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10.1	 �General Principles

In the following, the structure of the chapter is 
outlined and general principles as well as issues 
of artificial intelligence (AI) in nuclear medicine 
are discussed. There is no clear definition of AI in 
medical imaging nor a clear demarcation to con-
ventional analysis techniques. Thus, other 
advanced image analysis methods like radiomics 
are summarized in this chapter as well.
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The utilization of AI for detecting diseases in 
medical image data is rapidly emerging [1]. 
Consequently, AI in nuclear medicine has been 
widely employed for image data, and also for 
electronic health record data [2]. When applied to 
image data, AI may be used to determine the 
stage according to an existing staging system 
(like the bone scan index), to improve an existing 
staging system (e.g. by simplification of 
TIRADS), to generate new staging systems that 
are to complex or too time-consuming to be per-
formed by medical experts (e.g. whole-body 
tumor volume quantification in PET-CTs) or to 
directly predict a clinically relevant endpoint 
(e.g. estimate grading of tumor, predict overall 
survival time). When applied to electronic health 
record data, AI may be used to predict endpoints 
as well. Additional approaches seem promising, 
like the utilization of artificial intelligence to 
form real-world control groups for image centric 
trial, as has been demonstrated for therapeutic 
trials [3].

An organ-wise structure is chosen to organize 
this chapter, as it focuses on the application of AI 
to oncological imaging. However, as AI is emerg-
ing in the field of nuclear medicine, two underly-
ing trends can be observed: whole-body tumor 
volume quantification and individual lesion 
delineation. Quantification of the molecular 
whole-body tumor volume (e.g. 18F-FDG or 
PSMA avid tumor parts in contrast to morpho-
logical tumor volume) is feasible using semi-
automated approaches that facilitate the 
quantification by AI methods. Yet, medial expert 
interaction is still needed to obtain valid results. 
Such quantification approaches are clinically 
needed, as the whole-body tumor volume might 
be a more precise parameter to assess the extent 
of an oncological disease [4]. Moreover, quanti-
fying of the whole-body tumor volume might 
enable more precise therapy response monitor-
ing. The second trend is to automatically delin-
eate and grade malignancy suspicious lesions in 
nuclear medicine imaging by employing AI. This 
is a more complex and error prone task, com-
pared to just providing assistance to medical 
experts. However, several studies that are pre-
sented here could demonstrate extremely promis-

ing results (e.g. fully automatic delineation of all 
malignancy suspicious lesions). Therefore, both 
the tumor volume quantification trend and indi-
vidual lesion delineation trend will ultimately 
merge when lesion-wise classification becomes 
even better and is thus suited for tumor volume 
quantification.

There are some unsolved issues regarding the 
application of AI in the field of nuclear medicine 
and especially in oncological settings. As out-
lined, the quantification of the tumor volume 
comes into focus of many software tools that ana-
lyze PET-CT data. Yet, there is no consensus how 
to determine a reference standard for tumor vol-
ume quantification. It may be evident, that mor-
phological information (e.g. obtained from the 
CT component) is not ideal as reference to assess 
the molecular volume. However, there are several 
strategies for the segmentation of PET volume as 
well, like applying a fixed threshold (e.g. every 
voxel >6 SUV is tumor), applying relative thresh-
olding (e.g. 50% of local SUVmax), or others. 
Future studies have to evaluate which tumor seg-
mentation method is closest to the actual tumor 
volume and should therefore be used as reference 
standard for AI algorithms. To this end, it might 
be warranted to employ the concept of probabi-
listic segmentations that addresses issues arising 
from inter- and intra-rater variance in tumor seg-
mentations [5]. Finally, one has to bear in mind 
that it is at least as difficult to develop AI for a 
specific task as proving its incremental benefit for 
the patient and implementing it in the clinical 
routine [6, 7].

10.2	 �Brain

10.2.1	 �Glioma

The characterization of cerebral gliomas has 
moved from a morphological-based classification 
to molecular profiling, comprising of markers 
like IDH1 mutation status [8]. This is due to the 
heterogeneity of gliomas, which cannot suffi-
ciently be differentiated by conventional imag-
ing. Therefore, molecular imaging approaches 
together with machine learning methods have 
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been proposed to enable an improved noninva-
sive glioma profiling. Kebir et al. could show that 
11C-MET PET and machine learning enabled the 
noninvasive diagnosis of the IDH1 status of glio-
mas; an area under the curve (AUC) of 0.79 was 
reached [9]. However, the analyzed patient col-
lective was relatively small (n = 39) and future 
corroborating studies are needed.

Haubold et al. employed multiparametric 18F-
FET PET-MR to noninvasively estimate grading 
and molecular profiles of gliomas [10]. 
Interestingly, the integration of 18F-FET features 
(like SUVmax) into the multiparametric MRI fea-
tures has improved the estimation neither of 
grading nor of molecular profiling. For example, 
the estimation of IDH1 status had an AUC of 
88% (excluding PET features). Yet again, the 
patient collective was relatively small (n = 42), 
especially given the large number of 19.284 fea-
tures that were extracted for each patient.

10.3	 �Neck

10.3.1	 �Head and Neck Cancer

18F-FDG PET-CT is a reference standard exami-
nation for the detection of cervical lymph node 
metastases of patients with head and neck cancer; 
especially, if subsequent radiotherapy is planned 
[11]. However, the differentiation between physi-
ological lymph nodes and suspicious lymph node 
metastases in 18F-FDG PET-CT might be chal-
lenging. To this end, Chen et al. have proposed a 
tool which combines both radiomics and 3D con-
volutional neuronal networks for the character-
ization of cervical lymph node metastases using 
PET-CT [12]. Unfortunately, the patient collec-
tive was small (n = 59) and the reference standard 
for nodal involvement was an expert rating.

Huang et al. proposed a method for the auto-
mated delineation of head and neck cancer using 
PET-CT data and demonstrated its feasibility 
[13]. Yet, despite the use of bicentric data, the 
generalizability of the presented approach still 
needs to be proven. Zhao et al. have followed a 
similar approach and aimed at the automated 
delineation of nasopharyngeal carcinoma on 

PET-CT data [14]. The authors adopted the U-Net 
design which used both PET and CT images as 
input and achieved a dice score (which is a mea-
sure of segmentation accuracy) of 87.5%.

10.3.2	 �Thyroid Cancer

Thyroid nodules are frequently seen on ultra-
sound examinations; however, only a small frac-
tion of thyroid nodules is caused by thyroid 
cancer [15]. To facilitate the characterization of 
thyroid nodules as either malignancy suspicious 
or benign, the ACR TI-RADS system has been 
proposed [16]. ACR TI-RADS comprises five 
categories (like echogenicity or shape) and allo-
cates a score for the degree of each category. The 
sum of all five category scores stratifies the likeli-
hood of the presence of thyroid cancer. The like-
lihood of cancer is in turn graded in five categories 
(1-benign to 5-highly suspicious). Despite good 
reason for the individual categories, no study 
could corroborate a given score (e.g. in the echo-
genicity category, the hyperechoic criterium has 
a score of 1, whereas hyoechoic has a score of 2). 
Therefore, Wildman-Tobriner et  al. used AI to 
evaluate, if the individual scores of ultrasound 
features were appropriate or if ACR TI-RADS 
could be simplified. Interestingly, the scores of 
their revised ACR TI-RADS called AI TI-RADS 
were indeed simplified (e.g. hyperechoic crite-
rium got a score of 0 and was therefore neglect-
able, whereas hypoechoic remained with score of 
2). Moreover, the authors could corroborate that 
the sensitivity of AI TI-RADS remained high 
compared to conventional ACR TI-RADS (93%), 
whereas the specificity of AI TI-RADS increased 
compared to ACR TI-RADS (65% vs. 47%). This 
interesting work could facilitate the use of this 
manual classification system and might be 
expanded to other classifications as well.

Instead of training a neuronal network to esti-
mate an ACT TI-RADS score (or a similar clas-
sification), some groups directly used the 
histological classification as ground truth for 
training and evaluation. Ko et al. could show that 
a convolutional neuronal network obtained high 
AUC results (0.835–0.850) and was not 
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statistically differed form radiologists (AUC: 
0.805–0.860) [17]. Importantly, histological 
ground truth was present for all patients. There 
have also been reports on optimized network 
architectures dedicated to ultrasound images of 
thyroid cancer [18]. Li et  al. presented a retro-
spective multicenter study evaluating the perfor-
mance of a neuronal network in detecting thyroid 
cancer by ultrasound images, which comprised 
45.644 patients [19]. Importantly, external vali-
dation cohorts were present as well. For the inter-
nal validation cohort, both sensitivity (93.4%) 
and specificity (86.1%) were remarkably high. 
The authors concluded that sensitivity was simi-
lar to a group of skilled radiologists, but the spec-
ificity was statistically significantly improved.

10.4	 �Thorax

10.4.1	 �Lung Cancer

Fluorodeoxyglucose (18F-FDG) PET-CT is the 
standard diagnostic tool for the staging of patients 
with lung cancer [20]. Sibille et al. developed a 
software for the automated segmentation of sus-
picious FDG foci using acquisitions of 302 lung 
cancer patients amongst other patients [21]. The 
proposed software runs fully automatically and 
estimates not only the classification of each 18F-
FDG hot spot (suspicious i.e. metastasis vs. not 
suspicious i.e. physiologic) but also the anatomi-
cal location of each hot spot (e.g. lymph node 
level). The accuracies both of classification 
(AUC = 0.98) and of anatomical location (accu-
racy = 97% for body part, 84% for organ or tis-
sue) were remarkably high. Interestingly, the 
proposed neuronal network did not segment the 
18F-FDG foci in the PET acquisition, but in con-
trast analyzed hotspots found by conventional 
thresholding. This procedure might lead to inac-
curacies, as confluent lesions or confluence 
between a metastasis and an organ with physio-
logical 18F-FDG accumulation might not be sepa-
rated properly by conventional thresholding. The 
neuronal networks used by this software require 
the input of coronal reformatted image data. Each 
tracer accumulation is analyzed separately and 

only its immediate vicinity is present to the net-
work. Because of that, the input of the entire PET 
as maximum intensity projection (MIP) signifi-
cantly improved the accuracy. Similar to the 
human perception, the MIP and other reforma-
tions may facilitate the recognition of global 
uptake patterns, e.g. caused by brown adipose 
tissue activation. Additionally, CT information 
was used in conjunction with the PET as input for 
the neuronal network and significantly improved 
the accuracy compared to PET only inputs. 
Future studies have to evaluate the predictive 
potential of the automatically determined 18F-
FDG tumor volume.

10.5	 �Abdomen

10.5.1	 �Esophageal Cancer

Beukinga et al. used 18F-FDG PET examinations 
before and after neoadjuvant radio chemotherapy 
to predict the outcome of patients suffering from 
esophageal cancer [22]. The authors extracted 
radiomic features, which combined with the 
T-stage could predict complete pathologic 
response with high accuracy (AUC  =  0.81). 
However, only 73 patients were included in this 
study, which might limit the transferability to 
larger or inhomogeneous patient collectives.

10.5.2	 �Liver Tumor

Radioembolization with 90Y spheres is a thera-
peutic option for patients with liver metastases or 
primary hepatic tumor and also known as selec-
tive internal radioembolization (SIRT). Due to 
impairment of uninvolved liver tissue and gener-
ally end stage disease, the prediction of overall 
survival prior to SIRT is clinically needed. 
Therefore, Ingirsch et al. had retrospectively ana-
lyzed electronic health records (e.g. blood level 
of bilirubin, age) of 366 patients that received 90Y 
radioembolization by using machine learning 
methods [23]. The authors identified baseline 
cholinesterase and bilirubin levels as predictor 
for overall survival after SIRT.
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10.5.3	 �Prostate Cancer

Prostate cancer is the leading cause of cancer-
related death in men and has a remarkably early 
tendency to form metastases; already at time of 
prostatectomy, approximately 70% of men show 
prostate cancer cell in the bone marrow [24]. The 
sensitive detection of metastases as well as moni-
toring of the whole-body tumor load is of great 
clinical importance. To this end, prostate-specific 
membrane antigen (PSMA) targeting PET-CT 
has been widely employed and could demon-
strate superior performance both in primary and 
recurrent prostate cancer [25, 26]. Several 
AI-based approaches have tried to analyze 
PSMA-PET examinations with regard to indi-
vidual lesion classification and whole-body 
tumor volume.

Zhao et al. have developed a neuronal network 
for the delineation of PSMA avid metastases in 
the pelvic area [27]. The authors had adopted the 
U-Net architecture to include both PET and CT 
slices as input and aimed at a voxel wise segmen-
tation of prostate cancer metastases [28]. The 
network employs axial, coronal and sagittal ref-
ormations as input to mimic the reading of a 
human expert. For training and evaluation, metas-
tases were manually delineated by nuclear medi-
cine experts in 193 PSMA PET acquisitions; 
their delineations were used as ground truth data. 
The limitation to the pelvic region was necessary 
due to proof of concept nature of the publication; 
however, extension to the whole body seems also 
feasible. The work of Zhao et al. is of great rele-
vance, as it enables the fully automated segmen-
tation of prostate cancer metastases with great 
precision (99%) and recall (99%). However, 
because of point spread artifacts, it could prove 
disadvantageous that the proposed neuronal net-
work outputs the tumor segmentation.

Gafita et al. proposed an open source software 
(qPSMA) for the semi-automated quantification 
of the whole-body tumor burden in PSMA-PET 
CTs [29]. Despite the name prostate-specific 
membrane antigen, PSMA shows physiological 

accumulation in many organs, like in liver, 
spleen, bowel, kidneys, salivary glands and oth-
ers. The qPSMA software assists the reading 
physician in segmenting all prostate cancer 
metastases by excluding some organs with phys-
iological update from the analysis. To this end, a 
random forest-based algorithm is used by 
qPSMA to segment organs with physiological 
PSMA accumulation employing the CT compo-
nent [30]. The qPSMA software not only masks 
out physiological PSMA uptake, but likewise 
segments PSMA foci with a patient specific 
SUV threshold. Each voxel exceeding this 
threshold is regarded as metastases, if it is not 
manually or automatically excluded. In addition, 
qPSMA enables the adjustment of predefined 
organ exclusion masks and facilitates the exclu-
sion or inclusion of missed PSMA foci using 
brush tools. For example, liver metastases had to 
be added manually due to the heuristic logic that 
the liver uptake is physiologic, and the entire 
liver therefore be removed from the analysis. 
The inter-rater and intra-rater correlation of 
qPSMA is high for the segmentation of individ-
ual metastasis.

An approach similar to qPSMA was proposed 
by Seifert et al. [31]. Likewise, it facilitates the 
semiautomated quantification of the whole-body 
tumor volume by excluding physiologic PSMA 
foci from the analysis. Moreover, it automatically 
assigns the anatomical location to each PSMA 
focus. In contrast to qPSMA, the software 
employs a two-step approach for delineation of 
foci: first, voxels exceeding a patient-specific 
threshold are selected as candidate lesions. 
Second, these candidate lesions were segmented 
by thresholding with 50% of the local SUVmax. 
Thereby, no brush tools are needed for refine-
ment; physiological candidate lesions can be 
deleted easily. The author could show that this 
procedure achieves a high inter-rater agreement. 
Interestingly, the authors also reported that semi-
automatically quantified whole-body tumor vol-
ume stratified end-stage prostate cancer patients 
according to the overall survival.
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10.6	 �Skeleton

10.6.1	 �Bone Metastases

Bone scans are primarily used for the detection 
and monitoring of bone metastases and one of the 
high throughput examinations of nuclear medi-
cine. Especially for therapy monitoring of pros-
tate cancer patients, bone scans are an established 
imaging method [32]. However, the interpreta-
tion of bone scans to calculate a quantitative bio-
marker, which is called bone scan index (BSI), is 
time-consuming [33, 34]. To calculate the BSI, at 
first, the fraction of metastatic involvement of 
each bone has to be calculated. Second, this frac-
tion is multiplied with the fraction that the bone 
constitutes to the entire skeleton. By summation 
of all values, the BSI is obtained. Thereby, BSI 
represents the fraction of metastatically affected 
bone, i.e. a BSI of 3 means that 3% of the entire 
skeletal mass is affected by metastases.

Several solutions have been proposed to auto-
matically quantify the BSI. Among them is the 
work of Ulmert et  al., who proposed a method 
which uses neuronal networks for the automated 
segmentation and classification of hotspots in 
bone scans [35]. Interestingly, the development 
of the first prototype dates back to 2006, where 
AI was not the now established buzzword, which 
might be the reason why the authors called their 
work “computer-based decision support system” 
[36]. The automatically derived BSI could statis-
tically significant stratify prostate cancer patients 
according to overall survival [37].

As mentioned above, PSMA-PET-CT has 
emerged as reference standard examination for 
patients with prostate cancer. Therefore, the 
quantification of the osseous tumor volume from 
PSMA-PET-CT, similar to the BSI, is of impor-
tance. To this end, Bieth et al. have proposed a 
software for the quantification of the osseous 
tumor burden using PSMA-PET-CT acquisitions 
[38]. Hammes et al. followed a similar approach 
(EBONI) and provided the source code of their 
software [39].

10.7	 �Hematopoietic System

10.7.1	 �Lymphoma

18F-FDG -PET-CT is a standard diagnostic for 
staging and therapy monitoring of lymphoma 
patients. However, due to highly variable physi-
ological 18F-FDG uptake, the interpretation of 
18F-FDG PET acquisitions is challenging, espe-
cially for neuronal networks. The software pro-
posed by Sibille et al. that was already presented 
above was not only trained using lung cancer 
patients, but with 18F-FDG PET-CTs of lym-
phoma patients (n = 327) as well [21]. Therefore, 
the software obtained high accuracy in the clas-
sification (AUC = 0.95) and the determination of 
the anatomical location (Accuracy  =  97% for 
body part and 84% for organ or tissue). Thereby, 
the automatic quantification of a whole-body 
tumor volume is feasible. Future studies have to 
elucidate if the automatically determined tumor 
volume can stratify patients according to their 
overall survival or other clinically relevant end 
points.

10.7.2	 �Multiple Myeloma

Multiple myeloma (MM) is a clonal plasma cell 
neoplasia and detection of bone lesions is crucial 
during diagnostic work-up. MM lesions not only 
display an important criterion for the initiation of 
treatment but moreover discriminate MM from 
pre-malignant diseases such as monoclonal gam-
mopathy of undetermined significance. Whole 
body low-dose CT is the gold standard in MM, 
but MRI is attributed with a higher sensitivity in 
the detection of small MM lesions. CXCR4-
directed PET imaging with 68Ga-Pentixafor rep-
resents another imaging modality for the 
detection of active MM lesions.

Martínez-Martínez et  al. have developed a 
fully automated method that identifies bone mar-
row infiltration in low-dose CT of MM patients 
[40]. Their method was validated on a dataset of 

R. Seifert and P. Herhaus



135

127 subjects where it was able to discriminate 
bone marrow infiltration in patients with MM 
from healthy controls with an AUC of 0.996. The 
limitation of their study is that their method is 
only validated for the bone marrow infiltration in 
the femur. However, lesion distribution in MM 
patients ranges from a single lesion to multiple 
lesions with a disseminated pattern and those 
lesions do not necessarily have to affect the femur.

An automated approach to determine whole-
body bone lesions in MM patients was con-
ducted by Xu et  al. [41]. The combination of 
68Ga-Pentixafor PET that registers elevated 
CXCR4-expression within MM lesions with 
anatomical features from the CT-scan was used 
in this study. Two CNNs (V-Net and W-Net) 
were used for the segmentation and detection of 
MM lesions. Their study that was first verified in 
digital phantoms (n = 120) and further validated 
in a small patient cohort (n = 12) revealed that 
the W-Net architecture with the combination of 
PET and CT data was most accurate in lesion 
detection and achieved a dice-score of 73%. 
However, this study was mainly conducted on 
digital phantoms and further validation in a big-
ger patient cohort and correlation to clinical 
parameters such as treatment response or overall 
survival has to be evaluated.
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