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It is such a pleasure to write the foreword for this visionary and timely book 
on the role of artificial intelligence (AI)/machine learning (ML) in nuclear 
medicine and hybrid imaging—including molecular imaging and theranos-
tics. Discussions of the role of AI/ML are increasingly en vogue in all areas 
of medicine, from pathology and laboratory medicine to imaging, surgery, 
neurology, and cardiology, to name a few [1, 2]. In the world of medical 
imaging, examples of meaningful applications of AI/ML include distinguish-
ing normal from abnormal findings (without necessarily providing a diagno-
sis or a list of differentials); computer-assisted disease detection and scoring 
to inform patient management (e.g., in the assessment of coronary calcium 
[3], detection and management of thyroid nodules [4], evaluation of the pros-
tate by MRI [5], or staging of lung cancer or lymphoma with 18F-FDG PET 
[6]); computer-enhanced image reconstruction [7]; and lesion tracking, quan-
tification, and categorization for the assessment of treatment response (e.g., 
with RECIST or PERCIST).

Enthusiasm about the many potential applications of AI/ML is not unmiti-
gated. Concerns have been raised about the lack of explainability [8] and 
reproducibility [9] of ML-generated data, as well as the lack of validation and 
proof of applicability in real-life scenarios and under varying conditions (e.g., 
across age groups and ethnicities). Importantly, to be clinically meaningful, 
AI/ML models should obviate the need to perform a currently routine task or 
provide some other advantage, such as an improvement in diagnostic perfor-
mance or prediction of risk and patient outcome; a reduction in errors (e.g., in 
exam selection or interpretation); or increased throughput in the clinic. To 
their credit, Drs. Veit-Haibach and Herrmann have assembled an outstanding 
international group of authors, who address these issues head-on. The text 
examines both the challenges of applying AI/ML and the wide range of ben-
efits AI/ML will likely provide for workflow and clinical care. While the 
potential of AI/ML for advancing healthcare has been touted for quite a while, 
advances in technology are now bringing this potential closer to realization. 
AI and ML will have a tremendous impact on nuclear medicine and hybrid 
imaging on both the front and the back end. Many functions will be auto-
mated, improving efficiency while ensuring much better quality control.

The book is divided into several main parts. Part I focuses on the technical 
aspects of AI and ML and includes a much-needed chapter on repeatability, 
reproducibility, and standardization of techniques. Lack of reproducibility 
and an unwillingness to share codes or other programmatic details have been 
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pervasive in the field of AI and ML [9], and a lack of standardization has also 
stymied the field for many years. It is now time for investigators and vendors 
to address these issues. Part II lays out current and potential clinical applica-
tions. While modern computational techniques are essential to contemporary 
applications of AI/ML, the groundwork for some of the projects described in 
this section started decades ago, without using the terms AI and ML; for 
example, early attempts at computer-assisted recognition, characterization, 
and description of imaging patterns led to the generation of standardized 
reports in nuclear cardiology. In this book, Slomka et al. discuss some of the 
more recent work in this area, all ultimately aimed at the generation of images 
of better diagnostic quality, with shorter acquisition times or lower injected 
activities, as well as the prediction of cardiovascular risk. In oncology, differ-
ent ML methodologies, and the use of radiomics and radiogenomics, can be 
expected to enhance lesion characterization tremendously, allowing the 
assessment of much more than the standardized uptake value. In addition, the 
ability to automatically extract total tumor volume quickly and with high 
reproducibility will be extremely helpful. The clinical application of AI/ML 
should also lead to the development of novel imaging biomarkers with pre-
dictive and prognostic value far exceeding that of currently available imaging 
biomarkers. Of note, the value of these markers will be maximized when they 
are integrated with each other and with other forms of data (clinical, labora-
tory, etc.) with the help of AI and ML. Beyond diagnostics, AI and ML are 
expected to play growing roles in theranostics, aiding in appropriate patient 
selection, dosimetry, and response assessment. Finally, as enormous amounts 
of data are being gathered in medical imaging, as in all areas of modern life, 
ethical and legal questions have been raised regarding the ownership of these 
data and their appropriate use. It is therefore very timely that the editors 
invited Prof. Prainsack, a political scientist, and coauthors to contribute a 
chapter that helps put these pertinent issues into perspective and offers poten-
tial solutions.

We remain optimistic about applications of AI/ML in nuclear medicine 
and hybrid imaging. While the future is unpredictable, we do not expect these 
techniques to replace physicians; rather, we expect changes in the nature of 
our work, reducing or eliminating some time-consuming tasks, while adding 
or enhancing others. In closing, we congratulate the editors on contributing 
this valuable treatise on AI/ML to the literature and hope it reaches the ample 
audience it deserves.
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Artificial intelligence (AI) and machine learning (ML) are two buzz words 
which are currently electrifying multiple areas in medicine and beyond. As 
every new technology AI/ML can induce a complex mix of emotions and 
reactions in the medical community as well as in patients, ranging from 
euphoria and optimism to fear and rejection. In several medical disciplines, 
including but also certainly not limited to imaging specialties, the growing 
role of AI/ML brings more implicit and sooner implications than in other and 
maybe more “manual” medicine applications. Even well recognized maga-
zines as The Economist recently titled “Why scan-reading artificial intelli-
gence is bad news for radiologists” whereas other journals state “Doomsday 
predictions about AI replacing radiologists are unrealistic, dangerous.”

There are many opinions when it comes to the use and integration of AI/
ML and they range from just being considered toys for gadget heads all the 
way to being considered to provide true value for patients and physicians. 
This very heterogenous mix of views and perception as well as the lack of a 
dedicated view especially on how AI/ML potentially impacts Nuclear 
Medicine and Hybrid Imaging motivated us to initiate this book. Nuclear 
Medicine and Hybrid Imaging may not seem the first choice for artificial 
intelligence and machine learning applications since the main advantage of 
these techniques is prediction of specific patterns and not contextual diagno-
sis but there are actually a multitude of specific areas where those techniques 
can be used to our advantage.

Moreover, as many new technologies are prone to undergo the “Gartner 
hype cycle” with a steep increase of interest and expectations following a 
technical trigger and a deep decrease of interest due to disillusionment prior 
to a final slope of enlightenment and consecutive plateau of productivity, this 
book intends to provide information hopefully accelerating the arrival in the 
enlightenment and productivity phases.

Following this introduction a total of five chapters are dedicated to exist-
ing technologies setting the stage for a better understanding of clinical appli-
cations and its potential impact on molecular imaging and theranostics. Franc 
et al. highlight the role and influence of AI/ML in healthcare with a special 
focus on hybrid imaging and molecular imaging (Chap. 1). There give real- 
world examples where such technologies could have values in clinical prac-
tice. The Kleesiek group reviews and establishes definitions and applications 
for radiomics, radiogenomics, artificial intelligence, deep learning, and 
machine learning (Chap. 2). Rezai et  al. provide a short overview of the 
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 current knowledge of robustness, reproducibility, and standardization of 
radiomics (Chap. 3). This is an especially important aspect to understand 
when evaluating current radiomics results being published. The following 
chapter by Schaeffertkoetter include the views of imaging device manufac-
turers highlighting steps of device evolution (Chap. 4). Afterwards, basic 
principles of neural networks are explained in (Chap. 5). The latter provides 
a broad overview on how networks are built, why they are built this way, and 
also explains their basic function.

The clinical applications part kicks off with a review of Bayarri et al. about 
imaging biomarkers and their meaning for molecular imaging (Chap. 6). By 
understanding the meaning of such biomarkers, readers, molecular imaging 
specialists, and referring physicians are able to connect the rather abstract 
imaging features with the underlying pathophysiology. Currie and coworkers 
tackle the question on how to integrate AI/ML into clinical routine of molecu-
lar imaging (Chap. 7) whereas the Bayarri group again discusses possibilities 
to integrate AI/ML into our databases (Chap. 8). The next three chapters dis-
cuss how AI/ML applications can be clinically implemented into neurode-
generative (Chap. 9), oncological (Chap. 10), and cardiac (Chap. 11) imaging 
applications.

The review of the potential impact of AI/ML on molecular imaging and 
theranostics clinically as well as technologically has high relevance. A total 
of four chapters are dedicated to reviewing the potential benefits and chal-
lenges of this new technology. Braren and coworkers discuss the potential 
impact of AI/ML from the perspective of how it influences therapeutic deci-
sions and potential patient outcome (Chap. 12). Jurisica et al. elaborate why 
imaging data alone is not enough and what additional data is needed to make 
the most out of it (Chap. 13). This chapter points out the important aspect that 
imaging data should not be considered without clinical context and not with-
out other available data (in vivo as well as in vitro) to get the most compre-
hensive overview of the patients’ state of disease. Prainsack and collaborators 
discuss the legal and ethical issues involved with AI/ML and focus on the 
aspect whether (or not) the patient does now own his/her data (Chap. 14). 
This is internationally an increasingly debated topic since on one side there is 
the need for international collaboration to provide high-volume and high- 
quality data for studies, but on the other side there are different jurisdictions 
involved with different legal and ethical requirements. The remaining chapter 
by Hustinx et al. addresses two very timely and important questions not about 
the technology itself but about the human side of our profession: (1) how is 
AI/ML impacting the role of imaging specialists and what can we do to still 
attract the smartest people to our field, and (2) how are we best prepared to 
successfully handle the challenges of AI/ML (Chap. 15).

This compilation of chapters reviews the challenges and benefits of AI/ML 
in special regard to nuclear medicine and hybrid imaging. Despite the overall 
favorable mindset of the authors and editors towards AI/ML, this book also 
considers ethical and legal aspects as well as warrants room for (and wants to 
encourage) discussion of challenges and even critical aspects. As for every 
new technology it requires time to successfully impact current practice of 
medicine. AI/ML will most likely transform modern medicine and especially 
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innovative fields such as nuclear medicine and hybrid imaging, but despite a 
potential disruptive impact in the long run this will be rather an evolution over 
time requiring regular revisitations on its progress. Also—as time told us 
after the abovementioned comment—nothing happens overnight.

We as the editors believe that exciting times lay ahead for nuclear medi-
cine. Our field needs to rise up to the opportunities, overcome the challenges 
but most importantly take ownership of driving our field towards the future. 
We thank all the contributors, reviewers, and sponsors for accompanying us 
in this journey and profoundly hope that this book will trigger lively discus-
sions and more importantly joint actions!

Toronto, ON, Canada Patrick Veit-Haibach  
Essen, Germany  Ken Herrmann   
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Artificial Intelligence (AI) is a broad term com-
monly used to describe one of the highest growth 
industries worldwide, which is quickly finding 
new and exciting applications in healthcare, par-
ticularly for image-based diagnostic workup [1–
3]. The concept of AI has evolved significantly 
since early work using model-driven algorithms 
in the 1940s to its current state where computa-
tional power allows observational learning of pat-

tern by a computer algorithm (i.e., machine 
learning (ML)) from large amounts of now digi-
tally available medical data, precluding the need 
for a priori knowledge of an underlying process 
and thus eliminating the requirement for human-
driven modeling and feature engineering [1]. ML, 
a narrower subfield of AI, develops algorithms 
that learn to perform tasks, make decisions, or 
predictions automatically from data, rather than 
having a behavior explicitly programmed. ML 
can be broadly further subdivided in supervised 
and unsupervised types of learning. The latter 
techniques find patterns in data and provide struc-
tural learning (e.g., classes within a dataset) with-
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out the need for data annotation, making these 
suitable to learn from large and unlabeled datas-
ets. Clustering analysis and Principal Component 
Analysis (PCA) are techniques typically used for 
these tasks. A recent study using the former tech-
nique identified four new different clinical pheno-
types in septic patients, each with its corresponding 
host-response pattern and clinical outcome [2].

In contrast, supervised learning techniques may 
be applied in learning tasks using “cleaned” data. 
That is data that is organized and provided in the 
form of input examples (and its features) paired 
with those examples’ specific outputs which con-
stitute the “ground truth” (or labels) to be pre-
dicted when building a certain inference model. 
Supervised learning techniques include regression 
and classification algorithms such as linear and 
logistic regression, discriminant analysis, decision 
tree, random forest, naïve Bayes, support vector 
machines (SVM), and neural networks. These type 
of ML models have been evolving for decades and 
continue to be the most commonly used in health-
care. An early example is DXplain, a medical deci-
sion support system developed at the Laboratory 
of Computer Sciences at Massachusetts General 
Hospital, that takes a set of clinical findings (signs, 
symptoms, laboratory data) and produces a ranked 
list of differential diagnoses [3].

Deep Learning (DL) started having an impact 
in the early 2000s and it took over an additional 
decade for its use in healthcare. It also encom-
passes methods in the family of ML, and most 
frequently referrers to supervised learning using 
Artificial Neural Networks (ANN), which use 
multiple layers of features from inputs to pro-
gressively extract higher level features in order to 
predict labeled outputs. Examples of ANN 
include convoluted neural networks (CNN), deep 
belief networks (DBN), and recurrent neural net-
works (RNN). DL may also be used in unsuper-
vised or semi-supervised learning and can 
become competent in exceedingly complex rela-
tionships between features and labels, for which 
have shown similar or exceeding capabilities to 
humans in solving problems of computer vision 
(CV) in medicine [4–6]. Usually the process of 
preparing datasets with features and labels can be 
time consuming; however, once readily available, 
ML algorithms can rapidly be trained and tested. 

For instance, during a developing pandemic, 
when essential swab and serologic testing  was 
lacking in the USA and around the globe, a pre- 
trained ANN showed high accuracy in diagnos-
ing coronavirus disease 2019 (COVID-19) while 
differentiating this disease from other types of 
viral or bacterial pneumonias using plain chest 
X-rays; similar ANN validated chest CT against 
viral RNA RT-PCR (reverse transcription poly-
merase chain reaction) test as a sensitive modal-
ity for diagnosis of COVID-19 [7–9].

Other computational training tasks use unstruc-
tured data to build models that can, for example, 
diagnose from physician’s notes in medical 
records (a.k.a. as “free text”) in combination with 
the medical literature, using either supervised or 
unsupervised natural language processing (NLP) 
learning techniques. Recent examples in this 
domain have shown that complications from spi-
nal surgery can be screened from operative 
reports, septic shock, suicide risk can be predicted 
from clinicians’ notes and patients that need fol-
low-up imaging can be detected using previous 
radiology reports [10–13].

Each of these ML methods is uniquely suited 
to certain tasks, but their products—models pre-
dicting a class or outcome  in a narrow specific 
area of healthcare or medical imaging—are the 
current essence of AI in medicine.

AI’s proposed applications in healthcare are 
diverse, from hospital finance to diagnostic and 
therapeutic applications, promising to improve 
efficiency by decreasing both the time that tasks 
take and the potential for medical error [14]. A key 
characteristic of AI’s current and proposed appli-
cations is expanding what is possible  today, not 
only increasing the speed or accuracy of current 
processes.

1.1  AI Applications Support 
the Infrastructure 
and Interventions 
of Healthcare, Including 
Molecular Imaging

At the time of writing this chapter there were 
114,002 results for “Artificial Intelligence” in 
PubMed and, while these entries date back to the 
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year 1951, over fifty percent of the results corre-
spond to the last 7 years. This highlights the 
importance of time in scientific breakthroughs. 
While models and theoretical concepts for the 
now call AI/Deep Learning revolution were first 
introduced over half-a-century ago by Frank 
Rosenblatt, a psychologist from Cornell 
University [15] and Marvin Minsky, a cognitive 
scientist from MIT [16], it was not until recently 
that these concepts were perfected and imple-
mented at scale in various industries (including 
more recently healthcare) by computer and data 
scientists due to more recent explosive growth in 
the global digital datasphere and computational 
power.

1.1.1  Drug Development

In drug development AI models predict the 
chemical and pharmaceutical properties of small- 
molecule candidates for drug design and devel-
opment, new applications of existing drugs, and 
new patients who can benefit from drugs, predict 
bioactivity and identify patient characteristics for 
clinical trials [17–20]. Moreover, AI in combina-
tion with sources of large amounts of data in the 
biosciences has been used to build in silico mod-
els of disease processes, such as cancer, to enable 
computer-aided design and testing of potential 
therapeutic compounds [21]. In the realm of 
infection, an approach using ML known as com-
putational phenotyping, was capable to predict 
antibiotic resistance phenotypes in various bacte-
rial pathogens and another showed it could facili-
tate rapid drug development against SARS 
coronavirus 2 (SARS-CoV-2) the causative 
organism in COVID-19 [22, 23].

1.1.2  Clinical Workflow

In clinical medicine, some of the tasks most ame-
nable to being performed by a computer, as well 
as some that can only be performed with levels of 
computational ability beyond the human brain, 
reside in the clinical workflow itself. By stream-
lining patient experience and clinical operations, 
and improving patient flow through key points in 

the clinical experience including admissions, dis-
charges, and ICU transfers, AI has the potential 
to significantly improve the efficiency of clinical 
care [24]. AI also extends the capability of clini-
cal care implementation, for example, through 
AI’s incorporation into robotic surgical guidance 
systems [25, 26]. During the COVID-19 pan-
demic, AI has also been proposed as a real-time 
forecasting tool [27], and for early infection iden-
tification, monitoring, surveillance, and preven-
tion as well as mitigation of the impact to 
healthcare indirectly related to COVID-19 [28].

AI is now imbedded in various day-to-day 
operations of many imaging departments includ-
ing scheduling, image acquisition, dose reduc-
tion, image reconstruction and post-processing, 
prioritization for reporting, classification of find-
ings for reporting, and the reporting task itself 
[1]. Beyond plugging AI into various pieces of 
the existing workflow, eventually molecular 
imaging workflows will need to be redesigned to 
take full advantage of AI, for example through 
merging data sources into a data model to enable 
easier data exploration and visualization [29].

1.2  AI’s Clinical Applications 
with a Focus on Molecular 
Imaging

From a clinical perspective, models developed 
using modern DL methods can, in certain cir-
cumstances, be generalized across diseases and 
imaging modalities and are typically less suscep-
tible to errors in predictions secondary to noise. 
The interactions of various systems within a dis-
ease as well as complex dependencies of disease 
states on each other can be better understood with 
AI through DL because of its ability to aggregate 
multiple data streams from imaging, laboratory, 
genomics, proteomics, pathology, as well as data 
from the electronic medical record, social net-
works, wearable sensors, and other data sources 
to create integrated diagnostic systems [30]. One 
could envision multimodality DL  modeling 
approaches integrating multiple data streams not 
only to compute disease prognosis but in every 
step of the diagnostic imaging workflow to 
involve both upstream and downstream applica-
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tions. Such instances could include: planning 
(e.g., patient selection and scheduling based on a 
patient’s disease profile, previous and future 
interactions with the healthcare system) to scan-
ning (e.g., reducing  diagnostic study radiation 
dose and bettering image quality), to reading 
(e.g., automated  detection and classification of 
pathologies), and reporting (e.g., automating 
reports  with reproducible measurements, auto-
mating prediction of clinical outcomes) (Fig. 1.1).

1.2.1  Understanding Disease

More and more, the concept that diseases are a 
manifestation of interconnected organ systems is 
gaining traction. Understanding these systems and 
their sequalae of signs and symptoms is an area 
where combined molecular and anatomic imaging 
modalities can contribute. However, the connec-
tions within and between these systems is highly 
complex and models built on AI can help in pattern 
elucidation. For example, areas of the brain associ-
ated with specific cognitive changes typical of 
genetic disorders affecting the brain primarily or 
secondarily have been identified using machine 
learning approaches [31, 32]. In their study of the 

ability of 18F FDG PET to predict neuropsycho-
logical performance (NPP) in patients with neuro-
fibromatosis Type 1 (NF 1), Schutze and colleagues 
built on the anatomical findings of MRI studies of 
NF 1, concluding that the accuracy in predicting 
NPP based on PET suggested an underlying meta-
bolic pattern of cognitive function [32].

1.2.2  Diagnosis

AI is used in a plethora of diagnostic tasks using 
data from traditional and untraditional sources. In 
primary care, patients report their symptoms and 
concerns to chatbots that then route their care to 
the appropriate channel for further diagnosis or 
treatment [33]. Difficult diagnoses are aided by 
piecing together symptoms of the patient with 
those of millions of other patients for diagnosis 
[34]. Given its particularly complicated origins 
including genetic and environmental factors inter-
acting with the immune system and other normal 
tissues in the body, cancer diagnosis is another 
area where AI is helping in diagnostic tasks using 
data from general health screening and diagnostic 
tests, including blood testing, imaging, and 
pathology [35]. In addition to the field of cancer, 

Image 
triage

Disease 
Detection 

Disease 
Classifi-
cation

Image 
reportingPlanning

Scanning

Image 
quality 
control

Adapted with permission from Dr. Curt Langlotz

Upstream Image Acquisition Downstream Image Analysis

• Test selection
• Patient selection
• Scheduling
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• Differential diagnosis
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automatization

• Report automatization
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• Patient moving
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Fig. 1.1 Schematic representation of potentially useful 
AI applications along the image life cycle including 
potential applications in the upstream (planning through 

image quality control) and downstream (triage through 
image reporting) domains. Adapted with permission from 
Dr. Curt Langlotz
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numerous AI applications have been developed in 
neurology and cardiology [36, 37].

In diagnostic imaging tasks, methods of using 
computational analysis to aid in the detection of 
lesions have evolved from early work in temporal 
subtraction methods and artificial neural net-
works performed in the 1960s–1980s to sophisti-
cated DL methodologies of today [38, 39]. AI can 
recognize specific diagnoses on imaging, such as 
pathologic bacteria on microscopy of blood sam-
ples or findings on a radiograph [40].

In cancer detection and diagnosis, AI can 
facilitate the workflow efficiency and accuracy of 
imaging clinician expertise through precise deter-
mination of tumor volume and its change over 
time and tracking of multiple lesions [30]. 
Automated PET segmentation of nodules based 
on neural networks trained in the spatial and 
wavelet domains have been shown to be repro-
ducible, volumetrically accurate, and demon-
strate lower absolute relative error when 
compared to other automated techniques [41]. 
Other ML approaches have been useful in deal-
ing with segmentation of larger and more compli-
cated tumors of the head and neck, particularly in 
the setting of heterogeneous radiopharmaceutical 
uptake, in segmenting brain tumors and classify-
ing brain scans [42–44]. In evaluating measures 
that are not typically detectable by an imaging 
physician, AI can help further guide additional 
testing and patient management [45].

The greatest strength of AI may be its ability to 
integrate far more factors than are possible for a 
single physician. For example, by analyzing 
images in tandem with blood and other laboratory 
testing, genomics, and unstructured data from 
patient medical records, AI algorithms are being 
used to make diagnoses in a more wholistic man-
ner, decreasing the physician’s difficulty of inte-
grating disparate results from numerous tests and 
the medical history [46]. This approach is known 
as multimodality deep learning. A recent study 
using this approach showed that combining clini-
cal, pathological, and imaging information 
increased the predictive power of clinical out-
comes in glioblastoma multiforme, where survival 
is poor and ranges from one to two years in most 
patients [47]. Another recent promising methodol-

ogy in this domain could be useful for pancancer 
prognosis prediction using clinical data, mRNA 
expression data, microRNA expression data, and 
whole slide histopathology images [48].

1.2.3  Radiologic-Pathology 
Correlation

The power of AI over the experience of any single 
imaging physician or pathologist is the ability to 
cross-reference imaging or other data from indi-
vidual tumors to databases of limitless cases for 
comparison, rather than limiting comparison to 
those cases seen over the physician’s career [30]. 
AI solutions for pathology have been shown to 
make diagnoses over tenfold faster than patholo-
gists; while having obvious direct clinical applica-
tions, AI-based pathology has shown high value in 
applications in the pharmaceutical industry [49].

1.2.4  Characterization

Beyond connecting lesions on imaging with spe-
cific pathologic correlations, AI can assist with 
other areas of classification as well. For example, 
in neurology, Parkinson’s Disease severity can be 
classified with 99mTc-TRODAT-1 SPECT 
Imaging based on support vector machine mod-
els [50]. Several applications of AI have been 
published in the cancer field including detection, 
characterization, and monitoring response to 
treatment of various cancer types [30]. In the 
realm of hybrid imaging molecular imaging 
modalities such as PET or SPECT provide 
molecular characterization of lesions possibly 
seen on companion anatomic imaging, such as 
CT. Increasingly, work is focusing on predicting 
the data that would be produced by the functional 
modality using the traditional anatomic modality 
in combination with artificial intelligence. For 
example, uptake of 68Ga DOTATATE on PET has 
been used to label bone metastases as active on 
PET-CT, with subsequent development of AI 
models to predict activity using only radiomic 
data from the CT portion of the study [51]. This 
new paradigm may enable a greater global reach 

1 Role and Influence of Artificial Intelligence in Healthcare, Hybrid Imaging, and Molecular Imaging



8

of the benefits of molecular imaging, allowing 
even those geographies that lack molecular imag-
ing systems the ability to better characterize 
lesions using staple and inexpensive modalities.

AI has been key in the proliferation of the field 
of radiomics. Radiomic approaches aim to identify 
imaging phenotypes specific to diseases that can be 
used in their diagnosis, characterization, and treat-
ment management, approaches that some have 
coined as “radiomic biopsy.” These imaging phe-
notypes can be defined by characteristics of the 
images measured or observed by an imaging spe-
cialist or features extracted based upon pre-defined 
statistical imaging features, of which over 5000 
have been described. Such radiomic features can 
identify key components of tumor phenotype for 
multiple lesions at multiple time points over the 
course of treatment, potentially allowing enhanced 
patient stratification, prognostication, and treat-
ment monitoring for targeted therapies, although 
care must be taken in evaluating the generalizabil-
ity of the results of these approaches [52]. 
Radiogenomics, the translation of intratumoral 
phenotypic features to genotypes, has been most 
explored in cancer imaging. Making these types of 
correlations requires the development of new meth-
odologies to summarize phenotypes of large heter-
ogenous populations of cells within a single tumor 
and look for underlying genotypic similarities [53].

1.2.5  Treatment Planning

In the realm of treatment, AI has become a pillar 
of the concept of personalized healthcare whereby 
machine-based learning based on numerous and 
seemingly endless sources of medical data is 
anticipated to identify insights into patterns of 
disease and prognosis [54, 55]. Models predicting 
response based upon any given choice of therapy 
would greatly inform choices of drug therapy 
made by patients and their physicians.

In the delivery of radiation, AI has enabled 
dose distribution prediction for intensity- 
modulated treatment planning based on patient- 
specific geometry and prescription dose on CT of 
cancers of the head and neck [56, 57]. Similarly, 
AI models can predict radiation dose to normal 

organs for preemptive adjustment of technique 
[58]. Ideally, these types of techniques will also 
inform therapies based on radiopharmaceuticals 
as the field of theranostics grows.

In treatments involving radiation, AI has the 
potential to improve safety and quality. For exam-
ple, in the realm of radiation oncology, DL with 
convolutional neural networks has been used to 
identify radiotherapy treatment delivery errors 
using patient-specific gamma images [59]. 
However, AI can’t be treated as a black box whose 
output should be trusted at face value, particularly 
when this output directly affects therapy. Rather, 
the fields of molecular theranostics and radiation 
therapy must recognize the fallibility of any tech-
nology that is misused with potentially significant 
consequences and that the workforce, including 
physicians, technologists, and radiation physi-
cists, must become more conversant in various AI 
approaches and algorithm development [60].

1.2.6  Prediction of Response 
to Treatment

Many current pharmacologic therapies and radio-
therapy approaches rely on indirect actions on 
disease, requiring the decoding of complicated 
molecular inter-relationships to define response 
to therapy, a task that is suited for AI. Such pre-
dictive models may require input of clinical fac-
tors; for example, one study using pretherapeutic 
clinical parameters to predict the outcome of 90Y 
radioembolization in patients with intrahepatic 
tumors [61]. Alternatively, models may focus on 
predictions made solely upon imaging, such as 
the prediction of radioresistant primary nasopha-
ryngeal cancers from CT, MR, and PET imaging 
prior to IMRT using radiomics analysis com-
bined with machine learning to identify the most 
predictive features [62]. Finally, models may rely 
on a combination of predictors, such as a study 
by Jin et  al. investigating the ability to predict 
treatment response based on a machine learning 
model combining computed tomography (CT) 
radiomic features and dosimetric parameters for 
patients with esophageal cancer (EC) who under-
went concurrent chemoradiation (CRT) [63].

G. A. Davidzon and B. Franc
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1.2.7  Overall Prognosis

Evaluations of overall prognosis can be helpful to 
guide therapeutic choices in highly aggressive 
diseases or diseases that have a more chronic 
course with multiple therapeutic options. Just as 
in the case of models to predict response to ther-
apy, overall prognostic models may incorporate 
clinical information, imaging data, or a spectrum 
of data from in vivo molecular imaging to ex vivo 
tissue analysis and patient characteristics.

For example, the ability to train neural net-
work models on data from a single low-cost, 
widely available test such as bone scan to predict 
prognosis in patients with metastatic prostate 
cancer or breast cancer enables the development 
of a widely applicable prognostic model [64] By 
comparison, models developed from studies such 
as one using a combination of highly specialized 
inputs including 11C methionine (11C MET) PET, 
tumor grade, histology, and isocitrate dehydroge-
nase 1 R132H mutational status to predict sur-
vival in glioma patients may only be applied 
under very specialized circumstances [65].

1.2.8  Reporting

The ability to provide a timely, accurate and 
actionable imaging report is paramount to ensure 
providing quality of care and better clinical out-
comes. It is known that medical image reporting 
errors are not rare [66, 67]. A plausible explana-
tion for this may be the increasing number and 
complexity of clinical imaging studies with lag-
ging in training of radiologist specialists, render-
ing attending radiologists overburdened. Hence, 
solutions to augment imaging specialists improve 
and expediate clinical reporting could be helpful 
(Fig.  1.2). Already an AI framework that could 
provide considerable benefits for patient safety 
and quality of care for busy emergency and trauma 
imaging services that press radiologists to meet the 
demand of increased imaging volume and provide 
accurate reports has been proposed [68]. Similarly, 
another AI framework could potentially increase 
threefold the measurements of target lesions in 
oncologic scans and provided faster notification of 

actionable findings to referring clinicians [69]. 
Likewise, a recent study by Rao and colleagues 
demonstrated an AI tool that can serve as peer 
reviewer to augment radiologists diagnosing intra-
cranial hemorrhage and reducing error rates [70].

Finally, healthcare records, imaging, medi-
cal  decision-making, and treatment data are 
now continuously recorded within the boundaries 
of healthcare systems in siloed fashion. In part due 
to this, most of current machine learning efforts in 
healthcare, including those in hybrid imaging and 
molecular imaging, are unfortunately only based 
on data from single institutions. AI and machine 
learning are inherently  statistical methodologies, 
and as such, they benefit the most from large and 
heterogenous datasets, ideally from multiple insti-
tutions. Never before has the failure to build robust 
data- sharing systems for large-scale and near 
real-time analysis in healthcare has been more 
evident than with the outbreak of COVID-19 pan-
demic. Nevertheless, an international  shared 
data model  exist for information from  intensive 
care units (ICUs): MIMIC database is such model, 
it is publicly available, deidentified, and  widely 
used by investigators and engineers around the 
world, helping to drive research in clinical infor-
matics, epidemiology, and machine learning [71]. 
Efforts like this that can enable global research-
ers generate AI applications that empower imag-
ing specialists and other healthcare workers to 
make data-driven decisions, are  sadly lacking in 
the hybrid and molecular imaging community. 
MIMIC or  other established models that enable 
medical data sharing between institutions may 
serve as direction for the molecular imaging 
and other medical communities yet, while such 
endeavor could boost the task of modeling using 
retrospective medical data, prospective multi-
center validation of developed ML models should 
be warrant before and during clinical deployment.

1.3  Conclusion

With all these abilities, the boundary between the 
job of AI and the role of the human imaging spe-
cialist will be debated. While some prognosticate 
an era of medical specialists like radiologists and 
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pathologists being augmented by large-scale 
computation from AI-based applications, others 
foresee a future where traditional imaging physi-
cians and pathologists cease to have a role, 
replaced by a physician “information specialist” 
trained less-so in radiology/pathology and more-
 so in the data sciences, statistics, and parallel 
fields that serve as information sources, such as 
genomics and proteomics [72]. Beyond its influ-
ence on medical diagnosis and therapy, AI will 
have effects throughout the healthcare continuum, 
including keeping people healthy [73]. As the role 
and influence of AI in healthcare continues to 
evolve, real and potential benefits become certain, 
and so far suggest AI will not replace radiologists 
and physicians, but radiologists and physicians 
who use AI will replace those who don’t [74].
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2.1  Introduction

In everyday life, the terms machine learning 
(ML) and artificial intelligence (AI) have become 
indispensable. All conceivable domains are pre-
destined to be optimized and enhanced by tech-
niques summarized by these expressions. This 
especially holds true for the medical domain, 
which in turn has various subdisciplines and spe-

cialties that are affected to varying degrees by the 
hope and hype associated with these methods.

ML and AI algorithms, although often tailored 
to specific tasks and data types, come in different 
flavors, but usually follow a generic principle. 
They can be understood as a function mapping 
that relates an input to an output. At their core, an 
objective is optimized during training to opti-
mally establish this mapping, i.e., to generalize 
well for unseen data.

Within the vast field of precision (personal-
ized) medicine, many approaches are grounded 
in imaging. These comprise, but are not limited 
to, the discovery of imaging biomarkers and the 
establishment of correlations between imaging 
phenotype, genotype, or clinical outcome 
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 parameters for improved disease and therapy 
monitoring. So far, most of these applications 
have been demonstrated for radiological images. 
Technically, these methods can also be applied in 
the same manner to nuclear and hybrid imaging 
use cases. Yet, due to particular differences in 
what can be measured as well as in the acquisi-
tion and processing of the images, there are other 
applications unique to the field of nuclear imag-
ing that can be enhanced by AI.  As always, 
domain knowledge is important for devising 
novel applications that truly lead to a clinical 
impact.

2.2  History and Basic Definitions

The term artificial intelligence dates back to the 
1950s where it was coined by John McCarthy. 
The general opinion is that the date of founding 
for AI as a research field was established in a 
summer conference at Dartmouth in 1956, bring-
ing together some of the brightest minds of that 
time. Two years later, Frank Rosenblatt presented 
the perceptron, the first artificial neural network 
(ANN). Altered variants of these artificial neu-
rons still serve as building blocks of modern 
architectures and applications. Less than two 
decades and many research projects later, the ini-
tial hype was followed by the first AI-Winter, 
presumably triggered by a book published by 
Marvin Minsky and Seymour Papert revealing 
limitations of the perceptron. The field recovered 
due to knowledge representations that thrived in 
the form of expert systems being utilized for 
decision-making. Yet, it was hit by the second 
AI-Winter started in the late 1980s, not meeting 
the ambitious expectations once again. This sec-
ond trough of disillusionment1 ended in 1997 
with the famous chess game in which IBMs Deep 
Blue defeated the reigning world champion Garry 
Kasparov. Since then, the field prospered and was 

1 Segment of the hype-cycle established by Gartner con-
sultant Jackie Fenn.

propelled forward by several remarkable mile-
stones. In 2012, a convolutional neural network 
(CNN) termed AlexNet won the ImageNet visual 
recognition challenge by a large margin. The 
authors stated that the depth of the model, i.e., the 
number of layers of the artificial neural network, 
was one of the primary reasons for its perfor-
mance [1]. Although the term deep learning (DL) 
was coined earlier [2], this key event pushed deep 
learning to the mainstream. Training of deep 
models is made feasibly by utilizing graphical 
processing units (GPUs) that have and still are 
pushing the limits for fast matrix multiplications, 
the very same requirements dominating within 
the computer gaming industry. Increasing vol-
umes of data available for training and novel net-
work architectures, intelligently designed for 
certain tasks, are additional components for the 
ongoing success story. Since 2016, the error rate 
for image classification on ImageNet data is con-
siderably better than the reported human error 
rate of 5.1% [3].

Artificial intelligence often refers to the abil-
ity of a machine to display intelligent human 
behavior. However, this is not a rigorous disam-
biguation as there is no distinct definition for 
human intelligence either. The movement toward 
a general artificial intelligence of machines, i.e., 
the ability to solve arbitrary problems, is often 
referred to as strong AI. Yet, the vast majority of, 
if not all, AI-driven applications to this date are 
weak or narrow AI systems, tuned for a specific 
task, e.g., the detection of a tumor lesion within a 
medical image. The machine detects this pattern, 
and even might do this better and more consis-
tently than any human physician, but it does not 
understand the content nor the implications it 
might have for a patient.

It is worth mentioning that, nonetheless, many 
algorithms can be utilized as general-purpose 
tools. The very same network architecture that 
was used for the detection of tumor lesion can be 
trained with data from a different domain and is 
then, for instance, able to detect pedestrians in a 
street scene. In turn, this means that we can 
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expect many promising algorithms established 
within the computer vision community to be 
transferred to the hybrid imaging field.

2.3  Learning Paradigms

Machine learning is a subfield of AI subsuming 
various techniques for building mathematical 
models using data. Instead of explicitly program-
ming the computer how to perform a task or solve 
a problem, the methods are designed to discover 
relationships or semantic meaning within the 
data, e.g., learning a mapping between input and 
output or generative models of the data.

Different learning approaches can be distin-
guished. In supervised learning, the input data x 
and associated labeled output data y are available. 
Together they are called training data. Supervised 
learning algorithms learn, using n input and out-
put pairs (xn, yn), to predict an output label y for a 
new input x, unseen during training. Sometimes it 
is described as learning with a teacher. Supervised 
learning algorithms are often used for classifica-
tion or regression and usually display a better 
performance in comparison to other approaches. 
The drawback is that a lot of training data is 
needed to obtain good models, and even if this 
data is available, annotating this data can be quite 
laborious and thus is expensive w.r.t. time and 
money. Due to these reasons, weakly supervised 
learning relies on training labels that are either 
noisy or imperfect but cheaper to obtain.

In classification algorithms, the output is 
restricted to a limited set of categories. Input data 
is categorized to belong to a predefined class, for 
instance, to label a region with elevated SUVmax 
to be either physiological or pathological uptake. 
In turn, the output of a regression algorithm is a 
numerical value, e.g., a floating-point number 
that corresponds to an SUV for a given voxel.

In unsupervised learning, only input data 
without labels or other output values is available. 
The goal is to discover structures and relation-
ships within data. A famous example is clustering 

analysis that groups, usually high dimensional 
data, based on a similarity measure. Other 
approaches are entitled autoencoders. In this set 
of methods, the input data serves at the same time 
as the output. During training, a compression or 
representation is learned that encodes the data. 
There are other approaches, all have in common, 
that at some point meaning needs to be attributed 
to structures discovered in the data. This step 
usually is a task reserved for humans.

In self-supervised learning, the data itself pro-
vides the supervision. There are different 
approaches in imaging applications where this 
paradigm has been successfully applied. 
Procedures include randomly sampling two 
patches from an image and letting the network 
learn to predict their relative position, using a 
monochrome version of the images for predicting 
pixel color or making a jigsaw puzzle from the 
image and learning to reassemble the original 
image. These tricks enable the learning of a 
semantic representation of the data that can be 
exploited in downstream tasks, e.g., classifica-
tion. We are not aware that self-supervised 
approaches have been utilized in the hybrid imag-
ing community, yet. This could be due to the fact 
that normally substantial amounts of data are 
needed, and often supervised approaches per-
form better.

Semi-supervised learning is a mixture of 
supervised and unsupervised methods. Often a 
small part of the data is properly annotated, 
whereas the rest of the training data lack labels. 
This combination can often boost performance in 
comparison to only utilizing either labeled or 
unlabeled data during training.

Another important approach to deal with 
scarcely available data is referred to as transfer 
learning. In this setting, data is trained on avail-
able data from a different but to some extent 
related problem, and the model is then fine-tuned 
on less data stemming from the actual problem at 
hand. An example would be the classification of 
radiological images utilizing a model pretrained 
for a classification task on the aforementioned 
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ImageNet data. The problems share the same 
natural imaging statistics, i.e., the images are 
composed of textures and edges. Thus, if these 
statistics are already learned, only higher level 
meanings need to be established for the medical 
imaging data. In multi-task learning, several 
tasks are solved at once, again being distinct 
tasks that do share commonalities. It has been 
demonstrated that this can be beneficial to train-
ing separate models for each task, presumably by 
improving learning efficiency.

Reinforcement learning (RL) is yet another 
learning paradigm [4]. In this family of algo-
rithms, learning incorporates an interaction with 
a real or simulated environment. Usually, the task 
comprises a policy and a value function. The pol-
icy function determines an action and the value 
function, the expected reward for this action. 
Next to robotics tasks, RL has been used in the 
past for solving imaging applications such as fil-
tering [5], segmentation [6–10], feature extrac-
tion [11–13], and others. A very famous example 
that combines RL with DL is Google’s AlphaGo 
[14]. In the ancient and very complex board game 
Go, the proposed algorithm was able to defeat a 
world champion and is presumably the strongest 
player in history. When thinking out of the box, 
detecting a tumor lesion within a PET scan can 
also be reformulated in terms of a game: scrolling 
through the stack of images in the least amount of 
time, while integrating clinical and historic infor-
mation, to predict the treatment (action) that will 
yield the highest reward (value), i.e., overall sur-
vival time for the individual patient. Again, the 
very same algorithms that mastered Go could be 
employed to solve this task in precision oncol-
ogy. However, for the Go game, data can be sim-
ulated, whereas for the medical example, we 
would need disease histories from millions of 
patients.

2.4  General Concepts of Machine 
Learning Methods

Despite sharing commonalities, there are differ-
ent ways to categorize ML methods. One way is 
to distinguish between discriminative and gener-

ative models. Discriminative models aim at 
determining a decision boundary. This boundary 
can be either linear or nonlinear (Fig.  2.1a). In 
probabilistic terms, this means that a conditional 
probability distribution p(y|x) is learned that 
allows to assign a class label y for a given data 
point x. In contrast, in generative models, the 
joint probability distribution p(x,y) is sought, 
explicitly modeling the actual distribution of 
each class y. Next to transforming the joint prob-
ability into a conditional probability using Bayes’ 
rule, this allows to actually generate data from 
the model by sampling from the distributions, 
hence the name. Looking for a higher accuracy, 
discriminative models are often the preferred 
choice.

Many ML algorithms are parameterized. For 
instance, parameters that are adjusted during 
learning are the weights of the neural network or 
the coefficients of a regression model. In addi-
tion, there are also hyperparameters. These 
hyperparameters are manually set by the user 
prior to starting the learning algorithm and 
include, e.g., the number of training steps and the 
learning rate.

A general approach often found, and one of 
the most fundamental components of ML algo-
rithms, is that during learning, an objective func-
tion, a.k.a. loss, error, or cost function, is 
optimized. Often this is accomplished using gra-
dient descent, comprising a variety of iterative 
algorithms, or combinatorial approaches. This is 
necessary, because, as in real-world problems, an 
analytical solution usually cannot be found. 
Dozens of objective functions are available, and 
developing the right one for a given problem is an 
important part of designing an algorithm. A pop-
ular error is the mean squared error (MSE) that 
computes the average squared difference between 
the predicted and true values. For an image, this 
would result in comparing each pixel value of the 
predicted to the real image by summing over all 
squared differences normalized by the total num-
ber of pixels. In imaging applications, other loss 
functions have been described, e.g., the percep-
tual loss [15]. This loss aims at capturing higher 
level differences between images, like content or 
style. The advantage of such a loss is immedi-
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ately apparent, as similar looking images, for 
instance, identical images that are only shifted by 
a few pixels, would yield a higher MSE in com-
parison to the perceptual error.

During the, often iterative, training procedure, 
the parameters of the model are adjusted so that 
the total error is minimized. Together with this 
procedure, several additional concepts are impor-
tant. One of these is the bias-variance trade-off 
that is useful in understanding the different types 
of error sources affecting the model quality. A 
high bias leads to underfitting, not capturing the 
relationship present in the data. This might be 
due to choosing the wrong learning algorithm or 
model capacity for the problem. On the other 
hand, a high variance is given when the model 
captures noise in the training data or the algo-
rithm is trained with nonrepresentative data. It 
causes overfitting to the training data, and the 
model usually displays poor generalizability. 
Apart from bias and variance, the irreducible 
error, inherent to the problem itself, contributes 
to the total expected model error. The classical 
goal is to find the sweet spot that balances under- 
and overfitting. However, a recent publication 
suggests that this view might need to be extended 

[16]. Empirical evidence exists that very power-
ful models, like neural networks, can be trained 
to interpolate (and extrapolate from) the training 
data, classically considered as overfitting, and 
nevertheless display improved performance on 
unseen data (Fig. 2.1b).

A way to control overfitting is regularization. 
Regularization can be described as reducing the 
variance of the model, without substantially 
increasing its bias. This can be realized by intro-
ducing constraints on the model parameters, e.g., 
that they do not become too large (L2-norm, 
ridge regression) or a sparse solution is preferred 
(L1-norm, Lasso). It restrains the model from 
becoming too flexible and, thus, prevents fitting 
the data exactly. For neural networks, techniques 
like dropout are used to prevent overfitting. In 
this procedure, neurons are randomly disabled 
(dropped out) during training, reducing the effect 
of specific neurons (and their weights) on the 
overall output of the network.

Another way of addressing overfitting is cross-
validation (CV). In cross-validation, the data is 
split into different folds of training and validation 
data. The model is trained and evaluated on each 
of these splits, identifying the model with a param-
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Fig. 2.1 (a) Two-dimensional toy problem. Features 1 
and 2, e.g., weight and height, characterize the instances 
of the two different classes, represented by blue circles 
and green stars. The dashed line shows a linear and the 
dotted line a nonlinear decision boundary. The decision 
boundary is learned by the ML model. For instance, if the 
model is too powerful or non-representative training data 
was used, overfitting might occur, i.e., it does not general-
ize well on unseen data. Depending on the type of model 
used, a different classification might result for an unknown 
data point (question mark in red box). Overfitting can be 

prevented by regularization. (b) Bias-Variance trade-off 
for training ML models. The classical goal is to find the 
sweet spot that balances under- and overfitting (dotted 
vertical line within blue shading), as the models tend to 
perform worse on unseen test data (solid line) even though 
the training error (dashed line) further decreases. A recent 
publication proposed the existence of an interpolating 
regime: very powerful models, like neural networks, can 
be trained to interpolate the training data, classically con-
sidered as overfitting, and nevertheless display an 
improved performance on unseen data
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eter set that probably works best for new data not 
being part of the CV procedure, e.g., which on 
average worked best on the validation sets.

The available data should be split into train-
ing, validation, and test sets.2 The training data is 
used during training, the validation data to evalu-
ate the model during learning (serving as a proxy 
for test data) and the test data should only be 
touched at the very end for producing the final 
results. This allocation of the data can be quite 
challenging, especially if only few data is avail-
able as it is quite often the case in the medical 
imaging field. Therefore, when reading publica-
tions on AI applications, attention should be paid 
if the division of the data in these three groups 
has been carried out or if CV has been 
conducted.

To assess the performance of a classification 
algorithm, quite often the area under the curve 
(AUC) of the receiver operator characteristics 
(ROC) is reported. The value scales between 0.0 
and 1.0, the higher the AUC the better the model. 
The ROC curve is obtained by plotting the true- 
positive rate (sensitivity) versus the false-positive 
rate (1.0, specificity). Dozens of performance 
measures exist for assessing segmentations in 
images [17], and novel metrics are proposed con-
stantly. A popular measure is the DICE score that 
geometrically describes the area of the overlap of 
two segmentations divided by the total size of the 
two areas. For regression problems, other metrics 
exist. Quite often, these or similar objective func-
tions, like MSE or the perceptual loss, can be 
found in medical imaging. They encode the dif-
ference between two images with a single num-
ber. It always should be kept in mind that these 
numbers might not reflect the human impression, 
e.g., when visually comparing images, and thus, 
the result should not be evaluated purely based on 
them. Instead, looking at the data and the actual 
results of an algorithm is of utmost importance 
(Fig.  2.2). If perfect metrics for assessing the 
results existed, they could be utilized as objective 
functions, and even better results could be 
achieved by the learning algorithm. Further, it 

2 In some sources, the meaning of test and validation set is 
reversed. But usually it can be deduced in context.

has been pointed out that the ranking of algo-
rithms, as seen in biomedical imaging competi-
tions, should be interpreted with care, and 
reproducibility is often not possible due to miss-
ing information [18]. Thus, comparing two algo-
rithms designed for solving an identical task is 
far from trivial.

2.5  Classical Machine Learning 
Approaches

Despite a noticeable shift to DL methods within 
the last years, several classical machine learning 
methods are frequently used. Especially, within 
radiomics applications, they are still the predomi-
nant approach for relating imaging features to 
genetic or clinical results. Next to simple regres-
sion analysis, decision trees and support vector 
machines are often encountered for classification 
as well as regression tasks. But there are plenty of 
other approaches beyond the scope of this manu-
script, e.g., Bayesian networks and genetic 
algorithms.

A decision tree is a very common and power-
ful data structure in computer science. It is built 
up out of layers of nodes and edges. There is a 
single root at the top and at the end of the edges 
of the last layer are the leaf nodes that contain the 
results. Based on an input to the root node, the 
tree is traversed according to decision rules 
encoded in the nodes, e.g., if the SUVmax is larger 
than 10.0, take the left edge otherwise the right 
edge to the succeeding node. Decision trees are 
easy to understand and train, and they are also 
computationally efficient. Fortunately, the rules 
for building up the tree can be learned from data 
and do not have to be set manually. A random 
forest consists of many individual decision trees 
that are combined to form an ensemble. When 
building up the forest, each individual tree is built 
by randomly sampling with replacement from the 
training data, resulting in different trees. Further, 
random subsets of features are chosen, enforcing 
an even greater variation among the trees in the 
model. Each individual decision tree in the ran-
dom forest results in a class prediction and the 
class with the most votes wins—note the analogy 
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to crowd intelligence. By combining simple clas-
sifiers, i.e., individual trees, the decision bound-
ary can become substantially more complex. 
Methods following this idea are subsumed as 
ensemble methods.

For quite some time, support vector machines 
(SVMs) were among the most popular algorithms 
in the field. They often lead to a very good perfor-

mance on reasonably sized data sets. However, as 
they are computationally expensive, they do not 
scale well with the number of training examples. 
SVMs are synonymously called maximum mar-
gin classifiers or kernel methods. Taking these 
three names together yields a very good descrip-
tion for the method. It is possible to transform 
any data (or features extracted thereof), so that 

Reference MSE: 2911

MSE: 1072 MSE: 1307

Fig. 2.2 MSE between different PET images. In com-
parison to the reference image (head, upper left), the MSE 
is smaller for the pelvis region (lower left) than for the 
vertically mirrored but otherwise identical head image 
(lower right). Largest MSE results from comparing the 

reference to an upper abdominal PET slice (upper right). 
This illustrates the importance of choosing an appropriate 
loss function for the learning algorithm that, for instance, 
incorporates information about the context and not only 
raw pixel values
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the underlying classes can be separated with a 
linear decision boundary (Fig. 2.1a). This trans-
formation can be performed by using any posi-
tive definite function as a kernel. During training, 
the optimal decision boundary is found, i.e., the 
line separating the classes which results in the 
maximum margin between the data points on 
either side of it. The data points that lie closest to 
the decision boundary are called support vectors. 
They are actually the most important points for 
our classification, as they are the ones where 
errors might occur and also because they are the 
only data points we need for defining the decision 
boundary. All other data points are not needed to 
perform the classification and can be discarded.

2.6  Artificial Neural Networks

The term deep learning summarizes a group of 
models utilizing artificial neural networks 
(ANNs) at their core. Especially, since 2012, they 
gained more and more importance and nowadays 
comprise a significant share of the employed 
machine learning methods. One major reason for 
this success is grounded in the way they work. In 

contrast to classical ML approaches, where fea-
tures are handcrafted, i.e., chosen by humans, the 
ANNs learn to extract features that are relevant 
for solving a given task. In fact, this can be con-
firmed visually and relates to the hierarchical 
structure of the networks (Fig. 2.3a). Within the 
lower layers, neurons are tuned during the train-
ing process to detect fundamental properties, like 
edges and their orientation, that are combined to 
more complex features in the top layers, e.g., 
detecting a nose, an eye, or an entire face [20]. 
Due to the resemblance to biological visual sys-
tems, this explains why networks can be pre-
trained on photos from a different domain (see 
above), which share the same low-level image 
features, and, for instance, then can be adapted to 
perform well on medical images. The deep lay-
ered architecture makes them very powerful and 
allows to unravel hidden high dimensional rela-
tionships that are too complex for humans to dis-
cover [21, 22]. However, this usually comes at 
the cost of requiring substantial training data.

ANNs are built up out of several components. 
There are connections linking neurons, i.e., the 
output of a neuron serves as the input to a single 
or multiple subsequent neurons. The individual 

ba

Fig. 2.3 (a) Simple ANN.  Its hierarchical structure is 
composed of three layers of neurons schematically repre-
sented by nodes arranged in vertical columns. Input layer 
(left, 3 neurons), hidden layer (middle, 4 neurons), and 
output layer (right, 3 neurons). The number of hidden lay-
ers refers to the depth in DL models. (b) Drawing of a 
single artificial neuron overlayed on its biological role 

model. The activation of the neuron is calculated by a 
weighted sum of the incoming connections from upstream 
neurons. This sum is transformed using an activation 
function f and passed on to the neurons of the next layer. 
During training, the weights w are adjusted using back-
propagation. Image taken from [19]

J. Kleesiek



21

neurons (units) (Fig. 2.3b) combine their inputs 
as a weighted sum. The result is transformed by 
an activation function introducing nonlinearities. 
Activation functions represent an abstraction of 
the dependency of a biological neuron’s spiking 
frequency on its synaptic input currents and are 
also called squashing or transfer functions, 
because they “squash” the input by transforma-
tion into a predefined value range. Activation 
functions have been the focus of intensive 
research as they can significantly influence the 
result of the computation. Hence, dozens of vari-
ants are described in literature.

In the end, a mapping between an input and 
output is learned by a neural network. It has been 
stated that in theory arbitrary functions can be 
approximated by feed-forward networks that 
have at least one hidden layer [23]. In feed- 
forward networks, the connections between neu-
rons do not form cycles. In contrast, recurrent 
neural networks do display those cycles, leading 
to a form of internal memory. This is very useful 
for sequence learning, e.g., needed for speech 
processing, and, thus, explains why these models 
are especially successful in this domain.

During training, the weights of the neural net-
work are optimized. Initially, random values are 
assigned. Propagating an input through the net-
work results in a series of transformations, ini-
tially generating a random output. In supervised 

learning, the correct output is known, and the 
error between the current and desired output can 
be computed. The derivative of the error function 
(see above) can be calculated, and by using the 
chain rule, the weights of individual neurons can 
be updated proportionally to their total error con-
tribution. This mechanism is called backpropaga-
tion as the error is propagated back through the 
network. This is done with thousands of training 
examples until the weights of the network have 
converged to produce a minimal error.

Backpropagation is the key principle of most 
deep learning algorithms and is also used for the 
training of convolutional neural networks 
(CNNs). Especially, in the field of image process-
ing, CNNs are the top dog. In order to understand 
why this is the case, one must first consider what 
a computer “sees.” The individual pixels of an 
image correspond to gray values3 that can be dis-
played in a matrix (Fig. 2.4). For example, a gray 
scale image of size 256 × 256 would result in 256 
× 256 = 65,563 neurons connected via weights to 
a single neuron in the first hidden layer of a fully 
connected ANN. Clearly, this does not scale. This 
is one manifestation of the curse of dimensional-
ity [24], as deep architectures with real color 
photos or radiological images would result in 

3 In the case of color images there are channels added for 
each color component leading to a 3-D matrix.

Fig. 2.4 Convolution leading to edge detection. An 
enlarged section of a brain MRI scan shows gray values of 
individual pixels (left matrix). Convolution with a filter 
for diagonal edges (middle matrix) results in an activation 
map. The filter response, i.e., the detection of an edge is 

seen as the result of the convolution operation (right 
matrix). As an example, the value 50 is highlighted, which 
is the sum of the multiplication of the red marked values 
with the filter. During CNN training, weights are learned 
that compose different filters. Image taken from [19]
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 billions of weights (parameters) rendering the 
problem intractable or susceptible to overfitting. 
For this purpose, in CNNs, neurons are only con-
nected to a small region of the preceding layer. 
This is achieved by introducing convolutional 
layers. A convolution operation involves small 
matrices, called filters, which are shifted over the 
image. The values are multiplied and added 
together. For each of these operations, a numeri-
cal value is computed. Taken together, these val-
ues correspond to new “images” (one for each 
filter), referred to as activation maps. Each pixel 
value in these maps represents the filter response 
for a spatial location within the image of the pre-
vious layer. Combined they serve as input for the 
next layer and so forth. As the network learns, it 
creates better and better filters. The numerical 
values of the filters thus correspond to the weights 
that are optimized during training. Filters are said 
to be activated when they “recognize” a feature, 
e.g., an edge (Fig. 2.4).

Dozens of different architectures have been 
proposed and successfully employed for biomed-
ical imaging tasks [25–28]. Most of them use 
convolutional layers, sometimes even exclusively 
(fully convolutional). A very popular variant, 
especially for medical image segmentation, is the 
U-Net [29, 30]. It has a u-shaped architecture, 
consisting of a contracting part (encoder), where 
spatial information is reduced while feature 
information is increased, followed by an expand-
ing part (decoder). Crucially, resolution is 
increased again by simultaneously incorporating 
high-resolution features directly from the con-
tracting path. This allows to preserve the struc-
tural integrity of the image leading to superior 
results. Examples where this architecture has 
been used and additional imaging applications 
are introduced below.

Another family of very powerful methods is 
called generative adversarial networks (GANs) 
[28]. As the name implies, it consists of two com-
peting networks: one network, the generator, is 
trained to generate images indistinguishable from 
real images, whereas a second network, the 
 discriminator, is trained to distinguish real from 
fake images. During training, the two adversaries 
compete and improve until they reach an equilib-

rium—the generator is able to produce realisti-
cally looking images and the discriminators 
performance is at chance level as it is not able to 
tell generated from real images apart. Despite 
being difficult to train, they have proven to be 
very powerful, e.g., for transforming one image 
into another, e.g., an MRI scan into a CT image 
(see below). In contrast to hand-specified losses, 
e.g., the MSE, the generator will be driven to 
learn the full distribution of the original data, 
instead of summary statistics, such as the mean, 
which usually results in significantly more realis-
tic samples.

2.7  Radiomics 
and Radiogenomics

Radiomics describes the quantitative evaluation 
of imaging markers in radiological data and their 
correlation to clinical assessment, molecular data 
or genetic information. Radiomics is an artificial 
word formed by combining radiology and omics. 
Originally, the term radiogenomics was intro-
duced in radiooncology for investigating the radi-
ation response of cells based on their genetic 
profile [31]. Meanwhile, the term radiogenomics 
is often used synonymously with radiomics, 
when establishing a connection between the 
(imaging) phenotype and the genotype.

A radiomics analysis comprises several steps 
(radiomics pipeline), including data acquisition 
and preprocessing, image segmentation followed 
by the computation and selection of imaging 
markers. These markers are used for the develop-
ment of the radiomics model by relating them to 
desired target parameters—up until now most 
commonly by employing classical machine 
learning approaches (see above). The identified 
imaging markers are referred to as the radiomics 
signature.

There are several categories of the radiomics 
features, including shape features, first-order, 
second-order, and higher-order statistics, result-
ing in hundreds of features that can be computed 
for a region of interest (ROI). An example for 
first-order statistics would be the mean of the 
Hounsfield units for a delineated area within a 
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CT scan or the SUVmax within a PET scan. For 
instance, second-order statistics relate to texture 
features capturing the heterogeneity of a ROI. It 
should be stressed, that these are usually pre-
defined handcrafted features, originating from 
classical computer vision approaches, and the 
advantage of DL methods for automatically 
learning relevant features is not part of the canon-
ical radiomics cascade. Nevertheless, recent 
 publications do take modern DL approaches into 
account (e.g., [32, 33]). Also, for the automatic 
segmentation of the ROIs, modern AI algorithms 
are increasingly being utilized.

All steps of the pipeline are susceptible to 
errors and must be carried out carefully. Data 
acquisition and preprocessing can devastatingly 
influence the results, as image characteristics 
directly impact the feature computation. In the 
past, different equations have been employed for 
feature computations, e.g., with or without nor-
malization. To tackle this source of variation, 
standardization attempts by the image biomarker 
standardization initiative (ISBI) and Quantitative 
Imaging Biomarkers Alliance (QIBA) have been 
put forward [34–36].

Radiomics studies often display an imbalance 
between patients included (N) and features exam-
ined (P), impeding the establishment of statisti-
cally sound claims. Increased false-positive rates 
have been reported in these “large-p-small-n” 
scenarios [37]. In a recent review, the majority of 
studies included less than 100 patients [38]. As 
the feature space grows exponentially with the 
number of features included, powerful ML mod-
els tend to adapt very strongly to the few existing 
points in this high-dimensional space and thus do 
not generalize well (see overfitting above). 
Further observed failure points for reproducibil-
ity include inadequate corrections for multiple 
testing as well as an improper separation of data 
into training, validation, and test set (see above).

In oncological studies, the genetic heterogene-
ity of tumor tissue also should be paid attention 
to. The biopsy contains only a sample of the 
tumor and already a neighboring site within the 
same lesion, not even to consider a metastasis at 
a different location, might have a deviating 
genomic profile. This needs to be considered 

when mapping the radiomics features for a given 
ROI to the genomic target parameters.

In the last years, the radiomics-related publi-
cations increased constantly and are considered 
as a valuable component for achieving the goal of 
precision medicine. It has been conjectured that 
the quantitative analysis of imaging features gen-
erates more and better information than the 
assessment of images by a physician alone [39]. 
Of course, the underlying principles and pro-
cesses of the radiomics pipeline are very general. 
They can be directly applied to any kind of medi-
cal images, e.g., stemming from pathology or 
nuclear medicine. For example, it has been dem-
onstrated that radiomics features extracted from 
multiparametric PET/MRI images can be used to 
classify gliomas as well as to predict their muta-
tional status [40].

2.8  Imaging Applications

In the previous part, the groundwork for under-
standing AI methods has been established. This 
section will look at ML imaging applications that 
have been proposed for hybrid imaging tasks. 
Broadly, two major categories can be distin-
guished: (1) image acquisition and processing 
and (2) clinical applications. Within this chapter, 
we focus on the first set of applications; the clini-
cal applications will be presented in detail in the 
second part of the book.

In addition to methods for segmentation of 
PET images and the improved quantification of 
SUV-related parameters, e.g. [41], ML methods 
for faster image acquisition, dose reduction, and 
the synthesis of PET contrasts from other modali-
ties have been proposed. It has been demonstrated 
that CNNs can learn image reconstruction based 
on PET sinogram raw data [42]. This inverse 
problem has also been addressed by an approach 
coined DeepPET, leading up to a drastic recon-
struction speedup in comparison to iterative tech-
niques [43]. Next to this potential speedup for 
PET image reconstruction, there is also ongoing 
work for improving the acquisition times of MR 
images starting with undersampled k-space data 
[42, 44]. Interestingly, Facebook AI Research is 
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one of the major partners of the fastMRI chal-
lenge that addresses this problem [45].

To obtain a quantitative signal, attenuation 
correction (AC) is carried out during PET image 
reconstruction. In PET/CT, the CT data can be 
directly used for this purpose. However, as most 
MR images do not correlate with tissue density, 
the AC of PET/MRI examinations is a major 
challenge. It has been shown that next to classical 
approaches, e.g., atlas-based, this challenge can 
also be solved with ML approaches. For instance, 
DL neuronal networks allow to transform MRI 
scans into synthetic CT images [46–49]. This is 
often done with GANs and called image synthe-
sis. Sometimes, the resulting synthetic CT images 
consist of only a few classes, e.g., bone, air, and 
soft tissue, that are nonetheless sufficient for a 
good attenuation correction. It even has been 
claimed that some of these methods achieve bet-
ter results than the currently available commer-
cial solutions [46, 48].

The use of MR or CT images for AC might 
lead to disadvantages in case of an incorrect co- 
registration of the hybrid image data, for exam-
ple, if the patient moves during the acquisition. 
For this reason, DL approaches have also been 
proposed for generating synthetic CT images 
from nonattenuation corrected (NAC) PET data 
and to use them in a subsequent step for AC of the 
original data [50, 51]. Of course, this suggests 
that this can also be realized in a single step by 
transforming an NAC PET directly into its AC 
counterpart as shown by Shiri et  al. [52]. The 
applications that use only NAC PET data as input 
are limited to tracers that are taken up in the 
entire body (e.g., FDG), since otherwise not 
enough morphological information would be 
available as input for the ANN.

Due to detector characteristics and image 
reconstruction effects, PET images often display 
a suboptimal signal-to-noise ratio (SNR) [53]. 
Most classical approaches denoise the image data 
at the expense of the local or temporal resolution 
resulting in a decreased image contrast [54]. 
Again, ML methods have been proposed for 
denoising PET images. One way to achieve this 
goal is to add artificial noise to existing high- 
resolution data. In turn, these noisy images and 

the denoised original scans can be utilized as 
training in- and output pairs for the learning algo-
rithm. Thereby, the method learns to remove the 
artificially added noise component. Within this 
scope, it has been demonstrated that the integra-
tion of anatomical information, i.e., CT or MRI 
scans, has a favorable effect on the final result 
[53, 55].

Low tracer doses also lead to a decreased 
SNR. Similar to denoising an image, as described 
above, the image quality can be increased by 
learning to transform low-dose images into stan-
dard dose images using deep neural networks. 
However, deliberately decreasing the radiation 
exposure is a desired effect as it potentially leads 
to additional PET applications for which a bene-
ficial risk–benefit ratio currently might not be 
given. Additionally, it reduces the costs and dura-
tion of an examination. It has been demonstrated 
that a standard dose PET can be predicted from 
the combination of low-dose PET and 
T1-weighted MR images [56, 57]. Also Chen and 
colleagues demonstrated that 100-fold dose 
reduced amyloid (18F-florbetaben) PET images 
together with T1-, T2-, and FLAIR-weighted 
MRI images can be used to predict standard dose 
images [58]. The quality of the synthesized 
images was assessed by specialists to be only 
slightly worse in comparison to the ground truth 
data. In addition, a quantitative comparison 
yielded that the amyloid status reached an accu-
racy of almost 90% and that it was similar to the 
intra-rater reproducibility determined with full- 
dose images. They also demonstrated that the 
usage of hybrid images, i.e., the integration of the 
structural MRI data, leads to an added value for 
the prediction. Nevertheless, recent work sug-
gests that by utilizing a GAN, a similar perfor-
mance can be achieved even when omitting MR 
images and solely relying on low-dose PET scans 
as input for the neural network [59]. It should be 
noted that for all methods presented above, low- 
dose scans were artificially generated from full- 
dose scans and the clinical verification with 
actual low-dose image data is still pending. In 
addition, prospective studies are needed to evalu-
ate if in AI-generated full-dose PET images 
information is lost or artifacts are introduced that 
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could unfavorably influence the reading of the 
image.

The logical next step after reducing the dose is 
to artificially generate PET images from other 
imaging modalities without the application of 
any tracer substance. Although this might not be 
deemed possible as molecular and functional 
information from PET scans should not be 
 captured in anatomical images, initial publica-
tions explore this as well as other tasks. For mul-
tiparametric MR images, it has been demonstrated 
that, using a DL architecture, the gadolinium 
contrast enhancement of brain tumors can be pre-
dicted solely based on the pre-contrast scans 
[21]. It has also been shown that it is possible to 
reliably predict some fluorescent labels from 
unlabeled transmitted-light microscopy images 
[22]. During reading of morphological scans, 
specialists often have a strong suspicion about 
how certain lesions will behave in PET scans. 
Thus, it could be possible that ML methods are 
able to identify phenotypic “traits” in images that 
are indicative of tracer uptake. This notion is also 
supported by a recent study that investigated 
CNNs in predicting the 68Ga-PSMA-PET lymph 
node status from the lymph node appearance and 
its surrounding in CT images alone [60]. The 
results were susceptible to the composition of the 
training set but, nevertheless, yielded a classifica-
tion accuracy higher than radiologists. When 
examining the regions in the images that were 
pivotal to the decision of the best performing 
neural network, the authors found that the ana-
tomical location in combination with the appear-
ance of the lymph node were the key factors.

2.9  Conclusions 
and Perspectives

This chapter gave an overview of machine learn-
ing and its application to hybrid imaging, empha-
sizing data acquisition and image processing. 
Combining low-dose AI-enhanced imaging with 
faster acquisition times of PET as well as MRI 
scans will lead to shorter and safer examinations 
for the benefit of patients. Large-scale prospec-
tive multicenter studies are needed for the critical 

evaluation of these novel techniques. It still needs 
to be established if, given the clinic context in 
addition to an AI enhanced image, the same con-
clusion for diagnosis and therapy can be drawn. 
Furthermore, boundary conditions and applica-
tion areas for ML algorithms need to be specified 
more thoroughly for real clinical applications. 
Entire ML subfields have evolved that investigate 
the explainability and out-of-distribution condi-
tions of algorithms. The first subject aims at 
developing methods that make the decision plau-
sible for the physician, whereas the second exam-
ines what data statistics are mandatory for an 
algorithm to deliver reliable results for unseen 
data. This stresses also the need for the incorpo-
ration of representative training data w.r.t to the 
target application when training an algorithm. 
Luckily, an increasing number of publications 
provide code and sometimes also data, allowing 
for reproducibility of the results. This will accel-
erate the progress within this exciting field and 
also open up the possibilities for novel applica-
tions. Among other, dual-tracer applications will 
probably benefit from the recent developments in 
machine learning and open up yet another area of 
active research in the near future, e.g., disentan-
gling the signal from the individual tracers.
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3.1  Introduction

Quantitative information is the main form of gath-
ering information in digital imaging systems that 
follows by transforming to qualitative and sensible 
information for the human eye, but this process 
may lead to missing some worth data which could 
help us to complete clinical evaluations [1]. Usage 
of images biomarkers is the principal issue in the 
field of radiomics that can provide useful informa-
tion, absolutely noninvasively, about the behavior 
and characteristics of suspected tissue and lesion in 
the body [2]. Radiomics tries to access those forms 
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of quantitative information of medical images that 
are hidden from the physician’s eyes and eventu-
ally help them to improve their prognosis and diag-
nosis tasks. Repeatability and reproducibility are 
the two main characteristics of radiomic features 
that are necessary for clinical trial applications [1]. 
The objective of this chapter is an evaluation of the 
influence of nuclear medicine imaging parameter 
changes on radiomic features variability extracted 
from these images. Also, try to bring a comparison 
between the recent article’s results and a demon-
stration of the most robust and sensitive features 
from these researches (Table 3.1).

3.2  Robustness of Radiomic 
Features

Like other new methodologies difficulty and limi-
tations along with usefulness are inevitable, like-
wise, sensitivity and difference potentiality to 
imaging parameters are the most important limita-
tions of the application of radiomic features [14]. 
However, repeatability and reproducibility both 
refer to robustness of features, there are some dif-
ferences though. When the same features from the 
same subject, situations, and imaging parameters 
are extracted, these are repeatable features and, if 
the same features from different parameters and 
situations are extracted, these are reproducible fea-
tures [15]. These two properties of radiomic fea-
tures are such obstacles that limit application and 
generalization of them to the broad manner in 
medicine [1]. Researches dedicated to assessing 
these characteristics can open new bright paths for 
radiomics employment in precision medicine and 
clinics as well [7, 16]. The main factors that have a 
significant impact on radiomic features consist of 
image acquisition parameters, image reconstruc-
tion methodologies, and settings, contouring and 
delineation processes, image processing and fea-
ture extraction parameters, etc. [14, 17].

3.3  Image Acquisition

Image acquisition parameters such as tracer 
uptake time or level, scan mode, number of 
views, view matrix size, attenuation correction, 

type of scanner, etc. can be a source of variation 
in radiomics features [13, 17]. Decreasing the 
level of injected lead to a lower dose receiving by 
the patient. This is important especially for pedi-
atrics nuclear imaging as high organ sensitivity 
of this group. Some recent studies have shown 
that keeping tumor diagnostic power with a 
diminishing volume of tracer could be done 
simultaneously [2].

Branchini et al. in their research have shown 
that robust features can be extracted from pedi-
atrics PET/MRI scans even with lower tracer 
volume. In this study features from shape and 
intensity families had an acceptable range of 
stability (ICC > 0.9) [2]. Another study that 
assessed the impact of acquisition parameter 
consisting of the number of views, view matrix 
size, with or without attenuation correction, on 
radiomic features variability, demonstrated that 
DE(GLDM), RLNUN, SRE, RP(GLRLM), 
ZE(GLSZM) and IDMN, IDN, IMC2(GLCM) 
have significant stability (Table  3.2). Also, it 
can be recognized from this article that matrix 
size and number of views are two factors that 
have the most effect on radiomic biomarkers 
[13].

3.4  Image Reconstruction

Another source of variation in radiomic features 
is reconstruction parameters that its effect has 
studied and proven by multiple assessments [3, 
5, 6, 8, 13]. Edalat-javid et al. in their research 
about the influence of reconstruction parameters 
on radiomic features extracted from SPECT 
scans, illustrated that FWHM of Gaussian filter 
has maximum effect on features between other 
parameters they studied. Besides, in their study, 
some of the most robust features for instance: 
RLNUN, SRE, RP(GLRLM), and most sensi-
tive features like SDLGLE, LDLGLE, DV 
(GLDM) have reported [13]. The stability of 
features included in GLRLM and GLSZM fami-
lies is proven by multiple studies that have eval-
uated the variability of PET/CT radiomic 
features [3, 5, 6, 8, 13]. Among these features, 
RP and SRE from GLRLM represented maxi-
mum stability.
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Table 3.2 Abbreviations

Gray-level 
co-occurrence 
matrices (GLCM 
or GLCOM)

Inverse difference moment 
(IDMcglcm)
Code entropy (CE)
Inverse difference moment
Normalized (IDMN)
Inverse difference normalized 
(IDN)
Informal measure of correlation 
(IMC)

Gray level run 
length matrix 
(GLRLM)

High gray-level run emphasis 
(HGRE)
Short run high gray-level 
emphasis (SRHGE)
Short run emphasis (SRE)
Long run emphasis (LRE)
Run-length variability (RLV)
Run percentage (RP)
Run length non-uniformity
Normalized (RLNUN)

Gray-level size 
zone matrices 
(GLSZM)

High gray-level zone emphasis 
(HGZE)
Short-zone emphasis (SZE)
Intensity variability (IV)
Zone percentage (ZP)
Zone Entropy (ZE)
Small area low gray level 
emphasis (SALGLE)
Large area low gray level 
emphasis (LALGLE)
Low gray level zone emphasis 
(LGLZE)

Neighborhood 
gray-level 
dependence 
matrix (NGLDM)
Gray-level 
neighborhood 
difference 
matrices 
(GLNDM)
Neighboring gray 
level dependence 
(NGLD)

Small number emphasis (SNE)
Number non-uniformity (NNU)
Second moment (SM)

Texture feature 
coding (TFC)
Texture spectrum 
(TS)
Long-zone low 
gray-level 
emphasis 
(LZLGE)

Table 3.2 (continued)

Gray level 
dependence 
matrix (GLDM)

Dependence entropy (DE)
Small dependence low gray level
Emphasis (SDLGLE)
Large dependence low gray level 
emphasis (LDLGLE)
Dependence variance (DV)

Normalized 
gray-level 
co-occurrence 
(NGLCM)

3.5  Segmentation

Radiomic features are extracted from VOI regions. 
Contouring or delineation are the names of precise 
recognition VOI on the images, that can perform 
manually, automatically, and semi- automatically 
[17]. Comparing all three methods is done by Belli 
et al. in 2018 in which a semi- automatic contour-
ing method named PET/Edge represented best 
repeatability (DICE > 0.95) [9]. The impact of 
applying different segmentation methods on image 
features alteration is proven as well. For example, 
in a study in 2018 it has illustrated that between 
parameters influencing PET imaging features 
which have studied, segmentation methods had the 
most effect on radiomic features variability [3].

3.6  Image Processing

Another step of radiomics workflow (after image 
acquisition) is image processing consisting of dis-
cretization methods, normalizations, interpolations, 
noise filtering, etc. that always affect the radiomics 
features [17, 18]. Papp et al. in their research about 
the effects of extraction parameters changes on 
radiomic features variability, demonstrated that 
lesion volume alterations have a larger effect on fea-
tures in comparison with voxel and bin size [4]. A 
study concerning the consequence of matrix con-
structions on radiomic features has indicated that 
most GLRLM features are independent of matrix 
parameters meaning there is high stability [10].

3 Radiomics in Nuclear Medicine, Robustness, Reproducibility, and Standardization
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3.7  Discretization

Discretization is a process done before feature 
calculation for some reasons such as noise 
decreasing, intensity range limiting, and gener-
ally to diminish texture matrix dispersal [2]. 
Among different discretization methods includ-
ing Max–LIoyd discretization, histogram equal-
ization, fixed bin size (FBS), fixed bin number 
(FBN), etc. the two last methods are most appli-
cable in radiomics researches [17]. The impact of 
bin number and bin width, two main parameters 
related to FBN and FBS respectively, on features 
variation has proven by multiple studies. Indeed 
larger influence of FBN and much more repeat-
able features of FBS have reported too [2, 5].

3.8  Software

It has been seen in some quantitative researches, 
radiomics papers particularly, the use of home- 
made software to calculate and extract features. 
These such works seem to be in contrast to pro-
vide a general pipeline for radiomics applications 
[19]. So it has recommended that to improve and 
progress in radiomics research and make it closer 
to clinical reliability, it’s necessary to follow IBSI 
laws and policies [17]. Foy et  al. in the assess-
ment of variability of radiomic features against 
different software implemented, assessed four 
radiomic packages which two of them were 
home-made software employed. In this study 
only a few first- and second-order features were 
used, they observed that the values calculated by 
four packages have significant differences so the 
use of reliable packages for radiomics researches 
has recommended [20].

3.9  Pitfalls

The last step of radiomics workflow is the cre-
ation of models and algorithms for prognostic 
and diagnostic support tasks. The objective is to 
achieve such a model which is most relevant to 
reality. For this purpose, first, we need high- 
quality and reliable data to construct models and 

after that examination and performance tests of 
models should be done to evaluate the function 
and also differentiate authentic and actual results 
from false ones. Among multiple pitfalls existing 
in model creation, overfitting, the condition in 
which the model performance is pretty good for 
training data but disappointing for real situations, 
is a common problem that has been mentioned by 
plenty of papers [1, 14, 15]. Lack of external vali-
dation, class imbalance, incorrect model calibra-
tion, use of nonrobust image biomarkers, 
incomplete reporting, etc. are other mentioned 
pitfalls that should be considered [17].

3.10  Standardization

Reproducibility of radiomic features and also dif-
ference in methodologies to achieve these fea-
tures are the crucial challenges in the radiomics 
field [21, 22]. Uncertainty in feature reproduc-
ibility is the factor that directly impacts on the 
translation of these features to clinical area [22, 
23]. So, ascertain the reliable and stable features 
in order to interpretations and also establish a 
uniform workflow for radiomic features achieve-
ment so that it would be followed by all researches 
in this field are two ineluctable requisites for 
future of the radiomics [21]. There has been try-
ing recently to develop a defined framework and 
features nomenclature by the image biomarker 
standardization initiative (IBSI) researchers in 
order to integrate the routes and outcomes in the 
future researches [24].

3.11  Discussion

Stability of radiomic features is the recent and 
critical issue in translating these features for 
prognostic and diagnostic context. For this pur-
pose, the objective of this chapter was an assess-
ment of the robustness and repeatability of 
radiomic quantities against imaging parameter 
changes. Medical imaging has great potential to 
provide a wide range of information about the 
internal construction and function of the body 
completely noninvasively, so it’s necessary to 

R. Reiazi
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accelerate researches in this area. Along with 
offering new methods and procedures in this 
field, the reliability and dependability of these 
methods are also important as practical applica-
tion is the goal. In this review, searching main 
keywords including repeatability, reproducibility, 
robustness, stability, radiomic features, nuclear 
medicine, etc. tries to collect all recent researches 
directly relevant to the variability of radiomic 
features against imaging parameters changes. 
The priority of the last three-year articles was one 
of the reasons that limited the number of 
articles.

In addition to imaging parameter changes, 
inter-patient and inter-scanner repeatability need 
to be evaluated too, so the need for a general pro-
cedure for the execution of this kind of researches 
is seriously vital. One of the existing problems in 
the field of radiomics researches is the extended 
range of research methodologies. For example, 
although the use of retrospective data is prevalent 
for many studies, implementing multiple kinds of 
phantoms including digital phantom, anthropo-
morphic phantom, software simulated phantom, 
etc. is another source of data. Moreover, various 
ways to feature extraction and feature robustness 
analysis can aggravate the condition. This disper-
sion of operation pathes can lead to the accumu-
lation of a large volume of new and raw data 
which without any reliability characteristics are 
not applicable and maybe cause to the confusion 
of newcomers to this branch of science. So it 
seems necessary to present a coherent and inte-
grated methodology to achieve meaningful 
results.

3.12  Conclusion

Radiomics is a developing field of research that 
connects imaging technology and statistical anal-
ysis to achieve more information that may be hid-
den or unclear for the human eye. Repeatability 
and reproducibility of radiomic features are the 
most recent issues that got more attention due to 
the tendency of employing radiomics in clinics 
[1]. Variability of features caused by imaging 
parameter changes is mentioned in several arti-

cles and it is exactly why clinicians can’t benefit 
from radiomics abilities. To identify what param-
eter can alter radiomic features we have to inves-
tigate the influence of each parameter to the 
attainment of an optimized set of radiomics fea-
tures. In this chapter we reviewed some relevant 
papers that assessed the robustness and stability 
of radiomic features along with different changes 
in imaging parameters like image acquisition, 
segmentation, image reconstruction, etc. also by 
comparing the response of extracted features to 
parameter changing, the most robust and sensi-
tive features highlighted. Acquiring robust and 
reproducible features need homogenous use of 
influencing parameters (scan protocols) which 
have optimized to radiomics usage. More 
researches and endeavors are necessary to take 
this field into its appropriate place of science.
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In the field of medical imaging, the application of 
computer vision to solve radiologic problems has 
been proposed since the mid-twentieth century 
[1]. As computers became more prevalent and 
imaging became digitized, the infrastructure was 
in place upon which to build sophisticated analy-
sis pipelines to be used in routine workflow—this 
workflow has included, and will certainly con-
tinue to include, different applications of artifi-
cial intelligence. Today, AI is fundamental in 
many facets of everyday life, from semantic 

searches on the internet to facial and voice recog-
nition in mobile devices, and it has made remark-
able progress in recent years. There are various 
potential applications of AI in medicine, and AI 
has already impacted radiology in some regards, 
introducing quantification into a space which was 
historically based purely on subjectivity [2, 3]. 
This however is just the beginning—it is widely 
recognized that medical imaging is one of the 
many fields in which advanced AI will cause a 
complete paradigm shift. Molecular imaging in 
particular is an especially likely candidate to ben-
efit, and it is in a position which would allow it to 
readily integrate this technology.

Molecular imaging technologies have contin-
ually improved year over year. MRI develop-
ments include higher field strength magnets, 
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improved RF coil arrays increasing acquisition 
SNR, and a growing catalog of pulse sequences 
for various applications. Single photon emission 
computed tomography (SPECT) systems rou-
tinely employ advanced correction techniques 
now producing quantitative images, and modern 
positron emission tomography (PET) scanners 
are using smaller crystals leading to better spatial 
resolution, with detection systems approaching 
timing resolution close to 200  ps. All of these 
modalities have realized concurrent progress in 
data processing as well, including sophisticated 
reconstruction and motion correction techniques. 
These advances have yielded extraordinary levels 
of image quality, but point is approaching where 
it is becoming less clear how these improvements 
are practically realized in terms of clinical out-
comes. For instance, producing images with 
superfine resolution for routine examinations 
might not significantly impact diagnostic reliabil-
ity, staging, or treatment planning. In fact, the 
additional time taken for the data acquisition and 
radiologist interpretation would potentially have 
adverse effects on the clinical workflow. 
Furthermore, in recent years, the amount of med-
ical imaging data has grown exponentially, and 
this has already increased the pressure on radiol-
ogists to maintain accuracy at higher throughput. 
While novel imaging innovations will continue to 
have impact on patient care and be welcomed by 
the medical community, it is likely that techno-
logical developments in the near future will focus 
on increasing efficiency, reliably standardizing 
care, and improving patient safety.

Artificial intelligence, by definition, is the 
branch of computer science, developing com-
puter algorithms to perform jobs normally requir-
ing human intelligence. Machine learning (ML) 
is a subgroup of AI connoting any algorithm 
which improves through experience. There are 
many different schemes, ranging in complexity 
from simple regression models and component 
analyses to more complex methods like random 
forests and support vector machines. However, 
most of the remarkable successes and resulting 
excitement of recent times belong to the class of 
ML known as deep learning (DL). State-of-the- 
art results have been achieved in the fields of 

object detection, classification, image segmenta-
tion, speech recognition, and image generation—
in fact, DL models have matched and even 
surpassed human performance in certain tasks 
[4–6]. It is impossible to ignore that these tasks 
are ubiquitous components in many aspects of 
radiology, and novel applications for DL are 
immediately identified. Indeed, there are many 
areas of active research in medicine and remark-
able successes have been reported. Most reviews 
or general overviews of DL in medicine cite the 
growing number of related publications on 
PubMed, and at the time of this writing, the 
search phrase “deep learning” returned 5315 
results for 2019. This is up from 3004 in the pre-
vious year, and for 2020, there are already 3994 
results in the first 6 months. This trend is cer-
tainly a testament to the applicability and success 
of DL in medicine.

It is difficult to understand the evolution and 
future direction of AI without a basic understand-
ing of the recent advances in AI techniques. This 
section gives an abbreviated overview, detailing a 
few specific examples. It cannot possibly cover 
all aspects but will instead focus on DL, since it 
is, without question, the dominant trend and 
direction of recent AI research; it has demon-
strated promising improvements even over other 
traditional ML approaches. Almost all DL tech-
niques are based on artificial neural networks 
(ANNs) comprising layers of numerical weights 
and “activation” nodes. More specifically, each 
node within a layer generally consists of a linear 
operation involving the summed product of its 
weights and input (the outputs of the previous 
layer), followed by a nonlinear operation, e.g., 
sigmoid, hyperbolic tangent, rectified linear—
there may be thousands of nodes in a given layer. 
By stacking many of these layers, through 
densely interconnected nodes, one can effectively 
piecewise construct complex functions which are 
able to be shaped throughout many degrees of 
freedom. In this sense, a network can be shaped 
to “learn” mapping functions between different 
domains. Unlike most other ML approaches, DL 
does not require inputs which explicitly define 
the discriminating features of the population; 
through training, it inherently learns the features 
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which best represent the data for the current task. 
This data-driven approach allows DL applica-
tions to characterize more abstract features and 
makes these systems more generalizable, but it is 
predicated on the availability of large amounts of 
training data to enable accurate characterizations 
of the sample populations.

Convolutional neural networks (CNNs) are an 
extension of neural networks, designed to handle 
data with higher dimensionality, usually in 2D or 
3D, and so are well suited for image-based tasks. 
In conventional ANNs, the weights at each layer 
have a single, unique value for every combination 
of nodes of its layer and the nodes of the previous 
layer, and so the corresponding total number of 
weights at each layer is the product of these num-
bers. For CNNs, instead of a single value, there is 
a matrix of values, which can be thought of as a 
weighted filter; the size of the matrices is rela-
tively small. The filters are passed over the layer 
input data like a convolution kernel, resulting in 
output feature maps of the same dimensionality 
as the input. This approach exploits the spatial 
dependencies within the data and makes the net-
work invariant to input translations, while at the 
same time significantly reducing the total number 
of network parameters. For example, say we have 
a single 2D input image with pixel dimensions 
100 × 100, and this feeds a layer with 128 chan-
nels. A conventional ANN would handle each of 
the 10,000 input pixels independently, and so the 
total number of parameters would be 1,280,000 
for that single layer. For a CNN, this correspond-
ing layer would handle the whole image as a 
single, multidimensional input—with a filter size 
3 × 3, the total number of layer parameters would 
then only be 1152 (1 × 3 × 3 × 128). This scheme 
is not only more efficient but potentially allows 
the same network to handle inputs of arbitrary 
sizes. For these reasons, CNNs are currently the 
AI technique of choice for image analyses and 
computer vision tasks.

Various CNN architectures are currently 
used—a few are explicitly mentioned here, but 
many of the basic concepts are common with 
many other networks. The convolution layers 
typically have filters with sizes between 3 and 5 
pixels (for each dimension), and most networks 

also have multiple resolution downsampling (or 
encoding) layers. Many of the early uses for 
CNNs were focused on classification tasks and 
used a nonconvolutional, densely connected layer 
at the last layer to sort the output in scalar class 
probabilities [7]. Fully convolution networks 
(FCNs), however, do not contain any densely 
connected layers and preserve the input dimen-
sionality throughout the network—this architec-
ture is better suited to certain analysis tasks, i.e., 
when requiring a dense prediction map over all 
pixels [8]. The U-Net architecture has become 
widely used in image analyses [9] and uses a 
dedicated encoding and decoding path to produce 
outputs of the same size as the inputs. A major 
contribution of U-Net was the introduction of 
skip connections between the encoding and 
decoding paths at each resolution level in order to 
preserve spatial detail throughout the network—
this feature makes this architecture popular for 
medical image segmentation tasks. Another use-
ful architecture is ResNet, which is built on resid-
ual blocks containing multiple convolution 
layers, with the block input directly connected to 
its output [10]. This direct connection results in 
an alternate identity path, and so each convolu-
tional block needs only to learn the pixel residu-
als and is pre-conditioned to learn mappings 
which are close to identity; the ResNet architec-
ture has facilitated training stability in some of 
the deepest networks. The last relevant architec-
ture is called Inception [11]. It contains blocks of 
multiple streams, each with different numbers of 
convolutions, under the premise that explicit fil-
ter sizes need not be defined since the image is 
now analyzed at multiple scales at the same level, 
i.e., taking the network wider rather than deeper. 
There is also a powerful extension of this called 
Inception-ResNet, which as the name implies, 
uses Inception blocks, rather than blocks of 
single- convolution streams, to calculate the block 
residuals.

Alongside the evolution of network architec-
tures were concurrent advances in network train-
ing approaches. In the context of ML, training 
refers to the minimization of an objective loss 
metric corresponding to a certain task, i.e., some 
measure of distance between the network output 
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and target value. In more basic terms, this means 
the values of the network weight parameters are 
gradually modified so that the desired outputs are 
obtained. This is usually accomplished by back-
propagating the derivative of the loss through the 
network. Backpropagation is a computationally 
efficient method, combining simple mathemati-
cal operations, to generate a gradient of partial 
derivatives comprising the influences on the loss 
of every parameter in the network. After a com-
plete backpropagation cycle, each network 
parameter is updated according to a predefined 
schedule in the direction which minimizes the 
loss. This process is repeated for many, some-
times millions, of iterations until acceptable per-
formance is achieved.

In general, there are two fundamental 
approaches to training ML systems, supervised 
and unsupervised. Under supervised approaches, 
the input data have corresponding labels, and gra-
dient backpropagation begins with a loss calcula-
tion over every output element of the network. 
For example, a CNN designed for classification 
might predict the correct class for a given input 
image by finding the maximum of the discrete 
probabilities calculated over all possible 
classes—during training, it would compare this 
prediction to the correct label and backpropagate 
its error differentials. In a simple classification 
task, each possible class might be represented as 
a single node in the output layer. This concept is 
readily extended to FCNs, in which a classifica-
tion framework might be used for organ segmen-
tation, for example. In this situation, the loss 
would be calculated over each pixel, giving the 
likelihood that it belongs to a given tissue class. 
Supervised methods provide a direct objective 
but require manual data labeling or annotating, 
which is a laborious task and is often the main 
challenge given the large scale of data typically 
needed for training. Unsupervised methods, on 
the other hand, do not require labeled data and 
instead rely on the algorithm itself to extract the 
discriminating features within different sample 
populations to minimize the loss for the task at 
hand. There are several methods for unsupervised 
network training, but one approach stands out for 
its range of applicability and remarkable recent 

results, and it is designed for image-based tasks 
performed by CNNs. Generative adversarial net-
works (GANs), introduced in 2014, comprise a 
system of two networks [12]. The first is the pri-
mary network, the generator, which for simplic-
ity, can be regarded no differently than the 
networks discussed above—its job is to perform 
the desired task. However, instead of defining the 
training loss directly at its top layer with labels, 
the generator’s output is fed into the second net-
work, the discriminator, and the job of this net-
work is to distinguish the generator’s outputs 
from a corresponding set of real samples. During 
training, the discriminator learns the features that 
are common to the real and generated popula-
tions as a whole and uses this information to dis-
criminate between the two sample sets. However, 
this same information can also be backpropa-
gated to the generator and used to improve its 
own output. In this way, the two networks are 
adversaries in that they are each constantly trying 
to outperform the other, but at the same time, 
both the networks can simultaneously improve 
together. Deep learning systems built on the 
GAN framework have been tailored for specific 
applications in a wide range of fields and have 
demonstrated state-of-the-art performance, espe-
cially for image generation, translation, and 
transformation tasks.

Artificial intelligence has already established 
applications in the medical field. Novel investiga-
tions however, particularly those based on DL, 
are yielding especially impressive results, and 
these provide a glimpse of the direction of AI and 
hint at its potential future role in molecular imag-
ing. The following sections provide an abbrevi-
ated outline of its historical and current uses and 
also highlight some areas of emerging research.

4.1  Disease Characterization

Characterization is a general term implying the 
segmentation, diagnosis, and staging of disease. 
These tasks are achieved by identifying and mea-
suring the imaged properties of a pathologic 
abnormality. A radiologist performing these anal-
yses is therefore required to process large 
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amounts of data for each examination, and he or 
she must then distill it down into a manageable, 
and much smaller, number of qualitative features, 
e.g., size, shape, heterogeneity, to serve as the 
basis for the final interpretation. Inevitably, some 
radiological information is lost throughout this 
process. Furthermore, every physician is differ-
ent, and there will be unavoidable variability 
among human observers. Artificial intelligence 
can help to automate this procedure. It has the 
capacity to consider large numbers of quantita-
tive features, potentially orders of magnitude 
greater than a human, and it could perform the 
task in a fraction of the time in a reproducible 
way. For example, benign and malignant pulmo-
nary nodules have similar appearances, and 
hence, the status of malignancy in the lungs is 
difficult to assess. AI can account for many fea-
tures simultaneously and automatically deter-
mine those which are most relevant to the current 
case. The relevant features could be treated as 
imaging biomarkers to be used in the malignancy 
prediction, along with other clinical endpoints 
like risk assessment and prognosis [13].

The idea to use AI for disease characterization 
and diagnosis dates back to the mid-twentieth 
century [14–17]. Many of these studies focused 
on the improved interpretation of electrocardio-
grams by computers [18–21] since these data are 
particularly suitable for computer analyses. Other 
related work included the differential diagnosis 
of hematological diseases [22], automatic bio-
chemical analysis of bodily substances [23], and 
sclerosis prediction in the coronary arteries [24]. 
These efforts mostly comprised smaller pilot 
studies and reported some success. Although 
larger-scale, definitive experiments were not per-
formed during this time, these efforts led to the 
general belief that automatic diagnoses by com-
puters were not just feasible, but necessary as 
part of a comprehensive medical data control sys-
tem [25–27]. These early studies fostered an 
 optimistic outlook for the potential of machine-
assisted diagnosis and led to many advancements 
in computer- aided diagnostic (CAD) programs.

Dedicated CAD programs have early roots 
[28], but researchers only started large-scale 
development toward practical solutions in the 
1980s. Significant effort was made in the research 

arena, but the benefits to the real clinical applica-
tions fell short [29], and it was not until 1998 that 
the FDA approved its use in screening and diag-
nostic mammography, as well as in plain chest 
radiography and CT imaging. Today, several sys-
tems are in clinical use with screening mammo-
grams [30]. They are typically recommended to 
serve as a second opinion, complementing the 
initial radiologist assessment [31], and these led 
to the development of similar systems for other 
imaging modalities, including ultrasonography 
and MRI [32].

These conventional CAD systems generally 
consist of two components: detection of suspi-
cious lesions and reduction of the false positive 
findings. The detection system is based on 
radiologist- defined criteria like tumor volume, 
shape, texture, etc. which are translated into a 
pattern-recognition problem where the most 
robust features are fed into an algorithm to high-
light suspicious objects in the image [33]. The 
false-positive reduction part is also based on tra-
ditional ML, but can pose a bigger challenge to 
these algorithms. Even with sophisticated pro-
grams, the general performance of current CAD 
systems is not good, and this limits their exten-
sive clinical use. Several trials have concluded 
that these systems, at best, deliver no benefit [34, 
35]. It is more concerning though that these sys-
tems were actually found to reduce radiological 
accuracy in some cases [36], leading to higher 
recall and biopsy rates [37, 38].

Conventional CAD systems are built on rigid 
ML algorithms, mostly relying on expert knowl-
edge, established a priori, for engineering fea-
tures to be extracted from regions of interest. In 
contrast, new programs built on DL algorithms 
offer potential advantages regarding the degrees 
of freedom and level of abstraction in which the 
detection and classification tasks are defined. 
Furthermore, the performance of conventional 
CAD systems is notoriously sensitive to image 
noise and selected scanning protocol, and DL has 
demonstrated flexibility with regard to these 
parameters [39].

Largely due to the advances in computer hard-
ware and processing technology, DL applications 
have emerged only recently for CAD systems—
perhaps the earliest use in radiology was first 

4 Evolution of AI in Medical Imaging



42

reported in 1990, when a group at the University 
of Chicago developed an ANN for improving dif-
ferential diagnosis of interstitial lung diseases 
using clinical and radiographic information. 
They claimed that the decision performance of 
the neural network was comparable to that of the 
chest radiologists and even superior to that of the 
senior radiology residents [40]. This led to sev-
eral subsequent studies at that institution investi-
gating neural network-aided diagnoses of lung 
disease [41–43]. The first object detection system 
using CNNs was proposed a few years later in 
1995 at Georgetown University Medical Center, 
using a CNN with four layers to detect nodules in 
X-ray images [44].

Since then, DL-based CAD systems have been 
developed for the identification, detection, diag-
nosis, and risk analysis of various pathologies. 
Breast cancer, for example, was an obvious target 
since there was a historical precedent, and recent 
studies have demonstrated promising results 
regarding the performance of these next- 
generation systems in detecting and staging the 
diseases [45, 46]. In particular, it was reported 
that the automatic feature exploration and higher 
noise tolerance of DL-based CAD systems were 
responsible for the performance gains, which 
were quantified using different metrics, including 
sensitivity, specificity, and receiver operating 
characteristic analyses [47]. Lung cancer detec-
tion and screening is another attractive applica-
tion, and several studies have evaluated the 
implementation of DL-based CAD systems for 
this purpose [48, 49]. These have also shown 
potential to effectively predict lung cancer and 
classify pulmonary nodules [47, 50]. In derma-
tology, deep convolutional networks have been 
used to classify skin lesions according to malig-
nancy [51]. This large study found that AI 
achieved equivalent performance to all tested 
experts on two separate classification tasks, and 
further, it suggested that smartphone cameras 
could be used in conjunction with this technol-
ogy to provide low-cost access to vital diagnoses. 
Other groups have also investigated DL with 
multi-modal imaging data. One notable study 
used PET and computed tomography (CT) data 
together in order to reduce false-positive results 

in lung lesion detections [52]. Simultaneous 
PET/CT data have also been used to classify 
lymph node metastases; a recent work found that 
this approach yielded higher sensitivities than 
radiologists [53]. Studies are consistently show-
ing that the detection performance of AI in dedi-
cated tasks is rivaling that of physicians [54], and 
recent interest in pursuing large-scale CAD solu-
tions suggests the future for developing robust, 
high-performance systems based on deep learn-
ing [55].

Deep learning has also demonstrated success 
for using radiological information, not just for 
disease detection and characterization, but for 
predicting patient diagnosis and prognosis. Early 
works in this area included survival predictions 
in patients with lung adenocarcinoma [56] and 
high-grade gliomas [57]. More recently, DL 
algorithms have been developed to predict the 
risk of lung cancer from a patient’s current and 
prior CT volumes [58]. This work achieved a 
state-of-the-art predictive performance on thou-
sands of national lung cancer screening trial 
cases and independent clinical validation sets. 
This work also noted that its AI-based model 
reduced many risks associated with conventional 
low-dose CT screening, including false positives, 
overdiagnoses, and radiation exposure. The 
computer- aided detection and diagnosis of 
Alzheimer’s disease (AD) is another area of 
active DL research. SPECT and PET are both 
used by physicians to image the metabolism, pro-
tein aggregation, or amyloid deposition associ-
ated with AD, and a few studies have investigated 
DL-based CAD systems for early AD diagnoses. 
The flexibility of DL allows brain data from mul-
tiple modalities to be assessed together [59–61]. 
Two notable recent works even used 3D CNNs to 
classify patients having AD [62, 63]. In other 
functional neurological studies, Parkinson’s dis-
ease has been automatically diagnosed in dopa-
mine active transporter SPECT scans, achieving 
sensitivities around 95% [64, 65]. Other work has 
been performed with PET/CT and PET/MR data, 
and the inclusion of multimodal inputs, exploit-
ing functional and structural information, has the 
potential to further improve the performance of 
AI-based disease characterization.
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4.2  Segmentation

Segmentation is an important component of med-
ical image analyses—indeed, many of the afore-
mentioned applications regarding the 
characterization of disease may be predicated on 
accurate delineations of organs, tissue or patho-
logic region of interest. It can often be a tedious 
and arduous task, and techniques to reliably 
speed the process would be welcomed by medi-
cal practitioners. Automatic segmentation meth-
ods using computer vision date back to the 1980s 
[66], with continual improvement over the fol-
lowing decades. Early approaches were based on 
clustering to isolate areas of similar intensities or 
region growing algorithms which spatially 
expanded regions around a user-selected seed 
point until homogeneity dropped below a certain 
criterion [67]. The next-generation algorithms 
used statistical learning and optimization to 
improve accuracy. One such approach is the 
watershed algorithm, in which image values are 
used to construct topology-like maps [68]. More 
advanced systems were able to use previous 
knowledge to construct a probability map to 
inform the segmentations. This approach is anal-
ogous to Bayesian inference, and the use of prior 
information lends itself, for example, to situa-
tions where objects are ill-defined in terms pixel 
intensities. The use of probability maps has 
proven especially helpful for oncologic segmen-
tation within patient populations, since they con-
tain information regarding the expected location 
of tumors [69]. Other segmentation systems 
based on prior knowledge-based probability 
maps have also been applied to radiotherapy 
planning in head and neck CT images [70] and 
segmenting gliomas in brain MRIs [71].

These past techniques have realized some suc-
cess in the clinical workflow, but the algorithms 
are somewhat inflexible and were designed for 
specific tasks. Segmentation programs built on 
DL technology will significantly outperform 
their predecessors, and for these applications, 
fully convolutional networks are well suited. A 
major step toward semantic segmentation by 
FCNs was reported by UC Berkeley in 2015 [8]. 
This group first constructed FCNs by “decapitat-

ing” the fully connected layers from conventional 
CNNs, and replacing them with new layers to 
expand the resolution. This resulted in a network 
which produced an output having the same 
dimensions as its input, and by fine-tuning only 
the new layers, the parameters of the original lay-
ers which had already been trained on millions of 
images for classification tasks were not affected. 
The result was a network which was able to 
exploit the feature extraction mechanisms of the 
original network and apply this information to a 
dense prediction matrix. These researchers 
achieved impressive results, effectively using an 
FCN to segment detailed regions based on multi-
class probabilities predicted for every discrete 
pixel [72]. Although this work focused only on 
natural images, the concept is readily extended to 
medical images.

Substantial attention has been paid to CNNs to 
resolve the challenges associated with medical 
imaging segmentation. Many techniques have 
been evaluated for various applications—a few 
specific examples include the automatic segmen-
tation of lungs [73], biological cells and mem-
branes [74, 75], tibial cartilage [76], bone tissue 
[77], brain structures [78], prostate [79], and 
tumors [80–83]. An important contribution came 
in 2015 with the introduction of the U-Net archi-
tecture and skip connections [9]. U-Net has been 
the de facto choice for many applications, includ-
ing segmenting multiple organs on thoracic CT 
images with 3D data [84] or as incorporated into 
a GAN framework [85]. This network architec-
ture also led to other derivatives like V-Net, which 
introduced a novel loss function directly based on 
the Dice coefficient [86].

Segmentation platforms built on DL offer 
other general advantages over older AI tech-
niques as well. One study describes that DL 
methods for brain MRI segmentation completely 
eliminate the need for image registration required 
by other approaches like atlas-based methods 
[87]. It has also been reported that a single DL 
system is able to perform diverse segmentation 
tasks, without task-specific training, across mul-
tiple modalities and tissue types, including brain 
MRI, breast MRI, and cardiac CT angiography 
[88]. Considering this with the fact that current 
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DL technologies are already equivalent in many 
regards to radiologists’ performance for segmen-
tation [89], it is expected that the presence of 
DL-based segmentation algorithms in routine 
clinical tools will increase dramatically in the 
near future.

4.3  Image Generation/
Reconstruction

Images are fundamental in radiology and diag-
nostic medicine. It was Wilhelm Roentgen who 
first discovered X-rays could be used to image 
bone just prior to the turn of the twentieth cen-
tury. These early images were created directly, 
simply by exposing photographic film with the 
high-energy radiation. Over the next few decades, 
several other scanners were developed and some 
became digitized. This included the first positron- 
annihilation coincident detection system in the 
1950s. A simple rectilinear scanner with sodium 
iodide detectors was designed and built by 
Gordon Brownell at Massachusetts General 
Hospital to image tumors in the brain. As imag-
ing technology advanced throughout the century, 
so did the methods used to process the acquired 
data and produce the images. Certainly, one of 
the most groundbreaking inventions was the CT 
scanner in the 1970s by Sir Godfrey Hounsfield. 
This achievement ushered in the era of volumet-
ric tomography, i.e., cross-sectional imaging of a 
3D body, in the medical setting. The CT scanner 
acquired X-ray projection data at various angles 
for sequential axial positions. The projection data 
were used to reconstruct image slices by filtered 
back-projection (FBP), a direct reconstruction 
technique which is still used even today. FBP was 
used to reconstruct projection data for emission 
modalities as well like PET and SPECT as they 
made their way into nuclear medicine depart-
ments in the 1980s and 1990s. During this time, 
MRI systems also became a mainstream diagnos-
tic tool. MR is unique from the others in that its 
images are generated directly through inverse 
Fourier transforms of the acquired frequency and 
phase data. For all imaging modalities, process-
ing methods have made great strides over recent 

years, and through many recent advances, the 
images which are routinely produced in the clinic 
are of unprecedented quality. Artificial intelli-
gence has the potential to push this even higher.

Until recent times, AI had not realized an 
overwhelming presence in image reconstruction. 
Conventional approaches relied on physics and 
closed-form mathematics to define the acquisi-
tion process and translate the data into images. 
However, recent decades have seen processing 
schemes which have become less rigid and more 
adaptive. Although these may not be considered 
AI, per se, they incorporate some of the same 
components. For example, direct reconstruction 
methods like FBP have been replaced by iterative 
algorithms. The objective of these algorithms is 
to find the image which is the most likely source 
of the projections—this framework can account 
for data which may be incomplete which results 
in far less image noise. The optimal image may 
be found by maximizing some likelihood or min-
imizing some cost measure, a technique which is 
often used in clustering machine learning algo-
rithms. Also, many MR systems are moving 
toward compressed sensing to perform routine 
examinations in fractions of the time. Combining 
these under sampled data with prior information, 
images of high fidelity can still be produced.

Deep learning algorithms based on CNNs 
have incredible potential for applications in 
image reconstruction and generation. Research in 
this field is rapidly increasing, with the large 
majority of work focusing on MRI—only a rela-
tively small subset of studies is mentioned here. 
A popular area is looking to AI for acceleration 
of MR imaging through improving compressed 
sensing techniques [90, 91]. Neural networks 
have demonstrated the ability to learn spatio- 
temporal dependencies which enable them to 
improve the accuracy of reconstructed MR 
images from highly undersampled complex- 
valued k-space data. This concept can be applied 
to dynamic MR imaging and may be especially 
interesting for cardiac cine protocols [92]. 
Furthermore, this idea has been extended to vari-
ous MRI acquisition strategies. Recent algo-
rithms have proved to be flexible for treating the 
MR reconstruction process as a supervised learn-
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ing task, mapping the scanner sensors to resultant 
images [93]. Deep learning has also been used to 
reduce the gadolinium dose in contrast-enhanced 
brain MRI by an order of magnitude while pre-
serving the quality of the images [94] and for 
inferring advanced MRI diffusion parameters 
from limited data [95]. Quantitative susceptibil-
ity mapping, which aims to estimate the magnetic 
susceptibility of biological tissue, is currently a 
growing field in MRI research [96, 97]. The esti-
mation of magnetic susceptibility from local 
magnetic fields is an ill-posed problem, and 
recent AI methods are being used here as well. 
One work developed a CNN based on the U-Net 
architecture which was able to generate high- 
quality susceptibility maps from single orienta-
tion data [98]. MR-fingerprinting (MRF) is 
another recent technique [99]. The idea is to use 
a pseudo-randomized acquisition that captures a 
unique signal from different tissues. These tissue 
“fingerprints” are then mapped back to standard 
parameters, T1, T2, proton density, etc. by match-
ing them to a predefined dictionary of predicted 
signal evolutions. This mapping is a difficult 
problem and has usually employed a pattern rec-
ognition approach—deep learning methodology 
is now being investigated for this purpose. A 
four-layer neural network was trained to map the 
recorded signal magnitudes to their correspond-
ing tissue T1 and T2 values [100]. This group 
found reconstruction times using this approach 
were 300–5000 times faster than conventional 
dictionary-matching techniques in both phantom 
and human brain studies. Other similar 
approaches have been used to predict quantitative 
tissue parameter values from undersampled MRF 
data [101, 102].

Although MRI has so far realized the largest 
number of deep learning research efforts, these 
have potential applications extending to many 
areas in medical imaging on a more general scale. 
The last few years have seen impressive results 
for synthesizing photo-realistic images, espe-
cially using GANs [12, 103–105], and these tech-
niques have also been used for biological image 
synthesis [106, 107]. One recent study designed a 
system to generate synthetic tumors in otherwise 
normal brain images [108]. This approach high-

lights a tremendously powerful use for generative 
networks, namely creating or augmenting train-
ing data. This is highly interesting for medical 
imaging as datasets are often sparse or imbal-
anced, with few examples of pathological find-
ings. Overcoming this challenge would help 
alleviate a huge limitation commonly encoun-
tered in training deep learning models. This 
approach has been used for brain tumor segmen-
tation [109], synthesizing realistic prostate 
lesions [110], augmenting data for improved liver 
lesion classification [111], and generating syn-
thetic retinal fundus images [112]. GANs have 
also been used for unsupervised generation of 
T1-weighted brains [113] and image synthesis 
for tissue recognition and computer-assisted 
intervention [114, 115]. Inter-modality transla-
tion has even been performed by GANs, trans-
forming MR to CT images [116, 117] and to PET 
images [118]. This work even showed that the 
generated images can be used in CAD systems 
for improving the diagnosis of Alzheimer’s dis-
ease when the patient data are incomplete.

Artificial intelligence has provided a new para-
digm for solving inverse problems in medical 
imaging [119–123]. Furthermore, studies have 
demonstrated the ability of DL to not only 
improve existing image reconstructions [124, 
125] but also replace the reconstruction alto-
gether, generating images directly from acquisi-
tion data [126]. This work found that a deep 
convolutional encoder–decoder network could be 
successfully used to generate quantitatively accu-
rate PET images in a fraction of the time taken by 
conventional reconstruction methods. These 
works, and others like them, are incredibly 
encouraging. As a result, they have provoked a 
new, and necessary, avenue for research focusing 
solely on the potential pitfalls of DL-based recon-
struction, and it has been found that deep learning 
can often cause unstable reconstruction methods. 
One recent work reported that these instabilities 
occur in several forms including: severe recon-
struction artifacts caused by small perturbations 
in both the image or sampling domain; incom-
plete or incorrect representation of small struc-
tural changes, e.g., tumors; and more training 
samples yielded poorer reconstruction perfor-
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mance for several of the models investigated 
[127]. Numerical accuracy and stability are essen-
tial components of medical image reconstruction, 
and so the limitations of new technology are 
important to understand before it can be reliably 
used in the clinic. It is likely that, in the future, the 
image reconstruction process will be omitted alto-
gether for certain applications, since a computer 
can theoretically extract any information con-
tained in an image directly from the acquired data. 
For now, however, since humans perform the clin-
ical interpretation, medical images need to be 
generated, and AI will continue to impact this pro-
cess in unprecedented ways.

4.4  Data Corrections

As alluded to in the previous section, the methods 
to create medical images must be accurate and 
stable in order to be reliable—these requirements 
become even more critical when medical deci-
sions depend on measurements of precisely 
quantified image values. Hence, the entire recon-
struction process may comprise multiple steps to 
address different aspects. The backprojection 
algorithm, the cornerstone of tomographic recon-
struction, can help to illustrate this. Data that are 
acquired as projections are mathematically 
regarded as a set of 1D line integrals, and back-
projection seeks to invert this process and trans-
form the sets of projections back to their original 
2D form. However, due to the nature of the acqui-
sition, low frequencies have a stronger latent 
prevalence within the projections than do the 
higher frequencies. So, to avoid a blurry recon-
structed image dominated by low frequencies, 
the projection data must first be convolved with a 
ramp filter to boost the high frequencies. 
Additionally, the cylindrical geometry of the 
detection system results in nonuniform radial 
sampling, and this nonuniformity must also be 
accounted for in the reconstruction. This example 
demonstrates some of the steps necessary for a 
correct reconstruction approach, but backprojec-
tion is considered a direct method—newer, more 
sophisticated techniques usually require many 
additional considerations.

In addition to the corrections needed to com-
pensate for the limitations of the acquisition 
method, the acquired data themselves may not be 
of high inherent quality. For PET, the true data 
come from pure annihilation photons, detected 
within a small coincidence window. However, the 
scanner also captures coincident events arising 
from scattered and random photons which must 
be corrected. These are not generally abled to be 
measured directly, so they must be estimated—
this is currently accomplished by modeling the 
underlying physics. Photon scattering and 
absorption also leads to signal attenuation, and 
this requires an additional correction, usually 
based on an accompanying anatomical map. For 
MRI, the quality of the acquired data depends on 
the homogeneity of the static magnetic field, lin-
earity of the gradients and stability of the receiver 
coils. These properties are bound by engineering 
limitations, and many techniques are routinely 
used to correct anomalies; for example, shim-
ming is used to adjust the field homogeneity and 
spherical harmonic polynomial models can be 
used to characterize high-order gradient nonlin-
earities. However, sometimes these attempts are 
insufficient. Additionally, the MR scanner is very 
sensitive to environmental perturbations, and 
these can also lead to image noise. Artificial 
intelligence has proven adept at finding solutions 
to inference problems and should be able to help 
with issues related to incomplete or corrupted 
imaging data—indeed, it has already attained 
some notable successes.

Deep learning has recently been introduced to 
image denoising for many applications. In one 
study, neural networks were specifically devel-
oped to learn the implicit brain manifolds in MR 
images [113]. This group tested their approach 
by adding various levels of noise to several hun-
dred T1-weighted brain images and reported 
improved performance over current denoising 
methods in terms of peak signal-to-noise ratios. 
Denoising has also been applied to dynamic 
 contrast enhanced MR data, using multiple net-
works to improve the signal quality, both spa-
tially and temporally [128]. Emission modalities 
have also been a focus of AI denoising research 
since they are inherently noisy. For instance, each 
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projection bin of a routine PET acquisition may 
contain only a few coincident events, introducing 
uncertainty into the reconstruction. Several works 
within the last few years have reported success 
for PET image denoising using both supervised 
and unsupervised training approaches [129–131]. 
One notable study incorporated a 2D network 
pretrained on millions of natural images as a per-
ceptual loss network [132]. This group reported 
that image resolution and noise properties were 
improved by optimizing the perceptual loss in 
this way, rather than simply using a per-pixel 
supervised loss like L1- or L2-norm. This 
approach has also been successfully applied for 
denoising CT images at various noise levels 
[133]. These reported successes have driven other 
research to investigate the potential clinical 
impacts of these methods. One such work 
reported improvements in physician lesion 
detectability performance when low-count PET 
images where denoised by a CNN [134].

Artifacts are another common nuisance in 
medical images—physiological or random 
patient motion, metal implants and temporal or 
spatial aliasing all cause distortions in the recon-
structions. Deep learning methods have been 
used for correcting these. Techniques have been 
applied to automatically detect and correct 
patient motion for both MRI [135] and PET 
[136]. Motion does not only compromise imag-
ing data. It can also affect techniques like MR 
spectroscopy, and approaches based on DL have 
been developed to remove ghosting artifacts in 
these studies [137, 138]. Regardless of their 
source, artifacts degrade the reconstructed spatial 
resolution. This of course limits the value of 
medical images for diagnoses, since good resolu-
tion properties are required to extract fine details 
from small pathological foci.

Improving medical image resolution has been 
the sole focus of many research efforts. Super- 
resolution in MRI has been around for over a 
decade [139]. These approaches enabled the 
reconstruction of a 3D volume with high isotropic 
resolution by acquiring the data typically through 
regular angular sampling about a common fre-
quency encoding axis [140] or through modula-
tion of the longitudinal magnetization to acquire 

independent k-space data [141]. Studies have 
reported success for estimating quantitative high-
resolution T1 maps from a corresponding set of 
low-resolution maps [142] and even using con-
ventional machine learning techniques to gener-
ate 7T-like MR images from 3T data [143]. Within 
the last few years, image super-resolution has 
become an interesting application for DL meth-
ods. Novel methods have produced state-of- the-
art results for resolution up-sampling in natural 
images [144], and applications specific to MRI 
followed closely. Deep convolutional networks 
have constructed super-resolution brain [145] and 
musculoskeletal [146] images. These networks 
have also been adapted to generate super-resolu-
tion images from another modality [147].

The transformational mapping between multi-
ple image domains is yet another exciting applica-
tion for DL [148]. Due in part to recent advances 
in unsupervised training methods [149], this con-
cept has found applications in medical research. 
Deep convolutional networks have been devel-
oped for transforming Flair to T1 MRI [150], CT 
to PET [151], and T1 MRI to CT [117]. Clinical 
interpretations and therapy planning based on 
images synthesized from another, unrelated 
modality could have far-reaching effects in the 
future of diagnostic and therapeutic medicine; 
this should be approached cautiously though, as 
synthesized images may contain incorrect patho-
logical information and could lead to critical 
errors [150]. Notwithstanding this, image trans-
formation based on DL may have the immediate 
potential to be a valuable tool for some technical 
problems. One popular current focus is related 
to PET/MR systems, transforming MR data to 
CT for PET attenuation correction. In order to 
produce quantitative images, photon attenuation 
must be corrected in all PET scans. This can be 
accurately estimated when an anatomical corre-
late of quantified attenuation values is available 
for directly generating a  correction map, as it is 
with PET/CT. For PET/MR, however, this prob-
lem is more complicated since MR data do not 
contain information regarding photon scattering 
and absorption. Transforming MR images into 
quantified CT data has been implemented by 
several groups with promising results [152–154]. 
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Furthermore, the PET/MR attenuation correction 
problem has also been addressed by omitting the 
CT transformation step altogether, using a CNN 
to estimate the correction map directly from the 
attenuated PET data themselves [155].

4.5  Image Registration

Once accurate medical images are produced, the 
image data must be translated into information 
which can be used for clinical patient manage-
ment by a physician. In certain situations, the 
information obtained from multiple images read 
concurrently may be of much greater value than 
that obtained from reading them independently. 
The frequency of these situations dramatically 
increased at the turn of the twenty-first century 
for multimodal imaging with the invention of the 
PET/CT [156]. Multimodality imaging brought a 
new perspective into the field of clinical imaging. 
In this case, the combination of functional infor-
mation with anatomical and morphological infor-
mation provided an advanced medical tool, and 
countless studies over the past two decades have 
unequivocally established its diagnostic value. 
Other situations in which multiple images may 
be analyzed simultaneously include dynamic 
acquisitions, longitudinal comparisons or multi-
parametric MRI. In each of these cases, it is help-
ful, or even necessary, for the images to be 
spatially matched. For this reason, image regis-
tration is a constant focus of research, and tech-
niques continue to evolve.

There are many potential sources of misregis-
tration between two images of the same object, 
but assuming the differences are only spatially 
variant, one space can be mapped to the other 
through linear and nonlinear transformations. It 
is then the job of the registration algorithm to find 
the optimal transformation. For rigid structures, 
e.g., the head, linear transformations comprising 
global translations and rotations may be suffi-
cient for coregistration. However, most other 
natural movement contains local, elastic defor-
mations, and more complex methods are addi-
tionally needed to characterize and compensate 
for it. This is conventionally handled by project-

ing one image onto a grid, which is then deformed 
in a way which increases some joint similarity 
measure. Many different similarity metrics have 
been proposed and investigated, but common 
ones include correlation (for single-modality 
data) or mutual information (for multimodal 
data). The optimization algorithm typically com-
bines these approaches within some convergence 
framework to try and maximize the relative 
similarity.

The registration problem comprises a chal-
lenging combination of many factors; decisions 
regarding the spatial transformations, similarity 
metrics, optimization strategies and numerical 
framework all play important roles in the perfor-
mance. Machine learning techniques have been 
applied successfully for some specific applica-
tions in the past. However, as with other tradi-
tional ML techniques, these algorithms require 
explicitly handcrafting the features and have lim-
ited flexibility. In many cases, they are unable to 
meet the accuracy requirements of high- 
resolution medical imaging [157–160]. Recently, 
DL methods have been applied to image registra-
tion in order to improve accuracy and speed 
[161]. Image registration depends fundamentally 
on the identification of relevant information in 
the images, and this is a strength of deep neural 
networks. Convolution stacked auto-encoder net-
works, for example, have demonstrated the abil-
ity to identify intrinsic features in image patches 
[162], and CNNs have been developed for 
regressing the transformation parameters of the 
registration for multimodal data [163]. The flexi-
bility of DL makes it well suited to address appli-
cations involving deformable registrations [162, 
164]. Many groups have reported recent suc-
cesses for specific tasks including elastic regis-
tration between 3D MRI and transrectal 
ultrasound for guiding prostate biopsy [165], 
deformable brain MRI registration [166], 
 unsupervised CNN-based deformable registra-
tion for CT and MRI [167–169], and DL-based 
2D/3D registration for registration of preopera-
tive 3D data and intraoperative 2D X-ray images 
in image-guided therapy [170].

As diagnostic medicine continues to evolve, 
more complementary and multiparametric tissue 
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information will be acquired in space and time—
accurate image registration will become increas-
ingly critical. Methods based on AI have shown 
impressive results and will undoubtedly play 
important roles in the automated clinical work-
flow, enabling quantitative comparisons at multi-
ple timepoints and across different imaging 
modalities.

4.6  Radiology Reporting

The underlying goal of any medical imaging 
examination is a noninvasive survey of pathologi-
cal information. Regardless of the imaging 
modality, the radiologic data must be read and 
translated into reports which are able to be used 
toward guiding patient management—these 
reports lie at the intersection of radiology and 
multiple downstream clinical subspecialties. 
These reports are sensitive to errors in the previ-
ous steps of the imaging pipeline, and so great 
care must be taken to clearly and accurately out-
line the relevant findings. This makes it an ardu-
ous and time-consuming task. Furthermore, 
subjectivity and inter-reader variability may 
introduce communication inconsistencies 
between radiology and other physicians. AI pres-
ents an attractive option for increasing speed and 
improving standardization of radiology reports.

Artificial intelligence algorithms for voice rec-
ognition and text generation were first proposed 
nearly two decades ago [171], and today, they are 
used routinely for radiologic reporting. Since 
then, machine learning techniques have made 
great strides in natural language processing, and 
now several vendors have developed powerful 
tools capable of speech-to-text translation, along 
with compatible hardware, e.g., dictation micro-
phones [172]. These solutions have proven them-
selves invaluable for automatic transcription 
without the need for typing dictation content from 
radiologists, substantially reducing report genera-
tion times and improving clinical workflow.

Radiologic tools driven by deep learning algo-
rithms have the potential to further streamline 
this process. Recently, DL has been used to auto-
matically produce captions for natural photo-

graphic images [173], and this has led to many 
studies investigating potential applications for 
generating textual descriptions for medical 
images [174–181] and also for identifying find-
ings in radiology reports [182–184]. Such AI 
tools could also replace the conventional qualita-
tive nature of radiologic reporting with a more 
interactive quantitative one, and this approach 
has been shown to improve collaboration between 
radiology and oncology [185]. For example, it is 
plausible to expect that in the future, an 
AI-powered platform would be able to identify 
and diagnose pathological abnormalities and 
annotate them in a textual format that included 
quantified information about size, location, and 
probability of malignancy with associated confi-
dence levels. These data would reduce subjective 
bias in decisions regarding patient management. 
Additionally, these well-structured reports would 
prove very beneficial to population sciences and 
big data mining initiatives. Another related ave-
nue of DL research is using the generated radio-
logic reports themselves to annotate and label the 
imaging data. Medical PACS systems typically 
store thousands of free-text reports containing 
valuable information describing the images. 
Parsing this text and turning it into accurate 
annotations or labels requires sophisticated text- 
mining method—this is a field in which DL is 
currently being applied. Reports with higher 
degrees of structure more readily lend themselves 
to this purpose, and there are already some 
emerging applications. For example, there has 
been work reporting success leveraging radiolo-
gists’ BI-RADS categorizations for training deep 
neural networks for characterizing breast lesions 
[174]. Considering the point that labeled data can 
be used to improve classification accuracy, one 
study was motivated by the fact that large 
amounts of annotated data might be  unobtainable. 
This work proposed to create semantic descrip-
tion labels for the data, using both images and 
textual reports [186]. This group reported that 
semantic information can increase classification 
accuracy for different pathologies in medical 
images. Advanced AI algorithms are also being 
applied in other ways to improve efficiency in 
radiology practice. Convolutional neural net-
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works can be used to determine scanning proto-
cols from short text classification [187] and to 
improve time-sensitive decisions by prioritizing 
urgent cases [188]. One of the most interesting 
recent endeavors, however, addressed the chal-
lenges summarizing and representing patient data 
from electronic health records [189]. This work 
presented a novel unsupervised DL method for 
constructing general-purpose patient representa-
tions. This value of such data would be huge, 
since it could then potentially facilitate clinical 
predictive modeling on a large scale.

The applications mentioned above involved, 
to some degree, image interpretations based on 
human perception. Years of collecting data in 
routine clinical practice have produced an incred-
ibly rich resource of quantified radiological data 
along with the associated clinical outcomes. 
These data are being leveraged to refine the field 
of radiomics. Radiomics in medicine refers to the 
high-throughput extraction of large amounts of 
features from medical images [190]. Radiomic 
analyses, sometimes involving high order statis-
tics, can be used to identify patterns related to 
disease characteristics—patterns which may be 
undetectable by a traditional observer. Radiomics 
emerged from the field of oncology with the 
hypothesis that imaged tumors may reveal dis-
tinctive features pertaining to the disease which 
can be useful for predicting prognoses and plan-
ning personalized therapy [191, 192]. Early work 
in radiomics involved analyzing large sets of 
images and building correlations among various 
predefined features characterizing, for example, 
tumor morphology, intensity, and texture. 
Following this, many efforts have successfully 
applied radiomic evaluations for assisting clinical 
decision-making in oncology. For example, 
radiomics has been used to predict metastatic 
patterns in lung adenocarcinoma [193] as well as 
disease recurrence [194] and prognoses [195]. 
Recently, deep learning has been applied in this 
space [161]. As with many other examples pre-
sented in this chapter, DL poses advantages over 
traditional methods for automatically extracting 
the relevant features, while simultaneously pro-
viding information regarding their clinical rele-
vance. Deep learning and radiomics are two 

rapidly evolving technologies, and their symbio-
sis will likely lead to a single unified framework 
to support clinical decisions—this has the poten-
tial to completely transform the field of precision 
medicine [13].

4.7  Conclusion

Fundamentally, medical images are generated in 
order to be presented to physicians for evalua-
tion—optimizing the appearance of images for 
human viewers almost always includes simplifi-
cation and down-sampling of the raw data. 
Quantitative approaches like radiomics represent 
a step toward automatic image interpretation 
using the latent information embedded in the 
images, and following this evolutionary track, it 
is expected in the future that the presence of auto-
mated, AI-driven analyses in routine clinical 
workflow will continue to increase. In this para-
digm, processed medical images may become 
altogether unnecessary for certain indications. 
This would avoid the loss of information inherent 
in the creation of images, leading to reproducible 
analyses which were faster and more accurate.

In conclusion, AI has made great advances, 
especially recently, but it is not expected that it 
will outperform humans for general clinical plan-
ning and patient management in the near future. 
Instead, both will improve together. Although AI 
is currently able to provide advantages for spe-
cific quantitative tasks, medical decisions cannot 
be strictly regarded as such. They are based on 
knowledge obtained through life experience and 
philosophy. To incorporate these characteristics 
into an AI program, one would be faced with 
many challenges including data collection and 
algorithm development [29]. Considering this, it 
is likely that the trend in AI will move toward 
advanced unsupervised learning approaches, 
allowing the immense amounts of readily- 
available, unlabeled data to be utilized. In any 
case, the synergy between AI and physicians will 
certainly grow and continue to be mutually ben-
eficial within the field of medical imaging, lead-
ing to unprecedented levels of precision and 
quality in patient care.
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5.1  Introduction

Medical imaging encompasses a broad range of 
methods from the more established to the new 
(Fig.  5.1). The X-ray radiograph, which is the 
backbone of computed tomography (CT) imag-
ing, has existed for over a hundred years. Positron 
emission tomography (PET) and magnetic reso-
nance imaging (MRI) had their earliest clinical 
developments in the late 1970s. These modali-
ties, among many others, remain subjects of wide 
research and continue to make strides within 
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these fields as new techniques continue to 
improve them. The preponderance of medical 
imaging has led to an explosion of data, which in 
medical settings is then be used by a radiologist 
to determine whether there are significant dis-
eases. Instead of relying on human observation, 
this data is increasingly analyzed with machine 
algorithms. Mathematics is at the heart of 
the many machine algorithms designed to help in 
the clinical interpretation of underlying biology.

If you are in medicine, you cannot escape 
encountering “machine learning” (ML), which is 
a subset of “artificial intelligence” (AI). “Machine 
learning” encompasses a wide range of tech-
niques, from the more basic linear regression to 
combinations of deep neural networks. New 
methods are frequently developed, and so it is 
very easy to lose sight of significant develop-
ments. It helps to know that at the heart of 
machine learning are fundamental mathematical 
principles, which can help with understanding 
the underlying principles of future methods. It 
also helps to know a few broad techniques  that 
fall into several major categories.

The reality is that diseases and treatments that 
can be collected on large scales will likely be 
replaced by ML methods throughout the next 
decades. Even with common diseases, simultane-
ous occurrence of several diseases along with 
patient’s demographics, environment, and treat-
ment history can result in exponential numbers of 
possibilities. This leads to low numbers of data 
points with specific/similar inputs. The signifi-
cant number of rare diseases that exist will not be 
replaced easily by ML without substantial 
advancements in ML techniques, due to their low 

numbers. ML is unlikely to completely replace 
routine care in these scenarios, but can greatly 
help in enriching the  overall understanding of 
diseases and treatments by revealing new rela-
tionships between diseases, demographics, treat-
ment outcomes, or other factors. ML within 
medicine will provide insights into human biol-
ogy that will feed future clinical advancements.

5.1.1  The Task of ML

Machine learning has been successfully applied 
to an increasing number of tasks. The success of 
ML is near inescapable. ML has been successful 
in computer vision, speech recognition, image 
and audio generation, drug design, and natural 
language processing. However, none of these 
successes are considered a “general AI”. A gener-
alized ML algorithm that can be used without 
user input and can give you an appropriate output 
is considered a “general AI.” Oftentimes, general 
AI is brought up when discussing the promises 
and fears of ML, which is confused with routine 
ML techniques. “ML” is the preferred term 
within scientific practice to avoid the confusion 
of the term AI. To perform ML, you will need a 
question, a computer, an algorithm or model, and 
data to interpret.

5.1.1.1  A Question
The overall goal of ML in medicine is the specific 
tasks of predicting and treating disease. ML is 
being increasingly used wherever computer pro-
cessing can be involved with the acquisition or 
analysis of any dataset. ML relies on having a 
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Fig. 5.1 Images of a head using (a–c) three MRI methods, (d) a pseudo-CT image derived from the MRI data using 
machine learning, and (e) a CT image
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question to answer, knowledge to gain, or process 
to improve. There are several questions in medi-
cine that can be tackled with ML, such as: does 
the person have any disease? If yes, what is the 
disease? How far along is it? Where is it located? 
Can it be treated? Can imaging be used in con-
junction with any other data to diagnose the dis-
ease? In order to have a useful measurement, it is 
necessary to have a question or hypothesis.

5.1.1.2  A Computer
To perform ML, you will need hardware and soft-
ware that can perform this task (Fig. 5.2). The hard-
ware will consist of a computer made of a “central 
processing unit” (CPU) and memory. CPUs are 
incredibly versatile and can handle nearly all com-
puting tasks. Your home computer will likely con-
tain 2–16 CPUs for its daily computational tasks, 
whether that is browsing the internet or advanced 

image processing. The combination of thousands 
of low-powered CPUs for parallel computing are 
commonly used in “graphics processing units” 
(GPUs), which combines CPUs to optimize calcu-
lations for graphical displays and intensive ML 
tasks. GPUs can contain thousands of CPUs, called 
‘cores’, although these cores will individually be 
much slower than the CPUs in your  home com-
puter. The advantage of the GPU is that it performs 
highly parallel computations, which allows it to 
outperform a CPU when many similar  computa-
tions can be performed at the same time, or paral-
lelized. Within your home, you may have a GPU 
that could perform ML; however, many of the tasks 
require higher quality GPUs that can cost thou-
sands of dollars. In order to access high perfor-
mance GPUs, there are many online websites that 
offer free trials to quality GPUs. High performance 
computing centers exist  at many universities and 
offer purchasable time with the possibility of thou-
sands of CPUs and hundreds of GPUs for parallel 
computing. There are also “tensor processing 
units” (TPUs), which are a proprietary form of 
CPUs/GPUs dedicated to ML that use lower 
numerical precision to enable faster processing.

5.1.1.3  An Algorithm or Model
An ML algorithm or model is the sequence of 
well-defined instructions, implemented in a com-
puter, to solve a question. Typically, these algo-
rithms are specific to a class of similar questions. 
Within medical imaging, ML algorithms domi-
nate with solutions of the following three classes 
of questions: (1) radiomics, e.g., texture analysis, 
(2) automated segmentation, and (3) disease pre-
diction. These algorithms do not encompass all 
imaging applications, which can include the opti-
mization of data acquisition routines or the 
reconstruction of data.

ML algorithms learn or fit a mathematical 
“model” to solve a question using prior knowledge 
and observed data, which creates “training data.” 
ML models are generally flexible enough to allow 
learning a specific solution to a specific question 
by changing the training data. Perhaps surpris-
ingly, the same ML algorithms can be used to 
learn models for the (a) segmentation of brain tis-
sues in MRI images and the (b) segmentation of 

RAM: Operational Memory

Hard disk: Storage Memory

CPU: Processing power

GPU: Parallel Processing power

Thousands of CPUs

GPU RAM

Basic Computing Architecture

Fig. 5.2 An image showing four components that are 
present in modern computers: RAM, hard disks, CPUs, 
and a GPU. These four parameters determine the speed 
that a computer can perform ML, although the data size 
and algorithm are also important!
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liver lesions in CT images, just by changing the 
training data!

A significant amount of computer code with 
different ML algorithm  implementations  are 
readily available online for the intrepid research-
ers who are willing to explore them. There 
are  increasingly more free  tools available  for 
individuals to use with  their own datasets. ML 
methods become increasingly impressive, with 
recent demonstrations that ML can predict what a 
person may be looking at (after very significant 
pretraining!). At present, there are no ML algo-
rithm or ML models that enables generalized 
intelligence (“general AI”), so we work with very 
specific tasks, data, and models. Not all diseases 
will be detectable with ML methods, as even ML 
is subject to the sensitivity and specificity of 
physical systems. The more specific the data, the 
more specific the technique can be used.

5.1.1.4  Data to Interpret
ML is specific to the datasets used in training, 
and thus requires curation of the data to perform 
a specific task. Data curation remains a limiting 
factor, as the majority of medicinal techniques 
require human involvement in order to establish 
efficacy, and few locations are willing to accept 
the additional risk when an ML method may mis-
diagnose a patient. In practice, a large amount of 
time for machine learning is spent in the prepara-
tion of datasets, such as curating or labeling 
them, and analyzing whether the outputs are 
meaningful.

There are two axioms presented when discuss-
ing ML: “garbage in, garbage out” and “more 
data is always better.” The following question 
arises: what are the optimal numbers within a 
dataset to learn and then verify the task at hand? 
Unfortunately, there is no simple answer to the 
data amount. This depends largely on the quality 
of data and the  strength of the relationship 
between the model and observed parameters. 
Sufficient dataset diversity is a requirement, but 
too much data diversity will waste resources on 
unimportant leads. A dataset with large variabil-
ity in its files/parameters and with fewer individ-
uals will require more resources than a dataset 

with small files/parameters and more individuals. 
The stronger the relationship between the input 
and output, the sooner any model will converge. 
Datasets where strong correlations exist, such as 
the segmentation of large features like an entire 
lung or brain volume, may be trainable on tens of 
subjects, and tested on tens of other subjects. 
Datasets with weak correlations may require 
thousands of subjects or more, if they are even 
possible to train well.

There are several questions to ask when con-
sidering the data: is the data balanced between 
training types? Are the labels noisy enough to 
model real-world environments, but not too noisy 
to be useless? Are all of the interesting values 
represented? Is the data structured appropriately, 
such as in a file format type (video, images, 
XML, etc.), where ML can be performed? Does 
the data need labels/supervision, and are there 
sufficient labels? Are the labels accurate? Is the 
data biased, and can we overcome these biases?

5.1.2  Supervised Learning

Successful ML models in medicine use datasets 
based on the inputs of an experienced clinician 
providing outlines or disease scores. These mod-
els are trained with very specific questions in 
mind, often on “labeled” datasets to enable 
“supervised” learning. Labeling a dataset refers 
to providing a structured raw dataset, such as 
images that may have a type of disease present, 
and a label specific to each image, such as 
whether that image has the disease present. 
Supervised learning happens when both the raw 
data and labels are presented in a structured for-
mat. To draw parallels with fitting the curve of a 
line, raw data is often referred to as “x.” The goal 
of the algorithm would be to identify the curve or 
formula that best fits the labels “y” corresponding 
to those “x” data points. After performing super-
vised learning, a machine learning program will 
create an output of predicted “y” values, which 
are then tested against the observed or measured 
“y” values, which are labels derived from an 
experienced reader.

J. D. Kaggie et al.
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5.1.3  Unsupervised Learning

“Unsupervised learning” does not rely on having 
labels from a trained clinician. Unsupervised 
learning finds correlations within datasets to 
automatically categorize the data. As an example 
of unsupervised learning, imagine that you had 
two apple and three bananas (Fig. 5.3). You might 
automatically categorize them, as a human, into 
two groups: apples versus bananas. Perhaps you 
did this based on their color or shape. An algo-
rithm that does this automatic categorization is 
referred to as an unsupervised learning algorithm. 
There are many ways to categorize these two 
apples and three bananas. Perhaps we classify or 
separate these fruits based on their weight, then 
we might find that the clusters contain a mixture 
of apples and bananas if we had a wide range of 
weights within a single fruit category. There may 
be an algorithm that leads to an intuitive result, 
such as the “yellowness” of the bananas becom-
ing a distinguishing quantifiable metric. The 
clustering or separation of these characteristics as 
chosen by an algorithm may not be as intuitive as 
one chosen by a human observer. It may be pos-
sible to find an algorithm that relies on the same 
characteristics that a human will choose, or it 
may be that a computer finds a result that is 
unfathomable. Regardless of the result, the ques-
tion remains, “will this algorithm help us under-
stand or treat a disease?” Even unsupervised 
learning does not occur in a vacuum, so eventu-
ally must be tied into other analysis regarding its 
utility.

5.1.4  Radiomics and Texture 
Analysis

While a human is able to automatically classify 
the  properties of an image, this classification is 
often subjective. Texture analysis attempts to make 
this classification numerical or objective by creat-
ing mathematical descriptions of “image features” 
(Fig. 5.4). An image feature is any mathematical 
description of the image, which could be as simple 
as the number of red pixels (or when discussed in 
3D, voxels) in an image of an apple, the mean 
intensity of these pixels, or standard deviation. 
There is information encoded in space, such as 
whether red pixels in an image are close together 
might indicate the presence of an apple, whereas 
random, scattered pixels may indicate noise.

Mean, variance (and standard deviation), kur-
tosis, and skew are commonly used features, also 
referred to as 1D histogram measurements, and 
do not account for spatial variations. Two- 
dimensional histograms account for intensity 
similarities within a mask and are based on work 
from Haralick et  al. who described “gray-level 
co-occurrence matrices” (GLCMs) [1]. GLCMs 
are then further processed or transformed into 
other, more descriptive measurements, many of 
which are derived from physics equations, such 
as “entropy” and “energy.” Other texture mea-
surements can also be measured, such as gradient 
measurements, which can also be described as 
“total variation” [2, 3]. There are many different 
possible mathematical features, with many of 
them overlapping each other. Convolutional neu-

Length Yellowness Weight

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2

Fig. 5.3 Three plots showing quantifications of apples 
and bananas based on length, color (“yellowness”), and 
weight. Depending on the quantification method used, the 

classification can result in several clusters that can distin-
guish the apples and bananas or can make them 
indistinguishable
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ral networks allow learning very complex, task- 
specific textures that can be used to recognize 
faces [4] and numbers [5], and segment structures 
in different types of bio-medical images [6, 7].

Texture measurements can have a confusing 
relationship with shape and volume. While some 
textures are shape dependent, others are not. A 
simple total volume or length may be more impor-
tant than other texture features because large dis-
eased areas often represent comorbidities. Due to 
this dependency, many different image combina-
tions are possible. Should you use an arbitrary 
region outline to extract features of your image 
that could vary over different disease shapes and 
sizes, or a rigid shape (such as a square)? Outlining 
a disease specifically will highlight disease spe-
cific features but will result in irregular shapes that 
are less repeatable than conforming to drawing a 
rigid shape based on anatomical landmarks; the 
precise outline required depends on context.

5.1.5  Feature Reduction

One of the difficulties of texture analysis, and in 
general ML, is that the number of descriptions can 
quickly outpace the data present. Let us take five 
different fruits: an apple, orange, banana, cherry, 
and pear. There are 5! = 120 different orders in 
which we can arrange these  in a line, which is 
much more than the number of fruit themselves. 
However, it may be that one of those specific 
orders is the key to unlocking a mystery. Those 
120 orders are not all of the possible representa-
tions of those 5 fruits, because we could place the 
fruits into 5 boxes instead of 1, or 4, 3 or 2. Images 
have much more than five features, often 
using  pixel dimensions of 256  ×  256 = 65,536 

pixels, before even considering the many layouts 
possible or 3D layers!

This proliferation of dimensionality obscures 
the interpretation of the results, making it difficult 
to understand why an algorithm has reached a cer-
tain conclusion. The goal of ML research should 
be to find new mechanisms underlying the causes 
of diseases, which will aid future assessments 
(whether in the physical or computational spaces). 
Not all data is necessary—it does not normally 
make sense to look for disease correlations within 
the brain to a predominantly kidney disease. In 
order to make sense of much of the data, we can 
perform “ablation” to determine whether these 
features are primary measurements within our 
tests. “Ablation” is the removal of a portion of the 
ML pipeline to see whether the same results are 
obtained, whether that’s removing data, features, 
or a portion of the ML network. For example, an 
ablation study might be to randomly remove half 
of the image features to see whether the same 
results can be obtained [8, 9].

Large numbers of features are more difficult to 
train and require more data. Two methods to reduce 
the number of features are called principal compo-
nent analysis (PCA) and singular value decomposi-
tion (SVD). These are unsupervised algorithms 
that reduce the number of features by combining 
them into new features based on  linear relationship 
calculations. By reducing the number of features 
used before further calculations, ML methods can 
train more quickly and with reduced dataset sizes. 
PCA and SVD can be considered to be the same 
thing for all practical purposes, although PCA can 
differ in its operational order. These create a 
reduced set of features based on their linear corre-
lations, calculated based on a linear algebra tech-
nique called eigenvalue decomposition.

Original 4x4 Image

Feature Value

Mean intensity (black=1) 0.375

Number of black blocks 6

Most connected blocks 5

Blocks without two adjacent 2

Fig. 5.4 A 4 × 4 image 
of white and black block 
tiles. This image can be 
used to create quantities 
that can describe any 
number of feature 
dynamics
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Feature selection can be performed by the 
recursive elimination of features (feature abla-
tion) to determine whether an output remains sig-
nificant. Feature selection can be prior to analysis 
as well. For example, features can be removed 
that have strong linear correlations to each other, 
presupposing that they do not contain new infor-
mation. This is not strictly true as a quadratic 
curve could be based off of a linear curve and will 
not have a strong linear correlation, but would be 
caused by exactly the same information. Another 
selection method retains features that have the 
highest variances, based on the assumption that 
independent relationships will have high vari-
ances - but this could also could be the result of 
noise. Recursive elimination is the most likely to 
find significant results, but  it is also the most 
likely to find insignificant results at the same time 
due to the wide range of repeated tests, which is 
why linear- or variance-based feature removals 
are used.

5.1.6  Scaling and Normalization

For a large majority of ML methods, the models 
are improved when the data is standardized—
which means to adjust the scale of the input fea-
tures. We can show how this relates to features in 
the five fruit example. If we have measurements 
of the fruits based on their weights and longest 
lengths, then we want our output to be consistent 
regardless of the input. That is, regardless of 
whether we obtain the weights of the fruits in 
grams, kilograms, or pounds, we would like the 
end result to be the same. Furthermore, if we have 
calculated  the features at very different scales, 
like the weight in milligrams, which would give 
features in hundreds of thousands, and length in 
kilometers, which would give features at decimal 
places, then we may get a nonoptimal outputs. 
Standardization is necessary partially because a 
majority of ML methods are built on linear regres-
sion, discussed more in depth later.

This normalization process can occur for tex-
ture features prior to analysis or for features 
within neural networks or for outputs between 
neural network layers (discussed later). Feature 

normalization is not always ideal because it can 
reduce the quantitative nature of outputs; how-
ever, rescaling features is often necessary to 
obtain a meaningful result. For example, if I have 
two processes, one which results in 1000 ± 100 
and another which results in 0.0010  ±  0.0001, 
then the effect of the one with higher scale may 
be overestimated during any optimization pro-
cess. Rescaling also normally results in faster 
fitting.

A (non-fruit) example might be one below. 
Let us say we have the feature inputs, x, and the 
outputs, y, as listed:

Texture 
(x1)

Shape 
(x2)

eGFR 
(x3)

Gender 
(x4)

Disease 
score (y)

Disease 
(ybinary)

0.7 1000 65 M (0) 4 Yes (1)
0.1 3000 15 F (1) 5 Yes (1)
0.5 500 110 M (0) 0 No (0)
0.9 7000 80 M (0) 3 Yes (1)
0.5 2500 120 F (1) 1 No (0)

A common standardization method of the 
input features, xn, is to subtract all features by 
their mean and then divide those outputs by their 
overall standard deviation per each feature or per 
column. This will normally result in better out-
puts. This would result in a table as such:

Texture 
(x1)

Shape 
(x2)

eGFR 
(x3)

Gender 
(x4)

Disease 
score (y)

Disease 
(ybinary)

0.6 −0.8 −0.3 −0.8 4 Yes (1)

−1.6 0.1 −1.6 1.2 5 Yes (1)

−0.2 −1.0 0.9 −0.8 0 No (0)

1.4 1.8 0.1 −0.8 3 Yes (1)

−0.2 −0.1 1.1 1.2 1 No (0)

5.1.7  Training, Validation, 
and Testing

A well-known issue when testing statistical prob-
lems is called the “multiple comparisons prob-
lem.” If there are five random measurements of 
any kind, and a dice is thrown five 50 times, then 
there will be strong linear correlations between 
the initial set of random measurements and 
roughly 10 of these dice rolls, despite having no 
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meaningful linking relationship. These correla-
tions are called false positives or type I errors if 
there is no underlying causation. ML normally 
uses too many features or variables while ignor-
ing multiple testing corrections (such as 
Bonferroni corrections). The high dimensionality 
of the problems would result in small statistical 
significance if such corrections were to be used in 
many of these tests. To work around this limita-
tion and ensure reliable measurements, datasets 
are often broken up into “Training,” “Validation,” 
and “Testing” datasets.

The training dataset is used while developing 
an algorithm. The validation set is used after an 
ideal algorithm has been developed to measure 
initial results on an independent set, which will 
result in lower scores than a training set. The test-
ing set is meant to be a completely independent 
set of data that has not been tested previously, 
such that the training and validation would not 
bias its scores. The test set is considered mea-
sured or observed values. In practice, many data-
sets have been obtained from online databases 
that have been tested previously, so there is ambi-
guity in whether a test set is “validation” or “test-
ing” set within literature.

These datasets might be split up equally into 
thirds, or into 30/20/30 splits, or even into 80/20 
splits, depending on the data quality and type. 
For large databases, a full train-validation-test 
split is possible for sufficient training to obtain 
high scores (of any metric), while for smaller 
databases, such as in the case of rare diseases, an 
80/20 split is required. It is also possible to do 
five 80/20 splits, with the 20% of the split coming 
from the five different portions of the data, and to 
repeat the training/testing five times, if the data-
set numbers are very low [10].

5.2  Linear Regression

While it may seem backwards to begin with linear 
regression, it is helpful to understand before delv-
ing deeper into ML methods. Since the importance 
of textures can be separated via linear regression 
and since linear regression is a fundamental com-
ponent of the majority of neurons in neural net-
works, having a solid framework of linear 

regression can help inform a more intuitive under-
standing of ML structures. Linear regression can be 
used as its own ML method. The principles demon-
strated while performing a simple linear regression 
are applicable in more advanced machine learning 
topics.

5.2.1  Under- and Overfitting

Imagine that two points on a line are known 
exactly: at x = 1, y = 2, and at x = 5, y = 10. It is 
easy to see that the equation for this line would be 
y = 2*x. We have two variables, x and y, which 
are unknown. We have two points of (x,y): (1,2) 
and (5,10). If we know those two points exactly 
and that the model to be fit is a line, then we can 
fit the curve exactly.

Now imagine that our model is not a line but 
that it is a second-degree polynomial: 
y = ax2 + bx + c. This could be the case because 
we have nonlinear relationships within our data-
set. We may not even know what this model is, 
which does not necessarily have to be a second- 
degree polynomial but could be any number of 
other curves. We stick with the second-degree 
polynomial in this hypothetical example to give 
an intuitive feel for fitting. Let us assume that we 
only have those original two points [(1,5) and 
(2,10)]. The second-degree curve that fits this 
curve could be y = −5x2 + 20x − 10. It could also 
be y = −10x2 + 35x − 20. Or any number of solu-
tions that exist. We could continue to extend the 
parameters with higher orders of polynomials, 
where even more possibilities exist. For a noise-
less problem, we would want the same number of 
input datasets to match the number of variables to 
be predicted. In the real world, data collection 
processes are messy, so we normally require 
 significantly more datasets to average noise out, 
even for predicting simple linear relationships.

Underfitting occurs when the data follows a 
more complicated relationship than the final 
model requires. Underfitting usually results in 
poor predictions because it does not model all of 
the complex relationships within the data.

Overfitting is when the data follows a simpler 
relationship than the final model requires. 
Many ML tasks will have many more variables 
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predicted than inputs, which is overfitting. 
Overfitting is unavoidable because we are 
attempting to predict multiparametric,  nonlin-
ear relationships, such as the shape of a liver 
within images. The cost of overfitting is that it 
requires a  larger  number of datasets to have 
good predictability, it requires more advanced 
computational equipment (and power!), and it 
precludes the understanding of underlying mod-
els and mechanisms, which should be the goal 
of every researcher. However, an overfitted 
model is far from useless—if an overfitted 
model can be used for future predictions with 
statistical significance, naively as a lookup table 
using a very large dataset, then it may point to 
the existence of a simpler, underlying model or 
mechanism.

The goals of researchers vary: for some, find-
ing small relationships in large datasets is impor-
tant where effects are hidden; for others, finding 
strong relationships in small datasets is impor-
tant, as that demonstrates very significant effects. 
Scientific progression relies on both types. 
Within the ML applications presented hereafter, 
we primarily focus on the use of large datasets, 
but note that small datasets require more specific 
models and stronger correlations to demonstrate 
efficacy, whether with ML or classical statistics.

In a very strict sense, many ML applications 
perform “overfitting,” as the amount of data pres-
ent is limited by the number of patients that it is 

far lower than the number of variable parameters 
(Fig. 5.5). The number of variable parameters in 
a typical deep learning model can include 30+ 
layers of parameters with tens to hundreds of 
parameters per layer. In this context, both “under-
fitting” and “overfitting” are when the model can-
not be generalized to a group beyond the 
individuals included in the study, because the 
model is either not trained on enough data (“over-
fitting”) or does not have enough parameters 
(“underfitting”). ML generally focuses on future 
predictions based on past data, whereas medici-
nal research focuses on better patient treatments 
or finding new underlying causes of disease pro-
gression, which require sensitive techniques and 
meaningful statistical methods to avoid biases.

5.2.2  Linear Regression 
Mathematics

This section is included as an easy reference for 
those who may be required to perform these 
 calculations. It can be skipped for those not wish-
ing to delve deeper into the mathematics.

Linear regression tries to predict a linear rela-
tionship between a set of variables and an output. 
We are most familiar with linear regression in the 
form of
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Fig. 5.5 When discussing fitting, the number of parame-
ters should be representative of the underlying data and 
ignore noise. By increasing the number of fit parameters, 

any model can be fit with reduced error, but this reduces 
the  predictability of future results without massive data 
increases
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where y is an output that is dependent on the 
variable x as described by linear function f. The 
variables m and b are parameters of the function f, 
commonly known as “slope” and “intercept,” 
respectively, and are generally unknown. A sim-
ple example might be the relationship between the 
height (y) of an individual with the width of that 
person’s shoulders (x). Linear regression can be 
extended beyond a single variable—so instead of 
the width of shoulders being dependent on height 
alone, you can include other variables like consid-
ering the effects of average caloric intake.

Linear regression is process of estimating 
unknown parameters (m, b) given a set of obser-
vations (xi, yi). It is performed by minimizing the 
difference (or “residuals”) between the measured 
and the model values. That is, we seek to mini-
mize the function over
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This minimization is found for slope m when the 
derivative of S with respect to m is zero, i.e., 
∂
∂
S m
m
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= 0 . This formulation may not be very 

intuitive, but this minimization leads to the abil-
ity to predict the slope of the curve, which can be 
demonstrated to be [11]:
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After the slope, m, is found, the intercept, b, can 
then be found:

 b y m x= –  

The “goodness-of-fit” of a linear function is often 
referred to as “r,” which is calculated as:
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where x  and y  are sample means. When “r” 
approaches 1, then fitted x and y values have a 
good fit.

5.2.3  The Neural Network

You would undoubtedly have heard of “deep 
learning” and hopefully a “neural network” 
(Fig. 5.6). These build on the principle of a “neu-
ron,” which is a single building block in a neural 
network. A “neuron” is a linear fit of inputs (or 
features, usually denoted as x) that are fed into a 
transformation (called an activation function, 
which is often a nonlinear transformation) and 
attempts to minimize the error between its output 
(a predicted y) and a measured quantity (an 
observed y). When multiple neurons are chained 
together, they form a “neural network.” When a 
large number of these neurons are chained 
together, they are considered a “deep neural net-
work” [12].

When the outputs of a group of neurons are 
fed into the inputs of another group of neurons, 
each of these groups is considered a “layer.” 
Each layer of neurons is usually referred to as a 
“hidden layer,” with the inputs (x) and predicted 
outputs (y) not being hidden. A neuron individu-
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Input
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Fig. 5.6 A neural network with three inputs, two hidden 
layers, and two predicted outputs. Neural networks can 
have any number of neurons per hidden layer, as well as 
any number of hidden layers, provided the computational 
ability remains
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ally has a largely linear relationship between 
inputs and outputs. However, by chaining neu-
rons together with activation functions, nonlinear 
relationships occur that can model most complex 
functions. By increasing the number of layers, 
the model becomes more specific and less gener-
alized, which requires more data and more spe-
cific data. A higher number of neuron layers is 
incredibly useful when the model has an unknown 
or difficult to model relationship, which occurs 
frequently in the arbitrary shapes that many 
lesions can cause.

We want to suppress the output of neurons that 
are not contributing to accuracy in the end pre-
diction (Fig.  5.7). Within biology, an activation 
function is when a cell has minimal output until a 
set of inputs, such as a voltage or chemical con-
centration, surpass a definable limit to ensure a 
neuron fires only after passing the threshold of an 
action potential. Due to this similarity, neural net-
works are referred to as “artificial neural net-
works.” In order to attenuate these computational 
neurons, similar to biological under-stimulation 
or hypersensitization, we use a similar idea 
encapsulated in within the “activation function.” 
A neuron weights each of its inputs, creating a 
linear model, and then outputs this. This output is 

fed into an activation function, also known as 
nonlinearity, that performs a certain fixed mathe-
matical operation on it.

Activation functions subdue or amplify the 
outputs of a neuron to increase or decrease its 
importance in a neural network. Common activa-
tion functions are in Fig. 5.8. The sigmoid func-
tion (or logistic curve) is a common function to 
“squish” a real number between 0 and 1. Very 
negative inputs become close to 0, very positive 
inputs become close to 1, and the function 
steadily increases or decreases around the input 
0. The sigmoid function is continuously differen-
tiable as a smooth, nonlinear step function. This 
function is useful for predicting probabilities. 
However, this is not zero-centered, which may 
require more data for training and can be difficult 
to optimize [12]. The hyperbolic tangent, tanh, 
function is sigmoid scaled to be centered around 
zero, and so is preferred over the sigmoid func-
tion. The most widely used activation function 
currently is the “rectified linear unit” or “ReLU” 
pictured in Fig. 5.8, used for its speed and stabil-
ity. The ReLU has simpler mathematical opera-
tions over the sigmoid and tanh activation 
functions. No activation function is perfect, as 
the ReLU results in the a “dying ReLU problem,” 

N1

N2

N3

N4

Features

Weights

Layer 1 Layer 2 Output

Weights

Ground Truth

Fig. 5.7 An example of 
how different input 
“features” can combine 
within a network to 
create an output. The 
weights might be 
randomly initialized. 
This example shows that 
there may be overlaps of 
features, which should 
become less weighted 
with increased training
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which is when “dead” neurons form during the 
learning process if their weights have progressed 
to zero, and no longer can be updated. The leaky 
ReLU is an upgraded version of ReLU, which 
has a small linear gradient to ensure that a neu-
ron’s weights will never reach zero and thus 
never become fully deactivated [13].

5.2.4  The Objective Function

The objective function is the calculated penalty 
between a wrong classification and prediction. 
In many ML problems, we wish to minimize the 
errors between a set of predicted outputs and the 
observations (often measurement data, which 
can include disease scores). This process of min-
imization is based on a so-called objective func-
tion that encodes in a single value the 
disagreement between predictions and observa-
tion metrics [14, 15]. The objective function can 
also be referred to as a “loss,” “regret,” or “cost” 
function. There are ML problems where the 
objective function is maximized and referred to 
as a “reward,” “profit,” “utility,” or “fitness” 
function, although we will not consider these lat-
ter cases.

The objective or cost between a set of pre-
dicted and measured outputs could be a simple 
difference between these values. There is no 

ideal universal “cost” between predictions and 
observations. Every cost function has their 
drawbacks and their effectiveness depends on 
the application. There are two frequently used 
cost functions, referred to as the L1 and L2 
norms [16]. A norm can be thought of like an 
absolute value—except how does one take the 
absolute value of a multidimensional vector? 
The norm of −1 is +1. Moving to complex num-
bers, the norm of 1 + i, where i is equal to the 
–1  is dependent on whether one is measuring 

its L1 or L2 norm.
The L1 norm of a vector, v, is its distance from 

the origin and has the symbol ‖v‖1 the absolute 
sum of all vector values. That is, 
‖v‖1 = |v1| + |v2| + ⋯ + |vn|. This is also called the 
“taxicab” or “Manhattan” norm because it refers 
to the distance it takes for a taxicab in Manhattan 
to reach its destination, based on a square grid 
(Fig. 5.9). The L1 norm of 1 + i is 2. The L1 norm 
when used in ML will be the difference between 
each predicted and measured output:

–1.0
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–0.5

0.0

0.5
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Fig. 5.8 Four activation functions are shown. A neural 
network weights its inputs and then based on that output, 
undergoes a transformation following an activation func-
tion. This amplifies neurons that contribute to the final 
objective

4 Blocks

3 B
locks

L1 = 4+3 = 7
L2 = sqrt(42+32)

v = (4,3)

Fig. 5.9 A 4 × 4 tile showing the difference between an 
L1 norm and an L2 norm. An L1 norm is the distance it 
takes for a taxicab to drive to the location, which is shown 
as from the origin (0,0) to the point (4,3). An L2 norm is 
the quadratic distance, following the Pythagorean theo-
rem for a two-dimensional plot

J. D. Kaggie et al.



69

 

|| ||y y y y y

y y
obs obs

n n o

1 1 1 2 2
= + +

+
, , , ,

, ,

pred pred

pred

– –

–

…

       bbs  

The L2 norm of a vector is its classical dis-
tance from the origin and has the symbol ‖v‖2. It 
can also be referred to as the Euclidean norm and 
is the most common norm used (Fig. 5.9). It is the 
square root of the sum of the squared vector val-
ues. The L2 norm of 1 + i is 2 . The L2 norm of 
a vector with higher dimensions is 
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These two norms are the most commonly used 
cost functions. Another cost function could be the 
p-norm, which is the L2 norm with the power of 
two replaced with the power of p:
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State-of-the-art deep learning approaches use 
a variety of task-specific complex cost functions 
that aim to be easier to optimize [16–18], seek to 
capture perceptual differences between images 
[19–21], and even learn a cost function specific 
for the task [22, 23]. Irrespective of choice of 
cost/objective function, the training process 
must numerically minimize the chosen cost 
function to obtain the model with optimal param-
eters (e.g., (m, b) in the regression example 
above) [24, 25]. Ideally the optimization process 
seeks to find the “global” minima of the objec-
tive function, i.e., there does not exist any other 
set of parameters that can have a lower cost [26]. 
Finding a global minima or even verifying a can-
didate for global minima is a very difficult prob-
lem, especially in state-of-the-art ML approaches 

that have a large number of parameters. Hence, 
most optimization methods use local informa-
tion like derivatives and Taylor series expansion 
to find a “local” minima that is practically useful 
for the task [27–29]. “Gradient descent” is a 
widely used technique that uses local derivatives 
to find local minimum for a variety of applica-
tions [30, 31].

5.2.5  Gradient Descent

Gradient descent is a widely used iterative 
method to optimize an objective function. That 
is, it is the method for updating parameters within 
a neural network algorithm [30, 31].

A gradient descent algorithm can be used to 
optimize a continuous function. Let us say our 
model is quadratic, that is, ymodel = x2, and we have 
a set of measured values, y1, obs, y2, obs, y3, obs. We 
want to find the x values that minimize the error 
between the model and the observed or measured 
values. While the solution to each x is trivial 
because we know the model (since we could eas-
ily take the square root of y1, obs, y2, obs, and y3, obs), 
this is enlightening as it can help us understand 
models with more complicated interdependen-
cies, such as if y1, y2, and y3 were not completely 
independent.

The L2 norm in this model will be
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If we assume no knowledge of x1, x2, and x3 
prior to starting, we can enter in initial guesses 
and calculate ‖y‖2. However, we need a method 
to update these values. To do this, we can take the 
derivative—or gradient—of the objective func-
tion. If the gradient is large, then that parameter 
should change quickly. If the gradient is small, 
then that parameter creates a minimum or maxi-
mum value in the objective function. Gradient 
descent corrects for predictions or guesses that 
are distant from the optimum value.
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Gradient descent updates each parameter with 
its rate of change based on the derivative of the 
cost function. For example, with each gradient 
descent step, an initial point x1 is moved in the 
direction of steepest descent with a step-size α:
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Alpha, α, is a “learning rate,” which can be stati-
cally set or updated throughout training. Alpha is 
often determined empirically and can be consid-
ered a “hyperparameter.” Hyperparameters are 
often user-definable variables that can affect 
training effectiveness substantially. Large-scale 
optimization, like that in deep learning, generally 
use sophisticated approaches for updating the 
learning rate throughout the process to quickly 
find the minimal point [32–35].

When applied to neural networks, the gradient 
descent algorithm is used to update the weights 
wn and biases bm to minimize the cost (Fig. 5.10). 
This process by which values are updated is 
called “back-propagation” because the informa-

tion gained by comparing the network’s output 
and our observation data is propagated through 
the rest of the network. The minimum is found by 
repeatedly using the above update rule:
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Neural networks will typically use “mini-batch” 
gradient descent, which is a combination of two 
other gradient descent methods: batch and sto-
chastic gradient descent. Batch gradient descent 
calculates the descent for all parameters and 
observations but is computationally expensive 
especially with very large datasets. Stochastic 
gradient descent updates parameters using an 
“estimate” of the derivative computed using only 
a random “mini” subset of the complete observa-
tion, thus saving on computational requirements, 
which results in high variability in the new 
parameter estimates [36, 37].

5.2.6  Deep Learning 
with Convolutional Neural 
Networks

Deep learning (DL) is machine learning that 
occurs over many learning layers. Similar to ordi-
nary neural networks, convolutional neural net-
works (CNNs) also consist of neurons that have 
learnable weights and biases. The main differ-
ence is that the structure of CNNs assumes matri-
ces/images as inputs (Fig.  5.11; see also [4, 5, 
12]) and are thus built accordingly to make use of 
convolution filters, which is fundamental to sev-
eral image processing operations [38–40]. The 
layers of CNNs are made up of neurons arranged 
in three dimensions—height, width, and depth.

The core parts of any CNN are the convolu-
tional layers (CL). As with any other layer, a CL 
receives an input and outputs a transformation of 
the input to the next layer. Inputs passing through 
a convolutional layer will have a set of k small 
n  ×  n filters convolve (slide) across its volume 
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Fig. 5.10 The goal of the optimization process is to 
determine the weights of the system that reach the mini-
mum value (marked with the green x). The weights can be 
updated with a gradient descent algorithm. New values of 
the system are based on the rate of change caused by each 
parameter. Parameters that drastically affect the system 
have a higher rate of change and are updated more quickly. 
Multiple parameters can affect a system, which is the 
effect shown in blue, where these might be updated each 
w update shown in red. A danger of optimization tech-
niques is that local minima can be reached
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and have the dot product between each filter and 
input entry calculated (Fig.  5.12). Therefore, k 
2D feature maps are obtained, which are stacked 
across the depth dimension. The three hyper- 
parameters that define the output volume size are 
the number of filters k (depth of the CL), the 
stride with which the filter is convolved over the 
input and the size of zero-padding around the 
input’s border. A stride of 1 means, the filter is 
slid pixel by pixel over the input. Zero-padding 
allows control over the output spatial size. By 
padding the borders of the input with zeros, the 
spatial size of the output equals the size of the 
input.

In addition to the convolutional layer, CNNs 
are made up of a series of different types of layers 
that either perform a transformation of the input’s 
activations (convolutional layer, fully connected 
layer) or apply a fixed function (activation func-
tion layer (AF), pooling layer, batch 
normalization).

A fully connected layer (FCL) simply multi-
plies its input by a weight matrix followed by a 
bias offset and an activation function transforma-
tion. All the neurons from an FCL are connected 
to all neurons from the previous layer. FCLs are 
typically used at the end of CNNs designed for 
performing classification tasks.
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Fig. 5.11 A 4 × 4 image is unwrapped to show how it can create 16 inputs into a convolutional layer with 4 neurons. 
These four neurons can then weigh into a final output layer, which may be a prediction of the severity of a disease
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Pooling layers (PL) are used intermittently 
between CL to reduce the spatial dimension of 
the feature maps [12, 41]. Common pooling 
operations are max pooling and average pooling 
of the spatial data (Fig. 5.13). Through pooling, 
important feature information is preserved while 
other less important is discarded [42]. This 
increases the robustness for feature extraction 
and controls overfitting while reducing the total 
number of parameters in the network and ulti-
mately the computation time [43].

CNN architectures typically consist of a series 
of convolutional layer  →  activation function 
layer or convolutional layer → batch normaliza-
tion layer  →  activation function layer stacks, 
while each stack is followed by a pooling layer, 
until the input has been spatially reduced. A final 
fully connected layer → activation function layer 
is then applied to classify each neuron.

5.2.7  Advanced Deep Learning 
Architectures

The list of various deep learning architectures 
used in medical imaging is long and growing rap-
idly [44]. Here we cover a few of the most widely 
used models.

5.2.7.1  Autoencoders
Autoencoders learn a feature representation of 
unlabeled data using an unsupervised encoding–
decoding approach (Fig. 5.14) [45, 46]. Typically, 
an input image is fed into an encoding CNN and 
mapped to a lower-dimensional feature represen-
tation of the input. Through this process, the 
input experiences a dimensionality reduction to 
only obtain the most important features that 
define the input. After encoding, the features are 
fed into a decoding CNN (increasing dimension-
ality) to reconstruct the input data. Here stems 
the name “autoencoding” as the network is 
encoding its most prominent features to be able 
to reconstruct itself. The network learns by com-
paring the reconstructed input with the original 
input using for instance an L2 cost function. This 
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Fig. 5.12 (Top) A demonstration of convolution using a 
3 × 3 filter (or “kernel” if in 2D) that highlights diagonal 
elements. (Bottom) Prior to convolution, the input image 
is zero padded to maintain the final image size

Fig. 5.13 Pooling an image or layer down-samples that 
image to become a smaller shape. “Max pooling” selects 
the maximum value within a region. “Average pooling” 
can also be performed, where the average of a region is 
selected
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learning is unsupervised as no external labeled 
data is used during training. After training, the 
decoder part of the network can be discarded 
while the encoder part could be used for some 
different task, such as to initialize a new super-
vised network or to provide justification [47, 48].

5.2.7.2  ResNet
The ResNet architecture was introduced in 2015 
and won the ImageNet challenge in that year. It 
consists of so-called ResNet or residual blocks 
that allowed easier and faster training of very 
deep networks [49] by mitigating the vanishing 
gradient problem. When the gradient is backprop-
agated in very deep networks, the repetitive mul-
tiplication tends to make the gradient vanishingly 
small. This can lead to the accuracy of deep net-
works being saturated or even degraded once net-
work convergence begins. The residual block uses 
skip or shortcut connections that skip one or more 
layers and creates a parallel branch that reuses the 
activations from previous layers. By skipping lay-
ers, training time and the effect of the vanishing 
gradient are reduced as the network uses fewer 
layers during initial training while preserving 
information as the input is fed through the layers.

5.2.7.3  U-Net
The U-Net was also introduced in 2015 and has 
become one of the most widely used networks for 
automated image segmentation (Fig.  5.15) [7]. 
The name is derived from its U-like appearance 
when its neuron layers are shown in a graph for-

mat. Within U-Net, the input is progressively 
down-sampled (encoder) by a typical CNN archi-
tecture described in the previous section and then 
up-sampled (decoder) by a series of transpose 
convolutional layers. By introducing additional 
skip-connections, features from the encoding 
network path are concatenated to features from 
the decoding network paths, enabling high- 
resolution segmentations.

5.2.7.4  Generative Adversarial 
Networks

A generative adversarial network consists of two 
competing neural networks that are trained 
simultaneously in a mini-max game to optimize a 
loss objective function [50]. As an example, a 
noise image can be fed into a network, which 
competes against the original input image fed 
into the same network for generating the best 
result. This relies on a generative network, G, 
focusing on image generation while another clas-
sification network, D, works on image discrimi-
nation. During training, D guides G to learn a 
translation of input images to realistic representa-
tions of the ground truth training data. D makes a 
binary prediction of whether the generated image 
is a true representation of the desired output or 
not, and feeds its prediction back to G to produce 
more accurate representations. Therefore, GANs 
and its conditional variant (cGANs) have been 
successfully applied in many image-to-image 
transformation tasks such as segmentation and 
image synthesis.

Fig. 5.14 The autoencoder consists of two neural net-
works, an encoder and a decoder network. The dimension 
of input (brain MRI) is first reduced by the encoder to a 
lower-dimensional feature representation followed by a 

dimension upsampling by the decoder to generate the out-
put. Usually, the encoding and decoding paths are sym-
metric to generate an output identical to the input
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5.2.7.5  Deep Boltzmann Machines
Deep learning can also appear as “Deep 
Boltzmann machines” (DBMs) [51] that can per-
form image recognition tasks, but these differ 
from CNNs in several ways. A DBM is used for 
classification problems, whereas a CNN can be 
applied to more general problems. DBMs do not 
use gradient descent and backpropagation. 
Instead, DBMs use probability distributions over 
binary values. A Boltzmann machine can also be 
called a Markov random field.

5.2.8  Deep Learning in Medical 
Image Analysis

Over the recent years, the application of deep 
learning has had a significant impact on various 
areas of medical imaging analysis [52]. With the 
rapid progression and development of deep learn-
ing architectures and their subsequent application 
to the analysis of medical images, this section will 
only highlight a few applications and  publications 
demonstrating the advances in this research field.
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Fig. 5.15 The U-Net progressively down-samples an 
input (brain MRI) in an encoding path through multiple 
convolutional and pooling layers while increasing the 
number of feature representations. In a succeeding, sym-
metric decoding path, the features are up-sampled using 

up- or transpose convolutions to the original spatial size of 
the input. By concatenating features from the encoding to 
the decoding path through additional skip-connections, 
high-resolution segmentations are achieved
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5.2.8.1  Classification, Localization 
and Detection

Image classification has become one of the most 
effective applications of deep learning in medical 
image analysis. A deep neural network classifies 
an image by extracting image features to predict 
class labels of an object in the input image. 
Typically, the input image is fed into a CNN that 
progressively down-samples the image through 
multiple convolutional and pooling layers and 
outputs a single categorical label defining the 
input, for example, “Tumor” or “No Tumor” to 
characterize tumor presence in a brain MR image 
(Fig. 5.16).

Deep learning has also been successfully 
applied to object localization in which the inci-
dence of an object is located, and their location 
usually specified by a bounding box. In this net-
work, object classification and localization are 
combined by adding an additional fully con-
nected layer that outputs box coordinates, such as 
the width, height, and x and y coordinates of the 
bounding box (Fig. 5.16). In object detection, the 
localization task is extended to multiple objects 
in a single input image. All objects in an image 
are defined by a class label and location.

GANs have been implemented to detect 
abnormalities in medical images by training the 

network only on images of normal, “healthy” 
anatomy appearance. Structures that are not part 
of the normal distribution learned can be detected 
by an anomaly scoring system [53]. Furthermore, 
deep learning methods have been applied to med-
ical image denoising and artifact detection. For 
example, an autoencoder has been shown to out-
perform the FSL SUSAN denoising algorithm 
for denoising brain MRIs with various degrees of 
additional Gaussian noise [54], while a CNN has 
been used to patch-wise detect motion artifacts in 
cranial and abdominal MRIs [55].

5.2.8.2  Segmentation
Region- or tissue-specific segmentation plays an 
important role in the analysis of medical images 
for disease quantification and clinical translation 
of new imaging techniques. Expert manual seg-
mentation remains to be the most accurate 
method, however, requires a significant amount of 
time and is subject to inter-rater variability. 
Consequently, the attention has grown to develop 
sophisticated deep learning networks to fully 
automate the semantic segmentation task of 
 medical images, i.e., labeling each pixel in an 
image with a class label. The most recognized 
CNN- based segmentation architecture applied to 
medical images is the previously mentioned 

U-Net

Conv + AF (ReLU)

(Max) Pooling

Up-Conv

Skip Connection

Fig. 5.16 In the classification task, the network output is 
a discrete label or description of the object in the input 
image. In the localization task, the network outputs the 

exact location of the object, along with the class label 
describing the object detected
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U-Net. The majority of CNNs developed for seg-
mentation tasks are spin-offs of the U-Net archi-
tecture such as its 3D variant, called V-Net, 
applying 3D convolutions [6]. GANs are also 
increasingly being used for automated segmenta-
tion of medical images as they are showing great 
promise in overcoming a spatial continuity con-
straint identified in U-Net-based methods. They 
typically employ a U-Net-based generator net-
work for creating the segmentation image, while 
the GAN’s discriminator network could act as a 
shape regulator and increase the spatial consis-
tency in the final segmentation image. 
Conventionally, pixel- wise or voxel-wise objec-
tive functions are used during training. Examples 
are (binary) cross entropy or variants of segmen-
tation-based evaluation metrics such as the 
Sørensen–Dice Similarity Coefficient [56, 57] or 
Jaccard Index [58].

While most segmentation strategies have been 
applied to single-modality images, there has been 
an increasing interested in multi-modality seg-
mentation as this can provide different structural 
and functional information about the target 
simultaneously. For this purpose, the multi- 
modality images are usually fused as multi- 
channel inputs, with a single-channel 
segmentation map as network output. For exam-
ple, Wang et al. [59] and Zhou et al. [60] fused 
the four MRI modalities (T1-w, T1c-w, T2-w, 
and FLAIR images) from the BraTS dataset [61] 
as the multi-channel input to a CNN for brain 
tumor segmentation. Zhao et al. [62] fused PET 
and CT images as their multi-channel input to a 
3D CNN for lung cancer segmentation and 
achieved higher accuracies than with respective 
single-modality segmentation.

5.2.8.3  Registration
In medical image registration, a coordinate trans-
formation is determined from one image and 
applied to another to spatially align both. CNNs 
employed for registration tasks often use tradi-
tionally used registration metric such as a simi-
larity measure between two images from different 

imaging modalities as the cost function during 
network training. Conditional GANs can also be 
used for medical image registration. In this case, 
the cGAN generator could determine the trans-
formation parameters or the transformed image 
while the discriminator classifies between aligned 
and unaligned image sets. Deep learning methods 
have been applied for various multi-modality 
image registration tasks, such as unsupervised 
affine and deformable image registration of CTs 
and MRIs [63–65]. These methods have shown to 
be significantly faster than conventional image 
registration methods.

5.2.8.4  Image Synthesis
Deep learning networks have also shown their ben-
efit in cross-modality image synthesis where the 
desired image modality is either expensive or infea-
sible to acquire. For this, CNNs are used to convert 
an image acquired with one modality into an image 
of another. The pooling layer is usually absent in 
CNNs used for image synthesis, with down-sam-
pling occurring through convolutions. GANs in par-
ticular have shown great promise in the field of 
synthetic image generation producing realistic 
images in supervised and unsupervised cross-
modality settings. GANs have been used to gener-
ate cross-modality medical images between MR, 
CT, and PET. While the majority of studies have 
been focused on generating synthetic images of the 
brain (MR → CT [66]; CT → MR [67]; MR → PET 
[68], PET  →  MR [69]), image synthesis using 
GANs has also been applied to musculoskeletal 
(MR →  CT [70]), heart (MR →  CT [71]), liver 
(CT → [72]), and lung (CT → MR [73]) images.

In image synthesis tasks, image quality is tra-
ditionally assessed by calculating the mean abso-
lute error (MAE), mean squared error (MSE), 
(peak) signal to noise ratio ((P)SNR), or the 
structural similarity (SSIM) index between 
 generated and ground truth reference image. 
While MAE, MSE, and (P)SNR assess pixel-
wise intensity differences, SSIM additionally 
measures contrast and structural differences 
between the synthetic and reference image [20].
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5.2.9  Federated Learning

An emerging method for ML training is called 
“federated learning.” Federated learning ties 
computers across multiple sites, even internation-
ally, and enables distributed learning [74, 75]. 
This allows individual centers learn a “local” 
model weights using their data, which is then 
sent to central locations that can then create a 
“global” model based on local inputs. The advan-
tage of this is that data can remain within a cen-
ter, which is a consideration to ensure patient 
privacy by reducing the amount of identifiable 
data. This also leverages the ability of varied 
patient groups, datasets, and computational capa-
bilities to provide a more general model than can 
be achieved within a single center. Researchers 
are actively exploring use of federated learning 
with homomorphic encryption [76], which can 
enable distributed learning while maintaining 
complete privacy [74, 77–79].

As ML becomes increasingly prevalent in 
medicine and in other aspects of our lives, it may 
be that we will eventually possess models and 
weights based on global datasets and trained 
from federated learning projects on our phones—
if our phones are not participating in these 
projects!

References

 1. Haralick RM, Dinstein I, Shanmugam K.  Textural 
features for image classification. IEEE Trans Syst 
Man Cybern. 1973;SMC-3:610–21. https://doi.
org/10.1109/TSMC.1973.4309314.

 2. Jain AK, Farrokhnia F.  Unsupervised texture seg-
mentation using Gabor filters. In: 1990 IEEE inter-
national conference on systems, man and cybernetics 
conference and proceedings. IEEE, 1990. https://doi.
org/10.1016/0031- 3203(91)90143- S.

 3. Khotanzad A, Chen J-Y. Unsupervised segmentation 
of textured images by edge detection in multidimen-
sional feature. IEEE Trans Pattern Anal Mach Intell. 
1989;11:414–21. https://doi.org/10.1109/34.19038.

 4. Lawrence S, Giles CL, Tsoi AC, Back AD. Face rec-
ognition: a convolutional neural-network approach. 
IEEE Trans Neural Netw. 1997;8:98–113. https://doi.
org/10.1109/72.554195.

 5. LeCun Y, Boser BE, Denker JS, Henderson D, 
Howard RE, Hubbard WE, Jackel LD.  Handwritten 

digit recognition with a back-propagation network. 
Adv Neural Inf Proces Syst. 1990;2:396–404.

 6. Milletari F, Navab N, Ahmadi SA. V-net: fully con-
volutional neural networks for volumetric medical 
image segmentation. In: Proceedings of the 4th inter-
national conference on 3D vision, 3DV 2016, 2016, 
p. 565–71. https://doi.org/10.1109/3DV.2016.79.

 7. Ronneberger O, Fischer P, Brox T.  U-net: convolu-
tional networks for biomedical image segmentation. 
arXiv Prepr. arXiv1505.04597v1, 2015, p. 1–8.

 8. Girshick R, Donahue J, Darrell T, Malik J. Rich fea-
ture hierarchies for accurate object detection and 
semantic segmentation. In: Proceedings of the IEEE 
computer society conference on computer vision 
and pattern recognition, 2014, p.  580–7. https://doi.
org/10.1109/CVPR.2014.81.

 9. Horvitz E, Apacible J. Learning and reasoning about 
interruption. In: Proceedings of the 5th international 
conference on multimodal interfaces, 2003, p. 20–7. 
https://doi.org/10.1145/958432.958440.

 10. Arlot S, Celisse A. A survey of cross-validation pro-
cedures for model selection. Stat Surv. 2010;4:40–79. 
https://doi.org/10.1214/09- SS054.

 11. Montgomery DC, Peck EA, Vining GG. Introduction 
to linear regression analysis. 5th ed. Boca Raton: 
Wiley; 2012.

 12. Goodfellow I, Bengio Y, Courville A. Deep learning. 
Cambridge: MIT Press; 2016.

 13. Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities 
improve neural network acoustic models. In: ICML 
workshop on deep learning for audio, speech and lan-
guage processing, 2013.

 14. Botchkarev A. Performance metrics (error measures) 
in machine learning regression, forecasting and prog-
nostics: properties and typology. arXiv Prepr. arXiv 
1809.03006, 2018. p. 1–37.

 15. Hossin M, Sulaiman MN.  A review on evaluation 
metrics for data classification evaluations. Int J Data 
Min Knowl Manag Process. 2015;5:1–11. https://doi.
org/10.5121/ijdkp.2015.5201.

 16. Janocha K, Czarnecki WM.  On loss functions for 
deep neural networks in classification. arXiv Prepr. 
arXiv 1702.05659, 2017. https://doi.org/10.4467/208
38476SI.16.004.6185.

 17. Bishop CM. Neural networks for pattern recognition. 
Oxford: Oxford University Press; 1995.

 18. Reed R, MarksII RJ.  Neural smithing: supervised 
learning in feedforward artificial neural networks. 
Cambridge: MIT Press; 1999.

 19. Heusel M, Ramsauer H, Unterthiner T, Nessler B, 
Hochreiter S.  GANs trained by a two time-scale 
update rule converge to a local Nash equilibrium. In: 
Advances in neural information processing systems, 
2017, p. 6627–38.

 20. Horé A, Ziou D.  Image quality metrics: PSNR vs. 
SSIM.  In: Proceedings of the 20th international 
conference on pattern recognition, 2010, p. 2366–9. 
https://doi.org/10.1109/ICPR.2010.579.

 21. Johnson J, Alahi A, Fei-Fei L. Perceptual losses for 
style transfer and super-resolution. In: European con-

5 The Basic Principles of Machine Learning

https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1016/0031-3203(91)90143-S
https://doi.org/10.1016/0031-3203(91)90143-S
https://doi.org/10.1109/34.19038
https://doi.org/10.1109/72.554195
https://doi.org/10.1109/72.554195
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1145/958432.958440
https://doi.org/10.1214/09-SS054
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.4467/20838476SI.16.004.6185
https://doi.org/10.4467/20838476SI.16.004.6185
https://doi.org/10.1109/ICPR.2010.579


78

ference on computer vision, 2016, p. 694–711. https://
doi.org/10.1007/978- 3- 319- 46475- 6_43.

 22. Isola P, Zhu JY, Zhou T, Efros AA.  Image-to-image 
translation with conditional adversarial networks. In: 
Proceedings of the 30th IEEE conference on computer 
vision and pattern recognition, CVPR 2017, 2017, 
p. 5967–76. https://doi.org/10.1109/CVPR.2017.632.

 23. Maximo A, Bhushan C. Conditional adversarial net-
work for segmentation with simple loss function. 
In: Proceedings of the 27th annual meet. ISMRM, 
Montreal, Canada, vol. 4737, 2019.

 24. Shrestha A, Mahmood A.  Review of deep learn-
ing algorithms and architectures. IEEE Access. 
2019;7:53040–65. https://doi.org/10.1109/
ACCESS.2019.2912200.

 25. Sun S, Cao Z, Zhu H, Zhao J.  A survey of optimi-
zation methods from a machine learning perspective. 
IEEE Trans Cybern. 2020;50:3668–81. https://doi.
org/10.1109/tcyb.2019.2950779.

 26. Törn A, Zilinskas A.  Global optimization. 
Berlin: Springer-Verlag; 1989. https://doi.
org/10.1007/3- 540- 50871- 6.

 27. Heath MT.  Scientific computing: an introductory 
survey, revised. 2nd ed. Philadelphia: Society for 
Industrial and Applied Mathematics; 2018.

 28. Horst R, Pardalos PM.  Handbook of global opti-
mization. Boston: Springer; 1995. https://doi.
org/10.1007/978- 1- 4615- 2025- 2.

 29. Nocedal J, Wright SJ.  Numerical optimization, 
springer series in operations research and financial 
engineering. New  York: Springer; 2006. https://doi.
org/10.1007/978- 0- 387- 40065- 5.

 30. Cauchy A-L. Méthode générale pour la résolution des 
systèmes d’équations simultanées. C R Hebd Seances 
Acad Sci. 1847;25:536–8.

 31. Le QV, Ngiam J, Coates A, Lahiri A, Prochnow B, Ng 
AY. On optimization methods for deep learning. In: 
Proceedings of the 28th international conference on 
machine learning, 2011, p. 129–32.

 32. Behera L, Kumar S, Patnaik A. On adaptive learning 
rate that guarantees convergence in feedforward net-
works. IEEE Trans Neural Netw. 2006;17:1116–25. 
https://doi.org/10.1109/TNN.2006.878121.

 33. Yu C-C, Liu B-D.  A backpropagation algorithm 
with adaptive learning rate and momentum coeffi-
cient. In: Proceedings of the 2002 international joint 
conference on neural networks, IJCNN’02 (Cat. 
No.02CH37290). IEEE, 2002, p.  1218–23. https://
doi.org/10.1109/IJCNN.2002.1007668.

 34. Kingma DP, Ba JL.  Adam: a method for stochastic 
optimization. In: 3rd international conference on 
learning representations (ICLR), San Diego, USA, 
2015, p. 1–15.

 35. Luo Z-Q. On the convergence of the LMS algorithm 
with adaptive learning rate for linear feedforward net-
works. Neural Comput. 1991;3:226–45. https://doi.
org/10.1162/neco.1991.3.2.226.

 36. Bottou L. Online learning and stochastic approxima-
tions. On-line Learn Neural Netw. 1998;17.

 37. Sra S, Nowozin S, Wright SJ, editors. Optimization 
for machine learning. Cambridge: MIT Press; 2011.

 38. Duda RO, Hart PE.  Pattern classification and scene 
analysis. 1st ed. Boca Raton: Wiley; 1973.

 39. Gonzalez RC, Woods RE, Eddins SL. Digital image 
processing using MATLAB. 3rd ed. Upper Saddle 
River: Pearson Prentice Hall; 2020.

 40. Shapiro L. Computer vision and image processing. 1st 
ed. Boston: Academic Press; 1992.

 41. Nagi J, Ducatelle F, Di Caro GA, Cireşan D, Meier 
U, Giusti A, Nagi F, Schmidhuber J, Gambardella 
LM. Max-pooling convolutional neural networks for 
vision-based hand gesture recognition. In: 2011 IEEE 
international conference on signal and image process-
ing applications, ICSIPA, 2011, p. 342–7. https://doi.
org/10.1109/ICSIPA.2011.6144164.

 42. Boureau Y-L, Ponce J, LeCun Y. A theoretical anal-
ysis of feature pooling in visual recognition. In: 
Proceedings of the 27th international conference on 
machine learning, Haifa, Israel, 2010.

 43. Guo T, Dong J, Li H, Gao Y.  Simple convolutional 
neural network on image classification. In: IEEE 
2nd international conference on big data analy-
sis, 2017, p.  721–724. https://doi.org/10.1109/
ICBDA.2017.8078730.

 44. Emmert-Streib F, Yang Z, Feng H, Tripathi S, Dehmer 
M. An introductory review of deep learning for predic-
tion models with big data. Front Artif Intell. 2020;3:1–
23. https://doi.org/10.3389/frai.2020.00004.

 45. Vincent P, Larochelle H, Bengio Y, Manzagol 
P-A. Extracting and composing robust features with 
denoising autoencoders. In: Proceedings of the 25th 
international conference on machine learning, ACM, 
2008, p. 1096–103.

 46. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol 
PA. Stacked denoising autoencoders: learning useful 
representations in a deep network with a local denois-
ing criterion. J Mach Learn Res. 2010;11:3371–408.

 47. An J, Cho S. Variational autoencoder based anomaly 
detection using reconstruction probability. Spec Lect 
IE. 2015;2(1):1–18.

 48. Bhushan C, Yang Z, Virani N, Iyer N.  Variational 
encoder-based reliable classification. In: IEEE inter-
national conference on image process; 2020.

 49. He K, Zhang X, Ren S, Sun J.  Deep residual 
learning for image recognition. arXiv Prepr. 
arXiv1512.03385v1, 2015, p.  1–17. https://doi.
org/10.1007/s11042- 017- 4440- 4.

 50. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu 
B, Warde-Farley D, Ozair S, Courville A, Bengio 
Y.  Generative adversarial networks. arXiv Prepr. 
arXiv1406.2661v1, 2014, p.  1–9. https://doi.
org/10.1001/jamainternmed.2016.8245.

 51. Salakhutdinov R, Hinton G.  Deep Boltzmann 
machines. J Mach Learn Res. 2009;5:448–55.

 52. Lee J-G, Jun S, Cho Y-W, Lee H, Kim GB, Seo JB, 
Kim N.  Deep learning in medical imaging: general 
overview. Korean J Radiol. 2017;18:570–84. https://
doi.org/10.3348/kjr.2017.18.4.570.

J. D. Kaggie et al.

https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1109/tcyb.2019.2950779
https://doi.org/10.1109/tcyb.2019.2950779
https://doi.org/10.1007/3-540-50871-6
https://doi.org/10.1007/3-540-50871-6
https://doi.org/10.1007/978-1-4615-2025-2
https://doi.org/10.1007/978-1-4615-2025-2
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1109/TNN.2006.878121
https://doi.org/10.1109/IJCNN.2002.1007668
https://doi.org/10.1109/IJCNN.2002.1007668
https://doi.org/10.1162/neco.1991.3.2.226
https://doi.org/10.1162/neco.1991.3.2.226
https://doi.org/10.1109/ICSIPA.2011.6144164
https://doi.org/10.1109/ICSIPA.2011.6144164
https://doi.org/10.1109/ICBDA.2017.8078730
https://doi.org/10.1109/ICBDA.2017.8078730
https://doi.org/10.3389/frai.2020.00004
https://doi.org/10.1007/s11042-017-4440-4
https://doi.org/10.1007/s11042-017-4440-4
https://doi.org/10.1001/jamainternmed.2016.8245
https://doi.org/10.1001/jamainternmed.2016.8245
https://doi.org/10.3348/kjr.2017.18.4.570
https://doi.org/10.3348/kjr.2017.18.4.570


79

 53. Schlegl T, Seeböck P, Waldstein SM, Langs G, 
Schmidt-Erfurth U.  F-AnoGAN: fast unsupervised 
anomaly detection with generative adversarial net-
works. Med Image Anal. 2019;54:30–44. https://doi.
org/10.1016/j.media.2019.01.010.

 54. Bermudez C, Plassard AJ, Davis LT, Newton AT, 
Resnick SM, Landman BA.  Learning implicit brain 
MRI manifolds with deep learning. In: Proceedings of 
SPIE 10574, medical imaging 2018 image processing, 
vol. 56, 2018. https://doi.org/10.1117/12.2293515.

 55. Küstner T, Liebgott A, Mauch L, Martirosian P, 
Bamberg F, Nikolaou K, Yang B, Schick F, Gatidis 
S.  Automated reference-free detection of motion 
artifacts in magnetic resonance images. Magn Reson 
Mater Phys Biol Med. 2018;31:243–56. https://doi.
org/10.1007/s10334- 017- 0650- z.

 56. Dice LR. Measures of the amount of ecologic asso-
ciation between species. Ecology. 1945;26:297–302. 
https://doi.org/10.2307/1932409.

 57. Sørensen TJ.  A method of establishing groups of 
equal amplitude in plant sociology based on similarity 
of species and its application to analyses of the veg-
etation on Danish commons. Biol Skr. 1948;5:1–34.

 58. Jaccard P.  Distribution de la Flore Alpine dans le 
Bassin des Dranses et dans quelques régions voisines. 
Bull la Société vaudoise des Sci Nat. 1901;37:241–
72. https://doi.org/10.5169/seals- 266440.

 59. Wang G, Li W, Ourselin S, Vercauteren T. Automatic 
brain tumor segmentation using cascaded anisotropic 
convolutional neural networks. In: Lecture notes in 
computer science (including subseries lecture notes 
in artificial intelligence. Lecture notes in bioinfor-
matics) 10670 LNCS, 2018¸ p.  178–90. https://doi.
org/10.1007/978- 3- 319- 75238- 9_16.

 60. Zhou C, Ding C, Wang X, Lu Z, Tao D.  One-pass 
multi-task networks with cross-task guided attention 
for brain tumor segmentation. IEEE Trans Image 
Process. 2020;29:4516–29. https://doi.org/10.1109/
TIP.2020.2973510.

 61. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, 
Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, 
Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel 
T, Avants BB, Ayache N, Buendia P, Collins DL, 
Cordier N, Corso JJ, Criminisi A, Das T, Delingette 
H, Demiralp Ç, Durst CR, Dojat M, Doyle S, Festa 
J, Forbes F, Geremia E, Glocker B, Golland P, Guo 
X, Hamamci A, Iftekharuddin KM, Jena R, John 
NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, 
Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, 
Ryan M, Sarikaya D, Schwartz L, Shin HC, Shotton 
J, Silva CA, Sousa N, Subbanna NK, Szekely G, 
Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur 
F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, 
Prastawa M, Reyes M, Van Leemput K.  The multi-
modal brain tumor image segmentation benchmark 
(BRATS). IEEE Trans Med Imaging. 2015;34:1993–
2024. https://doi.org/10.1109/TMI.2014.2377694.

 62. Zhao X, Li L, Lu W, Tan S. Tumor co-segmentation in 
PET/CT using multi-tumor co-segmentation in PET/
CT using multi-modality fully convolutional neural 

network. Phys Med Biol. 2019;64:015011, 15pp. 
https://doi.org/10.1088/1361- 6560/aaf44b.

 63. Balakrishnan G, Zhao A, Sabuncu MR, Dalca AV, 
Guttag J. An unsupervised learning model for deform-
able medical image registration. In: 2018 IEEE/CVF 
conference on computer vision on pattern recog-
nition, 2018, p.  9252–60. https://doi.org/10.1109/
CVPR.2018.00964.

 64. de Vos BD, Berendsen FF, Viergever MA, Sokooti H, 
Staring M, Išgum I. A deep learning framework for 
unsupervised affine and deformable image registra-
tion. Med Image Anal. 2019;52:128–43. https://doi.
org/10.1016/j.media.2018.11.010.

 65. Shan S, Yan W, Guo X, Chang EI-C, Fan Y, Xu 
Y.  Unsupervised end-to-end learning for deform-
able medical image registration. arXiv Prepr. arXiv 
1711.08608v2, 2018, p. 1–12.

 66. Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst 
CK.  Generating synthetic CTs from magnetic reso-
nance images using generative adversarial networks. 
Med Phys. 2018;45:3627–36. https://doi.org/10.1002/
mp.13047.

 67. Jin CB, Kim H, Liu M, Jung W, Joo S, Park E, Ahn 
YS, Han IH, Lee JI, Cui X. Deep CT to MR synthesis 
using paired and unpaired data. Sensors (Switzerland). 
2019;19:1–19. https://doi.org/10.3390/s19102361.

 68. Pan Y, Liu M, Lian C, Zhou T, Xia Y, Shen 
D. Synthesizing missing PET from MRI with cycle- 
consistent generative adversarial networks for 
Alzheimer’s disease diagnosis. In: Frangi A, Schnabel 
J, Davatzikos C, Alberola-López C, Fichtinger G, edi-
tors. Medical image computing and computer assisted 
intervention – MICCAI 2018. Lecture notes in com-
puter science, vol. 11072, 2018, p. 595–602. https://
doi.org/10.1007/978- 3- 030- 00931- 1_52.

 69. Choi H, Lee DS. Generation of structural MR images 
from amyloid PET: application to MR-less quanti-
fication. J Nucl Med. 2018;59:1111–7. https://doi.
org/10.2967/jnumed.117.199414.

 70. Hiasa Y, Otake Y, Takao M, Matsuoka T, Takashima 
K, Carass A, Prince JL, Sugano N, Sato Y.  Cross- 
modality image synthesis from unpaired data using 
CycleGAN. In: Simulation and synthesis in medical 
imaging, SASHIMI 2018. Lecture notes in computer 
science, vol. 11037 LNCS, 2018, p.  31–41. https://
doi.org/10.1007/978- 3- 030- 00536- 8_4.

 71. Chartsias A, Joyce T, Dharmakumar R, Tsaftaris 
SA. Adversarial image synthesis for unpaired multi- 
modal CardiacData. In: Simulation and synthesis in 
medical imaging, SASHIMI 2017. Lecture notes in 
computer science, vol. 10557 LNCS, 2017. https://
doi.org/10.1007/978- 3- 319- 68127- 6_1.

 72. Ben-Cohen A, Klang E, Raskin SP, Soffer S, Ben- 
Haim S, Konen E, Amitai MM, Greenspan H. Cross- 
modality synthesis from CT to PET using FCN and 
GAN networks for improved automated lesion detec-
tion. Eng Appl Artif Intell. 2019;78:186–94. https://
doi.org/10.1016/j.engappai.2018.11.013.

 73. Jiang J, Hu Y-C, Tyagi N, Zhang P, Rimner A, 
Mageras GS, Deasy JO, Veeraraghavan H.  Tumor- 

5 The Basic Principles of Machine Learning

https://doi.org/10.1016/j.media.2019.01.010
https://doi.org/10.1016/j.media.2019.01.010
https://doi.org/10.1117/12.2293515
https://doi.org/10.1007/s10334-017-0650-z
https://doi.org/10.1007/s10334-017-0650-z
https://doi.org/10.2307/1932409
https://doi.org/10.5169/seals-266440
https://doi.org/10.1007/978-3-319-75238-9_16
https://doi.org/10.1007/978-3-319-75238-9_16
https://doi.org/10.1109/TIP.2020.2973510
https://doi.org/10.1109/TIP.2020.2973510
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1088/1361-6560/aaf44b
https://doi.org/10.1109/CVPR.2018.00964
https://doi.org/10.1109/CVPR.2018.00964
https://doi.org/10.1016/j.media.2018.11.010
https://doi.org/10.1016/j.media.2018.11.010
https://doi.org/10.1002/mp.13047
https://doi.org/10.1002/mp.13047
https://doi.org/10.3390/s19102361
https://doi.org/10.1007/978-3-030-00931-1_52
https://doi.org/10.1007/978-3-030-00931-1_52
https://doi.org/10.2967/jnumed.117.199414
https://doi.org/10.2967/jnumed.117.199414
https://doi.org/10.1007/978-3-030-00536-8_4
https://doi.org/10.1007/978-3-030-00536-8_4
https://doi.org/10.1007/978-3-319-68127-6_1
https://doi.org/10.1007/978-3-319-68127-6_1
https://doi.org/10.1016/j.engappai.2018.11.013
https://doi.org/10.1016/j.engappai.2018.11.013


80

aware, adversarial domain adaptation from CT to MRI 
for lung cancer segmentation. In: Frangi A, Schnabel 
J, Davatzikos C, Alberola-López C, Fichtinger G, edi-
tors. Medical image computing and computer assisted 
intervention – MICCAI 2018. Lecture notes in com-
puter science, vol. 11071 LNCS, 2018. https://doi.
org/10.1007/978- 3- 030- 00934- 2_86.

 74. Li T, Sahu AK, Talwalkar A, Smith V.  Federated 
learning: challenges, methods, and future directions. 
IEEE Signal Process Mag. 2020;37:50–60. https://
doi.org/10.1109/MSP.2020.2975749.

 75. Yang Q, Liu Y, Chen T, Tong Y. Federated machine 
learning: concept and applications. ACM Trans 
Intell Syst Technol. 2019;10:1–19. https://doi.
org/10.1145/3298981.

 76. Gentry C, Boneh D.  A fully homomorphic encryp-
tion scheme. Ph.D. Diss., Stanford University, 2009. 
https://doi.org/10.5555/18349540.

 77. Cheng K, Fan T, Jin Y, Liu Y, Chen T, Yang 
Q. SecureBoost: a lossless federated learning frame-
work. arXiv Prepr. arXiv 1901.08755v1; 2019.

 78. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis 
M, Bhagoji AN, Bonawitz K, Charles Z, Cormode 
G, Cummings R, D’Oliveira RGL, El Rouayheb S, 
Evans D, Gardner J, Garrett Z, Gascón A, Ghazi B, 
Gibbons PB, Gruteser M, Harchaoui Z, He C, He L, 
Huo Z, Hutchinson B, Hsu J, Jaggi M, Javidi T, Joshi 
G, Khodak M, Konečný J, Korolova A, Koushanfar F, 
Koyejo S, Lepoint T, Liu Y, Mittal P, Mohri M, Nock 
R, Özgür A, Pagh R, Raykova M, Qi H, Ramage D, 
Raskar R, Song D, Song W, Stich SU, Sun Z, Suresh 
AT, Tramèr F, Vepakomma P, Wang J, Xiong L, Xu 
Z, Yang Q, Yu FX, Yu H, Zhao S. Advances and open 
problems in federated learning. arXiv Prepr. arXiv 
1912.04977v1, 2019, p. 1–105.

 79. Xu G, Li H, Liu S, Yang K, Lin X.  VerifyNet: 
secure and verifiable federated learning. IEEE Trans 
Inf Forensics Secur. 2020;15:911–26. https://doi.
org/10.1109/TIFS.2019.2929409.

J. D. Kaggie et al.

https://doi.org/10.1007/978-3-030-00934-2_86
https://doi.org/10.1007/978-3-030-00934-2_86
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1145/3298981
https://doi.org/10.1145/3298981
https://doi.org/10.5555/18349540
https://doi.org/10.1109/TIFS.2019.2929409
https://doi.org/10.1109/TIFS.2019.2929409


Part II

Clinical Applications



83© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
P. Veit-Haibach, K. Herrmann (eds.), Artificial Intelligence/Machine Learning in Nuclear Medicine 
and Hybrid Imaging, https://doi.org/10.1007/978-3-031-00119-2_6

6Imaging Biomarkers and Their 
Meaning for Molecular Imaging

Angel Alberich-Bayarri, Ana Jiménez-Pastor, 
and Irene Mayorga-Ruiz

Contents
6.1  Introduction   83

6.2  Imaging Biomarkers, Paradigm Shift in Medical Imaging   84

6.3  Imaging Biomarkers in Hybrid Molecular Imaging   85

 References   86

6.1  Introduction

The famous quote from Lord Kelvin “When you 
can measure what you are speaking about, and 
express it in numbers, you know something about 
it, when you cannot express it in numbers, your 
knowledge is of a meager and unsatisfactory kind; 
it may be the beginning of knowledge, but you 
have scarely, in your thoughts advanced to the 
stage of science” is a really inspiring statement for 
the explanation of the imaging biomarker con-
cept. Imaging biomarkers can be defined as char-
acteristics extracted from the images of an 
individual that can be objectively measured and 
act as indicators of a normal biological process, a 
disease, or a response to a therapeutic interven-
tion. Biomarkers have been shown to be useful as 

a complement to the traditional radiological diag-
nosis to detect a specific disorder or lesion, quan-
tify its biological situation, evaluate its 
progression, stratify phenotypic abnormalities, 
and assess the treatment response [1–6].

Despite the evolution of image processing 
platforms and image quantification solutions to 
cover unmet clinical needs, their application in 
daily practice is still work in progress in many 
aspects. In the field of radiology, a wide variety 
of algorithms for neuroimaging to be applied to 
magnetic resonance imaging (MRI) have been 
developed as well as other solutions for comput-
erized tomography (CT), some of them based on 
artificial intelligence pipelines, such as lung nod-
ule detection and characterization. Although not 
being an absolute but a relative quantification, in 
molecular imaging, the concept of imaging bio-
marker has been present since the use of stan-
dardized uptake value (SUV). Furthermore, 
workstations and other solutions have been 
mainly addressed to provide quantitative analysis 
tools in a patient-specific basis, but not to store 
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quantitative data in databases for the posterior 
data mining and scientific research in imaging 
biomarkers. As an example, although the tech-
nology is already there [1], today pipelines, like 
automatically detect the lesions in lymphoma, 
extract their SUV values as well as their meta-
bolic tumor volume (MTV) and store in a struc-
tured report in the PACS are still not available.

In this chapter, we introduce the concept of 
imaging biomarker and explain the main charac-
teristics of the development process and valida-
tion to finally detail how the process can be 
applied in hybrid modalities where it is highly 
relevant to combine the spatial information with 
the functional one.

6.2  Imaging Biomarkers, 
Paradigm Shift in Medical 
Imaging

Imaging biomarkers allow to measure subtle tis-
sue changes, either at a structural or at a function 
level [7]. They are the main enabler of quantita-
tive imaging and the key for the paradigm shift in 
medical imaging. They can be classified in differ-
ent types depending on their main application 
across different clinical scenarios. Imaging bio-
markers can be used to extract patient pheno-
types, either independently or together with other 
clinical or genomic variables. The main applica-
tions of imaging biomarkers are:

• Detection imaging biomarkers: use as a tool to 
find high levels of a specific measure in a tis-
sue or organ that can indicate the presence of 
a disease.

• Diagnostic imaging biomarkers: use as a tool 
for the identification of the specific disease 
suffered by the patient.

• Staging imaging biomarkers: use as a tool for 
grading of the disease severity or extent.

• Predictive/prognostic imaging biomarkers: 
use as a tool to forecast the progression of the 
disease and its potential relapse.

• Follow-up imaging biomarkers: use as a tool 
for monitoring treatment response and disease 
progression in the patient.

The most supported process for the develop-
ment of imaging biomarkers, converting a clini-
cal idea or need into clinical value is described in 
[2] and also proposed in [4], which is divided into 
different steps (Fig. 6.1).

The first step is the proof of concept, which is 
usually a small test to solve an unmet clinical 
need of a specific pathology that can be evaluated 
with current image acquisition modalities and 
image processing techniques. The proof of mech-
anism establishes a link (in magnitude and direc-
tion) between the parameter under study and the 
existence, staging, and evolution of the disease. 
Thereafter, a design on the most appropriate 
image acquisition protocol to ensure appropriate 
image quality is performed; the images needed to 

Idea

Value

Proof of concept Proof of mechanism Image acquisition Image processing

Structured reportProof of efficacy &
effectiveness

Proof of principleMeasurements

Image analysis

Fig. 6.1 Stepwise development of imaging biomarkers to 
convert a clinical idea into value for clinical practice. The 
AI section refers to the components that can be improved 

with the use of convolutional neural networks (CNN), 
image processing, and image analysis steps
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extract the biomarker must be technically ade-
quate (signal-to-noise ratio, spatial resolution, 
contrast-to-noise ratio, uniformity, among oth-
ers). The following preprocessing step aims to 
improve the image quality before the analysis 
(with techniques such as filtering, interpolation, 
registration, movement correction, and segmen-
tation). Segmentation is one of the processes that 
has been significantly improved with the use of 
artificial intelligence approaches such as the 
application of convolutional neural networks 
(CNN). The development of network architec-
tures such as U-Net has permitted the segmenta-
tion of organs and structures clearly outperforming 
traditional computer vision algorithms [8]. The 
analysis and modeling of the signal is the process 
by which the quantitative or objective informa-
tion is extracted from the images. This informa-
tion can represent structural or functional 
properties of the tissue. Those imaging biomark-
ers that can be calculated voxel-wise allow for 
the representation of the spatial distribution in 
parametric maps, defined as derived images (sec-
ondary) in which the value of a specific parame-
ter is placed as the pixel value. In general, 
imaging biomarkers have specific measurement 
units; however, due to the nature of the calcula-
tion process, some parameters may be measured 
in arbitrary units (a.u.). This is the case of 
radiomics features or parameters such as the frac-
tal dimension. An additional layer of multi- 
variate post-processing applied to the imaging 
biomarkers allows for the combination of the 
most relevant features into indicators represent-
ing disease status that can be plotted in new para-
metric images called nosological maps. 
Measurements of imaging biomarkers in specific 
lesions or tissues must be optimized to the physi-
ological phenomena under study. A clear exam-
ple is the conventional approach in the 
measurements of SUV, consisting of the extrac-
tion of the maximum value (SUVmax) of the 
region (instead of average, median, or other his-
togram descriptors). Automation and AI can 
allow for the seamless extraction of a wide vari-
ety of measurements for a specific imaging bio-
marker beyond the conventional ones. An 
exploratory example in molecular imaging that is 

demonstrating an important evidence with the 
outcome in lymphoma patients consists of the 
extraction of metabolic heterogeneity from 
lesions, beyond the maximum values of SUV, 
that is, the current standard of care [9]. Finally, 
after the technical process for the extraction and 
measurement of the imaging biomarker is clear, a 
pilot test in the way of a Proof of Principle must 
be performed in a controlled cohort of subjects to 
evaluate potential biases related to sex, age, or 
others. This also serves as a preliminary valida-
tion of the method. Comprehensive proofs of effi-
cacy and effectiveness on external, larger, and 
well-characterized series of subjects will show 
the ability of a biomarker to really measure (even 
if it is in a surrogate manner) the clinical 
endpoint.

6.3  Imaging Biomarkers 
in Hybrid Molecular Imaging

The imaging biomarkers that can be extracted in 
molecular imaging are related to the imaging 
modalities used in the examination. Generally 
speaking, the imaging biomarkers that can be 
extracted from the molecular imaging compo-
nents of the modality (see Table 6.1, considering 
only those ones based on PET) are the standard-
ized uptake value (SUV), related to the metabolic 
activity, the metabolic tumor volume (MTV), 
which is related to the size of the metabolic 
region within the lesion, the total lesion glycoly-
sis (TLG), derived from the multiplication of the 
MTV by the average metabolic activity, the 
delta-, which calculates the difference in a given 
imaging biomarker between two specific time-
points in the longitudinal course of the disease. 
Finally, lesion heterogeneity can be characterized 
both in the anatomical-structural component of 
the modality, that is, the CT or the MR images, 
and in the PET component. For the structural or 
metabolic heterogeneity estimation of lesion, dif-
ferent textural (radiomics) features can be 
extracted by the use of standard first-order histo-
gram analysis or more advanced second-order 
techniques: gray level co-occurrence matrix 
(GLCLM), gray level run-length matrix 
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(GLRLM), gray level size zone matrix (GLSZM), 
gray level dependence matrix (GLDM), neigh-
boring gray tone difference matrix (NGTDM), 
among others. In total, thousands of descriptors 
can be obtained, expressing the heterogeneity of 
a single lesion. Furthermore, these features can 
be obtained from either a 2D or 3D analysis.
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Objective Modality Imaging biomarker Units
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Tumoral burden PET/CT & PET/MR Metabolic tumor volume (MTV) mL
Tumoral burden + metabolic 
activity

PET/CT & PET/MR Total lesion glycolysis (TLG) g

Change in metabolic activity PET/CT & PET/MR Delta-SUV (ΔSUV), averaged or 
voxel-wise

a.u.

Lesion heterogeneity CT, MR, PET/CT, & PET/
MR

Textures—radiomics a.u.
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7.1  Introduction

Assimilation of AI into clinical practice heralds 
an exciting era with the reimagining of precision 
nuclear medicine and molecular imaging capa-
bilities. AI has a long history in nuclear medicine 
and molecular imaging, although perhaps not 
using that language. Consider the use of auto-
mated region of interest production for genera-

tion of circumferential profiles and risk scores 
associated with 201-Thallium chloride planar 
myocardial perfusion scans or the auto contour-
ing and production of functional parameters and 
phase/paradox images for gated blood pool scans. 
This rudimentary form of AI using expert sys-
tems or knowledge graphs might also be obvious 
in bone mineral density contouring, regions and 
fracture risk scoring. The emergence of quantita-
tive software and polar maps for single photon 
emission computed tomography (SPECT) myo-
cardial perfusions studies is a more advanced 
example of AI via expert systems. There are early 
examples of ML in nuclear medicine also. ML 
involves learning from large amounts of data that 

G. Currie (*) · E. Rohren 
School of Dentistry and Medical Sciences, Charles 
Sturt University, Wagga Wagga, NSW, Australia 

Baylor College of Medicine, Houston, TX, USA
e-mail: gcurrie@csu.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00119-2_7&domain=pdf
https://doi.org/10.1007/978-3-031-00119-2_7
mailto:gcurrie@csu.edu.au


88

perform a task without explicit instruction; the 
artificial neural network (ANN) being the main 
platform to do so. An early example was the 
application of a 15 node ANN in 1993 evaluating 
28 input features in ventilation perfusion lung 
scans against experienced physicians [1]. In 
molecular imaging, feature extraction, and 
radiomic feature extraction can be integrated into 
ML and DL algorithms based on big data to 
enhance precision nuclear medicine but this 
requires clinically validated models (Fig. 7.1). In 
visual or image-based DL, the convolutional neu-
ral network (CNN) is designed for and tasked 
with four basic operations: classification/object 
recognition, classification/localization, object 
detection, and instance segmentation (Fig. 7.2).

The role of AI in the general community, medi-
cine broadly, and specifically in molecular imag-
ing sparks considerable debate. Anecdotally, 
molecular imaging folk sit in one of several AI 
camps. There are those that believe AI will dis-
place human resources producing professional 
anarchy (dystopians) in contrast to those that think 

AI will improve our ability to perform our jobs, 
improve outcomes and free up time from menial 
tasks to provide better patient care (utopians). 
There are also optimists who think AI is exciting 
and may emerge to improve our systems (poised to 
be fast followers), pessimists who think AI is hype 
or a hoax designed to raise revenue (skeptics), and 
realists thinking AI is a crucial part of the land-
scape but also understand not everyone will be 
expert. In lower numbers there are also a few con-
spiracy theorists claiming AI is just another tool 
being used by the government to spy on or control 
us, those who worry about the emergence of AI 
and doubt their ability to assimilate into an AI aug-
mented world (metathesiophobics), and those that 
fear relinquishing control if AI diverts some per-
ceived power, control, or attention from those per-
forming amazing things without AI to those 
breaking new ground with AI (narcissists).

Much of the disconnection comes from a 
lack of understanding. AI is part of molecular 
imaging now and will be a growing part tomor-
row. Individuals need to upskill, not so they can 
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Fig. 7.1 Schematic representation of the semantic evalu-
ation of imaging data, addition of radiomic feature extrac-
tion and ANN analysis to produce small data and the 

potential to integrate with big data to enhance outcomes 
and drive precision nuclear medicine. (Reprinted with 
permission [2])
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conduct ML or DL research projects, but so they 
can implement developments and devise strat-
egy for clinical AI in an informed position. 
Careful consideration needs to be given to how 
AI will assimilate into mainstream clinical prac-
tice. Advanced planning needs invested stake-
holders who have ownership in the plan and 
technology. AI may see emergence of new roles, 
recrafting of some responsibilities and, poten-
tially, role redundancy. Organizational change 
management is critical to manage these possi-
bilities. This implementation needs to be done 
within an ethical and legal framework [3].  At 
the same time, improving the language used in 
this space may decrease misunderstanding and 
associated antagonism.  Recognizing AI is not 
new to nuclear medicine, being precise about 
using ML or DL instead of AI when appropriate, 
diverging from generalized use of term like AI 
in preference for greater precise and more 
meaningful terms when appropriate like “engi-
neered learning” or “intelligent imaging”, and 
recognizing that AI is neither artificial nor 
intelligent. 

7.2  Classification

Classification is an interesting problem to solve in 
molecular imaging. Suppose we have a simple 
situation where there are two features of interest. 
These are depicted in Fig. 7.3. For simplicity, the 

data is represented in a two-dimensional plot but 
obviously in molecular imaging the data is signifi-
cantly more dense and may be in four dimensions 
(three-dimensional space and time). Clear bound-
aries between data distribution is not always obvi-
ous. Support vector machines use vectors (purple 
arrows) to determine the line that best separates 
the known classifications. Consider this data the 
training set (blue and green circles) with grounded 
truth labels. If we introduced a new unclassified 
data point (yellow dot), then we classify it as a 
blue dot because it lies below the line. This 
approach may not work as well if the boundaries 
between classifications are not as obvious or lin-
ear; including linear regression approaches. 
Another approach is the K-nearest- neighbors 
where the K represents the number of nearest 
neighbors considered in the classification. As 
shown in Fig. 7.4, the purple circles are centered 
on the new unclassified data point. Using K = 1, 
the single nearest neighbor would see the new 
data point classified as blue. Using a K = 9, more 
data points are considered, random chance is 
averaged, and now the yellow dot would be clas-
sified as green (6 green and 3 blue in the purple 
nearest neighbor circle). Clustering methods 
adopt an iterative approach that begins with ran-
dom assignment of class to data points and deter-
mining the geometric center of each cluster. The 
second iteration applies a new classification based 
on position relative to the geometric center of the 
first iteration clusters, and uses the new points to 
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Fig. 7.2 Schematic representation of the difference between image recognition tasks in DL
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adjust the geometric centers of clusters. This iter-
ative process continues until the geometric cen-
ters of the clusters no longer change. New data 
points are then classified based on proximity to 
the final geometric centers of clusters. The artifi-
cial neural network approach is a nonlinear solu-
tion based on changes to weights on individual 
perceptrons to optimize the correct answers 
(Fig. 7.5). The training data defines the nonlinear 
demarcation between classifications which also 
highlights the value of larger training sets in pro-
viding more accurate classification differentiators 
(Fig.  7.6). The inferential phase would see new 
data points assigned classifications based on this.

7.3  Segmentation

Image segmentation is not a new application in 
molecular imaging. Segmentation is a method 
for partitioning one or more parts of an image 
from the other parts. We do this to simplify the 
image or to enhance the representation of parts 
of the image of most interest. During recon-
struction of myocardial perfusion SPECT or 
brain SPECT images, for example, the boundar-
ies of the area of interest are set and information 
outside that window are truncated out of the 
image. On a bone scan a region may be drawn 
(manually or automatically) around the bladder 

Fig. 7.3 Schematic representation of linear approaches to classification with the purple arrows representing the vector 
for separation and the new data point (yellow) being classified based on which side of the fit line it is located

Fig. 7.4 Schematic representation of nearest neighbor approaches to classification with the purple circles representing 
the number of neighbors included in the calculation for the new data point (yellow)
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to suppress the contribution of bladder counts to 
the image. Adjusting the windowing on a com-
puted tomography (CT) image from soft tissue 
to bone provides a means for segmenting parts 
of the image of interest. From a computing per-
spective, true segmentation is identifying every 

pixel in the image in a manner that all pixels 
segmented together have the same label identi-
fying that pixel. In nuclear medicine, CT and 
magnetic resonance imaging (MRI), segmenta-
tion can be used to enhance an object of interest 
in a complex scene. A very simple example of 
segmentation is the use of specific color scales 
for nuclear medicine images. The step 10 color 
palette for viewing SPECT reconstructions par-
titions every pixel in the image into one of ten 
labels, each corresponding to a specific color, 
and each sequentially representing 10% of the 
minimum to maximum count range. More com-
plex examples of segmentation include the co-
registration of positron emission tomography 
(PET) and CT images with a lesion of interest 
segmented from surrounding tissues both ana-
tomically (CT) and physiologically (PET). In 
CNN and DL, segmentation is critical for iden-
tification and characterization of target tissues, 
and radiomic feature extraction. On CT for 
example, the volume, size, shape, and texture of 
a lung tumor will change as the constraints that 
define the segmentation vary. Similarly, the 
standardized uptake value (SUV) will change as 
the constraints of the lesion  segmentation are 
altered. An important role of AI tools is to pro-
vide accurate and reproducible segmentation in 
an automated fashion.

Fig. 7.5 Schematic representation of nonlinear 
approaches to classification using neural analysis for sep-
aration and the new data point (yellow) being classified 

based on which side of the fit line it is located. The red 
dashed line represents the position of the fit line with over 
fitting

Fig. 7.6 Schematic representation of nonlinear 
approaches to classification using neural analysis for sep-
aration and the new data point (yellow) being classified 
based on which side of the fit line it is located. The red 
dashed line represents line determined in Fig. 7.4 while 
the solid red line is the position of the fit line with the 
addition of more data points
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There are many approaches to segmentation. 
Here several of the more common approaches 
encountered in molecular imaging segmentation 
are discussed. As already mentioned, threshold-
ing is a very simple way to segment an image. 
This might be windowing or truncating the count 
scale (color scale) on nuclear medicine images or 
switching between windows (bone/soft tissue) on 
CT. This is referred to as region-based segmenta-
tion or threshold segmentation and uses the indi-
vidual pixel values (numerical value that 
represents a color, count density, attenuation, or 
other value). Setting a specific threshold (or more 
than one threshold) allows segmentation of pixels 
based on their position relative to the threshold 
(above or below). Images that contain high con-
trast have differences between these values that 
can be exploited (Fig. 7.7). A global threshold is 
used to segment the image into two partitions; the 
object or structure of interest and background. 
Multiple local thresholds can be used to segment 
multiple objects of interest from background.

Edge detection segmentation is a convolu-
tional process. The image is segmented based on 
the edge between different parts of the image. 
These partitions or edges may represent a change 
in contrast, count density, or color. Discontinuity 
within an image identifies an edge (e.g., edge of 
myocardium and ventricular lumen or a tumor 
compared to surrounding tissue). Using a filter or 
kernel that enhances the edges of data on hori-

zontal planes (Fig. 7.8) combined with a similar 
kernel for the vertical plane allow contouring 
between objects.

Clustering methods are the same approach as 
outlined for classification. Clustering is an iterative 
approach that begins with random assignment of 
class to data points and determining the geometric 
center of each cluster. The second iteration applies 
a new classification based on position relative to 
the geometric center of the first iterations clusters, 
and uses the new points to adjust the geometric 
centers of clusters. This iterative process continues 
until the geometric centers of the clusters no longer 
changes. Data points are then classified based on 
proximity to the final geometric centers of clusters. 
Each cluster might be represented as a different 
gray scale or color, or some clusters may be elimi-
nated from the image (Fig. 7.9).

The last approach discussed here is the DL 
approach referred to as Mask R-CNN or instance 
segmentation. It is not the only DL approach and 
is used commonly in social media (origins in 
Facebook). The R represents region signifying 
object detection. The mask aspect differentiates 
this approach from other R-CNNs by adding in 
parallel a convolution branch that employs a 
region of interest. In essence, a small  convolutional 
network applied to each region of interest 
(Fig. 7.10). While threshold segmentation is fast 
and simple, there may be no significant boundary 
or, indeed, overlap between partitions. Edge 

Fig. 7.7 Schematic representation of a threshold segmentation partitioning an image into regions above or below a 
predefined threshold
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detection segmentation is useful when there is 
good image contrast but is confounded by com-
plex images containing numerous edges/parti-
tions. Cluster-based segmentation is useful for 
small datasets but can be computationally 
demanding for larger data sets. Instance segmen-
tation is simple and flexible but requires substan-
tial and time-consuming neural network training.

7.4  Detection and Localization

An important area of computer vision algorithms 
and certainly in applications in nuclear medicine 
is object detection. CNNs and DL play an inte-
gral role in this capability. Clearly, segmentation 
is the underlying principle of detection and local-
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Fig. 7.8 Schematic representation of an edge detection 
segmentation partitioning an image into regions based on 
identifying the edges between objects within the image. 

The kernel is applied in a weighted fashion to each pixel 
to create the convolution image, in this case for the hori-
zontal edge. (Reprinted with permission [4])

Fig. 7.9 Schematic representation of a cluster-based segmentation partitioning an image into regions based on K-means 
with clusters identified by color or eliminated from the image
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ization, and classification (Fig. 7.2). It is useful to 
simplify the process into the three major tasks:

• Image classification predicts the class of an 
object in an image.

• Object localization uses a bounding box and 
defined spatial parameters to locate an object.

• Object detection determines the presence of 
objects in an image and applies a class label.

Computer aided detection (CADe) is a system 
for detection of objects on medical images and 
consists of four main steps: segmentation of the 
region of interest, detection of the object of inter-
est, analysis of object features, and classification 
against potential false positives (Fig. 7.11 exclud-
ing the green box). Computer aided diagnosis 
(CADx) is a system that extracts the image fea-
tures and uses a classifier to predict what the 
object of interest is (Fig. 7.11).

7.5  Applications of ML and DL 
in Molecular Imaging

The research applications of AI, ML, and DL in 
molecular imaging are growing quickly. The 
opportunities and applications can be divided 
into several broad categories; potential clinical 
applications and physics applications. Physics 
and instrumentation applications include attenua-
tion correction from pseudo-CT [5–9], scatter 
correction [10], motion correction, image recon-
struction [11–13], co-registration, low dose 
imaging [14–17], noise reduction [18], and radia-
tion dosimetry [19, 20]. Much of the recent clini-
cal literature relates to CNNs and DL offering 
potential solutions in automated disease detec-
tion [21], classification [22, 23], triage, segmen-
tation [24], guide therapy [25], and assisted 
diagnosis [26]. It is important to recognize that 
AI and ML also have significant benefits to clini-
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cal practice without the use of CNN and DL. At a 
rudimentary level, an ANN can be used in paral-
lel to conventional statistical approaches to glean 
deeper insights into features or combinations of 
features that provide the greatest predictive 
power [27, 28]. Despite the breadth of AI, ML, 
and DL applications published in the literature, 
there are few that have transitioned to general 
implementation in clinical practice. This, in part, 
relates to the regulatory framework for software 
as a medical device (SaMD). Among the US FDA 
approved SaMDs are the following molecular 
imaging-related AI applications or AI platforms:

• Aidoc BriefCase-PE is a CNN algorithm for 
analysis of CTPA to triage based on the prob-
ability of pulmonary embolism with reported 
sensitivity of 91% and specificity of 90%.

• AI-Rad Companion-Cardiovascular is a CNN 
algorithm for segmentation and coronary cal-
cium scoring of the heart.

• cNeuro cMRI is a CNN algorithm for annota-
tion, segmentation, and quantitation of neuro-
logical MRI.

• Arterys Cardio DL is an AI platform for post- 
processing analysis and quantitation of car-
diac MRI.

• HealthCCS is an AI algorithm for calculating 
cardiac risk based on coronary artery plaque 
calcification on CT.

• IB Neuro is an AI algorithm for post- 
processing image registration of serial brain 
MRI with generation of parametric perfusion 
maps.

• Icobrain is an AI pipeline for annotation, seg-
mentation, and quantitation of serial brain MRI.

• NeuroQuant is an AI platform for annotation, 
segmentation, and quantitation of brain  
MRI.

• Quantib Brain provides an AI driven platform 
for MRI segmentation, quantitation, and 
classification.

Image
Recognition

Object
Localization

Object
Detection

Image
Classification

Object
Class

Object
Segmentation

Fig. 7.11 Flow diagram 
of the process for 
detection and 
localization on medical 
images. The entire 
process represents 
CADx while truncation 
before the final step are 
the limits of CADe
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• SubtlePET is image processing software for 
data management and noise reduction for PET 
scans.

Among the emerging AI applications in 
molecular imaging, those associated with auto- 
contouring and segmentation, radiomic feature 
extraction, triage and second reporters, attenua-
tion correction, reconstruction, dose reduction 
and radiation dosimetry are perhaps the most 
important and most likely to transition to more 
widespread clinical utility.

An important area of development for molec-
ular imaging is in pseudo-CT attenuation maps 
(Fig.  7.12) that could reduce radiation dose. 
There are a number of limitations in estimating 
an attenuation map from MRI for SPECT/MRI or 
PET/MRI hybrid systems. CNNs may overcome 
the limitations of maximum likelihood recon-
struction of activity and attenuation (MLAA) and 
provide accurate attenuation maps without trans-
mission studies. Hwang et al. [5] evaluated deep 
CNNs to produce an attenuation map that closely 
modeled the CT-based grounded truth and this 

was supported in PET/MRI using a deep neural 
network work [6]. Torrado-Carvajal et  al. [7] 
integrated the Dixon method with a CNN to gen-
erate pseudo-CT for pelvic PET/MRI scans with 
less than 2% variation from the CT map. A deep 
CNN combined with zero-echo-time Dixon 
pseudo-CT was also used to produce more accu-
rate attenuation maps than traditional MRI 
pseudo-CT methods [8]. DL approaches can pro-
duce pseudo-CT attenuation maps from the sino-
gram of 18F FDG brain PET with less than 1% 
error reported over CT [9].

Despite the advances associated with  iterative 
reconstruction algorithms, CNN/DL-based recon-
struction approaches have been a number of posi-
tive reports in the literature. Zhu et  al. [11] 
employed a deep neural network to produce recon-
structed data direct from the sinogram of brain MRI 
and PET data  with less noise and artefact. 
Haggstrom et al. [12] used a DL encoder- decoder 
CNN on PET data (Fig. 7.13) to reconstruct higher 
quality images compared to iterative and backpro-
jection methods. The root mean square error was 
11% lower  than  for ordered subset expectation 
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Fig. 7.12 Model for potentially using CNN for improved pseudo-CT attenuation correction in PET/MRI. (Adapted 
and reprinted with permission [4])
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maximization (OSEM) and 53% lower than filtered 
backprojection (FBP). The DL approach also pro-
duced better structural similarity index and signal-
to-noise ratio. Jiao et  al. [13] adopted 
a CNN approach using the back-projection image 
of the sinogram data as the input tensor to recon-
struct 18F choline and 18F florbetapir brain PET 
images with faster processing times. There remains 
much work to be done in this space.

An important consideration in medical imag-
ing and for nuclear medicine specifically is dose 
reduction. A number of dose reduction strategies 
have been employed to maintain image quality 
and diagnostic integrity but with low doses 
administered to patients. This addresses not only 
the issues of radiation dose and safety but also the 
sustainable use of scarce and expensive resources. 
With the emergence of hybrid imaging technol-
ogy, dose reduction where feasible is critical. A 
number of advances have facilitated dose reduc-
tion including more sensitive detector systems 
and improved reconstruction algorithms. CNNs 
and DL may also play a role in dose reduction 
and this is an important domain for DL focus. 
Indeed, there are two concepts to consider; dose 
reduction to minimize the dose without compro-
mising the quality of imaging, and dose optimi-

zation focused on calculating the ideal dose for 
diagnostic or therapeutic outcomes. Xu et al. [14] 
adopted a similar coder-decoder architecture 
described in Fig. 7.14 except the inputs are mul-
tiple low count PET slices. They reported supe-
rior image quality for reconstructing ultra-low 
dose PET through the encoder-decoder CNN 
than standard dose using conventional recon-
struction techniques. Similar approaches have 
been reported by several authors using T1 
weighted MRI. Kaplan and Zhu [15] used a CNN 
to reduce the noise associated with low dose PET 
scans and reported a final result of comparable 
performance metrics to the grounded truth (full 
dose scan). Ouyang et al. [16] used an encoder- 
decoder generative adversarial network (GAN) in 
amyloid brain PET to train low dose (1%) scans 
down-sampled from list mode data against the 
100% reconstruction as grounded truth. Outside 
the brain, Lei et  al. [17] employed a cycle- 
consistent GAN to estimate whole-body PET 
images from low count data following inverse 
transformation. The method improved the mean 
error and normalized means square error from 
5.6% and 3.5% to −0.1% and 0.5% respectively.

Excluding low dose PET and SPECT scans, 
molecular images are generally noisy. CNN and 

Encoder

PET
sinogram

Feature layers 32

2882 1442 722 362 182 182 182 262 442 752 1282

72 52 52 32 32 32 32 32 32 32

UpsamplingActivation functionBatch normalizationConvolution stride 2

32

32 164 64128 128256 256512 5121024

Spatial size

Convolution

Convolution
stride 1

Reconstructed
slice

Decoder

Fig. 7.13 Schematic representation of the DeepPET convolutional encoder-decoder network

7 Integration of Artificial Intelligence, Machine Learning, and Deep Learning into Clinically Routine…



98

DL can be used to reduce the noise in nuclear 
medicine images. One approach is to use an 
encoder-decoder architecture with a built-in 
graph neural network (GNN) module (Fig. 7.14). 
A CT or MRI can be used as an input and an iter-
ative process undertaken comparing the loss 
function after each epoch until stop criteria are 
satisfied. Cui et al. [18] employed a process simi-
lar to this using CT or MRI to reduce noise on 
PET scans. The contrast-to-noise ratio (CNR) 
was superior to other methods (iterative recon-
struction, Gaussian filtering) of noise reduction.

CNN and DL are used in radiation therapy for 
auto-contouring, auto-planning and decision sup-
port to optimize treatment outcomes and better 
manage radiation dosimetry. It makes sense that 
radionuclide therapy and theranostics adopt 
CNN/DL approaches to optimize patient dose 
and dosimetry to target tissues versus non-target 
tissues. An area of particular interest in radiation 
dosimetry is associated with 177Lu-lutate and 
177Lu-PSMA therapy. Post therapy, 177Lu 
allows gamma imaging for whole-body distribu-
tion and dosimetry calculations. This data can be 
subsequently used to measure tumor burden dur-
ing therapy, dose burden to non-target tissues and 
also optimization of subsequent rounds of radio-
nuclide therapy. A trained CNN could not only 
automate dosimetry calculations but could reduce 
the error for individual tissues calculations com-

pared to the population-based estimations. 
Indeed, there is potential to train a CNN against 
the original 68Ga PET scan, the serial 177Lu 
gamma distributions to provide dosimetry esti-
mates first by the 68Ga PET (allowing immediate 
optimization of the therapy dose), and then cor-
rected based on the first 177Lu gamma image. 
This field is not advancing very fast because the 
first step is to develop rigorous CNN approaches 
for multiple lesion detection and segmentation. 
Zhao et  al. [19] developed a U-net based deep 
CNN for automatic characterization of lesions on 
68Ga PSMA PET/CT and calculate tumor bur-
den with the intention of further developing the 
algorithm for optimizing radionuclide therapy. 
Precision was reported to be 99% in bone lesions 
and 94% in lymph nodes but segmentation accu-
racy was lower than detection. Jackson et al. [20] 
trained a CNN to automatically contour for 
 kidney regions for radiation dose estimation in 
radionuclide therapy with 177Lu PSMA. While 
no differences were seen in the dosimetry estima-
tions associated with manual versus CNN 
regions, automation improves the time cost. 
Nonetheless, the study also revealed some con-
founding for the CNN based on anatomical or 
pathological anomalies of the renal system (e.g., 
polycystic kidneys). With developments focused 
on foundations, Fig. 7.15 provides a schematic of 
processes that may be on the horizon.
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Fig. 7.14 Schematic representation of the encoder-decoder GNN in the U-net architecture used with CT or MRI to 
denoise PET images

G. Currie and E. Rohren



99

With respect to clinical applications, an ANN 
was trained against six expert nuclear cardiolo-
gists to provide superior 17 segment defect scor-
ing in myocardial perfusion scans [21]. In a 
multicenter trial [22] using a deep CNN produced 
a statistically significant improvement over total 
perfusion defect scores. The report provided an 
insight into how AI outcomes could be integrated 
into conventional image display using a polar 
map display (Fig. 7.16). ML has also been used 
to predict major cardiac events (MACE) on myo-
cardial perfusion SPECT with superiority over 
expert readers and automated quantitative soft-
ware [23].

Unsupervised DL was used on 18F-FDG PET 
to differentiate Alzheimer’s disease and was able 
to identify abnormal patterns in 60% of studies 
classified as normal by expert visualization [26]. 
DL has also been successfully used to identify 
nasopharyngeal carcinoma patients most likely to 
benefit from induction chemotherapy on PET/CT 
[25]. DL on quantitative SPECT/CT has provided 
automated volume of interest segmentation on 
CT that can then be applied to the SPECT data 
for calculation of glomeruli filtration rate [24]. 
There is a diverse array of emerging DL and 
CNN based literature in clinical molecular imag-
ing including radiomic feature extraction and 
segmentation on PET or PET/CT in a variety of 
tumors (e.g., lung, head/neck), brain studies (e.g., 

Parkinson’s, beta amyloid, and 18F-FDG 
Alzheimer’s), myocardial perfusion studies 
(SPECT and PET), and the thyroid.  There is a 
very diverse array of clinical applications of DL 
producing a rapidly growing body of literature. 

7.6  Internal Department 
Applications

There are also opportunities for data rich depart-
ments to train an ANN or CNN for a specific 
internal purpose [30, 31]. This could  produce 
internally valid algorithms that can reliably per-
form the prescribed task to enhance internal pro-
cesses. Clearly, commercialization of these 
algorithms would require navigation of regula-
tory frameworks associated with data sharing, 
privacy and security yet the major barrier would 
be local bias in the data [3]. There may also be 
specific parameter  or equipment biases in the 
algorithm unique to the developing depart-
ment that do not hold when parameters or equip-
ment change. Changing the acquisition or 
reconstruction parameters is also likely to pro-
duce variations in performance of the trained 
algorithm. Over and above these technical specif-
ics, there is likely to be a local population bias 
that threatens external validity of a trained 
algorithm.
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In addition to the site-specific characteristics 
that may act as barriers to the expansion of an 
internally developed AI process to more general 
usage, there are operational and logistical chal-
lenges that must be considered, as well. First, the 
electronic ecosystems in which medical data 
resides is widely varied across institutions. In 
part this is reflective of the variety of information 
technology (IT) solutions available in the market-
place, but even in cases in which the same vendor 
solution is deployed, there are often site-specific 
customizations and modifications that may make 
direct translation of algorithms and processes a 
challenge. These same issues present challenges 
to the commercialization of AI technology, since 
the ideal commercial product should be vendor 
agnostic both with regards to scanner technology 
(input) as well as IT infrastructure (processing 
and output). This provides an insight into the dis-
crepancy between the enormous potential appli-

cations of ML and DL in molecular imaging, and 
the actual number of commercially available 
algorithms approved by the US FDA. Thus, there 
is an opportunity for departments to develop 
internal AI tools that enhance outcomes and 
performance.

To illustrate the thinking and process, con-
sider  simple theoretical  applications and proj-
ects with particular consideration to how the ML 
or DL could be integrated into existing graphical 
outputs as highlighted by Figure 7.16. The addi-
tion of CNN risk stratification to pre- existing com-
mercial software for quantitation,  radiomic 
feature extraction and display offers an intuitive 
and seamless approach. Consider a  CNN risk 
score for pulmonary embolism summarized and 
displayed in a simple format  (Fig. 7.17). This 
could offer  perfusion SPECT segmentation 
against the accompanying low-dose CT to predict 
pulmonary embolism  (Fig. 7.18). A similar 

Fig. 7.16 Prediction of CAD with integration of DL 
outputs into polar maps provides an insight into how AI 

outcomes will be integrated into radiomic outputs. 
(Reprinted with permission [23])
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approach to segmentation, risk scoring of indi-
vidual lesions and mapping total disease burden 
might be helpful for patients presenting for eval-
uation of metastatic spread to bone (Fig. 7.19). 
While these mock-examples provoke ideas  of 
what is potentially possible, the value is immedi-
ately transparent. The emergence, for example, of 
parametric images in PET offers a perfect oppor-
tunity to incorporate AI driven outputs into image 
display.

7.7  A Glance at Tomorrow

AI, ML, and DL today provide opportunity to 
improve efficiency and improve efficacy [2, 31, 
33, 34]. Fully realized, tomorrow this capability 
has the potential to optimize patient management 
and drive precision nuclear medicine. This may 
see AI initiatives move from segmentation and 
classification to fully integrated tools in theranos-
tics, image guided therapy, and radiation dosim-
etry. Harnessed properly, DL affords the tools for 
improving outcomes, reducing radiation dose 

burden and enhancing precision medicine. 
Integration of images and radiomic features of 
current AI applications (e.g., myocardial perfu-
sion SPECT software) to include DL predictions 
integrated into the reporting display will become 
the norm across all procedures undertaken in 
nuclear medicine (Fig. 7.16).

Increasingly, AI will play an important role in 
patient management and business administration. 
Consider the possibilities for improved outcomes 
of, for example, a patient presenting to nuclear 
medicine for 68Ga PSMA and 177Lu PSMA 
where facial recognition software not only identi-
fies the patient and registers them in the clinic, 
but also retrieves the patients’ medical records 
and previous imaging as they walk through the 
waiting room door. DL algorithms automatically 
evaluate all previous scans, segmenting critical 
organs and target tissues, individualizing the 
diagnostic radiopharmaceutical dose to optimize 
the image quality as a trade-off against radiation 
dosimetry. DL/GAN based iterative reconstruc-
tion with segmentation and radiomic feature 
extraction would include auto-mapping all 
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Fig. 7.17 Mock 
summary output for a 
CNN-based risk 
algorithm for pulmonary 
embolism using 
ventilation and perfusion 
mismatch. (Reprinted 
with permission [32])
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Fig. 7.18 Mock summary output for a CNN-based risk 
algorithm for pulmonary embolism using low-dose CT 
and perfusion SPECT mismatch. The coronal and digital 
slices represent two different patients; one with mismatch 

consistent with a high likelihood of pulmonary embolism 
(left) and the other matching defect associated with lower 
likelihood of pulmonary embolism (right). (Reprinted 
with permission [32])
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lesions in the patients’ series. An ML algorithm 
might evaluate radiomic inputs and other patient 
records and personalize the therapeutic approach. 
ML and DL algorithms built to model the specific 
insight and expertise of specialists (from any-
where in the world), could provide expert second 
reader systems for image reporting. DL/GAN 
algorithm co-registers whole body PET with 

gamma camera scans used to image therapy dis-
tribution to segment and extract radiomic fea-
tures and determine dosimetry.

Back-office operations could also be sub-
stantially streamlined. From the point of con-
ception that a particular imaging study or 
therapy may be clinically useful for a particu-
lar patient, an integrated AI system could 
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Fig. 7.19 Mock summary output for a CNN-based risk algorithm for skeletal metastases with probability classification 
for various outcomes and risk assessment for individual lesions. (Reprinted with permission [32])
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assess the application of the proposed proce-
dure with the patient’s medical record, includ-
ing clinical histories, laboratory values, and 
prior imaging, and compare with available lit-
erature and appropriate use criteria (AUC) 
recommendations. Furthermore, such a sys-
tem could recommend alternate imaging or 
therapy as justified by the clinical scenario. In 
addition to the potential enhancement to clini-
cal care, such an upstream integration of AI 
technology would facilitate the interface 
between health systems and payers, both gov-
ernmental and third- party, where AUC and 
medical need statements are being increas-
ingly employed. AI technology focused on 
aiding medical justification and rationale 
would greatly improve the experience for the 
referring clinicians, decreasing the time spent 
on administrative activities. The  possibilities 
are limitless but there are significant barriers 
to overcome.

7.8  Workforce; Redundancy, 
Displacement, 
Transformation, 
and Opportunity

Perhaps the greatest speculation, hysteria, and 
resistance around AI in radiology has been the 
impact on the workforce. At one extreme are the 
doomsday predictors foreshadowing the extinc-
tion of radiologists as a species while on the 
opposite end of the spectrum lies those who deny 
the emerging capability of AI and see no role for 
it in radiology. The reality lies across a broad 
central band depending on a variety of factors 
relating to work function.

The speculation around the impact of AI on 
the role of radiologists is perplexing and war-
rants discussion and consideration in relation to 
nuclear medicine. At best, CNN and DL pro-
grams provide fantastic triage and second 
reader systems that support the physician, 

improve efficiency, and decrease error rates. 
But the judgment of the physician remains 
essential. In some ways, automating some of 
the more menial tasks makes better use of a 
physician’s time for the skill set they have 
trained extensively to have. Automation of 
menial tasks in nuclear medicine has been 
rolled out over many decades (e.g., auto-con-
tours for region of interest identification) with-
out a sense of doom associated with employment 
displacement or redundancy.

Concurrently, there has been very little dis-
cussion about the impact of AI on the technolo-
gist or physicist. It is entirely conceivable that 
an AI system could be designed that simply 
requires a “concierge” to direct the patient to 
the X-ray room; threatening the role of the 
radiographer. The nature of higher order imag-
ing procedures in nuclear medicine represents 
a deep moat and high wall protecting the 
responsibilities of the nuclear medicine tech-
nologist from AI automation. Nonetheless, 
image analysis and reconstruction will have an 
increasing AI presence and many of the radio-
pharmacy responsibilities may be automated 
where there is potential for robotic AI. Perhaps 
more importantly, the triage capability of AI is 
a direct threat to the role of technical staff pro-
viding interim reports.

In nuclear medicine, the emergence of 
capabilities of ML and DL will challenge the 
patient care paradigm and drive a shift toward 
improved patient care (and outcomes) and 
greater satisfaction amongst physicians. The 
paradigm shift is unlikely to have any signifi-
cant impact on the role and responsibilities of 
the nuclear medicine physician. Efficiencies 
created by ML and DL are more likely to have 
a direct impact on nuclear medicine technolo-
gists and scientists/physicists who take 
responsibility for data curation and steward-
ship. Here, there is potential for role expan-
sion beyond current roles in PACs 
administration/management to new roles in 
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data management and data science. Indeed, 
the workforce of a department may expand 
rather than contract with an increased research 
and development footprint (Table 7.1).

A critical consideration as one imagines a 
future nuclear medicine department with fully 
integrated AI technology is the importance of 
the human element. Although medicine is in a 
large part a science, there also exists elements 
of art and culture. Dispassionate and data-
driven decisions may be laudable in the intel-
lectual sense, but these terms are seldom used 
to describe the ideal way to interact with 
patients. Rather, terms such as caring, empa-
thetic, and understanding paint the picture of 
the trusted physician or healthcare team mem-
ber. Illustrative of this is the increasing focus 
on patient experience factors in the assessment 
of healthcare systems, which in some cases are 
beginning to lead to financial rewards or penal-
ties. In fact, patients themselves may be signifi-
cant drivers in the appropriate adoption of AI 
enhancements into practice. Consider the sce-
nario in which an AI algorithm is brought 
online to aid in the evaluation of cardiac perfu-
sion scans. Patient A may come to the conclu-

sion that their hospital is using new technology 
to help the doctors make the best decisions to 
enhance their outcomes consistent with preci-
sion medicine. Patient B may come to the con-
clusion that the hospital is merely using 
computer programs to save themselves time 
and effort undermining the nature of personal-
ized medicine. From a system perspective, the 
viewpoint of Patient A is obviously much more 
preferable, to be seen as a patient-centered sys-
tem layering the latest technologies over the 
core of personalized care.

As a result of all these factors, AI may 
reshape the nuclear medicine workforce but 
workforce changes themselves could be minor 
and redundancy rare. Uncertainty may be fueled 
by the emergence of digital technology that saw 
redundancy of the dark room technician. For 
AI, however, displacement of work functions in 
nuclear medicine is less likely. Yet AI is a dis-
ruptive technology and  the impact on clinical 
and research practice  may see those with AI 
capability or literacy displace those without.

7.9  Summary

ML and DL are rich tools for evaluating the large 
volume of radiomic features extracted from 
molecular imaging data sets. Moreover, ML and 
DL can be valuable in identifying those radiomic 
features that should be used alone or in combina-
tion in decision making. ML and DL has the 
capability to uncover relationships amongst fea-
tures and outcomes that may not be apparent in 
the standard combination of semantic reporting 
(Fig.  7.20). While ML and DL are unlikely to 
cause job redundancy, there is an opportunity to 
enhance patient outcomes, reporting accuracy, 
and efficiency. In particular, AI and DL are part 
of the inventory required to capitalise on high 
data density image sets, enhance image quality, 
extract abstract features and allow advances in 
radiation dosimetry.

Table 7.1 Hypothetical nuclear medicine department 
workforce and the associated probable changes to work-
force structure associated with a deep assimilation of AI

Role/position

Number in 
traditional 
department

Workforce 
transformation in 
fully immersive AI 
department

Physician 4 4
Physicist 2 1
Data Scientist 0 2
Radiopharmacist 1 1
Technologist 9.5 8.5
PACS/Data 
Manager

0.5 1.5

Nurse 2 2
Research Fellow 2 4
PhD Candidates 2 6

7 Integration of Artificial Intelligence, Machine Learning, and Deep Learning into Clinically Routine…



106

The emergence of AI in molecular imaging 
heralds an era of disruptive technology with 
the potential to reinvigorate the ecosystem of 
and reengineer the landscape in which, clinical 
molecular imaging is practiced. While AI is not 
new in molecular imaging, more recent devel-
opments and applications of ML and DL create 
refreshed interest in the architecture, opera-
tion, and implementation of AI.  As a profes-
sion, nuclear medicine and molecular imaging 
has provided leadership across several genera-

tions in the development and implementation 
of AI; without perhaps using the language 
associated with AI. This leaves nuclear medi-
cine and molecular imaging well placed to 
assimilated ML and DL into clinical practice to 
enhance precision medicine (Fig.  7.21). The 
disruptive revolution of AI in molecular imag-
ing is upon us so for those colleagues eager to 
grow with our profession, it is timely to craft a 
position in the AI space today and for 
tomorrow.

Population

Imaging Test

Physician AI

Discordant
Review/Learn

Concordant
Extends Degree of Confidence

Priority/triage

Pre-analysis
Data extraction

Fig. 7.20 A number of 
models for integration of 
AI into radiology have 
been proposed, but in 
nuclear medicine, 
perhaps the most 
appropriate model 
captures the best of each 
domain. (Reprinted with 
permission [2])

G. Currie and E. Rohren



107

References

 1. Scott J, Palmer E.  Neural network analysis of 
ventilation-perfusion lung scans. Radiology. 
1993;186(3):661–4.

 2. Currie G.  Intelligent imaging: artificial intelligence 
augmented nuclear medicine. J Nucl Med Technol. 
2019;47(3):217–22.

 3. Currie G, Hawk KE, Rohren E.  Ethical principles 
for the application of artificial intelligence (AI) in 
nuclear medicine and molecular imaging. Eur J Nucl 
Med Mol Imaging. 2020;47(4):748–52. https://doi.
org/10.1007/s00259- 020- 04678- 1.

 4. Currie G. Artificial intelligence in nuclear medicine: 
a primer for scientists and technologists. Reston: 
SNMMI Publishing; 2022.

 5. Hwang, et  al. Improving the accuracy of simultane-
ously reconstructed activity and attenuation maps 
using deep learning. J Nucl Med. 2018;59:1624–9.

 6. Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee 
DS, Lee JS. Generation of PET attenuation map for 
whole-body time-of-flight 18F-FDG PET/MRI using 
a deep neural network trained with simultaneously 

reconstructed activity and attenuation maps. J Nucl 
Med. 2019;60(8):1183–9. https://doi.org/10.2967/
jnumed.118.219493. pii: jnumed.118.219493.

 7. Torrado-Carvajal A, Vera-Olmos J, Izquierdo-Garcia 
D, Catalano OA, Morales MA, Margolin J, Soricelli 
A, Salvatore M, Malpica N, Catana C. Dixon-VIBE 
deep learning (DIVIDE) pseudo-CT synthesis 
for pelvis PET/MR attenuation correction. J Nucl 
Med. 2019;60(3):429–35. https://doi.org/10.2967/
jnumed.118.209288. Epub 2018 Aug 30.

 8. Leynes A, et  al. Zero-echo-time and dixon deep 
pseudo-CT (ZeDD CT): direct generation of pseudo-
 CT images for pelvic PET/MRI attenuation correction 
using deep convolutional neural networks with multi-
parametric MRI. J Nucl Med. 2018;59:852–8.

 9. Liu F, Jang H, Kijowski R, Zhao G, Bradshaw 
T, McMillan AB.  A deep learning approach for 
18F-FDG PET attenuation correction. EJNMMI 
Phys. 2018;5(1):24. https://doi.org/10.1186/
s40658- 018- 0225- 8.

 10. Qian H, Rui X, Ahn S, IEEE. Deep learning models 
for PhT scatter estimations. In: IEEE nuclear sci-
ence symposium and medical imaging conference. 
New York: IEEE; 2017. p. 2017.

Little
Data

AI

Personalised
Medicine

Patient/Person

Outcomes

Precision
Medicine

Precision
facing

Evidence-Based
Medicine

Evidence
facing

Pathology
facing

Learning facing
Survival

Disease free
Cost
QOL

Omics
Radiomics

Big
Data

RCTs

Machine
learning

Deep
learning

AI

Early diagnosis
Optimised therapy

Response to therapy
Prevention

Patient
facing

Learning

Diagnostics
Therapeutics
Patient history

Narrative

Fig. 7.21 Schematic representation of the role of big data, radiomics, and AI (ML and DL) in enhancing precision 
medicine

7 Integration of Artificial Intelligence, Machine Learning, and Deep Learning into Clinically Routine…

https://doi.org/10.1007/s00259-020-04678-1
https://doi.org/10.1007/s00259-020-04678-1
https://doi.org/10.2967/jnumed.118.219493
https://doi.org/10.2967/jnumed.118.219493
https://doi.org/10.2967/jnumed.118.209288
https://doi.org/10.2967/jnumed.118.209288
https://doi.org/10.1186/s40658-018-0225-8
https://doi.org/10.1186/s40658-018-0225-8


108

 11. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen 
MS. Image reconstruction by domain-transform man-
ifold learning. Nature. 2018;555(7697):487–92.

 12. Haggstrom I, Schmidtlein CR, Campanella G, Fuchs 
TJ.  DeepPET: a deep encoder-decoder network for 
directly solving the PET image reconstruction inverse 
problem. Med Image Anal. 2019;54:253–62.

 13. Jiao J, Ourselin S.  Fast PET reconstruction using 
multi-scale fully convolutional neural networks; 
2017.

 14. Xu J, Gong E, Pauly J, Zaharchuk G. 200x low-dose 
PET reconstruction using deep learning; 2017.

 15. Kaplan S, Zhu Y-M. Full-dose PET image estimation 
from low-dose PET image using deep learning: a pilot 
study. J Digit Imaging. 2019;32(5):773–8.

 16. Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk 
G.  Ultra-low-dose PET reconstruction using gen-
erative adversarial network with feature match-
ing and task-specific perceptual loss. Med Phys. 
2019;46(8):3555–64.

 17. Lei Y, Dong X, Wang T, et al. Whole-body PET esti-
mation from low count statistics using cycle consis-
tent generative adversarial networks. Phys Med Biol. 
2019;64(21):215017.

 18. Cui JN, Gong K, Guo N, et al. PET image denoising 
using unsupervised deep learning. Eur J Nucl Med 
Mol Imaging. 2019;46(13):2780–9.

 19. Zhao Y, Gafita A, Vollnberg B, et  al. Deep neural 
network for automatic characterization of lesions 
on 68Ga-PSMA-11 PET/CT.  Eur J Nucl Med Mol 
Imaging. 2020;47:603–13. https://doi.org/10.1007/
s00259- 019- 04606- y.

 20. Jackson P, Hardcastle N, Dawe N, Kron T, Hofman 
MS, Hicks RJ. Deep learning renal segmentation for 
fully automated radiation dose estimation in unsealed 
source therapy. Front Oncol. 2018;8:215. https://doi.
org/10.3389/fonc.2018.00215. eCollection 2018.

 21. Nakajima K, Kudo T, Nakata T, Kiso K, Kasai T, 
Taniguchi Y, Matsuo S, Momose M, Nakagawa M, 
Sarai M, Hida S, Tanaka H, Yokoyama K, Okuda 
K, Edenbrandt L.  Diagnostic accuracy of an artifi-
cial neural network compared with statistical quan-
titation of myocardial perfusion images: a Japanese 
multicenter study. Eur J Nucl Med Mol Imaging. 
2017;44(13):2280–9.

 22. Betanacur J, Hu LH, Commandeur F, Sharir T, 
Einstein AJ, Fish MB, Ruddy TD, Kaufmann PA, 
Sinusas AJ, Miller EJ, Bateman TM, Dorbala S, Di 
Carli M, Germano G, Otaki Y, Liang JX, Tamarappoo 
BK, Dey D, Berman DS, Slomka PJ. Deep learning 
analysis of upright-supine high-efficiency SPECT 
myocardial perfusion imaging for prediction of 
obstructive coronary artery disease: a multicenter 
trial. J Nucl Med. 2019;60(5):664–70.

 23. Betancur J, Otaki Y, Motwani M, Fish MB, Lemley 
M, Dey D, Gransar H, Tamarappoo B, Germano 
G, Sharir T, Berman DS, Slomka PJ.  Prognostic 
value of combined clinical and myocardial perfu-
sion imaging data using machine learning. JACC 
Cardiovasc Imaging. 2018;11(7):1000–9. https://doi.
org/10.1016/j.jcmg.2017.07.024. Epub 2017 Oct 18.

 24. Park J, Bae S, Seo S, Park S, Bang JI, Han JH, Lee 
WW, Lee JS.  Measurement of glomerular filtration 
rate using quantitative SPECT/CT and deep-learning- 
based kidney segmentation. Sci Rep. 2019;9(1):4223. 
https://doi.org/10.1038/s41598- 019- 40710- 7.

 25. Peng H, Dong D, Fang MJ, Li L, Tang LL, Chen L, 
Li WF, Mao YP, Fan W, Liu LZ, Tian L, Lin AH, Sun 
Y, Tian J, Ma J.  Prognostic value of deep learning 
PET/CT-based radiomics: potential role for future 
individual induction chemotherapy in advanced 
nasopharyngeal carcinoma. Clin Cancer Res. 
2019;25(14):4271–9. https://doi.org/10.1158/1078-
 0432.CCR- 18- 3065.

 26. Choi H, Ha S, Kang H, Lee H, Lee DS. Deep learning 
only by normal brain PET identify unheralded brain 
anomalies. EBioMedicine. 2019;43:447–53. https://
doi.org/10.1016/j.ebiom.2019.04.022. Epub 2019 Apr 
16.

 27. Currie G, Iqbal B, Kiat H.  Intelligent imaging: 
radiomics and artificial neural networks in heart fail-
ure. J Med Imaging Radiat Sci. 2019;50(4):571–4.

 28. Currie G, Sanchez S. Topical sensor metrics for 18F- 
FDG positron emission tomography dose extravasa-
tion. Radiography. 2020;27:178–86.

 29. Violet J, Jackson P, Ferdinandus J, Sandhu S, Akhurst 
T, Iravani A, Kong G, Kumar A, Thang S, Eu P, 
Scalzo M, Murphy D, Williams S, Hicks R, Hofman 
M.  Dosimetry of 177Lu-PSMA-617  in metastatic 
castration- resistant prostate cancer: correlations 
between pretherapeutic imaging and whole-body 
tumor dosimetry with treatment outcomes. J Nucl 
Med. 2019;60:517–23.

 30. Currie G.  Intelligent imaging: anatomy of machine 
learning and deep learning. J Nucl Med Technol. 
2019;47(4):273–81.

 31. Currie G, Hawk KE, Rohren E, Vial A, Klein 
R.  Machine learning and deep learning in medical 
imaging: intelligent imaging. J Med Imaging Radiat 
Sci. 2019;50(4):477–87.

 32. Currie G.  Intelligent imaging: developing a 
machine learning project. J Nucl Med Technol. 
2021;49(1):44–8.

 33. Uribe C, et al. Machine learning in nuclear medicine: 
part 1—introduction. J Jucl Med. 2019;60:451–6.

 34. Nensa F, Demircioglu A, Rischpler C.  Artificial 
intelligence in nuclear medicine. J Nucl Med. 
2020;60:29S–37S.

G. Currie and E. Rohren

https://doi.org/10.1007/s00259-019-04606-y
https://doi.org/10.1007/s00259-019-04606-y
https://doi.org/10.3389/fonc.2018.00215
https://doi.org/10.3389/fonc.2018.00215
https://doi.org/10.1016/j.jcmg.2017.07.024
https://doi.org/10.1016/j.jcmg.2017.07.024
https://doi.org/10.1038/s41598-019-40710-7
https://doi.org/10.1158/1078-0432.CCR-18-3065
https://doi.org/10.1158/1078-0432.CCR-18-3065
https://doi.org/10.1016/j.ebiom.2019.04.022
https://doi.org/10.1016/j.ebiom.2019.04.022


109© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
P. Veit-Haibach, K. Herrmann (eds.), Artificial Intelligence/Machine Learning in Nuclear Medicine 
and Hybrid Imaging, https://doi.org/10.1007/978-3-031-00119-2_8

8Imaging Biobanks for Molecular 
Imaging: How to Integrate ML/AI 
into Our Databases

Angel Alberich-Bayarri, Ana Jiménez-Pastor, 
Blanca Ferrer, María José Terol, 
and Irene Mayorga-Ruiz

Contents
8.1  Introduction   109

8.2  Imaging Biobanks in Molecular Imaging   110

8.3  Bioethical Issues   112

8.4  Proposed Architecture   113

 References   116

8.1  Introduction

Biobanks are collections, repositories of all types 
of human biological samples, such as blood, tis-
sues, cells or DNA and/or related data such as the 
associated clinical and research data, as well as 
biomolecular resources, including model- and 
micro-organisms that might contribute to the 
understanding of the physiology and diseases of 
humans [1]. At a European level, the main 
 infrastructure of biobanks is BBMRI-ERIC 
(Biobanking and BioMolecular resources 
Research Infrastructure) (http://bbmri- eric.eu).

Although medical images can be considered 
as digital and immortal samples of the organs and 
tissues of the human body, their inclusion in bio-
banks has not been straightforward by design. 
Indeed, many discussions have been held around 
the biobank concept and its suitability for the 
management of imaging data. The European 
Society of Radiology (ESR) initiated an Imaging 
Biobanks Working Group in 2014, with the focus 
to provide guidelines for the creation of imaging 
biobanks and the integration of image reposito-
ries into existing biobanks initiatives. The defini-
tion of imaging biobanks according to the 
working group guidelines was “organized data-
bases of medical images, and associated imaging 
biomarkers (radiology and beyond), shared 
among multiple researchers, linked to other bio-
repositories” [2].

Thereafter, a memorandum of understanding 
was signed in November 11, 2015, between the 
ESR and BBMRI-ERIC [3]. The reason for these 
efforts on integration is that medical images 

A. Alberich-Bayarri (*) · A. Jiménez-Pastor  
I. Mayorga-Ruiz 
Quantitative Imaging Biomarkers in Medicine, 
Quibim SL, Valencia, Spain
e-mail: angel@quibim.com 

B. Ferrer · M. J. Terol 
Hematology Department, Clinic University Hospital 
of Valencia, Valencia, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00119-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-00119-2_8
http://bbmri-eric.eu
mailto:angel@quibim.com


110

 generated in radiology and nuclear medicine are 
not only pictures, but quantitative data, provided 
in the form of imaging biomarkers that can be 
derived from the digital images acquired in an 
individual using modalities such as Computed 
Tomography (CT), Magnetic Resonance Imaging 
(MRI), X-rays, ultrasounds, and related to the 
topic of this chapter, also positron emission 
tomography (PET), single-photon emission com-
puted tomography (SPECT) as well as hybrid 
modalities (PET/CT and PET/MRI) [4, 5].

There are several technological solutions for 
the creation of biobanks for medical imaging in 
general and that can be perfectly adapted to the 
molecular imaging space [6]. Image processing 
algorithms for molecular imaging have emerged 
to cover unmet clinical needs but their applica-
tion to clinical routine in an optimized manner is 
still not straightforward, since it requires frequent 
manual interactions. Furthermore, standalone 
software and other solutions have been mainly 
addressed to provide quantitative analysis tools 
in a patient-specific basis, but not to populate 
databases for the posterior scientific research and 
data mining in imaging biomarkers. As an exam-
ple, although the technology is available, today 
pipelines like quantifying the metabolic tumor 
volume (MTV) or total lesion glycolysis (TLG) 
of lymphoma lesions, storing the obtained results 
in the PACS, and obtaining its metabolic hetero-
geneity in a seamless way in clinical routine are 
still not available.

Artificial Intelligence, Machine Learning, and 
more specifically, the use of convolutional neural 
networks (CNN), also called Deep Learning, 
have allowed for the development of AI models 
that might help to streamline organ segmentation, 
lesion detection and quantification processes [7–
9]. Despite the high number of research initia-
tives on deep learning, the integration of AI 
models in clinical routine requires the accom-
plishment of regulatory and technical 
challenges.

From the regulatory perspective, the model 
needs to be cleared as a Medical Device product 
by relevant organisms such as the Food and Drug 
Administration (FDA) and notified bodies clear-
ing CE mark for Medical Devices on behalf of 

the European Commission. This regulatory 
requires comprehensive validation studies, 
including multi-center data and large cohorts of 
patients in which the algorithm obtains excellent 
performance.

With regard to the seamless integration in cur-
rent information technology (IT) infrastructures 
existing in hospitals, AI modules should be infer-
enced in a software platform that can be interop-
erable with the current healthcare information 
systems (i.e., understanding standards such as 
DICOM communication with PACS, HL7 mes-
saging, XML) and that incorporates automated 
analysis pipelines execution.

This chapter addresses the main specifications 
for the creation of imaging biobanks for molecu-
lar imaging as well as the strategies for the inte-
gration of AI/ML models to streamline the data 
extraction from the images.

8.2  Imaging Biobanks 
in Molecular Imaging

Imaging biobanks are not formed exclusively by 
images but also by associated data in the form of 
imaging biomarkers that can be extracted from 
them after the application of the appropriate 
image processing techniques. Imaging biomark-
ers are defined as characteristics extracted from 
the images of an individual that can be objec-
tively measured and act as indicators of a normal 
biological process, a disease, or a response to a 
therapeutic intervention. Imaging biomarkers are 
complementary to conventional radiological 
readings either to detect a specific disease or 
lesion; quantify its biological situation; evaluate 
its progression; stratify phenotypic abnormali-
ties; and assess the treatment response [6, 10–12]. 
An illustrative example of derived imaging bio-
markers from molecular imaging is the calcula-
tion of the standardized uptake value (SUV), 
which depends on the images, the injected radio-
tracer dose, and the patient weight. Therefore, in 
the design of imaging biobanks for molecular 
imaging field, it is of utmost importance to col-
lect information about the patient preparation and 
doses of the radiotracer that might be needed for 
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the calculation of imaging biomarkers (Fig. 8.1). 
Although the DICOM standard is designed to 
incorporate in the metadata specific characteris-
tics of the patient and the examination character-
istics, much of the information needed for 
molecular imaging analysis is not included.

Quantitative imaging biomarkers should be 
linked to other information from the patient, such 
as next generation sequencing (NGS) data, 
 proteomics, blood test data, as well as clinical 
information [2].

With regard to the subjects and associated 
pathologies being registered in the imaging bio-
bank, two different strategies exist: the creation 
of population-based imaging biobanks, that are 
the ones created to collect data from general pop-
ulation with the purpose of identifying risk fac-
tors in the development of specific diseases and 
help in the early detection and the disease- 
oriented imaging biobanks, which consist of the 
ones developed to collect multi-omics data from 

a specific disease with the purpose of creating 
appropriate models of the tissues, organs, and the 
patient [13]. As an example, such models will be 
used to predict the risk of disease progression in 
diseases like lymphoma, and to tailor treatment 
based on individual response to novel therapeutic 
approaches [14]. Focusing on the current imag-
ing biomarkers available, solid tumors (breast, 
lung, colorectal, and prostate cancer) and hema-
tological malignancies (lymphoma, multiple 
myeloma) are the ideal scenarios to develop 
disease- oriented imaging biobanks. Nevertheless, 
scalability of the infrastructure would allow their 
inclusion of other clinical scenarios (rare tumors, 
neuroblastoma, glioblastoma, among others).

From the technological viewpoint, an imaging 
biobank should have an optimized software 
architecture for the massive extraction of quanti-
tative imaging data and its association to other 
variables. The main users of the platform are not 
only medical doctors but any collaborator from 
transversal disciplines such as biology, biotech-
nology, and biomedical engineering. Considering 
the scenario of use of the imaging biobank, the 
main functional requirements can be summarized 
in the following:

• Integration: The imaging biobank software 
platform should be adapted to current health-
care information systems (i.e., understanding 
standards like DICOM communication with 
PACS, XML, HL7 messaging) and to be struc-
tured in conventional cells & tissues biobanks 
data formats (Minimum Information About 
Biobank Data Sharing, MIABIS).

• Modularity: structured in different compo-
nents (medical images visualization, inference 
of image analysis algorithms and AI models, 
database searching engines and data mining 
capabilities, reports generator, back-end, 
front-end) and layers able to work as whole 
infrastructure.

• Scalability: infrastructure ready to grow with 
peaks of demand either on the storage or in the 
computing fronts through elastic architec-
tures, allowing for the wake up process of new 
storage units or servers when an increase 
demand exists.

Fig. 8.1 Example of data transmittal form associated to a 
PET asking for additional information that is not present 
in the DICOM headers and is needed to preserve the 
imaging information with high-quality standards
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• Accessibility: The imaging biobank should be 
built in a client-server approach to be reach-
able from any place by simply using a web 
browser.

• Vendor-agnostic: The imaging biobank 
should be able to manage images and data 
from any manufacturer.

• Inference of AI models and algorithms: The 
imaging biobank architecture would allow to 
integrate scripts or software components 
developed by researchers in languages such as 
Python, R and embedded in Docker contain-
ers, in order to apply analysis pipelines to the 
data.

• Data mining: The infrastructure should allow 
for Big Data management and scientific 
exploitation.

8.3  Bioethical Issues

Biobanks must preserve the human and legal 
rights of each person that offers biomaterial for 
research [15]. Data privacy and security is a key 
factor to consider in the creation of imaging bio-
banks. Recent initiatives in medical imaging 
research such as the big consortiums on AI and 
medical imaging include an open data policy in 
their data management plans. As an example, the 
European Commission aims to accelerate 
Europe’s innovation capacity through data shar-
ing and by following the principle of open access 
to research results. The availability of open, high- 
quality and large-scale imaging biobanks and pro-
cessing facilities in terms of data, services, and 
resources will radically simplify access to knowl-
edge, improve interoperability and standardiza-
tion and will help consolidate the medical imaging 
research community and foster multi- disciplinary 
collaboration at European level [16]. One of the 
keys to success in the European medical research 
and innovation field is to find the compromise 
between ensuring that medical and scientific net-
work collaboration is not hindered while keeping 
a strict and high level of information security.

Biomedical imaging will become one of the 
major data producers, and researchers working in 
this domain will have to face the burden of data 

management and analysis within shared imaging 
biobanks [16].

The General Data Protection Regulation (EU) 
2016/679 (GDPR) is a regulation in EU law on 
data protection and privacy in the European 
Union (EU) and the European Economic Area 
(EEA) and represents one of the most compre-
hensive and strict legal guidelines existing world-
wide. GDPR sets the definition and establishes 
the difference between pseudonymization and 
anonymization of personal data, which is sum-
marized in Fig. 8.2.

All the data incorporated into biobanks in gen-
eral requires the approval of the research project 
by an ethics committee and the corresponding 
informed consent in which the patient confirms 
whether accepts to participate in a research pro-
gram. In the case of observational non- 
interventional projects, mainly retrospective 
studies based on data collection for their storage 
in a biobank, the informed consent can be waived 
by the ethics committee.

Molecular images from modalities such as 
PET or SPECT, as in other medical imaging 
modalities are stored in DICOM format, combin-
ing the pixel data component (the image) and the 
associated information (the metadata). A stan-
dard process in research projects and the creation 
of imaging biobanks is the appropriate pseudony-
mization or anonymization of the images. An 
example of pseudonymization consists of assign-
ing a code to the patient information that could be 
linked afterwards with the real patient identity by 
any individual (even if the code assignment infor-
mation is stored in the source hospital and can 
only be linked by the healthcare professionals 
managing the patient). An example of anony-
mization consists of completely deleting all 
patient information in the images metadata and 
on the file folders so that the images cannot be 
linked back with the patient identity by any per-
son. There exists controversy on whether the 
images themselves are considered personal data 
or not, since it could be considered that these are 
unique and different for every patient. 
Nevertheless, taking into account that the effort 
required to identify an individual from an image 
is disproportionate (taking the anonymized image 
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and applying a brute-force correlation algorithm 
with the identified images of a hospital to find the 
match) due to the combination of steps that need 
to be undertaken, most current legal advisors 
exclude anonymized medical images from being 
considered personal data. Care has to be taken 
when managing high resolution medical images 
of the head, with modalities such as CT or MRI, 
since 3D reconstructions allow to visualize the 
face of the patients and eventually identify them 
[17]. The best approach in this case is to apply 
facial blurring or removal techniques before their 
storage in an imaging biobank.

8.4  Proposed Architecture

Imaging biobanks are not simple collections of 
medical images associated with patient data. In 
fact, architectures for the creation of medical 
imaging and also molecular imaging biobanks 
must incorporate advanced high performance 
computing capabilities where medical images, 
metadata, and other information associated to the 
images can be used for imaging biomarkers 

extraction [18]. They must also allow to analyze 
these features extracted from medical images at a 
population level (radiomics), aiming to find pro-
spective disease biomarkers and to combine them 
with other molecular biology and genomics data 
(radiogenomics) [19].

One of the aspects that must be clearly defined 
before the low-level architecture definition is the 
data ingestion and flow, checking whether man-
ual and automated uploads will be allowed and 
the strategy for making the biobank accessible to 
worldwide researchers. Imaging biobanks are 
originated in research projects in which a group 
of partners participate, and images are mainly 
managed in a pseudonymized domain. Once the 
biobank has been created and populated with 
data, it is usually released to public domain after 
complete anonymization (Fig. 8.3).

The architecture of a molecular imaging bio-
bank is organized in three different layers, the 
front-end, the back-end services and the data per-
sistence layer. The following components can be 
found in software platforms used for imaging 
biobanks such as Quibim Precision® (Quibim SL, 
Valencia, Spain) (Fig. 8.4):

Fig. 8.2 Difference between pseudonymization and anonymization as per General Data Protection Regulation (GDPR)
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Fig. 8.3 Data entry and flow in the creation of an imaging biobank
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Fig. 8.4 Architecture of the Quibim Precision® (Quibim SL, Valencia, Spain) software platform, used for the creation 
of imaging biobanks
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• Front-end layer: This layer is directly exposed 
to the final user to interact with the software 
using the web user interface. Users can access 
to this user interface typically through a URL 
that opens the web application.

• Back-end layer: This layer is built by different 
services that processes requests from the user 
interface, external applications, and the inter-
action between the services. At this stage, 
three main components are present:
 – Imaging biobank platform back-end: This 

component handles all the requests related to 
the front-end and serves the code of the appli-
cation. Besides, it provides common data to 
other services such as molecular imaging 
analysis algorithms and external applications.

 – Automated data ingestion: This component 
handles the connection between the imag-
ing biobank platform and the local reposi-
tories (PACS) using the DICOM protocol.

 – Job scheduler: This service is used to 
schedule the execution of image analysis 
modules. The platform needs to incorpo-
rate a simple and flexible orchestrator 
(Nomad, Kubernetes) to deploy and man-
age image analysis algorithms in contain-
ers (Docker).

• Persistence layer: This layer is used to persist 
the non-volatile information of the software, 
that is, the data. This layer is composed of:

 – Multi-omics database: a relational SQL or 
non-relational NoSQL database where the 
application persists the structured 
information.

 – File storage: the application persists all the 
files (imaging studies, results, configura-
tion files, ...) in a local or cloud 
repository.

The images analysis modules that can be 
implemented and integrated within an Imaging 
Biobank platform architecture must include all 
the image processing and quantification steps 
desired to meet the clinical and research needs. 
The programming language of these algorithms 
will vary depending on the expertise of the devel-
opers although the three most frequently used 
languages in the field of molecular imaging are: 
Python, Matlab, and R, among others.

As an illustrative example, given a molecular 
imaging biobank in which a specific project is 
dedicated to manage diffuse large B-cell lym-
phoma cases, including the PET/CT examina-
tions together with the associated clinical data, 
an image analysis pipeline can be focused in 
applying a systematic analysis methodology to a 
batch of examinations (Fig.  8.5). The image 
analysis pipeline is embedded in a Docker con-
tainer and integrated within the imaging biobank 
platform.

Fig. 8.5 Molecular imaging analysis pipeline dedicated to the estimation of metabolic tumor volume of individual 
lesions detected as well as quantification of histogram and textural properties to measure metabolic heterogeneity
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9.1  Introduction

Though the diagnosis of neurodegenerative dis-
eases is mainly based on clinical criteria, neuro-
imaging in nuclear medicine plays important 
supportive roles in diagnosis and differential 
diagnosis of neurodegenerative diseases and pre-

diction of disease progression [1, 2]. Different 
from magnetic resonance imaging (MRI) depen-
dent on morphological changes of cortical and 
subcortical structures, positron emission tomog-
raphy/computed tomography (PET/CT) provides 
quantitative evaluation of functional or molecular 
changes related to metabolism, proteinopathy, 
enzyme expression, transporter, or receptor. In 
addition to visual analysis, quantitative image 
analysis is essential to investigate clinical signifi-
cance of neuroimaging. Of them, voxel-based 
analysis and region-of-interest (ROI) or volume- 
of- interest (VOI) analysis are widely used for 
comparison between control (or normal) and 
patient groups. Statistical parametric mapping 
(SPM) is the most popular voxel-based approach, 
which demonstrates areas of the brain with a sig-
nificant difference between normal controls and 
patients [3, 4]. ROI or VOI-based image analysis 
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performs the calculation in the pixels of each ROI 
or VOI. Manual, semi-automatic, and automatic 
method can be used to draw a region or volume. 
Although accurate, manual drawing is time- 
consuming, operator dependent, and less repro-
ducible. On the contrary, accurate region 
segmentation by automatic drawing should be 
guaranteed in each patient for robustness and 
reliability of data analysis.

Different from traditional image analysis, 
machine learning as a subset of the artificial intel-
ligence finds patterns through big data. Based on 
the training data, it builds a mathematical model 
to make prediction. A learning method can be 
unsupervised, semi-supervised, or supervised. 
Supervised learning requires labeled data to find 
the pattern, whereas unsupervised learning uses 
unlabeled data and semi-supervised learning 
needs a small labeled data and a large unlabeled 
data. Machine learning is trained using a large 
number of input data with high reproducibility to 
extract the feature of clinical significance. After 
extraction, feature selection removes unneces-
sary features to reduce the training time and the 
possibility of overfitting, and avoid the dimen-
sionality issues. Then, a classifier algorithm such 
as support vector machine, random forest, or arti-
ficial neural network is performed to map the fea-
ture for the classification of disease.

As a part of the machine learning, deep learn-
ing is consisted of the artificial neural networks 
with multiple convolutional layers and nodes. 
Unlike traditional machine learning, deep learn-
ing performs the feature extraction and learning 
by itself. For the feature extraction and transfor-
mation, the techniques of deep learning are based 
on a cascade of multiple layers of nonlinear pro-
cessing units. High-quality data and labels are 
most important to train and test the deep learning 
models. Dataset is typically composed of train-
ing, validation, and test set. The training data are 
used to train a network that loss function calcu-
lates the loss values in the forward propagation 
and learnable parameters are updated via back-
propagation. The validation data are to fine-tune 
hyper-parameters and the test data to evaluate the 
performance of the model. This chapter will 
focus on artificial intelligence used for neuroim-

aging in nuclear medicine including classifica-
tion of diseases, segmentation of ROI or VOI, 
denoising, image reconstruction, and low-dose 
imaging.

9.2  Classification

9.2.1  Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative 
disease characterized by a decline in cognitive 
function. It mostly affects older people so that the 
prevalence of AD is increasing with the growth of 
the elderly population. Early diagnosis of AD 
before the symptoms become severe is of utmost 
clinical importance since it may provide opportu-
nities for effective treatment. 18F-FDG PET/CT is 
one of the most useful modalities to support the 
clinical diagnosis of dementia including AD.  It 
shows changes in glucose metabolism of the 
brain over various disease entities related to 
dementia with high sensitivity and specificity. In 
patients with AD, the reduction of glucose metab-
olism is expected stating from the mesial tempo-
ral to posterior cingulate cortex (PCC), lateral 
temporal, inferior parietal, and prefrontal regions 
to help diagnose [5].

Deep learning methods have been studied for 
the evaluation of patients with AD. Several auto- 
encoders with multi-layered neural network to 
combine multimodal features were applied for 
AD classification [6]. In a study with a stacked 
auto-encoder to extract high-level features of 
multimodal ROI and an SVM classifier, the pro-
posed method was 95.9%, 85.0%, and 75.8% 
accurate for AD, MCI, and MCI-converter diag-
nosis, respectively, using the ADNI dataset [7]. 
Recently, CNN methods with 2D or 3D volume 
data of PET/CT or MRI scans were applied for 
AD classification [8–11]. In 2D CNN models, the 
features from the specific slices of axial, coronal, 
and sagittal scans were concatenated and used for 
AD classification. Using MRI volume data, skull 
stripping and gray matter segmentation were per-
formed and the slices with gray matter informa-
tion were used as CNN model input. Compared 
to 2D CNN models, studies have used 3D volume 
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data with promising results. Using the 
Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) MRI dataset without skull-stripping pre-
processing, Hosseini-Asl et  al. built a deep 3D 
Convolutional Neural Network (3D-CNN) upon 
a convolutional auto-encoder, which was pre- 
trained to capture anatomical shape variations in 
structural brain MRI scans for source domain [8]. 
Then, fully connected upper layers of the 
3D-CNN were fine-tuned for each task-specific 
AD classification in target domain. The proposed 
3D deeply supervised adaptable CNN outper-
formed several proposed approaches, including 
3D-CNN model, other CNN-based methods, and 
conventional classifiers by accuracy and robust-
ness. Liu et al. used cascaded convolutional neu-
ral networks (CNNs) to learn the multi-level and 
multimodal features of MRI and PET brain 
images for AD classification [10]. In the method, 
multiple deep 3D-CNNs were applied on differ-
ent local image patches to transform the local 
brain image into more compact high-level fea-
tures. Then, an upper high-level 2D-CNN fol-
lowed by softmax layer was cascaded to ensemble 
the high-level features and generate the latent 
multimodal correlation features for classification 
task. Finally, a fully connected layer followed by 
softmax layer combined these learned features 
for AD classification. Without image segmenta-
tion and rigid registration, the method could 
automatically learn the generic multi-level and 
multimodal features from multiple imaging 
modalities for classification. With ADNI MRI 
and PET dataset from 397 subjects including 93 
AD patients, 204 mild cognitive impairment 
(MCI, 76 MCI converters +128 MCI non- 
converters) and 100 normal controls (NC), the 
proposed method demonstrated promising per-
formance of an accuracy of 93.26% for classifi-
cation of AD vs. NC and 82.95% for classification 
MCI converters vs. NC.

Although studies have shown that various 
deep learning methods were effective for AD 
classification, the model performance of exter-
nal validation compared to the training dataset 
is an issue to be resolved. In fact, the qualities 
and properties of medical images could be 

affected by the image-acquisition environment 
including the imaging acquisition system, 
acquisition protocol, reconstruction method, 
etc. Therefore, there is a need for a model with 
enhanced generalization performance to 
improve clinical utility of a proposed method. In 
a recent study using FDG PET/CT, instead of 
3D volume data, slice- selective learning using a 
BEGAN-based model was constructed to solve 
the above (Fig. 9.1) [9]. The model was trained 
with an ADNI dataset, then performed external 
validation with their own dataset. A range was 
set to cover the most important AD-related 
regions and searched for the most appropriate 
slices for classification. The model learned the 
generalized features of AD and NC for external 
validation when appropriate slices were 
selected. The slice range that covered the PCC 
using double slices showed the best perfor-
mance. The accuracy, sensitivity, and specificity 
was 94.33%, 91.78%, and 97.06% using their 
own dataset and 94.82%, 92.11%, and 97.45% 
using the ADNI dataset. The performance on the 
two independent datasets showed no statistical 
difference. The study showed the feasibility of 
the model with consistent performance when 
tested using datasets acquired from a variety of 
image-acquisition environments.

Despite remarkable diagnostic accuracy of 
deep learning, the correlation between the fea-
tures extracted by deep learning model and dis-
eases is hard to explain. Several studies proposed 
the methods for solving this problem by provid-
ing the feature map and input data responsible for 
the result of prediction. Class activation map 
(CAM) has been widely used to understand 
where the deep learning model evaluate for 
classes and to explain how deep learning models 
predict the outputs [12–14]. Choi et al. demon-
strated that brain regions where the CNN model 
evaluated for AD with decreased cognitive func-
tion using CAM method, which can generate the 
heat map with the probability of AD [15]. 
However, CAM-based interpretation should be 
cautious because deep learning models may clas-
sify diseases by the regions that cannot be 
explained by the known knowledge.
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9.2.2  Parkinson’s Disease

Parkinson’s disease (PD) is the second most com-
mon of neurodegenerative diseases which is 
mainly a movement disorder, such as resting 
tremor, bradykinesia, and rigidity [16, 17]. 
Alpha-synuclein aggregates, the primary PD 
pathology, are known to promote the dopaminer-
gic loss [18]. Although non-invasive direct PET 
imaging of alpha-synuclein aggregates in the 
brain is limited, the quantification of presynaptic 
transporters of the nigrostriatal dopaminergic 
neurons can be performed with PET and SPECT 
using either 18F or 123I N-(3-Fluoropropyl)-2β- 
carbon ethoxy-3β-(4-iodophenyl) Nortropane 
(FP-CIT) [19, 20]. Dopamine transporter (DAT) 
in PET/CT has been widely used for the early 
diagnosis of PD and the discrimination between 
PD and other diseases showing parkinsonism.

Machine learning has been applied to diag-
nose PD using DAT-SPECT or PET scan [21–27]. 
The extracted feature from deep learning meth-
ods has outstanding diagnostic results. However, 
the clinical correlation between disease and deep 
learning methods needs further explanation and 
verification since low-level features extracted 
from deep learning methods may not reflect the 
neuropathological heterogeneity of PD.  Shiiba 
et al. used semi-quantitative indicators and shape 
feature acquired on DAT-SPECT to train the 
model of machine learning for classification 
between PD and normal controls (NC) [28]. 
Striatum binding ratio (SBR) as semi- quantitative 
indicators and circularity index of shape were 
combined as a feature for machine learning. The 
performance of classification was significantly 
improved by using both SBR and circularity than 
by the one of SBR or circularity index (AUC for 
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SBR and circularity: 0.995, AUC for circularity 
only: 0.990, and AUC for SBR: 0.973).

FDG PET/CT is also actively used for the 
evaluation of patients with parkinsonism, espe-
cially for the differentiation between idiopathic 
PD and atypical parkinsonism [29]. Wu et  al. 
used support vector machine to classify PD 
patients and NC using radiomics features on  
18F- FDG PET [21]. The proposed method showed 
that the accuracy of classification between PD 
and NC was 90.97 ± 4.66% and 88.08 ± 5.27% in 
Huashan and Wuxi test sets, respectively. In addi-
tion, several studies showed that the deep learn-
ing methods were also effective for classification 
between PD patients and NC [30, 31]. Zhao et al. 
developed a 3D deep residual CNN for auto-
mated differential diagnosis of idiopathic PD 
(IPD) and atypical parkinsonism (APD) [30]. 
With dataset from 920 patients including 502 
IPD patients, 239 multiple system atrophy (MSA) 
patients, and 179 progressive supranuclear palsy 
(PSP) patients, the proposed method demon-
strated the performance of 97.7% sensitivity, 
94.1% specificity, 95.5% PPV, and 97.0% NPV 
for the classification of IPD, versus 96.8%, 
99.5%, 98.7%, and 98.7% for the classification of 
MSA, and 83.3%, 98.3%, 90.0%, and 97.8% for 
the classification of PSP, respectively.

9.3  Segmentation

Despite the sensitivity of PET/CT is usually 
much higher than conventional structural images 
such as CT of MRI, it is considered difficult to 
extract anatomical information from PET/CT 
images because they are not well-distinguishable 
from low-resolution images of PET/CT [32]. So 
far, there are limited studies to segment anatomi-
cal structures on PET images using deep learning 
methods, especially in the diseases related to the 
brain. A 3D U-net shaped CNN has been used to 
segment cerebral gliomas on F-18 fluoroethylty-
rosine (18F-FET) PET [33]. Of the deep learning 
methods, generative adversarial network (GAN) 
model received great attention due to the ability 
to generate data without explicitly modeling 
probability density functions. It has been applied 

to many tasks with excellent performance such as 
image-to-image translation, semantic segmenta-
tion, and resolution translation from low to high 
[34]. In particular, GAN models have been prom-
ising in the field of segmentation. Of the PET/CT 
studies, there is only one study applied pix2pix 
framework of GAN to segment normal white 
matter (WM) on 18F-FDG PET/CT [35]. The 
DSC of segmenting WM from 18F-FDG PET/CT 
was 0.82 on average. Despite the low resolution 
of 18F-FDG PET/CT, the results showed similar 
results compared to MRI [36, 37]. The study 
showed a feasibility of using 18F-FDG PET/CT in 
segmenting WM volumes.

In the WM, there are foci or areas called as 
white matter hyper-intensities (WMH) since they 
show increased signal intensity on T2-weighted 
fluid attenuated inversion recovery (FLAIR) on 
MRI.  Despite seen in healthy elderly subjects, 
WMH are associated with greater hippocampal 
atrophy in non-demented elderly and cognitive 
decline in patients with CI [38–40]. Therefore, 
MRI has been invaluable in the assessment of 
WMH [41]. As mentioned, 18F-FDG PET/CT is 
useful in assessing the glucose metabolism in the 
cortex or subcortical neurons. However, the low 
spatial resolution and low glucose metabolism 
have limited the evaluation of the WM and WMH 
on 18F-FDG PET/CT. In our group, we applied a 
GAN framework to segment WMH on 18F-FDG 
PET/CT (In Fig. 9.2, unpublished data). A data-
set of mild, moderate, and severe groups of WMH 
according to the Fazekas scoring system was 
used to train and test a deep learning model. 
Using WMH on FLAIR MRI as gold standard, a 
GAN method was used to segment WMH on 
MRI. The dice similarity coefficient (DSC) val-
ues were closely dependent on WMH volumes on 
MRI. With more than 60 mL of volume, the DSC 
values were above 0.7 with a mean value of 
0.751 ± 0.048. With a volume of 60 mL or less, 
the mean value of DSC was only 0.362 ± 0.263. 
For WMH volume estimation, GAN showed 
excellent correlation with WMH volume on MRI 
(r  =  0.998  in severe group, 0.983  in moderate 
group, and 0.908  in mild group). Although it is 
limited to evaluate WMH on 18F-FDG PET/CT 
by visual analysis, they are important vascular 
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component contributing to dementia. Our GAN 
method showed a feasibility to automatically seg-
ment and estimate volumes of WMH on 18F-FDG 
PET/CT which will increase values of 18F-FDG 
PET/CT in evaluating patients with CI.

9.4  Image Generation 
and Processing

Artificial intelligence in nuclear medicine is also 
widely used in image processing technology, 
such as image reconstruction and attenuation cor-
rection. For PET/MRI, attenuation correction by 
making pseudo CT images from MRI has com-
pared to CT-based methods [42–46]. In a method 
using Dixon sequence, PET activity in bone 
structure is underestimated in attenuation map 
[43, 44]. Despite many approaches, MR-based 
attenuation correction methods are considered 
lower performance than CT-based method for 
PET/CT.  Recently, deep learning methods have 
been applied to the attenuation correction for 
PET/MRI.  Hwang et  al. [47] proposed a deep 
learning-based whole-body PET/MRI attenua-
tion correction, which is more accurate than 
Dixon-based 4-segment method. The proposed 
deep learning method used activity and attenua-
tion maps estimated using the maximum- 
likelihood reconstruction of activity and 
attenuation (MLAA) algorithm as inputs to a 
CNN to learn a CT-derived attenuation map. The 
attenuation map generated from CNN showed 
better bone identification than MLAA and aver-

age DSC for bone region was 0.77, which was 
significantly higher than MLAA-derived attenua-
tion map (0.36). Liu et al. also demonstrated that 
deep learning approach to generate pseudo CT 
from MR image reduced PET reconstruction 
error compared to CT-based method [48]. With 
the retrospective T1-weighted MR images from 
40 subjects, deep convolutional auto-encoder 
(CAE) network was trained with 30 datasets and 
then evaluated in 10 dataset by comparing the 
generated pseudo CT to a ground-truth of CT 
scan. The results of this study showed that the 
DSC for air region of 0.97, soft tissue of 0.94, 
and bone of 0.80.

A generation of MRI from CT or CT from MRI 
has been performed by a lot of researchers, but 
very few studies have been carried out for the gen-
eration of MR images from PET/CT. Choi et al. 
[49] built GAN model, based on image-to- image 
translation, to generate MR images from florbeta-
pir PET images. The generated MR images are 
used for quantification of florbetapir PET and 
measured value was highly correlated with real 
MR-based quantification method. Although there 
was a high structural similarity of 0.91  ±  0.04 
between real MR image and generated MR image, 
the differentiation between gray and white matter 
was difficult and there was blurring of the detailed 
structures in the generated MR. In our group, cycle 
GAN based deep learning method was applied for 
generating FLAIR images from 18F-FDG PET/
CT. As shown in Fig. 9.3 (unpublished data), the 
generated FLAIR images from our method had 
excellent visual quality.

a b dc

Fig. 9.2 Deep learning-based, GAN, FLAIR image synthesized using PET/CT. 18F-FDG PET/CT (a), T2-weighted 
FLAIR image (b), predicted WMH volume (c), and manually segmented WMH volume (d)
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9.5  Low-Dose Imaging

High-quality PET images need a large number of 
gamma events either from high-dose injection or 
long scan time. Long scan time can result in 
patient motion artifacts and inconvenience, while 
high-dose administration increases radiation 
exposure to patients. To overcome these issues, 
the development of technology has concentrated 
on increasing the PET scanner sensitivity to 
detect a large number of coincidence events. A 
newer PET system with an axial field-of-view 
covering the whole body in a single bed position 
has shown a 40-fold improvement in effective 
sensitivity [50, 51]. In addition, numerous image 
reconstruction and noise reduction algorithm 
have improved spatial resolution and signal-to- 
noise ratio (SNR) of PET image [52, 53]. Ordered 
subset expectation maximization (OSEM) with 
modeling of the point spread function has been 
used to reconstruct gamma event for high- 
resolution PET imaging.

With deep learning method, convolutional 
neural network (CNN) models have been used to 
learn the relationship between full-dose and low- 
dose PET images [54–56]. Xu et  al. [56] pro-
posed a deep learning method, an encoder-decoder 
structure with concatenate skip connection with 
residual learning framework, to reduce dose of 
radioactive tracer in 18F-FDG PET imaging. They 

achieved significantly better performance com-
pared with reconstructed by denoising algorithms 
(nonlocal means, block-matching 3D, and auto- 
context network) from 0.005 of the standard 
dose.

Chen et al. [57] proposed a method to recon-
struct full-dose amyloid PET/MR using 
18F-florbetaben (18F-FBB) image from low-dose 
image. Compared with low-dose image, the syn-
thesized images using CNN model showed 
marked improvement on all quality metrics, such 
as peak signal-to-noise ratio (PSNR), structural 
similarity, and room mean square error (RMSE). 
In a visual reading of amyloid burden of synthe-
sized FBB image using CNN model, accuracy for 
amyloid status was 89%. In addition, the CNN 
model showed the smallest mean and variance 
for standardized uptake value ratio (SUVR) dif-
ference to full-dose images. Ouyang et  al. [58] 
also reported a generative adversarial network 
(GAN) model to reconstruct the full-dose PET 
image from low-dose image, which significantly 
outperformed Chen et al.’s method with the same 
input by 1.87 dB in PSNR, 2.04% in SSIM, and 
24.75% in RMSE.

In our group, a CNN model with a residual 
learning framework was applied for predicting 
full-time 18F-FBB PET/CT images from short- 
time scan of 1 to 5  min with excellent image 
quality (Fig. 9.4, unpublished data). In amyloid 

a b c

Fig. 9.3 Representative images of 18F-FDG PET/CT as an input to deep learning model (a), real FLAIR (b), and the 
generated FLAIR image by deep learning model (c) (unpublished data)
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imaging, amyloid positivity can be measured by 
quantitative analysis of SUVR, which were 
 normalized to the mean value in the cerebellar 
cortex. The results of our ROC analyses showed 
that the cut-off values for amyloid positivity 
deduced from the images predicted from the 
CNN models using low-dose images from 1 to 
5  min remained unchanged as compared with 
those obtained from the ground-truth images.

Scan time reduction using low-dose imaging 
has been tried for 18F-FDG PET/CT imaging. 
Kim et  al. [59] proposed that deep learning 
method to synthesize the PET images with high 
SNR acquired for typical scan durations from 

short scan time PET images with low SNR using 
deep learning with a concatenated connection 
and residual learning framework (Fig. 9.5). The 
list-mode PET data were formatted into 10, 30, 
60, and 120  s to investigate the effect of scan 
time on the quality of synthesized PET images. 
The PSNRs and NRMSEs of the synthesized 
18F- FDG PET images were significantly supe-
rior to those of the short scan images for all scan 
times. As the scan time increased from 10 to 
120 s, the PSNRs and NRMSEs of the synthe-
sized 18F- FDG PET images were improved by 
an average of 21.6  ±  3.8% and 47.0  ±  5.5%, 
respectively.

a bFig. 9.4 18F-FBB PET/
CT images reconstructed 
with different scan time 
(left column) and the 
predicted 18F-FBB PET/
CT images by deep 
learning method from 
short scan time (right 
column). Amyloid status 
of negative (a) and 
positive case (b) were 
shown
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As shown in Fig.  9.6, high quality of PET 
image generated using deep learning model with 
low count data and/or short scan time can have 
practical impact on reducing radiation exposure. 

It will provide new opportunities for PET/CT for 
those patients such as children, pregnant women, 
and patients prone to motion artifacts.
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Fig. 9.5 A schematic of the encoder-decoder convolutional neural network for predicting the full-time scan from short- 
time scan of 18F-FDG PET/CT
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Fig. 9.6 Representative 18F-FDG PET/CT images in 62-year-old female with normal control, with short-time scan 
(10 sec, left), predicted images by CNN with residual learning framework (middle), and full-time scan (15 min, right)
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10.1  General Principles

In the following, the structure of the chapter is 
outlined and general principles as well as issues 
of artificial intelligence (AI) in nuclear medicine 
are discussed. There is no clear definition of AI in 
medical imaging nor a clear demarcation to con-
ventional analysis techniques. Thus, other 
advanced image analysis methods like radiomics 
are summarized in this chapter as well.
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The utilization of AI for detecting diseases in 
medical image data is rapidly emerging [1]. 
Consequently, AI in nuclear medicine has been 
widely employed for image data, and also for 
electronic health record data [2]. When applied to 
image data, AI may be used to determine the 
stage according to an existing staging system 
(like the bone scan index), to improve an existing 
staging system (e.g. by simplification of 
TIRADS), to generate new staging systems that 
are to complex or too time-consuming to be per-
formed by medical experts (e.g. whole-body 
tumor volume quantification in PET-CTs) or to 
directly predict a clinically relevant endpoint 
(e.g. estimate grading of tumor, predict overall 
survival time). When applied to electronic health 
record data, AI may be used to predict endpoints 
as well. Additional approaches seem promising, 
like the utilization of artificial intelligence to 
form real-world control groups for image centric 
trial, as has been demonstrated for therapeutic 
 trials [3].

An organ-wise structure is chosen to organize 
this chapter, as it focuses on the application of AI 
to oncological imaging. However, as AI is emerg-
ing in the field of nuclear medicine, two underly-
ing trends can be observed: whole-body tumor 
volume quantification and individual lesion 
delineation. Quantification of the molecular 
whole-body tumor volume (e.g. 18F-FDG or 
PSMA avid tumor parts in contrast to morpho-
logical tumor volume) is feasible using semi- 
automated approaches that facilitate the 
quantification by AI methods. Yet, medial expert 
interaction is still needed to obtain valid results. 
Such quantification approaches are clinically 
needed, as the whole-body tumor volume might 
be a more precise parameter to assess the extent 
of an oncological disease [4]. Moreover, quanti-
fying of the whole-body tumor volume might 
enable more precise therapy response monitor-
ing. The second trend is to automatically delin-
eate and grade malignancy suspicious lesions in 
nuclear medicine imaging by employing AI. This 
is a more complex and error prone task, com-
pared to just providing assistance to medical 
experts. However, several studies that are pre-
sented here could demonstrate extremely promis-

ing results (e.g. fully automatic delineation of all 
malignancy suspicious lesions). Therefore, both 
the tumor volume quantification trend and indi-
vidual lesion delineation trend will ultimately 
merge when lesion-wise classification becomes 
even better and is thus suited for tumor volume 
quantification.

There are some unsolved issues regarding the 
application of AI in the field of nuclear medicine 
and especially in oncological settings. As out-
lined, the quantification of the tumor volume 
comes into focus of many software tools that ana-
lyze PET-CT data. Yet, there is no consensus how 
to determine a reference standard for tumor vol-
ume quantification. It may be evident, that mor-
phological information (e.g. obtained from the 
CT component) is not ideal as reference to assess 
the molecular volume. However, there are several 
strategies for the segmentation of PET volume as 
well, like applying a fixed threshold (e.g. every 
voxel >6 SUV is tumor), applying relative thresh-
olding (e.g. 50% of local SUVmax), or others. 
Future studies have to evaluate which tumor seg-
mentation method is closest to the actual tumor 
volume and should therefore be used as reference 
standard for AI algorithms. To this end, it might 
be warranted to employ the concept of probabi-
listic segmentations that addresses issues arising 
from inter- and intra-rater variance in tumor seg-
mentations [5]. Finally, one has to bear in mind 
that it is at least as difficult to develop AI for a 
specific task as proving its incremental benefit for 
the patient and implementing it in the clinical 
routine [6, 7].

10.2  Brain

10.2.1  Glioma

The characterization of cerebral gliomas has 
moved from a morphological-based classification 
to molecular profiling, comprising of markers 
like IDH1 mutation status [8]. This is due to the 
heterogeneity of gliomas, which cannot suffi-
ciently be differentiated by conventional imag-
ing. Therefore, molecular imaging approaches 
together with machine learning methods have 
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been proposed to enable an improved noninva-
sive glioma profiling. Kebir et al. could show that 
11C-MET PET and machine learning enabled the 
noninvasive diagnosis of the IDH1 status of glio-
mas; an area under the curve (AUC) of 0.79 was 
reached [9]. However, the analyzed patient col-
lective was relatively small (n = 39) and future 
corroborating studies are needed.

Haubold et al. employed multiparametric 18F- 
FET PET-MR to noninvasively estimate grading 
and molecular profiles of gliomas [10]. 
Interestingly, the integration of 18F-FET features 
(like SUVmax) into the multiparametric MRI fea-
tures has improved the estimation neither of 
grading nor of molecular profiling. For example, 
the estimation of IDH1 status had an AUC of 
88% (excluding PET features). Yet again, the 
patient collective was relatively small (n = 42), 
especially given the large number of 19.284 fea-
tures that were extracted for each patient.

10.3  Neck

10.3.1  Head and Neck Cancer

18F-FDG PET-CT is a reference standard exami-
nation for the detection of cervical lymph node 
metastases of patients with head and neck cancer; 
especially, if subsequent radiotherapy is planned 
[11]. However, the differentiation between physi-
ological lymph nodes and suspicious lymph node 
metastases in 18F-FDG PET-CT might be chal-
lenging. To this end, Chen et al. have proposed a 
tool which combines both radiomics and 3D con-
volutional neuronal networks for the character-
ization of cervical lymph node metastases using 
PET-CT [12]. Unfortunately, the patient collec-
tive was small (n = 59) and the reference standard 
for nodal involvement was an expert rating.

Huang et al. proposed a method for the auto-
mated delineation of head and neck cancer using 
PET-CT data and demonstrated its feasibility 
[13]. Yet, despite the use of bicentric data, the 
generalizability of the presented approach still 
needs to be proven. Zhao et al. have followed a 
similar approach and aimed at the automated 
delineation of nasopharyngeal carcinoma on 

PET-CT data [14]. The authors adopted the U-Net 
design which used both PET and CT images as 
input and achieved a dice score (which is a mea-
sure of segmentation accuracy) of 87.5%.

10.3.2  Thyroid Cancer

Thyroid nodules are frequently seen on ultra-
sound examinations; however, only a small frac-
tion of thyroid nodules is caused by thyroid 
cancer [15]. To facilitate the characterization of 
thyroid nodules as either malignancy suspicious 
or benign, the ACR TI-RADS system has been 
proposed [16]. ACR TI-RADS comprises five 
categories (like echogenicity or shape) and allo-
cates a score for the degree of each category. The 
sum of all five category scores stratifies the likeli-
hood of the presence of thyroid cancer. The like-
lihood of cancer is in turn graded in five categories 
(1-benign to 5-highly suspicious). Despite good 
reason for the individual categories, no study 
could corroborate a given score (e.g. in the echo-
genicity category, the hyperechoic criterium has 
a score of 1, whereas hyoechoic has a score of 2). 
Therefore, Wildman-Tobriner et  al. used AI to 
evaluate, if the individual scores of ultrasound 
features were appropriate or if ACR TI-RADS 
could be simplified. Interestingly, the scores of 
their revised ACR TI-RADS called AI TI-RADS 
were indeed simplified (e.g. hyperechoic crite-
rium got a score of 0 and was therefore neglect-
able, whereas hypoechoic remained with score of 
2). Moreover, the authors could corroborate that 
the sensitivity of AI TI-RADS remained high 
compared to conventional ACR TI-RADS (93%), 
whereas the specificity of AI TI-RADS increased 
compared to ACR TI-RADS (65% vs. 47%). This 
interesting work could facilitate the use of this 
manual classification system and might be 
expanded to other classifications as well.

Instead of training a neuronal network to esti-
mate an ACT TI-RADS score (or a similar clas-
sification), some groups directly used the 
histological classification as ground truth for 
training and evaluation. Ko et al. could show that 
a convolutional neuronal network obtained high 
AUC results (0.835–0.850) and was not 
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 statistically differed form radiologists (AUC: 
0.805–0.860) [17]. Importantly, histological 
ground truth was present for all patients. There 
have also been reports on optimized network 
architectures dedicated to ultrasound images of 
thyroid cancer [18]. Li et  al. presented a retro-
spective multicenter study evaluating the perfor-
mance of a neuronal network in detecting thyroid 
cancer by ultrasound images, which comprised 
45.644 patients [19]. Importantly, external vali-
dation cohorts were present as well. For the inter-
nal validation cohort, both sensitivity (93.4%) 
and specificity (86.1%) were remarkably high. 
The authors concluded that sensitivity was simi-
lar to a group of skilled radiologists, but the spec-
ificity was statistically significantly improved.

10.4  Thorax

10.4.1  Lung Cancer

Fluorodeoxyglucose (18F-FDG) PET-CT is the 
standard diagnostic tool for the staging of patients 
with lung cancer [20]. Sibille et al. developed a 
software for the automated segmentation of sus-
picious FDG foci using acquisitions of 302 lung 
cancer patients amongst other patients [21]. The 
proposed software runs fully automatically and 
estimates not only the classification of each 18F- 
FDG hot spot (suspicious i.e. metastasis vs. not 
suspicious i.e. physiologic) but also the anatomi-
cal location of each hot spot (e.g. lymph node 
level). The accuracies both of classification 
(AUC = 0.98) and of anatomical location (accu-
racy = 97% for body part, 84% for organ or tis-
sue) were remarkably high. Interestingly, the 
proposed neuronal network did not segment the 
18F-FDG foci in the PET acquisition, but in con-
trast analyzed hotspots found by conventional 
thresholding. This procedure might lead to inac-
curacies, as confluent lesions or confluence 
between a metastasis and an organ with physio-
logical 18F-FDG accumulation might not be sepa-
rated properly by conventional thresholding. The 
neuronal networks used by this software require 
the input of coronal reformatted image data. Each 
tracer accumulation is analyzed separately and 

only its immediate vicinity is present to the net-
work. Because of that, the input of the entire PET 
as maximum intensity projection (MIP) signifi-
cantly improved the accuracy. Similar to the 
human perception, the MIP and other reforma-
tions may facilitate the recognition of global 
uptake patterns, e.g. caused by brown adipose 
tissue activation. Additionally, CT information 
was used in conjunction with the PET as input for 
the neuronal network and significantly improved 
the accuracy compared to PET only inputs. 
Future studies have to evaluate the predictive 
potential of the automatically determined 18F- 
FDG tumor volume.

10.5  Abdomen

10.5.1  Esophageal Cancer

Beukinga et al. used 18F-FDG PET examinations 
before and after neoadjuvant radio chemotherapy 
to predict the outcome of patients suffering from 
esophageal cancer [22]. The authors extracted 
radiomic features, which combined with the 
T-stage could predict complete pathologic 
response with high accuracy (AUC  =  0.81). 
However, only 73 patients were included in this 
study, which might limit the transferability to 
larger or inhomogeneous patient collectives.

10.5.2  Liver Tumor

Radioembolization with 90Y spheres is a thera-
peutic option for patients with liver metastases or 
primary hepatic tumor and also known as selec-
tive internal radioembolization (SIRT). Due to 
impairment of uninvolved liver tissue and gener-
ally end stage disease, the prediction of overall 
survival prior to SIRT is clinically needed. 
Therefore, Ingirsch et al. had retrospectively ana-
lyzed electronic health records (e.g. blood level 
of bilirubin, age) of 366 patients that received 90Y 
radioembolization by using machine learning 
methods [23]. The authors identified baseline 
cholinesterase and bilirubin levels as predictor 
for overall survival after SIRT.
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10.5.3  Prostate Cancer

Prostate cancer is the leading cause of cancer- 
related death in men and has a remarkably early 
tendency to form metastases; already at time of 
prostatectomy, approximately 70% of men show 
prostate cancer cell in the bone marrow [24]. The 
sensitive detection of metastases as well as moni-
toring of the whole-body tumor load is of great 
clinical importance. To this end, prostate-specific 
membrane antigen (PSMA) targeting PET-CT 
has been widely employed and could demon-
strate superior performance both in primary and 
recurrent prostate cancer [25, 26]. Several 
AI-based approaches have tried to analyze 
PSMA-PET examinations with regard to indi-
vidual lesion classification and whole-body 
tumor volume.

Zhao et al. have developed a neuronal network 
for the delineation of PSMA avid metastases in 
the pelvic area [27]. The authors had adopted the 
U-Net architecture to include both PET and CT 
slices as input and aimed at a voxel wise segmen-
tation of prostate cancer metastases [28]. The 
network employs axial, coronal and sagittal ref-
ormations as input to mimic the reading of a 
human expert. For training and evaluation, metas-
tases were manually delineated by nuclear medi-
cine experts in 193 PSMA PET acquisitions; 
their delineations were used as ground truth data. 
The limitation to the pelvic region was necessary 
due to proof of concept nature of the publication; 
however, extension to the whole body seems also 
feasible. The work of Zhao et al. is of great rele-
vance, as it enables the fully automated segmen-
tation of prostate cancer metastases with great 
precision (99%) and recall (99%). However, 
because of point spread artifacts, it could prove 
disadvantageous that the proposed neuronal net-
work outputs the tumor segmentation.

Gafita et al. proposed an open source software 
(qPSMA) for the semi-automated quantification 
of the whole-body tumor burden in PSMA-PET 
CTs [29]. Despite the name prostate-specific 
membrane antigen, PSMA shows physiological 

accumulation in many organs, like in liver, 
spleen, bowel, kidneys, salivary glands and oth-
ers. The qPSMA software assists the reading 
physician in segmenting all prostate cancer 
metastases by excluding some organs with phys-
iological update from the analysis. To this end, a 
random forest-based algorithm is used by 
qPSMA to segment organs with physiological 
PSMA accumulation employing the CT compo-
nent [30]. The qPSMA software not only masks 
out physiological PSMA uptake, but likewise 
segments PSMA foci with a patient specific 
SUV threshold. Each voxel exceeding this 
threshold is regarded as metastases, if it is not 
manually or automatically excluded. In addition, 
qPSMA enables the adjustment of predefined 
organ exclusion masks and facilitates the exclu-
sion or inclusion of missed PSMA foci using 
brush tools. For example, liver metastases had to 
be added manually due to the heuristic logic that 
the liver uptake is physiologic, and the entire 
liver therefore be removed from the analysis. 
The inter-rater and intra-rater correlation of 
qPSMA is high for the segmentation of individ-
ual metastasis.

An approach similar to qPSMA was proposed 
by Seifert et al. [31]. Likewise, it facilitates the 
semiautomated quantification of the whole-body 
tumor volume by excluding physiologic PSMA 
foci from the analysis. Moreover, it automatically 
assigns the anatomical location to each PSMA 
focus. In contrast to qPSMA, the software 
employs a two-step approach for delineation of 
foci: first, voxels exceeding a patient-specific 
threshold are selected as candidate lesions. 
Second, these candidate lesions were segmented 
by thresholding with 50% of the local SUVmax. 
Thereby, no brush tools are needed for refine-
ment; physiological candidate lesions can be 
deleted easily. The author could show that this 
procedure achieves a high inter-rater agreement. 
Interestingly, the authors also reported that semi- 
automatically quantified whole-body tumor vol-
ume stratified end-stage prostate cancer patients 
according to the overall survival.
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10.6  Skeleton

10.6.1  Bone Metastases

Bone scans are primarily used for the detection 
and monitoring of bone metastases and one of the 
high throughput examinations of nuclear medi-
cine. Especially for therapy monitoring of pros-
tate cancer patients, bone scans are an established 
imaging method [32]. However, the interpreta-
tion of bone scans to calculate a quantitative bio-
marker, which is called bone scan index (BSI), is 
time-consuming [33, 34]. To calculate the BSI, at 
first, the fraction of metastatic involvement of 
each bone has to be calculated. Second, this frac-
tion is multiplied with the fraction that the bone 
constitutes to the entire skeleton. By summation 
of all values, the BSI is obtained. Thereby, BSI 
represents the fraction of metastatically affected 
bone, i.e. a BSI of 3 means that 3% of the entire 
skeletal mass is affected by metastases.

Several solutions have been proposed to auto-
matically quantify the BSI. Among them is the 
work of Ulmert et  al., who proposed a method 
which uses neuronal networks for the automated 
segmentation and classification of hotspots in 
bone scans [35]. Interestingly, the development 
of the first prototype dates back to 2006, where 
AI was not the now established buzzword, which 
might be the reason why the authors called their 
work “computer-based decision support system” 
[36]. The automatically derived BSI could statis-
tically significant stratify prostate cancer patients 
according to overall survival [37].

As mentioned above, PSMA-PET-CT has 
emerged as reference standard examination for 
patients with prostate cancer. Therefore, the 
quantification of the osseous tumor volume from 
PSMA-PET-CT, similar to the BSI, is of impor-
tance. To this end, Bieth et al. have proposed a 
software for the quantification of the osseous 
tumor burden using PSMA-PET-CT acquisitions 
[38]. Hammes et al. followed a similar approach 
(EBONI) and provided the source code of their 
software [39].

10.7  Hematopoietic System

10.7.1  Lymphoma

18F-FDG -PET-CT is a standard diagnostic for 
staging and therapy monitoring of lymphoma 
patients. However, due to highly variable physi-
ological 18F-FDG uptake, the interpretation of 
18F-FDG PET acquisitions is challenging, espe-
cially for neuronal networks. The software pro-
posed by Sibille et al. that was already presented 
above was not only trained using lung cancer 
patients, but with 18F-FDG PET-CTs of lym-
phoma patients (n = 327) as well [21]. Therefore, 
the software obtained high accuracy in the clas-
sification (AUC = 0.95) and the determination of 
the anatomical location (Accuracy  =  97% for 
body part and 84% for organ or tissue). Thereby, 
the automatic quantification of a whole-body 
tumor volume is feasible. Future studies have to 
elucidate if the automatically determined tumor 
volume can stratify patients according to their 
overall survival or other clinically relevant end 
points.

10.7.2  Multiple Myeloma

Multiple myeloma (MM) is a clonal plasma cell 
neoplasia and detection of bone lesions is crucial 
during diagnostic work-up. MM lesions not only 
display an important criterion for the initiation of 
treatment but moreover discriminate MM from 
pre-malignant diseases such as monoclonal gam-
mopathy of undetermined significance. Whole 
body low-dose CT is the gold standard in MM, 
but MRI is attributed with a higher sensitivity in 
the detection of small MM lesions. CXCR4- 
directed PET imaging with 68Ga-Pentixafor rep-
resents another imaging modality for the 
detection of active MM lesions.

Martínez-Martínez et  al. have developed a 
fully automated method that identifies bone mar-
row infiltration in low-dose CT of MM patients 
[40]. Their method was validated on a dataset of 
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127 subjects where it was able to discriminate 
bone marrow infiltration in patients with MM 
from healthy controls with an AUC of 0.996. The 
limitation of their study is that their method is 
only validated for the bone marrow infiltration in 
the femur. However, lesion distribution in MM 
patients ranges from a single lesion to multiple 
lesions with a disseminated pattern and those 
lesions do not necessarily have to affect the femur.

An automated approach to determine whole- 
body bone lesions in MM patients was con-
ducted by Xu et  al. [41]. The combination of 
68Ga-Pentixafor PET that registers elevated 
CXCR4-expression within MM lesions with 
anatomical features from the CT-scan was used 
in this study. Two CNNs (V-Net and W-Net) 
were used for the segmentation and detection of 
MM lesions. Their study that was first verified in 
digital phantoms (n = 120) and further validated 
in a small patient cohort (n = 12) revealed that 
the W-Net architecture with the combination of 
PET and CT data was most accurate in lesion 
detection and achieved a dice-score of 73%. 
However, this study was mainly conducted on 
digital phantoms and further validation in a big-
ger patient cohort and correlation to clinical 
parameters such as treatment response or overall 
survival has to be evaluated.
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Coronary artery disease (CAD) remains the lead-
ing cause of mortality and morbidity worldwide. 
Recent statistics estimate that 18.2 million adults 
age 20 and older have CAD (~7% of the popula-
tion) [1]. CAD is the number one cause of death 
and disability and accounts for healthcare expendi-
tures which are projected to exceed $1 trillion by 
year 2035 [1]. Cardiac imaging with echocardiog-
raphy, myocardial perfusion imaging (single pho-
ton emission tomography [SPECT] and positron 
emission tomography [PET]), computed tomogra-
phy, and magnetic resonance imaging play a key 
role in the diagnosis and management of CAD [2, 
3]. These advanced imaging modalities, along with 
other clinical tests, generate extensive amounts of 
data whose volume, heterogeneity, and complexity 
have made human-driven analysis increasingly 
impractical. Artificial intelligence (AI) methods 
such as machine learning (ML) are particularly 
well-suited to tackling the challenges of such com-
plex “Big Data” and have shown great promise in 
addressing classification, clustering, and predictive 
modeling tasks in cardiovascular research [4]. In 
cardiac imaging, AI has the potential to reduce 
costs and improve value throughout the stages of 
image acquisition, interpretation, and clinical deci-
sion-making. Moreover, the precision of diagnosis 
or risk prediction—now possible with comprehen-
sive advanced cardiovascular imaging—combined 
with “big data” from electronic health records and 
pathology, is likely to better characterize disease 
and enable personalized therapy.

In this chapter we present recent AI techniques 
developed for the analysis of hybrid cardiac 
imaging data (SPECT, PET, and computed 
tomography [CT]), including methods to opti-
mally integrate associated clinical information. 
These AI techniques include emerging methods 
for image reconstruction, image segmentation, 
disease diagnosis, and outcome prediction. 
Additionally, we will review methods to auto-
matically extract additional structural informa-
tion from the associated CT scans obtained with 
hybrid scanners. Since cardiac nuclear emission 
scanning is increasingly being acquired in con-
junction with CT, this valuable data regarding 
cardiac anatomy can complement the functional 
information provided by SPECT and PET.

11.1  Introduction to AI

Computer algorithms which perform tasks nor-
mally characteristic of human intelligence such 
as understanding language and recognizing 
images are referred to as AI [4, 5]. ML is a branch 
of AI which uses existing observations to deter-
mine which features best predict the outcome of 
interest to more accurately predict the outcomes 
of future observations. ML algorithms are well 
suited to integrate the diverse clinical, stress, and 
imaging information generated by a hybrid imag-
ing scan.

Deep learning (DL) is a subset of ML which 
refers to algorithms with a multilayered learning 
approach. DL can be trained using either struc-
tured or unstructured data; however, the most 
common approach is a convolutional neural net-
work (CNN)—especially suitable to be applied 
to images [4, 6]. CNNs differ from other artificial 
neural networks in that the neurons from adjacent 
layers are only connected to nearby neurons in 
the following layer. DL algorithms are well- 
suited to directly extract information from car-
diovascular and hybrid images. For all AI 
approaches, it is critical to ensure that a large, 
diverse data set is used for training the algorithm 
and that predictions are tested using data that was 
not used in any way during model training.

11.2  AI to Improve Image Quality 
and Processing

11.2.1  Image Denoising

CNNs by their nature are suitable for image clas-
sification and image transformation. They have 
the potential to improve image quality, reduce 
radiation exposure and shorten image acquisition 
in cardiovascular nuclear medicine. This can be 
achieved by a process which can be thought of as 
specialized filtering. Such image enhancement is 
typically accomplished by architectures referred 
to as convolutional autoencoders, U-nets being a 
frequently used architecture [7, 8]. These tech-
niques have been successfully applied to denois-
ing of CT images [9]. Ramon et al. demonstrated 
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in 1052 subjects that higher quality images could 
be generated from low-dose SPECT MPI using a 
3D CNN [10]. The CNN was formed with stacked 
autoencoders designed to predict full-dose 
images from low-dose image reconstructions. In 
simulations, images denoised with the CNN 
using 1/16th of the standard dose achieved simi-
lar image quality to simulated images with 1/8th 
of the dose denoised with a standard filtering 
approach [10]. Song et al. demonstrated that spa-
tial resolution can be improved by using a 3D 
convolutional residual network. The authors 
compared their predicted images with standard 
dose and Gaussian post-filtering, showing a 
reduction of the normalized mean square error by 
6.13% and 11.05%, respectively [11]. Ladefoged 
et  al. evaluated the potential of denoising 
18F-fluorodeoxyglucose cardiac PET images with 
a deep learning model, trained in 146 patients 
and tested in 20 patients, simulating dose reduc-
tions as low as 1% of the injected dose [12]. Their 
denoising models were able to recover the PET 
signal for both the static and gated images at 
these low doses, showing that a significant dose 
reduction can be achieved for myocardial 
18F-fluorodeoxyglucose PET images, used for 
viability testing in patients with ischemic heart 
disease, without significant loss of diagnostic 
accuracy. Both 1% and 10% dose reductions are 
possible and provide quantitative metrics clini-
cally comparable to those obtained with a full 
dose [12]. Our group performed a preliminary 
study of image denoising in order to substantially 
reduce the length of coronary 18F sodium fluoride 
acquisitions [13]. In this study we obtained simi-
lar quantitative metrics from the images recon-
structed from 3 min of list mode data with CNN 
processing as those from traditional reconstruc-
tion with the original 30-min acquisitions. These 
kinds of postprocessing techniques are easy to 
implement clinically and can be rapidly applied 
to reconstructed data.

11.2.2  Image Reconstruction

The aforementioned approaches have utilized DL 
as a post-processing method; however, it is also 

possible to apply DL directly within iterative 
reconstruction framework. For example, Shiri 
et  al. developed a DL model to achieve image 
quality comparable to standard SPECT images 
from incomplete datasets, namely counts 
obtained after reduction of the acquisition time 
per projection or a reduction of the number of 
angular projections [14]. They demonstrated in 
363 patients that the DL model was able to effec-
tively recover image quality and reduced the bias 
in quantification metrics as compared to a stan-
dard iterative ordered subsets expectation maxi-
mization approach. The resulting images 
provided similar automatic quantitation of perfu-
sion (stress total perfusion deficit) and function 
(volume, eccentricity and shape index) compared 
to conventional full acquisition studies [14]. 
DL-based reconstructions are being researched 
extensively in general PET imaging [15–19]—
and it is just a matter of time until they will be 
tested for cardiovascular applications. Given this 
encouraging data, it appears that DL algorithms 
will increasingly be used both during image 
reconstruction and as a post-processing tech-
nique to improve image quality and reduce radia-
tion exposure and acquisition times.

11.2.3  AI Applications in Attenuation 
Correction

During image reconstruction of SPECT or PET, 
attenuation correction is a mechanism that 
enables adjustment for the amount of tissue 
between the source of radiation (myocardium) 
and the detectors of the scanner. This is typically 
achieved by CT on a hybrid PET/CT scanner or 
less commonly by segmented MR on a PET/MR 
system. Such patient-specific attenuation correc-
tion improves the specificity and the accuracy of 
myocardial perfusion imaging in the diagnosis of 
CAD.  However, the attenuation maps on the 
hybrid PET/CT or SPECT/CT need to be prop-
erly registered to the emission data in order for 
the correction to be accurate. Misregistration 
between the perfusion and CT attenuation cor-
rected images often results in artifacts that affect 
the diagnostic accuracy of PET/CT [20, 21] 
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Automatic co-registration of SPECT/PET and 
non-contrast CT is challenging because of the 
scant anatomical landmarks and possibly grossly 
abnormal perfusion images. AI-based techniques 
have been developed to improve registration of 
SPECT perfusion and CT attenuation correction 
maps. Ko et  al. developed a CNN-based algo-
rithm, trained to predict the extent of misregistra-
tion (rigid translations) between images in 
3-dimensions compared to manually co- 
registered SPECT/CT images [22]. The algo-
rithm was trained in 402 cases and tested in 100 
cases, with residual misalignment between image 
pairs of 1.71  ±  1.32  mm during training and 
2.38  ±  2.00  mm during testing as compared to 
experienced operators.

DL methods could be also utilized for generat-
ing attenuation maps from the emission data 
itself. The advantage of such an approach is the 
perfect registration of the emission data and gen-
erated pseudo-CT data, thus potentially avoiding 
misregistration artifacts on a hybrid system. 
Moreover, the use of CT for attenuation purposes 
increases radiation exposure to patients, thus 
simulated CT scan can lower the overall patient 
dose. The feasibility of AI-based alternate attenu-
ation correction maps has been demonstrated for 
brain and whole body PET imaging on PET/MR 
systems, where CT is not available [23, 24]. 
These methods could also be applied to cardio-
vascular imaging. Recently Shi et  al. trained a 
DL algorithm to predict CT-attenuation maps 
from myocardial perfusion SPECT projection 
data and showed that the synthetic attenuation 
maps (pseudo-CT) were qualitatively and quanti-
tatively consistent with the CT-based attenuation 
maps [25]. The globally normalized mean abso-
lute error between the pseudo-CT and standard 
CT-based attenuation maps was 3.60% ± 0.85% 
among the 25 testing subjects. Importantly the 
normalized mean absolute error between the 
reconstructed SPECT images that were corrected 
using the pseudo-CT and CT-based attenuation 
maps was 0.26% ± 0.15%, whereas the localized 
absolute percentage error was 1.33% ± 3.80% in 
the left ventricle myocardium and 1.07% ± 2.58% 
in the blood pool. In the future such perfectly reg-

istered pseudo-CT attenuation maps could be 
used to routinely apply attenuation correction to 
SPECT or PET images without additional radia-
tion exposure, even if CT images are not 
available.

11.2.4  Image Segmentation

Accurate myocardial segmentation is necessary 
to ensure high precision of subsequent image 
quantitation and interpretation in cardiac SPECT 
and PET. While the vast majority of SPECT and 
PET myocardial perfusion quantification soft-
ware packages perform this process automati-
cally utilizing standard image processing 
approaches, AI-based algorithms can potentially 
further improve this task and significantly reduce 
the need for manual adjustments. For example, in 
cardiac SPECT and PET analysis, an accurate 
definition of the mitral valve plane remains a 
problematic area for automatic segmentation and 
this frequently requires manual correction. 
Betancur et  al. developed a novel method for 
automatic valve plane localization [26] ML- and 
validated it with the anatomical information from 
contrast CT angiography -obtained on the hybrid 
SPECT/CT scanner (Fig. 11.1). ML allowed them 
to encapsulate expert knowledge and  capture the 
complex pattern changes caused by valve plane 
variations. Using a support-vector machines 
(SVM) algorithm, they combined features such as 
intensity, shape, and information from gated 
images to localize the most likely valve plane 
position. The SVM algorithm demonstrated close 
agreement with expert interpreters (bias of 1 mm), 
with tighter limits of agreement compared to two 
independent experts (−7 to 10  mm vs. −10 to 
10  mm). Wang et  al. described an end- to- end 
CNN to segment left ventricular myocardium by 
delineating its endocardial and epicardial surface 
[27]. Their approach, which included a loss func-
tion which encouraged similarity and penalized 
discrepancies between the prediction and training 
dataset, demonstrated excellent precision for left 
ventricular myocardial volume (mean error 
− 1.1 ± 3.7%) [27].
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11.2.5  CT Segmentation: Coronary 
Artery Calcium

Coronary artery calcium (CAC) is an unequivo-
cal marker for atherosclerosis. Evidence to date 
has consistently shown that CAC accurately pre-
dicts cardiovascular events [28–36]. Non-contrast 
CT can reliably detect CAC [37, 38]—comple-
menting MPI [39]. Hybrid PET/CT or SPECT/
CT systems are capable of obtaining CAC CT 
scans. Quantification of CAC by CT provides an 
accurate measure of atherosclerotic burden [40]. 

We have shown the complementary role of CAC 
and PET scans (Fig. 11.2) and developed a com-
bined PET+CAC score, which increased the 
diagnostic performance of PET [41, 42]. It has 
also been shown that myocardial flow reserve 
with PET and CAC provide complementary strat-
ification of cardiac risk [43, 44]. CAC scan is 
low-cost and acquired without contrast, but does 
involve additional radiation and imaging time 
and therefore is not always performed. However, 
all current PET/CT MPI scans are acquired with 
ungated, low-dose CT scans for attenuation cor-

Valve plane by human experts Valve plane by SVM model

Fig. 11.1 Automatic valve plane localization (top). 
Bland-Altman difference plots show that global stress 
TPD (red) and rest TPD (blue) for valve plane positions 
were very similar between the results from two experts 
and automatic valve plan localization procedure (SVM) 

(bottom). This research was originally published in 
JNM. Betancur et al. Automatic Valve Plane Localization 
in Myocardial Perfusion SPECT/CT by Machine 
Learning: Anatomic and Clinical Validation. J Nucl Med. 
2017;58:961–967. © SNMMI
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Fig. 11.2 (a) Prevalence of CAD as a function of CAC 
and total perfusion deficit (TPD) on a per-vessel basis 
(n = 456). Prevalence of obstructive coronary artery dis-
ease (CAD) across ischemic total perfusion deficit (ITPD) 
categories and coronary artery calcium (CAC) score cate-
gories (per-vessel analysis, N = 456). The “zero” risk of 
obstructive disease in vessels with either ITPD 0% or 
CAC score of 0, while the highest risk in vessels with 
either ITPD ≥5% or CAC score ≥400 was seen, 
P < 0.0001. (b) tenfold cross-validated receiver operating 
characteristics (ROC) analysis comparing combined per-

formance of per-vessel ischemic total perfusion deficit 
(ITPD) and per-vessel coronary artery calcium score 
(CAC) versus ITPD alone in predicting obstructive CAD. 
* Asterisk indicates AUC of combined analysis—ITPD 
with per-vessel log CA. This research was originally pub-
lished in JNM.  Brodov et  al. Combined Quantitative 
Assessment of Myocardial Perfusion and Coronary Artery 
Calcium Score by Hybrid 82Rb PET/CT Improves 
Detection of Coronary Artery Disease. J Nucl Med. 
2015;56:1345–50. © SNMMI
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rection, which could also be used to estimate the 
CAC burden.

Currently CAC scoring is performed semi- 
automatically, where an operator selects areas of 
calcification, which are subsequently segmented 
automatically. AI was extensively used to develop 
automatic CAC scoring methods in diverse CT 
scans—beyond dedicated gated cardiac CAC 
scans. One approach involved a two-stage CNN 
developed to detect CAC [45], which was then 
evaluated in a large clinical study incorporating a 
wide range of CT scans [46]. Besides CAC scor-
ing, DL methods have been used to detect cal-
cium in the thoracic aorta and heart valves from 
low-dose, non-contrast chest CT [47]. Other 
methods have been proposed using DL with dual 
CNN to process scan rescan datasets simultane-
ously, utilizing 5075 datasets for training and 
testing [48]. This approach achieved classifica-
tion accuracy of 93% as compared with the expert 
interpretation. This method has also been applied 
to detect calcium from CT attenuation correc-
tions scans obtained on hybrid scanners. In 133 
consecutive patients undergoing myocardial per-
fusion 82Rubidium PET/CT, Isgum et al., showed 
good correlation between CAC scores derived 
from non-contrast CT attenuation maps obtained 

on a hybrid PET/CT scanner and dedicated gated 
CAC scans [49]. Example of CAC segmentation 
performed by visual observer and DL is shown in 
Fig.  11.3. Such automatic segmentation of CT 
attenuation maps can provide valuable clinical 
information during reporting of hybrid imaging.

11.2.6  CT Segmentation: Epicardial 
Adipose Tissue

Beyond CAC, computed tomography also images 
the adipose (fat) tissue which surrounds the heart. 
While thoracic and epicardial adipose tissue 
(EAT) is currently not routinely measured or 
reported for cardiovascular risk assessment, EAT 
volume is emerging as an important predictor of 
adverse cardiovascular events and can therefore 
be used for risk stratification [50–54]. EAT can 
be obtained from routine non-contrast cardiac CT 
scans, but typically requires long manual pro-
cessing times to measure. Fully automated meth-
ods for segmentation of pericardial fat from 
cardiac CT have been proposed using DL meth-
ods. Investigators developed fully automated 
CNN for EAT segmentation (QFAT) from non- 
contrast CT [55, 56]. This DL algorithm for EAT 

Stress Rest

Stress

Rest

Automated Manual

Fig. 11.3 Deep learning calcium detection on a CT 
attenuation scan from a hybrid scanner. Fully automated 
CNN (left) agrees with conventional manual calcium 
scoring (middle) of CTAC (red/green—coronary; yel-

low—aorta) in a patient with high-risk multivessel disease 
(by invasive angiography) and a visually and quantitively 
normal SPECT MPI scan (right)
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identification and quantification from non- 
contrast calcium scoring CT datasets was trained 
and validated with tenfold cross validation in 250 
CT image sets by Commandeur et  al. [56] The 
agreement between the proposed approach and 
an expert reader performing manual segmenta-
tion of EAT was high, with no bias and correla-
tions of 0.945 and 0.926  in the training and 
validation datasets respectively [56]. Additionally, 
the variation of DL vs. expert interpretation was 
equivalent to the variation between two experi-
enced observers. These results were further vali-
dated in a multicenter cohort with 850 cases. 
Automated segmentation of EAT was performed 
in a mean time of 1.57 ± 0.49 s, compared with 

approximately 15  min for experts (Fig.  11.4) 
[56]. Therefore, DL allowed for fast, robust, and 
fully automated quantification of EAT from 
 non- contrast calcium scoring CT as well as an 
expert reader and could be integrated easily in 
clinical practice for cardiovascular risk assess-
ment. DL algorithms for EAT quantification from 
CT have been implemented in the research tool 
QFAT at Cedars-Sinai and have been recently 
used in a novel combination of DL and classical 
ML for cardiovascular risk assessment. Such 
EAT measurements could potentially be inte-
grated into comprehensive evaluations using 
hybrid imaging data on PET/CT or SPEC/CT 
hybrid scanners.

a

c

b

Fig. 11.4 Algorithm embedded in research software 
QFAT.  Three-dimensional representations of epicardial 
adipose tissue (EAT) (EAT in pink overlaid on heart ren-
dered in red), (a) as manually identified by the expert and, 
(b) as automatically identified by the algorithm. (c) 
Screenshot of QFAT software with the integrated deep 
learning approach. The pericardium is automatically iden-

tified (yellow arrow) by selecting a new operator (1, red) 
and by using the “extract contours” option (2, green). This 
research was originally published in Radiology: Artificial 
Intelligence. Commandeur et  al. Fully Automated CT 
Quantification of Epicardial Adipose Tissue by Deep 
Learning: A Multicenter Study. Radiol Artif Intell. 2019;1 
(6):e190045. © Radiological Society of North America
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11.3  AI to Improve Physician 
Interpretation

11.3.1  Structured Reporting

One potential implementation of AI is for gener-
ating automated structured reports. This can be 
achieved with “expert systems”—a branch of AI 
in which algorithms utilize a combination of 
observed data and heuristic rules obtained from 
human experts to provide final predictions. 
Garcia et al. demonstrated that an expert system 
algorithm could generate an automated struc-
tured report for a SPECT myocardial perfusion 
exam which was non-inferior compared to nine 
expert readers [57]. The authors have employed 
17-segment smart-scores which use a nonpara-
metric normalized count distribution applied to 
information theory to generate a certainty of 
abnormality. This certainty for each segment is 
modified according to all the available perfusion 
and function information for that segment includ-
ing rest, stress, changes between stress and rest, 
AC and non-AC images, and prone images [57]. 
The algorithm processes this information for all 
segments to generate the automated report. Such 
AI-generated automatic reports can be reviewed 
by physicians to expedite nuclear cardiology 
reporting or potentially improve accuracy.

11.3.2  Disease Diagnosis

AI can be trained to predict the likelihood of 
CAD, for example obstructive CAD, using either 
classical ML methods operating on quantified 
image features, or DL algorithms, which interro-
gate data directly. Arsanjani et al. demonstrated 
that an SVM model [58] which integrated numer-
ical variables—total perfusion deficit (TPD), 
ischemic changes, and left ventricular ejection 
fraction—can significantly improve the diagnos-
tic accuracy for obstructive CAD from MPI com-
pared to standard quantitation with TPD 
(diagnostic accuracy 86% vs. 81%; p  <  0.01) 
[59]. In a separate study including 957 scans 
from over 600 patients with correlating invasive 
coronary angiography data, it was also shown 

that ML using the LogitBoost method outper-
forms two-position combined TPD for diagnosis 
of obstructive CAD [60].

A visual abnormal diagnosis could be used as 
a “gold standard” to train the AI methods for 
diagnosis from nuclear cardiology images. Spier 
et  al. have developed a DL algorithm which 
achieved agreement of ~90% with expert visual 
interpretation of myocardial perfusion [61]. In a 
recent study, Liu et al. have shown that a CNN 
trained and internally cross-validated on over 
37,000 stress-only SPECT perfusion scans can be 
reliably correlated with visual assessment of per-
fusion SPECT studies outperforming the quanti-
tative assessment of stress only perfusion 
developed by the same group [62]. Using physi-
cian interpretation as an external gold standard 
for diagnosis may achieve better agreement than 
with the results of the invasive angiography. 
However, such training by definition cannot sur-
pass the physicians’ performance and can also be 
associated with potential training bias. It remains 
to be seen if such approaches are widely adopted.

Given the findings from the ISCHEMIA trial 
[63], which have raised questions over visual 
interpretation of regional perfusion for guiding 
decisions about revascularization, it is important 
to realize the importance of choosing an appro-
priate comparator for AI analysis. While match-
ing or outperforming automatic software in 
detecting abnormal images is desirable, the 
patient needs to be central in all efforts in the 
medical field. Therefore, in view of the overall 
limitations of MPI and having in mind that the 
goal of noninvasive imaging in CAD is to distin-
guish patients who should proceed to invasive 
testing, it should be preferred to test the diagnos-
tic accuracy of AI with invasive coronary angiog-
raphy as the ground truth. Such a study 
design—testing whether DL algorithms can pre-
dict the likelihood of obstructive CAD directly 
from SPECT images—has been recently 
employed by Betancur et  al. In a cohort that 
included 1638 patients from nine centers, the 
authors demonstrated that DL (using a combina-
tion of CNN and fully connected layers) improved 
detection of obstructive CAD compared to quan-
titation of perfusion with TPD on both a regional 
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and per-patient basis [64]. With matched speci-
ficity, DL improved the per-vessel sensitivity to 
69.8% from 64.4% with TPD (p  <  0.01) [64]. 
Subsequently the same group demonstrated that a 
modified algorithm, utilizing both upright and 
supine imaging data from solid-state SPECT 
scanners, improved the diagnostic accuracy com-
pared to combined upright-supine quantitative 
analysis developed previously by the same inves-
tigators in rigorous multisite external evaluation 
[65]. (Fig.  11.5) These CNN algorithms have 
been recently expanded to demonstrate the pos-
sibility of image-based explanation with image 
attention maps implemented in a clinical proto-
type for CAD diagnosis [66]. For example, this 
technique can be applied to SPECT MPI to high-
light regions of perfusion polar maps which con-
tribute most to the final DL predictions [67].

Apart from diagnosis of CAD, CNNs have 
also been applied to diagnose cardiac sarcoidosis 
from PET MPI, demonstrating improved sensi-
tivity and specificity compared to two methods 
for quantification [68]. In a study based on a total 
of 85 patients (33 cardiac sarcoidosis patients 
and 52 patients without cardiac sarcoidosis) Togo 
et  al. demonstrated that a deep CNN with 

extracted high-level features from the polar maps 
(through the Inception-v3 network) achieved a 
high diagnostic accuracy for detecting cardiac 
sarcoidosis (sensitivity and specificity of 0.839, 
0.870 respectively) [68]. This study focused on 
cardiac sarcoidosis but highlights how AI can 
benefit cardiac imaging beyond CAD.

11.3.3  Risk Prediction

AI algorithms also have a potential role in refin-
ing risk prediction for future adverse outcomes 
following nuclear cardiac imaging. The classical 
ML approach has a particular strength in its abil-
ity to combine large amounts of clinical, stress, 
and imaging data (with variables quantified by 
standard software) in an efficient and objective 
fashion. Arsanjani et al. trained an ML model to 
predict post-MPI revascularization in a cohort of 
713 patients who underwent dual-isotope SPECT 
MPI and subsequent invasive angiography [69]. 
The ML model was compared to visual scoring 
of two expert readers. The ML approach had 
superior area under the receiver operating charac-
teristic curve (AUC) (0.81 ± 0.2) for predicting 
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revascularization compared to one of the readers 
(0.72 ± 0.02, p < 0.01) and quantitative assess-
ment of perfusion (0.77  ±  0.2, p  <  0.01). The 
study showed that the automatic ML approach, 
integrating a wide range of variables, is compa-
rable or better than experienced readers in predic-
tion of early revascularization and is significantly 
better than standalone measures of perfusion. In a 
subsequent multicenter study, Hu et  al. demon-
strated that a similar ML architecture could train 
a model which outperformed current methods for 
quantitative analysis of perfusion for prediction 
of revascularization on a per-patient and per- 
vessel basis [70]. In this study the overall feature 
importance graphs demonstrate that revascular-
ization prediction can be obtained primarily from 
imaging variables. (Fig.  11.6) This study also 
proposed initial methods for explaining the pre-
diction to the physicians by showing the relative 
importance of each feature.

AI models have also been developed to predict 
the risk for major adverse cardiovascular event 
(MACE). An ML model was developed using 
single-center SPECT MPI data (n  =  2619) to 
determine the benefit of combining clinical, 
stress, and imaging features [71]. The ML model, 
trained and tested with tenfold cross-validation, 
had higher area under the receiver operating 
characteristic curve (AUC) for MACE compared 
to either stress TPD or ischemic TPD (AUC: 0.81 
vs. 0.73 vs. 0.71, respectively; p  <  0.01) [71]. 
Importantly, almost 20% of patients in the high-
est MACE risk (ninety-fifth or higher percentile) 
by the ML score had “normal” expert visual 
interpretation of myocardial perfusion highlight-
ing an additional potential role of AI.  Results 
from this study are shown in (Fig.  11.7). ML 
could potentially be used after expert interpreta-
tion to ensure that high-risk patients are not 
missed.

DL models have also been developed to pre-
dict MACE from rest and stress myocardial blood 
flow as well as myocardial flow reserve PET 
polar maps with high predictive accuracy [72]. In 
a study based on 1185 patients who underwent 
13N-ammonia PET, Juarez-Orozco et  al. have 
shown that DL applied directly to polar-maps 
outperforms a comprehensive clinical model 

which includes: baseline characteristics (sex, 
age, body mass index, family CAD history, 
smoking, diabetes, dyslipidemia, and hyperten-
sion), the left ventricular systolic function (rest 
and stress left ventricular ejection fraction), and 
perfusion variables (regional rest and stress myo-
cardial blood flow and myocardial perfusion 
reserve). AI-models could potentially be com-
bined with a Cox proportional hazards model in 
order to provide time-to-event analyses. Such 
methods could provide more precise period- 
specific risk prediction.

Risk prediction can also be performed from 
CT scans automatically segmented using DL 
methods. In a study of 20,084 patients from sev-
eral clinical trials, DL-derived automatic CAC 
score has been demonstrated to be a strong pre-
dictor of cardiovascular events, independent of 
other risk factors (multivariable-adjusted hazard 
ratios up to 4.3). Potentially DL can be applied to 
predicting cardiovascular mortality directly 
(without the need to derive calcium scores). In a 
set of 1583 participants of the National Lung 
Screening, this approach achieved good prognos-
tic performance with AUC of 0.73. Both of these 
studies demonstrated the feasibility of obtaining 
important cardiovascular risk information from 
ungated chest CT scans, while CT scans obtained 
for the purpose of attenuation correction are typi-
cally lower radiation and ungated, which can 
reduce image quality. However, it has been dem-
onstrated that CAC scores obtained automati-
cally from PET CTAC correlate well with scores 
from separately obtained, same-day, ECG-gated 
CAC scans [49] and can be applied for risk pre-
diction. Thus, it should be feasible to apply 
AI-based techniques to CT-attenuation maps of 
cardiac SPECT and PET to automatically extract 
useful diagnostic and prognostic information. 
The prognostic utility of such information was 
recently evaluated on a cohort of 747 patients 
with chest pain who underwent 82Rubidium PET/
CT.  Dekker et  al. showed that a DL model for 
quantification of CAC from non-contrast low- 
dose CT acquired for attenuation correction pur-
poses predicts MACE independent of perfusion 
findings. Importantly, the addition of coronary 
calcium information resulted in a net reclassifica-
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tion improvement of 0.13 (0.02–0.25) [73]. 
Routine implementation of deep learning for 
interrogating non-contrast CT data could provide 
clinicians with additional cardiovascular infor-
mation with no processing overhead, when inter-
preting a nuclear cardiology scan.

The DL segmentation of EAT can be utilized 
for risk prediction models. These automatically 
derived EAT measures have demonstrated inde-
pendent prognostic utility [55, 56, 74–77]. EAT 
may be particularly relevant for improving risk 
prediction in patients with cardiometabolic risk 
factors [78]. An ML risk score, integrating circu-
lating biomarkers and computed tomography 
(CT) measures including CAC score end EAT 

derived by deep learning, has been developed for 
the long-term prediction of hard cardiac events in 
1069 asymptomatic subjects. The ML risk score 
(AUC 0.81) outperformed the CAC score (0.75) 
and ASCVD risk score (0.74; both p = 0.02) for 
the prediction of hard cardiac events [79]. 
(Fig. 11.8) With such tools, important prognostic 
data can be obtained from existing CT scans, 
which would not be obtained clinically due to the 
tedious manual task processing. This technique 
could potentially be used for hybrid (SPECT/CT 
and PET/CT) nuclear cardiology scans, where 
CT is obtained as an auxiliary scan for attenua-
tion correction or with additional dedicated gated 
CT scans.
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Fig. 11.7 Prediction of MACE by machine learning 
(ML). The composite ML risk score from imaging and 
clinical data can be presented to physicians as an annual-
ized event risk. Frequency of patients with normal visual 
diagnosis versus ML score (left). 19% of patients with 
normal visual diagnosis (red arrow) were in the ≥95th 
percentile of MACE risk computed by ML.  Observed 

(pink bars) and predicted (green curve) MACE rate 
according to percentile of ML score (right). Reprinted 
from JACC Cardiovascular Imaging, Vol 11, Betancur 
et  al., Prognostic Value of Combined Clinical and 
Myocardial Perfusion Imaging Data Using Machine 
Learning, Pages 1000–1009, 2018, with permission from 
Elsevier

Fig. 11.6 The machine learning (ML) algorithm evalu-
ated all 55 used variables independently to determine the 
IGR for each variable in each fold. 49 out of 55 variables 
had IGR  >  0 and were selected. ML models were built 
with these selected variables. Most variables in the rank-
ing are imaging variables (blue and light blue bars) with 
regional imaging variables (blue bars) leading, while clin-

ical and stress-test variables also play roles in the predic-
tion. Reprinted from EHJCI, Hu et al., Machine learning 
predicts per-vessel early coronary revascularization after 
fast myocardial perfusion SPECT: results from multicen-
tre REFINE SPECT registry. European heart journal car-
diovascular Imaging, 21:549–559, 2020, by permission of 
Oxford University Press
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One issue in risk prediction with a large number 
of variables is the necessity to obtain these variables 
from health records—which is not always possible 
in real time during clinical interpretation. Therefore, 
it is important to establish if reduced variable mod-
els provide similar prognostic stratification. Haro 
Alonso et al. demonstrated that an ML model utiliz-

ing only 6 variables provided superior risk predic-
tion compared to a logistic regression model with 
14 variables [80]. Such feature reduction would 
simplify the implementation of ML algorithms as 
modules in reporting software by limiting the addi-
tional work required by physicians or support staff 
to enable AI predictions.
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11.4  Protocol Optimization: 
Application to Rest Scan 
Cancellation

While risk prediction may be important for treat-
ment selection, potentially a more practical and 
simple application is to apply such technique for 
imaging protocol optimization. For example, in 
SPECT MPI stress-only imaging is associated 
with up to 60% reduction in effective radiation 
exposure compared to a standard one-day stress- 
rest exam [81] and shortening of examination 
time. Despite these substantial benefits, stress- 
only MPI protocols remain severely under- 
utilized (<12% worldwide <3% in the US)  
[82, 83]. It was recently demonstrated that ML 
models could also be used clinically to automati-
cally identify patients for rest scan cancellation. 
These algorithms could potentially be used to 
identify patients with a low likelihood of having 
obstructive CAD [84] or those with a very low 
risk of MACE [85]. In a study of 20,414 patients 
using matched cancellation rates, subjects 
selected for rest scan cancellation with clinical 
methods had higher all-cause mortality (1.0% to 
1.3%) compared to patients who were selected by 
corresponding ML thresholds (0.2% to 0.6%) 
[85]. The overall performance for risk prediction 
of 5-year risk of MACE was higher for AI-based 
approach than any of the previously proposed 
clinical approaches (Fig.  11.9a). This approach 
could potentially be implemented as a module in 
interpretation or reporting software to reduce the 
proportion of patients requiring rest imaging, 
obviating the need for an on-site physician and 
guaranteeing a high degree of safety. Such 
streamlined automated AI-selection of patients 
for stress-only protocols would lead to significant 
reductions in radiation exposure for patients and 
technical staff, as well as reduction in associated 
costs [86].

11.5  Explainable AI

Methods to improve the explainability of risk 
predictions are critical for clinical implementa-
tion. For traditional ML approaches, individual 

features contributing to the risk score for a given 
subject can be displayed. This approach was 
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employed by Hu et  al. to explain predictions 
regarding MACE risk and the safety of rest scan 
cancellation [70] (Fig. 11.9b). This information 
can be used by physicians to identify clinically 
actionable factors such as hypertension or dia-
betes mellitus. Additionally, these explanations 
could potentially improve the accuracy of com-
bined reporting by allowing physicians to iden-
tify potential errors in ML risk predictions. 
Attention maps could be implemented to explain 
DL model predictions. Attention maps are heats 
maps which can be overlayed on the input 
images to highlight the image regions that trig-
gered the final AI findings by backpropagating 
the finding through the CNN [87, 88]. Similarly 
attention maps can be applied to CT images. To 
reduce computational complexity, researchers 
have attempted direct scoring of CAC through 
regression of the calcium score, avoiding time- 
consuming intermediate CAC segmentation 
[89]. While there was no explicit segmentation, 
attention maps were used for visual explanation 
In direct CAC scoring, accomplished by a 
method termed deConvnet [88]—highlighting 
the image regions contributing to the calcium 
score.

11.6  Summary

AI has become an increasingly important tool, 
with rapidly expanding implications for nuclear 
cardiology and hybrid imaging. AI can signifi-
cantly improve image processing, image recon-
struction, potentially allowing reduction in 
radiation exposure or optimize image segmenta-
tion. Clinically, AI could potentially be imple-
mented in order to provide structured reports, 
diagnose obstructive CAD, or optimally predict 
the likelihood of adverse events. AI shall undoubt-
edly play an increasing role in integrating the 
data acquired across imaging modalities in cardi-
ology. Such areas are hybrid PET/MR, and 
SPECT/CT or PET/CT acquisitions which enable 
collecting a wealth of clinical variables which 
can guide patient management yet require careful 
analysis which could be enhanced with 
AI. Methods to improve the feasibility of imple-

menting ML models and explain AI predictions 
are necessary for a more widespread uptake of 
this promising technology.
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12.1  Introduction

Artificial Intelligence (AI) approaches in medical 
imaging have witnessed significant evolution 
over the past years. The reasons for this are mani-
fold: The field of computer vision has arguably 
seen the most drastic advance in its state of the art 
facilitated by the increasingly widespread appli-

cation of deep learning [1], the introduction of 
large, curated data sets facilitating transfer learn-
ing approaches [2], the substantial research and 
industry interest in the domain and the availabil-
ity of both hardware accelerators (mainly graph-
ics processing units) and software frameworks 
providing pretrained algorithms and approach-
able application programming interfaces lower-
ing the barrier to entry to the field. Furthermore, 
medical imaging represents an excellent target 
for machine learning applications as it is widely 
available in standardized data exchange formats 
and stored electronically [3]. Also, the availabil-
ity of images alongside medical/radiological 
reports provide inbuilt human ground-truth 
assessments of relevant findings.
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The trend of large dataset accrual has increas-
ingly also manifested in the medical field, with 
large databases of medical imaging data being 
assembled as national efforts attempting to pro-
vide a cross-sectional assessment of large popu-
lations of both healthy volunteers and patients. 
The German National Cohort Health Study 
(NAKO Gesundheitsstudie, www.nako.de) and 
the United Kingdom Biobank [4] are examples of 
this development, providing access to thousands 
of imaging data sets to researchers and practitio-
ners in the field, which can be used for the devel-
opment of machine learning algorithms. These 
efforts supplement initiatives such as the [5], rep-
resenting curated collections of oncology- specific 
material including medical imaging but also digi-
tal histopathology or genomic sequence data. The 
increasing roll-out of partially or fully electronic 
patient records signifies a further important step 
towards the collection of relevant metadata, 
which can be included in predictive models 
alongside image-based information. However, 
such data repositories are not without specific 
challenges: Large-scale data collection signifies 
an increased importance of privacy protection, 
for which next-generation methods have only 
recently been introduced [6]. Moreover, data 
quality is paramount for the development of pre-
dictive algorithms, thus care needs to be taken 
that images and clinical metadata are generated 
and expertly curated with high standards of qual-
ity assurance. Algorithms need to be trained and 
validated on diverse and representative patient 
collectives to ascertain not only their validity 
when applied to unseen data from new sources, 
but also to assert their fairness, control their bias 
and render them reproducible and interpretable. 
The deployment of machine learning algorithms 
to clinical routine poses great challenges of its 
own, necessitating interdisciplinary cooperation 
and continuous monitoring and improvements. 
Finally, the reimbursement of algorithm-based 
diagnostic services remains largely unresolved. 
Issues such as these represent but a limited subset 
of the parameters which need to be taken into 
account in the design of artificial intelligence 
algorithms for medical use and are discussed in 

other parts of this book, as well as touched upon 
later in this chapter.

Expectedly for a novel field, most of the litera-
ture published on the topic of artificial intelli-
gence applications in medical imaging has 
focused on diagnostic applications in the field of 
oncology such as the prediction of tumor sub-
types, genetic features, metastatic behavior or 
patient survival. Algorithms targeted at diagnosis 
often provide objectively verifiable outputs (e.g. 
by comparison of the algorithm’s prediction to a 
histopathologic result), and can be compared to 
the performance of human experts (e.g. true/false 
positive/negative rates), facilitating their valida-
tion. The field of therapy monitoring and ther-
anostics, that is, the image-based expression 
quantification of relevant therapeutic targets, has 
however not yet witnessed the same level of 
research activity. Several reasons emerge, such as 
the following:

 1. Treatment represents a heterogenous clinical 
process characterized by the application of sev-
eral therapeutic approaches, often simultane-
ously. For instance, oncologic therapy consists 
of surgical, pharmacologic, radiotherapeutic, 
and other supplemental interventions. 
Establishing causal relationships between a 
certain treatment and its effect is therefore 
often a difficult undertaking.

 2. The interplay between treatment and disease 
is hard to accurately quantify. For example, 
tumors demonstrate therapy escape phenom-
ena leading to treatment resistance, which can 
be hard to distinguish from inefficacy or pri-
mary failure of the treatment.

 3. Cancer imaging is influenced by systemic 
effects such as individual toxicity or comor-
bidities that can have a modulating effect on 
local findings (e.g. perfusion effects of anti- 
vascular agents versus decrease in cardiovas-
cular output causing tissue mal-perfusion) 
and which are hard to deconvolve from spe-
cific treatment outcomes.

 4. Effects mediating treatment response are also 
functions of the complex genetic, transcrip-
tomic, epigenetic, and environmental tumor 
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landscape in which causes and effects can be 
impossible to distinguish.

 5. Novel treatments are continuously introduced, 
thus retrospectively collected data, often the 
bedrock of oncological machine learning 
applications, might not be applicable as algo-
rithm training material.

 6. Finally, cancer is insufficiently understood 
and represents a disease as individual as the 
patients themselves. Intra- and inter- tumoral 
heterogeneity thus pose hindrances to the 
applicability of algorithmic tools aimed fore-
most at generalization, drastically increasing 
the difficulty of training such algorithms.

In attempting to taxonomically classify the 
current literature about machine learning and 
artificial intelligence approaches for treatment 
response prediction and assessment as well as 
theranostics, two patterns emerge:

• The majority of studies focus on the predic-
tion of therapy response from a single time-
point and single surrogate. Such studies 
attempt to capture information from a singular 
imaging study, often the baseline examina-
tion, to predict differences in treatment out-
come by characterizing a specific tumor 
phenotype.

• Studies focusing on longitudinal/integrative 
monitoring of findings, for example, integrat-
ing the features of the tumor alongside rele-
vant metadata and/or their evolution over the 
treatment period to predict the course of 
therapy.

With respect to the defining tumor features, 
research can be stratified into studies aiming at 
the quantification of tumor volume, either purely 
morphological or morphological and metabolic, 
for example, by the definition and automated 
tracking of metabolic tumor volume, and into 
studies concerned with higher-order descriptors 
of disease features or treatment targets. Such fea-
tures can be derived from the tumor itself, for 
example, histogram metrics, texture features etc. 

and/or incorporate other data, such as clinical 
record information.

Finally, from a methodological point of view, 
research can be divided into studies applying tra-
ditional computer vision techniques by utilizing 
predefined mathematical descriptors of the image 
(features) alongside machine learning-methods 
typically used for tabular data analysis such as 
regression models, tree-based algorithms etc. and 
studies applying deep neural networks directly to 
the imaging data. For the former, the term 
radiomics is often used. We would like to point 
out that this distinction is not formal, and the 
term radiomics is used for deep-neural-network- 
based algorithms as well. Due to its ill definition, 
we eschew the usage of this term altogether and 
refer instead to the techniques and algorithms in 
question by their technical description, which we 
believe to be more both clearer and more 
informative.

The methodological concerns applied to a 
study are also a function of the data used for algo-
rithm development. Unlike pure anatomic imag-
ing, which typically takes the form of a 
three-dimensional stack of images in black and 
white, hybrid and functional imaging usually 
provides at least two congruent images for the 
same anatomical location. In case of dynamic 
acquisitions, such as multiple contrast media 
phases, the dimensionality of the data further 
increases. This data is often heterogeneous with 
respect to its spatial resolution (e.g. the technical 
resolution of the scanner or the effects resulting 
from interactions of radionuclides with the tissue 
leading to, for example, the actual resolution of 
PET differing from the nominal resolution of the 
detector elements). These factors need to be 
taken into account and potentially corrected for 
in quantitative imaging studies.

In the following sections we will highlight and 
contrast relevant literature findings regarding the 
application of machine learning to therapy 
response evaluation with a focus on hybrid onco-
logical imaging and provide recommendations 
and future directions for practitioners and 
researchers in the field.
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12.2  Literature Review

12.2.1  Morphological and Metabolic 
Tumor Volume Tracking

12.2.1.1  Volumetry-Based 
Oncological Response 
Assessment Frameworks

The conceptually simplest automated therapy 
surveillance approaches rely on the quantifica-
tion of the reduction in tumor volume using auto-
mated methods, thus mirroring human evaluation, 
for example, by application of the Response 
Evaluation Criteria in Solid Tumors (RECIST). 
RECIST was among the first attempts to quantify 
tumor response to treatment in imaging. However, 
it relies on two-dimensional evaluation and on 
the definition of so-called target lesions, which 
necessarily limits its scope and potential repre-
sentativeness, since individual tumor manifesta-
tions are employed as surrogates of disease 
burden. RECIST evaluation suffers from further 
notable limitations, mainly in tumor entities with 
ill-defined margins (e.g. pancreatic cancer) and 
can be a poor correlate of therapy response due to 
phenomena such as pseudo-progression, whereby 
tumor volume initially increases in response to 
therapy due to inflammatory changes. The 2009 
position paper by Wahl et  al. introduced a sys-
tematic framework combining previous guide-
lines for incorporating metabolic and functional 
imaging-derived information into tumor response 
assessment called PERCIST (PET response crite-
ria in solid tumors). The PERCIST framework 
stipulates the categories complete and partial 
metabolic response, stable metabolic disease, and 
progressive metabolic disease by measurement 
of lean body mass-adjusted standardized uptake 
value (SUL). Similar frameworks have been pro-
posed by other working groups, such as the 
EORTC, as well as combined functional/mor-
phologic criteria such as the Lugano criteria pro-
posed in 2014, incorporating elements of both 
RECIST and radionuclide uptake information.

The quantitative nature of PET allows the cal-
culation of absolute radionuclide activity per vol-
ume tissue, offering benefits over the standardized 
uptake value, which has been shown to depend 

on several extraneous parameters. Thus, more 
recently, parameters like the total lesion glycoly-
sis (TLG) and metabolic tumor volume (MTV) 
have been proposed as more precise biomarkers 
of disease activity. These however require a defi-
nition of the tumor volume itself, also termed 
segmentation.

12.2.1.2  Automated Segmentation- 
Based Volumetry Techniques

The evolution of automated volumetry methods 
thus closely follows the evolution of automated 
tumor segmentation methods. Earlier studies [7–
9] rely on legacy segmentation techniques such 
as region-growing, nearest-neighbor or probabi-
listic graphical methods [10]. Hybrid imaging 
provides a benefit in this regard by providing a 
form of pre-segmentation mask via the high-SUV 
tumor region, helping to guide algorithm behav-
ior. Such iso-contour-based segmentation meth-
ods [11] have been demonstrated, for example, in 
sarcoma. Similar approaches can also be applied 
directly to metabolic tumor volume (MTV) track-
ing without the associated morphological imag-
ing. This approach has shown promise in several 
tumor entities such as rectal cancer [12], lym-
phoma [13], gynecological tumors [14], or 
esophageal cancer [15]. However, it has been 
noted that MTV lacks standardization and large- 
scale external validation and thus cannot be 
assumed to be a universal gold standard for ther-
apy surveillance in comparison to, for example, 
the standardized uptake value (SUV) [16].

12.2.1.3  Evolution of Automated 
Segmentation Using Neural 
Networks

Automated segmentation has witnessed a sub-
stantial evolution with the introduction of neural 
network-based segmentation methods. Earlier 
methods, based on fully convolutional neural net-
works [17] have more recently been superseded 
by encoder–decoder architectures with transverse 
short-circuits, such as the UNet architecture pro-
posed by Ronneberger et  al. in 2015 [18] and 
their conceptual evolutions such as Feature 
Pyramid Networks (FPNs) [19]. A common trait 
of these architectures is the utilization of image 
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information captured at multiple scales and the 
transmission of high spatial frequency (i.e. high 
detail) image information from early to late parts 
of the network with corresponding feature map 
sizes. Encoder–decoder architectures have domi-
nated the segmentation literature since ca. 2015, 
and can be applied both in two and three dimen-
sions. Fully automatic segmentation has been 
proposed as a solution to the aforementioned 
standardization problem [20] and been success-
fully applied to both treatment response assess-
ment, for example, in breast cancer [21], where it 
has been shown to outperform dynamic contrast- 
enhanced MRI, and treatment planning, for 
example, for brain tumor radiotherapy [22].

12.3  Quantitative Image 
and Texture Analysis 
in Oncological Therapy 
Response Monitoring

The advent of quantitative image analysis work-
flows within the past 5 years has generated sig-
nificant interest in the utilization of image-derived 
data for tumor characterization. Such approaches 
rely on either the bulk extraction of tumor-related 
image features, their preprocessing and modeling 
using machine learning (also termed radiomics), 
or the end-to-end analysis of image data using 
neural networks. As discussed above, we will not 
terminologically differentiate between these 
approaches, believing them to not be mutually 
exclusive. However, it is expected that the numer-
ous shortcomings of the so-called radiomics 
workflow will eventually lead to its replacement 
by algorithms and techniques based on more 
robust techniques and models, and not suscepti-
ble to the same technical limitations we will 
describe below. The typical workflow of quanti-
tative image analysis studies is common to both 
approaches, consisting of a volume of interest 
definition step and a modeling step. For volume 
of interest definition i.e. segmentation, both man-
ual and all above-mentioned automatic methods 
are applicable and commonly used. For details on 
the various techniques, we refer to the chapters in 
Part I of this book.

The research developments in the field of 
treatment supervision in hybrid imaging have 
closely followed the main oncologic application 
areas of PET.

12.3.1  Neuro-Oncology

In neuro-oncologic applications, for example, 
studies have focused on the identification of 
molecular phenotypes with relevance for therapy 
and prognosis, such as isocitrate dehydrogenase 
status [23] from amino acid (fluoroethyl tyrosine, 
FET) PET scans in gliomas. The authors found 
that the inclusion of radiomic parameters 
improved diagnostic accuracy compared to PET- 
derived metrics alone. Similarly, a recent study 
by Hotta et  al. found image texture parameters 
derived from 11C-methionine PET to yield excel-
lent discriminative performance between recur-
rence of malignant brain tumors and radiation 
necrosis [24], a topic of critical relevance for 
steering treatment decisions. A multitude of 
works (see e.g. overview in [25]) have focused on 
brain metastases, amongst others for differentia-
tion of primary brain tumors from metastases, 
pinpointing the origin of metastatic lesions to the 
brain and for differentiating treatment-related 
changes from recurrence. Recent studies have 
also focused specifically on treatment, with stud-
ies by Cha et  al. demonstrating strong perfor-
mance of convolutional neural network ensembles 
in the prediction of metastatic lesion response to 
radiotherapy [26] from baseline imaging 
examinations.

12.3.2  Head and Neck Cancers

In head and neck cancers, several studies have 
demonstrated the benefits of integrating quantita-
tive imaging features with morphological tumor 
descriptors for predictive modeling workflows. 
For instance, Fujima et al. showed that in patients 
who underwent chemoradiation treatment for 
pharyngeal cancer, tumor shape and texture fea-
tures were highly predictive of progression-free 
and overall patient survival [27]. They note that 
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clinical parameters alone were not sufficient for 
discriminating survival subgroups in their study. 
Feliciani et al. employed texture metrics derived 
from pretherapeutic FDG-PET and found these 
imaging biomarkers highly predictive of local 
chemoradiation therapy failure [28]. Crispin- 
Ortuzar and colleagues aimed at predicting head 
and neck tumor hypoxia, which is usually 
assessed, for example, with specific hypoxia 
radiotracers such as 18F-FMISO, using FDG- 
PET- derived texture parameters. They report sub-
stantial improvements over baseline FDG-PET 
performance alone and note that quantitative 
imaging biomarkers can provide an alternative to 
hypoxia-specific radiotracers where such are 
unavailable [29].

12.3.3  Lung Cancer

In lung cancer, the relevance of including FDG- 
PET into patient workup was shown in the 2002 
PLUS trial [30], demonstrating a 20% reduction 
in unnecessary surgical interventions. 
Consequently, several studies have investigated 
quantitative imaging features, for example, in the 
prediction of histological subtypes [31] or post-
treatment survival [32]. Oikonomou et al. studied 
the association of quantitative image features 
with several outcomes, including local and dis-
tant disease control, recurrence-free probability 
and survival metrics and found image-derived 
features to represent the only predictors of over-
all survival, disease-specific survival and regional 
disease control [33]. A recent multicenter trial by 
Dissaux et  al. demonstrated that FDG-PET- 
derived texture features predict local disease con-
trol in patients undergoing stereotactic 
radiotherapy for early-stage non-small-cell lung 
cancer and highlighted the potential value of such 
algorithms for therapeutic decision-making. The 
large body of research into machine learning and 
quantitative imaging biomarker applications in 
lung cancer has also provided insight into key 
challenges associated with such applications. 
Yang et al. note that the widespread application 
of texture-derived image features as prognostic 
predictors is impeded by a lack of quality control 

and robustness and proceed to demonstrate high 
inter-rater variability impacting the reproducibil-
ity of texture parameters [34]. Such challenges 
are of course not immanent to thoracic imaging 
workflows and have been repeatedly noted in pre-
vious studies irrespective of imaging modality 
applied [35, 36] with PET-specific solutions 
recently proposed [37].

12.3.4  Prostate Cancer

The role of hybrid imaging in prostate cancer is 
continuously evolving and expanding with the 
application of Gallium or Fluorine-labeled 
PSMA supported by recent meta-analyses [38, 
39] and having been demonstrated to impact 
patient management in a majority of cases [40]. 
The first randomized prospective trial testing the 
influence of PSMA PET/CT on prostate patient 
outcome was announced in early 2019 [41]. 
Quantitative imaging feature studies have 
recently provided promising results applied to 
PSMA PET. For example, Zamboglou et al. dem-
onstrate PSMA-PET-derived quantitative fea-
tures to discriminate between cancer- and 
non-cancer-affected prostate tissue, as well as 
differentiate between Gleason scores of 7 and ≥8 
and between patients with and without nodal 
involvement [42]. PSMA expression is an excel-
lent example of a theranostic application, i.e. the 
specific expression monitoring of a therapy- 
relevant target: since Lutetium-PSMA can be 
used for radioligand treatment in advanced pros-
tate cancer [43], machine-learning applications 
predicting response to such therapy directly from 
the images could hence represent a promising 
next step.

12.3.5  Breast Cancer

The field of breast cancer research has witnessed 
among the strongest advances in the utilization of 
quantitative imaging workflows and the applica-
tion of machine intelligence, likely due to the 
high quality of image acquisition because of the 
lack of motion artifacts, the universal 
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 implementation of standardized reporting in the 
form of BIRADS and the high incidence. Hence, 
several studies have proposed image-derived fea-
tures for the noninvasive characterization of 
breast cancer. For example, Antunovic et al. uti-
lized pretreatment FDG-PET/CT of breast cancer 
and found histogram features to be associated 
with histopathological, molecular, and receptor 
expression subtypes [44]. Similarly, Huang et al. 
found image features derived from PET/MRI 
data to be associated with tumor grading, stage, 
subtype, recurrence, and survival [45]. Ou et al. 
utilize machine learning to differentiate between 
breast carcinoma and breast lymphoma based on 
texture features derived from FDG-PET/CT [46]. 
Focused on therapy response prediction, 
Antunovic and colleagues noted the association 
of molecular breast cancer subtypes with distinct 
responses to neoadjuvant chemotherapy and 
developed machine learning algorithms on FDG- 
PET/CT to predict pathological complete 
response in locally advanced breast cancer [47]. 
Ha et al. also utilized FDG-PET/CT to develop 
machine learning-derived metabolic signatures 
of breast cancer associated with Ki67 gene 
expression, pathological complete response to 
neoadjuvant chemotherapy and recurrence risk 
[48]. As noted above, however, such workflows 
are not without challenges and it was recently 
noted in the work by Sollini et al. that most evi-
dence on the utility […] is at the feasibility level. 
The authors recommend harmonization, valida-
tion on representative datasets and the establish-
ment of guidelines for the application of 
quantitative imaging parameters in breast 
 imaging [49].

12.3.6  Gastrointestinal Oncology

The largest body of work regarding therapy pre-
diction using quantitative image-derived param-
eters in hybrid imaging has arguably been 
produced in the area of gastrointestinal oncology. 
In esophageal cancer for instance, several studies 
on radiomics workflows have highlighted the sig-
nificance of heterogeneity-related image features 
and have derived models predictive of prognosis 

and therapy response [50–52]. Yip et al. included 
longitudinally acquired datasets in their model 
and found a decrease in tumor heterogeneity- 
related texture and histogram features to be asso-
ciated with tumor response and patient survival 
[53]. Ypsilantis et  al. employed convolutional 
neural networks on PET scans and found them to 
outperform radiomics models in the prediction of 
therapy response in esophageal cancer [54]. 
Furthermore, sub-regional analyses, taking into 
account intra-tumoral heterogeneity are being 
assessed for their impact on the survival of 
esophageal cancer patients treated with chemora-
diation, shown, for example, in the study by Xie 
et al. [55].

In pancreatic cancer, multiparametric imaging 
and machine learning have been investigated for 
differentiation of inflammatory and neoplastic 
processes [56]. The added utility of hybrid fusion 
imaging for the delineation of tumors has been 
noted by Belli et al. in a recent study [57] with 
applications in quantitative imaging workflows. 
In our own work, we note the importance and 
potential benefits of multiparametric data inte-
gration for accurate prognostic prediction in the 
field of pancreatic cancer [58]. Cui et al. identi-
fied quantitative parameters prognostic of stereo-
tactic radiation therapy in pancreatic cancer from 
FDG-PET/CT imaging [59]. With the evolving 
role of hybrid imaging for therapy planning in 
pancreatic cancer [60, 61] especially with respect 
to neoadjuvant treatment regimens, as well as the 
advances in molecular subtyping including the 
distinction of differentially activated metabolic 
pathways, [62–64], it must be assumed that the 
scope of quantitative imaging workflows will 
soon expand further to hybrid imaging.

In rectal cancer, several studies have investi-
gated the utility of pretreatment quantitative 
imaging biomarkers in the prediction of therapy 
response. The study by Lovinfosse and colleagues 
found texture parameters derived from pretreat-
ment FDG-PET/CT predictive of survival in a 
cohort of patients with locally advanced rectal 
cancer treated with neoadjuvant chemoradiation, 
noting that these features outperformed volume-
based parameters in predictive performance [65]. 
Amorim et  al. compared FDG-PET- and diffu-
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sion-weighted MRI-derived parameters and 
observed the information gained from these 
modalities to be independent and complementary, 
underscoring the relevance of multiparametric 
hybrid imaging workflows in oncology [66]. The 
importance of tumor heterogeneity was noted by 
Bundschuh et  al., who note that heterogeneity- 
related image features are relevant both early in 
the course of therapy and after its completion 
[67]. A similar dual timepoint study was per-
formed by Jeon et al., who performed multipara-
metric modeling including clinical parameters 
and MRI-derived texture features and observed 
changes in these features to be associated with 
distinct risk phenotypes. The authors note that 
their results would be applicable to and benefit 
from the inclusion of functional imaging [68].

12.4  Discussion and Outlook

In this chapter, we review the applications of 
machine learning and artificial intelligence to 
therapy monitoring in the domain of molecular 
and hybrid imaging, as well as theranostics. 
Despite its somewhat earlier stage of evolution 
compared to applications purely focused on diag-
nosis, such as tumor detection or subtype classifi-
cation, the multitude of studies presented 
showcase the intense research interest in the field 
and provide an outlook on the main objectives of 
techniques, algorithms, and applications aimed at 
therapy monitoring and response prediction. 
Evidently, diagnostic and theranostic applica-
tions are closely related. For example, specific 
tumor subtypes are associated with distinct ther-
apy response, providing space for exploration of 
novel therapy targets and specific therapeutic 
agents. The clinical utilization of theranostic 
radiotracers is also expected to expand beyond 
the current main routine application of prostate 
imaging with PSMA: initial studies report suc-
cesses, for example, in the application of texture 
analysis in neuroendocrine tumors [69]. The 
combined application of diagnostic and theranos-
tic radiotracers has also been reported, with very 
recent results showcasing their complementary 
value in the outcome prediction of pancreatic 

neuroendocrine neoplasms [70], expanding on 
previous studies reporting on combined radio-
tracer application [71]. We believe machine 
learning techniques to herald a transition towards 
integrated theranostic applications which will 
likely blur the current borders between diagno-
sis- and therapy-response-focused studies. This 
evolution will obviously not remain without chal-
lenges. Foremost, it will be predicated on the 
development and availability of emerging and 
novel theranostic radiotracers beyond the above- 
mentioned fields of prostate cancer and neuroen-
docrine tumors, as well as the understanding of 
their interaction with biological targets and their 
unique challenges and pitfalls [72], to enable 
their utilization in AI-guided and precision medi-
cine applications [73].

Reviewing the current literature findings, a 
clear trend can be observed from tumor tissue 
and metabolic volume tracking applications 
towards image texture analysis which can be 
ascribed to the above-mentioned rise of quantita-
tive imaging workflows [74] within the past few 
years. We however still observe specific chal-
lenges, several of which are unmet in current 
literature:

Nearly all of the studies outlined above utilize 
hybrid imaging-based texture analysis workflows. 
A more thorough investigation on the differential 
contribution of each modality to the predictive 
model, or an analysis of the added benefit of 
hybrid imaging over a single modality were not 
routinely performed. Anatomic and functional 
imaging have been shown to present specific and 
individual challenges with respect to texture anal-
ysis, rendering such a differentiated assessment 
necessary [75]. Furthermore, the difficulties of 
harmonizing quantitative imaging workflows and 
rendering them robust towards variances between 
diagnostic equipment vendors, differences in 
human performance and unstandardized texture 
feature specifications have been noted extensively 
in the literature [36], mostly aimed at anatomical 
imaging modalities. However, recent works have 
focused on harmonizing texture features specifi-
cally in functional imaging [37] alongside efforts 
for protocol standardization and guidelines aimed 
at hybrid imaging studies [76]. Ultimately, we 
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believe handcrafted quantitative imaging features 
and the field of radiomics to represent an interme-
diate step in the evolution of machine learning 
application in medical imaging towards deep 
learning-based workflows. The latter offer greater 
representational flexibility and robustness, obviat-
ing post-processing and harmonization require-
ments in favor of data diversity and larger patient 
cohorts and rendering them inherently more suit-
able for multicentric studies [77–80]. The advent 
of deep learning and associated advances in image 
registration [81] will also signify greater facility 
in integrating additional information from studies 
acquired at multiple timepoints. Longitudinal 
imaging has been shown to offer deeper insight 
into therapy-related changes in tumor biol-
ogy  [82]; however, it was only performed in a 
small fraction of the studies presented above due 
to the difficulties of acquiring multi-timepoint 
imaging and the escalated requirements towards 
selection of time-stable and reproducible image 
features [83]. Lastly, many of the studies pre-
sented base their assessment of therapy response 
on surrogate measurements, for example, on 
tumor volume decrease or on associations 
between therapy response and a decrease in image 
heterogeneity believed to mirror biological phe-
nomena, which cannot always be objectively vali-
dated. Further more, therapy response is a 
multifactorial process greatly dependent on clini-
cal parameters, which should be included in the 
modeling process [58]. The introduction of algo-
rithms enabling the direct prediction of patient 
survival from images and the associated clinical 
data [84] will thus improve the capabilities for 
pre-therapeutic risk stratification and provide 
higher confidence for guiding therapy decisions.

In conclusion, this chapter discusses the appli-
cations of machine learning-based medical image 
analysis workflows, their applications to therapy 
response monitoring and theranostics in a hybrid 
imaging setting, as well as current and future 
research directions. We believe that the concur-
rent evolution and innovations in the fields of 
oncologic hybrid imaging, theranostics, and 
computer vision will fuel scientific discovery in 
the field and provide the opportunity for clinical 
translation and improvements to patient care.
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13.1  Introduction

Technological advances and high-throughput (HT) 
assays are rapidly changing the way we formulate 
and test biological hypotheses. Advances in imag-
ing modalities, RNA sequencing, and mass spec-
trometry analysis have enabled translational 
research and clinical applications to simultaneously 
view all genes expressed, identify proteome-wide 
changes, and assess interacting partners of each 
individual protein within a biological system. Such 
views are already having an impact on our under-
standing of human disease, particularly in the realm 
of cancer biology [1]. However, it may be challeng-
ing to identify useful information from these stud-
ies, ensure that signal is separated from noise, and 
provide hypotheses for further research, with the 
goal to deliver measurable clinical impact. Often we 
only have fragmented patient cohorts, small number 
of samples with large number of parameters, 
unknown or poorly understood biases of individual 
assays often lead to incorrect data processing which 
in turn leads to incorrect results. Diverse algorithms 
in analysis workflows produce different results, 
often further reducing signal from noise.

Addressing important clinical questions 
requires systematic knowledge management and 
analysis of the large volume of diverse informa-
tion. Biomedical information is inherently multi-
modal, covering clinical parameters, images, 
gene expression, protein expression and protein 
interactions, metabolites, drugs  and pathways. 
Analyzing these data and using it intelligently is 
a challenge because of their complexity, multiple 
interdependent factors, the uncertainty of these 
dependencies, and the continuous evolution of 
our understanding of the data. Proper data man-
agement and analysis will in turn impact preven-
tion, early diagnosis, disease classification, 
prognostics, and treatment planning.

13.2  Artificial Intelligence 
and Data-Driven Science

Artificial intelligence (AI) research focuses on 
development of diverse algorithms, their applica-
tion in multiple areas, and system performance 
and  usability questions. AI algorithms fit into 
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several broad categories, including representa-
tion and ontologies, search and retrieval, feature 
extraction, constraint optimization, and diverse 
learning strategies from classification and clus-
tering, to decision trees, random forest, case- 
based reasoning, support vector machines, Naive 
Bayes, and neural networks.

Algorithms need to be properly trained and 
validated. This requires high-quality datasets, 
properly annotated, with sufficiently large num-
ber of samples for complex domains with high- 
dimensional parameters. Knowing the biases of 
individual  assays used for data generation may 
help avoiding mistakes and reduce unwanted 
influences affecting AI system performance and 

incorrect result interpretation. Evidence-based 
medicine and data-driven science rely on high- 
quality data and independently validated results. 
However, data correctness and truth may not 
always be straightforward to assess and quantify. 
It used to be true that we can rely on peer- 
reviewed, published literature. However, detailed 
analysis of over 2000 retracted articles in life sci-
ence literature identified 67.4% of retractions as 
misconduct, with suspected fraud in over 43% of 
cases, and less than 22% identified as errors [2]. 
The number of retracted papers is growing alarm-
ingly (Fig.  13.1), and many of the retracted 
papers are related to clinical studies, patient care, 
and treatment, and are published in high-impact 

a

b

Fig. 13.1 (a) Adjusted 
to number of papers 
published in a given 
year, retractions have 
increased to over 10% a 
year since 2020. 
(b) The steady increase 
is especially alarming 
when one considers the 
trend over the last 70 
years. The sharp 
jump starts at 2000, but 
the second drastic 
increase is shown during 
the pandemic
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factor journals, and get hundreds or even thou-
sands of citations. Some recent, COVID-research 
related paper retractions were dealt with 
fairly  quickly [3, 4], but the process frequently 
takes months or even years [2] (not surprisingly, 
errors are usually identified twice as fast as 
fraud). This poses a substantial challenge for 
implementing evidence-based medicine, as 
it may take a few years before we realize the evi-
dence is wrong, by which time we not only use 
the knowledge from these papers, but we use data 
to train and test AI algorithms. Training or vali-
dating AI systems on flawed data may not be 
obvious immediately. Open and reproducible sci-
ence requires open publications as well as open 
data; without it it would hard or impossible to 
even identify papers with errors or suspected 
fraud. In addition, open data enables improved 
and richer curation efforts, such as IMEx consor-
tium [5–9]. Well-organized, rich, curated por-
tals  ensure we can implement data-driven 
medicine, and analyze, model, validate and inter-
pret results correctly.

Managing combined molecular, imaging, and 
patient data requires the support of the basic 
knowledge management functions:

 1. Knowledge acquisition—identifying possible 
information sources (i.e., high-throughput 
platforms, instruments and their biases, wear-
able devices), and integrating such informa-
tion into a knowledge base;

 2. Effective knowledge representation—storing 
the knowledge in structures that support fast 
and accurate access, and provide multiple 
“networks” for linking semantics, relation-
ships and guiding analysis, modeling and 
interepretation;

 3. Effective analysis, visualization, interpreta-
tion—supporting scalable access to relevant 
knowledge, multi-dimensional analysis with 
diverse tools, and scalable, intuitive, and inter-
active visualization to support visual data 
mining and interpretation.

Successful integration of such algorithms into 
efficient and effective workflows must consider 
specifics of individual application areas. Medical 
AI applications range from computer vision and 
robotics in computer-assisted surgeries, through 

planning and scheduling of radiology and other 
treatments, data mining and machine learning 
from omics and imaging data, natural language 
understanding for patient records and reports and 
for conversational systems, knowledge represen-
tation and reasoning, planning, scheduling, and 
modeling. Requirements of specific areas intro-
duce additional constraints for AI systems.

Usability questions are important especially in 
critical application such as medicine, but they 
are  frequently ignored or handled only as an 
afterthought, and not planned from the ini-
tial design. This is one of the main reasons why 
despite many published papers in this area, real 
applications in medicine are not frequent. The 
most important issues, especially in biomedical 
applications, include privacy and security [10–
15], trust and robustness [16], ethics and fairness 
[17], uncertainty and reliability [18, 19], repro-
ducibility [20–22] and explainability [23–27], 
and effective human computer interaction inter-
faces [25].

Completely replacing human experts from the 
biomedical workflow is not feasible due to legal 
considerations, but AI-based optimization of the 
workflow can improve quality and reduce costs 
[28]. Human-in-the-loop ensures that cases sub-
stantially different from the training data or com-
plex cases will be handled properly by human 
experts. In addition, future innovation and prog-
ress also requires human-in-the-loop [25]. While 
efforts in democratization of AI enables broader 
application of successful algorithms, it can also 
lead to their suboptimal or completely incorrect 
use and overinterpretation of results, if the users 
are not properly trained and understand required 
assumptions and existing biases, constraints, and 
proper use of such tools.

It is critical to know the end-user of the AI 
system; not only because of appropriate inter-
face, but also because of the need to tailore false 
positives and false negatives towards the applica-
tion use case. For example, a phone-based classi-
fier skin lesions would likely be used by general 
public as a first step in screening, and thus false 
negatives need to be low, at an expense of higher 
false positives.  The workflow would need to 
account for this bias, and the second level assess-
ment would need to reduce false positives with 
additional assessments. However, useful  system 
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built for the expert radiologists should perfectly 
classify “simpler” cases automatically, and char-
acterize  complex cases  for  “discussion” with 
human experts (as in clinical rounds) by using an 
ensemble AI-system that combines multiple 
algorithms (with diverse biases) and is  trained 
on  different data sets (to increase diver-
sity).   Thus, properly using such systems in the 
more complex pipeline could optimize the cost, 
reduce false negatives and false positives, and in 
turn improve patient outtcomes.

Explainability, while often neglected, is grow-
ing in its importance in AI research [29]. Creating 
explainable models is essential in medical appli-
cations to ensure trust in recommendations and 
decision support [24, 30]. It is also vital for 
ensuring system evolution, due to cohort drift, 
change of data and equipment over time, as 
explanations and models help address false posi-
tives, false negatives, identify possible trends and 
patterns or outliers. Explainable models help pri-
oritize validation and identify signal from 
noise  [31].

13.3  Multimodal Imaging 
and Radiomics

Different imaging modalities offer new insights 
[32–36]. Multimodal imaging thus provides more 
accurate and robust biomarkers [36–42]. However, 
computed tomography (CT), ultrasound, magnetic 
resonance imaging (MRI), MR spectroscopy, pos-
itron emission tomography (PET) or optical imag-
ing have varied availability, reproducibility, 
cost-efficiency, acquisition time, and resolution, 
and thus their applications need to be tailored to a 
specific workflow. Regardless of the imaging 
modality, extracting useful features by signal pro-
cessing [43–51] can be enhanced by using AI 
algorithms, which in turn can substantially 
improve data interpretation and patient care [32, 
52–68]. In both cases, one can focus on global or 
local features and implement (semi)manual or 
fully  automated image  segmentation. Important 
characteristics to extract and characterize include 
intensity (histogram, skewness, kurtosis), texture 
(gray level co-occurrence matrix (GLCM), fractal 

analysis, wavelet, quad tree decomposition), and 
shape (sphericity, compactness).

Same as for AI algorithms discussed above, 
reproducibility and robustness of radiomic features 
are essential for generating useful results [69]. 
Standardizing acquisition protocols and “normaliz-
ing” instruments by using phantoms [70–76] are 
essential for integrating larger datasets, validating 
signatures and models on independent datasets, and 
in turn leading to  improving  clinical outcomes 
and results.

While the applications cover diverse medical 
areas, predominant focus is on cancer, as deter-
mined by word frequency analysis in the published 
radiomics-related papers (Fig. 13.2). Imaging fea-
tures/biomarkers can be used individually or in 
combination with other clinical information to diag-
nose and characterize tumors and metastasis [77–
81], and predict immunotherapy targets [45, 64, 
82–87]. For example, frequently used imaging bio-
markers in lung cancer include radiomic features, 
followed by CT features, and neural network-ana-
lyzed PET parameters [88]. While many papers 
show benefits of fully automated AI-imaging sys-
tems [89–95], there is an advantage of using human-
in-the-loop to handle complex cases [96]. 

Combining ultrasound imaging with 
RNA sequencing data helped to identify and char-
acterize at a gene and pathway levels three sub-
phenotypes in  patients with active psoriatic 
arthritis. Considering the sub-phenotypes show 
distinct clinical features, the characterization at 
biological pathway level  helps identify possible 
mechanisms leading to clinical differences and 
potential prevention and treatment [97]. 
Integration can improve confidence in findings 
[98–100], and reduce both type I and II errors. For 
example, in Alzheimer’s disease (AD) different 
studies provide individual insight into early diag-
nosis but also disease progression and treatment 
strategies, such as, imaging [101–108], electroen-
cephalography (EEG) [109], circulating RNA 
[110] or miRNA [111], psychological tests [112, 
113], and sleep pattern (using wearables) [114]. 
Combining individual data sets leads to improved 
diagnostics, e.g., different imaging modalities and 
early diagnosis [115–118], integrated miRNA and 
piRNA [119], combined genetic and biochemical 
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markers [120–124], and combined biochemical 
and cognitive markers [125].

 Further integration of omics methods and algo-
rithms  could lead to an ensemble system, con-
firming some findings and thus increasing 
confidence and reducing false positives and false 
negatives. Omics-based biomarkers may also pro-
vide a less-invasive and cheaper alternative to 
imaging for early detection of AD [126].

13.4  Integrative Computational 
Biology

In systems biology research, we must ensure 
that discovered patterns and proposed models 
are both statistically sound, and biologically 
and clinically meaningful. When analyzing data 
and building predictive models, it is essential to 

critically evaluate and interpret the prediction 
and create plausible and explainable models. 
This will help to ensure that seemingly impor-
tant patterns in data are not artifacts of, for 
example, literature or data collection bias. To 
achieve this, one has to carefully design what 
data is being used to compute background dis-
tribution, how to handle missing values, how to 
preprocess and normalize data, and how to 
adjust parameters for confounding vari-
ables. Systems biology research uses methods 
from multiple disciplines, including variety of 
biochemical assays for omics platforms, diverse 
statistical, signal processing and AI-based algo-
rithms.  As outlined in  Fig. 13.3, on the one 
hand,  translational research influences what 
methods are needed, but on the other hand, new 
method development  drives progress in the 
clinical research. 

Fig. 13.2 Analyzing the frequency of words in radiomics 
literature published so far highlights that clinical applica-
tion focus mostly on cancer (lung and breast), with 
the goal to predict treatment and survival, as highlighted 

by word cloud analysis. Large font size corresponds to 
more frequent terms. Paper titles were obtained from 
PubMed and data was processed using Matlab R2019b 
wordcloud package
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While individual analyses provide useful 
results, integrating them across different modali-
ties—imaging, genomics, proteomics, metabolo-
mics, clinical—may provide superior performance 
and ability to generate explainable models, provid-
ing improved mechanistic insight. Such integra-
tion provides a platform for reinforcement 
modeling—validating and enhancing individual 
models through multiple layers of integration. 
This can be achieved by using fusion [127–129] 
and networks that link individual layers of data 
with relationships, such as transcription factor or 
microRNA regulatory networks, physical protein 
interactions, signaling and metabolic pathways 
[130–132]. These relationships enable us to iden-
tify and explain unexpected patterns observed in 
data [132], identify broader patterns by moving 
from gene/protein-centric to complex/pathway-
centric features [133], and identify broad deregu-
lated signaling cascades [130]. Such integration 
helps reducing noise from individual data sets and 
increases confidence in the result, as highlighted in 
Fig.  13.4. Here, data from the Cancer Genome 

Translational
Research &
Clinical Trials Interactions

Omics profiles

Pathways

Biology
Drugs

Imaging

Methods
Annotation
Integration
Models

Fig. 13.3 Translational research and clinical trials both 
generate data for analytic pipelines and provide validation 
platforms for novel hypotheses and models. Combining 
diverse data from multiple imaging modalities with 
diverse omics platforms, biology assays, drug informa-
tion, pathways, and rich interaction networks creates the 
comprehensive platform for hypotheses generation, lead-
ing to formation and validation of explainable models for 
disease and healthy states. Importantly, the relationships 
across data modalities help reduce biases and errors in 
each individual platform, by de facto reinforcement 
modeling

Fig. 13.4 Data from TCGA LUAD integrated using 
microRNA-gene [135] and protein–protein interaction 
[136] networks. Highlighted are known up−/downregu-
lated and prognostic genes. Network was visualized in 

NAViGaTOR 3.0.13 [137], and the SVG output file was 
processed in Adobe Illustrator 2020 to produce the final 
PNG image
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Atlas and lung adenocarcinoma (LUAD) data set 
[134] were integrated using protein interaction 
networks, microRNA-gene networks, and gene 
ontology annotation. While there are almost 400 
shared gene targets of the nine differential microR-
NAs, too many to interpret or validate, only those 
highlighted have multiple support, and thus higher 
confidence for further functional studies and vali-
dation. Importantly, substantial fraction of 
microRNA targets has been shown as deregulated 
and prognostic in LUAD, as highlighted by node 
outline and protein names. This not only confirms 
the importance of identified deregulated microR-
NAs in LUAD but also provides a possible mecha-
nism and explainable model on how they relate to 
clinically relevant targets. A more comprehensive 
analysis later showed that integrating copy number 
aberrations, gene expression, and microRNAs 
with networks not only explains paradoxical 
expression patterns but also identifies and vali-
dates prognostic genes in LUAD [132].

Analogously, even if all the markers and fea-
tures from radiomics would be sufficient for 

diagnosis or prognosis, molecular profiles, AI 
algorithms, and integrative computational biol-
ogy are needed to identify possible new drug tar-
gets, combination therapies, and select the right 
patient for the right treatment at the right time. 
Recently, a pathway-based patient model com-
bined with multi-scale Bayesian network model 
TransPRECISE provided useful information on 
predicting specific treatment options [138].

Additional benefits can be achieved by  com-
bining imaging and network analysis algorithms. 
For example, fMRI data analysis can be repre-
sented as graphs, such as structural brain networks 
[139], neuro-connectivity after brain injury [140, 
141], or functional connectivity in Schizophrenia 
[142]. Once constructed, these networks can be 
analyzed by the graph theory algorithms (e.g., 
[143–150]) to identify network structure–function 
relationships. As an example, focusing on a pos-
sible connection between AKT and BTK1 
(Fig.  13.5), the network highlights the link 
between musculoskeletal (MSK; red edges and 
red node outlines) and neurodegenerative (NDD) 

Fig. 13.5 Exploring the connection between BTK and 
AKT1, highlighting unique and common disease relation-
ships (neurodegenerative (NDD) and musculoskeletal 
(MSK) diseases) and drug targets, as highlighted by the 
color and font size, as per legend. Protein interactions, 

disease annotation, and drug information were obtained 
from IID v.2018 [152]. Network was created in 
NAViGaTOR 3.0.13 [137], and the SVG output file was 
processed in Adobe Illustrator 2020 to produce the final 
PNG file
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diseases (blue lines and blue node outlines), in 
addition to identifying know drug targets (large 
font).

13.5  Patient-Centric Medicine: 
Preventive and Data-Driven

Understanding and successfully treating multi- 
genic diseases requires systems-oriented research 
focused on the implication of disease-perturbed 
molecular interaction networks and pathways. 
These networks represent crucial relationships 
among genes and proteins, their mutations, chro-
mosomal aberrations, microRNA deregulation, 
and other epigenetic and metabolic changes.

Decision support systems in medicine need to 
be robust across assays, instruments, and patient 
cohorts, handling uncertainty and missing data 
gracefully. However, quality of data and 
literature- based evidence may be questionable 
[2], leading to low reproducibility and errors. 
Due to mistakes and fraud in data and literature, 
these systems must also be able to handle incor-
rect information and data, again highlighting the 
value of integrative approach and explainable 
models  that help separate  signal from noise by 
combining evidence or exploring  explanatory 
relationships.

Genomic medicine enhanced with cognitive 
analytics provides the necessary platform for pre-
cision patient care. Expanding genomic medicine 
with network biology, quantified patient assess-
ment and computational modeling leads to new 
opportunities for translational research and pro-
vide patient-centric treatment strategies. 
Characterizing patient’s life style is vital for 
assessing predisposition, prognosis, and treatment 
outcome. Providing measurable feedback on life 
style change may alter risk, increase compliance, 
and improve treatment effect.  Importantly, we 
need to also understand the implication of the 
environment, by studying and quantifying effects 
of exposome on human condition [151].

In precision medicine, achieving high accu-
racy/precision evaluated on a specific patient 

cohort is the minimal required condition; ideally, 
the predictor is validated on multiple indepen-
dent cohorts, and there is a clear understanding of 
the boundaries of the model, i.e., where it can be 
safely applied, and where standard of care should 
be used instead. To ensure patient-centric medi-
cine and increase the level of trust in the AI sys-
tems, they must be able to determine confidence 
of prediction for a given patient despite uncer-
tainties. Optimal use of the system would also 
require to know what are the costs and conse-
quences of false positives and false negatives, 
and adjust training, validation, and performance 
accordingly.

While many papers have been published and 
multiple AI approaches passed diverse valida-
tions, their translation to medical practice in gen-
eral remains low. Some of the reasons stem from 
the strict privacy issues that limit access to sam-
ples and thus prevent broad (and proper) training 
and validation. The system has to also integrate 
into the existing workflows, and thus it is impor-
tant to determine what is  the baseline perfor-
mance we strive to achieve, and who and how 
will use the system. Are we striving to build sys-
tems that are superior to general practitioners or 
systems that improve performance of experts, by 
automatically solving simpler cases and aug-
menting human expert performance in solving 
complex cases by providing multiple views, clas-
sifications and annotations? For example, as 
shown in  [153], an AI system is on par with 
human experts in the UK (also because the UK 
system uses two radiologists to make a decision), 
and the same AI system is superior to a radiology 
reader in the US, where single expert is sufficient 
to make a decision.

One size does not fit all. Unusually complex or 
rare cases are often discussed at clinical rounds, to 
ensure best possible treatment and continuous 
learning. Thus, using an ensemble of AI systems 
would help ensure high accuracy and lower false 
positive and false negative rates. The systems should 
have clear boundaries based on training/validation 
cohort characteristics, defer the analysis to human 
experts when dealing with outliers, and provide 
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confidence in and explanation of the decision sug-
gested. Considering risks and costs of care path, 
such ensemble systems would further enable to pri-
oritize and optimize decision recommendations.

While we characterize diseases with the latest 
molecular technologies, e.g.,  (single cell) 
RNA sequencing and proteomic and metabolomic 
platforms, we continue collecting other patient data 
unreliably and sporadically, much of it using ques-
tionnaires or snapshots of sampled measures. We 
know that tobesity correlates with the risk of many 
diseases, including heart condition, diabetes, and 
cancer. Just one example of many; we know that 
body mass index (BMI) is an imprecise and limited 
estimate of overall fat percentage and fitness, espe-
cially when estimated from the weight and height, 
yet it remains to be used in clinical studies, and 
linked to disease risk. It has been introduced 
200 years ago for tracking obesity, but its value is 
diminished when measuring health on an individual 
level. Alternative approaches could be as simple as 
measuring tape (for assessing waist or neck circum-
ference), or more advanced with wearable devices. 
Molecular profiles from omics datasets provide 
detailed information about complex diseases on 
gene, protein, and metabolite level. If we add rich 
and temporal data streams from wearable devices to 
each patient’s record, we will create unprecedented 
opportunities for better understanding how life style 
affects disease and healthy states. Devices such as 
Skulpt (http://www.skulpt.me) will provide details 
about fat deposition and overall fitness, replacing 
the two-century-old BMI.  Based on electrical 
impedance myography (EIM) measurements, it 

provides more detailed and accurate measurement 
of fat and muscle quality, and thus overall fitness 
level for an individual, and quantitative change over 
time.

We need more precise measures of fitness and 
body mass—we need to move from evidence- 
based medicine to data-driven medicine. 
Knowing the heart rate, real-time electro cardio 
gram (ECG), breathing rate and volume, sleeping 
pattern and quality, and overall activity may also 
provide valuable insights into our health, yet, 
measuring them in the clinic, or for a few days 
using holster, provides only a limited  (often 
biased) snapshot, not delivering sufficient value 
for the new data-driven medicine.

Even simple devices, such as bracelets and 
trackers, provide more detailed information about 
sleep patterns, steps, or overall activity, replacing 
vague statements about “150 minutes of moder-
ate activity a week is beneficial” with more pre-
cise measure of duration, intensity, type and 
frequency of activities, and most importantly, 
tracking and adjusting it for each individual 
patient. The challenges are to provide “simple” 
recommendations, empower the user and health 
provider, but that can also create unforeseen 
problems such as depression or eating disorders 
[154]. Increasingly, even with appropriate mea-
sures taken [155], hacker attacks and misuse of 
such personal information have been growing. 
Despite this, there is a steady increase in compa-
nies providing developing  such devices and 
delivering  their potential for scientific use 
(Fig.  13.6). However, having precise measure-

Fig. 13.6 The trend in 
PubMed papers with 
“wearable” is growing 
steadily since 2000. The 
trend continues, as in the 
first half year of 2022 
more articles have been 
published on the topic 
compared to the first 
10 years combined
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ments is not sufficient. Humans are known to 
ignore recommendations and follow their bad 
habits. To fully and maximally engage most indi-
viduals, we need to create smart social network-
ing that will motivate and empower patients and 
increase compliance [156–158].

At present, the data collected by wearable 
devices focuses the consumer market; however, it 
is inevitable that after necessary approvals, appli-
cations in medical settings will prevail. Taking 
frequency of words in PubMed titles related to 
wearable devices already suggest trends, as high-
lighted in Fig. 13.7.

We will need to adapt the computing infra-
structure to handle such streams of data, and to 
find ways to integrate it with imaging and omics 
platforms, and by using AI to analyze and inter-
pret it wisely and effectively. This will enable a 
transformative change to move from reactive to 
preventive and predictive medicine.

However, as proper knowledge management is 
essential in AI and omics, it is crucial withfor 
wearable data streams, to ensure that translational 
research does not chase statistically significant 
patterns that are biologically and clinically use-
less. Since such data are challenging to share, and 
may be easily altered by mistake or fraud, ensur-
ing reproducible science and reducing errors in 
data handling will be paramount.  Privacy 
issues cannot be stressed enough, as they help to 

build trust in using such devices, and thus princi-
ples of privacy by design have to be integral to 
product development and data management [11].

The role of exercise within the scope of cancer 
rehabilitation has been studied in the last decade 
[159–188]. The combination of aerobic exercise 
and resistance training has been shown to provide 
many physiological and psychological health 
benefits for cancer prevention, concurrent treat-
ment, and prevention of recurrence, such as 
maintaining and improving muscle mass, 
strength, cardiorespiratory fitness, body function, 
physical activity levels and capacity, increased 
immune function, less psychological and emo-
tional stress and improved mood, reduced depres-
sion and anxiety, increased quality of life, less 
severe and less frequent symptoms or side effects 
to other treatments, shortened hospitalization, 
reduced likelihood of cardiovascular disease and 
diabetes, and lowers chance of cancer relapse.

Combined, these approaches will change the 
way we consider disease. We will start moving 
from diagnosing and treating disease to prevent-
ing it. Importantly, we could transform health-
care to care about health, and not just sick and 
disease, and to move from cohort to patient- 
centric medicine. Wearable devices will be moni-
toring individuals precisely and longitudinally, 
and they will assess an increasing number of fea-
tures, similarly as we moved from cDNA arrays 

Fig. 13.7 Word clouds from PubMed titles on relevant 
wearable articles (the more frequent the word in the title, 
the larger it is). Created using Wordle (http://www.wordle.

net). While “monitoring” is the main focus at present, 
“patients,” “disease,” and “health” are clearly gaining on 
importance
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to Affymetrix platforms, to RNAseq and scRNA-
seq. This will lead to 24/7 model of data collec-
tion—precisely and continuously tracking our 
activity, sleep, inactivity, food, and calorie intake, 
and pollutants in the environment. Data mining 
and machine learning algorithms will identify 
trends and interesting patterns both at the popula-
tion level and for each individual, with personal-
ized,  calibrated trends  generated and used as 
preventive measures for each patient. The data- 
driven aspect will change how we consider evi-
dence, recommendations, and belief in guidelines. 
No longer will imprecise guidelines with “one 
size fits all” suffice—we need to provide custom-
ized “dose” prescribed for individuals, moving 
towards person-driven approaches. Clearly, “the 
future is connected”, and through the collective 
data handling and analysis [163], we will manage 
even the most complex diseases, eventually.

As highlighted before though, patient-centric, 
data-driven medicine requires high quality, com-
prehensive data, and multiple levels of indepen-
dent validation, with explainable models helping 
to increase trust and usability of such systems. 
Importantly, it is also essential to determine 
who and how will use the system and optimize it 
accordingly, as even useful applications may 
result in negative outcomes when used improp-
erly or suboptimally [154].
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14.1  Introduction

It is no exaggeration to say that we are in the 
midst of an “AI ethics bubble”. The ethics of arti-
ficial intelligence makes headlines in public 
media and the topic of major international con-
ferences. Technology corporations in particular 
are channeling funding into the creation of AI 
ethics institutes and endowed chairs, such as 
recently seen at universities in Oxford, Munich, 
and Cambridge, MA (e.g. [1, 2]). While corpora-
tions have collaborated with academia for many 

decades, if not centuries, what is new here is the 
strong focus on ethics.

Perhaps this is not surprising, given that AI—
used here as an umbrella term for various tech-
nologies that mimic human intelligence—has 
become a symbol for societal concerns about the 
mastery of machines over people. It is seen as 
posing various challenges to society, ranging 
from voter manipulation to other threats to 
democracy [3], to the technological replacement 
of human labour [4]. The replacement of human 
labour is an aspect that is particularly pertinent to 
medicine as well: Some studies predict that up to 
half of all the existing jobs in the United States 
are at risk of automation [5]. Among medical 
professionals, radiologists and pathologists are 
seen as particularly vulnerable to technological 
replacement [6–8]. Against this backdrop, it 
could be argued, technology companies have a 
particularly great need to ensure that their devel-

B. Prainsack (*) 
Department of Political Science, University of 
Vienna, Vienna, Austria
e-mail: barbara.prainsack@univie.ac.at 

E. Steindl 
Department of Innovation and Digitalisation in Law, 
University of Vienna, Vienna, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00119-2_14&domain=pdf
https://doi.org/10.1007/978-3-031-00119-2_14
mailto:barbara.prainsack@univie.ac.at


192

opment and use of AI complies with ethical 
standards.

But there is also a more sinister reason for the 
current ethics bubble. Corporations that use AI to 
develop new services, increase market shares, 
and expand their global reach, are currently 
pitching “ethics” against “regulation”. Strict reg-
ulation of AI, and in particular, machine learning, 
they argue, puts Europe, North America and other 
world regions at risk of falling further behind the 
AI capabilities of China, and is thus problematic. 
They suggest that rather than putting up “red 
tape” for technology, societies should ensure the 
creation of good ethics guidelines that ensure that 
AI is “trustworthy” ([9], and in reference to [10]). 
Such playing out of ethics against regulation is, 
of course, not only politically problematic but 
also factually flawed: Ethics and regulation take 
different forms and are issued by different insti-
tutions, but they mutually influence and enable 
each other. Ethical considerations are always part 
of regulatory processes and guidelines, and regu-
lation, in turn, is necessary to enforce ethical 
norms and commitments. Also in this chapter, 
ethical and regulatory and legal aspects are 
treated as closely intertwined, and not as some-
thing that can, or should be, strictly separated.

Before we look at the legal and regulatory 
aspects of AI in imaging—and zoom into the 
question of who owns the data that is used for this 
purpose—let us first look at what the issues are 
the ethics scholarship has identified in this 
context.

14.2  Opening the “Ethics Bubble”: 
What Are the Concerns?

There has recently been a terminological shift in 
discussions of the ethics of AI. Until about mid- 
2019, the term “artificial intelligence” was widely 
used as an umbrella term for all computational 
processes that mimic human intelligence. More 
recently, following criticism of the unduly vague 
and wide use of the term in ethical and regulatory 
discussions, the terms that are used have become 
more specific: Policy and academic papers alike 
increasingly use the term “machine learning” to 

denote applications of AI that improve with only 
very little, or even no, input from humans. Also in 
this chapter, the term machine learning is used to 
refer to processes and technologies whereby 
machines discern patterns in data with only little 
steering from humans, while “AI” is used to 
denote instances in which debates refer to even 
wider areas of machine “intelligence”, or to the 
attempt to make machines act like humans.

Although AI has a history of many decades 
(e.g. [11]), there has been an increase in AI tech-
nologies in recent years. This is mostly due to 
increasing computational power and increasing 
opportunities for automation and digitisation. 
These, in turn, have been made possible by “data-
fication”, which means the capturing and storing 
of information about people’s lives, their bodies, 
and about their environments, that were previ-
ously unrecorded. For example, even a decade 
ago, the only way to learn about people’s exercise 
levels was by asking them what type of exercise 
they had done within a specific period of time, 
and how much of it. Today, this information is, 
for many of us, automatically captured by activ-
ity trackers built into our smartphones, or mea-
sured in other, often remote and unobtrusive 
ways. The legal scholar Harry Surden called this 
the end of structural privacy [12], meaning that 
the domains of our lives and bodies that remain 
unseen and “uncounted” are becoming smaller 
and smaller. There is ever less of us and our lives 
that is not datafied.

For healthcare, the availability of data about 
various aspects of the lives and bodies of patients, 
often over a long period of time, is seen as an 
unprecedented opportunity. Here, AI is portrayed 
as an answer to the problem of data interpreta-
tion: While the production of data has become 
relatively cheap, and greater amounts of data are 
being produced each day, making sense of these 
data has remained expensive [13]. To bridge this 
“interpretation gap”, machine learning in particu-
lar has been suggested as a solution. Moreover, in 
many aspects of healthcare, AI is already in use: 
from telemedicine to supporting communication 
with patients to billing and insurance. In medical 
imaging, molecular imaging is expected to bene-
fit significantly from machine learning; and deep- 
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learning based interpretation is hoped to help 
reduce interobserver variability in nuclear imag-
ing (e.g. [14]; see also [15]).

What are the key ethical challenges related to 
AI? Over the last years, ethicists and other experts 
have raised a range of concerns related to AI that 
can be largely grouped in three clusters: Fairness, 
accountability, and transparency (FAT). The par-
adigmatic challenge for fairness is biased train-
ing data (see [16, p. 176]): This is the case when 
a specific population group, such as elderly peo-
ple, members of minorities, or the uninsured, are 
underrepresented, or entirely missing, from a 
data set. It is not always straightforward to know, 
however, when bias exists, or when it is problem-
atic [17]. For example, in the context of the train-
ing of  an algorithm to classify pulmonary 
tuberculosis (e.g. [18]), what constitutes a non- 
biased dataset: A dataset that is representative of 
people who typically suffer from TB? One that 
reflects the demographic composition of the 
patient population treated in a specific hospital? 
Or a dataset that represents the demographic 
composition of the city? Of the entire nation 
even? Moreover, if it is known, for example, that 
minority populations have been underrepresented 
in training data for machine learning for years, 
would it be mandated for ethical reasons to overs-
ample members of the minority populations in 
question to make up for previous discrimination? 
There are no definitive answers to these ques-
tions; instead, they illustrate the intricacies of 
knowing when a bias exists, and when a bias is 
problematic, that is, when it has a negative impact 
on equity.1

1 It is mandated here to clarify the difference between 
inequality and inequity. The two terms are often conflated 
in common parlance, but they mean different things. 
Inequality means that resources or benefits are distributed 
unequally over different groups. Using the example of 
health outcomes, if women and men have different life 
expectancies, that is an inequality. Not all inequalities, 
however, are also unfair: if the different outcome can be 
explained by voluntary actions, for example. If Laura and 
Amir, who are married, and who grew up in similar social 
strata and in the same town, have different health status 
because Amir likes to tend to the garden in his spare time 
while Laura goes paragliding, and due to multiple sport-

While fairness ultimately pertains to questions 
about equity, the second criterion within the FAT 
paradigm, accountability, relates to the question 
of who can be held responsible for outcomes. 
Here, also legal questions about liability come 
into play. Very broadly speaking (and without 
consideration of specific configurations in par-
ticular jurisdictions; for more details on these, 
see [16, 19]), liability for harm caused by machine 
learning applications can only kick in when 
someone has been negligent, either a physician or 
a company. Negligence on the side of physicians 
or healthcare workers, in turn, requires that there 
is a duty of care towards patients that was 
breached. As Schönberger emphasises, not all 
erroneous predictions by an AI system that 
caused harm to a patient mean that physicians or 
healthcare organisations they work for are liable; 
they can only be held accountable if they used the 
AI in a way that they should not have [16, p. 197].

The other type of liability besides that of phy-
sicians and healthcare providers is product liabil-
ity. This becomes relevant when patients suffer 
harm from products that were defective in their 
design, manufacturing, or warning—in other 
words, products that did not operate as they 
should have. The legal concept of liability was 
developed with the idea in mind that those held 
liable would be people, not machines. They were 
written for people who have a sense of responsi-
bility, which machines do not have. Moreover, 
machines would not be affected by any of the 
conventional sanctions (e.g. fines) that our law 
system applies. Algorithms, in contrast to book 
titles that suggest otherwise (e.g. [20]), do not 
“want” things—they are not human. This raises a 
few issues when liability laws are applied to 
machines: First, if AI works in the form of non- 
embedded software (meaning that the software is 
not built into other machines such as phones, 
cars, or pacemakers) then it is not clear whether it 
is covered by existing liability legislation such as 

ing accidents she now suffers chronic pain, then the differ-
ence in health status between them is not an inequity. As a 
rule of thumb, if we cannot find any factor that justifies 
different outcomes, then we should treat different out-
comes as inequities.
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the European Union’s Product Liability Directive, 
for example. Second, current approaches bypass 
the problem that the legal concept of liability was 
designed to apply to humans by holding the peo-
ple who build or use the machines liable for the 
actions of the machines. As Schönberger argues 
[16], the more “autonomous” machines become, 
that is, the less their actions can be traced back to 
decisions taken by humans, the more difficult it 
becomes to hold the humans “behind” the 
machines accountable. Scholars are discussing a 
number of ways to address these problems. These 
include giving some kind of personhood status to 
intelligent machines (e.g. [21])2; another solution 
that is discussed is to hold the healthcare profes-
sionals that are using AI even more strictly 
accountable for the “decisions” of the machine 
than at present. For example, doctors would then 
be responsible for harm if they did not take ade-
quate measures to evaluate how accurate the 
algorithm is that they are using [16].

The last notion in the FAT-paradigm is trans-
parency. At times, transparency is a precondition 
of liability, and at other times, it goes beyond it. 
While liability refers to the consequences for 
someone who bears responsibility for something 
in the case of harm (i.e. in the case of negligence 
or even intentional wrongdoing), a certain level 
of transparency is required for the assessment of 
whether any wrongdoing took place. Especially 
in the context of unsupervised machine learning, 
where no function is associated with the input,3 
it is often difficult, if not impossible, to know 
how the software arrived at a specific outcome 
because the path to achieving the outcome was 
not designed into the system, and is impossible 

2 The European Parliament has adopted a resolution in 
2017 with recommendations to the Commission on Civil 
Law Rules on Robotics suggesting to prompt a legal status 
for robots (https://www.europarl.europa.eu/doceo/docu-
ment/TA-8-2017-0051_EN.html?redirect#BKMD-12). 
The Commission, however, did not follow this recommen-
dation in its recent strategies addressing AI.
3 Within supervised machine learning, the machine is told 
by a human what to look for: e.g. it is shown pictures of 
dogs and then asked to look for dogs in other images. 
Within unsupervised machine learning, the machine is not 
told what to look for, but just commanded to look for 
patterns.

for observers to understand. It is because of this 
lack of transparency that some ethicists have 
argued that the use of unsupervised machine 
learning in healthcare is ethically more problem-
atic than supervised machine learning [22]. Such 
proposals, however, neglect the question of 
where in healthcare machine learning is put to 
use. If it is used in core medical contexts, such as 
for diagnosis and treatment decisions, then the 
lack of transparency seems much more concern-
ing than if unsupervised machine learning is 
used within an application to enable video con-
sultations. For this reason, we propose a graded 
scale ethical scrutiny of machine learning in 
healthcare (Table  14.1) that distinguishes 
between three levels of ethical sensitivity: At the 
lowest level of concern are uses of machine 
learning (and other AI) for non-medical aspects, 
such as appointment scheduling or videoconfer-
encing. At the intermediate level are applications 
of machine learning in key medical activities 
such as the establishment of a diagnosis or treat-
ment decision, but where machine learning is 
only aiding human decision making without sug-
gesting a final decision (“thinking AI”). At the 
highest level of ethical sensitivity is the use of 
machine learning for key medical activities 
where the software makes the decision, e.g. if a 
machine that automatically classified a disease 
and gave a treatment decision that was binding 
(“acting AI”), which is so far not part of routine 
clinical care.

Other factors that are to be considered include 
whether or not machine learning is supervised 
(which is less ethically problematic because of 
higher level of transparency) or unsupervised 
(more ethically sensitive due to lower levels of 

Table 14.1 A graded scale ethical scrutiny of machine 
learning in healthcare

Level of ethical 
sensitivity Use of AI
Low AI to support non-medical aspects 

(e.g. scheduling, 
video-conferencing)

Intermediate AI to support diagnosis or 
treatment choice (“thinking AI”)

High AI to make decisions (“acting AI”)
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transparency), whether the tool has been validated, 
and whether the people using the tool are conscious 
of the possibility and consequences of potential 
bias (“fairness through awareness”, [23]).

14.3  Going Beyond FAT: Beyond 
Medical Ethics

Ethics guidelines, ethics codes, as well as papers 
addressing ethical concerns in connection with 
AI in healthcare regularly discuss phenomena 
that map against the FAT paradigm—even if they 
discuss these issues under different labels.  But 
there are also contributions that raise bigger 
questions. A statement by the European Group on 
Ethics on AI, robotics and “autonomous” sys-
tems” (2018), for example, draws attention to the 
need for AI to be put in the service of broader 
societal and ethical values, including human dig-
nity, responsibility, democracy, justice, equity, 
solidarity, sustainability, and deliberation. 
Moreover, scholars such as Karen Yeung use the 
term “ethics washing” to refer to situations where 
AI ethics serves mostly as an empty vessel that 
can be filled with any content that seems suitable, 
and where ethics lacks the necessary tools to 
enforce its own claims [9]. Taken together, these 
points of critique call for an ethics that does not 
accept current institutional arrangements and 
configurations of power as they are, and within 
these, try to make AI “more ethical”. Instead, 
they call for a political ethics that is concerned 
also with how new technological practices affect 
the distribution of entitlements, duties, and 
resources within and across populations. The 
FAT paradigm goes some way in that direction, 
but not far enough.

An important underpinning of such a more 
political ethics of AI is to leave the specificities of 
medical ethics behind, and instead treat AI ethics 
as a form of data ethics. A key argument in favour 
of the latter is that many ethical issues in connec-
tion with machine learning emerge due to the 
integration and use of large amounts of personal 
data. But such a move from medical to data ethics 
may not be as easy to do as it may seem. It would 
require a fundamental shift in the points of refer-

ence used by ethics frameworks—most promi-
nently the focus only  on individual rights. As 
many scholars have argued, most of the risks in 
connection with data use are personal and collec-
tive, and they cannot be broken down into indi-
vidual bits (e.g. [24]). Moreover, many of the 
scholars and approaches that are populating the 
rapidly growing field of AI ethics were trained in 
medical ethics or bioethics. It will be difficult to 
expand (and, in some cases, change) the refer-
ence points and institutional structures that these 
experts are operating with and within.

What is the problem with the categories and 
focus points of medical ethics—why can they not 
be transposed to AI ethics? The main reason is 
that the key reference point of medical ethics is 
the human body; the early codifications of medi-
cal ethics established that people have a right to 
be informed about, and consent to, what happens 
to their bodies. This framework emerged partly in 
response to the horrific human rights infringe-
ments of the Nazi period and other instances 
when harmful or even torturous “experiments” 
were imposed on people under the guise of sci-
ence. Data ethics, on the other hand, does not 
take the physical body as its reference point, but 
the “data body”—which is of a very different 
nature. First of all, the data body does not have 
clear borders and boundaries; the data that repre-
sents a person, namely, the data capturing her 
behaviour, her diseases, etc., is spread over many 
places and can be accessed by many people at the 
same time. This means, also, that the frame of an 
intervention that medical ethics operates with 
does not work for data ethics. An intervention 
into a person’s data is not comparable to a body 
that is operated on to take out a gallbladder, or to 
test a new drug. There is often no clear beginning 
and no clear end to an “operation” on a dataset—
data is interrogated continuously [25]. In addi-
tion, in traditional medical ethics, it is normally 
clearly apparent who carries out the procedure 
and who is at risk: The latter is normally the 
patient. In data ethics, “procedures” can be car-
ried out by many different people in different 
places at the same time—primary and secondary 
data users (the latter are researchers, for example, 
who reuse datasets from other research teams, or 
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even from the clinic), commercial enterprises, 
etc. The people at risk from these procedures can 
be totally unrelated from those who have given 
their data. In other words, risks in data ethics are 
not limited to specific individuals, but they are 
collective.

Understanding AI ethics as a kind of data eth-
ics, and not as a field of application for medical 
ethics, also affects how we think about data 
ownership.

14.4  Who Owns Patient Data?

This simple question is not easy to answer. It will 
concern us for the rest of this chapter. The prob-
lem starts with defining ownership. While the 
related term “property” has clearly definable 
legal meaning, ownership can relate to legal enti-
tlements, but it can also refer to a moral claim on 
something. People who say that they own their 
personal data do not always mean to express a 
legal opinion. Rather than implying that they 
have the right to destroy or sell their data, which 
are some of the key characteristics that distin-
guish property rights from other entitlements, 
what they often mean to say is: “I should have a 
say in who uses my data, what they do with it, 
and who benefits from it”. In other words, owner-
ship is a very broad concept that includes moral 
and legal elements.

But let’s start at the beginning. Can we legally 
own data? In other words, is it possible to own 
something that is (at least in part) immaterial—as 
digital data is (see [26])? The law answers this 
question affirmatively; intellectual property 
rights protection is an example. It gives people or 
organisations the right to control intellectual 
resources that are in part, or even entirely, 
immaterial.

Within the European Union, the EU General 
Data Protection Regulation (GDPR) grants spe-
cial protections to so-called personal data, that is, 
data that refers to a specific identified or identifi-
able natural person. Names and addresses are 
clearly personal data; but IP addresses or genomes 
are too [27]. Personal data is seen as disclosing 
things about people and their lives that they may 

want to be confidential or even private, and peo-
ple may suffer harm if this data and information 
are known or used by others. For these reasons, 
not only GDPR, but most jurisdictions place 
restrictions on the collection and use of personal 
data. But there are crucial differences in how per-
sonal data is protected. To put it very generally, in 
Europe, the predominant view has been to see 
personal data and information as belonging to 
people in a moral sense, without being consid-
ered property in the legal sense. This means that 
personal data is not seen as something to be sold, 
or something that has a market value. The protec-
tion of personal data is ensured through privacy 
rights.

According to European Law, the question of 
whether data can be owned has multiple layers. 
One layer refers to the fact that any data has to be 
categorised as either personal or non-personal 
data. Personal data is protected by a number of 
fundamental individual rights, such as the right to 
be informed, the right of access, the right to rec-
tification, the right to erasure, the right to restrict 
processing, the right to data portability, the right 
to object, and rights in relation to automated 
decision-making and profiling (see Chap. 3 
GDPR). These individual rights continue to exist 
as long as the data has not been anonymised—
this means that, taking into account all the means 
reasonably likely to be used, the data does no lon-
ger relate to an identified or identifiable person 
(i.e. all links to do so have been destroyed). In 
other words the conception of personal data 
within the GDPR cannot be aligned with a third 
party owning somebody else’s personal data.4 It 
also means that, in the European context, the 
question of ownership only arises regarding non- 
personal data. And this is where the next layer 
comes in: as data does not easily fit into either 
one of the traditional legal categories of material 
or immaterial, it cannot be subsumed under prop-
erty that is moveable or intellectual property. The 
European Commission itself stressed that current 

4 The question of lawfulness of processing of special cat-
egories of personal data according to Article 9 GDPR has 
to be seen apart from any kind of possible ownership and 
is therefore not discussed here.
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intellectual property laws are not a suitable tool 
for data governance [28].

In the United States, debates about whether 
personal information should or could be viewed 
as property have been complex. Some authors see 
property rights as the best way of protecting 
 personal data [29]. Partially, this notion is rooted 
in the important role that property rights play in 
American self-conception. Property rights, under-
stood—in William Blackstone’s deliberately pro-
vocative description—as ‘that sole and despotic 
dominion which one man claims and exercises 
over the external things of the world, in total 
exclusion of the right of any other individual in 
the universe’ [30], are woven into the very foun-
dations of American society and legal culture. 
Even for those scholars who say that this ideal has 
never been implemented in actual practice, prop-
erty rights have nevertheless played a much more 
important role in the United States than in Europe.

In U.S. discourse, treating personal data as prop-
erty has served the important purpose of overcoming 
the shortcomings of U.S. data protection systems [31, 
pp.  507–508]. In contrast to the European Union, 
who have a data protection law that applies to the 
processing of all personal data and expands its territo-
rial scope even beyond European borders, American 
privacy laws are sector-specific; they are tailored to 
specific fields such as healthcare or financial services. 
This has led some scholars to argue that, because 
American privacy laws are relatively weak, property 
rights are the best, or even the only, way to ensure 
people’s control over their data.

Other authors (e.g. [32, p.  1295]) disagree 
with this stance. They argue that “the raison 
d’etre of property is alienability” [32, p. 1295]. 
The meaning of this statement becomes clear 
only if we take a closer look at how property 
rights are organised: It is best conceived as a bun-
dle of entitlements, rather than as one single 
right. It is the bundle of rights, rather than one 
specific characteristic, that sets property rights 
apart from other entitlements to things. Within 
that bundle, there are some “stand-out” rights 
that characterise the bundle.

To use an example from the physical world: 
When someone has borrowed a book from a 
library, the book is in her possession. She is enti-

tled to do a lot of things: to read the book, to con-
trol who else gets to read it, and she can use it for 
other purposes such as place a laptop on top of it 
for a videoconference. She can exclude other 
people from even looking at it. But there are 
things that this person who has taken a book from 
the library is not entitled to do: She must not sell 
or destroy the book. These additional entitle-
ments are reserved to the person or entity that 
holds property rights. In other words, the bundle 
of rights granted to a person due to mere posses-
sion (e.g. having the book in your house after 
having taken it from the library) is less “thick” 
than the bundle of property rights. Property rights 
include all rights that other forms of possessions 
include (the right to possession, income, etc., as 
listed below) plus the right of alienation (selling 
or destroying).

Another example of the difference between 
weaker forms of possession on the one hand, and 
property rights on the other, is renting a flat. As a 
lawful tenant I am entitled to determine who can 
enter the flat, how it is decorated, and what is 
done inside. But only the owner (here: the holder 
of property rights) holds the additional rights that 
are also in the bundle, such as selling the flat. 
(The fact that I am not normally allowed to 
destroy my flat, even if I hold property rights, 
illustrates that even property rights are not unlim-
ited—even they can be restricted to protect 
important other rights and interests. In the inter-
est of public safety and security I am not allowed 
to burn down my flat, or to neglect it to such an 
extent that it becomes a public nuisance).

Back to digital data. But how does this differ-
ence between property rights and “weaker” forms 
of possession that apply to tangible goods such as 
books or flats work with intangible things such as 
data? As noted, although data has a tangible, 
material element, including the technical infra-
structures that enable its collection, storage, and 
use, at least a part of them is immaterial.

In order to answer this question it is helpful to 
unpack the bundle of rights and entitlements that 
make up property rights. Denise Johnson [33], 
drawing upon Honore’s famous work in the 
1960s [34], names the following entitlements as 
part of the bundle of property rights:
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 1. The right to possess. Just as the example of 
the library book, or the rented flat, below, the 
person who rightfully possesses has 
 exclusive control of a thing. When the thing 
that is owned is intangible, then, as Honore 
put it, possession is the right to exclude oth-
ers from using or benefitting from the thing. 
Moving to the digital realm, for data in the 
healthcare domain, such as imaging data and 
lab results, it is very difficult to conceive 
what such “exclusive” control would look 
like. When an imaging department that does 
a cardiac perfusion scan on a patient owns 
the imaging data (because the patient may 
have agreed to this when signing the consent 
form for the procedure) “exclusive control” 
means that they can share the data with third 
parties—they can even sell the data. But 
does it mean that they can exclude the patient 
from accessing their own perfusion scan?, 
Wherever GDPR is applicable, this stance 
would be difficult to argue—because as long 
as the perfusion scan is seen as personal 
data—i.e. as data that is linked to an identi-
fied or identifiable person (note that this 
includes pseudonymised data)—then the 
patient has a right to access—or even initiate 
the erasure—of her own data even though she 
does not hold property rights to it [35].

 2. The right to manage gives people the right to 
decide who can use the thing that is pos-
sessed, and how. It includes the right of lend-
ing or contracting out (see also [36]). This 
right seems relatively unproblematic in con-
nection with digital data, except that it may 
be difficult to exclude patients from using 
their own data as long as this data is consid-
ered personal data—as explained in point 
(1). Referring to our example of the perfu-
sion scan explained above, this means that 
the entity that holds property rights to the 
perfusion scan data can decide who gets 
access to it, for what purpose it can be used, 
and who can commercialise it. They may 
not, however, be able to refuse patients 
access as long as the imaging data can be 
linked to an identified or identifiable person.

 3. The right to income allows the property 
rights holder to allow others to use the thing 
and to pay her for this use. This right is 
closely related to the previous one, namely 
the right to manage; the difference between 
the two is that the right to income focuses on 
the money that one receives in return—for 
other people using the thing, for example 
(see also [36]). This seems no more difficult 
to enforce in the case of digital data than it is 
with owning a physical object.

 4. The right to capital—which is the right that 
allows a person to alienate the thing, namely 
to give it away, to consume it, to change it, or 
to destroy it. The problem here is that it is not 
so easy to decide what “consuming” or 
“destroying” data means. Physical things are 
consumable and rivalrous: They can be ‘used 
up’, and the use of the good by one person 
affects the use of the good by others. Many 
authors argue that the same cannot be said 
for digital data, as they are considered to be 
neither consumable nor rivalrous: The perfu-
sion scan data does not disappear, or deterio-
rate, if lots of people use it; and one research 
group using it does not detract from the util-
ity of the data for another. Having said this, 
whereas the data itself is not consumable or 
rivalrous, their value can be: the value of a 
dataset can be highest for those who have 
exclusive use; and it can, of course, be 
affected by many people using it. Think of 
proprietary information such as search algo-
rithms, or information on commercial merg-
ers that are likely to affect stock prices, for 
example. For these reasons, digital data is 
best described as simultaneous [26]: It can 
be in more places than one at the same time, 
it can be copied and used by several people 
at the same time, independent of what the 
others are doing, and it leaves traces even 
when it is deleted. Because the value of data 
can be rivalrous, it is arguably this multiplic-
ity of data that is the key difference between 
physical entities and digital data with regard 
to the right to capital. In situations where 
those holding property rights to data cannot 
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control all copy of the dataset (or do not even 
know where all the different copies are), the 
right to capital may be difficult to enforce.

 5. The right to security protects the rights-
holder from expropriation. In Quigley’s 
words [36, p. 633], it is “the assurance that a 
person […] will not be forced to give it up 
without adequate recompense.” It is not dif-
ficult to conceive of this right with respect to 
digital data.

 6. The power of transmissibility means that 
the rights holder can give the thing that s/he 
owns to somebody else, either before or after 
his/her death. Also here, it is not difficult to 
imagine this right to be applied to digital 
data (for the instrument of post-mortem data 
donation specifically, see [26, 37]).

 7. The absence of term: This means that the 
length of ownership is not time-limited.

 8. Now we are moving into the provisions 
within the bundle of property rights that are 
duties and liabilities rather than entitle-
ments: The first one is the prohibition of 
harmful use, meaning that even the person 
who owns a thing is not free to do with it 
whatever she pleases; the boundaries of her 
freedom are the rights of others. In the 
physical world this is best described with a 
knife: Even if I hold all entitlements of the 
bundle of property rights to the knife I am 
not allowed to use it to cut into another per-
son. With regard to data, the prohibition of 
harmful use raises really interesting ques-
tions: Does this only mean that the data 
owner herself is not allowed to use the data 
in a harmful way? Or does it include a duty 
to actively prevent that others can use the 
data in a harmful way? Does this mean that 
restrictions of data sharing may be required 
as a preventive measure? These questions 
remain open.

 9. Those who hold property rights are also lia-
ble to execution; which means that the thing 
that is owned can be taken away for the 
repayment of a debt, for example. It is con-
ceivable that this would apply to digital data: 
if the data has commercial value, ownership 

of a dataset could be taken away to pay for 
something that the rights holder owns.

 10. Last but not least, property rights have a 
residuary character: This means that, even 
if the property rights holder has given away 
many entitlements within the bundle (e.g. 
she has leased her property to someone else), 
she still holds whatever is left of the bundle. 
To the extent that the bundle of property 
rights can be applied to digital data, the 
residuary character does not pose any addi-
tional complications.

In sum, many of the entitlements and duties 
within the bundle of rights that constitute prop-
erty rights—which were originally developed for 
physical things—cannot be neatly transposed to 
digital data. Because of the multiple nature of 
digital data (the ability of digital data to be at sev-
eral places at the same time), it is more useful to 
speak about the right to control data in the con-
text of medical imaging than about data owner-
ship. Because of the complexities laid out in this 
chapter, and because of the moral and legal con-
notations of the term, the notion of ownership 
tends to confuse more than it clarifies when 
applied to digital data.

14.5  Conclusion

This chapter started with the diagnosis that we 
are amidst an “AI ethics bubble”, where espe-
cially corporate interest in ethics of AI and 
machine learning is extremely high. Technology 
corporations and other businesses provide fund-
ing for ethics institutes and endowed chairs on AI 
ethics at leading universities, and co-opt academ-
ics into the ethics governance of their own com-
panies. The pitching of “ethics” against 
“regulation” has been part of this process.

Taking the stance that ethics and regulation, 
albeit having different emphases, complement 
and require each other, rather than being clearly 
separable, this chapter then opened up the “ethics 
bubble” of AI. Our diagnosis was that most of the 
ethical concerns identified and discussed in this 
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context map against the so-called FAT paradigm. 
It orders concerns in several clusters, including 
fairness, accountability, and transparency. While 
this typology is extremely helpful, we proposed 
to take a step further and go beyond the FAT par-
adigm. In order to do so, we suggested to go 
beyond the toolbox of medical ethics and draw 
more strongly upon the instruments in the grow-
ing field of data ethics. This is necessary, we 
argued, because the reference point of medical 
ethics is the physical body, which has clear 
boundaries. The same does not apply to people’s 
data bodies, which are far from clearly bounded: 
Data is multiple in the sense that it can be in sev-
eral places at the same time.

What, then, does this mean for the question of 
data ownership? Who owns the data that medical 
imaging departments work with? The final section 
of this chapter seeks to answer this question by 
discussing how the “bundle of rights” that make 
property rights can be applied to digital data. We 
conclude that because of the multiple nature of 
digital data, some of the entitlements and duties 
within the bundle of property rights can be applied 
to digital data only with difficulty.
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For several years now, the role and place of artifi-
cial intelligence (A.I.) in radiology have been 
discussed and debated in all strata of the radio-
logical field. From university hospitals to private 
centers, from large companies to countless start- 
ups, from scientific societies to medical associa-
tions, all are very actively and vocally involved. 
The U.S.  Centers for Medicare and Medicaid 
Services’ (CMS) decision in September 2020 to 
provide its first-ever reimbursement of a radiol-
ogy A.I. algorithm is expected to open the door to 
broader coverage of imaging A.I. software in the 
clinics. The feeling in radiology is that A.I. is no 

longer a prospect, it is a reality. The physician’s 
attitude has shifted from the fear that “A.I. will 
replace radiologists” to the belief that “radiolo-
gists who use AI will replace those who don’t.” 
A.I. has been much less present in the field of 
nuclear medicine (NM), which is distinct from 
radiology as a medical specialty in most coun-
tries. However, they share similar technologies, 
in particular the cross-sectional techniques used 
in hybrid imaging, e.g. CT and MRI. There is no 
reason that the advances, solutions, and new 
problems highlighted by A.I. in the radiological 
field should not be observed sooner or later in the 
NM field. Some of our practical specificities, 
such as the complication of dealing with short- 
lived isotopes for scheduling the clinical activity, 
or the complexities of individual dosimetry in 
treatments with radiopharmaceuticals, should, on 
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the contrary, constitute excellent fields where A.I. 
helps our practice. Nonetheless, it is indisputable 
that NM is lagging behind radiology in the clini-
cal implementation of A.I. Whatever the reasons, 
increased susceptibility of the NM techniques to 
local methodological variables, difficulty to 
gather large curated datasets or perhaps smaller 
market less attractive for the industry, we do not 
seem close to seeing any reimbursement of an 
A.I. add-on in our field. It is only a matter of 
time, however, and it should give NM physicians 
the opportunity to better prepare and contribute 
more actively to shaping how A.I. will be inte-
grated into our practice. The question is essen-
tially twofold: what would be the role of NM 
physicians in a medical era where A.I. is more 
and more present, and what must we learn and do 
to shape this future.

In this chapter we shall consider successively 
the benefits of A.I., the threats and the obstacles 
that accompany its implementation, and finally 
the possible steps that need to be taken for a suc-
cessful and mutually satisfactory embedment of 
A.I. in clinical nuclear medicine. These questions 
shall be considered looking at the three axes of 
involvement of A.I. in the field of NM: Physics, 
i.e. how A.I. will impact image acquisition and 
reconstruction; operational, i.e. how A.I. will 
optimize health care delivery through improved 
scheduling and overall organization; clinical 
which encompasses all applications aiming at 
improving the interpretation of the studies (not 
limited to the images) in terms of diagnostic 
accuracy, prognostic and predictive value or indi-
vidual pre-treatment dosimetry.

15.1  I Am Looking Forward 
to More A.I. in My Practice 
Because…

15.1.1  The Images Will Look Prettier

In theory, we nuclear medicine physicians should 
benefit from the introduction of A.I. in all three 
fields, and the physics applications are probably 
the most obviously welcome. Indeed, we will be 
looking at images obtained with lower injected 

activity, i.e. lower patient’s exposure [1]. Studies 
will be shorter to acquire, leading to improved 
patient’s comfort and experience, fewer move-
ment artifacts, and also increased throughput. 
X-ray exposure may also be reduced by using 
deep learning (DL) for attenuation correction, 
hence removing the need for low-dose, attenua-
tion correction only, CTs [2]. A.I. has the poten-
tial to further enhance the image quality through 
improvements in the co-registration of the CT 
and SPECT/PET parts of hybrid studies. This 
may have major implications in particular in 
studies where misregistrations may have signifi-
cant clinical implications. This is the case for 
instance when using the diagnostic CT study 
along with the [99mTc]MAA SPECT/CT study for 
determining the activity of [90Y]-labeled micro-
spheres to inject during selective intra-arterial 
radiation therapy. In summary, considering the 
images and their content as a product, we will be 
working with better-quality material, and nobody 
would argue against that.

Furthermore, improved, faster, and more 
robust automated AI-based segmentation algo-
rithms will streamline the data analysis. For 
instance, [18F]FDG PET/CT is key in the man-
agement of diffuse large B cell lymphomas 
(DLBCL), and the metabolic tumor volume 
(MTV) appears to be a metrics that further 
improves its prognostic value. The current con-
sensus tends towards using a fixed maximum 
standardized uptake value (SUVmax) threshold of 
4, but even when semi-automated, the process is 
tedious, time-consuming, and imperfectly repro-
ducible [3, 4]. Automated algorithms based on 
DL have been proposed for this task [5], and in 
all likelihood most of us should see those as a 
welcome addition to our daily routine.

15.1.2  My Life Will Be Easier

The introduction of A.I. into the operation of the 
NM department should also benefit to the physi-
cians, through optimization of the resources. This 
has been demonstrated in radiology departments 
[6], and it should prove even more relevant in 
NM, which is dealing with isotopes, including 
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short-lived ones. Patients scheduling, radiophar-
maceutical preparation, and report generation are 
operational activities all susceptible to benefit 
from A.I., provided that the physicians, radio-
pharmacists, and administrative staffs strongly 
contribute to framing the A.I. intervention and 
fully stay on top of the processes. The worst-case 
scenario would be an A.I.-supported take-over by 
non-medical, bureaucratic supervisors who 
would consider that A.I. provides them with all 
the insight needed to optimally manage an NM 
Department, without a significant contribution 
from the physicians. A basic task, often over-
looked, but which is responsible for a significant 
waste of time for the NM physician is to recover 
and organize previous studies, not only in NM 
but also in other modalities. It is often difficult to 
streamline a process that involves different pro-
viders, for the PACS and the different viewers 
that may coexist in a department. Operational 
A.I. would be of great value in this setting.

15.1.3  My Patients Will Be Better Off

More generally, NM physicians are used to look-
ing at images but also at data. Radiomics and 
A.I. will provide more data, more reliable data, 
and new ways at interpreting these data. NM 
should therefore be a fertile ground for these 
developments in diagnostic and prognostic 
applications in general. However, we must first 
study the terrain before attempting to consider 
the practical impacts that can be expected in 
clinical NM. Activity profiles are very different 
in academic centers and public and private ser-
vices. They also vary from country to country, in 
Europe and across the world. Some services 
work primarily with single-photon NM, i.e. bone 
scan, myocardial perfusion scintigraphy, and a 
range of studies performed less frequently such 
as kidney, thyroid, or parathyroid scans. These 
studies, when added together, constitute a sig-
nificant contribution to the production of these 
services. The relative contribution of hybrid 
imaging (SPECT/CT) also varies considerably 
from center to center. In yet other departments, 
most of the activity relates to PET/CT, and some 

regularly perform a large number of non-FDG 
studies, such as radiolabeled PSMA ligands. In 
addition, theranostic approaches, with the 
accompanying treatment procedures, also 
occupy very different places in NM centers. 
Therefore, it is clear that considering the poten-
tial impact of A.I. in the field of NM involves 
first trying to understand the major trends in the 
future development of the specialty itself. A sys-
tematic review published in 2019 showed a 
strong imbalance in A.I. applications towards 
oncology, which accounted for 86% of all publi-
cations in A.I. and radiomics fields [7]. Hence, 
one may infer that those centers where oncology, 
and more specifically high-end, tertiary or qua-
ternary-care oncology, is more prevalent, will 
experience the most immediate impact of A.I. on 
their clinical practice. Neurology and cardiology 
are probably the next in line in terms of clinical 
implementation. From the physician’s perspec-
tive, the initial steps in this clinical implementa-
tion process should be quite exciting. We can 
expect to benefit from a growing number of A.I. 
toolkits designed to perform dedicated and 
highly focused tasks, such as characterizing lung 
nodules using [18F]FDG PET and CT, or recog-
nizing normal patterns, e.g. non-pathological 
studies in whole-body bone scans with [99mTc]-
labeled diphosphonates. Such tasks should prove 
to be of great benefit to the specialty, and our 
patients, by improving the quality and reliability 
of the diagnostic information contained in our 
reports. We would always maintain a holistic, 
human-centered approach to the NM imaging 
field, as we would use these A.I. tools to merely 
complement an otherwise unchanged process of 
interpreting images and quantitative data that 
supports them. Personalized dosimetry may also 
be helped by A.I. and thus gain further accep-
tance in the clinical field. For instance, similar to 
diagnostic studies, A.I. may lead to shorter 
acquisition times for the [177Lu] SPECT studies 
or better model and predict voxel-wise dosime-
try measurements. Again, the final decision, i.e. 
should we treat the patient and if yes, the activity 
to be administered, would remain in the physi-
cian’s hands, albeit better armed for making 
those decisions.

15 Artificial Intelligence and the Nuclear Medicine Physician: Clever Is as Clever Does



206

With all of these largely positive elements, the 
transition to AI-augmented nuclear medicine 
should be smooth and easy. All we have to do is 
learn how to use the new tools first and then how 
extensively to trust them. Just as we use quantita-
tive algorithms that compare individual studies to 
population-based normality, like the Cedar-Sinai 
program in MPI or Parametric Statistical 
Mapping (SPM) in FDG brain PET studies, and 
many more. These are useful tools, fully inte-
grated into the clinics, but the conclusions of 
which do not replace those of the NM physician. 
Obviously, however, this is not the full story. 
Indeed A.I. undoubtedly contains threats to the 
practice of nuclear medicine as we know it, and 
as some us might want to keep it. And other 
obstacles exist in the way of a smooth implemen-
tation of A.I. in clinical NM.

15.2  I Am Wary of More 
A.I. Because…

15.2.1  I Don’t Understand It

This represents perhaps the greatest obstacle on 
A.I.’s path towards clinical nuclear medicine. As 
stated previously, we as NM physicians are used 
to dealing with data, numbers, values, quantita-
tive measurements in addition to looking at 
images. We understand the relationship between 
these numbers and results, and the physiological, 
biological, or biochemical processes that under-
lie them. We easily translate time/activity curves 
into glomerular filtration rate. We understand 
how to translate counts/pixel into the SUV, as a 
semi-quantitative measurement of the glucose 
metabolism. We also understand and know very 
well all the factors that affect the variability of 
the SUV.  We also know that we could, if we 
wanted to, obtain absolute measurements such as 
the glucose metabolic rate in mmol/min/g. tissue. 
Every nuclear medicine physician knows the dif-
ference between filtered back-projection and 
iterative reconstruction. We have been trained to 
master the basics of physics and instrumentation, 

and we are able to speak or at least listen to our 
fellow physicists and engineers. However, our 
training in computational science and our under-
standing of probabilistic learning is quite limited. 
For many of us, the leap to radiomics is reason-
ably doable, because they are quantitative fea-
tures that answer formulas, and for which we can 
assess confounders. Basically, the good old SUV 
is nothing more than a basic radiomic function. 
The more advanced features remain very similar 
whether they represent a measure of signal het-
erogeneity, shape or intensity, e.g. the biological 
phenomenon responsible for the accumulation or 
distribution of the tracer. The leap to A.I. is much 
more difficult, because our scientific background 
has not prepared us for it. We do not have the 
mental tools to fully understand the basics of a 
U-Net architecture. Without even considering 
DL, the more basic learning machine algorithms, 
such as the random forests and support vector 
machine, are not entirely part of our natural 
domain of competence. Furthermore, the rela-
tionship between the images, the quantitative fea-
tures abstracted from the images and the biology, 
is lost after going through the DL process. 
Moreover, with A.I. in medicine, high perfor-
mance is often associated with high opacity. 
Hence the call for explainable and interpretable 
A.I.  Some authors have gone further in distin-
guishing explainability and causability [8]. The 
former “highlights decision-relevant parts of the 
used representations of the algorithms and active 
parts in the algorithmic model, that either con-
tribute to the model accuracy on the training set, 
or to a specific prediction for one particular 
observation.” The later refers to “the extent to 
which an explanation of a statement to a human 
expert achieves a specified level of causal under-
standing with effectiveness, efficiency and satis-
faction in a specified context of use.” In other 
words, an algorithm is explainable if we under-
stand the effect of variables on all the moving 
parts that constitute the algorithm, and it fits the 
causability criterion if the end result, i.e. the con-
clusion at the end of the computation, is effi-
ciently and transparently actionable.
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15.2.2  I Don’t Trust It

Obviously, it is difficult to trust processes that are 
poorly understood, which is why explainability 
and causability are prerequisites for trust. Beyond 
that, A.I. is not free of risk, in particular it can 
generate errors. For example, image reconstruc-
tion with DL can lead to artifacts and alterations 
that could have clinical impact [9]. Machine 
learning algorithms, even the smartest, can be 
fooled by minute alterations to the input data and 
completely mishandle the data, in a way that 
humans are not subject to [10]. This is the so- 
called “adversarial machine learning” well 
known in the A.I. community, and the concept 
has been extended to the field of radiomics [11]. 
This raises the specter of an initially effective and 
fully validated A.I. algorithm turning into a mill 
generating mislead interpretations and erroneous 
decisions. The validation process itself needs to 
be validated. The medical literature is not devoid 
of papers that, although peer-reviewed in a seem-
ingly appropriate fashion, are methodologically 
impaired in a severe way. Many questions arise 
concerning the statistical methods for assessing 
the performance of an algorithm. Most articles in 
NM use the area under the receiver operating 
characteristic curve (AUC ROC) as the main 
metric for assessing the performance of the 
model when the outcome is binary, i.e., recur-
rence/no recurrence, malignant/not malignant, 
etc. Yet in presence of unbalanced data, the AUC 
artificially inflates the performance of the model 
[12]. There is a need for at the very least using the 
most appropriate test, e.g. AUC and F-score, 
depending on the sample distribution and hypoth-
esis, and also probably to develop more specific 
tests [13].

Further improving and perfecting the A.I. 
should be accompanied by further safeguards. 
Current typical A.I. models are essentially static, 
in that they have been trained using samples cor-
responding to a population that was fully vali-
dated at the time the model was built. They are 
efficient in test sets that correspond to their train-
ing sets. Those static algorithms may be subject 
to concept drift, which means that even though a 
task was at first efficiently and reliably fulfilled, 

it is no longer the case when the patient popula-
tion evolves or when the technique changes. So 
ideally, the algorithms should not stop learning, 
i.e. they should adapt along with modifications 
introduced in the sets of data to analyze. This is 
the continuous learning or continual A.I. [14]. 
The algorithm learns to learn, incrementally 
adapts to new characteristics found in the input 
data, constantly updating its feature selection to 
better fit its changing environment. Intuitively we 
may realize the advantages of such process, but 
we also realize that it should be associated with a 
constant “revalidation process.” Indeed, the cata-
strophic inference or forgetting may occur when 
extreme outliers wreak havoc into an autono-
mously relearning algorithm. To put it simply, 
even fully validated and trustworthy A.I. algo-
rithms at the time of marketing and clinical 
implementation need to continuously go through 
extremely stringent quality controls.

15.2.3  I Don’t Want It

The ultimate, and most compelling, question is 
“where does the physician fit in this puzzle?” Say 
we end up with a multitude of A.I. algorithms 
dedicated to a multitude of specific tasks, possi-
bly running in parallel and selected depending on 
the patient’s medical profile and issue at hand. 
Say those algorithms are constantly learning, and 
one way or another, the process is safeguarded by 
multiple checkpoints. Once we get there, the role 
of the physician could go either way: The physi-
cians remain in charge of the patient’s care, 
responsible before the law, they keep receiving 
the medical fees, and thus decide when and how 
to use the A.I. tools. Or the physicians do not 
have the knowledge and expertise to correct the 
A.I. tools when they are wrong; they do not even 
know when an A.I.   tool is wrong, and they are 
surrounded by so many effective A.I. tools that 
the gestalt, which was the heart of the medical 
profession, is no more than the vestige of a 
bygone era, in so much so that the physicians no 
longer enjoy the confidence of the public and 
health care providers. The debate remains very 
vivid in the radiology community. The prophecy 
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G.  Hinton playfully made in 2016 (“People 
should stop training radiologists now. It’s just 
completely obvious within five years that DL is 
going to do better than radiologists”) has not 
been verified yet, but the question remains circu-
lated in the decision circles. The Dutch Finance 
Minister Wopke Hoekstra very recently com-
mented that “The work of the radiologist to a sig-
nificant extent has become redundant, because … 
a machine can read the images better than humans 
who studied 10 years for it” [15]. The answers 
coming from medical and scientific organizations 
are only half-convincing. They argue that as the 
medical demand is increasing, A.I. will take care 
of the automated, time-consuming tasks, always 
in support of the physicians, whose number will 
remain stable, hence improving the cost/effec-
tiveness ratio of the radiological profession. They 
add that “AI will still make mistakes, which can 
be easily corrected by a human, by a radiologist. 
But will not be possible for AI to correct itself” 
[15], which as we have seen represents more 
wishful thinking than hard truth. Furthermore, 
considering the balance “who corrects who,” past 
experience with computer-assisted diagnosis is 
not uniformly encouraging as, in some instances, 
radiologists tend to ignore or overturn the com-
puter prompts, even when they are correct [16]. 
Needless to say, implementation of A.I. in the 
clinics has massive implications in terms of legal 
responsibilities, but this topic would deserve a 
full chapter.

15.3  How to Proceed? Let’s 
Be Practical!

Radiology is ahead of nuclear medicine, and 
seems caught in a circular argument: A.I. is there 
to stay, it’s going to be faster, more powerful, and 
more reliable for organizing the departments and 
providing the clinicians with the most relevant 
information, yet radiologists need to remain 
totally in charge and in full control.

The key issues are probably the validation of 
the A.I. algorithm and its endpoint. A typical 
approach is to compare the A.I. with the human 
truth. A good example is provided by Sibille et al. 

who identified, located, and segmented over 
12,000 regions in 629 FDG PET/CT studies per-
formed in lymphoma and NSCLC patients [5]. A 
DL algorithm using both the PET and the CT 
data performed very well for these tasks, with 
87.1% sensitivity and 99% specificity in classify-
ing the lung cancer patients, and 88.6% localiza-
tion accuracy in the same population. Similar 
results were obtained in the lymphoma patients. 
In this case, the network is trained to do as well as 
the physician. It does not reach this level of per-
formance, but close enough, and is thus proposed 
as an adjunct to the physician’s interpretation. In 
this case, we do not know the ground truth, we do 
not know who is right in the discrepant cases 
(human “gold standard” or DL?), but it does not 
matter, as the product is designed to help the phy-
sician accomplishing his task, including the 
potential flaws. This is a very marketable prod-
uct, because it does not change the paradigm, the 
physician remains in charge, and the product 
being a tool that automates and accelerates a pro-
cess. It has been trained to replicate the human’s 
process, and it is designed to be checked by 
humans.

Following this approach does not fully take 
advantage of the capacities of A.I.  Zhao et  al. 
recently went further with their report on DL for 
diagnosing metastatic involvement on bone scin-
tigraphy [17]. They studied over 12.000 cases, 
and the endpoint was clear-cut, i.e. the presence 
or absence of bone metastases in the scintigra-
phy. They showed an overall accuracy of 93.4%, 
with 92.6% sensitivity and 93.9% specificity and 
an AUC of 0.964, consistent across cancer types. 
This compared favorably with the performances 
of experimented NM physicians, as in 13/200 
cases read in parallel, A.I. was correct and all 
three physicians were wrong, compared to only 6 
cases where it was the reverse. And this was 
obtained at lightning speed, as only 11 seconds 
were needed for interpreting 400 cases, which 
is…fast! As a comparison, it took an average of 
136 minutes for the NM physicians to read those 
400 studies, e.g. almost 3 studies per minute, 
which for a human being, is also quite fast. This 
paper is a good case study. Published in a presti-
gious journal, the conclusion is unequivocal: A.I. 
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is faster, better, and cheaper than the physicians. 
Case closed. In this model, there is no need for a 
physician in control, no A.I. at the service of the 
physician, and no A.I. as a complement or sup-
port to the physician. A.I. wins, period. Yet in 
order to go further and implement such algorithm 
in the clinic, one must first answer a few ques-
tions. The study deals with planar scintigraphy, 
although SPECT is recommended and routinely 
performed. That is relevant because the benefit of 
A.I. was primarily in terms of sensitivity. Also, 
adding the CT further improves the diagnostic 
accuracy. The ground truth is also debatable, as 
explained in the methods. And finally, the algo-
rithm is the perfect example of a black box. 
Hence, this tremendous amount of work (over 
12.000 studies!) published in a high-level jour-
nal, provides very little chance of effective clini-
cal translation, if NM physicians are asked to 
give their opinion. The imaging technique is not 
up to date, the gold standard is weak, the method 
is questionable, and the algorithm is opaque. 
Similarly to some extent, major critiques were 
addressed after the publication of a paper report-
ing on a DL algorithm outperforming radiolo-
gists for interpreting mammographies, even 
though this study was methodologically very 
solid [18, 19]. One may wonder whether A.I., to 
be accepted, must be clamped and its power 
limited.

In order to get out of this labyrinth and come 
to the situation where not only nuclear medicine 
physicians coexist with A.I. but patients also 
truly benefit from this development, a multistep 
approach is required. First, physicians must iden-
tify unmet clinical needs, taking into account the 
bigger picture. This means identifying the weak 
points of our techniques, in terms of accuracy or 
reproducibility, in diseases and clinical situations 
where it makes a difference for patients. [18F]
FDG-PET/CT is quite effective in identifying 
residual disease at the end of treatment for dif-
fuse large B-cell lymphoma. The advantage of 
developing A.I. for this task would be marginal at 
best, and difficult to establish. The impact would 
be quite different were it to predicting or assess-

ing early response to immunotherapies, which 
can be very effective but in a limited number of 
patients and with significant costs, both monetary 
and in terms of morbidity. Theranostics is a major 
field for the development of A.I. in nuclear medi-
cine, to help the physicians in identifying those 
who would benefit from the treatment based upon 
the diagnostic companion study, tailor the treat-
ment through fast personalized dosimetry, and 
finally reliably and rapidly assess treatment suc-
cess, or failure. Second, we need to acquire the 
minimal knowledge necessary to get on speaking 
terms with those who will actually develop and 
build A.I.  This goes through changing how the 
research teams are organized, developing strong 
collaborations outside the faculty of medicine, 
and probably partnering with the industry. This 
also implies revamping the education and train-
ing of residents to account for this evolution. We 
have to get better in statistics and computational 
sciences. Third, we need to build multicenter net-
works. It is very unlikely that single-center proto-
cols will manage to gather the amount and 
diversity of data necessary to develop A.I. algo-
rithms directly applicable to the routine clinical 
practice. We need to account for the diversity in 
the hardware performances, acquisition and 
reconstruction algorithms, and population types. 
And finally, we need to set the highest standards 
for validation, not only regarding the methodol-
ogy surrounding the development and testing of 
the A.I. model but also the clinical relevance of 
the question being solved and the clinical appro-
priateness of the population sample being 
investigated.

If we can fulfill these criteria, i.e. if we iden-
tify the need, comprehend the methods, and put 
ourselves in a situation such as to produce reli-
able and reproducible results, then and only then 
will we be fully prepared for the next phase, i.e. 
enthusiastically promoting and advocating the 
A.I.-augmented nuclear medicine to the clinical 
world.
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