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For several years now, the role and place of artifi-
cial intelligence (A.I.) in radiology have been 
discussed and debated in all strata of the radio-
logical field. From university hospitals to private 
centers, from large companies to countless start-
ups, from scientific societies to medical associa-
tions, all are very actively and vocally involved. 
The U.S.  Centers for Medicare and Medicaid 
Services’ (CMS) decision in September 2020 to 
provide its first-ever reimbursement of a radiol-
ogy A.I. algorithm is expected to open the door to 
broader coverage of imaging A.I. software in the 
clinics. The feeling in radiology is that A.I. is no 

longer a prospect, it is a reality. The physician’s 
attitude has shifted from the fear that “A.I. will 
replace radiologists” to the belief that “radiolo-
gists who use AI will replace those who don’t.” 
A.I. has been much less present in the field of 
nuclear medicine (NM), which is distinct from 
radiology as a medical specialty in most coun-
tries. However, they share similar technologies, 
in particular the cross-sectional techniques used 
in hybrid imaging, e.g. CT and MRI. There is no 
reason that the advances, solutions, and new 
problems highlighted by A.I. in the radiological 
field should not be observed sooner or later in the 
NM field. Some of our practical specificities, 
such as the complication of dealing with short-
lived isotopes for scheduling the clinical activity, 
or the complexities of individual dosimetry in 
treatments with radiopharmaceuticals, should, on 
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the contrary, constitute excellent fields where A.I. 
helps our practice. Nonetheless, it is indisputable 
that NM is lagging behind radiology in the clini-
cal implementation of A.I. Whatever the reasons, 
increased susceptibility of the NM techniques to 
local methodological variables, difficulty to 
gather large curated datasets or perhaps smaller 
market less attractive for the industry, we do not 
seem close to seeing any reimbursement of an 
A.I. add-on in our field. It is only a matter of 
time, however, and it should give NM physicians 
the opportunity to better prepare and contribute 
more actively to shaping how A.I. will be inte-
grated into our practice. The question is essen-
tially twofold: what would be the role of NM 
physicians in a medical era where A.I. is more 
and more present, and what must we learn and do 
to shape this future.

In this chapter we shall consider successively 
the benefits of A.I., the threats and the obstacles 
that accompany its implementation, and finally 
the possible steps that need to be taken for a suc-
cessful and mutually satisfactory embedment of 
A.I. in clinical nuclear medicine. These questions 
shall be considered looking at the three axes of 
involvement of A.I. in the field of NM: Physics, 
i.e. how A.I. will impact image acquisition and 
reconstruction; operational, i.e. how A.I. will 
optimize health care delivery through improved 
scheduling and overall organization; clinical 
which encompasses all applications aiming at 
improving the interpretation of the studies (not 
limited to the images) in terms of diagnostic 
accuracy, prognostic and predictive value or indi-
vidual pre-treatment dosimetry.

15.1	 �I Am Looking Forward 
to More A.I. in My Practice 
Because…

15.1.1	 �The Images Will Look Prettier

In theory, we nuclear medicine physicians should 
benefit from the introduction of A.I. in all three 
fields, and the physics applications are probably 
the most obviously welcome. Indeed, we will be 
looking at images obtained with lower injected 

activity, i.e. lower patient’s exposure [1]. Studies 
will be shorter to acquire, leading to improved 
patient’s comfort and experience, fewer move-
ment artifacts, and also increased throughput. 
X-ray exposure may also be reduced by using 
deep learning (DL) for attenuation correction, 
hence removing the need for low-dose, attenua-
tion correction only, CTs [2]. A.I. has the poten-
tial to further enhance the image quality through 
improvements in the co-registration of the CT 
and SPECT/PET parts of hybrid studies. This 
may have major implications in particular in 
studies where misregistrations may have signifi-
cant clinical implications. This is the case for 
instance when using the diagnostic CT study 
along with the [99mTc]MAA SPECT/CT study for 
determining the activity of [90Y]-labeled micro-
spheres to inject during selective intra-arterial 
radiation therapy. In summary, considering the 
images and their content as a product, we will be 
working with better-quality material, and nobody 
would argue against that.

Furthermore, improved, faster, and more 
robust automated AI-based segmentation algo-
rithms will streamline the data analysis. For 
instance, [18F]FDG PET/CT is key in the man-
agement of diffuse large B cell lymphomas 
(DLBCL), and the metabolic tumor volume 
(MTV) appears to be a metrics that further 
improves its prognostic value. The current con-
sensus tends towards using a fixed maximum 
standardized uptake value (SUVmax) threshold of 
4, but even when semi-automated, the process is 
tedious, time-consuming, and imperfectly repro-
ducible [3, 4]. Automated algorithms based on 
DL have been proposed for this task [5], and in 
all likelihood most of us should see those as a 
welcome addition to our daily routine.

15.1.2	 �My Life Will Be Easier

The introduction of A.I. into the operation of the 
NM department should also benefit to the physi-
cians, through optimization of the resources. This 
has been demonstrated in radiology departments 
[6], and it should prove even more relevant in 
NM, which is dealing with isotopes, including 
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short-lived ones. Patients scheduling, radiophar-
maceutical preparation, and report generation are 
operational activities all susceptible to benefit 
from A.I., provided that the physicians, radio-
pharmacists, and administrative staffs strongly 
contribute to framing the A.I. intervention and 
fully stay on top of the processes. The worst-case 
scenario would be an A.I.-supported take-over by 
non-medical, bureaucratic supervisors who 
would consider that A.I. provides them with all 
the insight needed to optimally manage an NM 
Department, without a significant contribution 
from the physicians. A basic task, often over-
looked, but which is responsible for a significant 
waste of time for the NM physician is to recover 
and organize previous studies, not only in NM 
but also in other modalities. It is often difficult to 
streamline a process that involves different pro-
viders, for the PACS and the different viewers 
that may coexist in a department. Operational 
A.I. would be of great value in this setting.

15.1.3	 �My Patients Will Be Better Off

More generally, NM physicians are used to look-
ing at images but also at data. Radiomics and 
A.I. will provide more data, more reliable data, 
and new ways at interpreting these data. NM 
should therefore be a fertile ground for these 
developments in diagnostic and prognostic 
applications in general. However, we must first 
study the terrain before attempting to consider 
the practical impacts that can be expected in 
clinical NM. Activity profiles are very different 
in academic centers and public and private ser-
vices. They also vary from country to country, in 
Europe and across the world. Some services 
work primarily with single-photon NM, i.e. bone 
scan, myocardial perfusion scintigraphy, and a 
range of studies performed less frequently such 
as kidney, thyroid, or parathyroid scans. These 
studies, when added together, constitute a sig-
nificant contribution to the production of these 
services. The relative contribution of hybrid 
imaging (SPECT/CT) also varies considerably 
from center to center. In yet other departments, 
most of the activity relates to PET/CT, and some 

regularly perform a large number of non-FDG 
studies, such as radiolabeled PSMA ligands. In 
addition, theranostic approaches, with the 
accompanying treatment procedures, also 
occupy very different places in NM centers. 
Therefore, it is clear that considering the poten-
tial impact of A.I. in the field of NM involves 
first trying to understand the major trends in the 
future development of the specialty itself. A sys-
tematic review published in 2019 showed a 
strong imbalance in A.I. applications towards 
oncology, which accounted for 86% of all publi-
cations in A.I. and radiomics fields [7]. Hence, 
one may infer that those centers where oncology, 
and more specifically high-end, tertiary or qua-
ternary-care oncology, is more prevalent, will 
experience the most immediate impact of A.I. on 
their clinical practice. Neurology and cardiology 
are probably the next in line in terms of clinical 
implementation. From the physician’s perspec-
tive, the initial steps in this clinical implementa-
tion process should be quite exciting. We can 
expect to benefit from a growing number of A.I. 
toolkits designed to perform dedicated and 
highly focused tasks, such as characterizing lung 
nodules using [18F]FDG PET and CT, or recog-
nizing normal patterns, e.g. non-pathological 
studies in whole-body bone scans with [99mTc]-
labeled diphosphonates. Such tasks should prove 
to be of great benefit to the specialty, and our 
patients, by improving the quality and reliability 
of the diagnostic information contained in our 
reports. We would always maintain a holistic, 
human-centered approach to the NM imaging 
field, as we would use these A.I. tools to merely 
complement an otherwise unchanged process of 
interpreting images and quantitative data that 
supports them. Personalized dosimetry may also 
be helped by A.I. and thus gain further accep-
tance in the clinical field. For instance, similar to 
diagnostic studies, A.I. may lead to shorter 
acquisition times for the [177Lu] SPECT studies 
or better model and predict voxel-wise dosime-
try measurements. Again, the final decision, i.e. 
should we treat the patient and if yes, the activity 
to be administered, would remain in the physi-
cian’s hands, albeit better armed for making 
those decisions.
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With all of these largely positive elements, the 
transition to AI-augmented nuclear medicine 
should be smooth and easy. All we have to do is 
learn how to use the new tools first and then how 
extensively to trust them. Just as we use quantita-
tive algorithms that compare individual studies to 
population-based normality, like the Cedar-Sinai 
program in MPI or Parametric Statistical 
Mapping (SPM) in FDG brain PET studies, and 
many more. These are useful tools, fully inte-
grated into the clinics, but the conclusions of 
which do not replace those of the NM physician. 
Obviously, however, this is not the full story. 
Indeed A.I. undoubtedly contains threats to the 
practice of nuclear medicine as we know it, and 
as some us might want to keep it. And other 
obstacles exist in the way of a smooth implemen-
tation of A.I. in clinical NM.

15.2	 �I Am Wary of More 
A.I. Because…

15.2.1	 �I Don’t Understand It

This represents perhaps the greatest obstacle on 
A.I.’s path towards clinical nuclear medicine. As 
stated previously, we as NM physicians are used 
to dealing with data, numbers, values, quantita-
tive measurements in addition to looking at 
images. We understand the relationship between 
these numbers and results, and the physiological, 
biological, or biochemical processes that under-
lie them. We easily translate time/activity curves 
into glomerular filtration rate. We understand 
how to translate counts/pixel into the SUV, as a 
semi-quantitative measurement of the glucose 
metabolism. We also understand and know very 
well all the factors that affect the variability of 
the SUV.  We also know that we could, if we 
wanted to, obtain absolute measurements such as 
the glucose metabolic rate in mmol/min/g. tissue. 
Every nuclear medicine physician knows the dif-
ference between filtered back-projection and 
iterative reconstruction. We have been trained to 
master the basics of physics and instrumentation, 

and we are able to speak or at least listen to our 
fellow physicists and engineers. However, our 
training in computational science and our under-
standing of probabilistic learning is quite limited. 
For many of us, the leap to radiomics is reason-
ably doable, because they are quantitative fea-
tures that answer formulas, and for which we can 
assess confounders. Basically, the good old SUV 
is nothing more than a basic radiomic function. 
The more advanced features remain very similar 
whether they represent a measure of signal het-
erogeneity, shape or intensity, e.g. the biological 
phenomenon responsible for the accumulation or 
distribution of the tracer. The leap to A.I. is much 
more difficult, because our scientific background 
has not prepared us for it. We do not have the 
mental tools to fully understand the basics of a 
U-Net architecture. Without even considering 
DL, the more basic learning machine algorithms, 
such as the random forests and support vector 
machine, are not entirely part of our natural 
domain of competence. Furthermore, the rela-
tionship between the images, the quantitative fea-
tures abstracted from the images and the biology, 
is lost after going through the DL process. 
Moreover, with A.I. in medicine, high perfor-
mance is often associated with high opacity. 
Hence the call for explainable and interpretable 
A.I.  Some authors have gone further in distin-
guishing explainability and causability [8]. The 
former “highlights decision-relevant parts of the 
used representations of the algorithms and active 
parts in the algorithmic model, that either con-
tribute to the model accuracy on the training set, 
or to a specific prediction for one particular 
observation.” The later refers to “the extent to 
which an explanation of a statement to a human 
expert achieves a specified level of causal under-
standing with effectiveness, efficiency and satis-
faction in a specified context of use.” In other 
words, an algorithm is explainable if we under-
stand the effect of variables on all the moving 
parts that constitute the algorithm, and it fits the 
causability criterion if the end result, i.e. the con-
clusion at the end of the computation, is effi-
ciently and transparently actionable.

R. Hustinx



207

15.2.2	 �I Don’t Trust It

Obviously, it is difficult to trust processes that are 
poorly understood, which is why explainability 
and causability are prerequisites for trust. Beyond 
that, A.I. is not free of risk, in particular it can 
generate errors. For example, image reconstruc-
tion with DL can lead to artifacts and alterations 
that could have clinical impact [9]. Machine 
learning algorithms, even the smartest, can be 
fooled by minute alterations to the input data and 
completely mishandle the data, in a way that 
humans are not subject to [10]. This is the so-
called “adversarial machine learning” well 
known in the A.I. community, and the concept 
has been extended to the field of radiomics [11]. 
This raises the specter of an initially effective and 
fully validated A.I. algorithm turning into a mill 
generating mislead interpretations and erroneous 
decisions. The validation process itself needs to 
be validated. The medical literature is not devoid 
of papers that, although peer-reviewed in a seem-
ingly appropriate fashion, are methodologically 
impaired in a severe way. Many questions arise 
concerning the statistical methods for assessing 
the performance of an algorithm. Most articles in 
NM use the area under the receiver operating 
characteristic curve (AUC ROC) as the main 
metric for assessing the performance of the 
model when the outcome is binary, i.e., recur-
rence/no recurrence, malignant/not malignant, 
etc. Yet in presence of unbalanced data, the AUC 
artificially inflates the performance of the model 
[12]. There is a need for at the very least using the 
most appropriate test, e.g. AUC and F-score, 
depending on the sample distribution and hypoth-
esis, and also probably to develop more specific 
tests [13].

Further improving and perfecting the A.I. 
should be accompanied by further safeguards. 
Current typical A.I. models are essentially static, 
in that they have been trained using samples cor-
responding to a population that was fully vali-
dated at the time the model was built. They are 
efficient in test sets that correspond to their train-
ing sets. Those static algorithms may be subject 
to concept drift, which means that even though a 
task was at first efficiently and reliably fulfilled, 

it is no longer the case when the patient popula-
tion evolves or when the technique changes. So 
ideally, the algorithms should not stop learning, 
i.e. they should adapt along with modifications 
introduced in the sets of data to analyze. This is 
the continuous learning or continual A.I. [14]. 
The algorithm learns to learn, incrementally 
adapts to new characteristics found in the input 
data, constantly updating its feature selection to 
better fit its changing environment. Intuitively we 
may realize the advantages of such process, but 
we also realize that it should be associated with a 
constant “revalidation process.” Indeed, the cata-
strophic inference or forgetting may occur when 
extreme outliers wreak havoc into an autono-
mously relearning algorithm. To put it simply, 
even fully validated and trustworthy A.I. algo-
rithms at the time of marketing and clinical 
implementation need to continuously go through 
extremely stringent quality controls.

15.2.3	 �I Don’t Want It

The ultimate, and most compelling, question is 
“where does the physician fit in this puzzle?” Say 
we end up with a multitude of A.I. algorithms 
dedicated to a multitude of specific tasks, possi-
bly running in parallel and selected depending on 
the patient’s medical profile and issue at hand. 
Say those algorithms are constantly learning, and 
one way or another, the process is safeguarded by 
multiple checkpoints. Once we get there, the role 
of the physician could go either way: The physi-
cians remain in charge of the patient’s care, 
responsible before the law, they keep receiving 
the medical fees, and thus decide when and how 
to use the A.I. tools. Or the physicians do not 
have the knowledge and expertise to correct the 
A.I. tools when they are wrong; they do not even 
know when an A.I. ​​tool is wrong, and they are 
surrounded by so many effective A.I. tools that 
the gestalt, which was the heart of the medical 
profession, is no more than the vestige of a 
bygone era, in so much so that the physicians no 
longer enjoy the confidence of the public and 
health care providers. The debate remains very 
vivid in the radiology community. The prophecy 
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G.  Hinton playfully made in 2016 (“People 
should stop training radiologists now. It’s just 
completely obvious within five years that DL is 
going to do better than radiologists”) has not 
been verified yet, but the question remains circu-
lated in the decision circles. The Dutch Finance 
Minister Wopke Hoekstra very recently com-
mented that “The work of the radiologist to a sig-
nificant extent has become redundant, because … 
a machine can read the images better than humans 
who studied 10 years for it” [15]. The answers 
coming from medical and scientific organizations 
are only half-convincing. They argue that as the 
medical demand is increasing, A.I. will take care 
of the automated, time-consuming tasks, always 
in support of the physicians, whose number will 
remain stable, hence improving the cost/effec-
tiveness ratio of the radiological profession. They 
add that “AI will still make mistakes, which can 
be easily corrected by a human, by a radiologist. 
But will not be possible for AI to correct itself” 
[15], which as we have seen represents more 
wishful thinking than hard truth. Furthermore, 
considering the balance “who corrects who,” past 
experience with computer-assisted diagnosis is 
not uniformly encouraging as, in some instances, 
radiologists tend to ignore or overturn the com-
puter prompts, even when they are correct [16]. 
Needless to say, implementation of A.I. in the 
clinics has massive implications in terms of legal 
responsibilities, but this topic would deserve a 
full chapter.

15.3	 �How to Proceed? Let’s 
Be Practical!

Radiology is ahead of nuclear medicine, and 
seems caught in a circular argument: A.I. is there 
to stay, it’s going to be faster, more powerful, and 
more reliable for organizing the departments and 
providing the clinicians with the most relevant 
information, yet radiologists need to remain 
totally in charge and in full control.

The key issues are probably the validation of 
the A.I. algorithm and its endpoint. A typical 
approach is to compare the A.I. with the human 
truth. A good example is provided by Sibille et al. 

who identified, located, and segmented over 
12,000 regions in 629 FDG PET/CT studies per-
formed in lymphoma and NSCLC patients [5]. A 
DL algorithm using both the PET and the CT 
data performed very well for these tasks, with 
87.1% sensitivity and 99% specificity in classify-
ing the lung cancer patients, and 88.6% localiza-
tion accuracy in the same population. Similar 
results were obtained in the lymphoma patients. 
In this case, the network is trained to do as well as 
the physician. It does not reach this level of per-
formance, but close enough, and is thus proposed 
as an adjunct to the physician’s interpretation. In 
this case, we do not know the ground truth, we do 
not know who is right in the discrepant cases 
(human “gold standard” or DL?), but it does not 
matter, as the product is designed to help the phy-
sician accomplishing his task, including the 
potential flaws. This is a very marketable prod-
uct, because it does not change the paradigm, the 
physician remains in charge, and the product 
being a tool that automates and accelerates a pro-
cess. It has been trained to replicate the human’s 
process, and it is designed to be checked by 
humans.

Following this approach does not fully take 
advantage of the capacities of A.I.  Zhao et  al. 
recently went further with their report on DL for 
diagnosing metastatic involvement on bone scin-
tigraphy [17]. They studied over 12.000 cases, 
and the endpoint was clear-cut, i.e. the presence 
or absence of bone metastases in the scintigra-
phy. They showed an overall accuracy of 93.4%, 
with 92.6% sensitivity and 93.9% specificity and 
an AUC of 0.964, consistent across cancer types. 
This compared favorably with the performances 
of experimented NM physicians, as in 13/200 
cases read in parallel, A.I. was correct and all 
three physicians were wrong, compared to only 6 
cases where it was the reverse. And this was 
obtained at lightning speed, as only 11 seconds 
were needed for interpreting 400 cases, which 
is…fast! As a comparison, it took an average of 
136 minutes for the NM physicians to read those 
400 studies, e.g. almost 3 studies per minute, 
which for a human being, is also quite fast. This 
paper is a good case study. Published in a presti-
gious journal, the conclusion is unequivocal: A.I. 
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is faster, better, and cheaper than the physicians. 
Case closed. In this model, there is no need for a 
physician in control, no A.I. at the service of the 
physician, and no A.I. as a complement or sup-
port to the physician. A.I. wins, period. Yet in 
order to go further and implement such algorithm 
in the clinic, one must first answer a few ques-
tions. The study deals with planar scintigraphy, 
although SPECT is recommended and routinely 
performed. That is relevant because the benefit of 
A.I. was primarily in terms of sensitivity. Also, 
adding the CT further improves the diagnostic 
accuracy. The ground truth is also debatable, as 
explained in the methods. And finally, the algo-
rithm is the perfect example of a black box. 
Hence, this tremendous amount of work (over 
12.000 studies!) published in a high-level jour-
nal, provides very little chance of effective clini-
cal translation, if NM physicians are asked to 
give their opinion. The imaging technique is not 
up to date, the gold standard is weak, the method 
is questionable, and the algorithm is opaque. 
Similarly to some extent, major critiques were 
addressed after the publication of a paper report-
ing on a DL algorithm outperforming radiolo-
gists for interpreting mammographies, even 
though this study was methodologically very 
solid [18, 19]. One may wonder whether A.I., to 
be accepted, must be clamped and its power 
limited.

In order to get out of this labyrinth and come 
to the situation where not only nuclear medicine 
physicians coexist with A.I. but patients also 
truly benefit from this development, a multistep 
approach is required. First, physicians must iden-
tify unmet clinical needs, taking into account the 
bigger picture. This means identifying the weak 
points of our techniques, in terms of accuracy or 
reproducibility, in diseases and clinical situations 
where it makes a difference for patients. [18F]
FDG-PET/CT is quite effective in identifying 
residual disease at the end of treatment for dif-
fuse large B-cell lymphoma. The advantage of 
developing A.I. for this task would be marginal at 
best, and difficult to establish. The impact would 
be quite different were it to predicting or assess-

ing early response to immunotherapies, which 
can be very effective but in a limited number of 
patients and with significant costs, both monetary 
and in terms of morbidity. Theranostics is a major 
field for the development of A.I. in nuclear medi-
cine, to help the physicians in identifying those 
who would benefit from the treatment based upon 
the diagnostic companion study, tailor the treat-
ment through fast personalized dosimetry, and 
finally reliably and rapidly assess treatment suc-
cess, or failure. Second, we need to acquire the 
minimal knowledge necessary to get on speaking 
terms with those who will actually develop and 
build A.I.  This goes through changing how the 
research teams are organized, developing strong 
collaborations outside the faculty of medicine, 
and probably partnering with the industry. This 
also implies revamping the education and train-
ing of residents to account for this evolution. We 
have to get better in statistics and computational 
sciences. Third, we need to build multicenter net-
works. It is very unlikely that single-center proto-
cols will manage to gather the amount and 
diversity of data necessary to develop A.I. algo-
rithms directly applicable to the routine clinical 
practice. We need to account for the diversity in 
the hardware performances, acquisition and 
reconstruction algorithms, and population types. 
And finally, we need to set the highest standards 
for validation, not only regarding the methodol-
ogy surrounding the development and testing of 
the A.I. model but also the clinical relevance of 
the question being solved and the clinical appro-
priateness of the population sample being 
investigated.

If we can fulfill these criteria, i.e. if we iden-
tify the need, comprehend the methods, and put 
ourselves in a situation such as to produce reli-
able and reproducible results, then and only then 
will we be fully prepared for the next phase, i.e. 
enthusiastically promoting and advocating the 
A.I.-augmented nuclear medicine to the clinical 
world.
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