
Chapter 5
A Synergistic Forecasting Model
for Techno-Fundamental Analysis of Gold
Market Returns
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Abstract This study presents a novel approach to financial market forecasting
based on a synergistic forecasting model, a type of techno-fundamental analysis
that combines technical analysis indicators with fundamental variables using the
Kalman filter to improve the accuracy of predictions. We used this model to forecast
daily market price returns on gold. The obtained results show that our synergistic
model can significantly deduct the root-mean-square error (RMSE) of the predic-
tions compared to a sole technical and/or fundamental analysis. Also, 67% of the
time, the model significantly and correctly predicted directional changes in prices
one day ahead of time, outperforming the benchmark models.

Key words Gold price · Synergistic forecasting · EGARCH · Support vector
regression · Technical analysis indicator

5.1 Introduction

Gold is one of the most important precious metals for investment, as it maintains its
value over time and can be used for hedging against risks (Khan, 2013; Shafiee &
Topal, 2010). Many investment instruments such as accounts, stocks, derivative
certificates, and contracts for differences have been created based on this precious
metal. For this reason, the ability to forecast gold prices and gold price volatility has
immense importance for the finance community. To this aim, we used a novel
approach called synergistic forecasting modeling. This model expands upon previ-
ous methods by combining information obtained from technical analysis indicators
and fundamental variables using Kalman filtering to improve forecasting accuracy.
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Most changes in gold prices are attributed to demand-side factors. In this respect,
demand for gold is affected by many variables. First, changes in the gold demand
result from changes in sentiments and speculation, which cause daily movement in
gold prices. Sentiments can be measured by technical analysis indicators (Potoski,
2013). Also, several fundamental factors are influential: Intermarket variables such as
the oil price (Zhang & Wei, 2010), financial stress, political uncertainty (Reboredo &
Uddin, 2016), and interest rates (Ul Sami & Junejo, 2017) are considered to be the
most important fundamental factors that affect gold prices (Das et al., 2018).

Following the 2008 economic crisis, gold was considered a safe haven for invest-
ment, and the role of the gold market in the economy increased. Accordingly,
forecasting the price and volatility of gold broadly attracted the interest of researchers
and led researchers to propose a variety of mathematical and hybrid prediction models
(Shafiee & Topal, 2010). Parisi et al. (2008) proposed a recursive and rolling neural
network model to predict the sign variation of gold prices one step ahead by consid-
ering lags in changes to gold prices as well as lags in the Dow Jones industrial
production index. Their method captured 60.68% of true sign variation. Yazdani-
Chamzini et al. (2012) developed an adaptive neuro-fuzzy network based on oil and
silver prices to predict changes in the gold price; this method outperformed the ANN
and ARIMA model, generating a lower root-mean-square error (RMSE) and higher
R-square. Khan (2013) also found that the Box Jenkins ARIMA (0,1,1) method is
suitable for forecasting gold prices. Meanwhile, Kristjanpoller and Minutolo (2015)
applied a hybrid ANN-GARCH model to forecast gold price volatility using foreign
exchanges, the oil price, the Dow Jones index, the London stock exchange index, and
the oil price return as inputs. They found that their hybrid model improved the mean
absolute percentage error in the model compared to the standalone GARCH and ANN
models. Finally, Fang et al. (2018) investigated the impact of macroeconomic vari-
ables on the volatility of US gold futures using the GARCH-MIDAS model. Their
empirical results confirmed that the consideration of macroeconomic variables signif-
icantly improves the ability to predict long-term volatility in the US gold market.

The present research describes a hybrid prediction method: a synergistic fore-
casting model. This model performs a techno-fundamental analysis that fuses a
structural model of technical analysis indicators with the exponential GARCH
(EGARCH) model of fundamental variables, both of which have a significant impact
on the price return volatility of gold. The aim is to create a better forecasting model
that can determine gold price returns one step ahead. The data fusion was performed
by applying a modified, extended Kalman filter to the indicators, wherein the
operational parameters of the Kalman filter were calculated by a support vector
regression (SVR) neural network.

5.2 Data

We applied the proposed model to a sample consisting of daily observations of
fundamental variables and technical analysis indicators from March 2014 to March
2018. The historical returns of gold spot prices in US dollars (XAUUSD) were used
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as the dependent variable of the model. Two types of independent variables were
used in the synergistic forecasting model, namely fundamental analysis and techni-
cal analysis indicators. For the fundamental indicators, the Cleveland Financial
Stress Index (CFSI) was used as a proxy of investor sentiment; this index is released
by the Federal Reserve Bank of St. Louis. Three-month treasury bill (DTB3MS)
interest rates were also used and are considered to be indicators of short-term interest
rates. Two CBOE® volatility indexes, the Gold Volatility Index (GVZ) and the
Crude Oil Volatility Index (OVX), were used as proxies of the implied volatility of
gold and oil options on the Standard & Poor’s depositary receipt (SPDR®) and the
United States Oil Fund (USO®), respectively.

Technical analysis indicators contain rich information about market dynamics in
terms of price and volume and are widely used as inputs in different models for
predicting price turning points and price trends. The lagged values of these variables
have significant forecasting power (Bekiros, 2015; Neely & Weller, 2012). Specif-
ically, the Relative Strength Index (RSI), stochastic indicator (%K), on-balanced
volume (OBV), and standard division indicator (STD) were used in this research.
RSI shows the strength or weakness of trends by measuring the acceleration of price
movement. %K measures the velocity of price by considering the tendency of close
prices. OBV indicates whether the demand or supply side is increasing in the market.
Finally, STD shows the volatility of the gold price.

The descriptive statistics of these variables are listed in Table 5.11. According to
the Jarque-Bera test, with the exception of LGVZ, the variables are not normally
distributed. So, the modified version of the Kalman filter must be applied (Mirza,
2011). Figure 5.1 shows the actual gold price returns in XAUUSD for the forecasting
period.

5.3 Methodology

The applied synergistic forecasting approach is a type of time-series forecasting
model that combines technical and fundamental models for more accurate prediction
(Ebrahimijam et al., 2018). Appendix shows the synergistic model. The first input is
the EGARCH regression, a fundamental model that estimates the impact of eco-
nomic and financial variables on the volatility of gold price returns. Before
performing GARCH-type estimations, the presence of an ARCH effect (Engle,
1982) should be verified. As the logarithm of variance is modeled by EGARCH,
there is no need to artificially impose nonnegativity constraints on the negative
model parameter and asymmetries are allowed. In the following, Eq. 5.1 describes
the EGARCH model (Nelson, 1991):

1According to ADF and Phillips-Perron unit root test all of the variables are stationary at level.
However, because of the space constraint, results are not presented here. They can be submitted
upon request.
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ln σ2t
� � ¼ ωþ β ln σ2t�1

� �þ γ
ut�1ffiffiffiffiffiffiffiffiffi
σ2t�1

p þ α
ut�1j jffiffiffiffiffiffiffiffiffi
σ2t�1

p �
ffiffiffi
2
π

r" #
ð5:1Þ

where σ_t^2 is the conditional variance and u_(t-1) is the error distribution.
The economic and financial variables, short-term T-bills, and the OVX, GVZ, and

CFSI were utilized as exogenous variables by the model to investigate the impact of
these variables on the volatility of XAUUSD. The second input of the synergistic
forecasting model was the prediction of standard deviation obtained from the
structural time-series model of technical analysis indicators, which indicates the
impact of lags in the technical analysis indicators on gold market price volatility.

The third input was the estimated covariance of process noise (Q) for the Kalman
(1961) filter at the center of the analysis. The Kalman filter is a two-step process of
prediction and correction stages (Welch & Bishop, 2001). First, an estimation of the
current state is generated based on uncertainties in the prediction stage; then, it is
updated using a weighted average from the prediction and observation stages, with
more weight being given to the more certain one.

Prediction stage:

bx�k ¼ f bxk�1, uk�1,wk�1ð Þ ð5:2Þ
P�
k ¼ AkPk�1A

T
k þ Qk�1 ð5:3Þ

bzk ¼ h xk, vkð Þ ð5:4Þ

Fig. 5.1 Gold price (XAUUSD) returns
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Update stage:

Kk ¼ Pk
�Hk

T HkP
�
KHk

T þ R
� ��1 ð5:5Þ

bxk ¼ bx�k þ Kk zk � bzkð Þ ð5:6Þ
Pk ¼ I � KkHkð ÞP�

k ð5:7Þ

where f is the predicted state estimation function substituted by the EGARCH model
as a predictor of fundamental variables, h is the prediction of the measurement
function substituted by the structural model of the technical analysis indicators, bx�k is
the prior estimate of the state variables, A _ k is the state transition matrix, P�

k is the
prior estimate of the current covariance matrix, P�

k is the previous covariance matrix,
Kk is the Kalman gain, Qk � 1 is the process noise covariance, and R is the
measurement noise covariance.

An SVR neural network was applied to estimate gold market volatility as a time-
varying parameter that changes based on market conditions and volatility (Q). In
particular, SVR is a support vector machine (SVM) method based on supervised
learning (machine learning) (Cortes & Vapnik, 1995) that can perform regression
analysis and train sample data with target values. As shown in Fig. 5.2, the main
characteristic of SVR is that it attempts to minimize the generalized bound instead of
minimizing the observed training error. To develop a nonlinear SVR, sample data
must be converted using kernel functions to perform linear separation.

The goal function and constraints are shown in Eqs. 5.8, 5.9, 5.10, and 5.11:

Minimize
1
2

wk k2 þ c
Xk
i¼1

ξi þ ξ�i ð5:8Þ

yi � wxi � b � εþ ξi

wxi þ b� yi � εþ ξ�i

ξi, ξ
�
i � 0

Fig. 5.2 Support vector
regression
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where

y ¼
Xk
i¼1

αi � α�i
� �

:K xi, x j

� �þ b ð5:9Þ

The Kernel function is a Gaussian nonlinear function, as shown below:

K xi, x j

� � ¼ exp � xi � x j

�� ��2
2σ2

 !
ð5:10Þ

For SVR, Cortes & Vapnik (1995) proposed that the loss function (L ) in Eq. 5.11
should be used to penalize errors that are greater than the ε threshold.

Lε y, f x,ωð Þð Þ ¼ 0 if y� f x,ωð Þj j � ε

y� f x,ωð Þj j � ε otherwise

�
ð5:11Þ

At the end of the synergistic forecasting model, there is a lag operator ( Z�1) that
generates the predicted gold price return for further use in the Kalman filter (Welch
& Bishop, 2001).

5.4 Empirical Findings

The EGARCH model was first conducted on the financial variables. The results are
presented in Table 5.2. The Engle heteroscedasticity test showed that an ARCH
effect was present in the residuals. The significant α coefficients indicated that all of
the fundamental variables had a significant impact on the volatility of gold prices.
The highest impact was from GVZ. T-bill had the least negative impact (�0.009),
and the CSFI had a slight negative impact (�0.028) on gold price volatility. 1%
increase in oil price volatility increases gold price volatility by 0.048%.

Figure 5.3 shows the forecasting output for XAUUSD volatility based on the
fundamental model (EGARCH), which can effectively forecast upcoming high
volatilities.

Table 5.3 presents the estimation results of the structural model of technical
analysis indicators, showing the effects of the technical analysis indicators on the
standard deviation of gold prices. Most of the lags in the technical analysis indicators
are significant. The highest impact is for one-day-ago RSI, which is 0.13% on next-
day gold price volatility.

Figure 5.4 shows the forecasting output for XAUUSD volatility based on the
structural model of the technical analysis indicators. Notably, some upcoming high
volatility situations can be predicted by the model.

The SVR model predicted the process error covariance (Q) (an estimation of
volatility in gold price returns) for the Kalman filter using the financial variables of
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Table 5.2 Effects of the fundamental variables on gold price return and volatility calculated by the
fundamental model (EGARCH)

Variable Coefficient z-Statistic Prob.

C �0.003146 �0.30552 0.7586

ln(Vol) 0.000257* 1.93244 0.0325

Variance equation

C �1.450085* �940.0000 0.0000

γ1 �0.133644 �1.226851 0.2199

γ2 �0.093312 �0.855017 0.3925

β1 �0.11534* �3.877998 0.0001

β2 0.923007* 400.0000 0.0000

α1 ln(T-Bill) �0.00928* �3.382308 0.0007

α2 ln(OVX) 0.048760* 7.996421 0.0000

α3 ln(GVZ) 0.246481* 139.9340 0.0000

α4 ln(CSFI) �0.028428* �3.832796 0.0001

ARCH heteroscedasticity test (Engle, 1982) χ2 P-value χ2 H0

22.82 0.0000 No ARCH effect

Source: Authors’ analysis of data
Note: * indicates significance at 1%
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Fundamental variables model (EGARCH)
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Fig. 5.3 Forecasting output of the fundamental model (EGARCH)

Table 5.3 Effects of the
technical analysis indicators
on gold price standard devia-
tion calculated by the struc-
tural model

Variable Coefficient t-Statistic Prob.

RSI(-1) �0.14853* �4.42130 0.0000

OBV(-1) 0.00003* 6.77096 0.0000

STOCH(-1) 0.05184* 3.74723 0.0002

C 28.5602* 20.0042 0.0000

Source: Authors’ analysis of data
Note: * indicates significance at 1%
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OVX, CFSI, GVZ, and T-bills as inputs. According to Fig. 5.5, which shows the Q
estimation for upcoming volatilities, the estimation model fitted very well to the
actual data.

Table 5.4 presents the predictive power based on the RMSE and correct direc-
tional change performance (%CDCP). This type of direction-of-change forecasting
is very popular in financial market studies (Bekiros & Georgoutsos, 2008). The
synergistic model had a very small RMSE (0.0268) and a high % CDCP. Therefore,

1

2
Technical analysis indicators model for volatility
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Fig. 5.4 Forecasting output of the structural model of the technical analysis indicators

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
0 50 100 150

Time episode

Q

200 250 300 350 400 450 500

Fig. 5.5 Estimation output of process noise covariance (Q) using an SVR algorithm
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the synergistic model was able to correctly predict the direction of the XAUUSD
price returns 67% of the time through combining information on the volatilities of
future gold market price returns from the models for technical and fundamental
analysis indicators.

To confirm the superior performance of the synergistic model, the result of %
CDCP must be greater than 50%, which would evidence that the model outperforms
the random walk model (Hong et al., 2007). To confirm the statistical significance of
%CDCP, the test statistic should be greater than the critical value defined at the 1%
level (σ _ (0.01%)), which is approximately 0.083159 (Cai & Zhang, 2014).

5.5 Conclusion

This chapter presents a synergistic forecasting model that combines information
from technical and fundamental analysis indicators (a techno-fundamental approach)
to predict daily gold prices returns. Our model used information from the EGARCH
model (a fundamental analysis) and from a time-series structural model of technical
analysis indicators. This information was processed by a data fusion technique using
the Kalman filter that can dynamically update process noise (Q) through support
vector regression. The proposed new structure of the synergistic forecasting model
effectively improved the accuracy of the prediction in comparison to forecasting
solely based on technical and fundamental analysis and significantly outperformed
the benchmark models in terms of its significant and correct prediction of the
directional movement of XAUUSD price returns and RMSE. The results highlight
how volatility forecasting can support the Kalman filter to generate superior gold
price return predictions, which represents an important advantage of the proposed
synergistic model. Also, these findings prove the efficiency of using publicly
available data in forecasting and therefore have significant practical implications
for the financial community.

Table 5.4 Forecasting accuracy measure for XAUUSD price with different models

XAUUSD volatility prediction XAUUSD price return prediction

Fundamental variables EGARCH Technical indicators Synergistic

RMSE %CDCP RMSE %CDCP RMSE %CDCP %CDCP-50%

0.1442 51.4 0.4606 50.8 0.0268 67.0 0.17*

Source: Authors’ analysis of data
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Appendix

Flow Chart of the Proposed Synergistic
Techno-Fundamental Model
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