiments were not per-
formed during this time, these efforts led to the 
general belief that automatic diagnoses by com-
puters were not just feasible, but necessary as 
part of a comprehensive medical data control sys-
tem [25–27]. These early studies fostered an 
optimistic outlook for the potential of machine-
assisted diagnosis and led to many advancements 
in computer-aided diagnostic (CAD) programs.

Dedicated CAD programs have early roots 
[28], but researchers only started large-scale 
development toward practical solutions in the 
1980s. Significant effort was made in the research 

arena, but the benefits to the real clinical applica-
tions fell short [29], and it was not until 1998 that 
the FDA approved its use in screening and diag-
nostic mammography, as well as in plain chest 
radiography and CT imaging. Today, several sys-
tems are in clinical use with screening mammo-
grams [30]. They are typically recommended to 
serve as a second opinion, complementing the 
initial radiologist assessment [31], and these led 
to the development of similar systems for other 
imaging modalities, including ultrasonography 
and MRI [32].

These conventional CAD systems generally 
consist of two components: detection of suspi-
cious lesions and reduction of the false positive 
findings. The detection system is based on 
radiologist-defined criteria like tumor volume, 
shape, texture, etc. which are translated into a 
pattern-recognition problem where the most 
robust features are fed into an algorithm to high-
light suspicious objects in the image [33]. The 
false-positive reduction part is also based on tra-
ditional ML, but can pose a bigger challenge to 
these algorithms. Even with sophisticated pro-
grams, the general performance of current CAD 
systems is not good, and this limits their exten-
sive clinical use. Several trials have concluded 
that these systems, at best, deliver no benefit [34, 
35]. It is more concerning though that these sys-
tems were actually found to reduce radiological 
accuracy in some cases [36], leading to higher 
recall and biopsy rates [37, 38].

Conventional CAD systems are built on rigid 
ML algorithms, mostly relying on expert knowl-
edge, established a priori, for engineering fea-
tures to be extracted from regions of interest. In 
contrast, new programs built on DL algorithms 
offer potential advantages regarding the degrees 
of freedom and level of abstraction in which the 
detection and classification tasks are defined. 
Furthermore, the performance of conventional 
CAD systems is notoriously sensitive to image 
noise and selected scanning protocol, and DL has 
demonstrated flexibility with regard to these 
parameters [39].

Largely due to the advances in computer hard-
ware and processing technology, DL applications 
have emerged only recently for CAD systems—
perhaps the earliest use in radiology was first 
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reported in 1990, when a group at the University 
of Chicago developed an ANN for improving dif-
ferential diagnosis of interstitial lung diseases 
using clinical and radiographic information. 
They claimed that the decision performance of 
the neural network was comparable to that of the 
chest radiologists and even superior to that of the 
senior radiology residents [40]. This led to sev-
eral subsequent studies at that institution investi-
gating neural network-aided diagnoses of lung 
disease [41–43]. The first object detection system 
using CNNs was proposed a few years later in 
1995 at Georgetown University Medical Center, 
using a CNN with four layers to detect nodules in 
X-ray images [44].

Since then, DL-based CAD systems have been 
developed for the identification, detection, diag-
nosis, and risk analysis of various pathologies. 
Breast cancer, for example, was an obvious target 
since there was a historical precedent, and recent 
studies have demonstrated promising results 
regarding the performance of these next-
generation systems in detecting and staging the 
diseases [45, 46]. In particular, it was reported 
that the automatic feature exploration and higher 
noise tolerance of DL-based CAD systems were 
responsible for the performance gains, which 
were quantified using different metrics, including 
sensitivity, specificity, and receiver operating 
characteristic analyses [47]. Lung cancer detec-
tion and screening is another attractive applica-
tion, and several studies have evaluated the 
implementation of DL-based CAD systems for 
this purpose [48, 49]. These have also shown 
potential to effectively predict lung cancer and 
classify pulmonary nodules [47, 50]. In derma-
tology, deep convolutional networks have been 
used to classify skin lesions according to malig-
nancy [51]. This large study found that AI 
achieved equivalent performance to all tested 
experts on two separate classification tasks, and 
further, it suggested that smartphone cameras 
could be used in conjunction with this technol-
ogy to provide low-cost access to vital diagnoses. 
Other groups have also investigated DL with 
multi-modal imaging data. One notable study 
used PET and computed tomography (CT) data 
together in order to reduce false-positive results 

in lung lesion detections [52]. Simultaneous 
PET/CT data have also been used to classify 
lymph node metastases; a recent work found that 
this approach yielded higher sensitivities than 
radiologists [53]. Studies are consistently show-
ing that the detection performance of AI in dedi-
cated tasks is rivaling that of physicians [54], and 
recent interest in pursuing large-scale CAD solu-
tions suggests the future for developing robust, 
high-performance systems based on deep learn-
ing [55].

Deep learning has also demonstrated success 
for using radiological information, not just for 
disease detection and characterization, but for 
predicting patient diagnosis and prognosis. Early 
works in this area included survival predictions 
in patients with lung adenocarcinoma [56] and 
high-grade gliomas [57]. More recently, DL 
algorithms have been developed to predict the 
risk of lung cancer from a patient’s current and 
prior CT volumes [58]. This work achieved a 
state-of-the-art predictive performance on thou-
sands of national lung cancer screening trial 
cases and independent clinical validation sets. 
This work also noted that its AI-based model 
reduced many risks associated with conventional 
low-dose CT screening, including false positives, 
overdiagnoses, and radiation exposure. The 
computer-aided detection and diagnosis of 
Alzheimer’s disease (AD) is another area of 
active DL research. SPECT and PET are both 
used by physicians to image the metabolism, pro-
tein aggregation, or amyloid deposition associ-
ated with AD, and a few studies have investigated 
DL-based CAD systems for early AD diagnoses. 
The flexibility of DL allows brain data from mul-
tiple modalities to be assessed together [59–61]. 
Two notable recent works even used 3D CNNs to 
classify patients having AD [62, 63]. In other 
functional neurological studies, Parkinson’s dis-
ease has been automatically diagnosed in dopa-
mine active transporter SPECT scans, achieving 
sensitivities around 95% [64, 65]. Other work has 
been performed with PET/CT and PET/MR data, 
and the inclusion of multimodal inputs, exploit-
ing functional and structural information, has the 
potential to further improve the performance of 
AI-based disease characterization.
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4.2	 �Segmentation

Segmentation is an important component of med-
ical image analyses—indeed, many of the afore-
mentioned applications regarding the 
characterization of disease may be predicated on 
accurate delineations of organs, tissue or patho-
logic region of interest. It can often be a tedious 
and arduous task, and techniques to reliably 
speed the process would be welcomed by medi-
cal practitioners. Automatic segmentation meth-
ods using computer vision date back to the 1980s 
[66], with continual improvement over the fol-
lowing decades. Early approaches were based on 
clustering to isolate areas of similar intensities or 
region growing algorithms which spatially 
expanded regions around a user-selected seed 
point until homogeneity dropped below a certain 
criterion [67]. The next-generation algorithms 
used statistical learning and optimization to 
improve accuracy. One such approach is the 
watershed algorithm, in which image values are 
used to construct topology-like maps [68]. More 
advanced systems were able to use previous 
knowledge to construct a probability map to 
inform the segmentations. This approach is anal-
ogous to Bayesian inference, and the use of prior 
information lends itself, for example, to situa-
tions where objects are ill-defined in terms pixel 
intensities. The use of probability maps has 
proven especially helpful for oncologic segmen-
tation within patient populations, since they con-
tain information regarding the expected location 
of tumors [69]. Other segmentation systems 
based on prior knowledge-based probability 
maps have also been applied to radiotherapy 
planning in head and neck CT images [70] and 
segmenting gliomas in brain MRIs [71].

These past techniques have realized some suc-
cess in the clinical workflow, but the algorithms 
are somewhat inflexible and were designed for 
specific tasks. Segmentation programs built on 
DL technology will significantly outperform 
their predecessors, and for these applications, 
fully convolutional networks are well suited. A 
major step toward semantic segmentation by 
FCNs was reported by UC Berkeley in 2015 [8]. 
This group first constructed FCNs by “decapitat-

ing” the fully connected layers from conventional 
CNNs, and replacing them with new layers to 
expand the resolution. This resulted in a network 
which produced an output having the same 
dimensions as its input, and by fine-tuning only 
the new layers, the parameters of the original lay-
ers which had already been trained on millions of 
images for classification tasks were not affected. 
The result was a network which was able to 
exploit the feature extraction mechanisms of the 
original network and apply this information to a 
dense prediction matrix. These researchers 
achieved impressive results, effectively using an 
FCN to segment detailed regions based on multi-
class probabilities predicted for every discrete 
pixel [72]. Although this work focused only on 
natural images, the concept is readily extended to 
medical images.

Substantial attention has been paid to CNNs to 
resolve the challenges associated with medical 
imaging segmentation. Many techniques have 
been evaluated for various applications—a few 
specific examples include the automatic segmen-
tation of lungs [73], biological cells and mem-
branes [74, 75], tibial cartilage [76], bone tissue 
[77], brain structures [78], prostate [79], and 
tumors [80–83]. An important contribution came 
in 2015 with the introduction of the U-Net archi-
tecture and skip connections [9]. U-Net has been 
the de facto choice for many applications, includ-
ing segmenting multiple organs on thoracic CT 
images with 3D data [84] or as incorporated into 
a GAN framework [85]. This network architec-
ture also led to other derivatives like V-Net, which 
introduced a novel loss function directly based on 
the Dice coefficient [86].

Segmentation platforms built on DL offer 
other general advantages over older AI tech-
niques as well. One study describes that DL 
methods for brain MRI segmentation completely 
eliminate the need for image registration required 
by other approaches like atlas-based methods 
[87]. It has also been reported that a single DL 
system is able to perform diverse segmentation 
tasks, without task-specific training, across mul-
tiple modalities and tissue types, including brain 
MRI, breast MRI, and cardiac CT angiography 
[88]. Considering this with the fact that current 

4  Evolution of AI in Medical Imaging



44

DL technologies are already equivalent in many 
regards to radiologists’ performance for segmen-
tation [89], it is expected that the presence of 
DL-based segmentation algorithms in routine 
clinical tools will increase dramatically in the 
near future.

4.3	 �Image Generation/
Reconstruction

Images are fundamental in radiology and diag-
nostic medicine. It was Wilhelm Roentgen who 
first discovered X-rays could be used to image 
bone just prior to the turn of the twentieth cen-
tury. These early images were created directly, 
simply by exposing photographic film with the 
high-energy radiation. Over the next few decades, 
several other scanners were developed and some 
became digitized. This included the first positron-
annihilation coincident detection system in the 
1950s. A simple rectilinear scanner with sodium 
iodide detectors was designed and built by 
Gordon Brownell at Massachusetts General 
Hospital to image tumors in the brain. As imag-
ing technology advanced throughout the century, 
so did the methods used to process the acquired 
data and produce the images. Certainly, one of 
the most groundbreaking inventions was the CT 
scanner in the 1970s by Sir Godfrey Hounsfield. 
This achievement ushered in the era of volumet-
ric tomography, i.e., cross-sectional imaging of a 
3D body, in the medical setting. The CT scanner 
acquired X-ray projection data at various angles 
for sequential axial positions. The projection data 
were used to reconstruct image slices by filtered 
back-projection (FBP), a direct reconstruction 
technique which is still used even today. FBP was 
used to reconstruct projection data for emission 
modalities as well like PET and SPECT as they 
made their way into nuclear medicine depart-
ments in the 1980s and 1990s. During this time, 
MRI systems also became a mainstream diagnos-
tic tool. MR is unique from the others in that its 
images are generated directly through inverse 
Fourier transforms of the acquired frequency and 
phase data. For all imaging modalities, process-
ing methods have made great strides over recent 

years, and through many recent advances, the 
images which are routinely produced in the clinic 
are of unprecedented quality. Artificial intelli-
gence has the potential to push this even higher.

Until recent times, AI had not realized an 
overwhelming presence in image reconstruction. 
Conventional approaches relied on physics and 
closed-form mathematics to define the acquisi-
tion process and translate the data into images. 
However, recent decades have seen processing 
schemes which have become less rigid and more 
adaptive. Although these may not be considered 
AI, per se, they incorporate some of the same 
components. For example, direct reconstruction 
methods like FBP have been replaced by iterative 
algorithms. The objective of these algorithms is 
to find the image which is the most likely source 
of the projections—this framework can account 
for data which may be incomplete which results 
in far less image noise. The optimal image may 
be found by maximizing some likelihood or min-
imizing some cost measure, a technique which is 
often used in clustering machine learning algo-
rithms. Also, many MR systems are moving 
toward compressed sensing to perform routine 
examinations in fractions of the time. Combining 
these under sampled data with prior information, 
images of high fidelity can still be produced.

Deep learning algorithms based on CNNs 
have incredible potential for applications in 
image reconstruction and generation. Research in 
this field is rapidly increasing, with the large 
majority of work focusing on MRI—only a rela-
tively small subset of studies is mentioned here. 
A popular area is looking to AI for acceleration 
of MR imaging through improving compressed 
sensing techniques [90, 91]. Neural networks 
have demonstrated the ability to learn spatio-
temporal dependencies which enable them to 
improve the accuracy of reconstructed MR 
images from highly undersampled complex-
valued k-space data. This concept can be applied 
to dynamic MR imaging and may be especially 
interesting for cardiac cine protocols [92]. 
Furthermore, this idea has been extended to vari-
ous MRI acquisition strategies. Recent algo-
rithms have proved to be flexible for treating the 
MR reconstruction process as a supervised learn-

J. Schaefferkoetter



45

ing task, mapping the scanner sensors to resultant 
images [93]. Deep learning has also been used to 
reduce the gadolinium dose in contrast-enhanced 
brain MRI by an order of magnitude while pre-
serving the quality of the images [94] and for 
inferring advanced MRI diffusion parameters 
from limited data [95]. Quantitative susceptibil-
ity mapping, which aims to estimate the magnetic 
susceptibility of biological tissue, is currently a 
growing field in MRI research [96, 97]. The esti-
mation of magnetic susceptibility from local 
magnetic fields is an ill-posed problem, and 
recent AI methods are being used here as well. 
One work developed a CNN based on the U-Net 
architecture which was able to generate high-
quality susceptibility maps from single orienta-
tion data [98]. MR-fingerprinting (MRF) is 
another recent technique [99]. The idea is to use 
a pseudo-randomized acquisition that captures a 
unique signal from different tissues. These tissue 
“fingerprints” are then mapped back to standard 
parameters, T1, T2, proton density, etc. by match-
ing them to a predefined dictionary of predicted 
signal evolutions. This mapping is a difficult 
problem and has usually employed a pattern rec-
ognition approach—deep learning methodology 
is now being investigated for this purpose. A 
four-layer neural network was trained to map the 
recorded signal magnitudes to their correspond-
ing tissue T1 and T2 values [100]. This group 
found reconstruction times using this approach 
were 300–5000 times faster than conventional 
dictionary-matching techniques in both phantom 
and human brain studies. Other similar 
approaches have been used to predict quantitative 
tissue parameter values from undersampled MRF 
data [101, 102].

Although MRI has so far realized the largest 
number of deep learning research efforts, these 
have potential applications extending to many 
areas in medical imaging on a more general scale. 
The last few years have seen impressive results 
for synthesizing photo-realistic images, espe-
cially using GANs [12, 103–105], and these tech-
niques have also been used for biological image 
synthesis [106, 107]. One recent study designed a 
system to generate synthetic tumors in otherwise 
normal brain images [108]. This approach high-

lights a tremendously powerful use for generative 
networks, namely creating or augmenting train-
ing data. This is highly interesting for medical 
imaging as datasets are often sparse or imbal-
anced, with few examples of pathological find-
ings. Overcoming this challenge would help 
alleviate a huge limitation commonly encoun-
tered in training deep learning models. This 
approach has been used for brain tumor segmen-
tation [109], synthesizing realistic prostate 
lesions [110], augmenting data for improved liver 
lesion classification [111], and generating syn-
thetic retinal fundus images [112]. GANs have 
also been used for unsupervised generation of 
T1-weighted brains [113] and image synthesis 
for tissue recognition and computer-assisted 
intervention [114, 115]. Inter-modality transla-
tion has even been performed by GANs, trans-
forming MR to CT images [116, 117] and to PET 
images [118]. This work even showed that the 
generated images can be used in CAD systems 
for improving the diagnosis of Alzheimer’s dis-
ease when the patient data are incomplete.

Artificial intelligence has provided a new para-
digm for solving inverse problems in medical 
imaging [119–123]. Furthermore, studies have 
demonstrated the ability of DL to not only 
improve existing image reconstructions [124, 
125] but also replace the reconstruction alto-
gether, generating images directly from acquisi-
tion data [126]. This work found that a deep 
convolutional encoder–decoder network could be 
successfully used to generate quantitatively accu-
rate PET images in a fraction of the time taken by 
conventional reconstruction methods. These 
works, and others like them, are incredibly 
encouraging. As a result, they have provoked a 
new, and necessary, avenue for research focusing 
solely on the potential pitfalls of DL-based recon-
struction, and it has been found that deep learning 
can often cause unstable reconstruction methods. 
One recent work reported that these instabilities 
occur in several forms including: severe recon-
struction artifacts caused by small perturbations 
in both the image or sampling domain; incom-
plete or incorrect representation of small struc-
tural changes, e.g., tumors; and more training 
samples yielded poorer reconstruction perfor-
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mance for several of the models investigated 
[127]. Numerical accuracy and stability are essen-
tial components of medical image reconstruction, 
and so the limitations of new technology are 
important to understand before it can be reliably 
used in the clinic. It is likely that, in the future, the 
image reconstruction process will be omitted alto-
gether for certain applications, since a computer 
can theoretically extract any information con-
tained in an image directly from the acquired data. 
For now, however, since humans perform the clin-
ical interpretation, medical images need to be 
generated, and AI will continue to impact this pro-
cess in unprecedented ways.

4.4	 �Data Corrections

As alluded to in the previous section, the methods 
to create medical images must be accurate and 
stable in order to be reliable—these requirements 
become even more critical when medical deci-
sions depend on measurements of precisely 
quantified image values. Hence, the entire recon-
struction process may comprise multiple steps to 
address different aspects. The backprojection 
algorithm, the cornerstone of tomographic recon-
struction, can help to illustrate this. Data that are 
acquired as projections are mathematically 
regarded as a set of 1D line integrals, and back-
projection seeks to invert this process and trans-
form the sets of projections back to their original 
2D form. However, due to the nature of the acqui-
sition, low frequencies have a stronger latent 
prevalence within the projections than do the 
higher frequencies. So, to avoid a blurry recon-
structed image dominated by low frequencies, 
the projection data must first be convolved with a 
ramp filter to boost the high frequencies. 
Additionally, the cylindrical geometry of the 
detection system results in nonuniform radial 
sampling, and this nonuniformity must also be 
accounted for in the reconstruction. This example 
demonstrates some of the steps necessary for a 
correct reconstruction approach, but backprojec-
tion is considered a direct method—newer, more 
sophisticated techniques usually require many 
additional considerations.

In addition to the corrections needed to com-
pensate for the limitations of the acquisition 
method, the acquired data themselves may not be 
of high inherent quality. For PET, the true data 
come from pure annihilation photons, detected 
within a small coincidence window. However, the 
scanner also captures coincident events arising 
from scattered and random photons which must 
be corrected. These are not generally abled to be 
measured directly, so they must be estimated—
this is currently accomplished by modeling the 
underlying physics. Photon scattering and 
absorption also leads to signal attenuation, and 
this requires an additional correction, usually 
based on an accompanying anatomical map. For 
MRI, the quality of the acquired data depends on 
the homogeneity of the static magnetic field, lin-
earity of the gradients and stability of the receiver 
coils. These properties are bound by engineering 
limitations, and many techniques are routinely 
used to correct anomalies; for example, shim-
ming is used to adjust the field homogeneity and 
spherical harmonic polynomial models can be 
used to characterize high-order gradient nonlin-
earities. However, sometimes these attempts are 
insufficient. Additionally, the MR scanner is very 
sensitive to environmental perturbations, and 
these can also lead to image noise. Artificial 
intelligence has proven adept at finding solutions 
to inference problems and should be able to help 
with issues related to incomplete or corrupted 
imaging data—indeed, it has already attained 
some notable successes.

Deep learning has recently been introduced to 
image denoising for many applications. In one 
study, neural networks were specifically devel-
oped to learn the implicit brain manifolds in MR 
images [113]. This group tested their approach 
by adding various levels of noise to several hun-
dred T1-weighted brain images and reported 
improved performance over current denoising 
methods in terms of peak signal-to-noise ratios. 
Denoising has also been applied to dynamic 
contrast enhanced MR data, using multiple net-
works to improve the signal quality, both spa-
tially and temporally [128]. Emission modalities 
have also been a focus of AI denoising research 
since they are inherently noisy. For instance, each 
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projection bin of a routine PET acquisition may 
contain only a few coincident events, introducing 
uncertainty into the reconstruction. Several works 
within the last few years have reported success 
for PET image denoising using both supervised 
and unsupervised training approaches [129–131]. 
One notable study incorporated a 2D network 
pretrained on millions of natural images as a per-
ceptual loss network [132]. This group reported 
that image resolution and noise properties were 
improved by optimizing the perceptual loss in 
this way, rather than simply using a per-pixel 
supervised loss like L1- or L2-norm. This 
approach has also been successfully applied for 
denoising CT images at various noise levels 
[133]. These reported successes have driven other 
research to investigate the potential clinical 
impacts of these methods. One such work 
reported improvements in physician lesion 
detectability performance when low-count PET 
images where denoised by a CNN [134].

Artifacts are another common nuisance in 
medical images—physiological or random 
patient motion, metal implants and temporal or 
spatial aliasing all cause distortions in the recon-
structions. Deep learning methods have been 
used for correcting these. Techniques have been 
applied to automatically detect and correct 
patient motion for both MRI [135] and PET 
[136]. Motion does not only compromise imag-
ing data. It can also affect techniques like MR 
spectroscopy, and approaches based on DL have 
been developed to remove ghosting artifacts in 
these studies [137, 138]. Regardless of their 
source, artifacts degrade the reconstructed spatial 
resolution. This of course limits the value of 
medical images for diagnoses, since good resolu-
tion properties are required to extract fine details 
from small pathological foci.

Improving medical image resolution has been 
the sole focus of many research efforts. Super-
resolution in MRI has been around for over a 
decade [139]. These approaches enabled the 
reconstruction of a 3D volume with high isotropic 
resolution by acquiring the data typically through 
regular angular sampling about a common fre-
quency encoding axis [140] or through modula-
tion of the longitudinal magnetization to acquire 

independent k-space data [141]. Studies have 
reported success for estimating quantitative high-
resolution T1 maps from a corresponding set of 
low-resolution maps [142] and even using con-
ventional machine learning techniques to gener-
ate 7T-like MR images from 3T data [143]. Within 
the last few years, image super-resolution has 
become an interesting application for DL meth-
ods. Novel methods have produced state-of-the-
art results for resolution up-sampling in natural 
images [144], and applications specific to MRI 
followed closely. Deep convolutional networks 
have constructed super-resolution brain [145] and 
musculoskeletal [146] images. These networks 
have also been adapted to generate super-resolu-
tion images from another modality [147].

The transformational mapping between multi-
ple image domains is yet another exciting applica-
tion for DL [148]. Due in part to recent advances 
in unsupervised training methods [149], this con-
cept has found applications in medical research. 
Deep convolutional networks have been devel-
oped for transforming Flair to T1 MRI [150], CT 
to PET [151], and T1 MRI to CT [117]. Clinical 
interpretations and therapy planning based on 
images synthesized from another, unrelated 
modality could have far-reaching effects in the 
future of diagnostic and therapeutic medicine; 
this should be approached cautiously though, as 
synthesized images may contain incorrect patho-
logical information and could lead to critical 
errors [150]. Notwithstanding this, image trans-
formation based on DL may have the immediate 
potential to be a valuable tool for some technical 
problems. One popular current focus is related 
to PET/MR systems, transforming MR data to 
CT for PET attenuation correction. In order to 
produce quantitative images, photon attenuation 
must be corrected in all PET scans. This can be 
accurately estimated when an anatomical corre-
late of quantified attenuation values is available 
for directly generating a correction map, as it is 
with PET/CT. For PET/MR, however, this prob-
lem is more complicated since MR data do not 
contain information regarding photon scattering 
and absorption. Transforming MR images into 
quantified CT data has been implemented by 
several groups with promising results [152–154]. 
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Furthermore, the PET/MR attenuation correction 
problem has also been addressed by omitting the 
CT transformation step altogether, using a CNN 
to estimate the correction map directly from the 
attenuated PET data themselves [155].

4.5	 �Image Registration

Once accurate medical images are produced, the 
image data must be translated into information 
which can be used for clinical patient manage-
ment by a physician. In certain situations, the 
information obtained from multiple images read 
concurrently may be of much greater value than 
that obtained from reading them independently. 
The frequency of these situations dramatically 
increased at the turn of the twenty-first century 
for multimodal imaging with the invention of the 
PET/CT [156]. Multimodality imaging brought a 
new perspective into the field of clinical imaging. 
In this case, the combination of functional infor-
mation with anatomical and morphological infor-
mation provided an advanced medical tool, and 
countless studies over the past two decades have 
unequivocally established its diagnostic value. 
Other situations in which multiple images may 
be analyzed simultaneously include dynamic 
acquisitions, longitudinal comparisons or multi-
parametric MRI. In each of these cases, it is help-
ful, or even necessary, for the images to be 
spatially matched. For this reason, image regis-
tration is a constant focus of research, and tech-
niques continue to evolve.

There are many potential sources of misregis-
tration between two images of the same object, 
but assuming the differences are only spatially 
variant, one space can be mapped to the other 
through linear and nonlinear transformations. It 
is then the job of the registration algorithm to find 
the optimal transformation. For rigid structures, 
e.g., the head, linear transformations comprising 
global translations and rotations may be suffi-
cient for coregistration. However, most other 
natural movement contains local, elastic defor-
mations, and more complex methods are addi-
tionally needed to characterize and compensate 
for it. This is conventionally handled by project-

ing one image onto a grid, which is then deformed 
in a way which increases some joint similarity 
measure. Many different similarity metrics have 
been proposed and investigated, but common 
ones include correlation (for single-modality 
data) or mutual information (for multimodal 
data). The optimization algorithm typically com-
bines these approaches within some convergence 
framework to try and maximize the relative 
similarity.

The registration problem comprises a chal-
lenging combination of many factors; decisions 
regarding the spatial transformations, similarity 
metrics, optimization strategies and numerical 
framework all play important roles in the perfor-
mance. Machine learning techniques have been 
applied successfully for some specific applica-
tions in the past. However, as with other tradi-
tional ML techniques, these algorithms require 
explicitly handcrafting the features and have lim-
ited flexibility. In many cases, they are unable to 
meet the accuracy requirements of high-
resolution medical imaging [157–160]. Recently, 
DL methods have been applied to image registra-
tion in order to improve accuracy and speed 
[161]. Image registration depends fundamentally 
on the identification of relevant information in 
the images, and this is a strength of deep neural 
networks. Convolution stacked auto-encoder net-
works, for example, have demonstrated the abil-
ity to identify intrinsic features in image patches 
[162], and CNNs have been developed for 
regressing the transformation parameters of the 
registration for multimodal data [163]. The flexi-
bility of DL makes it well suited to address appli-
cations involving deformable registrations [162, 
164]. Many groups have reported recent suc-
cesses for specific tasks including elastic regis-
tration between 3D MRI and transrectal 
ultrasound for guiding prostate biopsy [165], 
deformable brain MRI registration [166], 
unsupervised CNN-based deformable registra-
tion for CT and MRI [167–169], and DL-based 
2D/3D registration for registration of preopera-
tive 3D data and intraoperative 2D X-ray images 
in image-guided therapy [170].

As diagnostic medicine continues to evolve, 
more complementary and multiparametric tissue 
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information will be acquired in space and time—
accurate image registration will become increas-
ingly critical. Methods based on AI have shown 
impressive results and will undoubtedly play 
important roles in the automated clinical work-
flow, enabling quantitative comparisons at multi-
ple timepoints and across different imaging 
modalities.

4.6	 �Radiology Reporting

The underlying goal of any medical imaging 
examination is a noninvasive survey of pathologi-
cal information. Regardless of the imaging 
modality, the radiologic data must be read and 
translated into reports which are able to be used 
toward guiding patient management—these 
reports lie at the intersection of radiology and 
multiple downstream clinical subspecialties. 
These reports are sensitive to errors in the previ-
ous steps of the imaging pipeline, and so great 
care must be taken to clearly and accurately out-
line the relevant findings. This makes it an ardu-
ous and time-consuming task. Furthermore, 
subjectivity and inter-reader variability may 
introduce communication inconsistencies 
between radiology and other physicians. AI pres-
ents an attractive option for increasing speed and 
improving standardization of radiology reports.

Artificial intelligence algorithms for voice rec-
ognition and text generation were first proposed 
nearly two decades ago [171], and today, they are 
used routinely for radiologic reporting. Since 
then, machine learning techniques have made 
great strides in natural language processing, and 
now several vendors have developed powerful 
tools capable of speech-to-text translation, along 
with compatible hardware, e.g., dictation micro-
phones [172]. These solutions have proven them-
selves invaluable for automatic transcription 
without the need for typing dictation content from 
radiologists, substantially reducing report genera-
tion times and improving clinical workflow.

Radiologic tools driven by deep learning algo-
rithms have the potential to further streamline 
this process. Recently, DL has been used to auto-
matically produce captions for natural photo-

graphic images [173], and this has led to many 
studies investigating potential applications for 
generating textual descriptions for medical 
images [174–181] and also for identifying find-
ings in radiology reports [182–184]. Such AI 
tools could also replace the conventional qualita-
tive nature of radiologic reporting with a more 
interactive quantitative one, and this approach 
has been shown to improve collaboration between 
radiology and oncology [185]. For example, it is 
plausible to expect that in the future, an 
AI-powered platform would be able to identify 
and diagnose pathological abnormalities and 
annotate them in a textual format that included 
quantified information about size, location, and 
probability of malignancy with associated confi-
dence levels. These data would reduce subjective 
bias in decisions regarding patient management. 
Additionally, these well-structured reports would 
prove very beneficial to population sciences and 
big data mining initiatives. Another related ave-
nue of DL research is using the generated radio-
logic reports themselves to annotate and label the 
imaging data. Medical PACS systems typically 
store thousands of free-text reports containing 
valuable information describing the images. 
Parsing this text and turning it into accurate 
annotations or labels requires sophisticated text-
mining method—this is a field in which DL is 
currently being applied. Reports with higher 
degrees of structure more readily lend themselves 
to this purpose, and there are already some 
emerging applications. For example, there has 
been work reporting success leveraging radiolo-
gists’ BI-RADS categorizations for training deep 
neural networks for characterizing breast lesions 
[174]. Considering the point that labeled data can 
be used to improve classification accuracy, one 
study was motivated by the fact that large 
amounts of annotated data might be unobtainable. 
This work proposed to create semantic descrip-
tion labels for the data, using both images and 
textual reports [186]. This group reported that 
semantic information can increase classification 
accuracy for different pathologies in medical 
images. Advanced AI algorithms are also being 
applied in other ways to improve efficiency in 
radiology practice. Convolutional neural net-
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works can be used to determine scanning proto-
cols from short text classification [187] and to 
improve time-sensitive decisions by prioritizing 
urgent cases [188]. One of the most interesting 
recent endeavors, however, addressed the chal-
lenges summarizing and representing patient data 
from electronic health records [189]. This work 
presented a novel unsupervised DL method for 
constructing general-purpose patient representa-
tions. This value of such data would be huge, 
since it could then potentially facilitate clinical 
predictive modeling on a large scale.

The applications mentioned above involved, 
to some degree, image interpretations based on 
human perception. Years of collecting data in 
routine clinical practice have produced an incred-
ibly rich resource of quantified radiological data 
along with the associated clinical outcomes. 
These data are being leveraged to refine the field 
of radiomics. Radiomics in medicine refers to the 
high-throughput extraction of large amounts of 
features from medical images [190]. Radiomic 
analyses, sometimes involving high order statis-
tics, can be used to identify patterns related to 
disease characteristics—patterns which may be 
undetectable by a traditional observer. Radiomics 
emerged from the field of oncology with the 
hypothesis that imaged tumors may reveal dis-
tinctive features pertaining to the disease which 
can be useful for predicting prognoses and plan-
ning personalized therapy [191, 192]. Early work 
in radiomics involved analyzing large sets of 
images and building correlations among various 
predefined features characterizing, for example, 
tumor morphology, intensity, and texture. 
Following this, many efforts have successfully 
applied radiomic evaluations for assisting clinical 
decision-making in oncology. For example, 
radiomics has been used to predict metastatic 
patterns in lung adenocarcinoma [193] as well as 
disease recurrence [194] and prognoses [195]. 
Recently, deep learning has been applied in this 
space [161]. As with many other examples pre-
sented in this chapter, DL poses advantages over 
traditional methods for automatically extracting 
the relevant features, while simultaneously pro-
viding information regarding their clinical rele-
vance. Deep learning and radiomics are two 

rapidly evolving technologies, and their symbio-
sis will likely lead to a single unified framework 
to support clinical decisions—this has the poten-
tial to completely transform the field of precision 
medicine [13].

4.7	 �Conclusion

Fundamentally, medical images are generated in 
order to be presented to physicians for evalua-
tion—optimizing the appearance of images for 
human viewers almost always includes simplifi-
cation and down-sampling of the raw data. 
Quantitative approaches like radiomics represent 
a step toward automatic image interpretation 
using the latent information embedded in the 
images, and following this evolutionary track, it 
is expected in the future that the presence of auto-
mated, AI-driven analyses in routine clinical 
workflow will continue to increase. In this para-
digm, processed medical images may become 
altogether unnecessary for certain indications. 
This would avoid the loss of information inherent 
in the creation of images, leading to reproducible 
analyses which were faster and more accurate.

In conclusion, AI has made great advances, 
especially recently, but it is not expected that it 
will outperform humans for general clinical plan-
ning and patient management in the near future. 
Instead, both will improve together. Although AI 
is currently able to provide advantages for spe-
cific quantitative tasks, medical decisions cannot 
be strictly regarded as such. They are based on 
knowledge obtained through life experience and 
philosophy. To incorporate these characteristics 
into an AI program, one would be faced with 
many challenges including data collection and 
algorithm development [29]. Considering this, it 
is likely that the trend in AI will move toward 
advanced unsupervised learning approaches, 
allowing the immense amounts of readily-
available, unlabeled data to be utilized. In any 
case, the synergy between AI and physicians will 
certainly grow and continue to be mutually ben-
eficial within the field of medical imaging, lead-
ing to unprecedented levels of precision and 
quality in patient care.
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