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12.1	 �Introduction

Artificial Intelligence (AI) approaches in medical 
imaging have witnessed significant evolution 
over the past years. The reasons for this are mani-
fold: The field of computer vision has arguably 
seen the most drastic advance in its state of the art 
facilitated by the increasingly widespread appli-

cation of deep learning [1], the introduction of 
large, curated data sets facilitating transfer learn-
ing approaches [2], the substantial research and 
industry interest in the domain and the availabil-
ity of both hardware accelerators (mainly graph-
ics processing units) and software frameworks 
providing pretrained algorithms and approach-
able application programming interfaces lower-
ing the barrier to entry to the field. Furthermore, 
medical imaging represents an excellent target 
for machine learning applications as it is widely 
available in standardized data exchange formats 
and stored electronically [3]. Also, the availabil-
ity of images alongside medical/radiological 
reports provide inbuilt human ground-truth 
assessments of relevant findings.
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The trend of large dataset accrual has increas-
ingly also manifested in the medical field, with 
large databases of medical imaging data being 
assembled as national efforts attempting to pro-
vide a cross-sectional assessment of large popu-
lations of both healthy volunteers and patients. 
The German National Cohort Health Study 
(NAKO Gesundheitsstudie, www.nako.de) and 
the United Kingdom Biobank [4] are examples of 
this development, providing access to thousands 
of imaging data sets to researchers and practitio-
ners in the field, which can be used for the devel-
opment of machine learning algorithms. These 
efforts supplement initiatives such as the [5], rep-
resenting curated collections of oncology-specific 
material including medical imaging but also digi-
tal histopathology or genomic sequence data. The 
increasing roll-out of partially or fully electronic 
patient records signifies a further important step 
towards the collection of relevant metadata, 
which can be included in predictive models 
alongside image-based information. However, 
such data repositories are not without specific 
challenges: Large-scale data collection signifies 
an increased importance of privacy protection, 
for which next-generation methods have only 
recently been introduced [6]. Moreover, data 
quality is paramount for the development of pre-
dictive algorithms, thus care needs to be taken 
that images and clinical metadata are generated 
and expertly curated with high standards of qual-
ity assurance. Algorithms need to be trained and 
validated on diverse and representative patient 
collectives to ascertain not only their validity 
when applied to unseen data from new sources, 
but also to assert their fairness, control their bias 
and render them reproducible and interpretable. 
The deployment of machine learning algorithms 
to clinical routine poses great challenges of its 
own, necessitating interdisciplinary cooperation 
and continuous monitoring and improvements. 
Finally, the reimbursement of algorithm-based 
diagnostic services remains largely unresolved. 
Issues such as these represent but a limited subset 
of the parameters which need to be taken into 
account in the design of artificial intelligence 
algorithms for medical use and are discussed in 

other parts of this book, as well as touched upon 
later in this chapter.

Expectedly for a novel field, most of the litera-
ture published on the topic of artificial intelli-
gence applications in medical imaging has 
focused on diagnostic applications in the field of 
oncology such as the prediction of tumor sub-
types, genetic features, metastatic behavior or 
patient survival. Algorithms targeted at diagnosis 
often provide objectively verifiable outputs (e.g. 
by comparison of the algorithm’s prediction to a 
histopathologic result), and can be compared to 
the performance of human experts (e.g. true/false 
positive/negative rates), facilitating their valida-
tion. The field of therapy monitoring and ther-
anostics, that is, the image-based expression 
quantification of relevant therapeutic targets, has 
however not yet witnessed the same level of 
research activity. Several reasons emerge, such as 
the following:

	1.	 Treatment represents a heterogenous clinical 
process characterized by the application of sev-
eral therapeutic approaches, often simultane-
ously. For instance, oncologic therapy consists 
of surgical, pharmacologic, radiotherapeutic, 
and other supplemental interventions. 
Establishing causal relationships between a 
certain treatment and its effect is therefore 
often a difficult undertaking.

	2.	 The interplay between treatment and disease 
is hard to accurately quantify. For example, 
tumors demonstrate therapy escape phenom-
ena leading to treatment resistance, which can 
be hard to distinguish from inefficacy or pri-
mary failure of the treatment.

	3.	 Cancer imaging is influenced by systemic 
effects such as individual toxicity or comor-
bidities that can have a modulating effect on 
local findings (e.g. perfusion effects of anti-
vascular agents versus decrease in cardiovas-
cular output causing tissue mal-perfusion) 
and which are hard to deconvolve from spe-
cific treatment outcomes.

	4.	 Effects mediating treatment response are also 
functions of the complex genetic, transcrip-
tomic, epigenetic, and environmental tumor 
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landscape in which causes and effects can be 
impossible to distinguish.

	5.	 Novel treatments are continuously introduced, 
thus retrospectively collected data, often the 
bedrock of oncological machine learning 
applications, might not be applicable as algo-
rithm training material.

	6.	 Finally, cancer is insufficiently understood 
and represents a disease as individual as the 
patients themselves. Intra- and inter-tumoral 
heterogeneity thus pose hindrances to the 
applicability of algorithmic tools aimed fore-
most at generalization, drastically increasing 
the difficulty of training such algorithms.

In attempting to taxonomically classify the 
current literature about machine learning and 
artificial intelligence approaches for treatment 
response prediction and assessment as well as 
theranostics, two patterns emerge:

•	 The majority of studies focus on the predic-
tion of therapy response from a single time-
point and single surrogate. Such studies 
attempt to capture information from a singular 
imaging study, often the baseline examina-
tion, to predict differences in treatment out-
come by characterizing a specific tumor 
phenotype.

•	 Studies focusing on longitudinal/integrative 
monitoring of findings, for example, integrat-
ing the features of the tumor alongside rele-
vant metadata and/or their evolution over the 
treatment period to predict the course of 
therapy.

With respect to the defining tumor features, 
research can be stratified into studies aiming at 
the quantification of tumor volume, either purely 
morphological or morphological and metabolic, 
for example, by the definition and automated 
tracking of metabolic tumor volume, and into 
studies concerned with higher-order descriptors 
of disease features or treatment targets. Such fea-
tures can be derived from the tumor itself, for 
example, histogram metrics, texture features etc. 

and/or incorporate other data, such as clinical 
record information.

Finally, from a methodological point of view, 
research can be divided into studies applying tra-
ditional computer vision techniques by utilizing 
predefined mathematical descriptors of the image 
(features) alongside machine learning-methods 
typically used for tabular data analysis such as 
regression models, tree-based algorithms etc. and 
studies applying deep neural networks directly to 
the imaging data. For the former, the term 
radiomics is often used. We would like to point 
out that this distinction is not formal, and the 
term radiomics is used for deep-neural-network-
based algorithms as well. Due to its ill definition, 
we eschew the usage of this term altogether and 
refer instead to the techniques and algorithms in 
question by their technical description, which we 
believe to be more both clearer and more 
informative.

The methodological concerns applied to a 
study are also a function of the data used for algo-
rithm development. Unlike pure anatomic imag-
ing, which typically takes the form of a 
three-dimensional stack of images in black and 
white, hybrid and functional imaging usually 
provides at least two congruent images for the 
same anatomical location. In case of dynamic 
acquisitions, such as multiple contrast media 
phases, the dimensionality of the data further 
increases. This data is often heterogeneous with 
respect to its spatial resolution (e.g. the technical 
resolution of the scanner or the effects resulting 
from interactions of radionuclides with the tissue 
leading to, for example, the actual resolution of 
PET differing from the nominal resolution of the 
detector elements). These factors need to be 
taken into account and potentially corrected for 
in quantitative imaging studies.

In the following sections we will highlight and 
contrast relevant literature findings regarding the 
application of machine learning to therapy 
response evaluation with a focus on hybrid onco-
logical imaging and provide recommendations 
and future directions for practitioners and 
researchers in the field.
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12.2	 �Literature Review

12.2.1	 �Morphological and Metabolic 
Tumor Volume Tracking

12.2.1.1	 �Volumetry-Based 
Oncological Response 
Assessment Frameworks

The conceptually simplest automated therapy 
surveillance approaches rely on the quantifica-
tion of the reduction in tumor volume using auto-
mated methods, thus mirroring human evaluation, 
for example, by application of the Response 
Evaluation Criteria in Solid Tumors (RECIST). 
RECIST was among the first attempts to quantify 
tumor response to treatment in imaging. However, 
it relies on two-dimensional evaluation and on 
the definition of so-called target lesions, which 
necessarily limits its scope and potential repre-
sentativeness, since individual tumor manifesta-
tions are employed as surrogates of disease 
burden. RECIST evaluation suffers from further 
notable limitations, mainly in tumor entities with 
ill-defined margins (e.g. pancreatic cancer) and 
can be a poor correlate of therapy response due to 
phenomena such as pseudo-progression, whereby 
tumor volume initially increases in response to 
therapy due to inflammatory changes. The 2009 
position paper by Wahl et  al. introduced a sys-
tematic framework combining previous guide-
lines for incorporating metabolic and functional 
imaging-derived information into tumor response 
assessment called PERCIST (PET response crite-
ria in solid tumors). The PERCIST framework 
stipulates the categories complete and partial 
metabolic response, stable metabolic disease, and 
progressive metabolic disease by measurement 
of lean body mass-adjusted standardized uptake 
value (SUL). Similar frameworks have been pro-
posed by other working groups, such as the 
EORTC, as well as combined functional/mor-
phologic criteria such as the Lugano criteria pro-
posed in 2014, incorporating elements of both 
RECIST and radionuclide uptake information.

The quantitative nature of PET allows the cal-
culation of absolute radionuclide activity per vol-
ume tissue, offering benefits over the standardized 
uptake value, which has been shown to depend 

on several extraneous parameters. Thus, more 
recently, parameters like the total lesion glycoly-
sis (TLG) and metabolic tumor volume (MTV) 
have been proposed as more precise biomarkers 
of disease activity. These however require a defi-
nition of the tumor volume itself, also termed 
segmentation.

12.2.1.2	 �Automated Segmentation-
Based Volumetry Techniques

The evolution of automated volumetry methods 
thus closely follows the evolution of automated 
tumor segmentation methods. Earlier studies [7–
9] rely on legacy segmentation techniques such 
as region-growing, nearest-neighbor or probabi-
listic graphical methods [10]. Hybrid imaging 
provides a benefit in this regard by providing a 
form of pre-segmentation mask via the high-SUV 
tumor region, helping to guide algorithm behav-
ior. Such iso-contour-based segmentation meth-
ods [11] have been demonstrated, for example, in 
sarcoma. Similar approaches can also be applied 
directly to metabolic tumor volume (MTV) track-
ing without the associated morphological imag-
ing. This approach has shown promise in several 
tumor entities such as rectal cancer [12], lym-
phoma [13], gynecological tumors [14], or 
esophageal cancer [15]. However, it has been 
noted that MTV lacks standardization and large-
scale external validation and thus cannot be 
assumed to be a universal gold standard for ther-
apy surveillance in comparison to, for example, 
the standardized uptake value (SUV) [16].

12.2.1.3	 �Evolution of Automated 
Segmentation Using Neural 
Networks

Automated segmentation has witnessed a sub-
stantial evolution with the introduction of neural 
network-based segmentation methods. Earlier 
methods, based on fully convolutional neural net-
works [17] have more recently been superseded 
by encoder–decoder architectures with transverse 
short-circuits, such as the UNet architecture pro-
posed by Ronneberger et  al. in 2015 [18] and 
their conceptual evolutions such as Feature 
Pyramid Networks (FPNs) [19]. A common trait 
of these architectures is the utilization of image 
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information captured at multiple scales and the 
transmission of high spatial frequency (i.e. high 
detail) image information from early to late parts 
of the network with corresponding feature map 
sizes. Encoder–decoder architectures have domi-
nated the segmentation literature since ca. 2015, 
and can be applied both in two and three dimen-
sions. Fully automatic segmentation has been 
proposed as a solution to the aforementioned 
standardization problem [20] and been success-
fully applied to both treatment response assess-
ment, for example, in breast cancer [21], where it 
has been shown to outperform dynamic contrast-
enhanced MRI, and treatment planning, for 
example, for brain tumor radiotherapy [22].

12.3	 �Quantitative Image 
and Texture Analysis 
in Oncological Therapy 
Response Monitoring

The advent of quantitative image analysis work-
flows within the past 5 years has generated sig-
nificant interest in the utilization of image-derived 
data for tumor characterization. Such approaches 
rely on either the bulk extraction of tumor-related 
image features, their preprocessing and modeling 
using machine learning (also termed radiomics), 
or the end-to-end analysis of image data using 
neural networks. As discussed above, we will not 
terminologically differentiate between these 
approaches, believing them to not be mutually 
exclusive. However, it is expected that the numer-
ous shortcomings of the so-called radiomics 
workflow will eventually lead to its replacement 
by algorithms and techniques based on more 
robust techniques and models, and not suscepti-
ble to the same technical limitations we will 
describe below. The typical workflow of quanti-
tative image analysis studies is common to both 
approaches, consisting of a volume of interest 
definition step and a modeling step. For volume 
of interest definition i.e. segmentation, both man-
ual and all above-mentioned automatic methods 
are applicable and commonly used. For details on 
the various techniques, we refer to the chapters in 
Part I of this book.

The research developments in the field of 
treatment supervision in hybrid imaging have 
closely followed the main oncologic application 
areas of PET.

12.3.1	 �Neuro-Oncology

In neuro-oncologic applications, for example, 
studies have focused on the identification of 
molecular phenotypes with relevance for therapy 
and prognosis, such as isocitrate dehydrogenase 
status [23] from amino acid (fluoroethyl tyrosine, 
FET) PET scans in gliomas. The authors found 
that the inclusion of radiomic parameters 
improved diagnostic accuracy compared to PET-
derived metrics alone. Similarly, a recent study 
by Hotta et  al. found image texture parameters 
derived from 11C-methionine PET to yield excel-
lent discriminative performance between recur-
rence of malignant brain tumors and radiation 
necrosis [24], a topic of critical relevance for 
steering treatment decisions. A multitude of 
works (see e.g. overview in [25]) have focused on 
brain metastases, amongst others for differentia-
tion of primary brain tumors from metastases, 
pinpointing the origin of metastatic lesions to the 
brain and for differentiating treatment-related 
changes from recurrence. Recent studies have 
also focused specifically on treatment, with stud-
ies by Cha et  al. demonstrating strong perfor-
mance of convolutional neural network ensembles 
in the prediction of metastatic lesion response to 
radiotherapy [26] from baseline imaging 
examinations.

12.3.2	 �Head and Neck Cancers

In head and neck cancers, several studies have 
demonstrated the benefits of integrating quantita-
tive imaging features with morphological tumor 
descriptors for predictive modeling workflows. 
For instance, Fujima et al. showed that in patients 
who underwent chemoradiation treatment for 
pharyngeal cancer, tumor shape and texture fea-
tures were highly predictive of progression-free 
and overall patient survival [27]. They note that 
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clinical parameters alone were not sufficient for 
discriminating survival subgroups in their study. 
Feliciani et al. employed texture metrics derived 
from pretherapeutic FDG-PET and found these 
imaging biomarkers highly predictive of local 
chemoradiation therapy failure [28]. Crispin-
Ortuzar and colleagues aimed at predicting head 
and neck tumor hypoxia, which is usually 
assessed, for example, with specific hypoxia 
radiotracers such as 18F-FMISO, using FDG-
PET-derived texture parameters. They report sub-
stantial improvements over baseline FDG-PET 
performance alone and note that quantitative 
imaging biomarkers can provide an alternative to 
hypoxia-specific radiotracers where such are 
unavailable [29].

12.3.3	 �Lung Cancer

In lung cancer, the relevance of including FDG-
PET into patient workup was shown in the 2002 
PLUS trial [30], demonstrating a 20% reduction 
in unnecessary surgical interventions. 
Consequently, several studies have investigated 
quantitative imaging features, for example, in the 
prediction of histological subtypes [31] or post-
treatment survival [32]. Oikonomou et al. studied 
the association of quantitative image features 
with several outcomes, including local and dis-
tant disease control, recurrence-free probability 
and survival metrics and found image-derived 
features to represent the only predictors of over-
all survival, disease-specific survival and regional 
disease control [33]. A recent multicenter trial by 
Dissaux et  al. demonstrated that FDG-PET-
derived texture features predict local disease con-
trol in patients undergoing stereotactic 
radiotherapy for early-stage non-small-cell lung 
cancer and highlighted the potential value of such 
algorithms for therapeutic decision-making. The 
large body of research into machine learning and 
quantitative imaging biomarker applications in 
lung cancer has also provided insight into key 
challenges associated with such applications. 
Yang et al. note that the widespread application 
of texture-derived image features as prognostic 
predictors is impeded by a lack of quality control 

and robustness and proceed to demonstrate high 
inter-rater variability impacting the reproducibil-
ity of texture parameters [34]. Such challenges 
are of course not immanent to thoracic imaging 
workflows and have been repeatedly noted in pre-
vious studies irrespective of imaging modality 
applied [35, 36] with PET-specific solutions 
recently proposed [37].

12.3.4	 �Prostate Cancer

The role of hybrid imaging in prostate cancer is 
continuously evolving and expanding with the 
application of Gallium or Fluorine-labeled 
PSMA supported by recent meta-analyses [38, 
39] and having been demonstrated to impact 
patient management in a majority of cases [40]. 
The first randomized prospective trial testing the 
influence of PSMA PET/CT on prostate patient 
outcome was announced in early 2019 [41]. 
Quantitative imaging feature studies have 
recently provided promising results applied to 
PSMA PET. For example, Zamboglou et al. dem-
onstrate PSMA-PET-derived quantitative fea-
tures to discriminate between cancer- and 
non-cancer-affected prostate tissue, as well as 
differentiate between Gleason scores of 7 and ≥8 
and between patients with and without nodal 
involvement [42]. PSMA expression is an excel-
lent example of a theranostic application, i.e. the 
specific expression monitoring of a therapy-
relevant target: since Lutetium-PSMA can be 
used for radioligand treatment in advanced pros-
tate cancer [43], machine-learning applications 
predicting response to such therapy directly from 
the images could hence represent a promising 
next step.

12.3.5	 �Breast Cancer

The field of breast cancer research has witnessed 
among the strongest advances in the utilization of 
quantitative imaging workflows and the applica-
tion of machine intelligence, likely due to the 
high quality of image acquisition because of the 
lack of motion artifacts, the universal 
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implementation of standardized reporting in the 
form of BIRADS and the high incidence. Hence, 
several studies have proposed image-derived fea-
tures for the noninvasive characterization of 
breast cancer. For example, Antunovic et al. uti-
lized pretreatment FDG-PET/CT of breast cancer 
and found histogram features to be associated 
with histopathological, molecular, and receptor 
expression subtypes [44]. Similarly, Huang et al. 
found image features derived from PET/MRI 
data to be associated with tumor grading, stage, 
subtype, recurrence, and survival [45]. Ou et al. 
utilize machine learning to differentiate between 
breast carcinoma and breast lymphoma based on 
texture features derived from FDG-PET/CT [46]. 
Focused on therapy response prediction, 
Antunovic and colleagues noted the association 
of molecular breast cancer subtypes with distinct 
responses to neoadjuvant chemotherapy and 
developed machine learning algorithms on FDG-
PET/CT to predict pathological complete 
response in locally advanced breast cancer [47]. 
Ha et al. also utilized FDG-PET/CT to develop 
machine learning-derived metabolic signatures 
of breast cancer associated with Ki67 gene 
expression, pathological complete response to 
neoadjuvant chemotherapy and recurrence risk 
[48]. As noted above, however, such workflows 
are not without challenges and it was recently 
noted in the work by Sollini et al. that most evi-
dence on the utility […] is at the feasibility level. 
The authors recommend harmonization, valida-
tion on representative datasets and the establish-
ment of guidelines for the application of 
quantitative imaging parameters in breast 
imaging [49].

12.3.6	 �Gastrointestinal Oncology

The largest body of work regarding therapy pre-
diction using quantitative image-derived param-
eters in hybrid imaging has arguably been 
produced in the area of gastrointestinal oncology. 
In esophageal cancer for instance, several studies 
on radiomics workflows have highlighted the sig-
nificance of heterogeneity-related image features 
and have derived models predictive of prognosis 

and therapy response [50–52]. Yip et al. included 
longitudinally acquired datasets in their model 
and found a decrease in tumor heterogeneity-
related texture and histogram features to be asso-
ciated with tumor response and patient survival 
[53]. Ypsilantis et  al. employed convolutional 
neural networks on PET scans and found them to 
outperform radiomics models in the prediction of 
therapy response in esophageal cancer [54]. 
Furthermore, sub-regional analyses, taking into 
account intra-tumoral heterogeneity are being 
assessed for their impact on the survival of 
esophageal cancer patients treated with chemora-
diation, shown, for example, in the study by Xie 
et al. [55].

In pancreatic cancer, multiparametric imaging 
and machine learning have been investigated for 
differentiation of inflammatory and neoplastic 
processes [56]. The added utility of hybrid fusion 
imaging for the delineation of tumors has been 
noted by Belli et al. in a recent study [57] with 
applications in quantitative imaging workflows. 
In our own work, we note the importance and 
potential benefits of multiparametric data inte-
gration for accurate prognostic prediction in the 
field of pancreatic cancer [58]. Cui et al. identi-
fied quantitative parameters prognostic of stereo-
tactic radiation therapy in pancreatic cancer from 
FDG-PET/CT imaging [59]. With the evolving 
role of hybrid imaging for therapy planning in 
pancreatic cancer [60, 61] especially with respect 
to neoadjuvant treatment regimens, as well as the 
advances in molecular subtyping including the 
distinction of differentially activated metabolic 
pathways, [62–64], it must be assumed that the 
scope of quantitative imaging workflows will 
soon expand further to hybrid imaging.

In rectal cancer, several studies have investi-
gated the utility of pretreatment quantitative 
imaging biomarkers in the prediction of therapy 
response. The study by Lovinfosse and colleagues 
found texture parameters derived from pretreat-
ment FDG-PET/CT predictive of survival in a 
cohort of patients with locally advanced rectal 
cancer treated with neoadjuvant chemoradiation, 
noting that these features outperformed volume-
based parameters in predictive performance [65]. 
Amorim et  al. compared FDG-PET- and diffu-
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sion-weighted MRI-derived parameters and 
observed the information gained from these 
modalities to be independent and complementary, 
underscoring the relevance of multiparametric 
hybrid imaging workflows in oncology [66]. The 
importance of tumor heterogeneity was noted by 
Bundschuh et  al., who note that heterogeneity-
related image features are relevant both early in 
the course of therapy and after its completion 
[67]. A similar dual timepoint study was per-
formed by Jeon et al., who performed multipara-
metric modeling including clinical parameters 
and MRI-derived texture features and observed 
changes in these features to be associated with 
distinct risk phenotypes. The authors note that 
their results would be applicable to and benefit 
from the inclusion of functional imaging [68].

12.4	 �Discussion and Outlook

In this chapter, we review the applications of 
machine learning and artificial intelligence to 
therapy monitoring in the domain of molecular 
and hybrid imaging, as well as theranostics. 
Despite its somewhat earlier stage of evolution 
compared to applications purely focused on diag-
nosis, such as tumor detection or subtype classifi-
cation, the multitude of studies presented 
showcase the intense research interest in the field 
and provide an outlook on the main objectives of 
techniques, algorithms, and applications aimed at 
therapy monitoring and response prediction. 
Evidently, diagnostic and theranostic applica-
tions are closely related. For example, specific 
tumor subtypes are associated with distinct ther-
apy response, providing space for exploration of 
novel therapy targets and specific therapeutic 
agents. The clinical utilization of theranostic 
radiotracers is also expected to expand beyond 
the current main routine application of prostate 
imaging with PSMA: initial studies report suc-
cesses, for example, in the application of texture 
analysis in neuroendocrine tumors [69]. The 
combined application of diagnostic and theranos-
tic radiotracers has also been reported, with very 
recent results showcasing their complementary 
value in the outcome prediction of pancreatic 

neuroendocrine neoplasms [70], expanding on 
previous studies reporting on combined radio-
tracer application [71]. We believe machine 
learning techniques to herald a transition towards 
integrated theranostic applications which will 
likely blur the current borders between diagno-
sis- and therapy-response-focused studies. This 
evolution will obviously not remain without chal-
lenges. Foremost, it will be predicated on the 
development and availability of emerging and 
novel theranostic radiotracers beyond the above-
mentioned fields of prostate cancer and neuroen-
docrine tumors, as well as the understanding of 
their interaction with biological targets and their 
unique challenges and pitfalls [72], to enable 
their utilization in AI-guided and precision medi-
cine applications [73].

Reviewing the current literature findings, a 
clear trend can be observed from tumor tissue 
and metabolic volume tracking applications 
towards image texture analysis which can be 
ascribed to the above-mentioned rise of quantita-
tive imaging workflows [74] within the past few 
years. We however still observe specific chal-
lenges, several of which are unmet in current 
literature:

Nearly all of the studies outlined above utilize 
hybrid imaging-based texture analysis workflows. 
A more thorough investigation on the differential 
contribution of each modality to the predictive 
model, or an analysis of the added benefit of 
hybrid imaging over a single modality were not 
routinely performed. Anatomic and functional 
imaging have been shown to present specific and 
individual challenges with respect to texture anal-
ysis, rendering such a differentiated assessment 
necessary [75]. Furthermore, the difficulties of 
harmonizing quantitative imaging workflows and 
rendering them robust towards variances between 
diagnostic equipment vendors, differences in 
human performance and unstandardized texture 
feature specifications have been noted extensively 
in the literature [36], mostly aimed at anatomical 
imaging modalities. However, recent works have 
focused on harmonizing texture features specifi-
cally in functional imaging [37] alongside efforts 
for protocol standardization and guidelines aimed 
at hybrid imaging studies [76]. Ultimately, we 
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believe handcrafted quantitative imaging features 
and the field of radiomics to represent an interme-
diate step in the evolution of machine learning 
application in medical imaging towards deep 
learning-based workflows. The latter offer greater 
representational flexibility and robustness, obviat-
ing post-processing and harmonization require-
ments in favor of data diversity and larger patient 
cohorts and rendering them inherently more suit-
able for multicentric studies [77–80]. The advent 
of deep learning and associated advances in image 
registration [81] will also signify greater facility 
in integrating additional information from studies 
acquired at multiple timepoints. Longitudinal 
imaging has been shown to offer deeper insight 
into therapy-related changes in tumor biol-
ogy  [82]; however, it was only performed in a 
small fraction of the studies presented above due 
to the difficulties of acquiring multi-timepoint 
imaging and the escalated requirements towards 
selection of time-stable and reproducible image 
features [83]. Lastly, many of the studies pre-
sented base their assessment of therapy response 
on surrogate measurements, for example, on 
tumor volume decrease or on associations 
between therapy response and a decrease in image 
heterogeneity believed to mirror biological phe-
nomena, which cannot always be objectively vali-
dated. Furthermore, therapy response is a 
multifactorial process greatly dependent on clini-
cal parameters, which should be included in the 
modeling process [58]. The introduction of algo-
rithms enabling the direct prediction of patient 
survival from images and the associated clinical 
data [84] will thus improve the capabilities for 
pre-therapeutic risk stratification and provide 
higher confidence for guiding therapy decisions.

In conclusion, this chapter discusses the appli-
cations of machine learning-based medical image 
analysis workflows, their applications to therapy 
response monitoring and theranostics in a hybrid 
imaging setting, as well as current and future 
research directions. We believe that the concur-
rent evolution and innovations in the fields of 
oncologic hybrid imaging, theranostics, and 
computer vision will fuel scientific discovery in 
the field and provide the opportunity for clinical 
translation and improvements to patient care.
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